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  Pref ace   

 Nowadays, human cannot still expand the frontiers of knowledge by having an 
unchanged usual view to the natural, chemical and biological processes. In order to 
develop and grow the human knowledge, it is necessary to see from different views 
and in various aspects. Looking from the large and broad scales such as the mapping 
of cities and countries with satellite, etc., give us the information which are unachiev-
able by the normal vision. However, looking to the nature, from the perspective of 
micron and nanometer (at atomic scales) provides the information which can more 
easily discover the mystery of that phenomenon. What is now known as nanotech-
nology is becoming familiar and controlling many phenomena at the atomic and 
angstrom dimensions which is a diffi cult way with promising future and very amaz-
ing results. For instance, the recent progress in fabrication of carbon nanotubes, 
microelectronic chips, bimolecular engines, and nanomachines, nanosensors, 
microfi lters and other cases have resulted in changes and developments in comput-
ers, electronics, aerospace, biochemistry, ecology, chemistry and other sciences. 
Electrochemistry beside the presence of powerful microscopic methods and elec-
trodes with nanometer dimensions helped us for microstructural investigation and 
identifi cation of nanostructured surfaces. 

 Nanotechnology has also contributed in developing and progressing of analytical 
electrochemistry which is very widespread scientifi c fi eld. Any non-uniformity in 
the surfaces causes to the lack of repeatability in the obtaining of expected results. 
For example, information surrounding the surfaces, interfaces, corrosion, failure or 
abrasion of the surfaces, non-uniformity of the surfaces, recognition of the existed 
components in the surfaces and the degree of their oxidation are much more neces-
sitated to study the processes. This vital information can be obtained by nanotech-
nology, and different microscopic techniques have been improved and developed in 
order to analyze the surfaces at atomic scales. 

 Electrochemical deposition of the metals is an ancient art which is one of the 
primary processes in the protection using nanosized materials. Electrochemical 
deposition, electroless deposition and substitution reaction which are used for the 
deposition of metallic alloys and metallic composite materials, taking advantage of 
the electrochemical reactions. Multilayered thin fi lm, nanowires, nanowires with 
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nanometer layers, nanotubes, nanoparticles located in the metallic matrix and 
nanoparticles containing membranes can be fabricated by nanoelectrochemistry. 
The topics covered in this fi eld of science are very broad. The progress in nanoelec-
trochemistry increased sharply during the recent years. As a result, this handbook 
aims to gather different aspects of nanoelectrochemistry beside its advances. 

 The editors of this handbook would like to appreciate all of contributors to this 
handbook and thank them for their hard work, patience during preparation of this 
handbook and also their high quality chapters. We wish publishing of this handbook 
will help all researchers to benefi t from this collection and further progress of 
nanoelectrochemistry. 

 Summer 2015   Mahmood Aliofkhazraei 
 Abdel Salam Hamdy Makhlouf  

Preface
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Abstract

Its unique nanostructure and extraordinary thermal, mechanical, and electrical 
properties such as good biocompatibility, high-surface area, excellent electrical 
conductivity, electron mobility at room temperature, and flexibility have made 
graphene a popular research subject in the recent past in many fields such as bat-
teries, supercapacitors, fuel cells, and sensors, to name only a few.
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Since the micromechanical cleavage of graphite, various deposition 
approaches were followed for the development of graphene-based devices. 
Nevertheless, all of these approaches have their own advantages and disadvan-
tages. Among the deposition methods, electrochemical approach is potentially 
the simplest and least expensive method; it is a fast and green approach, suitable 
for mass production and for large-area applications.

This chapter proposes to review on the electrochemical synthesis of graphene 
as an alternative to a more convenient, efficient, and greener route to fabricate 
graphene-based nanomaterials with lower oxygen content.

Keywords
Graphene oxide • Reduction • Electrodeposition • Electrophoresis • Composites

 Introduction

Graphene sheets, an intriguing novel two-dimensional carbon material, have 
attracted more and more attention because of its unique properties such as high- 
surface area, excellent mechanical stiffness and flexibility, exceptional electrical 
properties, and electrochemical sensing presenting considerable potential for appli-
cations in fields such as biosensors, catalysis, electrochemical energy storage, and 
electronics [1].

Graphene-based nanomaterials exhibit many exciting properties which could be 
useful for fabrication of many novel devices. However, in order to fully realize 
these properties and applications, consistent, reliable, and inexpensive methods for 
growing high-quality graphene layers in excellent yields are crucial, as the exis-
tence of residual defects will heavily impact their electronic properties, despite their 
expected insensitivity to impurity scattering.

Various technologies were reported for the fabrication of graphene materials since 
the elegant “scotch tape” method, but many concerns were raised along. For example, 
the large-scale fabrication of graphene by chemical vapor deposition and subsequent 
transfer protocols make it a limiting alternative due to the special equipment and con-
ditions used. Chemical reduction of exfoliated graphene oxide (GO) may offer the 
advantages of being cheap and upscalable as reported by deoxygenation of GO with 
various agents such as hydroquinone [2], NaBH4 [3], hydrazine hydrate [4], hydrazine 
vapor [5], or hydrazine with NH3 [6]. Since these reducing agents, and in particular the 
hydrazine, are toxic and should be used with extreme care, green reducing agents got 
highly desired [7]. On the other hand, the method of drop casting solution deposition 
of graphene films on a conductive substrate [8] presents difficulties, as well, due to bad 
dispersion of graphene, poor adhesion to substrate, and low reproducibility. Anyhow, 
it is rather difficult to derive relatively pure graphene from chemical reduction.

Therefore, developing a convenient and efficient route to produce graphene film 
on the conductive substrate is still a challenge. Moreover, the deposition techniques 
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should be fully compatible with plastic substrates, low-temperature processes, and 
solution-processable materials, suitable for flexible substrates for large-area manu-
facturing technologies.

Electrochemical methods are known as an effective tool to modify electronic 
states by adjusting the external power source to change the Fermi energy level of the 
surfaces of electrode materials [9]. In recent years, the electrochemical synthesis of 
graphene materials has drawn considerable attention, in spite of the necessity of a 
conducting substrate and limitations due to the scale of preparation thanks to obvious 
advantages in comparison with the methods listed previously. First, this method 
offers the advantages of simplicity, time efficiency, and environmental friendliness 
[10–12]; thus, it will not result in contamination of the reduced material. More impor-
tantly, the highly negative potentials used in the electrochemical method, which can 
be easily controlled via changing the electrochemical parameters, can overcome the 
energy barriers to efficiently reduce the oxygen-containing functional groups in GO 
[10], more than it is possible via chemical methods. In addition, the reaction condi-
tions are generally mild and the direct immobilization of the as- prepared nanomateri-
als on the conducting substrate easily facilitates further applications.

This chapter explores the electrochemical synthesis approaches to produce gra-
phene nanomaterials and their properties for various applications. Some of the pre-
vious works on the electrochemical synthesis of graphene nanomaterials are 
summarized in Table 1 in regard to the main conditions of the synthesis and the 
applications of the obtained materials.

More details on each specific approach for the synthesis of graphene nanomateri-
als based on electrochemical methods are given in the following subsections. 
Nevertheless, this work is not intended as an extensive review of research per-
formed up to date but rather as an insight into the synthesis approaches followed on 
the topic.

 Electrochemical Synthesis of Graphene Nanomaterials 
from Aqueous Solution

The decorative oxygen functional groups of GO such as hydroxyl, carboxyl, or 
epoxides make it hydrophilic and easily dispersible in water [7]. Therefore, many 
aqueous electrolytes including NaCl [25], Na3PO4 [12], Na2SO4 [26], NaNO3 
[16], PBS [10], KNO3 [27], and KCl [28] aqueous solutions have been investi-
gated as mediums for electrochemical reduction of GO. The removal of these 
functional groups by electrochemical reduction was generally reported as partial 
and the recovery of sp2 structure by healing of the sp3 defects in GO is still a chal-
lenge [10] requiring thus further treatments of the electroreduced GO materials.

Although the mechanism of electrochemical reduction is not fully understood 
and it requires further study, it was found that the electrochemical reduction process 
is pH dependent. This suggests the following mechanism of reduction [12, 29]:

 GO aH be rGO cH O+ + ® ++ -
2  

1 Electrochemical Fabrication of Graphene-Based Nanomaterials
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The strategies to fabricate graphene nanomaterials by electrochemical method 
followed different routes as depending on the necessity of a substrate or the steps 
involved.

 Surface-Mediated Electrodeposition of Graphene Nanomaterials

Graphene sheets have the ability to strongly adhere to various substrates due to their 
high van der Waals attraction, large surface area, and flatness [27]. As dictated by 
the application envisioned for such materials, the electrodeposition of graphene on 
various substrates was performed by either direct mode or by two-step 
electrosynthesis.

 Direct Electrodeposition
Hilder et al. [30] studied the effect of conductivity of deposition medium direct 
electrochemical reduction of GO from aqueous suspension by applying reduction 
voltages exceeding −1.0 to −1.2 V. According to the tests carried out, he observed 
that the optimum conductivity values for the deposition to produce ranged 4–25 
mScm−1 irrespective of system parameters such as concentration and history of the 
GO sample or electrolyte.

On the basis of pulse voltammetry and cyclic voltammetry measurements, Guo 
et al. [10] described how hydroxyl and epoxide groups on GO sheets can be reduced 
more quickly at an applied potential of −1.5 to 0 V compared with −1.3 to 0 
V. Similarly, a constant potential reduction at −1.2 V was carried out by Peng et al. 
[16] to reduce GO film and fabricate a capacitor with the electrochemically rGO 
which achieved a specific capacitance of 128 Fg−1.

Strongly alkaline solutions were reported as effective for the deoxygenation of 
GO [29]. The electrodeposition of rGO from GO suspension by cyclic voltammetry 
technique in 6 molL−1 KOH aqueous solution in the range of 0.9–0 V (vs. Hg/HgO) 
showed an O/C ratio as low as 1.29 %. This material showed good electrochemical 
performance upon cycling. After 3,000 cycles, the electrode preserved 99 % of its 
initial capacitance of 152 Fg−1 at a current density of 5 Ag−1.

Chen et al. [31] directly deposited graphene nanosheets onto a glassy carbon 
electrode (GCE) through cyclic voltammetric (CV) reduction of a GO colloidal 
solution. Prior to CV deposition, the GO material was exfoliated in a phosphate buf-
fer solution by ultrasonication and further subjected to N2 bubbling. The irreversible 
electrochemical reduction of GO was identified by the presence of a cathodic peak 
at −1 V in the CV curves (Fig. 1), while the other cathodic and anodic peaks were 
attributed to active oxygen-containing groups on graphene planes that were too 
stable to be reduced by the CV method. The charge-transfer property of the rGO 
electrode evaluated with the help of carbon-material surface chemistry-sensitive 
redox probe Fe(CN)6

3−/4− showed increased electrochemical active sites after depo-
sition of rGO on GCE. The rGO-modified GCE showed high-resolution capacity to 
hydroquinone and catechol, therefore indicating graphene as a promising sensing 
platform for isomer determination.

1 Electrochemical Fabrication of Graphene-Based Nanomaterials
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Liu et al. [32] reported the direct deposition of rGO onto GCE by electrolysis of 
GO suspensions as a function of pH. According to their results, the electrodeposi-
tion could occur in over the pH range 2.0–10, while at higher pH values such as pH 
11.0 and 13.0, no deposition was observed on the surface of the electrode. The 
Raman spectra of the electroreduced GO show that the G band associated with 
graphite lattice is red shifted in comparison with GO as the reduction to graphene 
leads to an increased in-plane crystalline order of sp2 carbon atoms and thus 
increased π-electron conjugation within the sp2 carbon network (see Fig. 2).

On the other hand, Ye et al. [33] applied constant potential mode and pulsed elec-
trodeposition to directly obtain rGO film on GCE from a phosphate buffer solution 
(PBS) containing 0.1 mg mL−1 GO. Two pulses were used as shown in the Fig. 3: a 
constant potential of 0.6 V to deposit GO sheets on GCE and −1.2 V to electro-
chemically reduce the as-deposited GO sheets to rGO sheets. His study showed that 
electrodeposited rGO film could be used as an effective support for the electrodepo-
sition of Pt microspherical particles resulting in a modified electrode (Pt/rGO/GCE) 

0

20

10

–30

–40
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A

Fig. 1 CVs depicting 
electrochemical reduction 
of 1.0 mg mL − 1 GO in 
PBS (0.067 M, pH 9.18) 
on a GCE at 10 mV s−1 
(Reprinted with permission 
from Chen et al. [31]. 
Copyright (2011) Elsevier)

Fig. 2 Raman spectra of 
GO and electroreduced GO 
(Reprinted with permission 
from Liu et al. [32]. 
Copyright (2011) 
WILEY-VCH)
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with superior electrocatalytic activity and improved stability for methanol oxidation 
than the Pt/GCE electrode.

 Two-Step Electrodeposition
Two-step electrochemical depositions typically involved the preparation of a modified 
electrode followed by electrodeposition. One popular way of fabricating modified elec-
trode is by spin coating, drop casting, or dipping the electrode in the GO solution.

By applying this technique, Yu et al. [34] studied the electrodeposition of rGO 
using GO-drop-casted GCE electrodes and applied potential windows of −1.0 to 
1.6 V, −1.5 to 0 V, and −1.0 to 1.0 V. According to their results, the distribution of 
the residual functional groups in the electrodeposited rGO obtained under different 
potentials had a marked effect on the specific capacitance of the electrode. That is, 
applying the window −1.5 to 0 V greatly decreased the number of epoxyl groups 
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Fig. 3 (a) Pulsed 
electrodeposition mode for 
the deposition of rGO on 
GCE. (b) Constant 
potential mode for the 
deposition of GO on  
GCE [33]
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and resulted in small new sp2 domains, while sp2 carbon groups increased. On the 
other hand, the reduction at −1.0 to 1.0 V for 4,000 s enhanced sp2 carbon to 61.1 %, 
and large sp2 domains were formed. Consequently, the specific capacitances were 
246 and 164 F/g, in agreement with Raman and X-ray photoelectron spectroscopy 
(XPS) results – see Table 2.

Another modified electrodes reported for the electrodeposition of graphene- 
based nanomaterials are, for instance, modified gold electrodes with GO by using 
self-assembled monolayers of cystamine and further electrochemically reduced it to 
obtain reduced GO layers [27]. Wang et al. [25] reported a study on electrochemical 
reduction of GO monolayers on 3-aminopropyltriethoxysilane (APTES)-modified 
electrodes.

As compared to hydrazine-reduced rGO, Wang et al. claimed that the morphol-
ogy of single-layer electrodeposited rGO was similar for the films adsorbed on 
3-aminopropyltriethoxysilane (APTES)-modified solid substrates such as GCE or 
ITO [35]. Raman spectra showed that the G band for fresh electrochemical rGO 
shifted from 1,600 to 1,587 cm−1 compared with GO and together with results from 
the negative charge testing with [Fe(CN)6]3−/4− proved that the electrochemical 
method is more effective than the hydrazine vapor reduction method to reduce the 
GO films.

Filik et al. [36] reported the fabrication of an electrochemical sensor based on 
graphene–Nafion composite for detection of acetaminophen. He coated a GCE with 
GO suspension mixed with Nafion–isopropyl alcohol which was further immersed 
in 0.02 M KH2PO4 solution and subjected to a cathodic potential of −0.7 V for 
10 min. Cyclic voltammetry was used to investigate the electrochemical behavior of 
acetaminophen on the bare GCE and the modified GCE in 0.1 M ammonia buffer 
solution at a scan rate of 50 mVs−1, respectively. The graphene–Nafion-modified 
electrode exhibited excellent electrochemical activity on the oxidation of acetamin-
ophen having a detection limit of 0.025 μM.

 Liquid-Phase Electrosynthesis of Graphene Nanomaterials

Suspensions of graphene-based materials are typically obtained electrochemically 
by oxidation of graphite in various electrolytes. For example, Wang et al. [37] and 
Lee et al. [38] prepared graphene sheets on the graphite surface by electrolysis in 

Table 2 Fitting results (%) of the C1s XPS spectra before and after electrochemical prereduction 
of GO (Reprinted with permission from Yu et al. [34]. Copyright (2013) Elsevier)

Treatment
COOR
289 eV

C–O
286.6 eV

C–OH
285.7 eV

C–C
(sp2) 284.5 eV

Before 40.6 40.1 7 12.3

−1.0 to 1.6 V 37.6 19.2 43.2

−1.0 to 1.0 V 19.2 19.7 61.1

−1.5 to 0 V 15.4 35.9 48.7

A. Pruna et al.
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poly(sodium-4-styrene-sulfonate) (PSS) solution with the formation of stable gra-
phene/polymer suspensions, while Dilimon and Sampath [39] exfoliated graphite in 
acetamide–urea–ammonium nitrate melt.

Su et al. [20] investigated the exfoliation of graphite by applying varying biases 
such as constant switching in the range −25 to 25 V in different electrolytes. They 
observed that only the electrolytes containing H2SO4 exhibit ideal exfoliation effi-
ciency. However, as the exfoliation using only H2SO4 induces large amounts of 
defects in the graphene sheets, KOH was added to lower the exfoliation rate. 
Regarding the bias, low and inefficient exfoliation was produced by applying bias 
up to 10 V, while fast rate was observed upon increasing the bias larger than 10 V. 
The obtained graphene sheets were reported to be bilayered with A–B stacking 
exhibiting a lateral size of 30 μm. Transparent films obtained with the self- assembled 
graphene sheets showed good potential for flexible electronics, as per the sheet 
resistance of ∼210 Ω/sq at 96 % transparency.

Further, Zhang et al. [40] reported the synthesis of single-layer or bilayer electro-
chemically functional graphene nanocomposites with good electrocatalytic activity 
toward hydrogen peroxide (H2O2) and β-nicotinamide adenine dinucleotide 
(NADH), in sheet or ribbon shapes, by one-step liquid-phase exfoliation of natural 
flake graphite with methylene blue and applied ultrasonic treatment.

A stable colloidal graphene/sodium dodecyl sulfate (SDS) suspension was 
reported by Alanyalıoğlu et al. [13] by a two-step route (see Fig. 4): first, an electro-
chemical intercalation of SDS into graphite and further, the electrochemical exfolia-
tion of an SDS-intercalated graphite electrode. They observed that the electrochemical 
intercalation process in 0.01 M SDS solution occurred with simultaneous water 
electrolysis even at low intercalation potential values, while no water electrolysis 
was produced at a large anodic potential range in 0.1 M SDS solution. The current 
fluctuations in the current–time transient obtained during the potentiostatic interca-
lation at 1.6 V versus Pt were attributed to repeated exfoliation of graphene sheets 
from the graphite surface and formation of fresh surface to the electrolyte during 
SDS intercalation into graphite electrode [41]. Based on their results, the graphene 
sheets with high structural order and low number of layers can be obtained by using 
relatively high intercalation potentials.

 Synthesis of Graphene Nanomaterials by Electrodeposition 
from Nonaqueous Solution

Since the electroreduction of GO from aqueous suspensions requires the use of a 
fixing agent onto electrode that presents difficulties to be removed [27, 42], some 
organic solvents replacing water were examined as a medium for electrochemical 
reduction of GO [43].

According to the study performed by Harima et al. [43], their sweep- 
voltammogram I-V results (see Fig. 5) show that GO can be successfully electro-
reduced onto fluorine-doped–tin-oxide (FTO) substrate in acetonitrile, 
dimethylformamide, dimethylsulfoxide, and propylene carbonate from which the 
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Graphite

SDS

SDS-intercalated
graphite

Graphene/SDS
suspension

+

reduction+e–

oxidation–e–

Fig. 4 Representative view of electrochemical route to produce graphene/SDS suspension 
(Reprinted with permission from Alanyalıoğlu et al. [13]. Copyright (2012) Elsevier)

amount of electricity necessary to reduce almost complete 1 mg GO was deter-
mined as 2.0 C. The film obtained in polycarbonate showed a specific capacitance 
of 146 F g−1.

Ping et al. [44] reported the electroreduction of GO onto ionic-liquid 
n- octylpyridinium hexafluorophosphate-doped screen-printed electrode (IL-SPE) 
from nitrogen-purged solution under magnetic stirring at −0.8 V (vs. Ag/AgCl) for 
600 s. The fabricated glucose biosensor based on the modified rGO/IL-SPE elec-
trode showed good analytical performance with a linear detection range from 5 μM 
to 12 mM, with a detection limit of 1 μM.

A. Pruna et al.
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A one-step electrochemical approach was performed by Liu et al. [21] for the 
preparation of ionic-liquid-functionalized graphene sheets with the assistance 
of an ionic liquid and water. The properties of graphene sheets obtained by 
applying constant potentials of 10–20 V to two high-purity graphite electrodes 
were analyzed as a function of ionic liquid and ratios of ionic liquid/water 
employed. According to their results, the ionic-liquid-treated graphite sheets 
could be exfoliated into functionalized graphene nanosheets allowing individu-
alization and homogeneous distribution into polar aprotic solvents, without fur-
ther reduction.

Kauppila et al. [45] studied the electroreduction of GO spin-coated onto SnO2 
substrates by using cyclic voltammetry between 0 and −0.8 V at pH 2 and from 0 to 
−1.3 V at pH 12. The type of deposition solution that was aqueous solutions or 
organic ones – propylene carbonate and acetonitrile – and varying pH values proved 
to have a marked influence: given the broader potential window for organic sol-
vents, the reduction process started at more negative potentials in organic solutions 
with respect to aqueous ones.
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 Electrochemical Unzipping of Carbon Nanotubes

Shinde et al. [23] reported another electrochemical approach to transform multi-
walled carbon nanotubes (MWCNTs) to graphene nanoribbons (see scheme in 
Fig. 6) by first oxidizing the MWCNT and further reducing them (see Fig. 7).

The electrochemical unzipping of CNTs has the advantages of eliminating the 
limitations of over-oxidation and edge defects in chemical unzipping by careful 
control of the electric field. After spreading a suspension of CNT onto GCE elec-
trodes, the modified electrodes were oxidized at constant potential for 2–12 h in 
0.5 M H2SO4 solution. Further, the oxidized-CNT/GCE electrode was subjected to 
−0.75 V for 2–12 h. Their results underlined the unique advantage of the unzipping 
treatment of CNTs in the presence of an interfacial electric field with respect to the 
orientation of CNTs, by the fabrication of graphene sheets with controlled widths 
and fewer defects.

John and colleagues [24] reported an in situ Raman spectroscopic and micro-
scopic investigation of the electrochemical unzipping of single-walled carbon nano-
tubes. According to their Raman spectral mapping results, metallic SWCNTs are 
opened up rapidly followed by gradual electrochemical unzipping of semiconduct-
ing SWCNTs. Considering the resonant Raman scattering theory, it was found that 
two metallic SWCNTs with chiralities (10, 4) and (12, 0) get unzipped first at a 
lower electrode potential (−0.36 V) followed by the gradual unzipping of another 

Electrochemical Oxidation

MWCNT

a

b

d
c

El
ec
tro
ch
em

ica
l

Re
du
cti
on

Chemical

Reduction

Oxidized MWCNT

Defect free Graphene layer Graphene layer with defects

Fig. 6 Diagram of the electrochemical approach for unzipping the CNTs to graphene sheets 
(Reprinted with permission from Shinde et al. [23]. Copyright (2011) American Chemical Society)
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Fig. 7 (a) Cyclic voltammograms (oxidation) of MWCNTs in the potential window from 0.1 to 
0.7 V in 0.5 M H2SO4 using glassy carbon electrode at 100 mV/s scan rate. (b) Cyclic voltammo-
grams (reduction) of MWCNTs in the potential window from −0.1 to −0.75 V in 0.5 M H2SO4 at 
100 mV/s scan rate. Regions marked with a star indicate the potentials at which the CNTs have 
been selectively oxidized or reduced (Reprinted with permission from Shinde et al. [23]. Copyright 
(2011) American Chemical Society)

two metallic tubes, (9, 3) and (10, 1), at a relatively higher potential (−1.16 V). The 
semiconducting SWCNTs with chiralities (11, 7) and (12, 5), however, got open up 
gradually at (−1.66 V).

Recently, Huang et al. [46] reported on the capacitance properties of layer-by- 
layer spray-deposited SWCNTs and observed that vacuum and H2 heat treatment 
resulted in a hybrid microstructure of SWCNTs and multilayer graphene sheets 
from unzipped SWCNTs with increased capacitance of 151 F g−1 at 2 mV s−1.
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 Synthesis of Graphene Nanomaterials by Electrophoretic 
Deposition

Electrophoretic deposition (EPD) gained much interest in deposition of graphene- 
based materials, being employed as a pretreatment and followed by electroreduc-
tion. Thus, rGO films on an indium tin-oxide (ITO) sheet electrode has been realized 
via EPD technique followed by subsequent in situ electrochemical reduction by 
constant potential method [47, 48].

Wu et al. [48] deposited graphene sheets by the electrophoretic method using a 
bias voltage of 100–160 V after the previous addition of a charger to render the 
sheets positively charged, while Chen et al. [49] reported the electrophoretic depo-
sition of graphene starting from an ethanol colloidal suspension and applied bias 
of 50 V.

The electrophoretic method was also applied to combine the graphene and car-
bon nanotubes in a flexible, transparent, and conductive novel hybrid material [19] 
starting from a 1-ethyl-2-pyrrolidinone stable suspension by applying lower biases 
and deposition time with respect to the data existing in the literature [50] and 
resulted in the appearance of a thin paperlike structure with good transparency.

Liu et al. [28] showed that rGO films obtained this way (denoted with GS; see 
Fig. 8) resembled GO in terms of morphology, but most of the oxygen-containing 
functional groups were removed according to the their XPS results for non- 
oxygenated groups C=C/C–C that increased from 49.1 in GO to 74.2 % in 
rGO. Moreover, the rGO obtained by Liu and his colleagues showed also a π-π* 
shakedown feature at 290.6 eV, confirming the existence of conjugated carbons. 
The specific capacitance still remained at high level of 93 F g−1 after 400 times of 
cycling, demonstrating that the prepared film electrode possessed the excellent sta-
bility and lifetime as supercapacitor material (Fig. 9).
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Fig. 8 (a) Optical images of the GO aqueous suspension (0.6 mg mL−1) and the as-deposited 
GO film and GS film on ITO sheet, respectively; (b) Typical i–t curve for electroreduction of GO 
film on the ITO electrode in the 0.1 M KCl aqueous solution at −0.9 V (Reprinted with permission 
from Liu et al. [28]. Copyright (2011) Springer)

A. Pruna et al.



17

15 10

a
b

c
d

5 0 –5 –1
0

Current density/A g
–1

–1
5

–2
0 –0

.2
0.

0
0.

2

P
ot

en
tia

l/V
 v

s.
 A

g/
A

gC
l

Potential / V (vs. Ag/AgCl)

0.
4

5 
m

V
 s

–1

30
 m

V
 s

–1

50
 m

V
 s

–1

10
0 

m
V

 s
–1

15
0 

m
A

 g
–1

a
a

b

b

c

c

45
0 

m
A

 g
–1

75
0 

m
A

 g
–1

0.
6

0.
8

0
–0

.20.
0

0.
2

0.
4

0.
6

0.
8

50
0

10
00

T
im

e 
/s

15
00

20
00

25
00

30
00

0
02040608010
0

12
0

Specific Capacitance/F g-1

14
0

16
0

50
10

0

10
0

0

20
0

40
0

60
0

80
0

20
0

30
0

40
0

Z
'/o

hm

-Z''/ohm

50
0

0
0

20

20

40

40

60

60

80

80

60
0

C
yc

le
 n

um
be

r

15
0

20
0

25
0

30
0

35
0

40
0

Fi
g

. 9
 

(a
) 

C
yc

li
c 

vo
lt

am
m

og
ra

m
 a

nd
 (

b)
 N

yq
ui

st
 p

lo
ts

 o
f 

G
S

 fi
lm

s 
in

 0
.1

 M
 N

a 2
S

O
4 

el
ec

tr
ol

yt
e;

 (
c)

 g
al

va
no

st
at

ic
 c

ha
rg

e/
di

sc
ha

rg
e 

cu
rv

es
 o

f 
G

S
 fi

lm
s 

at
 

 di
ff

er
en

t c
ur

re
nt

 d
en

si
ti

es
; (

d)
 th

e 
sp

ec
ifi

c 
ca

pa
ci

ta
nc

e 
ch

an
ge

 a
t a

 c
on

st
an

t c
ur

re
nt

 d
en

si
ty

 o
f 

75
0 

m
A

 g
−

1  
as

 a
 f

un
ct

io
n 

of
 c

yc
le

 n
um

be
r 

(R
ep

ri
nt

ed
 w

it
h 

pe
rm

is
-

si
on

 f
ro

m
 L

iu
 e

t 
al

. [
28

].
 C

op
yr

ig
ht

 (
20

11
) 

S
pr

in
ge

r)

1 Electrochemical Fabrication of Graphene-Based Nanomaterials



18

 Composite Nanomaterials Obtained by Electrodeposition 
of Graphene

Graphene-based nanocomposites have attracted great attention due to the synergis-
tic contribution of two or more functional components. Considering an appropriate 
design, nanocomposites can exhibit the beneficial properties of each parent compo-
nent, resulting in a material with improved performance.

Up to now, many studies were devoted to the incorporation of graphene into 
composite materials and exploration of their applications in various fields, includ-
ing quantum dots [25], metal nanoparticles [51], metal oxides [52], carbon nano-
tubes [53], and conducting polymers [54] or biopolymers such as polysaccharides 
[55] peptides [56], proteins [57], and nucleic acids [58].

Zhu et al. [9] reported one-step electrochemical reduction for the synthesis of 
graphene/MnO2 nanowall hybrids by subjecting a GO-drop-casted GCE electrode 
immersed in 0.1 mol/L Na2SO4 containing 0.05 mol/L Mn(OAc)2 to potential 
cycling in the range 0 to −1.5 V (vs. Ag/AgCl) at a scan rate of 50 mV/s for ten 
cycles. Their composite resulted in an amorphous conductive network with poten-
tial in electrochemical supercapacitor and biosensor applications.

Tang and colleagues [17] reported on the electrochemical reduction of GO 
simultaneously with aniline electropolymerization for the fabrication of graphene–
polyaniline hybrid film by cyclic voltammetry. The superior electrical conductivity 
and electroactivity in acidic and even in neutral and alkaline media of their alter-
nate-layered graphene–polyaniline films make them promising for applications in 
sensors, catalysis, and energy conversion devices.

Fu et al. [22] obtained graphene/Au composite by electrochemical co-reduction 
of GO and chloroauric acid in ionic liquid and claimed it exhibited enhanced elec-
trochemical activity and stability toward the redox of Fe3+/Fe2+, while the composite 
of reduced GO with CNTs obtained by Lu et al. [59] by electrophoretic deposition 
at constant DC voltage of 30 V was reported to achieve the highest capacitance for 
a 40 % CNT content.

Nevertheless, the development of facile and effective approaches still remains a 
great challenge as both the introduction of insulating GO and the lengthy experi-
mental procedure will definitely limit the practical applications of graphene-based 
composite.

 Conclusions

Graphene-based nanomaterials exhibit many exciting properties which could be 
useful for fabrication of many innovative devices. However, in order to fully realize 
these properties and applications, consistent, reliable, and inexpensive methods for 
growing high-quality graphene layers in excellent yields are crucial, as the exis-
tence of residual defects will heavily impact their electronic properties, despite their 
expected insensitivity to impurity scattering. Electrochemical approach proved a 
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high potential under this aspect. Nevertheless, it should be noted that the uncontrol-
lable problems of random size and shape (sheets vs. ribbons) in liquid-phase exfo-
liation may be a limit for specific applications of graphene. Although the 
electrochemical unzipping of CNTs to fabricate graphene sheets has size limitations 
due to the CNTs’ diameter and the electronic characteristics might be affected by the 
adsorption of cations, anions, and solvent molecules at defect site, this approach 
opens new pathways for the preparation of high-quality graphene in good yield.

The encouraging results of the current electrochemical synthesis of graphene 
nanomaterials have already determined the direction of future research efforts. 
Anyhow, reliable electrochemical synthesis approaches to yield defect-free gra-
phene structures with tailored properties have not been fully referred to and need 
further grope for. The role of oxygen functional groups of GO on its electrochemis-
try and the mechanism of the electrochemical reduction [60] still need to be under-
stood thus requiring further detailed research investigation.
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Abstract
Electrodeposition is a unique technique in which a variety of materials can be 
produced including metals, ceramics, and polymers. In the current chapter, the 
advantages of electrochemical deposition techniques in fabricating various nano-
materials with superior properties compared with conventional materials will be 
highlighted. The properties of various nanostructured coatings produced by elec-
trodeposition are discussed. Some models describing nucleation and growth 
mechanism are presented. Finally, the importance of some nanocrystalline elec-
trodeposits in many industrial applications as well as their potential role in the 
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planned future technologies is emphasized. The potential of highly ordered 
nanomaterials for future technological applications includes the field of various 
nanophotonic, catalytic, microfluidic, and sensing devices, as well as functional 
electrodes and magnetic recording media. Another application is template- 
assisted electrodepositiion employing a variety of nanoporous membranes and 
films such as nanoporous alumina membranes used for the synthesis of high- 
density, ordered arrays of nanodots, nanotubes, and nanowires.

Keywords

Electrocrystallization • Nucleation and growth • Metals • Alloys • Nanocomposites •
Nanorods • Nanowires • Nanoporous membranes

 Introduction

Nanocrystalline materials with grain size of less than 100 nm are a new and novel 
class of advanced materials, which are intensively applied in the scientific and busi-
ness communities. Since their introduction in the early 1980s [1], intensive scien-
tific activity in the areas of production, microstructural characterization, and 
property determination of these materials has resulted in the development of a num-
ber of manufacturing techniques capable of producing various materials with supe-
rior properties over conventional materials [2]. Consequently, several industrial 
applications and hence new market opportunities have emerged from this field and 
are continuing to increase in numbers. Most current efforts on large-scale produc-
tion of nanostructured materials are concerned with consolidating nanocrystalline 
precursor powders produced by techniques such as gas condensation, ball milling, 
or spray conversion. Film deposition techniques such as physical and chemical 
vapor deposition, sol–gel techniques, etc. are also under intensive research 
activities.

A thin coating (thickness up to -100 μm) electroplated onto on a substrate to 
modify specific surface properties is probably the most widely known application 
of electrodeposition technologies. However, it should be noted that there are sev-
eral other processes (e.g., brush plating, electrowinning, and electroforming) 
which can be used to produce nanocrystalline materials as thick coatings (several 
mm or cm thick) or in freestanding forms such as sheet, foil, tubes, wire, mesh, 
plate, and foam [3]. Table 1 summarizes the nano products obtained from each 
process.

The production of nanomaterials requires a deposition process on the atomic 
level and extreme control over the deposition. The obvious advantages of this 
century- old process of electrodeposition are as follows:

 (a) High production rate and low cost
 (b) Free from porosity and high purity
 (c) Industrial applicability
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 (d) Ability to overcome shape limitations or allow the production of freestanding 
parts with complex shapes

 (e) Coating on widely differing substrates
 (f) Ability to control structural features with sizes ranging from nm to μm
 (g) Control of the alloy composition and the ability to produce alloys with compo-

sition unattainable by other methods
 (h) The possibility of forming of simple low-cost multilayers in many different 

systems
 (i) No requirements of postdeposition treatment [3]

Electroplating is a technologically feasible and economically superior tech-
nology for the production of nanostructured pure metals and alloys as well as 
nanocomposites [2]. Electrochemical deposition of polycrystalline metals and 
alloys exhibits several types of growth forms such as layers, blocks, ridges, pyra-
mids, spiral growth, dendrites, powders, and whiskers [4]. Mohanty [5] has dem-
onstrated the electrodeposition of various nanostructure materials, such as 
nanoparticles, nanowires of Au, Pt, Ni Co, Fe, Ag, etc., for example, the synthe-
sis of nanocrystalline pure metals e.g., Ni [6], Co, and Cu [7], binary alloys e.g., 
Ni-P [8], Ni-Fe [9], Zn-Ni [10], and Co-W [11], and ternary alloys e.g., Ni-Fe-Cr 
[12] and Ni-Mo-Fe [13]. Even multilayered structures or compositionally modu-
lated alloys (e.g., Cu-Pb and Ni-P, metal matrix composites e.g., Ni-Si C, and 
ceramics e.g., ZrO2 have been successfully produced by electrodeposition tech-
niques [14].

 Theory of Electrodeposition

The mechanism of electrodeposition is similar to the crystal growth of conventional 
metals and is developed in two steps:

 (i) Formation of nuclei covering electrode with few atomic layers of metal
 (ii) Growth of deposits

Formation of nuclei requires high voltage although once formed, nuclei will 
grow fast at low voltage. The atoms (adatoms), which are formed during the 

Table 1 Different techniques for production of nanomaterials

Nanoproduct Production techniques

Powders Gas condensation, ball milling, or spray 
conversion

Thin coatings Physical and chemical vapor deposition, sol–gel 
techniques, electrodepsoition

Thick coatings
Freestanding forms such as sheet, foil, 
tubes, wire, mesh, plate and foam

Brush plating, electrowinning and electroforming
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electroplating on the crystal plane quickly, occupy suitable sites, such as kink sites 
where atoms interact with three neighbors or edge sites (two neighbors) and some-
times occupy terrace sites (one neighbor).

The growth takes place through the following steps:

 (a) Mass transport in solution by diffusion of ions to the surface of cathode
 (b) Electron transfer to form an adatom (a mobile or absorbed atom)
 (c) Diffusion of adsorbed atoms across the surface to kink sites [15]

 Nucleation

The nucleation and growth processes taking place during electrodeposition of 
metal coatings are similar to that occurring during any conventional crystal-
lization process. They differ in that, in the case of electrocrystallization, the 
metal atoms required for nucleation must first be present. The hydrated metal 
ions transfer across the metal-solution interface and then neutralize at the 
cathode surface, forming the local crystal nuclei. On the other hand, in the 
case of crystallization from molten metal, the uncharged metal atoms collect 
to form crystal nuclei, which then grow spontaneously, as soon as a critical 
size is reached [16].

 Homogeneous Nucleation
When the temperature falls below the melting point, the molten metal is cooled, and 
the first crystal nuclei are formed. The process results in thermal energy change, as 
the state changes from liquid to solid. The so-called Gibbs free energy (G) of all 
elements is then equal to zero. However, this is true only for each element in a 
defined state (liquid, solid, gaseous) and at a given temperature. As metal atoms 
solidify, the kinetic energy, ΔGv, is designated with a minus sign due to contraction 
in volume.

On the other hand, as a solid nucleus is formed, an interface must be formed 
between this nucleus and the surrounding melt. For this, some surface work 
(ΔG°) is required, which therefore is positive. The surface energy γ between 
the crystal surface and the deposited layer depends on the type of metal as 
well as the surface area of the nucleus. The total change in Gibbs free energy, 
ΔG, for the formation of a spherical nucleus of radius r, volume VK = (4/3) πr3, 
and surface area = 4 πr2 is the sum of volume energy and surface energy, ΔGv 
and ΔG°

 
D D D p D p gG Gv G r Gv r= + = -( ) × +° 4 3 43 2/  (1)

The crystal nuclei with r > r* are thermodynamically stable and will probably con-
tinue growing. On the other hand, if r < r*, the nucleus is not thermodynamically 
stable and is likely to contract in size, and it dissolves. Further growth of such small 
nuclei is accompanied by an increase in Gibbs free energy [16].
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 Heterogeneous Nucleation
In this case, nucleation and growth initiates at the mold wall or perhaps around solid 
impurities in the melt. These are known as initiation sites and act as active centers, 
reducing activation energy need for formation of nuclei of greater than the critical 
size. The change in free energy ΔG** is not only a function of the radius of the 
nucleus but also of the wetting angle θ.

If θ = 0, a complete wetting of the wall surface by the nascent crystal nucleus 
occurs and ΔG** = 0, which corresponds to spontaneous crystallization from the 
melt, without any activation energy barrier.

If θ = 180, there is no wetting of the container wall by the growing nuclei, and the 
relationship ΔG** = ΔG* is obtained. This condition represents a homogeneous 
nucleation and requires the highest energy of formation of a nucleus. The formation 
of nuclei of at least the critical size can result when the metal ions pass directly to 
the cathode surface at nucleation sites, where this is energetically favored. Another 
option is that they pass through sites which are energetically less favorable. In the 
latter case, lateral movement of adsorbed atoms across the surface is necessary to 
form nuclei of the critical size [15].

As adatoms reach the cathode, the hydrated metal ions lose a part of their hydra-
tion sheath and thus retain a partial charge. In this especially low-energy state, they 
diffuse across the cathode surface to the nearest growth site. Depending on the loca-
tion and state of the resulting crystal nucleus, four different types of site are recog-
nized. These are zero-dimensional sites and one-, two-, and three-dimensional sites 
(edge, plane, or corner sites, respectively).

 1. Zero-dimensional nuclei:
This represents the deposition of individual adatoms onto an active site at the 
cathode surface. Formation of such nuclei requires the smallest of all energies of 
nucleation.

 2. One-dimensional nuclei:
When a series of adatoms accumulate along the edge of a monoatomic step at the 
cathode surface, the nucleation energy required for this is somewhat higher than 
in case 1.

 3. Two-dimensional nuclei:
This situation illustrates a planar agglomeration of adatoms, the orientation of 
which will often depend on that of the underlying substrate. This effect is known 
as “epitaxy,” where the lattice structure of the deposit is either identical to that of 
the cathode or very similar.

 4. Three-dimensional nuclei:
The lattice structure of the deposit differs from that of the cathode. In practice, 
the conditions for forming such nuclei are extremely complex. The interaction 
between a crystal nucleus and the substrate depends on their lattice structures. 
This is in the case of a totally smooth and featureless substrate.

The nucleation may exhibit epitaxial behavior if the lattice structures of substrate 
and deposited metal are identical or similar. In case of three-dimensional 
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nucleation, lattice defects such as edges, corners, and steps are presented at the 
cathode surface. The nucleation energy for three-dimensional nuclei is always 
larger than that for two-, one-, or zero-dimensional types [15].

The rate of nucleation dNk/dt is presented as follows:
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where aK is a constant of the system.
According to the following equation, the critical nucleus size decreases as the 
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where

V is the molar volume of a crystal nucleus of critical size.
z is the number of electrons transferred.
cad is the concentration of adatoms at a growth site.
c°ad is the concentration of adatoms in the equilibrium state.

Increasing the concentration of adatoms will lead to increase in both the crystal-
lization overvoltage and the rate of nucleation [17, 18].

 Growth of Nuclei

The electrodeposit formation takes place by the following steps:

 – Ions of the solvent move through the cathode by diffusion, migration, and 
convection.

 – There is an electron transfer between the cathode and the ions.
 – There is partial or total loss of the solvation spheres and adatom formation.
 – The adatoms are absorbed by the surface and spread till they find suitable sites.
 – There is cluster formation.
 – There is crystallographic development of the crystal grain [15].

According to the model of Kossel and Stansky, the crystal growth occurs through 
competition between vertical growth, depending on two-dimensional nucleation 
rate, and horizontal growth, depending on the rate of the repeatable step [19]. The 
Kossel-Stansky model assumed that the strength of binding of an atom to the sur-
face depends on its number of nearest neighbors. They applied this to a simple cubic 
crystal, which is also known as a Kossel crystal. According to this theory, metal 
atoms are preferentially deposited at sites on the cathode surface where their incor-
poration in the lattice releases the most energy. On this basis, preferential growth of 
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nuclei is expected at the locations such as edges, corners, steps, and kinks. Metal 
atoms at the surface of the lattice have unbound valence bonds that exert an effect 
on their immediate environment which is most pronounced at the topographic fea-
tures listed above, where it is said that individual atoms are more exposed. That’s 
why preferential metal deposition occurs at these locations, where the free energy 
required is at a minimum. These locations are also known as semicrystalline. At 
these topographic features, the highest current density is observed, which motivates 
the crystal growth rate [16]. According to the Terrace-Ledge-Kink (TLK) model, 
metal atoms are preferentially deposited at edges, corners, steps, and kinks (Fig. 1) 
where overall the free energy needed is minimum [17].

Incoming adatoms build up, either directly or after lateral diffusion, at the defect 
sites presented on the cathode surface. The stability of growing nuclei formed at 
these locations is determined by the local lattice energy required to incorporate 
more atoms into the metal matrix at the cathode. Later on, it was realized that crystal 
growth can occur by means of the rotational movement of a growing spiral at a 
screw dislocation [15].

 Modes of Thin-Film Growth

These are monolayer overgrowth, nuclear growth, and the growth mode that has 
both features of the former two. The monolayer overgrowth mode is described 
in Fig. 2b and is also called Frank-van der Merwe mode (FvdM mode). 

S E

H

K

Fig. 1 Different growth 
sites at a substrate. 
E = corner; H = recess; 
K = edge; S = step [17]
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The deposited atoms (or molecules) cover the substrate uniformly by one atom 
thickness, and the deposit grows layer by layer. This growth mode occurs when 
the substrate material and the growth material have good amicability and low 
surface tension [19].

Another mode is called island growth or Volmer-Weber mode (VM mode). When 
the desorption process is not strong, the atoms, which reach the substrate, form two- 
dimensional gases on it, and they condense forming a nucleus with high density. 
High density of nucleus leads to touch and combine each other, and they grow to an 
island. When it further grows, it becomes a channel state, a whole state, and finally 
makes a uniform thin layer as shown in Fig. 2a. The VM mode differs from FvdM 
mode in that VM mode does not grow layer by layer. This mode is chosen in case of 
high surface tension of the growth material and low amicability between the sub-
strate materials and the growth deposit.

Stranski-Krastanov growth mode is an intermediate process consisting of both 
2D layer and 3D island growth. Transition from the layer-by-layer to island-based 
growth occurs at a definite critical coating thickness which depends mainly on the 
chemical and physical properties, such as surface energies and lattice parameters, of 
the substrate and the coating layer [20–22].

The growth of epitaxial (homogenous or heterogeneous) layers on a single 
crystal surface depends critically on the interaction strength between adatoms and 
the substrate. In Volmer-Weber (VW) growth mode, adatom-adatom interactions 
are stronger than those of the adatom with the substrate material, resulting in the 
formation of three-dimensional adatom clusters or islands [21]. Growth of these 
clusters, accompanied with coarsening, will lead to rough multilayer film forma-
tion on the substrate. On the other hand, during Frank-van der Merwe (FM) 
growth mode, adatoms are attached preferentially to surface sites resulting in the 
formation of atomically fully smooth layers. This layer-by-layer growth is two 
dimensional leading to complete film formation before the growth of subsequent 
layers [22].

Fig. 2 Different modes of thin-film growth; (a) Volmer-Weber (V-W) type, (b) Frank-van der 
Merwe (F-M) type, and (c) Stranski-Krastanov (S-K) type [19]
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Markov [23] proposed an equation for the layer chemical potential per atom as

 
m m j j e en n n na a d e( ) = + - ( ) + ( ) + ( )éë ùû¥

¢
 (4)

where m¥  is the bulk chemical potential of the adsorbate material, φa the desorption 
energy of an adsorbate atom from a wetting layer of a material similar to the sub-
strate material, φa′(n) the desorption energy of an adsorbate atom from the substrate, 
εd(n) the misfit dislocation energy per atom, and εe(n) the homogeneous strain 
energy per atom. In general, the value of φa, φa′(n), εd(n), and εe(n) is dependent in 
a complex way on the thickness of the growing layers and lattice misfit between the 
substrate and adsorbate layer.

In case of small strains, e md e n, ,( ) ¥  the criterion that determines the film 
growth mode depends on the chemical potential change per unit atom d

dn

m .

• For VW growth mode, d

dn

m
< 0  (adatom cohesive force is higher than surface 

adhesive force)
• For FM growth mode, d

dn

m
> 0  (surface adhesive force is higher than adatom 

cohesive force)

SK growth can be characterized by both of these inequalities. While initial deposit 
growth follows a FM mechanism, i.e., positive differential μ, nontrivial amounts of 
strain energy accumulate in the deposited layers. At a critical thickness, this strain 
induces a sign reversal in the chemical potential, i.e., negative differential μ, leading 
to a change in the growth mode. At this point, it is energetically preferred to nucleate 
islands, and additional growth is favored by a VW mode [23].

Attachment of the thinner deposit to the thicker substrate causes a misfit strain 
“Є” at the interface given by
 Є = (af − as) / as (5)

where af and as are the deposit and substrate lattice constants, respectively.
As the wetting layer thickness is higher, the resulting strain energy increases 

rapidly. In order to lower the strain, island formation can take place in either a dis-
located or coherent mode. In dislocated islands, strain relief results from interfacial 
misfit dislocations. The reduction in strain energy accommodated by forming a dis-
location is generally greater than the effect of increasing surface energy associated 
with creation of the new clusters. The thickness of the wetting layer at which island 
nucleation is formed, called the critical thickness hC, is strongly dependent on the 
lattice mismatch between the layer and substrate. Higher mismatch leads to smaller 
critical thicknesses for deposit formation [24].

 Microstructures of Electrodeposits

Fischer [25] recognized five main growth morphology types for polycrystalline 
electrodeposits: field-oriented isolation, basis-oriented reproduction, twinning 
intermediate, field-oriented texture, unoriented dispersion type. This model was 
based on previous work of Winand [18], which is summarized in Fig. 3.
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 (i) Field-oriented isolated crystal type (FI)
At low overvoltage (0–10 mV), a one-dimensional nucleation is observed. The 
nuclei grow to form individual crystallites, usually oriented in the axis of the 
current field. Growth occurs slowly at the side faces of these crystallites, and 
dendritic layers are deposited. These deposits have no useful technical 
properties.

 (ii) Base-oriented reproduction type (BR)
At higher overvoltage of 10–100 mV, a two-dimensional nucleation occurs, 
and flat-faced crystallites grow. The technical properties of these deposits are 
interesting because they are similar to those of the underlying substrate.

 (iii) Field-oriented texture type (FT)
In the range of 100–150 mV of overvoltage, single crystallites initially form. 
If the overvoltage increases, the crystallites become three-dimensional, which 
grow parallel to the electric field lines and whose bounds are crystallites.

 (iv) Unoriented dispersion type (UD)
At overvoltage higher than 200 mV, small crystals are formed as a result of 
high rates of electrocrystallization. The result is a microstructure of very fine 
randomly oriented crystallites with two visible grain structures. Deposits of 
this type are ideal for technical applications, due to their excellent 
properties.

 (v) Twinning transition type (Z)
This type of growth represents the transition between FT and BR type. This 
structure is formed when the crystallization overvoltage is large enough to 
allow  formation of two-dimensional nuclei. Twinning may cause a reduction 
of the ductility of the deposited metal.
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Fig. 3 Winand diagram of 
surface morphology 
depending on current 
density and inhibition 
activity [18]
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 Nanoelectrodeposited Metals and Alloys and Their Properties

As indicated in Table 2, the electrodeposition technology has been used to produce 
a wide range of nanostructured materials, e.g., metal nanoparticles, nanowires, 
nanofilms, bulk NC metals, laminated composites, multilayered coatings, and 
nanoparticle-reinforced composite coatings. The electrodeposited nanostructured 
layers could be pure metals, alloys, composites, or sandwich layers.

 Gold-Based Deposits

 Au
A lot of intensive research was directed toward gold nanostructures, which is 
applied for many applications as substrates for surface-enhanced Raman scattering 
(SERS), super-hydrophobicity catalysis or sensors, selective solar absorbers, antire-
flection coatings, or diffraction gratings. The surface morphology of gold, espe-
cially the roughness, influences their functional properties. The catalytic activity of 
metal nanostructures is dependent on surface morphology [26].

Bossini et al. [29] studied the galvanostatic electrodepsoition of nanogold using 
cyanocomplex Au(I) baths with citrate additives. The structural effects of organic 

Table 2 Different electrodeposited nanometerials, properties and applications [3, 26–28]

Materials Properties and applications

Au based alloys

Au, Au–Cu Substrates for surface-enhanced Raman scattering (SERS) technique, 
super-hydrophobicity catalysis or sensors, selective solar absorbers, 
antireflection coatings or diffraction gratings

Pd-based alloys

Pd, Ni–Pd Hydrogen storage and purification, electrodes for hydrogen evolution 
and fuel cells

Co-based alloys

Co, Co–W, Co–P Good candidates for the replacement of the highly toxic hexavalent 
chromium in plating baths, due to their excellent mechanical and wear 
resistant properties. These materials have high saturation 
magnetization, good thermal stability and extraordinary hardness

Co–Ni–Cu Good catalyst for hydrogen evolution

Ni-based alloys

Ni, Ni–W, Ni–P, Ni–
Mo, Ni–Co, Ni–Cu, 
Ni–Zn, Ni–Mg, and 
Ni–B

Good magnetic properties, corrosion protection, stress corrosion and 
Electrocatalytic activity for hydrogen evolution

Ni–Al2O3, Ni–SiC Corrosion protection, wear resistance

Ni–Fe–Cr Cracking resistance, soft magnets, catalysts
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additives have been explained on the basis of competitive adsorption and cathodic 
reaction of the organics. In situ SERS measurements have explained the molecular 
aspects of grain growth inhibition and related stabilization of adatom clusters and 
nanocrystalline structures. The adsorption behavior of cyanide during the electrode-
position of gold has been investigated by in situ Raman spectroscopy.

The codeposition of nanocrystalline Au/B4C composites has been investigated 
by Bicelli [30]. Considerable stabilization of nanosize under prolonged heat treat-
ment can be obtained by dispersion of ceramic particles within the nanocrystalline 
matrix. Hardness values typical of nanometric systems can be preserved even after 
prolonged heat treatment in composite systems. Instrumented indentation measure-
ments have been used for evaluation of hardness, Young’s modulus, and plasticity 
of freestanding nanocrystalline metal and composite foils. The wear behavior of 
nanodeposited Au and composites has been evaluated by the pin-on-disk 
technique.

 Au-Cu
Bossini et al. [31] developed baths based on Au(CN)2¯, Cu(I)-CN¯, Cu(II)-EDTA, 
and Cu(II) for the electrodeposition of equiatomic alloys. The effects of the disper-
sion of ceramic particles on structure evolution kinetics have been investigated. 
In another work, Bossinin et al. [32] investigated the hydrogen-related nanometric 
voids and their annealing behavior using thermal desorption spectroscopy and 
SAXS. The effects of the nature of chelating agents on geminate density were stud-
ied by XRD peak analysis. Tensile test results showed the mechanical effects con-
nected to the use of different Cu(II) chelating agents, which can be explained with 
different densities of hydrogen-related nanovoids present in the electroformed 
alloys.

 Co-Based Alloys

According to Bartlett et al. [27] and Herrasti et al. [28], nanocrystalline cobalt and 
cobalt-based are good candidates for the replacement of the highly toxic hexavalent 
chromium in electroplating baths, due to their excellent mechanical and wear- 
resistant properties. These materials have high saturation magnetization and good 
thermal stability. Improving hardness levels for nanocrystalline cobalt and its alloys 
over the polycrystalline counterparts has been reported. Electrochemically prepared 
Co nanodeposits have three to five times higher coercivity (Hc) than conventional 
polycrystalline Co.

 Co-Fe
Koay et al. [33] have studied the magnetic properties, such as Ms and Hc, of Co-Fe 
alloys based on their different alloy compositions in electrolytes. It was found that 
the values of Ms and Hc increased linearly with additional contents of Fe. The 
increase in the Ms value was correlated to the crystal structure or phases of the 
films. The coexistence of both Co-Fe face-centered cubic (FCC) was confirmed. 
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Additionally, initial research works reported that, for nanocrystalline materials, 
there was a large reduction in Ms with finer grain size formation. It was stated that 
40 % decrease in Ms for nanocrystalline Fe compared to its bulk polycrystalline was 
confirmed. Figure 4 illustrates the dendritic microstructure of Fe-Co nanodeposits, 
as a function of deposition time [33].

 Co-Ni-Cu
Wang et al. [34] studied the electrodeposition of Co-Ni-Cu ternary nanodeposit 
using a mixture of CoCl2, NiCl2, and CuCl2. Three-dimensional CoNiCu nanonet-
work structure exhibited good performance as a catalyst for hydrogen evolution 
reaction (HER). Figure 5 shows the dendritic microstructure of such deposits.

 Co-Ni-P
Ternary Co-Ni-P nanodeposits were successfully prepared by electrodeposition 
using a chloride bath containing boric acid and NaH2PO2. The morphology of the 
obtained layer was dependent on the concentration of Hypophosphite. As the con-
centration of Hypophosphite was increased, smooth deposits successively changed 
to dendritic, nodular, and again smooth. The crystalline structure can be either fcc 
or hcp, according to the dominating Fe-group metal content. The preferred orienta-
tion varies in a complex way with the bath and alloy composition. The deposition 
conditions have limited effects on the grain size of the alloys (ca. 50 nm). The mag-
netic properties are mainly dependent on the amount of codeposited P [35].

Dendrite shape

a b

c

Agglomerate

100 nm 100 nm

100 nm

Irregular shape

Fig. 4 FESEM micrographs of Co-Fe nanocoatings as a function of deposition time: (a) 30, 
(b) 60, and (c) 90 min [33]
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Fig. 5 SEM of the as-deposited dendritic-like morphology of CoNiCu alloy deposited in a 
mixed solution with 0.02 mol/L CoCl2, 0.02 mol/L NiCl2 and 0.01 mol/L CuCl2 for 15 min 
[34]
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 Copper-Based Deposits

Coarse-grain copper is widely used in electrical and electronic devices despite the 
fact that it readily corrodes in a variety of environments [28]. Delplancke et al. [36] 
studied the electrodeposition of bimodal nanograined structures, with simultaneous 
presence of coarse (500 nm) and n-metric (100 nm) copper grains [36]. Natter et al. 
[37] reported significant tensile strength of copper nanodeposits due to small grain 
size and high defect density. The nature and concentration of organics added to the 
electrodeposition bath affecting the nanograin dimensions. Bicelli et al. [30] stated 
that room-temperature recrystallization behavior has a significant bearing on the 
stability of the electrical quantities of electronic devices implementing electrode-
posited Cu, which tends to exhibit time-dependent properties. Annealing at moder-
ate temperature is therefore common practice to avoid uncontrolled aging of these 
materials. The development of a <100> texture under low-temperature annealing 
has been reported. Ebrahimi et al. [38] stated that the annealing of 100 nm grain 
copper deposits up to 423 K displayed a limited (ca. 20 %) grain growth and no 
measurable variation of yield strength; concomitantly, a notable improvement of 
ductility and ultimate tensile strength was observed. Hall–Petch behavior of hard-
ness was reported.

 Cu-Fe
“Nanocrsytalline two-phase” Cu-Fe alloys (0–60 w% Cu) consisting of a mixture of 
fcc Cu {111} preferred orientation and bcc Fe {211} preferred orientation have 
been electrodeposited using sulfate-citrate bath. For the lowest content of Fe, 
the details of the evolution of the magnetic moment of the alloys were obtained 
by SQUID magnetometry. Increase of CuSO4 concentration led to grain 
 refinement [39].

Cu-Ni
Cu-Ni nanodeposits were obtained by pulse plating, and single-phase fcc alloys 
(26–36 w% Cu) with grain size in the range 2.5–28.5 nm and <111> texture have 
been obtained. Adjusting the pulse plating parameters can lead to formation of 
smooth, bright, and nodular surface morphology. Tensile stress layers galvanostati-
cally deposited are higher in comparison with pulse-plated ones. The residual ten-
sile macrostress of a range of Ni-Cu alloys was studied by spiral contractometry and 
the microstresses measured by the peak-broadening of XRD peaks [30]. Wolf et al. 
[40] stated that hyperfine interactions were detected due to a disordered grain 
boundary structure. The presence of Ni precipitates below the detectability limit of 
XRD was inferred from PAC measurements. Low current densities, higher tempera-
tures, and addition of saccharin can improve the homogeneity of the NiCu alloy.
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 Nickel-Based Deposits

The electrochemical behavior of nickel and its oxides is important for applications 
such as rechargeable batteries, fuel cells, catalysis, and decorative coatings. Among 
various electrodeposited nanocrystalline metals, Ni-based alloys have been exten-
sively researched due to their distinct properties such as being five times harder, 
reduction in coefficient of friction by 50 %, improved corrosion resistance, 
increased wear resistance by a factor of 170, improved electrocatalytic activities 
for hydrogen evolution and hydrogen oxidation reactions, and higher hydrogen 
diffusion [2]. Pure Ni film and eight Ni-based alloy films (Ni-W, Ni-P, Ni-Mo, 
Ni-Co, Ni-Cu, Ni-Zn, Ni-Mg, and Ni-B) were deposited and characterized. More 
systematic studies were conducted for Ni-W and Ni-P films, along with pure Ni 
film as a baseline [6].

NC nickel of about 17 nm size produced by ED significantly enhances the elec-
trocatalytic activity for hydrogen evolution due to the increased density of active 
surface sites [41].

According to Rashidi et al. [6], at the current densities higher than 75 mA/cm2, 
in the absence of saccharin the nickel layer exhibits a pyramidal-like morphology 
(Fig. 6a) while it changes to a colony-like morphology in presence of saccharin. An 
increase in current density results in larger colonies and brighter appearance 
(Fig. 6b, c).

Ni-W Alloys
Weston et al. [42] studied the properties of Ni-W nanodeposits. Ni-W alloy was 
introduced to replace chromium coatings because they are environmentally friendly. 
Ni-W alloys have various industrial applications because of their excellent material 
and physical properties. First, the deposited Ni films exhibit hardness of a range 
from 2 to 7 GPa, depending on the actual grain size. Second, these nanocrystalline 
Ni-W films exhibit excellent corrosion rates as low as ~2.5 % of that of a typical 
conventional stainless steel. Third, these Ni-W alloys would be used as diffusion 
barriers between copper and silicon in ultralarge-scale integration (ULSI) circuits 
and microelectromechanical systems (MEMS). Nickel–tungsten alloys with grain 
size of around 20 nm lead to low friction and wear, and the hardness of nickel– 
tungsten electrodeposits increases significantly as the crystallite size is reduced 
from around 50 to 10 nm.

The W dopants were introduced by adding a tungsten salt into nickel sulfate 
(NiSO4) to form Ni-W alloys; interestingly, it is rather difficult to deposit pure 
W films without depositing Ni simultaneously. Usually, ammonium chloride 
(NH4Cl) and/or citric acid (Cit) are also added into the deposition bath to 
improve Faradaic efficiency (FE), to control the pH value, and to increase solu-
bility of metal ions.

A characteristic relationship between composition and grain size has been illus-
trated, which is explained from the W segregation that reduces the grain boundary 
energy as the driving force for grain growth. Some studies stated that when tungsten 
atomic percentage is increased from 2.5 % to 23 %, the corresponding grain size is 
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decreased from >100 to <10 nm. In addition to XRD peak broadening that is associ-
ated with reducing grain size, shifts in XRD peak position were also observed. This 
is because the solution of larger tungsten atoms increases the lattice parameter of 
the FCC alloys [43].

Fig. 6 SEM micrographs 
of nickel coatings 
deposited as a function of 
working parameters: (a) 
saccharin-free bath at 
i = 100 mA/cm2, 
(Pyramidal-like) (b) bath 
containing 5 g/L saccharin 
at i = 100 mA/cm2, 
(colony-like) (c) bath 
containing 5 g/L saccharin 
at i = 300 mA/cm2 (large 
colony-like) [6]
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Ni-Co Alloys
Alloys of iron group metals, Fe, Co, and Ni, have been considered as very good 
magnetic materials. These alloys are known to possess much better permanent mag-
netic properties than pure metals. Ni–Co alloys have been investigated as important 
engineering materials for several decades because of their unique properties, such 
as high strength, good wear resistance, heat conductivity, and electrocatalytic activ-
ity. Electrodeposited Ni–Co thin films have been intensively studied due to their 
application in MEMS. Thin and thick Ni–Co films form important parts of magnetic- 
MEMS devices including sensors, microactuators, or micromotors because of their 
excellent physical properties. Fine Ni, Co, and Ni–Co alloy powders are required 
for developing magnetoresistive sensors in thick-film form [44].

Liping et al. [45] showed that Co content affects the morphology and grain size 
of alloys. The phase structure of Ni–Co alloys gradually changed from fcc to hcp 
structure with the increase of Co content. The hardness of Ni–Co alloys with a 
maximum around 49 wt% Co followed the Hall–Petch effect. It was found that the 
improvement of wear resistance of Ni-rich alloys with hardness increase followed 
Archard’s law. In addition, the Co-rich alloys exhibited much lower friction coeffi-
cient and higher wear resistance than Ni-rich alloys. It has been concluded that hcp 
crystal structure in Co-rich alloys contributed to the remarkable friction–reduction 
effect and better antiwear performance under the dry sliding wear conditions. 
According to Rafailovie [46], the structure morphology was converted from platelet 
to cauliflower structure by increasing Ni2+/Co2+ ratio.

Ni-P Alloys
Ni–P deposits obtained from electrodepsoition are good catalysts for hydrogen evo-
lution, special paramagnetic properties, excellent microhardness, and corrosion 
resistance [47]. Ni-P alloys have been studied to a less extent than Ni-W alloys. 
Nevertheless, a similar relationship between the P content and resultant grain size 
has been reported. Like W, although it is feasible to add P dopants into the iron- 
group metals during electrodeposition, deposition of P alone is difficult [48]. Two 
possible deposition mechanisms were suggested for electrodeposition by Erb et al. 
[49]. The “direct” deposition mechanism assumes that the phosphorus element 
forms from the reduction of phosphorus oxyacid in the aqueous solutions;

 Ni e Ni Had
2 2+ -+ ®  (6)

 2 3 3 33 2PHO H e P H NiO P Nad n ad ad in+ + ® + + ®+ -  (7)

However, this mechanism is not convincing, because direct deposition of pure ele-
mental phosphorus is not possible. Alternatively, the “indirect” deposition mecha-
nism assumes that the reduced phosphine from phosphorus oxyacid reacts with 
Ni2+H in the bath and produces Ni-P alloys, i.e.,

 2 6 6 33 3 2PHO H e PH H+ + ® ++ -  (8)

 PHO Ni P Ni H3
23 2 3 6+ ® + ++ +  (9)
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Nanocrystalline Ni-P alloys and coatings have excellent corrosion resistance, elec-
trochemical catalytic properties [50], and nonmagnetic character [51]. Amorphous 
Ni-P coatings that contain more than 10 at.% P were found to be highly effective for 
corrosion resistance [52]. In addition, Ni-P alloys are used in MEMS devices and 
electronics.

Ni-Mo Alloys
According to Schulz et al. [53], the enhanced HER kinetics of Ni-nanodeposits are 
due to the high area fraction of grain boundaries (and to some extent, triple junc-
tions) intersecting the free surface of the electrode. The HER kinetics can be further 
enhanced by alloying nanocrystalline Ni with molybdenum. Ni-Mo deposits are 
good catalysts for hydrogen production from water by electrolysis as well as by 
steam reforming of hydrocarbons. Halim et al. [54] prepared nodular Ni-Mo nano-
crystalline deposits (Fig. 7) by galvanostatic electrodeposition from citrate- ammonia 
solutions. According to XRD analysis, a single Ni-Mo solid solution phase was 
detected. The size of the nodules increased as electroplating current density 
increased. From EDX analysis, as the current density increased from 5 to 80 
mA · cm−2, the molybdenum content in the deposits decreased from ~31 to 11 wt%. 
Nanolayers with 23 % Mo exhibited the highest microhardness value (285 Hv). 
Mo content values between 11 % and 15 % are recommended for obtaining high 
corrosion resistance and better electrocatalytic activity for HER.

Nickel-based composite coatings are characterized by their high catalytic activity 
for hydrogen evolution (HER) and electrocatalytic oxygen evolution (OER) as well as 
good corrosion resistance in aggressive environments. Ni–Mo nanocomposite layers 
(18–32 nm) were prepared by galvanostatic electrodeposition from a nickel salt bath 
containing suspended Mo nanoparticles. According to XRD analysis, the nanodepos-
its consisted of crystalline Mo incorporated into Ni matrix. The molybdenum content 
decreased by increasing the deposition current density and ranged between ∼6 % and 
∼17 % Mo. The crystallite size and the surface roughness increased by increasing the 
current density (Fig. 8). The corrosion rate of Ni–Mo composites increased with 
increasing Mo content due to crystallite size-refining and surface roughness effect. 
Electrocatalytic effect for hydrogen production was improved mainly due to higher 
surface roughness and thus providing more accessible surface area [55].

 Template–Assisted Electrodepostion

Nanowires and nanorods of defined dimension were successfully prepared using 
templated synthesis. Several techniques of forming nanomaterials using templates 
have been developed such as chemical vapor deposition (CVD), sol–gel deposition, 
polymerization, and electrochemical deposition. The template-assisted electrodepo-
sition has been successfully used to prepare 1D nanostructures of various metals, 
semiconductors, and conductive polymers. Template synthesis in nanoporous mem-
branes have been carried out in anodic aluminum oxide, polycarbonate, and diblock 
copolymer membranes [56, 57].
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 Conclusions

Electrodeposition has been identified to be a technologically feasible and economi-
cally superior technique for the production of nanocrystalline pure metals and alloys 
as well as nanocomposites. Electrodeposition of polycrystalline metals and alloys 
exhibits several types of growth forms including layers, blocks, ridges, dendrites, 

Fig. 7 SEM micrographs of Ni-Mo nanodeposits showing nodular shaped microstructure [54]
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pyramids, spiral growth forms, powders, and whiskers. Research on the structure–
property-performance relationships of these materials has indicated many promis-
ing properties which can be exploited for commercial purposes. Of all the 
nanoprocessing techniques, electrodeposition appears to be a promising technique 
due to its relatively low cost, ability to produce compositions unattainable by other 
techniques, and the possibility of forming of simple low-cost multilayers in many 
different systems. Consequently, new markets and business opportunities are 
expected to emerge for the electroplating industry.
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   Abstract  
  In 1970s it was observed that the effi ciency of Raman scattering for molecules 
placed in the optical nanoresonators may increase even more than seven orders of 
magnitude. Later, large increase of the effi ciency of other optical processes (e.g., 
infrared absorption, fl uorescence, or second harmonic generation) has been also 
reported for molecules placed in nanoresonators. Therefore, fabrication of electro-
magnetic nanoresonators and their applications for the construction of various ana-
lytical sensors are studied in many laboratories in the world. The fi rst practically 
used electromagnetic nanoresonators have been formed electrochemically, and, 
although other methods have been developed since then, various types of such 
nanostructures are still being formed using different electrochemical methods. 

 In this review different approaches used for the electrochemical formation of 
electromagnetic nanoresonators are discussed. Methods of the formation of single 
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active-site nanoresonators, and of nanostructured surfaces containing a large 
number of places where the optical energy is concentrated, are presented. 
Fabrication of composite nanoresonators composed of at least two different 
materials is also briefl y described.  

  Keywords  
  Electrochemistry   •   Electromagnetic Nanoresonators   •   Gold   •   SERS   •   Silver   • 
  SPR   •   Surface Plasmon Resonance   •   Surface-Enhanced Raman Scattering   • 
  TERS   •   Tip-Enhanced Raman Spectroscopy  

        Introduction 

 When electromagnetic radiation interacts with a nanostructured surface of metal 
with a negative real and small positive imaginary dielectric constant (e.g., silver and 
gold), they induce a collective oscillation of surface conduction electrons called sur-
face plasmons [ 1 – 4 ]. Plasmons lead to enhanced electromagnetic fi elds at some 
places of the illuminated surface [ 1 – 4 ]. This fi eld enhancement is highly localized at 
the nanoparticle and decays rapidly away from the nanoparticle/dielectric interface 
into the dielectric background [ 1 – 4 ]. In order to calculate local electromagnetic fi eld 
enhancement in the proximity of a metallic nanoparticle irradiated with light, one has 
to solve either Maxwell’s or Helmholtz’s equation [ 3 ]. This can be, in general, a 
rather diffi cult undertaking. Full analytical solutions of Maxwell’s equations exist for 
simple geometries, and they are useful for understanding basic concepts and ideas. 
For example, the plot of the local fi eld intensity enhancement factor (LFIEF) for 
spheres of either Au or Ag at the point immediately above the surface of the sphere 
and for different wavelengths is shown in Fig.  1 . The points of the largest LFIEFs on 
the surface of the sphere are along the main symmetry axis in the direction defi ned 

  Fig. 1    Local fi eld intensity 
enhancement factor 
(LFIEF) at point A ( inset ) 
on a sphere of either Au or 
Ag in the electrostatic 
approximation (Reprinted 
from [ 2 ] with permission 
from Wiley-VCH)       
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by the polarization of the electric fi eld  E . LFIEF reaches maximum when 
Re[ ε  met ( λ ) + 2 ε  en ( λ )] = 0 (where  ε  met ( λ ) and  ε  en ( λ ) are the wavelength- dependent (com-
plex) dielectric constants of the metal and the environment around, respectively) and 
is limited only by how small Im[ ε  met ( λ )] is at that particular  λ  [ 1 ,  2 ]. Calculations of 
LFIEF have been carried out for many various systems [ 1 – 5 ]. These simulations 
have shown that LFIEF is signifi cantly different at various positions of the particle 
and strongly varies with respect to many parameters, such as the electric properties 
of the material, the actual shape and size of the particle, and the illumination geom-
etry [ 3 ,  4 ]. It is worth to note that very large values of LFIEF can be achieved in 
narrow gaps between metal nanoparticles [ 5 ].

   Local enhancement of the intensity of the electromagnetic fi eld may cause in 
some cases signifi cant enhancement of the surface effectiveness of several optical 
phenomena including fl uorescence, infrared absorption, Raman scattering, Raman 
optical activity, hyper-Raman scattering, coherent anti-Stokes Raman scattering, 
and second harmonic generation (see Table  1 ) [ 1 ,  6 – 28 ]. From the practical point of 
view the most important is the application of nanoresonators in increasing the sen-
sitivity of Raman spectroscopy. For many decades Raman spectroscopy has not 
been considered a useful analytical tool because of the very low effi ciency of the 
“normal” Raman scattering. A typical total Raman scattering cross section is ca. 
10 −29  cm 2  per molecule, whereas typical cross sections for absorption in ultraviolet 
and infrared are ca. 10 −18  and 10 −21  cm 2  per molecule, respectively [ 1 ]. Therefore, to 

   Table 1    Optical spectroscopic techniques for which the measured signal may be signifi cantly 
enhanced by the metallic nanoresonators   

 Spectroscopic 
technique 

 Spectroscopic technique utilizing 
nanoresonators  Abbreviation  References 

 Fluorescence  Surface-enhanced fl uorescence, surface 
plasmon-enhanced fl uorescence, 
metal-enhanced fl uorescence, surface 
plasmon fi eld-enhanced fl uorescence a  

 SPFS, MEF b   [ 6 – 12 ] 

 Infrared absorption  Surface-enhanced infrared absorption  SEIRA  [ 1 ,  13 ] 

 Second harmonic 
generation 

 Surface-enhanced second harmonic 
generation 

 SESHG  [ 14 – 16 ] 

 Raman scattering  Surface-enhanced Raman scattering  SERS  [ 1 ,  14 ,  17 ] 

 Resonance Raman 
scattering 

 Surface-enhanced resonance Raman 
scattering 

 SERRS  [ 18 ,  19 ] 

 Hyper-Raman 
scattering 

 Surface-enhanced hyper-Raman 
scattering 

 SEHRS  [ 20 – 23 ] 

 Raman optical 
activity 

 Surface-enhanced Raman optical 
activity 

 SEROA  [ 24 ,  25 ] 

 Coherent anti- 
Stokes Raman 
scattering 

 Surface-enhanced coherent anti-Stokes 
Raman scattering 

 SE-CARS  [ 15 ,  26 – 28 ] 

   a Various names are used in the literature 
  b Various abbreviations are used in the literature  
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record conventional Raman spectra, analytical concentrations greater than 0.01 M 
are usually required. However, by utilizing special electromagnetic nanoresonators 
constructed from metal nanoclusters, the Raman scattering cross sections can be 
signifi cantly increased (for Raman bands with a small Raman shift, this increase is 
roughly proportional to the fourth power of the fi eld enhancement [ 1 ,  19 ]) making 
possible the observation of Raman spectra even of a single molecule [ 29 – 31 ]. 
Because of the extremely low detection limit of resonator-enhanced Raman scatter-
ing (for the historical reasons called surface-enhanced Raman scattering – SERS) 
and the fi ngerprint-like character of recorded spectra, SERS has become one of the 
most widely used analytical and/or surface tools. This is refl ected in the number of 
scientifi c publications on the subject. In the database “Web of Knowledge,” in the 
10-year period of 2004–2013, the keyword “SERS” produces more than 10 4  hits.

   The fi rst practically used electromagnetic nanoresonators have been formed 
electrochemically [ 17 ,  32 ,  33 ], and various types of such nanostructures are still 
being formed using different electrochemical methods. In this chapter different 
approaches used for the electrochemical formation of electromagnetic nanoresona-
tors are discussed. Both the formations of the single active-site nanoresonators and 
nanostructured surfaces containing a large number of active places are presented. 
Because the majority of practical applications of electromagnetic nanoresonators 
are connected with the enhancement of the effi ciency of Raman process, the proper-
ties of nanostructures presented in this chapter are usually optimized to maximize 
surface enhancement of Raman scattering. 

 This chapter is organized as follows:

    1.    In section “ Surfaces Containing a Large Number of Electromagnetic 
Nanoresonators ,” technologies of electrochemical formation of surfaces contain-
ing a large number of places where the optical energy is concentrated are described.   

   2.    In section “ Single Active-Site Nanoresonators ” the electrochemical methods of the 
formation of nanoresonators with only single active-site are presented. Such nanores-
onators are used when an optical spectroscopic technique (usually Raman) is cou-
pled with scanning probe microscopy ( scanning tunneling microscope , STM, or 
 atomic force microscope , AFM), forming spectroscopic–microscopic tool allowing 
to overcome the Abbe’s diffraction limit of the optical measurements [ 34 ,  35 ].   

   3.    Finally, section “ Conclusions ” presents some conclusions and summarizes this 
chapter.      

        Surfaces Containing a Large Number of Electromagnetic 
Nanoresonators 

    Electrochemically Roughed Metal Electrodes 

 The fi rst practical application of electromagnetic nanoresonators in the spectro-
scopic measurements was realized in 1974 by Fleischmann et al., who reported 
observation of strong Raman signal for pyridine adsorbed on the surface of a silver 
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electrode electrochemically roughened in a KCl solution [ 17 ]. As mentioned in the 
previous section, this report by Fleischmann et al. launched broad using of nanores-
onators to increase effi ciency of many optical processes. Since silver is the best 
material to construct nanoresonators for visible radiation (the imaginary part of the 
dielectric constant of silver is small in the practically whole visible range of the 
electromagnetic radiation and silver is relatively inert chemically), nanostructured 
silver surfaces are used in many laboratories in the world. Nanostructuring of silver 
surfaces is usually carried out electrochemically by the oxidation–reduction (OR) 
cycling, and the applied potential is changed linearly from the most negative value 
toward the most positive one and again to the most negative value. During the oxi-
dation part of the cycle, silver at the surface is oxidized (usually roughening is car-
ried out in chlorides, so produced Ag +  ions are deposited on the electrode surface as 
AgCl), whereas during the reduction part of the cycle, silver cations are reduced and 
deposited on the surface of the electrode, producing a highly developed structure. 

 The morphology of roughened silver surface, and hence the average fi eld 
enhancement factor, depends on many parameters of the roughening procedure 
(e.g., potential range in which the roughening is carried out, sweep rate, and number 
of potential cycles – for details see Kruszewski S, Skonieczny [ 36 ] and Kruszewski 
[ 37 ]). Since variation of the roughening parameters often causes relatively small 
changes of the effi ciency of the formed nanoresonators, one may fi nd in the litera-
ture many slightly different procedures of the electrochemical nanostructuring of 
silver electrodes. According to our experience, very effi cient silver nanoresonators 
may be obtained by three successive OR cycles in a 0.1 M KCl aqueous solution 
from −0.3 to +0.3 to −0.3 V (versus a 0.1 M KCl AgCl/Ag electrode) at a sweep rate 
of 5 mV s −1 . As mentioned above, different groups nanostructure silver electrodes 
using procedures which may differ in practically all experimental parameters: con-
centration of KCl, the extreme positive and negative potentials, the sweep rate, and 
the number of cycles. For example, silver electrodes may be effectively nanostruc-
tured by 3 OR cycles in a 0.2 M KCl solution from −0.7 to +0.25 at a sweep rate of 
5 mV s −1  [ 38 ], ca. 450 OR cycles in a 0.1 M KCl solution from −0.3 to +0.2 at a 
sweep rate of 0.5 V s −1  [ 17 ], or a single OR cycle in a 0.1 M KCl solution from −0.2 
to +0.2 at a sweep rate of 10 mV s −1  [ 39 ]. 

 The scanning electron microscopic (SEM) image of the silver electrode nano-
structured by a typically used procedure of 3 OR cycles from −0.3 to +0.3 at a 
sweep rate of 5 mV s −1  carried out in a 0.1 M KCl solution is shown in Fig.  2 . As can 
be seen in Fig.  2 , the outermost layer of the roughened silver electrode looks like a 
sponge formed from silver nanoclusters with a dimension typically in the range of 
50–300 nm.

   Chlorides are adsorbed very strongly on silver surfaces; therefore, in the case of 
silver electrodes nanostructured in KCl solution, some chlorides are present on their 
surface in spite of very careful rinsing of electrodes with water after the electro-
chemical nanostructuring. Therefore, when the surface of formed Ag nanoresona-
tors should be chloride-free, the nanostructuring is carried out in other electrolytes. 
For example, nanostructured silver surface may be prepared by six successive posi-
tive–negative cycles in 0.1 M Na 2 SO 4  solution from −0.5 to +0.5 to −0.5 V (versus 
a 0.1 M KCl AgCl/Ag electrode) at a sweep rate of 50 mV s −1  [ 40 ]. 
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 The other metal often used for the formation of nanoresonators is gold. Gold elec-
trodes are usually nanostructured using relatively similar methods as for roughening of 
silver electrodes: carrying out some number of OR cycles in KCl aqueous solution. 
However, contrary to the described above nanostructuring of Ag, electrochemical oxi-
dation of Au in KCl solution leads to creation of soluble gold complexes (e.g., AuCl 4  − ). 
Therefore, after the roughening procedure, the electrolyte and the counter electrode 
may be signifi cantly contaminated with gold. According to our experience, very effi -
cient gold nanoresonators may be obtained by 20 successive OR cycles in a 0.1 M KCl 
aqueous solution between −0.6 and +1.25 V (versus a saturated calomel electrode) at a 
sweep rate of 0.2 V s −1  [ 41 ]. A scanning electron microscopic image of a gold electrode 
roughened by oxidation–reduction cycling in 0.1 M KCl solution is shown in Fig.  3c . 
As in the case of silver, some groups use slightly different procedures for roughening 
of gold electrodes which also give effi cient system of nanoresonators. For example, 
Russell et al. nanostructured Au electrode by 25 OR cycles from −0.3 to +1.2 V at a 
sweep rate of 1 V s −1 , holding the potential at 1.2 V for 30 s, sweeping back to −0.3 V 
at a sweep rate of 0.5 V s −1 , and then holding the potential at −0.3 V for 1.2 s [ 43 ].

   Effi cient nanoresonators, although unfortunately chemically signifi cantly less 
stable than those from gold and silver, may be formed from copper. Contrary to 
silver and gold, there is no one prevalent method for the nanostructuring of copper 
electrodes. In general, four kinds of signifi cantly different procedures are used:

    (a)    Potential cycling of a copper electrode in a solution containing a copper salt 
(e.g., solution of CuCl 2  or CuCl 2  + LiCl) [ 44 ,  45 ]. In this case, the potential 
range is chosen in such a way that more metallic copper is deposited during the 
reduction part of the cycle than it is later dissolved during the oxidation part. A 
typical example of such roughening procedure is roughening of the Cu elec-
trode in 0.2 M LiCl and 0.01 M CuCl 2  solution by 50 successive positive–nega-
tive scans between −0.55 and +0.05 V versus saturated calomel electrode at a 
sweep rate of 20 mV s −1  [ 45 ].   

  Fig. 2    Scanning electron microscopic (SEM) image of a silver electrode roughened by three suc-
cessive oxidation–reduction cycles in a 0.1 M KCl aqueous solution from −0.3 to +0.3 to −0.3 V 
(versus a 0.1 M KCl AgCl/Ag electrode) at a sweep rate of 5 mV s −1  (Reprinted from [ 24 ] with 
permission from Elsevier)       
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  Fig. 3    Scanning electron microscopic (SEM) images of differently nanostructured gold surfaces: 
( a ) dendritic rod gold nanostructures formed by one-step gold electrodeposition from a solution 
containing Au(I) ions complexed with sulfi te anions, ( b ) nanospike gold clusters deposited from a 
solution containing HAuCl 4  and Pb(CH 3 COO) 2 , ( c ) gold electrode prepared by a standard electro-
chemical oxidation–reduction cycling in a 0.1 M KCl solution, ( d ) surface obtained the dealloying 
of Ag from Ag/Au alloy, and ( e ) nanoplate Au surface prepared by an electrodeposition from a 
solution containing KAu(CN) 2  and Na 2 CO 3  (Reprinted from [ 42 ] with permission from Elsevier)       
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   (b)    Cycling of copper electrodes in electrolytes containing ions that form com-
plexes with copper cations of very low solubility (e.g., KI) [ 46 – 48 ]. This 
method of roughening of copper is similar to the standard roughening of silver 
by the oxidation–reduction cycling in chlorides during which nearly insoluble 
AgCl is formed.   

   (c)    OR cycling in electrolytes that do not form complexes or low-solubility salts 
with Cu 2+  cations (e.g., KCl, LiCl, Na 2 SO 4 ) [ 45 ]. An example of such nano-
structuring is roughening by 50 successive positive–negative scans at 20 mV s −1  
from −0.50 to +0.13 V in a 0.1 M KCl solution. This method of roughening of 
copper is similar to the standard roughening of gold during which soluble 
(AuCl 4  − ) complexes are formed.   

   (d)    Rapid anodic dissolution of copper in an acidic electrolyte accompanied by a 
disproportionation of the dissolving Cu + , thus produced at the electrode, to Cu 2+  
and Cu 0 . Such copper roughening may be carried out in 0.2 M CuSO 4  + 0.4 M 
H 2 SO 4  solution at the current density of ca. 1 A cm −2  [ 45 ]. Copper surfaces 
nanostructured in this way contained signifi cantly less oxygen than surfaces 
produced by standard oxidation–reduction cycling [ 45 ].     

 Highly effi cient nanoresonators for the visible radiation are formed practically 
only from IB metals (Ag, Au, and Cu). Therefore, when one does not study adsor-
bate–adsorbent interactions (as in analytical applications), practically always 
nanoresonators from IB metals are used. However, in some cases, the problem to be 
solved is to identify species adsorbed on the surfaces of a specifi c metal (especially 
on surfaces of very important in catalysis VIII B metals), to determine their orienta-
tion with respect to the particular surface, and to observe how the strength of vari-
ous chemical bonds changes upon this adsorption. In such cases nanoresonators 
formed from other metals (e.g., VIII B group) may be very useful, and hence, pro-
duction of such nanoresonators is also of practical signifi cance. 

 Various methods leading to the formation of nanoresonators from many VIII 
B group metals (Pt, Ru, Rh, Pd, Fe, Co, Ni) important in catalysis and their 
alloys have been developed by Tian et al. [ 49 ]. The produced nanoresonators are 
relatively effi cient, for example, the surface enhancement factor for the Raman 
scattering can achieve even two to four orders of magnitude [ 49 ] (for compari-
son, the respective surface enhancement factor for the Raman scattering on the 
nanostructured silver is in the range from six to seven orders of magnitude 
[ 50 ]). In the majority of cases the roughening procedure is carried out electro-
chemically and consists of a number of rectangular oxidation–reduction cycles 
carried out in a 0.5 M H 2 SO 4  aqueous solution. For example, to produce nanores-
onators on the platinum surface, the Pt electrode has been cycled with the fre-
quency of 1.5 kHz with upper and lower switching potentials of 2.4 V and 
−0.2 V for a period ranging from 5 s to 10 min [ 51 ]. The rhodium surface can be 
effectively roughened by applying a square-wave current of 1.6 A cm −2  and 
−0.95 A cm −2  at a frequency between 200 and 800 Hz for about 2 min [ 52 ]. 
Thereafter, the rhodium electrode should be held at 0.2 V until the completion 
of the surface electroreduction [ 52 ].  
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    Electroplated Flat Surfaces 

 Nanoresonators from various metals can be also formed by the electrodeposition of 
metal fi lms on fl at surfaces. Contrary to the electrodeposition procedures typically 
used in the commercial electroplating, in which one is trying to obtain a coherent 
and smooth metal coating, formation of metal island fi lms or dendrite-like struc-
tures is preferred during the production of nanoresonators. Synthesis of nanoresona-
tors using electroplating has been carried out for various metals using many different 
procedures. Below some examples of procedures applied for the most widely used 
metals are presented. 

 Oriňáková et al. studied morphological and electromagnetic properties of 
silver fi lms deposited on the stainless steel from an electrolyte containing 
0.01 M AgNO 3 , 0.1 M KNO 3 , and 0.1 M KCN (pH = 10.25) by the electrochemi-
cal cycling between −700 and −1550 mV (versus Ag/AgCl/ 3 M KCl) [ 53 ]. 
They found that the morphology and the electromagnetic properties of the 
formed silver nanostructures signifi cantly depend on the number of deposition 
cycles and the potential scan rate [ 53 ]. An increase in both size and density of 
the Ag nanoparticles with increasing number of deposition cycles was observed. 
A decrease in size and aggregation ability of Ag nanoparticles and clusters, 
resulting in lower coverage of the working electrode, was registered with an 
increase in potential scan rate. The optimal “electromagnetic” properties of Ag 
fi lms deposited at the experimental conditions used were obtained for 30 scans 
at the scan rate of 100 mV s −1  [ 53 ]. 

 An interesting approach for the electrochemical formation of silver nanoreso-
nators was developed by Liu et al. [ 54 ]. In the fi rst stage of the synthesis, Liu et al. 
deposited silver clusters on the surface of the electrode by immersing of the elec-
trode in the aqueous colloidal suspension of silver nanoparticles [ 54 ]. Then the 
electrochemical deposition of silver was carried out at room temperature under 
current density of 5 μA cm −2  from the solution containing AgNO 3  and polyvinyl-
pyrrolidone [ 54 ]. Just formed silver fi lm is composed of relatively large nano-
plates (several tens to several hundred of nanometers in dimension) [ 54 ]. The 
density of nanoplates covering on the substrate can be controlled by adjusting the 
amounts of seed. All the nanoplates are distributed on the substrate uniformly 
even at very high density. Such Ag nanostructured surfaces show high SERS 
activity and hence are suitable materials for the microdetection devices based on 
the SERS effect. 

 Formation of copper nanostructured fi lms by the electrodeposition of copper on 
the platinum electrodes from acidic and ammonia bath was recently investigated by 
Cejkova et al. [ 55 ]. These investigations show that even small modifi cation of the 
deposition procedure (such as the bath compositions, applied current densities, and 
the duration of individual steps) may cause large differences in the morphology of 
the formed nanoparticles and in the effi ciency of obtained structures to locally con-
centrate the energy of the incident electromagnetic wave – this property was tested 
by the measurement of the surface enhancement of the Raman signal [ 55 ]. Cejkova 
et al. found that good surface enhancement of the effi ciency of Raman scattering 
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can be achieved on the copper substrates prepared by the electrochemical deposi-
tion from ammonia baths. Copper nanoresonators fabricated from acidic baths are 
signifi cantly less effi cient. The results of microscopic measurements demonstrated 
that the average surface roughness does not play a substantial role, whereas the 
shape of the surface nanostructures is a key parameter [ 55 ]. 

 Gold nanostructured surfaces are also important from the practical point of 
view. Comparison of many different methods of the formation of such nano-
structures has been recently carried out by Kim et al. [ 42 ]. This group com-
pared gold surfaces prepared by five different procedures: (i) a standard 
electrochemical oxidation–reduction cycling in a 0.1 M KCl aqueous solution, 
(ii) dealloying of Ag from Ag/Au alloy, (iii) electrochemical deposition of 
nanospikes, (iv) electrochemical deposition of nanoplates, and (v) electro-
chemical formation of dendritic rod surfaces [ 42 ]. Morphologies of compared 
gold nanostructures are shown on Fig.  3 . Dendritic rod surfaces were pro-
duced by a simple one-step electrodeposition at −0.85 V from a solution con-
taining 36 mM Au(I) ions complexed with sulfite anions; the total deposition 
charge density was 0.45 C cm −2  [ 42 ,  56 ,  57 ]. Nanospike Au surfaces were 
electrodeposited at 0.05 V with a deposition charge density of 0.31 C cm −2  
from a solution containing 7 mM HAuCl 4  and 0.5 mM Pb(CH 3 COO) 2  [ 42 ,  58 ]. 
Nanoplate Au surfaces were electrodeposited at −1.1 V from a solution con-
taining 15 mM KAu(CN) 2  and 0.25 M Na 2 CO 3 , with a deposition charge den-
sity of 0.61 C cm −2  [ 42 ,  59 ]. All mentioned above potential values are given 
versus Ag/AgCl/ 3 M KCl reference electrode. Comparison of SERS activities 
between all described above nanostructured Au surfaces revealed that the 
highest electromagnetic enhancement factors are achieved using gold den-
dritic rod surfaces and that the highly faceted sharp edge sites play a critical 
role in inducing high SERS activity of Au surfaces [ 42 ]. Some other types of 
Au nanostructures are also used practically. For example, Duan et al. reported 
that very promising electromagnetic properties revealed flowerlike gold nano-
architectures [ 60 ] formed by the gold electrochemical deposition. Deposition 
of flowerlike gold nanostructures may be carried out at the cathodic current 
density of 0.25 mA cm −2  from solution containing 25 mM HAuCl 4  and 20 g 
dm −3  polyvinylpyrrolidone [ 60 ]. 

 In some cases nanoresonators are also fabricated by the electrodeposition of the 
platinum group metals. For example, Pt nanoresonators may be obtained by the 
electrodeposition of platinum carried out from 0.06 M H 2 PtCl 6  aqueous solution 
using current density of ca. 5 mA cm −2  for a period of 20 s to 2 min [ 51 ]. Relatively 
similar methods may be used to form nanoresonators from ruthenium, rhodium, and 
palladium. Nanostructured fi lms from these metals have been formed by the elec-
trochemical potentiostatic deposition from solutions containing 0.01 M RuCl 3 , 
RhCl 3 , and PdCl 2 , respectively, in which 0.1 M KCl has been added as the support-
ing electrolyte [ 61 ]. For the electrodeposition of nanostructured metal fi lms, the 
electrode has been held at −0.8 V for 10 min for Ru, at −0.4 V for 5 min for Rh, and 
at −0.2 V for 5 min for Pd, respectively (all potentials are quoted versus saturated 
calomel electrode) [ 61 ].  
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    Metal Nanostructures Synthesized Using Templates 

 For some (mainly analytical) applications, very high reproducibility of nanostruc-
tured surfaces is required. Therefore, the auxiliary templates from other materials 
are sometimes used to improve reproducibility of the obtained metal nanoresona-
tors. Generally, in the fi rst step of the template-assisted synthesis of nanoresonators, 
the substrate, on which metal clusters will be deposited, is regularly nanostructured. 
Such nanostructuring may be obtained by the regular covering (shielding) of some 
parts of the substrate (e.g., by the monolayer of nanospheres or by a thin fi lm with 
regularly distributed hollows), or the material of the substrate is itself chemically 
nanostructured. In the next step, the metal that supports surface plasmon resonance 
is deposited on such nanostructured substrate. The synthesis of nanoresonators may 
be fi nished at this stage (in such a case the auxiliary nanostructured features are 
remaining in the obtained composite material). However, the auxiliary nanostruc-
tures may also be removed after deposition of the metal supporting surface plasmon 
resonance. 

 The simplest method of the template-assisted formation of electromagnetic 
nanoresonators is deposition of metal that supports surface plasmon resonance on 
the regularly nanostructured substrate. Many groups use as reproducibly nanostruc-
tured substrates Ti or Al electrodes on which tubular arrays of oxides nanotubes are 
formed [ 62 – 68 ]. For example, Janik-Czachor et al. produced tubular arrays of TiO 2  
or Al 2 O 3  nanotubes with different diameters and deposited Ag, Au, or Cu clusters on 
them (see Fig.  4 ) [ 62 – 65 ]. The nanotubes were fabricated by the electrochemical 
anodization (oxidation) of Ti or Al electrodes. In the case of Ti, the anodization was 
performed in the mixture of aqueous solution of NH 4 F and glycerol with applied 
voltage in the range 10–25 V [ 62 – 65 ]. The aluminum oxide nanotubes were fabri-
cated by the electrochemical oxidation of Al samples at a constant voltage of 15 V 
in a mixture of aqueous solutions of (NH 4 ) 2 SO 4  and NH 4 F [ 65 ]. Janik-Czachor et al. 
found that when metal clusters were deposited on the nanotubes with very low 
diameter (below 50 nm), the just formed nanoresonators are signifi cantly more 
reproducible and active than nanoresonators formed by the standard method of the 
electrochemical roughening of metal electrodes [ 65 ]. Moreover, deposition of metal 
clusters on different substrates may induce changes in their electronic structure, 
which infl uence many important properties of metal nanoparticles [ 64 ].

   The most typical example of the electrochemical synthesis of metal nanostruc-
tures using an auxiliary template, which is removed after deposition of the metal 
layer, is fabrication of regularly arranged metal nanoparticles by the so-called 
template- defi ned electrochemical deposition [ 43 ,  69 ]. In this case, the close-packed 
monolayer of monodispersed spheres is used as a template [ 43 ,  69 ]. Figure  5b–d  
shows nanostructured surfaces prepared by the gold electrodeposition through such 
close-packed monolayer of polystyrene spheres with the diameters of 600 nm 
assembled onto evaporated gold electrodes [ 43 ]. The thickness of the electrodepos-
ited fi lm was controlled by varying the charge passed and was in the range of 
 150–460 nm. After gold electrodeposition the polystyrene was removed to leave the 
thin structured gold fi lms containing a regular hexagonal array of uniform segment 
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sphere voids [ 43 ]. The procedures of the electrochemical deposition of other metals 
(silver, copper, and platinum) on the surface of the electrode covered by the mono-
layer of nanospheres may be found, for example, in Yang et al. [ 69 ]. Nanostructured 
substrates obtained by the template-defi ned electrochemical deposition are stable, 
reusable, and very reproducible [ 43 ].

   Interesting modifi cation of the described-above nanoshell-controlled deposi-
tion of regular metal nanostructures is using a template which itself is obtained 
electrochemically [ 70 ]. For example, Kondo et al. prepared ordered gold 

  Fig. 4    Scanning electron microscopic (SEM) images of a TiO 2  nanotube layer covered with dif-
ferent amounts of silver. ( a ,  b ) 0.01 mg cm −2  of Ag, ( c ,  d ) 0.06 mg cm −2  of Ag, ( e ) 0.09 mg cm −2  
of Ag, and ( f ) 0.2 mg cm −2  of Ag (Reprinted from [ 65 ] with permission from Elsevier)       
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nanodot arrays by the gold deposition through the alumina mask with regularly 
arranged through holes. The alumina mask has been prepared by the anodization 
of Al in acidic solution (as mentioned above, the array of Al 2 O 3  nanotubes is 
formed in this condition). Then, Al substrate, on which Al 2 O 3  nanotubes have 
been formed, is selectively dissolved in saturated I 2  methanol solution followed 
by the dissolution of the bottom part of the porous alumina fi lms in phosphoric 
acid solution [ 70 ]. 

 Electrochemically formed thick nanotube Al 2 O 3  or TiO 2  layers may be also 
used as templates to form some metals into electromagnetic nanoresonators in the 
form of nanowires. For example, Joo and Suh reported formation of Ag nanoreso-
nators by the electrochemical deposition of silver from solution containing silver 
nitrate and boric acid in the aluminum oxide nanotemplates and then by the sub-
sequent removal of the auxiliary oxide layer [ 71 ]. Joo and Suh showed that using 
nanotemplates results in very good control over the size and dispersion of formed 
Ag nanoparticles [ 71 ]. Further investigations show that such a procedure of the 
formation of electromagnetic nanoresonators is very effective for the transition 
metals [ 49 ].  

  Fig. 5    Scanning electron microscopic (SEM) images of ( a ) gold electrode prepared by a standard 
electrochemical oxidation–reduction cycling in a 0.1 M KCl solution and ( b – d ) gold surfaces 
nanostructured by the so-called template-defi ned electrochemical deposition. The structured gold 
surfaces were produced using 600 nm diameter template spheres and have thicknesses of ( b ) 150 
nm, ( c ) 260 nm, and ( d ) 460 nm, respectively. The scale bar is 2 μm in each case (Reprinted from 
[ 43 ] with permission from Elsevier)       
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    Electromagnetic Nanoresonators Covered by a Thin Layer 
of Other Metals 

 Important limitation in a wider application of optical nanoresonators for surface 
investigations is the restriction of the materials from which very effi cient nanoreso-
nators may be formed to the IB metals (Ag, Au, and Cu) [ 1 ,  50 ]. As already men-
tioned, the construction of nanoresonators from other metals (including commercially 
very important platinum group metals) is also possible, but the achieved enhance-
ment factors of the electromagnetic fi eld are signifi cantly smaller [ 49 ,  72 ,  73 ]. 
Interesting strategy to overcome this problem was proposed by Fleischmann et al. 
who coated nanostructured Ag and Au surfaces with thin fi lms of other metals 
[ 74 ,  75 ]. Using such substrates Fleischmann et al. recorded SERS spectra character-
istic for adsorbates interacting with a thin layer of electrochemically deposited 
metal [ 74 ,  75 ]. This approach was further improved for the Pt group metals by 
Weaver et al., who proposed using ultrathin (2–5 monolayer) pinhole-free electro-
deposits of such metals on mildly nanostructured gold surfaces [ 76 ,  77 ]. The ini-
tially developed method of the preparation of transition-metal overlayers on 
nanostructured gold involved constant-potential cathodic electrodeposition from 
dilute (ca. 0.1–0.5 mM) metal salt solution in aqueous HClO 4  [ 76 ,  77 ]. For example, 
2-monolayer Pd fi lm may be formed on the gold surface by Pd cathodic deposition 
from 5 mM PdCl 2  in 0.1 M HClO 4  solution (current density was 0.08 mA cm −2  for 
12 s) [ 78 ]. Similar procedure (using 5 mM RhCl 3  instead of PdCl 2 ) was applied with 
comparable success to prepare rhodium fi lms [ 78 ]. Further investigations showed 
that more uniform layers from platinum group metals (Pt, Pd, Rh, and Ir) may be 

   Table 2    A schematic illustration of electrochemically nanostructured metal surfaces typically 
used for plasmonic applications   

 Electrochemically roughed electrodes 

      

 Electroplated fl at surfaces 

      

 Nanostructures synthesized using templates 

      

 Electromagnetic nanoresonators covered by a thin 
layer of other metals 
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formed using spontaneous redox replacement of an underpotential-deposited (upd) 
auxiliary copper or lead monolayer with a Pt group metal cations [ 79 ]. To prepare 
upd copper monolayer the nanostructured gold electrode was immersed in 1 mM 
CuSO 4  + 0.1 M H 2 SO 4  solution. Then the electrode was immersed in this solution at 
a potential just above ~0.01 V where bulk Cu deposition commences, to ensure full 
monolayer coverage, and was then transferred to a deaerated solution containing the 
transition- metal cation of interest (typically 5 mM Pt or Pd salt in 0.1 M HClO 4 ). 
Just formed (<2 monolayers) Pt or Pd fi lms displayed pinhole-free characteristics 
[ 67 ]. In the case of rhodium and iridium fi lms, signifi cant improvement of their 
properties was observed when an auxiliary upd Pb monolayer was used instead of a 
upd Cu monolayer [ 79 ]. 

 A schematic comparison of all nanostructured metal surfaces described in sec-
tion “ Surfaces Containing a Large Number of Electromagnetic Nanoresonators ” is 
shown in Table  2 .

         Single Active-Site Nanoresonators 

 The previous section “ Surfaces Containing a Large Number of Electromagnetic 
Nanoresonators ” presents electrochemical formation of nanostructures containing 
many places in which energy of the incident electromagnetic radiation is concen-
trated. However, for some purposes nanoresonators containing only one active area 
(as sharp metallic tips) are required. The fi rst practical application of the one “hot 
spot” nanoresonator was independently demonstrated by Zenobi et al. [ 34 ] and 
Anderson [ 35 ]. They showed that when a fi ne tip made of a metal that supports 
surface plasmon resonances is brought within a nanometer range to a sample, a 
strong enhancement of Raman signal from molecules being in the close proximity 
to the tip is observed. This spectroscopic–microscopic tool, the so-called tip- 
enhanced Raman spectroscopy (TERS), can be used for molecular analysis with 
excellent spatial resolution, only limited by the tip apex size and shape. Further 
investigations showed that tips made of metals that support surface plasmon reso-
nance may be also used to enhance locally other optical processes, such as second 
harmonic generation [ 80 ,  81 ], coherent anti-Stokes Raman scattering [ 82 ,  83 ], fl uo-
rescence [ 84 ], or infrared adsorption [ 85 ]. Production of suitable tips (nanoresona-
tors) is a key issue in these spectroscopic–microscopic measurements. 

 Usually “single hot spot” nanoresonators used for the local concentration of the 
electromagnetic radiation are made of gold. Sharp gold tips have many important 
applications; therefore, even before they have been applied for the “tip-enhanced” 
spectroscopic–microscopic measurements, various groups have developed differ-
ent methods of their preparation. For example, gold tips have been fabricated by 
etching the gold wire in a CaCl 2  solution of 10–50 % saturation at the etching volt-
age of 30 V [ 86 ], etching the gold wire in a 3 M NaCl and KCl solution at 10 V 
[ 87 ], or etching the gold wire in a 0.8 M KCN solution at the etching voltage of 12 
V [ 88 ]. Abbou et al. developed a simple method to produce gold tips to be used as 
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an ultramicroelectrode [ 89 ]. They etched a gold wire for about 2 min at 7 V in a 
mixture of saturated CaCl 2 , water, and ethanol in a proportion of 2:8:1 [ 89 ]. 

 The fi rst work aimed on the preparation of gold tips optimized for the plas-
monic applications was published by Ren et al. in 2004 [ 90 ]. In this contribution 
Ren et al. proposed a method for the production of gold tips with the tip apex 
radius lower than 30 nm by the direct current electrochemical etching of the gold 
wire in the mixture of concentrated HCl and ethanol. The infl uence of the solution 
composition and the etching voltage on the surface structure and sharpness has 
been investigated [ 90 ]. Ren et al. found that a tip with a smooth surface can be 
obtained in a solution of equal content of hydrochloric acid and ethanol, while the 
tips obtained from solutions with signifi cantly different contents of both com-
pounds show grainy structures [ 90 ]. In the next contribution Ren et al. proposed 
improved procedure of the preparation of gold tips by using the etching current as 
ending point control [ 91 ]. This resulted in a signifi cant increase of the success rate 
of the preparation of highly active nanoresonators to 90 % [ 91 ]. Many groups 
tested other electrolytes. For example, Gingery and Buhlmann reported producing 
of 15 nm gold tips using NaCl in a 1 % perchloric acid [ 92 ]. Williams and Roy 
etched gold wire in a 37 % fuming HCl acid using square pulses at 3 kHz (30 μs 
on and 300 μs off) with starting amplitude of 8 V and a dc offset of 500 mV [ 93 ]. 
Richards et al. proposed a method of fabricating smooth gold tips with a radius of 
curvature of ca. 40 nm and with an aspect ratio suitable for shear force measure-
ment (see Fig.  6 ) by a single-step direct current electrochemical etch (at 2.4 V dc) 
in 1:1 mixture of 37 % fuming HCl acid and high-purity water [ 94 ]. Richards 
et al. found that replacement of the ethanol (previously used for preparation of Au 
tips for TERS experiments) with high-purity water yields tips with a smoother 
surface. Hommelhoff et al. prepared sharp gold tips with high surface quality by 
the electrochemical etching in 90 % saturated aqueous solution of KCl [ 95 ]. Radii 
of curvature of the formed tip lie in the range of 20–40 nm, and the surface rough-
ness was measured to be less than 0.8 nm [ 95 ]. High-quality gold tips with smooth 
surface and a radius curvature of about 20 nm have been also formed by Xu et al. 
by a single-step constant current electrochemical etch in 1:1 mixture of 37 % 
concentrated HCl and ethanol [ 96 ].

   Tips for AFM/STM microscopic–optical spectroscopic measurements have 
been also formed from other metals supporting surface plasmon resonance, espe-
cially from silver. For example, silver tips for local Raman measurements may be 
formed by etching of a silver wire in a mixture (from 1:1 to 1:4) of concentrated 
HClO 4  and methanol at an anodic voltage between 1.6 and 8 V [ 97 – 100 ]. Local 
enhancement of the electromagnetic fi eld caused by the Ag tip is usually stronger 
than that caused by the Au tip; however, due to the oxidation when exposed to air, 
Ag tips often lose enhancement effects after 2 or 3 days [ 101 ]. Moreover, when 
illuminated with the intensive laser radiation, the shape of the Ag tips changes due 
to the signifi cant temperature increase, which causes that some Ag tips lost their 
strong “plasmonic activity” within just a few minutes [ 102 ]. Therefore, the major-
ity of the optical spectroscopic–STM microscopic measurements are still carried 
out with gold tips.  
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     Conclusions 

 Discovering in 1970s that the effi ciency of Raman scattering for molecules placed 
in the optical energy concentrators (nanoresonators) may be increased by six to 
seven orders of magnitude launched intensive research aimed at the production of 
effi cient electromagnetic nanoresonators. Further investigations showed that the 
electromagnetic nanoresonators may also be used to enhance signifi cantly the sur-
face sensitivity of several other spectroscopic measurements (especially infrared 
absorption), which initialized development of the electromagnetic nanoresonators 

  Fig. 6    ( a ) Schematic diagram of the experimental setup used for the fabrication of smooth gold 
tips. ( b ) Typical current–time etch curve obtained in a 1:1 mixture of 37 % fuming HCl acid and 
water at the etching voltage of 2.4 V dc. ( c ,  d ) Scanning electron microscopic (SEM) images of an 
etched Au tip, indicating an apex of ca. 50 nm (Reprinted with permission from [ 94 ]. Copyright 
2009 American Institute of Physics)       
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optimized for other regions of the electromagnetic radiation. The spectroscopic 
technique which gains the most due to the application of metal electromagnetic 
nanoresonators is still, however, Raman spectroscopy, from which the great success 
of nanoresonator-enhanced surface measurements started. As mentioned in the 
“Introduction,” the effi ciency of generation of Raman signal for molecules placed 
in the electromagnetic nanoresonators is in some cases so high that it is possible to 
observe Raman spectrum even of a single molecule [ 29 – 31 ]. For a large system, a 
single analyte molecule would seldom be adsorbed at the highly active part of the 
resonator; therefore “simple” single-molecule Raman spectroscopy cannot be 
treated as a reliable analytical technique (Raman signal from a single molecule 
reveals strong temporal fl uctuations and is not reproducible). However, for some 
analytes, even when only about 50–100 analyte molecules are contained in the sam-
ple, reproducible nanoresonator-enhanced Raman signal can be measured. 
Therefore, SERS is one of the most sensitive analytical tools with the limit of detec-
tion for some analytes of the order of 10 −18  mol dm −3  [ 50 ]. Due to large practical 
signifi cance of nanoresonators, chemically stable gold surfaces nanostructured spe-
cifi cally to form effi cient electromagnetic nanoresonators are already available 
commercially [ 103 ]. 

 As mentioned in the section “ Surfaces Containing a Large Number of 
Electromagnetic Nanoresonators ,” the fi rst practical application of electromag-
netic nanoresonators has been realized for nanoresonators formed electrochemi-
cally [ 17 ]. Although also other methods of the production of electromagnetic 
nanoresonators have been developed, electrochemical nanostructuring of metal 
surfaces is still very often used to prepare electromagnetic nanoresonators. The 
aim of this chapter was to present an overview of various methods typically used 
for the formation of both the single active-site nanoresonators and nanorestruc-
tured surfaces containing a large number of places where the optical energy is 
concentrated. We hope that this short review should help researchers, who are 
interested in carrying out nanoresonators-enhanced surface spectroscopic mea-
surements, to fi nd a method of the formation of nanoresonators which will be the 
most suitable for their system.     
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   Abstract  
  In order to move away from the carbon-based energy technologies, electro-
chemical energy production and storage is under serious consideration as an 
alternative energy/power source. The future success of this global effort is 
under review, and researchers are looking forward to designing more sustainable 

mailto:kafil.mahmood@tyndall.ie
mailto:maksudul.hasan@tyndall.ie
mailto:mamun.jamal@tyndall.ie
mailto:alan.mathewson@tyndall.ie


72

and environmentally friendly electrochemical energy storage and conversion 
(EESC)  systems. Electrochemical energy storage and conversion systems in 
the broadest sense have three variants: batteries, fuel cells, and electrochemical 
capacitors, also known as supercapacitors. The energy storage and conversion 
mechanisms in these three systems are different, but the energy – providing 
processes in these systems – all follow solid state and surface interface chem-
istry, taking place in active electrode materials and at the phase boundary of the 
electrode/electrolyte interface. Also, all three systems consist of two electrodes 
which are in contact with the electrolyte but separated by a membrane. 
Conventional materials used in these systems cannot meet the ever-increasing 
demand for energy. Thereby, designing effi cient and miniaturized EESC 
devices that achieve high energy storage or delivery at high charge and dis-
charge rates and with lifetimes capable of matching the specifi c requirements 
of applications is one of the major challenges facing today’s research 
community. 

 Thereby, this chapter will review some of the recent developments 
 (2010–2012) in the fabrication of nanostructured electrode materials by electro-
chemical methods and their application in the fuel cells and supercapacitors. 
Furthermore, novel nanowire-/nanoparticle-based electrodeposited nano-hetero-
structures (Armand M, Tarascon JM, Nature 451:652, 2008; Chmiola J, Largeot 
C, Taberna PL, Simon P, Gogotsi Y, Science 328:480, 2010; Tarascon JM, 
Armand M, Nature 414:359, 2001) and their advantages over conventional elec-
trode materials will be discussed.  

  Keywords  
  Energy storage   •   Energy conversion   •   Nanowire   •   Supercapacitor   •   Fuel Cell  

        Introduction 

 1D nanowires represent an attractive architecture for electrochemical power 
applications owing to their novel anisotropic morphologies and self-supporting 
arrays grown directly on a current collector. Active materials structuring into 1D 
nanostructures offers short diffusion paths and large electrolyte contact area for 
ionic transport and electronic conduction which results in reduced internal resis-
tance as well as longer durability and stability. Template-mediated fabrication is 
one attractive method for highly ordered array fabrication of nanowires on metal-
lic current collector substrates. Furthermore, template-based electrodeposition is 
an easy and effi cient technique for fabricating freestanding nanowires on any sub-
strate that requires large surface area for electrochemical reactions. So, most of 
the discussion of this chapter is related to the usability of these freestanding 
nanowire arrays as electrode materials in supercapacitor (pseudocapacitor) and 
fuel cell applications.  
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    Nanostructured Electrode Materials for Pseudocapacitor 
and Fuel Cell 

    Pseudocapacitor 

 Recently, electrochemical capacitors (ECs), also known as supercapacitors, have 
attracted considerable attention owing to their much higher power delivery or 
uptake (>10 kW kg −1 ) capability when compared to batteries (<1 kW kg −1  for 
Li-ion). The major challenges in designing an effi cient and miniaturized electro-
chemical energy storage device are to achieve high energy storage and delivery at 
high charge/discharge rates, with lifetimes matching the specifi c requirements of 
applications [ 1 – 3 ]. The development of these high-performance supercapacitor 
devices is crucial for the powering of contemporary and future electronic systems. 
The application areas for these supercapacitors include multifunctional portable 
equipment, wireless sensor modules deployed in smart environments, hybrid elec-
tric vehicles (HEVs), and large industrial equipment. There are different types of 
electrochemical energy storage devices. Among them, pseudocapacitor is a particu-
lar type of supercapacitor where the charge is stored using Faradaic process through 
electron charge transfer between electrode and electrolyte. These supercapacitors 
are usually fabricated using nanostructured electrode materials, because the nano-
structured pseudocapacitor electrodes are benefi cial in asymmetric and/or hybrid 
confi gurations due to their high specifi c capacitance (F g −1 ) and high volumetric 
capacitance (F cm −3 ) that result from their high packing density and large active 
surface areas, respectively [ 4 ,  5 ]. Specifi cally, one-dimensional (1D) nanostruc-
tured materials, e.g., nanotubes (NTs) or nanowires (NWs), fabricated directly on to 
a substrate may eliminate the use of ancillary materials and increase the active sur-
face area as well as the energy capacity of the electrodes. In recent years, there has 
been extensive research in developing alternative pseudocapacitor electrode materi-
als, such as cobalt oxide [ 6 ], manganese oxide [ 7 ,  8 ], nickel hydroxide [ 9 ] and 
nickel oxide [ 10 – 13 ], either as porous and/or one-dimensional (1D) nanostructures. 
Due to its low cost, high specifi c capacitance, and good capacity retention, NiO is 
one of the most promising materials [ 4 ]. It is also environmentally friendly. 
Unfortunately, nickel oxide is an electrically poor conductive material (p-type semi-
conductor), and therefore, in order to improve the maximum utilization of NiO, the 
introduction of a conductive metal as a coaxial supporting structure is essential [ 14 ]. 

 In recent work, NiO–TiO 2  nanotube (NT) arrays were created by electrochemical 
anodization of Ni–Ti alloy foils followed by thermal annealing (at 600 °C) where 
the Ti component in the foil was used as the core supporting structure [ 11 ]. However, 
achieving a high aspect ratio and porous nanostructures through the anodization of 
Ni–Ti foil is quite diffi cult, and the reported NT fi lm thickness was only 200 nm to 
500 nm (maximum aspect ratio is 13:1 with pore diameter of 38 nm) resulting in a 
fi lm porosity of 49 %, where the capacitance was 4 mF cm −2  [ 11 ,  15 ]. Additionally, 
this alloy foil is quite expensive and requires long processing time and complicated 
processing steps to fabricate the fi nal electrodes. In another approach, NiO nanorod 
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arrays were fabricated by thermal hydrolysis of a mixture of urea and nickel salts on 
a Ni foam substrate at 100 °C for 12 h followed by annealing at 250–400 °C for 3 h 
to facilitate NiO crystallization to be able to show pseudocapacitance [ 16 ]. Since 
simple and low-cost fabrication methods are always desired, hence, we have adopted 
a convenient method for the fabrication of the electrode by a simple electrodeposi-
tion of Ni NWs using template and controlled conversion of the deposited Ni NWs 
into Ni/NiO core/shell structure by low-power oxygen plasma annealing within a 
few minutes. The coaxial Ni/NiO NW arrays demonstrated an excellent capacity 
retention as well as high capacitance, both are important properties for supercapaci-
tor applications [ 14 ].  

    Fuel Cells 

 In recent years, alkaline direct ethanol fuel cells (ADEFC) have attracted increas-
ing interest as an ideal power source [ 17 – 21 ] due to the relatively high energy 
densities that can be achieved (8.1 kW/kg vs. 6.1 kW/kg for methanol). 
Furthermore, the kinetics of ethanol oxidation [ 22 ] and oxygen reduction [ 23 ,  24 ] 
reactions are faster in alkaline than in acid media. Pt is considered to be the best 
electrocatalyst for low- temperature fuel cells [ 25 ], and consequently, Pt and 
Pt-based nanoelectrocatalysts have been extensively studied for the anodic elec-
trooxidation of ethanol [ 20 ,  21 ,  26 – 29 ] and the cathodic reduction of oxygen 
[ 23 ,  24 ,  30 – 33 ] in fuel cell applications. However, the conclusion was that 
Pt-based electrocatalysts are still far beyond being ideal because of a number of 
fundamental reasons such as low electron transfer kinetics for cathodic oxygen 
reduction reactions, ineffi cient electrooxidation of ethanol to CO 2 , catalytic poi-
soning, and also high cost and limited availability of Pt materials [ 29 ,  32 ,  34 – 36 ]. 
In practice, there appears to be few or even no alternative electrocatalysts that can 
break the C–C bond completely to the end products of CO 2 . The recent research 
trends have been focused on tackling the poisoning issue (by the adsorption of 
CO-like species) by the modifi cation of Pt noble metal with foreign metals such as 
Ru, Ni, Co, Mo, and Sn [ 35 – 37 ]. In concomitant research, Pt-decorated Ru bime-
tallic nanostructures are reported to be the most active anode materials for the 
electrooxidation of alcohols [ 38 ], and these have also been shown to improve the 
CO tolerance of the electrocatalyst [ 39 ,  40 ]. Since, a high loading of the precious 
metals is generally required to achieve reasonable fuel cell performance, whereas 
factors such as commercialization and maximizing the activity of the electrocata-
lyst necessitate a reduction of this loading into the electrode. Therefore, a catalytic 
system with high surface area and cheap supporting structure should potentially 
able to optimize the effi ciency of these electrocatalysts without sacrifi cing their 
performance. The core/shell nanostructures forming layers of Pt onto cheap mate-
rials have emerged as an effective way of increasing electrocatalytic activity 
[ 17 ,  26 ,  41 – 44 ]. One-dimensional (1D) nanostructures, particularly carbon nano-
tubes (CNT), have been widely used as a supporting material for Pt nanoparticles 
(NPs) due to their high electrochemical surface area (ECSA) and unique physical 
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properties [ 45 ,  46 ]. However, the inherent agglomeration nature of CNT signifi -
cantly reduces the surface area of the electrocatalytic support and increases con-
tact resistance which results into low performance [ 47 ]. Additionally, there are a 
number of challenges associated with the synthesis of these systems that need to 
be overcome if Pt NPs are to be reliably deposited onto the walls of such support 
structures. On the other hand, using 1D metal nanowire arrays as a supporting 
structure is potentially more attractive for fuel cell applications, since noble met-
als can be coated or deposited on the nanowire surface of cheap materials 
[ 48 – 50 ]. 

 Oxide-supported Pt electrocatalysts are shown to be effi cient for direct etha-
nol electrooxidation both in acid and alkaline media. Metal oxide-supported 
Pt electrocatalysts such as Pt/SnO x  [ 51 ], Pt–MgO/C [ 52 ], Pt–CeO 2 /C [ 53 ,  54 ], 
 Pt–ZrO 2 /C [ 55 ], CNT/SnO 2 /Pt thin fi lms [ 56 ], Pt–Mo/CNT@TiO 2  [ 57 ], and Pt–ATO 
(platinum–antimony tin oxide)/MWCNT [ 58 ] have been shown to improve elec-
trocatalytic activity and stability for ethanol electrooxidation compared to pure 
Pt or Pt/C electrocatalysts. NiO is a very attractive material for various applica-
tions such as Li-ion battery anode [ 59 ], supercapacitors [ 14 ,  60 ], and fuel cell 
electrodes [ 61 ,  62 ]. In this chapter, we demonstrate a novel hybrid electrocata-
lyst synthesized using highly ordered conductive metal/metal oxide (Ni/NiO) 
nanowire arrays (NWA) as a support for porous Pt NP. A simple method is 
reported here using the combination of electrodeposition of Ni nanowires inside 
a porous template and oxygen plasma annealing to convert into a core/shell Ni/
NiO nanowires. The Pt NPs are reduced onto the Ni/NiO NWA surface by chem-
ical reduction using a borohydride technique, thereby forming a 1D Ni/NiO 
NWA/Pt electrocatalyst. The synthesized material has been evaluated and the 
results suggest that Ni/NiO NWA/Pt could be used as an effi cient nanoelectro-
catalyst for ethanol electrooxidation in ADEFC [ 63 ]. Table  1  summarizes some 
of the recent publications on nanowire-based anode electrocatalysts for fuel cell 
applications and compared the materials in terms of their specifi c activity and 
Co tolerance.

    Table 1    Comparison of typical Pt-based anode electrocatalysts for fuel cell applications   

 Catalyst/electrode 
 Specifi c activity 
(mAcm −2 ) 

 CO tolerance 
I f /I b   References 

  Ni@NiO/porous Pt hybrid nanowires   126  1.2  [ 63 ] 

  Pt–Co alloy nanowires   5.57  0.88  [ 49 ] 

  Te/Pt hybrid nanowires   1  1.2  [ 48 ] 

  Pt–Co alloy NPs   1.7  –  [ 35 ] 

  C/Pt NP commercial   1.26  0.76  [ 35 ] 

  Ni–Cu alloy nanowires   10.30  –  [ 64 ] 

  AuPdPt alloy nanowires   107  1.5  [ 65 ] 

  PdNi alloy NPs/C   4.35  0.83  [ 66 ] 

  Ni@Pt nanotubes   82.6  1  [ 67 ] 
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        Fabrication of the Electrode Materials 

    Synthesis of Coaxial Ni/NiO Nanowires for Pseudocapacitor 

 Alumina templates (Anodisc 47, Whatman, nanopore diameter of ~250–300 nm, 
length ~60 μm, and density of ~1 × 10 9  cm −2 ) were obtained from GE Healthcare UK 
Ltd. A 400 nm layer of Ni fi lm was evaporated (Temescal FC-2000) onto one side 
of the template, which served as the working electrode. A copper wire was con-
nected to the Ni backside of the template using silver paste from Radionics Ltd. 
Ireland and left overnight to dry before use. A low-stress nickel sulfamate bath was 
prepared using nickel sulfamate (0.37 mol dm −3 ), boric acid (0.64 mol dm −3 ), nickel 
bromide (0.18 mol dm −3 ), and wetting agent ANKOR (R) F (10 ml l −1 ). The pH of 
the solution was adjusted to 3.8 by adding 1 mol dm −3  sulfonic acid at room tem-
perature. The deposition was conducted at a constant temperature of 50 °C, while 
the solution was stirred at 100 rpm. A two-electrode cell was used with Ni/porous 
alumina template as a working electrode (cathode) and Ni pellets in a Ti basket as 
an anode. A 50 mA cm −2  (the ratio of the total template area) constant current was 
applied to the working electrode. The deposition rate was found to be 0.6 μm per 
minute. After deposition, the template was dissolved in 1 mol dm −3  KOH solution 
for 1 h, to release the vertically aligned Ni nanowire array fi lm. The array was then 
washed with copious amount of deionized water and dried in air. A thin fi lm of Ni 
(3–4 μm) had also been deposited onto the back side of the seed layer while Ni 
nanowires grew inside the pores. This fi lm eventually prevented the NWs from 
collapsing after removal of the template. The fi lm of Ni NW arrays was attached 
onto a silicon substrate by adhesive tape (Kapton tapes, DuPont™, USA) at the 
edge, so that the back side was not exposed to the plasma during annealing and 
thereby only the surface of Ni NWs should convert to oxides. The fabricated Ni 
NW arrays were annealed in plasma (March Plasmod GCM 200) at power input 
ranging from 25 to 50 W at a constant oxygen fl ow (30 cc min −1 ) by varying the 
annealing time. At the front side of the seed layer (the NWs’ side), only a small 
fraction of the seed could be exposed to the plasma owing to very high density of 
NWs (~1 × 10 9  cm −2  with wire diameter of 250–300 nm). Afterward, the plasma-
treated samples were detached from the Si substrate and cut into pieces and pre-
served for characterization [ 14 ].  

    Synthesis of Core/Shell Ni/NiO/Pt NWA for Fuel Cell 

 The porous Pt NPs were deposited onto core/shell Ni/NiO nanowires by a hydro-
thermal reduction method from a solution containing a metal precursor salt (5 mM 
Na 2 PtCl 6  × 6H 2 O) and a reducing agent (30 mM NaBH 4 ). Ni/NiO NWA sample was 
immersed in a 5 mL glass tube containing 500 μL aliquots of the Pt metal precursor 
salt at 80 °C and stirred for 20 min. The resulting hybrid electrocatalyst was removed 
from the mixture and washed with deionized water for the complete removal of 
residual Cl −  ions (the fi ltrate water was tested by 1 M silver nitrate solution and no 
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white colored precipitate (AgCl) was observed). To compare the electrocatalytic 
activities, Pt NPs were also deposited onto the metallic Ni NWA, using the NaBH 4 - 
reduction method described above. The samples were dried in an oven at 100 °C for 
1.5 h before starting to measure the electrocatalytic performances. The amount of Pt 
reduced was measured using a high precision microbalance (Mettler Toledo, XS 
105 Dual Range, repeatability (SD), d = 0.01 mg) from the weight difference before 
and after the reduction of Pt [ 63 ].   

    Material Characterization 

 The crystal structures of the nanowires were characterized by X-ray diffraction 
(XRD, Philips PW3710-MPD diffractometer with Cu-Kα radiation, λ = 1.54 Å). 
The nanostructures and morphology were examined by scanning electron micros-
copy (SEM, FEI Nova 630 Nano-SEM or QUANTA FEG 650) and high-resolution 
transmission electron microscopy (HR-TEM, JEOL 2100 HR-TEM instrument 
operating at an acceleration voltage of 200 kV) coupled with energy dispersive 
X-ray spectroscopy (EDS Oxford Instruments INCA energy system). Cross section 
samples were prepared using focused ion beam (FIB, FEI DualBeam FIB Helios 
Nanolab 600i) for TEM characterization. Protective layers of carbon and platinum 
were deposited onto a lamella by electron beam-induced deposition (EBID). After 
deposition the lamella was cut and attached to a TEM grid. FIB at 30 kV was used 
to thin down the lamella to approximately 100–150 nm. In order to minimize the 
FIB induced damage, the fi nal polishing was performed at 2 kV for 2 nm per side. 
The targeted fi nal thickness was in the range of 30–60 nm. The cross sections were 
analyzed by HR-TEM at 200 kV. The bright-fi eld (BF) images were taken with a 
medium-sized objective aperture to increase the contrast. EDS line scans were taken 
in scanning TEM (STEM) mode with medium spot size (40–60 nm sphere diameter 
of analyzed volume). STEM analysis was performed at 30 kV and dark-fi eld images 
were taken in high-angle annular dark-fi eld (HAADF) mode. In all cases, the ele-
mental analysis was performed using the INCA software [ 14 ]. 

    Electrochemical Characterization of Ni/NiO NWA 
for Supercapacitors 

 The electrochemical measurements of Ni/NiO nanowire arrays were performed 
using a CH Instruments 660C potentiostat. Electrodes comprised of 20 μm long 
 Ni/NiO NWs, arrayed in 1 × 1 cm 2  surface areas. The electrochemical results are 
expressed in terms of the geometrical surface area. Chronopotentiometry (CP) and 
potentiostatic cyclic voltammetry (CV) were performed with a three-electrode glass 
cell setup fi lled with 1 mol dm −3  KOH as an electrolyte. The active material (Ni/NiO 
NW arrays) served as the working electrode, platinized titanium mesh as the coun-
ter, and Ag/AgCl/3 mol dm −3 KCl as the reference electrode. Cyclic voltammetry 
measurements were carried out in the potential range of 0.0–0.52 V (vs. Ag/AgCl) 
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at different scan rates of 5–50 mV s −1  and conditioned at the initial potential for 
20 s. CP charge–discharge measurements were carried out at a fi xed current density 
of 5 mA cm −2  [ 14 ].  

    Electrochemical Characterization of Ni/NiO NWA/Pt for Fuel Cells 

 A test cell was constructed with 1 M ethanol (EtOH) and 0.5 M KOH electrolyte at 
a temperature of 21 ± 1 °C using a platinized titanium mesh and a Hg/HgO (1 M 
KOH solution) as the counter and reference electrodes, respectively. Cyclic voltam-
metry (CV) and chronoamperometry (CA) were performed as main tools for the 
electrochemical characterization. Each electrode (0.5 × 0.5 cm 2 ) comprised of 
13 μm long 1D Ni/Pt NWA and Ni/NiO/Pt NWA was attached onto the Ni-coated 
polymer substrate by conductive glue (silver paste, Radionics Ltd. Ireland) and 
covered by nail varnish at the edge to avoid electrolyte leakage to the back side. 
CV measurements were carried out within the potential range of 0.4 to –1.0 V at 
different scan rates of 2–100 mV/s and conditioned at the open circuit potential 
(−0.65 V, OCP) for 20 s. CA measurements were carried out at a fi xed potential of 
−0.2 V [ 63 ].   

    Results and Discussions 

    Elemental Characterization of the Electrodes 

 The fabrication of Ni/NiO NW arrays was done by direct electrochemical deposi-
tion of Ni inside nanoporous Al 2 O 3  template and the subsequent conversion of outer 
shell into oxide by oxygen plasma annealing [ 14 ]. Figure  1a  shows the SEM images 
of as-deposited Ni NWs, and plasma-annealed Ni NWs at 50 watt (W) for 60 s is 
shown in Fig.  1b  after removal from the template and dispersion onto Au/Si sub-
strate. The surface morphologies of the as-deposited and plasma-annealed NWs are 
different. The surface roughness of the annealed samples is increased due to oxide 
formation. A thin oxide layer is formed around the circumference of Ni nanowires, 
and hence, oxygen plasma annealing is found to be effi cient in the conversion of the 
deposited metallic Ni into NiO. Figure  2  shows the effect of annealing time on the 
as-deposited vertically aligned Ni NWs. Figure  2a – c  shows the SEM images taken 
at a 45° perspective view for different annealing times of 120, 300 and 600 s, 
respectively. In the short-time annealed Ni NWs, the oxide layer thickness cannot 
be distinguished easily. However, a high-magnifi cation HR-TEM bright-fi eld (BF) 
image (inserted into Fig.  2d ) clearly shows the presence of a thin oxide layer at the 
outer surface of Ni. With the increased annealing time of Ni NWs and by keeping 
the input power constant at 50 W, the resulting oxide layer thickness around the 
metallic Ni circumference increased gradually (see Fig.  2d – f ) [ 14 ].

    Subsequently, the annealing time (at a fi xed input power of 50 W) was varied 
to achieve an optimized thickness of the outer shell oxide layer, so that it can 
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maintain a good electrical connection with the inner core of the metallic Ni. 
However, when the annealing time was increased to 300 and 600 s as shown in 
Fig.  2b ,  c , the surface morphology of the resulting oxide layers becomes inhomo-
geneous compared to those annealed for shorter time (i.e., 120 s; see Fig.  2a ). 
In addition, Ni NWs annealed for 300 s or higher were found to be agglomerated 
as bundles of fused wires that consume the interspaces between wires. These 
eventually reduce the total electroactive surface area available for electrochemi-
cal reactions [ 14 ]. 

 Elemental mapping by scanning transmission electron microscopy–energy dis-
persive X-ray spectroscopy (STEM–EDS) reveals the presence of both Ni and O in 
the annealed Ni nanowires as can be seen in Fig.  3 . Nanowire arrays obtained at 
50 W for 120 s annealing showed homogeneous surface morphology and the one- 
dimensional vertical nanostructures being well preserved (see Fig.  2a ) and there-
fore used for the subsequent studies [ 14 ]. The HR-TEM image in Fig.  4a  reveals 
domains of different crystallites or grains of shell. Figure  4b  is the high-magnifi ca-
tion image showing NiO crystallites in the shell. Figure  4c  reveals another area 
where the interface between the Ni (core) and NiO (shell) is clearly visible with 
lattice fringes in the shell. Figure  4d ,  e  shows the EDS spectra of Ni core (D1) and 
NiO shell (D2), respectively. The EDS data revealed the composition of these 
regions, where Ni and O ratios are 6.5:3.5 (D2) and 19:1 (D1), i.e., showing the 
presence of small quantity of O in the core of the annealed Ni nanowires but a large 
quantity of O in the shell [ 14 ].

    A simple hydrothermal NaBH 4 -reduction method was applied to the 1D Ni/NiO 
nickel nanowire array (NWA) to coat Pt NP and form a novel Ni/NiO NWA/Pt 
hybrid nanoelectrocatalyst. Figure  5a ,  b  shows the SEM images of the Ni/NiO NWA 
after reaction with the metal precursor salt solution. These clearly reveal that Pt NPs 

  Fig. 1    SEM images after removal from the template and dispersion onto Au/Si substrate of ( a ) 
as-deposited Ni NWs and ( b ) Ni/NiO NWs that were prepared by oxygen plasma annealing at 
50 W for 60 s. SEM images clearly show the formation of oxide layer around the circumference of 
the Ni NWs (Reproduced with permission from Ref. [ 14 ])       
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are adsorbed on the surface of the NiO. Further insight into the microstructure of the 
NiO and Pt NP formed at the surface of the Ni/NiO nanowires was obtained by 
TEM.

   Figure  6a – c  as the bright-fi eld (BF) TEM images shows different regions of the 
Pt NP-supported Ni/NiO nanowires at increasing magnifi cation. It can be seen that 
Pt NP attached at the surface of the core/shell Ni/NiO nanowires. The grain size of 
the Pt NP varies from ~3 to 15 nm although some NPs (often at the core of the 
75 nm agglomerates) are somewhat larger at ~30 nm. The diffraction pattern shown 
in Fig.  6d  was acquired from a common region of the Pt NP attached onto nanowires 
and exhibits the presence of face-centered cubic (fcc) Pt for which the measured 
(111), (200), (220), and (311) spacings are 0.2256, 0.1957, 0.1385, and 0.1208 nm, 
respectively.

   The Pt NP also contains a reasonably homogeneous distribution of fi ne pores. 
A higher magnifi cation through focal series of BF images shown in Fig.  7  presents 
the reverse Fresnel effects as a function of the defocus conditions, which are con-
sistent with a distribution of fi ne pores. The diameter of these pores found in the 
region is 2–3 nm. The NiO shell has a characteristically “ribbon-like” morphol-
ogy with a typical thickness of ~15 nm and consists of irregular grains that vary 
in diameter from ~3 to 15 nm. The d-spacing for the (111), (200), (220), and (311) 
fcc oxides is measured to be 0.2399, 0.2077, 0.1468, and 0.1253 nm, 
respectively.

  Fig. 3    STEM–EDS elemental mapping shows the presence of a thin oxide layer around the Ni 
circumference annealed at 50 W for 600 s: dark-fi eld ( DF ) images of ( a ) coaxial Ni/NiO NWs, 
( b ) nickel at the inner core, and ( c ) oxygen at the outer shell (Reproduced with permission from 
Ref. [ 14 ])       
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  Fig. 4    HR-TEM images of the coaxial Ni/NiO NW (annealed for 600 s at 50 W) show ( a ) NiO 
crystallites or grains in the shell, ( b ) magnifi ed view of NiO crystallites, and ( c ) magnifi ed view of 
the interface of Ni and NiO showing the lattice fringes in the shell. EDS spectra of D1 ( d ) and D2 ( e ) 
correspond to domains of Ni (core) and NiO (shell) (Reproduced with permission from Ref. [ 14 ])       

  Fig. 5    SEM images of 1D Ni/NiO NWA-supported Pt NP cross-sectional ( a ) low and ( b ) higher 
magnifi ed view (Reproduced with permission from Ref. [ 63 ])       
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  Fig. 6    BF TEM images of ( a ,  b ) Pt-supported Ni/NiO NWA where Pt NP can be seen at both the 
sidewalls and tip of the elongated core/shell Ni/NiO nanowires. ( c ) A higher-magnifi cation BF 
image of a sidewall Pt NP at a Ni/NiO nanowire surface where the irregular NiO layer formed at 
the surface of the Ni can be distinguished. ( d ) A diffraction pattern confi rming the presence of Ni, 
NiO, and Pt for which the lattice parameters of the NiO and Pt are found to be 0.4120 and 0.3936 
nm, respectively (Reproduced with permission from Ref. [ 63 ])       

  Fig. 7    Higher-magnifi cation BF images of a sidewall Pt NP agglomerate taken in an ( a ) under- focus, 
( b ) in-focus, and ( c ) over-focus condition showing a distribution of 2–3 nm pores. Note the reverse 
Fresnel effects as a function of the defocus conditions (Reproduced with permission from Ref. [ 63 ])       
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  Schematic 1    Working principle of alkaline fuel cell technology – electron generated in anode 
passed through the external load to the cathode where O 2  is reduced to OH −  ions       

       Electrochemical Characterization of the Electrodes 

 In order to understand the electrochemical characterization of the electrode materi-
als, it is imperative that we understand the working principle of the electrodes in an 
alkaline fuel cell as well as in a pseudocapacitor. Schematic  1  shows the diagram of 
the working principle of the alkaline ethanol fuel cell. Here, ethanol is being used 
as a fuel that produces electrical energy due to electrochemical oxidation at the 
anode materials. The electrical energy generated in the form of electrical current in 
this way is used for the application load and in turn reaches at the cathode to com-
plete the electrochemical cycle.

   Schematic  2  shows the diagram of the working principle of pseudocapacitor that 
stores and releases electrical energy in the chemical forms through the redox reac-
tion on the surface or near the surface of active (electrode) materials, in a similar 
fashion to other electrochemical energy storage device such as batteries. On dis-
charge, the device releases its stored electrical energy that passes through the exter-
nal load and used by the application, and ions pass through the separator toward the 
anode, where they either adsorbed or swallowed depending on the materials and 
electrolyte system applied. On charging, ions are released from the anode, move 
toward cathode, and are stored in a similar fashion.
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   In the next few sections, Ni/NiO and Ni/NiO NWA/Pt array as electrode materi-
als for supercapacitors and fuel cells will be discussed in some details. 

    Ni/NiO Nanowire Array as Electrode for Pseudocapacitor 
 Figure  8a  shows the effect of annealing time (at a constant input power of 50 W) on 
the CVs (at a scan rate of 10 mV s −1 ). A change in the electrochemical behavior has 
been observed with increasing the annealing time. The CV of the coaxial Ni/NiO 
NW arrays (annealed for 60 s) shows an anodic peak at 0.294 V and a cathodic peak 
at 0.193 V (vs. Ag/AgCl). This redox couple is associated with the pseudocapacitive 
behavior of the NiO component in Ni/NiO NW arrays. It originates from the surface 
Faradaic oxidation and reduction reactions (NiO + OH −  ↔ NiOOH + e − ), where the 
anodic peak is due to the oxidation of NiO to NiOOH and the cathodic peak is for 
the reverse process [ 10 – 12 ]. After increasing the annealing time to 120 s, the peak 
current intensities of the corresponding redox reactions are increased and the peak 
potentials shift to higher values at 0.41 and 0.28 V, respectively, as can be seen in 
Fig.  8a . The increase in the charge–discharge current intensity is due to the forma-
tion of a thicker oxide (i.e., larger amount) around the circumference of the Ni 
nanowires. There is a sharp increase in the anodic and cathodic peak currents, indi-
cating that the outer shell of NiO fi lm has higher electrochemical activity, which 
maintains a good electrical contact with the inner metallic Ni core. For the 180 s 
annealed sample, the redox potentials shift further to the higher potentials (oxida-
tion peak at 0.465 V and reduction peak at 0.31 V). However, the peaks become 

  Schematic 2    Working 
principle of 
pseudocapacitor. On 
discharging, electrons 
passed through external 
load and ions through 
separator toward anode, 
where they adsorbed. On 
charging, ions move 
toward cathode and are 
stored in a similar fashion       
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wider, indicating the low electrochemical activity of the redox-active material. 
The maximum peak potential separation (ΔEp) increases with increasing the anneal-
ing time (0.1 V for 60 s annealing to 0.13 and 0.16 V for 120 and 180 s annealing, 
respectively), while the redox peaks shift to the right side of the scale. This observa-
tion infers that the redox reaction at or near the surface of Ni/NiO is quasi-reversible 
for the samples annealed for a longer time; this may be further attributed to the 
solution–electrode and/or core–shell interface resistance [ 68 ,  69 ]. The capacitance 
is increased to 0.4 F cm −2  of the sample annealed for 180 s compared to 0.38 F cm −2  
and 0.21 F cm −2  of the samples annealed for 120 and 60 s, respectively, as can be 
seen in Fig.  8b . As more metallic Ni is converted to NiO, the capacitance initially 
increases, which is indicative of pseudocapacitive behavior of the redox-active NiO 
component in the electrodes [ 68 ]. However, as the amount of NiO content increases 
further (beyond 180 s annealing time), the capacitance decreases (Fig.  8b ). This is 

  Fig. 8    ( a ) Cyclic voltammo-
grams of the annealed Ni NW 
arrays measured at the 
potential scan rate of 10 
mVs −1  in 1 mol dm −3  
KOH. The annealing time 
ranges from 60 to 600 s at a 
constant input power of 50 W 
and oxygen fl ow of 30 cc 
min −1  in the plasma chamber. 
( b ) Capacitance of the coaxial 
Ni/NiO NW arrays plotted as 
a function of the annealed 
time (Reproduced with 
permission from Ref. [ 14 ])       
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due to the decrease in electrical conductivity with the inner core (Ni), which reduces 
the rate of charge transport as the thickness of NiO (shell) increases [ 68 ].

   The electrodes annealed for longer time exhibit low electrochemical activity, 
which can be fairly attributed to the consumption of the interspaces between wires 
by the oxide, which increasingly reduces the total electroactive surface area for 
charge storage and redox reactions as discussed earlier with reference to Fig.  2 . 
Therefore, these results can be summarized as follows: (1) With increasing anneal-
ing time, more Ni is turned into NiO and this thins the inner conductive core of Ni. 
Thereby the electrical resistance of the individual NW is increased as is evident 
from shifting of the redox peaks. (2) The electrical conductivity between outer shell 
NiO and inner core Ni metallic support might reduce considerably. Therefore, thick 
and poorly conductive NiO in the outer shell becomes practically in electrical isola-
tion from the conductive inner core Ni, which results in a decrease in capacitance to 
0.08 and 0.01 F cm −2  for samples annealed for 300 and 600 s [ 14 ]. 

 The CVs of 120 s annealed Ni/NiO NW arrays at scan rates between 5 and 
50 mV s −1  are shown in Fig.  9a . It can be observed that the pair of anodic and 
cathodic peak curves is symmetric over the entire range of scan rates, indicating 
reversibility of the redox reactions at or near the coaxial Ni/NiO NW surfaces. Here, 
the peak current intensity increases linearly with the scan rate [ 14 ], indicating that 
the redox process associated with NiO active component in the Ni/NiO NW system 
is diffusion controlled. This linear response of the peak current intensity is also an 
indication of the fast electronic and ionic transport rates. However, the maximum 
peak potential difference (ΔE p ) between anodic and cathodic peak increases (0.10 V 
for 5 mV s −1  to 0.22 V for 50 mV s −1 ) with scan rate, which implies that the redox 
reactions are quasi-reversible. Figure  9b  shows the rate capability performance 
(in terms of capacitance) of the electrode used in Fig.  9a , where the electrodes show 
good rate capability over the entire range of scan rates. As an example, at the scan 
rate of 50 mV s −1 , the capacitance (0.36 F cm −2 ) of the Ni/NiO NW arrays retained 
up to 94 % of that measured at a lower scan rate of 5 mV s −1  (0.38 F cm −2 ). Ni/NiO 
NW arrays annealed for very short time of 60 s and thereby consisting of thinner 
oxide shell can be cycled even at a higher scan rate of 100 mV s −1  without any 
decrease in capacitance [ 14 ].

   However, it was observed that the 60 s annealed sample showed almost 50 % 
lower capacitance compared to 120 s samples as can be seen in Fig.  8b . At the 
higher scan rate, high capacitance retention indicates the rapid ionic and electronic 
transport rates of the Faradaic redox reactions and the faster charge–discharge 
kinetics is attributed to the unique core/shell nanoarchitecture with a large electro-
active surface area, which offers a highly conductive and robust core for reliable 
connection to the NiO shell. This high aspect ratio structure also ensures easy elec-
trolyte access to a large volume of redox-active materials [ 11 ,  68 ]. 

 A set of charge–discharge experiments were carried out using chronopotentiom-
etry in order to investigate the reaction kinetics and to measure the capacitance. 
120 s annealed Ni/NiO NW arrays were used as the electrode, and the measure-
ments were performed at a constant current density of 5 mA cm −2 . The fi rst few 
cycles of the representative charge–discharge potential profi les are shown in 
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Fig.  10a . Even at a high charging–discharging current, the curves are symmetric 
enough, implying that the electrode has fast charge–discharge properties with an 
excellent electrochemical reversibility. The charging and discharging for similar 
time duration confi rm that the reversible Faradaic redox reactions occurred at or 
near the electroactive surfaces. The measured capacitance is 0.36 F cm −2 , which 
conforms to the value calculated from CV measurements at a high scan rate of 
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50 mV s −1  as can be seen in Fig.  9b . Figure  10b  depicts the cycling performance for 
the fi rst 2,000 cycles of the coaxial Ni/NiO NW arrays shown in Fig.  10a . As an 
electrode material, the Ni/NiO NW arrays exhibited long-term cycling perfor-
mance, and no deterioration in capacitance was observed over the entire cycling 
period. The small variation in capacitance may be attributed to the heating effect, 
generated in the long range cycles or other physical factors rather than chemical or 
structural changes associated with the electrode materials. This was further con-
fi rmed by observing the samples under SEM before and after exposure to the 
cycling [ 14 ].

   The core/shell Ni/NiO NW-based nanoarchitecture provides a unique combina-
tion of entirely exposed, high aspect ratio, one-dimensional vertical structures with a 
highly conductive metal in the core. This leads to homogeneous electrolyte accessi-
bility even to remote sites and resulted in a large electroactive surface area for charge 
storage and redox reactions and high rates of electronic and ionic conductivity. We 
believe by optimizing the fabrication parameters that the capacitive performance of 
the coaxial Ni/NiO NW can be enhanced further. Furthermore, these core/shell nano-
structures can be directly grown on thin conductive as well as on fl exible substrates, 

  Fig. 10    ( a ) First few 
cycles of the typical 
charge–discharge potential 
profi les of 120 s oxygen 
plasma annealed Ni/NiO 
NW arrays measured with 
chronopotentiometry at a 
charging–discharging 
current of 5 mAcm −2 . 
( b ) Capacitance as a 
function of the cycle 
number (Reproduced with 
permission from Ref. [ 14 ])       
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which enable in realization of an effi cient and cost-effective one-step approach for 
binder-free fabrication of supercapacitor electrodes [ 14 ].  

    Ni/NiO NWA/Pt as Electrode in Fuel Cell 
 Figure  11  shows cyclic voltammograms taken after 20 scans. The typical features of 
hydrogen adsorption/desorption and oxide formation/reduction are seen for both the 
1D Ni NWA and the Ni/NiO NWA-supported porous Pt NP electrocatalysts. 
Nevertheless, electrocatalytic activities for the bare Ni NWA and Ni/NiO NWA sup-
port structures are not being observed in the same electrochemical window. The 
electrochemical surface area (ECSA) has been calculated from the following 
expression, ECSA  = (Q   H   /Q   M    W   Pt   )  [ 70 ], where  Q   M   is the charge due to the monolayer 
adsorption of hydrogen (0.21 mCcm −2  for Pt),  Q   H   is the charge (mCcm −2 ) due to 
hydrogen absorption onto the electrode, and  W   Pt   is the Pt loading in the electrocata-
lyst. The hydrogen desorption peak is being used to calculate ECSA within the 
potential region of −0.9 to −0.4 V in the anodic direction (see Fig.  11 ) and is sum-
marized in Table  2 .

    The ECSA of Pt-supported Ni/NiO NWA (120 m 2 /g Pt ) is 1.3 times higher than 
that of the Ni NWA (92 m 2 /g Pt ) structure. It should also be noted that the ECSA for 
the Ni/NiO NWA/Pt electrocatalyst is considerably higher than the reported 
 values for Pt nanorods (30 m 2 /g Pt ) synthesized by galvanic displacement reaction 
[ 50 ] as well as a commercially available carbon-supported Pt NP electrocatalyst 
 (~53 m 2 / g Pt ) [ 35 ], which obviously suggest higher utilization effi ciency of the 
Pt NP on core/shell metal/metal oxide NWA. The increase in the ECSA value is 

  Fig. 11    Comparison of cyclic voltammograms of 1D Ni NWA, Ni/NiO NWA, Ni NWA/Pt, and 
Ni/NiO NWA/Pt in 0.5 M KOH solution at 21 °C, scan rate 50 mVs −1  (Reproduced with permis-
sion from Ref. [ 63 ])       
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due to the 1D nanostructure which is free from any surfactants/ancillaries and is 
enhanced by the homogenous fi ne porous microstructure of the Pt NP at the sur-
face of the conductive robust core. The favorable properties are likely to be fur-
ther enhanced by the obtainable interspacing of the nanowires for the fast ion 
adsorption/desorption.

   Cyclic voltammetry and chronoamperometry were used to investigate the elec-
trocatalytic activity for ethanol electrooxidation on porous Pt NP-supported Ni/NiO 
NWA. The typical activities for ethanol electrooxidation on Pt-based electrocata-
lysts are observed in Fig.  12a  with the forward oxidation peak (i.e., under anodic 
condition) and the backward oxidation peak (i.e., under cathodic condition). The 
oxidation current peak in the forward scan is denoted as the electrooxidation of the 
freshly chemisorbed ethanol species onto the Pt surface, while the peak in the back-
ward scan is attributed to the reduction of the oxidized Pt oxide and the removal of 
the incompletely oxidized CO-like carbonaceous species formed in the forward 
scan [ 34 ]. 

 The electrooxidation of ethanol on the Ni/NiO NWA/Pt electrocatalyst surface 
starts at a more negative potential than that of Ni NWA/Pt, as shown in Fig.  12b ,  c  
signifying that the NiO nanoshell around the metallic Ni NWA infl uences the faster 
electrode kinetics. The current of Ni/NiO NWA/Pt for both in forward and back-
ward peaks increases considerably (see Fig.  12a ) and is almost 1.5 times higher than 
that of Ni NWA/Pt (see Table  1 ). The promotional effect due to oxide inclusion for 
the electrooxidation of ethanol is also realized in the thin-fi lm electrode version of 
Ni/NiO/Pt, as shown in Fig.  12d . The specifi c peak current density of the Ni/NiO/Pt 
electrocatalyst is 5 mAcm −2  based on the forward anodic peak, which is ~1.5 times 
higher than that of the Ni/Pt (3 mAcm −2 ) electrode. Hence, the electrooxidation of 
ethanol suggests that the inclusion of oxide to the Ni/Pt system signifi cantly pro-
motes the electrocatalytic activity for the electrooxidation of ethanol with the same 
amount of Pt loading. The specifi c peak current densities (based on the forward 
anodic peak,  I   f  ) of 1D Ni NWA/Pt and Ni/NiO NWA/Pt electrocatalysts are 84 and 
126 mAcm −2 , and their mass peak current densities are 350 and 525 mA/mg Pt , 
respectively. The higher specifi c and mass activity of Ni/NiO NWA/Pt electrocata-
lyst could potentially be understood in terms of the active role played by the NiO 
nanoshell around the conductive Ni core. It is worth noting that the specifi c activity 
of the 1D Ni/NiO NWA/Pt electrocatalyst is much higher than the corresponding 

   Table 2    Cyclic voltammetry analysis of the Ni/NiO NWA-supported Pt electrocatalysts. The 
 specifi c and mass activities are measured at the respective peak potential ( E   p  ) (Reproduced with 
permission from Ref. [ 63 ])   

 Electrocatalyst  ECSA (m 2 /g Pt ) 

 Specifi c activity (mAcm −2 ) 
 Mass activity (mA/
mg Pt ) 

  Fw. scan, 
 E   p   /V 

 Rev. scan, 
 E   p   /V  Fw. scan  Rev. scan 

  Ni NWA/Pt*   92  84, 0.068  75, −0.14  350  312 

  Ni/NiO NWA/Pt*   120  126, 0.062  103, −0.16  525  429 

  *Pt loading in both electrodes is 0.24 mg/cm 2   
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  Fig. 12    ( a ) Cyclic voltammograms of 1D Ni NWA/Pt and Ni@NiO NWA/Pt electrocatalysts in 
0.5 M KOH/1 M ethanol solution at 21 °C, scan rate 20 mVs −1  (Pt loading, 0.24 mgcm −2 ). 
( b ) Magnifi ed view of onset potential region of cyclic voltammograms. ( c ) Electrooxidation poten-
tial of the respective electrocatalyst at 5 mAcm −2 . ( d ) Cyclic voltammograms of thin Ni/Pt and 
NiO/Pt electrocatalysts in 0.5 M KOH/1 M ethanol solution at 21 °C, scan rate 20 mVs −1  (Pt load-
ing, 0.1 mgcm −2 ) (Reproduced with permission from Ref. [ 63 ])       

activities reported for Te/Pt hybrid nanowires (~1 mA cm −2 ) [ 48 ], commercial Pt/C 
NP (~1 mA cm −2 ), and Pt–Co alloy NP (~2 mA cm −2 ) [ 35 ]. The specifi c activity of 
the oxide-promoted 1D core/shell Ni/NiO NWA/Pt electrocatalyst is approximately 
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100 times higher than those reported for the commercial Pt/C NP electrocatalysts. 
The results obtained in this study suggest that even with a reduced Pt loading within 
the Ni/NiO NWA/Pt electrode system, it could be possible to replace the commer-
cial Pt/C NP anode electrocatalysts currently used in ADEFC. 

 The enhanced electrocatalytic activity due to the oxide support is due to the syn-
ergistic interaction between the fi nely porous Pt NP and the NiO nanoshell formed 
at the outer surface of the conductive 1D metallic Ni core [ 58 ,  62 ]. The ratio of the 
forward anodic peak current density ( I   f  ) to the backward anodic peak current den-
sity ( I   b  ) is usually considered as the provision of a measurement of the poisoning 
tolerance to CO-like carbonaceous oxidative intermediates formed during the elec-
trooxidation of alcohols (in the forward scan). The  I   f    /I   b   value of the Ni/NiO NWA/
Pt electrocatalyst was found to be 1.2, and this value is higher than those reported 
for 1D Pt/Co nanowires (0.88) and commercial Pt/C NP (0.76) electrocatalysts 
[ 35 ,  49 ]. The higher  I   f    /I   b   value indicates a greater poisoning tolerance, and this 
potentially credited to the dual effects of the NiO nanoshell and the nanoporous 
Pt NP at the surface of the core/shell 1D nanostructure. 

 The mass transport behavior of the Ni/NiO NWA/Pt electrocatalyst has also been 
investigated as shown using a series of cyclic voltammograms at different scan rates 
in Fig.  13a . The peak current density (in the forward scan) and the square root of the 
scan rates of the Ni/NiO NWA/Pt electrode are shown in Fig.  13b  in which a linear 
relationship can be seen at the start of the 20 mVs −1  scan. The linear observation 
implies that the electrocatalytic process for the electrooxidation of ethanol on the 
Ni/NiO NWA/Pt structure is not controlled by mass transport or by the concentra-
tion polarization until the scan rate is higher than 20 mVs −1 . However, at lower scan 
rates, the electrooxidation of ethanol is dominated generally by the activation polar-
ization of the electrode materials.

   The electrode kinetic parameters for ethanol electrooxidation are determined 
from the Tafel plots, as shown in Fig.  14 . A linear region of the Tafel plots is 
observed on both Ni NWA/Pt and Ni/NiO NWA/Pt electrocatalysts, and Tafel slopes 
are measured to be 199 mV/dec and 155 mV/dec, respectively. This similar behav-
ior in the Tafel slopes indicates that reaction mechanism occurs on both electrocata-
lysts alike. It is supposed that a higher charge transfer rate occurred on Ni/NiO 
NWA/Pt structure during the electrooxidation of ethanol compared to Ni NWA/Pt 
electrocatalyst.

    The stability of the electrocatalysts has been investigated by chronoamperome-
try experiments at different temperatures as shown in Fig.  15 . The working elec-
trode was held at −0.2 V (vs. Hg/HgO), and the changes in ethanol electrooxidation 
current with time were measured. The initial current densities are high for both 
electrocatalysts which is due to double layer charging. The current due to ethanol 
electrooxidation was found to decay continuously for both electrocatalysts, most 
likely due to electrode poisoning by chemisorbed CO-like carbonaceous oxida-
tive intermediates. Generally, chemisorbed CO starts to accumulate on the electro-
catalyst surface if the kinetics of its removal becomes signifi cantly slower than that 
of the electrooxidation of ethanol. Thus, a more steady decay rate of the electrooxi-
dation current with time implies a higher stability of the electrocatalyst and a 
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greater tolerance to poisoning. However, a rapid current decay is observed on Ni 
NWA/Pt electrocatalyst at low temperature (21 °C) by comparison at higher tem-
perature of 50 °C. The rate of electrooxidation current decay for the Ni/NiO NWA/
Pt system was found to be much lower and consistent at both low and higher 

  Fig. 13    ( a ) Cyclic voltammograms of 1D Ni/NiO NWA/Pt electrocatalysts at different scan rates 
in 0.5 M KOH/1 M ethanol solution at 21 °C. ( b ) Plot of forward anodic peak current density and 
the square root of the scan rate (Reproduced with permission from Ref. [ 63 ])       
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temperatures. The electrooxidation current densities at the end of 3,600 s test at 
21 °C are 3 and 8 mAcm −2  for the Ni NWA/Pt and Ni/NiO NWA/Pt electrocata-
lysts, respectively, whereas at 50 °C, these current densities rise to 6 and 11 mA 
cm −2 , respectively. The core/shell metal/oxide NWA as the support exhibits the 
higher electrocatalytic stability toward ethanol electrooxidation at both operating 
temperatures investigated.    

  Fig. 14    Tafel plots for 
ethanol electrooxidation of 
1D Ni NWA/Pt and Ni/
NiO NWA/Pt 
electrocatalysts measured 
in 0.5 M KOH/1 M ethanol 
solution at 21 °C, scan rate 
2 mV/s (Reproduced with 
permission from Ref. [ 63 ])       

  Fig. 15    Chronoam-
perograms for the 
electrooxidation of ethanol 
on 1D Ni NWA/Pt and Ni/
NiO NWA/Pt at −0.2 V 
(vs. Hg/HgO) in 0.5 M 
KOH/1 M ethanol solution 
at 21 °C and 50 °C 
(Reproduced with 
permission from Ref. [ 63 ])       
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    Conclusions 

 A simple, low-cost, and effective fabrication process has been demonstrated for 
the construction of one-dimensional, vertical, and core/shell Ni/NiO nanostruc-
tures for pseudocapacitor electrodes. The fabrication of the electrode is based on 
direct electrochemical deposition of Ni inside a nanoporous alumina template and 
the subsequent conversion of the outer shell into oxide by oxygen plasma anneal-
ing after template removal. The crystal structure, morphology, and shell thickness 
were found to be dependent on the annealing conditions (input power and anneal-
ing time). The electrode annealed at 50 W for 120 s demonstrated high capaci-
tance (0.36 F cm −2 ) with high charge–discharge kinetics. For the same electrode, 
a high degree of stability was attained for long-term cycling (over 2,000 cycles). 
The high charge–discharge kinetics and high capacitance resulted from the unique 
core/shell Ni/NiO nanoarchitecture, which offers a highly conductive and robust 
core for enhanced electronic transports to the NiO shell and a large electroactive 
surface area for charge storage and redox reactions. The fabrication method of the 
core/shell nanowire array electrodes is both simple and effective, and thereby it 
can potentially be applied for volume production of integrated electrochemical 
capacitors [ 14 ]. 

 Modifi ed Ni/NiO NW arrays with porous Pt nanoparticles have been used as 
anode material in a fuel cell. The hybrid nanoelectrocatalyst has been reported to 
exhibit excellent electrocatalytic activity and stability for the electrooxidation of 
ethanol in alkaline media. The enhancement in electrocatalytic performance com-
pared to the commercial Pt/C NP anode electrocatalysts as reported in literature 
can be attributed to few facts such as (i) uniform free-standing nanowires which 
are free from any surfactants/ancillaries, (ii) porous Pt NP at the NiO surface 
which is supported by a conducting robust core of metallic Ni nanowire, and (iii) 
interspacing of the nanowires ensuring the access of alcohol for fast ion adsorp-
tion/desorption. The specifi c and mass activity for the electrooxidation of ethanol 
on the Ni/NiO NWA/Pt structure is approximately 1.5 times higher than that on Ni 
NWA/Pt at the same Pt loading. The higher stability and tolerance to CO-like 
poisoning of Ni/NiO NWA/Pt electrocatalyst has been observed both at low and 
higher temperatures. The oxide promotion effect in electrocatalytic activity can 
be attributed to the synergistic interaction between the Pt NP and the NiO nano-
shell formed at the outer surface of conductive 1D metallic Ni core. The work 
described in this chapter is new in terms of the fabrication of a highly active and 
stable 1D Ni/NiO NWA/Pt electrocatalyst, which can lead as alternative electro-
catalyst system to commercial Pt/C NPs currently used in ADEFC. The developed 
porous 1D Ni/NiO NWA/Pt nanostructure similarly has the potential applications 
in chemical sensors for the detection of gaseous or aqueous species such as NO 2 , 
CO, CO 2 , or C 2 H 5 OH.     
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Abstract
Electrodeposition is a key technique to create nanostructures of metals and inor-
ganic semiconductors. Unlike the electrodeposition of metals, the fabrication of 
nanostructures of binary semiconductors with desired crystallinity and stoichi-
ometry is not straightforward. Herein, we describe the optimization of conditions 
for the electrodeposition of stoichiometry and crystalline cadmium selenide 
(CdSe), cadmium telluride (CdTe), and CdSe/CdTe nanostructures. We first 
identified the optimal conditions for the electrodeposition of CdSe and CdTe 
with 1:1 stoichiometry by varying the concentrations of Cd2+ and SeO2 (or TeO2) 
and optimizing the electrodeposition potential. We then optimized the pH of the 
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electrolysis solution for increasing the crystallinity of the deposited structures. 
We then tested the efficacy of our electrodeposition conditions on substrates such 
as gold, nickel, and indium tin oxide. We used the optimized conditions to elec-
trodeposit semiconductors within anodic aluminum oxide (AAO) membranes to 
create oriented CdSe and CdTe nanorods, CdSe/CdTe segmented nanorods, and 
CdSe/CdTe coaxial nanorods. These optimized electrodeposition conditions add 
a valuable tool in the synthetic toolbox for the synthesis of crystalline semicon-
ductor nanostructures for solar cell applications.

Keywords

Cadmium selenide • Coaxial nanorods • Nanorods • Porous templates

 Introduction

In recent years, metal chalcogenides have attracted much attention due to their 
unique physical properties as a semiconducting material with promising applica-
tions to electronic devices [1–3]. These materials have been widely used as bio-
logical florescence labels [4–6] and as active layers in light-emitting diodes [7, 8] 
and lasers [9]. For the past decade, metal chalcogenides (especially cadmium sel-
enide and cadmium telluride) have been extensively studied for high-efficiency 
and low- cost hybrid solar cells [10–12]. (Table 1 shows a summary application and 
the materials used.) Typically, nanoparticles are chemically synthesized and dis-
persions of nanoparticles in organic solvents are used to formulate the active layer 
in hybrid cells. However, it has been difficult to consistently obtain the required 
nanoscale morphologies using this approach. In this regard, we believe that elec-
trochemical synthesis of chalcogenide semiconductors can provide a viable 

Table 1 Representative examples of applications of inorganic semiconductor nanostructures

Applications Materials References

Electronic devices Semiconductor clusters, nanocrystals, and 
quantum dots

Alivisatos [1]

Quantum dots Bawendi [2]

Metal dichalcogenide nanosheets Chhowalla [3]

Biological florescence 
labels

Semiconductor nanocrystals Bruchez [4]

Quantum dot bioconjugates Chan [5]

CdSe-ZnS quantum dot bioconjugates Mattoussi [6]

Light-emitting diodes Single monolayers of nanocrystals Coe [7]

Nanocrystal quantum dots Klimov [8]

Lasers Polymer/quantum dot nanocomposites Park [9]

Hybrid solar cells Nanocrystals Gur [10]

Nanocrystal-polymer composites Liu [11]

CdSe nanocrystals Han [12]
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pathway to create nanoscale morphologies for solar cell applications. In this 
 chapter, we provide  protocols for the electrochemical synthesis of chalcogenide 
semiconductors.

In a hybrid device, inorganic nanoscale semiconductors and organic conjugated 
polymers are blended and cast as thin film. Figure 1 shows a representation of a 
cross section of commonly targeted architecture for a hybrid device. This architec-
ture, termed as ordered heterojunction, provides an interface within the exciton dif-
fusion distance (typically < 10 nm) and consists of parallel and regular cylinders or 
sheets of semiconductors.

In hybrid solar cells, nonorganic semiconductors can be used as the electron 
donor material or the electron acceptor depending on the location of the valence and 
conduction bands relative to the conjugated polymer. Typically the organic conju-
gated polymer acts as the hole conductor and the inorganic semiconductor acts as 
electron conductor. Inorganic electron conductors have certain advantages over 
organic electron conductors (such as C60-based molecules) due to their high charge- 
carrier mobility and stability [13]. One of the most important requirements that 
inorganic semiconductors must meet is the inherent crystallinity of the semiconduc-
tor. High crystallinity is directly related to high charge-carrier mobility, which mean 
charges (electron and holes) are quickly transported to the electrode with the reduc-
tion of current lost via exciton recombination [14].

Several methods have been developed to fabricate oriented, highly crystalline 
semiconductor nanostructures. Examples of these methods are vapor-liquid-solid 
(VLS) [15], solution-liquid-solid (SLS) [15, 16], and thermal reduction process 
[17, 18]. In these methods, precursors of the semiconductor, or the semiconducting 
material itself, are converted into a vapor (VLS) or are taken from a solution (SLS) 
and solidified into a single crystal material. In order to convert the materials to the 
vapor phase, high-temperature and/or high-vacuum systems are needed. Due to the 
slow crystallization process, these methods offer an alternative to obtain highly 
crystalline materials. However, it has been difficult to fabricate such systems over 
large areas.

Fig. 1 Schematic 
representation of the ideal 
architectures for a 
photovoltaic device
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Another promising method to fabricate these materials is electrochemical deposi-
tion [19–24]. This technique involves an electrochemical reaction of the precursors in 
solution which are deposited as the final material on an electrode surface. One of the 
most important advantages of this technique is that it does not require high vacuum 
and can be performed at room temperature. However, poor crystallinity of the final 
materials, control of the phase, and stoichiometric problems are found using electro-
chemical synthesis. Herein, we report the protocols for the electrochemical synthesis 
of highly crystalline-oriented cadmium selenide and cadmium telluride.

 Background

 Synthetic Methods

There are several methods reported for the synthesis of cadmium selenide (CdSe) 
and cadmium telluride (CdTe) including molecular beam epitaxy (MBE) [25], 
metal-organic vapor chemical deposition (MOCVD) [26], organometallic vapor 
phase epitaxy (OMVPE) [27], solvothermal methods [28, 29], and hydrothermal 
methods [30–32]. Vapor-liquid-solid (VLS) process is also a widely used method 
for the synthesis of non-binary semiconductors such as silicon or germanium [33]. 
Although highly crystalline materials are obtained with these methods, they require 
high temperature and high vacuum making them not suitable for a facile synthesis 
of CdSe or CdTe nanostructures.

Electrodeposition has been studied as an alternative because it offers a conve-
nient and an inexpensive synthetic way for the preparation of cadmium chalcogen-
ides from aqueous or nonaqueous solutions of the appropriate precursors [34, 35]. 
Electrodeposition has the advantage of being a low-temperature method so it can be 
used in systems containing thermal unstable materials. Another major advantage of 
using room temperature is that the electrodes and the semiconductors may have dif-
ferent thermal expansion coefficients. Refer to Table 2.

Table 2 Synthetic methods for metal chalcogenide semiconductors

Method Binary semiconductor References

Molecular beam epitaxy (MBE) ZnCdSe quantum dots Zhang [25]

Metal-organic vapor chemical 
deposition (MOCVD)

ZnSe quantum dots Liao [26]

Organometallic vapor phase epitaxy 
(OMVPE)

ZnSe epitaxial layers Bourret-Courchesne 
[27]

Solvothermal ZnS and ZnSe nanocrystallites Deng [28]

CdS nanorods Li [29]

Hydrothermal ZnSe and CdSe nanocrystals Wang [30]

Peng [31]

Amorphous cluster and 
nanocrystalline CdSe

Ge [32]

Electrodeposition Thin film semiconductors Lokhande [35]
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 Optimization of the Electrochemical Synthesis of Cadmium 
Selenide

In order to synthesize CdSe, the method reported by Kressin and Sailor [21] was 
used. In this protocol, CdSe was electrochemically synthesized from an aqueous 
solution of cadmium chloride (CdCl2) and selenium dioxide (SeO2). Hydrochloric 
acid (HCl) was used as the supporting electrolyte for the electrodeposition. 
Reactions 1 and 2 show the electrochemical reaction of SeO2 in acidic conditions. 
Hydrogen selenide (H2Se) is formed after a potential is applied to the solution 
(Reaction 1). Reaction 2 shows the reaction of H2Se with H2SeO3 to form elemental 
selenium (Se).

 
H SeO H e H Se H O2 3 2 26 6 3+ + ® ++ -  (1)

 
2 3 32 2 3 2H Se H SeO Se H O+ ® +  (2)

The net reaction for the electrodeposition of CdSe is stated to occur via the reaction 
of H2Se and Cd2+ (Reaction 3). Figure 2a shows formation of CdSe at atomic 
levels.

 
H Se Cd CdSe H O2

2
23+ ® ++  (3)

In order to avoid the formation elemental Se, a large stoichiometric excess of 
Cd2+ was used. This creates a competition reaction between reactions 1 and 2 and 
the Cd2+ in the solution. Mishra and Rajeshwar [36] have postulated a direct 

Fig. 2 Schematic representation of the CdSe electrodeposition by cyclic voltammetry (Figure 
redrawn from Kressin et al. [21])
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6e− deposition process as a mechanism for the CdSe electrochemical synthesis. 
This process is represented on the reaction 4.

 H SeO Cd e H CdSe H O2 3
2

26 4 3+ + + ® ++ - +  (4)

This procedure deposits a submonolayer of CdSe and a large layer of metallic Cd 
(Fig. 2b). Then the electrode is swept to a positive potential in order to strip the 
excess of elemental Cd (Fig. 2c).

Figure 3 shows the cyclic voltammogram for the electrodeposition of CdSe over 
nickel as a working electrode. The region A corresponds to the electrodeposition of 
CdSe. Region B is the potential range where the cathodic electrodeposition of ele-
mental Cd occurs. Region C is the region where the excess of Cd is stripped off by 
sweeping the electrode to a positive potential.

CdSe was deposited at room temperature with a three-electrode setup, using sil-
ver/silver chloride reference electrode (Ag/AgCl) and a Pt wire as the counter or 
auxiliary electrode. Titanium and nickel were used as working electrode. The elec-
trodeposition solution contained 0.1 M of CdCl2, 0.2 M HCl, and 0.1 mM SeO2. The 
concentration of Cd2+ is 100 times larger than the concentration of SeO2. As 
explained above, the excess of cadmium ions is needed to avoid the formation of 
elemental Se. Cyclic voltammetry technique was used in the early experiments. The 
potential range typically used was between −0.355 and −0.755 V versus Ag/AgCl at 
a scan rate of 100 mV/s.

The work by Sailor et al. [21] was done using a rotating disk electrode (RDE). 
In their work they deposited a film of CdSe over nickel. They calculated that in the 
reduction process, which corresponds to region B on Fig. 3, the excess of Cd is about 
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Fig. 3 Cyclic voltammogram of the electrochemical deposition of CdSe. Three-electrode setup 
cell: Pt wire as the auxiliary electrode, Ni plate as the working electrode, and Ag/AgCl as the refer-
ence electrode. Potential range −0.355 to −0.755 V, scan rate = 100 mV/s, and Bioanalytical 
Systems C50W potentiostat
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five atoms of Cd per atom of Se. This value was obtained under their conditions. 
During the stripping process, where the excess of Cd is oxidized to Cd+2, the formed 
CdSe is thermodynamically and kinetically stable that it cannot be stripped in the 
process. They assumed that CdSe deposition was limited by diffusion of the 
Se-containing species to the electrode. With this assumption and using the Levich 
equation (Eq. 1), they calculated the amount of CdSe that can be deposited per cycle.

 I n FAD v Clim = -0 62 2 3 1 6 1 2. */ / /w  (5)

In Eq. 1, I is the Levich current, n is the number of electrons transferred in the half 
reaction, F is the Faraday constant (96485.3415 s A/mol), A is the area of the elec-
trode, D is the diffusion coefficient, v is the scan rate, ω is the spin rate of the elec-
trode, and C is the concentration. For a solution of 0.4 mM H2SeO3, with diffusion 
coefficient of 7.0 × 10−6 cm2 s−1, spin rate of 1000 rpm for the RDE, and a scan rate 
of 10 V/s with a potential range from −0.4 to −0.8 V versus SCE, they obtained a 
maximum of 1.6 × 10−10 mol/cm or 1.7 monolayers of CdSe per cycle.

In our work the number of monolayer deposited per cycle could not be calculated 
because we were using a fix electrode and porous membranes. Samples were analyzed 
with the use of energy dispersive X-ray spectroscopy (EDS) to calculate the composi-
tion of Cd and Se. The resulting values were compared with Sailor’s work. We 
obtained a Se:Cd ratio = 1.09 in most of the cases and they obtained a Se:Cd ratio = 1.03.

Direct current (DC) potentiostatic electrodeposition was also investigated. 
In order to select the optimal working potential, several potentials were tested (from 
−0.520 to −0.640 V). An example of the DC voltammogram for the deposition of 
CdSe at −0.590 V is showed on Fig. 4. Figure 5 shows the X-ray powder diffraction 
(XRD) pattern of the final material (CdSe) deposited at various potentials.
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Fig. 4 Direct current voltammogram of the electrochemical deposition of CdSe. Three-electrode 
setup cell: Pt wire as the auxiliary electrode, Ni plate as the working electrode, and Ag/AgCl as the 
reference electrode. Potential −0.590 V and a Bioanalytical Systems C50W potentiostat
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Fig. 5 X-ray powder diffraction pattern of hexagonal CdSe electrodeposited at different poten-
tials. Sample annealed @ 450 °C for 8 h

From the analysis of the XRD pattern for CdSe electrodeposition at various 
potentials, it can be concluded that the optimal working potential is −0.590 V. The 
same experimentation was performed for CdTe resulting −0.570 V the optimal 
working potential for its electrodeposition. DC electrodeposition was chosen to be 
used as the default deposition technique due to its simplicity.

 Electrodeposition on Metallic Surfaces and Other Materials

CdSe and CdTe were deposited over metal surfaces such as Ni, Ti, or Au or over 
materials such as indium tin oxide (ITO) using cyclic voltammetry or direct current 
electrodeposition. A scanning electron microscopy (SEM) image of the CdSe 
deposited over Ni by CV voltammetry is shown in Fig. 6. In this image it can be 
clearly seen the CdSe nodules formed on the surface of the metal.

The crystallinity of the obtained product was ascertained by X-ray powder dif-
fraction (XRD). Figure 7 shows the XRD pattern for the cubic phase of CdSe. 
According to Debye-Scherrer formula, full width at half maximum (FWHM) is 
indirectly proportional to crystallite size. An extremely broad peak is often defined 
as polycrystalline with most crystallites at few nanometer scales. Sharp peaks are 
labels for large crystallites in the deposit. From figure below, electrodeposit obtained 
with CV over nickel is polycrystalline with few nanometer crystallites.

In order to improve the crystallinity of the CdSe, the sample was annealed at 
450 °C for 8 h. Additionally, the phase of the material changed from cubic to hex-
agonal which is the most stable thermodynamic phase of the CdSe. Figure 8 shows 
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the X-ray powder diffraction pattern of a more crystalline CdSe with lower FWHM 
values.

The electrodeposition of CdSe was also tested inorganic substrates such as 
ITO. The deposition was done using an ITO-coated glass as the working electrode 
by direct current technique at −0.590 V for 45 min (Fig. 9).

The deposition of cadmium telluride was also investigated. Its deposition was 
done using Au-coated glass as a working electrode by DC technique at a constant 
potential of −0.570 V for 1 h. CdTe films were characterized by X-ray powder dif-
fraction. Figure 10 shows the XRD pattern for CdTe. Peaks at 38.4° and 44.5° cor-
respond to gold and the three other peaks correspond to the cubic phase of CdTe. 
These experiments were used to set the optimal parameters to follow for the next 
experiments done.

In separate experiments, synthesis of semiconductors such as ZnTe, ZnSe, and 
CdS was done. Zinc chalcogenides were synthesized using the CdSe synthesis but 

Fig. 6 Scanning electron 
microscope (SEM) image 
of CdSe over nickel. 
Deposition done by cyclic 
voltammetry

Fig. 7 X-ray powder 
diffraction for cubic CdSe 
deposited over nickel
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Fig. 8 X-ray powder diffraction for hexagonal CdSe over nickel after annealing at 450 °C for 8 h

Fig. 9 X-ray powder diffraction for hexagonal CdSe over ITO after annealing at 450 °C for 8 h

N.L. Chévere-Trinidad et al.
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Fig. 10 X-ray powder diffraction for cubic CdTe deposited over gold-coated glass

replacing CdCl2 for ZnCl2. The corresponding ZnTe or ZnSe were not obtained as 
expected. On the other hand, we tried the electrodeposition of CdS from a solution 
of CdCl2 and elemental sulfur in dimethylsulfoxide. In contrast to the electrodeposi-
tion of CdSe, CdS was deposited using a high voltage system with a potential of 50 
V ac applied between the nickel working electrode and a graphite counter electrodes 
at 75 °C for 60 min [37]. The product obtained was a fine yellow powder. This prod-
uct was characterized by X-ray powder diffraction (Fig. 11). No further synthesis of 
CdS was done.

 Role of the Templates

Electrodeposition of CdSe was performed on gold-coated porous membranes such 
as polycarbonate (PC) and anodic aluminum oxide (AAO). These membranes were 
used as the working electrode and were prepared by sputtering gold over the mem-
brane surface for 1, 5, 10, or 20 min.

Polycarbonate membranes of 100 or 400 nm pores and approximate 7 μm thick-
nesses from Millipore and anodic aluminum oxide with 200 or 35 nm pores and 70 
μm thicknesses were used as templates. SEM images of the 100 and 400 nm pore 
polycarbonate membranes are shown in Figs. 12 and 13, respectively. A drawback 
of the polycarbonate membranes is that there is a distribution of the pore size and 
the pores are not oriented perpendicular to the surface of the membranes. However, 
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Fig. 12 Scanning electron 
microscopy image of the 
100 nm pore-size PC 
membrane

Fig. 11 X-ray diffraction pattern for CdS

the easy removal of the template after the electrodeposition made them useful for 
our research purpose.

In order to achieve more oriented nanostructures, in-house fabricated AAO 
membranes with 35 nm were used as they oriented pores (Fig. 14). Commercial 
AAO membrane does not have an even hexagonal array but was used to optimize 
nanostructure synthesis (Fig. 15).

N.L. Chévere-Trinidad et al.
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Fig. 13 Scanning electron 
microscopy image of the 
400 nm pore-size PC 
membrane

Fig. 14 Scanning Electron 
Microscopy image of the 
~35 nm pore-size AAO 
membrane (Prepared at 
Russell’s Lab, PSE 
Department at UMass 
Amherst)

Fig. 15 Scanning electron 
microscopy image of the 
200 nm pore-size AAO 
membrane (Whatman, 
Inc.)
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Fig. 16 Schematic procedure for the fabrication of oriented nanorods

Cadmium selenide was deposited by direct current electrodeposition at 
−0.590 V using the above-described membranes as the working electrode. The 
established potential was held for 1 h. Then, the polycarbonate membrane was 
washed out with dichloromethane. In the case of anodic aluminum oxide, the 
membrane was removed by washing with 3 M NaOH for 30 min. Samples were 
characterized by SEM. Figure 16 shows the process for the template fabrication 
of the nanorods.

CdSe nanorods were obtained from the 100 nm pore polycarbonate membranes. 
On the other hand, CdSe nanotubes were achieved with the 400 nm pore polycar-
bonate membranes. CdSe nanorods and nanotubes are shown in Figs. 17 and 18, 
respectively.

Figure 19 shows the formation of CdTe nanorods deposited by DC techniques at 
−0.570 V on the 100 nm pore-size polycarbonate membrane.

When the AAO membranes are used, instead of PC membranes, nanostruc-
tures with a higher degree of organization are obtained. Figures 20 and 21 
show the CdSe nanorods formed when the 200 nm pore anodic aluminum oxides 
were used.

Why is there a difference of the achieved nanostructures when a different poly-
carbonate membrane is used? After several trials, nanotubes were obtained from the 
400 nm pore-size PC membrane and nanorods were obtained form in the 100 nm 
pore PC membranes. We hypothesized that this observation can be rationalized by 
the deposition of gold during the sputtering process. If gold were to infiltrate the 
pores during the sputtering process, it can create a tubular-gold initiator. Figure 22 
shows a scheme of the infiltration phenomenon.
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Fig. 17 Scanning electron 
microscopy image of CdSe 
nanorods deposited on the 
100 nm pore-size PC 
membrane

Fig. 18 Scanning electron 
microscopy image of CdSe 
nanotubes deposited on the 
400 nm pore- size PC 
membrane

Fig. 19 Scanning electron 
microscopy image of CdTe 
nanorods deposited on the 
100 nm pore-size PC 
membrane
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Fig. 20 Scanning electron 
microscopy image of the 
CdSe nanorods deposited 
on 200 nm pore-size 
anodic aluminum oxide 
membrane (Whatman, 
Inc.) (top view)

Fig. 21 Scanning electron 
microscopy image of the 
CdSe nanorods deposited 
on 200 nm pore-size AAO 
membrane (Whatman, 
Inc.) (side view)

The most critical observation was that only the 400 nm pore PC membranes 
produce nanotubes. Both the 100 nm pore PC membranes and the 200 nm pore 
AAO membranes form nanorods. To prove our hypothesis, 100 nm pore PC mem-
branes were gold coated at different times. Since the pore size is small compared to 
400 nm pores, it was expected pores be completely covered during gold sputtering 
process. Figure 23 shows the scanning electron microscopy images of the 100 nm 
pore PC membranes coated with gold at 1, 2, 5, and 20 min. Notice that between 
1 and 5 min, there are pores that are not completely filled. However, nanorods were 
obtained from each of the templates.

In the case of the 200 nm pore AAO membrane, the scenario was different; big-
ger pore size always achieved nanorods. It is relevant to note the work done by 
Whitesides and coworkers [38] where they fabricated metal nanotubes by sputtering 
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gold, platinum, or ITO over AAO membrane. In our case, the 200 nm pore AAO 
membranes were sputtered with gold. This experiment was performed in order to 
understand the gold infiltration effect. The template was washed out with 3 M 
NaOH solution for 45 min. The sample was analyzed by scanning electron micros-
copy. Figure 24 shows the resulting nanostructures produced by exposing the AAO 
membranes for 10 min of gold deposition. These structures have an appearance of 
small tubes.

Fig. 22 Representation of the gold infiltration on the pores of a membrane

Fig. 23 Scanning electron microscopy image of the gold-coated side of the 100 nm pore polycar-
bonate membrane. A = 1 min, B = 2 min, C = 5 min, and D = 20 min
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On one of the first electrodeposition experiments done in the PC membrane, 
we found that if the solution is stirred during electrodeposition, nanorods were 
obtained. On the other hand, when no stirring was used, nanotubes were achieved 
(Fig. 25).

One of the questions that came out of these experiments was: “What parameters 
can we control to obtain either nanorods or nanotubes?” Some of the parameters 
that were taken in consideration for evaluation were: stirring rate, polarity of the 
solvent, concentration of CdCl2, and concentration of SeO2.

In the first parameter, stirring, CdSe precursor’s solution was stirred at 0, 200, 400, 
600, and 800 rpm while the potential was applied. CdSe was deposited by CV method 
at −0.355 to −0.755 V for 200 cycles (~26 min). Samples were analyzed by SEM. 
To calculate the nanorods/nanotubes ratio, the inner diameter was divided by the outer 
diameter. The raw data was obtained by measuring the inner and the outer diameter of 
an average of 20 nanostructures on the SEM images obtained from the different 

Fig. 24 Scanning electron 
microscopy image of the 
nanostructures of the Au 
sputtering over 200 nm 
pore-size anodic aluminum 
oxide membrane obtained 
after membrane removal 
(Whatman, Inc.)

Fig. 25 Scanning electron microscope images of electrodeposited CdSe on a 400 nm PC 
 membrane. Nanotubes (left) obtained by no stirring; nanorods (right) obtained by stirring
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experiments at different stirring revolutions. Figure 26 shows a correlation between 
nanorods and nanotubes formed on each experiment. From the graph, if values are 
close to zero, it means that the structure has more nanorod character. On the other 
hand, if values are close to one, it means that the inner diameter is almost equal to the 
outer diameter and the nanostructure is a nanotube. On these experiments, we were 
expected to obtain more nanorods at high rpm and more nanotubes at low rpm.

In the data shown on the graph above, there is no an expected trend. Most of the 
nanostructures formed at different stirring revolution have almost the same dimen-
sions, nanotubes with thick wall.

Figure 27 represents the ideal expected trend for the transition from nanotubes to 
nanorods. In this graph the first parameter refers, for example, to 0 rpm; the second 
parameter represents 200 rpm and so on, up to the fifth parameter that represents 
800 rpm. This graph would be also true for the expected results obtained from 
experiments changing the other parameters explained before. From this graph, in 
the first parameter there is a high amount of nanorod character nanostructures. 
Moving through the graph, a transition from nanorods to nanotubes can be seen. 
At the last parameter the amount of nanotubes is high.

Thinking about the possibility that the diffusion of the species into the pore was 
limited by the hydrophobicity of the PC membrane, experiments changing the polar-
ity of the solvent were done. The use of an organic solvent such as ethanol would 
help the CdSe precursors to be delivered into the pores easily. Solvent ratios used for 
these experiments were: 0 % water/100 % ethanol, 25 % water/75 % ethanol, 50 % 
water/50 % ethanol, 75 % water/25 % ethanol, and 100 % water/0 % ethanol. 
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Fig. 26 Stirring effect on the transition from nanorods to nanotubes Stirring rates: 0, 200, 400, 
600, and 800 rpm
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Figure 28 shows the solvent effect in the transition from nanorods to  nanotubes of the 
nanostructures obtained in the 400 nm pore PC membrane. Data was obtained 
the same way as previous comparison experiments (see Appendix for raw data). 
Basically, the amount and the wall thickness of nanotubes obtained from all the five 
solution were comparable with the stirring effect experiments.

Taking in consideration that the steps for the electrodeposition process using CV 
deposition are (a) formation of CdSe, (b) reduction of Cd+2 (to ensure the formation 
of CdSe), and (c) stripping the excess of metallic Cd back to the solution by oxida-
tion (Fig. 1), we decided to change the concentration of CdCl2 in the solution. We 
expected to have more metallic Cd to oxidize with an increase in the concentration 
of the cadmium ions in the electrodeposition solution. Consequently, we expected 
that the stripping process should produce more nanotubes than nanorods. Solutions 
containing concentrations of 0.01, 0.05, 0.1, and 0.3 M were prepared for the electro-
deposition. Figure 29 shows the results obtained when the concentration of Cd+2 was 
changed in electrodeposition solution. Similarly to the previous experiments there is 
not a significant trend that explains why we obtain either nanorods or nanotubes.

Similarly, experiments containing SeO2 solutions with concentrations of 0.01, 
0.05, 0.1 and 0.3 M were done. In this case, SeO2 in the normal solution was 100 
times less than the concentration of CdCl2. One of the possible explanations why 
nanotubes were obtained in the large-pore-size PC membranes was that the solution 
ran out of SeO2 and the formation of CdSe ceased. An increase in the SeO2 concen-
trations may provide more reactant to be used to produce more CdSe and fill up 
more nanotubes. Figure 30 shows the unexpected results obtained from solutions of 
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Fig. 27 Ideal behavior for the transition from nanorods to nanotubes
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concentrations of 0.5, 1.0, 2.0, and 4.0 mM of SeO2. The amount of nanotubes 
obtained from all solutions was almost the same in all the cases. No trend was found 
to explain why nanotubes were achieved on the 400 nm pore PC membranes and 
nanorods on the 100 nm pore PC membranes.

Summarizing this section, no clear explanation about which parameters are 
needed to achieve either nanotubes or nanorods was found. The only consistent 
finding was that nanorods can be obtained on the small-pore-size PC membrane and 
nanotubes can be obtained on the large-pore-size PC membrane.

 Role of the pH

The crystallinity of the semiconductor is an important characteristic because it is 
related with the charge mobility of a material. In order to have high crystalline mate-
rial, high-temperature and high-vacuum techniques such as VLS or CVD have to be 
used. With electrochemistry, the obtained material exhibits poor crystallinity. The 
most common way to improve its crystallinity is by annealing the samples at high 
temperatures. This process faces problems with temperature-sensitive materials.

One methodology tested to improve the crystallinity of a material was a change 
on the pH of the precursor’s solution. It was believed that with an increment in the 
acidity of the solution, the obtained product is redissolved in the solution and then 
recrystallized slowly achieving a better crystalline material.
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CdSe precursor’s solution was prepared with different concentrations of HCl 
varying from 0.01 to 1.0 M. The deposition was done by DC electrodeposition 
using surfaces such as Ni, Au-coated AAO, and PC membranes and Au-coated glass 
as working electrodes. The characterization was performed by X-ray powder dif-
fraction (XRD). AAO and PC membranes were analyzed on the Au-coated side. 
Figures 31, 32, 33, and 34 show the obtained results.

From the analysis of these results, it can be concluded that there is a change in 
the phase of the CdSe. At low concentration of HCl, the cubic phase is more pre-
dominant; a change in the phase can be observed when the HCl concentration is 
increased. In the range from 0.01 to 0.2 M, there is a transition from cubic to hex-
agonal phase. Surprisingly, when the HCl concentration is further increased, the 
hexagonal phase is reverted to the cubic phase with sharper peaks referring larger 
crystallite sizes. This phenomenon was not clearly understood but these 
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0.5 M HCl

0.2 M HCl

0.05 M HCl

0.01 M HCl

22 24 26 28 30 32

2q

Fig. 31 X-ray powder 
diffraction of the 
electrodeposition of CdSe 
over Ni at different pH

1 M HCl
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Fig. 32 X-ray powder 
diffraction of the 
electrodeposition of CdSe 
over the Au side of the 
AAO membrane at 
different pH
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experiments were useful to select the best HCl concentration needed to obtain the 
most appropriate phase, in this case hexagonal.

 Segmented Nanorods

Inorganic semiconductor nanorods can be modified by the addition of a different 
material such as a metal [39] or another inorganic semiconductor [20] to create 
segmented nanostructures. In the case of CdSe, addition of a metal has been shown 
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Fig. 33 X-ray powder 
diffraction of the 
electrodeposition of CdSe 
over the Au side of the PC 
membrane at different pH
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Fig. 34 X-ray powder diffraction of the electrodeposition of CdSe over the Au on glass at 
 different pH
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to increase the electronic conductivity of the semiconductor by a factor of 15 when 
they are illuminated by visible light [39]. The use of different inorganic semicon-
ductors such as CdSe and CdTe will provide to a device a way to absorb in more 
than one region of the solar spectrum.

CdSe nanorods were synthesized using the modification described by Kressin 
and Sailor [21]. The semiconducting material was electrodeposited on a template, in 
our case a gold-coated PC membrane. Then, the template was washed with dichlo-
romethane. Figure 16 shows a schematic sequence of the fabrication of an inorganic 
semiconductor (donor material) such as CdSe.

After the template removal, the sample was characterized by scanning electron 
microscopy (SEM). In Fig. 35 the CdSe nanorods obtained from the electrodeposi-
tion on a 100 nm pore PC membrane can be seen. In this case, the electrode (gold- 
coated template) was kept under a potential of −0.590 V for 1 h. Figure 36 shows a 
schematic sequence of the fabrication of a segmented inorganic semiconductor 
(donor material) such as CdSe/CdSe [20] or CdTe/CdSe.

In order to fabricate segmented nanorods, CdSe was deposited on a 100 nm pore 
gold-coated polycarbonate membrane. The electrodeposition was performed at 
−0.590 V for 45 min. Then, the same electrode was submerged in a CdTe precur-
sor’s solution and a potential of −0.570 V was applied for 45 min. The template was 
washed out with dichloromethane and the sample characterized by scanning elec-
tron microscopy (SEM). Figure 37 shows a SEM image of an isolated segmented 
nanorod. Electron diffraction analysis by X-ray (EDAX) shows a different compo-
sition on each end of the nanorod (Figs. 38 and 39).

To summarize this section, segmented nanorods consisting of CdSe and CdTe 
were obtained from the 100 nm PC template. The EDAX characterization confirms 
the identity of each extreme of the nanostructure showing CdSe in one extreme and 
CdTe in the other extreme.

Fig. 35 Scanning electron 
microscopy image of CdSe 
nanorods deposited on the 
100 nm pore-size 
polycarbonate membrane 
at −0.590 V for 1 h
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 Coaxial Nanorods

Axial heterojunctions have been shown to be important building blocks in nano-
electronics and photonics [40]. One-dimensional nanowires with controlled radial 
compositions [41, 42] or controlled axial composition [40, 43–46] have been syn-
thesized mostly by chemical vapor deposition or vapor-liquid-solid techniques. 
Some examples are SiC nanowires on Cu nanotubes [47], ZnO-Ge axial nanorods 
[48], Au(Si)-filled Ga2O3 nanotubes [49], In2O3 nanowire covered with SnO2 [50], 
and ZnSe-ZnTe [51].
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Electrode

Back fill with the
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Donor Material #2

Donor Material #1
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Electrochemical Growth
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Inorganic Semiconductor

Fig. 36 Sequence for the fabrication of segmented nanorods

Fig. 37 Scanning electron 
microscopy image of 
CdSe/CdTe segmented 
nanorods deposited on a 
100 nm pore-size 
polycarbonate membrane 
by sequential 
electrodeposition at −0.590 
V for 45 min and −0.570 V 
for 45 min, respectively
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In this section we present the fabrication of radial heterojunctions by electro-
chemistry as the principal deposition technique. Figure 40 shows a generic view of 
the process for the fabrication of the coaxial nanorods.

CdSe was deposited on a 400 nm pore gold-coated polycarbonate membrane. 
The electrodeposition was performed at −0.590 V for 1 h. Then, the template was 
washed with dichloromethane. With the use of the 400 nm PC template, we achieved 
the formation of CdSe nanotubes (Fig. 41).
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Fig. 38 Electron 
diffraction analysis by 
X-ray pattern of CdTe over 
gold-coated glass as the 
substrate after template 
removal (top part of the 
nanorod on Fig. 35)
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Fig. 39 Electron 
diffraction analysis by 
X-ray pattern of CdSe over 
gold-coated glass as the 
substrate after template 
removal (bottom part of the 
nanorod on Fig. 35)
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CdSe was deposited on a 400 nm pore gold-coated polycarbonate membrane. 
The electrodeposition was performed at −0.590 V for 45 min. Then, the same elec-
trode was submerged in a CdTe precursor’s solution and a potential of −0.570 V 
applied for 45 min. The template was washed with dichloromethane and the sample 
characterized by scanning electron microscopy (SEM). Figure 42 shows an image 
of the coaxial nanorods. Electron diffraction analysis by X-ray (EDAX) shows a 
different composition of each semiconductor on the outside (Fig. 43) part of a 
nanorod and the inside (Fig. 44) part of a nanorod.

In addition, CdSe nanotubes were filled with small organic molecules. The idea 
was to fabricate a coaxial nanorod with an organic material in the center. We decided 
to start with a small conductive molecule such as triphenylamine and tri-4-tolyl-
amine. The first step was the electrodeposition of CdSe nanotubes in the 200 nm 
anodic aluminum oxide (AAO) membrane. Then the sample (working electrode) 
was rinsed with water and ethanol to help it to dry fast. The membrane was cut into 
two pieces, one for the SEM characterization and the other piece to be exposed to 
the small organic materials. Figure 45 shows the nanotubes formed in the 200 nm 
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Fig. 40 Fabrication of the radial heterojunction nanorods

Fig. 41 Scanning electron 
microscopy image of CdSe 
nanotubes deposited on the 
400 nm pore-size 
polycarbonate membrane 
at −0.590 V for 1 h
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AAO template. The organic compounds were place over the piece of template and 
molten on an oven at 200 °C for 8 h. The slow process was thought to deliver the 
material into the pores efficiently.

The excess of organic material was removed from the template surface with 
dichloromethane. AAO template was washed out with 3.0 M NaOH solution for 
1 h. Samples were characterized by SEM. Figures 46 and 47 show the scanning 
electron microgram of CdSe nanotubes filled with triphenylamine (TPA) and 

Fig. 42 Scanning electron 
microscopy image of 
CdSe/CdTe coaxial 
nanorods deposited on a 
400 nm pore-size 
polycarbonate membrane 
by sequential 
electrodeposition at −0.590 
V for 45 min and −0.570 V 
for 45 min, respectively
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Fig. 43 Electron 
diffraction analysis by 
X-ray pattern of CdSe/
CdTe coaxial nanorod over 
gold as the substrate after 
template removal (outside 
point on the CdSe/CdTe 
coaxial nanorod)
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tri-4- tolylamine, respectively. The long structures that can be appreciated on Fig. 17 
are crystals formed during the crystallization of TPA.

To summarize, the identity of the external region and the internal region of the 
coaxial nanorods was confirmed by EDAX. It shows higher concentration of CdTe 
in the inside of the rods which confirms that possibly the CdSe nanotubes have been 
filled with CdTe. On the other hand, the trial to fill the CdSe nanotubes with either 
metals or organic semiconductors was not what we were expecting. For some rea-
son the characterization of the obtained structures did not prove that the CdSe nano-
tubes were filled.
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Fig. 44 Electron 
diffraction analysis by 
X-ray pattern of CdSe/
CdTe coaxial nanorods 
over gold as the substrate 
after template removal 
(inside point on the CdSe/
CdTe coaxial nanorod)

Fig. 45 Scanning electron 
microscopy image of CdSe 
nanotubes deposited on a 
200 nm pore-size anodic 
aluminum oxide membrane 
deposited for 45 min
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 Conclusions

In summary, we optimized parameters for the electrodeposition of cadmium chalco-
genides using an aqueous solution of CdCl2 and SeO2 or TeO2 with 0.2 M HCl. The 
optimal working potential found for the deposition of CdSe and CdTe by DC elec-
trodeposition was −0.590 V and −0.570 V, respectively. It was found that nanorods 
can be obtained on the small-pore-size PC membrane (100 nm) and nanotubes can 
be obtained on the large-pore-size PC membrane (400 nm).

In conclusion, we have optimized the electrodeposition process to tune the crys-
tallinity of the chalcogenide semiconductor. Additionally, we have shown that the 
electrodeposition process can be used to obtain nanotubes, nanorods, segmented 
nanorods, and coaxial nanorods using electrochemical deposition.

Fig. 46 Scanning electron 
microscopy image of CdSe 
nanotubes deposited on a 
200 nm pore-size anodic 
aluminum oxide membrane 
deposited for 45 min. 
Triphenylamine molten 
over the electrode

Fig. 47 Scanning electron 
microscopy image of CdSe 
nanotubes deposited on a 
200 nm pore-size anodic 
aluminum oxide membrane 
deposited for 45 min. 
Tri-4-tolylamine molten 
over the electrode
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Abstract
This chapter presents the possibility of forming nanocrystalline structure and 
design properties of materials by electrocrystallization method. The basis of the 
electrocrystallization process and factors determining the result of the processes 
under considerations are presented. The electrocrystallization method was used 
for producing metal materials Cu and Ni and nanocrystalline structure of the 
nanocrystalline composite materials with matrix Cu, Ni, and nanosized particles 
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of the disperse phase in the form of Al2O3, Si3N4, and CNTs. Methods of X-ray 
diffraction (XRD), scanning electron microscopy (SEM), and transmission elec-
tron microscopy (TEM) were applied for the complete characterizations of the 
dispersion phases and the structure of the produced materials. The results of 
these studies are presented in the form of the corresponding images and graphs.

Keywords

Electrocrystallization • Nanomaterials • Nanocrystalline composites • 
Nanocrystalline surface layers • Doped graphene nanocrystalline layers

 Introduction

The rapid development of technology and the increasing requirements of the final 
products force researchers not only to new designs of appliance’s structures but also 
to the search for new materials with improved performance characteristics. Tasks 
posed for materials used presently in the practice are becoming more and more 
expressive in terms of better adapting them to the special technological characteris-
tics and reducing their wear and tear. Thus, the basis for rapid technological prog-
ress are intensive studies aimed on the development of new materials, which should 
be characterized by much better performance parameters compared with those 
being currently in use. Progress in science and engineering at the nanoscale appears 
now as a critical factor for society’s security, prosperity of the economy, and 
enhancement of the quality of life. Nanotechnology is focusing on the formation of 
purposeful materials, devices, and systems through the management of matter on 
the nanometer scale and the utilization of new occurrences and attributes at that 
scale. Rapid and continued advancement in the field of nanotechnology has acceler-
ated the demand for specific professional knowledge and skill. Recently determined 
research and development for targeted nanoscience and nanotechnology have 
resulted in discovery and application now culminating in marketable products and 
new commercial applications, among other things, graphene. Because such prod-
ucts, for instance, sunscreens, cosmetics, clothing, upholstery, paint, bodywork of 
vehicles, and computer components, utilize nanotechnologies, it is not strange at 
present as well as in the near future that nanotechnology will infiltrate consumer 
products holistically.

The enormous potential for use in the development of new properties of the 
material lies in the possibility of conscious control of its structure at the nanometric 
scale. Presently, it is well known, that material properties, both mechanical, electri-
cal, thermal, and chemical, are the result of the phenomena occurring in structures 
of nanometric size. Nanometric structure materials have particularly advantageous 
properties and are an effective alternative to conventional materials. Material engi-
neers have just started to produce complex nanomaterials, and there is still a long 
way to go to reach the natural “best practice” examples in terms of precision, func-
tionality, and efficiency of production. Therefore, a solution-based approach to 
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innovation in material research seems to be more rewarding and beneficial, for the 
companies as well as for the scientists and engineers who develop and produce such 
materials on the prototype level. Diverse range of nanomaterials is extensive and 
includes, among other things, functional materials, hierarchical materials, func-
tional gradient materials, responsive materials, materials with an expiration date 
(i.e., they only work for a certain amount of time), and biodegradable materials 
[14]. A short summary of previous works in the subject is given in Table 1.

An efficient method of preparation of nanocrystalline materials is the electro-
chemical method using electrocrystallization processes stemming from reactions of 
oxidation and electrochemical reduction. Electrocrystallization method gives the 
ability to control the structure of the gauge area, which is a great potential for use in 
the development of new material properties [15]. This method is exceptionally suit-
able for preparations of specific materials, mainly the protective layers, and in the 
near future may be more effective than previously involved methods in surface 

Table 1 Topics in electrochemical manufacturing at the nanoscale

Topics Area of study References

Nanostructures in 
electrochemistry

Metal clusters, wires, functionalized layers [1, 2]

Electrocrystallization 
technology

Processes stemming from reactions of 
oxidation and electrochemical reduction, 
development of new material properties, 
preparations of specific materials, conscious 
control of the structures in the nanometric 
areas, expensive equipment not required

[3–6]

Precision through 
electrochemistry

Precision sensing and ultrasensitive sensors, 
control at nanoscale, transparent electronics

[7–9]

Nanoartifacts Fuel cells, batteries, photovoltaic generation, 
electronic and computing devices, lighter 
parts for transport vehicles

[2, 10, 11]

Scanning electron 
microscopy techniques

Characterization of local structures and 
properties of surfaces and interfaces, 
modification on the micro- to subnanoscale

[1, 6, 12, 13]

Potentiometric investigations Light-addressable potentiometric sensors, 
cytosensor microphysiometers, integrated 
biosensors, potential Donnan sensors

[14, 15, 28]

Biomedical applications Fluorescent biological labels, drug and gene 
delivery, biodetection of pathogens, cancer 
therapy, detection of proteins, probing of 
DNA structure, phagokinetic studies

[15, 16]

Modeling and computer 
simulations

Large molecules of technological interest, 
supramolecular structures in interaction or 
adsorbed at surfaces, and bulk systems for 
which nanostructural units can be clearly 
identified, self-assembly and self-recognition 
of nanoscale objects, understand and 
characterize the behavior of nanostructures

[17, 18, 29, 31]
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modification technologies of known materials, as well as newly produced 
materials.

These layers can be used together with their grounds or separated from them. 
Taking into account the specificity of materials electrolytically produced, it is pos-
sible that the formation of such a structure of the material and its properties cannot 
be obtained by other technologies. The possibility of conscious control of the struc-
tures in the nanometric areas leads to the production of useful materials with new 
properties and overcomes previously insurmountable barriers to the development of 
technology. Understanding of biological processes on the nanoscale level is a strong 
driving force behind the development of nanotechnology.

This chapter aims at mapping new frontiers in emerging and developing technol-
ogy areas in nanomaterial research and innovation. Section “Fundamentals of 
Electrocrystallization Processes” is devoted to the presentation of fundamentals of 
electrocrystallization processes and parameters influenced by the final quality of the 
resulting products. In section “Electrocrystallization of Nanostructured Copper,” 
essential problems concerning the electrocrystallization process of nanostructured 
copper products are presented. Section “Electrocrystallization of Nanostructured 
Nickel” is aimed on descriptions of electrocrystallization processes of nanostruc-
tured nickel products. Problems involving the application of the electrocrystalliza-
tion method for producing nanostructured composites are included in section 
“Electrocrystallization of Nanostructured Composites.” Conclusions and final 
remarks are presented in section “Summary and Conclusions.”

 Fundamentals of Electrocrystallization Processes

Electrocrystallization method offers ample opportunities to shape the structure and 
properties of materials so produced (Table 1). It is currently the most efficient 
method of producing nanocrystalline materials. The attractiveness of the method for 
the electrocrystallization of materials is, among other things, in the fact that it does 
not require expensive equipment. It eliminates a dilemma, whether to master tech-
nologies of materials using expensive and complicated equipment or cheap, not 
demanding financial outlays, but only appropriate knowledge of the physical and 
chemical processes. Recently, much interest in electrocrystallization of nanocrystal-
line materials has evolved due to (i) the low temperatures involved; (ii) the ability 
to coat geometrically complex or non-line-of-sight surfaces of porous products; (iii) 
the ability to control the thickness, composition, and microstructure of the final 
product; (iv) the possible improvement of the substrate/coating bond strength; and 
(v) the availability and low cost of equipments [3].

A simplified scheme of appliances being widely applied as electrochemical reac-
tors and automated nanostructured materials’ processing equipments is presented in 
Fig. 1. Charged electrodes being able to carry out chemical reactions are in use for 
realizations of electrocrystallization processes [13].

Current directions of research conducted on the process for producing nanostruc-
tured materials by crystallization concentrate on the manufacture of materials with 
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different chemical and phase compositions and different structures which provide 
adjustment of their properties to the high demands on working conditions. By 
choosing the type and composition of the electrolyte solution, and the process 
parameters such as type and density of the current, temperature, and time duration 
of the process, can be designed a variety of materials meeting the features in the art.

Several application-specific types of electrocrystallization processing systems, 
each with its own specific requirements, have been produced up to date. Various 
waveforms of the current supplying the electrocrystallization reactor are shown in 
Fig. 2. All major process studies concentrate currently around the PPRC electrodepo-
sition technology and the general metal finishing products (Fig. 2b–e). Pulse current 
electrocrystallization is able to produce layers with more uniform particle distribution 
and better surface morphology than those obtained under direct current [9].

By electrocrystallization method can be prepared a variety of metals, metal 
alloys, and composite materials. Especially great potential resides in shaping the 
properties of composite materials. Composite materials prepared by this method 
can be formed with a metal matrix, and a disperse phase may be constituted by dif-
ferent materials, for example, other metal (W), ceramics (Al2O3, Cr2O3, Si3N4), 
polymer (PFE), or carbon (graphite, nanotubes, graphene). The combination of two 
different materials, disperse phase and matrix metal, allows the control of produced 
material properties in a fairly wide range, which enables the formation of a material 
satisfying efficiently various functions in practice [5, 10, 19].

Realization’s efficiency of simultaneous deposition of metal and nonmetallic dis-
perse phase in the same process and the electrochemical reduction of the quality of 
the material will depend on such factors such as the nature and composition of the 
electrolyte solution, the process parameters (concentration, pH, temperature, 
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stirring, current conditions), and the chemical nature of the grain structure built in 
nonmetallic disperse phase, chemical nature, and content of various additives, as 
well as the quality of the substrate material and the condition of its surface. The low 
processing temperatures minimizes crystallite interdiffusion, while the high selec-
tivity of electrocrystallization process allows uniform modification of surfaces and 
structures with complicated profiles. All of these factors must be taken into account 
when designing a composite material to be properly (i.e., as expected) working 
under determined conditions. Such a large number of parameters, which influenced 
the control of electrocrystallization processes and affected the quality of the manu-
factured material, give on one hand a great flexibility in its ability to modify consti-
tuted material but on the other hand present a big challenge for the proper and 
optimal choice of their selection. This requires a thorough diagnosis of the mecha-
nisms of these complex processes, as well as their practical implementation of 
parameters. So, the set of the parameters of the implementation of such processes in 
the production environment and the relationships between these parameters and the 
structure and properties of the produced nanocrystalline material requires complex 
experimental research and in-depth analysis [1, 4, 20].

The parameters of the current supplying electrochemical reactor and its density 
limit the electrode redox processes on the surface of the electrodes. In contrast, the 
composition of the electrolyte solution can control the rates of the two competing 
processes of forming a new phase resulting from the electrocrystallization and 
decides on the size of grains of the deposited material.

While the applications of nanocrystalline materials are beginning to play a greater 
role not only on quantitative considerations as quality, electrocrystallization method 
could be competitive in relation to other methods. So far, the main obstacle in the 
application of electrocrystallization technology for receiving materials on a larger 
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scale was undoubtedly the complexity and synergistic influence of the preparation of 
raw materials in accord to the desired properties of final products. It seems, however, 
that in the era of modern techniques of analysis of processes during the material 
production, including electrocrystallization process, it will be possible to know pre-
cisely than ever the relationship between structure and properties of materials and 
their resulting parameters [7]. Applying the electrocrystallization method nanocrys-
talline materials from pure metals Cu, Ni, and Co and composite materials nanocrys-
talline Ni/Al2O3 and Ni/Si3N4 were prepared. Appropriate chemical composition of 
electrolyte solutions and process parameters of electrocrystallization process capable 
of producing nanocrystalline materials were established. Produced nanocrystalline 
materials exhibited crystallites with sizes ranging from 10 to 50 nm, depending on 
the nature and chemical composition of the electrolyte solution, temperature, degree 
of agitation, if used, and other parameters of electrocrystallization processes. Taking 
into account potential applications of nanocrystalline materials, the pursuit of deposit 
uniformity, especially thickness uniformity, has been a technical imperative for suit-
able controlling every produced nanocrystalline material [21, 27].

Studies of the properties of the produced materials including corrosion resistance 
and microhardness were performed using the mathematical modeling and scanning 
electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction 
(XRD), and transmission electron microscopy (TEM).

For comparative purposes, tests were also subjected to the same kind of materi-
als with microcrystalline structure produced also by electrocrystallization method.

 Electrocrystallization of Nanostructured Copper

In the present section, an effort has been made to examine various modes of nucle-
ation and growth of nanostructured copper electrocrystallization with direct and 
pulse periodic currents. The performed studies focus on nanocrystalline bulk copper 
deposits and composite surface layers with grain sizes smaller than 100 nm because 
such materials attract presently high technological and scientific interests due to 
their improved electrochemical, mechanical, and physical properties being useful 
for extensive applications. The attention is focused on nanocrystalline structures, 
surface roughness, hardness, and process parameters leading to major differences in 
final products.

 Control of Nanocrystalline Copper by Current Waveforms

As we have already shown previously [13] copper electrocrystallization on high- end 
thin layers and on other product in cutting-edge technologies was at the very limit of 
what DC processes could achieve, and it turned out PPR technology could go beyond 
that. By varying the duty cycle, that is, on time/on time + off time, changes in electro-
crystallized structure, mainly crystallite size, can be achieved, because of forced 
nucleation during each new cathodic pulse. In an acid solution, the cation Cu2+ 
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associates with the anion SO4
2− to form copper sulfate. At the cathode, the Cu2+ is 

reduced to metallic Cu by gaining two electrons. The result is the effective transfer 
of Cu from the anode source to a cathode plate. Current densities, cathodic (on time) 
and anodic (reverse on) times, as well as solution concentration and temperature can 
be varied independently, forming a fivefold parameter space [9].

The pulse current density, ip, is divided into the capacitive current density, iC, and 
the faradaic current density, iF, as follows:

 
i t i t i tp C F( ) = ( ) + ( )  (1)

The capacitive current density is related to the double layer potential by

 
i t C

dv t

dtC dl( ) = ( )1

 
(2)

where v1(t) is the potential drop within the double layer and Cdl is the capacitance of 
double layer. Since the applied current density is low, the relationship between fara-
daic current and overpotential can be assumed in the form

 

i t
v t

RF
ct

( ) = ( )1

 
(3)

where Rct denotes the charge transfer resistance.
Combining Eqs. 1, 2, and 3 gives
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The copper ions are firstly adsorbed on the electrode and reduced to copper adatoms 
in two steps. The first term on the left of Eq. 4 represents the reaction of copper ions 
disproportion, and the second describes the dissolution of metal. Similarly to v1(t), the 
response of the potential drop v2(t), corresponding to metal dissolution, is given by

 

C
dv t

dt

v t

R
i tpsd

sd
p

2 2( )
+

( )
= ( )

 
(5)

where Cpsd and Rsd denote the dissolution capacitance and resistance, respectively.
In this way the total surface overpotential v(t) is determined by

 
v t v t v t( ) = ( ) + ( )1 2  (6)

Early treatments correctly predicted that since the peak current densities in pulse 
electrocrystallization were higher than the time-average-equivalent DC current den-
sities, the nonuniformity would be larger, according to
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were Rt and Re denote the charge transfer resistance and the ohmic resistance, 
respectively, with k as solution conductivity and L as length.

Under influence of PPR electric current, the following changes of ion concentra-
tions take place:

During the current on interval, we have
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where c0 is the concentration of the electrolyte solution; cj the parameter dependent 
on current amplitude Ip, diffusion layer thickness d, Faraday constant F, rate n of ion 
oxidation, and diffusion coefficient D; P the number of current cycles; and T the 
absolute temperature.

During the current off interval, we obtain
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The above result indicates that the current amplitude Ip and the coefficient α of 
the current rate as well as frequency f = 1/T have significant influence on the quality 
of deposited copper layers. Applications of PPR current give relatively easy control 
of the microstructure, thickness, and useful properties of the nanocrystalline copper 
layers. The time-varying current and ion concentration in the diffusion layer during 
the copper electrocrystallization are demonstrated in Fig. 3.
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It should be emphasized that the electrodeposition of Cu is strongly dependent 
on the structure of the substrate, supplying current and concentration of Cu2+ ions in 
the precursor electrolyte solution. Since the effect of increasing current density is to 
increase the electrode surface reaction, a faster surface reaction makes Cu2+ under-
supplied from the electrolyte solution. Hence, the polarization is higher, and 
smoother film morphology is observed. Nevertheless, when the applied current den-
sity is greater than the limiting current density, it is impossible for the electrode to 
gain any Cu ions from the electrolyte solution, thereby leading to an increase in the 
Cu film surface roughness [8, 13].

 Control of Nanocrystalline Copper Structures by Compositions 
of Electrolyte Solutions

Components of electrolyte solutions for Cu electrocrystallizations may vary widely 
depending on the substrate and the type of Cu deposit desired. The electrolytic solu-
tions include acid solutions and alkaline solutions as well as some additives used to 
provide desired surface finishes for the Cu structure and to initiate bottom-up adhe-
sion of surface layers. Successful PPR applications include the optimization of the 
electrolyte composition, additive package, solution agitation, and electrochemical 
reactor design. We have previously shown [13] that pure and other electrolyte solu-
tions prepared at contents of appropriate additives are represented by Cu1, Cu2, …, 
Cu8, respectively, and correspond to specifications given in Table 2. Organic addi-
tives are adsorbed on the surface of the substrates and slow down the diffusion of 
the chemicals in the electrolyte solution to the surface of the substrate. They are not 
incorporated into the deposit. Copper is unique in that at least one additive such as 
PEG (polyethylene glycol) is required to suppress the electrocrystallization rate in 
order to obtain smooth, dense nanocrystalline materials. The higher current densi-
ties used in PPR electrocrystallization force developing additives that can guarantee 
more stability at higher currents. Thus, the additive system must be designed to 
work at high current densities.

c
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T

τ t
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Important benefits in copper electrocrystallizations can be delivered by using 
appropriate acid copper electrolyte in combination with pulse period reversal current. 
Surface microstructures of Cu thin layer electrodeposits produced in different solu-
tions are presented in Fig. 4. Their counterparts with nanosize grains are shown in 
Fig. 5. These images indicate that the electrocrystallization process appears as an easy 
way for surface modification of known materials, as well as newly received ones.

The produced micro- and nanocrystalline copper structures consist of agglomer-
ates of copper grains being a function of the current density of the electrocrystalliza-
tion process. Nanosized dimensions of copper grains are achieved by increasing the 
current density to the allowable higher level. The higher the current density, the 
finer the grains and the faster the electrocrystallization rate will be, although there 
is a practical limit enforced by poor adhesion and quality when the rate is too high.

It is worth noticing that in Cu nanomaterials, a non-negligible fraction of the 
atoms is on or close to the surface of the material. These surface atoms are sur-
rounded partially by the material and partially by vacuum. The density distributions 
viewed from these atoms differ from those viewed from the deeply buried atoms.

Influences of electrolyte solution composition on the hardness of copper thin 
layer produced by DC process are presented in Fig. 6. The diagram shows that the 
highest hardness of copper electrocrystalline bulk material can be obtained at bathes 
Cu4 and Cu5 at current density 5 A/dm2.

The performed studies lead to the statement that the hardness and tensile strength 
are inversely proportional to the grain size – so a pulse supplying current produces 
harder copper electrocrystallites than switch mode current or DC in the absence of 
additives [11].

Exceptional technological features consist in the relatively low processing tem-
perature and the high selectivity. The low processing temperatures minimize inter-
diffusion, whereas the high selectivity of electrocrystallization processes allows 
uniform modification of surfaces and structures with complicated profiles.

Table 2 Compositions of Co per electrocrystallization solution

Symbol Additive substance Content [g/dm3]

Cu1 – –

Cu2 HCl 0.01

Cu3 H2N-CS-NH2 0.20

Cu4 HCl
H2N-CS-NH2

0.01
0.20

Cu5 C7H5NO3S
C12H25NaO4S

0.20
0.44

Cu6 HCl
C12H25NaO4S
C7H5NO3S

0.01
0.44
0.20

Cu7 HCl
Cu-189

0.01
6 ml

Cu8 HCl
C12H25NaO4S
H2N-CS-NH2

0.01
0.44
0.20
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Simultaneous influences of the current density and kinds of the electrolyte solu-
tion on the surface morphology of microcrystalline copper are illustrated in Fig. 7.

Applications of PPR current give relatively easy control of the microstructure, 
thickness, and useful properties of the deposited copper layers. Differences in the 
surface morphologies of microstructure electrocrystallized copper are shown in 
Fig. 8a–c for various current waves in absolute values of positive and negative cur-
rent pulses during the symmetric semi-periods, respectively.

We have observed significant growth of selected grains in a polycrystalline inter-
connect, which subsequently become more susceptible to surface offset formation 
with further cycling (Fig. 9).

These materials can be used together with the substrate or separated from it. 
Apart from the known uses for protecting the substrate material in corrosive condi-
tions or to improve the mechanical properties surface, they can extend the life of the 
tool and ensure its longer life. This is particularly important if, in these operating 

Fig. 4 Surface microstructures of Cu thin layer electrodeposits produced with J = 5 Adm−2 in differ-
ent solutions: (a) microcryst., CuSO4 and H2SO4; (b) microcryst., CuSO4, H2SO4, and HCl; (c) nano-
cryst., CuSO4 and additive D1; (d) nanocryst., CuSO4, H2SO4, and HCl; and organic additive D1
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Fig. 5 Surface of Cu nanocrystalline thin layer electrodeposits produced with different current 
densities in CuSO4, H2SO4, HCl, and organic additive D1 solution
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Fig. 7 Microcrystalline structure of Cu thin layer electrodeposits produced with different current 
densities in CuSO4, H2SO4, and H2NCSNH2 solution: (a) 1 A/dm2 and HCl, (b) 3 A/dm2, (c) 5 A/
dm2 and an organic substance, (d) 6 A/dm2

Fig. 8 Surface morphology of copper electrodeposits produced with J = 1.1 A/dm−2: (a) DC, (b) 
PC at f = 0.5 kHz, (c) PC at f = 10 kHz
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conditions, it is not possible to select a material resistant to providing differentiated 
factors (corrosion resistance, good mechanical properties, or the specific physical 
characteristics). In this case, the substrate may provide one kind of properties, the 
coating surface layer excites others.

The benefits of reverse pulse current plating are evident because it allows a pre-
cise control of the deposited material, including its composition, crystallographic 
structure, and texture and grain size. The higher the current density, the finer the 
grain. Hardness and tensile strength are inversely proportional to the grain size – so 
a pulse supply will produce harder deposits than switch mode or DC in the absence 
of additives (Fig. 10).
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Fig. 10 The images of internal nanostructure of produced copper: (a) without additives, (b) addi-
tive D1, (c) additive D2
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Effects of the electrocrystallization process of producing nanocrystalline cop-
perware depend in a clear manner on chemical composition of the used electrolyte 
solution. Some organic additives denoted by D1 and D2 being supplements to the 
basic solution (CuSO4, H2SO4) play important roles in shaping internal structure of 
the produced nanocrystalline material. Figure 10 demonstrates diversity of the 
internal structure of nanocrystalline copper caused by appropriate additives in the 
electrolyte solution [22].

Although electrodeposition has been one of the methods for nanocrystalline 
material manufacturing, properties of nanocrystalline copper electrodeposits are 
less evaluated, especially for tribological applications or potential applications in 
very large scale of integration devices such as micro- and nano-electro-mechanical 
systems.

The SEM micrographs illustrating the morphology of copper deposits formed 
under current constant density and various electrocrystallization times clearly 
suggest the case of instantaneous nucleation of crystallites. Instantaneous nucle-
ation corresponds to a slow growth of nuclei on a small number of active sites, all 
activated at the same time. It can be noted that in most of the samples, the nuclei 
may be formed almost simultaneously, as confirmed by their similar size. In other 
words, i.e., at high nucleation rates (instantaneous nucleation), all nuclei are 
formed immediately after imposition of the current and grow at the same rate. As 
a result, they are all of the same age, and their number remains constant. As nucle-
ation progresses, the nuclei begin to overlap. Each nucleus is defined by its own 
diffusion zone through which copper diffuses, thus representing the mass supply 
mechanism for continuation of growth. Progressive nucleation corresponds to fast 
growth of nuclei on many active sites all activated during the course of 
electroreduction.

Electrical and thermal properties of nanocrystalline copper are very sensitive to 
the inner structure of a material, so theoretical prediction of these properties is a 
difficult task [6]. Defects of crystalline structure influence useful properties of the 
electrocrystallized copper. Moreover, in layers of thickness comparable or smaller 
than the characteristic lengths of carriers, new physical phenomena occur, and in 
this case theoretical models describing a copper layer as a continuum medium can-
not be used for the description of its thermal properties. Figure 11 shows selected 
diagrams of electrical resistivity and thermal conductivity for various kinds of the 
copper.

The given plots exhibit an important decrease of the electric and thermal con-
ductivities of nanocrystalline copper thin layers when comparing them with that 
of bulk copper being widely up to date used in the practice (Cu-T). In polycrys-
talline copper layers, the scattering on grain boundaries dominates over scatter-
ings on layer boundaries and causes an additional reduction of the electrical and 
thermal conductivity. The observations obtained in this investigation reveal that 
the thermal conductivity of nanocrystalline copper thin layers takes maximal 
values in the temperature range of 600–700 K. However, the layer thickness 
has an additional influence on the thermal conductivity of copper surface 
electrodeposits.
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 Electrocrystallization of Nanostructured Nickel

In the completed studies, nickel layers were produced by the electrochemical reduc-
tion method in multiple electrolyte solution of a Watts type. An equal width of 
cathodic surface periodic pulse current of 3 A/dm2 and curry out ratio α = 10 % was 
used in the processes for producing nanocrystalline nickel layers. The current fre-
quency was varied in the range of 0–10 kHz.

The structure of the produced nickel was studied by X-ray diffraction (X) and by 
scanning electron microscopy (SEM) approaches. The influence of the current type 
and the frequency of pulsed current on the topography and morphology of the sur-
face of the produced nickel are illustrated in Fig. 12.

The structure of electrocrystallized nickel produced in the basic electrolytic solu-
tion (Watts bath) without organic additives is characterized by a large grain size and 
develops a rough and dull surface (Fig. 13a). In contrast, the surface of nanoelectro-
lytic nickel formed in a solution of nickel modified with organic additives D1 and 
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D2 (Fig. 13b–d) is smooth, glossy, and less developed than that of layers of micro-
crystalline material [20].

Differences in the topographies and structures of such materials appear as an 
effect of different atomic arrangements within the material volume and on the layer 
surface. The presented, selected area, diffraction pattern (Fig. 13d) of the nanocrys-
talline Ni exhibits a variation in the grain size that is visible both on the material 
surface and within the material volume. Moreover, the diffraction patterns of such 

Fig. 12 The topology and morphology of the surface of the deposited nickel layers: (a) microcrys-
talline, by DC; (b–d) nanocrystalline, by PPR with the frequency 0.5, 5, and 10 kHz, 
respectively

Fig. 13 Morphology of produced nickel deposits examined by using SEM and TEM: (a) micro-
crystalline, (b, c, d) nanocrystalline
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materials with spots situated on the ring circumferences indicate nanocrystalline 
textured structures.

The internal structure of the material has a decisive influence on its properties. 
Comparison of abrasive wear of nickel materials produced electrochemically by 
applying the DC and periodic pulse current is illustrated by the graphs shown in 
Fig. 14. The materials formed by periodic pulse currents, which are composed of 
nanocrystallites, exhibit a lower degree of wear [28].

All produced nanonickel materials are characterized by a compact structure. Both 
the type of supplying current and the frequency, in the case of pulsed current, affect 
the topography of the material surface and the size, diversity, and shape of crystallites. 
Selected results of research carried out on the surface of nanocrystalline nickel are 
shown in Fig. 15. The fine grain material deposited here exhibits layered structure. 
Each layer, being parallel to the substrate surface, is made of spherical nanocrystalline 
agglomerates. Increased refinement of grain structure increases the hardness and 
stress resistance of the material and thereby reduces its plasticity. Grain boundaries 
may strengthen the structure and prevent deformations or may facilitate grain sliding 
along the boundaries and lead to formation of intergrain cracks.

Dimensions of the nickel crystallites depend on the chemical composition of the 
electrolytic solution used for process realization, as well as on process parameters 
such as density and the type of supplying current and temperature of the solution. The 
addition of organic matter D1 and D2 inhibits crystal growth processes and promotes 
the formation of new crystal nuclei, leading to crystal structures of nanometer grain 
size. The produced nanocrystalline nickel exhibited grain size of the order of 25 nm.

Diversity of the intensity of diffraction peaks at various diffraction patterns pro-
vides a significantly textured material. Diffraction line profiles indicate that the 
nickel layers formed in the basic electrolytic solution are characterized by a greater 
primary grain size and the special crystallographic direction <200>.

In the case of nanocrystalline nickel which has been formed in the solution modi-
fied with organic additives, preferred crystal growth orientation takes the direction of 
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<111>, and the increased width of the reflections indicates the nanosized dimension of 
the produced crystallites. From the set of diffraction patterns based on the broadening 
of X-ray reflections and using the Scherrer relationship in the following form:

 
b l qk hkl hklK D= ( )/ cos  (10)

where
βk – reflex width depending on the size of the crystallites [rad]
K – Scherrer constant close to unity
λ – wavelength of X-rays [Å]
Dhkl – average crystallite size in a direction perpendicular to the planes (hkl)
θhkl – angle reflections, the size was determined of crystallites occurring in the 

nickel material formed as the nanocrystalline structure [18].
The electrocrystallization process is suitable for producing surface nanostruc-

tured nickel layers. In addition to the compact construction and a good adhesion to 
the material of the substrate, the surface nanocrystalline nickel layers significantly 
increase the performance of the products in which they are embedded. It was 
observed a significant increase in the corrosion resistance as well as impact proper-
ties, such as hardness, or resistance to tribological wear.

 Electrocrystallization of Nanostructured Composites

Advanced composites are already extremely important to the defense industry and 
will be more critical in the near future because they offer the greatest strength and 
stiffness-to-weight ratio among engineering materials. Composites are expected to 
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be a key enabler in the development of light and more mobile not only military force 
but also cars, planes, buildings, and so on. They also offer the simplest route for 
embedded sensors, actuators, and other elements, thus providing much sought-after 
multifunctionality. Revolutionary advances in composites result from the use of 
nanotechnology, wireless technology, and self-healing mechanisms. Provided that 
the cost of composite manufacturing continues to decline, composites could dis-
place steel and aluminum as the primary materials in manufacturing, transportation, 
and construction. In electronics, carbon-based nanocomposites could potentially 
replace silicon as the basic building blocks for chips and circuit boards.

It is interesting to note that due to the charge transfer effect, the electrical con-
ductivity of the composite can be higher than the conductivity of both of the com-
ponents considered separately. Moreover, preparation of a nanocrystalline composite 
can be achieved with commercially available low-cost reagents, which enable 
large- scale production. Hence, there are significant challenges in developing nano-
structured composite materials for a large displacement of classic materials and a 
rapid response to the needs of highly advanced technology as well as in developing 
compatible fabrication methods. The extraordinary mechanical, optical, and electri-
cal properties of nanostructured composites are implementable into working devices 
[12, 23].

 Nanocrystalline Composites with Nickel Matrix

Nanocrystalline composites with nickel matrix create a good potential for designing 
and producing materials proving favorable properties. One of the possibilities in 
this domain appears to be nanocrystalline nickel layer composed of pure metal Ni 
and modified by disperse phase in the form of ceramic silicon carbide SiC, silicon 
nitride Si3N4, or molybdenum disulfide MoS2. Introduction of the disperse phase to 
the metal matrix appears as an efficient way to increase the hardness and resistance 
to frictional wear of the resulting material while maintaining the corrosion resis-
tance of the matrix material. Selected disperse phase in the nickel modifies signifi-
cantly the surface properties of the composite material. Silicon carbide SiC is a 
ceramic material, characterized by a favorable physicochemical properties, such as 
high hardness and thermal as well as chemical resistances and good thermal and 
electrical conductivities. In contrast molybdenum sulfide MoS2, as a material with 
strong ionic bonds and the layered crystal structure, has low hardness and good 
mechanical and chemical resistances and lubricating properties.

The combination of nickel nanocrystalline material as the matrix and the dis-
perse phases in the form of SiC or MoS2 creates the possibility of forming high 
potential output properties of the produced composite material. Combinations of 
two such different materials allow completion of their measurable characteristics, 
while the interactions between these different phases of such a modification induce 
these properties. For the disperse phase, by selection of particle size and their con-
tent in the matrix material, it is possible to design the respective properties of the 
composite material produced by electrocrystallization processes. This type of 
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nanocomposite surface layers can perform optimally a variety of functions in the 
art, and above all where the products and devices are placed particularly as high 
technical requirements.

Disperse ceramic phase was used for the production of composite layers Ni/
Si3N4, constituted by the microcrystalline structure of polydisperse Si3N4 powder 
containing both crystalline forms α and β of the hexagonal structure and a large 
variety of grain size (Fig. 16a), while for the production of composite layers of Ni/
Si3N4 having nanometric structure, an amorphous silicon nitride powder (Fig. 16b), 
with an average grain size of 15 nm, was applied.

The topography of the nickel and composite layers (Fig. 17), the diversity of 
their morphology and their internal structures and thickness, and the distribution of 
particles of the ceramic phase in a volume of the composite material were deter-
mined by using a scanning electron microscope Hitachi S-3500 N equipped with an 
EDS spectrometer (Norman Vantage). The content of the disperse ceramic phase 
Si3N4 in the composite material of the layers was determined by quantitative metal-
lography methods and computer image analysis.

Measurements of microhardness within the cross sections of the material layers 
were performed by the Vickers method at a load of 20G (HV 0.02) using a micro-
scope NEOPHOT-1 with the Hanemann attachment.

The volume fraction of the disperse phase in layers containing micrometer Si3N4 
powder was reduced from 18 % vol. in layers produced by DC to 14 %. in layers 
produced by periodic pulsed current, and in the case of nanometric layers with Si3N4 
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powder, the decrease corresponds from 8 % vol. up to 5 % vol. (Fig. 18), 
respectively.

The decrease in the volume fraction of the ceramic phase in the layer of Si3N4 
formed a nickel by pulsed current with respect to their counterparts produced by DC 
reduces the microhardness of the layers of composite as shown in Fig. 19.

The use of the periodic pulse current instead of direct current leads to the produc-
tion of layers with a lower surface development and smaller grain size of nickel and 
also affects the amount of ceramic phase embedded in the matrix material. In this 
way, it is possible to improve the hardness and corrosion resistance of the Ni/Si3N4 
surface layers.
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Recently, there has been an explosion of interest directed toward depositions of 
nickel-nanostructured composite thin layers containing ceramic Al2O3 disperse 
phase. By decreasing the particle size of composite constituents, one can obtain 
nanocomposite layers with considerably better properties compared to those of its 
previous classic equivalent. Such type of nanocomposite materials also exhibits dif-
ferences in the structure of the matrix and in the sizes and shapes of the disperse 
phase [30, 31].
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The SEM pictures of the surface of the composite Ni/Al2O3 layers produced by 
the electrochemical method with a matrix formed by microcrystalline nickel and 
ceramic phase characterized by different grain sizes are presented in Fig. 20. They 
reveal that on the surface of the composite layers, agglomerates of nanometric 
(Fig. 20a) and reasonably homogeneously distributed (Fig. 20b) Al2O3 powder par-
ticles are seen. Increased refinement of grain structure amplifies the stress resistance 
and hardness of the material and thereby reduces its ductility.

 Nanocrystalline Composites with Nickel Matrix and Disperse 
Phases Built from Carbon

Carbon, as one of the widely known and used chemical elements for many decades, 
was considered as the elementary component of both diamond and graphite. Since 
then, more allotropes of carbon have been reported, and a large scientific commu-
nity has been passionate about deciphering the properties of this element that can 
adopt many structures ranging from diamond and graphite (3D), graphene (2D), 
nanotubes (1D), or fullerenes (0D) as illustrated in Fig. 21. With the exception of 
diamond, it is possible to think of fullerenes, nanotubes, and graphite as different 
structures built from the same hexagonal array of sp2 carbon atoms, namely, gra-
phene. Indeed, fullerenes and nanotubes can be mentally visualized as a graphene 
sheet rolled into a spherical and cylindrical shape, respectively, and graphite can be 
described as a stack of alternately shifted graphene sheets. The rapid adoption of 
graphene as a material of interest lies in its actual availability by the range of tech-
niques and methods well known and also because monolayer and few layer gra-
phene and graphene oxide exhibit a diverse set of exceptional properties. Graphene 
is, according to many experts, the electronics material of the future [24, 26].

Graphene, graphite, diamond, and nanotubes attest each set built of their own 
data in terms of mechanical robustness, be it hardness or strength modulus. However, 
the mechanical behavior of graphene has been much less investigated than its elec-
tronic and optical properties. It has to be emphasized that graphene possesses a 

Fig. 20 Ni/Al2O3 composite layers: (a) coarse grain powder, (b) fine grain powder
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combination of special properties which come out against answers for several limi-
tations of currently known materials and systems.

Graphene, a single sp2-bonded carbon atomic sheet, has great potential for 
microelectronics applications, including conventional components such as high- 
frequency analog devices, and devices in emerging fields such as spintronics, tera-
hertz oscillators, and single-molecule gas sensors. More recently, graphene has 
been the focus of considerable attention, due to its unusual density of states.

During the past decade, several outstanding advancements in graphene growth 
technology have been achieved. Novoselov et al. demonstrated mechanical exfolia-
tion of graphene from graphite, permitting the first observations of some of the 
highly. The growth of graphene by thermal desorption of Si from SiC (sublimated 
epitaxial graphene: S-EG) was developed by Berger et al. [25]. Attractive and novel 
physical properties of graphene follow the early experiments of Van Bommel et al. 
Further improvements in the quality of S-EG were realized by sublimating Si at 
elevated temperatures in argon (Ar) atmosphere rather than in vacuum. However, 
vacuum sublimation is still successfully applied with a Si vapor pressure control 
system.

The most important physical properties of graphene are (i) a two-dimensional 
lattice a = 0.142 nm, (ii) the greatest surface-to-volume ratio, (iii) very good heat 
conductivity (4800–5300 W/mK), (iv) low electrical resistance, (v) very high 
 electron mobility μ = 20,0000 cm2/Vs, (vi) very high electron velocity v = 108 m⋅s−1, 
(vii) almost complete optical transparency, (viii) molecular opacity for transmis-
sion, (ix) extremely high mechanical strength γ ≈ 1Tpa, and (x) quantum Hall effect.

One of the effective technologies is producing graphene film epitaxy by growth 
on a substrate with a 6H-Si(C). Image of the surface of graphene produced using 
such a method is presented in Fig. 22.

Theoretical analysis of doped graphene layers and research experiments suggest 
that they exhibit potential applications, among others, in transparent electrodes, 
photodetectors, touch screens, lighting elements, photovoltaic elements, optical fil-
ters, optical power limiters, and elements of terahertz systems.

Fig. 21 The crystalline structure of carbon: (a) 2D (graphene) (b) 0D (fullerene), (c) 1D (nano-
tube), (d) graphite
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Layered composite Ni/graphene was prepared by the electrocrystallization pro-
cess on the substrate of carbon steel S235JR in the bath composed of sulfate (VI) 
nickel (II) chloride, nickel (II), boric acid, organic compound additives, wetting, 
and graphene as a dispersed phase in the 0.5 g/dm3 bath. Electrodeposition process 
was carried out in the bath at a temperature of 45 °C at a current density equal to 
3 Adm−2; the process time was chosen to give a layer thickness of about 30 μm. 
A mixing agitator 50 rpm./min was used.

Graphene in the form of flakes with dimensions for thickness of 5–8 nm, diam-
eter of 5 μm, and the area of 120–150 m2/g was used as a disperse phase (Fig. 23). 
SEM images of the produced nanostructured Ni/Cgraph are presented in Fig. 24.

For the production of composite layers of Ni/CNTs, we used carbon nanotubes 
(CNTs) having a tendency to agglomerate in an aqueous medium as a dry suspen-
sion. Images of carbon nanotubes of polyhedral structure (MWCNTs) made up of 
several layers of graphene spaced at the same distance which were used as disperse 
phase in the manufacturing of nickel-based composite are shown in Fig. 25.
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The resulting nanocomposite layer Ni/CNTs (Fig. 26) have a more developed 
surface as compared with the layers of nanocrystalline nickel (Fig. 10). On the sur-
face of the composite layers are visible agglomerates CNTs that are not completely 
enclosed by the deposited nickel [16].

Fig. 24 SEM images of produced Ni/Cgraph nanocomposite: (a) topography, (b) morphology

Fig. 25 TEM images of MWCNTs at different reinforcements

Fig. 26 Morphology of Ni/CNTs composites at different reinforcements

M. Trzaska and Z. Trzaska



163

The distribution of CNTs built-in nickel matrix within the whole composite 
material is illustrated in Fig. 27. Dispersed carbon nanotubes due to their nanomet-
ric dimensions pose some difficulties in their identification in a matrix of nanocrys-
talline nickel. One of the most effective methods for identification and 
characterization of CNTs is the Raman spectroscopy. Characteristic elements of the 
Raman spectra of carbon nanotubes are D and G mods. Mod G allows to determine 
the purity of CNTs, while mod D indicates the presence of functional groups or 
defects on the surface of carbon nanotubes.

Plots of the Raman spectra of a nanocrystalline materials related to Ni/CNTs 
composite are shown in Fig. 28. Comparing these spectra, it is easy to show that the 
D and G characteristic modes of CNTs (Fig. 28a) are also present in the produced 
Ni/CNT nanocomposites (Fig. 28c).

 Nanocrystalline Composites with Copper Matrix

To modify the properties of copper products and in particular their surface layers 
produced by the electrocrystallization method, disperse phases were applied in the 
forms of graphite powder and carbon nanotubes. Graphite, built as the disperse 
phase, is characterized by good lubricating properties, low hardness in one direction, 
and electrical and thermal conductivities similar to those of most metals. Soft graph-
ite particles embedded in the metal layer create a wide possibility for improving the 
lubricity and increase the electrical and thermal conductivities of the surface layer.

Carbon nanotubes as the disperse phase, because of its unique mechanical prop-
erties; chemical, electronic, optical, and magnetic recording; and unique structure 
(high ratio of length to diameter), allow to improve the mechanical, tribological, 
corrosion, and thermal and electrical conductivity of the surface layers of the 
material.

Composite layers with copper matrix were prepared by electrochemical reduc-
tion in the Watts bath of the following composition: CuSO4, H2SO4 (conc). This 
bath was modified with both organic substance and a disperse phase in the form of 

Fig. 27 Nanocrystalline Ni-P/CNTs composite: (a) surface, (b) cross section
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graphite powder or carbon nanotubes. In addition, to make possible the fragmenta-
tion of the structure, some organic additives were used. The suspension of both 
graphite and CNTs in the solution was mixed in advance by ultrasounds, and during 
the process realization, a mechanical stirrer was used in order to prevent reagglom-
eration of CNTs and graphite powder.

Introduction of graphite particles or carbon nanotubes into Cu layer results in 
changes in the structure of the material layer. The composite layers are more devel-
oped, and on their surfaces, there are particles of graphite or CNTs completely 
encased by copper. CNTs are incorporated in the composite layers as individual 
particles or in the forms of different clusters. Images illustrating the composite lay-
ers with a copper matrix are presented in Fig. 29.

CNTs due to their nanometric dimensions make it difficult to identify them in the 
copper layers produced by electrocrystallization method. Their existence in the cop-
per composite layers was confirmed by Raman spectroscopy exhibiting in the spec-
tra of peaks with characteristic values for CNTs.

The results of performed studies revealed that the incorporation of graphite in the 
Cu layer reduces its microhardness and thus improves the lubricating properties and 
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tribological properties of the material. In contrast, introducing CNTs into the copper 
composite layers produced by electrochemical reduction method greatly increases 
the microhardness of these layers. Moreover, the growth of microcomposite layers 
affects not only the CNTs presence but also the additions of organic substances into 
the electrolyte solution.

 Summary and Conclusions

In this chapter, an attempt has been put on the description of a new method for elec-
trocrystallization process realizations which take into account the activation energy 
and mass transfer effects. It is based on non-sinusoidal periodic excitations of the 
electrolytic reactor and controls of the measured response waveforms. This is done 
through the use of time-pulse periodic currents of suitable amplitudes and frequen-
cies, and it is not recommended to introduce a DC for supplying the reactor, because 
it may induce disadvantageous electrochemical activities. Emphasis has been placed 
on nanocrystalline copper electrodepositions and manufacture of surface thin layers 
because these are the most important of the electrochemical cutting-edge industries 
in terms of quality improvements and possible energy savings.

This chapter presented results of studies focused on electrocrystallization on 
nanostructured materials that enable the production of nanocrystalline Ni and nano-
composite Ni/CNTs. Both nanocrystalline materials exhibited uniform structures 
and good adhesion to the substrate. Incorporation of carbon nanotubes in the nickel 
matrix has a significant impact on the structure, morphology, and topography of the 
resultant material and improves its mechanical properties.

It has been experimentally observed that most of the enhancement in the performance 
of materials thus far achieved has been due to lowering of the thermal conductivity.

Here, we showed that using two types of ceramic powder grains introduces 
another strategy to enhance the performance of the bulk material through enhancing 
the power factor in addition to reducing the thermal conductivity.

Fig. 29 Nanocrystalline layers produced by electrochemical reduction: (a) Cu/Cgrafit, (b) Cu/CNTs
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Therefore the electrocrystallization can be considered as an enabling technology 
by which existing materials, virtually all man-made materials, can acquire novel 
properties and functionalities making them suitable for numerous novel applica-
tions varying from structural and functional to advanced biomedical in vivo and 
in vitro applications. Moreover, the advantages of the electrocrystallization method 
can be pointed out including the possibility of synthesizing materials in an auto-
matic regime under mild conditions at temperature below 100 °C on substrates of 
complex shape by using simple apparatus.

Electrodeposition allows a precise control of the material, including its composi-
tion and its crystallographic structure, texture, and grain size. Temperature- and 
corrosion-resistant materials will be in demand for the automotive and aerospace 
sectors of the industrial market, while silicon and various thin films will be the lead-
ers in photovoltaic and microelectronics industry.

In summary, we have demonstrated that using the modulation-doping approach, 
one can enhance significantly the power factor of electrocrystallized materials.
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Abstract

Bimetallic nanoparticles have revolutionized nanomaterial-linked advances in 
science and technology. The key to their success, in many applications, relies 
largely on the superior chemical and physical properties endowed to them 
through synergistic effects between the two metallic constituents. Thorough 
studies on the formation and characterization of bimetallic nanoparticles are cru-
cial to understand the viability of these systems in many technological applica-
tions. In this chapter, we present recent advances in the formation and 
characterization of bimetallic nanoparticles, especially with respect to electro-
chemical applications including our own efforts targeted in this direction. At 
first, we will outline the recent progress achieved in developing diverse structure- 
controllable synthesis strategies for bimetallic nanoparticles and promising char-
acterization techniques that can provide information on atomic distribution, 
composition, morphology, and nanostructure. Later, emphasis will be focused on 
composition–activity and structure–catalytic activity relationships of bimetallic 
nanoparticles for specified electrochemical reactions generally involved in clean 
energy production. Finally, possibilities for future developments and challenges 
in bimetallic nanoparticle research will be discussed.

Keywords
Bimetallic nanoparticles • Formation and characterization • Electrochemistry

 Introduction

Nanoscale metallic particles have attracted a great deal of attention as they afford 
myriad of opportunities in nanotechnology and nano-biotechnological applications. 
The rush toward the development of materials with smaller dimensions is due to the 
fact that nanoparticles exhibit unusual chemical and physical properties that are dif-
ferent to those of their bulk analogues as a result of surface and quantum size effects 
[1, 2]. The surface effect is related to the lower stabilization of atoms thereby form-
ing more unsaturated bonds at the surface than the bulk region, thus making the 
nanoparticle more reactive. The quantum size effect is involved when the de Broglie 
wavelength of electron at the Fermi energy is comparable to the size of metallic 
particle itself and as a result particles behave electronically as zero-dimensional 
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quantum dots relevant to quantum mechanical rules [3, 4]. Today many nanotechno-
logical applications largely rely on the effective use of nanosized effects in fine- 
tuning the materials properties.

Heterogeneous catalysis is an area where development of nanomaterials is cru-
cial. Utilization of nanomaterials as nanocatalysts and corresponding nanocatalyst- 
linked advances in catalysis can have a positive economic as well as environmental 
impact. In particular, deployment of bimetallic nanoparticles for catalyzing electro-
chemical reactions is gaining momentum as they play a vital role in promising tech-
nologies related to both environmental and energy-related applications such as 
polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells 
(DMFC). In order to harness the potentiality of bimetallic electrocatalysts, a thor-
ough understanding of the origin of their enhanced performance is needed. The 
electrocatalytic activities of nanoparticles employed in fuel cells are generally depen-
dent on numerous factors such as particle size and particle size distribution [5–8], 
morphology(shape), atomic distribution (intra- and interparticle distribution) [9], 
composition [10, 11], and in particular surface composition, oxidation state, sup-
port, and microstructure [11–21] (Table 1).

In the synthesis of bimetallic nanoparticles, special emphasis has been given to 
the achievement of a high level of control over the particle’s size, morphology, 
atomic distribution, and dispersion over supports by means of reproducible, low 
cost, and scalable synthetic approaches [22, 23]. Further, rigorous characterization 
techniques which can provide information about the above-described nanoscale 
properties are required. For example, parameters such as surface structure, atomic 
distribution, and composition are dominant nanostructural properties that require 
both control and careful characterization.

Further, success in either particle design or scale-up requires a detailed knowl-
edge of the particle’s formation mechanism and will greatly benefit the development 
of structure-controllable synthesis pathways for bimetallic nanoparticles. The recent 
advent of high-intensity tunable sources of X-rays, now available at synchrotron 
facilities worldwide, has made X-ray absorption spectroscopy (XAS) as a powerful 
tool to examine the nucleation and growth process during the formation of nanopar-
ticles. We have recently made some significant contributions that highlight the 
applicability of XAS technique to study the nanoparticle formation mechanism 
[23–31]. The information obtained from XAS studies on local structural changes 
during early stages of nanoparticle formation can be utilized to control the size, 
shape, and surface morphology of the nanoparticles.

Certainly, understanding the formation mechanism and thorough characterization 
of bimetallic nanoparticles are two aspects that warrant important consideration in 
nanoscience and nanotechnology research. This chapter provides a comprehensive 
review of the recent advances in the field of bimetallic nanoparticles research per-
taining to the formation and characterization of bimetallic nanoparticles and their 
corresponding applications toward electrocatalytic  reactions. Furthermore, this 
chapter also examines decisive factors that are presently believed to play significant 
role in the electrocatalytic reactivity of bimetallic nanoparticles with a specific 
emphasis on understanding the  relationship between the structure, chemical 

7 Formation and Characterization of Bimetallic Nanoparticles in Electrochemistry



172

Ta
b

le
 1

 
P

ro
pe

rt
ie

s 
of

 n
an

op
ar

ti
cl

es
 w

hi
ch

 i
nfl

ue
nc

e 
ca

ta
ly

ti
c 

ac
ti

vi
ti

es

P
ro

pe
rt

y
S

ys
te

m
C

at
al

yt
ic

 r
ea

ct
iv

it
y

R
ef

er
en

ce
s

S
iz

e
D

en
dr

im
er

-e
nc

ap
su

la
te

d 
P

t 1
2@

3 
(d

 =
 0

.9
 

nm
),

 P
t 2

8
 (

d 
=

 1
.0

 n
m

),
 P

t 6
0 

(d
 =

 1
.2

 n
m

),
 

P
t/

C
 (

d 
=

 2
.5

)

P
t 1

2
@

3 
w

it
h 

a 
pa

rt
ic

le
 s

iz
e 

of
 0

.9
 n

m
 e

xh
ib

it
s 

th
re

e 
or

de
rs

 o
f 

ef
fi

ci
en

cy
 t

ow
ar

d 
ox

yg
en

 r
ed

uc
ti

on
 r

ea
ct

io
n 

(O
R

R
) 

co
m

pa
re

d 
to

 
P

t 6
0
@

3 
pa

rt
ic

le
s

[5
]

S
ha

pe
T

et
ra

he
xa

he
dr

al
 P

t 
na

no
cr

ys
ta

ls
 (

T
H

H
 P

t 
N

C
s)

P
ol

yh
ed

ra
l,

 t
ru

nc
at

ed
 c

ub
ic

 a
nd

 c
ub

ic
-P

t 
na

no
pa

rt
ic

le
s

3D
 U

rc
hi

n-
li

ke
-s

ha
pe

d 
A

uP
t 

N
P

s

T
H

H
 P

t 
na

no
cr

ys
ta

ls
 w

it
h 

hi
gh

-i
nd

ex
 f

ac
et

s 
ex

hi
bi

t 
2–

4
 t

im
es

 
ef

fi
ci

en
cy

 p
er

 u
ni

t 
su

rf
ac

e 
ar

ea
 f

or
 e

th
an

ol
 o

xi
da

ti
on

 c
om

pa
re

d 
to

 P
t/

C
 n

an
op

ar
ti

cl
es

 w
it

h 
lo

w
-i

nd
ex

 f
ac

et
s

C
ub

ic
-P

t 
na

no
pa

rt
ic

le
s 

ha
ve

 d
om

in
an

t 
(1

00
) 

fa
ce

ts
 a

nd
 e

xh
ib

it
 

hi
gh

er
 O

R
R

 a
ct

iv
it

y
H

ig
h 

ca
ta

ly
ti

c 
ac

ti
vi

ty
 t

ow
ar

d 
ox

yg
en

 r
ed

uc
ti

on
 r

ea
ct

io
n

[1
9]

[1
4]

[1
8]

C
om

po
si

ti
on

P
t–

C
o/

C
 (

3:
1,

 1
:1

, 1
:3

)
P

t–
C

r/
C

 (
90

:1
0,

 8
0:

20
, 7

0:
30

)
H

ig
he

st
 O

R
R

 a
ct

iv
it

y 
fo

r 
P

t–
C

o/
C

 (
1:

1)
H

ig
he

st
 O

R
R

 a
ct

iv
it

y 
fo

r 
P

t–
C

r/
C

 8
0:

20
 c

om
pa

re
d 

to
 P

t/
C

[1
0]

[1
1]

S
up

po
rt

P
tA

u/
gr

ap
he

ne
, P

tA
u/

C
P

tA
u/

gr
ap

he
ne

 e
xh

ib
it

s 
37

 %
 h

ig
he

r 
ac

ti
vi

ty
 t

ow
ar

d 
fo

rm
ic

 a
ci

d 
ox

id
at

io
n 

co
m

pa
re

d 
to

 P
tA

u/
C

[1
7]

S
tr

uc
tu

re
P

d
C

or
e–

P
t S

he
ll
 n

an
ow

ir
e 

ar
ra

ys
S

ph
er

ic
al

 R
u C

or
e–

P
t S

he
ll
 N

P
s

P
tC

o
C

o
re
–P

t S
h

el
l n

an
op

ar
ti

cl
es

P
os

se
ss

 m
or

e 
el

ec
tr

oc
he

m
ic

al
 a

ct
iv

e 
su

rf
ac

e 
ar

ea
 (

E
C

A
S

A
).

 
H

ig
h 

ac
ti

vi
ty

 t
ow

ar
d 

m
et

ha
no

l 
ox

id
at

io
n 

re
ac

ti
on

 (
M

O
R

)
H

ig
he

r 
ca

ta
ly

ti
c 

ac
ti

vi
ty

 t
ha

n 
al

lo
ye

d 
P

tR
u 

na
no

pa
rt

ic
le

s 
to

w
ar

d 
M

O
R

T
hr

ee
fo

ld
 e

ffi
ci

en
cy

 t
ow

ar
d 

O
R

R
 a

ct
iv

it
y 

w
he

n 
co

m
pa

re
d 

to
 P

t 
na

no
pa

rt
ic

le
s

[1
3]

[1
6,

 1
2]

[1
4,

 1
5]

A
ll

oy
in

g 
ex

te
nt

P
t 7

5R
u 2

5/
C

 (
J P

t, 
57

 %
; 

J R
u,

 8
5 

%
)

P
t 5

0R
u 5

0/
C

 (
J P

t, 
41

 %
; 

J R
u,

 5
7 

%
)

P
t 2

5R
u 7

5/
C

 (
J P

t, 
36

 %
; 

J R
u,

 5
0 

%
)

P
t 7

5
R

u 2
5
/C

 c
at

al
ys

t 
w

it
h 

a 
hi

gh
er

 e
xt

en
t 

of
 P

t 
al

lo
yi

ng
 (

J P
t) 

ex
hi

bi
ts

 t
hr

ee
fo

ld
 e

ffi
ci

en
cy

 t
ow

ar
d 

m
et

ha
no

l 
ox

id
at

io
n 

re
ac

ti
on

 
co

m
pa

re
d 

to
 P

t 2
5
R

u 7
5/

C
 w

hi
ch

 p
os

se
ss

es
 l

ow
er

 e
xt

en
t 

of
 P

t 
al

lo
yi

ng

[9
]

C.-J. Pan et al.



173

 composition, surface composition, atomic  distribution, and reactivity of bimetallic 
nanoparticles especially toward  electrocatalytic reactions involved in PEMFCs.

 Bimetallic Nanoparticles

Bimetallic nanoparticles constituted as the combination of two different metals 
show multiple functionalities, enhanced selectivity, catalytic activity, and stability 
when compared to monometallic nanoparticles [32–36]. During the past few 
decades, much research has been directed toward the design and synthesis of bime-
tallic nanoparticles due to their promising activity in catalyzing clean energy con-
version reactions. Figure 1 illustrates the recent growth in the number of papers 
published on the formation and characterization of bimetallic nanoparticles.

Platinum-based bimetallic nanoparticles are widely utilized for both anodic 
and cathodic reactions in fuel cells. Some excellent reviews of the progress made 
in Pt-based fuel cell catalyst development for stationary and mobile applications 
have been written from both an academic and industrial perspective [37–41]. 
Very recently, Debe has critically reviewed the electrocatalyst approaches and 
 challenges for automotive fuel cells [42]. The phenomenal interest in Pt-based 
bimetallic nanoparticles largely stems from their ability in offering the favorable 
electronic and geometric structures needed to catalyze small reactant molecules 
in fuel cells [43–47]. The use of Pt alone as an anode catalyst is detrimental to 
the performance of either H2 or CH3OH-fed PEMFC. For example, in the case of 
H2-fed PEMFC, the carbon monoxide, even when present in trace quantities, 
 competes with H2 adsorption and poisons the Pt-active surface [48]. Similarly, in 

Fig. 1 Research articles 
published per year for 
bimetallic nanoparticles 
during the period 2000  
to April 2013 (Search made 
through SciFinder Scholar 
Database)
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the case of the electrooxidation of CH3OH in DMFC, the CO formed as one of 
the intermediates covers the Pt-active surface and impedes the catalytic perfor-
mance for methanol oxidation [49]. The oxygen reduction reaction (ORR) 
involved in PEMFC is a multi-electron reaction, and depending on the experi-
mental conditions, it is known to take place through two different reaction path-
ways: the direct four-electron pathway in which O2 is reduced directly to water 
and the two- electron pathway in which O2 is reduced to hydrogen peroxide, fol-
lowed by decomposition, or further reduction, to water [50–52]. Platinum has 
long been the best electrocatalyst for ORR. However, OH species formed from 
water decomposition on Pt electrodes inhibit oxygen reduction by blocking 
active surface sites which may lead to cathodic overpotentials. To overcome the 
difficulties associated with the use of monometallic Pt nanoparticles as electro-
catalysts in PEMFC, Pt-based bimetallic nanoparticles are being extensively 
investigated and deployed for fuel cell applications. Several explanations have 
been given for the superior performance of Pt-based bimetallic nanoparticles 
based on structural variations caused by the presence of the second metal and 
will be discussed in the following sections.

 Synergistic, Electronic, and Geometric Effects

Three explanations have been put forward for the higher activity offered by Pt-based 
bimetallic nanoparticles over Pt-alone nanoparticles: these include (i) bifunctional 
(or) ligand effect, (ii) electronic effect, and (iii) geometric (ensemble) effect. 
According to the bifunctional effect, in bimetallic nanoparticles, each metal compo-
nent could promote different elementary reaction steps. For example, in the case of 
PtRu bimetallic nanoparticles, the intermediate CO species formed during CH3OH 
electrooxidation is strongly adsorbed on Pt sites. When Pt is alloyed with Ru, water 
dissociation occurs on Ru sites to produce Ru–OH groups at (0.2–0.3 V vs. RHE), 
i.e., at less positive potentials than on pure Pt surface (0.7 V vs. RHE) [53], and the 
Ru–OH groups react with the neighboring CO adsorbed on Pt to give carbon diox-
ide through the bifunctional mechanism (Eq. 1) [53–56].

 Pt CO Ru OH Pt Ru CO H e– –+ ® + + + ++ -
2  (1)

Secondly, the ensemble effect (or geometric effect) largely deals with specific 
groupings of surface atoms that serve as active sites in the presence of secondary 
metal component [57]. The third explanation is based on the electronic effect. 
According to this effect, interactions between two metal components could improve 
the reactivity. In PtRu bimetallic interactions, the presence of Ru can alter the elec-
tronic state of the Pt (variations in Pt d-band vacancies) leading to the weakening of 
the Pt–CO bond facilitating CO oxidation. The enhancement of ORR kinetics on 
bimetallic nanoparticles is also explained by electronic effect [58–61]. It was 
reported that PtNi and Pt3Fe bimetallic systems which contain a quasi-complete Pt 
surface layer with more, or less, Ni or Fe in the sublayers show strong electronic 
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modifications. The presence of an alloying component-rich second layer increases 
the d-electron vacancies of the thin Pt layer and improves the chemisorptive proper-
ties and corresponding electrocatalytic performances [47, 62]. In our recent X-ray 
absorption spectroscopic investigations, it was found that the alloying of Co10 and 
Fe63 with Pt induces variations in unfilled d-states (Fig. 2) which in turn signifi-
cantly influences the catalyst’s electrochemical performance toward the ORR.

The variations in Pt-unfilled d-states in Pt-based bimetallic nanoparticles suggest 
that charge transfer from one element to the other modifies the local electronic prop-
erties of pure platinum particles and makes bimetallic nanoparticles more attractive 
catalyst candidates. It is suggested that charge localization or transfer within a 
nanoparticle is strongly correlated with its structure, composition, and size. 
Therefore, it becomes crucial, during synthesis, to have complete size, composition, 
and structural control over the nanoparticles [64].

 Electrochemical Aspects of Bimetallic Nanoparticles

Electrocatalytic reactions play a decisive role in emerging technologies related to 
environmental and energy-related applications, such as fuel cells. The efficiency 
and selectivity of electrocatalytic processes can be substantially improved by replac-
ing monometallic with bimetallic nanoparticle-based catalysts. Recently, Gasteiger 
et al. have studied the electrooxidation of CO, formic acid, and methanol on well- 
characterized PtRu alloys. The authors claim that a PtRu alloy having a 50:50 surface 
composition presents the highest catalytic activity for CO oxidation [45, 65–67]. 
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In another interesting work, Lin et al. [68] have made a comparative study of CO 
electrooxidation on different catalysts using in situ FTIR spectroscopy. From their 
results, it was found that, compared to Pt, the onset of CO2 formation at PtRu and 
Ru is shifted by about −0.1 and −0.05 V, respectively. Further, the authors noticed a 
faster increase of the CO2 band intensity for PtRu than for the other materials. At 0.5 
V, the CO2 band intensity reaches already 97 % of its maximum value at the alloy 
and only 23 % and 5 % of the maximum at Ru and Pt, respectively, indicating the 
potentiality of bimetallic surfaces in removing the poisoning CO intermediate. 
From the CO band intensities versus time plots, the authors found that the CO band 
intensity at platinum does not change, since the onset potential for oxidation on this 
metal lies above 0.4 V. For the other materials, the authors observed the oxidative 
removal of CO: the rate being higher at PtRu than at pure Ru. It is noteworthy that 
the same experiments performed at 0.35 V showed CO2 formation at PtRu after 3 
min, while no oxidation was observed at pure Ru even after 10 min; the authors thus 
concluded that the onset of oxidation is fastest on the alloy (Fig. 3).

Park et al. carried out electrochemical infrared reflection absorption spectros-
copy (EC-IRAS) for carbon monoxide (CO) adlayers formed by partial CO dosing 
on various ruthenium-decorated platinum nanoparticles [69]. The observed promo-
tion in CO electrooxidation by the existence of a Ru-island on Pt nanoparticles, of 
interest to fuel cell catalysts, showed a strong relationship with Ru surface concen-
trations, consistent with previous studies on single-crystal or polycrystalline bime-
tallic surfaces. Based on the attenuation of H2-upd peak with an increase in charge 
in the double-layer region as the amount of Ru increases on platinum, the authors 
suggested that at more negative potentials, the formation of oxygen-like species 
takes place on bimetallic surfaces (Gasteiger et al.) [58]. The authors observed that 
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Ru-decorated Pt nanoparticles with a composition of PtRu-48 % lower the CO strip-
ping peak down to 0.3 V when compared to the Pt-black nanoparticles which 
showed a CO stripping peak at 0.45 V. However, the authors claim that if the surface 
Ru concentration was increased to 66 %, then the CO oxidation peak shifts posi-
tively to be centered at 0.37 V. The results show that the presence of PtRu boundar-
ies in PtRu catalysts plays an important role in lowering the potential of irreversible 
CO electrooxidation.

 Architectures of Bimetallic Nanoparticles

Bimetallic nanoparticles assume various types of architectures based on the condi-
tions employed during the synthesis (Scheme 1). For example, during the simulta-
neous reduction process, if the standard reduction potentials of two distinct metals 
used are different, then the two kinds of metals thermodynamically prefer to nucle-
ate and grow separately to generate core–shell-structured particles. By utilizing 
strong reducing agents which are capable of reducing simultaneously all metal pre-
cursors at optimized rates, alloyed structures can be fabricated. In another approach, 
by properly adjusting the redox potentials of two metals through specific adsorption 
or coordination by the use of selected surfactants and counterions, two distinct 
metal ions can be simultaneously reduced to produce alloyed nanoparticles.

 Alloy-Structured Bimetallic Nanoparticles

Bimetallic nanoparticles are formed as alloy nanoparticles when the two metals are 
mixed at the atomic level. Co-reduction of two different metal ions with a strong 
reducing agent is a widely employed method for the generation of alloy-structured 
bimetallic nanoparticles. Alloying Pt with suitable noble metals such Ru, Rh, Pd, Ir, 
Os, Ag, and Au or non-noble transition metals such as Cu, Fe, Co, or Ni has been 

Alloy Structure Core-Shell Structure Hollow Structure

Scheme 1 Various structures of bimetallic nanoparticles
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proved to be effective in electrocatalysis of fuel cell reactions, such as the methanol 
oxidation reaction and the oxygen reduction reaction [35, 70–74]. It was reported 
that the catalytic activity and long-term stability of Pt-based alloyed structures are 
dependent both on composition and structure. For example, the stability of fct-FePt 
NPs is much better compared to fcc-FePt NPs toward ORR activity in acidic envi-
ronments. Superior intermetallic stacking of Fe and Pt obtained under temperature 
alloying coupled with well-order structures was proposed as a reason for the 
enhanced catalytic activities of the fct-FePt versus fcc-FePt [75]. Among the vari-
ous alloyed Pt-based catalysts studied, the PtRu alloy has been identified to be the 
most effective for MOR. The degree of alloying in bimetallic PtRu nanoparticles 
plays a crucial role in determining the CO oxidation and methanol oxidation rates. 
Recently, Lee et al. demonstrated that CO oxidation and methanol oxidation were 
enhanced as the PtRu alloying degree became higher [76].

 Core–Shell Bimetallic Nanoparticles

Core–shell-structured bimetallic nanoparticles are particularly attractive for 
electrocatalysis in view of atom economy, which refers to the possibility to substi-
tute the use of noble metals with other less expensive materials. A number of 
synthesis strategies have already been used for the production of core–shell bime-
tallic nanoparticles, such as redox-transmetalation [25, 77–79], ethylene glycol-
assisted polyol method [80], co-reduction [81], and seed-mediated growth method 
[82]. In seed-mediated growth, a pair of metallic precursors is selected which differs 
in reduction potentials. When a reducing agent is introduced into the synthetic sys-
tem containing metallic precursors, the metal cations with the highest redox poten-
tial will be reduced first by forming seeds, while the second metal will reduce and 
grow on the preformed metal seeds [83]. In recent years, the redox-transmetalation 
method has been widely used to fabricate core–shell-type nanoparticles [78]. It is an 
advanced process compared with the conventional reduction methodologies avail-
able for the bimetallic nanoparticles. In this method, a first core component is gener-
ated by reducing its corresponding metal ion. Later, a metal precursor solution 
intended for shell component will be added to the solution containing core compo-
nent. When the shell-forming metal salts come into contact with the metallic core 
surface, they are reduced by the sacrificial oxidation of surface atoms of the metal 
core and deposited on the surface of the core by redox-transmetalation (Scheme 2). 
By properly understanding the redox chemistry, wide varieties of bimetallic nano-
structures can be generated through redox-transmetalation. When compared to tra-
ditional successive reduction strategies, the redox-transmetalation process has 
several advantages. For example, the self-nucleation of the added second metal, 
which usually occurs in conventional successive reduction methods, can be avoided 
in redox-transmetalation, as it allows spontaneous shell layer deposition on the sur-
face of the core nanoparticle. Various bimetallic core–shell nanoparticles, e.g., PtAu 
[84], PtRu [12, 85], and Pt–Co [78, 79], fabricated by redox-transmetalation are 
reported in the literature.
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Recently, we described the fabrication of well-defined bimetallic core–shell- 
structured nanoparticles using a kinetically controlled autocatalytic chemical process 
[23]. In this work, under kinetically controlled conditions, we carried out autocata-
lytic deposition of a sacrificial Cu ultrathin layer on a dimensionally stable palla-
dium-metal core, which is later displaced to form an active ultrathin platinum- layered 
shell by redox-transmetalation (Fig. 4a). As can be seen from panels a and b of Fig. 4, 
an ultrathin Pt layer was deposited on spherical and cubic Pd nanoparticles, respec-
tively. The striking advantages of the fabricated PdcorePtultrathin-shell nanoparticles are 
enhanced platinum surface-to-volume ratio and superior catalytic activities.

Adzic et al. [86] and Zhang et al. [87] synthesized Pt monolayers on various core 
structures in an effort to stabilize Pt and Pt group metals. In their experiments, either 
carbon-supported Pt or a noble single-crystal metal was used as the core component 
[88, 89]. Later, a monolayer of another noble metal was deposited on top of the core 
component to generate core–shell-structured nanocatalysts. These catalytic plati-
num monolayers on various core structures were tested for ORR activity and stabil-
ity. By properly tuning the compositions of the core and monolayer components, the 
authors achieved remarkable ORR activity on monolayer catalysts. For example, in 
rotating ring-disk (RRDE) experiments in 0.1 M HClO4 supporting electrolyte solu-
tions, the observed Pt mass-specific activities for the ORR of PtML/Pd/C catalyst, 
with a typical loading of 3.4 μgPt/cm2, were 5–8 times higher than that of 
Pt/C. Oxygen reduction followed a four-electron reduction pathway O2 to H2O, with 
the first-charge transfer as the rate-determining step.

 Hollow-Structured Bimetallic Nanoparticles

In recent years, there has been a growing interest in the fabrication of hollow- 
structured bimetallic nanoparticles for catalytic applications because of their unique 
void structure, increased surface areas, and reduced densities [90–92]. The interior 
voids that are usually present in hollow-structured bimetallic NPs play a dual role 
by serving both as a tiny container for encapsulating multifunctional active materials 

Ru Nano Particles

160 °C,
1.5 h

HO-CH2-CH2-OH
Ethylene glycol

RuCl3.xH2O

Pt-on-Ru core-shell NPs

Add
Pt2+ complex solution

(ultrasonication)Pt2+
Ru3+

Scheme 2 Schematic of a polyol-assisted redox-transmetalation strategy to fabricate Pt-on-Ru 
nanoparticles
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and as a nanoreactor. Many synthesis strategies including hard-templating, soft- 
templating, and sacrificial templating approaches have been developed for the syn-
thesis of hollow-structured bimetallic nanoparticles. Silica colloids [93–95], 
selenium colloids [96], polystyrene colloids [97], and Ag nanoparticles [98] are 
some of the commonly utilized templates for the fabrication of hollow structures. 
Au–Pt and Au–Pd bimetallic hollow structures have been conveniently prepared by 
utilizing silica colloidal templates [96]. Zhang et al. emphasized a facial colloidal 
templating method to monodisperse hollow Ag and Ag/Au submicrometer spheres 
by using silica colloidal templates [99]. Xia and coworkers have proposed a gal-
vanic replacement reaction for the fabrication of various noble metal-based NPs 
[90–92, 100]. In this process, a Ag-based sacrificial template reacts with a precursor 
compound of the desired metal such as Au, Pd, and Pt. It has been demonstrated that 
by tuning the synthesis conditions and structures of starting Ag nanoparticle tem-
plates, different end products can be made [100, 101]. The Kirkendall effect which 
deals with the creation of “Kirkendall voids” close to the interface of a bimetallic 
couple has been used as a new fabrication route to designed new hollow nano- 
objects [102]. Puntes and coworkers [36] demonstrated fabrication of bimetallic 
Au–Ag hollow nanoparticles by the simultaneous or sequential action of galvanic 
replacement and the Kirkendall effect using a silver template and HAuCl4 · 4H2O as 
an oxidizing agent. Li and coworkers demonstrated a one-pot synthesis for bimetallic 
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Fig. 4 Schematic of architecture of PdCore–PtUltrathin–shell/C nanoparticles (a), TEM images of dif-
ferent morphologies (b and c), and corresponding Pd@Pt nanocrystals (insets) (Reproduced with 
permission from ref. [23], © 2011 American Chemical Society)
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Pt/Cu [103] and Pd/Sn [104] hollow nanostructures with large surface areas that 
potentially open up new opportunities for catalytic applications.

 Formation of Bimetallic Nanoparticles

 Structure-Controllable Synthesis Methodologies

The performance of the fuel cell is dependent on how robust the electrocatalyst is 
for each electrode. The electrocatalyst must exhibit high activity and durability 
while being cost-effective. Regardless of being an anode or cathode, the electrocata-
lyst’s activity is surface atom sensitive only, which means that a high surface area-
to- volume ratio must be achieved. Therefore, the ability to manipulate the size and 
shape of the nanocatalyst is crucial to achieving high activity without losing dura-
bility. However, the challenge still lies in fabricating highly active and durable cata-
lysts while also having homogeneity in size and good particle dispersion.

Various methods have been employed for the preparation of bimetallic nanocata-
lysts, based on colloidal chemistry [105, 106], reverse micelles [107, 108], micro-
wave irradiation, [109] and alcohol reduction [74, 110]: a brief summary of each is 
given below. No single method is universally superior; thus depending on the situa-
tion, the reader is advised to consider the intrinsic advantages and disadvantages of 
each approach when deciding which method to employ.

 Colloidal Chemistry Methods
The colloidal methods, which offer a good capability for structural control, are 
widely used for the preparation of metal nanoparticles. The starting material, or 
precursor, is a metallic salt solution mixed with protective agents, which are usually 
surfactant molecules. The metal precursors are chemically reduced by the addition 
of reducing agents to form metal nanoparticles. A narrow size distribution can be 
achieved by the colloidal metal nanoparticles stabilized by stereo-hindrance effects 
or electrostatic charge.

The major drawback is the presence of protecting ligands (stereo-hindrance) 
such as NR4

+, PPh3, PVP, PNI, PAAm, and PVA, which may also block the catalytic 
active sites of the nanoparticles. Therefore, the removal of the protecting shells is 
necessary and important for realistic applications. The protecting shells can be 
removed by washing in an appropriate solvent or by decomposition at high tempera-
ture in an inert atmosphere. However, these processes result in unpredictable phe-
nomena such as the surface segregation or cluster growth due to sintering effects 
during decomposition.

It is preferable to use an alternative route to prepare colloidal metal nanoparticles 
without protecting agents. The synthesis of bimetallic nanoparticles by this approach 
was shown to be effective; see Christina et al. [111]: they proved that size-selected 
PtRu bimetallic nanoparticles can be synthesized by reducing Pt4+ and Ru3+ ions in 
ethylene glycol (EG) without a need for protection agents. The size of nanoparticles 
can be easily manipulated by varying the pH value of EG solvent. Shape-controlled 
synthesis of nanocrystals can also be achieved by the colloidal route.
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 Reverse Micelles Methods
Metal nanoclusters can be prepared by reverse micelle methods with oil, water, and 
surfactant. The inverse micelle solution is used to solubilize the metal salt and pro-
vide a microreactor for the nucleation, growth, and stabilization of the nanometer- 
sized clusters. For example, the oil component (n-heptane) and surfactant 
((2-ethylhexyl) sulfosuccinate (AOT)) are first well-mixed, and an aqueous solution 
containing metal ions is subsequently added to form well-defined microemulsion 
phase with the metallic complex in the “water pool.”

An important parameter in characterizing the microemulsion is the water-to- 
surfactant molar ratio, W0 = [water]/[surfactant], which plays a crucial role in control-
ling the equilibrium state of phase in a microemulsion system. The microemulsion of 
the same composition of oil, water, and the surfactant that contained the reducing agent 
was also prepared. An appropriate amount of reducing agents containing microemul-
sion was then gradually added to the microemulsion containing metal ions, reducing them 
to metal nanoparticles. For a binary system, the final composition of the bimetallic nanopar-
ticles can be easily controlled by the molar ratio of the metal precursors [25, 29–31]. 
Therefore, the materials synthesized from micellar solutions of surfactants, which com-
bine the advantages of both high specific surface area and uniform particle size distribu-
tion, are of great interest for applications in catalysis and fuel cells. However, the 
disadvantage of this method is its cost since the surfactant and oil used are expensive. 
Additionally, both surfactant and oil have negative environmental impacts, and the 
removal of the surfactants is also necessary for further catalytic applications.

 Microwave Irradiation Methods
Microwaves are electromagnetic waves. Dielectric materials in a microwave field will 
be heated by the amount tanδ, the dielectric loss tangent, to define the ability of a mate-
rial to convert electromagnetic energy into heat energy at a given frequency. The major 
advantage of microwave irradiation is that it can heat a substance uniformly through a 
glass or plastic reaction container, leading to a more homogeneous nucleation and 
shorter crystallization time compared to those obtained from conventional heating.

Conductive heating is often used, but microwave dielectric loss heating may be a 
better synthesis approach in view of its energy efficiency, speed, uniformity, and 
implementation simplicity; hence, the microwave-assisted method is beneficial to the 
formation of metal colloids. Liu et al. [112] have prepared the PtRu nanoparticles sup-
ported on Vulcan XC-72 carbon and carbon nanotubes by a microwave- assisted polyol 
process. An ethylene glycol solution containing Pt and Ru salts was heated in a house-
hold microwave oven for several seconds. The resulting suspension was filtered, and 
the residue was washed with acetone and dried at 100 °C overnight in a vacuum oven. 
It was found that the PtRu nanoparticles (2–6 nm in diameter) were uniformly dis-
persed on carbon. It was also found that both PtRu/C catalysts exhibited higher elec-
trocatalytic activities for methanol oxidation than a comparative Pt/C catalyst.

 Alcohol-Reduction Methods
The alcohol-reduction method has been developed for the preparation of metal 
colloids for both homogeneous and heterogeneous catalysis. In both cases, well 
monodispersed metal colloids can be formed and stabilized in aqueous solution 
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with the existence of polymers. The successful application of the alcohol-reduction 
method for the preparation of supported Pt and PtRu catalysts for fuel cell applica-
tions has been reported by Hsing et al. [110].

The prepared metal colloids were stabilized with a surfactant (SB12) without 
influencing the deposition of the colloids on the carbon support during the reduc-
tion process. Hwang et al. [74] have synthesized a nanosized PtRu/C catalyst 
using a modified alcohol-reduction method by incorporating small amount of 
Nafion in the preparation step. The addition of Nafion eliminates the use of stabi-
lizers, which are commonly used to prevent cluster agglomeration. Even though 
the addition of stabilizers prevents agglomeration and coalescence of the metal 
particles on the supports, their removal prior to the electrochemical measurements 
requires complex procedures. However, the addition of Nafion in the present 
investigation serves a dual role. It disperses the catalyst particles on the carbon 
support and controls the size of the PtRu particles. Additionally, it is found that the 
Nafion addition into the catalytic layer can enhance the activity of PtRu catalyst 
for the electrooxidation of methanol by acting as a dispersing agent while 
 increasing the ionic conductivity.

 Electrochemical Deposition
Electrochemical deposition can be utilized to deposit a variety of metal nanopar-
ticles, such as Pt and Cu, onto various substrates. The deposition system consists 
of an electric conductive working electrode, counter electrode, and a reference 
electrode. A metal salt was dissolved in the electrolyte, by applying suitable poten-
tial on the substrate, upon which metal salts can be deposited to form metal 
nanoparticles.

The 2-D or 3-D growth of metal can be controlled by the selection of applied 
potentials. 2-D growth can be fabricated by using underpotential deposition (UPD), 
in which the potential used for depositing the metal is higher than its reversible ther-
modynamic potential. For 3-D growth, overpotential deposition (OPD) can be used 
for bulk-like metal film. Adzic et al. [87, 113, 114] has utilized the UPD method to 
fabrication a variety of core–shell nanocatalysts. For example, they deposited Cu 
onto the substrate of Pd nanoparticles using an UPD method, in which a thin layer of 
Cu was formed on the surface the Pd substrate. By using redox-transmetalation, Pt 
metal can be deposited onto the surface of Pd nanoparticles to fabricate the Pdcore–
Ptshell nanocatalyst. Fabrication of nanocatalysts by using electrochemical method 
may not be as attractive as chemical methods in which the large-scale synthesis of 
catalyst can be achieved. Fabrication of nanocatalysts using electrochemical methods 
may not be attractive as chemical methods in which the large-scale synthesis of cata-
lyst can be achieved.

 Formation Mechanism Studies

Understanding structural variations during the nucleation and growth process, 
especially in the early stages of nanoparticle formation, are extremely important to 
achieve structural as well as size control of the nanoparticles. For metal  nanoparticles, 
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X-ray absorption spectroscopy (XAS) has proved to be one of the most suitable 
methods for investigating structural evolution, and in many cases structural proper-
ties of metal particles can be probed in situ during the different preparation steps 
[20, 115–118]. Other techniques such as X-ray diffraction (XRD) and transmission 
electron microscopy (TEM) [119] are difficult to employ in situ because the 
nanoparticle’s structure changes during preparation of the sample or due to the lack 
of long-range ordering [120]. UV–Vis spectroscopy has also been utilized for prob-
ing the nanoparticle formation mechanism [121–125]. By following the shift in the 
absorbance band and accompanying changes in the intensity in absorbance, infor-
mation about the formation of nanoparticles can be obtained.

 X-ray Absorption Spectroscopy
It has been shown in the literature that the study at the X-ray absorption near-edge 
spectroscopy (XANES) region (conventionally from below the edge up to ~ 30 – 50 
eV) provides information about the oxidation state, fractional d-electron density, 
and electronic environment of the absorbing atom. Spectra obtained from the region 
extending from the XANES region to as high as 2 keV above the edge are known as 
the extended X-ray absorption fine structure (EXAFS) and are primarily due to the 
scattering of the photoelectron by near-neighbor atoms. The amplitude of the 
EXAFS function χ(k), where k is the wave vector, is proportional to the number of 
nearest neighbors, and the change of phase with the wavelength of the photoelectron 
depends on the distance between the emitter and the backscattering atom. The back-
scattering strength also depends on the type or atomic number of atoms evolved in 
the backscattering process. Thus, an analysis of EXAFS data yields structural 
details about the absorbing atom and its local environment. In recent years, XAS 
studies have been explored on bimetallic nanoparticles. In our group, we explored 
XAS methodologies to understand the formation of bimetallic nanoparticles.

Formation mechanism of PtRu/C bimetallic nanoparticles synthesized by a modified 
Watanabe’s method: We reported the formation mechanism of carbon- supported bime-
tallic PtRu nanoparticles by performing XAS measurements at each stage of synthesis 
[27]. The synthesis process involves adjustment of the pH of equimolar aqueous H2PtCl6 
and RuCl3 followed by reduction with NaHSO3 to their corresponding intermediate 
compounds. Later, to each compound, hydrogen peroxide was added, and again the pH 
was adjusted to 5 using 1 M NaOH. These two solutions were then mixed, and the pH 
was maintained at 5. Later, an appropriate amount of Vulcan XC-72R carbon was mixed 
in, and the mixture was heated at 100 °C for 8 h. The resulting colloidal product was 
then washed with ultrapure water and dried. Hydrogen reduction was performed on the 
colloidal product at 300 °C for 2 h to achieve carbon-supported PtRu bimetallic NPs.

Based on the XAS parameters, formation mechanism of bimetallic PtRu/C NPs was 
proposed. From Pt LIII-edge XAS, we observed that, for the beginning compound 
H2PtCl6, the coordination number of Pt, i.e., NPt–Cl, is 6.0 showing that Pt4+ ion is sur-
rounded by six chloride ions. Upon addition of NaHSO3, we observed the change in Pt 
neighbors with sulfur contribution around Pt (NPt–S, 3.9). From the EXAFS results, we 
confirmed that the species formed at this stage is in the form of [Pt(SO3)4]6− in which Pt2+ 
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ion is surrounded by four SO3
2-  ionic groups. The addition of H2O2 to these species 

increases NPt–O coordination to 5.9 with a bond length of 2.00 Å which is comparable 
with that of the Pt–OH bond length indicating that Pt2+ ions are oxidized to Pt4+ and sur-
rounded by six hydroxide ions. Ru K-edge XAS analysis reveals that NRu–Cl coordination 
is 6.0 for RuCl3, and after the addition of NaHSO3, the contribution from Ru–O coordi-
nation with NRu–O is 3.9 similar to the [Ru(OH)4]2− species, while upon addition of H2O2, 
the Ru–O coordination with NRu–O is 6.0 similar to the RuO2 species. Later, when we 
mixed the RuO2 species with the H2Pt(OH)6 and heated this mixture at 100 °C for about 
8 h, it produced Ru and Pt coordination values of around Ru as 1.6 and 1.2, respectively. 
Similarly, Pt and Ru coordination around Pt is found to be 0.8 and 1.3, respectively. The 
oxygen contribution around Pt and Ru is found to be 2.8 and 4.1, respectively. After 
hydrogen reduction, the NRu–Pt is increased to 1.9, and NPtRu is increased to 1.9 revealing 
the formation of PtRu bimetallic NPs. From the compilation of XAS data, a schematic 
of PtRu formation process was proposed as shown in Scheme 3.

Scheme 3 Schematic of formation of carbon-supported bimetallic PtRu nanoparticles synthe-
sized by a modified Watanabe’s method (Reproduced with permission from ref. [27], © 2006 
American Chemical Society)
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XAS results of this study revealed that the mixing of Pt4+ ions with a ligand envi-
ronment of OH− groups and Ru4+ surrounded by oxygen groups at a reaction tem-
perature of 100 °C for 8 h prior to H2 reduction initiated the reduction reaction as 
evidenced by the presence of Pt and Ru bimetallic and ionic contributions that 
enhance the atomic distribution and dispersion in PtRu bimetallic nanoparticles.

Formation of PtRu/C bimetallic nanoparticles in ethylene glycol solutions: Very 
recently, by using XAS, we deduced the formation process of PtRu nanoparticles in 
ethylene glycol solutions [26]. The reduction of Pt4+ and Ru3+ metallic ions was 
performed in ethylene glycol solutions at 160 °C for four time periods, i.e., 0.5, 1, 
2, and 4 h. After reflux at each time period, the reaction mixture was cooled to room 
temperature and was taken for the XAS measurements.

By comparing the FT-EXAFS spectra and fitting results of both Pt LIII-edge and 
Ru K-edge, the formation mechanism of PtRu nanoparticles in EG solutions was 
understood (Scheme 4). From the Pt LIII-edge XAS and Ru K-edge XAS, we 
observed that upon mixing H2PtCl6 with RuCl3 in EG solution, the coordination 
numbers NPt–Cl and NRu–Cl were found to be 5.6 and 6.0, respectively. However, after 
controlling the pH at 11, the NPt–Cl are found to be 3.8 with a Pt–Cl distance of 2.311 
Å related to anionic PtCl4

2-  ions, respectively. However, at the same step, around 
Ru, a contribution from OH− appeared (NRu–O = 4.9) and the contribution from Cl − 
is largely decreased (NRu–Cl = 0.5).

Scheme 4 Formation of PtRu bimetallic NPs in EG solutions (Reproduced with permission from 
ref. [26], © 2007 American Chemical Society)
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Hence, higher OH− coordination around Ru indicated that the species pro-
duced at this stage are in the form of [Ru(OH)6]3−. Later refluxing the mixture 
con taining PtCl4

2-  and [Ru(OH)6]3−ions at 160 °C for 0.5 h produces Pt and Ru 
coordination around Pt of 6.5 and 2.7, respectively. Similarly, the Ru and Pt coordi-
nations around Ru are 2.8 and 2.7, respectively. No change in coordination numbers 
and interatomic distances were found after increasing the reflux time, i.e., to 1, 2, 
and 4 h, indicating good stability of PtRu NPs formed in EG solutions.

Formation of Pd–Au/C bimetallic nanoparticles in AOT reverse micelles: We have 
recently demonstrated the unique application of XAS as a fundamental character-
ization tool to help in designing and controlling the architecture of Pd–Au bimetal-
lic nanoparticles within a water-in-oil microemulsion system of water/sodium 
bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane [25]. By properly performing 
hydrazine reduction and redox-transmetalation reactions sequentially within water-
in-oil microemulsions, we have generated Pd–Au bimetallic clusters with various 
Pd–Au atomic stackings. At first by performing a redox- transmetalation reaction 
between Pdnuclei NPs and the Au3+ ions, Pdnuclei–Austack-1 NPs were generated. By fol-
lowing hydrazine reduction reaction, Pd2+ ions were reduced on the preformed 
Pdnuclei–Austack-1 NPs in order to fabricate (Pdnuclei–Austack-1)–Pdsurf NPs (Scheme 5). 

Scheme 5 Schematic of architecture of Pd–Au bimetallic NPs as investigated by X-ray absorp-
tion spectroscopy (Modified and reproduced with the permission from the original figure of ref. 
[29], © 2007 American Chemical Society)
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Both the redox-transmetalation and hydrazine reduction reactions were repeated to 
manipulate the Pd–Au stacking until we reach (Pdnuclei–Austack-3)–Pdsurf NPs.

From the XAS structural parameters, the degree of alloying and extent of atomic 
distribution were evaluated. In the case of (Pdnuclei–Austack-1)–Pdsurf-stacked Pd–Au bime-
tallic NPs formed during the second hydrazine reduction reaction, the NAu–Au and NAu–Pd 
were determined as 8.17 and 1.37, respectively, giving the total coordination number of 
Au and Pd around Au S N N NAu i Au Au Au Pd– – –= +( )  as 9.54. Similarly, the NPd–Pd and 
NPd–Au are determined as 6.37 and 0.87, respectively, providing the total coordination 
number of Pd and Au around Pd SN N NPd i Pd Pd Pd Au– – –= +( )  as 7.24. From 
these  values, the structural parameters P N Nobserved Au Pd Au i=( )– –/ S  and 
R N Nobserved Pd Au Pd i=( )– –/ S  are calculated as 0.14 and 0.12, respectively. From the cal-
culated degree of alloying of Au and Pd, i. e., JAu (22.9 %) and JPd (30.8 %), by our 
developed methodology, low JAu and JPd indicated that both Pd and Au atoms are segre-
gated in the cluster. Thus, XAS can be conveniently utilized to characterize the segrega-
tion in nanomaterials once we properly extract the coordination number parameters.

Nashner et al. have studied the formation process of carbon-supported PtRu5 
bimetallic nanoparticles synthesized from molecular cluster precursors, i.e., 
PtRu5C(CO)16 [117, 126]. By following in situ EXAFS studies, scanning transmis-
sion electron microscopy, the authors have understood the atomic distribution and 
surface segregation phenomena. Authors have shown that during the nucleation and 
growth process, while the metallic character increases, the bond between the CO 
ligands and metals should gradually break. Further, it was demonstrated that Pt 
exhibits a marked preference for segregation to the particle’s surfaces under an 
ambient H2 atm. However, in the presence of O2, the authors observed the formation 
of a metal oxide surface over a metal core which can revert back to the initial metal 
core structure on exposure to H2.

The examples discussed above indicate that XAS can be conveniently employed 
to understand the early stage formation of bimetallic nanoparticles. The information 
obtained from XAS can be utilized to develop structure-controllable synthesis strategies 
for a wide variety of bimetallic nanoparticles.

 UV–Vis Absorbance Spectroscopy
The characteristic surface plasmon absorption of metallic species is a convenient 
tool for following the formation of nanoparticles and their reaction kinetics. In addi-
tion, when following the simultaneous reduction of two metal systems, UV–Vis 
spectroscopy offers information whether the resultant system is a bimetal, an alloy, 
or a physical mixture [127, 128]. Torigoe et al. studied the formation of Ag–Pt alloy 
colloidal nanoparticles with optical absorption spectra [123]. The Ag–Pt alloy col-
loidal nanoparticles were prepared by step-by-step reduction of Ag2[Pt(C2O4)2] by 
dropwise addition of NaBH4 in ethylene glycol solution. The authors recorded opti-
cal spectra of Ag2[Pt(C2O4)2] at various stages of the reduction (Fig. 5). The authors 
pointed out that the reduction reaction is composed of at least three stages. In the 
first stage (a–c), colloidal Ag particles were formed as evidenced by the growth of 
the absorption band at 407 nm with increasing concentrations of the reductant and 
lower extent of shift in the λmax (less than 3 nm). In the second stage (d–f), the 
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authors observed a red shift of the plasmon band and an accompanying decrease in 
the absorbance. The authors opinioned that this is probably due to the hole injection 
and the accompanying decrease in the density of conduction electron. In the final 
stage (g), the plasmon band abruptly reestablishes at further shorter wavelengths 
than the initial position, i.e., at 340 nm, with a long tail toward longer wavelengths. 
At this stage, the plasmon band has only one peak, with a bandwidth broader than 
that of the silver colloid observed in the first stage. This observation was taken as 
evidence for the formation of Ag–Pt alloy colloid.

In another interesting study, M. A. El-Sayed and coworkers followed the forma-
tion of bimetallic gold–silver alloy nanoparticles with UV–Vis spectroscopy [121]. 
The authors prepared Au–Ag bimetallic nanoparticles by the co-reduction of chlo-
roauric acid (HAuCl4) and silver nitrate (AgNO3) with sodium citrate. From the 
UV–Vis absorption spectra (Fig. 6), the authors noticed that the plasmon maximum 
blue-shifts linearly with increasing silver content. Further, as the optical absorption 
spectra of their solutions shows only one plasmon absorption, the authors concluded 
that co-reduction of chloroauric acid and silver nitrate with sodium citrate leads to 
a homogeneous formation of alloy nanoparticles.

Zhang et al. followed the evolution of Ag@AgAu metal core–alloy shell bime-
tallic nanoparticles by UV–Vis spectroscopy [129]. The authors prepared Ag@
AgAu metal core–alloy shell bimetallic nanoparticles by a replacement reaction 
between Ag nanoparticles and HAuCl4. The authors recorded absorption spectra at 
various stages of nanoparticle formation (Fig. 7). The surface plasmon resonance 
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peak appeared at 409 nm for the initial Ag nanoparticles was slightly red shifted 
with a decrease in peak intensity. At the same time the authors noticed the appear-
ance of a new peak at 565 nm which began to red shift with reaction time (panel A 
of Fig. 6). The authors pointed out that the position of the peak at 565 nm was a 
significant red shift from the SPR of non-alloyed Ag@Au core–shell nanoparticles 
which normally exhibit a SPR peak at 530 nm. From this observation, the authors 
surmise that Au atom deposition and Ag atom dissolution were not uniform across 
the nanoparticle’s surface. By comparing the locations of two peaks with the theo-
retical calculations derived from plasmon hybridization theory, the intermediate 
bimetallic nanoparticle was a hybrid of a Ag nanosphere and a hexapod-like 
branched particle. The authors also noticed that the position of the second peak did 
not change 4 to 6 min after the HAuCl4 addition, while the first peak underwent a 
red shift (spectrum 360 s in Fig. 6a). This observation was related to the deposition 
of Au atoms and alloying with the underlying Ag atoms. The authors observed a 
blue shift of the second peak 9 min after the addition of HAuCl4 (spectrum 540 s, 
Fig. 6b) and pointed out that this happened due to the atomic rearrangement by 
Ostwald ripening. Finally, the red shifting of the first peak and the blue shifting of 
second peak finally collapsed into a common peak (spectrum 1200s and 6000 s in 
Fig. 6b), signaling the complete formation of Ag@AgAu bimetallic nanoparticles.
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 Characterization of Bimetallic Nanoparticles

Electrochemical energy conversion for technical applications relies largely on the 
high catalytic reactivity of electrocatalysts. The optimum catalytic activity is strongly 
dependent on various factors such as atomic distribution of catalytic metal sites in the 
catalyst matrix [20, 111, 130, 131], as well as the surface structure, composition, and 
particle size distribution of the nanocatalysts. In order to select the proper electrocata-
lyst materials for energy applications, characterization methods play an important role 
in energy-related research. Ideally, the characteristics of the electrocatalyst materials 
should be used as selection criteria, and they should allow researchers to forecast the 
corresponding PEMFCs performance. The physical characterization and electro-
chemical characterization will be introduced and discussed in this section.
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 Physical Characterization

Several experimental techniques, including microscopy, diffraction, and numerous 
spectroscopies, have been successfully applied to deduce the structural aspects of 
bimetallic nanoparticles. Size distribution, morphology, segregation, alloying 
extent, atomic distribution, degree of alloying, and surface composition are some of 
the key properties given considerable attention in the characterization of bimetallic 
alloy or core–shell-structured electrocatalysts.

 X-Ray Diffraction (XRD)
XRD has been widely employed to study supported and unsupported electrocatalyst 
nanoparticles to gather information on structure, crystallinity, lattice spacing, and 
grain size. In practice, the average particle size of PtRu-based electrocatalysts is 
calculated from the broadening of the (220) peak using the Scherrer equation [132], 
as shown in Eq. 2.
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where d is the average particle diameter, λkα1 is the wavelength of X-ray radiation, 
θB is the angle of the (220) peak, and B(2θ) is the width in radians of the diffraction 
peak at half-height. The determination of average particle diameter using (220) 
peak broadening in 2θ ~ 67° is particularly reliable for carbon-supported PtRu elec-
trocatalysts, since in this region there are no reflection signals associated with the 
carbon support. By careful XRD measurements, several authors have followed the 
changes in the lattice constant caused by alloying in electrocatalysts in order to 
obtain information about the alloying degree [133–136]. Antolini and coworkers 
have proposed an equation for determining the alloying degree of a PtRu catalyst 
which is defined as the Ru atomic fraction (xRu) through Eq. 3 [137, 138]:

 a a x= 0 0 124– . Ru  (3)

where a0 is the lattice constant of pure Pt. For unsupported pure Pt, a0 has the value 
of 0.39231 nm, whereas for supported pure Pt, a0 = 0.39155 nm reported for Pt/C 
catalyst of E-TEK [137]. Radmilović and coworkers also proposed a similar type of 
relationship for single-phase PtRu bulk alloys: a = 0.39262 – 0.124 xRu (or a = 
0.38013 + 0.1249 xPt) [132]. Antolini and Cardellini utilized the peak height ratio of 
the Pt[111] crystal face and the C[0015] reflection of the carbon in order to evaluate 
the thermal crystallization considered as a crystallinity degree index of PtRu/C 
nanoparticles [138]. In some cases, XRD has been also used to calculate the surface 
area of the catalyst if the shape of the catalyst particles is spherical by using Eq. 4:
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where S is the surface area (m2 g−1), d is the average particle size (nm), and ρ is the 
Pt density (21.4 g cm−3). Information on chemical composition can be obtained first 
by constructing a calibration graph of lattice parameter versus atomic fraction and 
later by quantifying a composition based on the measured lattice parameter. 
Gasteiger et al. carried out detailed studies on the correlation of the lattice parame-
ter with the alloy composition in the binary PtRu system [58] and found a linear 
dependence, according to the Vegard’s law. These studies allowed the authors to 
establish the relationship between the electrode composition and electrocatalytic 
activity. However, XRD is a bulk method and reveals information on the bulk struc-
ture of the catalyst, and its support and its application to the interpretation of nano-
sized particles are rather difficult. By using simulation calculations, Debye function 
analysis (DFA) offers a convenient approach to determine the size distribution and 
structure of small clusters [139]. In contrast to the analysis restricted to the limited 
regions such as the integral intensities of single Bragg peaks, the DFA provides 
detailed structural information in a range of dispersion (approx. > 40 %). In a typi-
cal DFA analysis, the measured diffraction curves are fitted by a set of Debye func-
tions for clusters with the “magic” numbers N = 13, 55, 147, … (for cuboctahedra 
and icosahedra) and N = 54, 181 (for decahedra) and N = 13, 57, 154 (for hexagonal 
close-packed clusters) [140]. A histogram plotting the mass fraction of specific 
structural units present within the sample against their average size can then be 
constructed through the evaluation of the full pattern. By carrying out the systematic 
numerical simulations using Debye functions, Vogel et al. obtained the intrinsic 
structure including the average lattice constant and the size distribution of surfac-
tant-stabilized PtRu catalysts and silica-supported PtRu colloids in the as- 
synthesized state and after several heat treatments under various atmospheres [106].

 Transmission Electron Microscopy (TEM)
TEM in which the electrons pass through the sample generally requires the electro-
catalyst particles to be dispersed onto an electron-transparent substrate such as a thin 
carbon film-coated copper microgrid. TEM is particularly useful because of the high 
contrast between the metal atoms (especially heavy metals) and gives information 
about the size, size distribution, dispersion, and even the morphology of various 
shapes of particles. In general, for fuel cell catalysts, microscopic investigation is 
combined with other spectroscopic and diffraction techniques to obtain a compre-
hensive understanding on real structure. Radmilovic et al. [132] reported a detailed 
study of carbon-supported nanoparticles by TEM and XRD. The focus of their work 
was put on the characterization of a commercially available carbon-supported PtRu 
(1:1) catalyst in terms of both particle size and completeness of alloy formation. In 
the authors’ opinion, many of the difficulties of XRD can be addressed by 
TEM. Especially, the lattice structure can be studied by high-resolution electron 
microscopy (HRTEM), including the presence of defects such as dislocations, twins, 
etc. HRTEM presents an interesting tool in catalyst characterization, as it can be used 
to determine the geometric shape of faceting planes, the presence of surface steps, 
the surface roughness, as well as the size and distribution of electrocatalyst nanopar-
ticles. HRTEM offers resolution down to the Ångstrom level and enables 
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information to be obtained on the structure (atomic packing) rather than just 
morphology of the nanoparticles. Zhang and Chan presented TEM images along 
with the selected area electron diffraction patterns of PtRu nanoparticles synthesized 
by a two-microemulsion route in which the metal precursors and reducing agent 
formed two individual microemulsion systems [141]. Based on the presence of only 
diffractions from the face-centered cubic (fcc) in the electron diffraction pattern of 
PtRu nanoparticles, authors have concluded the formation of binary PtRu alloy with 
the fcc structure. Further evidence of the formation of fcc-structured PtRu binary 
alloy was given through the established linear relationship of the root of the sum of 
squares of the lattice coordinates versus the radius of the concentric rings with the 
lattices (111), (200), (220), (311), and (222). The authors have indicated that the 
calculated lattice cell constant through such a relationship is 3.862 Å which is in 
between those of platinum and ruthenium and is in agreement with that of a 1:1 PtRu 
alloy. Once the particle size distributions were obtained through TEM images, the 
mean particle size dm can be calculated with the following formula (5) [142]:
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where ni is the number of particles with diameter di. It is also possible to estimate 
the dispersion (ratio of surface atoms to total number of atoms) of the spherically 
shaped PtRu clusters through the information of cluster composition and particle 
size distribution.

 Scanning Electron Microscopy (SEM)
In SEM, the surface of the sample is scanned in a raster pattern with a beam of 
energetic electrons. The SEM image is produced due to secondary electrons emitted 
by the sample surface following excitation by the primary electron beam [143]. Bi 
and Lu utilized SEM to follow the growth process and morphological control of 
platinum nanostructure, nanofiber, and nanotube junction structures [144]. These Pt 
nanostructures with various anisotropies were obtained by the galvanic replacement 
reaction between Ag nanowires and platinum salt solution in the presence of CTAB 
solution. From SEM observations, the authors have found that the platinum nano-
structure growth follows three steps; at first, platinum nanoparticles will grow on 
the surface of Ag nanowire, and then Ag–Pt composite nanowires will be formed, 
and finally the Pt nanofibers and nanotubes will grow. From the field-emission SEM 
images, the authors were able to determine the length and the inner and outer diam-
eters of the platinum nanotubes. Additionally, information related to Pt nanotube 
uniformity was conveniently obtained from the SEM images. Kawaguchi et al. 
studied the process of particle growth for Pt, Ru, and binary PtRu supported on 
carbon as a function of pyrolysis time [145]. The catalyst nanoparticles were pre-
pared by an impregnation-reductive pyrolysis method at various temperatures. The 
authors have discussed the particle growth behavior from high-resolution SEM 
images. Although SEM images have lower resolution than TEM, SEM offers better 
three- dimensional images of the electrocatalysts [146, 147].
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 Atomic Force Microscopy (AFM)
AFM is a nondestructive method for investigating the microscopic surface topography 
of nanostructures. In this method, a probe scans the surface of a material with a 
sharp tip in order to clearly image the features of a sample and senses the small 
(approximately 1 nN) repulsive force between the probe tip and the surface. 
Rodríguez-Nieto et al. utilized AFM in order to obtain morphological and micro-
scopic surface characterization of PtRu electrodeposits produced on activated 
highly ordered pyrolytic graphite (HOPG) substrates [148]. The authors were able 
to deduce the surface roughness of PtRu electrodeposits in nanometer scale from 
AFM images. Schmidt et al. employed UHV-AFM to determine the particle size 
distribution and corresponding dispersion of PtRu nanoparticles from height mea-
surements of the imaged PtRu nanoparticles [149].

 X-ray Absorption Spectroscopy (XAS)
In order to understand the structure of either alloy or core–shell-structured bimetal-
lic electrocatalysts, especially in the sub-nm 2–3 nm range, combinations of charac-
terization techniques are required. In general, the X-ray absorption spectrum of a 
sample can be divided into two regions: the near-edge region (XANES, 0–50 eV 
above the absorption edge) and the oscillatory part of the spectrum (EXAFS, > 50 
eV above the absorption edge). The capability of tuning the X-ray energy to the 
absorption edge of each participating metal in bimetallic systems makes EXAFS as 
an attractive technique to elucidate the local structure and provide information on 
the environment about a particular atom. By analyzing the EXAFS spectrum of each 
metal in bimetallic nanocatalysts concurrently, valuable structural and chemical 
information (e.g., interatomic distance, coordination number, oxidation state of 
chemical species) about the nanostructure can be conveniently obtained, and this 
information can supplement the microscopy data. From XANES measurements, 
information about oxidation states, valence states, valence bond vacancies, and 
adsorption geometries of molecules at the surface can be obtained. However, as the 
evaluation of the spectra is quite complex, due to multiple scattering processes, 
EXAFS analysis is generally preferred. Several researchers have successfully used 
EXAFS to study the bonding, geometry, and surface structure of many electrocata-
lysts nanoparticles (e.g., PtRu, Pt–Co, and PtMo.), from which the shape, size, and 
short-range order in atomic distributions occurring within the particles can be reli-
ably obtained [126, 150–154]. Recently, Russell and Rose thoroughly reviewed the 
capabilities of XAS with respect to the analysis of structural aspects of low- 
temperature fuel cell catalysts [118].

By collecting the XAS data at the absorption edges corresponding to each ele-
ment in the bimetallic nanocatalysts under investigation, the extent of intermixing 
(alloying extent) and homogeneity (atomic distribution) of bimetallic nanocatalysts 
may be assessed [20, 155]. In general one can assess the alloyed or core–shell struc-
ture of nanomaterials simply from the coordination numbers of participating ele-
ments in core–shell materials. For a homogeneous bimetallic system of Acore–Bshell 
cluster in which the core of the cluster is composed of N atoms of A (NA) and the 
surface is made of N atoms of B (NB), the total coordination number (NAA + NAB) for 
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the A atom will be greater than the total coordination number (NBB + NBA) for the B 
atom [156, 157]. If bimetallic nanocatalysts possess a random alloyed structure, the 
ratios of coordination number of A and B coordination, NAA/NAB and NBA/NBB, 
should be consistent with the ratio of atomic fraction xA/xB.

The alloy or core–shell-type structure of metallic nanostructures from XAS mea-
surements can be better understood if we can obtain knowledge about the atomic 
distribution and alloying extent of the participating elements. This is particularly 
important since, among the various structural aspects, it is most important to control 
the homogeneity, dispersion, and alloying extent as they have profound influence on 
the surface properties which affect the activity and stability of the bimetallic NPs. 
Hence, methods to gain more insights into structural aspects are highly needed. 
Even though alloying is a well-known phenomenon, detailed studies on the quanti-
tative assessment of alloying extent in bimetallic NPs have been lacking so far. In 
our research group, by deriving the structural parameters from X-ray absorption 
spectroscopy (XAS) analysis, a general methodology to estimate the alloying extent 
or atomic distribution in bimetallic NPs has been developed.

By estimating the ratio of the coordination number (CN) of A around B and also 
the CN of B around A to the total CNs, one can conveniently estimate the alloying 
extent of A (JA) and B (JB) in A–B bimetallic NPs. The parameters that are needed 
to derive the extent of alloying are represented as Pobserved, Robserved, Prandom, and Rrandom. 
The parameter Pobserved can be defined as a ratio of the scattering atoms “B” CN 
around absorbing “A” atoms (NA–B) to the total CN of absorbing atoms å( )NA i– , 
P N NA B A iobserved =( )å– –/ . Similarly, Robserved can be defined as a ratio of the scatter-

ing atoms “A” CN around absorbing “B” atoms (NB–A) to the total CNs of absorbing 
atoms å( )NB i– , R N NB A B iobserved =( )å– –/ , whereas Prandom and Rrandom can be 
taken as 0.5 for perfect alloyed bimetallic NPs if the atomic ratio of “A” and “B” is 
1:1. The JA and JB for 1:1 A–B bimetallic NPs can then be estimated by using Eqs. 
6 and 7, respectively.
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Based on åNA i– , åNB i– , JA, and JB, it is possible to develop structural models of 
NPs. For example, if å å>N NA i B i– – , the core is rich in “A” atoms and shell is 
rich in “B” atoms. In this case if both JA < JB, then the bimetallic NPs structure is 
almost pure Acore–Bshell (case 1, Fig. 8). However, if JB > JA with a coordination 
parameter relationship å å>N NA i B i– – , then the bimetallic NPs possess an “A” 
rich in core–“B” rich in shell structure (case 2, Fig. 8). If å å=N NA i B i– –  and JA 
and JB ≈ 100 %, then bimetallic NPs adopt an alloy structure (case 3, Fig. 8).
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It is possible to construct structural models emphasizing the atomic distribution 
in the bimetallic NPs with knowledge of the åNA i– , åNB i– , JA, and JB values 
derived from XAS. With the help of alloying extent values and structural parameters 
extracted from EXAFS, it is possible to generate structural models for PtRu/C cata-
lysts. We have calculated the alloying extent of Pt (JPt) and Ru (JRu) for commercial 
30 wt% PtRu/C catalysts.

In the case of JM 30 catalyst, the coordination numbers of Pt and Ru atoms 
around the Pt atom are found to be 5.6 ± 0.3 and 1.4 ± 0.1, respectively, and the total 
coordination number åNPt i–  is 7.0. The coordination numbers of Ru and Pt atoms 
around the Ru atom were determined as 3.4 ± 0.2 and 2.2 ± 0.3, respectively, and the 
total coordination number åNRu i–  is calculated as 5.6. From these values, Pobserved 
and Robserved are determined as 0.20 and 0.39, respectively, and JPt and JRu values are 
calculated as 40 and 78 %, respectively. For E-TEK 30 catalyst, we have calculated 
the coordination numbers of Pt and Ru atoms around the Pt atom as 6.2 ± 0.3 and 0.9 

± 0.1, respectively, and ∑NPt–i as 7.1; the coordination numbers of Ru and Pt atoms 

around the Ru atom are determined as 3.7 ± 0.2 and 1.2 ± 0.2, respectively, and the 

åNRu i–  as 4.9. The other two structural parameters Pobserved and Robserved in the case 
of E-TEK 30 are calculated as 0.13 and 0.24, respectively, and the JPt and JRu values 
are calculated as 26 and 48 %, respectively. It is clear from the structural coordina-
tion parameter values of both the catalysts that å å>N NPt i Ru i– –  and JRu > JPt and 
indicates that the catalysts adopt a Pt rich in core and Ru rich in shell structure.

From the quantitative extent of alloying values, we can see that in both the cata-
lysts, a considerable amount of Ru is segregated on the shell layer, but the extent of 
segregation of Ru is higher in E-TEK 30 when compared to the JM 30. The increased 
value of JRu in JM 30 catalyst indicated that most of the Ru is involved in alloying 
and hence less segregation of Ru in the shell, whereas in the case of E-TEK 30 cata-
lyst, lesser extent of Ru is involved in the alloying and considerable extent of seg-
regation of Ru can be expected in the shell region. The segregation of Ru in the case 
of E-TEK 30 may in part be responsible for its lower methanol oxidation activity 

Case 1
Acore-Bshell structure

Case 2
A-richcore-B-richshell structure

Case 3
A-B alloy structure

Fig. 8 Structural models of bimetallic nanoparticles with core–shell and alloy structures deduced 
from XAS structural parameters (key: blue, A; pink, B)
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compared to JM 30. Recent infrared measurements on the PtRu alloy particle elec-
trodes indicate that two modes of adsorbed CO vibrations related to both Pt and Ru 
domains present on the surface support the surface segregation of Ru in commercial 
catalysts [69]. The XAS results support the Pt-rich core and Ru-rich shell structure 
for commercial carbon-supported PtRu catalysts. Increase in JPt and JRu values in JM 
30 compared to E-TEK 30 indicates that the atomic distribution of Pt and Ru atoms 
are much facilitated, while an increase in atomic distribution can be taken as a mea-
sure for enhanced homogeneity.

Lin et al. investigated the commercial and in-house prepared PtRu catalysts by 
ex situ EXAFS [158]. From the observed EXAFS parameters, the authors have pro-
posed that the two catalysts differed in the degree of PtRu alloying. The EXAFS 
data of the in-house prepared catalyst indicated the signatures of PtRu bonds, 
whereas no significant contributions were found in the commercial catalyst. These 
observations lead the authors to conclude that the catalyst synthesized in-house was 
at least partially alloyed, while the commercial catalyst system seemed to contain 
mixed phases of Pt and RuOx. Greegor and Lytle demonstrated the feasibility of 
EXAFS technique for measuring the size and shape of small metal particles [159]. 
This methodology relies on developing a two-region model for various geometrical 
shapes like spheres, cubes, and disks and calculating the EXAFS average coordina-
tion number for first, second, and third coordination spheres as a function of cluster 
size. Nuzzo and coworkers have also elaborated the modeling nanoparticle size and 
shape with EXAFS [116]. They considered two model particles characterized by a 
common average first-shell coordination number (a value of ~ 8 for a 92 atom hemi-
spherical and a 55 atom spherical cubooctahedral cluster). The authors have empha-
sized that the geometry of these two clusters is significantly different with different 
sizes, shapes, or lattice symmetries, so each cluster can generate a unique sequence 
of average coordination numbers in the first few nearest-neighbor shells. Once such 
a sequence is obtained experimentally, then the corresponding cluster size, shape, 
and symmetry may be conveniently determined. Several authors have studied the 
effect of particle size on the XANES region of the XAS spectra for Pt/C catalysts 
[116, 160, 161]. In their potential-dependent XANES studies on Pt/C catalyst par-
ticles with a 3.7 and ≤ 1.0 nm in diameter, Yoshitake et al. have observed that the 
white line intensity was increased for both particle sizes as the potential increased. 
In general the white line at the Pt LIII-edge is an absorption threshold resonance, 
attributed to electronic transitions from 2p3/2 to unoccupied states above the Fermi 
level and is sensitive to changes in electron occupancy in the valence orbitals of the 
absorber [162]. Hence, changes in the white line intensity have been directly related 
to the density of unoccupied d-states and indicate the changes in the oxidation state 
of the Pt absorber. In general, if the white line intensity decreases, lower the density 
of unoccupied d-states and lower the oxidation state of Pt. The lower white line 
intensity observed at negative potentials thus corresponds to a more metallic state. 
Mansour and coworkers [163] have proposed that by comparing the white line 
intensities of Pt L3 and Pt L2 edges of a sample with those of a reference metal foil, 
one can determine the fractional d-electron occupancy (fd) of the absorber atoms in 
the sample by the following formula (8):
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where A3, r and A2, r represent the areas under the white line at the LIII-edge and LII- 
edge, respectively, of the reference foil spectrum.

 
DA A Ax x s x r= -, ,  (9)

with x = 2 or 3 and Ax, s the area under the white line at the Lx edge of the sample 
spectrum.

fd can then be used to calculate the total number of unoccupied d-states per Pt 
atom in the samples:

 
h f hJ J( ) = +( ) ( )

t  s t  r, ,
.1 0 d  (10)

where (hJ)t, r t = total for Pt has been shown to be 0.3 [164]. A large (hJ)t, s value thus 
indicates a smaller d-electron density and an increased d-band vacancy as compared 
to those for bulk Pt.

Further, Mukerjee et al. [165] and Min et al. [166] studied detailed particle size 
effects in several binary anode and cathode electrocatalysts. Mukerjee et al. calcu-
lated the values for Pt/C particles with four different diameters at potentials corre-
sponding to the hydrogen adsorption (0.0 V vs. RHE), the double layer (0.54 vs. 
RHE), and the oxide formation (0.84 V vs. RHE) regions. With the decreasing par-
ticle size, authors have observed an increased widening of the white line. The 
authors observed an increase in Pt LIII white line intensity at 0.84 V vs. RHE due to 
the adsorption of OH species at higher potentials, whereas the broadening of the 
white line at 0 V vs. RHE is related to adsorbed hydrogen. It has been shown that 
with increasing particle size, the d-band vacancy decreases, indicating that the elec-
tronic effects due to adsorption of H and OH are more pronounced for smaller par-
ticles. The authors have proposed that as the adsorption strength of H, OH, and CO 
is increased with decreasing particle size, however, below a certain size, there is a 
reduction methanol oxidation activity. It has been proposed that the intrinsic activity 
of Pt-based electrocatalysts for ORR in acidic solutions depends on both the shape, 
size of the particles, and the adsorption strength of oxygen intermediates [167]. 
Min and coworkers carried out detailed investigations on the particle size and alloy-
ing effects in Pt-based Pt–Co, Pt–Ni, and Pt–Cr catalysts [166]. From the XANES 
region of the spectra, the authors observed a decrease of the d-band vacancy with 
increasing particle size which is in agreement with Mukerjee et al. This observation 
suggests lowered adsorption strength of adsorbed oxygen species, thus facilitating 
the ORR reaction at larger particles.

Nashner and coworkers reported X-ray absorption spectroscopy characterization 
of carbon-supported PtRu nanoparticles with exceptionally narrow size and compo-
sitional distributions synthesized from the molecular cluster precursor PtRu5C(CO)16 
[126]. The authors have deduced structural variations in the PtRu nanoparticles 
exposed to different gaseous atmospheres such as hydrogen and oxygen on the basis 
of ex situ EXAFS measurements in combination with transmission electron 
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microscopy. In case of PtRu nanoparticles exposed to H2 atm, the authors found that 
the ratio of PtRu bonds to Ru–M (NRu–Pt/NRu–M) as well as PtRu bonds to Pt–M 
(NPtRu/NPt–M) obtained from experimental EXAFS data is always lower than the sta-
tistically predicted ratios indicating stronger weighting of the homometallic coordination 
in nanoparticles. The authors proposed that Pt shows a pronounced preference for 
segregation to the particle surfaces based on the fact that NPtRu/NPt–M > NRu–Pt/NRu–M. 
Upon chemisorption of oxygen, the authors found an increase in the disorder in the 
first-shell metal bond lengths accompanied by the average bonding of two oxygens 
to both Pt and Ru with bond distances similar to those found in structures with bind-
ing oxygen atoms. In another interesting study, Nuzzo and coworkers utilized XAS 
to follow core–shell inversion in PtRu nanoparticles during hydrogen treatment at 
various temperatures [117]. Based on XAS structural parameters, the authors found 
that the incipient PtRu nanoparticles initially formed a disordered structure at 473 K 
in which Pt is found preferentially at the core of condensing particle. After exposure 
to high-temperature treatment to 673 K, the nanoparticle undergoes a core–shell 
inversion leading to the migration of Pt to the equilibrated bimetallic nanoparticle.

Very recently, by utilizing the XAS, we examined heat-induced changes in the 
surface population of Pt and Ru in PtRu/C catalyst NPs and correlated them with the 
electrocatalytic activity [168]. In this study, the thermal treatment procedure was 
designed in such a way that the particle size of initial NPs was not altered upon 
thermal treatment but can change only the surface population of Pt and Ru allowing 
us to deduce the structural information independent of particle size effect. We uti-
lized X-ray absorption spectroscopy (XAS) to deduce the structural parameters that 
can provide information on atomic distribution (or) alloying extent as well as sur-
face population of Pt and Ru in PtRu/C NPs. The PtRu/C catalyst sample obtained 
from Johnson Matthey was subjected to heat treatment in two environments. At first 
the as-received catalyst was reduced in 2 % H2 and 98 % Ar gas mixture at 300 °C 
for 4 h (PtRu/C as-reduced). Later this sample was subjected to either oxygen 
(PtRu/C-O2-300) or hydrogen thermal treatment (PtRu/C-H2-350). XAS results 
reveal that when the as-reduced PtRu/C catalyst was exposed to the O2 thermal 
treatment strategy, considerable amount of Ru was moved to the catalyst surface. In 
contrast, H2 thermal treatment strategy led to the higher population of Pt on the 
PtRu/C surface. Characterization of the heat-treated PtRu/C samples by XRD and 
TEM reveals that there are no significant changes in the particle size of thermal- 
treated samples when compared to the as-received PtRu/C sample. Both XAS and 
electrochemical COads stripping voltammetry results suggested that the PtRu/
C-H2-350 sample exhibits significant enhancement in reactivity toward CO oxida-
tion as a result of the increased surface population of the Pt when compared to the 
PtRu/C-O2-300 and PtRu/C as-reduced samples.

 X-ray Photoelectron Spectroscopy (XPS)
XPS analyses are commonly used in the characterization of fuel cell electrocata-
lysts. XPS works based on the photoelectric effect where the energy of X-ray beam 
is sufficient to overcome the binding energy of electron of the analyte atom, 
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molecule, or solid/surface, allowing the electrons to be ejected. In general, both 
valence and core electrons can be ejected by X-ray radiation. The composition of 
materials can be determined using the peal areas under the binding energy curves of 
the core electron which is characteristic of each element present in the sample [34]. 
Further, information on chemical bonding can also be conveniently obtained 
through XPS since the peak shape and binding energy are sensitive to the oxidation 
and chemical state of the emitting atom [169, 170]. XPS is also particularly useful 
in determining the particle size effects in fuel cell catalysts. In their studies, Kao 
et al. observed a 0.3 eV increase of the Pt 4f binding energy when compared to bulk 
systems [171]. Eberhard et al. also found a continuous increase of the Pt 4f binding 
energy with decreasing particle size [172]. Zhang and Chan presented XPS analyses 
of PtRu nanoparticles prepared in water-in-oil reverse microemulsion [173]. The Pt 
4f7/2 and Pt 4f5/2 lines that appeared at 71.30 eV and 74.57 eV, respectively, were 
attributed to metallic Pt0. The peaks that appeared at 72.49 eV and 75.88 eV were 
assigned to PtII in PtO and Pt(OH)2, respectively. Based on the relative height of the 
peaks, the authors suggested that metallic Pt0 is the predominant species in the 
nanoparticles. The authors observed three components with binding energies of 
461.32, 463.41, and 465.72 eV in the corresponding Ru 3p3/2 spectrum correspond-
ing to the Ru0 metal, RuIV (e.g., RuO2), and RuVI (in RuO3), respectively. From these 
results, the authors concluded that the surface of nanoparticles contains metal and 
Ru oxides species.

Although XPS is suitable for obtaining the chemical state and bonding in elec-
trocatalysts, its application toward the determination of surface composition is lim-
ited. For particle size < 3 nm, not less than half of the atoms in the cluster belong to 
the surface. Hence, the surface-specific XPS with the escaping depth of an electron 
of about 3 nm becomes a bulk method for small particles [174]. Recently, the work 
done by Tao et al. demonstrated that using a synchrotron-based X-ray light source 
with tunable incident X-ray energy allows for investigation of the composition of 
bimetallic nanoparticles [34, 175].

 Auger Electron Spectroscopy (AES)
AES is a powerful tool for determining the composition of the top few layers of a 
surface. In AES, the sample of interest is irradiated with a high-energy (2 – 10 keV) 
primary electron beam. This bombardment results in the emission of backscattered, 
secondary, and Auger electrons that can be detected and analyzed. The backscat-
tered and the secondary electrons are used for imaging purposes similar to that in 
scanning electron microscopy (SEM). The Auger electrons are emitted at discrete 
energies that are characteristic of the elements present on the sample surface. When 
analyzed as a function of energy, the peak positions are used to identify the elements 
and the chemical states present. AES is widely employed on electrocatalysts to real-
ize the surface structure. Stamenkovic et al. investigated the surface structure of 
PtM (M = Co, Ni, Fe) polycrystalline alloys with the combination of AES, low 
energy ion scattering (LEIS) and ultraviolet photoemission spectroscopy (UPS) [176]. 
By careful modeling of emission from several subsurface layers with dynamic scat-
tering of the outgoing Auger electron, the authors have observed that the Co775/Pt237 
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AES peak ratio for Pt3Co sample is different on sputtered and annealed surface 
indicating that the concentration profile of Pt and Co atoms in the surface region 
may depend on the respective UHV treatment of the alloy sample. From the combi-
nation of spectroscopic results, the authors found that in the case of annealed Pt3Co 
sample at 1,000 K, a completely Pt-skin surface was formed, and due to complete 
segregation of Pt atoms, the surface composition of Pt is calculated as 100 at.%. 
In the case of ion-sputtered Pt3Co sample, the surface composition corresponds to 
the ratio of alloying elements in the bulk, i.e., 75 at.% Pt and 25 % Co. In another 
interesting study, Tremiliosi-Filho et al. utilized AES as a primary characterization 
technique to investigate the ruthenium coverage on Pt (111) surface [177]. The 
authors have calculated the amount of Ru monolayers formed on Pt(111) surface 
from the intensity of AES peak observed at 274 eV as a result of Pt(111) exposure 
to RuCl3 solution. With the increasing concentration of RuCl3 solution, the intensity 
of AES peak was found to be increased, and the corresponding amount of Ru mono-
layer coverage on Pt(111) was calculated to be higher.

Electrochemical Nuclear Magnetic Resonance (EC-NMR) 
Spectroscopy
Electrochemical nuclear magnetic resonance (EC-NMR) spectroscopy which com-
bines both solid state NMR and electrochemistry has emerged as a powerful tech-
nique to elucidate the electronic properties of metal surfaces [178]. In particular, 
EC-NMR provides an electronic level description based on the Fermi level local 
density of states (Ef-LDOS) [179]. The Wieckowski group carried out detailed 
EC-NMR studies in order to explore the structure of electrocatalyst nanoparticles, to 
estimate various Ef-LDOS that are involved in construction of the metal- adsorbate 
bonds, and to examine the diffusional behavior of CO on PtRu bimetallic catalysts as 
well as interesting relationship between electrochemical current generation and the 
Ef-LDOS of CO on Pt [180, 181]. 13C and 195Pt are particularly useful nuclei for 
investigating electrochemical interfaces. Quantitative information about the Ef- 
LDOS of both 5σ and 2π* orbitals of the chemisorbed CO on Pt nanoparticles can be 
conveniently achieved by the 13C EC-NMR. This analysis is particularly based on 
metal and ligand Knight shifts and spin–lattice relaxation rates, and it is important 
since the variation of these Ef-LDOS reflects the changes in Pt–CO chemisorption 
bonds. Similarly, from the 195Pt EC-NMR, the 6 s and 5d Ef-LDOS of Pt surfaces can 
be obtained. The electronic alterations of the metal surfaces can be understood 
through variations in Ef-LDOS. In elegant work, Wieckowski and coworkers carried 
out thorough 195Pt EC-NMR measurements on commercial PtRu alloy nanoparticles 
and 13C EC-NMR for CO chemisorbed on these catalysts [180]. The authors showed 
195Pt EC-NMR spectra of a Pt-black sample (with an average particle diameter of 2.8 
nm) and PtRu nanoparticles (with an average particle diameter of 2–3 nm). The 
authors found that for the Pt-black sample, the Pt NMR spectrum extends from 1.095 
to 1.14 G/kHz, whereas for PtRu nanoparticles, a much narrower NMR signal extend-
ing only from 1.095 to 1.115 G/kHz was found. Based on the observation that the 
whole spectrum is shifted toward lower Knight shifts, the authors arrived to a conclu-
sion that there are no Pt atoms whose electronic properties resemble those of bulk 
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Pt. The authors have suggested that if the nanoparticle retains a homogeneous 
 composition, then the corresponding NMR spectra of bimetallic catalysts can be 
expected to show broad, layer-like structures. For example, the 195Pt NMR spectrum 
of a 2.5 nm-sized PtPd bimetallic catalyst extended from 1.09 to 1.13 G/kHz [182]. 
In contrast, the presence of relatively narrow peak can be found if there is a surface 
segregation of one component in bimetallic catalysts. Based on the fact that the 195Pt 
NMR spectrum of PtRu nanoparticles exhibited a relatively narrow peak centered at 
about 1.104 G/kHz, the authors have suggested that there is a major surface enrich-
ment of Pt atoms in the PtRu alloy nanoparticles. From the spin–lattice relaxation 
measurements, the authors have found significant reduction in Ef-LDOS at Pt sites 
and also on the C-sites of adsorbed CO due to Ru addition, indicating a decrease in 
the total DOS at EF for the Pt atoms. Thus EC-NMR is useful to evaluate the elec-
tronic effects in bimetallic electrocatalysts and for investigating electrochemical 
interfaces.

Temperature-Programmed Reduction (TPR)
Temperature-programmed reduction (TPR) has been successfully explored to eval-
uate the surface composition of bimetallic PtRu/C catalysts [183–185]. In their 
work, the authors suggested that upon calcination, surface platinum (Pts) on reduced 
Pt crystallites is oxidized to PtsO and PtsO2 as shown in Eqs. 11 and 12:

 
2 22Pt O Pt Os s+ ®  (11)

 
Pt O Pt Os s+ ®2 2  (12)

After calcinations, the state of PtsOx can easily be characterized with the TPR tech-
nique by reducing the calcined catalysts by flowing H2 as shown in Eq. 13:

 MO H H O Mx + ® +x x2 2  (13)

Similarly, the state of Ru also can be characterized by calcinations followed by the 
reduction. The authors found that oxygen chemisorbed on Ru exhibited a higher 
reduction temperature (Tr = 300 K) than that chemisorbed on Pt (Tr = 250 K). 
In case of bimetallic PtRu alloy nanoparticles, the experimental results suggested 
that Tr varies with PtRu surface composition [183]. For example, a Pt-rich surface 
displays a lower Tr (~300 K) when compared to Ru-rich surface (Tr = 320 K). 
Based on these observations, the authors evaluated the surface enrichment in bime-
tallic PtRu catalysts.

 Electrochemical Characterization

Characterizing the electrocatalytic activity of bimetallic nanocatalysts is an 
important step en route to performance optimization that requires several electro-
chemical methods. For instance, cyclic voltammetry (potential cycling), linear scan 
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voltammetry (LSV), rotating disk electrode (RDE), rotating ring-disk electrode 
(RRDE), and CO stripping voltammetry are widely employed to get structural as 
well as electrocatalytic activity information about electrocatalysts. An electrochem-
ical reaction generally involves sequence of steps: it usually starts with the transport 
and adsorption of the reactants on the surface of the electrode/catalyst, followed by 
charge transfer related to either oxidation or reduction on the surface of the elec-
trode/catalyst, and finishing with the transport of product(s) from the surface of the 
electrode/catalyst.

In this section, we attempt to cover several electrochemical techniques com-
monly employed in evaluating the electrochemical properties of bimetallic nanopar-
ticles, with emphasis on applied aspects. We have also considered the following 
aspects: the electrochemical cell and its instrumentation in order to obtain valid 
results of the characterization and evaluation of the electrocatalyst activity will be 
presented where appropriate but not described in detail.

Cyclic Voltammetry (CV)
CV is a type of potentiodynamic electrochemical measurement and generally used to 
study the basic characteristics of the studied system regarding mainly the mechanism 
of electrode reactions and their kinetic parameters. It offers a rapid determination of 
redox potentials of electroactive species. CV is characterized by the linear sweep of 
a working electrode potential from one starting potential to high (or low) limit and 
back to low (or high) limit. In that case, the current at the working electrode is plotted 
versus the applied potential to give the cyclic voltammogram trace [186].

In general, the trace or feature of cyclic voltammogram is contributed from the 
sequence of electrochemical process steps, which can be described as follows. First, 
when the potential goes higher (or lower) enough to cause the oxidation (or reduc-
tion) of an electrochemically active species, we may observe an appearance of 
anodic (or cathodic) current. An increase in anodic (or cathodic) current as the 
potential goes higher (or lower) is because of the reaction kinetics becoming faster. 
Second, the concentrations of the oxidized and the reduced forms of electrochemi-
cally active species become equal on the surface of the electrode when the potential 
reaches the standard reduction potential. The highest anodic (or cathodic) current is 
obtained when the potential reaches a value at which all the reduced (or oxidized) 
form of the electrochemically active species at the electrode surface is consumed. 
At this particular moment, the highest anodic (or cathodic) current is obtained 
because the mass transport rate of the electrochemically active species reaches a 
maximum rate, which is driven by the largest concentration gradient between the 
bulk and surface concentration of the electrochemically active species. Third, when 
the potential goes higher (or lower) beyond this point, the current starts to fall off 
because the diffusion thickness increases, resulting in a less steep concentration 
gradient of the electrochemically active species. Therefore, an anodic (or a cathodic) 
peak develops. Finally, when the potential reaches the set high (or low) limit, it 
reverses direction and scans toward the set low limit. During this reverse potential 
scan, the oxidized (or reduced) form of the electrochemically active species reacts 
and develops a cathodic (or anodic) peak. The cathodic (anodic) peak is located at a 
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slightly lower (higher) potential than the anodic (cathodic) peak. If the redox couple 
is reversible, the cathodic and anodic peaks are of equal height (or equal area), and 
their peak positions do not change with the potential scan rate. In order to character-
ize electrocatalysts through CV, three-electrode electrochemical cells are widely 
used. The schematic diagram of a typical three-electrode electrochemical cell is 
presented in Fig. 9.

Materials with good electronic conductivity can be used as the working elec-
trode, such as glassy carbon, gold, or platinum. The surfaces of these materials are 
exposed to the electrolyte, and the other parts are usually covered by an inert mate-
rial, such as Teflon. The reference electrode is an electrode which has a stable and 
well-known electrode potential, is typically placed in the Luggin capillary, and is 
constructed in a way that its fine tip can reach the surface of working electrode in 
order to minimize the influence of the uncompensated electrolyte resistance, with-
out hindering the electrochemical reaction on the surface of working electrode. The 
most common reference electrodes are Pt/H2/H+ (standard/normal/dynamic hydro-
gen electrode), Ag/AgCl/Cl− (silver/silver chloride electrode), and Hg/Hg2Cl2/Cl− 
(calomel electrode). A counter electrode in three-electrode system often has a 
surface area much larger than that of the working electrode. For example, Pt was 
chosen as the counter electrode in the DMFCs field when the Pt-based catalysts 
were under characterization [186–189].

A catalyst is usually made in the form of a slurry before it is applied on the 
surface of the electrode. A catalyst is first well-mixed with other components: 

reference
electrode Gas purging

counter
electrode

electrolyte

working
electrode

Fig. 9 The schematic 
diagram of the structure of 
a three-electrode cell
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solvent and additives, through ultrasonication. A solvent could be typically 
water and short chain alcohols such as ethanol. Naturally, the catalyst particles 
adhere to the surface of working electrode. However, in order to increase the 
adhesion, a typical additive, e.g., DuPont’s perfluorinated ionomers (Nafion), 
may be used. Nafion can also be used as a binding material between each cata-
lyst particles, which may lead to higher catalyst utilization. The dispersion of 
the catalyst particles is also crucial regarding with the optimum catalyst utiliza-
tion; therefore, it is important to find the optimum loading of the metal: we 
found that an optimum Pt loading for the working electrode preparation was 
0.22 mg-Pt/cm2 [190]. The working electrode was made of unsupported or sup-
ported Pt-based catalysts immobilized on glassy carbon (GC) electrode surface 
(0.1964 cm2). The procedure for electrode fabrication involved three steps: first, 
the preparation of a clear suspension by sonication of a known amount of cata-
lyst powder dispersed in 0.5 % Nafion; second, placing an aliquot of the suspen-
sion (7 μL of 6.2 μg-Pt mL−1 of the catalyst) on the GCE disk; and third, air- drying 
about 5 min at room temperature and then at 80 °C to yield a uniform thin film 
of the catalyst [24, 168, 188, 191].

Typically, dilute aqueous acid solutions, such as sulfuric acid (H2SO4) and per-
chloric acid (HClO4), are usually applied as an electrolyte in the study of DMFCs. 
However, it is also important to carefully choose a proper electrolyte in the fuel 
cell system. Although, sulfuric acid has been commonly used in the experiments, 
their sulfate anions (SO4

2−) can be absorbed on the surface of Pt catalyst. That 
situation is completely different from perchloric anion (ClO4

−), where this anion 
will not be absorbed onto the surface of Pt catalyst and will not influence the reac-
tion kinetics.

Linear Sweep Voltammetry (LSV)
As mentioned in the previous section, it is appropriate to continue our discussion on 
linear scan voltammetry (LSV) experiment performed on a RDE to study the intrin-
sic kinetics of the catalyst [105, 192–194]. The knowledge of the velocities in radial 
and vertical direction, which can be obtained via the Navier–Stokes equations, 
allows the calculations of the mass transport to the disk surface through a diffusion 
layer with the thickness of δ according to Eq. 14:

 d n w= × × ×
-

1 61
1
6

1
3

1
2. D  (14)

where v represents the kinematic viscosity of the electrolyte. As mentioned earlier, 
according to Eq. 14, the thickness of the diffusion layer of a chosen system strongly 
depends on the rotation rate. The potential of the working electrode in the LSV 
experiment is scanned from a potential in which no reaction occurs to a potential 
that leads to the occurrence of a reaction. Furthermore, when the overpotential is 
high enough, the reaction rate will be determined by the diffusion of the reactant at 
a given electrode rotation rate. In this condition, a diffusion-limiting current is 
achieved and can be described as a function of the diffusion layer thickness as 
shown in Eq. 15, by assuming that Fick’s law can be applied.
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i nFAC

D
d = d  

(15)

n, A, and F are the number of electrons involved, geometric electrode area, and 
Faraday constant, respectively. The combination of Eqs. 14 and 15 results in 
Levich’s equation for the diffusion-limited current on a RDE. The diffusion-limited 
current is for a given system only determined by the rotation rate with B being the 
Levich constant: [187, 189]

 i nFACD BCd = =
-

0 620
2
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1
6

1
2

1
2. n w w  (16)

It is clearly seen in Eq. 16 that a linear relationship exists in the plotting of id versus 
w

1
2  and goes through the (0, 0) origin. Indeed, we also found a same linear rela-

tionship in part of our recent result as can be observed in Fig. 10b. It is of interest to 
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point out that at the onset potential, the current is controlled mainly by reaction 
kinetics rather than mass transport rate and is expressed in Eq. 17 [186, 189].

 
i nFk Ck = h  (17)

where kη is the rate constant and is a function of overpotential (η). Furthermore, ik is 
the current that would flow under the kinetic limitation if the mass transfer was 
efficient enough to keep the concentration at the electrode’s surface equal to the 
bulk value, regardless of the electrode reaction.

In an entire potential scan range, the overall current (i) in Eq. 18 is described by 
the Koutecky–Levich equation, as the partition of the overall current in a kinetically 
determined and a diffusion determined part as shown below[186, 189, 195]:

 

1 1 1 1 1
1
2i i i i BCk d k

= + = +
w  

(18)

It is clearly seen in Eq. 18 that 1
1
2w C

 is a constant only when ik is very large. 

Otherwise, a plot of i versus w
1
2  will be curved and tend toward the limit i ik=  as 

w
1
2 ®¥  (Fig. 10a). The plot of i-1  versus w- 1

2  as observed in Figs. 10c and 11b 
will yield a straight line, where its slope can be used to determine Levich constant 
of B, from which the number of electrons involved in the reaction can be calculated 
using known values of solubility and the diffusion of particular reactant in the 
medium under investigation. The intercept of the plot on the ordinate axis at 
w

1
2 0=  gives the values of ik

-1 , which can be used for further determination of the 
kinetic parameter kη according to Eq. 18.

The combination of LSV and RDE methods can be utilized to obtain several 
intrinsic catalyst parameters, such as kinetic parameters of the Tafel slope, mass 
activity, and specific activity which together define the catalyst’s activity. Figure 12 
shows a sequence of steps for evaluating the activity of carbon-supported Pt and 
Pt–Co catalysts toward oxygen reduction reaction (ORR) [80].

Levich line (id Ìw1/2)
a b

E=E1

E=E2

I/ik

ik

I/ii
i independent of w1/2

w1/2 w−1/2

Fig. 11 (a) Variation of i with w
1
2  in the RDE experiment under a constant ED for the slow reac-

tion on the electrode. (b) Koutecky–Levich plots at potential E1, where the rate of electron transfer 
is sufficiently slow to act as limiting factor, and at E2, where electron transfer is rapid
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It is possible to take an advantage of these observed phenomena: one can measure 
the value of diffusion-limited current by linearizing the observed current of the LSV 
region 0–0.7 V. Between 0 and 0.7 V, the observed current commonly shows almost 
a constant value, thus one can easily make a linearization of that observed current. 
The result of the linearization is known as the diffusion-limited current and is denoted 
as id. We believe that the normalized current in Fig. 12a is more appropriate for quali-
tative comparisons of the catalysts ORR activity. The normalized current is obtained 
by simply dividing the measured currents with the obtained id. In the Tafel region 
(higher than 0.85 V) and the mixed potential region, the ORR activities show a 
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Fig. 12 Evaluation of electroactivity toward oxygen reduction reaction for various carbon- 
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oxygen-saturated 0.5 M sulfuric acid at 25 °C. (b) Tafel plots. Currents are per gram of Pt used in 
the electrode preparation. (c) Mass activity measured at 0.95 VRHE (Reprinted from ref. [191], 
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significant difference in their magnitudes. It can be visualized from the inset of 
Fig. 12a that E-tek Pt–Co/C and sample-2 show a drastically enhanced activity in 
raising a portion of the curves compared to that for E-tek Pt/C. On the other hand, 
sample-1 displays comparatively poor activity toward ORR.

Adsorptive CO Stripping Voltammetry (COads-SV)
The second electrochemical method for the estimation of ECSA is CO stripping 
voltammetry [105, 196–201]. Figure 13a shows two CVs obtained on the bimetallic 
homemade PtRu catalyst with a CO-adsorbed adlayer. CO can be strongly adsorbed 
onto the surface of Pt to form a monolayer; however, this irreversible monolayer of 
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Fig. 13 (a) CO stripping voltammograms for the homemade Pt3–Ru1/C catalysts in N2-saturated 
0.5 M sulfuric acid electrolyte at a scan rate of 10 mV/s and 25 ± 1 °C. (b) Cu deposition in N2- 
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CO will be removed quickly and completely by electrochemical oxidation at a high 
enough potential in the first cycle of CV.

During the first forward step, the peak characteristics of hydrogen/desorption 
(Hads/des) were suppressed due to the presence of adsorbed CO. Moreover, the 
observed peaks at 0.45–0.50 V correspond to oxidative stripping of the adsorbed 
CO layer. On the second sweep after electrooxidation of CO, the voltammograms 
return to those observed in the absence of adsorbed CO. The calculated charge 
under the CO oxidation peak (QCO) is related to the following oxidation process 
converts CO to CO2:

 CO H O CO H e+ ® + ++ -
2 2 2 2  (19)

CO oxidation to CO2 involves 2 electrons as shown in Eq. 19. Therefore, if one 
CO molecule bonded with one Pt atom in a linear adsorption configuration 
(Pt–COad), then the charge required to oxidize a monolayer of CO adsorbed on Pt is 
equal to 420μC/cm2. ECSA can then be calculated by using Eq. 20:

 

ECSA
Q C

w
CO

CO

Pt

m g
C cm

2

2420
100/

/
( ) = ( )

( ) × ( )
´

m g  
(20)

However, a bridge adsorption configuration (2Pt–COad) may happen if 1 CO 
molecule occupies 2 Pt atoms. In that case, the charge required to oxidize a mono-
layer CO adsorbed on Pt is equal to 210μC/cm2. Those two CO adsorption configu-
rations are strongly affected by the applied potential. A linear adsorption may 
dominate if the CO adsorption occurs at a potential close to 0 V, as shown in a recent 
study [202].

Pozio et al. [203] have suggested that ECSA calculated by means of CO adsorp-
tion seems not to be dependent on the platinum loading. This may due to the strip-
ping mechanism being dominated by the electronic conduction of the oxidation 
reaction involving the hydroxyl group from water (the electronic conduction is not 
to be influenced by the Nafion layer resistance in the catalyst). In this study of 
bimetallic PtRu, the CO stripping method basically gives a separate determination 
of platinum and second metal (Ru) in Pt-based alloy catalysts to bring a true ECSA, 
as desorption of CO from “Pt” and “Ru” usually takes place at different potentials 
[105, 200, 201].

Underpotential Deposition (UPD)
Up to now, we have described two typical electrochemical methods which are used 
for the estimation of ECSA. However, other studies have reported an alternative 
electrochemical method based on foreign-applied metal ad-atoms, such as copper 
(Cu) [196, 198, 204–207], silver (Ag) [208, 209], lead (Pb) [210], and antimony 
(Sb) [211]. This technique, the so-called underpotential deposition (UPD) of metal 
is extremely useful for carbon-supported catalysts as the ad-atoms can only be 
formed on metallic portion in the complex surface. In that case, an advantage of this 
method over Hads/des methods is that there is no spillover effect. Indeed, in a very 
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recent study, Green and Kucernak [206, 207] showed the viability of underpotential 
deposition of copper (Cu-UPD) to characterize supported and unsupported Pt, Ru, 
and PtRu catalysts. In their particular study of Pt, Ru, and PtRu catalysts, the choice 
of Cu ad-atoms as a probe was motivated by the close atomic radii of Cu (0.128 
nm), Ru (0.134 nm), and Pt (0.138 nm) and a suitable potential region of Cu desorp-
tion at relatively low potential. This can introduce a correction for double-layer 
charging and oxygen adsorption. Furthermore, they also showed that it is also pos-
sible to determine the surface composition of PtRu catalyst using a Cu-UPD method 
due to the difference in adsorption energies for Cu on either Pt or Ru. The UPD 
studies have been performed using a variety of metals that include Cu, Pb, Sn, and 
Fe deposited on particular Pt catalyst [212].

The phenomenon of UPD itself refers to the deposition of metals on foreign 
metal substrates at the potentials more positive than that predicted by the Nernst 
equation for bulk deposition. This implies that the depositing ad-atoms are more 
strongly bonded to the foreign metal electrode [213–215]. In the case of Cu-UPD, 
the metal deposition processes at the electrode surface can be represented by Eq. 21:

 
Cu Cu C2 22 420+ -+ ® ( )e m / cm  (21)

The Nernst equation was applied in order to predict the equilibrium potential (Eeq) 
at which the deposition and dissolution of the bulk-metal phase happens:
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(22)

where E0 is the standard potential and a is the activity. R, T, and F are the molar gas 
constant, temperature, and Faraday constant, respectively. The formation of the first 
monolayer is inferred from the pronounced current peaks at the potential E Eeq> ,  
while the bulk deposition occurs at E Eeq< .  Taking an example of Cu on Au sys-
tem, UPD Cu on Au occurs at ~0.46 V, while bulk deposition occurs at ~0.25 V.

The cyclic voltammogram of platinum in solution composed of H2SO4 and 
CuSO4 at wide scan range of 0–1.5 V commonly exhibited four main peaks related 
to different mechanisms. The CV is dominated by the deposition and stripping of 
both bulk and underpotential-deposited copper. In a forward anodic scan, one may 
find a distinct sharpened peak that represents the bulk copper stripping, while in the 
backward cathodic scan, the bulk copper deposition occurs at almost similar poten-
tial with bulk copper deposition. From detailed observations, bulk copper deposi-
tion occurs at around 0.25 V, which is a slightly lower potential than its bulk copper 
stripping. At the platinum double-layer region, we may able to observe several 
peaks associated with the UPD processes of copper on platinum. It is indicating that 
the Cu stripped from different sites, which has different adsorption energies, on the 
surface of platinum. In a forward anodic scan, UPD of copper stripping occurs at 
much positive potentials compared to that of bulk copper stripping. Furthermore, 
UPD of copper deposition is also shifted to much positive potentials compared to 
the deposition of bulk copper. In addition, the hydrogen adsorption region is 
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suppressed due to the presence of copper, and the oxide reduction is distorted due to 
the onset of copper UPD [206].

It is worth mentioning that Green and Kucernak used the plot of the ratio of 
copper stripping charge to hydrogen charge ( / )Q QCu UPD H des- -  as a function of 
deposition potential on platinum electrode in order to obtain an optimum condi-
tion for the formation of well-ordered monolayer of UPD copper without the pos-
sibility of a three-dimensional growth of bulk copper [206]. The charge of 420 
μC/cm2 in the copper metal deposition reaction is used in the calculation of 
QCu UPD- ,  while QCu UPD-  itself is obtained after subtracting the total measured 
UPD copper stripping charges with the platinum background. The ratio of 
Q QCu UPD H des- -/  is to be expected 2, where a copper atoms adsorbs on platinum 
surface at the same sites with hydrogen to form a completely UPD copper layer. 
Their results showed that Q QCu UPD H des- - »/ 2  was achieved when the deposition 
potential is in the range of 0.25–0.3 V. When Edep is lower than 0.25 V, the deposi-
tion of bulk copper occurs, and when higher than 0.3 V, the UPD layer does not 
form completely. This technique can be also widely applied in finding an opti-
mum deposition time of UPD copper.

In our recent results which are shown in Fig. 13b, we also found a similar trend, 
where the UPD of Cu occurs at the potentials more positive than that of bulk Cu 
deposition. The bulk copper deposition on commercial Pd/C occurs at the deposi-
tion potential of Edep.-1. In a detailed observation, an increase in deposition potentials 
at Edep.-2 and Edep.-3 is followed by a decrease in current density corresponding to bulk 
copper stripping while the UPD copper starts to grow, as is shown with black arrow.

In any study of Pt-based catalysts, the method used for the determination of 
ECSA from Cu-UPD should consider: (i) applied deposition potential and time for 
the formation of UPD copper, (ii) applied potential scan range for both Pt back-
ground and UPD copper stripping, and (iii) a correction for double-layer charging, 
oxygen adsorption, and further possibility of adsorbed anion. In our earlier discus-
sion, we mentioned that an optimum condition for the formation of well-ordered 
monolayers of UPD copper can be achieved when the ratio of Q QCu UPD H des- -/  is 
nearly equal to 2, as suggested by Green and Kucernak [206]. Thus, for the first 
important aspect, the plot between Q QCu UD H des- -/  versus potential and (or) time 
deposition should be made in order to find out which potential and (or) time deposi-
tion region shows a value of Q QCu UPD H des- - »/ .2  In the second aspect, the CV for 
bare Pt (as background) should be scanned from 0.05 to 0.85 V. The end potential 
in forward scan was chosen to be 0.85 V, at the point where oxide growth commonly 
starts on platinum, and thus only a very small oxide reduction peak was expected to 
occur at the backward scan. The linear potential scan for the Cu-UPD stripping 
should be also scanned until the end potential of 0.85 V. In case of PtRu catalyst, the 
linear potential scan for Cu-UPD stripping could be started from 0.3 V to 0.85 V. 
An applied potential at 0.3 V was chosen as the starting point of the scan due to a 
completion of monolayer of UPD copper while 0.85 V as the end potential which 
was due to a completion of oxidative removal of UPD copper layer and also a sup-
pression of oxide adsorption/desorption. Once the oxide adsorption/desorption 
mechanism was suppressed, we may consider it as an advantage for the calculation 
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of QCu UPD-  as a very small correction would be expected and will be discussed in the 
following third aspect.

In the third aspect, the charge of QCu UPD-  should result after subtracting the total 
measured charge from experiment (Qexp) with the charge due to the charging of 
double-layer capacitance (QDL), the charge due to the growth of any oxide and (or) 
oxygenated species (Qox), and the charge due to adsorption/desorption of any 
adsorbed anion (Qanion) as shown in Eq. 23 [207]:

 
Q Q Q Q QCu UPD DL ox anion- = - - -exp  (23)

Therefore, it is important to include the CV for bare platinum as a background for 
the matter of correction to QCu UPD- .  ECSA can be calculated by assuming that a 
charge required to oxidize a monolayer of Cu adsorbed on each metal surface is 
equal to 420 μC/cm2 as shown in the following equation [207]:
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Once the ECSA was obtained either from H-UPD, CO stripping, and Cu-UPD 
methods, it was possible to determine the average particle size (d) by assuming that 
the shape of the catalyst particle is spherical, as shown below:

 

d
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6 000

2 3

,

/ /r  
(25)

where ρ is the average particle density, and it was 21.4 g/cm3 for Pt. However for the 
bimetallic system, the average particle density could be obtained by using the fol-
lowing relationship:

 
r r rPt M Pt

bulk
Pt M

bulk
Mx x- = +  (26)

where xPt
bulk and xM

bulk are the bulk compositions of Pt and second metal “M,” respec-
tively, while ρM is the average particle density of second metal “M.”

Surface composition of Pt-based catalysts through the Cu-UPD method. It is of 
interest to describe the feature for the stripping of Cu-UPD layer formed on particu-
larly dispersed bimetallic PtRu catalyst. Commonly, a peak at low potential around 
0.42 V is accompanied by a shoulder that continues to a much higher potential. The 
first peak at around 0.42 V was due to the oxidative removal of adsorbed Cu-UPD 
layer, while the shoulder was the removal from the Pt sites. This information 
strongly supports the differing adsorption energies for Cu on either Pt or Ru that 
could be used to quantify the Ru metal surface content of PtRu catalyst. Further 
deconvolution of linear anodic stripping of Cu-UPD should be made to separate a 
charges contributed by Ru and Pt sites by assuming that the feature of CU-UPD has 
a Gaussian line shape. The Ru coverage on the surface of bimetallic PtRu catalyst 
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(xRus) can be quantified from the ratio of charge in first peak contributed by Ru 
(QRu

Cu UPD- ) to QCu UPD-  as shown below [207]:

 
x Q

QRu
s Ru

Cu UPD

Cu UPD

=
-

-  
(27)

Rotating Disk Electrode (RDE) Method
It is well known that the steady-state current generated by cyclic voltammetry is 
mainly determined by the diffusion of substrate around the electrode’s surface when 
immersed in a stagnant/unstirred electrolyte solution. A minor natural convection 
from the impact of environmental fluctuation in some cases may appear, but its effect 
can be neglected. It is possible to increase the mass transport by introducing a forced 
convection in which the analyte solution flows relative to a working electrode. A pop-
ular method for creating such a relative movement is by rotating the working elec-
trode. Such a method is called a rotating disk electrode (RDE). Therefore, RDE could 
also be called as a hydrodynamic working electrode, where the steady-state current is 
determined by solution flow rather than diffusion [186, 188].

In common three-electrode cells, when a working electrode spins, the reactant 
in the solution is dragged to the surface of the working electrode, and the resulting 
centrifugal flings the product away from it. However, one should notice that there 
is still a stagnant reaction layer covering that surface of the working electrode and 
the reactants transport through this layer by diffusion. There is a strong depen-
dency of thickness of diffusion layer (δ) with applied rotation rate (ω) of working 
electrode as shown in Eq. 14. An increase in rotation rate will lead to a thinner 
diffusion layer. A rotation rate between 5 and 10,000 rpm can control the flow of 
the reactant through the surface of working electrode that follows a laminar  pattern. 
Figure 14 shows a schematic diagram of RDE setup. The working electrode 
was connected to the electrode rotator that has very fine control of the electrode’s 
rotation rate.

The flow pattern under the rotating disk electrode was obtained by numerically solv-
ing the Navier–Stokes equation and continuity equation under the following conditions:

 (i) The radius of the disk on the working electrode is large enough compared to 
that of boundary layer thickness, and thus the small distortion of flow pattern 
at the center and edge can be neglected.

 (ii) The roughness of the disk surface of the working electrode is small enough 
compared to that of the boundary layer thickness.

 (iii) The radius of the electrochemical cell is large enough compared to that of the 
disk on the working electrode, and thus the reflection of the flow at the vessel 
of electrochemical cell’s wall does not affect the flow pattern under the disk.

 (iv) The rotation speed is sufficiently greater than the lower critical value in which 
the effect of natural convection is negligible. Furthermore, the rotating speed 
is also smaller than that of the higher critical value in which the flow gets to be 
turbulent.
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The solution of the Navier–Stokes equation and continuity equation under those 
mentioned conditions may bring two possibilities of the net mass transport rate of a 
reactant to the surface of the working electrode. The first net mass transport is the 
convection which can control the thickness of the diffusion layer, while the second 
one is the diffusion which can control the reactant through the diffusion layer. The 

flux normal to the electrode surface due to diffusion is given by D C
x

¶
¶( )2

2  and 

that due to convection is given by v C
xx

¶
¶( ) , where D is the diffusion coefficient 

of the species, C is the bulk concentration of the species, and vx is the solution 
velocity in the x direction, which is normal to the electrode surface [186, 189].

The rotating disk electrode is becoming one of the most powerful methods for 
studying both the diffusion in electrolytic solutions and the kinetics of moderately 
fast electrode reaction because the hydrodynamics and the mass-transfer charac-
teristics are well understood and the current density on the disk electrode is sup-
posed to be uniform. V. G. Levich [195] solved the family of equations and 
provided an empirical relationship between diffusion-limiting current (id) and 
rotation rate (ω) as shown in Eq. 15. In particular application in fuel cells, the 
empirical relationship which is given by Levich is also applicable in linear scan 
voltammetry (LSV) experiment performed on a RDE to study the intrinsic kinet-
ics of the catalyst [105, 192].
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 Electrocatalytic Applications: Electrochemical Studies of Fuel 
Cell Reactions on Bimetallic Nanoparticles

Success in fuel cell technology largely relies on electrocatalysts. Electrocatalysts 
employed for fuel cell reactions are required to possess well-controlled structures, 
dispersions, and compositional homogeneities. Further, in order to realize fuel cells 
as viable future power-generating technology, electrocatalysts must meet perfor-
mance, durability, and cost targets. Recently, Mark K. Debe critically reviewed elec-
trocatalytic approaches and challenges for automotive fuel cells [42]. The author 
pointed out that a clear understanding of electrocatalyst surface area and activity loss 
mechanisms and insights into durability issues associated with externally and inter-
nally generated impurities should significantly assist the development of fuel cell 
technology. Critical factors that are presently believed to play significant role in the 
electrocatalysts need to be thoroughly understood in order to develop newer catalyst 
system that can meet the targeted performance and durability.

 Decisive Factors Influencing Electrocatalytic Activity

Structural Effects
With regard to electrocatalysts, structure-dependent catalytic activity toward metha-
nol oxidation reaction (MOR) [12, 216–218], formic acid oxidation reaction 
(FAOR) [17, 219], and oxygen reduction reaction (ORR) [220–222] have been 
observed. Maillard et al. studied the influence of the catalyst’s structure on the reac-
tivity of electrooxidation of methanol [218]. The authors noticed that the electro-
catalytic activity of a PtRu catalyst with a Ru-decorated Pt surface was two orders 
of magnitude higher when compared to the commercial Johnson Matthey PtRu 
black (Pt:Ru = 1:1)-alloyed structured catalyst. In our recent investigations, we 
found that Pt-decorated Ru catalyst exhibited higher mass activity for MOR than 
commercial Johnson Matthey PtRu black (Pt:Ru = 1:1)-alloyed structured catalyst 
[12]. From the X-ray absorption spectroscopy measurements, we observed more Pt 
d-band vacancies in the case of Pt-on-Ru nanoparticles causing weaker CO adsorp-
tion on the synthesized catalyst surface. Zeng et al. showed that a core–shell- 
structured Ag@Pt/C bimetallic nanoparticle exhibits enhanced specific activity in 
methanol electrooxidation when compared to similarly prepared bimetallic Ag–Pt 
catalyst. The authors attributed the observed activity enhancement to the presence 
of Au underneath a very thin Pt shell where electron exchange between Au and Pt 
had promoted the formation of active oxygen species on Pt, which facilitated the 
removal of inhibiting CO-like reaction intermediates [84]. The core–shell- structured 
bimetallic nanoparticles available for MOR reveal that the core material influences 
the outer shell layer and optimizes its surface electronic and structural properties 
thereby exhibiting improved catalytic activities. Zhang et al. studied the formic acid 
electrooxidation on Pt-around-Au nanocomposite structures [223]. From the elec-
trochemical measurements in supporting electrolyte containing formic acid solu-
tions, the authors found that formic acid oxidation on Pt-around-Au/C 
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nanocomposites was about 3.0 times than on Pt/C catalyst. Based on cyclic voltam-
metric analyses, the authors concluded that the possible reason for the unexpected 
high activity for HCOOH oxidation on the Pt-around-Au nanocomposite is due to 
the efficient spillover of HCOO from Au to the surrounding Pt nanoparticles where 
HCOO is further oxidized to CO2. Based on voltammetric studies, the authors found 
that the specific activity of Pt atoms increased with the decrease of Pt surface cover-
age. Authors found a 3 % Pt-covered-Au/C surface that showed 17.0- and 23.9- 
folds more activity toward formic acid oxidation compared to 75 % and 100 % 
Pt-covered surfaces, respectively. In the case of oxygen reduction reaction, Pt-based 
bimetallic nanoparticles with various structures have been studied. Several efforts 
have been made to improve the dispersion and stability of Pt-based ORR catalysts, 
e.g., by creating a near-surface region with a Pt-skin structure in Pt-alloys via acid 
treatment [176, 224] and by forming core–shell structures [87]. In a recent study, 
Stamenkovic et al. showed that the Pt3Ni(111) surface is about 90 times more active 
than the state-of-the-art Pt/C catalysts for ORR [21]. In another interesting study, 
Chen et al. [225] demonstrated that by creating a percolated structure with Pt-rich 
and Pt-poor regions within individual Pt3Co nanoparticles through acid treatment, 
their ORR activity could be increased by up to two orders of magnitude when com-
pared to Pt nanoparticles. These results clearly indicate that significant improve-
ments in electrocatalytic activity can be achieved by properly fine-tuning the 
structure of bimetallic nanoparticles.

Composition/Surface Composition Effects
The composition of bimetallic nanoparticles in either bulk or surface need to be 
properly controlled during the fabrication process as the bulk/surface composition 
strongly influences the electrocatalytic activity. Further, variations in composition 
are very important in modifying the surface structure of bimetallic nanoparticles. 
Ball et al. studied the effect of atomic ratio of Pt–M/C (M = Co, Cr, Fe, Ni, and Mn) 
catalysts on the fuel cell activity and stability [226]. The authors found that bimetallic 
Pt–M/C catalysts with Pt-to-M ratio 3:1 showed higher electrocatalytic activities. 
Very recently, in our group PtxRu100−x/C with various alloy compositions was pre-
pared by a microwave-assisted ethylene glycol method [9]. Among the PtxRu100−x/C 
with various Pt:Ru atomic ratios (x = 25, 50, and 75), the Pt75Ru25/C NPs were 
shown to be superior in MOR activity on account of their favorable alloying extent, 
Pt d-band vacancy, and Pt electrochemical active surface area (ECASA). In another 
work, we also studied ORR on Ptx-Fe1−x nanoparticles with various Pt:Fe atomic 
compositions (3:1, 1:1, and 1:3) and found that Pt1Fe1 nanocatalyst showed a greater 
enhancement in ORR than Pt/C. The higher alloying extent of platinum coupled 
with promising electronic structure offered by the lower Pt d-band vacancies was 
given as the reason for the enhanced ORR activity [63]. Stamenkovic et al. observed 
that the arrangement of surface atoms in the near-surface region of a Pt3Ni (111) 
surface drastically improves its catalytic activity toward ORR [21]. From the crystal 
truncation rod (CTR) experiments, they showed that the first layer entirely consists 
of Pt, whereas the second layer was Ni-rich with 52 % Ni and the third layer is 
Pt-enriched with a Pt content of 87 %. With this surface configuration, the Pt3Ni(111) 
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surface exhibited 10 times higher mass activity toward ORR when compared to 
Pt(111) surfaces and 90 times higher ORR activity than the current state-of- the-art 
Pt/C catalysts in 0.1 M HClO4 solutions. Further the authors showed that different 
low-index Pt3Ni surfaces exhibited different ORR activities with the order, 
Pt3Ni(100)-skin < Pt3Ni(110)-skin < Pt3Ni(111)-skin [21]. The authors pointed out 
that the observed differences in the ORR activities of three low-indexed planes of 
Pt3Ni were attributable to the variations in d-band center and surface atomic arrange-
ment of platinum and decreased coverage of nonreactive oxygenated species 
(OHads), due to the incorporation of Ni atoms. These results suggested that surface 
engineering strategies offer a big help in fine-tuning the electrocatalytic activity of 
bimetallic nanoparticles.

Morphological Effects
In recent years, morphology-controlled synthesis of various Pt-based catalysts with 
shapes such as nanodendrites, polyhedral, hollow structures, and core–shell has 
been explored for fuel cell reactions. It was reported that different crystallographic 
facets stabilized on particles with different shapes exhibit different reactivities and 
selectivities [227, 228]. Commonly found low-index planes or facets on single- 
crystal surfaces of bulk Pt appear to possess lower reactivity than the high-index 
planes. Armed with high density of atomic steps, ledges, and kinks, which usually 
serve as active sites for breaking chemical bonds, the high-index planes exhibit 
much higher catalytic activity. Sun and coworkers developed a novel electrochemi-
cal approach to prepare tetrahexahedral (THH) Pt nanocrystals (NCs) with high- 
index facets on glass carbon substrates [19]. The THH Pt nanocrystals developed in 
this study exhibited much enhanced catalytic activity per unit surface compared to 
the other Pt morphologies like Pt-nanospheres and commercial Pt/C catalysts for 
the oxidation of formic acid and ethanol which are considered to be promising alter-
native fuels for direct fuel cells. The enhanced catalytic activity was attributed to the 
higher extent of stepped atoms on the surface of THH Pt NCs. In a recent study, Kim 
et al. reported the synthesis protocol for heterogeneous bimetallic nanocrystals con-
sisting of Pt multibranches on Au nanocrystal cores with well-defined morphologies 
(cubes, rods, and octahedral) [229]. The authors showed the TEM and HRTEM 
images of the formation of Pt-islands on various Au morphologies (Fig. 15). The 
ORR activity of Au@Pt heteronanostructures with various morphologies recorded 
in O2-saturated 0.1 M HClO4 solutions showed that at 0.8 V versus RHE, the mass 
activities follows the order: Aucube@Pt < Aurod@Pt < Auoctahedron@Pt. The higher 
electrocatalytic activity observed in the case of Auoctahedron@Pt was attributed to its 
(111)-orientation-rich Pt surface. The above examples illustrate that specific facets 
of metallic component along with its shape play a crucial role in determining the 
electrocatalytic activity.

Size Effects
Substantial efforts have been directed to the investigation of the influence of particle 
size on the catalytic activity after the breakthrough experiments of Haruta et al. on 
Au nanoparticles [230]. Park et al. [231] demonstrated the electrooxidation of 
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Fig. 15 Left and right panels features low- and high-magnification TEM images, respectively, of 
(a, b) Aucube@Pt, (c, d) Aurod@Pt, and (e, f) Auoctahedron@Pt nanoparticles (Reproduced with permis-
sion from ref. [229], © 2010 Wiley – VCH Verlag GmbH & Co. KGaA)
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formic acid, formaldehyde, and methanol in acidic environment on Pt/C nanoparti-
cles with the varying particle diameters in the range of 2–9 nm. Authors carried out 
electrooxidation of formic acid, formaldehyde, and methanol in acidic electrolyte 
on Pt/C nanoparticles with varying particle diameters in the range of 2–9 nm. From 
the voltammetry and infrared spectroscopy measurements, the authors found size- 
dependent chemisorption of CO formed from three reactants. The observed rates of 
methanol electrooxidation decrease for Pt nanoparticle diameters below 4 nm. 
In contrast, the rate of formic acid electrooxidation increases for Pt nanoparticle 
diameters above 4 nm. Different roles played by Pt ensemble effect were given as 
the reason for the observed size-dependent CO chemisorptions and corresponding 
CO2 production. The rate of formaldehyde electrooxidation found little sensitivity 
to the Pt size. Yamamoto and coworkers investigated size-specific catalytic activity 
of Pt clusters synthesized in G-3 dendrimers toward oxygen reduction reaction [5]. 
Three kinds of Ptn@3 (n = 12, 28, 60) clusters, viz., Pt12@3 (particle size = 0.9 ± 0.1 
nm), Pt28@3 (particle size = 1.0 ± 0.1 nm), and Pt60@3 (particle size = 1.2 ± 0.1 nm) 
were synthesized. Authors found smallest cluster Pt12@3 exhibited 13 times higher 
ORR activity than that of commercial Pt/C catalyst. Sun’s group studied the particle 
size and catalytic activity relationship of Co60Pd40 nanoparticles toward formic acid 
oxidation [232]. The authors observed that the catalytic activity of Co60Pd40 nanopar-
ticles for formic acid oxidation increases with the decrease in particle size.

Atomic Distribution/Alloying Extent
In bimetallic nanoparticles, the atomic distribution between two different metals 
and the degree of alloying play significant role in catalyst activity [10, 20, 24, 63, 233]. 
In our group, X-ray absorption spectroscopy methods were developed to determine 
the atomic distribution in bimetallic nanoparticles [20]. By collecting the XAS data 
at the Pt and Ru absorption edges of two commercial PtRu catalysts, the extent of 
intermixing of Pt and Ru (alloying extent) and Pt and Ru atom distribution was 
determined. The extent of both Pt and Ru alloying was found to be higher in com-
mercial Johnson Matthey PtRu catalyst than with commercial E-TEK PtRu catalyst, 
which was reflected in higher methanol electrooxidation activity. In another study, 
we observed enhanced ORR activities in bimetallic PtFe catalysts with higher extent 
of platinum and iron alloying [63].

 Hydrogen Fuel Cells

Proton exchange membrane fuel cells (PEMFCs) powered by hydrogen from secure 
and renewable sources are considered to be a promising energy source for various 
applications [234–237]. In a typical H2-fed PEMFC, hydrogen is oxidized on an 
anode leaving protons and electrons. The protons generated at anode travel through 
the proton exchange membrane to the cathode where they react with oxygen to form 
water. The overall electrochemical reaction between hydrogen and oxygen to form 
water gives a theoretical potential of 1.23 V versus SHE at room temperature. The 
principal reactions are shown in Eqs. 28, 29, and 30:
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Hydrogenoxidation reaction H H e E Vvs SHE: .2

02 2 0® + =éë ùû
+ -

 (28)

Oxygen reduction reaction O H e H O E Vvs SHE: / . .1 2 2 2 1 232 2
0+ + ® =éë ù+ -

ûû  (29)

 
Overall cell reaction H O H O E Vvs SHEcell: / . .2 2 2

01 2 1 23+ ® =éë ùû  (30)

Pt is the best-known material for the hydrogen oxidation. However, CO present 
even in trace quantities will impede hydrogen adsorption on Pt surfaces and 
decreases its rate of oxidation popularly known as CO-poisoning effect. Experiments 
illustrate that CO oxidation on bimetallic Pt–M-based electrodes, where M is a 
promoter metal (e.g., Ru), occurs at potentials lower than that of a pure Pt electrode 
[238]. The enhanced CO oxidation on such Pt–M formulations may be achieved by 
two metals working synergistically as explained by the so-called bifunctional (or) 
reactant pair mechanism. Higher PEMFC performance was reported on PtRu bime-
tallic nanoparticles for fuel streams containing CO [239, 240]. The development of 
bimetallic electrocatalysts helps in the reduction of Pt loadings as well as CO toler-
ance of the anode. In the case of bimetallic catalysts, strong interaction of partici-
pating components is required. It was reported that the catalytic performance of 
PtRu nanoparticles is strongly dependent on the distribution of Pt and Ru sites at 
the atomic level and believed to be sensitive to the particle’s shape and size and to 
the nature of the support. In the past few years, our research group has actively 
worked on developing suitable electrocatalysts for both CO oxidation and oxygen 
reduction reactions for fuel cell applications by focusing on size, structure, and 
atomic distribution manipulation strategies [24, 26, 27, 130, 168, 241, 242]. In a 
recent study by studying the stepwise formation mechanism employing X-ray 
absorption spectroscopy, we established a structure-controllable synthesis strategy 
based on a modified Watanabe’s process for bimetallic PtRu/C nanoparticles [27]. 
With this methodology, PtRu/C NPs with a particle size of about 2.9 nm were con-
veniently achieved.

Many other bimetallic electrocatalysts such as PtMo [154, 243–248], PtSn [249, 250] 
PtPd [251–253], and Pt–Co [254] have been successfully explored for CO-tolerant 
HOR. In most cases, electrocatalyst particles were dispersed on conductive supports 
of high surface area. The support for the catalyst nanoparticles turns out to be a major 
factor in influencing their dispersion and stability. Characteristics such as electrical 
conductivity, surface area, hydrophobicity, morphology, porosity, and corrosion 
resistance are most considered in the choice of a good catalyst support. Based on 
these considerations, carbon is the best catalyst support material for PEMFC electro-
catalysts. Carbon black and activated carbons have been extensively studied as cata-
lyst supports, with Vulcan 72 being the most representative. In the last decade, a 
number of new synthetic carbons with various mesostructures and nanostructures 
have been reported. These include carbon nanotubes [254], aerogel carbon [255, 
256], and meso-carbon [257] with or without a high degree of order. With the 
developments in attaining high performance bimetallic electrocatalysts and high 
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surface area carbon supports, bottlenecks such as higher catalyst loadings and costs 
associated with fuel cell technology were nearly resolved.

 Methanol Fuel Cells

Direct methanol fuel cells (DMFCs) are advantageous over H2-fed PEMFCs due to 
easy fuel transportation, energy storage, and high-energy conversion efficiency and 
are found as promising power sources for electric vehicles and portable devices [258, 
259]. In a typical DMFC, methanol and water molecules are simultaneously electro-
oxidized at the anode to produce CO2, electrons, and protons called as methanol 
oxidation reaction (MOR). Protons generated at the anode pass through the proton 
exchange membrane to cathode where they combine with electrons and the oxidant 
air or oxygen simultaneously reducing to water called as oxygen reduction reaction 
(ORR). The principal reactions involved in DMFCs are show in Eqs. 31, 32, and 33:

Methanol oxidation reaction:

 
CH OH H O CO H e E Vvs SHEa3 2 2 6 6 0 02+ ® + + =[ ]+ - . .  (31)

Oxygen reduction reaction:

 
3 2 6 6 3 1 232 2/ . .O H e H O E Vvs SHEc+ + ® =[ ]+ -

 (32)

Overall cell reaction:

 
CH OH O CO H O E Vvs SHEcell3 2 2 2

03 2 2 1 23+ ® + =éë ùû/ . .  (33)

Pt is the best material for the adsorption and dehydrogenation of methanol. However, 
the formation of intermediate species such as CO, formic acid, and formaldehyde 
poisons the platinum anode and critically lowers the performance. During methanol 
oxidation, the efficient catalyst should allow a complete oxidation to CO2. Presently, 
carbon-supported PtRu catalysts have been shown to be the best candidates for elec-
trochemical oxidation of methanol [74, 260]. May studies confirm that Ru could 
produce OHads species at lower potential to react with adsorbed intermediates on 
neighboring Pt sites [260–263]. Furthermore, the presence of Ru can induce varia-
tions in the electronic structure of Pt. This electronic or ligand effect enhances 
methanol dehydrogenation on Pt and facilitates weakening of Pt–CO bond, and thus 
an easy removal of poisoned CO on Pt is expected.

Many other bimetallic Pt-based nanocatalysts have been explored as low cost 
alternatives to PtRu catalysts for MOR. For example, alloys of Pt with Fe [264], Ni 
[265], Co [266], Mo [154, 247], Sn [267, 268], Pb [269], V [270], or Ir [271] show 
promise in generating OHads at lower potentials than Pt with improved activity 
toward MOR. In most cases, catalytic nanoparticles were dispersed on high surface 
carbon structures. The advantage of using a supported metal catalyst lies in the pos-
sibility to reduce the metal loadings drastically. The development in highly 

7 Formation and Characterization of Bimetallic Nanoparticles in Electrochemistry



224

CO-resistant Pt-based bimetallic nanoparticles as electrocatalysts for MOR is a big 
help in making DMFC a viable power-generating technology. However, significant 
improvements are still required in increasing the durability of bimetallic Pt-based 
catalysts for the widespread implementation of DMFCs.

 Electrochemical Oxidation of Formic Acid

Formic acid-based direct formic acid fuel cells (DFAFCs) are another attractive 
power source for portable electronic applications due to their promising energy den-
sities, power system simplicities, and the convenient storage and transport of liquid 
formic acid [272, 273]. Further, DFAFCs claim lower fuel crossover than DMFCs 
due to the repulsive nature of formate ions with sulfuric acid groups of the Nafion 
membrane so that higher concentrations of formic acid can be used to get the higher 
energy density of the cell [274]. On conventional platinum surfaces, formic acid is 
electrooxidized directly to produce CO2 (dehydrogenation path), or it may leave 
adsorbed CO species (dehydration pathway) as shown below:

 Dehydrogenation pathway HCOOH CO H e: ® + ++ -
2 2 2  (34)

 Dehydration pathway HCOOH CO H O CO H eads: ® + ® + ++ -
2 2 2 2  (35)

Although pure Pt can be easily poisoned by adsorbed CO species, one tactic to 
improve its activity is to form bimetallic Pt-based catalysts. Many efforts have been 
made to enhance the oxidation rates of formic acid by developing PtAu [223, 274–277], 
PtPd [278, 279], PtFe [280], PtBi [273, 281, 282], PtAg [283], Pt–Co [284], and 
PtSb [285] bimetallic catalysts. Pt-based bimetallic catalysts display improved cata-
lytic activity toward formic acid as a result of the ensemble effect. According to this, 
at least two ensembling binding Pt sites are required for the dissociative adsorption 
of formic acid to CO. However, the direct oxidation of formic acid via dehydration 
pathway does not require the same Pt atom ensemble [231, 286].

In recent years, much interest has been focused on the development of PtAu 
bimetallic nanoparticles as electrocatalysts for formic acid electrooxidation. 
The addition of Au to Pt promises the enhancement of formic acid oxidation kinetics 
by operating a combined ensemble and electronic effect which helps in diminishing 
the COads formation and increasing the intrinsic activity, respectively [219]. Further, 
Au is believed to promote the first electron transfer during the direct dehydrogena-
tion process of formic acid oxidation which generates HCOOads species on Au [287–
289]. If Pt is around Au, efficient spillover of HCOOads from Au to the neighboring 
Pt occurs, which is further oxidized to CO2 [223]. Various carbon-based supports 
have been utilized for the purpose of depositing Pt-based bimetallic nanoparticles, 
including carbon [290], carbon nanotubes [291], carbon nanofibers [276], and gra-
phene [275], which have led to improved kinetics during formic acid electrooxida-
tion. It was widely demonstrated that the use of formic acid as a fuel is more 

C.-J. Pan et al.



225

advantageous than hydrogen and methanol due to its low-temperature operation, 
storage, and convenient transport.

 Conclusions and Future Perspective

In conclusion, the content reviewed here underscores the importance of understand-
ing the formation of bimetallic nanoparticles in particle design and in establishing 
structure-controllable synthesis methodologies and scaling-up processes. X-ray 
absorption spectroscopy has a striking advantage in revealing the underlying chem-
istry involved in the nucleation and growth process of bimetallic nanoparticles. 
Further, XAS can be utilized to follow the formation of alloy and core–shell struc-
tures which are believed to influence bimetallic nanoparticles electrocatalytic activ-
ities toward fuel cell reactions. In addition, the capabilities of XAS can be used to 
provide atomic level information on alloying extent and atomic distribution. So far, 
significant developments have been made in the bimetallic nanoparticle synthesis 
with achievements such as synthesizing more complicated structures with an easy 
control over composition, size, and morphology. The relationship between the cata-
lytic activity and the selectivity of bimetallic nanoparticles with their structural 
characteristics in fuel cell reactions such as the methanol oxidation reaction, oxygen 
reduction reaction, and formic acid oxidation reactions has been discussed. Key 
influencing factors including surface structure, composition, size, and morphology 
have been investigated by many researchers. These studies strengthen our funda-
mental understanding of bimetallic catalysis and the rational selection of novel 
materials for power-generating devices such as fuel cells. Although great progress 
has been made in bimetallic nanoparticle research, the common challenges of 
achieving long-lasting, highly active, selective, and environmentally benign bime-
tallic nanoparticles are still remain. A promising hope is that by systematically mini-
mizing the experimental trial-and-error strategies by integrating theoretical and 
practical approaches, great strides in the development bimetallic nanoparticle- 
linked catalysis can be expected.
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   Abstract  
  Unique mechanical, electronic, chemical, optical, and electrochemical properties 
of nanosized carbon materials predestine them for numerous potential applica-
tions including photocatalysis, electrochemistry, electronics, and optoelectron-
ics. Carbon nanotubes and graphene are some of the most intensively explored 
carbon allotropes in materials science. The possibility to translate the individual 
properties of these monodimensional (carbon nanotubes SWCN, MWCN) and 
bidimensional (graphene) building units into two-dimensional free-standing 
thick and thin fi lms has paved the way to use these allotropes in a number of the 
mentioned applications. Moreover, the possibility to conjugate carbon nanoma-
terials with biomolecules has received particular attention with respect to the 
design of chemical sensors and biosensors. In this paper, we reviewed types, 
structure, and especially different methods of synthesis (preparation) of carbon 
nanomaterials including arc discharge, laser ablation, and chemical vapor depo-
sition. Moreover, we mentioned some rarely used ways of arc discharge deposi-
tion, which involves arc discharge in liquid solutions in contrary to standard used 
deposition in a gas atmosphere. Besides synthesis, modifi cations of carbon nano-
materials with biologically important molecules for biosensing of DNA and 
RNA are discussed.  

  Keywords  
  Carbon   •   Nanoelectrode   •   Synthesis   •   Modifi cation   •   Biochemistry   •   Nucleic acid   • 
  Adenine   •   Cytosine   •   Guanine   •   Thymine  

        Introduction 

 Electroanalytical techniques have been widely used for the determination of nucleic 
acids. These analyses can be divided according to many parameters, including the 
type of material of a working electrode (mercury, carbon, gold) or applied electro-
chemical method and/or structure of a detected system (presence or absence of 
biocompound(s)). Electrochemical determination of nucleic acid(s) on carbon elec-
trodes can be divided into the two basic groups as follows: (i) hybridization-based 
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techniques and (ii) oxidation of DNA bases. Application of hybridization reaction is 
very widespread due to the specifi city of determination and low limit of detection. 
The other way, oxidation of DNA bases is presented too. Improvement of physico-
chemical properties of carbon electrodes is possible via a modifi cation of its sur-
face. The modifi cation of surface is possible, in general, by chemical entities or 
biocompounds according to the suggested detection system. The following text is 
focused on the electroanalytical determination of nucleic acids by direct detection 
(mainly by oxidation of DNA bases) using chemically modifi ed carbon electrodes.  

    Carbon Materials for Electroanalysis 

 Carbon nanostructures have been in the center of research activities since the 
discovery of fullerene in 1985. Interest in carbon and its importance can be demon-
strated by Nobel Prize obtained by Andre Geim and Kostya Novoselov in 2010 for 
their research on unexpected properties of one atom thick layer of graphene. Various 
carbon nanostructures (Fig.  1 ) like carbon nanotubes (CNTs), graphene, and fuller-
ene are the most studied ones as promising materials with applications in different 
technologies and in biology and medicine [ 1 ].

   Carbon nanotubes can be described as rolled-up graphene sheets with no overlap-
ping edges, and the ends are capped with half fullerene balls. Their diameters 

  Fig. 1    Nanoallotropes of carbon. ( a ) Graphene, ( b ) fullerene C 60 , ( c ) single-walled carbon 
 nanotube, ( d ) multiwalled carbon nanotube       
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typically vary from 1 to 100 nm, and their lengths can be several orders of magnitude 
larger, up to millimeters and even centimeters long. This is, in the fact, the minimum 
energy conformation of a graphite layer of fi nite size. The properties of the nano-
tubes depend on the arrangement of the graphene sheets, the diameter and length of 
the tubes. The multiwalled nanotubes (MWNTs) consist of a coaxial assembly of 
several single-walled nanotubes (SWNTs), separated from one another by ~0.34 nm, 
which is slightly more than the interlayer distance in single-crystal graphite. Double-
walled carbon nanotubes (DWNTs), which consist of two graphene layers only, rep-
resent another form of nanotubes. 

 The graphene honeycomb lattice is composed of two equivalent sublattices of 
carbon atoms bonded together with σ bonds. Each carbon atom in the lattice has a π 
orbital that contributes to a delocalized network of electrons. Graphene possess 1D 
structure, and monolayer or few-layer graphene is known. Graphite oxide is also 
planar, but there are also oxygen atoms involved in the structure. 

 Fullerenes are composed of carbon, such as C 60  and C 70 , which may carry 
additional functional groups. Fullerenes are spherical molecules containing aro-
matic moieties, but despite their extensive conjugation, they behave chemically 
and physically as electron-poor alkenes rather than electron-rich aromatic sys-
tems. Fullerene is a rigid substance with 12 pentagons and 20 hexagons consti-
tuting a single C 60  molecule with a hybridization of sp 2  for all the carbon atoms 
and a length of C–C bond of 1.46 Å. It follows the Euler theorem of spherical 
network closure where the pentagons are responsible for the formation of curvature 
in the fullerene structure. The most stable is C 60  followed by C 70 , C 76 , C 78 , C 80 , 
C 82 , and C 84 . In terms of addition reactions, it shows some similarity to olefi ns. 
Especially, the purely carbon- based fullerenes exhibit very low solubility in 
water. However, fullerenes have the ability to form stable aggregate clusters with 
nanoscale dimensions upon contact with water [ 1 ]. 

    Carbon Nanotubes 

 Iijima et al. in 1991 used arc discharge method [ 2 ] to prepare CNTs. CNTs are pro-
duced between two graphite water-cooled electrodes at high temperatures (above 
1700 °C) in a chamber with helium atmosphere at subatmospheric pressure. Thus 
prepared CNTs have less structural defects in comparison with other techniques. 
Vertically aligned CNTs were prepared by hydrogen arc discharge using pure graph-
ite powder as a source of carbon without catalysts added. The activation of hydro-
gen radicals, the heating effect of the arc, and the electric fi eld surrounding the arc 
column area are considered to play important roles for the non-catalyst growth of 
the CNTs [ 3 ]. 

 Another method (Fig.  2a ) used especially for the preparation of high-purity 
SWCNTs is laser ablation utilizing Nd:YAG and CO 2  lasers, where the laser energy 
for graphite target evaporation is used. Laser ablation of Ni or Fe is used to create 
nanoparticles within a reactive fl ame environment to catalyze in situ generation [ 4 ]. 
Ablation of Fe in a CO-enriched fl ame produces single-walled nanotubes, whereas 
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ablation of Ni in an acetylene-enriched fl ame produces carbon nanofi bers. Moreover, 
SWNTs and nanofi bers can be synthesized within very short timescales, of the order 
of tens of milliseconds.

   Nowadays, mostly low-temperature chemical vapor deposition (CVD) technique 
is applied in the fi eld CNTs synthesis, because growth, alignment, length, diameter, 
purity, and density of CNTs can be better controlled. CO or hydrocarbons as a carbon 
source are heated to 800–1000 °C with a transition metal catalyst to promote growth 
of nanotubes [ 5 ]. The CVD is a suitable method with well-controlled reaction condi-
tions for production of pure CNT (Table  1 ). Catalysts are often necessary [ 6 ]. 
Thermal [ 10 ], plasma-enhanced (PE), water-assisted [ 8 ,  9 ,  11 ], and oxygen- assisted 
CVD [ 7 ], microwave plasma (MP-CVD) [ 12 ,  13 ], or radiofrequency CVD (RF-CVD) 
[ 14 ] methods have been developed (Fig.  2a ).

   The most frequently used catalysts in the CVD are transition metals Fe, Co, and 
Ni [ 15 ], whereas substrates are Ni, Si, SiO 2 , Cu, Cu/Ti/Si, steel, graphite and tung-
sten foil [ 16 ,  17 ], mesoporous silica [ 18 ,  19 ], and zeolites [ 20 ]. An infl uence of the 
composition and the morphology of the catalyst nanoparticles on growth of CNTs by 
the CVD has been summarized in the review paper [ 21 ]. Millimeter-long vertically 
aligned CNTs were grown after 12 h of deposition by adjusting the growth parame-
ters for making the catalyst active for a long time (Table  2 ). The direct dependence 
of the number of walls of mm-long CNTs on the Fe catalyst thickness was observed. 

Arc discharge method Laser ablationChemical vapour deposition (CVD)

WAYS OF CARBON NANOTUBES PREPARATION

plasma enhanced
(PE-CVD)

microwave plasma
(MP-CVD)

radiofrequency
(RF-CVD)

oxygen assistedthermal (T-CVD) water assisted 

WAYS OF VERTICALLY ALIGNED CARBON NANOTUBES (ACNTS) PREPARATION

Single-step techniques

b

a

Double-step techniques

flame synthesis

thermal pyrolysis catalyst coating

chemical vapour deposition

  Fig. 2    ( a ) Scheme of subdividing ways of carbon nanotubes preparation. ( b ) Scheme of subdivid-
ing ways of vertically aligned carbon nanotubes preparation       
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   Table 1    Carbon nanotube preparation with low-temperature chemical vapor deposition (CVD) 
technique   

 Carbon nanotube growth by PECVD: a review  [ 5 ] 
 The effect of nickel content of composite catalysts synthesized by hydrothermal 
method on the preparation of carbon nanotubes 

 [ 6 ] 

 A synthesis of high-purity single-walled carbon nanotubes from small diameters of 
cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process 

 [ 7 ] 

 Optimization of water-assisted chemical vapor deposition parameters for super 
growth of carbon nanotubes 

 [ 8 ] 

 Synthesis and mechanical properties of carbon nanotubes produced by the water- 
assisted CVD process 

 [ 9 ] 

 Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth 
of single- and multiwalled carbon nanotubes 

 [ 10 ] 

 Ink-jet printing of ferritin as method for selective catalyst patterning and growth of 
multiwalled carbon nanotubes 

 [ 11 ] 

 Direct growth of carbon nanotubes with a catalyst of nickel nanoparticle-coated 
alumina powders 

 [ 12 ] 

 Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane 
precursors using a platinum catalyst 

 [ 13 ] 

 Chirality-enriched semiconducting carbon nanotubes synthesized on high surface 
area MgO-supported catalyst 

 [ 14 ] 

    Table 2    Carbon nanotube preparation with low-temperature chemical vapor deposition (CVD) 
technique connected with various catalysts   

 Selective synthesis of double-walled carbon nanotubes by CCVD of acetylene using 
zeolite supports 

 [ 20 ] 

 A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes 
over metal catalysts supported on a mesoporous material 

 [ 18 ] 

 Selective chemical vapor deposition synthesis of double-walled carbon nanotubes 
on mesoporous silica 

 [ 19 ] 

 Number of walls controlled synthesis of millimeter-long vertically aligned brushlike 
carbon nanotubes 

 [ 22 ] 

 Rhenium-catalyzed growth carbon nanotubes  [ 23 ] 
 Effects of temperature and catalysts on the synthesis of carbon nanotubes by 
chemical vapor deposition 

 [ 15 ] 

 Synthesis methods of carbon nanotubes and related materials  [ 21 ] 
 Synthesis and purifi cation of bimetallic catalyzed carbon nanotubes in a horizontal 
CVD reactor 

 [ 16 ] 

 Large-area synthesis of conical carbon nanotube arrays on graphite and tungsten foil 
substrates 

 [ 17 ] 

 Control of dense carbon nanotube arrays via hierarchical multilayer catalyst  [ 24 ] 
 3-Orders-of-magnitude density control of single-walled carbon nanotube networks 
by maximizing catalyst activation and dosing carbon supply 

 [ 25 ] 

 Controlled synthesis of a large fraction of metallic single-walled carbon nanotube 
and semiconducting carbon nanowire networks 

 [ 26 ] 
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The successful syntheses of SWNTs, DWNT, and MWNTs with high percentages of 
yield (similar to 80 %) were achieved by varying in the thickness of catalyst layer. 
The effect of Al 2 O 3  layer was found to be critical for this controlled synthesis [ 22 ]. 
Controlled synthesis of SWNTs and carbon nanowire networks using Fe/Al 2 O 3  
catalyst by altering the hydrogenation and temperature conditions is demonstrated. 
The growth mechanism is based on the catalyst nanoisland analysis by AFM. The 
results are important to achieve the ultimate control of chirality, structure, and con-
ductivity of one-dimensional all-carbon networks [ 25 ]. In addition, preparation of 
DWNTs over the Fe and Co catalyst on mesoporous silica was observed [ 18 ]. 
Ramesh et al. reported high-yield selective synthesis of DWNTs over Fe/Co-loaded 
high-temperature stable mesoporous silica [ 19 ]. Hiraoka et al. used zeolites as a sub-
strate and acetylene over well-dispersed metal particles (Co/Fe binary system) at 
temperatures above 900 °C for selective synthesis of DWNTs [ 20 ].

   Rhenium is a suitable catalyst for the synthesis of SWCNTs, DWCNTs, and 
MWCNTs with uniform diameter and defi ned numbers of shells (Table  2 ). Scanning 
and transmission electron microscopy investigations, Raman spectroscopy, and 
magnetic measurements show the tubular structure, the high crystallinity, and the 
diamagnetic character of the grown nanotubes. The growth mechanism of the re- 
catalyzed nanotubes was compared with the growth behavior supported by the con-
ventional catalyst metals iron, cobalt, and nickel [ 23 ]. The effective control of 
dense, high-quality carbon nanotube arrays using hierarchical multilayer catalyst 
patterns was demonstrated. Scanning/transmission electron microscopy, atomic 
force microscopy, Raman spectroscopy, and numerical simulations show that by 
changing the secondary and tertiary layers, one can control the properties of the 
nanotube arrays. The arrays with the highest surface density of vertically aligned 
nanotubes are produced using a hierarchical stack of iron nanoparticles and alumina 
and silica layers differing in thickness by one order of magnitude from one another. 
The results are explained in the terms of the effect of catalyst structure on carbon 
diffusivity [ 24 ]. Han et al. reported on a simple and effective method to maximize 
the number of nanoparticles as active catalyst. By modulating short pulses of acety-
lene into a methane-based CVD growth process, the density of SWCNTs is dramati-
cally increased by up to three orders of magnitude without increasing the catalyst 
density and degrading the nanotube quality [ 26 ]. 

 For the preparation of CNTs, hydrocarbons such as methane [ 27 ], ethane [ 28 ], 
ethylene [ 29 ], acetylene [ 30 ], xylene [ 31 ,  32 ], their mixtures [ 33 ], isobutane [ 34 ], or 
ethanol [ 35 ,  36 ] belong to the carbon sources. Resources for CNTs preparation are 
summarized in Table  3 . In the case of gaseous carbon source, growth of CNTs 
strongly depends on the reactivity and concentration of gas-phase intermediates 
produced together with reactive species and free radicals as a result of hydrocarbon 
decomposition. Thus, it can be expected that the most effi cient intermediates, which 
have the potential of chemisorption or physical sorption on the catalyst surface to 
initiate CNT growth, should be produced in the gas phase [ 42 ]. Thus, Zhang et al. 
prepared MWNTs with diameter of 40–60 nm by the catalytic decomposition of 
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methane at 680 °C for 120 min, using nickel oxide–silica binary aerogels as the 
catalyst [ 38 ,  39 ]. Sano et al. evaluated two systems of metallic catalyst/carbon source 
for CNTs growth: ethanol/Co and benzene/Fe. Moreover, the authors investigated 
an effect of two different reactors (gas-fl ow reactor and a submerged-in- liquid reactor) 
on quality of CNTs [ 41 ]. Lyu et al. produced high-quality and high-purity DWNTs 
by a catalytic decomposition of benzene as an ideal carbon source and Fe–Mo/
Al 2 O 3  as catalyst at 900 °C. They obtained DWNTs bundles free of amorphous car-
bon covering on the surface and of a low defect level in the atomic carbon structure 
[ 37 ]. Du et al. synthesized CNTs by Co/MgO catalyzed pyrolysis of dimethyl sul-
fi de at 1000 °C, which is rarely used as a carbon source. The presence of sulfur can 
promote the growth of long SWNTs or branched CNTs. The authors found that the 
concentration of dimethyl sulfi de vapor as well as fl ow rate in the reaction chamber 
determines the quality of the product [ 40 ].

   The growth of vertically aligned carbon nanotubes (ACNTs) is very often stud-
ied because it is a method giving the highest yields in CNTs growth [ 43 ]. Vertically 
aligned carbon nanotubes are bundles of carbon nanotubes oriented perpendicular 
to a substrate, and horizontally aligned CNTs are parallel to the substrate. The 
methods of synthesis of ACNTs can be classifi ed into single-step and double-step 

   Table 3    Resources for carbon nanotube preparation   

 High-quality double-walled carbon nanotubes produced by catalytic decomposition 
of benzene 

 [ 37 ] 

 Preparation and modifi cation of carbon nanotubes  [ 38 ] 
 Preparation and desalination performance of multiwalled carbon nanotubes  [ 39 ] 
 Preparation of carbon nanotubes by pyrolysis of dimethyl sulfi de  [ 40 ] 
 Catalytic decomposition of hydrocarbons on cobalt, nickel, and iron catalysts to obtain 
carbon nanomaterials 

 [ 29 ] 

 Chemical kinetics of catalytic chemical vapor deposition of an acetylene/xylene 
mixture for improved carbon nanotube production 

 [ 33 ] 

 Synthesis of carbon nanotubes in graphite microchannels in gas-fl ow and submerged-
in- liquid reactors 

 [ 41 ] 

 Calibration of reaction parameters for the improvement of thermal stability and 
crystalline quality of multiwalled carbon nanotubes 

 [ 34 ] 

 Interdependency of gas-phase intermediates and chemical vapor deposition growth of 
single-walled carbon nanotubes 

 [ 42 ] 

 Prospective growth region for chemical vapor deposition synthesis of carbon nanotube 
on C–H–O ternary diagram 

 [ 28 ] 

 Nickel catalyst-assisted vertical growth of dense carbon nanotube forests on bulk 
copper 

 [ 32 ] 

 Growth of carbon nanotubes in six orthogonal directions on spherical alumina 
microparticles 

 [ 30 ] 

 Decomposition of ethanol and dimethyl ether during chemical vapor deposition 
synthesis of single-walled carbon nanotubes 

 [ 35 ] 

 Investigation of Fe/MgO catalyst support precursors for the chemical vapor deposition 
growth of carbon nanotubes 

 [ 27 ] 

 Effects of different carbon precursors on synthesis of multiwalled carbon nanotubes: 
purifi cation and functionalization 

 [ 31 ] 

 Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol 
decomposition 

 [ 36 ] 
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techniques (Fig.  2b ). Thermal pyrolysis and fl ame synthesis are the most common 
single-step methods (Table  4 ). The double-step methods, including catalyst coating 
and chemical vapor deposition (Table  4 ), provide more control over the catalyst 
morphology [ 50 ]. Nanolithography is used to create pattern of catalyst on the sur-
face on which CNTs are formed using the CVD methods. Kim et al. used Si as a 
substrate and Ni as a catalyst deposited on a diffusion barrier from Ni/Ti. Ni dots 
catalyst of 1.6 μm and about 200 nm was patterned using UV and e-beam lithogra-
phy, respectively. The method of CNTs formation uses the reactor with gas ratio 
C 2 H 2 /(H 2  or NH 3 ) at 620 °C. The diameter of created CNTs depended on Ni dots 
size [ 45 ]. Yamada et al. used high effi ciency water-assisted CVD synthesis of verti-
cally aligned DWNTs forests with heights of up to 2.2 μm using Fe catalyst. They 
achieved CNTs with a carbon purity of 99.95 % [ 44 ]. Aligned MWCNTs with high 
purity and bulk yield were achieved on a silicon substrate by an aerosol-assisted 
chemical vapor deposition. The introduction of specifi c amounts of water vapor 
played a key role in in situ controlling the purity and surface defects of the nano-
tubes. However, excessive water vapor would inhibit the MWCNTs growth with a 
poor surface quality. In addition, it has been found that the surface morphology of 
the CNTs can be modifi ed intentionally through producing some surface defects by 
tuning the amount of the water vapor, which may offer more nucleation sites on the 
chemically inert surface of CNTs for various applications such as a catalyst sup-
port [ 46 ]. Kim et al. demonstrated synthesis of carbon nanotubes on stainless steel 
by a water-assisted chemical vapor deposition using an Al/Fe bimetallic catalyst. 
A forest of vertically oriented carbon nanotubes with a length of a few hundreds of 
micrometers were grown on the substrates. Electrical measurement confi rmed that 
the CNTs were electrically connected to the stainless steel [ 47 ]. A scalable process 
for growth of CNTs on metallic substrates was developed. This process includes 

    Table 4    Various ways of vertically aligned carbon nanotubes preparation   

 Size-selective growth of double-walled carbon nanotube forests from engineered iron 
catalysts 

 [ 44 ] 

 Growth of vertically aligned arrays of carbon nanotubes for high fi eld emission  [ 45 ] 
 Aligned synthesis of multiwalled carbon nanotubes with high purity by aerosol-assisted 
chemical vapor deposition: effect of water vapor 

 [ 46 ] 

 Synthesis of vertically aligned carbon nanotubes on stainless steel by water-assisted 
chemical vapor deposition and characterization of their electrochemical properties 

 [ 47 ] 

 Wet-chemical catalyst deposition for scalable synthesis of vertically aligned carbon 
nanotubes on metal substrates 

 [ 48 ] 

 Tailoring the microstructure and mechanical properties of arrays of aligned multiwalled 
carbon nanotubes by utilizing different hydrogen concentrations during synthesis 

 [ 49 ] 

 Synthesis of aligned carbon nanotubes  [ 50 ] 
 Origin of periodic rippling during chemical vapor deposition growth of carbon nanotube 
forests 

 [ 43 ] 

 Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically written Si 
features with arbitrary shape 

 [ 51 ] 

 Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of 
water vapor through preheating of added oxygen 

 [ 52 ] 

 Synthesis and fi eld emission properties of vertically aligned carbon nanotube arrays on 
copper 

 [ 53 ] 
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dip-coating steps for a wet-chemical catalyst and cocatalyst layer deposition and a 
subsequent chemical vapor deposition step. Organic metal salt/2-propanol solu-
tions were applied as precursors for alumina cocatalyst thin fi lms and the actual Fe 
(Co, Mo) catalyst layer. Vertically aligned CNTs were obtained on catalyst-coated 
nickel foil at atmospheric pressure and 730 °C using ethene as a carbon source. The 
infl uence of the catalyst composition on growth rate, density, and structure of CNT 
fi lms was showed [ 48 ]. Raney et al. synthesized vertically aligned CNTs in a 
chemical vapor deposition system with a fl oating catalyst, using different concen-
trations of hydrogen in the gas feedstock. The effect of different concentrations of 
hydrogen on the microstructure and mechanical properties of the resulting material 
is given [ 49 ]. Neupane et al. reported the synthesis of periodic arrays of CNTs with 
different densities on a copper substrate by employing nanosphere lithography and 
plasma- enhanced chemical vapor deposition. At a growth pressure of 8 Torr and 
temperature of 520 °C, vertically aligned bamboo-like CNTs were formed with a 
catalyst particle on the tip [ 53 ]. Dense millimeter-tall carpets of vertically aligned 
CNTs were grown using the thermal CVD from ethylene and hydrogen gases with 
two or three independently controlled hot zones while introducing controlled fl ows 
of oxygen. Through preheating, oxygen and hydrogen reacted through a multistep 
reaction to form water, enabling the growth of tall CNT carpets. The simplicity of 
this CVD process provides a simpler alternative to direct the addition of water 
vapor for manufacturing tall carpets of ACNTs with a high level of control [ 52 ]. 
Simple, rapid, catalyst-free synthesis of complex patterns of long, vertically 
aligned MWCNTs strictly confi ned within mechanically written features on a 
Si(100) surface has been reported. It is shown that dense arrays of the nanotubes 
can nucleate and fully fi ll the features when the low-temperature microwave 
plasma is in a direct contact with the surface [ 51 ]. More information about CNTs 
can be found, for example, in the following papers and reviews [ 54 – 59 ].

       Graphene 

 Preparation of graphene by the CVD growth on epitaxially matched metal surfaces 
was fi rstly reported by May [ 60 ]. Blakely et al. published many papers on growth of 
monolayer and bilayer graphite on Ni [ 61 – 63 ]. Growth on SiC wafer surfaces by high 
temperature (1300 °C) evaporation of Si in ultrahigh vacuum [ 64 ,  65 ] or atmospheric 
pressure [ 66 ] is a method to prepare wafer-size graphene [ 67 ]. Large-area monolayer 
or multilayer graphene was prepared on copper by deposition of carbon [ 68 – 70 ]. 

 Ruoff et al. published numerous papers on micromechanical exfoliation for prep-
aration of graphene [ 71 ,  72 ]. Micromechanical exfoliation can be used to prepare 
graphene of high quality that is electrically isolated for fundamental studies of 
transport physics and other properties but does not appear to be scalable to large 
area. It typically produces graphene particles with lateral dimensions in the order 
from tens to hundreds of micrometers. 

 Exfoliation of graphite in solvents was also reported as another method to make 
dispersions of graphite in various organic solvents like dimethylformamide (DMF) 
or  N -methylpyrrolidone (NMP) in an ultrasonic bath. Unfortunately, the yield of 
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graphene prepared by this method is relatively low. Graphene dispersions with 
concentrations up to 0.01 mg/ml were produced by dispersion and exfoliation of 
graphite in NMP. This is possible because the energy required to exfoliate gra-
phene is balanced by the solvent graphene interaction for solvents whose surface 
energies match that of graphene. Individual graphene sheets were confi rmed by 
Raman spectroscopy, TEM, and electron diffraction. This method results in a 
monolayer yield of 1 %, which could potentially be improved to 7–12 % with fur-
ther processing. Semitransparent conducting fi lms and conducting composites can 
be also produced [ 73 ]. 

 Substrate-free synthesis of graphene in a microwave plasma reactor was demon-
strated, too [ 74 ]. Graphene sheets in the gas phase were prepared using a substrate- 
free way in atmospheric pressure microwave plasma reactor. Graphene sheets were 
synthesized by passing liquid ethanol droplets into argon plasma. The graphene 
sheets were characterized by TEM, electron energy loss spectroscopy, Raman spec-
troscopy, and electron diffraction. Graphene can be created without three- 
dimensional materials or substrates. 

 Arc discharge synthesis of multilayered graphene has also been reported [ 75 ]. 
N-doped multilayered graphene sheets were synthesized in large scale by the 
method of direct current arc discharge between pure graphite rods. For the use of 
NH 3  as one of the buffer gas, the multilayered graphene sheets were doped with N 
without the addition of other nitrogen source. The graphene sheets were mainly of 
two to six layers and their sizes of about 100–200 nm. The multilayered graphene 
sheets can be purifi ed by a simple heat treatment process. The content of N atoms in 
the multilayered graphene sheets can be tuned by simply changing the proportion of 
NH 3  in the atmosphere. Arc discharge between graphite electrodes under a rela-
tively high pressure of hydrogen yields graphene fl akes that generally contain two 
to four layers in the inner wall region of the arc chamber. The method is eminently 
suited to dope graphene with boron and nitrogen by carrying out arc discharge in the 
presence of diborane and pyridine, respectively [ 76 ]. 

 Graphene can be obtained by chemical reduction of graphite oxide colloidal dis-
persions with reducing agents, such as hydrazine [ 77 ], hydroquinone [ 78 ], sodium 
borohydride [ 79 ], or ascorbic acid [ 80 ]. Reduction by a thermal treatment [ 81 ,  82 ] 
has been reported to be an effi cient and low-cost method [ 83 ,  84 ]. Graphite oxide 
(GO) is mostly prepared by the Hummers method [ 85 ]. It involves oxidation of 
graphite with potassium permanganate and sulfuric acid. Graphite salts made by 
intercalating graphite with strong acids such as sulfuric acid, nitric acid, or perchlo-
rate acid have also been used as precursors for the subsequent oxidation to GO [ 86 ]. 

 A green and facile method for the preparation of gelatin-functionalized gra-
phene nanosheets (gelatin–GNS) was reported by using gelatin as a reducing 
reagent. Meanwhile, gelatin also played an important role as a functionalized 
reagent to prevent an aggregation of the graphene nanosheets. The obtained bio-
compatible gelatin–GNS exhibited excellent stability in water and various physi-
ological fl uids including cellular growth media as well as serum, which were 
critical prerequisites for biomedicine application of graphene [ 87 ]. More informa-
tion can be found in reviews [ 88 ,  89 ]. The summary of methods used for this pur-
pose is shown in Table  5 .
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       Fullerene 

 Fullerenes are molecules with minimum of 60 atoms of carbon with a spherical 
molecular structure where the carbon atoms are positioned at the vertices of a regu-
lar truncated icosahedron structure (for Buckminsterfullerene C 60 ) [ 90 ]. There are 
also higher mass fullerenes with different geometric structures, such as C 70 , C 76 , C 78 , 
and C 80  [ 91 ]. However, the C 60  is the most widely studied molecule. The method of 
production based on the use of an arc discharge between graphite electrodes in 200 
Torr of helium gas is still the most used method for preparation of fullerenes [ 92 ]. 

   Table 5    Various ways of graphene preparation and characterization   

 Preparation of graphitic oxide  [ 85 ] 
 Untersuchungen am graphitoxid. 5. Uber den bildungsmechanismus des graphitoxids  [ 86 ] 
 A mechanism for surface reconstruction at room temperature  [ 60 ] 
 Equilibrium segregation of carbon to a nickel (111) surface – surface phase transition  [ 61 ] 
 Carbon monolayer phase condensation on Ni (111)  [ 63 ] 
 Carbon interaction with nickel surfaces – monolayer formation and structural stability  [ 62 ] 
 Tailoring graphite with the goal of achieving single sheets  [ 71 ] 
 Three-dimensional manipulation of carbon nanotubes under a scanning electron 
microscope 

 [ 72 ] 

 Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene- 
based nanoelectronics 

 [ 64 ] 

 Electronic confi nement and coherence in patterned epitaxial graphene  [ 65 ] 
 Functionalized single graphene sheets derived from splitting graphite oxide  [ 82 ] 
 Single sheet functionalized graphene by oxidation and thermal expansion of graphite  [ 81 ] 
 Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite 
oxide 

 [ 77 ] 

 Substrate-free gas-phase synthesis of graphene sheets  [ 74 ] 
 High-yield production of graphene by liquid-phase exfoliation of graphite  [ 73 ] 
 Bottom-up growth of epitaxial graphene on 6H-SiC(0001)  [ 67 ] 
 Synthesis of water-soluble graphene  [ 79 ] 
 Facile synthesis and characterization of graphene nanosheets  [ 78 ] 
 Toward wafer-size graphene layers by atmospheric pressure graphitization of silicon 
carbide 

 [ 66 ] 

 Large-area synthesis of high-quality and uniform graphene fi lms on copper foils  [ 68 ] 
 Evolution of graphene growth on Ni and Cu by carbon isotope labeling  [ 69 ] 
 Transfer of large-area graphene fi lms for high-performance transparent conductive 
electrodes 

 [ 70 ] 

 Chemical methods for the production of graphenes  [ 84 ] 
 Simple method of preparing graphene fl akes by an arc discharge method  [ 76 ] 
 The chemistry of graphene oxide  [ 83 ] 
 All-organic vapor sensor using ink-jet-printed reduced graphene oxide  [ 80 ] 
 Synthesis of graphene and its applications: a review  [ 88 ] 
 Large-scale synthesis of N-doped multilayered graphene sheets by simple arc 
discharge method 

 [ 75 ] 

 Chemical preparation of graphene-based nanomaterials and their applications in 
chemical and biological sensors 

 [ 89 ] 

 Green and facile synthesis of highly biocompatible graphene nanosheets and its 
application for cellular imaging and drug delivery 

 [ 87 ] 
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Fullerenes are generated through the heat produced at the contact point between the 
electrodes. The evaporation of the carbon at this point promotes the formation of 
soot, which contains approximately 15 % of fullerenes (13 % of C 60  and 2 % of C 70 ). 
Generally, the mixture of fullerenes is separated by using liquid chromatography 
[ 93 – 95 ]. Applications of fullerenes in biomedicine were summarized by Yang et al. 
[ 96 ]. The summary of methods used for this purpose is shown in Table  6 .

        Electroanalysis of Nucleic Acids on Carbon-Based Electrodes 

 Electrochemical analysis is a widely used technique for the determination of nucleic 
acid (NA) [ 97 – 102 ]. In the general view, we can distinguish several approaches in 
DNA electroanalysis. The simplest approach is a direct detection of oxidizable or 
reducible components of DNA (bases, nucleosides, nucleotides). While mercury 
electrodes are suitable for studies including NA base reduction, solid electrodes, 
especially carbon electrodes, are used for oxidation processes. The other way is 
focused on an application of hybridization of nucleic acid in combination with the 
detection of electroactive labels or intercalators [ 103 – 106 ]. This chapter is focused 
only on the direct detection of oxidizable parts of NA on the carbon electrodes. 

    Carbon as an Electrode Material for NA Detection 

 Carbon as an electrode material has some unique properties, which are extremely 
important in terms of electrochemistry. It is especially its ability to bind a variety of 
functional groups that paved the way for a large number of electrode surface modi-
fi cation [ 103 ,  107 – 109 ]. Carbon materials have one important property, great 
adsorption potential. Adsorption of nucleic acids was fi rstly demonstrated by Brabec 
et al. [ 110 ]. Because of a hydrophilic nature of the carbon surface (reached by an 
oxidative pretreatment), NAs are adsorbed via phosphate backbone, leaving bases 
accessible for hybridization. If the carbon electrode is positively charged, electro-
static attraction of negatively charged backbone makes the adsorption even stronger 
[ 97 ]. It is obvious that the physicochemical conditions (ionic strength or a type of 
the background electrolyte) infl uence the adsorption phenomenon. 

   Table 6    Various ways of fullerene preparation and characterization   

 C-60 – Buckminsterfullerene  [ 90 ] 
 Solid C-60 – a new form of carbon  [ 92 ] 
 Improved chromatographic separation and purifi cation of C-60 and C-70 fullerenes  [ 93 ] 
 NMR characterization of isomers of C-78, C-82, and C-84 fullerenes  [ 91 ] 
 High-performance liquid-chromatographic separation of fullerenes (C-60 and C-70) 
using chemically bonded gamma-cyclodextrin as stationary phase 

 [ 94 ] 

 Chromatographic separation of fullerenes  [ 95 ] 
 Fullerene-derivatized amino acids: synthesis, characterization, antioxidant properties, 
and solid-phase peptide synthesis 

 [ 96 ] 
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 To carbon materials, which are used in electrochemistry, glassy carbon (GC), 
pyrolytic graphite (PG), amorphous carbon, carbon paste (CP), and carbon nanoma-
terials (highly conducting diamond fi lms, graphene, carbon nanotubes (CNTs)) 
belong. These materials are used to manufacture a glassy carbon electrode (GCE), 
carbon paste electrode (CPE), carbon microelectrode (CME), electrodes with car-
bon composites (CCE), and carbon screen-printed electrodes (CSPE) that are some-
times called thick-fi lm graphite-containing electrodes (TFGE). As the electrode it is 
also possible to use ordinary pencil graphite [ 111 ]. In some studies the suitability of 
carbon electrodes for electrochemical analysis of nucleic acids was compared 
[ 111 ,  112 ]. Carbon electrodes are probably the most frequently employed elec-
trodes in studies of oxidation of NA bases and their nucleotides or nucleosides. 

 Carbon electrodes create the wide potential window, which allows the direct oxi-
dation of guanine (G), adenine (A), thymine (T), and cytosine (C) [ 97 ]. Detected 
signals of bases start at around +0.7 V versus SCE for guanine and increase in the 
order of the abovementioned bases (Fig.  3 ; [ 113 ]). Binding of bases to the ribose 
and/or deoxyribose does not change the electrochemical behavior signifi cantly. 
Therefore, nucleotides and oligonucleotides can be accumulated and directly 
oxidized [ 114 ]. It was shown that A is oxidized in a process involving a total of 
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  Fig. 3    Differential pulse voltammogram obtained with a 3 mm diameter GCE electrode for the 
mixture of 2 × 10 −5  M guanine ( G ) and adenine ( A ), 2 × 10 −4  M thymine ( T ), and cytosine ( C ) in 
0.1 M phosphate buffer (pH 7.4) as a supporting electrolyte.  Pointed curve  is real measured voltam-
mogram;  solid curve  is baseline-corrected voltammogram       

 

D. Hynek et al.



255

six electrons per single A molecule [ 115 ]. G is oxidized electrochemically in a four 
electron process to give an unstable intermediate, followed by further reactions 
yielding either parabanic acid or oxalylguanine [ 116 ]. Although purine bases were 
focused in most of studies, T and C were also shown to produce oxidation signals [ 117 ]. 
While the detection of signals of individual bases was mentioned above, the simulta-
neous determination of all four DNA monophosphate nucleosides by differential 
pulse voltammetry (DPV) at GCE has been reported [ 118 ]. The limit of detection 
was shown to be less than 1 μM for each nucleotide.

       Electroanalysis of Nucleic Acid: Short Historical Overview 

 In the early electrochemical studies of nucleic acids, the technique of polarography 
was used [ 119 ]. In polarography, reduction signals of electroactive components of 
nucleic acids are analyzed using hanging mercury drop electrode. History of detec-
tion of components of nucleic acids on carbon electrodes began at the end of 1970s, 
when the fi rst voltammograms of residues of oxidation of purine bases (guanine and 
adenine) in denatured DNA and RNA were recorded by DPV on a pyrolytic graphite 
electrode [ 98 ,  110 ]. A few years later simultaneous oxidation of both purine bases 
in dsDNA was reported [ 98 ]. It has been found that both purine bases provide oxida-
tive signals over a wide pH range from 0 to 12.5 [ 115 ,  116 ]. At the end of the 1990s, 
in contrast with previous studies, electroactivity of pyrimidine bases and later the 
corresponding nucleosides and nucleotides were proved [ 117 ,  118 ]. In this decade, 
the existence of new carbon materials was discovered. 

 Carbon electrodes challenged the mercury electrodes in terms of sensitivity only 
after the application of constant current chronopotentiometric stripping (CPS) anal-
ysis or square wave voltammetry (SWV) with baseline correction, enabling deter-
mination of submicromolar oligonucleotide (ODN) concentrations (in the order of 
ng/ml) [ 112 ,  120 ]. CPS combines an electrochemical oxidation pretreatment of car-
bon electrode or more precisely its surface and preconcentration of an analyte. 
Pretreatment is based on application of a constant potential on a pretreated elec-
trode. The aim of pretreatment is to improve electrode surface properties and 
increase the amount of analyte adsorbed on the electrode during preconcentration 
step. Suitable pretreatment includes a series of polishing, sonication, scanning in 
electrolyte, electrochemical activation (application of constant potential), and 
cycling in new electrolyte for GCE [ 121 ]. Then the accumulated NA is oxidized by 
a constant anodic current, and the dependence of potential on time is recorded. 
While this method is quite sensitive, high potentials are need to oxidize DNA 
directly, and consequently high background currents are an issue [ 122 ]. 

 The application of CNTs in the electrochemistry of NA was started several years 
ago. A contribution of CNTs lies mainly in their unique electric, thermal, chemical, 
mechanical, and 3-D spatial properties [ 123 ]. Besides the most common applica-
tions of CNTs lie in the construction of NA biosensors (single strand probe attached 
to the surface of CNT), some applications in direct NA detection, mainly direct 
oxidation of DNA G residues, have been published [ 124 ,  125 ]. The principle of 
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detection relies on the enhancement of the G oxidation due to the large specifi c 
surface of the CNTs, which results in an increased number of detected molecules of 
NA. Graphene as another promising carbon material was used for the electrochemi-
cal detection of NA. Oxidation signals of DNA bases were detected by Zhou et al. 
[ 126 ]. They used chemically reduced graphene oxide on a GCE to determine all 
four DNA bases at physiological pH.   

    Modification of Electrode Surface 

 The functionality of electrode materials is limited through the available potential 
window. In electrochemical measurements, the analytes can be monitored if they 
are electroactive, and their electrochemical response is within the operational poten-
tial range. The reactivity of individual compounds is closely connected with the 
electrochemical transformations on the surface of electrode (electron transfer). The 
other important phenomena, which infl uenced the obtained results, are sorption 
effects on the electrode surface. 

 The primary purpose of the modifi cation of the electrode surface is to improve 
its analytical performance either by increasing its sensitivity and selectivity or by 
protecting the surface from unwanted reactions. In general, four main reasons for 
modifying the electrodes involving typical modifi er–substrate interactions, which 
increase the analytical qualities of the electrodes, may be defi ned:

•    Preconcentration of components of the analyte  
•   Exploitation of catalytic electrochemical responses  
•   Immobilization of molecules involved in electrochemical reactions  
•   Change of the physical properties of the electrode surface    

 The abovementioned information could be understood in general; it means that 
is valid for both basic groups of electrode modifi ers (biomodifi ers and non- 
biomodifi ers). Our chapter is focused on non-biomodifi ers. From this reason it 
could be said that the chemically modifi ed electrodes (CMEs, understood as elec-
trodes, which do not contain the bio component) are the main object of our interest. 
CMEs are, in general, understood as electrodes that possess chemical reactivity 
besides their ability to transfer the electrons to/from the analyte. This is possible by 
the presence of reactive groups or substances on the electrode surface [ 127 ]. 

 The electrochemical performance of carbon materials is determined basically by 
the electronic properties and, given by its interfacial character, the surface structure 
and surface chemistry (i.e., surface terminal functional groups or adsorption pro-
cesses) [ 128 ]. Such features would affect the electrode kinetics, potential limits, 
background currents, and the interaction with molecules in solution. Carbon materi-
als are interesting because of the presence of different allotropes and their electronic 
and electrochemical properties. According to their structure, they are divided into 
graphene, diamond, diamond-like carbon, carbon, graphite, and fullerene. Due to 
abovementioned facts, each material is modifi ed in another way, and therefore the 
next part of the text is divided according to individual types of carbon structures. 
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    Carbon Paste Electrodes 

 Historically, carbon paste electrodes were the fi rst modifi ed carbon electrodes. 
The concept of modifi ed electrode appeared in the 1970s for the fi rst time and was 
strongly propagated by Murry [ 129 ,  130 ] and later by Wang [ 131 ]. Modifi cation 
of carbon paste electrodes can be divided according to various criteria as follows: 
method of modifi cation, type, and/or modifi er location. Basically, the modifi ca-
tions can be separated to  intrinsic  (components that create the paste are modifi ed 
by functional groups) and  extrinsic  (modifi ers are added to the electrode compo-
nents as a further components) modifi cation. 

 The  intrinsic modifi cation  is usually done directly via the pasting liquid or par-
ticles. The fi rst step of covalent modifi cation with reactive groups is oxidation of the 
carbon surface by strong oxidizing reagent (nitric acid), which produces the oxygen- 
containing groups on the surface. Reduction of carbonyl groups that can be chemi-
cally reduced to phenols or alcohols and can be subsequently used (or used as 
anchoring groups for modifi er) could be the next step of modifi cation. Modifi er 
molecules can be bound via spacers or directly in dependence on chemical structure 
of modifi ers [ 127 ]. 

  Extrinsic modifi cations  should be further subdivided according to the place-
ment of the modifying agent, particularly distinction of the surface or bulk modi-
fi cations [ 127 ]. The surface modifi cation is characterized by the presence of 
modifi er just on the electrode surface (thin layer, fi lm, or membrane). These sur-
face modifi cations contain submonolayers (modifi er is spread fortuitously over 
the electrode in an amount that is necessary to create monolayer [ 132 ]), monolay-
ers (modifi er molecules cover the surface of electrode to create single layer nor-
mally achieved as self- assembled monolayers [ 133 ] or Langmuir–Blodgett fi lms 
[ 134 ]), and polylayers (many layers of the modifi er that can be homogenous/het-
erogeneous, e.g., conductive organic polymers [ 135 ], or redox polymers [ 136 ]). 
In the case of bulk modifi cation, a modifi er can be added directly to the carbon 
paste [ 137 ], or a modifi er can be mixed or adsorbed on the powder during the 
preparation of carbon paste [ 138 ].  

    Glassy Carbon Electrodes 

 Glassy carbon was the further carbon material which historically creates the next 
step of “evolution.” This material seems to be very suitable for the modifi cation pro-
cedures (especially due to its surface properties). In general, the modifi cation of 
glassy carbon electrodes can be divided into several points (directions). The fi rst one 
includes physical modifi cation through the applied voltage, duration, and pH value 
of electrolyte. This direction is presented by Wang et al. [ 139 ]. Opposite this the 
chemical modifi cations represent the next way of modifi cation. Gautier et al. [ 140 ] 
modifi ed glassy carbon electrodes by an acetonitrile solution containing 0.1 M 
Bu 4 NPF 6  as a support salt and 1 mM 4-chloromethylphenyl diazonium tetrafl uorobo-
rate. The combination of both the abovementioned approaches is presented by the 
linkage of carbon nanotubes to the surface of glassy carbon. One example of such a 
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procedure was published in [ 141 ], where glassy carbon electrode was modifi ed by 
dispersing CoNP/MWCNT (cobalt-immobilized MWCNT). 

 Although graphite, carbon nanotubes (CNTs), and fullerene are built from the 
same basic element, the chemical reactivity is substantially different among them 
[ 128 ]. The chemical reactivity is higher for CNTs than for graphene layer, but lower 
if compared with fullerene [ 142 – 144 ]. Such behavior can be closely related to cur-
vature of the surface of the carbon structure. 

 Graphite could be modifi ed through the number of edge plane sites present on 
the electrode surface. According to this, carbon-based material can be divided into 
several groups: highly pyrolytic graphite (HOPG), edge plane pyrolytic graphite 
(EPPG), and basal plane pyrolytic graphite (BPPG). From the work of Li et al. 
[ 145 ], it follows that there are two main factors that infl uence voltammetry: (a) the 
density of edge plane sites for electrooxidation of the electrolyte and (b) the density 
of basal plane sites available for adsorption. It is clear that the morphology of sur-
face plays a critical role. Modifi cation of graphite electrodes by SWCNT is another 
possibility. Disposable graphite electrodes modifi ed by SWCNT (SWCNT–PGEs) 
were prepared by Erdem et al. [ 146 ]. According to this protocol: at the fi rst step, the 
SWNCT solution was prepared – the amount of SWCNT was suspended in DMF 
and subsequently sonicated for 1 h at room temperature. The second step involves 
the preparation of SWCNT–PGEs – each pencil lead was submerged into the 110 μl 
of SWCNTs solution 1 h to form a thin SWCNTs layer on the electrode surface. 
Then electrodes were washed out with solution consisting of 0.5 M acetate buffer 
with 20 mM NaCl (pH 4.8) for 10 s and allowed to dry for 15 min at upside down 
position.  

    Carbon Nanotubes 

 Carbon nanotubes (CNTs) have been studied for their excellent specifi c properties 
for many years. From the view of possible modifi cations, it must be remembered 
that ends of CNTs exhibit higher chemical reactivity than the walls. In addition, the 
presence of local defects on the walls also constitutes effi cient reactive sites [ 147 ]. 
For instance, when CNTs are subjected to oxidative acid treatment, the local cre-
ation of carboxylic, ketone, alcohol, and ester groups represents introduction of 
active sites that can be profi ted for molecular anchoring [ 128 ,  148 ]. 

 The strategies for modifying the surface of CNTs can be divided into three general 
areas:

•    Covalent binding (chemisorption) of the modifi er to the CNTs through the chem-
ical or electrochemical activation  

•   Physical adsorption of the modifi er onto the CNT surface  
•   Miscellaneous methods of modifi cation (incorporation of CNTs into fi lm- 

modifi ed electrodes and intercalation of the modifi er into the CNTs)    
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 The fi rst way of modifi cation represented by the covalent binding of modifi ers 
can be further subdivided into two main parts related to the functional groups as 
it follows: modifi cations using diazonium salts and modifi cations using carboxyl 
groups. The fi rst way, an application of diazonium salts, is based on the action of 
free radical species generated by the electrochemical oxidation or reduction of a 
solution-phase compound (Fig.  4 ). For this purpose aryldiazonium salts are com-
monly used [ 149 – 152 ]. The process is initiated by a one-electron reduction yield-
ing dinitrogen, and free radical species are electrogenerated. They are subsequently 
attached covalently onto the surface of SWCNTs. A wide range of 4-substituted 
aryldiazonium salts have been employed, and a variety of behaviors have been 
illustrated by the modifi ed CNTs [ 147 ]. Polymerization of the radical species on 
the surface of CNTs has been demonstrated for R = NO 2 , Br, CH 2 Cl, SO 3 H, and 
COOH. The process results in a creation of polymer that is based on aryl chains. 
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  Fig. 4    The scheme of derivatization mechanism of CNTs via the electrochemical reduction of 
( a ) aryldiazonium salts and ( b ) via subsequent further electropolymerization. The reaction ( 1 ) is 
one- electron cathodic reduction and consists in release of molecule of nitrogen. Second reaction 
( 2 ) accumulates product of reaction ( 1 ) on the sidewall of SWCNT. Step ( 3 ) presents a few indi-
vidual reaction steps as H abstraction, radical propagation, and polymerization. Another molecule 
product of reaction 1 is bounded to the modifi ed SWCNT. The reaction ( 4 ) is one-electron anodic 
oxidation that results in release of hydrogen proton. Reaction ( 5 ) is the adsorption of radical inter-
mediate of reaction 4 on the sidewall of SWCNT. Step ( 6 ) presents a few individual reaction steps 
as H abstraction, radical propagation, and polymerization. Another molecule (radical intermediate) 
of reaction 4 is bounded to the modifi ed SWCNT. The modifi er group R could be for ( a ) as it follows: 
R = Br, NO 2 , SO 3 H, COOH, CH 2 Cl, and for ( b ) R = Cl, F,  t Bu, CO 2 Me,  n C 14 H 29 , and (−O–CH 2 –
CH 2 ) 3 –OMe (Adapted and modifi ed according to the [ 147 ])       
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The thickness of the deposited coating may be controlled effectively by the magnitude 
and direction of the applied potential [ 147 ]. One of the main issues of the electro-
chemically activated modifi cation is the fact that the quantities of derived CNTs 
produced are rather limited and the modifi ed CNTs are often diffi cult to remove 
from the surface of the electrode. Therefore, alternative bulk derivatization meth-
ods have been suggested [ 128 ,  147 ]. CNTs can also be modifi ed in bulk (gram) 
quantities with aryldiazonium salts through thermolysis, photolysis, or chemical 
reduction of the diazonium moiety to form radical or cationic reactive intermedi-
ates, which can then attack the surface of the CNTs to form covalent bonds 
[ 125 ,  153 – 156 ].

   Carboxylated CNTs are located on the border line between the modifi ed and 
native CNTs. CNTs have some oxygen-containing functional groups located on the 
edge of the graphite sheets that make up the tube walls, particularly hydroxyl, qui-
nonyl, and carboxyl moieties [ 128 ,  147 ]. The number of such groups is often used 
in any signifi cant modifi cation process. Simple stirring the CNTs in concentrated 
nitric acid is the most widely used method for preparation of carboxylated CNTs. 
This strong oxidizing agent introduces carboxyl groups at the ends of CNTs. The 
range of chemical species that can be coupled to carboxylated CNTs (e.g., through 
amide linkages or esterifi cation) is often limited only by the chemical route avail-
able to create covalent bond in the target molecule. 

 The way of physical adsorption as modifi cation process is very often connected 
with biocompounds as the applied modifi er. Therefore this chapter is defi ned as a 
non-biomodifi cation; this area of research will not be further discussed. Opposite 
this, an application of nanoparticles is presented. The physical adsorption of a large 
number of CdS nanoparticles onto the surface of SWCNTs through hydrophobic 
interactions, a process that is activated by fi rst adsorbing acetone onto the SWCNT 
surface, has been described by Wang et al. [ 157 ]. 

 The example of the third group that represents miscellaneous methods is the 
derivatization method of MWCNTs based on the partial intercalation of 
4- nitrobenzylamine (4-NBA) molecules into both graphite powder and MWCNTs 
[ 158 ]. This procedure is able to process upon stirring the MWCNTs with a solution 
of 4-NBA in acetonitrile and is the fi rst such example of an organic molecule par-
tially intercalating into a graphitic material. Partial intercalation differs from full 
intercalation processes, which are well known for graphite and MWCNTs, in that 
the 4-NBA molecules only penetrate a small distance into the interlaminar spacing 
between the graphite sheets.  

    Graphene 

 Graphene is due to its excellent mechanical, chemical, thermodynamic, and elec-
tronic properties studied as a new suitable material for the preparation of electrodes. 
Graphene has edge plane structure, and this induces high electrode activity to various 
analytes [ 159 ]. The effect of edge plane defects on heterogeneous charge transfer 
kinetics and capacitive noise was studied on epitaxial graphene with the use of 
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inner-sphere and outer-sphere redox mediators. It was observed that anodic epitax-
ial graphene is a suitable material for the detection of nucleic, uric, and ascorbic 
acids and dopamine [ 160 ]. By reducing graphene oxide, it is possible to modify 
electrode for reaching a good electron transfer rate for the detection of specifi c bio-
molecules including DNA bases [ 159 ].  

    Diamond 

 Sp 3 -bonded diamond is an isolator; however, it is also used in biochemistry. One 
possibility how to modify the conductivity is a  boron-doped diamond  (BDD) sub-
strate surface. Zhou et al. [ 161 ] prepared BDD fi lm by a microwave plasma-assisted 
chemical vapor deposition and hot-fi lament chemical vapor deposition. By this way 
it is possible to modify surface of different substrates with various crystal sizes. 
According to this fact, BDD surface is possible to divide into nanocrystalline (grain 
size smaller than 100 nm) and polycrystalline fi lms (grain in μm). Next to this fact, 
BDD has excellent properties, such as (a) low and stable capacitive background, (b) 
long-term response stability and high response reproducibility, (c) wide electro-
chemical potential window in aqueous electrolyte solutions, and (d) good biocom-
patibility due to carbon materials [ 162 ,  163 ]. The preparation of BBD has been 
described in [ 164 ] and more details are available in [ 165 ]. Shortly, BBD fi lms grew 
on Si substrates by a microwave-assisted plasma chemical vapor deposition tech-
nique. B 2 O 3  was dissolved in the acetone–methanol mixture. A thickness of a fi lm 
(~40 μm) was achieved after 10 h deposition. The description of the whole area of 
the possible modifi cations of diamond surfaces was appropriately described by 
Wenmackers et al. [ 166 ].  

    Fullerene 

 The idea of introducing a  fullerene  (C 60 ) chemically modifi ed electrode to the 
electrochemical research was fi rstly presented by Compton et al. [ 167 ]. In this 
work, CMEs were prepared by immobilizing C 60  fi lms by drop coating onto 
 surfaces of the noble metal electrodes, which were then coated with the Nafi on 
protecting fi lms. 

 Fullerene-based CMEs may be prepared in several different ways. The most 
common, simplest, and effi cient procedure involves the electrode drop coating by 
using a fullerene solution of a volatile solvent, such as dichloromethane or chloro-
form [ 168 ,  169 ]. However, like this prepared small crystalline fi lms are usually 
nonuniform and porous. Morphology of these fi lms depends on the rate of solvent 
evaporation, concentration of the casting solution, nature of the solvent, and rough-
ness of the electrode surface [ 148 ]. Hernandez et al. studied properties of new 
fullerene-doped carbon black-paste electrodes, exactly SWCNTs and C 60  [ 170 ]. The 
amount (yield) of fullerene was about 10 wt%. Electrochemical stability was stud-
ied for composites of  n -type fullerene C 60 –Pd polymers and MWCNTs [ 171 ].   
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    Electrochemical Determination of Nucleic Acid on Modified 
Carbon Electrodes 

    Carbon Paste Electrodes 

 The parallel evolution of carbon materials and the electrochemistry of nucleic acid 
here met just in a point of direct detection of DNA bases. The carbon paste electrodes 
are over other connected with non-biomodifi cation of electrode surface in detection of 
DNA bases. In principle, the electrode modifi cation through the physical processes is 
possible. Preanodization and electrochemical pretreatment in adenine/DNA detec-
tion have been presented [ 172 ]. The chemical modifi cation of carbon paste is more 
widespread. Broad spectrum of modifi ers were used, for example, Na-montmorillonite 
[ 173 ], hexacyanoferrate [ 174 ,  175 ],  N -butylpyridiniumtetrafl uoroborate [ 176 ], 
clay mineral [ 177 ], or tris(2,2′-bipyridyl)dichloro-ruthenium(II)/Nafi on [ 178 ]. 

 Application of the modifi ed carbon paste electrodes for the detection of the nucleic 
acid and/or its components leads to the use of nanoparticles. Their application appears 
in literature in the last years. The guanine determination is connected with the modi-
fi cation of TiO 2  nanoparticles by bis[bis(salicylidene-1,4- phenylenediamine)
molybdenum(VI)] [ 179 ]. Arvand et al. published the simultaneous determination 
and direct electrooxidation behavior of guanine, adenine, and thymine on a TiO 2  
nanoparticle–magnesium-doped zeolite Y-modifi ed carbon paste electrode 
(TiO 2 NPs–MgY/ZMCPE) [ 180 ]. Such modifi ed electrode exhibited potent and 
persistent electrooxidation behavior followed by well- separated oxidation signals 
toward G, A, and T with increasing the oxidation current. Under the selected con-
ditions, the signals of oxidation currents were proportional to the concentration of 
guanine, adenine, and thymine within the concentration range from 0.1 to 100 μM, 
0.1 to 100 μM, and 8 to 1000 μM, respectively, with the detection limit 0.013, 0.02, 
and 0.878 μM, respectively.  

     Glassy Carbon 

 Glassy carbon electrodes are, according to the list of applications, probably the 
most applied electrodes in modifi cations. In general, the usage of glassy carbon 
electrodes to the detection of nucleic acid may be separated into several groups. 

 The fi rst one could be named as a glassy carbon electrode modifi ed through the 
physical processes. Electrochemically modifi ed glassy carbon electrode (GCE) was 
used to study the electrochemical oxidation and detection of denatured single- 
stranded DNA by means of adsorptive stripping voltammetry [ 139 ]. The modifi ca-
tion of GCE by electrochemical oxidation at +1.75 V (vs. SCE) for 10 min and 
cyclic sweep between +0.3 V and +1.3 V for 20 cycles in pH 5.0 phosphate buffer 
resulted in 100-fold improvement in sensitivity for detection of ssDNA. 

 The second group is characterized by the modifi cation of GC surface by carbon 
nanotubes and graphene. This group of systems lies in the borderline between modi-
fi ers and modifi ed surfaces. We decided to divide the whole text in accordance with 
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the material that is modifi ed. Therefore, this part is placed here, because the materials 
that are modifi ed in these cases are just GC and carbon nanotubes, and graphene are 
modifi ers. The most common connection of glassy carbon with the other carbon 
material as a solid conductive material is its widely applied connection with CNTs. 
Several interesting constructions will be presented in the next paragraphs. 

 Abdullin et al. [ 181 ] present the glassy carbon electrodes modifi ed with preoxi-
dized MWCNTs. Guanine and deoxyguanosine monophosphate are strongly 
adsorbed on GCE/CNT and oxidized at +0.69 and +0.93 V (pH 7.0), respectively. 
The oxidation current of guanine DNA nucleotides adsorbed on a GCE/CNT is 
signifi cantly higher for the thermally denatured biopolymer than for the native one. 

 Thangaraj et al. [ 182 ] prepared a graphitized mesoporous carbon-modifi ed 
glassy carbon electrode (GCE/GMC) for simultaneous electrochemical oxidation of 
guanine (G) and adenine (A) at oxidation potentials +0.60 and +0.85 V, respec-
tively, using DPV. Interestingly, the GCE/GMC showed highly effi cient, stable, and 
well-defi ned voltammetric signals. Signal of thymine oxidation noticed discretely at 
+1.15 V versus Ag/AgCl on the GCE/GMC was not infl uenced for the simultaneous 
determination of G and A. In another study, Jalit et al. [ 183 ] reported the advantages 
of the adsorption and electrooxidation of oligonucleotides on glassy carbon elec-
trodes (GCE) modifi ed with a dispersion of MWCNT in poly- L -lysine (Plys) (GCE/
MWCNT-Plys). Important enhancement in the oxidation signal of guanine was 
obtained by adsorptive stripping voltammetry (AdSV) due to a most favorable 
interaction between the negatively charged DNA molecules and the positively 
charged Plys that supports the MWCNT [ 183 ]. 

 Construction of modifi cation fi lms on the surface of glassy carbon was presented 
too [ 184 ,  185 ]. The fi rst case was showed by Wang et al. [ 184 ]. They suggested an 
effi cient electrochemical approach for the evaluation of the level of DNA methylation 
according to the oxidation signal of DNA bases at an overoxidized polypyrrole 
(PPyox)-directed MWNTs fi lm-modifi ed glassy carbon electrode (GCE). As a result, 
all purine and pyrimidine bases, guanine (G), adenine (A), thymine (T), cytosine (C), 
and 5-methylcytosine (5-mC), exhibited well-identifi ed oxidation signals on the 
PPyox/MWNTs/GCE. The direct potential resolution between 5-mC and C was deter-
mined to be +0.18 V, which was enough for the recognition of the signal and the 
accurate detection in a mixture [ 184 ]. The second example was presented by Tang 
et al. [ 185 ]. The authors prepared a composite fi lm (MWCNT–PNF), which contained 
MWCNTs together with the incorporation of poly(new fuchsin) (PNF). It was synthe-
sized on a glassy carbon electrode (GCE) by potentiostatic methods. The modifi cation 
of GCE increases the electron transfer rate constant to approximately 350 %. 

 As it was mentioned above, graphene is the other popular carbon modifi er of a 
surface of GCE. The graphene structure is considered as a basic structure of CNT 
structures. Several approaches related to this concept will be further described 
below. The basic concept was presented by Wang et al. [ 186 ] who investigated the 
electrochemistry of double-stranded DNA (dsDNA) on a graphene-modifi ed glassy 
carbon electrode (GR/GCE). Electrochemical characterization showed that GR on 
GCE surface enhanced signifi cantly the specifi c surface area and electrical conduc-
tivity of the sensing platform. On GR/GCE, the electrooxidation signal of guanine 
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residues in dsDNA was enhanced obviously, and the potential of signal was lowered 
signifi cantly as compared to bare GCE. Under the optimal conditions, the detection 
limit of 0.35 μg mL −1  was estimated. 

 A functionalization of graphene by carboxylic groups (graphene-COOH) was 
prepared and used for a simultaneous detection of adenine and guanine by Huang 
et al. [ 187 ]. The obtained measurements indicated that both adenine and guanine 
showed the increase of the current of oxidation signal with the negative shift of the 
potentials in contrast to that on a bare glassy carbon electrode. The detection limit 
for individual determination of guanine and adenine was 5.0 × 10 −8  M and 2.5 × 10 −8  
M, respectively. Usage of graphene oxide instead of graphene in similar concept 
was published by Zhou et al. [ 126 ]. They reported a chemically reduced graphene 
oxide (CR-GO)-modifi ed GC electrode that exhibits a good electron transfer rate 
for certain biomolecules including DNA bases. The oxidation potentials of four free 
DNA bases (10 μg mL −1 ) on the CR-GO shifted negatively with enhanced signal 
currents compared with GC and graphite-based electrodes. 

 The creation of graphene fi lms on the surface of a GC electrode is shown by two 
various approaches. The fi rst one was presented by Vin et al. [ 188 ], where the elec-
trochemical behavior of guanine and adenine on the graphene and a Nafi on compos-
ite fi lm-modifi ed glassy carbon electrode was investigated by DPV. Based on this, a 
novel electrochemical method was suggested and developed to simultaneously 
determine guanine and adenine with the detection limits of 0.58 (guanine) and 0.75 
(adenine) μM. The second way is presented by Ba et al. [ 189 ] who prepared a 
poly(alizarin red)/graphene composite fi lm-modifi ed glassy carbon electrode (PAR/
graphene/GCE) for simultaneous determination of four DNA bases (guanine, ade-
nine, thymine, and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). 

 The last group of modifi ers is represented by nanoparticles. This area of research 
has been developed in last few years. We describe here one system presented by 
Ghavami et al. [ 190 ] for simultaneous detection of DNA bases (guanine, adenine, 
thymine, and cytosine) without any pretreatment or separation processes. This sys-
tem is based on a glassy carbon electrode modifi ed with silicon carbide nanoparti-
cles (SiCNP/GC). The modifi ed electrode shows an excellent electrocatalytic 
activity toward guanine, adenine, thymine, and cytosine. As it was showed in the 
work, this sensor can be used for nano- and micromolar detection of different DNA 
bases simultaneously or individually.  

    Carbon Nanotubes 

 Application of carbon nanotubes in electrochemical detection of nucleic acid is 
widely used. However, the most widely used constructions of electrode material 
(including modifi cations) lead to the development of biosensors. These biosensors 
utilize mostly immobilization and hybridization effects of nucleic acids. The con-
nection of CNTs with other modifi ers for detection of NAs is very infrequent. Such 
way of development is presented mainly by the modifi cation of CNTs by nanopar-
ticles. Several examples of such constructions are presented below. 
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 Development of carbon materials led to the creation of CNTs as a new material 
with better physicochemical and electrochemical properties. Therefore, the direct 
detection of NAs on CNTs was presented before application of a modifi er. Serpi 
et al. [ 191 ] investigated the performance of three types of multiwalled carbon nano-
tube paste electrodes (MWCNTPEs) in combination with adsorptive transfer strip-
ping voltammetry for the determination of calf thymus dsDNA. The results indicated 
that the electroactivity inherent to carbon nanotube paste electrodes allows enhanc-
ing an oxidation signal of the guanine substantially in comparison with that obtained 
on the conventional carbon paste electrodes (CPEs). Based on the signal of guanine 
under optimal conditions, very low levels of dsDNA can be detected. The authors 
described short accumulation times for all three types of MWCNTPEs with detec-
tion limits of 2.64, 2.02, and 1.46 mg/L, respectively. 

 The next developmental stage of CNTs for electrochemical detection of nucleic 
acid is based on the application of nanoparticles, as was mentioned above. Several 
examples of such constructions are presented below. 

 Zhang et al. [ 192 ] prepared multiwalled carbon nanotube–gold (MWCNT–Au) 
nanocomposite-modifi ed electrodes by using a one-step method, where gold 
nanoparticles were deposited on the sidewall of MWCNTs directly and orderly. The 
modifi cation of gold electrode with these nanocomposites enhanced the electro-
chemical response of DNA bases and extended the application of relevant elec-
trodes (Fig.  5 ). It is noted that the selective enhancement of electrochemical 

  Fig. 5    Scheme of electrochemical detection of DNA bases based on MWCNT–Au nanocompos-
ites modifi ed gold electrode. Gold nanoparticles have been readily attached on the sidewall of 
MWCNT with homogenous size, and the size distribution was between 20 and 24 nm with average 
diameter of 22 nm       
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response of individual DNA bases was related to the special interactions of bases 
with the nanointerface and the large effective surface area of this modifi ed elec-
trode. Especially, the signal of pyrimidine bases was enhanced for several times on 
the MWCNT–Au nanocomposite-modifi ed electrodes than that of the carbon 
nanotube- modifi ed electrodes.

   Another approach to the modifi cations by CNTs was presented by Fang et al. 
[ 193 ]. The authors used carbon nanotube (CNTs)/lanthanum hydroxide (La(OH) 3 ) 
nanocomposite as electrode material for the determination of guanine and adenine. 
Cyclic voltammetry was used to characterize the modifi ed electrode. The result 
demonstrated that the CNTs/La(OH) 3 -modifi ed electrode provides an effective way 
on how to make the determination of adenine and guanine more effective. Detection 
limits were 0.22 and 0.26 μM, respectively. 

 Ensafi  et al. [ 194 ] developed an electrochemical sensor for the detection of gua-
nine and adenine. They designed the modifi cation of MWCNTs with NiFe 2 O 4  mag-
netic nanoparticles; the whole complex was located on the surface of a glassy 
carbon electrode (Fig.  6 ). Incorporation of MWCNT/NiFe 2 O 4  nanohybrid onto the 
surface of the electrode increased the current of oxidation signals signifi cantly; 
however, it reduces the potential of signals for guanine and adenine. The modifi ed 
electrode was employed for detecting purine bases using linear sweep voltammetry. 
The signal currents exhibited linear dependence on concentration in the concentra-
tion range of 0.05–3.0 μM for guanine and in the concentration range of 0.1–4.0 μM 
for adenine. The limit of detection was found to be 0.006 and 0.01 μM for guanine 
and adenine, respectively.

   The last example of modifi cation of CNTs is based on the application of CeO 2  
nanoparticles (CeO 2 -decorated multiwalled carbon nanotubes). This procedure was 
developed by Wei et al. [ 195 ] for electrochemical determination of guanine and 
adenine. Cyclic voltammetry (CV) and DPV were used to study the electrochemical 
oxidation of guanine and adenine. The detection limit for adenine and guanine was 
found to be 20 and 10 nM, respectively.  

    Graphene 

 Usage of graphene in the detection of NAs via direct electrochemical oxidation of 
bases is possible to divide, in the point of view of modifi cation processes, into two 
groups related to the fact if the modifi cation is located on a GC electrode or not. The 
GC electrodes are mentioned here as the most applied type of conducting surface 
connected with graphene (in this area of research). The group of detection systems 
connected with the presence of GC and graphene (here as a modifi er) was men-
tioned above (see section “ Glassy Carbon ”). The other systems (graphene + modi-
fi er) will be described in the text below. 

 Graphene is characterized by the high electron transfer of DNA molecules [ 160 ] 
by electrochemical detection. Although DNA bases generally exhibit higher sensi-
tivity under acidic conditions, graphene-based materials made it possible to mea-
sure all of the free DNA bases, even under neutral pH conditions [ 113 ]. This fact is 
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probably caused by the surface stacking effect between graphene and the target 
molecules that exhibit high electron transfer rates. 

 The comparison of graphene with the edge plane pyrolytic graphite (EPPG), 
basal plane pyrolytic graphite (BPPG), and electrodes modifi ed by graphite was 
studied by Randviir et al. [ 196 ], who monitored electrochemical oxidation of ade-
nine and guanine. The application of graphene led to a decrease of voltammetric 
response of adenine and guanine, respectively. Unfortunately, graphene has low 
density of edge plane sites, which account for the reduced voltammetric response. 
Therefore, the modifi cation of the surface of the electrode by graphene was found 
to be analytically unacceptable. 

 On the other hand, modifi cation of the graphene material has brought better 
results. Ambrosi et al. [ 197 ] showed stacked graphene nanofi bers (SGNFs), which 
demonstrate superior electrochemical performance for oxidation of DNA bases. 

+ NiFe2O4  NP

GC GC
MWCNT/GC

NiFe2O4

S
N

a

b

  Fig. 6    Schematic draw of ( a ) modifi cation of SWCNT by NiFe 2 O 4  nanoparticles by sol–gel 
method and ( b ) the preparation of the modifi ed GC electrode. Portion of MWCNT/GC NiFe 2 O 4  
was dispersed in 1.0 mL ethanol and homogenized ultrasonically. 10 μL of this solution was depos-
ited on the freshly prepared GCE surface. In order to homogenize the modifi er on the surface of the 
electrode, a magnetic fi eld (magnet) was used above the surface electrode until the solvent evapo-
rated (Adapted and modifi ed according to the [ 194 ])       
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This is caused by an exceptionally high number of accessible graphene sheet edges 
on the surface of the nanofi bers when compared to carbon nanotubes. The oxidation 
signals of adenine, guanine, cytosine, and thymine exhibited from two to four time 
higher currents than that on CNT-based electrodes. SGNFs also exhibited higher 
(better) sensitivity compared to edge plane pyrolytic graphite (EPPG), GC, or 
graphite microparticle-based electrodes. 

 Niu et al. and Sun et al. suggested very interesting way of application of gra-
phene material in the detection of DNA bases [ 198 ,  199 ]. Both authors based their 
detection systems on carbon ionic liquid electrode (CILE) modifi ed by chitosan 
(CTS) and graphene (GR). Both experiments differ in the way of the preparation 
of CILE. Due to the synergistic effects of GR and CILE and the interaction of GR with 
IL on the surface of the electrode, the electrochemical performance of CTS/GR/
CILE was enhanced greatly. Electrochemical behavior of adenine on the modifi ed 
electrode was investigated with a single well-defi ned oxidation signal that appeared. 
The electrochemical reaction of adenine was an adsorption-controlled irreversible 
process. 

 The modifi cation of graphene with nanoparticles is available too. As an example, 
the work of Biris et al. may be presented [ 200 ]. It is based on few-layer graphene 
sheets embedded with various amounts of gold nanoparticles (Gr-Au-x) over an Au-x/
MgO catalytic system (where x = 1, 2, or 3 wt%). The number of layers within the 
sheets varied from two to seven. The sample with the highest percentage of gold 
nanoparticles embedded within the graphitic layers (Gr-Au-3) showed the highest 
degree of crystallinity. The Gr-Au-x composites were used to modify platinum sub-
strates. For the bare electrode, no oxidation signal was recorded. In contrast, all of the 
modifi ed electrodes showed a strong electrocatalytic effect, and a clear signal for 
adenine oxidation was recorded at approximately +1.05 V. The highest increase in the 
electrochemical signal was obtained using a platinum/Gr-Au-3-modifi ed electrode.  

    Diamond 

 In direct electrochemistry of nucleic acid, diamond is usually applied in the form of 
boron-doped diamond (BDD). From the viewpoint of possible modifi cations, it is 
possible to consider it to be a modifi cation of carbon material (diamond). The as- 
deposited diamond surface is terminated by hydrogen, because the fi lms are grown 
under hydrogen plasma or in a hydrogen atmosphere. Such hydrogen-terminated 
diamond surfaces are known to be remarkably stable, but the oxygen-terminated 
surface can easily be formed by exposing the surface to oxygen plasma, boiling in 
strong acids, or applying high oxidizing potentials [ 201 ]. The surface activation by 
applying high oxidizing potentials leads to the oxidation of surface groups into 
hydroxyl and carbonyl terminations. Such change of the chemical termination can 
affect the electrochemical properties of the diamond electrode (allow to increase 
anodically its working potential window). 

 The effect of boron-doped diamond (BDD) surface termination immediately 
after cathodic and anodic electrochemical pretreatment and the influence of the 
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pretreatment in different supporting electrolytes on potentials of the electro-
chemical oxidation of dsDNA were studied by Oliveira et al. [ 202 ]. DNA bases, 
nucleotides, and homopolynucleotides were investigated using differential 
pulse voltammetry in aqueous media at different pH. The anodic and cathodic 
BDD surface pretreatments were performed in three different solutions as fol-
lows: 0.1 M acetate buffer (pH 4.5), 0.1 M phosphate buffer (pH 7.0), and 
0.5 M sulfuric acid (pH 0.55). The electrochemical response on the BDD sur-
face varied as a function of the potential applied in the pretreatment of the 
surface and also in dependence on the electrolyte used. Presented results 
showed that the electrochemical properties of the BDD electrode highly depend 
on the state of the surface termination due to oxygen and hydrogen termina-
tions. Concerning the compounds being studied, a better response was obtained 
when the BDD surface was pretreated cathodically. The interaction and adsorp-
tion of the electrochemical species by the surface pretreated cathodically were 
facilitated due to a higher conductivity of the BDD electrode surface. On the 
other hand, after anodic pretreatment, a wider potential window of BDD sur-
face was obtained. It enabled the detection of the pyrimidine bases. However, 
the hydroxyl radicals produced on the surface of BDD during the anodic pre-
treatment are highly reactive, and consequently the BDD surface is not com-
pletely inert. These conclusions resulted in the statement that the BDD is a 
promising material for electroanalytical chemistry mainly due to its chemical 
stability, high electrical conductivity, and large amplitude of its electroactive 
window in aqueous media. 

 The investigation of the direct electroanalytical detection of nucleic acids on 
BDD is possible to observe in various ways. The basic studies were done by Fortin 
et al. [ 203 ] who focused on the study of direct oxidation of the two electroactive 
nucleosides, guanosine and adenosine. The authors studied the electrochemical 
behavior of oxidizable bases guanosine (+1.2 V vs. Ag/AgCl) and adenosine 
(+1.5 V vs. Ag/AgCl), respectively. Ivandini et al. [ 204 ] studied the electrochemical 
oxidation of underivatized nucleic acids in terms of single-stranded and double- 
stranded DNA by cyclic voltammetry and square wave voltammetry. Two well-
defi ned voltammetric signals (for guanine and adenine) were observed for both 
types of DNA. For single-stranded DNA, a third peak related to the pyrimidine 
group oxidation appeared. The infl uence of native and denatured DNA on electro-
chemical signals detected on the BDD was investigated by Apilux et al. [ 205 ]. The 
mixture of acetic acid and sodium acetate solution (0.2 M) was used as a supporting 
electrolyte. Two oxidation peaks were observed at about +1.1 V and +1.3 V at pH 
4.6 for thermally denatured fi sh DNA. In contrast, the native fi sh DNA showed 
well- defi ned peaks at +1.1 V.  

    Fullerene 

 Fullerenes as the newest carbon material applied in analytical electrochemistry is 
connected only with the construction of DNA biosensors based on the hybridization 
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process [ 206 ,  207 ]. The application of fullerenes in the direct detection of nucleic 
acid has not been presented yet.   

    Conclusions 

 New carbon materials have shifted the electrochemical properties of carbon materials 
to the new lines, especially the usable potential window. This improvement allows 
expanding the applications in the fi eld of electrochemical determination of nucleic 
acids. Carbon material-based electrodes allow detecting nucleic acids directly, 
mainly via the direct electrochemical oxidation of bases. We briefl y reviewed the 
history, types, structure, and especially modifi cations of carbon materials for direct 
detection of nucleic acids.     
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Abstract

Porous semiconductors attract the attention of many researchers due to the rela-
tively simple technology of obtaining them and possibility of controlling the 
geometry parameters of the pores (from nanometer- to micrometer-scale objects), 
as well as prospects of manufacturing of combined optoelectronic devices, in 
which information is processed not only in an electronic but also in an optical 
form. In this work the analysis of the dependence of the porous InP morphology 

mailto:yanasuchikova@mail.ru


284

on the type of reacting anion is presented. It is shown that nanoporous InP layers 
are obtained through certain conditions of electrochemical etching. The observa-
tion results of InP-layered heterogeneity are discussed and explained in terms of 
the features of the growing process of heavily doped crystals.

Using scanning electron microscopy, the influence of dislocations on the 
mechanism of pore formation during electrolytic etching of single-crystal 
InP is shown. In this work the photoelectrochemical method for texturing the 
monocrystal InP surface is proposed. By means of the scanning electron 
microscopy the optimal formation conditions of the samples with developed 
morphology and uniform cluster distribution over InP surface are 
established.

Keywords
The porous indium phosphide • Electrochemical etching • Semiconductor • 
Surface Nanostructures

 Introduction

Needs of modern society in processing and transfer of the growing information 
content led to the formation of the super-high-speed optoelectronic integrated cir-
cuits based on silicon and binary semiconductors. Integration of transistor struc-
tures into very large-scale integrated circuits is technologically limited by the 
physical boundaries of the microregion size and the low charge mobility in semi-
conductors. The solution of this problem is in the increase in the functionality of the 
elements.

Recently, scientific interest is directed to the formation of nanostructures consid-
ered as a promising material for the creation of photon devices. The electrochemical 
process, which is unique due to its simplicity, low process temperature, and low 
cost, stands out against different formation techniques of semiconductor nanostruc-
tures. The most well-known application of the electrochemical methods is the for-
mation of a porous layer on the surface of semiconductor plate by anode etching. 
For the first time such structures were obtained on silicon. Lately it was established 
that porous layers can be also obtained on binary compounds, such as GaAs, GaР, 
and InP.

Porous semiconductors attract the attention of many researchers due to the rela-
tively simple technology of obtaining them and possibility of controlling the geom-
etry parameters of the pores (from nanometer- to micrometer-scale objects), as well 
as prospects of manufacturing of combined optoelectronic devices, in which infor-
mation is processed not only in an electronic but also in an optical form. The recently 
attained progress in studying the properties of porous silicon stimulated similar 
studies for the III–V compounds. Particularly, the most promising in this aspect is 
porous InP, since the energy parameters of its single crystals are very close to the 
parameters of single-crystal silicon and devices of integrated optoelectronics 
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compatible with silicon, particularly resistive and diode optopairs, can be easily 
fabricated based on it.

Indium phosphide (InP) has great prospects of wide industrial production. Field- 
effect transistors and other microwave devices are manufactured based on 
InP. Monocrystalline InP plates are used as substrates for the growth of different 
heterostructures, which are the basis of effective radiation sources (injection lasers, 
light-emitting diodes) and high-speed photodetectors for the systems of fiber-optic 
communication lines. InP is promising for the development of super-high-speed 
integrated circuits. Presently InP is the most probable material for the mass produc-
tion of integrated circuits. It is impossible not to mention about the growing interest 
in porous InP, which has unusual optical and electrical properties in comparison 
with the monocrystalline InP.

It is established that different factors, namely, the composition and concentration 
of electrolyte, current density, and etching time, influence the formation of porous 
layer. Behavior of the semiconductor under electrochemical treatment also depends 
on the type and concentration of majority carriers. Here one should keep in mind 
that electrochemical process is accompanied by a number of coupled chemical reac-
tions, and the final result of the electrochemical treatment of semiconductor depends 
on the ratio of the reaction rates.

It is possible to use the halogenide, sulfate, phosphate, nitrate aqueous, and anhy-
drous solutions of alkalis at considerable current densities as electrolyte for obtain-
ing the porous III–V materials (particularly InP), Table 1. In most cases, for the 
electrolytic etching of binary III–V compounds, solutions of HCl in ethanol or 
water are used.

The interest in investigation of defects in the crystals and their influence on the 
formation of porous layers of semiconductors increased because of the require-
ments, each deviation from which leads to the emergence of defects. External con-
ditions are the determining factor, due to which the surface of the crystal during 
etching varies its shape and morphology, which is expressed on the faces in the form 

Table 1 Electrolytes and regimes of anodic etching

Electrolyte Current, voltage Time The type of pore

HCl J = 4–4.2 mA/cm2 120 Crysto

J = 4–100 mA/cm2 10–60 Curro

U = 0.8–5 V 1–3 Crysto

U = 4–9 V 1–3 Curro

HCl + HNO3 U = 4–9 V 1–3 Curro

U = 1–3 V – Crysto

HCl + HF J = 50 mA/cm2 1 Crysto

HCl + NH4Cl U = 7–10 V 0.3–0.4 Curro

NaCl U = 5 V 1.5 Curro

KBr + HBr U = 7–10 V 0.3–0.4 Curro
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of hatching, figures of etching, etc. Thus, a defect brings information about the 
events that took place with this crystal and about the factors determining the behav-
ior of the crystal during the anodic etching.

Thus, the questions associated with the methods of obtaining the porous struc-
tures of InP, mechanisms of their formation, and dependence of conditions of pore 
formation on internal defects and imperfections of crystals remain unresolved. In 
this article, we consider the procedure of obtaining the porous layers on the (111) 
surface of indium phosphide of n-type of conductivity as well as the influence of 
defects and dislocations on the configuration and structure of porous layers obtained 
during this process.

 Technology for Production of Porous Structures

There are several physical and chemical technologies for obtaining porous struc-
tures: the colloidal deposition, MOCVD, spark discharge, plasma etching, hydro-
thermal synthesis, sol-gel methods, vapor deposition, and chemical and electrolytic 
deposition.

 Electrochemical Etching

Electrochemical etching has the following features: low-temperature process, minor 
surface damage, easy, and low cost. This method does not require high-tech equip-
ment and is fast (2–30 min). Electrochemical methods allow for a high density of 
pores, which is unattainable using other methods.

Electrochemical etching can be divided into two different processes:

• Chemical etching (electroless etching)
• Anodic etching

Note that in both cases there is electrochemical etching of charge exchange at the 
border of the semiconductor and electrolyte.

Chemical etching is usually a process of electrochemical oxidation without 
external potential. The performance of this type of etching requires strong enough 
reagents that can form/rip holes and electrons to/from the valence band of the semi-
conductor. Thus, the redox coupled with high positive standard electrode potential 
is required for efficient etching. Electronic energy distribution function oxidants 
exceed the energy level of the valence band in solid.

The mechanism of electrochemical oxidation is usually divided into two partial 
reactions:

• Injection of holes in the valence band (release of electrons).
• Broken bonds will be occupied by molecules such as OH, which leads to the dis-

solution of the material.
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These two steps of chemical etching split apart in time. Because of this, you can 
stop the progress of the first phase and the second stage (dissolution) will also be 
stopped.

When applying an electrical displacement that causes electrons to move from the 
solution to the electrode, the process is called anodic etching (holes move to the 
buffer zone).

On the other hand, if they are moved from the electrode into the solution, the 
process is called cathode etching (holes are removed from the buffer zone). 
Anode etching, like chemical etching, requires hole for the process. A large num-
ber of holes on the surface will induce a bond failure. Similar to the chemical 
etching, broken bonds will react with nucleophilic molecules (such as OH−) in 
the electrolyte. If all the bonds of atoms of the solid will be replaced by bonds 
with nucleophilic molecules, this will form new compounds that consist of atoms 
of the solid and nucleophilic molecules. New compound will have only a small 
portion of the solid bonds or will not have them at all. If this compound is dis-
solved in the electrolyte, it can dissolve chemically pure, and thus, the surface of 
the sample will be free and ready for the next interaction with nucleophilic mol-
ecules of the etchant.

Otherwise, i.e., if the newly created compound is dissolved in the electrolyte, a 
thin oxide layer on the surface of the electrode will form which will prevent electro-
chemical attack. For this reason, suitable for electrochemical etching, electrolytes 
contain two main components:

• Nucleophilic (i.e., decelerating) components
• Components that dissolve oxides

In general, for n-type semiconductors required for etching, holes can be gener-
ated by the avalanche breakdown mechanism that can be achieved by a high posi-
tive potential on the electrode or whether this effect can be achieved with a 
semiconductor light photons with energies greater than the energy gap of the 
semiconductor.

 Getting the Initial Pore Growth

Getting the initial pore growth can be realized in two main areas:

• Providing certain places of origin of pores, i.e., lithographs – “seeding pore 
formation.”

• Pore formation is going its own way – “random pore formation.”

Seeding origin has a practical significance only for macropores because micro-
pores or mesopores, by definition, require very small structures. The easiest way to 
ensure this process is the use of standard lithography to transmit the desired pattern 
on the photoresist. The template can be referred to as the “mask.”
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After macropore growth is finished and if stable pore growth conditions prevail, 
the mask is no longer needed. Thus, it does not matter if the mask dissolves during 
a long process of etching.

Applying a template can be realized by other methods:

• Electron beam lithography: expensive and slow way, but still used and necessary 
for small sizes.

• Imprinting the appropriate template.
• Laser interferometry: standing waves, which are formed from the impact of sev-

eral lasers, can produce periodic structures in photoresist. The method is a bit 
limited, but relatively easily repeated.

• Overlaying masks with template. For example, here can be used a two- 
dimensional crystals from latex or have any mask.

There are several aspects that must be considered for the process of seed pore 
formation:

• Pores may arise in the given nodes, but not for everyone. They can also arise out 
of nodes elsewhere – in particular, if the mask is not too stable and 
homogeneous.

• Even if the pore formation was properly, receiving pores may move at further 
etching and not grow steadily, so the target structure is disrupted with increasing 
of depth. This is an inevitable process, if the external length scale imposed on the 
porous structure is too different from the scale of the internal process.

• However, the pores can emerge and grow steadily, but their form is far from 
ideal.

Emergence of random pores takes place on unstructured but nevertheless uni-
form and clean surface. The concept of “clean surface” is obviously relative. But, as 
it is obvious, “dirty” heterogeneous surfaces (e.g., polished surface with a locally 
damaged area) will somehow influence the pore formation. Random pore growth 
can be quite different on the polished or “rough” surface. The characteristic feature 
of most semiconductors is the stable structure of their pores by random pore forma-
tion. In other words, the average pore diameter and the distance between them have 
their own values with relatively small standard deviation.

 The Structure of Porous Layers

According to the recommendations of the International Union of Pure and Applied 
Chemistry (IUPAC), pore sizes are divided into:

• Macropores (pore width greater than 50 nm)
• Mesopores (pore width of 2–50 nm)
• Micropores (pore width less than 2 nm)
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Pores in A3B5 compounds exhibit a variety of forms. Therefore, it is convenient 
to classify them in the direction of growth:

• Pores are oriented along the crystallographic directions (crysto).
• Pores are oriented on current (curro).
• Pores have no definite direction.

This shows the anisotropy of etching crystals.
Anisotropic etching is important for the structuring of semiconductors and is 

mainly related to the differences in the rate of etching low-indexed surfaces of crys-
tals. The reasons for this behavior are not yet fully understood. Typically, we inves-
tigate low-indexed crystal surface – orientations (111) (100) (110). Each set of 
planes has its own different behavior in solution. One of the reasons may be the 
density of atoms in the crystallographic planes (high density = low dissolution rate). 
However, this is not the only factor that determines the anisotropy. In III–V com-
pounds, there are several additional factors that contribute to the anisotropy; this is 
due to different chemical properties of atoms in the third and fifth groups of the 
periodic table of elements. For example, along the surface with the orientation 
<111>, atomic planes are occupied by atoms of the third and fifth groups, forming 
double layers, i.e., there are small and large gaps between the planes {111}, which 
alternate. Each atom has three bonds within a double layer and one bond outside the 
double layer. Surfaces limited by atoms of In are called {111}A, while surfaces 
limited by atoms of P {111} B. It is important to note that almost all surface oxida-
tion processes such as {111} have a slower dissolution rate. This can be explained 
by the assumption that three bonds (within the same double layer) are much harder 
to break from A than from B, due to the fact that the electronic cloud of a bond is 
polarized in the direction of B atom (more electronegative).

If we assume that in order to break the bond by atom B, we need the average 
time t1, whereas for A, it takes time t2> > t1. So to eliminate the double layer of B, 
we must spend time (3t1 + t2), whereas for A, it is equal to the total time (3t2 + t1). 
It is easy to see that (3t2 + t1) > > (3t1 + t2). As a result, the etching of B (along the 
<111>B) is much faster than A (along the direction (<111>A). Besides, along the 
directions of atomic planes <100>, space is also alternately occupied by atoms of 
the third and fifth groups. However the atomic planes are equidistant and sym-
metrically related to each atom with atoms of neighboring layers. Thus, the time 
required for etching of two layers from A side is (2t2 + 2t1) and from B (2t2 + 2t1). 
As a result, in this case there is no difference on what surface is etched, because 
the average time is the same.

 Obtaining Low-Dimensional Structures on the Surface of Indium 
Phosphide

Indium phosphide monocrystals were produced in the research laboratory of 
Molecular Technology GmbH company (Berlin). Thickness of the samples was 

9 Porous Indium Phosphide: Preparation and Properties



290

1 mkm. Plates were cut out perpendicular to the growth axis and polished on 
both sides.

InP samples with different surface orientations of the n- and p-types and with 
different charge carrier concentrations were chosen for the experiment. 
Electrochemical etching was performed using the standard plant in the electrolytic 
cell with the platinum cathode. The plant scheme is presented in Fig. 1.

Solutions of hydrofluoric and hydrochloric acids with different concentrations 
were taken as the electrolytes. Etchants based on HF and HCl with added iodides 
(KOH), ethanol, and nitric acid were also used. The experiment was carried out at 
room temperature.

Samples were thoroughly purified before the experiment. The following are the 
purification steps:

 1. Degreasing in hot (75–80 °C) peroxide-ammonia solution
 2. Treatment in hot (90–100 °C) concentrated nitric acid (metal ion removal)
 3. Washing in distilled water
 4. Drying of the plates using centrifuge in the purified dry air

After experiment the samples were purified in acetone and isopropanol, washed 
in distilled water, and dried in extra pure hydrogen, whereupon they were undergo-
ing natural aging during 3 days.

Morphology of the obtained porous structures was investigated using the scan-
ning electron microscope JSM-6490. Chemical composition was studied with the 
EDAX method, and the diffractometric investigations were carried out using the 
diffractometer DRON-3 M.

Fig. 1 Plant for the semicon-
ductor etching
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 Physicochemical Regularities of the Porous Layer of Indium 
Phosphide

 Effect of the Type of Electrolyte Anion on the Porous InP 
Morphology Obtained by the Electrochemical Etching

The processes that form at the junction of the semiconductor and electrolyte should 
lead to the establishment of thermodynamic equilibrium between the electronic sub-
system of the semiconductor and hydrogen redox system solution, as well as the 
establishment of local chemical equilibrium at the interface which minimizes its 
free energy. Setting electrochemical equilibrium between aqueous electrolyte and 
semiconductor n-type is provided by the transition of electrons from the conduction 
band to the hydronium cations. As a result, semiconductor is positively charged, and 
the electric double layer arises in solution with excess anionic concentration at the 
border of the crystal.

Let us consider the surface of InP as a free crystal surface. Depending on the 
crystallographic orientation of this surface, the atoms that go into it may have one 
or two broken bonds. In the volume-surface equilibrium, one orbital of the broken 
bonds of the indium atom should be vacant, and phosphorus atoms occupied by the 
unshared pair of electrons. Then during the adsorption of at least one atom in 
the anion of the indium, full heat of adsorption should be the same with the heat on 
the electrophilic center. At the same time for P atoms, conversion of the filled orbit-
als of broken bond into the electrophilic center requires energy, which, in general, 
exceeds the energy released in the act of adsorption. Therefore, in the absence of an 
electric shift, only a small part of the surface atoms of phosphorus may be associ-
ated with halogen adatoms. On the surface of indium phosphide n-type, a thin dense 
layer of particles is formed, in which the negative charge of the semiconductor is 
concentrated – Helmholtz layer. As the anodic shift increases, gradual convergence 
of the energy of levels takes place, filled states in the Helmholtz layer and vacant 
states in the crystal. As a result of the convergence, channels of tunneling electron 
transfer in the crystal from components of this layer arise. As the deviation from the 
initial equilibrium conditions, the growth of several processes may take place, 
the complete oxidation of the material, electrode oxidation of solvated anions, and 
the emergence and growth of pores; pore formation in this sense is the nature of an 
avalanche breakdown.

Morphology analysis of the tested samples obtained using the scanning electron 
microscopy (SEM) showed that almost in all cases the active pore formation was 
observed (Table 2 and 3). In the conditions when pore formation is the dominant 
electrochemical process, which takes place at the given value of the polarizing volt-
age on the monocrystal semiconductor anode, the steady-state configuration of the 
porous layer surface is formed by the time of the maximum current density 
attainment.

Under equal conditions (identical crystals, equal charge and anion concentration 
in the solution), the electrolytic reaction rate depends on the type of reacting anion. 
Depending on the degree of dissociation into ions, electrolytes can be classified as 
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Table 3 Types of nanostructures on the surface InP

Low-dimensional 
structures Structure type Unit size Structure features

Porous layers Pore Pore diameter 
7–300 nm

The form depends on the 
orientation of the surface: for the 
(111) oriented crystal pores have 
a triangular shape for the 
(100) – close to square

Textured 
surfaces

Pyramidal 
clusters

The height of the 
pyramid from 0.7 
to 1.1 μm

The angle of inclination of faces 
64о–85о

Superlattices Periodic layers 
of porous and 
single-crystal 
indium 
phosphide

Width of porous 
and single-crystal 
bands 20–25 nm 
and 30–35 nm, 
respectively

Superlattice is formed across the 
sample thickness. 
Monocrystalline layer also has 
pores, but they are few; they are 
located mainly at the interface of 
two layers and have ordered 
nature

Nanoclusters Crystalline 
indium oxide

Cluster size of 
10–200 μm

Flower-crystal structures

Zero- 
dimensional 
structures

Clusters of the 
indium quantum 
dots type

From 3 to 40 nm The clusters are distributed 
uniformly over the surface of the 
crystal; some clusters are 
combined in a massive 
accumulation

Table 2 Conditions for obtaining of various classes of nanostructures on the surface of indium 
phosphide

Low-dimension 
structures Electrolyte

Current 
density, 
мА/см2

Etching 
time, 
min Additional conditions

Porous layers
  n-type
  р-type

НF
HCl

50–250 3–30 For etching of p-type tungsten 
lighting lamps of 200 W

Surface textured HBr 130–170 6–10 Tungsten lighting lamps of 200 W

Superlattices HF 80–150 25–35 Pulsating voltage: etching at a 
voltage of 5 V (1 min), etching 
without voltage (simple chemical 
etching) – 2 min

Nanoclusters HF+ 
C2H5OH

70–130 10–15 After digestion – aging for 3 days 
in the open air

Zero-dimensional 
structures

HF+ HNO3 180 4–6 Influence of pulse magnetic field 
by a series of symmetrical 
triangular impulses amplitude 
B = 0.5 T with a frequency 
f = 50 Hz
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strong and weak ones. Their behavior on dissolving is different. Some molecules of 
weak electrolytes dissociate into ions under solventation. Their dissociation is the 
reversible process since ions are easily associated in collisions; therefore, in solu-
tions of weak electrolytes, the dynamic equilibrium between ions and undissociated 
molecules is attained. When strong electrolytes dissolve, the dissociation occurs 
almost completely, and ionic crystals or molecules dissociate with the formation of 
aquated (solvated) ions.

Some of the most important acids, namely, HNO3, H2SO4, HClO4, HCl, and HBr, 
belong to strong electrolytes. Most of weak electrolytes are inorganic compounds, 
such as H2CO3, H2S, HCN, and HF.

 HF-Based Etchants
Small size of F atom substantially influences the fluoride properties. F atom in 
chemical compounds practically always is negatively charged. F is the most active 
oxidant among the elementary substances; it reacts with almost all substances. The 
feature of fluorine chemistry is the presence of stable hydrogen bonds HF. The aver-
age degree of association of HF molecules in a liquid state is closed to 6. Etching 
acid is considered to be the half-strength acid (the dissociation constant is 6.8 × 10−4). 
Electronegativity of F– atoms in the series F−, Cl−, and Br− is the largest and is equal 
to 4 on the Pauling scale.

In the halogenide-ion series, the minimum voltage value of the formation initia-
tion always corresponds to fluorine anion. Morphology of the porous samples 
obtained using etching acid demonstrates the net of meso- and macropores.

Formation of such pores is often connected with the displacement of defects and 
dislocations on the crystal surface. In this case the substantial overetching of the 
surface is observed (Fig. 2).

In Fig. 2 it is possible to see clearly the etched regions that imply about very 
“harsh” etching conditions. Porous surface demonstrates the developed morphol-
ogy with the formed large etching pits. Such surface has a huge effective area in 

Fig. 2 Morphology of 
porous n-InP (111); 
electrolyte HF:H2O = 1: 1, 
j = 80 mA/cm2, t = 10 min
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comparison with the monocrystal one, but it is imperfect enough for use as the 
substrate for heterostructure production. In this case, in order to decrease the elec-
trolyte effect on the porous structure formation, it is reasonable to change the etch-
ing regimes (time, current density) for the more soft ones or use more dilute etchant 
solution.

When adding ethanol to this solution, the value of threshold voltage of the pore- 
formation initiation substantially increases, and here porous layer has more qualita-
tive structure that has appeared in the decrease in the pore size (Fig. 3).

In general, ethyl alcohol is an organic diluent of electrolyte. When adding it to 
the aqueous solution of etching acid (the component ratio is HF:H2O:C2H5OH = 1:1:2), 
the electrolytic reaction rate slows down, and therefore, more time is needed to 
obtain the porous structures.

Ethyl alcohol is used for the improvement of HF penetration into pores. In our 
case this leads to the formation of the densest of anisotropically propagating pores 
along the directions <111>A and <111>B (Fig. 4). The degree of porosity is about 
30 % of the total area of the sample.

In Fig. 5 we present the cleavage of porous n-InP (111) obtained in the HF-based 
etchant. Irritated area, the appearance of which can be caused by the dislocation 
displacement, is clearly observed under the crystal surface.

The following fact is found to be interesting: the crystal surface is not so irritated 
as an area under it. This implies about the pore formation inside the crystal as well, 
where pores can be combined due to the thinning of the walls and their accumula-
tion around defects.

 HCl-Based Etchants
Hydrochloric acid is the aqueous solution of hydrogen chloride; it is strong mona-
tomic acid. The maximum concentration of such solution at 200 °C is 38 % and 
the density is 1.19 g/cm3. HCl is most often used during the electrochemical 

Fig. 3 Morphology of 
porous n-InP (111); 
electrolyte HF: H2O: 
C2H5OH = 1:1:2, j = 40 mA/
cm2, t = 15 min
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Fig. 4 Anisotropic pore 
propagation along the 
directions <111> A and 
<111> B

etching of the crystals that is explained by the possibility of this acid to easily 
dissociate into ions.

HCl-based etchants allow to obtain the layer composed of the nanopores mainly. 
Figure 6 demonstrates the ordered assembly of pores formed on the monocrystal 
InP substrate during the etching in 5 % hydrochloric acid solution. Pores appeared 
all over the sample surface. The average pore size is 40 nm that implies about the 
nanodimensionality of the given structure. The wall size between pores is in the 
range (5–10) nm. Such a result is important technologically, since the quality of 
porous films is determined by the nanostructure sizes, degree of porosity, and uni-
formity of the pore distribution over the sample surface. The smaller the pore size 
and the larger porosity percent, the more qualitative porous structure is. The degree 
of porosity is about 60 % of the total area of the sample.

In Fig. 7 we present the cleavage of the porous sample obtained in 5 % hydro-
chloric acid solution. This figure demonstrates the long parallel pore channels 
placed strictly perpendicular to the crystal surface. Such pores are directed along the 
lines of flow and reach the depth of 60 mkm inside the sample.
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Fig. 6 Morphology of 
porous n-InP (100) 
obtained by the 
electrochemical etching in 
5 % HCl solution, t = 5 min

Fig. 5 Cleavage of porous 
n-InP (111), electrolyte 
HF:H2O:C2H5OH = 1:1:2, 
J = 50 mA/cm2, t = 10 min
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 Salts and Acids Addition to the Electrolyte Solution
Iodide addition to the fluoride solution essentially influences the pore-formation 
process. When adding KI (potassium iodide) to 50 % etching acid solution, the 
pore-formation process slows down somewhat what the current-voltage charac-
teristics taken during anodization imply about. Morphology of the samples 
obtained in such solution demonstrates the decrease of the pore inlets (the 
degree of porosity is about 15 %). However, the branching of the pore channels 
under the crystal surface increases. Here the irregular layer preceding the long 
mutually parallel pores widens up to 2 mkm (in comparison with the irregular 
pore layer formed in the aqueous fluoride solution, which in this case is 
0.5–1 mkm).

Nitric acid in addition to the chloride solutions accelerates the electrolytic 
reaction rate and allows to obtain the porous surfaces with the more densely 
packed pores (the degree of porosity is 60–70 %). However, as in the case of 
iodides, nitric acid influences the thickness of irregular porous layer. In this case 
the given value is about 1.8 mkm (in the absence of nitric acid, it is 0.4–0.7 
mkm).

Fig. 7 Cleavage of porous 
n-InP (100) obtained by 
the electrochemical etching 
in 5 % HCl solution, 
t = 5 min
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 Influence of the Carrier Concentration of Indium Phosphide 
on the Porous Layer Formation

Additional doping of the monocrystalline InP surface is a sufficiently interesting, to 
our opinion, way to obtain pores of the specified shape and provide the necessary 
quality of the por-InP – monocrystalline InP boundary. This circumstance allows, 
firstly, to form pores of the required shape, which makes further cleaving of the 
basic plate easier, and, secondly, to provide the necessary quality of the cleavage 
surface.

Rate of a chemical reaction essentially depends on the doping level of the semi-
conductor. Threshold voltage of the pore formation decreases with the increase in 
the volume concentration of free electrons. Moreover, increase in the doping level 
leads to the reduction of the dislocation density but simultaneously is accompanied 
by the generation of microdefects (stacking faults, small prism dislocation loops, 
dispersed second-phase release). As known, the pore growth occurs along preferen-
tial directions, which the given defects of the crystal surface are. Figure 8 illustrates 

Fig. 8 SEM image of the (001) InP porous surface, j = 100 mA/cm2, t = 10 min. Concentration of 
impurity charge carriers: 2.3 × 1018cm−3 (a), 3 × 1019cm−3 (b), 2 × 1017cm−3 (c), 1.8 × 1016cm−3 (d)
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the morphology of the InP porous surface with different charge carrier 
concentration.

A porous layer with low pore density is formed during the etching of the semi-
conductor with the concentration of impurity charge carriers of the order of 
1.8 × 1016 cm−3. However, in this case the obtained pores are sufficiently small 
(20–50 nm) and demonstrate a certain order and uniform distribution over the 
ingot surface. Moreover, the coarse etched areas, which appear due to the disloca-
tion outcrop, can be observed on the sample surface. With the increase in the num-
ber of charge carriers, one can observe a completely different scenario for the pore 
distribution over the sample surface. Pores with different diameters (from 100 nm 
to 3 m) appear under electrochemical treatment of the samples, which are doped 
with sulfur up to the concentration 2 × 1017 cm−3. Appearance of crystallites, which 
can indicate the formation of oxide islands on the upper porous semiconductor 
layer, is possible in this case. Another situation takes place during electrochemical 
treatment of the heavily doped InP crystals (about 2.3 × 1018 cm−3). Such concentra-
tion of impurity charge carriers is the most favorable for the formation of a qualita-
tive porous layer on the surface of monocrystalline InP that is expressed in a high 
pore density and their uniform distribution over the plate surface. Pores, which are 
formed in this case, have a size of the order of tens of nanometers; the degree of 
porosity is 60 %. Varying other etching conditions (current density, etching time), 
it is possible to obtain porous structures with different parameters (pore diameter, 
porosity, depth of the porous layer). However, while using materials for crystal 
etching with higher impurity concentration (3 × 1019 cm−3), the surface etching 
without pore formation is observed, that is, the upper crystal layers just break off 
along certain planes. Such structures cannot be used as effectively as porous ones 
due to the fact that the surface layer is strongly disturbed. Thus, the given experi-
ment demonstrates the role of the charge carrier concentration for the pore forma-
tion on the semiconductor surface.

However, one should take into account that additional doping leads to the impu-
rity segregation, which appears during the crystal growth. Elastic long-range 
stresses can impede the formation of continuous splicing surface. The regions of 
compositional and structural inhomogeneities, namely, the bands of impurity segre-
gation and crystalline defect clusters, are the sources of these stresses. 
Microfluctuations of the growth rate on the boundary of the solid and liquid phases 
lead to the formation of the sulfur segregation bands (growth bands). Denser pore 
clusters in the central segregation lines with respect to the peripheral ones indicate 
the increase in the sulfur concentration along the direction from the center to the InP 
crystal periphery. Moreover, sulfur distribution in InP crystals can be nonuniform 
not only along but also across the growth axis. In this case, change in the lattice 
parameter of the solid solution excites elastic stresses.

Moreover, significant etching of the crystal surface is observed in the areas of 
dense pore clusters. This can be connected with the outcrop of the secondary pores, 
as well as with the coalescence of small pores into bulk holes.

Generation of the bulk etching holes can be explained from the point of view of 
the impurity influence on the defect formation in the crystal. Doping with donor 
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impurities up to the high concentrations is accompanied by the appearance of 
microdefects but leads to the decrease in the dislocation density. Intrinsic point 
defects play the main role in the microdefect formation. At high doping levels, 
decomposition of supersaturated solid solution of the doping impurity influences 
the formation of microdefects. The main production problems during InP crystal 
growth are the following: tendency to twinning, formation of dislocation clusters, 
and segregation phenomena conditioned by high impurity content in semi- insulating 
crystals. Impurity concentration, which is the function of the crystal growth rate, 
has periodicity and excites the so-called doping streakiness. This is partly explained 
by the fact that the crystal growth rate on the microscopic level is not the same, but 
cyclic.

Appearance of nanoregions with different element concentrations can lead to the 
qualitative change in the InP properties. Imperfection of the crystals connected with 
the striate growth structure influences the semiconductor properties of the crystals. 
The presence of the domain (the twin) structure is an undesirable factor from the 
point of view of using the given materials in optical devices and sensors. Therefore, 
investigation of the mentioned phenomenon is of a great importance from the point 
of view of both the crystal production technique and research of the properties con-
nected with nonuniformity of the element distribution, which enter into the compo-
sition of the grown crystals.

 Influence of Dislocations on the Process of Pore Formation 
in n-InP (111) Single Crystals

The chemical composition was analyzed with the use of the procedure of energy 
dispersive X-ray analysis (EDAX). The component composition was analyzed for 
four arbitrarily selected points at the surface.

It is evident that the results of analysis of oxygen and fluorine on the sample 
surface are associated with random processes correlating with the etching process. 
The excess of indium atoms indicates that they are situated not only in the associ-
ated state (in the form of the In-P clusters) but also in the free state (due to their 
accumulation along the crystallographic axis [111] of n-InP), which is promoted by 
the production process of single-crystal growth.

In a microphotograph of the surface (Fig. 9), the nonuniformity of the distribu-
tion of the pores over the crystal surface is observed. After the electrolytic etching, 
dark and light bands emerge on the surface of the samples; these bands are detected 
visually. Using scanning electron microscopy, we managed to establish that the dark 
bands are places of more dense accumulation of the pores, i.e., etch pits. Etching 
locally took place precisely in the region of the defects of the crystal structure.

The width of each band was ~100 μm. Dark bands have clear external boundar-
ies, while the boundaries directed inside the crystal are more spread. The striation 
nonuniformity in the distribution of the components is a very widespread phenom-
enon during growing the single crystals by the Czochralski method. We can also 
observe an increase in the concentration of input orifices of the pores along the 
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direction from the center to the periphery of the crystals. The formation of the con-
tinuous overgrowth boundary can be prevented by the elastic long-range stresses. 
The sources of these stresses are the regions of the compositional and structural 
nonuniformity or the bands of segregation of the impurity and accumulation of the 
defects of the crystal structure.

In this case, each fragment is a region of increased impurity concentration. Such 
a region can be considered as the inclusion possessing the intrinsic deformation 
caused by the lattice mismatch and discrepancy in coefficients of thermal expansion 
of segregation bands and the surrounding material. As the ingot cools, the elastic 
stresses of such inclusion decrease and the shift components of residual elastic 
stresses can cause plastic deformation.

Figures 3 and 4 represent the image of the fragment of the surface of the n-InP 
sample, on which the location of formation of pore cores is clearly seen. The edges 
of pores are somewhat extended along the (111) plane. Comparison with the known 
published data indicates that the anions (the F− ions) play the decisive role in the 
formation of the pores (their shape, diameter, and location). The diameter of the 
most of pores is in the range from 100 to 600 nm. We can also notice that, both in 
the plane of the (111) surface and to the depth of the sample, the pores practically 
have no specific growth direction, which largely manifests itself during etching of 
the (111)V surface, the formation of pores in the plane of which is energetically 
more favorable.

The pore depth depends on the imperfection of the material in the places of their 
formation. The seeds of the pores are the dislocations, which are the sources of 
elastic stresses and generate elastic deformations around them. Elastic interactions 
of starting dislocations with point defects of the crystal structure lead to an increase 

Fig. 9 Surface morphology of the porous n-InP
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in the concentration of residual defects near the dislocation axis and to the forma-
tion of the Cottrell cloud. During etching of the n-InP single crystals, the tendency 
is observed to grouping the pores into symmetrical agglomerations near the seed 
pores, which emerged previously and are associated with the outcrop of dislocations 
and microcracks on the (111) surface.

In some cases, the impurity atoms of the crystal act electrochemically on the dis-
solution processes in the region of the dislocation outcrop on the surface since the 
preferential localization of impurity is often performed in the region of dislocation 
lines. The symmetry and periodicity of the ensemble of pores repeat the symmetry 
and periodicity of the defect structure of InP, which emerges in the surface layer of 
semiconductor.

The number of etch pits in this case is considered as the measure of dislocation den-
sity. The calculation of the average dislocation density ND is performed by the formula

 N n SD = av / ,  

where nav is the average number of etch pits and S is the area of the field of view.
The calculation of the dislocation density in the places of the increased impurity 

concentration (dark bands) yields the value 2 × 106 cm−2. In the regions less filled 
with pores, the dislocation density is ~104 cm−2. This result agrees well with the 
manufacturer’s data of the samples obtained from the producing company – namely, 
the dislocation density is 106–107 and 104 in the places of accumulation of the impu-
rity and in the regions where the impurity concentration is lower, respectively.

It should be also noted that, in InP, the pores in the (111) plane emerge over the 
entire range of electric potentials of formation of the pores corresponding to the 
conditions of pore formation in all fluoride electrolytes.

 Texturing of the Indium Phosphide Surface

While submerging the semiconductor InP plate in the etchant solution, its molecules 
are adsorbed on the plate surface. With direct current passing through the electro-
lyte, adsorbed molecules detach from the surface of the plate. In this case the phos-
phorus atoms adsorb easier with the hydrogen ions that provide faster etching of the 
phosphorus sublattice. Stoichiometry of the sample is violated toward the increase 
in the concentration of indium atoms. As a result the set of pyramidal clusters is 
formed on the plate surface. Slope of the cluster edges provides the obtaining of a 
rather low reflection coefficient and the tenfold increase in the active area of the 
plate in comparison with the monocrystalline sample.

The optimal concentration of the electrolyte, current density, and etching time were 
established experimentally in order to obtain the most uniform in height and shape tex-
ture. Thus, the optimal conditions for the obtaining of qualitative texturing p-InP surface 
are given below: the etchant composition is HBr:H2O 1:1; the current density is 150 
mA/cm2; the etching time is 8 min; the power of the tungsten lamp is 200 W.

Figure 10 demonstrates the morphology of the textured InP plate. As seen from 
this figure, the dense system of pyramidal growths with the slope connected with 
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the crystal anisotropy and current direction is formed on the monocrystal surface. 
The pyramid height varies from 0.7 to 1.1 mkm. Under the assumption that the 
abovementioned conditions are not executed, the semiconductor behavior during 
the anodization has some peculiarities. Thus, with the increase in the etching time 
up to 15 min, the pore grooves start to grow deep into the substrate that is accompa-
nied by the plate surface failure. While etching takes less than 8 min, the incomplete 
surface texturing is observed, i.e., some surface regions stay with the conserved 
monocrystallinity and surface orientation.

If the current density is more than 150–170 mA/cm2, the etching of InP layer of 
the thickness of about 8–10 mkm is observed. At current densities less than the 
mentioned values, the pyramids have insufficiently pronounced shape and height 
(less than 0.5 mkm). At higher acid concentrations in the electrolyte solution, the 
insoluble films composed of the adsorbed by the semiconductor surface bromine 
atoms are formed. At low acid concentrations the figure formation on the InP sur-
face does not take place at all. Illumination of the plates is the necessary condition 
as well. This provides high density of the pyramid distribution over the surface of 
the sample (density is about five pyramids per 1 mkm).

We have to note that solutions of other acids also do not provide sufficient level 
of the surface texturing. Moreover, n-InP monocrystals demonstrate an inability to 
texture. The fact is that while anodizing in the acid solutions, the plates with elec-
tron conductivity are easily etched forming the porous layers.

 Conclusion

The large and well-developed porous semiconductor surface puts on the agenda the 
study of the fundamental characteristics of matter that lies in the relationship and mutual 
influence of the surface and volumetric properties. The research can lead to answer 

Fig. 10 p-InP textured structure
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the question: What determines the properties of porous indium phosphide – extensive 
surface or decrease in the volume? In any case, the modification of the morphology 
of space essentially creates a new interesting object, in which different classes of 
phenomena both physical and chemical nature are closely intertwined; besides the 
surface and volumetric properties in this sense are difficulty separated. In this con-
nection, it opens the prospect of further study of the presence of fractal properties 
of the phenomena associated with the formation of porous space. The possibility of 
forming porous spaces with regular distribution of pores and diverse correct form 
of the intersection allows quite easily to create photonic crystals.

Etching indium phosphide in fluorinated and chlorinated etchants, along with 
epitaxy and lithography techniques, is included in the arsenal of modern microelec-
tronics that allows us to create objects with reduced dimensionality. Types of porous 
indium phosphide (por-InP), which constitute a new class of substances, have dif-
ferent physicochemical properties: photo- and electroluminescence, adsorption 
sensitivity, properties of photonic crystals, etc. The presence of photo-and electro-
luminescence properties is directly associated with decreasing of the output dimen-
sion of the semiconductor crystal. Adsorption sensitivity is caused by the fact that 
substances from the environment are well adsorbed by the porous bodies.

Approaching the limits of miniaturization of classical microelectronic devices 
enhances the interest in devices capable of providing of the further progress of elec-
tronics. One possible way of such progress is the development and creation of 
devices, in which moving of certain number of electrons is controlled.

A more complete understanding of the relationship of process parameters with 
the characteristics of porous indium phosphide will determine the conditions for the 
formation of the material with strictly specified, reproducible properties that 
enhance its applied potential and will develop the theoretical understanding of the 
mechanism of pore formation in semiconductors. In addition, por-InP is a good 
model to study the subject of quantum size effects, fractal phenomena of self- 
organization, and the fundamental problems of nanoelectronics.

References

 1. Suchikova Y (2010) Influence of the carrier concentration of indium phosphide on the porous 
layer formation. J Nano Electron Phys 4:142–147

 2. Suchikova Y, Kidalov V, Balan О (2010) Texturing of the indium phosphide surface. J Nano 
Electron Phys 2:52–53

 3. Suchikova Y, Kidalov V, Sukach G (2009) Effect of the type of electrolyte ànion on the porous 
InP morphology obtained by the electrochemical etching. J Nano Electron Phys 4:111–118

 4. Suchikova Y (2010) Influence of dislocations on the process of pore formation in n-InP (111) 
single crystals. Semiconductors 45(1):121–124

 5. Suchikova Y, V K, Sukach G (2010) Morphology of porous n-InP (100) obtained by electro-
chemical etching in HCl solution. Funct Mater 17(1):1–4

 6. Langa S, Carstensen J, Christophersen M, Föll H, Tiginyanu I (2001) Observation of crossing 
pores in anodically etched n-GaAs. Appl Phys Lett 78(8):1074–1076

 7. Langa S, Carstensen J, Christophersen M, Föll H (2002) Formation of tetrahedron-like pores 
during anodic etching of (100) oriented n-GaAs. Electrochem Solid-State Lett 5(1):1–4

S. Yana



305

 8. Langa S, Carstensen J, Christophersen M, Steen K, Frey S, Tiginyanu I, Föll H (2005) Uniform 
and nonuniform nucleation of pores during the anodization of Si, Ge, and III-V semiconduc-
tors. J Electrochem Soc 152(8):C525–C531

 9. Schmuki P, Lockwood D, Labbe H, Fraser J (1996) Visible photoluminescence from porous 
GaAs. Appl Phys Lett 69(11):1620–1622

 10. Zeng A, Zheng M, Ma L, Shen W (2006) Etching temperature dependence of optical properties 
of the electrochemically etched n-GaAs. Appl Phys A 84:317–321

 11. Schmuki P, Erickson L, Lockwood D, Fraser J, Champion G, Labbe H (1998) Formation of 
visible light emitting porous GaAs micropatterns. Appl Phys Lett 72(9):1039–1041

 12. Finnie C, Bohn P (1999) Near-field photoluminescence of microcrystalline arsenic oxides pro-
duced in anodically processed gallium arsenide. Appl Phys Lett 74(8):1096–1098

 13. Tondare VN, Naddaf M, Bhise AB, Bhoraskar SV, Joag DS, Mandale AB, Sainkar SR (2002) 
Stability of field emission current from porous n-GaAs (110). Appl Phys Lett 80(6): 
1085–1087

 14. Dmitruk N, Kutovyi S, Dmitruk I, Simkiene I, Sabataityte J (2005) Atomic force microscopy, 
Raman scattering and optical reflectance of porous GaAs films. In: Proceedings of the first 
international workshop on semiconductor nanocrystals, SEMINANO, pp 399–403

 15. Ben Jomaa TR, Beji L, Ltaeif A, Bouazizi A (2006) The current–voltage characteristics of 
heterostructures formed by MEH-PPV spin-coated on n-type GaAs and n-type porous GaAs. 
Mater Sci Eng 26(2–3):530–533

 16. Rėza A, Šimkienė I, Babonas GJ, Sabataitytė J (2003) Spectroscopic ellipsometry of porous 
n-GaAs. Mater Sci 9(4):441–446

 17. Zangooie S, Woollam JA (2000) Ellipsometric characterization of thin porous GaAs layers 
formed in HF solutions. J Mater Sci Lett 19:2171–2173

 18. Dmitruk N, Kutovyi S, Dmitruk I, Simkiene I, Sabataityte J, Berezovska N (2007) Morphology, 
Raman scattering and photoluminescence of porous GaAs layers. Sens Actuators B 
126(1):294–300

 19. Simkiene I, Sabataityte J, Kindurys A, Treideris M (2008) Formation of porous n-A3B5 com-
pounds. Acta Phys Polon A 113(3):1085–1090

 20. Tiginyanu IM, Irmer G, Monecke J, Vogt A, Hartnagel HL (1997) Porosity-induced modifica-
tion of the phonon spectrum of n-GaAs. Semicond Sci Technol 12:491–493

 21. Meijerink A, Bol AA, Kelly JJ (1996) The origin of blue and ultraviolet emission from porous 
GaP. Appl Phys Lett 69(19):2801–2803

 22. Kuriyama K, Ushiyama K, Ohbora K, Miyamoto Y, Kakeda S (1998) Characterization of 
porous GaP by photoacoustic spectroscopy: the relation between band-gap widening and vis-
ible photoluminescence. Phys Rev B 58(3):1103–1105

 23. Tomioka K, Adachi S (2005) Structural and photoluminescence properties of porous GaP 
formed by electrochemicaletching. J Appl Phys 98(7):073511–073611–7

 24. Sarua A, Tiginyanu IM, Ursaki VV, Irmer G, Monecke J, Hartnagel HL (1999) Charge carrier 
distribution in freestanding porous GaP membranes studied by Raman spectroscopy. Solid 
State Commun 112:581–585

 25. Ichizli V, Hatnagel HL, Mimura H, Shimawaki H, Yokoo K (2001) Field emission from porous 
(100) GaP with modified morphology. Appl Phys Lett 79(24):4016–4018

 26. Stevens-Kalceff MA, Langa S, Tiginyanu IM, Carstensen J, Christophersen M, Föll H 
(2000) Comparative SEM and cathodoluminescence microanalysis of porous GaP struc-
tures. In: MRS conference proceedings, vol 638, p F5.31

 27. Schuurmans FJP, Vanmaekelbergh D, Lagemaat J, Lagendijk A (1999) Strongly photonic mac-
roporous gallium phosphide networks. Science 284(5411):141–143

 28. Karavanski VA, Lomov AA, Sutyrin AG, Imamov RM, Dravin VI, Mel’nik NN, Zavaritskaya 
TN (2003) Influence of defects on the formation of thin porous GaP(001) films. Crystallogr 
Rep 48(5):851–859

 29. Melnikov VA, Golovan LA, Konorov SO, Muzychenko DA, Fedotov AB, Zheltikov AM, 
Timoshenko VY, Kashkarov PK (2004) Second-harmonic generation in strongly scattering 
porous gallium phosphide. Appl Phys B 79(2):225–228

9 Porous Indium Phosphide: Preparation and Properties



   Part II 

   Synthesis and Fabrication of Nanostructured 
Coatings and Thin Films        



309© Springer International Publishing Switzerland 2016 
M. Aliofkhazraei, A.S.H. Makhlouf (eds.), Handbook of Nanoelectrochemistry, 
DOI 10.1007/978-3-319-15266-0_2

N. Abu-Thabit (*) 
Department of Chemical and Process Engineering Technology,  
Jubail Industrial College,  Jubail, Saudi Arabia
e-mail: abuthabit_nidal@yahoo.com 

A.S.H. Makhlouf 
Manufacturing Engineering Department, College of Engineering  
and Computer Science, University of Texas Pan-American, Edinburg, TX, USA
e-mail: abdel.makhlouf@utrgv.edu

10Recent Approaches for Designing 
Nanomaterials-Based Coatings 
for Corrosion Protection

Nedal Abu-Thabit and Abdel Salam Hamdy Makhlouf

Contents

 Introduction .............................................................................................................................  310
 Microcapsule-Based Self-healing Coatings ............................................................................  312

 Definition and Limitations .................................................................................................  312
 Synthesis and Preparation ..................................................................................................  312

 Nanocontainer-Based Self-healing Coatings ..........................................................................  314
 Halloysite Nanocontainers .................................................................................................  314
 Mesoporous Silica Nanocontainers (MSNs) ......................................................................  317
 Layered Double Hydroxides (LDHs) .................................................................................  318
 Hydroxyapatite (HAP) Microparticles ...............................................................................  319

 Layer-by-Layer Approach for Designing Self-healing Coatings ............................................  320
 Electrically Conductive Polymers for Self-healing Coatings .................................................  323
 Conclusions and Future Remarks ...........................................................................................  326
 References ...............................................................................................................................  327

Abstract
Nanotechnology-based coatings have shown remarkable growth in recent years 
in many strategic industries such as automotive, aerospace, petroleum, electronics, 
etc. The unique characteristics that can be offered from nanotechnology are one 
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of the main driving forces for the sharp innovation in coatings technology 
nowadays. Nanocoatings have recently been proposed to add functionalities to 
the materials to be coated such as anticorrosion self-healing, anti-icing, self- 
cleaning, etc. Different types of nanomaterials have been incorporated in anticor-
rosion coatings by adopting various approaches. The basic approach utilizes 
incorporation of inorganic nanomaterials with the traditional organic coatings to 
enhance certain functionality of the formulated nanocomposite coating. However, 
one of the recent trends in nanotechnology is to design nanomaterial-based 
coatings of multifunctionality. These include stimuli-responsive/smart coatings, 
self- healing coatings, organic/inorganic hybrid coatings, and electroactive 
coatings. This chapter highlights these emerging nanotechnologies and presents 
the most recent achievements in this area.

Keywords
Nanotechnology • Self-healing • Nanocoatings • Smart coatings • Corrosion 
protection

 Introduction

Protective polymeric coatings are the most widespread approach for corrosion 
protection of metallic structures. They act as barrier to prevent or impede the inter-
action of corrosive species with the metallic substrates. However, there are some 
factors affecting the protection performance of the polymer such as temperature, 
humidity, and the presence of aggressive salts which result in the degradation of the 
polymer and deteriorate their barrier effect (Fig. 1a, b). Therefore, there is an 
increased demand for designing coatings with self-healing functionalities to pro-
vide long-term protection.

The sharp innovation in nanotechnology is one of the main reasons for the devel-
opment of “smart” functional coatings which can be used for a variety of applica-
tions including antifogging [1] and anti-icing coatings [2–4], scratch-resistant 
coatings [5–7], anti-stain coatings [8, 9], moisture-resistant coatings [10–12], oil- 
repellent coatings [13, 14], self-cleaning coatings [15–17], antimicrobial coatings 
[18–22], UV protection coatings [23, 24], adhesive coatings [25], and anticorrosive 
self-healing coatings [26–37].

Self-healing coatings can be constructed by the adsorption of stimuli-respon-
sive polymers on solid support materials. The stimuli-responsive polymers can be 
classified into two categories: (1) intrinsic polymers that are able to heal the 
cracks by themselves and (2) extrinsic polymers in which the healing agent has to 
be pre-embedded [38]. For example, thermally responsive reversible cross-linked 
polymers represent an important class of intrinsic self-healing polymers [39–41]. 
The mechanism of self-healing is based on Diels-Alder and retro-Diels-Alder 
reactions. However, in the case of extrinsic self-healing, the healing agent is 
encapsulated within a reservoir [42, 43]. The encapsulated healing agent contains 
liquid monomer that is able to polymerize at room temperature with the help of a 
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catalyst present in the composite matrix [44, 45]. However, there are some cases 
that the self-healing agent can polymerize without any catalytic support [46].

Smart self-healing coatings are designed to interact with the surrounding envi-
ronment by responding to external physical or chemical changes induced by exter-
nal stimuli such as temperature, pH, ionic strength, pressure, corrosion products, or 
light. This switching of the physiochemical properties will lead to the rupture of the 
self-healing container/capsule and eventually the release of the encapsulated corro-
sion inhibitor. Figure 1c illustrates the concept of self-healing-protective coating 
with autorepair functionality. The effective release of stored corrosion inhibitor 
from the encapsulated container provides a real triggering mechanism for spontane-
ous repair of small defects in a similar fashion to the toxic chromate coatings which 
maintain a passive layer of protective metal oxide through the intelligent release of 
chromate anions as illustrated in Eq. 1:

 
2 2 4 24

2
2 3 2 3 2Fe CrO H Fe O Cr O H O+ + ® + +- +  (1)

Cracks formed in
topcoat and propagate
through primer

Topcoat

Primer

Water + electrolyte

Oxygen

Metal
Surface
become
expsed

Corrosion is initiated
on the exposed metal
surface (brown)

Metal

Water + electrolyte

Oxygen

Nanocapsule (blue)/
Nanocontainer (red) loaded
with corrosion inhibitor
(yellow), in the topcoat and
primer layers

Passivation layer is formed
due to rupture of 
nanocontainers/ nanocapsules 
and release of stored corrosion 
inhibitor (Self-healing)

a b

c

Fig. 1 Schematic illustration of self-healing anticorrosion coating (a) corrosion initiation at the 
topcoat layer, (b) corrosion penetrates to the metal surface, and (c) self-healing through the release 
of the encapsulated inhibitor that is embedded in the coating matrix
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This chapter discusses the recent approaches for the design and preparation of 
anticorrosive coatings of self-healing functionality. These approaches include 
encapsulation of corrosion inhibitors, embedding corrosion inhibitors into nanocon-
tainers and various inorganic microparticles, application of polyelectrolyte multi-
layers, and utilization of electrically conductive polymers as potential self-healing 
anticorrosive coatings.

 Microcapsule-Based Self-healing Coatings

 Definition and Limitations

The encapsulation process is considered as a key step for obtaining effective and 
functional self-healing coatings. The designed containers must possess strong shell 
walls, for long life durability, and impermeability to corrosive species such as atmo-
spheric oxygen and water. Also, the containers should be able to supply the stored 
active content on demand upon certain triggering mechanism and consequently pro-
vide self-healing response.

The encapsulation process enables the self-healing coatings to provide supe-
rior performance over their traditional coating counterparts. In traditional coating 
systems, where the corrosion inhibitor is incorporated by direct mixing, possible 
interactions with the formulated coating can result in loss of inhibitor efficiency, 
coating degradation, or both [47]. However, in the case of smart-responsive coatings, 
the corrosion inhibitor is encapsulated in a variety of micro- or nanostructured 
materials such as microcapsules, nanocapsules, nanocontainers, and nanoreser-
voirs. Thus, the encapsulating container acts as a “host” for the corrosion inhibitor 
and also prevents the direct contact between the inhibitor and the coating, allow-
ing for the controlled release of the stored active content at the time of corrosion 
initiation.

 Synthesis and Preparation

Microcapsules can be designed and prepared by using different techniques 
including pan coating, spray drying, centrifugal extrusion, and emulsion-based 
methods [48]. Emulsion methods include emulsion polymerization, layer-by-layer 
assembly, internal phase separation, and coacervation. The efficient trigger-
release performance of the prepared capsule depends on parameters such as shell 
wall thickness, permeability, mechanical integrity, and chemical functionality of 
the capsule shell wall as well as the capsule size.

 Emulsion Polymerization
Emulsion polymerization process can be utilized for the preparation of capsules as 
illustrated in Fig. 2a. Emulsion is created by strong agitation or sonication of 
biphasic liquid, typically oil in water (emulsion) or water in oil (inverse emulsion) 
[49, 50]. Stirring or sonication creates droplets which become the core material of 
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the capsule. The capsule shell wall is created by the polymerization at the aqueous/
organic interface around these droplets. Polymers can be formed by condensation 
polymerization of two immiscible monomers at the aqueous/organic interface [44] 
or through in situ free radical polymerization reactions of vinyl monomers such as 
styrene, vinyl acetate, 1,3-butadiene, and isoprene [51].

 Layer-by-Layer Assembly
In layer-by-layer (LBL) assembly, polyelectrolyte layers with alternating posi-
tive and negative charges are deposited on the capsule shell wall [47, 52, 53]. 
The thickness of capsule shell wall can be controlled by the number of depos-
ited layers. Since polyelectrolytes are pH-responsive macromolecules, the trig-
ger and release mechanism depends on the stability of the polyelectrolyte layers, 
which in turn is governed by the pH of the surrounding environment. Thus, the 
selection of weak/strong, acidic/basic ionizable groups allows for the optimiza-
tion of trigger and release mechanism to occur at certain pH range.

Capsule fabrication using LBL method can be achieved via three stages as illus-
trated in Fig. 2b. The first stage represents the selection of suitable capsule core 
material such as metal oxide particles. Then, polyelectrolytes with alternating posi-
tive and negative charges are deposited on the capsule shell wall. The final stage 
includes the removal of the metal oxide core by acid treatment, leaving behind hol-
low, porous, and semipermeable capsules.

Fig. 2 Schematic illustration for microcapsule preparation (a) emulsion polymerization is used to 
create polymeric shell around the stabilized droplet, which become the core material, and (b) 
layer-by-layer deposition of polyelectrolytes onto metal oxide template, which is removed to cre-
ate hollow and porous microcapsule
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The porosity of the capsule shell wall enables the capsule core to be loaded and 
exchanged with a variety of molecules after the preparation process. However, the 
main disadvantage of this technique is the weakness of the created capsule shell 
wall due to the weak integrity of the layered polyelectrolytes shell wall, which often 
results in capsules that resemble deflated balloons after being dried.

In another approach, inverse emulsion polymerization was used to prepare 
epoxy-amine microcapsules, with diameter of 10–240 μm, which was embedded 
with 10 wt% magnesium sulfate solution as inhibitor [54]. Magnesium ions (Mg2+) 
can react with hydroxide ions in alkaline medium, at pH = 9.3, to produce insoluble 
magnesium hydroxide as shown in the following equation:

 
Mg HO Mg OH2

2
2+ -+ ® ( )  (2)

 Nanocontainer-Based Self-healing Coatings

Compared to microcapsules, thin tubular nanocontainers are more attractive as they 
exhibit superior aero- and hydrodynamic properties and hence better processability. 
The modification of the inner and outer surfaces of the nanocontainers with well- 
defined functionality allows for designing nanocontainers with fine-tuned proper-
ties, for example, for varying hydrophobicity.

Halloysite nanotubes, mesoporous silica containers, hydroxyapatite microparti-
cles, and layered double hydroxides have been utilized as carriers and reservoirs for 
immobilization, storage, and controlled release of inhibitors that incorporated in 
self-healing anticorrosive coatings. In general, this can be achieved in three steps as 
illustrated in Fig. 3. The first step includes loading the organic or inorganic inhibi-
tors into the target nanocontainer by the absorption of the inhibitor through the 
porous nanocontainers’ structure, by encapsulation process utilizing emulsion 
polymerization, or by ion exchange with counter positive/negative ions in the cor-
responding nanocontainers. In the second step, the inhibitor-loaded nanocontainers 
are coated with pH-sensitive polyelectrolyte multilayers. Finally, the inhibitor- 
loaded nanocontainers are dispersed in suitable organic/inorganic polymeric matrix 
material.

 Halloysite Nanocontainers

Nanocontainers can be made from different tubular materials such as carbon, poly-
meric, metal, and metal oxide nanotubes. Polymeric nanotubes can be templated by 
molecular sieves or cylindrical nanopores to form tubular structures [55]. Metal and 
metal oxide nanotubes are synthesized by employing polymeric or inorganic 
nanorods as scaffold template. The shortcoming of these types of nanotubes is the 
employment of template that needs to be prepared separately and requires extra 
post-synthesis removal steps, which is time-consuming and a costly process.
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One of the future prospective containers that can be industrially applicable is 
halloysite nanotubes. In comparison to the carbon nanotubes, halloysite is biocom-
patible and inexpensive nanocontainer ($4/Kg with annual production of 50,000 t 
per year) that can be used for a variety of applications including microencapsulation 
of biologically active molecules.

Halloysite is defined as a two-layered aluminosilicate with hollow tubular struc-
ture in the submicrometer range [56]. The adjacent alumina and silica layers create 
a packing disorder causing them to curve. The size of halloysite particles varies 
within 1–15 μm in length and 10–150 nm in inner diameter depending on the depos-
its. Thus, a variety of active agents such as drugs, corrosion inhibitors, and marine 
biocides can be entrapped within the halloysite inner lumen as well as within void 
spaces in the multilayered aluminosilicate shell. The entrapped and stored active 
agents are retained and released in a controlled manner for specific application. 
Both hydrophilic and hydrophobic agents can be entrapped after suitable pretreat-
ment and conditioning of the halloysite [57–61].

Fig. 3 Schematic illustration for preparation of inhibitor-loaded nanocontainers and their incor-
poration into coating matrix
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A hybrid sol-gel film doped with halloysite nanotubes for controlled release of 
entrapped corrosion inhibitor on aluminum substrate has been proposed [62]. Initially, 
the halloysite nanocontainers were doped with 5 wt% 2- mercaptobenzothiazole 
inhibitor. In order to prevent the leakage of the doped inhibitor, the surface of the 
inhibitor-doped halloysite nanocontainers was coated with several alternating poly-
electrolyte multilayers of (poly(styrene sulfonate)/poly(allylamine hydrochloride)). 
This step was essential to close the edges of the nanocontainers as well as to enable 
the controlled release of the doped 2- mercaptobenzothiazole inhibitor to the surround-
ing environment upon pH change. In a separate step, the organically modified hybrid 
sol-gel was prepared by using zirconium (IV) n-propoxide (TPOZ) and 3-glycidoxy-
propyltrimethoxysilane (GPTMS) precursors. Finally, the inhibitor-doped halloysite 
nanocontainers suspension was incorporated into the sol-gel solution prior to the dip 
coating of the AA2024-T3 samples. The prepared sol-gel films with the halloysite 
nanocontainers provided long-term corrosion protection in comparison with the 
undoped sol-gel film.

Abdullayev et al. reported an enhanced and strong anticorrosion self-healing 
effect caused by the sol-gel coating embedded with benzotriazole-doped halloy-
site nanocontainers in the cracked area of 2024 alloy [63]. In the same study, the 
corrosion protection performance of the industrial oil-based paint coating (ECS-
34 True- Test) embedded with/without benzotriazole-doped halloysite nanotubes 
was investigated on scratched copper strips. After 10 days, immersion in highly 
corrosive environment, there was no evidence of visible rust in the scratched area, 
and the elemental analysis of the reacted corrosive solution did not show any cop-
per content, whereas samples without halloysite nanocontainers were rusted, and 
their reacted corrosive solution was found to contain 128 ppm Cu(II) ions. These 
results demonstrate the self-healing functionality of the coating prepared by 
incorporation of the benzotriazole-loaded halloysite nanocontainers. The release 
rate of the benzotriazole was controlled by adapting two methods: (1) tube stop-
per formation and (2) layer-by-layer polyelectrolyte encapsulation for the inhibi-
tor-embedded halloysite nanotubes. In the first method, the complexation reaction 
between loaded benzotriazole and transition metal ions was employed for the 
formation of stoppers at the tube ends. The best results were obtained when Cu(II) 
ions were employed for complex formation. It was found that the concentration of 
the Cu(II) ions has a direct and reverse effect on the release rate of the entrapped 
benzotriazole. In contrast, the polyelectrolyte multilayer shell (second method) 
did not slow down benzotriazole release from the encapsulated tubes. This finding 
was attributed to the low molecular weight of the benzotriazole inhibitor, which 
makes the diffusion through the polyelectrolyte multilayers more difficult to 
control.

In a later study, Abdullayev et al. [64] investigated the decrease in the release rate 
of the benzotriazole (BTA) through Cu-BTA complex at the tube ends based on the 
following reaction:

 

Cu BTA NH Cu NH BTA
insoluble complex excess sol

- + ® ( )éë ùû +
( ) ( )

+

3 3 4

2

uuble dissolved products/( )  
(3)
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When ammonia solution was injected, a switch of the release rate of benzotri-
azole was observed, as was evident from the sharp increase in the concentration of 
both copper and benzotriazole in the treated solution. This result demonstrates that 
the stoppers can be diluted and the release rate can be restored with ammonia 
treatment.

 Mesoporous Silica Nanocontainers (MSNs)

Monodisperse, mesoporous silica nanoparticles were loaded with organic corrosion 
inhibitor benzotriazole (BTZ) and embedded in hybrid sol-gel coating for corrosion 
protection of aluminum alloy AA2024 [65]. The reported mesoporous silica-BTZ sys-
tem exhibited a number of interesting properties: (1) high surface area (≈1000 m2 g-1), 
(2) narrow pore size distribution (d ≈ 3 nm), large pore volume (1 mL g-1), and high 
loading capacity of BTZ (41 wt%). The BTZ-doped silica nanocontainers were 
embedded in the sol-gel hybrid coating without further encapsulation steps (i.e., 
without using additional polyelectrolyte multilayer coating), which means that the 
trigger-release mechanism was entirely based on the corrosion process, providing a 
self-healing effect.

Li et al. investigated the synthesis and preparation of silica/polymer double 
wall hybrid nanotubes and their applications as stimuli-responsive nanocontainers 
in self-healing coatings [66]. The synthesis procedure started with the preparation 
of nickel hydrazine/silica core-shell rod templates, which were then surface modi-
fied by grafting methodology, using 3-(trimethoxysilyl) propyl methacrylate, for 
introducing carbon-carbon double bonds on silica surface. The thickness of the 
polymer coating was controlled by varying the feed ratio between monomer and 
nickel hydrazine/silica templates. Three different polymers were grafted on the 
surface of the silica: (1) the pH-responsive poly(methacrylic acid) (PMAA), (2) 
the temperature- responsive poly(N-isopropylacrylamide) (PNIPAM), and (3) the 
redox-responsive poly(poly(ethylene glycol)methacrylate) (PPEGMA). The final 
synthetic step was the selective etching of the nickel hydrazine/silica/polymer 
core- double shell rods in HCl solution. Then, the corrosion inhibitor benzotri-
azole (BTA) was encapsulated into the prepared SiO2/polymer hybrid nanotubes, 
with 6–7 wt% loading capacity. The self-healing coating was prepared by dispers-
ing BTA-loaded nanotube containers into SiOx/ZrOy hybrid films at room tem-
perature. The anticorrosion agent BTA encapsulated in the hybrid nanotubes can 
be controlled to be released in the absence or presence of external stimuli. Silica/
PMMA hybrid nanotubes showed pH-dependent release of BTA corrosion inhibi-
tor, which was attributed to the swelling (at pH = 12) and shrinkage (at pH = 2) 
behavior of the grafted weak carboxylic acid moieties. Silica/PNIPAM hybrid 
nanotubes showed temperature- dependent release of BTA inhibitor due to the 
swelling and shrinkage of the PNIPAM outer wall at 25 and 50 °C, respectively. 
BTA-Silica/PPEGMA hybrid nanocontainers exhibited redox-dependent release 
of corrosion inhibitor due to the presence of the disulfide bonds in the grafted 
PPEGMA polymer networks.
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Maia et al. reported one-stage process for the synthesis of porous silica 
nanocapsules (SiNC) loaded with 2-mercaptobenzothiazole (MBT) inhibitor for 
corrosion protection application [67]. The synthesized SiNCs have regular shape and 
a diameter in the range of 100–150 nm, with gradual mesoporosity. The encapsula-
tion efficiency was 68 %, with MBT loading content of 10 wt%. Two samples were 
investigated for their corrosion protection performance. In the first sample, MBT- 
SiNCs were incorporated (2 wt%) in water-based epoxy coating, which was subse-
quently used to coat AA2024plates with a film of 30 μm thickness. The second 
sample was prepared with empty SiNC, and the MBT inhibitor was incorporated 
in the formulated coating matrix by direct addition. The active protection of 
MBT- SiNC was assessed by the introduction of two circular defects (spots) in each 
sample. The MBT release was triggered by changes in pH and concentration of 
chloride anion. The self-healing functionality of the MBT-SiNC was evident from 
the high value of the electrochemical impedance measurements and visual inspec-
tion after 30 days of immersion in aggressive solution. In comparison to coating 
prepared by direct dispersion of MBT inhibitor, the coating with MBT-encapsulated 
SiNCs exhibited better and controlled inhibitor release for longer periods.

 Layered Double Hydroxides (LDHs)

Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite- 
like compounds, are anion exchange materials consisting of stacks of positively 
charged, mixed metal hydroxide layers between which anionic species and solvent 
molecules are intercalated [68, 69]. Due to their low toxicity, biocompatibility, and 
their ability to release active species in a controlled way, LDHs have been employed 
as nanocarriers for drug-delivery applications at cellular level [70–73]. Therefore, 
LDHs can be thought of as suitable nanocarrier substrates for immobilization and 
encapsulation corrosion inhibitor molecules. LDHs can be incorporated in corrosion- 
protective organic coatings to provide self-healing protection functionality through 
the release of the stored inhibitors. The anion exchange property of the LDHs is 
important for two reasons: (1) it allows the immobilization of negatively charged 
organic/inorganic inhibitor, and (2) it allows the entrapment of the corrosive anions 
such as, chloride and sulfate anions [74–78].

Poznyak et al. reported the preparation of nanocrystalline LDHs, with platelike 
morphology, as novel inorganic host materials intercalated with guest organic inhib-
itors for anticorrosion applications [79]. Two different organic inhibitors were used, 
2-mercaptobenzothiazolate (MBT) and quinaldate (QA). The anion exchange reac-
tion of the nitrate-loaded LDHs precursors was utilized for creation of organic 
inhibitor containers. The release of the negatively charged organic inhibitors was 
found to occur by an exchange mechanism (i.e., release of inhibitor and entrapment 
of the aggressive anions) and sequential release of the anions, providing active feed-
back for corrosion protection control. The corrosion protection performance of the 
prepared LDHs was investigated by electrochemical impedance spectroscopy (EIS) 
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technique on a bare AA2024 aluminum alloy for two weeks. The AA2024 samples 
were placed in contact with LDH suspensions in a 0.05 M NaCl solution. After 24 h 
immersion time, EIS showed a small anticorrosion activity of these systems. 
This observation was attributed to the local alkalization of the solution in the 
presence of hydroxide-rich LDHs particles, which causes a decrease in the inhibi-
tion efficiency of MBT and QA inhibitors. However, the corrosion process was 
inhibited after long immersion times due to the formation of a protective film, with 
enhanced performance in case of MBT inhibitor.

Tedim et al. utilized the anion exchange reaction to prepare Zn-Al LDHs interca-
lated with phosphate, vanadate, and 2-mercaptobenzothiazolate inhibitors [80]. The 
corrosion protection assessment was performed on AA2024 substrate. The AA2024 
samples were treated with a thin layer (2 μm) of hybrid sol-gel, followed by over-
painting with non-inhibited water-based epoxy primer (25 μm), and finally, a 30 μm 
topcoat layer was introduced. Both primer and sol-gel formulations were loaded with 
10 wt% LDHs nanocontainers in dry paint film. The developed coating showed well-
defined active corrosion protection toward AA2024 substrates. The best results were 
obtained with a combination of sol-gel film (pretreatment layer) doped with LDH-
MBT and primer doped with LDH-VOx. It was concluded that the MBT anions were 
available in a very short time scale for protection of the interface layer between the 
aluminum substrate and the sol-gel film, whereas the long-term protection was con-
ferred by vanadate anions released from LDH nanocontainers added to the primer. 
The results proved that the combination of different types of nanocontainers in the 
same or in different functional coating layers is an effective way to design active 
corrosion protection systems with enhanced and superior performance.

Guo et al. proposed a simple one-step hydrothermal synthesis method for the 
direct fabrication of zinc-aluminum layered double hydroxide (ZnAl-LDH)/alu-
mina bilayer film on an aluminum substrate [81]. The resulted film was found to 
exhibit strong, compact, and uniform adhesion to the aluminum substrate. Coated 
aluminum substrates were immersed in 3.5 % NaCl aqueous solution for the 
assessment of the corrosion protection performance. Polarization measurements 
showed that the bilayer film was able to provide an effective corrosion protection 
for the coated substrates, as revealed from the low corrosion current density value 
(10−8 A/cm2). EIS showed that the impedance of the bilayer was as high as 16 MΩ, 
which means that the film was able to provide a protective passive layer with high 
charge transfer resistance.

 Hydroxyapatite (HAP) Microparticles

Hydroxyapatite (HAP) microparticles, which is a calcium phosphate-based clay 
(Ca10(PO4)6(OH)2), possess a number of features that make them suitable carriers 
for corrosion inhibitors. These features include crystallinity, insolubility in water, 
submicrometer size, high surface area, and chemical dissolution at acidic pH 
range. The dissolution of HAP microparticles in the acidic medium provides a 
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pH- dependent triggering mechanism for the release of stored inhibitors, whereas 
their high surface area enables a high loading capacity.

Snihirova et al. investigated the incorporation of inhibitor-doped HAP mic-
roparticles into a hybrid sol-gel coating as new feedback-active anticorrosion sys-
tem [82]. Cerium (Ce3+) and lanthanum (La3+) cations, salicylaldoxime (Sal), and 
8-hydroxyquinoline (8HQ) were used as the dopants in the HAP microparticles. 
Inorganic cationic inhibitors were incorporated by cation exchange with Ca2+, and 
the organic inhibitors were adsorbed on the surface of HAP microparticles. This 
resulted in 22, 20, 9.3, and 0.54 wt% loadings for (Ce3+), (La3+), (8HQ), and (Sal), 
respectively. AA2024-T3 was coated with thin films of the formulated coating 
that contains 0.2 wt% inhibitor-doped HAP microparticles, by employing dip 
coating technique. The release of doped inhibitors occurred at pH below 6, with 
an acceleration of Ce3+ and La3+release when the pH falls below 3.1. The local 
acidification down to pH = 3.65 was attributed to the anodic dissolution of Al (Eq. 4), 
as revealed from localized pH measurements that was conducted using pH-selective 
microelectrodes.

 
Al aq H O Al OH aq H aq3

2

2+ + +( ) + « ( )éë ùû ( )+ ( )  (4)

Thus, the HAP microparticles were able to sense the corrosion onset (local acidi-
fication) and release the stored inhibitors on demand. Also, the dissolution of HAP 
microparticles contributed to corrosion protection by pH buffering mechanism, as 
conferred from the delayed corrosion of the AA2404-treated substrates with sol-gel 
coating embedded with blank HAP microparticles (i.e., undoped with inhibitor).

 Layer-by-Layer Approach for Designing Self-healing Coatings

Polyelectrolytes multilayers with alternating charges can be deposited on metal 
substrate, and the low molecular weight corrosion inhibitors can be embedded 
between the deposited polyelectrolyte layers as shown in Fig. 4. The key parame-
ters for controlling the growth of the multilayers are the pH and the ionic strength 
(degree of ionization/dissociation) of certain polyelectrolyte. These factors affect 
the conformations of the deposited polyelectrolytes and, consequently, the thick-
ness of the multilayers [83–90]. The conformation of the polyelectrolytes can be 
altered by changing the pH or by the addition of salt. The presence of salt in the 
deposited layers allows for polymeric chains to collapse and converts the expanded 
chains into the coil conformation. Deposition of the weak polyelectrolytes can be 
easily affected by the pH of the polymeric solution. At certain pH range, the poly-
electrolyte is completely dissociated, and, as a result, the maximum charge density 
can be achieved at that pH range.

Layer-by-layer (LBL) deposition can be achieved by three different methods: 
spraying, spin coating, and dip coating. The dip coating technique includes the fol-
lowing steps: (1) the substrates are immersed in the dipping solution, (2) equilib-
rium time of 10–20 min, and (3) washing the substrate with suitable solvent to 
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remove the excess polyelectrolyte. This method is time-consuming and requires 
relatively large amount of material for each deposition. However, this is the only 
method that can be used for the formation of polyelectrolyte capsules and deposi-
tion of LBL films on spheres, microcapsules, and nanocontainers, as discussed pre-
viously in Sections 2 and 3.

In case of spraying technique, the procedure involves the following steps: (1) 
two spraying sequences per single layer, (2) waiting time interval for the removal of 
excess polyelectrolyte solution, (3) spraying with the rinsing solution, and (4) 
another waiting time interval for the removal of the excess rinsing solution. The key 
advantage of the spraying technique is the time reduction for the multilayers 
formation.

Spin coating technique requires excess polyelectrolyte solution to be applied to 
the metal substrate before spinning. Next, the solvent is expelled from the substrate 
surface, and the dissolved component forms a layer. The spinning time and rate can 

Fig. 4 Schematic illustration for using polyelectrolyte multilayers, embedded with corrosion 
inhibitor layer, for preparation of self-healing coating
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be varied for particular system. This technique is very fast and does not require 
equilibration time. However, this technique can be only applied to planar surfaces.

The thickness and roughness of the prepared layer-by-layer films depend on the 
used coating technique. The self-healing ability of the deposited polyelectrolyte 
layers is strongly affected by the ionic strength of the used polyelectrolytes. For 
example, when the scratched metal substrate was coated with two weak polyelectro-
lytes, polyethylenimine (PEI) and poly(acrylic acid) (PAA), and immersed in 0.1 M 
NaCl solution, the (PEI/PAA) system was able to stop the initiation of the corrosion 
[52]. The self-healing mechanism was attributed to the high mobility of the nano-
layers that facilitate the water penetration through the polyelectrolyte multilayers 
and trigger the release of the embedded inhibitor. In comparison with the above 
“weak-weak” polyelectrolytes, the two strong polyelectrolytes, poly (diallyldimeth-
ylammonium) chloride (PDADMAC) and polystyrene sulfonate (PSS), did not 
show self-healing property. In this case, the high charge density of the two strong 
polyelectrolytes cannot be altered by pH change.

Grigoriev and coworkers prepared a series of polyelectrolyte/inhibitor com-
plexes by employing different LBL deposition procedures [91]. The polyelectro-
lyte/inhibitor complexes have two main advantages: (1) they will help to build up 
more thick and protective multilayers and, thus, reduce the permeability of poly-
electrolyte multilayers that may lead to the undesired fast release of the stored 
inhibitor and (2) the polyelectrolyte/inhibitor complex is formed through inter-
layer bonds that enable the coating to respond more effectively to the aggressive 
factors. The thickness of the multilayers formed between polyethylene imine 
(PEI), poly(allylamine hydrochloride) (PAH), and 2-(benzothiazole-2-ylsulfanyl) 
succinic acid inhibitor (BYS), PEI(BYS/PAH)10, showed a pH dependence, with 
a distinct maximum at pH 7. At acidic or basic conditions, the thickness of the 
multilayers decreases, allowing for partial release of the bonded inhibitor and 
hence providing the self-healing functionality of the coating. Similarly, the pro-
tective coating with embedded 8-hydroxyquinoline (8HQ) in the PSS/(8HQ/PSS)n 
multilayers demonstrated a very effective mechanism for corrosion suppression. 
Thus, the inhibitor release provided an active feedback for effective termination 
of corrosion.

In addition, the above study [91] reported the utilization of SiO2 mesoporous 
microcontainers filled with benzotriazole (BTA) inhibitor and plugged by the 
(PSS/BTA) complex into a sol-gel coating for protection of aluminum alloy 
AA2024. The stiff inorganic SiO2 carriers provided the integrity for the microcon-
tainers, and their charged shells improve their dispersion in the coating matrix. 
The results of the scanning vibrating electrode (SVET) for the anticorrosion effi-
ciency in 0.1 M NaCl revealed that the protective coating with incorporated nano-
carriers exhibited an excellent self-healing performance. Anodic activity was 
developed after 42 h of the total immersion time. However, after another 18 h 
(i.e., after 60 h of the total immersion time in NaCl solution), almost complete 
suppression of the corrosion process was detected, with anodic activity less than 
2 μA cm-2, demonstrating the self- healing response of the coating for the corro-
sion process.
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 Electrically Conductive Polymers for Self-healing Coatings

Electrically conductive polymers (ECPs) belong to those classes of polymers which 
have π conjugation along the polymer backbone such as polyaniline (PANi), poly-
pyrrole (PPy), and polythiophene (PTh), as shown in Fig. 5. ECPs are known for 
their ability to undergo oxidation-reduction reactions by gaining or loosing elec-
trons from the surrounding environment. Due to this interesting property, ECPs 
have been utilized as novel corrosion-protective coatings for a variety of metals and 
alloys [92–94].

ECPs function as corrosion-protective coatings by one or more of the following 
three mechanisms [95]. First, ECPs can provide barrier protection by isolating the 
metal surface from the surrounding environment. This can be achieved by using the 
ECPs as primers or as a component of the barrier layer [96–101]. Second, ECPs can 
provide anodic protection through the formation of passive layer of metal oxide 
(ennobling mechanism) [102, 103]. In this case, ECPs act as oxidizing agent for the 
leached metal ions, maintaining the metal in the passive domain by providing a thin 
layer of metal oxide.

In the third protection mechanism, Kendig [104] proposed that ECPs can pro-
vide self-healing functionality for the coated metal substrates through storage and 
immobilization of the doped corrosion inhibitor anions as illustrated in Fig. 6 [105]. 
The release of the stored inhibitor anions to the corroded areas is triggered by the 
electrochemical reduction of the ECP. Different organic/inorganic dopants (Fig. 7) 
can be immobilized on the polymeric backbone of ECPs [106–114]. This can be 
achieved during polymerization process of the ECP, through doping process (Eq. 5), 
or by ion exchange reaction with negatively charged inhibitor anions (Eq. 6).
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Polyaniline doped with 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was tested, in 
solvent-borne epoxy, as anticorrosion coating for aluminum alloys (AA2024-T3 
and 7075-T6) [115]. The results showed that DMcT-doped PANi epoxy primer 
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Fig. 5 Chemical structure of common electrically conductive polymers
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Fig. 6 Schematic illustration of self-healing functionality of an electrically conductive polymer (ECP)

coating was able to provide similar protection performance to that of strontium 
chromate coating for a period of 2,000 h in corrosive media. The enhanced anticor-
rosion performance was attributed to the effective release of the anionic organic 
inhibitor (DMcT) from the reduced polyaniline which suppresses the oxygen reduc-
tion reactions and consequently delayed the corrosion process.

Inorganic inhibitors such as MoO4
2- , PO4

3- , and WO4
2-  can be immobilized and 

stored as dopant anions into the ECP matrix. Molybdate-doped polyaniline was 
investigated as self-healing anticorrosive coating [116]. PANi MoO- -

4
2  film was 
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deposited on mild steel substrate by in situ electrochemical polymerization in the 
presence of oxalic acid solution. PANi MoO- -

4
2  coating system showed superior 

anticorrosion performance to that of pure PANi due to the formation of iron- molybdate 
complex along with the passive film as shown in the following equations:

 
Fe Fe e® ++ -3 3  (7)

 
2 33

4
2

2 4 3
Fe MoO Fe MoO+ -+ ® ( )  (8)

Steel substrates coated with molybdate-doped polypyrrole film were protected in 
chloride-containing solution even when the coating has defects [117]. This was 
attributed to the migration of molybdate anions through the polypyrrole film in a 
short time and subsequent formation of passive layer at the defected sites.

Polypyrrole doped with larger molecular size phosphomolybdate anion 
[PMo12O40]3− has also been investigated and showed significant self-healing corro-
sion protection performance [118, 119]. Responsive release of the inhibitor 
[PMo12O40]3− occurs only when the potential at the metal-polymer interface 
decreases at an active defects.

Kowalski et al. investigated bilayered polypyrrole coating composed of molybdate- 
doped internal layer and dodecyl sulfate-doped external layer [120]. The immobile and 
bulky counter anion (dodecyl sulfate) prevents the penetration of small aggressive 
anions through anion exchange reaction, whereas the internal layer provides the self-
healing functionality through the controlled release of the molybdate anions. The above 
duplex coating was applied to steel substrate and provided corrosion protection for 190 
h in chloride-containing solution. However, steel substrate coated with similar thickness 
of dodecyl sulfate-doped polypyrrole monolayer was able to provide corrosion protec-
tion for only 10 h. It was concluded that the molybdate-doped internal layer was able to 
maintain the metal substrate in the passive domain for longer period, which is attributed 
to the formation of salt layer of ferric molybdate complex at the defect site [121].
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Fig. 7 Chemical structure of organic doping acids (a and b), inorganic inhibitor dopants (c and d), 
and organic inhibitor dopant (e)
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Chen et al. prepared polyaniline (PANi)-containing coating for waterborne 
 corrosion protection applications by using oxidative dispersion polymerization of 
aniline monomer in the presence of partially phosphorylated polyvinyl alcohol 
(P-PVA) [122]. The resulted PANi nanoparticles were stabilized by P-PVA with 
uniform diameters in the range of 60–100 nm. The coating was prepared by using 
waterborne epoxy resin as matrix, with a dry film thickness of ≈90 μm. Mild steel 
samples were dip coated with the waterborne PANi/P-PVA-containing coating 
and exposed to 3.0 wt% NaCl solution. The corrosion protection performance was 
evaluated by the measurement of OCP versus time of exposure and EIS. After 30 
days of salt spray tests, samples coated with 2.5 wt% PANi/P-PVA content, the 
measured impedance values were higher than 1×107 Ω cm2, which showed that 
the PANi/P- PVA coating was able to provide superior corrosion protection for 
long period.

 Conclusions and Future Remarks

Development of self-healing coatings for corrosion protection applications can be 
considered as one of the future emerging nanotechnology fields. Nowadays, there is 
a lot of scientific research interest in this fast growing area. The main advantage of 
self-healing coatings is their autoresponse to the corrosion phenomena. The respon-
sive self-healing coatings are characterized by their ability to provide instantaneous 
feedback upon corrosion initiation. The criterion for automatic feedback depends 
on the design of the self-healing coating as well as the surrounding environment.

Different materials with nano and microscale dimensions have been utilized for the 
preparation of self-healing agents prior to their embedding and incorporation into the 
polymeric coating matrix. The selection and design of specific self-healing agent can 
provide specific triggering mechanism for the effective release of the encapsulated 
active corrosion inhibitor molecules. Since corrosion is an electrochemical process 
accompanied with pH change, redox-dependent and pH- dependent triggering mecha-
nisms are suitable for providing active feedback in case of corrosion initiation.

Different approaches have been investigated for the design, synthesis, and prepa-
ration of self-healing coatings. The first approach employs different types of inor-
ganic nanocontainers and microparticles as carriers/reservoirs for storage and 
immobilization of corrosion inhibitor molecules. These carriers include halloysite 
nanotubes, mesoporous silica nanotubes, hydroxyapatite microparticles, and lay-
ered double hydroxides nanotubes. Corrosion inhibitors are incorporated by simple 
adsorption or by cationic/anionic exchange with unbound cations/anions, like in the 
case of hydroxyapatite and layered double hydroxide microparticles.

The second approach utilized layer-by-layer polyelectrolyte assembly for the 
preparation of thin-responsive coating films. Corrosion inhibitor layers are sand-
wiched between the alternating positive and negative polyelectrolyte multilayers. 
The effective release of the corrosion inhibitor and the self-healing functionality of 
the polyelectrolyte multilayer depend on the type of the used polyelectrolytes 
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(weak/strong), the ionic strength of the polyelectrolyte solution, and the conforma-
tion of the polyelectrolyte multilayers (coiled/expanded).

The third approach utilized the electrically conductive polymers (ECPs) as 
potential class of the self-healing anticorrosive polymeric coatings. ECPs are redox- 
active polymers and have the ability to sense the corrosion process by the accompa-
nied oxidation-reduction reactions. ECPs can immobilize the anionic corrosion 
inhibitors through doping/de-doping process. When corrosion is initiated, the metal 
substrate is oxidized at the defected site, and consequently, the ECP gains the 
released electrons and became the reduced state. As a result, the stored anionic 
inhibitor migrates to the defected site and provides a self-healing action.

Properties of certain self-healing coatings can be designed and fine-tuned by 
using a combination of the above discussed approaches. However, the development 
in the area of nanomaterial-based anticorrosive self-healing coatings is still in its 
early stage, and multidisciplinary collaboration is required to overcome both eco-
nomic and technical challenges for commercialization of this type of coatings. The 
applicable environmental conditions and the cost are very important criteria for 
marketing self-healing coatings. The technical challenges such as mechanical prop-
erties, adhesion, durability, and coating lifetime are essential factors for future 
investigation and improvement in this area.
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   Abstract  
  In the fi eld of galvanic plating, one of the ways to obtain metallic coatings with 
improved mechanic and anti-corrosion properties consists in the electrolytic 
entrapment of inert nanoparticles (e.g., oxides, carbides, carbon nanotubes, 
polytetrafl uoroethylene etc.) in the metallic matrix. The particles confer to the 

mailto:lianamuresan2002@yahoo.com


334

resulting composite layers improved corrosion and wear resistance, increased 
hardness, superior tribologic properties, better subsequent adhesion of paintings 
and increased lifetime. Due to the fact that the nanosized particles possess 
special properties which could be transferred to the composite layers, there is a 
lot of research directions to be investigated, beginning with the exceptional prop-
erties of deposited layers and fi nishing with the incompletely elucidated electro-
deposition mechanism. In this context, recent advances in electrodeposition of 
metal-matrix composite coatings will be reviewed with emphasis on electrolytic 
co-deposition of Zn with nanoparticles of TiO 2 , CeO 2 , ZrO 2  etc. The factors infl u-
encing the co-deposition and the properties of the resulting composite coatings are 
also briefl y discussed.  

  Keywords  
  Composite coatings   •   Electrodeposition   •   Nanoparticles   •   Zinc  

        Introduction 

 Metal matrix composites (MMCs) are innovative multifunctional materials obtained 
by dispersion of a reinforcing material into a metal matrix. They can replace 
conventional materials by offering a unique balance of mechanical and physical 
properties: increased hardness and wear resistance, low coeffi cients of thermal 
expansion, dry lubrication properties, and better corrosion resistance than pure 
metals [ 1 ]. Different shapes (fi bers, fi laments, spherical particles, etc.) as well as 
various types of reinforcing materials can be used, conferring to composites an 
easiness to be tailored that is unusual in materials engineering. 

 There is a large number of useful metal/particle combinations, including on one 
side metals like copper, nickel, silver, zinc, and many others and on the other side 
inert materials such as oxides, carbides, graphite, PTFE, etc., which are successfully 
used in many practical applications such as advanced surface fi nishing, electronic 
industry, automotive engineering, aerospace industry [ 2 ], etc. Some of the most 
common metal-nanoparticle composites are summarized in Table  1 .

   The reinforcement material used most frequently is SiC by a signifi cant margin, 
followed by Al 2 O 3  [ 28 ], but TiO 2 , WC, Cr 2 O 3 , V 2 O 5 , Si 3 N 4 , or SiO 2  particles are 
used as well for different practical purposes. Several physical and chemical proper-
ties of the particles are transferred to the resulting composite and an improvement 
in the specifi c properties of materials can result, offering possibilities of extending 
their application area and optimizing materials properties. For example, the inclu-
sion of Al 2 O 3 , TiO 2 , WC, and SiC in the metallic matrix results in enhanced hard-
ness and wear resistance [ 3 ,  5 ,  7 ,  22 ,  29 ]; increased corrosion resistance is reached 
when Cr 2 O 3 , V 2 O 5 , and CeO 2  are used [ 23 ,  24 ,  27 ], while graphite, PTFE, or MoS 2  
particles confer lubricant properties to the deposits in which they are embedded [ 14 ]. 
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Moreover, the catalytic properties of several metals are amplifi ed in the presence 
of included particles [ 30 ], this leading to materials with excellent catalytic activity 
or photoactivity for batteries and electrochemical cells or for pollutant degrada-
tion [ 31 ]. 

 By coating metals with a composite layer of various natures, they can be protected 
not only against corrosion but also against abrasion and erosion. MMC coatings are 
especially important in surface fi nishing and automotive industry, as corrosion-
protective coatings exhibiting superior tribologic properties, better subsequent 
adhesion of paintings, and increased lifetime. The thickness of the coatings is usually 
of tens of μm and can be rigorously controlled (e.g., by monitoring the electrical 
charge consumed during the electrodeposition process).  

    Obtaining Methods 

 The methods generally used to obtain composite metallic coatings include thermal 
methods (spray, internal oxidation) [ 32 – 35 ], hot dip coating [ 36 ], radio-frequency 
magnetron co-sputtering [ 18 ,  37 ], or electrolytic co-deposition, in direct or pulsed 
current [ 38 ]. 

  Table 1    Some metal- 
nanoparticle composites 
used in practical applications  

 Metal  Nanoparticles  References 

 Copper  Al 2 O 3   [ 3 ] 

 Ti 2 SnC  [ 4 ] 

 SiC  [ 5 ,  6 ] 

 Nickel  Al 2 O 3   [ 7 – 11 ] 

 SiO 2   [ 12 ,  13 ] 

 SiC  [ 12 ,  14 ] 

 Boron nitride (BN)  [ 14 ] 

 PTFE  [ 14 ] 

 Silver  TiO 2   [ 15 ] 

 SiO 2   [ 16 ] 

 Cu, Ag, and Au clusters  [ 17 ] 

 Zinc  SiO 2   [ 18 ,  19 ] 

 C (graphite)  [ 20 ] 

 PTFE  [ 21 ] 

 TiO 2   [ 22 ] 

 CeO 2   [ 23 ] 

 V 2 O 5   [ 24 ] 

 Bronze  PTFE  [ 25 ] 

 Various 
metals 

 C (graphite)  [ 26 ] 

 Steel  Cr 2 O 3   [ 27 ] 
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 Among these methods, electrolytic co-deposition is intensely used, the tendency 
being to replace the microparticles (used in the 1990s) with nanoparticles, which 
confer improved properties to metallic coatings. The different electrodeposition 
techniques (galvanostatic or potentiostatic) allow the obtaining of various types of 
nanostructured materials, ranging from single metal to alloy nanocomposites and 
from monolayers to multilayered deposits. 

 Electrolytic co-deposition presents some advantages over other methods [ 38 ]: 
the possibility of rigorous control of the deposited layer thickness, the control of 
deposition speed, the work at room temperature, and the use of accessible equip-
ments. Moreover, electrodeposition is a single-step method, without secondary 
treatment, allowing the obtaining of nanostructured materials and of nonuniform 
fi lms on substrates with complex shapes. 

 Direct current (DC) electrodeposition has most commonly been used to obtain 
metal-nanoparticle composite coatings. The deposition mechanism involves the 
reduction of the metallic ions simultaneously with the nanoparticle incorporation 
[ 38 ]. Generally, the particles are suspended in the plating solution before and are 
embedded in the growing metallic deposit. Sometimes, the co-deposited particles 
are produced during the plating process (e.g., during high-speed zinc plating by 
co- deposition of Ti, Al, and Cr hydroxides by means of nitrate reduction at the 
cathode [ 39 ]). 

 Other electrodeposition techniques are pulse current (PC) and pulse reversed 
current (PRC) electrodeposition. The fi rst one is based on alternative applying of 
two or more direct cathodic currents during various deposition times. During the 
PRC electrodeposition, a cathodic current is imposed during the “on” time and an 
anodic current during the “off” time [ 40 ]. Working with PRC leads to a higher 
nanoparticle content in the deposit. According to Low et al. [ 38 ], the nanoparticles 
are entrapped in higher amount due to the partial dissolution of the metallic deposit 
during the anodic impulse. Pulse electrodeposition is more advantageous than DC 
electrodeposition because it offers more controllable parameters and it can use 
much higher instantaneous current densities [ 41 ], improving throwing power and 
enabling the incorporation of higher concentrations of particles. In the same time, it 
can lead to wider range of deposit compositions [ 38 ]. Other deposits characteristics 
which are affected during pulse plating are grain size, texture, porosity, hardness, 
and corrosion resistance [ 39 ].  

    Drawbacks and Difficulties 

 Several problems were identifi ed as critical in the electrodeposition of metal matrix 
composites: (i) the low degree of particle incorporation (frequently < 1 %), (ii) the 
agglomeration of the particles in the plating bath, and consequently (iii) the diffi -
culty to ensure a uniform distribution of the particles in the coating. 

 The particle agglomeration in the electrodeposition bath occurs even at low con-
centrations because of the compression of the diffuse double layer surrounding the 
particles by the high ionic strength of the electrolyte solution [ 42 ]. Smaller particles 
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agglomerate easier than bigger ones and are incorporated more diffi cultly in the 
deposit [ 43 ]. When hydrophilic materials are co-deposited with metals, additional 
diffi culties appear. Thus, a destruction of the aqueous fi lm existing between the 
particles and the interface is necessary, in order to allow the capturing of particles in 
the metallic deposit [ 44 ]. 

 Some of these problems can be partially solved by tuning the surface properties 
of the particles (e.g., making the particles more hydrophobic), by introducing 
organic agents in the plating bath, and by controlling the process parameters (agita-
tion, current density, etc.). The dispersion degree of the nanoparticles can be 
enhanced by combining high-speed mechanical stirring method and the chemical 
surface modifi cation of the particles. This method was used successfully to achieve 
the dispersion and suspension stabilization of nanoparticles in the solution to give 
Ni/SiO 2  composites [ 8 ]. 

 Another possibility to decrease the interface energy between the hydrophilic par-
ticles and the aqueous electrolyte providing a driving force for the incorporation of 
the particles in the metallic matrix consists in modifying the particles with func-
tional groups that have strong affi nity toward the metallic matrix. In the case of 
Zn–SiO 2  electrodeposition, best incorporation was achieved for SiO 2  particles mod-
ifi ed with thiols, dithiooxamide, or cysteamine [ 45 ]. 

 As it can be seen, some practical issues have been overcome, including compat-
ibility between inert particles and metal, reinforcement distribution and control of 
interfacial properties, etc. Nevertheless, there are still many aspects to be elucidated 
concerning the effects of incorporated particles on the quality of composites, i.e., on 
their mechanical, electrical, and corrosion properties, and the co-deposition 
mechanism.  

    Mechanism of Co-deposition 

 The kinetics of particle incorporation in the metallic matrix was described by sev-
eral models that take into account the forces involved in the process (gravitational, 
hydrodynamic, etc.), the particle characteristics (size, concentration, diffusion coef-
fi cient, etc.), as well as the electrode geometry, electrode rotation rate, etc. However, 
the co-deposition mechanism is still not completely understood. 

 An excellent review of the theoretical models used to describe the behavior of 
metal electrodeposition from an electrolyte containing particles belongs to Low 
et al [ 38 ]. These models take into consideration the mass transport [ 46 ,  47 ], the 
trajectories of the particles [ 5 ,  44 ], the gravitational and hydrodynamic forces [ 7 ], 
and the adsorption phenomena [ 48 ,  49 ]. The colloidal forces (van der Waals, elec-
trostatic attraction/repulsion, and hydrophobic/hydrophilic interaction forces) 
involved in the electrodeposition process play an important role especially in the 
case of small particles. 

 It is generally accepted that the reduction of adsorbed ions is the determining 
factor for particle deposition. Thus, several consecutive steps are involved in the 
co-deposition process [ 50 ]: (1) formation of surface charge on the suspended 
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particles, (2) convection toward the cathode surface, (3) diffusion through a 
 hydrodynamic boundary layer, (4) diffusion through a concentration boundary 
layer, and fi nally (5) adsorption at the cathode followed by particle incorporation 
into the metallic matrix. 

 The adsorption of the particles is loose at the beginning and becomes stronger 
after destruction of the ionic cloud round the particles. The rate-determining step of 
the electrodeposition process is, in many cases, the strong adsorption, which takes 
place more diffi cultly than the loose adsorption.  

    Factors Influencing the Electrolytic Co-deposition 

 A lot of experimental parameters strongly infl uence the properties of the electrode-
posited composite coatings. These factors can be divided into three categories [ 51 ]:

 –    Characteristics of the plating solution (concentration of metallic ions being 
deposited, of particles and additives, particle properties and concentration, pH, 
etc.)  

 –   Experimental conditions (current density, temperature, hydrodynamic condi-
tions, shape of applied current (i.e., constant, pulsating, reversing etc.))  

 –   Other parameters (geometry of the cell, shape of the cathode, deposit thickness, 
substrate nature, etc.)    

 It is worth mentioning that some of the factors act in opposite way, and the fi nal 
result should be an acceptable compromise between all their actions. For exam-
ple, increasing metal ion concentration, temperature, and stirring results in larger 
grain dimensions of the deposits, while the presence of addition agents, an 
increase of current density, and polarization enhancement stimulate grain refi ne-
ment. On the other hand, generally the particle volume fraction in the coatings 
increases with increasing stirring rate and decreases with the increasing deposi-
tion current density [ 47 ]. 

    Characteristics of the Plating Solution 

    Particle Characteristics 
 It was observed that the nature, concentration, shape, size, and charge of the parti-
cles strongly infl uence the properties of the composite deposits in which they are 
incorporated [ 29 ]. Thus, it was reported that, in the same experimental conditions, 
the incorporation degree of particles in the metallic matrix depends on the particle 
nature and, for the same particles, on their crystallographic phase. For example, 
TiO 2  incorporates three times more than Al 2 O 3  in a copper matrix, and γ-Al 2 O 3  is 
much less embedded than α-Al 2 O 3  [ 12 ,  29 ]. An explanation for this behavior could 
be the different way in which adsorption phenomena take place on γ-Al 2 O 3  and 
α-Al 2 O 3  [ 52 ]. 
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 The concentration of particles suspended in the plating bath is variable, ranging 
between 2 and 200 g/l leading to composites with typically 1–10 vol.% of incorpo-
rated particles [ 53 ]. Generally, an increase of particle concentration in the solution 
and a decrease of their dimensions stimulate their incorporation [ 5 ]. However, it was 
established in many cases [ 22 ] that an optimal concentration of particles in the plat-
ing bath should be used in order to attain the desired mechanical properties and cor-
rosion resistance of the coatings. It is possible that, in some cases, especially when 
the concentration of particles in the plating bath is high, a disturbance of the metallic 
matrix structure takes place because of the embedded particles which co- deposit 
with the metallic ions. This may result in crystalline defects (cracks, pores, internal 
stresses, etc.), especially at the interface, increasing the probability of occurrence of 
problems such as local and stress corrosion and brittleness of the coating [ 9 ]. 

 One of the key factors playing a role in particle incorporation as well as in sus-
pension stability is the particle charge. The surface charge of the particles depends 
on the nature of the particle and its surrounding medium: dissociation of acidic 
groups on the surface, ionization of basic groups, adsorption of charged species 
(ions and ionic surfactants), etc. An electrical double layer is formed round each 
particle, determining the appearance of a potential difference between the disper-
sion medium and the stationary layer of liquid attached to the dispersed particle, 
namely, the zeta potential. The zeta potential (ζ) of small particles depends on many 
factors, such as their preparation and stabilization methods, the presence of surfac-
tants, the electrolyte concentration, the particle morphology and dimensions, the pH 
of the plating solution, and the degree of hydration [ 54 ]. 

 It is common knowledge that the boundary line between stable and unstable 
suspensions is generally taken as +30 or − 30 mV, with particles having zeta poten-
tials outside of these limits normally considered stable due to a larger electrostatic 
repulsion between particles. The positive charge can be acquired by adsorption of 
H +  and M z+  ions on the particle surface. The negative charge is due to a preferential 
adsorption of anions present in the plating solution. Ions adsorbed onto oxide par-
ticles infl uence their behavior in the vicinity of the cathode, but are not the deter-
mining factor for achieving an irreversible incorporation of the particles in the 
metallic matrix [ 55 ]. 

 Generally, positively charged particles incorporate better than negatively 
charged ones [ 29 ]. However, in some particular cases, negatively charged particles 
are easier incorporated than positively charged ones. After the attraction of the 
negatively charged particles by the double layer of the metallic substrate, the hull 
of anions adsorbed on the particles is stripped off, allowing them to incorporate in 
the growing metallic deposit (e.g., Al 2 O 3  incorporation in Cu from a pyrophos-
phate electrolyte) [ 3 ]. 

 Hydrophilic particles (e.g., SiO 2 ) incorporate less than hydrophobic ones 
(e.g., SiC, Si 3 N 4 , graphite, etc.). Studies carried out in this direction led to the con-
clusion that, even when adsorbed on the electrode surface, hydrophilic particles are 
separated from the electrode by a fi lm of liquid that is thicker than the width of the 
double layer. Consequently, a destruction of the fi lm is necessary in order to get an 
embedding of the particles in the growing metallic matrix [ 12 ,  55 ].  
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    Additives and Surfactants 
 In the presence of organic additives in an electrodeposition bath containing particles 
in suspension, the suspensions’ properties, as well as the structure and the morphol-
ogy of the cathodic deposits, can change, sometimes dramatically. Thus, the level-
ing and brightening agents used in electrodeposition processes can play an essential 
role in modifying simultaneously the particle interfacial properties and the electro-
deposition mechanism [ 56 ]. 

 Cationic surfactants (e.g., CTAB) are adsorbed on the inert particle surfaces, 
increasing thus the suspension stability and reducing particle agglomeration, which 
results in larger incorporation fraction and more uniform distribution of the parti-
cles in the coating [ 10 ]. In other cases, the additives increase the particles’ hydro-
phobicity [ 3 ], which leads also to a higher incorporation fraction. On the other side, 
the adsorption of surfactants on the particles increases the adhesion force to the 
cathode, allowing large particles to be embedded. This was confi rmed in the case of 
SiC incorporation in Ni coatings in the presence of CTAB [ 57 ]. 

 Surprisingly, there are cases in which a negatively charged surfactant increases 
the content of incorporated inert particles in the metallic coating [ 3 ]. The negative 
charge induced by the surfactant on the suspended particles determines, in a fi rst 
step, their attraction by the positively charged electric double layer of the substrate. 
In a subsequent step, the double layer of the particles is deformed, the hull of anions 
adsorbed on the particles is stripped off, and the particles may be embedded in the 
metallic deposit. This type of mechanism suggests the fact that the co- 
electrodeposition process is not entirely decided by electrostatic forces. 

 Among the disadvantages exhibited by the surfactants used for increasing the 
degree of incorporation of inert particles in a metallic coating, one can count a 
change of mechanical properties of the deposit (e.g., internal tensions, fragility, etc.) 
when these compounds are not used in appropriate concentration. 

 Some inorganic additives can be also used in order to improve the properties of 
the composite electrodeposits. For example, the addition of small amounts of 
 monovalent cations, like T1 + ,Cs + , Rb + , and NH 4  + , promotes the co-deposition of par-
ticles [ 58 ].  

    pH 
 As the charge of the suspended particles strongly depends on pH, it is obvious that 
the incorporation degree, as well as the electrodeposition mechanism depends on 
pH of the plating solution. Thus, it is recommended to investigate how the pH 
affects the zeta potential of the particles and to choose the value that ensures a good 
stability of the suspension ( z > 30 mV

 
 ). 

 For example, in the case of Ni–A1 2 O 3  electrodeposition from a Watt’s-type 
nickel electrolyte, no infl uence of pH above 2 and a sharp decrease in occluded 
particles below this value was noticed [ 59 ]. 

 The pH can affect the deposit texture. For example, the Zn–TiO 2  composites 
prepared at pH2 exhibit a (002) preferential orientation, while at pH4, the deposit 
loses the preferred  c -axis orientation, and in addition a higher incorporation degree 
of TiO 2  particles is observed [ 60 ]. Nevertheless, a change in electrodeposited zinc 
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structure as a function of pH of the plating bath was noticed even in the absence of 
nanoparticles. This effect was explained by a change in nucleation mode as a func-
tion of solution pH: at pH2, instantaneous nucleation was predominant, whereas at 
pH4, a progressive one was noticed [ 61 ].   

    Operating Conditions 

    Current Density 
 The current density infl uences in various ways the incorporation degree of the par-
ticles in the composite coating. In some cases, it seems that the increase of current 
density has no infl uence on the incorporation fraction, while in other cases a depen-
dence with minima and maxima is noticed [ 19 ]. In the case of various metal com-
posites with Al 2 O 3 , it was reported that the maximum amount of incorporated 
particles can be correlated with a change in the slope of polarization curves that 
corresponds to the minimum in the double-layer capacity of the electrode [ 53 ]. The 
regions wherein the incorporation degree is infl uenced by the current density are 
sensitive to particle size, to crystallographic phase, and to other particle properties. 

 The relationship between the current density and the fraction of embedded par-
ticles is a complex one, and it is infl uenced by the agitation rate of the electrolyte. 
For example, in the case of Ni–TiO 2 , it was reported that the maxima are shifted to 
higher current densities when the agitation rate increases [ 62 ]. This is why a detailed 
study of the incorporation degree – current density dependence in correlation with 
all experimental parameters – should be carried out for each particular case of 
electrocodeposition.  

    Hydrodynamic Regime 
 Agitation serves to keep particles in suspension and ensures the transport of the active 
species toward the electrode surface. In accordance with the mechanism proposed by 
Fransaer for particle incorporation, it is accepted that the particles which are attached 
to the surface are submitted to forces which act in opposite ways: adhesion forces and 
frictional forces exerted by the electrode surface and stagnation and shear forces 
determined by the fl uid fl ow [ 44 ]. If the shear force is larger than the sum of the adhe-
sion force and the stagnation force, the attached particle is rejected [ 5 ]. This is why the 
hydrodynamic regime has a great importance, as it infl uences the incorporation mech-
anism of the particles in the cathodic deposit by controlling the rate, direction, and 
force with which the suspended particles contact the electrode surface [ 53 ]. 

 It is worth mentioning that the agitation enhancement generally helps particles to 
incorporate, but if the agitation is too intense, the time spent by the particles at the 
electrode surface becomes insuffi cient, and they can be swept away before they can 
be incorporated into the growing metal deposit [ 53 ]. Consequently, from practical 
point of view, it is necessary to control the hydrodynamic regime to get a uniform 
and compact coating [ 5 ]. This control is relatively easy at small scale (i.e., by RDE, 
ultrasonication, magnetic stirring, etc.) but more diffi cult in industrial conditions, 
where bubbling or electrolyte recirculation is used for mass transport control.  
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    Temperature 
 The temperature effect is not the same in different composite electrodeposition pro-
cesses. In some cases the temperature has no effect on the particle incorporation 
degree [ 59 ], while in other cases it determines an increase [ 63 ] or a decrease [ 64 ] of 
the amount of embedded particles. Sometimes, a maximum can be reached at a 
certain temperature, as in the case of Ni–V 2 O 5 , at 50  ° C [ 65 ].    

    Properties of Nanocomposite Deposits 

 As already mentioned, the metal-nanoparticle coatings have remarkable properties, 
some of them being detailed below. 

    Corrosion Resistance 

 One of the reasons of producing metal matrix composite coatings is due to their 
increased corrosion resistance as compared to pure metals. There are different 
explanations for this phenomenon. On one side, the structure of the coating becomes 
fi ner, and this grain refi ning improves its anticorrosion properties [ 5 ,  66 ]. On the 
other side, the particles of an inert electrically nonconducting substance dispersed 
in the metallic coating have a screening effect by reducing the contact area between 
the metal matrix and the surrounding corrosive medium. Nevertheless, other expla-
nations could be taken into consideration, since the embedded nanoparticles fi ll in 
crevices, gaps, and micron holes on the surface of the metallic deposit giving birth 
to a physical barrier [ 67 ] or improving self-passivation of substrates by providing 
better barrier properties at localized defects [ 68 ].  

    Microhardness 

 The microhardness of coatings is benefi cially infl uenced by the presence of 
nanoparticles exhibiting good mechanical properties such as SiC, ZrO 2 , TiO 2 , etc. 
Generally, metal matrix composite coatings possess higher hardness than pure 
metal coatings, due to fi ner-grained structure and to disperse particles which may 
obstruct the easy movement dislocations [ 67 ]. The dispersive strengthening effect 
becomes stronger with increase in particle loading, as reported by various investi-
gators [ 69 ]. However, sometimes the microhardness reaches a constant value at a 
certain particle concentration in the plating bath [ 70 ] due to agglomeration of the 
particles in the coating and to the loss of any dispersion hardening effect due to 
their large size. It should be also mentioned that in the case of soft particles such 
as MoS 2 , C, etc., a decrease of microhardness takes place, instead of an increase, 
as in the case of abrasive particles [ 71 ].  
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    Wear Resistance 

 Wear is related to contact between opposite surfaces. Due to mechanical interactions, 
the removal and deformation of material on the surface in contact take place [ 72 ]. 
Generally, composite coatings possess lower wear rate than pure metals. For example, 
a good sliding wear resistance was obtained when Ni–SiC composite coatings con-
taining 4–5 vol.% submicron SiC particles were prepared [ 73 ]. A possible explanation 
of this behavior could be the fact that the embedded nanoparticles hinder the growth 
of the metallic grains and the plastic deformation of the metal under load [ 67 ].   

    Zinc-Nanoparticle Composite Coatings Obtained by 
Electrodeposition 

 Zinc has found widespread use as protective coating against corrosion for ferrous 
substrates. Compared to pure zinc, zinc matrix composite coatings provide better 
mechanical and tribologic properties, enhanced sacrifi cial protection to steel, and 
improved paint ability than the pure metal [ 1 ]. 

 Using electrodeposition in DC or pulsed current, a whole range of nanosized 
particles, having diameters from 4 to 800 nm, has been successfully incorporated 
into zinc deposits. A survey of literature data is summarized in Table  2 .

   Generally, the characteristic features of metal matrix composites are encountered 
also in the case of Zn-nanoparticle composites. However, some particularities of the 
latter deserve to be presented in more details below. 

    Zn–TiO 2  

 Among the nanomaterials used for the preparation of composite zinc coatings on 
steel, TiO 2  is often preferred, due to the fact that it can improve corrosion and wear 
resistance of the coatings, in parallel with their mechanical properties [ 67 ]. Micro- 
or nano-TiO 2  particles can be co-deposited with Zn using a classical zinc electro-
plating bath containing TiO 2  particles in suspension [ 74 ,  75 ,  83 ]. 

 As in other cases of MMCs coatings, the incorporated TiO 2  nanoparticles modify 
the morphology and the structure of the Zn layer by providing more nucleation sites 
and retarding the crystal growth. This effect depends on the particle loading in the 
plating bath, and an optimal concentration of TiO 2  should be used in order to obtain 
coatings with structures granting enhanced corrosion resistance. In the case of 
Zn–TiO 2  composites prepared from a chloride-based electrolyte, the optimal 
nanoparticle loading was 5 g/l [ 22 ]. If the TiO 2  concentration in the plating bath 
increases, the interactions between the particles become more intense, and, due to 
their high surface energy, the nanoparticles showed a pronounced tendency to form 
conglomerates, leading to nonuniform deposits. 
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 Even if the incorporation degree of nanosized TiO 2  in electrodeposited zinc is 
small, the nanoparticles confer an enhanced resistance against corrosion [ 80 ] acting 
as uniform passive sites that diminish the corrosion propensity of the coating. The 
polarization curves of pure zinc and Zn–TiO 2  coatings immersed in Na 2 SO 4  (pH3) 
corrosive media (Fig.  1 ) indicate clearly that the Zn–TiO 2  coatings are less active 
than pure zinc. i corr  is minimal, and R p  is maximal at 5 g/l TiO 2 , suggesting once 
again the existence of an optimal TiO 2  concentration. Due to the existence of 
defects, dislocations, or chemical heterogeneities generated in the metallic coating 
by the incorporated particles at higher concentrations, an acceleration of the corro-
sion process takes place.

   The corrosion behavior of the composite layers is infl uenced by the particles 
origin and concentration and by the presence of additives in the plating bath. 

 The origin of the particles and their crystalline structure are of great importance. 
It was demonstrated that same concentrations of TiO 2  nanoparticles having various 
crystalline structures and origins introduced in the plating bath produce composites 
with different properties. Thus, the polarization curves of the composite Zn–TiO 2  
coatings (Fig.  1 ) and the kinetic parameters estimated during their corrosion process 
were different when two different TiO 2  nanopowders (Degussa, Alfa Aesar) were 
used in the plating bath [ 22 ]. This was attributed to the different crystalline structure 
of TiO 2  (TiO 2  Degussa is a mixture of anatase–rutile, while TiO 2  Alfa Aesar consists 
only of anatase). It is also possible that the different surface properties of the 
nanoparticles (charge, hydrophobicity, previous treatments, etc.) play a role in their 
incorporation mechanism and may infl uence the corrosion resistance of the result-
ing coatings. The lowest corrosion current density corresponds, as expected, to the 
optimal concentration of TiO 2  detected from SEM-EDX analysis of the deposits. 

 The additives used in composite electrodeposition should be carefully selected. 
It was reported that the presence of benzyl triethanol ammonium ethoxylate [ 84 ] 
and CTAB [ 67 ] in a ZnSO 4 -based plating bath led to a decrease in the metallic grain 
dimensions. Inorganic additives, such as NH 4 NO 3  added in a ZnSO 4 -based plating 
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bath, increase signifi cantly the uptake and average size of the TiO 2  aggregates in a 
Zn fi lm deposited on steel [ 74 ]. Apparently, TiO 2  particles were incorporated into 
the holes generated by the NH 4 NO 3  addition. 

 In order to improve the stability of the suspensions used for the electrodeposi-
tion, different dispersants can be added to the electrodeposition bath. They infl uence 
also the deposit quality, in terms of morphology and structure, and may favor the 
TiO 2  incorporation. The SEM micrographs of two Zn–TiO 2  coatings obtained with 
different polymeric dispersants (Fig.  2 ) show the different morphologies and repar-
titions of TiO 2  nanoparticles inside these.

       Zn–SiO 2  

 Zinc composite electrodeposits with SiO 2  are known to show good corrosion 
resistance and paint ability [ 76 ]. Due to the fact that SiO 2  is hydrophilic, to enhance 
its incorporation degree, it is strongly recommended to modify the particle surface 
properties. One suggested way is to exploit the interaction between cationic head 
groups of a surfactant and silanol groups [ 55 ,  86 ]. The modifi cation of SiO 2  parti-
cles surface with functional groups that can strongly interact with zinc (e.g., SiO 2 –
SH, dithiooxamide, or cysteamine) led to better incorporation silica into the metal 
matrix [ 45 ]. Contrarily, other modifi cations of the silica particles (e.g., SiO 2 –NH 3  + , 
SiO 2 –Cl, and  N , N -dimethyldodecylamine) didn’t lead to their incorporation, but to 
adsorption and entrapment only. 

 Mesoporous silica particles can be loaded with corrosion inhibitors, by encapsu-
lation [ 85 ], and then could be incorporated in a zinc matrix. When the composite 
zinc coating is exposed to a corrosive medium, the particles are released to the steel 
surface, which plays the role of cathode. There, the cathodic polarization would 
produce a pH change to alkaline values, which determines the release of the stored 
inhibitor. The thickness of the outer silica shell can be adjusted in order to control 
the delay time for the inhibitor release. This approach is very promising for the 
preparation of self-repairing material systems. 

  Fig. 2    SEM micrographs of Zn–TiO 2  fi lms prepared with 5 g/l TiO 2  (Degussa P25) from a ZnCl 2 - 
based electrolyte with dispersants (D1, D2, Coatex, France) [ 94 ]       
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 The SiO 2  contents in the composite coatings increase with nanoparticle concen-
tration in the bath; however, a too high concentration (>100 g/l) reduces bath stabil-
ity, causes agglomeration of the particles, and diminishes the service life of the 
plating bath [ 19 ].  

    Zn–PTFE 

 Zinc composite coatings containing PTFE can be also prepared by electrodeposition 
and were largely studied because of their very useful properties such as wear resis-
tance, self-lubrication, etc. 

 Previously electroplated composite Zn–PTFE coating was obtained, both in 
alkaline [ 87 ] and low acidic [ 88 ] zinc bath with high operation reliability and low 
operation costs. 

 In alkaline baths containing 125 g/l NaOH, PTFE particles were dispersed uni-
formly and deposited along with Zn at 3 A/dm 2  [ 87 ]. PTFE particles embedded in 
the composite coatings determined increased lubrication properties to Zn coatings 
offering possibilities to surface protection against erosion and abrasion. 

 In low acidic baths, the most suitable current density was identifi ed within the 
range of 1.5–2 A.dm –2 ; the time of electroplating should not exceed 20 min, and the 
pH should range between 4.8 and 5.5 [ 88 ]. A coating with homogenous distribution 
of PTFE particles of high concentrations was deposited at the temperature of 
21.5 °C, electroplating process duration 10 min, current density 1.5 A.dm –2 , and 
bath pH value 5.51.  

    Zn–ZrO 2  

 Zirconium oxides are resistant to wear, corrosion, and heat, being in the same time 
biocompatible and adherent to metallic surfaces [ 89 ]. Common routes to prepare 
ZrO 2  coatings with improved mechanical properties for anticorrosion purposes are 
chemical vapor deposition, electrophoretic deposition, and sol–gel deposition by 
dip coating technique. Zn–ZrO 2  composite coatings were successfully produced by 
electrodeposition from sulfate baths. During the electrodeposition process, the 
hydrogen evolution reaction is blocked by addition of ZrO 2  to the plating solution 
[ 69 ]. On the other side, ZrO 2  particles hinder the Zn 2+  reduction. The resulting coat-
ings present improved anticorrosive properties, higher hardness due to ZrO 2  inclu-
sion, and changed morphology as compared to pure Zn coatings.  

    Zn–CeO 2  

 Cerium oxides and hydroxides are generally known as effective cathodic corrosion 
inhibitors being recommended for the protection of metals from corrosion and for 
improving different properties such as wear, temperature oxidation resistance, 
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microhardness, etc. The antioxidant and thermal barrier properties of nanoceria 
have been previously reported [ 90 ,  91 ]. Cerium compounds, either as coatings or as 
inhibitors, are known to hinder the cathodic corrosion reaction, thereby slowing 
down oxidation of substrates, by enhancing the barrier protection of the interior 
layers of zinc coatings [ 92 ]. Moreover, embedded CeO 2  nanoparticles diminish the 
grain size of metallic deposits obtained by electrodeposition by stimulating 
nucleation [ 66 ]. The deposits prepared from a bath containing CTAB showed higher 
corrosion resistance compared to those obtained without surfactant [ 81 ] as in other 
cases [ 93 ].   

    Conclusions 

     (i)    In the fi eld of galvanic plating, the electrolytic entrapment of inert nanoparti-
cles in the metallic matrix is a successful way to obtain coatings with better 
mechanic and anticorrosion properties than pure metal deposits. The resulting 
composite layers exhibit improved corrosion and wear resistance, increased 
hardness, superior tribologic properties, better subsequent adhesion of paint-
ings, and increased lifetime.   

   (ii)    In spite of their low incorporation fraction (frequently <1 %), the embedded 
particles induce signifi cant changes in the morphology and structure of the 
deposits. The general tendency is to induce smaller grain size and an oriented 
crystalline structure.   

   (iii)    Under identical experimental conditions, certain types of nanoparticles incor-
porate in higher amount and confer better corrosion protection to the coatings 
than other. The particle nature and dimensions could be the reasons of this 
behavior, but not the only ones.   

   (iv)    The existence of an optimal concentration of nanoparticles in the plating bath 
was proved in most cases and could be attributed to the existence of two con-
trary effects: a benefi cial one (the embedded particles reduce the active surface 
in contact with the corrosive medium) and a harmful one (they generate dislo-
cations and defects in the metallic matrix disturbing the nucleation and growth 
of the deposit, thus favoring the corrosion process).   

   (v)    As the co-deposition process is a complex one, involving heterogeneous mul-
ticomponent systems and combining interfacial electron transfer with mass 
transport, a rigorous control of the experimental parameters in the plating baths 
is required in order to obtain coatings with desired properties.         
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Abstract
The fabrication of multi-nanolayer structures can in some cases be achieved 
 electrochemically if, for example, the plating current density has a significant 
effect on the deposit composition or if reverse plating changes the composition. 
Moreover, the realization of a multi-nanolayer structure can also crucially affect 
the properties of the material. This chapter will look at one material system in 
which both of the above apply, namely, amorphous Co-P.

When produced using conventional DC plating, amorphous Co-P tends to 
exhibit perpendicular magnetic anisotropy and hence very low permeability and 
somewhat high coercivity. This limits the usefulness of the material as a 
 magnetic core for power conversion applications which require low coercivity, 
high saturation magnetization, high permeability, high anisotropy field, and 
high resistivity. Riveiro et al. used pulse reverse plating to fabricate multilayers 
of alternate magnetic and nonmagnetic materials. With the thickness of the 
magnetic layers at around 30 nm, they were able to achieve in-plane anisotropy 
and low coercivity 8 A m−1.

This chapter will describe the early work and a selection of subsequent 
research on multi-nanolayers of amorphous Co-P, e.g., Perez et al., who used 
pulse plating, and McCloskey et al., who improved the saturation magnetization 
and thermal stability of the material.

Keywords
Electrochemical • High frequency soft magnetic material • Integrated inductor •
Multi-nanolayer • Nanotechnology • Thermal stability Co–P

 Introduction

The last 30 years have seen a revolution in the area of materials science centered 
around the development of solid structures with at least one dimension below 
100 nm. These can be 3D materials with all dimensions below 100 nm (known as 
nanoparticles), 2D materials (essentially thin films), 1D materials (nanowires), and 
0D materials with all dimensions below 10 nm, and often described as quantum dots 
[1]. It also encompasses materials which are nanostructured such as mesoporous or 
microporous substances that have structure arrangements of small pores [2]. The 
use of these materials in various fields is known as nanotechnology [3, 4], and while 
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it is normally associated with hi-tech applications such as in the information and 
communications area, nanotechnology spans areas as diverse as biomedicine, tran-
sistors, and separation media. While there are many potential architects of the 
nanorevolution including Davy, Feynman, and Drexler [5], there is no doubt that the 
main driver of nanotechnology has been the microelectronics industry and the 
development of ultrasmall transistor devices. Scaling in the device industry (and, 
thus, our control of substrate features below 100 nm dimension) has been precipi-
tated by an observation by Gordon Moore where he noted that the number of devices 
on a semiconductor chip doubled every 18–24 months [6]. Key references in nano-
technology are summarized in Table 1 below.

As dimensions have shrunk, miniaturization has not only been applied to silicon 
but also to a series of other materials including interconnects, vias, dielectrics, and 
photolithographic masks/resists [7]. One of the areas that have been as aggressively 
scaled as the silicon devices has been memory storage, which has needed to main-
tain commensurability because of the need to store an ever-increasing amount of 
information in both volatile and permanent formats [8]. Typical targets include 64 
Tb storage capacities by around 2020 and magnetic feature volumes of less than 
1500 nm3 (although it is worth noting that dimension cannot be wholly stripped 
from the fundamental magnetic properties of the materials such as coercivity).

The global market for nanomagnetic materials and devices is growing markedly 
with sales expected to reach $9 billion by 2017. The data storage sector alone had 
sales of $6.9 billion in 2012, but markets are rapidly developing nanomagnet-based 
applications in sensors, biosensors, and bioassay platforms and should reach nearly 
$8.4 billion in 2017 while markets for sensors, biosensors, bioassay products, and 
giant magnetoresistance (GMR) readers are expected to develop quickly. Indeed, 
limitations in silicon technologies may precipitate the development of novel 
spintronic- based switches as devices [9]. Other markets for magnetic materials 
include soft magnetic cores, ferrofluids, catalysts, and environmental remediation 
products. It is worth stressing that there is no universal material for all these 
 applications and any potential technology will be based around development of 
novel optimized systems that are likely to be unique for each application.

Table 1 Summary of key nanotechnology references

Summary Author/References

An overview of nanoparticle preparation and science Karkare [1]

Details of nanoporous materials used as nanoparticle hosts Hanrahane et al. [2]

Introduction to the theory of nanoscience and applications Mansoori [3]

Basic introduction to nanotechnology and potential applications Wilson et al. [4]

Perspective on the development of nanoscience Lacaze [5]

Landmark paper detailing scaling development in 
microelectronics and Moore’s Law

Moore [6]

Scaling and miniaturization in microelectronics Roco and Gargini [7]

Roadmap for data storage requirements Information Storage Industry 
Consortium [8]

Review of the emerging area of Spintronics for novel devices Wolf et al. [9]
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 Electrodeposition

Electrodeposition can be applied to the fabrication of multi-nanolayers in which the 
composition is modulated. Such multilayer structures are of interest in relation to 
GMR [10], mechanical properties [11], and in some cases the improvement in soft 
magnetic properties [12, 13].

Modulation of composition can be achieved by either depositing the different 
components from separate electrolytes or by using voltage or current modulation to 
enable deposition from a single bath. A disadvantage with the former method is that 
it requires physical transport between electrolytes following the deposition of each 
layer. Whether or not it is possible to achieve composition modulation from a single 
bath depends on the particular properties of the electrochemical system being con-
sidered, and the circumstances in which it is possible will now be discussed.

The electrodeposition of a metal involves the reduction of metal ions in an elec-
trolyte at a negatively charged cathode. As per Faraday’s law, the amount of metal 
deposited is directly related to the quantity of charge transferred at the cathode and 
hence the current flowing. In the case of alloy plating, the amount of each compo-
nent deposited will be proportional to the amount of charge transfer at the electrode, 
which is related to the deposition of each individual component of the alloy. 
Consequently, the composition of an alloy will be altered if the fraction of the over-
all current density related to a particular component is changed. Current flow in an 
electrodeposition process is driven by the voltage supplied, and hence it is necessary 
to consider the relationship between current and potential in an electrochemical 
electrode.

When a metal electrode is placed in a solution containing ions of the metal, an 
exchange equilibrium arises in which the number of metal atoms dissolving into the 
solution is equal to the number of metallic ions discharging and depositing on the 
electrode. As a result of this exchange, the electrode is at an equilibrium potential E 
relative to the solution. In order to drive the system away from equilibrium so that 
current can flow and metal will be deposited, the potential has to be changed to a 
new value E(I), and the difference between these potentials is termed the 
“overpotential,”

 
h = ( ) -E I E  (1)

Electrodeposition always entails a number of steps, which include

• “Charge transfer,” in which metal ions are neutralized and adsorbed
• “Mass transport,” in which metal ions diffuse through a “stagnant” layer of elec-

trolyte to the electrode surface
• “Incorporation,” in which the adsorbed atom is incorporated into the growing 

lattice

The slowest step in the overall electrode reaction is rate determining. However, 
several of the steps can have low reaction rates and hence can contribute to the 
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overall electrode reaction rate. The only stage that is directly affected by the elec-
trode potential is charge transfer. The relationship between current density and 
potential for electrodeposition is illustrated schematically in Fig. 1.

It can be seen that initially potential has a strong influence on the linear and expo-
nential regions in which the deposition is under “charge transfer” control. However, 
as the potential is increased further, “mass transport” begins to influence and eventu-
ally dominate the reaction rate, at which point the potential has no influence on cur-
rent density. The exponential region applies to large values of overpotential, e.g., for 
a cathodic process, η > = −100 mV [14]. By taking  logarithms, this region can be 
represented by the linear Tafel relationship for reduction shown below:

 
h = -a b ilog  (2)

The effect of changing the overpotential on the composition of an alloy can be 
understood by considering the Tafel plots for a two-component alloy x-y shown in 
Fig. 2.

The logarithm of the ratio of the current densities for each component is a mea-
sure of the alloy composition, and for an overpotential η, this is given by

 
ln / ln lni i i ix y x y( ) = ( ) - ( )  (3)

with

 
ln i a bx x x( ) = + h  (4)

and

 
ln i a by y y( ) = + h  (5)
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Fig. 1 Schematic of current density versus potential for electrodeposition
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Hence, substituting into Eq. 3, we obtain

 
ln /i i b b a ax y x y x y( ) = -( ) + -h  (6)

It can be seen from Eq. 6 that the composition of the alloy will be unchanged  
by changes in overpotential (η) if the Tafel slopes of each component are identical 
(bx = by).

The above argument applies to a situation in which the reaction rate for both com-
ponents is under charge transfer control. However, if one of the components is under 
mass transfer control, then changing the value of overpotential will change the compo-
sition. Formulating the electrolyte to contain a low concentration of a more noble metal 
and a high concentration of a less noble metal can create this situation. Ions of the more 
noble metal will be quickly depleted at the cathode, and consequently its deposition 
will be under mass transport control. Composition modulation is achieved by varying 
the overpotential between a value at which only the more noble metal deposits and a 
value in which both metals deposit with the less noble metal being deposited under 
charge transfer control. The layers thus produced will alternate between pure noble 
metal and a low concentration of noble metal. This approach has been applied to the 
fabrication of multilayers of Cu-Ni [15], Ni-Fe-Cu/Cu [16], and Co/Cu [17].

An implicit assumption in the use of Tafel plots to determine the effect of over-
potential on alloy composition is that the deposition of one component is unaffected 
by the presence of other alloy components. Often this is not the case, a situation 
described by Landolt [18] as “charge transfer coupled,” i.e., the partial currents are 
not independent of each other. Landolt [18] further categorized such systems as 
either “inhibited codeposition” or “catalyzed codeposition.”

One of the situations in which this arises is the electrodeposition of amorphous 
alloys based on iron group metals (Fe, Co, Ni). Amorphous alloys of these metals 

OVERPOTENTIAL

ln(iy)

ln(ix)
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ax

h

y

x

slope=by

slope=bx

Fig. 2 Schematic Tafel plots for deposition of alloy x-y
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can be produced by the codeposition of P or B. In aqueous solution, P and B cannot 
be deposited alone but can readily be deposited in the presence of iron group metals, 
a phenomenon usually termed “induced codeposition.” The overpotential does often 
seem to affect the composition, as many studies have indicated a tendency for the 
deposited alloy to become more rich in the iron group metal as the current density 
is increased; e.g., this was the case for Ni-P, Co-P and Ni-Co-P [19], Co-P [13], and 
high phosphorous bath content Ni-P [20]. Perez et al. [13] used this dependency of 
composition on current density to produce modulated Co-P films with alternate high 
and low P contents.

Pulse reverse plating involves reversing the polarity of the cathode and anode 
during part of the plating cycle. During the “reverse” period, material previously 
deposited will dissolve back into solution. In the case of an alloy, pulse reverse plat-
ing can be used to produce composition modulation if one of the alloy components 
has a greater tendency to dissolve than other components. This is the case for Co-P 
plating as the Co tends to dissolve more quickly than P during current reversal. 
Riveiro and Riveiro [12] used this effect to produce nanolayered deposits.

 Magnetic Property Overview

Fundamentally, magnetism is defined by both the spin and orbital momentum of 
electrons, and since most solid materials contain many electrons within an effec-
tively continuous band structure, permanent magnetism is actually rather rare [21, 
22]. However, all bulk or molecular materials can be magnetically categorized 
according to a limited number of forms. These are summarized in Fig. 3. 

Fig. 3 Types of magnetism illustrated schematically. Electrons spins are indicated as dashed 
arrows and magnetic moment of individual atoms as a large arrow
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Diamagnetism (Fig. 3a) is exhibited in materials where all of the electrons are 
paired and the total magnetic moment is essentially zero (at all temperatures above 
0 K). Paramagnetic materials contain atoms, molecules, or ions that have unpaired 
electrons, but within the solid and in the absence of a magnetic field, these individ-
ual entities behave independently and show no tendency for the magnetic moments 
to align (Fig. 3b). In an applied field, a net magnetic moment will develop because 
of field-imposed alignment. In a few special cases, alignment of the individual mag-
netic moments spontaneously occurs, and a ferromagnet results (Fig. 3c). In iron, 
e.g., this occurs because the band structure is such that spatial minimization 
of electron–electron repulsions is more significant than the energy decrease defined
by electron pairing. In the vast majority of examples, neighboring atoms/molecules 
containing unpaired electrons will antiferromagnetically align (maximizing attrac-
tive north–south low-energy arrangements, minimizing the repulsive arrangements).
These are called antiferromagnets and have close to zero magnetic moment (Fig. 
3d). A few special cases exist where even though the system is antiferromagneti-
cally arranged, because of the presence of heteroatoms of differing magnetic 
moment, the total magnetic moment is nonzero, and these materials are called fer-
rimagnetic (Fig. 3e).

In Fig. 3e, heteroatoms are shown as filled circles, and these carry a smaller net 
moment indicated by the thinner arrow.

Bulk ferromagnets and ferrimagnets are characterized by strong magnetic 
moments below a critical temperature known as the Curie temperature for ferro-
magnets and the Néel temperature for ferrimagnets. Above these temperatures, the 
materials are paramagnetic because of thermal randomization of electron spins.

When a ferromagnetic material is placed is a magnetic field, H (the magnetizing 
field), an extra field is induced within the magnetic material as the unpaired elec-
trons in the material align in response to H. This field, B, is referred to as the mag-
netic induction or, more commonly, the magnetic flux density and arises from the 
properties of the material itself. In SI units, the relationship between these fields is 
usually expressed as

 
B H M= +( )m0  (7)

where μ0 = 4π × 10−7 H m−1, B is in teslas, H and M are both in A m−1, and B, H, and 
M are all vector quantities.

This expression shows that the B field induced in the material is proportional to 
the sum of the magnetizing field H and a magnetization, M, arising from the mate-
rial itself. The constant of proportionality is the permeability of free space.

Alternatively, the B field is often expressed in a direct relationship to the magne-
tizing field H as

 B Hr= m m0  (8)

where μr is the relative permeability, a value representing the strength of the response 
of a magnetic material to an applied field. Materials with a higher permeability will 
respond more strongly to a given field than materials with a low permeability.
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In general, the relationship between B and H in a ferromagnetic material is highly 
nonlinear and hysteretic, taking the form of a B-H curve. A typical example of such 
a curve is shown in Fig. 4. Moreover, the exact value of B arising within a magnetic 
material from application of an H field is dependent on the previous history of mag-
netization of the material.

The magnetization curve for any material is typically characterized in terms of 
the parameters shown in the figure, i.e., the saturation flux density, Bs, the remnant 
flux density, Br, and the coercivity, Hc. In soft magnetic materials, the slope of the 
B-H curve, i.e., the permeability, can be an important consideration. A specific 
application of magnetic materials might demand B-H curves of a specific shape, and 
therefore material development efforts usually focus tailoring the shape of the B-H 
curve using different alloy compositions, production, or processing techniques. In 
order to appreciate the cobalt phosphorus material development described later in 
this chapter, it is important to explain some of the underlying processes which give 
rise to the shape of the B-H curve.

The magnetization curve of ferromagnetic materials is understood in terms of 
the “molecular field” theory advanced by Pierre Weiss in 1906 [23]. Weiss postu-
lated that a ferromagnet in an unmagnetized state is spontaneously divided into a 
number of small regions called “domains.” Each domain is spontaneously magne-
tized to the saturation value Ms, but the directions of magnetization of the domains 
are all different such that in a large collection they cancel and the sample has no 
overall magnetization. Consequently, the process of magnetization may be under-
stood as changing the specimen from a situation in which there are many mis-
aligned domains to a situation where all the domains are aligned with the direction 
of the external applied magnetic field H. At this point, the sample has reached its 
saturation value, Ms or Bs.

This transformation from misaligned domains to fully aligned domains takes 
place by two mechanisms, namely, domain wall motion and domain rotation. 

B

H

HC

BS

Br

Ms

Minor Loop

Fig. 4 Typical B-H curve for a ferromagnetic material
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Domain wall motion allows domains that are favorably aligned with the external 
field to grow in size. This process can involve both reversible and irreversible steps. 
Domain walls can be pinned or impeded from moving by nonmagnetic inclusions in 
the materials. When a domain wall becomes unpinned, it advances in a sudden step 
known as a “Barkhausen jump.” Such events are irreversible and are a cause of hys-
teresis and consequently energy loss. Nevertheless, domain wall motion typically 
requires less energy than domain rotation and so tends to dominate the magnetiza-
tion process at low fields where the magnetization curve has the steepest slope; i.e., 
a small change in field produces a large change in magnetization. At higher fields, 
the slope of the magnetization curve is reduced (and hence a relatively large change 
in field is required to produce a small change in M). This is generally the point at 
which there are few favorably aligned domains left to grow in size and so further 
magnetization takes place by domain rotation where the magnetization of unaligned 
domains rotates to align with the magnetic field.

Magnetic materials may be anisotropic, in which there is an easy-axis direction in 
which it is “easy” to magnetize the material and a hard-axis direction in which it is 
“hard” to magnetize – see Fig. 5 for schematic B-H loops of an anisotropic material.

The direction and strength of the anisotropy will be determined by various 
contributions to anisotropy which can arise from a number of sources, namely, the 
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Fig. 5 Schematic B-H loops 
of anisotropic material, (a) 
Easy axis, (b) Hard axis
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magnetocrystalline anisotropy, the magnetoelastic anisotropy, the shape anisot-
ropy, and the induced anisotropy. Of these, only the magnetocrystalline anisot-
ropy is intrinsic to the material. It acts as a force that tends to hold the magnetization 
in certain equivalent crystallographic directions and is mainly due to spin–orbit
interactions [24]. The magnetoelastic anisotropy results from stress in the film. 
Shape anisotropy arises from the fact that for a nonspherical open magnetic cir-
cuit specimen, a demagnetizing field will arise from induced magnetic poles at the 
surfaces of the sample, the strength of which is inversely proportional to the 
length of the axis. On the shortest axis of a sample, the demagnetizing factor is the 
strongest. Thus, shape anisotropy will favor the formation of an easy axis along 
the longest axis of a material sample and will generally force the easy axis to lie 
in the plane of a thin film as opposed to perpendicular to the film. In the plane of 
a finite film as well, the shape anisotropy will push the easy axis to lie along the 
longest possible axis.

The easy axis is the direction in which the material can be brought to saturation 
with the lowest applied field, which also implies that the slope of the B-H (and 
hence the relative permeability) is highest in this direction as can be seen illustrated 
in Fig. 5a. Conversely, as shown in Fig. 5b, the permeability would be expected to 
be lowest in the hard-axis direction.

As previously mentioned, domain wall movement entails energy loss through 
irreversible Barkhausen jumps. In addition, such jumps dissipate energy due to the 
formation of microscopic eddy currents in the region of the domain wall. As a result, 
magnetization through domain wall movement tends to be effective only up to mod-
erate frequencies, e.g., 10–100 kHz [25], and indeed permeability in the easy axis 
typically decreases rapidly with frequency.

In contrast, magnetization through rotation, especially if domains are oriented 
perpendicular to the applied field, occurs gradually and uniformly throughout the 
material and can be almost lossless. As a result, although the permeability in the 
hard axis is lower, it remains more stable with frequency. This is the primary reason 
why anisotropy is often deliberately induced in the magnetic core of magnetic 
devices designed for high-frequency operation.

It should be pointed out that for conductive magnetic materials, used in the hard 
axis, there will still be macroscopic eddy currents induced by the flux changes, as 
would be expected from any conductor experiencing a time-changing magnetic 
field. Such macroscopic eddy current loss is a major loss mechanism in magnetic 
materials at high frequencies and provides the main motivation for the development 
of higher-resistivity materials.

As mentioned above, shape anisotropy would generally dictate that for thin films 
the easy axis would lie in the plane of the film. However, in some materials, with, 
for example, strong crystal anisotropies, it may be energetically favorable for the 
easy axis to lie perpendicular to the plane of the film. Such films are said to have 
perpendicular anisotropy, which can lead to the formation of “stripe domains,” 
which consist of alternate antiparallel domains, leading to poor in-plane soft mag-
netic properties, i.e., very low permeablity and the requirement for high external 
fields (>800 A m−1) to reach saturation [26].
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The above describes the magnetic properties largely in terms of the macro-
scopic perspective of magnetic domain interaction. However, when dealing with 
materials on the nanoscale, it is also necessary to realize that the fundamental 
magnetic properties of a material can change dramatically with dimension. Since 
magnetic properties derive from correlated movements of electronic charge, 
changes in electronic band structure, crystallography, the contribution of surface 
states and morphological variation can cause dramatic changes in magnetism with 
dimension.

For example, groundbreaking work by Louise Néel [27] led to the identification 
of a new form of magnetization (superparamagnetism) which appears when the size 
of the particles is such that a single domain exists in the whole solid [28]. Effectively, 
this is at particle dimensions of less than 50 nm dependent on the material. Usually, 
nanoparticles have a preferred direction for magnetic alignment (called uniaxial 
anisotropy); however, the magnetic alignment direction will periodically “flip” or 
rotate due to thermal motion. When the particles are flipping rapidly, within a real 
time, the net magnetic moment of the nanoparticle is effectively zero. This is said to 
be the superparamagnetic state. In this state, an external magnetic field is able to 
“magnetize” the nanoparticles via spin rotation similar to the magnetization of a 
collection of paramagnetic molecules. However, their magnetic susceptibility is 
much larger than a conventional paramagnet.

 State of the Art for Electroplated Soft Magnetic Alloys

There has been a significant level of research interest, mainly driven by the demand 
in various microelectronic applications, in developing high-performance soft mag-
netic alloys that exhibit good properties, i.e., the coercivity (Hc) should be mini-
mized, especially in the hard axis, the saturation flux density (Bs) should be 
maximized, as should resistivity (ρ) so as to minimize eddy current loss.

One of the first significant developments in this area introduced by IBM in 1979 
[29, 30] was the electrodeposition of permalloy (Ni81Fe19) (Bs = 1.0 T, ρ = 2.8 × 10−7 
Ωm and HC = 72 Am−1), for application as the core material of a thin-film inductive 
head to increase magnetic recording density. The introduction of magnetoresistive 
read head by IBM in 1991 resulted in the need of high-speed writing head with a 
very narrow writing track width and the capability of recording in a highly coercive 
recording media to achieve a higher density of recording. This has led to the advent 
of newer permalloy compositions such Ni45Fe55 [31, 32] with better soft magnetic 
properties (Bs = 1.4–1.6 T, ρ = 4.0–4.5 × 10−7 Ωm and HC = 103 Am−1). However, 
Ni45Fe55 films were particularly sensitive to residual stresses, whereas Ni80Fe20 films 
were not, due to its ultralow magnetostriction (<1 × 10−6) value.

Osaka [33] produced electroplated films of CoNiFe with sulfur-containing 
additives such as saccharin and thiourea. It was found that with sulfur content at 
0.9 % the resistivity had increased to 5.1 × 10−7 Ωm with a reasonable saturation 
flux density of 1.7 T, low coercivity of 72 Am−1, and permeability retained up to 
30 MHz frequency.
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Electrodeposited amorphous Co-P alloys have reported values of coercivity that 
are extremely low, i.e., Hc < 24 A m−1, even at high values of resistivity, i.e., ρ = 
1.9 × 10−6 Ω m [34]. However, Co-P has a strong tendency to form an out-of-plane, 
perpendicular anisotropy, and electrodeposition techniques must be employed that 
prevent this by producing a multi-nanolayer structure.

Such electrodeposited magnetic materials are an attractive possibility in the inte-
gration of on-chip inductors into silicon process technology, which has been a major 
challenge in the development of monolithic solutions for wireless communications, 
RF ICs, radar, power delivery, and EMI noise reduction [35]. The use of such mate-
rials has the potential to considerably reduce the footprint required but requires a 
material with low losses at high frequency.

 Early Work on Electrodeposited Co-P

 DC Plated Co-P

Riveiro and Sanchez-Trjillo [26] investigated the anistropy behavior of electrode-
posited amorphous Co-P films. They used a plating bath which was based on those 
described by Brenner et al. [20], which for a “high” phosphorous deposit of 9–11 %
had a bath composition and conditions as shown in Table 2.

As a substrate for plating, Riveiro and Sanchez-Trjillo [26] used smoothed poly-
crystalline copper. M-H hysteresis loops of the samples thus produced were obtained 
using two methods, the integrating fluxmeter and the transverse magneto-optic Kerr 
effect (MOKE). The ratio of remnant magnetization to saturation magnetization Mr/
Ms as obtained by these methods is shown plotted against deposit thickness in Fig. 6.

It can be seen that for samples with a thickness below 400 nm the value of Mr/Ms 
is high (which implies a high permeability) but as the thickness is increased the 
value of Mr/Ms, decreases (which implies a low permeability). Riveiro and Sanchez- 
Trjillo [26] interpreted these results as indicating that an in-plane anisotropy is pres-
ent for samples with a thickness below 400 nm but as the thickness is increased 
above 500 nm the anisotropy develops an out-of-plane direction eventually becom-
ing perpendicular at approximately 10 μm.

Table 2 Plating bath composition and conditions

Component Amount (g l−1)

H3PO3 40

Co CO3 ~15 (sufficient to achieve desired pH)

CoCl2.6H2O 180

H3PO4 50

Temperature (oC) 75–95

Current Density (A m−2) 500–4000

PH 0.5–1.0

Anode Co
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This phenomenon was explained based on the theory presented by Chi and 
Cargill [36] that the anisotropy is due to the formation of a “columnar structure” 
which arises due to fluctuations in the composition. However, a detailed study by 
Ruythooren et al. [37] of DC-plated Co-P films using transmission electron spec-
troscopy (TEM) failed to find evidence of a columnar microstructure.

 Pulse Reverse Plated Co-P

Riveiro and coworkers investigated the use of pulse reverse plating to produce 
composition- modulated films and hence interrupt the “presumed” columnar growth. 
Initially, this was achieved by adding a 5 Hz sinusoidal current to the conventional 
DC electrodeposition current [34]. Subsequently, Riveiro and Riveiro [12] used a 
square wave with current reversal – see Fig. 7.

They used the following settings:

• Forward current density, CDforward = 5000 A m−2

• Reverse current density, CDreverse = 2000 A m−2

• Forward on-time tforward = 90–500 ms
• Reverse on-time treverse = 50 ms

The plating bath composition was very similar to that shown in Table 2 except 
that the H3PO3 was higher at 65 g l−1.

1.0

Ms
Mr

0.5

2 4 6 8 10
µm.

Fig. 6 Ratio of Mr /Ms, 
versus sample thickness with; 
“0” indicating “Integrating 
fluxmeter” and “+” indicating 
“Kerr effect” (Reproduced 
from Riveiro and Sanchez- 
Trjillo [26])
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It was supposed by Riveiro et al. [12] that during the forward on time, tforward, 
Co-P is deposited (with a thickness of hforward) while during the reverse time, 
 treverse, Co-P is removed (with a thickness of hreverse). During the reverse cycle, Co 
is removed preferentially, and hence the upper part of the remaining layer is 
enriched in P.

Consequently, a bilayer structure is created, which is represented in Fig. 8.
Using this approach Riveiro and Riveiro [12] fabricated multilayers of alter-

nate magnetic and nonmagnetic materials. The magnetic layers had a composition 
of Co76P24 while the nonmagnetic layers had a composition of Co67P33 (thickness 
2–5 nm).

Holding the thickness of nonmagnetic layers constant, they varied the thickness 
of the magnetic layers. They found that the Hc initially fell from 40 A m−1 (at a 
 magnetic layer thickness of 3 nm) to 8 A m−1 (at a magnetic layer thickness of 
30 nm). Above this thickness, the Hc started to rise again, and “stripe domains” were 
observed when the magnetic layer thickness was greater than 150 nm. Riveiro et al. 
[40] made a thorough study of magnetic domains in multilayered amorphous Co-P 
alloys produced by pulse reverse plating.

tforward

CDforward

CDreverse

treverse

0 
Time (ms)

CD (A m–2)

Fig. 7 Pulse Reverse Waveform used by Riviero et al. [12]

hreverse

hbi-layer

CoP (removed in reverse cycle)

CoP (high P)
CoP (low P)

hforward

Fig. 8 Effect of Pulse Reverse waveform
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 Pulse Plated Co-P

The effect of DC plating current density on the deposit composition of Co-P was 
investigated [13]. It was found that the composition is strongly dependent on current 
density as is shown in Fig. 9.

Perez et al. [13] went on to exploit this effect by using square wave pulse plating 
at different current densities to produce multilayer structures in which both layers 
were ferromagnetic and where the composition of the first layer was Co83P17, the 
composition of the second was Co78P22, and the double layer thickness was in the 
range 10 nm to 30 μm. These layers were replicated in order to produce a stack of 
layers with alternating composition. Perez et al. [13] did not quote the exact plating 
conditions used in this study but in subsequent work aimed at fabricating a fluxgate 
sensor with an electrodeposited amorphous Co-P core [38], described using [39] a 
single electrolyte and current densities of 5000 and 1000 A m−2 to modulate the 
composition of the layers. The plating waveform utilized is shown in Fig. 10.

In their initial study, Perez et al. [13] experimented by varying the bilayer thick-
ness while keeping a constant total deposit thickness of 30 μm. They found that they 
could reduce the normalized perpendicular anisotropy of the film from 1 (bilayer 
thickness of 30 μm) to 0.38 (bilayer thickness of 10 nm).

Subsequently, Perez et al. [13] tried keeping the number of bilayers constant at 
1000 while varying the composition of the layers. They found that the perpendicular 
anisotropy could be related to the difference between the Bs of the two layers that 
form a bilayer. With a difference in Bs smaller than 0.3 μB atom−1 (resulting from a 
difference in current density smaller than 3000 A m−2), the normalized perpendicu-
lar anisotropy was reduced from 1 to 0.25.

The bilayer films were characterized, and it was found that they exhibited 
the magnetic properties, Hc = 3–10 A m−1, Bs = 0.6 T, and permeability, μ = 104. 

Fig. 9 Co-P composition 
versus electrolytic current 
density (Reproduced from 
Perez et al. [13])
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Bitter domain pattern analysis was carried out, and it was found that domain walls 
were present and that these were associated with more than one layer, thus indi-
cating exchange coupling between layers. Perez et al. [13] contrasted this with a 
similar bitter analysis of magnetic/nonmagnetic layers carried out by Riveiro 
et al. [39], in which Neel and Cross-Tie walls were observed, indicating that there 
was no exchange coupling between the ferromagnetic layers. Based on this differ-
ence, Perez et al. [13] suggested that the presence of exchange interaction between 
the ferromagnetic bilayers was the reason for the lower coercivity values 
exhibited.

 Electrodeposited Co-P With Higher Saturation Magnetization

 Background

As discussed earlier, Riveiro and Riveiro [12] produced thick films of amorphous 
Co-P with low coercivity using pulse reverse plating to fabricate multi-nanolayers 
of alternate magnetic and nonmagnetic material. The value of saturation magnetiza-
tion Bs was not reported, but considering the composition and thickness of the mag-
netic layers it would be expected that the films would have saturation below 0.5 T.

As also discussed previously, Perez et al. [13] produced multi-nanolayers of 
amorphous Co-P using square wave pulse plating at two current densities. They 
produced multilayer structures which exhibited coercivity Hc = 3–10 A m−1, satura-
tion magnetization Bs = 0.6 T, and relative permeability μr = 10,000.

However, one of the key requirements for a material to be suitable for integrated 
inductors in a power delivery application is to have a high saturation magnetization 
coupled with a relatively high anisotropy field. In order to obtain a material with a 
higher saturation and high anisotropy field, it was decided to investigate the use of 
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a bath with lower phosphorous acid content than that used by Riveiro and Riveiro 
[12] and to optimize the plating waveform in order to obtain the best properties with 
the lower phosphorous bath.

 Experimental

A bath was prepared with a composition similar to that shown in Table 2. The bath 
composition was identical to the bath used by Riveiro and Riveiro [12] except that 
the quantity of H3PO3 was reduced from 65 g l−1 to 30 g l−1.

The cathode for the plating experiments was a silicon wafer with a top layer of 
500 nm of silicon oxide and a conductive seed layer consisting of 20 nm titanium 
and 200 nm copper. All samples were plated in the presence of a uniaxial magnetic 
field of around 16 kA m−1, which was provided using two large permanent magnets 
(140 × 100 × 100 mm) that were separated by a distance of 220 mm. The magnetic 
field was oriented to be parallel to the surface of the cathode. Cobalt metal pieces, 
in close contact with an inert Pt/Ti mesh, were used as the anode.

The film resistance was measured using the four-probe method in the central 
area of the wafer before and after plating. After dicing to the appropriate sample 
sizes, DC magnetic characterization was obtained using an ShB Instruments 
MESA-200 Magnetic Measurement System, and complex permeability spectra 
were measured using a Ryowa PMM9G1 permeameter. Compositional analysis 
was obtained using EDX.

The Brenner [39] bath does not work well if the pH is too high because under 
these conditions a powdery nonmetallic film is deposited. Moreover, the pH tends 
to rise with use, and hence, a low pH value is usually maintained with the addition 
of H3PO3. However, as this is the main phosphorus source and the aim was to reduce 
the phosphorus content, it was decided that HCl would be used to acidify the bath.

The trial consisted of two separate experimental runs, Run A and Run B.
Run A had a starting pH (i.e., no HCl added) of 1.7 while Run B had a starting 

pH of 1.4. Within each run, two sets of samples were produced. For the first set, the 
pulse parameters were kept constant and the pH of the bath was lowered by the 
addition of HCl. A pulse reverse waveform as shown in Fig. 11 was used. Apart 
from the presence of an off-time toff, this waveform is very similar to that used by 
Riveiro and Riveiro [12] as shown in Fig. 7.

For the first set of samples, the pulse parameters were maintained as follows:

• Forward on time, tforward = 870 ms
• Forward current density, CDforward = 1700 A m−2

• Reverse on time, treverse = 54 ms
• Reverse current density, CDreverse = 670 A m−2

• Off time, toff = 72 ms

In the second set of samples, the pH was maintained at a constant value of around 
0.88 and the forward on time tforward was varied between 96 ms and 5000 ms with the 
other pulse parameters kept as constant as possible.
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 Results and Discussion

 Effect of pH (With Pulse Parameters Kept Constant)
At higher pH values (1.7–1.3), a “powdery” nonmetallic material was deposited
particularly at the edges of the wafer. The size of the area affected by the nonmetal-
lic deposit decreased dramatically as the pH was reduced and disappeared com-
pletely for pH values below about 1. The starting pH value influenced the phosphorus 
content of the deposit as is shown in Fig. 12.
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Fig. 11 Pulse Reverse Waveform used by McCloskey et al. [41]
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Magnetization loops showed the samples to be magnetically soft with low values 
of Hc (i.e., below 40 A m−1) for all samples except the starting sample of Run A –
Set 1 (Hc = 263 A m−1). This sample had the largest nonmetallic deposit. The mag-
netization plot for the starting sample of Run A is shown in Fig. 13. This loop shows 
three distinct regions that are characteristic of perpendicular anisotropy. That is, at 
applied fields below ~0.3 kA m−1, the loop exhibits a large hysteresis (i.e., wide 
coercivity) followed by a region in which the magnetization is changed by the 
applied field but with little or no hysteresis and finally a region in which the magne-
tization is not changed by the applied field, i.e., the magnetization has reached satu-
ration. Furthermore, the sample shows only rather small in-plane anisotropy. The 
easy axis, which exhibits the highest slope, i.e., a high permeability, was obtained at 
the orientation of the sample relative to the magnetic field applied during electrode-
position. The hard axis, which exhibits a lower slope, i.e., a lower permeability, was 
obtained at an orientation perpendicular to the easy axis.

An example of the much-improved magnetization loops obtained for samples 
plated at a lower pH is shown in Fig. 14. The magnetization plot consists of only 
two regions, i.e., a low-hysteresis region, in which the magnetization is changed by 
an applied field, and a further region in which the magnetization is unchanged 
by the applied field, i.e., the magnetization has reached saturation. This type of loop 
is typical for in-plane anisotropy.

Furthermore, the magnetization loop shows a pronounced anisotropy with a clear 
difference between the easy and hard axis.
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The field required to rotate the magnetic orientation of the sample from the easy 
to hard axis orientation is known as the anisotropy field, Hk. On a B-H loop, it is the 
nonzero field at which the extrapolated hard axis loop intersects the easy axis loop. 
From Fig. 14, it can be seen that Hk ~ 1.4 kA m−1.

The hard axis coercivity is plotted against pH for both Run A and Run B (exclud-
ing the results for samples produced with pH = 1.7) in Fig. 15. It may be seen that 
for both Run A and Run B, the Hc shows a downward trend with increasing pH.

It should be noted that for a given pH Run A has a lower % P but a higher Hc and 
hence the correlation of Hc with pH is not explained as simply a dependence on P 
content.

The saturation magnetization Bs is plotted against phosphorus content in Fig. 16 
for both Run A and Run B. This is with the pulse plating parameters held constant 
and pH varied.

It can be seen that as anticipated the Bs increases with decreasing phosphorus 
content for both experimental runs, varying from 0.9 to 1.2 T.

 Effect of Forward on Time (With pH Kept Constant)
As discussed earlier, Riveiro and Riveiro [12] used pulse reverse plating to create a 
bilayer structure of alternate compositions (see Fig. 8) and supposed that during the 
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reverse time Co is removed preferentially and hence the upper part of the deposit is 
enriched in P.

In a treatment similar to that in Riveiro and Riveiro [12] for a constant forward 
current density CDforward, reverse current density CDreverse, and reverse time treverse, the 
thickness of the bilayer is given by

yRun B = –0.042x + 1.6

yRun A = –0.036x + 1.6
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Fig. 16 Saturation magnetization Bs versus phosphorous content (Reproduced from McCloskey 
et al. [41])
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h kt hbi layer forward reverse- = -  (9)

where tforward = forward on time and k is a constant. This thickness may be readily 
determined since it is also given by

 
h t t hbi layer cycle plating sample- = ( )/  (10)

where tcycle = total cycle time, tplating = total plating time, and hsample = sample 
thickness.

When the bilayer thickness is plotted against forward on time for each experi-
mental run, a straight line with a negative intercept is obtained as shown in Fig. 17. 
The plots would show a zero intercept if no material was removed during the reverse 
cycle, and the value of the intercept is the average thickness of material removed 
during each reverse cycle. It will be noted that the intercept values are similar for 
both experimental runs (A and B).

The B-H loops obtained for the samples showed that the hard axis Hc was 
strongly influenced by tforward (see Fig. 18). It can be seen that the B-H loops for the 
DC-plated sample and the sample plated with tforward = 3760 ms are very similar, i.e., 
both have a high coercivity and consist of three regions, which, as previously men-
tioned, is typical of out-of-plane anisotropy.

The B-H loop for the sample-plated tforward = 1200 ms is radically different with 
a very low coercivity, a two-region B-H loop, and a pronounced in-plane 
anisotropy.

Figure 19 shows the coercivity plotted against the forward on time for the two 
experimental runs.
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Thus, for good soft magnetic properties, it is essential to use forward on times of 
1530 ms or less. From Fig. 17, it can be seen that this corresponds to a bilayer thick-
ness of 29 nm or less.
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The relative permeability of the samples was found to be approximately 700 and 
was found to retain 90 % of its initial value to frequencies of up to 103 MHz. The 
anisotropy field was found to vary between 1.2 and 1.5 kA m−1 with the higher val-
ues being obtained at lower phosphorus contents.

The resistivity of the samples varied between 1.16 × 10−6 Ω m at 13 at.% P and 
1.36 × 10−6 Ω m at 17 at.% P.

 Electrodeposited Co-P with Improved Temperature Stability

 Background

Electrodeposited amorphous Co-P is an attractive material for use in the integration 
of on-chip inductors into silicon process technology because of its high resistivity 
and advantageous magnetic properties. However, as it is an amorphous material, the 
properties of Co-P are dramatically changed upon crystallization. The stability of 
magnetic properties with respect to temperature is important since in fabricating an 
integrated inductor the magnetic core is likely to be exposed to processes such as the 
thermal cure of polymeric photoresist used to provide electrical insulation. A good 
candidate material is the Cyclotene 3000 series from Dow, which is derived from 
B-staged bisbenzocyclobutene (BCB) monomers. These materials use a soft cure 
temperature of 210 °C and hard cure temperatures of 250 °C and 300 °C [42].

This section concerns work undertaken to evaluate the inclusion of rhenium in a 
cobalt–phosphorus amorphous alloy in order to improve its thermal stability.

Oda et al. [43] used small additions of tungsten to improve crystallization 
 temperature of amorphous Fe-Co-P alloys. Tungsten has a large atomic weight of 
183.8 g mol−1and it is thought that its large atomic radii play a role in bringing about 
an increase in crystallization temperature. However, despite extensive experimental 
trials, it was found that Co-P electroplating baths containing tungsten were found to 
have a considerable tendency to be unstable and a reliable plating bath for the 
 deposition of Co-P-W was not identified.

Rhenium also has a large atomic weight of 186.2, and Brenner [39] describes 
how it can be readily codeposited with iron group metals. Hence, it was decided to 
determine if the inclusion of rhenium in Co-P was feasible and if its presence did in 
fact improve the thermal stability of the new composition. Finally, the effect of 
including Re on properties other than thermal stability was also investigated.

 Experimental

A plating bath was prepared with a composition (see Table 3) very similar to that 
used by Riveiro and Riveiro [12], apart from the addition of KReO4, which was used 
as the source of Re.

A glass beaker was used as the plating cell with a total solution volume of 1 l and 
agitation provided by mechanical stirring. The electrodes were horizontally 
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opposed, and the cathode-to-anode separation was 65 mm. The temperature of the 
solution was maintained at 72 °C using a hotplate and the plating carried out in “the 
presence of a uniaxial magnetic field of around 16 kA m−1 oriented to be parallel to 
the surface of the cathode. Cobalt metal pieces, in close contact with an inert Pt/Ti 
mesh, were used as the anode.

Copper foil with a thickness of 10 μm was used as a cathode to provide samples 
for annealing and DSC experiments. Silicon wafers with a top layer of 500 nm of 
oxide and a conductive sputtered seed layer consisting of 20 nm titanium and 
200 nm copper was used as a substrate to provide samples for resistivity, permeabil-
ity, and saturation magnetization measurement.

In all cases, the pulse reverse plating was used with parameters at values found 
to be optimal for Co-P plating [41]:

• Forward on time tforward = 860 ms
• Forward current density CDforward = 1520 A m−2

• Reverse on time treverse = 52 ms
• Reverse current density CDreverse = 620 A m−2

• Off time toff = 80 ms

As described earlier, the control of pH is very important in the plating of Co-P 
alloys since at higher values of pH, plating of nonmetallic deposits can occur with 
an adverse effect on the coercivity of the as-deposited film. Furthermore (and 
described in detail later), it was found that the temperature stability of the deposit is 
adversely affected by low pH conditions. Consequently, the pH was adjusted by 
addition of either HCl or NaOH.

DSC analysis using a Perkin Elmer Pyris 1 instrument was carried out on free-
standing samples that were produced by dissolving the underlying copper foil. An 
aqueous 30 g l−1 ammonium persulfate, (NH4)2S2O8 at 40 °C was used as the etchant 
to remove the Cu foil.

 Results and Discussion

 Composition Analysis
The composition of Co-P and Co-P-Re samples plated on Cu foil is shown in  
Fig. 20.

Table 3 Plating bath 
composition for Co-P-Re 
(Reproduced from 
McCloskey et al. [44])

Component Amount (g l−1)

H3PO3 65

Co CO3 39.4

CoCl2.6 H2O 181

H3PO4 50

KReO4 0–6
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It can be seen that as expected increasing the amount of KReO4 led to an increase 
in the amount of Re in the plated film. However, increasing the amount of KReO4 in 
the bath also led to a dramatic reduction in the amount of P in the plated film.

 Thermal Annealing
Thermal annealing experiments were carried out under vacuum and consisted of 
a 15 min ramp, a 30 min dwell at the peak temperature of 298 °C, and approxi-
mately 20 min cooling. Prior to the annealing, all the samples showed coercivity 
Hc < 120 A m−1.

The coercivity of samples after a thermal annealing at 298 °C for 30 min plotted 
against pH is shown in Fig. 21.

It can be observed that the pH of the bath had a very strong effect on the coerciv-
ity values obtained after annealing. However, the coercivity of the Co-P samples 
produced at higher pH values was still very high.

Figure 22 shows hard axis hysteresis loops obtained before (as plated) and after 
a 298 °C anneal for a Co-P sample produced with a pH value of 0.79. The dramatic 
affect of the 298 °C annealing on the B-H loop of the sample can be seen with the 
coercivity increasing from 80 A m−1 to 1.9 kA m−1.

In contrast, as can be seen in Fig. 21, the samples produced with a KReO4 addi-
tion all had coercivity values after annealing that were significantly lower than simi-
lar Co-P samples. Furthermore, very low coercivity values Hc < 80 A m−1 were 
obtained for samples with an addition of 3 g l−1 or more of KReO4.
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The hard-axis hysteresis loops obtained before (as plated) and after 298 °C 
annealing for a Co-P-Re sample produced with 1 g l−1 KReO4 and at a pH value of 
0.76 are shown in Fig. 23.

It can be seen that the B-H loop for the Co-P-Re sample is largely unaffected by 
the 298 °C anneal with the coercivity Hc < 80 Am−1 after annealing.
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Fig. 22 Hysteresis loops before and after a 298 °C anneal for a Co-P sample produced with a pH 
value of 0.79 (Reproduced from McCloskey et al. [44])

1

10

100

1000

10000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
pH

H
c 

af
te

r 
an

ne
al

 (
A

m
–1

)

0 g/l KReO4
0.7 g/l KReO4
1 g/l KReO4
3 g/l KReO4
6 g/l KReO4

Fig. 21 Coercivity after thermal annealing at 298 oC for 30 min plotted against pH

P. McCloskey et al.



383

 Differential Scanning Calorimetery (DSC) analysis
The DSC analysis was carried out using a Perkin Elmer Pyris 1 instrument with a 
scan rate of 10 °C/min. The phase change peak from the DSC analysis and the coer-
civity after a 298 °C anneal for the a-Co-P-Re samples are shown in Fig. 24.

The pH of the bath was maintained in the range 0.76–0.83, and in fact four of
the samples were produced at a pH ~ 0.77 while two were produced at a pH ~ 0.83. 
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Fig. 23 Hysteresis loops before and after a 298 °C anneal for a Co-P-Re sample (Reproduced 
from McCloskey et al. [44])
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Separate plots of Hc and DSC peak versus at.% Re are shown for each of these pH 
values. Again as discussed previously, prior to annealing, Hc <120 A m−1 for all 
the samples, and it can be seen that for all the samples with Re > 2 at.%, the coer-
civity after thermal treatment remains very low. It can also be seen that the trend 
line for Hc after annealing is the same for both pH values and hence it appears that 
the effect of the higher pH is effectively eliminated at the higher at.% Re values.

It can also be observed that the DSC peak increases sharply with increasing at.% 
Re. Again, it can be seen that the trend line is the same for both values of pH and 
hence pH had little effect.

 Saturation Magnetization and Resistivity
The saturation magnetization (Bs) and resistivity (ρ) for Co-P and Co-P-Re samples 
plated on a silicon substrate are shown in Figs. 25 and 26 respectively.

It can be seen that apart from one sample (with Co = 82.4 at.%) the Bs values 
obtained for higher values of Re (Re > 3 at.%) are reasonably consistent with those 
obtained for lower values (Re < 3 at.%). Moreover, the sample with 82.4 at.% Co 
had a Re content of 3.1 at.%, and hence it does not appear that the lower-than- 
expected value of Bs obtained arose from its Re content.

It would be expected that the resistivity value obtained should be lower at lower 
values of P content. However, the dependence of P content on the Re content shown 
in Fig. 20 means that samples with a high Re content (Re > 3 at.%) also tended to 
have lower levels of P than those with a low Re content (Re < 3 at.%). Contrary to 
this, the resistivity of the samples does not seem to have been dramatically affected 
by the level of Re. This is probably due to the difference in the value of resistivity 
between Re (ρ = 18 × 10−8 Ω m) and Co (ρ = 6 × 10−8 Ω m).
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 Conclusions

Plated multi-nanolayer Co-P films were produced that show a higher saturation mag-
netization Bs in the range of 0.9–1.2 T and good soft magnetic properties, typically Hc 
< 40 A m−1 with a minimum value of 8 A m−1. The films had an anisotropy field between 
1.2 and 1.5 kA m−1 and resistivity in the range of 1.16 × 10−6 to 1.36 × 10−6 Ω m.

An electrodeposited magnetic alloy, Co-P-Re, was obtained that shows a signifi-
cantly improved thermal performance in comparison to Co-P, retaining Hc < 
120 A m−1 after a thermal annealing under vacuum at 298 °C for 30 min. These 
results were obtained for alloys with a composition of Co100-x-yPxRey, where 9.7 at.% 
< x < 17.5 at.% and 2.3 at.% < y < 7.6 at.%. It was found that other important prop-
erties, i.e., Bs and ρ, were largely unaffected by the addition of Re.
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   Abstract  
  This chapter presents an overview of electroless (EL) Ni–P nanocomposite 
coatings, focusing on their preparation, challenges, and issues on particle incor-
poration in the metal matrix in terms of dispersibility of nanoparticles in the 
plating bath, interaction between the nanoparticles and the EL Ni–P matrix during 
deposition, infl uence of incorporation of nanoparticles on the characteristics of 
EL Ni–P nanocomposite coatings, and applications of EL Ni–P nanocomposite 
coatings.  

  Keywords  
  Electroless plating   •   Nanocomposite coating   •   Codeposition   •   Hardness   •   Wear 
resistance   •   Corrosion resistance  

        Introduction 

 Electroless (EL) plating was an accidental discovery by Brenner and Riddell, way 
back in 1946, in which they have identifi ed that sodium hypophosphite has the 
ability to supply the electrons necessary for the reduction of metal ions from 
aqueous solution [ 1 ]. Among the variety of metals that can be plated, Ni has assumed 
signifi cance due to its ability to offer a high hardness, excellent wear resistance, and 
good corrosion resistance. Unlike electrodeposited Ni, EL Ni is uniform regardless 
of the substrate geometry, and it is a metal–metalloid alloy (Ni–P or Ni–B) coating 
in which alloying of P or B provides it with unique characteristics [ 1 ]. The mechanism 
of deposition of EL Ni–P coating is governed by mixed potential theory. Accordingly, 
at the mixed potential, the rate of anodic oxidation of the reducing agent (hypo-
phosphite) and cathodic reduction of Ni 2+  ions becomes equal, and both of them 
occur simultaneously [ 2 ]. 

 The idea of codepositing various second phase particles in a metal matrix by EL 
plating and thereby taking advantage of their desirable qualities such as hardness, 
wear and abrasion resistance, corrosion resistance, etc., has led to the development 
of EL composite coatings [ 3 – 5 ]. The essential requirements of particles that can 
be codeposited in a metal or alloy matrix are the following: (i) they should be 
 effectively dispersed in the plating bath; and (ii) they should be chemically inert. 
In recent years, the use of nanomaterials has received considerable attention in a 
variety of applications, and EL composite coatings are not an exception to this. The 
basic requirements for preparing EL composite coatings with the addition of 
nanoparticles are quite similar to those prepared using micron-sized particles. 
Following this, synthesis of EL nanocomposite coatings using a variety of 
nanoparticles such as carbon nanotubes (CNTs), multi-walled carbon nanotubes 
(MWCNTs), SiC, Al 2 O 3 , ZrO 2 , Si 3 N 4 , SiO 2 , TiO 2 , TiC, B 4 C, diamond, WC, TiN, 
carbon black (CB), graphite, MoS 2 , WS 2 , halloysite nanotubes (HNT), hydroxyapa-
tite (HA), etc., has been explored. Nevertheless, the deposition of EL 
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nanocomposite coatings posses serious challenges in terms of dispersibility of the 
nanoparticles in the EL plating bath and in achieving uniform distribution of 
nanoparticles in the metal/alloy matrix.  

    EL Ni–P Nanocomposite Coatings 

    Preparation of EL Ni–P Nanocomposite Coatings 
by Conventional Method 

 EL nanocomposite coatings are prepared by dispersing the nanoparticles in the plat-
ing bath. An acidic hypophosphite-reduced EL Ni plating bath is commonly used to 
prepare the EL nanocomposite coatings. This is due to the ability of the EL Ni–P 
matrix to offer a high hardness, excellent wear resistance, and good corrosion resis-
tance besides providing a suitable base for the incorporation of nanoparticles in 
them. Upon addition of nanoparticles in the plating bath, they will be covered by an 
ionic cloud (Fig.  1a ). Most of the nanoparticles are likely to be in the form of clusters 
following their agglomeration in the plating bath (Fig.  1b ). The mechanical agitation 
employed during EL plating to assist dispersion of the nanoparticles helps the ion-
adsorbed nanoparticle clusters to transport toward the electrode surface by means of 
convection and diffusion. Once the ion-adsorbed nanoparticle clusters are reduced, 
in a similar way as that of the Ni 2+  ions, they get incorporated and subsequently 
engulfed by the growing EL Ni–P matrix. A pictorial representation of the various 
stages involved in the formation of EL nanocomposite coatings is shown in Fig.  2 .

    There is no molecular bonding between the nanoparticles and the EL Ni–P 
matrix. Unlike the micron-sized particles, incorporation of nanoparticles in the EL 

  Fig. 1    Schematic representation of ( a ) formation of an ionic cloud surrounding the nanoparticles 
and ( b ) agglomeration of the nanoparticles in the form of clusters after dispersing them in electro-
less nickel plating solution having a pH of 4.0–5.5 (Reprinted from  Journal of Colloid and 
Interface Science , Vol. 314, B.S. Necula, I. Apachitei, L.E. Fratila-Apachitei, C. Teodosiu, 
J. Duszczyk, Stability of nano-/microsized particles in deionized water and electroless nickel solu-
tions, pp. 514–522 (2007), with permission from Elsevier)       
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Ni–P matrix occurs not only at the borders and edges but also on the inside of the 
nickel crystals. Hence, the embedding mechanism of the nanoparticles can be char-
acterized as “intercrystalline.” Based on the mechanism of formation of EL Ni–P 
nanocomposite coatings (Fig.  2 ), it appears that the formation of these coatings is 
quite simple as long as the nanoparticles are kept in suspension. However, the 
agglomeration of nanoparticles affects the homogeneity and weakens the mechani-
cal properties of the resultant coatings. Hence, the benefi ts of incorporating nanopar-
ticles in the EL Ni–P matrix could not be fully realized, and it calls for a thorough 
understanding of the means of achieving an effective dispersion of nanoparticles in 
the plating bath for the development of EL Ni–P nanocomposite coatings with the 
desired characteristics.  

    Challenges and Issues on Particle Incorporation in EL Ni–P 
Nanocomposite Coatings Prepared by the Conventional Method 

    Dispersibility of Particles in the Electroless Plating Bath 
 One of the prime requirements of preparing nanocomposite coatings by EL deposi-
tion is the effective dispersion of nanoparticles in the plating bath. Since the 
nanoparticles possess high surface energy, the attractive energy between them will 
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  Fig. 2    Pictorial representation of the various stages involved in the formation of electroless 
nanocomposite coatings: (1) formation of an ionic cloud, (2) transport by means of convection, (3) 
transport by diffusion, (4) reduction, and (5) adsorption and incorporation in the growing electro-
less deposited metal matrix (Reprinted from  Progress in Natural Science , Vol. 21, Wei-wei CHEN, 
Wei GAO, Microstructures and properties of sol-enhanced nanostructured metal-oxide composite 
coatings, pp. 355–362 (2011), with permission from Elsevier)       
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be much higher than the repulsive energy, which promotes their agglomeration. 
This makes the effective dispersion of nanoparticles in the plating bath really chal-
lenging. Since a variety of nanoparticles are available and each one of them is 
unique in its characteristics, many protocols were evolved for dispersing them in 
the plating bath. 

 Unlike other nanoparticles, dispersion of CNTs and MWCNTs assumes signifi cance 
since their length to diameter ratio poses a major problem in dispersing them in 
the plating bath. In addition, impurities such as silica and amorphous carbon should 
be removed. Mostly, an acidic solution is recommended for the pretreatment of 
CNTs/MWCNTs, and it eliminates these impurities [ 6 – 12 ]. In addition, it helps to 
introduce carboxyl, aldehyde, and other oxygen-containing functional groups on 
the surface of the CNTs/MWCNTs [ 7 ,  8 ]. However, acid treatment alone is not 
considered as suffi cient since even after acid treatment, the length of the CNTs/
MWCNTs is reasonably longer, and most of them are entwined with each other [ 7 ]. 
Ball milling is suggested as an option to decrease the length of the CNTs/MWCNTs. 
Ball milling using hardened steel balls (~12 mm ∅) as the milling medium, with a 
weight ratio of the steel balls to CNTs/MWCNTs as 50:1, at 200–500 rpm for 10–20 
h makes the CNTs/MWCNTs shorter and straighter [ 7 ,  10 ,  12 ]. The TEM images of 
MWNTs after acid treatment and subsequent ball milling are shown in Fig.  3a, b , 
respectively. After acid treatment, the MWNTs were much longer in length than in 
their diameter, and most of MWNTs were entwined with each other (Fig.  3a ), which 
would have a negative effect on dispersing them in the electroless plating bath. In 

  Fig. 3    TEM images of MWNTs ( a ) after acid treatment using a 3:1 mixture of concentrated H 2 SO 4  
and HNO 3 , refl uxed for 30 min at boiling conditions, followed by refl uxing in 5 M HCl for 2 h at 
boiling condition, washing with deionized water, and drying at 80 °C, and ( b ) after ball milling for 
20 h under nitrogen at a rotating speed of 257 rpm, with a weight ratio of steel balls to purifi ed 
MWNTs at 50:1 (Reprinted from  Diamond and Related Materials , Vol. 15, Chuan-sheng Chen, 
Xiao-hua Chen, ZhiYang, Wen-hua Li, Long-shan Xu, Bin Yi, Effect of multi-walled carbon nano-
tubes as reinforced fi bres on tribological behaviour of Ni–P electroless coatings, pp. 151–156 
(2006), with permission from Elsevier)       
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contrast, after ball milling for a duration of 20 h, the MWNTs were shortened and 
straightened and were distributed in the form of isolated tube (Fig.  3b ), which would 
be benefi cial to improve their dispersion ability in the electroless plating bath. It has 
been reported that removal of impurities by acid treatment and decrease in length by 
ball milling have enabled a better dispersion of CNTs/MWCNTs in the plating bath 
[ 7 ,  10 – 12 ]. The decrease in length of the CNTs/MWCNTs also helped them to 
accommodate easily in the Ni–P matrix [ 6 ]. In a recent study, Alishahi et al. [ 12 ] 
have described a protocol for preparing CNTs, which sequentially involves ball 
milling to reduce the length of the CNTs, immersion in 70 % HNO 3  for 1 h to 
remove the impurities, immersion in 1:3 mixture of HNO 3  and H 2 SO 4  for 3 h to 
exfoliate the CNTs, and addition of a small quantity of HCl to impart carboxyl 
function groups.

   Unlike the CNTs/MWCNTs, pretreatment of other types of nanoparticles is 
relatively less complex. In general, the nanoparticles are added to a small portion of 
the EL plating bath along with a suitable surfactant (the choice is based on the type 
of nanoparticles used), and the suspension is stirred by a magnetic stirrer for 12–24 
h followed by ultrasonic agitation for 20–30 min. Subsequently, the nanoparticle 
suspension is added to the EL plating bath. This procedure is widely used for many 
types of nanoparticles, viz., SiC [ 13 ,  14 ], WC [ 15 ], TiO 2  [ 16 ], Al 2 O 3  [ 17 ], halloysite 
nanotubes [ 18 ], ZrO 2  [ 19 ], WS 2  [ 20 ] TiN [ 21 ], TiC [ 22 ] Si 3 N 4  [ 23 ] diamond [ 24 ], 
etc. Besides CNTs, ball milling is also considered as a pretreatment for other 
nanoparticles. Li et al. [ 25 ] have milled a suspension containing 30 wt% Al 2 O 3  
nanoparticles along with a polymeric surfactant using ZrO 2  beads (bead size: 
0.4–0.5 mm) at 2500 rpm for 12 h. Subsequently, the suspension is dried by 
  n -butanol azeotropic distillation process. This methodology leads to signifi cant 
reduction in particle size of Al 2 O 3  nanoparticles from 500 to 12 nm. 

 The deposition of nanocomposite coatings using EL plating is usually performed 
for 2–3 h. Hence, the use of some form of agitation, which includes mechanical 
agitation, circulation by pumping, purging of air, oxygen and nitrogen, plate- pumping 
technique, and ultrasonic agitation, is necessary to ensure dispersion of the 
nanoparticles. A schematic representation of the various strategies adopted for bath 
agitation in industrial applications and laboratory investigations are shown in Fig.  4 . 
It is important to note that in spite of the pretreatments, implementation of some 
form of agitation is indispensable to achieve an effective dispersion of nanoparticles 
in the plating bath. Among the various methods of agitation, ultrasonic agitation is 
considered to be effective. The propagation of ultrasonic waves in the plating bath 
leads to the generation of cavitation bubbles and its subsequent destruction. This in 
turn generates a giant pressure (reaching thousands of pressure atmospheres), caus-
ing a mammoth stress that destroys the binding energy of the inter-particles and 
decreases their agglomeration [ 26 ].

   Surfactants play a vital role in preventing agglomeration and in achieving an effec-
tive dispersion of nanoparticles. Various types of surfactants, namely, anionic, cat-
ionic, and nonionic, are used for this purpose. The most commonly used surfactants 
are cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bro-
mide (DTAB), hexadecyltrimethylammonium bromide (HTAB), sodium dodecyl 
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sulfate (SDS), 1,3-toloyltriethanolammonium chloride (TTAC), tetraethyleneglycol 
dodecyl ether (Brij 30), polyethylene glycol (PEG), and fl uorosurfactants [ 6 ,  11 ,  14 , 
 16 ,  17 ,  27 – 30 ]. It is important to understand the role of surfactants and its interaction 
with the nanoparticles so that an effective dispersion of nanoparticles could be 
achieved in the plating bath. Adsorption of surfactants (by their heads) on the surface 
of the nanoparticles imparts a charge on the particles. Meanwhile, the tail (usually the 
long hydrophobic one) of the surfactants provides a steric hindrance, which is helpful 

  Fig. 4    Schematic representation of the various strategies adopted for bath agitation in industrial 
applications ( a – c ) and laboratory investigations ( d – f ): ( a ) overhead blade stirrer, ( b ) reciprocating 
plate plunger, ( c ) pumped electrolyte, ( d ) magnetic stirrer, ( e ) rotating disk, and ( f ) rotating cylin-
der electrodes (Reprinted from  Surface and Coatings Technology , Vol. 201, C.T.J. Low, 
R.G.A. Wills, F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a 
metal deposit, pp. 371–383 (2006), with permission from Elsevier)       
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in improving the stability of the nanoparticle suspension. Moreover, surfactants could 
reduce the surface tension between the hydrogen bubbles and the metal substrate as 
well as between the metal substrate and the nanoparticles, thus favoring their removal. 

 The right choice of the surfactant and its concentration, however, is very critical. 
According to Amell et al. [ 27 ], the level of incorporation of SiC nanoparticle in EL 
Ni–P matrix from a surfactant-free bath is about 2.7 wt%. Addition of lower 
concentration of fl uorosurfactants (0.2 mg/g for cationic and anionic, 1 mg/g for 
nonionic), regardless of their chemical nature, enabled an increase in level of 
incorporation (6.0, 5.8, 4.5 wt% for nonionic, cationic, and anionic, respectively). 
However, at higher concentrations (1 mg/g for cationic and anionic, 2 mg/g for 
nonionic), the level of incorporation is drastically decreased (3.0, 1.0, and 1.5 wt% 
for nonionic, cationic, and anionic, respectively). According to Zielinska et al. [ 28 ], 
a higher level of incorporation of ZrO 2  nanoparticles in the EL Ni–P matrix is 
achieved with the addition of DTAB (cationic surfactant), whereas addition of SDS 
(anionic surfactant) and Brij 30 (nonionic surfactant) tends to destabilize the plating 
bath in about 20 min. This is mainly due to the change in surface charge on the ZrO 2  
nanoparticles following the adsorption of these surfactants (Table  1 ). Addition of 
lower concentration of DTAB (0.50 × cmc) enabled an increase in the level of incor-
poration of ZrO 2  nanoparticles from 8.11 wt% (from surfactant-free bath) to 12.44 
wt%. At higher DTAB concentrations (equal to or above the critical micelle concen-
tration), an enhanced transport of the ZrO 2  nanoparticles is observed, and the level 
of incorporation is more or less doubled. However, when the DTAB concentration 
becomes equal to or above the critical micelle concentration, there observed to be a 
decrease in the Ni and P content of the EL Ni–P matrix. It has been reported that 
surfactants exhibit a strong interaction with ionic species having an opposite charge 
and could retain them within the micelles [ 31 ]. If the hypophosphite ions are sur-
rounded by the surfactant molecules, then the reduction of Ni and P could be 

   Table 1    Zeta potential (ζ) values of ZrO 2  nanoparticle in the EL plating bath in the presence of 
different types of surfactants (measurements made at 25 °C) [ 28 ]   

 Type of surfactant 

 Critical micelle 
concentration 
(cmc) (mol/dm 3 ) 

 Concentration 
used 

 Zeta 
potential 
(ζ) (mV) 

 No surfactant addition  –  –  −11.6 ± 1.0 

 Anionic surfactant 
 Sodium dodecyl 
sulfate (SDS) 

 0.25 × 10 −3   0.25 × cmc 
 0.50 × cmc 
 1.00 × cmc 
 2.00 × cmc 

 −46.9 ± 6.0 
 −42.5 ± 6.3 
 −75.9 ± 5.0 
 −35.4 ± 2.1 

 Cationic surfactant 
 Dodecyltrimethyl-
ammonium bromide 
 (DTAB) 

 14.1 × 10 −3   0.25 × cmc 
 0.50 × cmc 
 1.00 × cmc 
 2.00 × cmc 

 1.6 ± 0.4 
 11.6 ± 0.4 
 13.0 ± 1.4 
 7.7 ± 0.9 

 Nonionic surfactant 
 Polyethylene glycol 
dodecyl ether 
 (Brij 30) 

 2.3 × 10 −5   0.25 × cmc 
 0.50 × cmc 
 1.00 × cmc 
 2.00 × cmc 

 −6.7 ± 0.6 
 −7.5 ± 2.7 
 −12.2 ± 0.8 
 −11.0 ± 1.6 
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hampered. This will have other implications in terms of the characteristics of the 
coating in which the contribution from the matrix will be decreased. Hence, it is 
very clear that the choice of the surfactant and its concentration should be made 
judiciously.

   Ionic strength of the plating bath is an important factor in achieving effective 
particle dispersion. It has been reported that the average diameter of agglomerated 
nanosized (80 nm) Al 2 O 3  particles is 183 nm in deionized water, whereas it is 
increased to 1,109 nm when a considerable amount of nickel ions (1.73 M as Ni 2+  
ions) are present in the solution [ 32 ]. A similar trend could also be expected when 
nanoparticles are added to the electroless plating bath. The use of ultrasonic agitation 
could reduce the average diameter of the agglomerated Al 2 O 3  particles from 1,109 
to 280 nm while addition of surfactants could reduce it to 448 nm. The average 
diameter of the agglomerated Al 2 O 3  particles could be reduced to 178 nm only when 
the concentration of Ni 2+  ions is decreased to 0.20 M. However, decreasing the con-
centration of the Ni 2+  ions is not practically feasible since it will affect the formation 
of a uniform and pore-free coating. 

 The charge on the particles also infl uences their dispersibility. Adsorption of Ni 2+  
ions and/or surfactants could change the surface charge, resulting in either a benefi cial 
or detrimental infl uence on the dispersibility of the nanoparticles. Measurement of 
Zeta potential will be a useful guideline in this perspective. However, the higher 
concentration of Ni 2+  ions present in the bath poses a serious limitation on the mea-
surement of Zeta potential. Diluting the plating solution may not refl ect the reality. 
The different components present in EL Ni plating bath could infl uence the Zeta 
potential to varying degrees [ 33 ]. It has been reported that particles which remain 
stable at room temperature for several weeks could fl occulate rapidly when the 
temperature approaches ∼65 °C, resulting in destabilization of particle suspension 
[ 34 ]. Since majority of the EL plating baths require a very high operating tempera-
ture of the order of 85–95 °C, achieving a good stability of the particle suspension 
in the EL plating bath still remains challenging.  

    Interaction Between the Nanoparticles and the EL Ni–P Matrix 
During Deposition 
 The particle fl ux at the electrode/solution interface is important in determining the 
interaction between the nanoparticles and the EL Ni–P matrix. The particle fl ux at 
the interface depends on the concentration of the nanoparticles, charge on the 
particle, type and concentration of surfactants, and the mode and speed of agitation. 
In general, an increase in concentration of nanoparticles will increase the particle 
fl ux. However, beyond a threshold value, grouping or agglomeration of nanoparti-
cles becomes predominant, resulting in their settlement rather than increasing the 
fl ux. Unlike micron-sized particles, the concentration of nanoparticles used in the 
plating bath is relatively low. Though an increase in concentration would help to 
increase the particle fl ux, it could pose other challenges. An increase in concentra-
tion beyond a threshold level could lead to lack of cohesion of between the nanopar-
ticles and the EL Ni–P matrix [ 6 ]. 

 Upon addition of nanoparticles to the plating bath, adsorption of metal ions and 
formation of an ionic cloud over them will occur (Fig.  1 ). The conditions employed 
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during EL plating are conducive enough that the nanoparticles could also be plated. 
The higher surface area, the adsorption of metal ions, and the ability of EL plating 
baths to coat a variety of substrates make the conditions amenable for plating of the 
nanoparticles. Studies have convincingly proved that nanoparticles incorporated in 
EL Ni–P matrix are coated with the corresponding metal ions in the plating bath 
[ 6 ,  10 ]. Plating of nanoparticles is benefi cial to establish a better interaction with the 
growing metal matrix. However, due to the higher surface area, the nanoparticles 
might compete with the metal surface during plating that would lead to destabiliza-
tion of the plating bath. It is important to remember that EL plating baths are highly 
susceptible for decomposition in the presence of impurities and by all practical 
means the nanoparticles could also be considered as impurities. The conductivity of 
the nanoparticles also plays a vital role in this perspective. The chance of plating 
would be higher for conducting particles than the nonconducting ones. Hence, it 
appears that for nanoparticles with better conductivity, a relatively lower concentra-
tion should be used to ensure process safety. 

 Another factor that determines the interaction between the nanoparticles and EL 
Ni–P matrix is the fl ow conditions (agitation) employed during deposition. Under 
laminar fl ow conditions, the particle fl ux in the vicinity of the electrode surface 
would be low, and this limits the chances of interaction. In contrast, under turbulent 
fl ow conditions, the rate of mass transport of nanoparticles would much be higher 
that the nanoparticles will be blown away from the electrode surface and collide 
with the incoming ones. In addition, under turbulent fl ow conditions, the generation 
of a shearing force could dislodge the loosely adsorbed nanoparticles from the elec-
trode surface. These conditions could drastically affect the level of incorporation of 
nanoparticles [ 26 ]. Similarly, ultrasonic agitation could also lead to dislodge of 
nanoparticles if they are not fi rmly adsorbed to the electrode surface. In general, the 
laminar-to-turbulent transition region is considered as the most effective agitation 
condition to achieve higher level of particle incorporation. However, it is important 
to note that for nanoparticles the laminar-to-turbulent transition occurs at a much 
lower agitation speed than those experienced by the micron-sized ones [ 26 ]. 

 The extent of hydrogen evolution is yet another factor that would limit the resi-
dency time of the nanoparticles on the surfaces of the electrode and decrease their 
chances of incorporation in the matrix. Excessive hydrogen evolution during plating 
from an alkaline borohydride-reduced EL Ni plating bath has limited the level of 
incorporation of micron-sized Si 3 N 4  particles to a mere 2 wt% [ 35 ]. However, the 
hydrogen evolution during plating has been shown to be very effective in dispersing 
CNTs during the deposition of EL Ni–P–CNT nanocomposite coating on Mg pow-
ders [ 36 ]. 

 In the case of micron-sized particles, a particle is considered to be completely 
incorporated into the metal matrix only when the deposit reaches a certain thick-
ness. Hence, the time required for the complete incorporation of particles is a func-
tion of their size and the rate of deposition of the metal matrix. Fortunately, for 
nanoparticles, their smaller size and the narrow size distribution help them to 
fi rmly hold on to the EL Ni–P matrix and ensure a better integrity between them 
and the matrix.   
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    Alternate Methods of Preparation of EL Ni–P Nanocomposite 
Coatings 

 The diffi culties encountered in achieving an effective dispersion of nanoparticles in 
the plating bath as well as in the metal matrix have led to development of two alter-
nate methods of deposition of EL Ni–P nanocomposite coatings. One of the meth-
ods explored a combination of sol–gel and EL plating to prepare EL Ni–P–TiO 2  and 
EL Ni–P–ZrO 2  nanocomposite coatings [ 37 – 39 ]. In this methodology, instead of 
nanoparticles, the corresponding sol is added to the plating bath at a controlled rate 
(0.3–0.4 ml/min). The unique feature of this methodology is the in situ formation of 
nanoparticles, which get incorporated in the growing EL Ni–P matrix. Since the sol 
is continuously added at a controlled rate, the problems due to agglomeration of 
nanoparticles are largely eliminated. Unlike the conventional method, no clusters of 
nanoparticles could be seen on the resultant coatings. Instead, the nanoparticles 
formed in situ (~15 nm) are uniformly dispersed in the matrix. The morphological 
features of the EL Ni–P–TiO 2  nanocomposite coatings prepared by the sol–gel 
and EL plating method in comparison with those prepared by the conventional 
method (Fig.  5 ) confi rm these attributes. In spite of the addition of the sol, the use 
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  Fig. 5    Scanning ( a ,  b ) and transmission electron ( c ,  d ) micrographs of EL Ni–P–TiO 2  nanocom-
posite coatings prepared by conventional electroless plating method ( a ,  c ) and the combined sol–
gel electroless plating method ( Arrows  in  a ,  c,  and  d  indicate TiO 2  nanoparticles;  insets  in  a  and  b  
indicate extent of agglomeration of TiO 2  nanoparticles; and  insets  in  c  and  d  are the electron 
diffraction patterns of the coating) (Reprinted from  Surface & Coatings Technology , Vol. 204, 
W. Chen, W. Gao, Y. He, A novel electroless plating of Ni-P-TiO 2  nanocomposite coatings, 
pp. 2493–2498 (2010), with permission from Elsevier)       
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of mechanical agitation is still required for an effective dispersion of the sol in the 
plating bath. The decrease in P content of the coating could be a matter of concern 
in terms of the corrosion resistance.

   Zhao et al. [ 40 ] have explored a mechanical attrition (MA)-assisted EL plating 
method to prepared EL Ni–P–CNT nanocomposite coatings. In this method, the 
CNTs (0.5, 1 and 2 g/l) are added to the EL plating bath along with a large number 
of 2 mm ∅ glass balls (1600 g/l), and the substrate is subjected to mechanical 
attrition during plating. The schematic diagram of the MA-assisted EL deposition 
of nanocomposite coatings is shown in Fig.  6 . The use of MA during plating 
decreases the concentration gradient, minimizes the depletion layer thickness, and 
forces the CNTs to distribute uniformly. This condition not only enables a higher 
level of incorporation of CNTs (59 wt% against 22 wt% by the conventional 
method) but also ensures their fi rm attachment in the matrix. The morphological 
features of the EL Ni–P–CNT nanocomposite coatings prepared by MA-assisted 
EL plating in comparison with those obtained by the conventional method (Fig.  7 ) 
confi rm these attributes. The level of incorporation of CNTs is increased with its 
increase in concentration from 0.5 to 2 g/l. However, coatings prepared using 2 g/l 
of CNTs have resulted in the formation of a porous coating with a higher surface 
roughness and exhibit a decrease in hardness. The applicability of this methodol-
ogy for preparing other types of EL Ni–P nanocomposite coatings is yet to be 
explored.

Stirring paddle

Waters
Sample Plating solution

Glass balls

80 °C

  Fig. 6    Schematic diagram of the mechanical attrition-assisted electroless deposition of nanocom-
posite coatings (Reprinted from  Surface & Coatings Technology , Vol. 206, G. Zhao, C. Ren, Y. He, 
Ni-P-multiwalled carbon nanotubes composite coatings prepared by mechanical attrition (MA)-
assisted electroless plating, pp. 2774–2779 (2012), with permission from Elsevier)       
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         Influence of Incorporation of Nanoparticles 
on the Characteristics of EL Ni–P Nanocomposite Coatings 

    Nucleation, Plating Rate, and Adhesion 

 Codeposition of nanoparticles in the EL Ni–P matrix infl uences the nucleation of 
the metal crystallites. During deposition, adsorption of nanoparticles promotes the 
number of nucleation sites and reduces nodule formation. Momenzadeh and Sanjabi 
[ 16 ] have shown that the nodular feature which is quite common for particle-free 
EL Ni–P coating are considerably reduced with the incorporation of TiO 2  nanopar-
ticles. An increase in concentration of TiO 2  nanoparticles in the bath from 3 to 5 g/l 
leads to the formation of numerous submicron nodules. When the concentration of 
TiO 2  nanoparticles is increased from 7 to 9 g/l, the shape of the nodules is decreased 
further. The formation of EL Ni–P–TiC nanocomposite coatings using varying con-
centrations of TiC nanoparticles was studied by Afroukhteh et al. [ 22 ]. Particle-free 
EL Ni–P coatings exhibit caulifl ower-like nodules, which are typical of amorphous 

  Fig. 7    Surface morphologies of EL Ni–P–CNT nanocomposite coatings prepared by mechanical 
attrition-assisted ( a – c ) and conventional electroless plating method ( d ) using ( a ) 0.5 g/l CNTs, ( b ) 
1 g/l CNTs, and ( c ,  d ) 2 g/l CNTs ( insets : higher magnifi cation image of selected regions showing 
the distribution of CNTs) (Reprinted from  Surface & Coatings Technology , Vol. 206, G. Zhao, 
C. Ren, Y. He, Ni-P-multiwalled carbon nanotubes composite coatings prepared by mechanical 
attrition (MA)-assisted electroless plating, pp. 2774–2779 (2012), with permission from Elsevier)       
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Fig. 8 (continued)
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material (Fig.  8a ). Addition of lower concentrations of TiC nanoparticles (0.01, 
0.03, and 0.1 g/l) enables the formation of a smooth coating with few visible 
nodules (Fig.  8b, c ). The average size of the nodules is decreased from 12 to 2 μm. 
Coatings prepared with the addition of 0.3 and 0.5 g/l of TiC nanoparticles indicate 
that at locations where the TiC nanoparticles are trapped, another nodular mecha-
nism is initiated (Fig.  8e, f ). Lower concentrations of TiC nanoparticles of the order 
of 0.01, 0.03, and 0.1 g/l may not be suffi cient enough to get trapped in the matrix 
(Fig.  8b, c, d ), while the effect becomes dominant at 0.3 and 0.5 g/l of TiC nanopar-
ticles (Fig.  8e, f ). These inferences confi rm that the nucleation of EL Ni–P nano-
composite coating is infl uenced by the addition of nanoparticles in the plating bath.

   If nanoparticles could act as nucleation sites, then one would expect an increase in 
the rate of deposition. Hu et al. [ 23 ] have reported that addition of Si 3 N 4  nanoparticles to 
EL Ni–Co alloy plating bath has increased the number of catalytic active sites and 
increased the rate of deposition from 4.2 to 5.6 μm. Addition of TiN nanoparticles, how-
ever, has caused a decrease in the deposition rate from 11 to 5 μm [ 21 ]. A careful analy-
sis reveals that it is due to the adsorption of surfactant and TiN nanoparticles, which 
covers the electrode surface and impedes the diffusion of the Ni 2+  ions toward the inter-
face, thus hindering the rate of deposition. The quench test performed on EL Ni–P–SiC 
nanocomposite coatings did not show any blisters or delamination of the coating, which 
suggests that incorporation of nanoparticles in the EL Ni–P matrix will not have any 
deleterious infl uence on the adhesion of the coating to the metal substrate [ 13 ].  

    Surface Appearance and Roughness 

 Codeposition of nanoparticles decreases the metallic luster of the EL Ni–P matrix. 
The entrapment of particles in EL Ni–P matrix is likely to infl uence the roughness of 
the resultant coating. Incorporation of Si 3 N 4  nanoparticles in EL Ni–Co–P matrix 
has increased the average surface roughness from 0.235 μm (for particle-free EL 
Ni–Co–P coating) to 0.658 μm [ 23 ]. However, incorporation of CNTs in the EL Ni–P 
matrix has led to a decrease in the average roughness from 192 to 129 nm (assessed 
using atomic force microscopy at a 14 μm × 14 μm scale) [ 12 ]. The evolution of sur-
face roughness of EL Ni–P nanocomposite coatings depends upon many factors 
which include (i) growth of EL Ni–P matrix on top of the nanoparticles, (ii) increase 
in nucleation rate of newer crystals on the surface of the nanoparticles before they are 
covered by the growing metallic layer, (iii) agglomeration of nanoparticles in the EL 
Ni–P matrix, and (iv) sticking/protrusion of the nanoparticles out of the EL Ni–P 
matrix. The addition of surfactants in the EL plating bath could also infl uence the 
surface roughness of the resultant nanocomposite coatings [ 16 ].  

  Fig. 8    Surface morphology of particle-free EL Ni–P coating ( a ) and EL Ni–P–TiC nanocomposite 
coatings ( b – f ) prepared using different concentrations of TiC nanoparticles: ( a ) 0 g/l, ( b ) 0.01 g/l, 
( c ) 0.03 g/l, ( d ) 0.1 g/l, ( e ) 0.3 g/l, and ( f ) 0.5 g/l (Reprinted from  Applied Surface Science , 
Vol. 258, S. Afroukhteh, C. Dehghanian, M. Emamy Preparation of the Ni-P composite coating 
co- deposited by nano TiC particles and evaluation of its corrosion property, pp. 2597–2601 (2012), 
with permission from Elsevier)       
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    Level of Incorporation of Nanoparticles and Their Distribution 
in the EL Ni–P Matrix 

 The level of incorporation of nanoparticles in EL Ni–P matrix increases with 
increase in its concentration in the bath up to a threshold value, beyond which it 
is either saturated or decreased slightly [ 10 ,  18 ,  24 ]. The increase in level of 
incorporation of nanoparticles with its concentration can be ascribed to the 
increased particle flux adjacent to the electrode surface. However, when the 
concentration is increased beyond a threshold level, there is a possibility of 
grouping or agglomeration of nanoparticles due to the decrease in the mean dis-
tance between them that results in settlement of these particles. Such an effect 
will lead to a leveling off in the particle fl ux, causing either saturation or a slight 
decrease in the level of incorporation. The other reason suggested for the decrease 
in the level of incorporation at higher concentrations is the increased level of 
adsorption which deactivates some of the active spots on the electrode surface 
[ 10 ]. In case of CNTs, the threshold level at which saturation or decrease in the 
extent of incorporation of nanoparticles occurs also depends upon its length. If 
the length of the CNTs is longer, then its tendency for agglomeration will be 
higher, and it could exhibit the threshold level at a much lower concentration [ 8 ]. 
The extent of incorporation of nanoparticles in the EL Ni–P matrix should pref-
erably be expressed in terms of number density of the particles [ 41 ] although the 
conventional means of expressing it in terms of volume or weight percentage is 
still in use. A comparison of the amount of particles codeposited in the metal 
matrix measured as a function its concentration in the plating bath plotted in 
terms of both weight percent as well as number density of particles explains the 
logic behind this (Fig.  9 ).

   Distribution of nanoparticles in the EL Ni–P matrix is an important require-
ment since the characteristic properties of nanocomposite coatings such as hard-
ness, corrosion resistance, and wear resistance will be decided based on this 
factor. Studies have shown that the distribution of nanoparticles is uniform as 
long as the concentration of particles is lesser than the threshold level and they 
are thoroughly dispersed in the plating bath. If such conditions are maintained, 
then uniform distribution of nanoparticles could be achieved throughout the 
thickness of the coating. The surface and cross-sectional morphology of EL 
Ni–P–Al 2 O 3  nanocomposite coatings prepared using varying concentrations of 
Al 2 O 3  nanoparticles (Fig.  10 ) confi rm this attribute. Protrusion of particles out-
side the matrix is also observed in EL Ni–P nanocomposite coatings, and this 
possibility is very high for CNTs. Fortunately, due to their smaller size, the 
nanoparticles are held fi rmly in the matrix, and they exhibit better integrity with 
the matrix than their micron-sized counterparts. In spite of the numerous efforts 
taken, agglomeration of nanoparticles in the plating bath is evitable, and its 
refl ection could be observed in the EL Ni–P nanocomposite coatings in the form 
of clusters of nanoparticles.
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       Structure and Composition 

 The structure of the EL Ni–P nanocomposite coating is mainly a function of its 
chemical composition. Coatings prepared from an acidic hypophosphite-reduced 
EL Ni plating bath depending on the type of additives and operating conditions 
could contain about 8–11 wt% P, and it is amorphous in nature. Incorporation of 
nanoparticles in such a matrix is not likely to have much infl uence on the structural 
characteristics. However, studies have shown that there is some variation in the P 
content of the EL Ni–P matrix following the incorporation of nanoparticles. Alishahi 
et al. [ 12 ] have reported that with the incorporation of CNTs, the P content of the EL 
Ni–P matrix is decreased from 8.2 to 6.4 wt%. Similarly, incorporation of 3.1 wt% 
of TiN nanoparticles has decreased the P content from 9.4 to 8.9 wt% [ 21 ]. 
Ranganatha et al. [ 18 ] have also observed a decrease in P content from 10.4 to 8.6 
wt% with the incorporation of 7.8 wt% of HNT in the EL Ni–P matrix.  
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  Fig. 9    Comparison of the 
amount of codeposited 
particles in the metal 
matrix as a function of its 
concentration in the plating 
bath in terms of ( a ) weight 
percent and ( b ) number 
density of particles ( Dotted 
line : codeposition 
effi ciency, defi ned as the 
ratio between the number 
density of particles in the 
coating and in the bath = 1) 
(Reprinted from  Surface & 
Coatings Technology , Vol. 
205, A. Amell, C. Muller, 
M. Sarret, Infl uence of 
fl uorosurfactants on the 
codeposition of ceramic 
nanoparticles and the 
morphology of electroless 
NiP coatings, pp. 356–362 
(2010), with permission 
from Elsevier)       
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Fig. 10 (continued)
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    Hardness 

 EL Ni–P nanocomposite coatings exhibit a higher hardness when compared to their 
particle-free counterparts. This is due to the combination of grain refi nement (Hall–
Petch strengthening) and dispersion strengthening (Orowan strengthening) follow-
ing the incorporation of nanoparticles in the EL Ni–P matrix. The extent of increase 
in hardness is largely a function of the level of incorporation, distribution, and inter-
particle spacing between the nanoparticles in the Ni–P matrix. In addition, the alloy-
ing elements of the metal matrix and heat treatment determine the overall hardness 
of EL Ni–P nanocomposite coatings. A higher level of incorporation and uniform 
distribution of nanoparticles in the Ni–P matrix are likely to increase the hardness.  

    Tribological Characteristics 

 EL Ni–P nanocomposite coatings offer a better wear resistance when compared to 
their particle-free counterparts. The improvement in wear resistance is due to the 
increase in hardness and load-bearing capacity of the Ni–P matrix following incor-
poration of nanoparticles, which reduces the extent of plastic deformation and adhe-
sive wear between the mating surfaces. Heat treatment at 400 °C for 1 h enables the 
formation of hard nickel phosphide intermetallic phases and increases the wear 
resistance further. To achieve a better wear resistance, it is necessary to ensure (i) a 
high number density of nanoparticles, (ii) uniform distribution, (iii) better integrity 
between the nanoparticles and the Ni–P matrix, and (iv) heat treatment to impart a 
high hardness and to present an incompatible surface for the counterface material 
during wear. The tribological performance of EL Ni–P nanocomposite coatings 
incorporated with CNTs/MWCNTs [ 6 – 8 ,  12 ], Si 3 N 4  [ 23 ], SiO 2  [ 42 ], Al 2 O 3  [ 25 ], 
HNT [ 18 ], WS 2  [ 20 ], and WC [ 15 ] nanoparticles confi rms the above attributes. 

 EL Ni–P nanocomposite coatings incorporated with CNTs/MWCNTs assume 
signifi cance due to its self-lubrication property and unique antifriction structure. 
The elastic buckling property of CNTs makes them as exceedingly tough materials. 
The improved mechanical characteristics, unique topological structure of the cen-
tral hollow nanotubes, uniform distribution of CNTs in the EL Ni–P matrix, and 
ability of CNTs with its netlike structure to assist in load-bearing ability, to enhance 
the stiffness and toughness of EL Ni–P matrix, and to continuously release the CNTs 
that could serve as spacers between the mating surfaces are considered responsible 
for the improved tribological behavior of EL Ni–P–CNT nanocomposite coatings 
[ 6 – 8 ,  12 ]. A comparison of the wear track patterns and the wear morphology of 

  Fig. 10    Surface and cross-sectional morphology of EL Ni–P–Al 2 O 3  nanocomposite coatings 
prepared using varying concentrations of Al 2 O 3  nanoparticles: ( a ) 0 g/l, ( b ) 3 g/l, ( c ) 5 g/l, ( d ) 10 
g/l, ( e ) 20 g/l, and ( f ) 30 g/l (Reprinted from  Progress in Natural Science: Materials International , 
Vol. 22, S. Afroukhteh, C. Dehghanian, M. Emamy, Preparation of electroless Ni-P composite 
coatings containing nanoscattered alumina in presence of polymeric surfactant, pp. 318–326 
(2012), with permission from Elsevier)       
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particle-free EL Ni–P coating and EL Ni–P–CNT nanocomposite coatings (Fig.  11 ) 
confi rms these attributes. EL Ni–P nanocomposite coatings incorporated with HNT 
and WS 2  also exhibit similar characteristics [ 18 ,  20 ].

   Hu et al. [ 23 ] have reported that the worn tracks of EL Ni–Co–P exhibit signs of 
serious adhesion, scuffi ng, and plastic deformation. Conversely, for EL Ni–Co–P–
Si 3 N 4  nanocomposite coatings, the extent of adhesion is decreased signifi cantly fol-
lowing the increase in hardness and load-bearing capacity of the matrix with the 
incorporation of Si 3 N 4  nanoparticles. In this case, the incorporation of Si 3 N 4  
nanoparticles in the EL Ni–P matrix does not change the wear mechanism; rather, it 
barely decreased the extent of damage. A similar behavior is also expected for other 
types of nanocomposite coatings. It is important that the nanoparticles should estab-
lish a good integrity with the EL Ni–P matrix and get engulfed in it. Otherwise, 
during wear, the nanoparticles could be pulled out of the matrix. Protrusion of hard 
nanoparticles could cause wear of the mating surface. This is particularly critical for 
nanoparticles like WC, which under such conditions change the wear mechanism 
from sliding friction to rolling friction, resulting in abrasive wear [ 15 ]. In spite of its 
ability to serve as spacer between mating surfaces, integrity with the EL Ni–P 

  Fig. 11    Scanning electron micrographs of the wear tracks ( a ,  b ) and wear morphology ( c ,  d ) at 
specifi c location in the wear tracks of particle-free EL N–iP coatings ( a ,  c ) and electroless Ni–P–
CNT nanocomposite coatings (Reprinted from  Tribology International , Vol. 39, X.H. Chen, 
C.S. Chen, H.N. Xiao, H.B. Liu, L.P. Zhou, S.L. Li, G. Zhang, Dry friction and wear characteris-
tics of nickel/carbon nanotube electroless composite deposits, pp. 22–28 (2006), with permission 
from Elsevier)       
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matrix is also important for CNTs. Incorporation of higher concentration of CNT 
beyond a threshold level could lead to lack of cohesion between them and EL Ni–P 
matrix, which would adversely infl uence the wear resistance [ 6 ].  

    Corrosion Resistance 

 Corrosion resistance of EL Ni–P nanocomposite coatings has been a debatable 
issue. Incorporation of certain types of nanoparticles in the Ni–P matrix enables an 
increase in corrosion resistance, while a reversal in trend is observed for others. EL 
Ni–P nanocomposite coatings incorporated with CNTs [ 12 ], WS 2  [ 20 ], TiO 2  [ 16 ], 
SiC [ 13 ], and SiO 2  [ 43 ] have increased the corrosion resistance, while those built-in 
with TiN [ 21 ], B 4 C [ 44 ], and α-Al 2 O 3  [ 25 ] exhibit a decrease in corrosion resistance 
when compared to their particle-free counterparts. A variety of reasons is suggested 
to account for this behavior. Decrease in effective metallic surface area, decrease in 
porosity, sealing of defects and cracks due to accommodation of nanoparticles, abil-
ity of the codeposited nanoparticles to act as barriers for the growth of corrosion 
paths, formation of a compact layer, and decrease in chemical reactivity at the nano-
composite coating/corrosive electrolyte interface, promotion of homogeneous or 
uniform corrosion rather than the localized corrosion attack are considered as the 
major reasons for the observed improvement in corrosion resistance. Conversely, an 
increase in surface roughness and porosity of the coating, lower electrical resistivity 
of the nanoparticles, and formation of galvanic cells are accountable for the decrease 
in corrosion resistance. 

 In a certain type of nanocomposite coatings, an improvement in corrosion resis-
tance is observed for coatings prepared using lower concentration of nanoparticles 
in the plating bath, whereas a reversal in trend is observed if the concentration of 
nanoparticles is increased beyond a threshold level (Table  2 ). EL Ni–P nanocom-
posite coatings incorporated with SiC, ZrO 2 , HNT, and diamond nanoparticles 
exhibit such dependence [ 14 ,  18 ,  19 ]. This decrease in corrosion resistance observed 
in these instances is due to the formation of cracks in the coating due to the buildup 
of stress with a higher level of incorporation of nanoparticles [ 14 ] and due to the 
poor adhesion of nanoparticles in the Ni–P matrix [ 18 ]. The fi ndings of Farzaneh 
et al. [ 14 ] and Ranganatha et al. [ 18 ,  19 ] indicate that decrease in effective metallic 

   Table 2    Corrosion parameters of EL Ni–P–SiC nanocomposite coatings in 3.5 % NaCl, evaluated 
by potentiodynamic polarization studies [ 14 ]   

 Type of coating/concentration 
of SiC nanoparticles 

 Corrosion 
potential E corr  

 Corrosion current 
density i corr  

 Polarization 
resistance R p  

 (mV vs. SCE)  (μA/cm 2 )  (Ω cm 2 ) 

 EL Ni–P (0 g/l SiC)  −662  2.51  9,123 

 EL Ni–P–SiC (2 g/l SiC)  −512  0.56  41,070 

 EL Ni–P–SiC (4 g/l SiC)  −537  0.93  24,730 

 EL Ni–P–SiC (8 g/l SiC)  −618  1.27  18,110 
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surface area though a possible reason for the improvement in corrosion resistance 
of nanocomposite coatings, but it could not be the main reason. In addition, it is 
clear that the ability of EL Ni–P nanocomposite coatings to offer a better corrosion 
resistance is not dependent on the type of nanoparticles incorporated in the matrix; 
rather, it is a function of the quality of the coating in terms of its uniformity and 
compactness.

   Another interesting aspect of the corrosion resistance of EL Ni–P nanocomposite 
coatings is the role of the metal matrix. During corrosion, at open circuit conditions, 
preferential dissolution of nickel enables an enrichment of phosphorus on the sur-
face layer, which upon reaction with water leads to the formation of a layer of 
adsorbed hypophosphite anions (H 2 PO 2  − ). This layer in turn blocks the supply of 
water to the electrode surface, thereby preventing the hydration of nickel, which is 
considered to be the fi rst step to form either soluble Ni 2+  species or a passive nickel 
fi lm [ 45 ,  46 ]. If the P content of the EL Ni–P nanocomposite coatings is decreased 
with the incorporation of nanoparticles, then the ability of the matrix to form the 
protective layer by hypophosphite anions could be decreased. The fi ndings of 
Afroukhteh et al. [ 22 ] help to understand this phenomenon. The EL Ni–P–TiC 
nanocomposite coatings prepared using 0.01 and 0.03 g/l of TiC fail to show a rea-
sonable level of incorporation of TiC nanoparticles and decreased the P content of 
the coating. The corrosion resistance offered by these coatings is much lower than 
their particle-free counterparts. Coatings prepared using 0.3 and 0.5 g/l of TiC have 
also led to a decrease in P content. However, incorporation of a reasonable level of 
TiC nanoparticles (~1.7 ± 0.2 wt%) has enabled an increase in corrosion resistance. 
Hence, it can be inferred that a decrease in P content could cause a deleterious infl u-
ence, whereas an increase in level of incorporation of nanoparticles is likely to offer 
a benefi cial infl uence, and the net effect between these factors will dictate the 
corrosion behavior of EL Ni–P nanocomposite coatings. According to Ashassi-
Sorkhabi and Es’haghi [ 47 ], the typical caulifl ower-like morphological features of 
EL Ni–P coating provide a suitable path for the corrosion process. However, the 
codeposited diamond nanoparticles (DNP) act as barriers for the growth of corro-
sion paths. In addition, the corrosion paths become less straight when the level of 
incorporation of DNP in the EL Ni–P matrix becomes higher. The schematic of the 
possible corrosion paths that could occur in EL Ni–P and EL Ni–P–diamond 
nanoparticle (DNP) composite coatings are shown in Fig.  12 .

   Heat treatment of EL Ni–P nanocomposite coatings is performed at 400 °C for 1 
h to improve their hardness and wear resistance. However, heat treatment at such 
conditions leads to structural changes and contraction/shrinkage of the EL Ni–P 
matrix. In spite of its even distribution in the EL Ni–P matrix, it will be diffi cult for 
the nanoparticles to accommodate these structural changes. This would result in 
formation of fi ssures/cracks, which originate at the nanoparticles and drastically 
affect the corrosion resistance of the EL Ni–P nanocomposite coatings. In addition, 
it would also change the mode of corrosion attack from general and uniform corro-
sion to the localized one. Since heat treatment is considered necessary to improve 
the hardness and wear resistance, it is recommended to perform the heat treatment 
at 200 °C for a relatively longer duration of time and/or to employ a duplex coating 
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consisting of an initial EL Ni–P coating followed by EL Ni–P nanocomposite 
coating. This combination would provide a better corrosion protection by barrier-
layer effect. Allahkaram et al. [ 13 ] have employed this duplex coating methodology 
to improve the corrosion resistance of X70 steel in oil and gas industry environ-
ments containing CO 2  along with dissolved acetic acid.   

    Applications of EL Ni–P Nanocomposite Coatings 

 EL Ni–P nanocomposite coatings incorporated with CNTs/MWCNTs, WS 2 , and 
HNT provide a low coeffi cient of friction. Hence, these coatings could be used in 
molds for rubber and plastic, pumps, ball and butterfl y valves, fasteners, aluminum 
air cylinders, carburetor choke shafts, etc. Similarly, EL Ni–P–SiC and other similar 
nanocomposite coatings due to their high hardness, excellent wear resistance, and 
better corrosion resistance could be considered as an effective replacement for hard 
chrome plating. 

 EL Ni–Cu–P–graphite nanocomposite coatings deposited on anodized 5083 Al 
alloy have decreased the in-plane electrical resistivity and through-plane resistance, 
increased the corrosion resistance in 0.5 M H 2 SO 4  + 2 ppm NaF at 80 °C, and offered 
an improved long-term stability in such aggressive conditions [ 48 ]. The ability of 
these coatings to meet the electrical property and corrosion resistance requirements 
of the US Department of Energy (DOE) 2020 technical targets for bipolar plates 
used in PEMFCs suggests that they could be utilized for such applications. 

 Deposition of EL Ni–P–TiO 2  nanocomposite coatings on 316 L stainless steel 
(316 L SS) followed by UV irradiation for 2 h has reduced the adhesion of 
 Pseudomonas fl uorescens  (freshwater bacteria) and  Cobetia marina  4741 and 

  Fig. 12    Schematic of the possible corrosion paths in ( a ) EL Ni–P and ( b ) EL Ni–P–diamond 
nanoparticle (DNP) composite coatings (Reprinted from  Corrosion Science , Vol. 77, Habib 
Ashassi-Sorkhabi, Moosa Es′haghi, Corrosion resistance enhancement of electroless Ni–P coating 
by incorporation of ultrasonically dispersed diamond nanoparticles, pp. 185–193 (2013), with 
permission from Elsevier)       
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 Vibrio alginolyticus  2171 (marine bacteria) by about 75 % [ 49 ]. The microbiocidal 
property of the TiO 2  nanoparticles along with the UV treatment enables a decrease 
in water contact angle and an increase in electron donor surface energy. These types 
of coatings could be used in heat exchangers, ship hulls, pipelines, etc., where bio-
fouling is a major problem. 

 EL Ni–P–TiO 2  nanocomposite-coated carbon electrodes incorporated with 1.4, 
4.5, and 5.1 wt% of TiO 2  nanoparticles exhibit an increase in effi ciency toward 
electrochemical oxidation of organic compounds such as methanol, formaldehyde, 
and glucose when compared to their particle-free counterpart [ 50 ]. The decrease in 
grain size and increase in surface area following the incorporation of TiO 2  nanopar-
ticles enabled an increase in the number of active sites for the oxidation. These 
attributes enhanced the formation of Ni redox couple (Ni 3+ /Ni 2+ ), which decides the 
rate of oxidation of these organic compounds. The EL Ni–P–TiO 2  nanocomposite- 
coated carbon electrodes could fi nd application in environmental treatment. 

 Deposition of EL Ni–P–CB nanocomposite coating on ABS plastic has led to an 
abrupt decrease in infrared emissivity from 0.956 to 0.303 at a wavelength of 8–14 
μm [ 51 ]. Moreover, it also improved the electrical conductivity. These attributes 
indicate that EL Ni–P–CB nanocomposite coating could be used as an ideal low- 
infrared emissivity material. EL Ni–P–HA nanocomposite coating deposited on 
316 L SS improved corrosion resistance in simulated body fl uid. It also served as an 
intermediate layer for subsequent electrochemical deposition of HA, with improved 
adhesion [ 52 ]. These coatings could be explored for biomedical applications. EL 
Ni–P–CNT-coated magnesium powder could be used as the feedstock for produc-
tion of bulk magnesium nanocomposites through casting or powder metallurgy 
routes [ 36 ]. In addition to the applications described above, EL Ni–P nanocompos-
ite coatings have also received considerable attention for a variety of other applica-
tions, some of which are compiled in Table  3 .

       Summary and Concluding Remarks 

 Deposition of EL Ni–P nanocomposite coatings appears to be simple as it calls for 
a mere dispersion of the nanoparticles in the plating bath and incorporating them in 
the metal matrix. However, due to their high surface energy, nanoparticles tend to 
agglomerate in the plating bath, which makes the process complex. The protocols 
recommended for pretreatment and dispersion, though effective to varying degrees, 
are far from success in achieving an effective dispersion of nanoparticles. The use 
of surfactants is benefi cial in many ways as it imparts a surface charge on the par-
ticle and it reduces the surface tension between the hydrogen bubbles and the metal 
substrate as well as between the metal substrate and the nanoparticles. However, the 
right choice of the surfactant and its concentration becomes very critical. Considering 
the options of reducing the concentration of metal ions and/or performing the plat-
ing process at lower temperatures, the window of opportunity available to manipu-
late these parameters is rather limited. The level of incorporation of nanoparticles in 
the metal matrix exhibits a linear dependence with the concentration of particles in 
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   Table 3    Choice of electroless nanocomposite coatings for various types of applications [ 4 ]   

 Intended application  Type of composite coatings 

 To provide friction and dry lubrication  EL Ni–P–PTFE 
 EL Ni–P–MoS 2  
 EL Ni–P–PTFE–MoS 2  
 EL Ni–P–PTFE–SiC 

 To increase the wear resistance  EL Ni–P–diamond 
 EL Ni–P–h BN 

 To increase in life of molds for plastics, rubber, butterfl y 
valves, etc. 

 EL Ni–P–CNT 
 EL Ni–P–MWCNTs 
 EL Ni–P–WS 2  
 EL Ni–P–HNT 

 To reduce the wear and enable an easy release of sand cores  EL Ni–P–SiC 

 To prevent the pickup and galling from arising during 
forming and drawing operations 

 EL Ni–P–SiC 
 EL Ni–P–PTFE 

 To prevent buildup of gummy deposits  EL Ni–P–PTFE 

 To achieve high accuracy microfi nishing  EL Ni–P–diamond 

 To prevent accelerated corrosion of molds  EL Ni–P–SiC 
 EL Ni–P–PTFE 

 To increase the corrosion resistance of carbon steel  EL Ni–P–Al 2 O 3  
 EL Ni–P–PTFE 
 EL Ni–P–Si 3 N 4  
 EL Ni–P–CeO 2  
 EL Ni–P–TiO 2  
 EL Ni–B–Si 3 N 4  
 EL Cu–P–SiC 

 To develop electrothermal actuators for micro and nano 
electromechanical (MEMS/NEMS) systems 

 EL Ni–P–diamond 
 EL Ni–P–CNT 

 Electrocatalytic electrode materials for hydrogen 
evolution reaction 

 EL Ni–P–TiO 2  
 EL Ni–P–TiO 2 -supported RuO 2  
 EL Ni–P–TiO 2 -supported IrO 2  

 To develop smart coating and to identify genuine 
OEM parts as an indicator 

 EL Ni–P–europium-doped 
yttrium vanadate 

 To develop a sensor for sensing ethanol  EL Ni–P–TiO 2 -supported 
nano-RuO 2  

 To decrease infrared emissivity  EL Ni–P–carbon black 

 To increase microwave absorption  EL Ni–P–X nanocomposite 
coating (X = BaZn 2−y 
Co y Fe 16 O 27 , where y = 0, 0.4, 
0.8, 1.2, 1.6, 2.0) 

 To increase electrocatalytic and photocatalytic 
degradation of organic compounds 

 EL Ni–P–TiO 2  

the bath up to a threshold level. However, even at concentrations much below the 
threshold level, other problems such as plating of the particles becomes dominant. 
Plating of nanoparticles though benefi cial in terms of a better interaction with the 
metal matrix could destabilize the bath. The alternate methods of preparing EL 
Ni–P nanocomposite coatings could handle the issues of particle dispersion with 
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some degree of success. However, these methods have their own limitations, and the 
applicability of these methods for incorporating a variety of nanoparticles is yet to be 
explored. The nanoparticles could act as nucleation sites and promote the rate of 
deposition. They have the ability to decrease the nodule formation and/or the size of 
the nodules. Since the concentration of nanoparticles in the plating bath and their 
level of incorporation in the metal matrix are limited, no change in structural charac-
teristics is expected. However, the decrease in P content observed with some par-
ticles especially at higher level of incorporation could be a matter of concern in terms 
of corrosion resistance. The EL Ni–P nanocomposite coatings offer a high hardness 
and excellent wear resistance. Improvement in corrosion resistance is also observed 
with the incorporation of nanoparticles as long as they do not create any pores and/
or cracks in the coatings, increase the surface roughness, and decrease the P content 
to a large extent, and they are electrically nonconducting. Certain types of EL Ni–P 
nanocomposite coatings fi nd applications in critical areas such as fuel cells, environ-
mental degradation, biomedical applications, preventing biofouling, etc. In spite of 
the numerous research efforts made in the fi eld of EL Ni–P nanocomposite coat-
ings, achieving an effective dispersion of nanoparticles in the EL plating bath still 
remains a challenging issue, and the quest for an effective solution continues.     
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Abstract
Self-assembled monolayer (SAM) represents one of the methods to precisely modify 
surface structures in the nanoscale dimension. It has opened up a new era of explo-
ration and has a profound impact on sensors and biosensors due to its unique prop-
erties. Different self-assemblies will be considered in this chapter: SAM of metallic 
nanoparticles on polymeric film, SAM of surfactant on polymeric film, and SAM 
of S-containing compounds on nanometallic films. The main goal of this chapter is 
to present comprehensive collection of the recent achievements in this area. Several 
issues will be discussed including the morphology, sensitivity, selectivity, stability, 
and electrochemical properties of the sensor.

Keywords
Nanostructured composites • Self-assembled monolayer • Conducting polymers •  
Metal nanoparticles • Surfactants • Sensors

 General Introduction

 Sensor

A sensor can be described as a device capable of converting the different types of 
signals. Systems generate signals due to physical, chemical, biological, and several 
other changes that are normally transformed into electrical signals. A typical sensor 
responds with selectivity and specificity to the target analyte without interference 
(Fig. 1). The main components of the sensor are transducer and detector devices. 
Signals are collected, amplified, and displayed using signal processor. A biosensor 
is a specific type of sensor that should include a biological component in its sensing 
element; an example is blood glucose biosensor. On the other hand, a chemical sen-
sor can convert the chemical information that results from a chemical reaction 
including the analyte itself or from a physical property of the system under investi-
gation into an analytically representative signal. This chemical information may be 
ranged from the concentration of a specific component to the analysis of the total 
composition of the sample. Selectivity, anti-interference ability, linear dynamic 

Analyte

e– i

Biosensing
elecment

Transducer

Signal Analysis

Response

Fig. 1 A schematic of an electrochemical biosensor with electrochemical transducer (Reprinted 
from [1], Copyright (2013), with permission from Elsevier)
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ranges, limit of detection, sensitivity, and precision of response can be used to 
experimentally evaluate the performance of any biosensor. Other parameters can be 
taken into consideration like portability, ease of use, stability, and time of response. 
A typical sensing surface should be renewable so that several repetitive measure-
ments can be made [1].

 Nanostructured Hybrids for Electrochemical Sensing Applications

Self-assembled monolayer (SAM), a fashionable approach to electrically orient and 
address a molecular component of interest, represents one of the methods that pre-
cisely modify the surface structure in the nanoscale dimension. It has opened up a 
new era of exploration and has a profound impact on sensors and biosensors due to 
its unique properties. SAM may be nanometallic film, surfactant film, or SAM of 
S-containing compounds, particularly cysteine over modified or bare substrates. 
This chapter will give a brief review of SAM of metallic nanoparticles (Pd, Pt, etc.) 
over different polymeric films (poly(3-methylthiophene), polypyrrole, polyfuran, 
etc.) showing the enhanced catalytic activity of these hybrid nanocomposites and its 
biosensing applications. Moreover, it will show the SAM of different surfactants 
over polymeric film of poly(3,4-ethylenedioxythiophene) PEDOT and over the 
hybrid nanocomposite of PEDOT/gold nanoparticles. It will show its biosensing 
applications toward different neurotransmitters and drugs. On the other hand, this 
chapter will explain the effect of formation of SAM of S-containing compounds on 
different substrates: macro- and nanoelectrode (bare electrodes and metallic 
nanoparticle-modified electrodes). It will display the sensing applications of gold 
nanoparticles electrode modified with self-assembled monolayers of cysteine and 
surfactants. It will explain the role of SAM of surfactant and that of cysteine in the 
enhancement of the catalytic activity and improvement of the stability of the pro-
posed electrodes toward sensing applications.

 Nanostructured Metallic Particles on Polymers

 General Introduction

The physicochemical characteristics of bare electrodes can be improved using elec-
trode modifiers such as conducting polymers. Conducting polymers can signifi-
cantly improve the analytical detection by enhancing the sensitivity and selectivity 
and lowering the detection limit; therefore, they are utilized as redox mediators for 
several analytes. Moreover, they exhibit an anti-interference ability which resulted 
in electrochemical responses with excellent repeatability. On the other hand, the 
catalytic electrode processes can be activated using mediating agent that can be 
used in the solution containing the analyte, and this was the first developed system 
suitable for this purpose. On the other hand, the mediating agent can be immobi-
lized directly on the electrode surface through electrochemical polymerization 
resulting in chemically modified electrode. The electrochemical polymerization can 
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be achieved via galvanostatic, potentiostatic, or potential sweeping techniques. 
As a result, these modified electrodes exhibited several advantages such as reduced 
matrix effect, fast regeneration of the catalyst, anti-contamination of the solution by 
the redox mediator, and improved performance of the redox mediator [2]. Due to 
their combination of useful electrochemical, electrochromic, and electrocatalytic 
properties [3]; antifouling, mechanical, optical, and electronic properties; as well as 
their high sensitivities and low detection limits [4], conducting polymers have been 
widely used for a variety of sensors, biosensors [5], and actuators to improve the 
response time, sensitivity, reliability, and versatility of different sensors and biosen-
sors [6].

On the other hand, it is well known that metal nanoparticles exhibited unique 
electronic, physical, and chemical characteristics besides their small size (1–100 
nm) and flexibility. As a result, they have obvious applications in electrochemical 
sensing and catalysis. Metal nanoparticles are described as “electron wires” that 
enhance the kinetics of electron transfer between the redox centers of the target 
molecules and the electrode surface [1]. It is well known that the catalytic activity 
of metal nanoparticles is affected by their dispersion and surface properties. 
Conducting polymers exhibited metallike conductivity reaching a range as high as 
103–105 S cm−1 and long π-conjugation length; therefore, they are considered as use-
ful matrices for metal nanoparticles immobilization [7]. In addition, the high poros-
ity of the conducting polymer structure generates additional electrocatalytic sites by 
allowing the dispersion of metal nanoparticles into the polymer matrix. As well, the 
facilitation of the charge transfer kinetics between the substrate and the dispersed 
metal nanoparticles is more obvious in the conducting polymer matrix. Also, metal 
nanoparticles’ incorporation to conducting polymers enhances the performance for 
both the “host” and the “guest” leading to various physical characteristics and 
potential applications in electrochemical capacitors and protective coatings against 
corrosion [8], magnetic devices, biomaterial separation membranes [9], electronics, 
sensors, nanoelectronic sensor devices, biosensors, and catalysis.

Conducting polymer-incorporated metallic nanoparticles, or the so-called nano-
composites [8], exhibited synergistic unique physical and chemical characteristics 
based on the porous polymer and the dispersed metal [10–14]. The combination of 
the porous structure and high efficient electronic charge flow of the conducting 
polymers with the high reactive surface area presented by noble metal nanoparticles 
resulted in interesting electrocatalytic properties [15]. As well, the development of 
the composite material aims to enhance the electrocatalytic properties of the simple 
polymeric electrode coating [16]. Various hybrid nanocomposites were fabricated 
for different applications which are summarized in Table 1.

 Different Routes of Formation of Polymer/Metal  
Nanocomposite Hybrid

There are different routes for the growing of metal nanoparticles inside the polymer 
matrix: chemical routes [8, 9, 20, 21], electrochemical deposition of metal 
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nanoparticles on the polymer matrix that was prepared by spin coating [22] or 
electrochemical methods [23], and electrodeposition of polymer and metal 
 nanoparticles simultaneously [14, 24, 25]. Summary of the different routes of for-
mation of polymer/metal nanocomposite hybrid is given in Table 2.

Table 1 Summary of various hybrid nanocomposites and their applications

Hybrid nanocomposites Application References

Pt nanoparticles’ dispersed 
poly(3-methylthiophene)

DNA biosensor [17]

Pd and Pt nanoclusters’ modified 
poly(3-methylthiophene) (PMT), 
poly(N-methylpyrrole) (PMPy), and 
polyfuran

Sensors for simultaneous determination 
of catecholamine neurotransmitters and 
acetaminophen in the presence of uric 
acid and ascorbic acid

[10–13]

Gold nanoclusters’ modified 
insulating overoxidized polypyrrole

Electrochemical biosensor for dopamine 
and serotonin

[18]

PEDOT/Pd composite Electrochemical sensor for simultaneous 
determination of dopamine and uric acid

[19]

Table 2 Summary of the different routes of formation of polymer/metal nanocomposite hybrid

Routes of formation of  
polymer/metal nanocomposite Example References

Chemical routes for the 
growth of metal nanoparticles 
inside the polymer matrix

Chemical preparation of gold-incorporated 
PEDOT nanocomposite via reverse emulsion 
polymerization method [8]
Spontaneous deposition of Au and Pt 
nanoparticles on polymers containing sulfur by 
the immersion of the polymer into the metal 
nanoparticle suspension (colloidal methods; 
citrate or borohydride reduction in the presence 
of citrate capping agent) [15, 17]

[8, 9, 15, 
17, 20, 21]

Electrodeposition of polymer 
and metal nanoparticles 
simultaneously

PEDOT including Au nanoparticles by constant 
current method on ITO glass in aqueous 
medium [26]

[14, 
24–26]

Electrodeposition of metal 
nanoparticles on the spin- 
coated polymer

[22]

Electrochemical deposition of 
metal nanoparticles on the 
electropolymerized polymer

Electrodeposited Au nanoparticles by bulk 
electrolysis BE method (at −400 mV for 400 S) 
over the electrochemically prepared PEDOT 
film by BE at 1400 mV for 30 S [27]
Nano-Au/PPyox composite by electrochemical 
polymerization of pyrrole by cycling the 
potential from −0.35 to 0.85 V for 3 cycles. 
Then, Au nanoclusters were electrochemically 
deposited on the PPyox/GCE by cycling the 
potential between 0.2 and −1.0 V in HAuCl4 
solution for 15 cycles [18]

[7, 18, 19, 
23, 27, 28]
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 Characterization of Nanometallic Particles/Polymer Composite

 Surface and Chemical Characterization
Scanning electron microscope (SEM) is an electrochemical tool which gives an 
image for the different studied surfaces explaining their morphology in relation 
to electrocatalytic activity. Pd nanoparticles electrodeposited on poly(3- 
methylthiophene) (PMT) film-modified Pt electrode was utilized as novel electro-
chemical biosensor. The electrocatalytic activity of the obtained nanocomposite is 
affected to a great extent by the polymerization method of the polymer (bulk elec-
trolysis BE, cyclic voltammetry CV) and the deposition method of Pd nanoparti-
cles. Pt/PMT (BE), Pt/PMT(CV), Pt/PMT(BE)/Pd(BE), and Pt/PMT(BE)/Pd(CV) 
showed great difference in their electrocatalytic response which can be explained in 
terms of their morphology analyses (Fig. 2a–e). Pt/PMT(BE) exhibited a compact 
morphology with low porosity but Pt/PMT(CV) showed fluffy surface with high 
porosity. On the other hand, Pd nanoparticles are larger with dendrite forms at Pt/
PMT(BE)/Pd(BE), while smaller Pd particles with homogenous distribution are 
observed at Pt/PMT(BE)/Pd(CV). In a conclusion, the electrocatalytic activity of 
the modified electrodes is highly affected by the size and homogeneity of the depos-
ited nanoparticles [11].

Furthermore, the loading of the metal nanoparticles on the polymer matrix can 
be confirmed using energy dispersive X-ray analysis (EDX). Atta et al. constructed 
a novel biosensor by the electrodeposition of Pt or Pd nanoparticles into poly(3-
methylthiophene) (PMT) matrix. BE technique was used to prepare PMT film at 
1800 mV for 30 s. Then, metal nanoparticles were electrodeposited by double 
potential step (BE) method. The formed electrode can be represented as Pt/PMT(240 
or 360 nm)/M, M: Pt or Pd particles. EXD analysis was performed to investigate the 
ratio of the loaded Pd/Pt over the polymer film corresponding to its value in the 
deposition solution and to confirm the immobilization of metal nanoparticles over 
the polymer matrix. The deposition solution contained equimolar amounts of PdCl2 
and PtCl2. Figure 3 showed the EDX analysis explaining the atomic percentages of 
47.22 and 52.78 corresponding to Pd and Pt, respectively, which is very close to 
their ratio in the deposition solution [11].

 XRD
XRD was used to confirm the formation of polymer incorporating metal nanopar-
ticles. Gold nanoparticles are dispersed in the PEDOT backbone that was polymer-
ized in a linear fashion. The XRD patterns of PEDOT and Au-incorporated PEDOT 
nanoparticles are shown in Fig. 4. No characteristic peaks are observed in case of 
PEDOT, except the low angle peak at ~25° which is characteristic to the amorphous 
nature of the polymeric material. On the other hand, the diffraction characteristic 
peaks for PEDOT–Au nanocomposite appeared at 2θ 38.20°, 44.41°, 64.54°, 
77.50°, and 81.68° corresponding to (111), (200), (220), (311), and (222) planes of 
the standard cubic phase of Au, respectively [8, 9, 28]. The broadening of XRD 
peaks suggests the formation of nanocrystallites. The average particle size of Au 
nanoparticles was ~50 nm based on Scherrer equation [8].
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 AFM
Topography and properties of different surfaces can be measured using atomic force 
microscope. Figure 5a, b shows the AFM 3D images of Au/PEDOT and Au/
PEDOT–Aunano electrodes by the noncontact mode, respectively [27].

 XPS
X-ray photoelectron spectra (XPS) can be used to confirm the incorporation of 
metal nanoparticles on the polymer film. Y. Lee prepared PEDOT/Au nanocomposite 
using a redox cycle system. Two strong signals of Au 4f5/2 and 4f7/2 energy levels 

Fig. 2 Scanning electron micrographs for (a) Pt/PMT(BE), (b) Pt/PMT(CV), (c) Pt/PMT(BE)/
Pd(BE), and (d, e) Pt/PMT(BE)/Pd(CV). Inset: histogram showing the Pd particle size distribution; 
average size is around 60 nm (Reprinted from [11], Copyright (2010), with permission from Elsevier)
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were centered at 84.4 and 88.0 eV, respectively, indicating the presence of metallic 
gold [21] (Fig. 6). Moreover, Ce Wang utilized Pt/polypyrrole (PPy) hybrid hollow 
microspheres as electrocatalysts for hydrogen peroxide reduction. Pt/polypyrrole 
was prepared by wet chemical method via Fe3O4 template. Figure 7 showed the 
XPS patterns of Pt/polypyrrole composites showing a significant Pt4f signal due to 
the binding energy of metallic Pt (Fig. 7a), a C1s signal due to the binding energy 
of C (Fig. 7b) and a N1s signal corresponding to the binding energy of N (Fig. 7c). 
Therefore, XPS can be used to confirm the formation of Pt/PPy hybrid hollow 
spheres by the wet chemical method using Fe3O4 template [29].

 FTIR
FTIR can be used to illustrate the molecular structure of nanocomposites. FTIR 
spectroscopy was used to characterize the molecular structure of the Pt/PPy hybrid 
hollow spheres. Figure 8 investigated the characteristic bands of the Pt/PPy hybrid 
hollow spheres which are the pyrrole ring fundamental vibrations. The characteris-
tic bands appeared at 1564 cm−1 (C = C stretching), 1456 cm−1 (C–C stretching), 
1338 cm−1 (C–N stretching vibration in the ring), 1068 cm−1 (C–H deformation 
vibration), 1132 cm−1 (C–C breathing), 3461 cm−1 (N–H stretching mode), and 
846 cm−1 (C–H out of plane vibration). The FTIR spectra of Pt/PPy hybrid hollow 
spheres and Fe3O4/PPy spheres showed no obvious difference indicating that no 
chemical bonds exist between Pt nanoparticles and PPy shell [29].
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Fig. 3 Energy dispersive analysis by X-ray, EDAX, for Pt/PMT/(Pd + Pt) electrode. Pd and Pt 
were deposited by the double potential step method from a solution of 2.5 mM PdCl2 + 2.5 mM 
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On the other hand, the FTIR spectrum of the PEDOT film and monomer is shown 
in Fig. 9. The formation of PEDOT chains with α, á-coupling can be demonstrated 
by the disappearance of the strong band at 890 cm−1 (C–H bending mode) in the 
polymer spectrum compared to the monomer spectrum. Thiophene ring exhibited 
vibrations at 1518, 1483, and 1339 cm−1 due to C = C and C–C stretching modes. 
C–S bond vibration modes in the thiophene ring appeared at 978, 842, and 691 cm−1. 
The stretching modes of ethylenedioxy group appeared at 1213 and 1093 cm−1. 
The band around 920 cm−1 is attributed to the ethylenedioxy ring deformation mode. 
On the other hand, the doped state of PEDOT usually shows an absorption peak at 
1722 cm−1. The intensity increases in the case of Au-incorporated polymer matrix as 
a result of Aunano doping within the polymer matrix [8].
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 Sensing Applications

Polymer/metal nanocomposites have been widely utilized as sensor and biosen-
sors. Pd nanoparticles distributed into conductive polymer matrix of poly(3- 
methylthiophene) (PMT), poly(N-methylpyrrole) (PMPy), or polyfuran (PF) 
film- coated Pt electrode were utilized as biosensors for neurotransmitters and 
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Fig. 8 FTIR images of (a) Fe3O4/PPy composites and (b) Pt/PPy hybrid hollow microspheres 
(Reprinted from [29], Copyright (2010), with permission from Elsevier)
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acetaminophen. Different parameters were studied because they have a great 
effect on the electrocatalytic activity of the resulting nanocomposite such as 
 polymer film thickness, its polymerization method, type of deposited metal 
nanoparticles, metal nanoparticles deposition method, deposition voltage, and its 
amount. The resulting hybrid nanocomposite combined the perfect properties of 
the polymer matrix and metal nanoparticles. This combination resulted in dra-
matic enhancement in the electrocatalytic activity of the modified electrodes 
toward the studied compounds. In addition, the interference of ascorbic and uric 
acids (AA and UA, respectively) and other interferents with the studied analyte 
was eliminated at the surface of these modified electrodes showing perfect selec-
tivity and anti-interference ability [10–13].

The enhanced electrocatalytic effect of Pt/PMT/Pd nanocomposites was highly 
affected by the method of formation of polymer film (bulk electrolysis (BE), cyclic 
voltammetry (CV)) (Fig. 10a). Cyclic voltammetry technique was used to test the 
resulting Pd-modified PMT electrodes in 5 mM hydroquinone (HQ).  Pt/PMT(BE)/
Pd(CV) nanocomposite exhibited higher electrocatalytic activity compared to Pt/
PMT(CV)/Pd(CV) electrode as it exhibited higher oxidation current, lower oxida-
tion potential, and smaller peak separation.

Another factor that affects the electrocatalytic activity of polymer/metal nano-
composite is the conducting polymers’ doping level. After the formation of PMT 
polymer with BE method, the film was washed with acetonitrile and dedoped in a 
solution free from the monomer (0.05 M Bu4NPF6/CH3CN) for 1 min at −0.2 mV. 
Then, Pd nanoparticles were electrodeposited using CV over the dedoped polymer 
film (Scheme 1). Pt/PMT(dedoped) exhibited lower current response, larger 
peak separation, and broader oxidation peak compared to the doped one (Fig. 10b). 
The inclusion (doping) and expulsion (dedoping) of the given anion resulted in 
reorganization of polymer chains which resulted in further conformational changes 
and structural differences leading to broader oxidation peaks at the dedoped films. 
In a conclusion, the electroactivity of the Pt/PMT and Pt/PMT/Pd electrodes 
toward HQ electrooxidation is greatly affected by the doping level of the PMT film 
[11, 12].

As well, the electrocatalytic activity of the resulting hybrid nanocomposite is 
highly affected by the method of deposition of Pd particles (BE and CV). The elec-
trochemistry of bare Pt, Pt/PMT(BE), Pt/PMT(BE)/Pd(BE), and Pt/PMT(BE)/
Pd(CV) electrodes toward 5 mM HQ was shown in Fig. 11. The current response 
was enhanced by 3.88- and 6.18-fold at Pt/PMT(BE)/Pd(BE) and Pt/PMT(BE)/
Pd(CV) electrodes, respectively, compared to bare Pt. Also, the oxidation potential 
was shifted to less positive potential by 119 and 107 mV at the same electrodes. Pt/
PMT(BE)/Pd(CV) electrode can catalyze the electrooxidation of HQ greatly due to 
the enhancement of peak current and the decrease in the oxidation potential. On the 
other hand, the effect of interference from UA on the simultaneous determination of 
DA and AA was investigated at Pt/PMT(BE)/Pd(CV) electrode. Three well-resolved 
peaks were defined at the modified electrode at −128 mV, +113 mV, and +400 mV 
for AA, DA, and UA, respectively. As a result of this good separation, the simulta-
neous determination of the three components can be achieved well at this modified 
electrode. Also, glucose and other interferents did not show any interference with 
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the studied species [11, 12]. On the other hand, the simultaneous determination of a 
quaternary mixture containing AA, HQ, DA, and acetaminophen (APAP) in 0.1 mol 
L−1 H2SO4 was achieved at Pt/PMT(BE)/Pd (CV) electrode. Four well-defined peaks 
were obtained at Pt/PMT(BE)/Pd (CV) electrode: 264, 408, 504, and 656 mV for 
AA, HQ, DA, and APAP, respectively [12].

Randles–Sevcik equation was used to calculate the apparent diffusion coefficient 
Dapp for DA at Pt/PMPy(BE), Pt/PMPy(CV), Pt/PMPy(BE)/Pdnano(BE) (I), and Pt/
PMPy(BE)/Pdnano(CV) (II). The order of the increase of Dapp values was Pt/
PMPy(BE) ~ Pt/PMPy(CV) < Pt/PMPy(BE)/Pdnano (I) < Pt/PMPy(BE)/Pdnano (II). 
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The analyte diffusion increased due to the inclusion of Pd nanoparticles in the poly-
mer matrix; the Dapp values calculated at Pt/PMPy(BE)/Pdnano (II) for some analytes 
are 100 times greater than that at Pt/PMPy electrodes. Dapp values obtained at Pt/
PMPy(BE)/Pdnano (II) are close to those found in aqueous solution (10−5 cm2 s−1) 
because of the fast mass transfer of the analyte species from bulk solutions toward 
electrode surface and/or fast electron transfer process of analyte electrochemical 
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Fig. 11 Comparison between the different electrodes formed by the electrodeposition of Pd on 
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oxidation at the electrode surface/solution interface. In addition, the analyte redox 
reaction occurs at the electrode surface controlled with the molecules diffusion 
from the solution bulk to the electrode surface. The analyte redox reaction does not 
occur within the polymer/Pdnano matrix. As the DA molecule reaches the Pt/PMPy/
Pdnano surface, it simultaneously undergoes oxidation due to the greater number of 
active sites on this surface. On the other hand, DA diffuses on the Pt/PMPy surface 
until it finds the active site for oxidation. The previous results showed that the elec-
trodeposited Pdnano has a great electrocatalytic effect on the electrochemistry of the 
studied species [10].

Figure 12 showed the differential pulse voltammograms (DPV) of different 
micromolar concentrations of DA and UA at Pt/PMPy(BE)/Pdnano(II) and different 
millimolar concentrations of AA. The oxidation peak currents of DA, UA, and AA 
increased with the increase in their concentrations in the working concentration 
range. For AA, the linear dynamic range was 0.05–1 mM with 0.9993 correlation 
coefficient and 0.0056 μA/μM sensitivity. For DA, the linear dynamic range was 
0.1–10 μM with 0.9995 correlation coefficient and 0.71 μA/μM sensitivity. For UA, 
the linear dynamic range was 0.5–20 μM with 0.9991 correlation coefficient and 
0.28 μA/μM sensitivity. The potential peak separations were large enough for the 
individual and simultaneous determination of DA, UA, and AA. The obtained 
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values of detection limit (signal/noise [S/N] = 3) at Pt/PMPy(BE)/Pdnano(II) were 12 
nM, 27 nM, and 7 μM for DA, UA, and AA, respectively. Also, the detection limits 
of DA were not affected by the absence and presence of UA and AA (14 and 12 nM, 
in the absence and presence of AA and UA, respectively). These results confirmed 
the independent oxidation processes of AA, DA, and UA and their independent 
simultaneous determination [10].

Furthermore, Atta et al. studied the simultaneous determination of AA, DA, and 
acetaminophen ACOP at bare Pt, Pt/PF(BE), and Pt/PF(BE)/Pd(CV) in 0.1 M 
H2SO4. The voltammetric signals of AA, DA, and ACOP were not resolved at bare 
Pt and Pt/PF(BE). On the other hand, three well-resolved voltammetric signals were 
resolved at Pt/PF(BE)/Pd(CV) at 246, 508, and 673 mV for AA, DA, and ACOP, 
respectively. The presence of AA affected the determination of the actual concentra-
tion of DA as the dopamine-o-quinone “DA oxidation product” reacts catalytically 
with AA and regenerates DA again by the reduction of dopamine-o-quinone. At Pt/
PF(BE)/Pd(CV), AA is oxidized before DA, and large potential separation (262 
mV) between AA and DA was achieved. As a result, the interference from the oxi-
dation product of DA was minimized. In a conclusion, the synergistic presence of 
PF and Pd in the new composite affected greatly the simultaneous determination of 
AA, DA, and ACOP [13].

On the other hand, PEDOT-incorporated gold nanoparticles were prepared by 
J. Mathiyarasu via chemical and electrochemical routes and were utilized for DA 
and UA sensing in presence of excess AA. A distribution of reduced (hydrophobic) 
and oxidized (hydrophilic) regions was present in the PEDOT matrix. Aunano has the 
tendency to reside within the “hydrophobic regions” of PEDOT. DA is considered 
one of the hydrophobic analytes; therefore, DA interacts with the hydrophobic 
regions. On the other hand, the hydrophilic analytes like AA interact with hydro-
philic regions of PEDOT (Scheme 2) [14, 25]. Figure 13 showed the electrochem-
istry of DA and UA in the presence of excess of AA at Aunano–PEDOT nanocomposite. 
Aunano–PEDOT nanocomposite exhibited more efficient response toward DA 
and UA. The detection limit of DA/UA in the presence of 0.5 mM of AA was 2 nM. 
The PEDOT matrix allowed perfect peak potential separation for the studied species 
exhibiting excellent selectivity. The gold nanoparticles allowed the nanomolar 

DA AA Hydrophilic

Hydrophobic
DHADOQ

Scheme 2 Depiction of hydrophobic and hydrophilic regions on the conducting polymer film; 
DOQ dopamine-o-quinone, DHA dehydroascorbate (Reprinted from [25], Copyright (2005), with 
permission from Elsevier)
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determination of these species exhibiting high sensitivity [14]. Therefore, Aunano–
PEDOT nanocomposite can detect DA and UA sensitively and selectively in the 
presence of AA.

Moreover, Pd/PEDOT/GCE enhanced the current response and the reversibility 
of DA in comparison with bare GCE and PEDOT/GCE. The DA oxidation process 
at the nanocomposite does not cause any fouling of the electrode surface. Also, 
simultaneous determination of DA and UA in the presence of AA was achieved at 
Pd/PEDOT/GCE. Good peak potential separations of 190 and 320 mV were 
achieved between DA–AA and UA–AA, respectively [19]. Moreover, poly(4- 
aminothiophenol) (PAT)–Aunano was utilized for the simultaneous determination of 
AA and DA showing two well-resolved anodic peaks at 75 and 400 mV for AA and 
DA, respectively. The nanocomposite exhibited good selectivity and high sensitivity 
without fouling by AA or DA oxidation products. Also, PAT–Aunano was utilized for 
the real determination of DA in human blood serum. No interference from AA, UA, 
albumin, and glucose was observed (Table 3) showing an applicable selective and 
sensitive DA sensor in real samples. In addition, long-term stability was observed 
for DA electrochemical response (>15 days) [28].

On the other hand, Nano-Au/PPyox composite-coated GCE was developed 
by Xiangqin Lin as an electrochemical biosensor for DA and serotonin 5-HT, 
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Fig. 13 Differential pulse voltammograms of Au–PEDOT-coated electrode in phosphate buffer 
solution (pH 7.4) containing 0.5 mM AA with different concentrations of DA and UA (a–j corre-
spond to mixed solutions of 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 nM) (Reprinted from [14], 
Copyright (2008), with permission from Elsevier)
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exhibiting stable and sensitive current responses toward their oxidation. Gold 
nanoclusters were electrochemically deposited on ultrathin overoxidized polypyr-
role (PPyox) film. There is a remarkable enhancement in the DA and 5-HT oxida-
tion response current and a lowering of overpotential due to the synergic effect of 
the utilized composite. An enlarged template for the growth of Au nanoclusters 
was provided by the nanoporous PPyox film on the GCE, resulting in an array of 
nano-Au electrodes, enlargement in the effective surface area, and enhancement in 
the electronic conductivity of the composite. Therefore, the sandwiched Au nano-
clusters can facilitate the mass and electronic transportation rates of the reactions 
of DA and 5-HT. The overlapping anodic peaks of 5-HT, DA, and AA (1000-fold) 
were simultaneously resolved at the modified electrode into three well-defined 
voltammetric peaks at 370, 200, and 10 mV (vs. SCE), respectively. The oxidation 
process of DA and 5-HT was adsorption-controlled as investigated by scan rate 
effect. A linear response was obtained in the range of 7.0 × 10−9 to 2.2 × 10−6 M with 
a detection limit of 1.0 × 10−9 M for 5-HT and in the range of 7.5 × 10−8 to 2.0 × 10−5 
M with a detection limit of 1.5 × 10−8 M for DA (s/n = 3), respectively [18]. 
Moreover, this novel biosensor (nano-Au/PPyox/GCE) exhibited strong catalytic 
activity toward the oxidation of epinephrine (EP), UA, and AA with three well-
defined peaks with a large anodic peak difference. Figure 14 shows the DPV curves 
of 1.0 × 10−5 M EP and 2.5 × 10−5 M UA solution containing 5.0 × 10−3 M AA at 
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Fig. 14 DPVs of 1.0 × 10−5 
M EP and 2.5 × 10−5 M UA in 
pH 7.0 PBS containing 
5.0 × 10−3 M AA at bare GCE 
(a), nano-Au/GCE (b), 
PPyox/GCE (c), and 
nano-Au/PPyox/GCE (d) 
(Reprinted from [30], 
Copyright (2007), with 
permission from Elsevier)

Table 3 Determination of DA in human blood serum (n = 5) (Reprinted from [28], Copyright 
(2007), with permission from Elsevier)

Samples Added (μmol L−1) Found (μmol L−1) Recovery (%) R.S.D %

1 0.3 0.32 101 2.3

2 0.6 0.57  98 2.4

3 0.9 0.89  96 2.0
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different electrodes. A broad small anodic peak at 0.31 V was obtained at bare GC 
electrode (curve a). Moreover, only one broad anodic peak at 0.25 V was obtained 
at nano-Au/GCE (curve b). However, three well-defined peaks were resolved at 
both PPyox/GCE (curve c) and nano-Au/PPyox/GCE (curve d). An enhancement in 
the oxidation currents of EP, AA, and UA was obtained at nano-Au/PPyox/GCE 
than that at PPyox/GCE, indicating that the nanocomposite has a strongly electro-
catalytic activity toward EP, UA, and AA oxidation. In addition, the sensor exhib-
ited excellent sensitivity, selectivity, and stability and has been applied for 
determination of EP in epinephrine hydrochloride injection and UA in urine sam-
ples with satisfactory results [30].

Moreover, a hybrid nanocomposite of PEDOT and Au-NPs is fabricated electro-
chemically onto a screen-printed carbon electrode (SPCE). SPCE/PEDOT/Au-NPs- 
modified electrode exhibited great catalytic activity for the oxidation of cysteine in 
various pH buffer solutions (pH 2.0–8.0). The selectivity of the method is demon-
strated by the separation of the oxidation peaks at up to 240 mV for cysteine and 
glutathione in pH 6.0 buffer solutions. Flow-injection amperometry is performed 
for 0.5–200 μM of cysteine in pH 4.0 buffer solutions, and a linear calibration plot 
with a slope of 0.115 μA/μM is obtained with detection limit (S/N = 3) 0.05 μM. 
Additionally, the proposed methods obtain satisfactory results in the detection of 
cysteine-containing medicine samples [23].

Moreover, Pt/polypyrrole (PPy) hybrid hollow microspheres were utilized by Ce 
Wang as enzymeless electroactive H2O2 biosensor. At bare GCE, no H2O2 reduction 
peak was obtained, but a H2O2 reduction peak appeared at − 100 mV at the proposed 
sensor (Fig. 15) because of the high electrocatalytic activity of the ultrahigh-density 
Pt nanoparticles with the mean diameters of around 4.1 nm deposited on PPy shell. 
The proposed composite showed some advantages such as fast response of less than 
2 s with linear range of 1.0–8.0 mM, sensitivity of 80.4 mA M−1 cm−2, and a rela-
tively low detection limit of 1.2 μM (S/N = 3) [29].
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 Self-Assembled Monolayer of Surfactant on Polymers 
and Hybrid Nanostructures

 Surfactants and Self-Assembly in Solution

Surfactants, surface active agents, are chemical compounds that have the ability to 
affect the interfacial relationship between two dissimilar substances such as oil 
and water.

Surfactants have the ability to reduce the free energy of the system by reducing 
the contact between the hydrophobic group and the aqueous surrounding. 
Surfactants are considered as amphiphilic molecules which have a hydrophilic 
polar head on one side and a long hydrophobic nonpolar tail on the other. They 
have wide potential applications in electrochemistry [31, 32]. The polar head 
group is characteristic with the presence of heteroatoms like N, P, S, or O. These 
heteroatoms are present in functional groups like alcohol, thiol, ether, ester, acid, 
sulfate, sulfonate, phosphate, amine, amide, etc. A hydrocarbon chain of alkyl or 
alkylbenzene type represented the nonpolar tail group. The unique solution and 
interfacial characteristics of the surfactant that resulted in enhanced electrode/
solution interface property are attributed to the polar–nonpolar duality nature of 
the surfactants [33]. Moreover, surfactants can reduce oil–water contact by the 
accumulation at various interfaces or the formation of different self-assembled 
structures in the solution. Thus, the hydrophobic domains of surfactant molecules 
can associate to form various structures achieving segregation of the hydrophobic 
parts from water [34, 35]. Formation of a specific self-assembled structure in 
solution depends on the type of surfactant (the size of the hydrophobic tail group, 
the nature, and size of the polar head group) and the solution conditions (tempera-
ture, salt concentration, pH, etc.).

 Micelles in Aqueous Medium

At low concentration surfactants form true solutions where they are dispersed as 
individual molecules or ions and do not associate themselves to form micelles. 
With increasing the concentration, spontaneous self-association in solution takes 
place and the srufactant molecules form micelles due to the split personality 
structure nature of such amphiphilic substances leads their spontaneous self-
association in solution resulting in the formation of micelles [35, 36]. Aggregates 
of long-chain surfactant molecules or ions which are formed spontaneously in 
their solution at definite concentration are known as micelles which possess 
regions of hydrophilic and hydrophobic character. This concentration was found 
to be dependent on the size of the hydrophobic moiety, the nature of polar head 
group, the nature of counter ions (for charged surfactants), the salt concentration, 
pH, temperature, and presence of co-solutes. In water, the charged polar head 
groups are oriented toward the water, and the hydrocarbon chains are oriented 
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away from the water to face the interior of the micelles. Micelles are characterized 
by aggregation number (N) and critical micelle concentration (CMC). N is the 
number of molecules or monomers in the micelle determining the size and geom-
etry of the micelle, and it ranges between 10 and 100 in aqueous solution [36]. 
The CMC of the amphiphile can be defined as the narrow concentration range at 
which the micelles first become detectable. Also, it can be defined as the concen-
tration at which an abrupt change in physical properties like surface tension and 
conductivity takes place [34, 36]. Each surfactant has a characteristic CMC value 
where dynamic aggregates are formed. The CMC values for most surfactants are 
in the range of 10−4 to 10−2 mol L−1 [36].

 Surfactants Self-Assembly at Solid/Liquid Interface

The formation of micelles in solution starts to occur upon reaching the CMC 
[35, 36]. At concentration less than the CMC, the cooperative hydrophobic forces 
are not sufficient to form micelles or any self-assembled structures in solution. As a 
result, surfactant molecules or ions pass out into the surface layer at the interface of 
the surfactant with the other phases (we will focus on solid–liquid interface), thus 
reducing the oil–water contact and hence lowering the free energy of the system 
[35]. Soon, the surface layer becomes saturated and with further increase in the 
surfactant concentration, the system expels the hydrophobic chains from the water 
into the liquid “pseudo phase” – a micelle. The adsorption of surfactants at solid 
substrate not only occurs before CMC but also occurs above CMC [37–41]. The 
adsorbed surfactant films on the surface of solid substrates exhibited different 
molecular structures in the form of monolayer [42–46], bilayer [47–49], multilayer 
(especially at extreme potentials of opposite sign for that of surfactant head group) 
[50–53], and surface micelles or hemimicelle (full sphere, full cylinder, or half cyl-
inder) [54–57].

The formation of specific self-assembled structure on the solid substrate surface 
depends on the hydrophobicity and morphology of the substrate [58–60], the nature 
of the electrolyte and counter ions [61, 62], the applied potential and the charge of 
the substrate [63–67], the surfactant concentration [68–73], the structure and type of 
surfactant, and the pH of the solution from which adsorption occurs. Typical surfac-
tant aggregate structures are shown in Scheme 3 [33, 74].

 Modes of Surface Modification by Surfactants

Two important modes of modification of the electrode surface by surfactants:

 1. Surface modification, in which spontaneous adsorption or self-assembly of sur-
factants occurs on the electrode surface

 2. Bulk modification, in which surfactants (modifiers) are mixed intimately with 
the electrode material such as carbon paste
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 Surface Modification by Surfactants
Amphiphilic compounds can be used to control the electrochemistry at the modified 
electrode surface [75]. The adsorption of these amphiphilic compounds on the elec-
trode surface can be achieved via different approaches [76–78]. One approach is 
based on the physico-chemisorption of highly ordered self-assembled monolayers 
(SAMs) [79]. Different self-assembled structures of surfactants were formed 
through the spontaneous physisorption of surfactant molecules at the electrode 
surface. This was achieved via the exposure of a clean electrode surface to a dilute 
solution of surfactants either by dipping or by the application of a drop of solution 
followed by spinning to evaporate the solvent (spin coating).

Effect of the Surfactants on the Electrochemical Kinetics  
of the Electrode Reaction
Dimensions, polarities, and molecular structures of surfactant aggregates on the 
electrode and the position of the electroactive species within them must be known 
to predict the effect of surfactants on the electrochemical kinetics of the electrode 
reaction [80]. Moreover, to observe the influences of the adsorbed surfactant films 
on the discharge of electroactive solutes on the electrode surface, it is necessary to 
investigate the adsorption of surfactants from aqueous solution onto the electrode 
surface. The most important influences of the adsorbed surfactant films on the 
electron transfer rates include (1) blocking by surfactants and (2) electrostatic inter-
actions between electroactive solutes and the adsorbed surfactant films [80, 81]. 

Scheme 3 Typical surfactant aggregates: (a) cylindrical, (b) lamellar, (c) spherical, (d) globular, 
(e) spherocylindrical micelles, and (f) spherical bilayer vesicles (Reprinted from [33, 74], 
Copyright (1991, 2011), with permission from Elsevier)
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The surfactant films may physically block the partial or full access of the electroactive 
species to the electrode surface inhibiting the electron transfer process [81]. The 
unfavorable entrance of hydrophilic species through the hydrophobic region of the 
adsorbed surfactant film or the coulombic repulsion between the charged head 
group of the surfactant and similar charged electroactive species was the origin of 
this blocking effect [82, 83]. As a result, the adsorbed surfactant film acts as a bar-
rier between the electrode surface and the electroactive species.

On the other hand, mild kinetic enhancement for the electrode reaction may be 
observed due to the adsorbed surfactant film on the electrode. This enhancement 
depends on the preconcentration process (the accumulation of the electroactive species 
through or into the adsorbed surfactant film). The coulombic attraction forces as well 
as the hydrophobic interactions between the electroactive species and the adsorbed 
surfactant layers are the main driving forces for the preconcentration process [82–84]. 
Moreover, incorporation of electroactive species within the adsorbed surfactant films 
will introduce different distances between the electroactive species and the electrode 
surface. Thus, the rate of the electron transfer will decrease with increasing the distance 
between the electroactive species and the electrode surface within the adsorbed surfac-
tant film [85–87]. This is in accordance with the electron transfer theory [88], which 
predicts the exponential decrease of the electron transfer rate with increasing the dis-
tance between the electroactive species and the electrode surface.

When electroactive species presents in micellar system, it may bind to the 
micelles present in the aqueous medium or partitioned between micelles and aque-
ous media [89]. Electroactive ions which are oppositely charged to the ionic micelles 
can bind at the micelle–water interface, whereas nonpolar electroactive species can 
bind in hydrophobic regions of the micelles just below this interface [90]. 
Electroactive species solubilized in micelles or bonded to micelles can undergo 
electron transfer reactions in which the current is controlled by diffusional mass 
transport of micelles containing the electroactive species.

Surfactant Adsorption
Surfactants have a specific amphiphilic structure which enables them to be adsorbed 
at the surface/interface in an oriented form [91, 92]. The adsorption of the surfactant 
involves the transfer of the surfactant molecules from the solution bulk to the elec-
trode/solution interface. This adsorption process of surfactant at the solid/liquid 
interface plays a crucial role in many applications. There are various mechanisms 
by which the surfactant molecules can be adsorbed onto the solid substrates from 
aqueous solutions. The adsorption involves single ions rather than micelles [92].

 (I) Ion exchange takes place through the substitution of counterions adsorbed 
onto the substrate from the solution by surfactant ions with similar charges.

 (II) Ion pairing takes place through adsorption of surfactant ions from solution 
onto sites which are oppositely charged and unoccupied by counterions.

 (III) Hydrophobic bonding takes place through the electrostatic attraction between 
a hydrophobic group of adsorbed molecule and a molecule present in the 
solution.
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 (IV) Adsorption by polarization of п electrons takes place through the attraction 
between the electron-rich aromatic nuclei of the adsorbate “surfactant” and 
the positive sites on the solid adsorbent.

 (V) Adsorption by dispersion forces takes place through the adsorption by 
London van der Waals force between adsorbate “surfactant” and solid adsor-
bent [92].

Electron Transfer Modes in Micellar Solutions
Electron transfer kinetics of electrode reaction process can be controlled by the 
surfactant aggregates on the electrode surface or inside the solution. Aggregates in 
the form of bilayers, cylinders, or surface micelles have the tendency to be adsorbed 
onto the electrode surface in solutions with surfactant concentration above the CMC. 
On hydrophilic electrodes, head-down orientations of surfactants are preferred 
(Scheme 4a, b) [80].

We will start by talking about the mechanism of discharge of electroactive species 
binding to the adsorbed dynamic surfactant film. The electron transfer process will 
take place when the electroactive species approaches to the vicinity of the electrode 
surface. Two main possibilities allow the charge transfer; the first is the displacement 
of the adsorbed surfactant by the reactant, thus, the reactant approaches the electrode 
closely (Scheme 4c), and the second is the approach of the reactant to the electrode 
surface within one head group diameters of adsorbed surfactant moieties (Scheme 4d). 
Different possibilities have been suggested for the molecular interpretation of electron 
transfer between a micelle-solubilized electroactive species and the electrode. 

Scheme 4 Conceptual drawings of interfacial region on hydrophilic electrode in micellar solutions: 
(a) side view of surface micelles or cylinders, (b) side view of a bilayer, (c) position of reactants R 
which are dissolved in the surface aggregates, (d) position of reactants R which are specifically 
adsorbed to the electrode (Reprinted from [80], Copyright (1997), with permission from Elsevier)
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One possibility is the dissociation of solute bound to the micelle followed by its entry 
into the adsorbed surfactant film, then its orientation near the surface, and finally 
electron transfer occurs. The entry into the films and orientation are expected to 
occur on a millisecond time scale. Another possibility is the joining of the micelle in 
solution with the aggregates on the electrode surface, bringing the reactant close 
enough to the electrode for electron transfer [80].

The Role of Surfactants in Electrochemistry
The importance of surfactants to electrochemistry is based on the following points [93]:

 (a) Surfactants in aqueous solution will affect the double layer structure, the redox 
potential, the charge transfer, and the diffusion coefficient of the electrode pro-
cesses [91, 93].

 (b) Surfactants can stabilize radicals or intermediate reaction products.
 (c) Surfactants can easily dissolve hydrophobic substances.

Surfactants can endow the electrode/solution interface with different electrical 
properties and change the electrochemical process. For example, the adsorption of 
ionic surfactants can form charged surfactant layers on the electrode surface, which 
have a strong accumulation capacity toward the oppositely charged analytes and an 
electrostatic repulsion ability toward the same charged analytes. Similarly, surfactants 
can form loose hydrophobic layers on the electrode surface by their hydrophobic tails 
exhibiting a strong accumulation capacity toward hydrophobic analytes. Moreover, 
the formation of surfactant layers on the electrode surfaces can also avoid the direct 
contact of the analyte with the electrode surface enhancing the antifouling capacity of 
the electrodes [94, 95]. On the other hand, surfactants play a very important role in 
electrode reactions, not only in solubilizing organic compounds but also by providing 
specific orientation of the molecules at the electrode interface. Surfactants are effec-
tive excipients in many drug formulations via improving dissolution rate and increas-
ing drug solubility. The ability of surfactants to reduce interfacial tension and contact 
angle between solid particles and aqueous media leads to improving the drug wetta-
bility and increasing the surface availability for the drug dissolution [96]. Accordingly, 
surfactants were found to have several applications in electrochemistry, polarography, 
corrosion, batteries, fuel cells, electrometallurgy, electroorganic chemistry, photoelec-
trochemistry, electrocatalysis, and electroanalysis [36]. Surfactants are very effective 
to be used in the electroanalysis of organic compounds, biologically important com-
pounds, drugs, some important inorganic ions, and metals [97–99]. Moreover, 
micelles have also been employed as selective masking agents to improve selectivity 
and sensitivity of electrochemical analysis [100].

 Sensor Applications of Surfactant SAM on Polymers

A promising biosensor based on poly(3,4-ethylenedioxythiophene)-modified Pt 
electrode (Pt/PEDOT) was constructed for DA determination in the presence of SDS. 
There are electrostatic interactions between the positively charged DA and the 
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negatively charged SDS which resulted in enhanced accumulation of protonated 
DA at the polymeric electrode surface, improved electrochemical response of DA, 
and increased current response by one and a half folds. Surfactant aggregates can be 
formed on the electrode surface in the form of bilayers, cylinders, or surface micelles 
(at higher SDS concentration), and these aggregates can explain the enhanced cur-
rent response. The process of electron transfer starts when the electroactive analytes 
come close to the vicinity of electrode surface. The charge transfer mediation is 
attributed to the space of one to two head groups of adsorbed surfactant moieties 
extended from the surface of the electrode. On the other hand, ion pair of the proton-
ated DA and the charged surfactant may be formed and adhered on the electrode 
surface via the hydrophobic parts in both sides [32]. On the other hand, three well- 
resolved oxidation peaks for DA, AA, and UA were defined at PEDOT/Pt in the 
presence of SDS. By the addition of SDS, the peak current signal of DA increases, 
and the peak current signals of AA and UA disappear. These observations are attrib-
uted to the electrostatic attractions between the negatively charged surfactant film 
and the positively charged DA which enables DA to reach the electrode surface 
faster. In the case of AA and UA, there are electrostatic repulsion between the 
anionic surfactant and the negatively charged species resulting in slower electron 
transfer kinetics (Scheme 5) [32].

The morphology of PEDOT matrix in the absence and presence of SDS showed 
a great difference (Fig. 16). In the absence of SDS, PEDOT exhibited the globular 
shape, and the surface appeared to be rough because of Pt substrate (Fig. 16a). In the 
presence of SDS, the PEDOT matrix becomes spongy and cotton-like because of 
the anionic tails of the surfactant (Fig. 16b). SDS aggregates have the ability to 
accumulate over the polymer surface and affect greatly the film conductivity [32].

Pt

PEDOT
DA

SDS

AA

Scheme 5 Electrostatic interaction between DA cation and the PEDOT in the presence of SDS 
and AA (Reprinted from (Reprinted from [32], Copyright (2011), with permission from Elsevier)
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Furthermore, PEDOT/Pt in the presence of SDS was utilized for the determination 
of catecholamine compounds, namely, epinephrine, l-norepinephrine, and l-DOPA, 
as well as serotonin (ST). The electrochemical data for the oxidation of catechol-
amines, serotonin, tryptophan, acetaminophen, and some interfering compounds 
such as UA and AA were collected from the cyclic voltammograms at PEDOT/Pt 
electrode in the absence and presence of 150 μL SDS. For cationic catecholamines, 
an increase in the anodic and cathodic peak current values was observed upon the 
addition of SDS due to the electrostatic interaction between the anionic surfactant film 
adsorbed on the electrode and the cationic catecholamine. For anionic compounds, 
the oxidation current response decreases in the presence of SDS. Tryptophan, AA, 
and UA, which are in the anionic form at pH = 7.4, establish an electrostatic repulsion 
with anionic surfactant SDS resulting in a large decrease in the peak current value 
in micellar medium. l-DOPA and ACOP are neutral species at physiological pH 
(pH = 7.4), thus SDS would not affect the kinetic of these compounds. The adsorption 
of the surfactant molecules onto the surface of the electrode resulted in changing 
the oxidation current values for positively and negatively charged species, altering the 
electrode overpotential and affecting the kinetics of the electron transfer. Also, 
the micellar aggregates may influence the mass transport of the electroactive ana-
lytes toward the electrode surface [101].

On the other hand, the electrochemical response of ST in the presence of UA, 
AA, and glucose was investigated. The presence of more than 1000-fold excess of 
AA and 100-fold excess of glucose did not interfere with the response of ST. The 
presence of SDS in the medium plays a key role in the electrostatic attraction of ST 
toward the polymeric surface and causes repulsion toward the interfering species. 
Furthermore, both DA and ST coexist in a biological system, and they affect each 
other in their respective releasing. So, it was interesting to study the interaction of 
both compounds with SDS (Fig. 17). At PEDOT/Pt electrode, DA and ST yielded 
two well-defined oxidation peaks at 0.20 and 0.35 V, respectively. The current 

Fig. 16 SEM image of the PEDOT layers deposited on Pt wire from 0.01 mol L−1 EDOT in 0.1 
mol L−1 LiClO4 in acetonitrile (10 cycles) (magnification 10,000×, 30 kV), (a) in the absence of 
SDS, (b) in the presence of 150 μL 0.1 mol L−1 SDS (Reprinted from [32], Copyright (2011), with 
permission from Elsevier)
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response of ST increased, while DA response decreased with successive additions 
of 150 μL SDS in 0.1 mol L−1 B-R pH = 7.4. This is due to the competitive interaction 
of DA and ST with the PEDOT/Pt film that is more pronounced in the case of ST. 
This is due to the large conjugated structure of ST which has the possibility to inter-
calate into the interior of PEDOT/Pt film. Another reason is the presence of -NH2 
and -NH groups in ST which increases the positive charge density on ST enhancing 
its interaction with the anionic surfactant SDS, thus facilitating its diffusion to the 
polymeric film [101].

Interaction of anionic SDS with ST and DA in aqueous B-R buffer solutions was 
followed by UV–Vis spectroscopy. Figure 18a, b shows the effect of successive 
additions of SDS on the absorption spectrum of each of ST and DA. The anionic 
SDS showed no absorption background. A band is identified at 274 nm, and a shoul-
der is present at 296 nm for ST due to the different possible sites of protonation in 
the case of indole nucleus having various constituent groups.

It was assumed that protonation on nitrogen always occurs first and then takes 
place in other places (Fig. 18a). The absorbance of these bands decreased from 1.31 
to 0.95 with five SDS additions. On the other hand, a sharp band was formed at 
279 nm for DA (Fig. 18b); its absorbance decreased from 1.27 to 0.97 with five SDS 
additions. The anionic character of SDS favors columbic attraction forces with the 
compounds and leads to the formation of aggregates in the solution phase. The 
aggregation in aromatic systems could be attributed to the formation of larger units 
(possibly due to the formation of longer repeat unit chains). This “oligomerization” 

20

10

0.0

–10

I /
 µ

A

E / V (vs. Ag/AgCl)

–20

–30

–40
0.8 0.6 0.4

ST

DA

0.2 0.0 –0.2

Serotonin

Dopamine

–0.4

HO

NH2

H
N

HO

HO NH2
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was due to the London–Margenau attractive forces between the π-electrons that are 
counterbalanced by the columbic and Lennard-Jones repulsive forces. This should 
be accompanied with a blue shift or a red shift in the corresponding spectra that was 
not observed in the present case for ST and DA. Thus, the charge interaction of 
the compound with SDS is the main contribution to the association that resulted 
in the decrease in the absorption spectra. Also, it was noticed from the results that 
the decrease in absorbance in the case of ST was larger than in the case of DA show-
ing that there is more charge interaction of ST with SDS than in the case of DA. 
So, the spectrophotometry data are in good agreement with what we obtained from 
the voltammetry experiments [101].

On the other hand, drug analysis is an important branch of chemistry which plays 
an important role in drug quality control. Therefore, the development of sensitive, 
simple, rapid, and reliable method for the determination of active ingredient is very 
important [102]. Surfactants have proven effective to be used in different occasions 
for the electroanalysis of drugs [97–99]. Improvement of drug analysis using sur-
factants was found to be concentrated in two important points:

 1. The ability of surfactant systems to dissolve hydrophobic (insoluble) drugs
 2. The preferential accumulation of drug molecules on the electrode surface via 

electrostatic and hydrophobic interactions [103–108]

Atta et al. employed PEDOT/Pt for morphine (MO) determination in the pres-
ence of SDS. MO is used as a relief from severe pain. The anionic surfactant SDS 
facilitates the arrival of MO molecules to the electrode surface faster, improves its 
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Fig. 18 Absorption spectra of five successive aliquots of 0.2 ml of 0.01 mol l−1 SDS added to 
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reaction rate, and enhances greatly its anodic peak current (Fig. 19). PEDOT/Pt in 
the presence of SDS exhibited perfect electrocatalytic activity toward MO as it lowers 
its oxidation potential, enhances its current response, and improves its electron 
transfer kinetics. Dapp (cm2 s−1) value for MO at PEDOT/Pt is 2.6 × 10−4 in the pres-
ence of SDS which is higher than the corresponding value in the absence of SDS 
1.1 × 10−4. The diffusion component of the charge transfer at the electrode surface is 
greatly affected by the anionic surfactant SDS [109].

On the other hand, DA is considered one of the most common interferents for MO 
in urine or blood. Two well-resolved peaks for DA and MO were obtained at 220 and 
410 mV at PEDOT/Pt in the presence of SDS, respectively. The proposed sensor can 
determine MO in the presence of DA with high sensitivity and excellent peak poten-
tial separation (190 mV). Moreover, the simultaneous sensitive determination of 
MO and epinephrine EP was achieved well at the proposed sensor. Therefore, this 
promising sensor can be used to selectively and sensitively discriminate MO 
from neurotransmitters. Also, the simultaneous determination of MO, AA, and UA 
proved excellent at the proposed sensor. By the addition of SDS, the MO oxidation 
current increased, and the AA and UA oxidation current disappeared. This is attrib-
uted to the electrostatic attractions between the positively charged MO and nega-
tively charged SDS and the electrostatic repulsion between the negatively charged 
AA and UA and anionic SDS [109]. On the other hand, MO can be discriminated 
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Fig. 19 Cyclic voltammograms of 5.0 × 10−4 mol L−1 morphine/ 0.1 mol L−1 BR, pH 7.4, at (a) 
PEDOT/Pt electrode in the presence of SDS, (b) PEDOT/Pt electrode (c) Pt electrode at scan rates 
50 mV s−1 (Reprinted from [109], Copyright (2011), with permission from Elsevier)
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from codeine that is very close to MO in structure at the surface of the proposed 
sensor. Codeine usually interferes with MO and affects the MO determination 
because of the competitive adsorption between them. At the surface of the proposed 
sensor, no interference was detected from codeine in a solution containing equimolar 
amounts of MO and codeine in the presence of SDS. Only an oxidation peak for MO 
was detected at 550 mV. As a result, PEDOT/Pt in the presence of SDS can be used 
to detect MO in opium poppy in the presence of high concentration of codeine (ten-
fold) [109].

As well, electrochemical impedance spectroscopy (EIS) is a characteristic tool 
that can be used to examine the electrode/solution interface properties. It also can 
be used to examine the type of interaction of MO at the proposed sensor in the 
absence and presence of SDS. The diameter of the semicircle in the Nyquist plot 
resembles the resistance of the electron transfer. In the absence of SDS, a semicircle 
with larger diameter was observed which is diminished obviously by SDS addition. 
As a result, the resistance of electron transfer of MO electrooxidation decreases, 
and electron transfer kinetics is improved. The fitting values calculated from the 
equivalent circuit for the impedance data were summarized in Table 4. Ru is the 
solution resistance, Rp is the polarization resistance, CPE is the predominant diffu-
sion influence on the charge transfer process, and n is its corresponding exponent 
(n < 1). Cf is the capacitance of the double layer. W is the Warburg impedance due 
to diffusion. The capacitive component values are higher at PEDOT/Pt in the pres-
ence of SDS compared to the case of the absence of SDS because of the ionic 
adsorption at the electrode surface, the charge transfer process, and the conducting 
character of the surface. In selective electrostatic interactions between MO and 
SDS, the accelerated electron transfer kinetics resulted in the obvious decrease in 
the interfacial electron transfer resistance [109].

Also, the voltammetric behavior of isoniazid (an antituberculous drug, INH) was 
investigated at PEDOT/Pt in the presence and absence of SDS and CTAB. INH 
exhibited a very weak electrochemical response at bare Pt electrode which was 
markedly enhanced in the presence of SDS achieving an improved response of INH 
in pH 2.3 (INH is positively charged in this pH). Two well-defined irreversible 
anodic peaks of INH were obtained at 630 mV and 820 mV (Fig. 20a) that resulted 
to form an irreversible oxidation of INH. In the absence of SDS, no peaks were 
obtained for INH due to electrostatic repulsion between the positively charged INH 

Table 4 Summary of the data obtained from EIS in the determination of MO using PEDOT/Pt 
electrode in the absence and presence of SDS at the oxidation potential (Reprinted from [109], 
Copyright (2011), with permission from Elsevier)

Electrode PEDOT/Pt E (mV)
Rp (kΩ 
cm2)

Ru (kΩ 
cm2)

Cf (μF 
cm−2)

W (KΩ−1 
cm−2)

CCPE (μF 
cm−2) n

In the absence of 
SDS

420 122 0.39 45 2.49 75 0.88

In the presence of 
SDS

420 52 0.5 50 2.38 279.8 0.7
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and positive charge density of PEDOT. SDS improves the oxidation current of 
INH and mediates the electron transfer kinetics as it facilitates the arrival of cat-
ionic INH to the electrode surface faster. Also, PEDOT/Pt in the presence of SDS 
exhibited high electrocatalytic activity toward INH showing lower oxidation poten-
tial and higher oxidation current [110]. On the other hand, a weak broad peak is 
observed at PEDOT/Pt in the presence of CTAB for INH solution/pH 2.3. By the 
addition of CTAB, the INH oxidation current decreases (Fig. 20b) due to the elec-
trostatic repulsion between the cationic CTAB and the positively charged INH 
resulting in a retarded diffusion.
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Fig. 20 Cyclic voltammograms of 5.0 × 10−4 mol L INH/0.1 mol L−1 L B-R, scan rate 50 mV s−1 
at PEDOT/Pt electrode at pH 2.3 with successive additions (0–150 μL) of 0.1 mol L−1 (a) SDS, (b) 
CTAB and at pH 7.4 with successive additions (0–150 μL) of 0.1 mol L−1 (c) CTAB and (d) SDS 
(Reprinted from [110], Copyright (2011), with permission from Elsevier)
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On the other hand, the electrochemical response of INH at pH 7.4 was studied at 
PEDOT/Pt in the presence of SDS and CTAB. INH becomes neutral at pH 7.4 
according to its pKa value resulting in different types of interaction of INH with the 
polymer film and surfactant molecules. At PEDOT/Pt, one oxidation peak for INH 
appeared at 260 mV with a current value of 38 μA because INH becomes neutral 
and diffuses easier toward the cationic polymer. By CTAB additions, the INH oxi-
dation current increases to 55 μA then becomes stable (Fig. 20c). There are electro-
static force between INH molecules and CTAB resulting in enhanced oxidation 
current as the INH approaches the electrode surface faster and the reaction becomes 
easier. Figure 20d showed the opposite manner by the addition of anionic SDS; the 
INH oxidation current decreases because of the electrostatic force between INH and 
SDS resulting in difficult diffusion of INH to electrode surface [110]. Moreover, it 
is necessary to examine the simultaneous determination of INH, AA, and UA. 
At PEDOT/Pt in the presence of SDS, the selective determination of INH, AA, and 
UA at pH 2.3 proved excellent. This is attributed to the electrostatic attractions 
between anionic SDS and positively charged INH and electrostatic repulsions 
between SDS and anionic AA and UA. Also, the simultaneous determination of 
IHN, AA, and UA at pH 7.4 achieved well at PEDOT/Pt in presence of CTAB. 
Two oxidation peaks for AA and UA were observed at 100 and 486 mV, respec-
tively, as a result of electrostatic attractions between cationic CTAB and anionic AA 
and UA. The oxidation current of INH is firstly observed at 700 mV and increased 
by the addition of CTAB as a result of INH neutral structure which improves its 
diffusion toward the polymeric film by CTAB. One can say that the presence of 
surfactant molecules plays a crucial role in the electrostatic interactions of INH 
toward the polymeric film in different pH values [110].

On the other hand, the electrochemical response of 0.3 mM atropine in 0.1 M 
B-R/ pH 7.4 was examined at PEDOT/Pt in SDS. One well-resolved irreversible 
peak was observed at 670 mV for atropine at PEDOT/Pt in the presence of SDS 
which was four and eight times higher than that observed at PEDOT/Pt and Pt elec-
trodes, respectively. The oxidation current of atropine was markedly enhanced by 
the anionic SDS which mediates the approaching of atropine molecules to the elec-
trode surface and facilitates the reaction. Higher current response, lower oxidation 
potential, and low detection limit of 34 nM were remarkable characteristics of the 
electrocatalytic activity of PEDOT/Pt toward atropine in the presence of SDS.

Also, an electroanalytical method was developed for the sensitive determination 
of flutamide in pharmaceutical formulations at polyglutamic acid polymer-modified 
carbon paste electrode in the presence of CTAB. The reduction current of flutamide 
increases by the addition of CTAB exhibiting a maximum 1 % CTAB and after that 
decreases continuously. The adsorption manner changes at 1 % CTAB from mono-
mer adsorption to monolayer adsorption with an increase in CTAB concentration at 
the electrode surface. After 1 % CTAB, the reduction current decreases because of 
the retardation of electron transfer rate by micelle aggregates. Therefore, 1.0 % 
CTAB is selected as the optimum concentration. The proposed sensor showed per-
fect electrocatalytic activity toward flutamide determination, good sensitivity, 
excellent stability, and applicability with wide concentration range [111].
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 SAM of Surfactant on Polymers/Nanometallic Structures

Chunya Li et al. utilized gold nanoparticle-modified glassy carbon electrode 
(Au-NPs/GCE) for the determination of tryptophan (Trp) in the presence of sodium 
dodecylbenzenesulfonate (SDBS). The oxidation peak potential of Trp at Au-NPs/
GCE showed a negative shift of 50 mV, and the peak current was improved in the 
presence of SDBS indicating that the electron transfer between the electrode and 
the bulk of solution was facilitated. Surfactants can be adsorbed on hydrophobic 
surface to form surfactant film altering the overvoltage of the electrode and influ-
encing the rate of electron transfer [112]. In the presence of SDBS, a hydrophilic 
film with negative charge was formed through the interaction of Au-NPs and sul-
fonic group of SDBS. This hydrophilic layer improves the accumulation of Trp at 
the electrode surface through electrostatic interaction, thus the electron transfer of Trp 
was facilitated, its oxidation overpotential decreased, and its current response was 
enhanced [112]. Moreover, Gong-Jun Yang studied the electrochemistry of etham-
sylate (ESL), a homeostatic agent that appears to maintain the stability of capillary 
walls and correct abnormal platelet adhesion, at hydrophobic gold nanoparticle-
modified GCE (C18NH2-capped Nano-Au/GCE) in the presence and absence of 
cationic surfactant CTAB. A significant negative shift of the oxidation potential 
and increase of the anodic peak current were observed in the presence of CTAB 
indicating the role of CTAB in the oxidation of ESL. Sulfo acid group in ESL is 
ionized and negatively charged in the weak acid solution. In the presence of CTAB, 
a positively charged hydrophilic film of CTAB was formed on the modified sur-
face. The hydrophobic interaction between ESL and hydrophobic chain of CTAB 
was more dominant than the static interaction with the polar head group, thus the 
overvoltage was reduced and the electron transfer rate was enhanced. Therefore, 
the electrochemical oxidation of ESL was facilitated in the presence of cationic 
surfactant CTAB, and very low detection limit was obtained, 3.5 nM [113].

Furthermore, the electrochemical response of DA was examined at Au/PEDOT–
Aunano/SDS (gold nanoparticle-modified PEDOT-modified gold electrode in the 
presence of SDS). This promising sensor combined the effective properties of 
PEDOT matrix to lower the DA oxidation potential and the catalytic properties 
of gold nanoparticles and SDS to facilitate the electron transfer kinetics (Fig. 21). 
The SDS addition improves the preconcentration–accumulation of hydrophobic 
positively charged DA, facilitates its diffusion through the modified electrode, and 
mediates the electrostatic transfer rate as a result of electrostatic interactions 
between cationic DA and anionic SDS leading to enhanced DA current signal at the 
proposed surface. The utilized sensor showed the effective synergism between 
PEDOT, Aunano, and SDS to selectively and sensitively determine DA [27]. The 
previous results may be explained as follows: PEDOT matrix involves a distribu-
tion of reduced (hydrophobic) and oxidized (hydrophilic) regions, and positively 
charged DA tends to interact with the more reduced regions. In addition, PEDOT 
film acts as an electron facilitator as it contains a rich electron cloud. Furthermore, 
gold nanoparticles act as a mediator to facilitate the electrochemical reaction and 
mediate the electron transfer rate. Also, DA cations tend to be weakly adsorbed at 
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Au/PEDOT–Aunano as DA has the ability to form self-assembled monolayer on Au 
via the interaction NH2 group of DA with Au. As mentioned before, SDS improves 
the preconcentration–accumulation of the positively charged DA at the surface of 
the modified electrode and enhances its diffusion through the modified electrode 
[27]. On the other hand, the simultaneous determination of AA, DA, and APAP 
(0.1 M PBS/ pH 2.58) achieved well at Au/PEDOT–Aunano electrode. Three well- 
resolved peaks appeared at 0.235, 0.499, and 0.678 V for AA, DA, and APAP, 
respectively. By SDS addition, the anodic current of DA increased, the anodic cur-
rent of AA diminishes, and the anodic current of APAP decreases slightly. The nega-
tive charge density of SDS film and the hydrophobic property of this film will act to 
enhance the preconcentration–accumulation of the hydrophobic DA+ cations at the 
electrode surface and repel hydrophilic AA molecules away from the electrode sur-
face. The anodic current of APAP decreased slightly by SDS addition because of its 
neutral structure in this pH resulting in slow diffusion toward electrode surface and 
retarded interaction with SDS. Furthermore, this promising sensor is used for the 
simultaneous determination of DA in the presence of AA and UA (0.1 M PBS/ pH 
7.40). The oxidation peaks for UA, DA, and AA appeared at Au/PEDOT–Aunano at 
349 mV, 217 mV, and 19 mV, respectively, with large peak potential separation 
(Fig. 22, Scheme 6). By addition of SDS, the anodic current of DA increases, and 
the anodic current of AA and UA diminished. This is attributed to the electrostatic 
attraction between cationic DA and anionic SDS and electrostatic repulsion between 
anionic UA and AA and anionic SDS [27].

Au/PEDOT–Aunano/SDS showed excellent stability which was examined through 
repeated cycles up to 50 cycles. Perfect stability was obtained at Au/PEDOT–Aunano/
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Scheme 6 Schematic diagram of interaction of DA, AA, and UA at Au/PEDOT/Aunano in the 
presence of SDS

14 Self-Assembled Monolayers on Nanostructured Composites…



454

SDS in 1 mmol L−1 DA/0.1 mol L−1 PBS/pH 2.58, and no decrease in the current 
response was observed. Furthermore, a very small peak separation was observed, 
nearly zero or 15 mV peak separation, which indicated the unusual reversibility 
obtained by repeated cycles. Moreover, long-term stability for the separation of a 
tertiary mixture of 1 mmol L−1 AA, 1 mmol L−1 DA, and 1 mmol L−1 APAP/0.1 mol 
L−1 PBS/pH 2.58 was examined at Au/PEDOT–Aunano/SDS up to 1 week. The elec-
trode is kept in 0.1 mol L−1 PBS/pH 2.58 in the refrigerator after each measurement. 
The CVs of the 50th cycle of repeated cycles of Au/PEDOT–Aunano/SDS for tertiary 
mixture of AA, DA, and UA immediately after 3 days and 1 week of storage were 
shown in Fig. 23. The decrease of Ipa of DA and APAP was 6.7 % and 1.2 %, respec-
tively, after 1 week of storage. Therefore, better stability via repeated cycles and 
long-term stability were obtained at Au/PEDOT–Aunano/SDS not only for one com-
ponent detection (DA) but also for tertiary mixture components separation [27].

 Self-Assembled Monolayer of S-Containing Compounds 
on Nanostructures

SAMs formed by S-containing compounds, namely, thiols on gold–nanogold elec-
trodes, are well-ordered, stable, and densely packed monolayers. They exhibit great 
characteristics like small overpotential, good sensitivity, perfect selectivity, repro-
ducibility, and short response time in the electrocatalytic reactions. Moreover, the 
immobilized amount of S-functionalized compounds can be greatly increased by 
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their modifications with gold nanoparticles which further resulted in enhanced Au–S 
bond and enhancement of the SAMs stability. On the other hand, the sensory applica-
tions at SAM-modified metallic nanoparticle surface, namely, gold nanoparticles, in 
the presence of surfactants proved excellent and will be addressed in details.

 Self-Assembled Monolayer

The design of electrodes with well-defined function and controllable surface prop-
erties can be effectively achieved by employing self-assembled monolayers (SAMs) 
of few nm to several hundred nm thickness [114, 115] of organic molecules (both 
aliphatic and aromatic) containing free anchor groups such as thiols, disulfides, 
amines, silanes, or acids [116, 117]. The advantages of SAMs include simplicity of 
preparation, versatility [118], extraordinary thermodynamic stability [119, 120], 
reproducibility, and the possibility of introducing different chemical functionalities 
with high level of order on a molecular dimension [121–127] providing an elegant 
approach to design tailored surfaces with controlled physical and chemical proper-
ties [128, 129]. In addition, several applications were allowed using SAM based on 
their terminal hydrophilic or hydrophobic functionality or by changing the chain 
length [115]. SAMs proved excellent in the immobilization of sensing elements like 
enzymes [118] and DNA. Also, they are very efficient in the electron transfer and 
capacitance control of an electrode [115]. SAMs can be described as an elegant 
method by which we can address electrically a molecular component [126, 127]. 
The method by which the SAMs were formed is the spontaneous adsorption of 
self- assembled molecules on metals like Au, Ag, Cu, Zn, Fe, Ni, glass, or Pt 
[130–132]. As well, highly organized [133], stable, and tightly packed compact 
monolayers can be formed on the electrode surface through the strong interchain 
and hydrophobic interactions (van der Wall interactions). As a result, various appli-
cations can be achieved like chemical sensing, protective coatings [128], lubricants 
[122], corrosion protection [128], patterning, semiconductor passivation, and opti-
cal second-order harmonic generation [134]. There are several reasons for the 
attractive features that SAMs are offering in biosensing applications:

 (i) Miniaturization is very easy as SAMs utilize the bare minimum resources 
(a monolayer consisting of 10−7 mol/cm2 or 1013 molecules/cm2) [114].

 (ii) The long-chain alkane thiols of SAMs that showed high degree of ordered and 
dense nature [114, 120] resulted in a microenvironment membrane which is 
efficient for the biological molecule immobilization.

 (iii) The good chemical stability of SAMs even after its coupling with the immobi-
lizing molecules for biological sensing makes SAMs efficient as biosensors 
and immunosensors [114].

Organosulfur compounds can form SAMs on metal substrate [116, 129] espe-
cially gold and the formed SAMs [135, 136]. This method is considered an effec-
tive method to prepare chemical interfaces that exhibited perfect features and 
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well- organized, structurally, well-defined, and stable resulting in SAMs having 
controllable thickness [137] and favorable function [118]. Organothiols lose the 
hydrogen of the thiol group [130] as molecular hydrogen H2 upon chemisorption 
[138–143] on gold surface resulting in the formation of covalent, strong, and ther-
modynamically favored S–Au bond [144–146]. Thiols have great affinity to be 
adsorbed on gold due to the following:

 (i) Inertness of gold; therefore, it does not form stable oxides on its surface.
 (ii) The strong specific interaction of gold with sulfur resulting in stable monolayer for-

mation [130, 131, 147] in a short time [141] and in a very reproducible way [131].

SAMs of thiols formed on gold electrodes are well-ordered, stable, and densely 
packed monolayers [131, 133]. They exhibit great characteristics like small overpo-
tential, good sensitivity, perfect selectivity, reproducibility, and short response time 
in the electrocatalytic reactions [136, 148].

The electrochemical response at the SAM-modified electrode depends on the 
monolayer thickness. The “thick” monolayer (e.g., monolayers of long-chain alka-
nethiols) would passivate the electrode surface, and it slows down the electron 
transfer [137]. Also, the monolayer having hydrophilic functional groups can favor 
the permeation of ions in solution into the electrode surface, if any specific interac-
tion exists at the monolayer solution interface. The SAMs having –COOH and –
NH2 functional groups are extensively used for electrochemical sensing applications 
and served as a platform for the fabrication of biosensors [134]. In recent years, 
more and more attention has been focused on l-cysteine (Cys) SAM-modified elec-
trochemical sensors due to their good stability and highly characterized structures 
of the Cys SAM [149].

 Methods of SAM Preparation

SAM can be prepared via two methods: immersion and electrochemical growth 
[114, 149]. The immersion growth is a common method for SAMs’ formation 
through which the metal electrode is soaked in the required solution for a certain 
time then the electrode was washed with the same solvent and dried [114]. 
The  substrate nature and roughness, type of solvent, adsorbate nature, adsorbate 
concentration, and temperature greatly affected the packing density and formation 
of SAMs. Very dilute solution gives ordered SAMs, while high concentration and 
long time (6 days) resulted in the formation of multilayer. Highly pure solvents such 
as water, ethanol, acetonitrile, and hexane are used to prepare solutions of thiol, 
sulfide, and disulfide [114]. The electrochemical growth was developed by Ying 
Zhuo et al. They reported that the immersion growth suffered from the competitive 
adsorption from other ions, for example, supporting electrolytes. In addition, the 
assemblies formed by immersion growth sometimes were subjected to nonuniform 
layer growth. The electrochemical method was free of the above drawbacks and 
more advantageous than immersion growth such as controllable and selective [149].
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 SAM-Modified Nanostructured Electrodes

SAM procedure opens a new avenue for the fabrication of electrodes having an 
electrocatalytic activity toward many electrochemical reactions superior to that of 
unmodified electrodes [150]. SAM-modified electrodes are very promising for the 
construction of electrochemical biosensors because they can enhance the electron 
transfer rate, selectivity, and sensitivity, improve the response time, and decrease 
the overpotential [151–153]. The SAM plays three important roles in the biosensing 
applications: (i) it forms thin monolayer, (ii) it forms weak hydrogen-bonding inter-
actions, and (iii) it prevents fouling of the electrode surface by the oxidation prod-
ucts [137]. SAMs of thiol molecules on a metal surface provide a useful means of 
immobilizing electrode surfaces to attach various functional groups, such as 
nanoparticles and redox-active species [136].

Gold nanoparticles that are conjugated to globular protein, bovine serum albumin, 
through S–Au bond showed more surface area for strong interaction with the exter-
nal species [154]. Furthermore, the modification using gold nanoparticles could 
greatly improve the S-functionalized compounds’ immobilized amount, affect the 
SAM structure [155], enhance the Au–S bond, and improve the SAMs’ layer stability 
[147]. The high surface energy of nanoparticles resulted in their instability; there-
fore, they need suitable surface modifications to be stabilized against aggregation. 
Cyano (CN), amino (NH2), and mercapto (SH) are functional groups that exhibited 
great affinity toward gold. Hak Yong Kim identified the interaction of cysteine and 
gold nanoparticles and indicated that the cysteine thiol moiety is an effective site for 
gold interaction resulting in the formation of stable cysteine- capped gold nanoparti-
cles. Gold nanoparticles were stabilized by cysteine molecules through S–Au inter-
action [45]. Figure 24a displayed the TEM image of spherical gold nanoparticles 
with a corona of cysteine ligand. Moreover, the TEM confirmed the gold 

Fig. 24 TEM images of (a) cysteine-capped gold nanoparticles and (b) gold nanoparticles in gold 
hydrosol (Reprinted from [154], Copyright (2006), with permission from Elsevier)
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nanoparticles’ stabilization because of their interaction with cysteine. Figure 24b 
showed the TEM image of the clusters of gold nanoparticles that are formed by 
NaBH4 reduction. Moreover, the characteristic bands of cysteine moiety after gold 
nanoparticles’ conjugation were detected through the application of FTIR spectra. 
Amino acids exhibit spectra characteristic of both carboxylate and primary amine 
salts as they can be described as zwitterions. The FTIR spectra of Cys and Cys/gold 
nanoparticles were shown in Fig. 25. The characteristics bands in Cys (spectra a) 
appeared at 1600, 1390 cm−1 for the asymmetric and symmetric stretching of COO−, 
at 1532 cm−1 for N–H bending, the broad 3000–3500 cm−1 range for stretching NH3

+, 
and near 2550 cm−1 for S–H group in the cysteine molecule. These results are very 
close to IR spectra of cysteine. The spectra of Cys/gold nanoparticles (spectra b) 
showed slight changes. A slight shift in COO− and NH3

+ stretching positions occurs 
because of the change in their dipole moment as a result of cysteine binding on the 
high electron density metal surface. Significantly, the S–H band was not observed in 
the spectra of Cys/gold confirming the Au–S bond [154].

 Desorption of SAM

The formation of SAM of alkanethiols on bare gold and gold nanoparticle-modified 
electrode through the S–Au bond can be confirmed using the electrochemical 
desorption experiment. Alkanethiol monolayers on gold electrodes undergo oxi-
dative and reductive desorption. The oxidative desorption of Au–Cys (a) and 
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Fig. 25 Infrared spectra of cysteine (spectrum a) and cysteine-capped gold nanoparticles (spec-
trum b) (Reprinted from [154], Copyright (2006), with permission from Elsevier)
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Au/Aunano–Cys (b) electrodes in 0.1 mol L−1 PBS/pH 2.58 was shown in Fig. 26. 
From this figure, we can deduce that gold nanoparticles increase the assembly 
amount of cysteine and affect the SAM structure and stability. On the other hand, 
thiols undergo reductive desorption in alkaline solutions via a one-electron reduc-
tion reaction:

 Au SR e Au RSo- + ® +- -  

The amount of the charge consumed during the reductive desorption can be used 
to determine the surface concentration of the thiolates. The reductive desorption of 
Au–Cys (solid line) and Au/Aunano–Cys (dash line) in 0.5 mol L−1 KOH was shown in 
the inset of Fig. 26. At bare gold electrode, two cathodic peaks are observed at −736 
mV and −1027 mV, and at gold nanoparticle-modified electrode, cathodic peaks are at 
−720 mV and −1008 mV. As a result of gold nanoparticles’ deposition, the desorption 
peak current increased largely. Wenrong Yang et al. indicated that the first peak (Q1) 
is attributed to the Au–S bond cleavage (having a shape characteristic of an adsorbed 
species), and the second peak (Q2) is attributed to a similar field- induced rearrange-
ment of cysteine clusters which would occur within the electrical double layer (having 
more diffusion-like character). Therefore, the area under the first peak (Q1) can be 
used to determine the surface coverage of cysteine. The estimated surface coverage of 
cysteine SAM is 2.64 × 10−9 mol cm−2 and 4.43 × 10−9 mol cm−2 on bare gold- and gold 
nanoparticle-modified electrode, respectively. As a result, modification using gold 
nanoparticle can markedly improve the immobilization amount of cysteine and 
enhance the Au–S bond and stability of cysteine SAM [31, 155].
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Fig. 26 CVs of the oxidative desorption of Au–Cys (a) and Au/Aunano–Cys (b) in 0.1 mol L−1 PBS/
pH 2.58, inset; CVs of the reductive desorption of Au–Cys (solid line) and Au/Aunano–Cys (dash 
line) in 0.5 mol L−1 KOH; scan rate 50 mV s−1 (Reprinted from [31], Copyright (2012), with per-
mission from Elsevier)

14 Self-Assembled Monolayers on Nanostructured Composites…



460

 Sensing Applications of SAM-Modified Nanostructures

Binary SAM of 3-mercaptopropionic acid (MPA, HS–(CH2)2–COOH) and 
1- tetradecanethiol (TDT, HS–(CH2)13CH3) was formed on 2D bare gold (Au) and 
3D Au-NP-modified electrode by Dong-Shik Kim. Electron transfer rate (ket), 
charge transfer resistance (Rp), Warburg element (Wd), double layer capacitance 
(Cdl), and time constant exhibited significant changes of the binary SAM and uni- 
SAM formation on the bare gold and Au-NP surfaces. Greater ket and Cdl were 
obtained in the case of a binary SAM of MPA and TDT on the Au-NP compared to 
that on the binary SAM on planar bare gold surface. This is due to the less ordering 
of binary SAM structure on the Au-NP than that on the planar Au electrode resulting 
in a reduced interaction between the SAM molecules on the Au-NP than that on the 
planar Au electrode. Moreover, the functional group affinity, COOH and CH3, 
chain–chain interaction, hydrogen bonding, and Au-NPs surface curvature affect 
the stability and surface coverage of the SAM [115]. Moreover, gold electrodes 
modified with gold nanoparticles, cysteamine (CA) and 3-mercaptopropionic acid 
(MPA), was utilized for simultaneous determination of epinephrine EP, AA, and UA. 
The electron transfer rate of EP on the modified electrodes was enhanced compared 
to the bare electrode. The voltammetric response of EP at 2D- and 3D-modified 
gold templates, Au/MPA, Au/MPA/CA/Au-NPs, Au/Au-NPs, Au/Au-NPs/MPA, 
and Au/Au-NPs/MPA/CA/Au-NPs, respectively, were compared and showed in 
Fig. 27. Lower oxidation potential, higher oxidation current, and greater catalytic 
effect were achieved for EP at modified electrodes prepared on 3D template com-
pared to that on 2D gold template. The 3D layer may provide better curvature and 
therefore better penetration of EP through the alkane chains on nanoparticle surface 
compared to the 2D layers. As a result, the electron transfer kinetics of EP and the 
electrode surface is better on 3D MPA layers compared to 2D MPA layers [147]. On 
the other hand, a promising electrochemical sensor of Au/Aunano–Cys/SDS for DA 
[156] and EP [31] was constructed through the formation of SAM of cysteine on 
gold nanoparticle-modified gold electrode. The electrochemistry of DA at different 
modified electrodes (Au/Aunano, Au/Aunano/SDS, Au/Aunano–Cys, and Au/Aunano–
Cys/SDS) was displayed in Fig. 28 and Table 3. The electrochemistry of DA at Au/
Aunano (Au electrode modified with gold nanoparticles) showed a great current 
response (Ipa = 5.6 μA), low oxidation potential (Epa = 516 mV), and enhanced 
reversibility (ΔEp = 45 mV) Fig. 28 (I). These observations are attributed to the cata-
lytic effect of Aunano that act as a facilitator to improve the electron transfer rate and 
enhance the electrochemical reaction. By the addition of 160 μL of SDS at Au/
Aunano, the oxidation current of 1 mmol L−1 DA in 0.1 mol L−1 PBS/pH 2.58 decreased 
from 5.6 μA at Au/Aunano to 4.2 μA at Au/Aunano/SDS Fig. 28 (II). There is an inter-
action between Aunano and SDS through SDS hydrophobic long carbon chain that 
resulted in the blocking of the binding sites on gold nanoparticles. This SDS layer 
acts as an insulating layer rather than enhancing the charge transfer, thus the oxida-
tion current of DA decreases in the presence of SDS. On the other hand, the CV of 
DA at Au/Aunano–Cys (cysteine SAM-modified Aunano-modified gold electrode) was 
shown in Fig. 28 (III). The oxidation current of DA decreased from 5.6 μA to 3 μA, 

N.F. Atta et al.



461

the oxidation potential was shifted from 516 mV to 586 mV, and the peak separation 
increased from 45 mV to 148 mV by the modification with Cys SAM. These obser-
vations were attributed to the (i) cysteine molecules’ disorganization on gold 
nanoparticles resulting in the inhibition of hydrogen bond formation between DA 
and cysteine and (ii) electrostatic repulsion between the positively charged cysteine 
(it is a zwitterionic amino acid and its isoelectric point is 5.06; if the pH of electro-
lyte is lower than 5.06, the amino group of cysteine is protonated and cysteine is 
positively charged) and the cationic DA resulting in the hindrance of DA molecules 
from reaching the electrode surface, decrease of the oxidation current, and increase 
of the potential peak separation.

The electrochemistry of DA at cysteine SAM-modified Aunano-modified gold elec-
trode in the presence of 40 μL SDS was shown in Fig. 28 (IV) (Au/Aunano–Cys/SDS). 
In the presence of 40 μL SDS, the oxidation current increased from 3 μA to 4.3 μA, the 
oxidation potential was shifted from 586 mV to 504 mV, and the peak separation 

1,2a

b

0,8

0,4

−0,4
−1,25 −0,75 −0,5 −0,25 0

ESCE / V

II C II A IA

II C II A

IA

Au/Au-NPs
Au/Au-NPs/MPA

Au/Au-NPs/MPA/CA/
Au-NPs

Au
Au/MPA
Au/MPA/CA/Au-NPs

0,25 0,5−1

0

j p
/m

A
 c

m
−2

1,2

0,8

0,4

−0,4
−1,25 −0,75 −0,5 −0,25 0

ESCE / V

0,25 0,5−1

0

j p
/m

A
 c

m
−2

Fig. 27 (a) Cyclic voltammograms of the Au electrode, Au/MPA, and Au/MPA/CA/Au-NP- 
modified gold electrodes and (b) cyclic voltammograms of the Au-NPs, Au/Au-NPs/MPA, Au/
Au-NPs/MPA/CA/Au-NP-modified gold electrodes in 60 mM phosphate buffer (pH 7) with 500 
μM epinephrine. v = 0.1 Vs−1 (Reprinted from [147], Copyright (2009), with permission from 
Elsevier)
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decreased from 148 mV to 47 mV. As mentioned before, there is an electrostatic 
repulsion between cationic DA and cationic cysteine layer. The addition of SDS (an 
anionic surfactant) improves the DA diffusion through the cationic cysteine layer 
because of the electrostatic attractions between the anionic SDS and cationic DA 
(Scheme 7). Moreover, there is an electrostatic attraction between anionic SDS and 
the positively charged cysteine SAM which allows cysteine molecules’ reorganiza-
tion on gold nanoparticles, improving the formation of the hydrogen bond between 
DA and cysteine and promoting faster the rate of the electron transfer. An increase of 
the oxidation current, higher electron transfer rate, smaller peak separation, and 
better reversibility were observed for DA [156] and EP at Au/Aunano–Cys/SDS. Table 5 
showed the CVs of DA at Au–Cys and Au/Aunano–Cys, we can deduce that the cyste-
ine effect on the polycrystalline bare Au response is more pronounced than that on 
gold nanoparticles and its effect on gold nanoparticles is enhanced by using SDS. 
SDS promotes the cysteine reorganization on gold nanoparticles resulting in 
enhanced oxidation current, small peak separation, and better reversibility. The peak 
potential separation (ΔEp ~ 45 mV) was the same in the cases of Au/Aunano and Au/
Aunano–Cys/SDS indicating the high reversibility and the strong adsorption of the 
electroactive species at the electrode surface. Au/Aunano displays a little higher cur-
rent response, but Au/Aunano–Cys/SDS shows, besides the high current response, bet-
ter stability through repeated cycles and long-term stability.

In addition, the diffusion coefficient (Dapp) values for DA and EP were 5.00 × 10−6 
and 1.24 × 10−5 cm2 s−1 at Au/Aunano–Cys and 1.06 × 10−5 and 3.86 × 10−5 cm2 s−1 at 
Au/Aunano–Cys/SDS, respectively. The charge transfer diffusion component at Au/
Aunano–Cys was affected markedly by the anionic SDS. The Dapp values showed that 
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Fig. 28 CVs of 1 mmol L−1 DA at (I) Au/Aunano, (II) Au/Aunano/SDS, (III) Au/Aunano–Cys, and (IV) 
Au/Aunano–Cys/SDS-modified electrodes; scan rate 50 mV s−1 (Reprinted from [156], Copyright 
(2012), with permission from Elsevier)
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DA and EP diffusion on Au/Aunano–Cys was improved in the presence of SDS rather 
than in the absence of it [31, 156]. On the other hand, simultaneous determination 
of tertiary mixture of AA, DA [156] or EP [31], and APAP was examined at this 
modified electrode. The DPVs of tertiary mixture of 1 mmol L−1 AA, 1 mmol L−1 
DA, and 1 mmol L−1 APAP in 0.1 mol L−1 PBS/pH 2.58 at Au/Aunano–Cys with suc-
cessive additions of 0–40 μL of 0.1 mol L−1 SDS was shown in Fig. 29. At Au/
Aunano–Cys, three well-resolved oxidation peaks appeared at 300, 468, and 648 mV 
for AA, DA and APAP, respectively. By SDS addition, the DA and APAP oxidation 
current increases, while the AA oxidation current diminishes. The negatively 
charged SDS film besides the hydrophobic character of the interior of this film 
resulted in the repulsion of the hydrophilic AA molecules away from the electrode 

Table 5 CV results for the redox reaction of 1 mmol L−1 DA/0.1 mol L−1 PBS/pH 2.58 at different 
modified electrodes (Au, Au–Cys, Au/Aunano, Au/Aunano/SDS, Au/Aunano–Cys, and Au/Aunano–Cys/
SDS (Reprinted from [156], Copyright (2012), with permission from Elsevier)

Electrode Epa (mV) Ipa (μA) Epc (mV) Ipc (μA) ΔEp (mV)

Au 683 2.82 235 0.478 448

Au–Cys 636 2.55 379 2.14 257

Au/Aunano 516 5.57 471 4.56  45

Au/Aunano/SDS 522 4.20 462 4.24  60

Au/Aunano–Cys 586 2.99 438 3.24 148

Au/Aunano–Cys /SDS 504 4.35 457 3.99  47

Bulk of
solution

Interaction of
SDS with DA and
cysteine

SAM of
cysteine

Au

Au nano

S-CH2-CH – N H3
+

COOH

S-CH2-CH – N H3
+

COOH

S-CH2-CH – N H3
+

COOH

SDS

AA

DA

Scheme 7 Schematic model of Au/Aunano–Cys/SDS-modified electrode in the presence of DA 
cations and AA (Reprinted from [156], Copyright (2012), with permission from Elsevier)
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surface while enhancing the preconcentration–accumulation of hydrophobic cations 
of DA and APAP. The negatively charged SDS that adsorbed onto the electrode 
surface has the ability to control the electrode reactions of AA, DA or EP, and APAP 
that differ in their net charge [31, 156]. Furthermore, Au/Aunano–Cys/SDS was uti-
lized for the simultaneous determination of binary mixture of EP and APAP (0.1 M 
PBS/pH 7.40) (inset of Fig. 30). Two well-defined peaks appeared at 222 mV and 
431 mV for EP and APAP at Au/Aunano–Cys, respectively. By SDS addition, EP 
oxidation peak current increased as a result of electrostatic interaction of the anionic 
SDS with the cationic EP, while the oxidation current of APAP decreased due to its 
neutral structure [31]. Also, Au/Aunano–Cys/SDS can selectively determine EP in 
the presence of a large amount of UA and glucose (PBS/pH 7.40) (Fig. 30). No 
interference was observed from glucose at the modified electrode. At Au/Aunano–
Cys, two well-defined peaks appeared: 212 mV and 418 mV for EP and UA, respec-
tively. By SDS addition, EP oxidation peak current increased, and UA oxidation 
peak current decreased due to the electrostatic interactions (attraction and repulsion, 
respectively) with anionic SDS. Furthermore, low detection limit of 0.294 nmol L−1 
and quantification limit of 0.981 nmol L−1 for EP were obtained at Au/Aunano–Cys/
SDS [31]. Moreover, the physical morphology of the surface can be used to explain 
the electrochemical responses of different sensors. Figure 31a showed the SEM 
image of gold nanoparticles which are located at different elevations and homog-
enously distributed exhibiting large surface area. Figure 31d showed the SEM 
image of gold nanoparticles modified with SDS; the nanoparticles have dendritic 
shape with different sizes and are randomly distributed on the surface. Also, a 

Fig. 29 Differential pulse voltammograms for 1 mmol L−1 AA, 1 mmol L−1 DA, and 1 mmol L−1 
APAP in PBS (0.1 mol L−1) at Au/Aunano–Cys with successive additions of (0–40 μL) of 0.1 mol L−1 
SDS at pH 2.58; the inset represents the initial (in the absence of SDS) and final (in the presence 
of 40 μL SDS) DPVs (Reprinted from [156], Copyright (2012), with permission from Elsevier)
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Fig. 30 Linear sweep voltammograms (LSVs) of 0.5 mmol L−1 EP, 1 mmol L−1 UA in the presence 
of 5 mmol L−1 glucose in 0.1 mol L−1 PBS/pH 7.40 at (a) Au/Aunano–Cys and (b) Au/Aunano–Cys/
SDS, inset; LSVs of 1 mmol L−1 EP, 1 mmol L−1 APAP/0.1 mol L−1 PBS/pH 7.40 at Au/Aunano–Cys 
(solid line) and Au/Aunano–Cys/SDS (dash line); scan rate 50 mV s−1 (Reprinted from [31], 
Copyright (2012), with permission from Elsevier)

Fig. 31 SEM images of (a) Au/Aunano, (b) Au/Aunano–Cys, (c) Au/Aunano–Cys/SDS, and Au/Aunano/
SDS electrodes (Reprinted from [31], Copyright (2012), with permission from Elsevier)
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spongy film is observed due to the surfactant film on the surface acting as an insulat-
ing layer rather than enhancing the charge transfer, thus, the oxidation current of DA 
at gold nanoparticles surface decreases in the presence of SDS. Figure 31b showed 
the SEM image of gold nanoparticles modified with cysteine SAM; the nanoparti-
cles have dendritic shape with different sizes and are randomly distributed on the 
surface. Figure 31c showed the SEM image of gold nanoparticles modified with 
cysteine SAM and further modified with SDS; the nanoparticles are better dis-
persed, highly packed, and homogenously distributed on the surface. Reorganization 
and redispersion of gold nanoparticles occur as a result of the electrostatic attraction 
between the anionic SDS and cationic cysteine. A spongy film is observed in Fig. 31c 
due to the surfactant film on the surface [31, 156]. Furthermore, the stability of the 
different modified electrodes was studied via repeated cycles up to 50 cycles. Au/
Aunano, Au/Aunano/SDS, Au/Aunano–Cys, and Au/Aunano–Cys/SDS electrodes in 1 mmol 
L−1 DA/0.1 mol L−1 PBS/pH 2.58 exhibited excellent stability with no current 
response decrease. These modified electrodes exhibited good reproducibility and do 
not suffer from surface fouling during the repetitive voltammetric measurement. 
The bare Au electrode exhibited bad stability because of the electrode fouling. On 
the other hand, very small peak potential separation (~ zero or 15 mV) was obtained 
indicating unusual high reversibility at the surface of these modified electrodes. 
From the CV that compared the 1st, 25th, and 50th cycles of repeated cycles stabil-
ity of Au/Aunano–Cys electrode, it was found that Ipa increased from 2.5 μA in the 1st 
cycle up to 3.8 μA in the 25th and 50th cycles and the peak separation decreased 
from 120 mV in the 1st cycle to ~0 mV in the 25th and 50th cycles (Table 6). These 
observations indicate that cysteine molecules undergo reorganization on gold 
nanoparticles resulting in mediation of DA diffusion through the electrode surface 
and enhancement of the hydrogen bonding between the hydrogen in hydroxyl–phenol 
of DA and the nitrogen in the l-Cys which enhances the electron transfer rate of DA 
molecules. Therefore, cysteine molecules undergo reorganization on gold nanopar-
ticles by repeated cycles or by SDS addition (instantaneous reorganization).

Moreover, the long-term stability of Au/Aunano, Au/Aunano–Cys, and Au/Aunano–
Cys/SDS electrodes was studied up to 1 week (Tables 7 and 8). The electrode is 
kept in 0.1 mol L−1 PBS/pH 2.58 in the refrigerator after each measurement. The 
repeated cycles of Au/Aunano and Au/Aunano–Cys/SDS electrodes after 1 week of 
storage were shown in Fig. 32a, b, respectively. Ipa of the 50th cycle decreased 
by 26 % and 44 %, and the peak separation increased to 120 mV and 180 mV after 
3 days and 1 week of storage, respectively, in the case of Au/Aunano electrode. 
In addition, Ipa of the 50th cycle decreased by 23.6 % and 35.6 %, and the peak 
separation was zero and 15 mV after the same periods of storage, respectively, in 

Table 6 CV results for the 1st, 25th, and 50th cycles of the repeated cycle stability of Au/Aunano–
Cys electrode in 1 mmol L−1 DA/0.1 mol L−1 PBS/pH 2.58

Cycle Ipa (μA) Epa (mV) Ipc (μA) Epc (mV) ΔEp (mV)

1st 2.46 585 2.63 465 120

25th 3.87 480 3.16 480 zero

50th 3.84 480 3.13 480 zero
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Table 8 CV results for the 50th cycle of the repeated cycle stability of Au/Aunano, Au/Aunano–Cys, 
and Au/Aunano–Cys/SDS electrodes in 1 mmol L−1 DA/0.1 mol L−1 PBS/pH 2.58 after 1 week of 
storage

Electrode Epa (mV) Ipa (μA) Epc (mV) Ipc (μA) ΔEp (mV)

Au/Aunano 585 1.97 405 1.51 180

Au/Aunano–Cys 495 2.47 480 2.40  15

Au/Aunano–Cys/SDS 525 2.69 465 2.57  60

Table 7 CV results for the 50th cycle of the repeated cycle stability of Au/Aunano, Au/Aunano–Cys, 
and Au/Aunano–Cys/SDS electrodes in 1 mmol L−1 DA/0.1 mol L−1 PBS/pH 2.58 immediately

Electrode Epa (mV) Ipa (μA) Epc (mV) Ipc (μA) ΔEp (mV)

Au/Aunano 480 3.54 480 3.14 zero

Au/Aunano–Cys 480 3.84 480 3.13 zero

Au/Aunano–Cys/SDS 495 3.53 480 3.07 15
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Fig. 32 Long-term stability 
of (a) Au/Aunano and (b) Au/
Aunano–Cys/SDS (40 μL) after 
1 week, 50 repeated cycles, 
50 mV s−1 scan rate 
(Reprinted from [156], 
Copyright (2012), with 
permission from Elsevier)
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the case of Au/Aunano–Cys electrode. Also, Ipa decreased by 24 %, and the peak 
separation was 15 and 60 mV after 3 days and 1 week of storage, respectively, in 
the case of Au/Aunano–Cys/SDS electrode (Tables 7 and 8).

These results confirmed that the presence of cysteine SAM on gold nanoparticles 
improved the reversibility and the long-term stability of Au/Aunano–Cys and Au/
Aunano–Cys/SDS electrodes due to the formation of strong Au–S bond [156].

On the other hand, excellent stability of Au/Aunano–Cys electrode for mixture 
separation (AA, DA, and APAP) in the presence of SDS was achieved via repeated 
cycling up to 50 cycles. As well, the long-term stability for the separation of AA, 
DA, and APAP tertiary mixture on Au/Aunano–Cys electrode was studied in the pres-
ence of SDS. Ipa of DA decreased by 14 % and 17 % and Ipa of APAP decreased by 
15 % and 28 % after 3 days and 1 week of storage, respectively. In addition, the 
long-term stability for the separation of the same mixture at Au/Aunano electrode was 
studied. Ipa of DA decreased by 34 % and 44 % and Ipa of APAP decreased by 9 % 
and 33 % after 3 days and 1 week of storage, respectively. Therefore, Au/Aunano–Cys 
in the presence of SDS exhibited a better stability via repeated cycles and longer- 
term stability not only for one component detection but also for tertiary mixture 
separation [156].

Furthermore, the same study was utilized in EP at the different modified electrodes 
via repeated cycles up to 50 cycles. The repeated cycle stability of the Au/Aunano–
Cys/SDS-modified electrode was shown in the inset of Fig. 33. Au/Aunano–Cys and 
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Fig. 33 Comparison of 1st, 25th, and 50th cycles of repeated cycle stability of Au/Aunano–Cys 
electrode in 1 mmol L−1 EP/0.1 mol L−1 PBS/pH 7.40. Inset: CV of repeated cycles stability of Au/
Aunano–Cys/SDS-modified electrode in 1 mmol L−1 EP; scan rate 50 mV s−1 (Reprinted from [31], 
Copyright (2012), with permission from Elsevier)
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Au/Aunano–Cys/SDS-modified electrodes in 1 mmol L−1 EP/0.1 mol L−1 PBS/pH 
7.40 showed better stability compared to the Au/Aunano electrode indicating that 
these modified electrodes have good reproducibility and do not suffer from surface 
fouling during repetitive voltammetric measurement due to Au–S bond formation.

Figure 33 showed the CV comparing the 1st, 25th, and 50th cycles of repeated 
cycles stability of Au/Aunano–Cys electrode, Ipa increased from 4.9 μA in the 1st 
cycle up to 8.2 μA in the 25th and 50th cycles, and the oxidation peak potential 
shifted from 363 mV in the 1st cycle to 220 mV in the 25th and 50th cycles. This 
result confirms the reorganization of cysteine molecules on gold nanoparticles by 
repeated cycles resulting in enhanced hydrogen bond formation between EP and 
cysteine and improved electron transfer rate. Also, the long-term stability of Au/Aunano 
and Au/Aunano–Cys/SDS electrodes was studied for up to 1 week. Ipa of EP decreased 
by 20 % and 30 % after 3 days and 1 week of storage, respectively, in the case of 
Au/Aunano electrode. Ipa decreased by 9 % and 16 % after the same periods of stor-
age, respectively, in the case of Au/Aunano–Cys/ SDS electrode. These results indi-
cate that cysteine SAM organized on gold nanoparticles enhances the long-term 
stability of Au/Aunano–Cys/SDS electrode due to Au–S bond formation. Therefore, 
Au/Aunano–Cys/SDS electrode showed better stability via repeated cycles and long- 
term stability compared to the Au/Aunano electrode [31]. In conclusion, the synergis-
tic effect between cysteine SAM-modified gold nanoparticles and surfactant 
enhances the use of surfactant-modified electrodes as nanosensors with excellent 
reproducibility, high sensitivity, and unique selectivity.

On the other hand, Gan Yang prepared a hemoglobin (Hb)/gold colloid (nano- 
Au)/l-cysteine (l-cys)/nano-Au/nanoparticles Pt (nano-Pt)–chitosan (CHIT) com-
posite film-modified Pt disk electrode as a biosensor for the determination of H2O2. 
Figure 34 compares the response of different modified electrodes toward H2O2. The 
current increased upon adsorption of l-cys on the nano-Au/nano-Pt–CHIT surface, 
and maximal current is obtained at the modified electrode. l-cys molecules were 
assembled on the nano-Au-modified electrode, and the interfacial resistance 
decreased as obtained from EIS study suggesting that l-cys promotes the electron 
transfer rate [157]. Furthermore, Guoli Shen prepared l-cysteine–gold particle 
nanocomposite (CGN) by a self-assembly process to involving l-cysteine on gold 
nanoparticles providing a general method to realize the direct electrochemistry of 
enzymes [138]. A new electrode interface was constructed by using CGN to be 
immobilized in the network of a Nafion membrane on a glassy carbon (GC) elec-
trode (GC/NCGN). GC/NCGN was utilized to fabricate the third-generation horse-
radish peroxidase biosensor exhibiting good response to H2O2 and displayed the 
remarkable sensitivity and repeatability. The effect of the amount of l-cysteine on 
the response of the GC/NCGN was investigated. The response was rather small 
when only a small amount or even no l-cysteine was added to prepare the nanocom-
posites. This may be attributed to the formation of a rather small amount of CGN 
during the assembly of l-cysteine on gold nanoparticles. A maximum response was 
obtained when 5 μL of 10−3 M of l-cysteine was used, and the response decreased 
again when more than 5 μL of 10−3 M of l-cysteine was added. The optimum amount 
was 5 μL of 10−3 M of l-cysteine [138].
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 Conclusions

Self-assembled monolayer has opened up new era of exploration and has a 
profound impact on sensors and biosensors due to its unique properties. SAM-
modified electrodes have been utilized as nanosensors with excellent reproduc-
ibility, high sensitivity, unique selectivity, and exceptional stability. Different 
self-assemblies were considered in this chapter: SAM of metallic nanoparticles 
on polymeric film, SAM of surfactant on polymeric film, and SAM of 
S-containing compounds on nanometallic films. Simplicity, cheapness, and 
fastness are the main advantages of the proposed methods utilizing SAM-
modified electrodes when compared with other determination methods of dif-
ferent studied compounds. Furthermore, these methods are highly sensitive so 
that the studied analytes can be determined under physiological conditions in 
real urine samples with good accuracy, excellent selectivity, and sub-nanomo-
lar concentration detection.
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Abstract

Recently, advanced nanohybrid electrodes based on graphene-conducting poly-
mers have shown a rapid growth in electrochemical energy storage (EES) sys-
tems, such as fuel cells, batteries, and supercapacitors. The supercapacitors are 
unique among the EES systems due to their long cycle life, high power density, 
and environmental compatibility. The mitigation of the drawbacks of electrode 
materials for supercapacitor applications, such as low energy density and fast 
self-discharge due to leakage current, is the focus of extensive research at the 
present time. Transition metal oxides (ruthenium oxides, manganese oxide, etc.) 
and conducting polymers (polyaniline, polypyrrole, and polythiophene) have 
been studied extensively with carbon-based materials as nanocomposites to 
address some of these issues related to supercapacitors. In the manuscript, we 
present the applications of (G)-CPs nanocomposite materials, such as 
G-polyanilines (G-PANIs), G-poly(pyrrole) (G-PPY), G-poly(hexylthiophene) 
(G-PHTh), and G-poly(3–4 ethylenedioxythiophene) (G-PEDOT), as supercapac-
itor electrodes. The G-PANIs, G-PPY, G-PHTh, and G-PEDOT electrode materi-
als were synthesized chemically using the oxidative polymerization method and 
characterized by using scanning electron microscope (SEM), transmission 
electron microscope (TEM), Fourier transform infrared spectroscope (FTIR), 
thermo gravimetric analysis (TGA), and Raman spectroscope techniques. The 
electrochemical behavior of various G-CP electrode materials for supercapacitor 
applications have been understood using cyclic voltammetry, charging–discharg-
ing, and electrochemical impedance spectroscopy techniques. The studied G-CP-
based nanocomposite electrode-based supercapacitors hold great promise for the 
use in future commercial applications.

Keywords
Nanocomposites • Conducting polymers • Electrolytes • Electrochemical analysis

 Introduction

Recently, the US Department of Energy (USDOE) has revealed that electrochemi-
cal supercapacitors (ES) could be important and possibly used together with batter-
ies in the future development of efficient, clean, and sustainable energy storage 
systems due to rapid development of global economy. The batteries, fuel cells, and 
ESs are practical electrochemical energy storage technologies; moreover, superca-
pacitors are very important because of their high power density (>103 W/kg) and 
long life cycle (>105 cycles) [1–3]. Further, supercapacitors bridge the power/energy 
requirements between dielectric capacitors with high power density and batteries 
having high energy density. Today, supercapacitors find applications in the areas of 
transportation, portable electronics, and stationary power storage [4, 5]. The super-
capacitor technology became popular in the mid-1990s and drew attention for its 
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potential use in hybrid electric vehicles. Further, technological developments of ES 
enable them to act as backup power supplies by complimenting batteries or fuel 
cells in mitigating power disruption in the most consumer electronic devices.

The low energy density, high production cost, and leakage currents are identified 
as the main challenges for future technical developments of supercapacitors [1]. 
The development of novel electrode materials and suitable electrolytes to surpass 
the problem of low energy density has been given major emphasis in recent reach 
[6–8]. The use of most viable industrial carbon-based electrode materials are lim-
ited because of the limited number of pores that can allow mobility of charges/ions 
and therefore, resulting in smaller active surface areas. The capacitance of carbon- 
based supercapacitor ranges between 75 and 200 F/g. The supercapacitors of 
carbon- based materials are called electrical double-layer supercapacitors (EDLSs) 
or electrostatic capacitors [6].

The EDLS capacitors are limited by low energy density and capacitance. The 
second type of capacitors are called pseudocapacitors, which composed of either 
transition metal oxides or conducting polymer as electrode active material. The 
transition metal oxides (ruthenium oxides, manganese oxide, nickel oxides, and 
vanadium oxides) are limited by their high cost, whereas the CPs (PANI, PPy, and 
PTh) are limited by their low stability [9–11]. As a result, hybrid materials have 
been synthesized to overcome the low energy density and specific capacitance of 
the carbon-based supercapacitor [12–15]. It has been found that hybrid materials 
contain both EDL-type materials and pseudocapacitive-type material that has a 
higher specific capacitance and energy density than EDLS. The transition metal 
oxides and their nanocomposites, especially nanocomposites of ruthenium oxide, 
produce high capacitance and energy/power density but are commercially limited 
due to their higher cost.

Even though the higher crystallinity gives rise to higher conductivity, the loss of 
surface area reduces the specific capacitance. Therefore, attempts are made to syn-
thesize the materials of larger surface area. The MnO2, low cost metal oxide, having 
a theoretical specific capacitance value of 1370 F/g, has been identified of being a 
competitive material to RuO2. However, experimentally observed specific capaci-
tance for MnO2 is lower by ~2 to 3 orders of magnitude than theoretically calculated 
value due to poor electrical conductivity (~10−6 S cm−1). Table 1 shows the capaci-
tance ranges for major material categories, carbon-based materials, CPs, and transi-
tion metal oxides discussed above.

The hybridization of carbon-based materials with transition metal oxides for 
supercapacitor electrode materials is limited by the availability of pristine transition 
metal oxides. Therefore, this manuscript focuses on graphene (G)-CP nanocomposites 
and their applications in ES electrodes. Recently, we have synthesized G-PPy, 
G-PANI, and G-PTh and G-polyethylenedioxythiophene (PEDOT)-conducting 
nanocomposite materials and studied extensively the supercapacitive behavior of 
nanocomposite materials [20, 28, 39, 41, 44]. The new G-CP nanocomposite 
materials have shown higher conductivity throughout the various redox processes 
during charging–discharging cycles and have offered higher specific capacitance 
than their pristine materials.
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The objectives of this chapter are to present and discuss novel supercapacitor 
electrode materials for supercapacitor applications. First, we discussed the funda-
mentals of supercapacitors with respect to our synthesized materials as electrode 
materials. The G-CPs were synthesized and characterized by several techniques 
(SEM TEM, X-ray diffraction FTIR, UV–vis, Raman spectroscopy, CV, charging–
discharging, and impedance measurements) to establish that the electrode material 
could be used in the supercapacitor applications. Finally, the impedance measure-
ments were performed to determine the time constants for the G-CP-based nano-
composites applied to symmetric supercapacitors. The G-CP supercapacitor 
technology could be viable and surpass existing properties when our material 
synthesis approach and multicapacitor fabrication techniques could be employed 
and exploited.

 Working Principle of ES

The design and manufacturing of ES devices are similar to that of fabrication of 
battery. An ES cell consists of two electrodes, a separator (separating two electrodes 
electrically), an electrolyte, and current collectors. The electrode material mostly 
stores charges at the electrode/electrolyte interface and consists of large area nano-
structure and high porosity materials. The electrochemical double-layer capacitors, 
pseudocapacitors, and hybrid capacitors are based on the types of the electrode 
materials. These types of ES have unique mechanism for storing the charges.

The electrostatic type capacitor consists of two parallel plates separated by 
vacuum or a dielectric material, while the electrolytic capacitor uses solid or liquid 
electrolytes instead of vacuum or dielectric materials [1]. In the presence of the 
applied electric field, the dielectric material inside the two plates polarizes and 
arranges the charges (dipole alignment) to assure charge neutrality on the electrode 
plates as illustrated in Fig. 1a.

The charge accumulation in linear capacitors is independent on the capacitance. 
The capacitance depends on the area of the charged plates (A), the distance between 
two charged parallel plates (d), and the dielectric constant of the dielectric material 

Table 1 Performance of major electrode material categories for supercapacitors

Material category Capacitance Advantage/disadvantage References

Activated carbon,  
carbon nanotube, 
graphene

75–200 F/g Stable, low capacitance,  
not expensive

[6, 8, 16]

Conducting 
polymers(PANI,  
PPy, PEDOT)

100–500 F/g Not stable, not expensive,  
high capacitance

[2, 17]  
(Basnayaka  
et al. 2013)

Transition metal  
oxide (MnO2,  
RuO2, etc.)

100–1000 F/g Stable, expensive, high 
capacitance

[2, 18, 19]
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between the two plates (ɛ). The relationship of these parameters to the capacitance 
is shown in Eq. 1 [1].

 C A dr= e e0 /  (1)

A typical charging and discharging schematic of an EDL is shown in Fig. 1b. The 
separator prevents the short circuiting of the two conducting plates and allows ions 
to be exchanged between the two electrodes. There is no electron transfer across the 
interface. Complete double-layer capacitors consist of positive and negative elec-
trodes as shown in Fig. 1b. In addition to the double layer, a supercapacitor can also 
contain pseudocapacitance in the presence of certain electrode materials. The pseu-
docapacitance is developed by means of three processes, that is, the electrochemical 
adsorption, faradaic redox reactions, and the doping/dedoping at the surfaces and 
the bulk material. A simple resistor–capacitor (RC) equivalent circuit represents the 
constant current charging–discharging measurements as shown in Fig. 2 for the 
basic operation of a single-cell supercapacitor [21].

The time constant (τ) of the self-discharge of the anode or cathode is equal to the 
product of RLeakage and C. The Gibb’s free energy (E); (E = ∫dw = V × dq), stored by 
the applied voltage (V) to the capacitor, is given in Eq. 2, where C is the total capaci-
tance of the cell [21].

Fig. 1 Charging schematics of (a) electrostatic capacitor and (b) electrochemical double-layer 
capacitor
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E CV=1 2 2/  (2)

The maximum energy Pmax delivered is presented in Eq. 3 based on constant 
current discharge measurements [21].

 
P V Rmax ESR= ´( )2 4/  (3)

where ESR is the internal resistance.
The performance of carbon-based materials and CP nanocomposites reported in 

the literature is summarized in Table 2. The cyclic voltammetry (CV) and constant 
current charging–discharging techniques are employed in most of the supercapaci-
tor performance evaluation in two- or three-electrode configuration cells (3E or 2E).

 Electrolytes

The electrolytes used in supercapacitor cells are as significant as the electrode 
materials, because they define the performance of supercapacitors, especially the 
working potential. There are three major types of electrolytes called aqueous, 
organic, and ionic liquid (IL) electrolytes [32–35]. Presently, most of the available 
capacitors are made up of organic and aqueous electrolytes. The properties of elec-
trolyte have substantial effect on internal resistance and breakdown voltage of the 
supercapacitor.

There are two factors which affect the conductivity of any electrolytes, namely, 
the concentration of free charge carriers and the ionic mobility per dissociation ion 
in the electrolytes [36]. Other secondary factors include the solubility, salt concen-
tration, temperature, viscosity, and dielectric constant of the solvent. Acetonitrile 
propylene carbonate and water are the most widely used solvents of the electrolytes 
with dielectric constants of 36.64, 66.14, and 88 at room temperature [6]. Further, it 
is also necessary for the solvent to be chemically stable for many hundreds or 
thousands of charge–discharge cycles. Table 3 summarizes the ionic diameters of 
widely used electrolytic ions [6].

Fig. 2 Equivalent circuit 
of charging and 
discharging of 
supercapacitors at 
constant current

P.A. Basnayaka et al.
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In general, the use of nonaqueous electrolytes gives higher energy than aqueous 
electrolytes, because of the higher operating voltage due to the larger decomposi-
tion limit of such electrolyte solutions [33]. The aqueous-based electrolyte reveals 
less viscosity, better conductivity, and superior kinetics to ions leading to efficient 
charging and discharging rates in supercapacitor. The gel polymer electrolytes are 
another type of electrolyte used in supercapacitors [37]. They are composed of two 
phases called ionic conducting medium and host polymer matrix [38].

 Methods

 Synthesis of Novel G-CPs

 Materials
The monomers, pyrrole (98 %), aniline (99.5 %), o-anisidine (99.5 %), o-toluidine 
(99.5 %) thiophene (99 %), ethylenedioxythiophene (98 %) monomers, poly(sodium 
4-styrenesulfonate) (Na-PSS), ammonium per sulfate (APS), ferric chloride 
(FeCl3), hydrochloric acid (HCl), ethanol, and methanol are all A.C.S. grade and 
purchased from Sigma-Aldrich (USA). Graphene platelets (less than 10 nm in 
thickness) were purchased from Angstron Materials (USA). All the chemicals and 
materials were employed as purchased without any modifications unless indicated 
in the manuscript.

 Synthesis of G-CPs Nanocomposites

The G-CP nanocomposites are prepared by chemical oxidative polymerization 
involving monomer and graphene nanosheets in acidic media (1 M HCl). The molar 
ratios of monomer, HCl, and oxidant (APs/FeCl3/Na-PSS) are kept at 1:1:1 ratio for 
all nanocomposite material synthesis processes. The graphene to monomer weight 
ratio was kept at 1:1 for all the G-CP nanocomposite synthesis. Initially, the 

Table 3 Ionic radius of 
some common electrolytes

Electrolytes

Ionic diameter (nm)

Cation Anion

H2SO4 0.26 0.533

HCl 0.26

Na2SO4 0.36 0.533

KOH 0.26

LiClO4 0.152 0.474

LiPF6 0.152 0.508

TEABF4 0.686 0.458

TBABF4 0.830 0.458

P.A. Basnayaka et al.
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monomer is added to 0.2 M HCl solution and stirred for 30 min before adding the 
graphene to the resulting solution. The graphene is added slowly and stirred for 
another 45 min. A mixture of concentrated HCl and oxidant is slowly added 
dropwise to the monomer solution under stirring in a 4–5 °C ice bath. The system is 
kept stirred vigorously for 24 h.

The prepared nanocomposite is filtered and rinsed with methanol and deionized 
water. Finally, the G-CP nanocomposites are dried at 60 °C in an oven. Figure 3 
shows a schematic of the synthesis of G-PPy nanocomposite materials. Since thio-
phene derivatives studied do not dissolve in an aqueous solvent due to the rigid 
polymer backbone structure, the monomers has been mixed in ethanol first and then 
by a similar procedure is followed to synthesize the G-PTh and the G-PEDOT nano-
composite materials (Basnayaka et al. 2013, 2013; [28]; Basnayaka et al. 2013).

 Characterization of the G-Conducting Polymer
The SEM, TEM, XRD, UV–vis, Raman, and FTIR spectroscopes were used to 
characterize the G-CPs. SEM and TEM images were produced using Hitachi S-800 
SEM and the Tecnai F20 TEM to investigate the morphology of the surface of the 
G-CP nanocomposites. TEM samples were prepared by adding a small amount of 
dry powder to ethanol, and a small drop of the solution was dropped on 300 mesh 
copper TEM grids. UV–vis measurements were obtained by a Jasco V-530 for 
G-PANI solution in N-methyl 2- pyrrolidinone (NMP), which is the common 
organic solvent for the base form of PANI. FTIR spectra of G-CPS nanocomposites 
were measured using a PerkinElmer spectrometer. TGA analysis was performed 
from SDT Q600 thermal analysis instrument.

Synthesis schematic
a

b c

Pyrrole in 1M HCl
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Preparation of Electrodes
The G-PANI electrodes were fabricated by dissolving the emeraldine base form of 
PANI using N-methyl 2-pyrrolidinione (NMP), and the solution mixture is deposited 
on graphite. Then the electrodes are dried under vacuum at 100 °C for 12 h. The 
other test electrodes (G-PPy, G-PEDOT, and G-PTh) are prepared by mixing G-CPs 
in nafion solution. All electrochemical experiments are carried out using a two- 
electrode system in different electrolytes (1 M HCl and 0.2 M LiClO4).

Electrochemical Characterizations
The electrochemical performance of G-CP was investigated through cyclic voltam-
metry (CV), charging–discharging, and impedance measurements using VoltaLab 
instrument. The CVs were recorded at different scan rates (100, 50, 25, 10, and 5 
mV/s) to understand the redox processes and to evaluate the supercapacitor perfor-
mance of the G-CP nanocomposites. The impedance measurements were made in 
the frequency range between 100 mHz and 100 kHz to understand the internal 
resistance and the equivalent circuit model of the supercapacitors. A comparative 
study of the specific capacitance was carried out for different electrolytes using 
CV curves.

 Results and Discussion

An extended study was carried out on G-poly(o-anisidine) POA, a derivative of 
aniline with methoxy group (OCH3 functional group attached to ortho position of 
aniline) nanocomposites with different compositions of graphene and o-anisidine. 
The presence of graphene in the POA polymer chain improves the conductivity of 
the nanocomposite material as shown in Fig. 4. The conductivity of the G-POA50 

Fig. 4 Specific capacity and conductivity dependence with composition of graphene [48]

P.A. Basnayaka et al.



489

nanocomposite is 4.06 S/cm, which is about 1000 times higher than the conduc-
tivity of the POA (3.7 × 10−3 S/cm) [39]. The conductivity of the G-PANI nanofiber 
composite containing 44 % graphene has been found to be 5.51 S/cm, which is 
about 10 times higher than that of the pristine PANI-NFs (0.5 S/cm). It is clear that 
the graphene filler is more effective in increasing the conductivity of POA and POT 
than the PANI.

The electrode materials were characterized using SEM and TEM techniques to 
understand the morphology of the G-CPs, and the results are shown in Figs. 5 and 6, 
respectively. The G-PPy and G-PEDOT exhibit a cauliflower-like structure with 

Fig. 5 SEM images of (a) graphene, (b) G-PPy, (c) G-PTh, (d) G-PEDOT, (e) G-PANI, and (f) 
G-POT nanocomposites
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Fig. 6 TEM images of (a) graphene, (b) G-PANI, (c) G-PPy, and (d) G-PEDOT nanocomposites

some pores throughout the film as evident from the SEM pictures in Fig. 5a, b. 
The inset shows how graphene platelets agglomerate in PPy and PEDOT polymer. 
The G-PTh, G-PANI, and G-POT shows differently orientated graphene plates in 
the composites exhibiting small pores as compared to the G-PPy or the G-PEDOT.

Figure 6a shows graphene platelets in different orientations and composed of a 
few layers. Figure 4b reveals the G-PANI and graphene structure with magnification 
of 200 nm. The TEM pictures of G-PPy shows the evidence of graphene agglomera-
tion in PPy as shown in Fig. 4c. Sphere-like structure could be seen in the low 
magnification of the TEM images (figure not shown). G-PEDOT exhibits an inter-
esting structure combined with graphene even in a lower magnification (200 nm). 
The conducting channels of polymers are also evidenced from Fig. 4. TEM studies 
confirm that multiple graphene sheets are stacked for all the G-CPs composites.

The FTIR spectra of the G-PPy, G-PANI, G-PTh, and G-PEDOT are shown in 
Fig. 7. As indicated by the blue line, the characteristic PPY peaks are located at 
1547 cm−1 and 1445 cm−1, and they are due to the antisymmetric and symmetric 
ring-stretching vibrational modes. The sharp peaks near 1145 cm−1 and 887 cm−1 
indicate the doping states of the G-PPy nanocomposite. The broadband at 
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Fig. 7 FTIR spectra of G-CPs

3000–3500 cm−1 is assigned to N–H and C–H stretching vibrations of PPY- and 
PANI- based CP nanocomposite with graphene. The band at 848 cm−1 is ascribed to 
the vibration mode of C–S bond in the thiophene ring in the G-PTh and G-PEDOT 
nanocomposites (Alvi et al. 2011). The curves related to G-PTh and G-PEDOT 
show a (C–H) stretching vibration peak at 2928 cm−1. The main peak bands at 1547 
and 1446 cm−1 are assigned to the stretching vibrations of quinone and benzene 
rings for all G-CPs in Fig. 7. The band peak at 1290 cm−1 is corresponding to the 
C–N stretching vibration of G-PPy and G-PANI [40, 41]. The in-plane bending of 
C–H is reflected in the 1110 cm−1 peak. The peak at 790 cm−1 is attributed to the 
out-of-plane bending of C–H. All of the above peaks are related to G-CPs films, 
showing that CPs are in the composite film.

Figure 8 depicts the TGA curves of graphene, G-PANI, G-PEDOT, and G-PPy 
nanocomposites. Graphene shows a highly stable (only 4 % weight loss) behavior 
with no decomposition over the entire operating temperature. The G-CP nanocom-
posites show three weight loss steps. A 10 % sudden decrease in mass below 100 °C 
is due to the water absorbed in the sample or due to the volatilization of the solvent. 
The sudden decrease in temperature around 200–250 °C could be due to the decom-
position of the dopant in CPs [42]. The significant weight reduction in the third 
region is due to the full-scale polymer degradation [39]. Based on the TGA study, it 
can be concluded that the nanocomposites are thermally more stable than the pris-
tine CPs. The CP polymer backbone structure and graphene provide a pathway for 
free charge through the polymer backbone chain via a sequential delocalization 
with π-bonds (hopping) under an applied electric field.

Finally, the materials are tested in electrode for supercapacitors in a two- electrode 
system with the presence of 2 M H2SO4 electrolyte. When G-PANI is considered, 
initial electrodes were made of the emeraldine salt form of PANI in a nanocompos-
ite [43]. During oxidation and reduction of PANI, the nanocomposite is oxidized 
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into pernigraniline at the positive electrode and reduced to leucoemeraldine at the 
negative electrode. Figure 9 shows the change in chemical structure during the 
charging process of G-PANI. Figure 9 shows the electrochemical activations that 
could take place during charging–discharging of the electrode cell (anode) on 
G-PANI in HCl electrolyte.

Electroneutrality within the CP film is essential during the reversible redox reac-
tion of CPs and is facilitated by the movement of the ions between the electrode and 
the electrolyte solution (process 2 in Fig. 10). This process includes electron trans-
fer at the electrode–film interface (process 1) and electron and counterion transport 
in the G-CP film (process 2, e.g., H+ and Cl− ions when the electrolyte used is a 2 M 
HCl solution). The processes that can occur in the electroactive G-CP film and elec-
trolyte system can be summarized as follows: (a) heterogeneous electron transfer 
due to oxidation and reduction inside the film as well as film/solution interface, (b) 
ionic diffusion of H+/Cl− from the solution into the film to maintain electroneutral-
ity, and (c) ionic transfer (conduction) of H+/Cl− within the film.

Figure 11 shows the CV characteristic curves for G-PANI, G-PEDOT, G-PPy, 
and G-PTh at different scan rates in 2 M HCl. The G-CP (G-PANI, G-PPy, and 
G-PTh) nanocomposites exhibit pseudocapacitive-type behavior, whereas simple 
capacitive behavior is observed in the G-PEDOT nanocomposite-based superca-
pacitor. The oxidation and reduction peaks that appear which can be observed in 
CVs in Fig. 10 are the characteristic redox peaks for CPs in the nanocomposite. The 
G-PANI has a larger potential window for redox potential in Fig. 10. The prominent 
redox peak at 0.5 V clearly indicates the presence of an oxidized state in the G-PANI 
nanocomposite.

Figure 12a depicts the charging–discharging behavior of the G-PANI nanocom-
posite in 1 M HCl at charging–discharging current (5 mA). The G-CP-based super-
capacitors exhibit similar characteristic as indicated in Fig. 12 with an operating 

Fig. 8 TGA curves of graphene, G-PANI, G-PPy, and G-PEDOT
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potential of 1 V in 1 M H2SO4 [45]. The pseudocapacitive behavior of its charging–
discharging is similar to the charging–discharging characteristic of a rechargeable 
battery.

The employment of various electrolytes strongly influences the properties of 
supercapacitors. The drawback of the aqueous electrolyte-based supercapacitor is 
also obvious mainly due to the narrow cell voltage range and therefore low energy 
density, as observed in Fig. 12. Therefore, electrochemical characteristics were 
investigated in the presence of 0.2 M LiClO4 electrolytes, and charging–discharging 
behavior is shown in Fig. 12. However, the increased operating voltage (2.5 V) is 
observed in organic electrolyte (0.2 M LiClO4), and the power density has increased 
in 0.2 M LiCLO4-based supercapacitors. This shows the advantage of organic 
electrolyte use in the G-CPs supercapacitors.

The specific capacitances of G-CPs are calculated at different scan rates using 
CV plots in 2 M H2SO4. Figure 13 observes the specific capacitance of G-CP-based 
supercapacitors by using the equation given below.

 
C I dV dt m= ( )´( )/ /  (4)

where C (F/g) is the specific capacitance, I is the current, dV/dt is the scan rate, and 
m is the mass of the electrode material.

Fig. 9 Chemical structures of charging and discharging states of G-PANI nanocomposite 
electrodes
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Fig. 11 CV characteristics of (a) G-PANI, (b) G-PEDOT, (c) G-PPy, and (d) G-PTh

Fig. 12 Charging–discharging cycles of G-PANI at 40 mA of charging current and different dis-
charging currents in 2 M H2SO4 and charging–discharging characteristic of G-PANI at 20 mA 
charging–discharging current in 0.2 M LiClO4

15 Nanostructured Hybrid Graphene-Conducting Polymers…



496

The highest capacitance value is shown for G-PANI in Fig. 13. The specific 
capacitance of G-PEDOT has been found to be four times greater than the pristine 
graphene or polyaniline. The lowest specific capacitance is obtained from G-PPy 
due to the limited access to the electrolytes to react with bulk of the material [46]. 
The TEM of G-PPy shows the graphene platelets which are covered by PPy and 
limit the capacitance. We understand that the use of surfactant could overcome the 
low specific capacitance.

Impedance measurements are important to understand the conductivity of the 
electrolyte and electrode interface of the supercapacitors. The measurements 
are carried out to analyze the response including information about the inter-
face, its structure, and reaction times in G-CPs nanocomposite-based superca-
pacitors. The small semicircle in the Nyquist plot indicates that there is charge 
transfer resistance in the electrochemical system in Fig. 14. The internal 
 resistance of the system increases twice in magnitude in the electrolyte, 2 M 
H2SO4, than in electrolyte, 0.2 M LiClO4. The reduction in capacitance value is 
the disadvantage of using organic electrolytes in supercapacitor, but it has bet-
ter stability than the aqueous- based electrolytic system in supercapacitor 
application.

Figure 14 shows the measured impedance spectra of a G-PPy-based supercapacitor 
in 2 M H2SO4 for 100 mHz to 100 kHz frequency range.

EIS is a powerful tool to evaluate the frequency behavior and ESR of supercapaci-
tor. It is possible to define a complex model of a capacitance as in Eqs. 5, 6, and 7 [47].

 
C jCCw w w( ) = ( ) - ( )¢ ²  (5)

where C′(ω) is the real part of the cell capacitance and Cʺ(ω) is the imaginary 
part of the cell capacitance. Cʺ(ω) is corresponding to the energy losses in an 
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irreversible process. The two components of the capacitance can be written as 
follows:

 
¢ ¢¢( ) = - ( ) ¤ ( )( )C Z Zw w w w

2

 (6)

 
¢¢ ¢( ) = ( ) ¤ ( )( )C Z Zw w w w

2

 (7)

The imaginary part of capacitance goes through a maximum at a frequency, f0, 
which defines a time constant as t0 = 1⁄f0 as seen in Fig. 15. The time constant is 
described as a characteristic relaxation time of the whole system (the minimum time 

Fig. 14 Impedance of G-CP supercapacitors in 2 M H2SO4

Fig. 15 Imaginary and real capacitance over frequency for G-PPy-based supercapacitor in 2 M 
H2SO4 electrolytes
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to discharge all the energy from the device with an efficiency of greater than 50 %). 
Thus, such smaller value is indicative of high rate capability in supercapacitor’s 
many applications. Table 4 indicates the experimentally calculated time constants 
for G-CP supercapacitors. The lower time constants of G-CP supercapacitors 
 compared with time constants of carbon-based supercapacitors (~10 s) reveals the 
excellent rate capability of G-CP supercapacitors.

 Conclusions

The G-CPs nanocomposites were synthesized by oxidative polymerization method. 
The physical characterizations of the G-CPs nanocomposites were investigated by 
SEM, TEM, FTIR, and TGA spectroscopy techniques. The SEM study on G-CPs 
reveals that the electrode materials are porous with higher surface areas. Successful 
investigation on capacitive performances carried out using electrochemical charac-
terization and EIS study proved short diffusion paths and low ionic resistance for 
diffusion of counter ions in studied supercapacitors. This fast electrochemical 
reaction enables to achieve the higher power density in H2SO4 electrolyte. The 
highest specific capacitance value of 400 F/g is estimated for G-PANI, and 
G-PEDOT also gives the better specific capacitance value. A comparative study on 
G-PANI derivative observed a higher capacitance of 425 F/g in G-POT due to 
strong electron donating group of CH3. Also, all G-PANI derivatives observed 
higher operating voltage in organic-based electrolytes. Time constants of G-CP 
supercapacitors in 2 M H2SO4 electrolytes are less than 5 s, which is an indication 
of fast charging and discharging characteristic of G-CPs supercapacitors. Our 
study has provided the fundamental understanding of synthesis, characterization, 
and application of electrodes based on G-CP nanocomposites for supercapacitor 
applications.
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Table 4 Time constants of 
G-CP supercapacitors in 2 M 
H2SO4 electrolytes

Material Experimental time constant (s)

G-PANI 2.5

G-POA 5

G-POT 0.6

G-PPy 0.3

G-PEDOT 2.3

G-PTh 4.2
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Abstract

The self-assembly ability of molecules is of fundamental importance in modern 
science and technology, making possible to produce nanostructures with a preci-
sion that is not achievable with classical lithographic miniaturization techniques. 
In particular, self-assembled monolayers (SAMs) formed by helical oligopep-
tides are very promising materials, used as archetypal systems in various fields 
of current nanoscience research, materials science, molecular biology, and 

mailto:emanuela.gatto@uniroma2.it
mailto:mario.caruso@uniroma2.it
mailto:venanzi@uniroma2.it


504

surface science, and with potential application as molecular sensors and 
 optoelectronic devices. The motivation for fabricating polypeptide SAMs is to 
exploit the unique features of polypeptide primary and secondary structures: it is 
possible to create a designed peptide sequence (a sequence of side chains with 
specified functionality) that in turn would be manifested in the corresponding 
SAM as spatially resolved, chemically distinct functionalities localized in a 
series of strata coplanar with the substrate. Moreover, the macrodipole moment 
associated with the vector sum of the individual peptide dipoles in an α-helical 
secondary structure gives rise to an intrinsically polar SAM, which favors elec-
tron-transfer in one precise direction and facilitates light-induced electron–hole 
separation, for appropriately placed chromophores. In this chapter we review the 
electrochemical properties of peptide SAMs, both in their fundamental and 
excited electronic states, focusing on their characterization and on their charge-
transport properties.

Keywords
Peptides • Self-assembled monolayers • Electron transfer • Electrochemistry

 Introduction

The rational design and preparation of materials for a wide range of applications, 
such as information storage and processing, requires protocols for the assembly of 
molecular units into supramolecular array. For example, optical switches based on 
second-order nonlinear effects [1] or optoelectronic devices require materials with 
unidirectional alignment. Several techniques for the alignment of organic materials 
have been investigated, making use of single-crystal materials, liquid crystals, 
Langmuir–Blodgett films, and host–guest inclusion complexes. However, none of 
these techniques have provided long-term stability of the system to both heat and 
light. In 1983 Nuzzo and Allara [2] first reported on the formation of ordered self- 
assembled monolayers (SAMs) by the spontaneous adsorption of dialkyl disulfides 
on gold by covalent Au–S linkage. Since then, many reports have appeared in the 
literature about SAMs having different thicknesses (chain lengths) and exterior sur-
face functionalities [3, 4].

In one of the first contributions to the field, Enriquez and coworkers showed 
that also α-helical oligopeptides containing a disulfide moiety are promising self- 
assembly materials [5]. In fact, in nature, the three-dimensional structure of pro-
tein is driven by a number of non-covalent interactions, among them the 
aggregation of helical segments into a more specific spatial conformation. The 
key advantage of helical peptides over alkyl chains is their larger efficiency in 
long-range electron-transfer processes [6] and their rectifying properties due to 
the effect of the helical macrodipole on the electron-transfer processes. In fact, in 
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biological systems, electron-transfer (ET) reactions efficiently occur along a 
sequential array of redox moieties embedded in polypeptide matrices [7, 8]. These 
polypeptide matrices are generally believed to act not only as scaffolds to fix the 
three-dimensional location of the redox moieties but also as mediators to facilitate 
electron-transfer. α-Helix is the most frequently secondary structure observed in 
such polypeptide matrices and is considered to play an important role in the medi-
ation of electron-transfer.

To study the nature of peptide-mediated electron-transfer processes, radiolysis 
[9, 10] and photoinduced electron-transfer [11] studies in solution (donor–
peptide–acceptor) have been performed, together with theoretical calculations 
[12–14]. These studies have shown that the efficiency of the coupling between 
redox centers is determined by the 3D structure of the intervening peptide matrix, 
the length of the peptide, the nature of the scaffold, and the amino acid sequence 
[15–18]. The presence of hydrogen bonding also influences the electron-transfer 
rates [14, 19, 20]. Furthermore, in the case of α-helical peptides, the ET may be 
strongly affected by the molecular dipole of the helix. It is well known that helical 
peptides have large dipole moments oriented along the molecular axis. When the 
direction of the electron transfer is aligned with the field generated by the dipole, the 
ET rates are usually faster than the ET rates in the against-dipole direction, as 
proved by time-resolved fluorescence measurements for dichromophoric α-helical 
peptides [21, 22]. It was also observed that the molecular dipole of a 310-helical 
secondary structure is minor than that of an α-helix, because of the hydrogen bond 
distortion along the helix in the former structure [12, 87].

Beyond all these results, SAMs functionalized with redox-active species have 
contributed powerfully to characterize ET processes at the nanoscale. The two- 
dimensional organization of peptide SAMs minimizes the conformational freedom 
of the single peptide sequence. In this chapter we will focus on electrochemical 
studies of peptides immobilized on gold electrodes, which led to fundamental 
achievements in the comprehension of charge transfer across biological systems. 
Electrochemical techniques, such as cyclic voltammetry (CV), chronoamperometry 
(CA), and electrochemical impedance spectroscopy (EIS), have been used exten-
sively to study the ET kinetics across peptide SAMs immobilized on gold surfaces. 
In the next section, the basic theory of electron-transfer (section “Peptide Electron- 
Transfer Theory”) and behind each electrochemical method (section “Electrochemical 
Techniques”) will be described.

 Peptide Electron-Transfer Theory

To introduce the basic theory of models used to explain ET across peptide matrices, 
it is possible to refer to a D–B–A system, where D and A are, respectively, an elec-
tron donor and electron acceptor group, while B represents a linear peptide chain. 
One of the mechanisms for peptide ET is bridge-assisted superexchange [16, 23, 24], 
where the bridge is only a medium and electrons (or holes) never stay on the 
bridge. Superexchange (SE) is a coherent tunneling process, which is mediated by 
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virtual states associated to electron (D+–B−–A) or hole (D–B+–A−) transfer. In the 
absence of stepping zones, ET is limited to a maximum distance of about 20 Å. 
In the Marcus–Hush theory of ET reactions [25, 26], the ET rate constant is given by
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where HDA
2  is the electronic coupling matrix, which is the probability that an electron 

tunnels through the D–A potential barrier; ΔG° is the driving force of the ET reac-
tion, i.e., the difference in the oxidation potentials of the D–A pair; and λ is the 
reorganization energy, i.e., the energy needed to bring the nuclei from the position 
of the reactants to the position of the products.

These parameters may be determined by spectroscopic studies of charge-transfer 
band intensities and energies (HDA, λ), structural and vibrational frequency differ-
ences (λ), and electrochemical or other thermodynamic measurements (ΔG°). The 
reorganization energy λ is in general factorized in two contributions: an outer con-
tribution, which takes into account the reorganization of solvent modes around a 
charge-separated (CS) state, and an inner contribution, which takes into account the 
nuclear (vibrational) reorganization of the D–A pair, i.e., λ = λin + λout.

In a description of ET based on quantum theory, Eq. 1 can be written as [25]
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where FCWD is the Franck–Condon-weighted density of vibronic states, i.e.,
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In the case of a molecular bridge composed of n bridge units (n amino acids of a 
peptide chain), the D–A coupling matrix can be factorized in terms of the electronic 
coupling between the donor and the first bridging unit (HD1), the inter-site coupling 
matrix G1n, and the coupling matrix between the terminal bridging unit and the elec-
tron acceptor group (HnA):

 H H G HDA D n nA= 1 1  (4)

G1n is usually expressed as a product of the Green function, calculated at the energy 
state of the donor. Therefore, SE may be considered as a coherent tunneling process 
through molecular orbitals mediated by D+–B−–A (electron-transfer) or D–B+–A− 
(hole transfer) virtual states (Fig. 1).

Within this scheme, the electronic coupling matrix decreases exponentially with 
the distance between the donor–acceptor pair rDA [27, 28]:
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H H r rDA DA DA= - -( )éë ùû

0
0exp b  (5)

where HDA
0  is the value of the electronic coupling matrix at the donor–acceptor con-

tact distance r0 and β is the coupling strength parameter, which is found to be
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from perturbation theory calculations [26], and where l is the length of the bridging 
unit. For long-range ET, β is small and is favored by a strong coupling between the 
bridging units (so a big HBB) and a small energy difference between the donor and 
the virtual states (a small ED-EB). In the case of resonant tunneling (where there is 
no energy gap), distance independence or little decrease of rates with distance is 
expected, introducing to the concept of molecular wires.

So, following the SE model, the ET rate constant would decrease in an exponen-
tial way with the donor–acceptor distance:

 k k k eET tun ET

rDA= = -0 b  (7)

This exponential decrease has been observed in a series of donor–acceptor systems, 
in which the β values are found to be typical of the different molecular spacers. In 
peptide systems, definitely small decay constants have been reported at long dis-
tances: 0.18 Å−1 for helical oligoprolines [29], 0.02–0.04 Å−1 for helical peptides 
[30, 31], and 0.05 Å−1 for collagen-like triple helices [32].

The other mechanism reported in the literature is the electron hopping, where an 
electron is injected from the donor to the peptide bridge and then it hops through the 
peptide bridge to reach the acceptor moiety. This is a thermally activated process, 
involving nuclear motion and electron hopping over the barrier.

Superexchange

log kmax

Distance

e–

E

SA
u

Fe

Fig. 1 Scheme of the superexchange mechanism through a helical peptide immobilized on gold 
surface. The exponential relationship of the electron-transfer rate constant vs. the D–A separation 
is also illustrated (Reprinted with permission from Long et al. [23]. Copyright (2005) Wiley)
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The ET rate constant is described by
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(8)

In the limit of diffusive hopping, the electronic conduction is typical of ohmic ET, 
and the ET rate constant is inversely proportional to the D–A separation [33]:
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where N is the number of hopping sites and ΔEDB is the energy difference between 
the donor and the bridging unit. The electron-transfer rate constant shows an expo-
nential decay by increasing the distance in the tunneling, while it is inversely pro-
portional to the distance in the hopping (Fig. 2). However, both mechanisms are 
always present in each electron-transfer reaction, but the dominant may change, 
depending on the electron-transfer distance and the reaction driving force. In the 
hopping mechanism the driving force is the difference in the redox potentials of the 
donor and acceptor (in the case of a metal, its Fermi level). The tunneling prevails 
when the driving force is large or the ET distance is short.

The hopping mechanism has attracted growing attention in explaining the effi-
cient long-range electron transfer in biological systems such as double strands of 
DNA, in which the charge propagates with the assistance of the π-stacked bases. 
This mechanism is still controversial for peptides, mainly because peptides do not 
have specific “hopping sites,” even if it has been suggested that amide groups, or 
specific amino acids, such as tyrosine or tryptophan, may exploit this function, 

Hopping

kmax

Distance

e–

E

S

A
u

Fe

Fig. 2 Scheme of the hopping mechanism through a helical peptide immobilized on gold surface. 
The linear relationship of the electron-transfer rate constant vs. the D–A separation is also illustrated 
(Reprinted with permission from Long et al. [23]. Copyright (2005) Wiley)
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through aromatic groups. It is now generally accepted that SE and hopping 
mechanisms can operate in a parallel and competitive way [34], i.e.,

 
k k kET SE hop= +  (10)

The main results obtained in solution, studying a diruthenium system bridged by a 
oligoproline spacer of different length, showed a transition from a predominant 
superexchange mechanism to a predominant electron hopping mechanism at a D–A 
distance of 20 Å [29] (Fig. 3). These results were supported by theoretical calcula-
tions carried out by Petrov and May [13].

Experimental results obtained for oligopeptides containing α-aminoisobutyric 
acid (Aib) units by Maran and coworkers did not confirm electron tunneling contri-
butions to the ET rate [35]. The authors supposed that the unusually smooth dis-
tance dependence of the rate constants observed in their experiments resulted from 
the increase of electronic coupling due to the lowering of the energy of the bridge in 
the presence of hydrogen bonds (Fig. 4). This effect counteracted the exponential 
decrease of the rate constant expected for a superexchange mechanism.

As matter of fact, the β values of different peptide chains span the full range from 
saturated to unsaturated hydrocarbon chains. This confirms what is already known 
about ET processes in proteins, where only a multiple pathway approach could 
explain their long-distance character and their efficiency values [36]. Through this 
approach, several mechanisms are taken into account: through-bond ET 
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log(kmax)

8

6

4
5 10 15 20 25

n = 0 - 9

n

Ru(NH3)5

(bpy)2Ru

NH

NN

OO

N

N

ß = 0.18Å–1

ß = 1.4Å–1

30 35

14

Bipyridine Edge-to-Ru(NH2)5 Distance/Å

Fig. 3 Plot of log kmax (radiolysis ● and photolysis ⊠) versus edge-to-edge D–A distance for 
Isied’s oligoproline conjugates (Reprinted with permission from Malak et al. [29]. Copyright 
(2004) American Chemical Society)
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(comprising through-space tunneling), hopping between aromatic side chains, and 
hydrogen bond (HB)-assisted electron-transfer. Therefore, the matrix element for 
the electronic coupling, HDA, should be evaluated by the product of the coupling 
terms for jumps along a σ bond and jumps across the space, eventually mediated by 
aromatic groups or HB shortcuts. The pathway that gives the largest product is taken 
as the optimum one. The agreement with experimental data has been recently 
improved, by taking protein dynamics into account [37, 38].

 Electrochemical Techniques

In this section, the most widely used electrochemical techniques and their basic 
theory will be described (Table 1).

 Cyclic Voltammetry

The most widely used electrochemical technique for SAM characterization is cyclic 
voltammetry (CV). CV is a potential sweep method where the potential of an elec-
trode, which is immersed in an unstirred solution, is varied and the corresponding 
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Fig. 4 Dependence of the intramolecular ET rate constants for p-cyanobenzamide-substituted 
oligopeptides (white, left scale) and phthalimide-substituted oligopeptides (black, right scale) on 
the number of intramolecular hydrogen bonds (Reprinted with permission from Antonello et al. 
[35]. Copyright (2003) American Chemical Society)
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current is measured [46, 39, 40]. The potential of this working electrode is 
controlled versus a reference electrode, such as saturated calomel electrode (SCE) 
or silver/silver chloride electrode (Ag/AgCl). This technique does not require 
expensive or sophisticated instrumentation, and it is therefore widely available.

The most used CV experiment reported in the literature concerns the verification 
of the SAM formation, through blocking experiments [41–43].

In this kind of measurement, the SAM-coated gold electrode is used as working 
electrode and immersed in a solution of a standard redox couple, such as K4[Fe(CN)6]/
K3[Fe(CN)6] or [Ru(NH3)6Cl3]/ [Ru(NH3)5Cl3]. The advantage of this kind of exper-
iment is that also electrochemically inactive SAMs may be analyzed. In the absence 
of the layer, the electrochemical signals corresponding to the oxidation and reduc-
tion species are present. After the SAM formation, in general, there is a decrease of 
the reversible redox peaks, which is proportional to the SAM packing (Fig. 5) [44].

For peptide SAMs functionalized with redox species, CV can be used to deter-
mine kET, λ, and HAB from the electroactive molecule to gold, through the peptide 
film. The values of background and peak currents and the peak potentials may be 
used to determine the rate constant of ET reactions. However, the integrity of 
the monolayer is of great importance in determining the value of the kET, because the 
redox centers should be ideally isolated from one another and local molecular envi-
ronments homogeneous. Some SAM disorder can disperse the value of the mea-
sured rate constants. In Fig. 6 the relevant parameters that can be determined from 
CV data are reported.
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Fig. 5 Cyclic voltammetry experiments in a 0.50 mM K3[Fe(CN)6] aqueous solution: (a) bare 
gold electrode, (b) gold electrode modified by a helical peptide SAM, and (c) gold electrode modi-
fied by an undecanethiol SAM. Sweep rate: 50 mV · s−1 (Reprinted with permission from Gatto 
et al. [44]. Copyright (2007) Elsevier)
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The background current (also defined as charging or capacitive current, ich) may 
be associated with the thickness of the SAMs (Fig. 6). In order to compare differ-
ent values, the double-layer capacitance, CDL, is often normalized to the surface 
area, A [45]:

 

i

A

C

A
ch DL= n  (11)

As the faradic current peak (ip) is directly proportional to the scan rate, υ, as 
described by Eq. 12 [46], the number of the redox-active sites on the surface may be 
determined from the slope of ip versus υ:

 
i

N n F

R T
p u u( ) = × ×

× ×

2 2

4  (12)

where ip is the peak current (anodic or cathodic), υ the voltage scan rate, N the num-
ber of redox-active sites on the surface, n the number of electron transferred, F the 
Faraday constant, R the gas constant, and T the temperature. The surface coverage 
Γ can be determined dividing N by A. This value is often compared to a theoretical 
maximum based on the molecular surface area of the peptide. In particular, for heli-
cal peptides, this value depends on the cross-sectional area of the helix (which is 
0.69 nm2 for a 310-helix and 0.92 nm2 for an α-helix) and on the steric hindrance of 
the electrochemical probe used. By assuming a tilt angle with respect to the surface 
normal of 0° and a close hexagonal packing of the helical peptides, a surface density 
of 21.7·10−11 mol/cm2 and 16.5·10−11 mol/cm2 may be obtained, respectively, for a 
310-helix and α-helix [30]. However, it is generally found that the peptide SAMs are 
never perpendicularly oriented and their axis has a tilt angle of 30–60° with respect 
to the surface normal [30, 47]. As a consequence, the surface density value is 
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reduced, and in order to know the real surface density, the theoretical value should 
be multiplied by the cosine of the tilt angle that the peptide helical axis forms with 
respect to the normal to the gold surface. Also the integration of the background- 
subtracted anodic or cathodic peak in a slow scan rate voltammetry experiment may 
be used to determine the surface coverage [48]:

 
G =

Q

nFA  (13)

where Q is the amount of charge passed during exhaustive electrolysis of the assem-
bly, which may be correlated to the number of the redox molecules.

The peak width is diagnostic of the homogeneity of the monolayer and can be 
evaluated by the full width at half of the peak maximum height (FWHM; Fig. 6, Eq. 14). 
Values of FWHM that are different from the theoretical one (90.6/n mV) have been 
attributed to electrostatic effects incurred by neighboring charged species:

 
FWHM

RT

nF n
mV C= = °( )3 53

90 6
25.

.
 (14)

The redox potential, E0, is the average value of the anodic and cathodic peak poten-
tials, (Epa + Epc)/2, while the peak separation, Ep, is Epa − Epc. In general, when the 
redox species are adsorbed onto the electrode and at low scan rates, the diffusion 
does not play a role, so the peak separation is 0. By increasing the scan rate, the peak 
separation increases [46].

The overpotential η is defined according to Eq. 15 as the difference between peak 
potential Ep and the formal potential of the complex:

 
h = -E Ep

0
 (15)

For each scan rate, ks(η), the rate constant for electron-transfer at a particular over-
potential can be determined. At any point of the voltammogram, the instantaneous 
faradic current is given by [49]:

 
i nFA k kf a red c ox= -( )-G G  (16)

where n is the number of electrons, F is the Faraday constant, A is the area of the 
electrode, ka and kc are the rate constants of anodic and cathodic processes, and Γred 
and Γox are the surface concentrations of the redox centers in the reduced and oxi-
dized state. If the potential is at least 60 mV beyond the formal potential of the 
redox couple, the equation given above reduces to [49]

 
i kQ tf = ( )  (17)

where k = ka for oxidation and k = kc for reduction and Q(t) is the charge correspond-
ing to the quantity of unreacted redox sites in the electrode. The rate at given over-
potential can be calculated by dividing the instantaneous faradic current by Q(t) for 
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that potential. A plot of η vs. log ks(η) is known as a Tafel plot and, importantly, can 
be used to determine kET

0 .
In the case of non-electrochemically active molecules, to determine the surface 

coverage, desorption measurements in a 0.5 M KOH aqueous solution may be per-
formed. This experiment is based on the voltammetric measurement of the charge 
passed for the electron reductive desorption of the gold-bound thiolate layer in an 
alkaline solution:

 
Au s S R ne Au s R Sn n

( ) - + ® ( ) + ( )- -
 (18)

In this equation, n represents the degree of charge transferred between the sulfur 
atom and the surface (for lipoic acid n = 2, while for alkanethiols n = 1).

The surface coverage due to gold-bound peptides may be estimated from the charge 
corresponding to the reductive desorption of the thiol linker from the gold surface. 
A typical CV curve obtained from this experiment is shown in Fig. 7 [50]. When the 
potential is swept to sufficiently negative values, a reduction peak appears, which cor-
responds to the reductive desorption of the sulfur-containing molecules from the elec-
trode surface [50, 51]. The surface coverage of the electrode can be calculated from the 
peak area (i.e., the charge associated with the reduction process).

 Chronoamperometry

Chronoamperometry is a basic potential step method [46]. In a potential step experi-
ment, an overpotential is applied to the working electrode and the current is recorded 
as a function of time. In a double potential-step experiment, the potential is applied 
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was recorded in 1 M KOH (Reprinted with permission from Sek et al. [50]. Copyright (2005) 
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symmetrically around the formal potential of the redox center (Fig. 8). For example, 
if the E0 of the redox center is 0.4 V, the first and second applied potentials would 
be +0.45V and 0.35 V. The potential limits of the electrolyte and electrode must be 
taken into account when setting the potential limits. Importantly, the initial potential 
should be chosen such that all redox centers are in the same oxidation state.

An important aspect is the delay of time between potential steps, which must 
allow for the measurement of the complete current decay. For accurate measure-
ments, the time must be long enough for the faradic current to be separated from the 
charging current (the initial current spike). High charging currents are generated 
initially and decay with time and can therefore be temporally separated from the 
faradic response as long as the time constant for the charging current is smaller than 
the rate constant for the faradic current. Large potential steps can lead to charging 
currents much larger than the faradic currents, complicating data analysis. The 
appropriate time must be determined experimentally by observing the time it takes 
for the current to return to baseline levels.

The measured current and applied potential vs. time are required data for rate 
analysis. The overpotential (η) should be corrected for iR drop. The solution resis-
tance, RS, can be determined using electrochemical impedance spectroscopy (sec-
tion “Electrochemical Impedance Spectroscopy”):

 
h t E t E i t RS( ) = ( ) - - ( )0  (19)

The total current iT is the sum of the faradic and the charging current (if and ich, 
Eq. 20). The charging current ich can be determined as in Eq. 21. CDL can be deter-
mined using electrochemical impedance spectroscopy (section “Electrochemical 
Impedance Spectroscopy”):

 
i t i t i tT f ch( ) = ( ) + ( )  (20)
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Fig. 8 Example of 
chronoamperometric data 
from a double-step 
experiment. After a 
potential step, the current 
decays with time. Q 
represents the total charge 
that has passed to fully 
oxidize or reduce the 
surface species (Reprinted 
with permission from 
Eckermann et al. [45]. 
Copyright (2010) Elsevier)
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i t C

t
ch DL( ) = æ

è
ç

ö
ø
÷

Dh
D  

(21)

The total charge passed, QT, can be obtained by integrating the faradic current over 
the total time as in Eq. 22:

 
Q i t dtT f= ( )ò  (22)

The charge remaining at any given time t is derived from Eq. 23:

 

Q t Q i t dtT

t

f( ) = - ( )ò
0  

(23)

Finally, the apparent rate constant at a given time kAPP is calculated as shown in 
Eq. 24:

 

k t
i t

Q t
APP

f( ) = ( )
( )  

(24)

The rate as a function of time, kAPP(t), may be used rather than rate as a function of 
overpotential, k(η), due to kinetic heterogeneity. A simple way to determine if a dis-
tribution of kinetic sites is present is to plot ln(i) vs. time. If this plot is curved rather 
than linear, then kinetic heterogeneity must be considered [52]. An experimental Tafel 
plot can be generated by plotting each overpotential against the measured kAPP(t).

Another method to analyze CA measurements is described by Finklea [53]. 
In interfacial electron-transfer reactions between the surface-bound redox group 
and the metal, the current i decays exponentially with time following the equation:

 
i i k tET= -( )0 exp  (25)

Where i0 and kET represent the current at t = 0 and the electron-transfer rate constant. 
In general, following the capacitive response, a linear relationship between ln(i) and 
t may be obtained, from which it is possible to determine the electron-transfer rate 
constant [54]. By plotting the ET rate constants vs. positive and negative overpoten-
tials, a Tafel plot may be obtained, from which the k0

ET value may be determined. 
Furthermore, asymmetry in the Tafel plot may be an indication of the helical mac-
rodipole effect on the ET rate constants, for peptides in helical conformation 
[86, 50, 54] (Fig. 9).

 AC Voltammetry

Alternating current (AC) voltammetry is similar to cyclic voltammetry, meaning 
that it is a potential sweep method [46]. A starting potential and ending potential are 
selected, and the corresponding current is measured. In addition to that, a sinusoidal 
component AC (the frequency of which can be varied) of about 5 mV peak-to-peak 
amplitude is superimposed on the potential waveform (Fig. 10a). The measured 
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response is the resulting alternating current (Fig. 10b), but the electrochemical 
response appears as a single peak, since a lock-in amplifier or frequency response 
analyzer allows the component of the current (which is varying sinusoidally) to be 
separated from the dc signal. Passing the signal above through the lock-in amplifier 
provides the magnitude of the change over each cycle, as shown in Fig. 10c.

The electron-transfer rate constants (k0) for immobilized redox centers may be 
obtained using the treatment proposed by Creager and Wooster [55]. This method 
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involves plotting the ratio of the AC voltammetric peak current (ip) to the back-
ground current (ib) as a function of the logarithm of frequency (Fig. 11) and then 
fitting the plot using the complex nonlinear least-squares (CNLS) method of 
MacDonald and Potter [57].

The magnitudes of the fitted circuit elements may be used to calculate the ET rate 
constant using the Randles equivalent circuit model [56]. This circuit (Fig. 11) is 
one of the simplest models for describing ET of a redox species attached to a mono-
layer. It includes a solution resistance (RS), a double-layer capacitance (CDL), a 
charge-transfer resistance (RCT), and an adsorption pseudocapacitance (CAD). The 
double-layer capacity is in parallel with the impedance, due to the charge-transfer 
reaction, and CDL reflects the order of the monolayer and its permeability toward 
electrolyte ions and solvent molecules [58].

The only variables needed for determining kET are the double-layer capacitance 
(CDL), the charge-transfer resistance (RCT), electrode surface area (A), and surface 
coverage Γ. Γ is measured independently using Eq. 13. The four parameters in the 
Randles circuit are given by Eqs. 26–29:
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Fig. 10 (a) AC 
voltammetry wave form 
showing the oscillating 
component of the potential 
sweep (E vs. time), (b) the 
measured current signal vs. 
time, and (c) the data 
representation, AC current 
vs. potential (Reprinted 
with permission from 
Eckermann et al. [45]. 
Copyright (2010) Elsevier)
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Different articles have appeared that take advantage of this approach to measure kET 
in peptide SAMs [47, 56, 59, 60]. There are several advantages of using this method 
to determine kET. First, the input variables (CDL, Γ, A, RS) are easily obtained from 
impedance spectroscopy or cyclic voltammetry measurements. Second, due to the 
high sensitivity of the AC voltammetry method, very low surface coverages can be 
probed. The disadvantage of this approach is that only kET can be obtained; no infor-
mation regarding electronic coupling or reorganization energy can be obtained.

 Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy (EIS) measures the frequency response 
of a system by measuring impedance, Z [46]. The impedance is a measure of the 
ability of a circuit to resist the flow of electrical current, and it is usually measured 
by applying a small alternated current signal over a range of frequencies at a specified 
potential to an electrochemical cell and then measuring the current through the cell. 

Fig. 11 Plot of Ip/Ib vs. log(frequency) for a mixed monolayer consisting of a ferrocene-labeled 
peptide and CH3(CH2)8–SH. Points represent experimental data. The solid line is calculated using 
the Randles equivalent circuit model shown above. CDL is the double-layer capacitance, CAD is the 
adsorption pseudocapacitance, RS is the solution resistance, and RCT is the charge-transfer resis-
tance expressed as RCT = (2RT)/(F2ΓkET). (Reprinted with permission from [56] Sek et al. [56]. 
Copyright (2004) American Chemical Society)
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By applying a sinusoidal potential excitation, the corresponding current response is 
an AC signal. Electrochemical impedance spectroscopy is in general measured 
using a small excitation signal, so that the cell’s response is pseudo-linear. In that 
case, the current response is a sinusoid at the same frequency, but shifted in phase 
(see Fig. 12).

The excitation signal, expressed as a function of time, has the form

 
E Et = ( )0 sin wt  (30)

where Et is the potential at time t, E0 is the amplitude of the signal, and ω is the 
radial frequency. In a linear system, the response signal, It, is shifted in phase (ϕ) 
and has a different amplitude, I0:

 
I I tt = +( )0 sin w f  (31)

An expression analogous to Ohm’s law allows to calculate the impedance of the 
system as
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The impedance is therefore expressed in terms of a magnitude, Zo, and a phase shift, 
ϕ, and it may be expressed as a complex function, where ω is the angular frequency 
of the AC signal:

 
Z Z t i t Z iZRe Imw( ) = ( ) + ( )( ) = -0 cos sinw w  (33)
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Fig. 12 Sinusoidal current 
response in a linear system
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A variation in the frequency value changes the relative contribution of each of the 
elements in the Randles circuit to the overall impedance. For that reason the imped-
ance values are measured over a wide range of frequencies, in order to determine 
the value of each individual element of the Randles circuit.

RS and RCT only contribute to the real component of impedance (ZRe). A resistor 
has no effect on the phase, ϕ, between the voltage and current, so across RS and RCT, 
voltage and current remain in phase (Fig. 13). As shown in Fig. 13, the voltage lags 
the current by 90° across a capacitor, so the voltage and current are out-of-phase 
across CDL and CAD. As such, CDL and CAD contribute to the out-of-phase or imagi-
nary component of impedance (ZIm) [46].

In general, the amount of the impedance (Z) in complex form is given by Eq. 34:

 
Z Z ZRe Im= +2 2

 (34)

The phase of the impedance (ϕ) in complex form is given by Eq. 35:
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Fig. 13 Scheme showing 
the effect of a resistor and 
a capacitor on the phase 
(ϕ) of an alternating 
current (I) with respect to 
the voltage (E). For a 
resistor, current and 
voltage are in phase. For a 
capacitor, voltage lags 
current by 90° (Reprinted 
with permission from 
Eckermann et al. [45]. 
Copyright (2010) Elsevier)
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Electrochemical impedance spectroscopy data are generally plotted in one of two 
ways: a Bode plot or a Nyquist plot [46]. In Bode plots, log |Z| (from Eq. 34) and ϕ 
(from Eq. 35) are both plotted vs. log(ω) [46]. In Nyquist plots (also defined as 
complex-plane impedance plots), the imaginary axis, ZIm, is plotted vs. the real axis, 
ZRe, for different values of ω. Each point of the plot is the impedance at one fre-
quency. For data analysis, Nyquist plots are much more frequently used than Bode 
plots.

When a potential is chosen so that no ET occurs (i.e., away from the E0 of the 
redox species of the monolayer), the faradic component of the Randles circuit 
would not be considered [55]. Only RS and CDL, connected in series, are considered, 
and the impedances are additive. At high frequencies (ω → ∞) there is no time for 
CDL to charge, and the curve approaches the ZRe axis at RS. As the frequency 
decreases there is more time for CDL to charge, and, at low frequencies (ω → 0), the 
main contribution to the impedance is from CDL. In this case the Nyquist plot appears 
with a vertical line, because the impedance contribution from RS is not affected by 
the frequency (Fig. 14).

When a potential where ET occurs is chosen (i.e., at or near the E0 of the redox 
species inserted into the monolayer), the entire Randles circuit is considered. The 
additional RCT and CAD contributions to the impedance complicate the equation rep-
resenting the Nyquist plot. At high frequencies, the plot has the shape of an ellipse 
[55, 61]. As ω → ∞ there is no time for ET to occur (RCT and CAD become negligi-
ble), and there is no time for CDL to charge. Thus, as ω → ∞ the high-frequency 
portion of the ellipse approaches the RS value at the ZRe axis.

Equation 36 shows which is the center of the ellipse situated on the real axis:
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Fig. 14 Example of a 
Nyquist plot for a series 
circuit containing only RS 
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RS as ω → ∞ (indicated by 
the arrow). For reference, 
points are shown at 
ω = 0.01 and 0.1 (Reprinted 
with permission from 
Eckermann et al. [45]. 
Copyright (2010) Elsevier)
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Equation 37 shows the maximum of the ellipse on the ZIm axis is
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As shown in Eq. 38, the point at which the ellipse would cross the ZRe axis at low 
frequency (ω → 0) is
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However, at low frequencies, the Nyquist plot ellipse never approaches the ZRe axis. 
Instead, the plot becomes a vertical line with an increasingly large ZIm component, 
as the CDL and CAD contributions dominate the impedance. If the vertical line con-
tinues to the ZRe axis, the intercept would be at the same point where the ellipse 
would cross the ZRe axis as ω → 0 (Eq. 38, Fig. 15).

In this case, RS can be directly measured, but fitting programs, typically supplied 
with the potentiostat software, are typically used to determine the values of CDL, CAD, 
and RCT. Once these parameters are known, kET can be determined using Eq. 39:
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Copyright (1979) Elsevier)
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A number of articles have appeared that take advantage of using EIS to measure kET in 
peptide SAMs [30, 59, 60, 62–64]. Electrochemical impedance spectroscopy experi-
ments are very useful, as it is possible to measure several different parameters in one 
experiment. However, the nonideal behavior of the system under study may cause 
some problem. For example, nonideal behavior can dramatically modify the values 
obtained from analysis based on the Randles circuit model. In this case, in order to 
obtain accurate data, these non-idealities must be addressed. One way to do this is the 
use of additional circuit elements. For peptide SAMs, in general, a constant phase ele-
ment (CPE) is added, which acts as a nonlinear capacitor and accounts for the inhomo-
geneity on the electrode surface [60, 62]. The lesser the film capacitance, the higher the 
film thickness or compactness. Higher-frequency power (n) indicates more order. The 
diameter of the semicircle in a Nyquist plot is the measure of the charge-transfer resis-
tance (RCT), which is inversely proportional to the ET rate. RSOL is the interfacial resis-
tance through the SAM, and although its correct nature is unknown, it has been a 
consequence of the orientation of the dipoles in the SAM structure [65].

 Photocurrent Generation Measurements

Photocurrent generation (PG) measurements of peptide SAMs are in general carried 
out in an aqueous solution of Na2SO4 (0.1 M) containing an electron donor (in gen-
eral triethanolamine, TEOA) or acceptor (in general methyl viologen (MV2+)), 
using the same three-electrode setup described in the other electrochemical mea-
surements. The experiment consists in the measurement of the current generated 
after illumination of the SAM-covered working electrode with a high-power lamp 
(in general a xenon lamp). The lamp should be equipped with a monochromator, in 
order to select the excitation wavelength (Fig. 16). Generally, in the presence of an 
electron donor in solution, an electron-transfer (ET) process from the photoexcited 
chromophore to the gold surface is observed. If an electron acceptor is present in 
solution, the current direction is reversed, and the electron-transfer process occurs 
from the gold surface to the chromophore.

A typical time course of photocurrent upon photoirradiation of the peptide SAM 
at different wavelengths (15 nm bandwidth) in the presence of TEOA is shown in 
Fig. 17, where repeated on–off cycles of photoexcitation, each one 30 s long, are 
reported. To confirm that the chromophore inserted into the peptide is responsible 
of the current measured, in general, the action spectrum, i.e., the photocurrent 
response vs. the excitation wavelength, of the SAM is compared to the chromo-
phore absorption spectrum. If they overlap, this demonstrates that the chromophore 
(chr) used is the photosensitizing species.

The mechanism of photoactivated generation of a cathodic current in an electro-
chemical cell with an electron acceptor in solution (methyl viologen (MV2+)) 
proceeds through the following steps (Fig. 18). Upon photoexcitation of the chro-
mophore (chr → chr*), ET from the singlet excited state to MV2+ readily occurs 
(step I), followed by ET from gold to the chromophore radical cation (step II). The 
reduced viologen diffuses to the auxiliary electrode, and the transferred electron 
closes the circuit, giving rise to a net electronic current (step III).
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In the presence of an electron acceptor in solution (TEOA 50 mM), an anodic current 
is measured, as a result of a chr* → Au ET, followed by TEOA → chr+∙ ET (Fig. 19).

The second step in cathodic and the first step in anodic condition most likely 
represent the rate-limiting steps of photocurrent generation, because of the long 
distance between the gold surface and the photoactive probe. In general the anodic 
photocurrent intensity decreases by decreasing the bias to the gold electrode, reaching 
a value of zero at a certain potential (zero current potential, zcp). A bias decrease 
reduces the energy gap between the oxidation potential of chr* and the Fermi level 
of gold, resulting in a lower anodic photocurrent.

The efficiency of the process may be determined by the incident photon-to- 
current efficiency (IPCE), described by the following equation:
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Fig. 17 Time course of the photocurrent of a bicomponent peptide SAM in an aqueous TEOA solution 
at 0 V vs. Ag/AgCl upon photoirradiation at different wavelengths (every 10 nm from 295 to 355 nm) 
(Reprinted with permission from Gatto et al. [51]. Copyright (2012) American Chemical Society)
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where i is the measured photocurrent, I is the incident light power density, and λ is 
the incident wavelength. The intensity of the incident light may be measured using 
a power meter or evaluated by azobenzene actinometry [66].

 Peptide-Based SAMs

In general, peptides form tightly packed SAMs depending on their length and 3D 
structure. Typically, short peptides are very flexible; they populate several conforma-
tions, rapidly interconverting between the different conformers. For this reason, they 
form poorly packed films that show a large degree of inhomogeneity and have up to 
15 % vacant gold sites [23]. On the contrary, longer helical peptides form ordered 
and densely packed films. However, not only the length of the peptide primary 
sequence but also the type of secondary structure attained by the peptide chains and 
the presence of aromatic groups in the molecules influence the order and packing of 
the corresponding SAM. We have recently demonstrated that also six-residue- long 
peptides possess very good self-assembly properties if they are folded in 310-helical 
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Fig. 18 Schematic illustration of cathodic photocurrent generation by a chromophore-containing 
peptide SAM in the presence of MV2+. MV2+ reduction potential is referred to an Ag/AgCl refer-
ence electrode
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chr+./chr∗Fig. 19 Schematic 
illustration of anodic 
photocurrent generation by 
a chromophore-containing 
peptide SAM in the 
presence of TEOA. TEOA 
oxidation potential is 
referred to an Ag/AgCl 
reference electrode
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conformation, and that if they are functionalized with properly arranged aromatic 
chromophores, these properties can be extremely improved [44, 67, 68]. A marked 
restriction on the available ϕ, ψ space, constraining short peptides to populate helical 
conformations, may be imposed by using Cα-tetrasubstituted amino acids [69], thus 
conferring stability to peptide 3D structures and, consequently, making helical pep-
tides good candidates as building blocks for the construction of self-assembled nano-
structures. The most extensively used and investigated residue of this group is the 
α-aminoisobutyric acid (Aib, also known as 2-methylalanine).

Furthermore, it is well known that helical peptides have a large macrodipole 
moment (3.5 D per residue, [70]) which is oriented parallel to the molecular axis 
(directed from the C- to the N-terminus). In protein organization and function, 
where helical segments aggregate to populate supramolecular structures, this can 
have a great impact. For this reason, also the SAM package can be influenced by the 
direction of the molecular dipole moment. Furthermore, it has been demonstrated 
that the direction of the electron-transfer processes is influenced by this parameter. 
Indeed, several papers demonstrated that electron-transfer (ET) processes occur 
more rapidly from the C- to N-terminus direction than along the opposite direction, 
both in solution [21, 22, 87] and on surface [50, 71, 84]. Moreover Miura et al. [72] 
reported important surface potentials for oriented polypeptide SAMs.

 Electrochemistry of Peptide-Based SAMs

Electrochemical techniques have been widely used to investigate the kinetics of 
electron-transfer through self-assembled monolayers (SAMs) of molecules linked 
to gold surfaces through a gold–thiolate bond [45]. SAMs can serve as useful model 
systems for studying the kinetics of mediated electron-transfer. In particular confor-
mationally constrained peptides are ideal candidates for ET studies, since they pos-
sess a well-defined rigid secondary structure and can serve as starting point for a 
comprehensive study of the influence of peptide secondary structure on ET rates.

The first report in this field appeared in 2002 [73], where Galka and Kraatz syn-
thesized and characterized a series of ferrocenoyl–oligoproline–cystamines 
[Fc–Pron–CSA]2 (n = 0–6) in order to study the influence of peptide secondary 
structure on ET rates. Oligoprolines are good candidates to do that, since they pos-
sess a defined secondary structure (polyproline II, 3.1 Å per proline residue). They 
immobilized these systems on gold microelectrodes and characterized them by cyclic 
voltammetry. Each peptide SAM exhibited a well-defined and fully reversible one- 
electron oxidation. The linear relationship between the peak currents and the sweep 
rates indicated that the Fc-peptides were surface bound, while from the integration 
of the oxidative peaks they evaluated the mean molecular area.

They obtained ET rates from the cyclic voltammograms at variable scan rates by 
the Butler–Volmer formalism. These values are reported in Fig. 20, as a function of 
the length of the peptide spacer. Although they observed an exponential decrease 
with increasing number of proline residues, the decrease was less pronounced than 
expected for the Marcus through-space electron-transfer mechanism, suggesting a 
through-bond mechanism.
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The experimental β value was 0.12 Å−1, which was much lower than the one 
estimated for proteins in this secondary structure, but very similar to the one 
obtained for a very similar proline-based peptide systems by pulse radiolysis, where 
a combined through-space and through-bond mechanism was proposed.

One year after, Kimura and Morita studied 16-residue-long helical peptides [74]. 
The peptides were composed of eight (Leu-Aib) repeating unit, with a lipoic acid to 
bind gold surfaces and a ferrocene electrochemical probe at the C-terminus 
(SSL16Fc) and N-terminus (FcL16SS), to evaluate the effect of the peptide macro-
dipole on the electron-transfer process. Cyclic voltammetry experiments showed 
that the ferrocene was able to transfer one electron through the peptide bridge, even 
at a distance of more than 4 nm (Fig. 21).

Furthermore, by chronoamperometry measurements, they have been able to 
determine the electron-transfer rate constants for this process, the standard values 
being 0.68 s−1 for the FcL16SS and 2.0 s−1 for the SSL16Fc. These values were 
much larger than the calculated value of 0.003 s−1, obtained by assuming a pure 
superexchange mechanism. The calculation was carried out using an exponential 
decay as function of the peptide length:
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Fig. 20 Dependence of 
the electron-transfer rate 
on the length of the 
oligoproline spacer. Curve 
fit: kET = 15.8886 
exp(−0.1175xd) for kET 
[=10-3 s-1] and d (Å), 
correlation R2 = 0.9994 
(Reprinted with permission 
from Galka and Kraatz 
[73]. Copyright (2002) 
Wiley)

Fig. 21 Schematic illustration of the helical peptide on gold surface, studied by [74] (Reprinted 
with permission from Morita and Kimura [74]. Copyright (2003) American Chemical Society)
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k0
ET represents the preexponential factor, βA and βB are the tunneling constants per 

atom number, and nA and nB are, respectively, the atom number of the methylene chain 
and amide group not involved in the peptide chain. k0

ET, βA, and βB were taken to be 3 
108 s−1, 1.2, and 0.5, respectively [75]. β’C is the tunneling constant per length for the 
helical peptide chain, and it was reported to be 6.6 nm−1 [11], nA = 7, nB = 2, and 
dC = 2.4 nm (0.15 nm for each residue in helical conformation). Furthermore, the dif-
ference found for the standard electron-transfer rates in the N- or C-terminal ferro-
cene-bound peptides suggested that the positive partial charge at the N-terminal of the 
helical peptide in the SSL16Fc should have lowered the barrier height at the interface 
between the gold and the peptide layers. The same asymmetry of electron transmis-
sion through helical peptides monolayers on gold surfaces was found by Bilewicz and 
coworkers [50]. They studied the electrochemical properties of monolayer- modified 
electrodes by cyclic voltammetry and impedance spectroscopy. In particular, they 
have studied a polyalanine peptide, containing a cysteamine linker and a ferrocene 
electrochemical probe. For electrochemical measurements, they have prepared a two-
component electroactive SAM, containing 0.05 mM of peptide diluted into 0.95 mM 
of octadecanethiol. From cyclic voltammetry measurements performed in HClO4 sup-
porting electrolyte, the signal corresponding to the one-electron redox process of the 
Fc/Fc+ couple was clearly visible. They found a linear relationship between the peak 
current and the scan rates, indicating that the electron-transfer process originates from 
the surface-bound redox center. From the area of the cyclic voltammetric peak corre-
sponding to the oxidation of ferrocene centers, they found a surface coverage of 
poly(l-alanine) peptide of 7.4 10−12 mol/cm2. As the maximum coverage for this pep-
tide was estimated to be 3.1 10−10 mol/cm2, the electroactive component within the 
monolayer was calculated to be 2 %.
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Fig. 22 Tafel plot at low overpotentials obtained for mixed SAMs of electroactive polyalanine 
and n-octadecanethiol (Reprinted with permission from Sek et al. [50]. Copyright (2005) American 
Chemical Society)
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From cyclic voltammetry they also determined the electron-transfer rate con-
stants by the Butler–Volmer formalism, from which they built a Tafel plot (Fig. 22). 
By extrapolating of ln k to zero overpotential, the standard rate constant for electron- 
transfer through poly(l-alanine) was found to be k0 = 0.30 ± 0.08 s−1. From this 
value, by knowing the peptide length (28.5 Å), they calculated a tunneling coeffi-
cient of 0.73 ± 0.01 Å−1.

The asymmetry of the Tafel plot, where at a given absolute value of overpotential 
the kc were higher than the ka, was ascribed to the helical macrodipole, which 
favored the reduction process (negative overpotentials), where the electron-transfer 
direction was from the C-terminal to the N-terminal (see Fig. 23).

The average ratio of cathodic and anodic rate constants kc/ka was 1.43 ± 0.07. 
This value was not as large as that observed in solution by time-resolved measure-
ments for dichromophoric α-helical peptides ([21, 22] in this case the ratio ranged 
from 5 to 27).

The same result was obtained by us some years after [86], studying a hexapep-
tide, in a 310-helical conformation. The system studied was composed of three Aib, 
two Ala, and a 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid 
(TOAC) residues. TOAC is characterized by a nitroxide group, a stable radical spe-
cies that endow the molecule with peculiar redox activity. For this reason, TOAC 
has been extensively used as a probe in electron spin resonance and fluorescence 
studies. Cyclic voltammetry experiments performed at various sweep rates (Fig. 24a) 
showed that the oxidative peak current, as obtained by subtraction of background 
current from the oxidative peak current, linearly increased with the scan rate 
(Fig. 24b). This result supported the idea that the observed redox peak arose from 
the surface-bound TOAC moiety, because according to Fick’s law, for a diffusion- 
limited process, a dependence on the square root of the scan rate would have been 
observed. Some diffusion of the peptide TOAC moiety to the gold surface by bend-
ing motions of the peptide chain was also ruled out, because conformationally con-
strained helical peptides have a rigid cylindrical structure in a well-packed 
monolayer. The measured standard potential (0.60 V vs. SCE) was very similar to 
that determined in solution, suggesting that the peptide layer caused only a 
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Fig. 23 Scheme 
illustrating directional 
dependence of electron- 
transfer through 
polyalanine derivative 
(Reprinted with permission 
from Sek et al. [50]. 
Copyright (2005) 
American Chemical 
Society)
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relatively small interfacial potential drop. At sufficiently slow scan rates, i.e., under 
reversible condition, typically 0.1 V/s or slower, the cyclic voltammograms of the 
monolayer were ideal: peak splittings (ΔEp) were very small (0 V within experi-
mental uncertainty ± 4 mV) and the peak half-width was 90 mV. This meant that all 
the redox centers were in a rather uniform environment, as that provided by an 
ordered film, even for a so short peptide. A disordered electroactive monolayer 
should have exhibited a set of formal potentials due to the varying dielectric con-
stant around the redox centers.
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From the slope of Ip vs. v, a surface coverage of 14.4·10−11 mol/cm2 was obtained, 
in good agreement with that estimated by assuming closely packed 310-helical pep-
tide, not vertically oriented. In order to characterize the electron-transfer process 
from TOAC to the gold electrode, chronoamperometry experiments were carried 
out. The through-space distance from the electrochemical probe to the gold surface 
was estimated to be around 17 Å. This value was obtained by considering the lipoic 
acid in all-trans conformation and the peptide as a rigid 310-helix (2.0 Å rise per resi-
due) tilted with respect to the normal surface by 40°, as suggested by IR-RAS mea-
surements. Experimental I-t, i.e., current intensity vs. time, curves in the 2–200 μs 
time region were collected at positive (TOAC oxidation) and negative (TOAC+ 
reduction) overpotentials, as shown in the Tafel plot reported in Fig. 25.

Interestingly, also in this case, the corresponding Tafel plot showed that the kET 
values obtained in oxidative (anodic, ka) conditions were always bigger than those 
obtained in reductive (cathodic, kc) conditions. The electron-transfer standard rate 
constant extrapolated at zero overpotentials was kET

0 =9.2 ± 0.1 s−1. This effect was 
attributed to the electrostatic field associated to the helix dipole, which favored 
anodic ET to the gold surface (in this case the peptide was bound at the 
N-terminal). Nevertheless, the ratio between the anodic and cathodic rate con-
stants (ka/kc = 1.19 ± 0.05) was found to be definitely smaller than that observed in 
α-helical peptides, probably because of the distorted H-bond pattern of 310-helix 
with respect to α-helix, giving a smaller molecular dipole, as theoretically supposed 
by Shin and coworkers [12].

The dipole moment effect on the electron-transfer rate constant was investigated 
by electrochemical methods also by Watanabe and coworkers [54]. They studied a 
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Fig. 25 Dependence of 
the ET rate constant on the 
applied overpotential (V) 
for TOAC oxidation (filled 
squares) and TOAC+ 
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the gold electrode through 
the SSA4TA SAM 
(Reprinted with permission 
from Gatto et al. [86]. 
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series of octadecapeptides carrying a ferrocene moiety and a sulfur-containing 
group at the respective terminals, in order to study the effect of dipole moment, 
linkers, and chromophores at the side chains, on long-range electron-transfer rate 
constants. An alternating sequence of l-alanine and α-aminoisobutyric acid in the 
main chain was interrupted by insertion of l-glutamic acid derivatives at two posi-
tions (5 and 14). To evaluate the effect of the first parameter (dipole moment), two 
peptides, differing only for the position of the ferrocene–lipoic acid groups along 
the helix dipole, were studied: the SS18Fc peptide, with the disulfide group at the 
N-terminal, and the Fc18SS with the same group at the C-terminal. This caused the 
opposite direction of the dipole moment, when the peptides were immobilized on 
gold. By cyclic voltammetry and chronoamperometry experiments, they found that 
long- range electron-transfer over 40 Å occurred and that the ferrocene standard 
redox potential was independent of the dipole direction. Also in this case the elec-
trostatic field of the helix dipole was found to affect the ET process (kET = 42 s−1 for 
the peptide functionalized with ferrocenyl at the C-terminus, to compare with 
kET = 28 s−1 for the N-terminus derivative).

Furthermore, a very weak dependence of the ET rates on the applied overpoten-
tial was found. This was again explained by a hopping mechanism through the 
amide groups in the helical backbone. Accordingly, they calculated the ET rate 
constants by assuming a pure SE mechanism (see section “Peptide Electron-
Transfer Theory”), and they found that these values were order of magnitudes 
lower than those obtained by experimental data (i.e., 42 s−1 and 28 s−1 vs. 0.0005 s−1 
for the two octadecapeptides investigated). Also in this case, the plausible hopping 
sites were suggested to be the amide groups, because of their regular arrangement 
and proximity (they are strongly electronically coupled). The carrier was con-
sidered to be a hole because the amide LUMO (−1.2 V) is so high that electron 
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Fig. 26 Energy diagram 
for the long-range 
electron-transfer from the 
ferrocene moiety to gold 
through the helical peptide 
through a hopping 
mechanism. The amide 
groups were suggested to 
be the hopping sites 
(Reprinted with permission 
from Watanabe et al. [54]. 
Copyright (2005) 
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Society)
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injection from the HOMO (−5.1 eV) of ferrocene to the amide group was supposed 
to be very unlikely (Fig. 26).

Therefore, the overall ET was composed of three steps: from the ferrocene moi-
ety to the nearest amide group (−6.5 eV), electron hopping among the amide 
groups, and electron-transfer to gold from the nearest amide group. This last pro-
cess can be further divided into two processes: i) ET from the amide HOMO level 
(−6.5 eV) to the S-atom (−5.5 eV) and ii) ET from the S-atom to gold (−5.1 eV). 
To investigate the effect of the linker on the ET rates, two peptides having different 
linkers to connect the helical peptides to gold were analyzed. The substitution of a 
phenylene spacer to a methylene group fastened the ET rate constant from 42 s−1 to 
257 s−1, suggesting the electron-transfer between the sulfur atom and the molecular 
terminal of the helical peptide to be the rate-determining step. As matter of fact, the 
same peptide system, but having two pyrenil groups linked to the side chains of the 
glutamic acid residues, did not show an appreciable increase of the ET rate con-
stants. This was explained considering that even if the two pyrenil groups could 
facilitate electron-transfer through the peptide part, the rate-determining step was 
not electron hopping among the amide groups, but the electron-transfer localized 
near the gold surface. Based on these results, the authors predicted that the elonga-
tion of the peptide chain would not have severely reduced the electron-transfer 
rate. They demonstrate this finding some years after, with α-helical peptide self-
assembled monolayers of 100–120 Å length [63, 64]. The peptide building blocks 
studied were composed of 4, 8, 16, 24, 32, and 40 consecutive Ala-Aib dyads, a 
lipoic group at the N-terminus for immobilization on gold and a redox-active fer-
rocene unit at the C-terminus. They found that the tilt angle of the helices from the 
surface normal decreased as the chain was elongated, suggesting the helices to be 
more vertical (Fig. 27).

Blocking experiments performed in a ferrocyanide solution confirmed the well- 
packed properties of all the monolayers. Cyclic voltammetry experiments showed a 
reversible peak associated to the ferrocenium/ferrocene redox pair with a formal 
potential of 0.45 V for all the SAM analyzed, clearly demonstrating that ET across 
the peptide SAM over such long distances was possible, even for the longest peptide 
[64]. Standard ET rate constants were determined by EIS measurements. By plot-
ting the log k0

ET versus the film thickness determined by ellipsometric measure-
ments, a nonlinear relationship was obtained, indicating that the electron-transfer 
was not solely governed by electron tunneling (Fig. 28a). They found instead a 
linear relationship between the inverse of the square root of k0

ET versus the film 
thickness (Fig. 28b), suggesting a hopping mechanism to be operative [76].

Theoretical calculation on the standard ET rate constants, able to perfectly repro-
duce the experimental data, showed that the hopping mechanism was dominant in 
all the SAMs, even for the shortest one. As far as the longest peptide was concerned, 
they found a wide variation in the k0

ET values over 2 orders of magnitude (0.1–10s−1). 
However, considering a pure superexchange tunneling mechanism, the ET rate con-
stants should have had insignificant values (10−21–10−47 s−1). For this reason this 
finding was taken as a strong evidence of a predominant hopping mechanism, where 
it is supposed that an electron was transferred from the N-terminal amide group to 

16 The Electrochemistry of Peptide Self-Assembled Monolayers



538

the gold surface, generating an amide cation radical (hole) that hopped through the 
amide groups to reach the C-terminus, which was at the end reduced from the fer-
rocene unit. Also temperature-dependent EIS measurements allowed to determine 
the kET

0 at different temperatures, from which it has been possible to determine the 
ET activation energies (Ea = 0.45–0.73 eV). These values compared very well with 
the theoretical value of Ea = 0.63 eV obtained supposing a hopping mechanism, 
while the value reported for the tunneling mechanism was 0.2 eV. The predominant 
mechanism was thought to be the intramolecular pathway, which is characterized by 
the hopping process across the amide sites of a single peptide chain. However, also 
other pathways, such as through-space intermolecular mechanism and HB-mediated 
ET, should have been considered. Interestingly, electrochemical impedance spec-
troscopy experiments indicated that as the capacitance increased, ET was acceler-
ated, showing saturation at high capacitances. This finding suggested that the loose 
packing of the monolayer, due to the dynamics of some peptide chains, could posi-
tively affect the ET rate (activated hopping mechanism). The effect of structural 
fluctuations on the electron-transfer processes was firstly proposed by Kraatz and 
Mandal in 2006 [62]. In this contribution they have studied three 
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18-residue- containing peptides, all equipped with a cysteine sulfhydryl group to 
bind gold  surfaces, one of them containing a ferrocene probe at the C-terminal 
(Fc18L). The other two peptides differed for the position of the Cys residue: Ac18L 
had it at the C-terminal, while 18Lac at the N-terminal. They prepared two kinds of 
films: one consisting of Fc18L and Ac18L (5:95), where the dipole moment of all 
the peptides was aligned parallel (SAM1), while the other (SAM2) was composed 
of Fc18L, Ac18L, and 18LAc (5:45:50), where the peptide dipole moment was 
antiparallelly aligned (Fig. 29).

By IR-RAS measurements, they found that the SAM2 had a lower tilt angle, 
consistently with a more compact packing of the peptides, due to the antiparallel 
arrangement of intermolecular macrodipoles. Using cyclic voltammetry and 
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electrochemical impedance spectroscopy, it was found that ET kinetics were slower 
in the antiparallel (SAM2, kET = 1.2 10−3 s−1) than in the parallel (SAM1, kET = 1.5 10−2 
s−1) dipole arrangement, which was ascribed to a more restricted motion due to 
stronger intermolecular interactions between opposing dipoles. EIS experiments 
confirmed this hypothesis, giving a RCT and RSOL values higher for the SAM2 if 
compared to one obtained with the SAM1. Thus, a gated ET mechanism was pro-
posed, on the basis that the parallel dipole arrangement facilitates the ET between 
the gold surface and the Fc label.

Interestingly, the CPE value, which accounts for the film thickness, was lower 
for the SAM2, indicating higher film thickness or more compactness. The same 
group found some year after, by electrochemical surface plasmon resonance, that 
after ferrocene oxidation, SAM2 gave rise to a great change in the peptide film 
thickness due to the electrostatic repulsion between the electrogenerated ferroce-
nium moiety and the positively charged gold surface, while the greater permeability 
of SAM1 to electrolyte anions appeared to effectively neutralize this electrostatic 
repulsion [77]. Furthermore, by measuring SPR angular changes concomitant with 
potential steps, they have been able to determine the time scale for the redox-
induced film reorganization event, estimating the time constants for the anodic pro-
cess to be 16 and 6 ms for SAM1 and SAM2 (Fig. 30). These values indicated that 
the SAM thickness changes were fast.

In the same year, after the introduction of molecular motion-assisted ET mecha-
nism, Takeda and coworkers proposed the occurrence of a molecular motion- 
assisted hopping mechanism [60].

By electrochemical techniques, they investigated the effects of different constit-
uent amino acids, molecular packing, and molecular orientation, on long-range ET 
through helical peptide monolayers. In particular, they used helical peptides with a 
thiophenyl group at the N-terminus and a redox-active ferrocene moiety at the 
C-terminus, immobilized on gold electrodes. They studied two hexadecamer pep-
tides, the primary sequence being composed of eight L-Leu-Aib and L-Ala-Aib 
repeats. ET rate dependence on the peptide sequence was studied by investigating 
ET from ferrocene to gold. The isobutyl side chain of Leu is much more bulky than 
the methyl, making the peptide backbone separation in the Leu-Aib SAM larger 

Fca b Fc

ψ ψ

Fig. 29 Schematic depiction of peptide monolayers on gold surfaces, indicating the direction of 
the peptide dipole moments. (a) SAM1 and (b) SAM2 (Reprinted with permission from Wain et al. 
[77]. Copyright (2008) American Chemical Society)
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than the separation obtained in the Ala-Aib SAM. However, the Leu-Aib peptide 
formed a tightly packed monolayer through interdigitation among the Leu side 
chains. CV, CA, and EIS measurements showed that ET was definitely slower in the 
Leu-Aib peptide SAM than in the Ala-Aib peptide SAM. The standard ET rate con-
stants obtained from EIS experiments were 46 ± 5 s−1 vs. 603 ± 289 s−1, while those 
from CA experiments were 50 ± 6 s−1 vs. 889 ± 300 s−1. They prepared and character-
ized also three mixed monolayers wherein one component was the ferrocene- labeled 
Ala-Aib peptide and the others were three different peptides, having different 
lengths (8mer, 12mer, and 16mer) and lacking the ferrocene moiety. The bicompo-
nent SAMs had opposite dipole moments when immobilized on gold (Fig. 31). The 
same electrochemical experiments, performed on the bicomponent Ala-Aib SAMs, 
suggested also that ET was accelerated as the monolayer became less packed. The 
monolayer regularity in terms of molecular orientation and packing was higher 
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roughly in the order of the monolayers mixed with 16mer > 12mer > no additive > 8mer, 
but the electron-transfer became faster in the opposite order.

A general conclusion was that more vertical orientation and tighter packing sup-
pressed the electron transfer. Furthermore, the observed ET appeared to occur inter-
molecularly. In the case of the Leu-Aib peptides, the slower ET rates were interpreted 
as the result of the larger separation among the peptide chains, giving rise to less 
probable electron tunneling or suppression of interchain hole hopping among the 
amide groups. A tight molecular packing could have been also responsible for 
dynamical effects, i.e., restricted molecular motions lowering the ET process in a 
tight monolayer.

In the case of the bicomponent SAMs, three mechanisms were proposed to 
explain this molecular dynamic effect: electron tunneling gated by global helix 
motion, electron tunneling coupled to helix conversion from α-helix to 310-helix, 
and hole hopping assisted by local motion of the peptide chain (Fig. 32).

The first mechanism hypothesizes that collective vibrations of the C–C and C–N 
bonds of the peptide backbone generate global motions such as stretching, contrac-
tion, bending, and other deformation of the helix. During these global motions, a 
specific conformation enabling a strong electronic coupling through the peptide 
bridge is formed, when an electron instantly tunnels to the bridge. However, the 
authors excluded the global bending of the helix (Fig. 10a, right). In the second 
mechanism, the electrostatic repulsion between the oxidized ferrocene cation and 
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Fig. 31 Schematic illustration of the helical peptide SAMs studied by [60] (Reprinted with per-
mission from Takeda et al. [60]. Copyright (2008) American Chemical Society)
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the positively biased metal surface should stretch the α-helix to 310-helix. The third 
proposed mechanism was that, following ET from the nearest amide group to gold 
via the sulfur atom to form a cation radical of the amide group (hole), the hole 
hopped among the amide groups until it reached the ferrocene moiety. This was the 
most probable mechanism, as confirmed by these groups in later publications. [63, 64]. 
Interestingly, Schlag and coworkers [78] demonstrated by theoretical calculations 
that when a hole was transferred from one amide group to the other, the dihedral 
angles of the peptide backbone notably changed to an active conformation. In this 
conformation, there was a strong electronic coupling between the neutral and 
cationic radical of amide groups, producing an almost negligible activation barrier. 
Tight molecular packing of the monolayer might hinder local vibrational motions at 
the interface and along the peptide backbone and reduce the hole hopping process, 
thus lowering the overall ET rate.
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One year after the same group indicated that the hole hopping was the most 
probable mechanism in helical peptide SAMs, investigating the effect of the linker 
molecule on monolayer formation and long-range ET. The linker structure was 
found to influence the monolayer orientation, packing, and dynamics. Furthermore, 
by changing the linker, the ET rate through the SAM/metal junction may be modi-
fied, because of the different electronic coupling between the redox unit and the 
electrode. In this work, helical peptides composed of sixteen residues, formed by 
alternated sequences of L-Leu and Aib, and functionalized by a ferrocenyl redox 
unit at the C-terminus and three different linkers at the N-terminus for immobiliza-
tion on gold were synthesized. The linkers were 4-thiobenzoic acid (NL), 3-fluoro-
4- thiobenzoic acid (FL), and 2-methoxy-4-thiobenzoic acid (ML) in the 
acetyl- protected form. The ET rate constants were determined by CA and 
EIS. Comparable values were obtained for the three different SAMs, i.e., kET

0 
=11.3 ± 1.9 s−1(NL), 12.0 ± 2.0 s−1 (FL), and 14.4 ± 0.8 s−1(ML). They supposed that 
since the HOMOs of both the linkers and the amide groups are closer to the gold 
Fermi level than their LUMOs, the ET process is thought to proceed via hole 
charge carriers. Their theoretical calculations demonstrated that the hopping mech-
anism was more probable than electron tunneling. After that, this group always 
supported hole hopping mechanism in peptide SAMs, even for an eight-residue 
peptide [63], even if never excluding the potential influence of molecular dynamics 
in this hopping process.

In 2004, also a series of oligoglycine derivatives (with two to six residues) func-
tionalized at the N-terminal with a Fc unit and at the C-terminal with a cysteamine 
linker were self-assembled on gold in the presence of selected alkanethiols in order 
to form mixed monolayers [56]. The properties and electron-transfer behavior of the 
monolayer assemblies were investigated using electrochemical methods. It was 
found that the rates of electron-transfer through oligoglycine bridges, determined 
by dc cyclic voltammetry and AC voltammetry experiments, decreased rapidly with 
distance only for short-chain derivatives (two–four amino acid residues), while for 
the longer bridges (five and six amino acid residues), the distance dependence was 
weaker, and the rates were faster than expected on the basis of extrapolation of the 
rates for the shorter oligoglycines. Differences in the secondary structure of the 
peptide bridges (from polyproline I to polyproline II) and the change of the electron- 
transfer mechanism (from superexchange to hopping) were considered as possible 
reasons of the increase of the rate constants observed for longer peptide chains. The 
first interpretation was supported by theoretical investigations reported by Shin and 
coworkers [12], while the second one by theoretical investigations of Petrov and 
May [13]. Interestingly, some year after, Mandal and Kraatz studied a set of SAMs 
of leucine-rich ferrocene-labeled helical peptides diluted in a ferrocene devoid pep-
tide and compared their results with the one obtained by Sek and coworkers on the 
oligoglycine SAMs [31]. By CV and EIS they determined the kET

0 values, and by 
plotting these values vs. the peptide spacer length, they found a very weak distance 
dependence. This has been interpreted as a result of a dynamically controlled tun-
neling mechanism. Furthermore, by combining their results with the one obtained 

E. Gatto et al.



545

by Sek and coworkers [56], they obtained the graph reported in Fig. 33, where two 
different ET regimes are clearly evident.

Similar observations were already reported and rationalized as a transition from 
tunneling to hopping mechanism [29] following theoretical predictions [79, 80]. 
Herein, the authors ruled out the occurrence of a hopping mechanism, due to the 
absence of reduction and oxidation CV signals of the peptide bridges, as already 
observed by Kimura and coworkers [63]. They explained their results as a structural 
change (from random to stable helices) with the increase in the length of the peptide. 
Furthermore, they explained the low β value obtained (0.04 Å−1) in the helical confor-
mation as an effect due to the presence of several H-bond network in this conforma-
tion, as suggested by Maran and coworkers [35]. However, the β values reported in 
the literature for helical peptides in solution were higher (β = 0.5–1.3). The authors 
gave two different explanations for this experimental result: one is the hypothesis of a 
slower equilibrium between the α- and 310-helical conformers in the SAM if com-
pared to the one in solution, the rate of formation of the more conductive 310-helical 
conformer being related to the ET transfer observed, and the other is the decrease of 
motion, due to the more limited MD in the longer helical peptides (because of their 
larger van der Waals interactions) which reduced the ET rate constants.

Despite the big efforts made in this field, the picture appears still confusing. 
Anyway, the main conclusions obtained at this point from electrochemical studies 
on peptide SAMs are similar to the one obtained in solution: when the electron- 
transfer distance is short and the driving force is large, tunneling prevails. On the 
other hand, when a peptide bridge is long and the driving force is small, a hopping 
mechanism should take over tunneling. However, independently of the mechanism, 
in the last years, the importance of molecular dynamics has been emphasized, which 
can strongly influence the ET rate constants. For this reason also on surface the 
multiple pathway approach which takes into account peptide dynamics seems to be 
the more appropriate approach to explain experimental results.
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 Photocurrent Generation Measurements

Photoinduced electron-transfer experiments on peptide SAMs covalently linked to 
gold electrodes via Au–S linkages have been extensively investigated by Kimura 
and coworkers.

In a first report to this field, they synthesized a tridecapeptide, composed of only 
Ala-Aib dyad, functionalized at the N-terminus with an N-ethylcarbazolyl (ECz) 
group and at the C-terminus with a disulfide group [81]. The primary sequence was 
chosen for the high propensity of Ala-Aib to attain helical secondary structures, the 
disulfide group (introduced as lipoic acid) for covalent linking to the Au electrode 
and the N-ethylcarbazolyl as a photosensitizer group. The same peptide scaffold 
was synthesized, inverting the position of the ECz and lipoic acid groups, in order 
to investigate the effect of the electrostatic field associated to the helical macrodi-
pole, on the PG efficiency and SAM packing. They found that when the peptide 
SAM was linked to gold through the N-terminus, the coverage of the gold electrode 
was larger. This is because the Au+–S− linkage is stabilized, when the electrostatic 
field of the helical macrodipole is directed from the C-terminus (negative) to the 
N-terminus (positive).

A standard three-electrode conFiguration has been used to perform PG measure-
ments, with the gold-coated substrate acting as the working electrode, Ag/AgCl as 
the reference electrode, and a Pt wire as the auxiliary electrode. In solution, an 
electron donor (MV2+) or acceptor (TEOA) has been used. They found that with the 
electron donor in solution, the PG efficiency was higher when the peptide helix 
dipole pointed to the aqueous phase, so to accelerate the gold → ECz ET, while with 
an electron acceptor, the contrary happened. The second step in cathodic and the 
first step in anodic conditions most likely represent the rate-limiting steps of photo-
current generation because of the long distance between the gold surface and the 
photoactive probe (experimental section “Photocurrent Generation Measurements”). 
The decrease of anodic photocurrent was observed reducing the bias to the gold 
electrode, reaching an apparent zero current status at certain negative potential. The 
origin of this decrease has been already explained in section “Photocurrent 
Generation Measurements”. Interestingly, at applied potentials more negative than 
zcp, a reverse in the current direction was observed (cathodic current), indicating 
that zcp corresponds to a balance situation between cathodic and anodic currents.

The β values experimentally obtained for the two peptide SAMs were lower 
(0.58–0.60 Å−1) compared to those obtained with alkanethiol SAMs of comparable 
thickness (0.9–1.1 Å−1).

The same authors published also on PG experiments carried out on 310-helical 
nonapeptide SAMs having as chromophore the photoactive naphthyl units [82]. 
They synthesized four different peptides, all composed of three Ala-Aib-Aib triads 
and differing only in the number of Ala residues functionalized with a naphthyl unit: 
none in the reference compound (SSA3B), one at the N-terminus in SSNA2B, one at 
the C-terminus in SSA2NB, and three in SSN3B. They observed a significant photo-
current value only in the case of the SSN3B SAM (2.1 % efficiency) where the three 
naphthyl groups are spaced in a linear array along the helical axis with face-to- face 
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orientation. No anodic photocurrent was generated by the SSA3B or SSNA2B 
SAMs, while only a weak value was detected for the SSA2NB SAM (Fig. 34).

These results evidently assess the role of the naphthyl group and its position in 
the photoinduced ET process. In fact, the SSNA2B peptide formed a densely packed 
SAM, not able to generate a photocurrent signal. This is because the naphthyl group 
at the N-terminus could not be reached by the TEOA electron donor through its dif-
fusion across the SAM. The high photocurrent efficiency obtained with the SSN3B 
SAM, instead, supported the idea that the ET process was speeded up by the elec-
tron hopping between the linearly arranged naphthyl groups. Furthermore, addi-
tional electrostatic dipole effects and HB pathways of the helical conformation 
should have promoted this kind of ET mechanism (Fig. 35).

In the same year Yasutomi et al. designed a molecular photodiode system, able 
to switch the current direction from anodic to cathodic, by choosing the excitation 
wavelength [71]. The SAM was composed of two types of helical peptides on a gold 
surface, carrying two different photoactive chromophores that could be selectively 
excited. As already shown in the previous paragraph, helical peptides having a chro-
mophore can act as a molecular photodiode, controlling the direction of the induced 
photocurrent through the electrostatic field generated by the helix dipole. Figure 36 
shows the chemical structures of the two hexadecapeptides used: they were com-
posed of alternating sequences of l- or d-leucines and Aib residues. l- and d- 
leucines were chosen in order to favor phase separation in their mixed SAMs, so to 
reduce photoinduced ET between the ECz and Ru groups. The first peptide, 
SSL16ECz, carried an ethylcarbazolyl (ECz) group at the C-terminus and a 
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disulfide group at the N-terminus, while the second one, Rul16SS, carried a disul-
fide group at the C-terminus and a tris(2,2′-bipyridine)ruthenium(II) complex (Ru) 
at the N-terminus. In this mixed SAM, the dipole moment of Rul16SS pointed from 
the gold to the monolayer surface, while that of SSL16ECz was directed in the 
opposite direction. As already discussed, Et along the dipole moment in a helical 
peptide is more rapid than that against the dipole moment. Therefore, the excitation 
of the ECz group in the SSL16ECz peptide produced an anodic photocurrent (the 
ET direction is from the SAM outer surface to gold), while the excitation of the Ru 
group in the Rul16SS peptide produced cathodic photocurrent (the ET direction is 
from gold to the monolayer surface) (Fig. 36).

In both cases, the rate-determining step was ET between the chromophore and 
gold that was evaluated to be of the order of 106 s−1, which was much lower (about 
5 orders of magnitude) than that for the diffusion-controlled reaction between the 
chromophore and the redox species in solution. Inset a of Fig. 36 shows the time 
course of PG with alternating photoirradiation of ECz (at 351 nm, anodic current) 
and Ru groups (at 459 nm, cathodic current). The action spectrum, shown in inset b 
of Fig. 36, was clearly determined by the overlap of the absorption spectra of ECz 
(from 310 to 400 nm) and Ru (from 400 to 520 nm).

Yasutomi at al. [71] showed that the photocurrent direction could be also revers-
ibly switched between cathodic and anodic, by changing the pH of the solution. To 
do that, they synthesized a helical hexadecapeptide, composed of eight sequences of 
L-Leu-Aib dyads, and functionalized at the C-terminus with a L-3-(3-N- 
ethylcarbazolyl)alanine group and at the N-terminus with a disulfide group. Working 
at low pH, upon photoexcitation of ECz, in an aqueous solution containing TEOA, 
they observed anodic photocurrent. The photoinduced ET from ECz* to gold was 
accelerated by the electrostatic field associated to the helix dipole. Working at high 

Fig. 35 Schematic representation for anodic photocurrent generation by the SSN3B SAM in the 
case that the naphthyl group at the site nearest to gold is excited by photoirradiation (Reprinted 
with permission from Yanagisawa et al. [82]. Copyright (2004) American Chemical Society)
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pH they observed an enhancement of this effect, due to the negative charge attained 
by the terminal carboxylate group. The IPCE values found at pH = 10 were 2.0 % 
and 0.07 % for the carboxylate and esterified (−COOEt) peptide SAMs, respec-
tively (Fig. 37). The pH-induced switch of photocurrent direction was completely 
reversible.

One year after, Kraatz and coworkers showed that significant photocurrent signals 
and pH switching could be generated even in the absence of peptide films or antenna 
probes by using a laser excitation source [83]. They explained these results by ascrib-
ing most of the measured photocurrent to a simple photothermal effect, i.e., a poten-
tial drop caused by heating of the diffusion layer at the electrode interface upon 
illumination. Indeed, in their experiments, they were able to demonstrate that a pho-
tocurrent signal could be obtained by irradiating a bare gold electrode with a laser. 
They also claimed that the enhanced photocurrent signal measured in the presence of 
a chromophore-containing peptide could be correlated to the increase in temperature 
due to UV absorption of the chromophore. Our group significantly contributed to this 
debate, by studying photocurrent generation properties of a peptide-based self-
assembled monolayer composed of two helical peptides [51]. Specifically, a pyrene-
containing octapeptide, devoid of any sulfur atom (A8Pyr), and an hexapeptide, 
functionalized at the N-terminus with (S,R) lipoic acid, for binding to gold substrates 
(SSA4WA) via an Au–S linkage, were employed. Both peptides investigated attained 
a helical structure, because they were almost exclusively formed by strongly folding 
inducer Cα-tetrasubstituted α-amino acids. We demonstrated that the two peptides 
generated a stable supramolecular nanostructure (a densely packed bicomponent 
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Fig. 37 Chemical structure of the ECzCOOH peptide and schematic illustration of the photocur-
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peptide monolayer), where the A8Pyr was incorporated into the SSA4WA palisade 
by exploiting helix · · · helix macrodipole interactions (Fig. 38).

To demonstrate the presence of the A8Pyr peptide into the SAM, we performed 
photocurrent generation measurements in the Pyr absorption region using as electro-
lyte an aqueous solution of TEOA. Upon illumination, an intense anodic current was 
measured (Fig. 39a). Remarkably, the action spectrum, i.e., the photocurrent response 
vs. the excitation wavelength, of the mixed SAM almost perfectly overlapped the 
excitation spectra of Pyr and Trp measured in ethanol solution using the same slit 
opening conditions (15 nm) (Fig. 39b). It is worth noting that both the bare gold 
electrode and the electrode modified by a peptide SAM devoid of the Pyr antenna 
group (SSA6) generated just a very small photocurrent signal under the same experi-
mental conditions. Interestingly, the IPCE% value for the bicomponent A8Pyr/
SSA4WA SAM at λ = 340 nm (Pyr absorption maximum) was found to be 0.02 %, 
while the SSA6-modified electrode showed a value ten times lower. We described 
our results by ascribing to photothermal effect only the very weak signal measured 
in the case of the bare gold electrode and the peptide film without Pyr (SSA6). In the 
case of the bicomponent SAM, instead, a very high photocurrent signal in correspon-
dence of the Pyr absorption spectrum was obtained, although in our experiment, 
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Fig. 38 Schematic 
representation of the 
bicomponent SAM. The 
SSA4WA peptide was 
immobilized onto a gold 
surface by the N-terminal 
lipoic acid, while the 
A8Pyr was embedded into 
the SSA4WA palisade in 
an antiparallel orientation
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excitation was achieved by using a Xe lamp instead of a laser source. To clarify the 
origin of this signal, we performed photocurrent generation measurements at the 
potential at which SSA6 had a zero current response (−0.15 V). This potential value 
corresponded to the maximum entropy of formation of the double layer and where 
the photothermal effect should have been zero [83]. Under these conditions, a high 
photocurrent signal was also obtained, which indicated that the photothermal effect 
could be safely considered only as a minor contribution to the whole photocurrent. 
Moreover, by a combination of electrochemical and spectroscopic techniques, we 
have determined the composition of the bicomponent SAM on the surface. In par-
ticular, the amount of Au–S linkages from the sulfur- containing peptides was quanti-
fied from reductive desorption of the peptide-based SAM, while the amount of 
A8Pyr was estimated by fluorescence spectroscopy after electrochemical desorption. 
The SAM stoichiometry was found to be SSA4WA/A8Pyr 2:1. Since the initial con-
centration ratio of the deposition solution was 1:1, we would have expected the same 
surface stoichiometry. But the formation of a SAM is a dynamical process, which 
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requires quite a long time (18 h). Rearrangement and favorite linkage of the thiol-
functionalized peptide probably would lead the final composition to 2:1, as a result 
of the balance between the quite strong Au–S bond (35 kcal/mol) and the weaker 
electrostatically driven peptide–peptide interactions.

We also studied the photocurrent generation properties of the monocomponent 
SSA4WA peptide [44, 85] and of an Aib-based hexapeptide functionalized with a 
pyrene chromophore at the C-terminal and a lipoic acid at the N-terminal [84]. 
Interestingly, despite the shortness of the primary chain, these peptides were able 
to form a tightly packed SAM, where the quite short distance between the chromo-
phore and the gold surface allowed an efficient electron-transfer. The introduction 
of Aib residues in the peptide chain was responsible for the rigid 310-helical struc-
ture attained by the hexapeptides, making it possible for us to modulate the separa-
tion distance between the gold surface and the photoactive group. Both the Trp (W) 
amino acid and the pyrene chromophore were used as photoactive molecules for 
photocurrent generation measurements. The photoexcitation of the sensitizer gave 
rise to a photoinduced current (antenna effect), when a gold electrode coated by the 
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Fig. 40 On–off cycles of electronic current upon photoexcitation of the Py unit in SSA6Py at differ-
ent excitation wavelengths (λmax = 340 nm). The electronic current intensities depend on the pyrene 
absorption spectrum, as shown by the excitation spectrum of SSA6Pyr reported in the inset. Inset: 
photocurrent action spectrum and excitation spectrum of SSA6Pyr in the same experimental condi-
tions (slit width = 15 nm). For comparison, the photocurrent action spectrum of the bare gold elec-
trode is also reported (Reprinted with permission from Gatto et al. [85]. Copyright (2011) Wiley)
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chemisorbed peptide layer was immersed in an electrolytic solution containing 
TEOA or methyl viologen. However, the recorded anodic photocurrent values 
were in both cases higher than the cathodic one. We explained this result as the 
effect of the electric field generated by the helical macrodipole on the ET process.

The anodic current generated upon photoexcitation of the SSA6Pyr at different 
excitation wavelengths in the presence of an electron donor (TEOA) in solution is 
shown in Fig. 40. The photocurrent efficiency was found to be equal to 0.05 %  
(at λex = 340 nm).

In the inset of Fig. 40, the action spectrum of SSA6Pyr, which closely over-
lapped the pyrene absorption spectrum recorded under the same experimental con-
ditions (slit width =15 nm), was also reported.

We played a lot with peptides, comparing the PG efficiency of several mono- and 
bicomponent peptide SAMs on gold substrates [85].

The antenna effect of the pyrene sensitizer in different peptide systems was veri-
fied by measuring PG for a series of bicomponent peptide SAMs (1:10 SSA6Pyr/
SSA6, 1:1 A8Pyr/SSA4WA, 1:1 A8Pyr/SSA6). Interestingly, the IPCE% measured 
upon excitation of the pyrene group is definitely higher for the chemisorbed 
SSA6Pyr SAM with respect to the SAMs containing the adsorbed A8Pyr peptide. 
To investigate in detail the role of the peptide/gold junction in determining the effi-
ciency of the ET process, the dependence of the anodic photocurrent on the applied 
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potential was analyzed at the pyrene maximum excitation wavelength (λ = 340 nm) 
for the SSA6Pyr and the A8Pyr/SSA4WA peptide SAMs (Fig. 41). As control 
experiment, the same analysis was also carried out for the SAM formed by the 
pyrene-lacking peptide SSA6.

The slope of the photocurrent/voltage (P/V) graph depends on the coupling 
between the electronic state density of the metal and the HOMO/LUMO orbitals of 
the antenna chromophore, mediated by the peptide bridge. Unfortunately, the observed 
linear dependence of the photocurrent on the applied potential does not allow to dis-
tinguish between a diffusive hopping mechanism and a coherent tunneling SE, 
because both ET models should show this linear dependence at low voltages.

Figure 41 shows that the slope of the P/V curve measured for the SSA6Pyr SAM 
was definitely steeper than that measured in the PyA8/SSA4WA SAM, a finding 
ascribable to the different types of contacts established by the two SAMs at the 
peptide/gold interface (junction effect). The Auδ+–Sδ- junction allowed a through- 
bond ET pathway, with a relatively low ET activation barrier at the gold–peptide 
interface. This pathway was not operative for the A8Pyr peptide, which lacked the 
disulfide group. In the latter case, a direct Pyr* → Au ET across the A8Pyr pep-
tide backbone would have necessarily required a through-space step from the pep-
tide N-terminus to the gold surface, an event characterized by high activation 
energy. Furthermore, the helix dipole of A8Pyr in the bicomponent SAM pointed to 
the SAM outer surface, so to reduce ET in that direction. A possible alternative 
pathway may have proceeded through initial intermolecular ET from the excited 
Pyr to Trp (Pyr* + Trp → Pyr+• + Trp-·) or to the amide site of a nearby peptide chain, 
followed by ET across the Au–S linked peptide chain from Trp−· or the amide radical 
anion to gold. This second step should have been also favored by the electrostatic 
field generated by the peptide helix. In agreement with this idea, the photocurrent 
efficiency of the A8Pyr/SSA6 SAM (ICPE = 0.006 %) was found to be definitely 
lower than that one measured for the A8Pyr/SSA4WA SAM (IPCE = 0.02 %), sug-
gesting a predominant contribution of the Trp group to the intermolecular ET pro-
cess. In any case, the photocurrents generated by both A8Pyr/SSA6 and A8Pyr/
SSA4WA SAMs were definitely greater than that measured for the SSA6 SAM 
(IPCE = 0.002 %), emphasizing the role of pyrene as photosensitizer even in the 
case of a peptide not covalently linked to the gold surface.

 Conclusions

In this chapter, the most used electrochemical methods for the study of peptide 
SAMs are described and analyzed, together with the experimental results on the 
studies of these systems. Also a brief description of basic theoretical models of ET 
across peptide matrices is provided, in order to better understand the discussion in 
the experimental section. Most of the researchers agree that peptides are very good 
electron mediator matrix, enabling electron-transfer over long distances. However, 
ET parameters depend on several factors, such as the peptide secondary structure 
and length, the molecular dynamics of the system, and the presence of hydrogen 
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bonds. Herein, we have focused our attention especially on helical peptides, due to 
their good self-assembly and rectification properties, which enables ET over long 
distances. There are two mechanisms proposed: one is electron tunneling, which 
prevails when the ET distances are short, and the other prevails at longer distances, 
beyond a critical molecular length, and is characterized by a very shallow distance 
dependence. For this last feature, two mechanisms have been proposed: a hopping 
mechanism with the amide groups as hopping sites and molecular dynamics- 
associated electron tunneling. Probably both mechanisms are present.

Although the tunneling factor of helical peptides is larger than those of phenyl-
ene ethynylene or phenylene vinylene oligomers, which are intensively studied at 
the present moment as molecular wires, helical peptides have several advantages for 
the development of practical molecular electronic components in terms of well- 
specified molecular structure, facile molecular design and arrangement of func-
tional groups along the molecule, and peculiar self-assembling properties to be 
suitably exploited in the building up of nanostructures.
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Abstract
EPD is a technique where charged particles in a stable colloidal suspension are
moved through the liquid due to electric field and deposited on an oppositely
charged conductive substrate, forming the intendedmaterial or device. EPD enables
fabrication of a wide range of structures from traditional to advanced materials,
from nanometric thin films to a fraction of 1 mm thick films, and from porous scaf-
folds to highly compact coatings. These structures include different compositions
with complex shapes and structures which can be formed in a relatively short exper-
imentation time by simple apparatus. This review presents the fundamentals, mech-
anisms, and characteristics of EPD along with its past and recent applications.

Keywords
Electrophoretic deposition (EPD) • Ceramic materials • Biomedical materials •
Thermoelectric materials • Materials fabrication

 Introduction

Electrophoretic deposition (EPD) is a material processing technique using deposi-
tion of charged particles in a stable colloidal suspension on a conductive substrate,
acting as one of the two oppositely charged electrodes in the EPD cell. The depos-
ited particles form the intended material or device [1]. Both alternating current (AC)
and direct current (DC) electrical fields have been applied in EPD process, although
DC fields are more common [1–3]. Highly versatile application, simple apparatus
and equipment, short processing time, cost effectiveness, facile modification, desir-
able dense packing of particles in the final piece, high quality of the microstructures
produced, easy production of geometrically complicated shapes and simple control
of the thickness and morphology have made EPD an interesting technique both in
academia and industry [1, 4]. In EPD, the state of particles in suspension and their
evolution during the process can be controlled and manipulated. Moreover, appro-
priate and accurate choice of processing variables could enable production of dense
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and homogeneous or porous microstructures. A combustible substrate that can be
removed by further heating in sintering process is used for fabricating complicated
shapes. But for coatings, the operator needs to be very cautious about possible
cracks due to drying and sintering. These thermally derived cracks are the imparti-
ble nature of the technique and the quality of the final surface depends on overcom-
ing this problem.
This process was discovered by Bose in a liquid-siphon experiment during the

1740s [5] and has been known since Ruess observed the movement of clay particles
in water under an electrical field [6]. The first practical use of this technique was
done by Harsanyi [7] in 1927 in order to deposit thoria (thorium (IV) oxide) and
tungsten on a platinum cathode as an emitter for electron tube applications. The first
large-scale application of EPD dates back to early 1950s, when the scientists used
this method to make insulating Al2O3 layers on cathode heaters in vacuum tubes [8].
An EPD cell contains four different parts: working electrodes (substrate and

counter electrode), colloidal suspension, and power supply (AC or DC).
Despite the fact that many mechanisms have been proposed for EPD, there are

several unquestionable characteristics to distinguish EPD from other similar
deposition-based techniques. As it can be seen in Fig. 1, (a) colloidal particles are
well dispersed and able to move freely and independently in solvent suspension, (b)
electrochemical equilibrium of the solvent is responsible for particles’ surface
charge, (c) particles move electrophoretically in the bulk of the suspension to the
oppositely charged electrode (substrate), and (d) the substrate is covered by a neu-
tralized, firmly deposited layer of particles. Therefore, EPD is a technique where
moving species are solid particles, required conductance of the liquid medium is
low, and the organic liquids are preferred. In EPD, the liquid stays motionless while
particles and ions move under the electrostatic force [4].
Like in any other system, it is absolutely essential to avoid contamination or

impurity that can unfavorably influence the properties of the process and/or result-
ing materials. As the characteristics of the resulting materials are highly dependent
on stability of suspension and control on surface charge, powder washing multiple
times before preparation of a particulate suspension is mandatory in order to elimi-
nate the residual impurities caused by the powder preparation procedure [9].
Generally, it is preferred to use organic liquids as the suspending medium in an

EPD cell even though they are dangerous, expensive, and unfriendly to the environ-
ment. However, in aqueous EPD, one needs much lower voltage, we have more
control on temperature, and deposition takes place faster. Also, water is much more
environmental friendly. Unfortunately, electrolysis of water generates gas bubbles
that drastically compromise the quality of the deposited layer. It has been reported
that application of short voltage pulses in an aqueous EPD system can suppress the
bubble incorporation [10, 11]. Figure 2 demonstrates complete suppression of bub-
bles during aqueous electrophoresis of α-alumina thin film, deposited on stainless
steel (316 L) substrate by applying periodically pulsed voltage. As can be seen,
bubble-free deposits were obtained at pulses equal to or shorter than 5 m. It has also
been reported that constant current rather than constant voltage depositions are
more efficient and can provide better control over the EPD process.
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Fig. 2 Suppression of bubbles by applying constant current pulses (α-alumina deposited on
stainless steel substrates) (Reprinted from Besra et al. [11], Copyright (2009), with permission
from Elsevier)

Fig. 1 Four steps of EPD; (a) dispersion, (b) electrochemical charging, (c) electrophoresis 
and (d) deposition
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Table 1 lists selected significant applications of EPD in various fields.
EPD process involves four steps. First, a stable suspension of particles is needed.

Since the particles only need to be stable within the time frame between dispersing
to depositing processes, which can be as short as a few minutes, various stabiliza-
tion techniques may be utilized such as low concentration, proper charging of the
particles, polymer depletion, polyelectrolyte, block copolymer, and homopolymer
adsorption [72]. In electrostatic technique, creation of an energy barrier between 10
and 15 kT prevents the particles from attaching to each other. In polymer depletion,

Table 1 Applications of EPD

No. Category Application References

1 Oriented ceramic materials Fabricating crystalline oriented thick films [6, 12, 13]

Textured TiO2 [14–16]

Textured alumina [17, 18]

2 Multilayered composites Multilayered alumina [19]

Fabricating functionally gradient, multi- 
layer composites and sandwich structures

[20–22]

3 Thermoelectric thick films Si-Ge thick films [23]

4 Particle size separation SnO2 particles [24]

5 Deposition of nanotubes Graphene synthesis [25–27]

SiO2/CNT composites [28]

CNT/TiO2 composites [29, 30]

MnO2/CNT composites [31]

Fe3O4/CNT composites [32]

Hydroxyapatite/CNT composites [33–35]

Bioactive glass/CNT composites [36, 37]

6 Solar cells Dye sensitized solar cells [38, 39]

7 Reinforced composites SiC fiber reinforced composites [40]

8 Thick film optical
modulators

WO3 nanorods [41]

ZnO thin films [42]

9 Batteries and
electrochemical capacitors

Lithium ion batteries [43]

Super-capacitors [44]

10 Solid oxide fuel cells Y2O3-stabilized ZrO2 [45–48]

Perovskite structures [49]

CeO2 films [50]

Gd2O3 [51]

11 Corrosion-resistant coatings Silica hybrid coatings [52]

12 Catalyst support  
and molecular sieves

PPy coated tubes [53]

13 Sensors Gas sensors [54–57]

14 Piezoelectric materials PZT actuators [58, 59]

15 Biomedical materials Forming biocompatible layers [60–69]

Porous scaffolds [35]

Bacteria [70]

Corrosion protection of implants [71]
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a concentration of soluble polymer which cannot be adsorbed to the particle sur-
faces is used to prevent them from sticking together. Other polymeric stabilization
methods necessitate a polymer where one side of it can be attached to the particle,
while the other side is dissolved in the solvent [72]. As the second step, a solvent
able to enable ionic charge is required where adsorption/dissolution equilibria for a
positive and negative ion are different. The next step is electrophoretic migration of
particles under the influence of electric field. During electrochemical charging of
particles, the solvent must be able to dissolve ions; because a solvent with no or a
minute concentration of dissolved ions drastically increase the required voltage
across the cell. Electrochemical reactions at the electrodes guarantee the change in
the valence of ions in order to prevent ions from screening the electric field at the
electrode surface. Moreover, absence of these reactions would lead to fast migration
of ions to oppositely charged electrodes after applying a voltage. The last step is
deposition of particles on one of the electrodes. As there are various mechanisms for
both stabilizing and destabilizing of the particles (in the first and fourth steps), there
is no single mechanism for EPD.

 Mechanisms of EPD

There are several mechanisms by which the particles come together and form a rigid
solid structure. Combining them with the abovementioned dispersing techniques
leads to different EPD mechanisms although the exact mechanisms which allow
deposition of particles on the substrate are still not completely understood.
It has been suggested that EPD should be considered as a two-step process,

where particles first migrate to the substrate due to the applied electric field (the
particles lose their charge at the electrode surface) and then after complex electro-
chemical reactions and aggregation the deposited layer is formed.
Electrophoretic motion of the particles is stopped by the substrate and the density

of the particles will keep increasing there, due to accumulation. If those particles
agglomerate, a low-density deposit may form which is difficult to dry without
cracking. In this mechanism, there is no guarantee that the thickness of the layer
remains uniform all over the substrate; since the nonuniformity of the electric field
can lead to a very nonuniform deposit.
If the applied electric field is powerful enough (around several hundred volts per

cm), it is also possible that deposition takes place via suppressing the electrostatic
repulsion with the electric field. In this mechanism, the electrical force gradient has
to be low in order to make an even deposit [73, 74], although some irregularities
may occur due to strong electroconvection.
The next approach is flocculation of the particles by electrosedimentation [72]. 

It was found that a stable suspension can produce strongly adhering sediment.
Sediment is formed in the innermost layer of the particles due to gravitation plus the
pressure made by electrically induced flow of particles to the substrate. Although
the density of the deposited layer is very good, the charge of the layer confronts the
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electrochemical charge of the solvent and acts as the driving force reducing the
electrophoretic force in the layer. This instability can cause convection within the
layer of particles before they are deposited on the substrate [75, 76].
Decrease in total ionic concentration around the substrate can raise the voltage

gradient and, by quelling the convection, conduction occurs between unbalanced
ions as a consequence. This effect results in raising the voltage gradient to mega
volts per meter. These layers are very convectively unstable. Preservation of the
surface charge of the particles results in a very strong compacting force that can
make a powerful leveling effect when it is accompanied by high voltage gradient.
This mechanism leads to forming very even thin layer [77].
On the contrary, it has also been reported that an increase in ionic concentration

at the substrate makes the electrostatic boundary layer of particles thinner and thin-
ner until they become unstable and the deposit is formed [78].
The particles may lose their charge and neutralize after contacting the substrate

and make a thin deposit. This mechanism continues until the deposited layer gets
thick, the particle–substrate interactions are stopped, or the pH level changes around
the substrate [72].
It has been reported that repulsive forces between the particles can be reduced

only when the electrode reactions generate (OH)‾ ions [4]. The calculated amount
of ionic strength around the substrate was sufficient for flocculation of the suspen-
sion. Interparticle repulsion decreases when near-substrate electrolyte concentra-
tion is increased. Consequently, the zeta potential is lowered and flocculation of
particles is induced.
In the case of polymers, it has been reported that when electrophoretic force

brings the particles together, branches of a copolymer can be detached from one
particle and attach to a neighbor particle and make a polymer bridge that holds these
particles together [72]. Another deposition mechanism for polymers is called
“squeezing out,” where a constant stable electrophoretic force brings two polymers
into contact and deposit. Furthermore, in some cases, changing the solvent ionic
composition leads to an alteration in particle surface potential and polymer parti-
cles can be stabilized [72]. Table 2 summarizes the mechanisms through which 
(a) particles stabilize at the substrate and (b) EPD takes place.

Table 2 Different mechanisms of EPD [72]

(a) Particle stabilization at substrate (b) EPD layer formation mechanisms

Low number density Densification

Electrostatic Direct electrostatic force

Polymer depletion Electrosedimentary

Homo-polymer adsorption Ion depletion enhanced electrostatic

Poly-electrolyte Desorption of neutral/charged polymer

Block co-polymer Charge reduction/neutralization

Squeezing out

Bridging flocculation
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 Process Variables

There are two sets of parameters which can affect both EPD process and the result-
ing specimen: first, parameters that control the status and quality of suspension, and
then the parameters which qualify the whole process, such as electrical parameters.
When the first group is fixed, the latter can be manipulated for gaining favorable
deposition. Table 3 summarizes the possible parameters that can be manipulated in
order to get the desired properties and quality in the deposited film.

 Suspension Parameters

 Particle Size
Uniformity of the deposited layer is tightly tied to whether or not the particles
remain stable and dispersed throughout the whole process, because, motionless and
accumulated particles lead to the formation of gradient in deposition. In case of
larger particles, there is always a competition between the gravity and electrophore-
sis forces. The first one result in sedimentation of the powder while the latter depos-
its the particles on the substrate. In this situation, when EPD is completed, surface
charge is highly increased and/or the electrical double layer region is thickened.

 Dielectric Constant, Conductivity, and Viscosity of Suspension
It has been reported that the dielectric constant of the liquids must be in the range of
12–25 for deposition to happen [1]. In liquids with dielectric constants less than 12,
lack of dissociative power stalls the deposition, while in liquids with dielectric con-
stants higher than 25, electrophoresis is halted by the reduction in size of the double
layer region, caused by high ionic concentration.
Impurities can also change the conductivity of the suspension. Moreover, the

method used for preparing the suspension also affects the conductivity drastically. A
highly resistive suspension leads to instability because electronically originated
charge forms in the particles. On the other hand, proper adjustment of temperature
and dispersant concentration can raise the conductivity. Research has shown that,
for each exact dispersant concentration and each temperature, there is a narrow con-
ductivity range which enhances the deposition process [79]. Generally, an ideal sus-
pension has high dielectric constant, low conductivity and low viscosity. Table 4 
shows viscosity and relative dielectric constant of some popular solvents [80],

Table 3 Parameters governing EPD

Suspension parameters Process parameters

Particle size Applied electric field

Dielectric constant, conductivity and viscosity Deposition time

Zeta potential Conductivity of the substrate

Stability

Concentration of solids
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ordered from best to worst. Methanol and acetone are the first two best solvents.
However, comparing these two, methanol has higher dielectric constant while
acetone has a viscosity of almost half of methanol. Therefore, acetone can be
considered as the best solvent for making an ideal suspension.

 Zeta Potential
Zeta potential governs several key parameters in EPD, such as the density of the
deposit, particle direction and speed, and the repulsive interactions between the
particles which determine the stability of the suspension. Generally, a high surface
charge is needed not only to avoid particle agglomeration but also to enable forma-
tion of a dense highly packed deposit. Zeta potential manipulation is done through
addition of acids, bases, and adsorbed ions.

 Stability of Suspension
Finding the best state of stability of the suspension is a matter of compromise. When
the suspension is stable, flocculation does not happen and a thick adherent material
deposits at the bottom of the cell due to sedimentation. Too much stability disables
EPD, because a high electric field is needed to defeat the repulsive forces between
particles. Conversely, a flocculating suspension just forms thin nonadhering deposits.

 Concentration of Solids in Suspension
High concentrations of solids in suspension enable uniform and even deposition
rates, while low concentrations lead to deposition rates proportional to electropho-
retic mobility of each particle [81].

 Process Parameters

 Effect of Applied Electric Field
As there are both intended particles and free ions in the suspension, a portion of the
electric field, which is the driving force of EPD, is carried by the free ions and the
field efficiency is compromised. However, when we cannot limit the presence of

Table 4 Physical properties of solvents

Solvents Viscosity cP N.s.m( ) = - -10 3 2 Relative dielectric constant

Acetone 0.3087 20.7

Methanol 0.557 32.63

Water 0.890 78.2

Ethanol 1.0885 24.55

Acetylacetone 1.09 25.7

n-Propanol 1.9365 20.33

Iso-propanol 2.0439 19.92

n-Butanol 2.5875 17.51

Ethylene glycol 16.265 37.7
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free ions, the amount of current carried by them is insignificant. Ideally, the applied
electric field must be totally spent on advancement of the electrophoresis in a stable-
current manner, because the deposition increases in direct relation with raising the
applied potential. While too low fields are not capable of triggering the electropho-
resis, with too high applied electrical fields, the quality of the deposits is sacrificed.
It has been suggested that the best quality of deposits are gained at moderate applied
fields. Moreover, a high electric field can cause turbulence in the suspension, which
compromises the quality of the resulting deposit. Also, it increases the speed of the
particles and consequently they cannot have the chance to be seated in the best posi-
tion, which makes the formation of a dense close-packed structure impossible [82].

 Effect of Deposition Time
In EPD, the deposition rate starts with a linear relationship to time and then it lowers
as time goes on, until the deposit is thick enough to interrupt the conductance and
the deposition rate reaches plateau at high deposition times.

 Conductivity of Substrate
In EPD, the quality of the deposited film is strongly dependent on the conductivity
of the substrate. Low conductivity of the substrate leads to both slow deposition and
nonuniformity of the deposit [47].

 Applications

 Oriented Ceramic Materials

EPD has been given special attention as the leading ceramic electrodeposition tech-
nique in the last decades [13, 83]. This technique has revolutionized advanced ceramic
materials processing both in academia and industry. In ceramic industries, thin ceramic
films can be achieved from colloidal suspensions. In recent years, the attractive char-
acteristics of EPD have made it a potential alternative approach for many purposes in
several fields. For example, EPD has been reported as a promising technique for fab-
ricating crystalline oriented thick films [6, 12, 13, 16]. Titanium oxide, which has
three crystallographic polymorphs (anatase, rutile, and brookite), has been widely
used in different areas due to its remarkable optical characteristics. In another study
[14], it has been shown that EPD in a strong magnetic field enables taking advantage
of magnetic anisotropy of materials with asymmetric crystalline structures to produce
layers of aligned crystalline magnetic particles. The crystal anisotropy produces the
driving force (ΔF) of this magnetic alignment and it is described by Eq. 1 [15],

 D DF = cc mmVB2
02/ (1)

where Δχ is the difference between susceptibilities parallel and perpendicular to the
magnetic principal axis, V is the volume of the material, B is the applied magnetic
field, and μ0 is the permeability in a vacuum. Figure 3 depicts a schematic view of
the EPD cell in this investigation.
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TiO2 powder was sonicated in distilled water at pH 5.5, and then polyethyleni-
mine (PEI) was added to improve stability of the suspension. PEI modified the zeta
potential of the powder. The EPD was done in presence of magnetic field at current
density of 2.7 mA/cm2. As a result, the magnetic field fixes the orientation of each
particle and the crystalline structure of polycrystalline TiO2 can be controlled [14]. 
Figure 4 shows the XRD pattern of the top and side planes of the deposited
anatase.

α-alumina is an interesting engineering material [17]. Possibility of fabrication
of textured alumina by EPD was also investigated [18]. High purity fine α-alumina
and hexagonal alumina platelets as matrix powder and template were used.

Fig. 3 Schematic view of EPD under high magnetic field; (a) suspension, (b) magnetic orientation
and (c) preferred deposition (Reprinted from Uchikoshi et al. [16], Copyright (2004), with permis-
sion from Elsevier)

Fig. 4 XRD pattern of the
top and side planes of
deposited anatase
(Reprinted from Uchikoshi
et al. [14], Copyright
(2006), with permission
from Elsevier)
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The matrix powder was milled for 24 h in ethanol and 0.5 vol% de-ionized water.
Platelets were then added to the suspension with n-butylamine and Dolapix Ce-64
(Dolapix is an anionic polyelectrolyte dispersant that contains ammonium salt of
polymethacrylic acid [84]) in order to negatively charge and disperse the particles.
The pH of the suspension was at 11.5 for the whole 450-s duration of the procedure.
As a result, (001) alumina texture was obtained.

 Multilayered Composites

Another group reported enhanced mechanical properties in textured, multilayered
alumina produced via EPD [19]. It has also been reported that EPD is capable of
fabricating functionally gradient and multilayer composites and sandwich struc-
tures [20–22]. Functionally graded materials are advanced composite materials
which consist of different layers with different mechanical properties and are able
to alleviate problems associated with interfaces of different materials [85, 86]. 
Polycrystalline diamond has wide applications in for cutting and grinding in
machining, mining and oil industries. Researchers have been successful in elec-
trophoresis of diamond powder which was first acid washed and then boiled and
rinsed in HCl solution and distilled water. Figure 5 shows a SEM image of
diamond/diamond laminates formed by electrophoretic deposition of diamond
powders with different concentrations in HCl solution. Direct-current EPD on
tungsten carbide substrates was conducted at a constant voltage of 1.5 for 7.5 min
for each layer [22]. Due to the high accuracy of EPD [1], sandwich-structured
materials can be fabricated after several steps in both single-bath and multi-baths
experiments [22].

Fig. 5 SEM image of
cross-section of diamond/
diamond laminates
(Reprinted from Dzepina
et al. [22], Copyright
(2013), with permission
from Elsevier)
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 Thermoelectric Thick Films

Recently our research group has been successful in improving the thermoelectric
power factor of SiGe thick films through electrophoresis of elemental Si and Ge
powders [23]. For a highly efficient thermoelectric device, the resistance of the
ohmic contact must be much smaller than the resistance of the thermoelectric ele-
ment. Therefore, the length of the device must be bigger than the ratio of the specific
ohmic contact resistance to the resistivity of the thermoelectric material.
Computational simulation studies show that a thickness of more than a few tens of
micrometers is needed to satisfy this criterion [87]. The small heights of the thermo-
electric legs introduce complexity for making simultaneous electrical contacts to
the entire thermoelectric array. Even a small height variation in one leg can lead to
open circuit failure of the whole module. EPD has shown great capabilities in mak-
ing films with thicknesses from submicron to hundreds of micron, while maintain-
ing the composition of the starting materials with stoichiometric ratios. In that
project, our group prepared Si80Ge20 powder via milling and then sonicated the
resulting material in acetone for 2 h in order to avoid any agglomeration and achieve
a homogeneously dispersed colloidal solution. Silicon wafer was used as the sub-
strate and it was etched in buffered oxide etch solution for 2 min, and then washed
with deionized water to remove the native SiO2. The process was carried out in a
custom-made cell under a constant voltage of 30 V at room temperature. After that,
the sample was dried at room temperature and then cold pressed under 30 MPa pres-
sure. Afterward, the coated substrate was sintered for 3 h at 1200 °C in nitrogen
atmosphere. Figure 6 shows a SEM image and a photograph of Si80Ge20 layered on
silicon substrate. Formation of dense and uniform layers of Si80Ge20 can be seen in
Fig. 6a, while Fig. 6b shows the overall uniformity of the thick films. Seebeck
coefficient and electrical conductivity measurements from the room temperature
to 950 °C showed that the thermoelectric power factor of Si80Ge20 thick film is
approximately 1 9 10 3 1 2. ,´ - - -W.m .K which is an order of magnitude larger than the
previously achieved values for thin films of this material.

Silicon Substrate
Si80Ge20

Thick Film

a b

200 µm
substrate

160 µm Si0.8Ge0.2 film

Fig. 6 (a) SEM image and (b) photograph of Si80Ge20 EPD coating sintered on silicon substrate
(Reprinted from Nozariasbmarz et al. [23], Copyright (2013), with permission from Elsevier)
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 Particle Size Separation

Particle size separation is another capacity of EPD [24]. In one investigation, two
parallel nonconductive electrodes were attached to borosilicate glass by gold paste.
SnO2 particles were dispersed in pure acetone and alternating-current EPD was
done at 40 V for 10 min. It has been shown that increasing the frequency of the AC
field leads to narrowing of the size distribution curve [24].

 Deposition of Nanotubes

EPD has been used to improve carbon nanotubes (CNTs), to make CNT-composites,
and for graphene synthesis [25–27]. Various composites including SiO2/CNT [28],
CNT/TiO2 [29, 30], MnO2/CNT [31], Fe3O4/CNT [32], hydroxyapatite/CNT
[33–35], and bioactive glass/CNT composites [36, 37] have been made using homo-
geneous dispersion of CNTs in an appropriate solvent. Fibers coated with single-
walled CNTs, which can be used for extracting phenols from aqueous solutions,
have also been prepared by electrophoresis of a suspension of CNTs in dimethylfor-
mamide at a constant voltage of 40 V for 10 s [88].
Figure 7 shows different outcomes of EPD made CNT/ceramic nanocomposites.

Depending on the conditions sometimes ceramic or metallic particles are deposited
on CNTs, in other cases CNTs are coagulated onto particles, and it is also possible
to achieve simultaneous deposition of CNTs and particles.

Fig. 7 Deposition of (a) particles on CNTs, (b) CNTs on particles, and (c) co-deposition of CNTs
and particles (Reprinted from Boccaccini et al. [25], Copyright (2010), with permission from
Elsevier)
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 Dye Sensitized Solar Cells

Efficient dye sensitized solar cells (DSSCs) can be made through multiple EPDs
[38, 39]. DSSCs are photovoltaic devices with high conversion efficiency [89] and
their properties were modified after EPD at constant voltage of 10 V for 20 15-s
cycles at 25 °C and further annealing (Fig. 8a). Figure 8b shows the enhanced effi-
ciency of these cells by increasing the number of the layers.

 SiC Fiber Reinforced Composites

SiC-fiber-reinforced composites have a great potential to be used for fusion reactors
due to their remarkable resistance against neutron flux [90, 91]. EPD production of
these composites [40] led to the idea that the quality and density obtained in this
procedure is highly correlated with the zeta potential of the charged particles. The
experiment was conducted at constant voltage of 60 V for 5 min under DC electrical
field. It has also been demonstrated that addition of both cationic deflocculant and
Dolapix (a common deflocculant and dispersant in ceramic industry) and adjusting
the pH around 9 improved the resulting properties.

 Thick Film Optical Modulators

WO3 is used for optical modulation due to its electrochromic color [92]. Although
hydrothermal process is the most popular technique for the synthesis of tungsten
oxide [93], it needs several additional steps to complete the procedure; EPD has the
significant advantage of having control over the whole process via manipulating pH
level, process duration, and electrical power [41]. In the experiment, nanorods of

Fig. 8 (a) SEM image of cross-section of fabricated DSSC after annealing at 500 °C, (b) the effect
of number of layers on thickness (T) and efficiency (E) of EPD fabricated DSSCs (Reprinted from
Hamadanian et al. [39], Copyright (2013), with permission from Elsevier)
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WO3 were dispersed in deionized water with a pH level of around 6.77. Indium tin
oxide glass (ITO-glass is a transparent conductive solid solution of In2O3 and SnO2) 
was used as the working electrode with positive charge, and the process was done at
a constant current of 0.8 mA/cm2. Successful EPD of transparent ZnO thin films has
also been reported recently [42].

 Batteries and Electrochemical Capacitors

The ability of producing thick films by EPD has made it interesting for application
in lithium batteries [43] which currently are the most favorable portable energy
source in electronic devices [94]. High power and long life cycle of electrochemical
capacitors, which operate via taking advantage of the double layer formed at the
interface of electrode and electrolyte [95], have made them a promising choice for
energy storage applications [96, 97]. The supercapacitor performance was signifi-
cantly improved through EPD of hydrous ruthenium oxide particles with polytetra-
fluoroethylene (PTFE is a highly hydrophobic synthetic polymer) [44]. A schematic
sketch of electrophoresis of these to particles can be seen in Fig. 9a; while Fig. 9b 
shows the increase in specific capacitance of electrodes coated with these materials
as a function of loading weight for hydrous ruthenium oxide electrodes.
Manganese oxide coatings for supercapacitor applications were also produced

by electrophoresis [98]. The experiment was carried out under DC electrical field at
a constant voltage of 100 V for 20 min. Manganese oxide particles were dispersed
in ethanol suspension by sonication and graphite electrodes were utilized.

 Solid Oxide Fuel Cells (SOFCs)

Solid oxide fuel cells (SOFCs) have played a crucial leading role in power genera-
tion. Many scientists believe that SOFCs can revolutionize the future of science and
technology due to the cells clean operation and efficiency. As it can be understood
from the name, the difference between a SOFC and a conventional fuel cell is that
the first one uses a solid ion conductive ceramic as the electrolyte, while the latter
works with liquid electrolytes [99]. The electronic conductivity of the dense electro-
lyte of a SOFC at the working temperature of approximately 600–1000 °C should be
low [100]. Generally, in SOFCs, the cathode is exposed to open air or oxygen and
oxygen is reduced to an oxygen anion. Then the oxygen anions travel through the
electrolyte to the anode where hydrogen molecules or hydrocarbons are oxidized at
the operating temperatures [101]. Lanthanum strontium gallium magnesium oxides
(LSGMs), Lanthanum strontium cobalt ferrites (LSCFs), yttria stabilized zirconia
(YSZ), and ceria gadolinium oxides (CGOs) which have remarkable long-term sta-
bility and strong mechanical properties are the most popular materials for electro-
lyte, while lanthanum strontium manganite (LSM), Ni foil, Ni/ZrO2 cermet, and Ni/
YSZ substrates are used as cathodes and anodes [102, 103]. There are several chal-
lenges in fabrication of SOFCs such as their high operating temperatures and high
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layer thickness [104]. There are two possible approaches to solve these issues. First,
as the operating temperature is completely dependent on the nature of the electrolyte
material, there is always a possibility to find better materials with higher ion conduc-
tivity at lowered temperatures (500–800 °C) [105]. Second, it is known that reducing
the thickness of the film can also lower the operating temperatures [106]. EPD has
been widely exploited to fabricate SOFCs in the last two decades [45, 46, 49–51]. 
EPD is able to fabricate complex shapes, prepare both dense and porous films, and
allows codeposition of different source materials. Figure 10 shows the SEM images
of the surface and the cross section of a positive electrolyte negative cell [48].
Preparation of YSZ on LSM and LSM/YSZ substrates through EPD was carried

out by a constant-voltage method [107]. Another research group successfully pro-
duced well-distributed LSGM films with good adhesion to platinum substrate from
a suspension in a mixture of acetone and ethanol [108]. The right selection of sol-
vent, dispersant, and binder is of great importance in electrophoresis of ceramic

Fig. 9 (a) EPD by adding PTFE, (b) specific capacitance versus loading weight (Reprinted from
Jang et al. [44], Copyright (2006), with permission from Elsevier)
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laminates to be used in SOFCs. In one experiment, they found the best properties
using ternary selection of ethyl alcohol, phosphate ester, and polyvinyl butyral as
solvent, dispersant, and binder, respectively [109].

 Corrosion-Resistant Coatings

EPD is one of the most promising techniques for fabricating thick films, which may
be applied to increase the corrosion resistance of metals. Corrosion-resistant coat-
ings have been used for protecting different substrates that suffer from weak corro-
sion resistance [110–112]. Silica hybrid coatings have provided both excellent
mechanical and corrosion resistance properties, they have drawn much attention in
the last decade and EPD was commonly used to make corrosion protective coatings
[52, 113–115]. One study compared corrosion behavior of silica hybrid coatings
made by dipping with these made by EPD [52]. Stainless steel and graphite elec-
trodes were used as the substrate and counter electrode, respectively. Temperature
was maintained at 5 °C during the whole procedure. EPD coatings were thicker than
dipped coatings and had more enhanced corrosion resistance.

 Catalyst Support and Molecular Sieves

Porous ceramics are used as catalyst supports and molecular sieves due to their cor-
rosion resistance and high temperature stability. In order to broaden and modify the
range of their application, coatings are applied all over the outer and inner surface
of these ceramics. Pore size and surface functionality must be controlled too in order

Fig. 10 SEM image of the sintered EPD films of positive-electrolyte-negative (NiO–YSZ/YSZ/
LSCF) in a SOFC; (a) cross-section and (b) surface (Reprinted from Jia et al. [48], Copyright
(2006), with permission from Elsevier)
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to improve their properties. EPD makes possible embedding strong and uniform
coatings on complex-shaped materials [116, 117], such as coating the inner surface
of porous foams and tubes. Near-200 μm layer of alumina particles was deposited
onto the inner surface of porous alumina tube via electrophoresis at a constant volt-
age of 100 V under DC electrical field, using polypyrrole-coated glass and stainless
steel as the substrate and the counter electrode, respectively [53]. Figure 11 shows
SEM images of the inner wall of the noncoated and Ppy-coated tubes.

 Sensors

Gas sensors, with high sensitivity, capability of real-time detection, and economic
efficiency, are widely used in industry [118]. EPD has greatly contributed in gener-
ating both new original and modified production routes for production of common
gas sensor films [54]. Figure 12 depicts a schematic sketch of the process of fabricat-
ing a gas sensor with anodic aluminum oxide (AAO)/Al substrate and SEM image
of gas sensors fabricated with a current density of 90 mAcm−2. It is noteworthy that
an insulator support has to be used between the gas sensing film and the conductive
substrate, in order to avoid of a short circuiting between these two layers [55].

Fig. 11 (a) Porous alumina tubes, and SEM images of the inner wall of (b) Ppy-coated and 
(c) noncoated tubes (Reprinted from Kreethawate et al. [53], Copyright (2010), with permission
from Elsevier)
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Al-Cr-Fe conductive substrate was electrophoretically coated by zinc oxide in
construction of one of the sensors [56]. Another sensor was constructed using aque-
ous electrophoretic deposition of aluminum oxide on aluminum substrate [57].

 Piezoelectric Actuators

Piezoelectric actuators (PAs) use voltage-induced size changes of ferroelectrics for
highly accurate mechanical actuators. A good PA provides high forces at low volt-
ages. In addition, low sintering temperature and high Curie temperature and high
piezoelectric constant are very importatnt [119, 120]. PAs are utilized in a wide
range of applications, from optical to aerospace industries [121–123]. PAs suffer
from weak mechanical properties at both low and high temperatures and their effi-
ciency is highly dependent on the continuity and uniformity of their structures. EPD
has been proven to successfully solve these shortcomings due to its intrinsic proper-
ties. Two versions of piezoelectric actuators based on Pb-Zr-Ti-Bi-Fe-Ba-Cu-W
oxides (PZT1 and PZT in Fig. 17) were tested in functionally graded structures with
silver coated electrodes (Fig. 13) [58]. The results confirmed formation of a piezo-
electric actuator.

Anodic oxidea

b

AAO/A1A1

+ –
A

Ag
paste

Sensor fabrication

Gas sensing test GZO–AAO / A1

EPD

Porous layer
Barrier
layer

Fig. 12 Schematic sketch of fabricating gas sensor via EPD (Reprinted from Han et al. [57],
Copyright (2010), with permission from Elsevier)
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In another investigation, EPD was used to deposit piezoelectric layer on a graph-
ite rod from a suspension containing doped piezoelectric material (Fig. 14) [59]. 
The graphite rods were removed from the spiral shape, resulting in complex shape
PA actuators that would be very difficult to make using traditional methods. The
studies showed that EPD is a promising method in production of PAs.

Fig. 13 Microstructure of piezoelectric functionally graded monomorph actuator; (a) plate, (b) 
cross-section, (c) PZT surface, and (d) PZT1 surface (Reprinted from Chen et al. [58], Copyright
(2004), with permission from Elsevier)

Fig. 14 Image of
piezoelectric actuators
made by deposition on
graphite rods (Reprinted
from Chen et al. [59],
Copyright (2008), with
permission from Elsevier)
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 Biomedical Applications

EPD has many interesting characteristics for biomedical applications, such as sim-
plicity, cost efficiency, high production rate, low processing temperature, full con-
trollability, ability to form complex shapes and structures, and low processing
temperature [13].

 Forming Biocompatible Layers
In general, metallic biomaterials which are widely used as prosthesis and implants
have one important shortcoming which is their bioinert nature [62]. Overcoming
this problem, EPD can form bioactive ceramic coatings [124]. Amongst all, electro-
phoresis of hydroxyapatite (HA) and bioactive glass (BG) has been vastly investi-
gated by scientists [60–62, 125, 126].
HA (Ca10(PO4)6(OH)2) is a crystalline mineral that has very similar chemical

composition to bone and teeth tissue and as it has excellent biocompatibility, osteo-
conductivity, and bioactivity; it is widely used as hip replacements and dental
implants [63–65, 127]. Processing HA via a powder route has many difficulties, for
example, sintering must be done at relatively high temperatures, which may sacri-
fice the biocompatibility and decompose the favorable HA structure [66]. It was
demonstrated that electrophoresis of thermal-sprayed HA powders in ethanol sus-
pension at a pH of 5, using graphite and stainless steel electrodes, leads to successful
preparation of porous hydroxyapatite scaffold (Fig. 15a) [35]. In comparison to salt
leaching and microsphere burn out, which are the two popular routes for fabrication
of porous scaffolds, EPD has the advantages of needing no additives or binders and
being a simpler process, although the costs of preparing large components are
higher. As HA has poor mechanical properties, its applications are mostly in coating
and composites with metallic substrates and matrices. Deposition of submicron HA
in the form of a thick coating by EPD has been reported (Fig. 15b) [128]. Ethanol
suspension and ultrasonic agitation was used in order to disperse the thermal-
plasma-sprayed HA particles. EPD process was carried out at pH value of 3–5 and
under current density of 0.05–1.5 mA/cm2 for 90 s. Carbon rod and stainless steel

Fig. 15 (a) Interconnectivity of porous HA scaffold fabricated (Reprinted from Ma et al. [35],
Copyright (2003), with permission from Elsevier), (b) dense, uniform and crack-free HA tube both
prepared by EPD (Reprinted fromWang et al. [128], Copyright (2002), with permission fromElsevier)
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cylinder were used as the substrate and the counterelectrode, respectively. Recently,
another group has studied the formation of HA nanocomposite coatings in alcohols
[129]. In their investigation, two 316 L stainless steel plates were used as electrodes
and the experiment was carried out at voltages of 20 and 60 V/cm for up to 10 min.
The quality of HA-chitosan nanocomposites were tested in alcoholic suspensions
using methanol, ethanol, and isopropanol. Results revealed that the adsorption of
chitosan on HA nanoparticles showed its highest and lowest levels, in isopropanol
and methanol, respectively.
BG (FDA approved composition of a mixture of SiO2, CaO, Na2O, and P2O5) is

a surface reactive glass biomaterial with a very good biocompatibility [130]. The
deficiencies of both BG and some metallic implants (which are low corrosion resis-
tance and low biocompatibility [131],) were eliminated by coating BG on the metal-
lic implants. Figure 16 shows deposited BG composite on Ti wire. In one study, BG
was electrophoretically deposited on 316 L stainless steel substrate in a mixture of
ethanol and triethanolamine as the suspension at constant voltages of 30, 60, and 90
V/cm2. They have also reported that the layer acts as a barrier layer in artificial
saliva [69]. In another study, EPD of BG/polymer composite coatings were made at
a constant voltage range of 10–30 V and a pH level of 11 [68].
Moreover, EPD has helped to develop novel bioactive composites. For example,

wollastonite (CaSiO3) particles were deposited into porous alumina and porous
ultrahigh molecular weight polyethylene in a suspension of iodine and acetone at a
constant voltage of 1000 V for 60 min. In the procedure, accumulation of wollaston-
ite particles occurred near the cathode surface [67].

 EPD of Bacteria
In addition, EPD of bacterial cells was carried out and the interesting results of the
investigation have opened new windows to electrophoresis of inorganic materials
[70]. In that investigation, a mixture of demineralized water and sucrose (C12H22O11) 

Fig. 16 Alginate/BG
composite deposited on
Ti wire (Reprinted from
Zhitomirsky et al. [68],
Copyright (2009), with
permission from Elsevier)
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was used as. The experiment was done under AC field at a constant voltage of 100 V
and a frequency of 25 Hz for 10 min. Confocal laser scanning microscope image
(Fig. 17) demonstrated that both live Gram-positive and Gram-negative bacteria
were successfully deposited; however, the viability of the bacteria cells was com-
promised after the deposition.

 Corrosion Protection of Implants
Magnesium alloys have an outstanding strength to weight ratio, suitable biodegrad-
ability and nontoxicity which make them appropriate candidates for implants. The
major drawback for these alloys is their low corrosion resistance in the body. EPD
has been shown to be useful in forming corrosion resistant coatings on magnesium
bio implants [71]. AZ91 Mg alloy bioimplants were coated by nanostructured aker-
manite (Ca2MgSi2O7) to improve the corrosion resistance of these implants.
Akermanite nano powders were suspended and then ultrasonically dispersed in
methanol and immediately deposited electrophoretically on micro arc oxidized
(MAOed) AZ91 Mg alloy substrates. EPD process was carried out at constant volt-
age of 100 V for 3 min. The resulting samples were then immersed in simulated
body fluid (SBF) to study the corrosion rate. Figure 18a shows SEMmorphology of
AZ91 after MAO and coating with akermanite; Fig. 18b demonstrates the compara-
tive results of the immersion test for studying the corrosion behavior of AZ91 before
and after being assisted by MAO and coating. As can be seen, the corrosion rate has
been significantly reduced after applying MAO and akermanite coating. It is note-
worthy that the porous coating has been made intentionally in order to enhance
biological fixations of the living tissue to the implant.

Fig. 17 Confocal laser
scanning microscope
image of
electrophoretically
deposited bacteria after
2400 s (Reprinted from
Neirinck et al. [70],
Copyright (2009), with
permission from Elsevier)

P. Amrollahi et al.



585

 Conclusion

Electrophoretic deposition (EPD) is a versatile processing technique, with remark-
able characteristics such as cost effectiveness, simple equipment, offering relatively
short processing time and easy modification. EPD was proven to be useful for pro-
duction of geometrically complicated shapes, and full controllability of the thick-
ness and morphology, and it has gained considerable attention in the last few
decades. Deep understanding of EPD mechanisms along with appropriate process
variables can lead to efficient fabrication of the intended piece. This technique is
capable of fabricating both micro- and nanostructured ceramics, which can be used
in a wide range of applications such as biomedical, optical, and corrosion protec-
tion. It has also found applications in production of carbon nano tubes, fuel cells,
sensors, and actuators. Although EPD has been studied for more than 50 years,
there are still opportunities for novel applications and material advancements based
on EPD due to its exceptional characteristics.
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Abstract
Anodic aluminum oxide (AAO) consists of parallel pores arranged in a
honeycomb-like array. Since a two-step self-organized approach in anodic alu-
mina fabrication was invented, tremendous attention was paid to this material.
Structural features of anodic alumina, like pore diameter, interpore distance, and
nanoporous oxide thickness, can be fully controlled by operating conditions,
including type, concentration and temperature of the electrolyte, applied voltage,
and duration of the anodization process. Moreover, these operating conditions
have also a major impact on the nanoporous array arrangement. Quantitative
arrangement analysis methods employing fast Fourier transforms have been
developed to assess the nanopores’ arrangement. The most frequent application
of the anodic aluminum oxide is a template-assisted fabrication of nanostructures.
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Templates made of the AAO are being successfully applied in fabrication of
nanowires, nanotubes, and nanodots by using diversity of techniques, including
electrochemical deposition, physical and chemical vapor deposition, sol–gel
techniques, etc. Due to the size of obtained nanostructures, magnetic, electric,
piezoelectric, luminescent, and catalytic properties of the deposited materials
can be significantly improved. Thus, control of the nanopores’ structural features
and arrangement is crucial for AAO applications in nanotechnology.

Keywords
Anodizing • Anodic Aluminum Oxide • AAO • Self-organization • Template-
assisted nanofabrication • Nanostructures • Nanopores

 Introduction

Anodic aluminum oxide (AAO) is one of the most frequently nanostructured mate-
rials obtained by electrochemical technique. Nanoporous anodic alumina consists
of the parallel, periodically arranged capyllars, in which geometrical features and
arrangement strongly depend on the experimental conditions. Due to the controlla-
ble synthesis of the anodic alumina, one can obtain templates for nanofabrication
with desired geometrical features. Therefore, diversity of nanowires, nanotubes,
and nanodots has been obtained with electrochemical, physical, and chemical meth-
ods of deposition into anodic alumina nanopores. It allows to enhance magnetic,
electric, catalytic, optical, and sensing properties of the deposited materials due to
the small size and high-aspect ratio of the obtained nanostructures. Thus, numerous
developments in nanotechnology, electronics, catalysis, memory storage systems,
energy storage and harvesting systems, magnetic materials, catalysis, photonics,
and sensor systems have been achieved. Moreover, anodic alumina itself poses
numerous interesting properties like surface chemistry or luminescence.
In this chapter, a review on the anodic alumina fabrication and characterization

is presented. Moreover, properties of the AAO resulting from phenomena occurring
during the oxide growth are described. Additionally, applications of the AAO,
including the most recent ones, have also been reviewed in details.

 Formation of Anodic Aluminum Oxide

There are two types of anodic oxides formed on aluminum. At pH range 5–7 nonpo-
rous, adherent, compact oxide layers are being formed [245]. In more acidic electro-
lytes, nanoporous oxides are being formed with hexagonally arranged nanopores
[245]. Scheme of a typical hexagonally arranged nanoporous oxide is shown in Fig. 1. 
One can distinguish hexagonal cells with pores in their centers (Figs. 1a and 2a). On
a cross-sectional view, one can see that the pores are parallel capyllars ended with
hemispherical barrier layer at their bottoms at the metal–oxide interface (Figs. 1b and
2b–d). Typical quantities characterizing anodic aluminum oxide are pore diameter,
interpore distance (equal to the cell diagonal), and thickness of the oxide layer.
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On the FE-SEM images, one can see hexagonally arranged nanopores, but these
are organized into defect-free domains, with numerous defects at the domain bound-
aries (Fig. 2a). Randon et al.’s [213] approach brings some explanation in this mat-
ter. According to the presented model, first, pores appear as an effect of electric field
spatial distribution inhomogeneities (Fig. 3a). These pores are singular and ran-
domly distributed at the anode surface. Next, during anodization process, other
pores are growing with hexagonal symmetry around the first pores (Fig. 3b). 
Therefore, randomly distributed defect-free domains are presented on the anode
surface. Subsequently, population of pores increases and the defect-free domains
expand by the growth of the next hexagonally arranged pores (Fig. 3c). Finally, the
defect-free domains are expanding till the whole surface of the anode is covered
with pores. Then, one can observe highly ordered domains with hexagonally
arranged nanopores with numerous defects at the domains boundaries (compare
Fig. 2a to Fig. 3d).

Cell

Dc Dp

Pore

Interpore
distance (Dc)

Pore
diameter (Dp)

Barrier
layer

a

b

Aluminum

Fig. 1 A scheme of ideally arranged nanopores: top view (a) and cross section (b)
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According to Parkhutik and Shershulsky [196] one can obtain valuable informa-
tion about phenomena occurring at the anode during anodic oxide growth from
current density – time or voltage – time curves. At the beginning of the anodization
process, one can observe a voltage increase (galvanostatic anodization, Fig. 4a) cor-
responding to a rapid drop of current density (potentiostatic anodization, Fig. 4b). 
This is acknowledged to the formation of compact, adherent nonporous oxide layer
on the aluminum (Fig. 4 stage I). Next, one can observe decrease of the voltage
raise and current density decrease rate, what is caused by the appearance of micro-
cracks in the oxide surface (Fig. 4 stage II). Next nanopores appear what decreases
voltage and increases current density (Fig. 4 stage III). Finally, both current density
and voltage reach plateau corresponding to the steady pore growth and array of

200 nm EHT = 2.00 kV WD = 4.8 mm

|WC PANMag = 80.00 KXSignal A = InLens

200 nm EHT = 2.00 kV WD = 4.4 mm
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Anodic aluminum oxide

Barrier layer
Aluminum
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a

c
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Fig. 2 Top view (a) and cross-sectional view (b–d) of anodic aluminum oxide formed by a two-step
self-organized 15 min long (a–b) and 120 min long (c–d) anodization in 0.3 M oxalic acid at 40 V

Fig. 3 A model of defect-free domains expansions (Based on Randon et al. [213])
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hexagonally arranged cylindrical nanopores are being formed (Fig. 4 stage IV).
Distribution of electric field lines in this situation is radial – almost all charge flows
through the pores’ bottom and barrier layer. For too high values of voltages, the
barrier layer may not be formed, or the high-density current can break through the
barrier layer, and then one can observe samples “burning” accompanied with local
temperature increase at the anode [11].
According to Thompson and Wood [255], the formation of anodic aluminum

oxide is an effect of two opposite phenomena: on the one hand Al3+, OH−, and O2− 
are forming the oxide, but on the other hand, the growing oxide is all the time in
contact with acidic electrolyte and reacts, so the oxide is being partly etched then.
Due to the alumina reaction with acidic electrolyte, dissolved Al3+ cation can again
react with O2− anions and again form the oxide. Simultaneously, both water and
electrolyte molecules are being adsorbed on the oxide surface. Electrolyte’s mole-
cules attract hydrogen atoms from the water particles, and OH− as well as O2− spe-
cies are being formed [245]. Meanwhile, the adsorbed electrolytes’ anions are being
absorbed by the growing oxide bulk. The mentioned surface reaction is responsible
for electrolyte’s anions’ incorporation into the anodic alumina [60].
In nanotechnology, high-quality arrangement and periodicity of the elements are

demanded to obtain materials with new or enhanced properties owed to their
dimensions. To obtain highly ordered monodomain alumina with uniform
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Fig. 4 A model of nanoporous oxide growth stages (I–IV) with corresponding voltage–time 
(a) and current density–time (b) curves (Based on Parkhutik and Shershuls [196])
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nanopores, two major approaches based on the aluminum pretexturation have been
developed. After electropolishing, aluminum can be nanoidented with techniques such
as fast ion bombardment [145, 146, 150, 202], atomic force microscopy [97], or scan-
ning probe microscopy [167] (Fig. 5). After the nanoidentation, the aluminum with
obtained concaves is being anodized, and highly ordered arrays of the nanopores are
then formed. Unfortunately there are few limitations of the direct nanoidentation: sur-
face area is strongly limited to fewmm2, and time-consuming techniques are employed.
Thus, other identation techniques have been worked out. With the use of lithographic
techniques, molds made of hard materials like SiC [9, 10, 160, 168, 278, 279], Si3N4 
[39, 44, 45], or Ni [169, 284, 285] with highly ordered arrays of nanopillars are being
fabricated. Next, electropolished aluminum is being idented with the mold, and an
array of concaves on aluminum is being obtained (Fig. 5). After anodization, highly
ordered array of nanopores is obtained. Nanopores with various geometries, including
typical hexagonal arrangement with cylindrical pores (Fig. 6a), but also square arrays
of cylindrical pores (Fig. 6b) as well as triangular pores (Fig. 6c) and square-shaped
pores (Fig. 6d), can be obtained with this approach. Nevertheless, this method requires
employment of sophisticated and expensive lithographic techniques.
To overcome disadvantages linked to aluminum nanoidentation, a self-organized

two-step anodization has been developed (Fig. 7). After the first step of anodization,
disordered nanopores are being obtained (Fig. 8). After chemical oxide removal, one
receives highly ordered concaves on aluminum. These concaves serve as the pore
nucleation sites during the re-anodization (second step of anodization carried out –
which is very important – in the same experimental conditions as the first step of the
process). In this case, one can get highly ordered arrays of the nanopores at large
surfaces, up to few dm2 [72]. With this approach, formed anodic alumina is made of
highly ordered domains with common defects at the domains’ boundaries (Figs. 1a, 8)
According to Nielsch et al. [183], for every applied electrolyte, there is a certain

voltage where one can achieve the best arrangement of the nanopores. The best nano-
pore arrangement, depending on the electrolyte type, was found at 25, 40, and 195 V
for 0.3 M sulfuric acid, 0.3 M oxalic acid, and 0.1 M phosphoric acid, respectively.

Fig. 5 Two various routes of aluminum nanoidentation before anodization
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Fig. 6 FE-SEM images of anodic aluminum oxide with various pore shapes and arrangement
grown on pre-textured aluminum (Reprinted with permission from Masuda et al. [164], (a, c, d) 
and Asoh et al. [10])

Fig. 7 The experimental procedure for a two-step self-organized anodization
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To improve nanopore arrangement and enhance the rate of the oxide growth,
hard anodization is employed. Opposite to typical anodization conditions (called
mild anodization (MA)), hard anodization (HA) is conducted at much greater values
of voltage. Namely, aluminum is usually anodized in sulfuric acid at voltages rang-
ing from 15 to 25 V (MA) [244] and results in interpore distance ranging from 50 to
60 nm [169]. Above 25 V anodic dissolution of aluminum occurs. Hard anodization
is conducted for sulfuric acid at voltage ranging from 40 to 70 V and results in inter-
pore distance ranging from 90 to 140 nm. The major benefit from the application of
HA is fast oxide growth rate and high quality of the nanopores’ arrangement. For
example, anodic alumina grows in 0.3 M oxalic acid at 1 °C and 40 V (MA) with a
rate of 2.0 μm/h. While the HA procedure is applied (0.3 M oxalic acid, 1 °C,
110–150 V), oxide growth rate increases up to 70 μm/h (Lee et al. 2006).
Additionally, mild anodization and hard anodization can be used alternately

during the oxide growth. Then, multisegment nanopores with a rapidly changing
diameter are obtained. So obtained, periodically modulated alumina nanoporous
arrays are in demand in nanofabrication (Lee et al. 2006 [248]).
Due to the rapid voltage changes, Y-branched nanopores can be also obtained.

For example, Zaraska et al. [295] reported fabrication of Y-branched AAO formed
in oxalic acid. After the first step of anodization and oxide removal, the second step

Fig. 8 FE-SEM images of the samples prepared by anodization in 0.3 M oxalic acid at 40 V. Top view
of the surface after the first step of anodization (a), alumina removal (b), and second step of anodiza-
tion providing high-quality arrangement of the pores (c–d) (Reprinted from Choudhari et al. [47])
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of anodization was initiated with a voltage of 60 V (Fig. 9d). After certain time,
voltage was reduced to 42 V that implied the growth of AAO with narrower pores
(Fig. 9e). Another voltage decrease, to 30 V, causes that one can distinguish three
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Fig. 9 Schematic representation of Y-branched anodic alumina synthesis and its application in
synthesis of nanowires with electrochemical deposition (Reprinted from Zaraska et al. [295])
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segments of AAO with different pore diameters (Figs. 9h, 10a–b). Moreover, direct
current electrodeposition of gold into a AAO template with branched pores resulted
in Y-branched gold nanowires, with structures being very attractive for sophisti-
cated microelectronics (Fig. 10c–d). According to Santos et al. [221] Y-branched
anodic alumina nanopores can also be obtained with the use of mild anodization and
hard anodization. After mild anodization, rapid voltage increase to the value from
HA range results in nanoporous alumina with relatively large pores at the bottom
(HA) and narrower ones on top (MA).

 Influence of Operating Conditions on Nanopores’ Geometry

Anodic alumina is typically anodized in one of three electrolytes: sulfuric acid,
oxalic acid, or phosphoric acid [245]. Researchers have paid a lot of attention to
investigate quantitatively the influence of operating conditions on the nanopores’
geometry. Geometry control, for desirable nanopores’ dimensions, is demanded in
the nanofabrication. For most of the electrolytes, operating conditions like the type
and concentration of the electrolyte, anodizing voltage, and temperature and

Fig. 10 Anodic alumina with Y-branched pores (a–b) and gold nanowires obtained by direct cur-
rent electrodeposition into the AAO template with branched pores (c–d) (Reprinted from Zaraska
et al. [295], Springer)
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duration of the second step of anodization influence the geometry of anodic alu-
mina, including pore diameter, interpore distance, thickness of the anodic alumina
porous film, porosity, barrier layer thickness, and wall thickness. Certain voltage
ranges are being applied for certain electrolytes. For example, anodization in sulfu-
ric acid results in nanoporous oxide formation at voltage ranging from 15 to 25 V
[243]. For greater voltages, anodic dissolution of aluminum occurs, while for lower
voltages no porous structure can be obtained. To conduct successful anodization at
grater voltages, oxalic acid has to be applied as the electrolyte. Then aluminum can
be anodized at voltage ranging from 20 to 100 V [47, 48, 82, 94, 177, 234, 246, 290,
296, 297]. Phosphoric acid is applied for the voltage up to 195 V [183, 291]. 
Already, direct observation of FE-SEM images shows that operating conditions
have major impact on the nanopores’ geometry (Fig. 11). One can notice that the
greater the anodizing voltage, the greater the pore diameter and interpore distance.
Figure 12 shows pore diameter versus voltage (A) and interpore distance versus
voltage (B) dependencies gathered from numerous publications for three most fre-
quently used electrolytes. Pore diameter and interpore distance increase linearly
with the applied voltage. The smallest pore diameter (about 20 nm) and interpore
distance (about 43 nm) are for anodic alumina formed in 20 % wt sulfuric acid at 15
V [243]. The greatest value of pore diameter (about 158 nm) and interpore distance

Fig. 11 Top view FE-SEM images of anodic alumina formed in 0.3 M oxalic acid at various volt-
ages and temperatures (Reprinted from Chowdhury et al. [48]1), Springer)
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(about 500 nm) is for alumina formed in 0.1 M phosphoric acid at 195 V [183]. 
Moreover, electrolyte’s temperature and duration of the second step of the self-
organized anodization have also a major impact on the nanopores’ geometry.
Only anodizing voltage influences the interpore distance. It is a well-recognized
fact. But, the greater the temperature, or the longer second step of anodization,
the wider the pores being obtained (Fig. 12b). This is related with the fact that
the growth of the anodic oxide is an effect of two opposite phenomena: oxide
growth and oxide dissolution in contact with acidic electrolyte. Thus, the greater
the temperature of the electrolyte, the faster the reaction of the oxide with the elec-
trolyte. Moreover, the longer the second step of anodization, the greater the quantity
of oxide being consumed, which results into a pore diameter increase [246, 234]. 

Fig. 12 Influence of anodizing voltage on pore diameter (a) and interpore distance (b) (Data from
Sulka and Parko [243], Stępniowski and Boj [234], Yuan et al. [290], Sulka and Stępniows [246],
Zaraska et al. [296, 297], Montero-Moreno et al. [177], Chowdhury et al. [48], Huang et al. [82],
Choudhari et al. [47, 291], Nielsch et al. [183] were used)
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Thus, for nanopores obtained by anodization in oxalic acid, a strong increase of
pore diameter with electrolyte’s temperature and duration of the second step of
anodization is observed (Fig. 12a). Such an effect is not observed for the values of
interpore distance; hence, the greater the electrolyte’s temperature, or the longer the
anodization, the greater the porosity of the anodic alumina (Fig. 12b) [246, 234]. 
For an ideal hexagonal pore arrangement, porosity (α) can be estimated from the
following equation [245, 246]:

 

a =
æ

è
ç

ö

ø
÷0 907

2

.
D

D
p

c  
(1)

where Dp and Dc are pore diameter and interpore distance, respectively. Therefore,
when the pore diameter increases at constant value of the interpore distance, poros-
ity increases. On the one hand, it provides wider pores, but on the other hand, a
better close packaging is obtained. Temperature increase assures also thinner walls
(W) and thinner barrier layer (B). These quantities are also strongly related to the
pore diameter and interpore distance (2) [245]:

 
W

D D
Bc p=

-
= ×

2
0 71.  (2)

Another quantity strongly influenced by the operating conditions is thickness of
the anodic oxide layer. Anodic oxide growth is a typical faradic process [245]. As
one could expect, the greater the charge flows through the anode, the greater the
quantity of the anodic oxide being formed. Hence, all the quantities influencing the
current density are influencing nanoporous oxide growth rate in the same way. For
example, both oxide growth rate and current density increase exponentially with
anodic voltage (Fig. 13). Here, electrolyte’s temperature increase is also beneficial.
Temperature increase increases ionic mobility, which enhances the electrolyte’s
conductivity. The greater the conductivity, the greater the current density and oxide
growth rate. Due to the temperature increase, anodic alumina can be obtained via
anodization in oxalic acid with the rate of even 55.6 μm/h at current density of about
21.8 mA/cm2 (onefold greater than for low temperature anodization) [177, 246].
Thus, geometry of the nanopores can be successfully steered by the application

of appropriate experimental conditions during the anodization process, which
assures fabrication of high-aspect ratio nanomaterial fabricated with the use of self-
organized electrochemical method.

 Influence of Operating Conditions on Anodic Alumina 
Arrangement

Not only dimensions but also quality of the individual arrangement and ideality of
their periodicity are very often crucial in nanotechnology. For this reason, several
approaches for quantitative description of arrangement of the nanopores have been
developed by the researchers.
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One of the most popular groups of the analysis method is based on the fast
Fourier transforms (FFT). With the use of dedicated software, the FE-SEM image is
transformed into the FFT image. Qualitatively, the nanopores are quite well-arranged
if the FFT image is not blurred. For high-quality arrangement, the FFT image con-
sists of six distinct dots in the corners of the hexagon. While the arrangement of the
nanopores is poor, the FFT image is a blurred, thick ring. To perform FFT-based
quantitative arrangement analyses of the nanopores’ arrangement, intensity profiles
have to be conducted through the FFT image (Fig. 14). Maximum height of the
intensity profile (I) and width of the intensity profile’s peak at half of its height (σ) 
are quantities involving information about the nanopores’ regularity (Fig. 14c). 

Fig. 13 Influence of anodic voltage on the oxide growth rate (a) and current density (b) (Data
from Sulka and Stępniowski [246] and Montero-Moreno et al. [177])
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The arrangement of nanopores is hexagonal, thus three intensity profiles are obtained
from each FFT images. According to Shingubara et al. [229, 230], Almasi Kashi
and Ramazani [4, 5], Almasi Kashi et al. [6], Sulka and Parkoła [244] and Zaraska
et al. (2013), the intensity (I) of the profile to width of the intensity profile’s peak at
half of its height (σ) ratio brings information about the AAO regularity (3):

 
R

I
=
s  

(3)

The greater the regularity ratio being estimated in this approach, the better the
arrangement of the nanopores. For the nanopores formed in sulfuric acid, regularity
ratio increases linearly with applied voltage, and its greatest value is for AAO
formed at 25 V [244]. This result is in agreement with Nielsch’s findings [183]. 
According to Zaraska et al. (2013), anodization in oxalic acid at 40 V results in the
best arrangement of the nanopores. This finding is in agreement with results obtained
by Nielsch et al. [183] and Shingubara et al. [4, 229]. Almasi Kashi et al. (2007) and
Shingubara et al. [229] have also investigated regularity ratio of the nanopores
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Fig. 14 FE-SEM image (a), its fast Fourier transform (FFT) (b), and one of the intensity profiles
(c) of anodic alumina formed in 0.3 M oxalic acid
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fabricated in mixtures of sulfuric and oxalic acid. It was found, that the greater the
addition of sulfuric acid, the greater the regularity ratio for AAO formed at voltage
range dedicated to oxalic acid. However, for various sulfuric acid additives, there
are various optimal voltages providing the best arrangements – the greater the sul-
furic acid content, the lower the optimal voltage (Almasi Kashi et al. 2007).
The presented approach in the quantitative arrangement analysis of the nano-

pores is beneficial; nevertheless, it has fewmajor drawbacks. First of all, fast Fourier
transform consists of periodic functions in the case of analysis of periodic structures
images. Thus, the greater the number of nanopores, the greater the estimated regu-
larity ratio independently from the real spatial ideality. Thus, such an error should
be taken into account during the regularity ratio estimations. Recently, such an
approach has been developed [237]. Numerous simulations have been performed
with various numbers of pores (n), sizes of analyzed model (S), and porosities (α) 
with fixed other values. After numerous calculations, it was found that reliable regu-
larity ratio, linked only to the arrangement of the nanopores, can be estimated with
the following equation:

 
R

nS I
=
( )

×
-
3

2

2a s  
(4)

It was found that there is no significant temperature effect on the nanopores’
arrangement. Despite the fact, obtained results are in agreement with results
obtained with previous approach that the best regularity is for AAO formed in 0.3 M
oxalic acid at voltage of 40 V.
Another approach due to which one can estimate quantitatively nanopores’

arrangement is performance of the Delaunay maps. There, a pore neighboring with
a number of pores different than six is a defect. Percentage of defects is influenced
by the operating conditions. According to Sulka and Jaskuła [242], the lowest per-
centage of defects in the nanoporous array obtained by anodization in sulfuric acid
can be achieved at a voltage of 25 V (about 9.5 %). According to Stępniowski et al.
[235], the lowest percentage of defects in the AAO formed in oxalic acid can be
achieved at 40 V, when the first step of the anodization is extended (10.3 %). These
results correspond with the regularity ratio obtained with FFT. Moreover, for other
voltages than these two, percentage of defects is significantly greater (Fig. 15).
There are few other approaches in quantitative arrangement analysis of the nano-

pores, based on the nanopores’ geometry. Hillebrand et al. [87] proposed two
approaches derived from angle and interpore distance deviations. For ideal hexago-
nal arrangement, the angle between the lines linking the pores centers should be
60°. The more the counts close to the value, the better the pore arrangement and the
greater the regularity ratio being derived from angle distribution function (ADF)
(Zaraska et al. 2013). Pair distribution function (PDF)-based regularity ratio has the
greatest value, translated into the best nanopores’ arrangement, for uniform inter-
pore distances. For anodic alumina formed in oxalic acid, the greatest values of
ADF- and PDF-derived regularity ratio are for AAO formed at 40 V. The results are
in agreement with findings derived from arrangement analyses performed with
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other methods. Except for the PDF and ADF regularity ratio, there are also few
other similar arrangement analysis methods based on the investigation of the inter-
pore distance and angle distribution like the ones reported by Borba et al. [19] or
Mátéfi-Tempfli et al. [171].
There are also approaches based on the investigation of the defect-free domain

size (the greater the defect-free domain, the better the arrangement) [207, 1] or even
on the nanopores’ circularity ([235], Zaraska et al. 2010).
In total, quantitative arrangement analysis methods described above give a coher-

ent view on the anodic alumina nanopores’ arrangement. With the use of these
methods, experimental procedures can be optimized to obtain almost ideally
arranged arrays of the nanopores.

 Luminescent Properties of Anodic Aluminum Oxide

As it was mentioned above, during anodic oxide growth, positively polarized anode
attracts negatively charged anions. Next, the anions are being adsorbed on the
oxide’s surface and then incorporated into the AAO walls. Thus, anodic alumina
poses anionic impurities in its walls. According to the results reported by Le Coz
et al. [124], the oxide walls posses incorporated electrolyte’s anions; however, the
AAO skeleton is made of pure alumina (Fig. 16). It was also found that due to the
anions incorporation and presence of F-centers in the formed oxide, AAO has lumi-
nescent properties. For example, anodization of aluminum in oxalic acid provides
photoluminescent (PL) emission bands ranging from 429 to 480 nm, depending on
the excitation wavelength (Table 1 [30, 136]). Photoluminescence can be also caused

Fig. 15 Percentage of defects versus voltage (Data from Sulka and Jaskuła [242], Stępniowski 
et al. [235])
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by the incorporation of sulfate and chromate anions. The excitation spectrum of
nanoporous anodic alumina formed in 0.3 M chromic acid is the same as the absorp-
tion spectrum of the electrolyte, which translates into a successful incorporation of
chromate anions into the AAO [236].

Fig. 16 TEM top view image (a) and corresponding X-ray elemental maps of phosphorus (b),
oxygen (c), and aluminum (d) of AAO formed in phosphoric acid (Reprinted with permission from
Le Coz et al. [124])

Table 1 Photoluminescence of anodic alumina prepared in various electrolytes

Source of luminescence
Excitation
wavelength [nm]

Emission wavelength
maximum or band [nm] References

F+ centers 355 450 Rauf et al. [214]

F-centers 395 500

Oxalate anions 360–370 429–460 Li and Huang [136]

F-centers 305 461 Komarov et al. [116]

Sulfate and oxalate anions 265 and 340 420–520 [135]

F-centers 265 and 340 440

F+ centers 325 390 Mukhurov et al. [178]

Oxalate anions 325 435, 470–480

Sulfate anions 325 400

F+ centers 440 443 Chen et al. (2006)

Oxalate anions 440 470

Chromate anions 255 and 350 310–510 Stępniowski et al. [236]
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There are also PL bands originating from F-type centers (oxygen vacancies with
various numbers of electrons). The peaks of the PL emission caused by the presence
of the F-centers have their maxima at wavelengths ranging from 390 to 500 nm
(Table 1 [214, 116, 135, 178], Chen et al. 2006). These bands, together with the ones
originating from incorporated anionic species, form broad PL bands. According to
Li et al. [135], PL bands originating from the incorporated electrolyte’s anions can
be distinguished from the ones that originate from F-centers. The F-centers PL life-
time is shorter than 7 ns, while PL originating from the anions has much longer
lifetime. Moreover, the smaller the pores, the longer the PL lifetime. Thus, the PL
lifetime can be controlled by the nanopores’ morphology.
According to Rauf et al. [214], intensity of PL originating from F-centers can be

also controlled. The worse the nanopores’ arrangement, the more the defects, like
F-centers present in the AAO walls. Therefore, the worse the nanopores’ arrange-
ment, the more intensive the PL from the F-centers.
Both pore diameter and nanoporous array arrangement influence the PL of the

AAO. Simultaneously, morphology and arrangement of the nanopores and chemical
composition of the AAO walls are controlled by the operating conditions during the
anodization process. Hence, luminescent properties of AAO can be steered by the
operating conditions.

 Applications of Anodic Aluminum Oxide

Anodic aluminum oxide is a widely applied template material for nanofabrication.
To prepare a suitable template, a posttreatment of AAO formed after the second step
of anodization is required. Firstly, the remaining, unoxidized aluminum has to be
removed (Fig. 17). The most frequent mixtures for aluminum removal are saturated
aqueous solution of HgCl2 [294] or CuCl2 [52] and aqueous solution of CuSO4 [154] 
or CuCl2 [143] in HCl. Then alumina with closed pores at their bottoms is obtained.
Gao et al. [68] reported a new approach in the remaining alumina detachment with
the use of an electrochemical method. Anodic alumina with remaining aluminum
was working as an anode in a HClO4:CH3OH (1:1) solution with the addition of
polyglycol. Application of voltage ranging from 15 to 25 V for 5–15 s allowed to
obtain AAO totally detached from unoxidized aluminum. The next step of a through-
hole anodic alumina membrane preparation is pore opening. One can distinguish

Fig. 17 Fabrication of anodic alumina templates for nanofabrication. Obtained AAO has to be
detached from remaining Al, and next the pores’ bottoms have to be opened (Adapted from
Zaraska et al. [294])
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chemical, electrochemical, and physical methods of pore opening (barrier layer
removal). Typically, for chemical approach, 5 % wt H3PO4 is being used ([52], Liu
et al. 2011 [294]). However, during pore opening, usually whole alumina is reacting
with the acid. Therefore, barrier layer removal (pores’ opening) is accompanied with
pore widening on the membrane top, and as a result, one obtains AAO membrane
with narrower pores at the bottom and wider pores on the top [294]. To avoid this
issue, Cui et al. [52] developed a new approach in pore opening. The AAO with
closed pores is gently placed on the H3PO4 aqueous solution with closed pores down.
Initially, surface tension keeps the membrane on the surface, and only the pores’
bottom reacts with the acid (and the pores are not being widened on the top). Finally,
when all the barrier layers are consumed due to the chemical reaction, the whole
membrane dips into the solution. Due to this approach, AAO membranes with
uniform diameters in whole depth are obtained. The uniformity of the AAO mem-
branes is very often a crucial factor in nanofabrication. Lillo and Losic [143] have
developed an electrochemical method of the nanopore opening. They placed AAO
with closed pores in the hole in the middle of the two-half permeation cell (AAO is
sandwiched between the half-cells). A typical etching solution (5 % H3PO4) was
placed on the barrier layer’s side, and 0.2 M KCl was placed on the AAO’s top side
(to provide electric conductivity). Between two platinum electrodes (each on every
side of the AAO), a voltage of 1.5–2.0 V was applied. Current measurements were
indicating progress of pore opening. While the current approaches the plateau,
barrier layer removal was done. Lillo and Losic [143] have also developed a physical
method of barrier layer removal. A Ga+ focused ion beam (FIB) can also successfully
open the pores’ bottoms. Another approach in pore opening is an electrochemical
barrier layer thinning [67]. Here, after the final step of anodization, the voltage is
being exponentially decreased. The most important is current transient control – a
steady-state pore growth stadium during voltage decrease cannot be achieved. As a
result pores with significantly thinned or even removed barrier layer are obtained.
When the AAO template is thick enough, it can be directly transferred on the

desired substrate, and nanofabrication with the template can be easily performed.
Nevertheless, while the template is thinner than about 1 μm (ultrathin aluminum
membrane (UTAM)), it is hard to directly transfer it on the substrate (template rolls,
cracks, and even breaks). To overcome issues linked to the thickness, an intermedi-
ate is material essential. For example, Liu et al. (2011) reported the use of black
wax. After the second step of anodization, the pores are coated with black wax.
Next, the remaining aluminum is removed, and pores are opened. Next, the AAO is
placed onto the desired substrate, and finally the black wax coating is removed.
After AAO template transfer onto desired substrate, the top-down nanofabrica-

tion can be done with the use of numerous techniques, resulting in materials with
new or enhanced properties owed to the small dimensions.
Metallic nanowires, nanotubes, and nanodots as 1D and 0D individuals attract

attention of the researchers mainly due to their electric, magnetic, and catalytic
properties. Fabrication of nanowires, nanotubes, and nanodots made of metals is
strongly linked with electrochemical methods. Usually, anodic alumina serves as an
insulating mask for conductive support, and electrodeposited metal crystallizes only
at the pore bottoms at the support/AAO interface. To form metallic nanodots, short
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electrodeposition time is required [117]. Further deposition leads to formation of
nanorods, nanowires, or nanotubes. To form nanorods and nanopillars, the deposi-
tion time has to be longer than for nanodots.
To form nanowires (high-aspect ratio 1D nanostructures), AAO template has to

be thick enough and experimental procedure has to provide relatively large charge
during the electrodeposition (Table 2). DC electrodeposition, AC electrodeposition,
and pulse electrodeposition are used to obtain highly ordered arrays of nanowires
made of Al, Ag, Ag–Au, Au, Bi, Co, and its alloys, Cu, Fe, and its alloys, Ni, and its
alloys, Sn, Pd, and Pt (Fig. 18, Table 2). Among electrochemical fabrication meth-
ods, also deposition from nonaqueous solution is applied [25]. So formed Al nanow-
ires serve as a support for TiO2 deposited with atomic layer deposition. Fabricated
high surface area electrode provides greater currents and longer viability of the bat-
tery. Magnetic properties of nanowires made of ferromagnetic materials are inten-
sively researched [193, 210, 239, 23, 284, 65, 259, 38, 258, 216, 12, 64, 275, 83, 61,
191, 180, 81]. Also optical properties [56, 95, 102, 283], as well as catalytic proper-
ties [148, 307], attract the attention of the researchers. Template-assisted formation
of metallic nanowires employs mainly electrochemical methods. However, one can
find barely few others like surface redox reaction (cementation) [197], vacuum evap-
oration (DC sputtering) [153], solid state reduction [63], or pressure casting [16].
To formmetallic nanotubes via electrochemical methods, firstly conductive layer

has to be sputtered onto the AAO nanopores’ walls, or surface redox reaction pro-
viding precipitation of conductive materials on the AAO inner walls surface has to
be conducted. Then, electrodeposited metal crystallizes not only at the templates’
bottom but also on the walls [126]. With this approach one can obtain uniform
metallic nanotubes made from Au [126, 127], Co [13, 22, 66, 138], Fe [22, 276], Ni
[22, 264, 286], and Pt [66] (Table 3). Here, also the electrochemical methods are
majority. However, methods like vacuum sputtering (Au [80]), surface redox reac-
tion (Au [289]), wet impregnation with precursor decomposition (Au–C [75], Co/
PS, [184, 185]), sol–gel technique (Pd [233]), or physical vapor deposition (Pd
[188]) are applied. Metallic nanotubes are useful in applications where high surface
electrodes are required, including catalysis (Au [289], Ni [286]) and energy storage
(Pd [188]). Also magnetic properties of metallic nanotubes made of Co [13, 138],
Cd [184, 185], and Ni [264] are extensively researched.
Arrays of nanodots with the use of anodic alumina templates are formed with the

use of diversity techniques (Table 4), including pulse laser deposition (Ag, Ni, Zn
[179]), vacuum sputtering (Ag, Au [162]), electron beam evaporation (Ag [28, 155],
Au [118–120]), electron beam epitaxy (Fe [149]), AC electrodeposition (Au [117]),
and pulse electrodeposition (Cu–Ni [79]). Electronic, optical, and magnetic proper-
ties of the obtained nanodots were investigated in details. For example, plasmonic
Ag nanodots were formed with the use of electron beam epitaxy (Fig. 19 [28]). It 
was found that the geometry of the nanodots is strongly related to the plasmonic
resonance wavelength of the electrons.
Nanowires, nanotubes, and nanodots made of metalloids and inorganic com-

pounds are fabricated with the use of various techniques. Due to their properties,
nanowires made of metalloids and inorganic compounds attract the attention of the
researchers. Here, also electrochemical methods are often in use (Table 5). 
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Fig. 18 Copper (a) and silver (b) nanowires obtained by AAO template-assisted electrodeposition
(Reprinted from Riveros et al. [215] and Pang et al. [197])

Table 3 Set of nanotubes made of metals with their deposition techniques and investigated
properties

Metal  
or alloy Deposition technique

Investigated properties/ 
applications/remarks References

Au DC electrodeposition Fabrication of high surface  
area electrodes

Lee et al. (2005)

Au Sputtering – Guo et al. [80]

Au Redox reaction on the
pores’ inner surface

Catalytic properties Yu et al. [289]

Au–C Impregnation of AAO walls
with acetone and HAuCl4 
followed by annealing at
200 °C

Au–C composite NTs were
obtained

Göring et al. [75]

Au–Ni DC electrodeposition Multisegment NTs Lee et al. [126]

Co DC electrodeposition Magnetic properties Bao et al. [13]

Co DC electrodeposition – Cao et al. [22], Fu
et al. [66]

Co DC electrodeposition Co nanorings (short tubes) were
formed; magnetic properties

Li et al. [138]

Co–Pt DC electrodeposition – Fu et al. [66]

Co/PS Co precursor decomposition
inside the polystyrene
containing

Magnetic properties Nielsch et al. [184,
185]

Fe DC electrodeposition – Cao et al. [22]

Fe DC electrodeposition – Xu et al. [276]

Ni DC electrodeposition – Cao et al. [22]

Ni DC electrodeposition Magnetic properties Wang et al. [264]

Ni DC electrodeposition High surface area of Ni catalyst
for water decomposition

Yi et al. [286]

Pd Sol–gel – Steinhart et al.
[233]

Pd Physical vapor deposition Mg-decorated Pd NT served as
a material for hydrogen storage

Norek et al. [188]

Pt DC electrodeposition – Fu et al. [66]
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For example, nanowires made of Ag2S [141], CdS ([108, 2, 71], Liu et al. 2011),
CdTe [306], CoSb [282], Cu2O [112], Cu2S [141], In2S3 [225], NiHCF [218], Se
[299], PbS [270], or ZnO (Fig. 20) [74, 194] were formed with DC electrodeposi-
tion. To form nanowires made of oxides or salts, deposition from nonaqueous solu-
tions is also applied (i.e., CdS [152, 154], ZnO [74] deposited compounds from
DMSO solutions). Numerous nanowires made of inorganic compounds are formed
also due to the ease of fabrication with inexpensive chemical methods, like precipi-
tation in pores or template wetting. With these methods, variety of nanowires
including AgI [261, 203, 204], Ag2S [204], Ag2Se [204], CdS [175], Cu2S [204],
CuS [204], CuSe [204], CsHSO4 [17] was fabricated. Due to the high-aspect ratio
and two confined dimensions, numerous properties of deposited materials are
enhanced or modified. Therefore, thermoelectric (Bi2Te2.7Se0.3 [137]), optical (CdS
[108, 2, 71, 175], Liu et al. 2011; Cu2O [112]; In2O3 [70]; In2S3 [225]; Si [159]; 
SnO2 [70]; PbS [270]; ZnO [37, 189]), magnetic (CoFeB [226]), or piezoelectric
properties (ZnO [59]) are investigated. With the use of nanowires made of

Table 4 Set of nanodots made of metals with their deposition techniques and investigated
properties

Metal  
or alloy Deposition technique

Investigated properties/ 
applications/remarks References

Ag Pulse laser deposition – Nam et al. [179]

Ag Sputtering Multiple arrays of ND were formed Masuda et al. [162]

Ag Electron beam
evaporation

The greater aspect ratio,  
the longer wavelength of the
plasmon resonance maximum

Chen et al. [28]

Ag Electron beam
evaporation

Ag NDs on GaAs substrate  
were deposited

Liu et al. [155]

Au Sputtering Multiple arrays of ND were formed Masuda et al. [162]

Au AC electrodeposition Fabrication of Au ND 3D arrays Kondo et al. [117]

Au–
Al2O3

Electron beam
evaporation

Multilayer ND were formed for
Surface enhanced Raman
spectroscopy

Kondo  
et al. [118, 120]

Cu Atomic layer deposition 70 nm uniform Cu NDs were
formed in AAO with greater pores
(up to 200 nm)

Johansson  
et al. [104]

Cu–Ni Pulse electrodeposition
+ ultrasonication

Multisegment NW were obtained;
after sonication, these fell apart
into ND

Guo et al. [79]

Fe Electron beam epitaxy Magnetic properties Liu et al. [149]

Ni Pulse laser deposition – Nam et al. [179]

Pd Plasma-enhanced
chemical vapor
deposition

Small NDs were formed  
on the inner walls of AAO

Kim et al. [111]

Pd Atomic layer deposition Pd ND-based hydrogen sensor Elam et al. [54]

W Electron beam-induced
deposition

– Xie et al. [272]

Zn Pulse laser deposition – Nam et al. [179]

W.J. Stępniowski and Z. Bojar
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semiconducting materials, advances in energy harvesting and storage systems can
be achieved. According to Liu et al. (2011), with the use of CdS nanowires, photo-
voltaic cells with efficiency of 17 %were manufactured. Moreover, nanowires made
of LiCoO2 [142] and CoSb [282] are promising materials for high surface area elec-
trodes for batteries. Moreover, Bocchetta et al. [17] reported fabrication of nanow-
ires made of CsHSO4, which can serve as a protonic conductor in fuel cells.
Additionally, with the use of sol–gel technique, superconducting nanowires made of
YBCO were formed [100].
Nanotubes made of oxides and semiconductors are beneficial in all the applica-

tions, where developed surface area is demanded, including catalysis (TiO2, V2O5,
ZnO [205]), high surface electrodes for energy harvesting [18] and storage (LiMn2O4 
[186]), and sensors (CuCo2O4, NiCo2O4, ZnCo2O4 [299]; NiHCF [218]; ZnFe2O4 
[301]) (Table 6). Optical (InGaAs [27], In2O3 [228], MoS2 [288]) and magnetic
(Fe2O3 [240], Fe3O4/ZrO2/Fe3O4 [206]) properties of the nanotubes are also
researched. Numerous nanotubes are formed with classical chemical methods
including reaction in pores (CdS [204], Fe2O3 [240], LiMn2O4 [186]) and template

Fig. 19 Silver plasmonic nanodots obtained via electron beam evaporation (Reprinted from Chen
et al. [28], doi:10.1007/s00339-012-7404-6)

18 Nanoporous Anodic Aluminum Oxide…
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wetting (Bi3.25La0.75Ti3O12 [224]; CuCo2O4, NiCo2O4, ZnCo2O4 [299]; ZnFe2O4 
[301]). Sol–gel technique, chemical vapor deposition, and atomic layer deposition
are also in use (Table 6).
Hexagonally arranged arrays of nanodots made of semiconductors and oxides

are being formed with anodic alumina templates mainly due to their optical proper-
ties related to their dimensions (Table 7). With the use of anodic alumina templates,
arrays of nanodots made of CdTe [106, 107], GaAs [140], GaN [32], In2O3 [133,
134], InAs [8], NiHCF [218], Si1-xGex [92], Si [93], TiO2 [29], and ZnS [257] were
fabricated. Variety of techniques is applied to form these nanodots, including
molecular beam epitaxy (Jung et al. 2006, [140, 8]), reaction in pores [32], thermal
sputtering and evaporation [133, 134, 257], direct current electrodeposition [218],
or plasma-enhanced chemical vapor deposition (Hu and He 2006).
Also carbon nanotubes are formed with the use of anodic alumina templates.

Carbon nanotubes are usually fabricated by chemical vapor deposition (CVD) inside
the AAO template pores, even without a catalyst [223, 51, 157] (Table 8). To con-
duct carbon nanotubes synthesis in the AAO pores, very often catalysts are being
deposited on the pores’ bottoms via various techniques, including DC electrodepo-
sition [298, 78, 85], AC electrodeposition [91, 105, 266, 267, 279], dip coating
[173], and thermal evaporation [121]. The most commonly applied catalysts are Co
([26, 91, 105, 241], Wen et al. 2006, [279, 298]), Fe [173], and Ni [78, 85, 121]. 
Carbon nanotubes formed with AAO template technique are attractive due to their
electric properties ([223, 51, 26, 105], Wen et al. 2006). Much effort has been put
into investigation of the carbon nanotubes’ highly ordered arrays as electrochemical
double layer capacitors ([105], Wen et al. 2006). Additionally, carbon nanotubes
formed inside the AAO templates are also researched as NH3 and NO2 sensors [157].
Anodic aluminum oxide is also applied as a template for fabrication of

arranged nanowires made of organic compounds (Table 9). These are often
formed via template dipping or wetting [3, 94, 98, 99, 114, 174, 187, 190, 192, 251]. 
Optical properties of organic and polymeric nanowires are very often researched 
[3, 98, 99, 101, 125, 192, 174, 273]. Electric properties of conductive organic
nanowires are also in the focus of investigations (polypyrrole [277], polythiophene
[190]). Additionally, nanowires made of triglycine sulfate posses pyroelectric prop-
erties, which were investigated by Nitzani and Berger [187]. Moreover, copper

Fig. 20 ZnO nanowires obtained byDC electrodeposition into anodic alumina template (Reprinted
from Öztürk et al. [194]
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phthalocyanine was investigated as a material for photodetectors, due to its semi-
conducting properties [273]. PMMA poly(methyl methacrylate) nanowire arrays
were investigated as a drug-releasing platform by Kokonou et al. [114]. Bioinspired
materials are also formed with the use of anodic alumina template approach. Lee
et al. [131] reported fabrication of hierarchically branched nanowires made of poly-
styrene (PS), inspired by gecko’s feet. Polystyrene was simply melted into the
branched pores, and these nanostructures with sophisticated shape were formed,
providing relatively high values of friction coefficient.
Majority of organic nanotubes are formed with the anodic alumina template dip-

ping or wetting methods (Table 10). Hexagonally arranged organic nanotubes are
being investigated due to their optical (poly(methyl methacrylate) [174], polynor-
bornene [192], poly(vinyl pyrrolidone) [209]), pyroelectric (triglycine sulfate
[187]), and piezoelectric properties (poly(vinylidene fluoride) [139]).
Nanodots made of organic compounds are rarely fabricated. PS nanodots were,

i.e., applied as corks, closing the nanotubes inside the AAO. After template removal,
nano-test tubes were obtained [88]. Also polymer nanoporous arrays made of poly-
mers are formed. For example, Yanagashita et al. [280] reported fabrication of
through-hole membranes made of PMMA. The PMMA membranes were formed
with a two-step replication technique. Firstly, nickel nanowires were electrodepos-
ited into the AAO membrane. After AAO removal, arrays of Ni nanowires were
dipped into the methyl methacrylate solution. After polymerization, Ni nanowires
were chemically removed with HCl and HNO3, and PMMA through-hole mem-
brane was formed (Fig. 21).
Due to the nanofabrication employing anodic aluminum oxide templates, various

devices are fabricated. Due to the high surface area provided by nanopores, nanowires,
and nanotubes, these structures are being investigated as active materials for sensing
(Table 11). Even anodic alumina itself is being applied as a humidity [147, 7, 86],

Table 7 Set of nanodots made of inorganic compounds and metalloids with their deposition
techniques and investigated properties

Compound  
or element Deposition technique

Investigated properties/ 
applications/remarks References

CdTe Molecular beam epitaxy Promising UV–vis
optoelectronic
material

[107]

CdTe/GaAs Molecular beam epitaxy – [106]

GaAs Molecular beam epitaxy – [140]

GaN Reaction between Ga2O and NH3 at 900 °C Optical properties [32]

In/In2O3 Thermal sputtering Optical properties [133]

In2O3 Thermal sputtering – [134]

InAs Molecular beam epitaxy – [8]

NiHCF DC electrodeposition Biosensing [218]

Si1-xGex Plasma-enhanced chemical vapor deposition Optical properties [92]

Si Plasma-enhanced chemical vapor deposition Optical properties [92]

TiO2 Anodization of aluminum with sputtered
TiN on the backside

- [29]

ZnS Thermal evaporation Optical properties [257]

W.J. Stępniowski and Z. Bojar
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Table 10 Set of nanotubesmade of organic compounds and polymers with their deposition techniques
and investigated properties

Compound Deposition technique
Investigated properties/ 
applications/remarks References

Ethylene vinyl acetate Dipping Various experimental
techniques were studied

[227]

Poly(methyl methacrylate) Dipping – [232]

Poly(methyl methacrylate) Dipping Optical properties [174]

Polynorbornene Template wetting
(dipping)

Optical properties of PNB 
NW with CdSe/ZnS core– 
shell nanodots

[192]

Polystyrene Dipping – [232]

Polypyrrole Polymerization in
pores after dipping

– [35]

Polytetrafluoroethylene Dipping – [232]

Poly(vinyl pyrrolidone) Dipping and annealing Optical properties [209]

Poly(vinylidene fluoride) Dipping and annealing Piezoelectric properties [139]

Triglycine
sulfate

Dipping with the
presence of electric field

Pyroelectric properties [187]

Fig. 21 Poly(methyl methacrylate) (a–c) and poly(3-hexylthiophene) (d) nanowire arrays
(Reprinted from Kokonou et al. [114])
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methane [110], and polychlorinated biphenyl [103] sensor. Due to the surface
chemistry of anodic alumina, the pore walls are being functionalized, and numerous
sensors are being formed. The detection of glucose oxidase [113], thrombin [55],
DNA [211, 260, 263], surface active agents [123], Ara h1 peanut protein [231], trypsin
[222], and urea [281] is enabled. Moreover, application of various nanofabrication
techniques, including electrochemical deposition and electropolymerization, allows to
form Ag [122], Au [212, 265], and polypyrrole [151, 250, 302] nanowire-based sen-
sors. Also nanotubes fabricated with anodic alumina template employing techniques
are being applied as sensors [299, 301]. It is worth to note that majority of the sensing
techniques is based on electrochemical methods like voltammetry and electrochemi-
cal impedance spectroscopy (Table 11).
With the use of anodic alumina, light polarizers are being assembled. AC and DC

electrodeposition techniques are being employed to deposit Ag [199], Co [254], Cu
[198], andNi [219] to formparallel nanowire arrays serving as polarizers. Nanowire–
AAO composite polarizers are attractive devices for infrared wavelengths. Recently
anodic alumina also finds applications in electronics and optoelectronics [158, 249,
53], photonics [161, 162, 39, 42, 305], integration of living cells with electronics
[76, 77, 20], cells culture and tissue engineering [252, 130, 109], and drug-releasing
platforms [253].

 Anodization of Aluminum Alloys

Anodic alumina is also being formed on technical purity aluminum, containing vari-
ous alloying elements and on the aluminum alloys. Anodization of technical purity
aluminum provides poor arrangement of the nanopores due to the substrate chemi-
cal inhomogeneities [156, 292]. Nevertheless, various approaches are being under-
taken to conduct successful anodization of aluminum-containing alloys. Zhou et al.
[308] reported anodization of zinc-containing aluminum alloy. Three main various
anodic layers have been distinguished. The upper layer was made of pure alumina,
middle one was made of alumina with incorporated zinc ions, and the bottom layer
was made of unoxidized zinc nanopillars. Additionally, Kondo et al. [119] reported
anodization of purple gold, AuAl2 intermetallic alloy. After anodic alumina removal,
there were hexagonally arranged hemispherical gold nanodots with diameter of
about 30 nm. Anodic nanoporous oxides were also formed on such an intermetallic
alloys like Ni3Al [237], TiAl3, TiAl, and Ti3Al [15, 256]. Despite worse arrangement
of the nanopores, anodization of aluminum-containing alloys provides functional
surface on the substrate which can be advantageous during exploitation of the alloys.

 Summary

Nanoporous anodic aluminum oxide morphology and arrangement can be controlled
by the operating conditions. For this reason, anodic alumina is a very suitable mate-
rial in nanofabrication. Moreover, due to the ions incorporation, luminescent
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properties of anodic alumina can be tuned. Additionally, self-organized anodization
is cost-effective, which makes it attractive for high-tech industries.
With the use of diverse techniques, including electrochemical ones, sophisticated

materials with unusual properties are obtained by researchers. Anodic alumina tem-
plates allow to obtain hexagonally arranged arrays of nanowires, nanotubes, and
nanodots made of various materials, which translate into unlimited possibilities of
materials’ nanofabrication with new or enhanced properties. It implies assembly of
devices with better performance and efficiency.
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Abstract
ZnO is one of the most promising semiconductors for low-cost optoelectronics 
and can be obtained from a variety of deposition techniques. Among them, elec-
trochemical growth in aqueous solution has become an important approach for 
ZnO deposition with abundant morphologies and doping capabilities. This chapter 
summarizes the current achievements in electrodeposition of ZnO and also 
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discusses the challenges and extensive potential in this research area. The effects 
of electrochemical growth conditions, annealing, and doping on the structural, 
optical, and electrical properties of ZnO thin films and nanowires are presented 
in detail. Electrical characterization using electrochemical impedance spectros-
copy and photoelectrochemical cell measurements are also included. n-Type and 
p-type semiconductor nanowires are achieved by electrochemical doping of ZnO 
with various elements such as Cl and Ag and are discussed as nanoscale building 
blocks in advanced optoelectronics. Electrochemical deposition of highly uni-
form ZnO thin films and oriented ZnO nanowire arrays with desired physical 
properties opens up possibilities for large-scale and economic fabrication of 
advanced optoelectronic devices.

Keywords
ZnO • Electrodeposition • Doping • Optoelectronics • Nanomaterials

 Introduction

 ZnO Basics

ZnO is a semiconductor with a direct bandgap of 3.37 eV (368 nm) at room tem-
perature. ZnO is therefore transparent to visible light, yet still a semiconductor. 
Such a combination of properties is rare and enables ZnO to be considered for a 
much wider span of device applications. ZnO also possesses an exciton binding 
energy of 60 meV [1], which is significantly larger than its comparable materials 
GaN (25 meV) and ZnSe (22 meV). Excitonic processes in ZnO, such as those 
associated with light-emitting diode (LED), laser diode, and solar cell operation, 
will be significantly more efficient and effective as compared to other wide bandgap 
semiconductors. Optical processes involving excitons in ZnO also produce a rich 
variety of interesting physics and behavior, making ZnO an attractive material not 
only for devices but also for fundamental research.

 Growth Techniques

The available growth techniques for ZnO are practically endless. Nearly every depo-
sition method for materials has been exploited to obtain ZnO in bulk, thin film, or 
nanostructure form [2]. Many of the common growth techniques for ZnO are associ-
ated with relatively high temperatures and vacuum environments, such as molecular 
beam epitaxy (MBE) [3], chemical vapor deposition (CVD) [4], pulsed laser deposi-
tion (PLD) [5, 6], thermal evaporation [7], and sputtering [8]. Bulk ZnO single 
crystals can be formed in hydrothermal [9], chemical vapor transport [10], and pres-
surized melt-growth processes [11]. ZnO materials from these high- temperature 
growth methods are often of very high quality and serve as the stepping stone for 
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ZnO’s breakthrough into the device application market. But perhaps the most 
 interesting distinction for ZnO among other semiconductors is its amenability to be 
deposited at low growth temperatures (<200 °C) and in aqueous solution.

 Electrochemical Growth in Aqueous Solution

The device application potential of ZnO in the areas of electronics and optoelec-
tronics relies on achieving large-scale and homogeneous materials at low cost as 
well as controlling ZnO’s fundamental physical properties. As mentioned above, a 
wide variety of growth techniques has been explored to accomplish these goals and 
obtain ZnO materials for potential use in device applications. In particular, low- 
temperature growth processes for ZnO materials are becoming increasingly studied 
due to their low cost and scale-up potential [12, 13]. Solution-based techniques for 
depositing ZnO include electrochemical deposition (ECD), hydrothermal and/or 
chemical bath deposition methods, sol–gel processes, and spray pyrolysis, just to 
name a few. For a thorough and enlightening review of solution-based techniques 
for ZnO deposition, see Ref. [12]. The various growth techniques and materials that 
can be deposited for ZnO are summarized in Table 1.

This chapter is focused on ECD growth processes for ZnO, and therefore they 
receive most of the attention here. The current achievements, challenges, and 
extensive potential in the area of ZnO ECD are summarized. The effects of electro-
chemical growth conditions, annealing, and doping on the structural, optical, and 
electrical properties of ZnO nanowires and thin films are presented in detail. Recent 
work on utilizing ECD ZnO nanowires as nanoscale building blocks for advanced 

Table 1 Growth techniques and materials available for ZnO

ZnO materials and growth methods

High temperature (>100 °C)

Method Environment Structure types References

MBE High vacuum Thin films, 3D nano [3]

CVD Moderate vacuum Thin films, 3D nano [4]

PLD High vacuum Thin films, 3D nano [5, 6]

Evaporation High vacuum Thin films [7]

Sputtering High vacuum Thin films, 3D nano [8]

Hydrothermal Ionic solution Single crystal [9]

CVT Moderate vacuum Single crystal [10]

PMG High pressure Single crystal [11]

Low temperature (<100 °C)

CBD Aqueous Thin films, 3D nano [12, 13, 21–24]

ECD Aqueous Thin films, 3D nano [12, 14, 15, 25]

Abbreviations: MBE molecular beam epitaxy, CVD chemical vapor deposition, PLD pulsed laser 
deposition, CVT chemical vapor transport, PMG pressurized melt growth, CBD chemical bath 
deposition, ECD electrochemical deposition, Nano nanostructures
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optoelectronic devices is also highlighted. ECD of highly uniform ZnO thin films 
and oriented ZnO nanowire arrays with desired physical properties opens up 
possibilities for large-scale and economic fabrication of advanced optoelectronic 
devices.

 ECD ZnO: Methods, Materials, and Properties

 Electrochemical Growth of ZnO: A History

In 1996, two alternative methods for ECD of ZnO were introduced: (1) the dis-
solved oxygen method developed by Peulon and Lincot [14] and (2) the zinc nitrate 
method developed by Izaki and Omi [15]. The amount of research activity associ-
ated with similar low-cost and low-temperature growth methods for ZnO materials 
has increased tremendously since then. The basic scheme to produce ZnO in ECD 
processes is as follows:

 
Ion species e OH+ ®- -  (1)

 
Zn OH Zn OH2

2
2+ -+ ® ( )  (2)

 
Zn OH ZnO H O( ) ® +

2 2  (3)

 Zn OH ZnO H O2
22+ -+ ® +  (4)

The first requirement is the production of hydroxide ions (OH−) in the growth 
solution, and typically this step is accomplished by an electrochemical reduction 
reaction (Eq. 1). In the zinc nitrate method, the ion species in Eq. 1 is NO3

−, while 
in the dissolved oxygen method, it is O2 gas bubbled into the growth solution. Once 
produced, the OH− ions react with zinc ions (Zn2+) also present in the solution to 
eventually form ZnO. Zn2+ ions are already present in the zinc nitrate method, but 
in the dissolved oxygen method, they must come from a secondary source such as 
zinc chloride, perchlorate, acetate, or sulfate. Many studies of solution-based pro-
cesses in the literature list Eqs. 2 and 3 as the eventual pathway for ZnO crystalliza-
tion, which involves an intermediary Zn(OH)2 phase [12, 16, 17]. However, recent 
investigations have provided strong support for the idea that Eq. 4 is the route for 
ZnO formation – a direct crystallization from Zn2+ and OH− ions that does not 
involve any intermediate hydroxide phase [18]. If Zn(OH)2 is an intermediate to 
eventual ZnO formation, only under appropriate conditions of pH, temperature, and 
concentrations will it decompose to produce ZnO and water (Eq. 3) [12].

Among the various options for ECD ZnO, there is not a single method that pos-
sesses all of the desirable traits for ease of use and process flexibility. While the zinc 
nitrate method is likely the simplest in that only one source material is needed and 
it is not necessary to make dissolved oxygen solutions, it possesses the smallest 
ZnO (instead of Zn) deposition potential window due to the reduction potential of 
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the nitrate reduction reaction [15]. Meanwhile, both the dissolved oxygen and 
hydrogen peroxide processes [19, 20] require a secondary source material to obtain 
Zn2+ ions, creating an immediate situation of unwanted and potentially contaminant 
species in the growth solution. Regarding the viability of process scalability, in 
principle only the dissolved oxygen method is limited due to the low solubility of 
O2 gas in water which creates an upper boundary on the growth rate of ZnO materi-
als by this method.

In addition to ECD, there are many similar techniques for depositing ZnO mate-
rials in solution. Another low-temperature deposition method for ZnO materials that 
has experienced a seemingly exponential increase in growth since its beginnings in 
2001 [12] is the so-called hydrothermal or chemical bath deposition [21–24]. This 
method is actually quite similar to ECD of ZnO in aqueous solution in that chemical 
species are mixed in water and a reaction between Zn2+ and OH− ions eventually 
produces ZnO [12]. Only substrates with specific properties and of certain materials 
can be utilized in the hydrothermal growth processes, however, due to limited initial 
ZnO nucleation.

Based on the difficulty in facilitating ZnO nucleation in chemical bath deposition 
and hydrothermal processes [21–24], Cui and Gibson developed a new ECD method 
for ZnO in 2005 which is a modified version of the most common hydrothermal 
growth process (zinc nitrate and hexamine, [21]) [25]. This method exploits the 
benefits and overcomes the limitations of both the zinc nitrate ECD process and the 
zinc nitrate plus hexamine hydrothermal process by combining them together. 
By applying a potential during growth, it becomes possible to significantly increase 
the nucleation density and growth rate of ZnO as compared to strictly hydrothermal 
processes. This allows for the deposition of ZnO directly onto conducting or semi-
conducting substrates (e.g., polished Si) without the need for a ZnO seed layer. 
In addition, the electrochemical growth of ZnO in a solution that contains zinc 
nitrate as well as hexamine immediately provides the ability to obtain controlled 3D 
nanowire structures [25]. While both the zinc nitrate and dissolved oxygen ECD 
methods for ZnO were initially developed for thin film deposition, work on both 
processes over the years has enabled modifications, such as the zinc nitrate plus 
hexamine method [25], that allow for significant tunability of the ZnO structures to 
include 3D nanowires and other useful morphologies. The growth conditions and 
structural properties for a wide range of ECD ZnO materials and methods are sum-
marized in Table 2 and then discussed at length and in detail below.

 ECD ZnO: Dissolved Oxygen Method

Much like any other deposition method for ZnO, the specific growth conditions in 
the ECD process maintain a strong effect on the eventual physical properties of the 
materials. Since all ECD methods for depositing ZnO eventually involve the reac-
tion of Zn2+ ions with OH− ions to make ZnO, the relative concentration of these two 
species near the electrode/growing crystal surface is expected to play a dominant 
role in governing the properties of the ZnO materials obtained. Even though the 
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eventual ZnO formation mechanism is the same in all ECD ZnO processes, many 
factors related to the particular ECD method and growth conditions used will affect 
the [Zn2+]/[OH−] ratio.

In the dissolved oxygen method, precursor concentration limits are very much 
set by the low solubility of O2 gas in solution. As a result, the concentrations of the 
reactant species used to deposit ZnO are typically very low, and a supporting elec-
trolyte such as KCl or KClO4 is used to establish a growth solution conductivity that 
is amenable to ECD processes. The initial [Zn2+] and [O2] are quite small, even 
below the mM range [14, 26], resulting in a strong effect of [Zn2+] as it is increased 
to higher concentrations. At low zinc concentrations, e.g., 0.5 mM, 3D nanowire- 
type structures can be deposited (Fig. 1) [14, 26], while at slightly higher [Zn2+], 
such as 5 mM, more dense and 2D type thin film structures are obtained (Fig. 2) [14, 27]. 
An even finer tuning of [Zn2+] in the 3D nanowire regime enables control of the 
nanowire diameter from 25 to 80 nm [28].

Table 2 Growth conditions and structural properties for ECD ZnO materials

ECD ZnO: growth conditions and structural properties

Dissolved oxygen method

Main conditions Substrate/special condition Structural References

0.5 mM [Zn2+], 
0.1 M KCl

FTO Nanowires [14, 26]

5 mM [Zn2+], 
0.1 M KCl

FTO Dense films [14, 27]

0.5 mM [Zn2+], 
0.1 M KCl

FTO; Cl−, SO4
−, acetate ions 

added
Nanowires (various 
aspect ratios)

[29]

Zinc nitrate method

[Zn(NO3)2] Substrate/special condition Structural References

0.1 M ITO; low potential 3D nano [15]

0.1 M ITO; high potential Dense films [15]

8–10 mM Si, poly Au, ITO; hexamine 
added

Nanowires [25]

0.5–3 mM ITO Nanowires [29]

0.05 M Poly Au; galvanostatic, low 
current

Dense films [31]

0.05 M Poly Au; galvanostatic, high 
current

Nanowires [31]

0.05–0.1 mM ZnO seed; [NO3
−] source: 

0.1 M NaNO3

Nanowires (various 
aspect ratios)

[35]

0.05 M Poly Au Nanowires [36]

0.05 M Poly Au; 30–70 % methanol 
electrolyte

Dense films [36, 41]

0.05 M Poly Au; 70–100 % methanol 
electrolyte

Nanosheets, 
nanowalls

[41]

0.08 M ITO; 25 % ethanol electrolyte Dense films [37]

Abbreviations: FTO fluorine-doped tin oxide, ITO indium tin oxide, Nano nanostructures, poly 
polycrystalline
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Other chemical species can be used to modify the ZnO growth process in the 
dissolved oxygen ECD method. Various additives such as Cl-, acetate, and SO4

2− can 
control the ZnO nanowire aspect ratio [29]. While additional Cl− leads to thicker 
and shorter nanowires, i.e., a low aspect ratio (Fig. 3a, b), acetate ions enable the 
growth of longer and thinner nanowires to significantly increase their aspect ratio 
(Fig. 3e, f). Cyclic voltammetry (CV) studies indicate the various ion species pref-
erentially adsorb onto the growing ZnO crystal surface in different ways and also 
affect the electrochemical reduction of O2 [29]. Both of these factors change the 
local ZnO growth environment and in turn modify the rate and type of ZnO 
deposition.

 ECD ZnO: Zinc Nitrate Method

While the zinc nitrate ECD method utilizes a similar reaction pathway for depositing 
ZnO, it is certainly distinct from the dissolved oxygen process in several ways. 
Perhaps most importantly, zinc nitrate is the only necessary precursor material – it 
serves as the Zn2+ source and the OH− source (via reduction of nitrate). Furthermore, 
zinc nitrate is highly soluble in water; therefore, much larger precursor concentrations 
can be used. This situation is quite different from the dissolved oxygen method, 
suggesting that ECD of ZnO with the zinc nitrate method will lead to unique 

Fig. 1 SEM images of 3D ZnO nanowires obtained from the dissolved oxygen method with 
[Zn2+] = 0.5 mM (Reproduced with permission from Tena-Zaera et al. [26]. Copyright (2008) 
American Chemical Society)
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conditions for crystal growth and in turn physical properties of the ZnO materials are 
obtained. Various growth conditions such as [Zn2+], [NO3

−], temperature, applied 
potential, and electrolyte additives in the zinc nitrate method have been tested thor-
oughly in the literature.

 Growth Conditions and Structural Properties
In the original work on the zinc nitrate ECD method, it was shown that the applied 
potential during growth affects the structural properties of the ZnO materials sig-
nificantly [15]. More defined and 3D-type structures are formed at lower potentials 

EKT = 8.00 kV Signal A = InLens

a

Photo No. = 3 Mag = 50.00 KX
40-3Output To. = Display/FileDate :13 Feb 2008WD = 4 mm

200 nm

EKT = 8.00 kV Signal A = SE2 Photo No. = 7 Mag = 80.00 KX
40-3Output To. = Display/FileDate :13 Feb 2008WD = 6mm

200 nm

b

Fig. 2 SEM images of 2D 
ZnO thin films obtained 
from the dissolved oxygen 
method with [Zn2+] = 5 mM 
(Adapted with permission 
from Rousset et al. [27]. 
Copyright (2009) American 
Chemical Society)
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(near the limit for reduction of nitrate to occur), while more dense and 2D film 
structures are obtained at more negative potentials well into the overpotential 
regime (Fig. 4). As expected, the ZnO growth rate is also strongly affected by the 
growth potential with a significant increase for more negative potentials [15].

More recent work associated with growth conditions in the zinc nitrate ECD 
method showed that, much like in the dissolved oxygen process, a lower [Zn2+] during 
growth leads to truly 3D nanowire structures [30]. In the same work, the authors also 
concluded that an increased negative growth potential in fact leads to denser and more 

Fig. 3 SEM images of ZnO nanowires from the dissolved oxygen method with the addition of (a, b) 
Cl−, (c, d) SO4

2−, and (e, f) acetate ions. Diameter and length distributions are shown in the insets 
of each figure (Reproduced with permission from Elias et al. [29]. Copyright (2008) American 
Chemical Society)
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filmlike structures, perhaps due to the increased growth rate. Interestingly, in a different 
study where the deposition was galvanostatic (constant current rather than con-
stant potential), a lower current during growth led to well-formed 2D films, while an 
increased current produced very well-defined 3D nanowires structures (Fig. 5) [31]. 

Fig. 4 SEM images of ZnO materials obtained by the zinc nitrate method. The applied potentials 
as measured relative to an Ag/AgCl reference electrode are shown in the figures (Reproduced with 
permission from Izaki and Omi [15]. Copyright (1996) American Institute of Physics)
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These ideas were confirmed later in another work on galvanostatic deposition using 
zinc nitrate when the most uniform and 2D film structures were obtained at quite low 
deposition currents [32].

 Zn2+ as a Catalyst for Nitrate Reduction
It would appear as though the zinc nitrate method showcases some inconsistencies 
and difficulties in obtaining repeatable structures based on certain growth condi-
tions. Recent investigations of the electrochemical growth mechanism in the zinc 
nitrate method aid in understanding these difficulties.

As discussed already, perhaps the most important aspect of the growth mecha-
nism for ZnO in ECD processes is the local [Zn2+]/[OH−] ratio at the electrode. 
Whereas the dissolved oxygen method allows for a broader control of this ratio, 
in the zinc nitrate method, [Zn2+] and [OH−] are more difficult to separate. If zinc 
nitrate is the only source material in the electrolyte, [Zn2+] and [NO3

−] are 

Fig. 5 SEM images of 
ZnO materials obtained  
by the zinc nitrate 
galvanostatic method:  
(a) higher deposition 
current, (d) lower 
deposition current 
(Adapted with permission 
from Cao et al. [31]. 
Copyright (2006) 
American Chemical 
Society)
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essentially predetermined: it is not immediately possible to independently control 
[Zn2+], a very important ECD growth parameter. It was discussed in section “ECD 
ZnO: Dissolved Oxygen Method” that certain ion species affect the electro-
chemical reduction reaction that governs ZnO deposition in ECD growth pro-
cesses. The same is true in the zinc nitrate method. It has been very well established 
that metallic ion species in solution catalyze the nitrate reduction reaction [33, 34]. 
In fact, without Zn2+ present in the zinc nitrate method, the reduction of nitrate 
electrochemical reaction will not even occur (Fig. 6) [16]. So it becomes clear that 
while both Zn2+ and OH− are needed to deposit ZnO by ECD, in the zinc nitrate 
method, these separate ion species are very much interconnected by the catalyst 
nature of Zn2+. Understandably, this complicates the zinc nitrate method to a cer-
tain degree in comparison to the dissolved oxygen process.

 Separate NO3− Source in the Zinc Nitrate Method
One strategy developed to overcome this limitation is to utilize a separate source for 
NO3− ions in the zinc nitrate method [35]. By using sodium nitrate as the main elec-
trolyte precursor, the nitrate concentration can be held constant while the zinc 
nitrate concentration is changed. What was found in this study was that the zinc 
nitrate process can become very much like the dissolved oxygen method: low [Zn2+] 
leads to strongly diffusion-limited growth of ZnO, and high aspect ratio 3D nanow-
ires are obtained. Here, the limited diffusion of Zn2+ ions not only minimizes the 
availability of Zn2+ for the reaction with OH− to produce ZnO but also the catalytic 
effect for the nitrate reduction reaction to produce OH− ions in the first place. The 
end result is a very strongly limited growth regime in which the lateral growth of the 
ZnO structures is completely suppressed, and highly uniform in diameter ZnO 

Fig. 6 I–V curves measured at a ZnO-coated Pt disk-rotating electrode (500 rev/min) in aqueous 
mixed solutions of zinc nitrate and potassium nitrate for which the concentration of NO3

− was fixed 
at 200 mM while that of Zn2+ was varied as (a) 0, (b) 0.5, (c) 2, (d) 4, (e) 10, (f) 20, and (g) 100 
mM. Potential sweep rate = 5 mV/s (Reproduced with permission from Yoshida et al. [16]. 
Copyright (2004) Elsevier B.V)
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nanowires are obtained (Fig. 7) [35]. By tuning [Zn2+] while keeping other growth 
conditions constant, it is possible to increase their lateral growth and in turn control 
the aspect ratio of the ECD ZnO nanowires [35].

 Mixed Water/Methanol Electrolytes for Zinc Nitrate ECD
Another strategy related to controlling the availability of Zn2+ and OH− in the zinc 
nitrate method involves the use of a mixed water/alcohol electrolyte. In this tech-
nique, zinc nitrate remains the only source material but instead of a water-only 
electrolyte, various vol.% of an appropriate cosolvent are added (such as ethanol or 
methanol) [36, 37]. This technique has been shown to effectively produce very con-
sistent and uniform 2D film structures using the zinc nitrate method across a wide 
range of other growth conditions [36].

Structural Properties
As is typically found in the literature, when utilizing a water-only deposition solu-
tion in the zinc nitrate method, it is difficult to prepare samples with a consistent 
morphology and homogeneity. Often, scattered and spotty 3D nanorod-type struc-
tures that do not eventually form a continuous and hole-/defect-free film are formed 
[15, 38–41]. An example of the morphologies obtained using a water-only solution 
is shown in the scanning electron microscopy (SEM) image in Fig. 8a. On the other 
hand, by simply adding 50 % by volume methanol to the deposition solution, the 
ZnO morphology is remarkably changed such that a 2D coalesced film made up of 
compact, hexagonal grains is formed (Figs. 8b, c). Figure 8c is a lower magnifica-
tion image to showcase the uniformity of and lack of defects in the ZnO film 
obtained with 50 % methanol.

Furthermore, some of the specific properties of the ZnO films can be controlled 
with various growth parameters such as applied potential, current density, and 

Fig. 7 Schematic view of the growth of ZnO nanowires from nitrate-based solutions. (a) The Zn2+ 
diffusion is significantly slower than the OH− generation rate, and (b) the OH− generation rate and 
Zn2+ diffusion are in the same order (Reproduced with permission from Khajavi et al. [35]. 
Copyright (2012) Elsevier B.V)
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methanol concentration. Figure 9 shows some of the ZnO films obtained under 
different growth conditions to modify the specific crystal and film morphology. 
An increased current density during growth leads to a larger ZnO growth rate and 
therefore larger crystal grains (Fig. 9a), while a more controlled current density 
produces smaller and more complete grains (Fig. 9b). The cross section in Fig. 9c 
shows that the films are very uniform and dense.

Growth Mechanism: CV Analysis and Effects of Methanol
In the combined water/methanol zinc nitrate ECD method, the availability of Zn2+ 
for the deposition of ZnO is quite constant because it comes directly from zinc 
nitrate and is present at a relatively high concentration (0.05 M). On the other hand, 
the availability of OH− is not immediate but instead relies on the reduction of nitrate 
ions and therefore is dependent on the electrochemical growth conditions.

Figure 10 illustrates CV scans of growth solutions with varying amounts of 
methanol. Methanol addition does not cause a drastic change in the CV scans; how-
ever, the most distinct change visible is the increased current density in the range 
of potentials used for the deposition of ZnO (highlighted area: −2.4 to −2.6 V). 
For example, at a potential of −2.5 V, the current density is increased by ~50 % 

Fig. 8 SEM images of ZnO samples deposited in 0.05 M zinc nitrate solutions: (a) 100 % water; 
(b, c) 50 % water/50 % methanol (Reproduced with permission from Thomas and Cui [36]. 
Copyright (2013) The Electrochemical Society)
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for the electrolytes with methanol added as compared to the water-only solution. 
Because the current density should be mostly associated with the nitrate reduction 
reaction, the CV scans indicate that adding methanol to the ZnO growth solution 
enhances the nitrate reduction reaction, increasing the production of OH− ions [36]. 
Growth solutions with methanol also create a much faster nucleation process, as 
well as a faster time to coalescence and uniform film growth in general [36]. This 
likely plays a role in establishing more 2D and uniform film growth dynamics rather 
than “spotty” growth of 3D nanostructures.

OH− Ion Production and Thermodynamic Equilibrium
A secondary, yet related, explanation for the improvement in the ZnO film morphol-
ogy upon methanol addition is an increase in the availability of OH− ions. When the 
supply of OH− ions is slow and steady, a near equilibrium crystallization process for 
ZnO likely dominates. Recent work on the crystallization of ZnO in solution processes 
showed that the most important factor for obtaining ZnO nanowire-/nanorod- type 
structures, i.e., a strongly dominant [0001] crystallization scheme, is the slow and 

Fig. 9 SEM images of ZnO thin films obtained in a water/methanol zinc nitrate solution: (a) −2.5 V, 
large current density, 50 % methanol; (b) −2.5 V, small current density, 50 % methanol; (c) cross 
section of (a) 2.2 μm thick film; (d) −2.5 V, 25 % methanol (Reproduced with permission from 
Thomas and Cui [36]. Copyright (2013) The Electrochemical Society)
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steady “release” or availability of OH− ions to react with Zn2+ and make ZnO [42]. 
This is similar to the minimized availability of Zn2+ in the dissolved oxygen method 
and separate NO3

− method due to their use of a low [Zn2+].
As a result, it becomes easier to see why ZnO grows preferentially along the 

[0001] direction and forms nanorod or columnar structures in water-only deposition 
solutions. The availability of OH− ions is minimal, producing a growth process that 
is very much limited by diffusion and thermodynamic equilibrium. However, if the 
availability of OH− ions is increased and conditions are shifted outside the realm of 
equilibrium and diffusion limits, other crystallization schemes can contribute more 
strongly and the anisotropic [0001] dominated growth may be overcome. This 
enables more lateral crystal growth and eventually dense, 2D film structures, as 
outlined in Fig. 7 in section “Separate NO3− Source in the Zinc Nitrate Method.”

Chemical Effects of OH− and Methanol
The chemical effects specific to methanol should also be considered because vari-
ous ion species were shown to affect the growth of ZnO in the dissolved oxygen 
method [29]. OH- ions may also become preferentially associated with the polar 
(0001) face of the ZnO crystal once their availability is higher. This would be simi-
lar to NO3

− ions as suggested in other work on ECD of ZnO using zinc nitrate in 
methanol [41] and citrate ions in the hydrothermal growth of ZnO films [43]. Such 
adsorption of ion species on the polar ZnO crystal faces could drive the growth of 
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Fig. 10 CV scans of different electrolytes used for ZnO thin film growth. Only the forward scans 
(0 to −2.7 V) are shown for clarity. The % methanol in the electrolyte is indicated in the figure. 
Note that all scans were performed at a rate of 20 mV/s on Au substrates (1 cm2) after a thin layer 
of ZnO was deposited (5 min growth time) using the respective solution. Only the first scans are 
shown as no significant change was observed for repeating scans (Reproduced with permission 
from Thomas and Cui [36]. Copyright (2013) The Electrochemical Society)
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the nonpolar crystal faces and produce a more 2D film structure. In fact, methanol 
can be used at even higher concentrations in the zinc nitrate method to produce 
more elaborate structures such as ZnO nanowalls and ZnO nanosheets [41]. This 
suggests that methanol indeed plays a strong role in the various crystallization 
schemes for ZnO when used in the zinc nitrate ECD method.

 Optical and Electrical Properties: Growth Conditions 
and Annealing

 Optical Properties
The rich optical properties of ZnO materials are very important for their use in 
advanced optoelectronics. The wide bandgap and large exciton binding energy 
nature of ZnO leads to strong ultraviolet (UV) luminescence at room temperature as 
well as the possibility for a range of optical emissions in the visible range.

Optical Quality and Luminescence
In one of the few studies on the effects of growth potential in the dissolved oxy-
gen ECD ZnO method [44], it was established that a lower growth potential, i.e., 
one that is very close to the limit for O2 reduction to occur, produces ZnO materi-
als of a higher optical quality. Furthermore, a higher deposition temperature and 
growth conditions that produce more 3D nanowire-type structures as compared 
to 2D films also lead to ZnO with an intense UV photoluminescence (PL) emis-
sion and very little defect PL emissions. Finally, the use of a Cl− electrolyte sup-
port also benefits the optical properties of ZnO deposited by the dissolved oxygen 
method [44]. In the zinc nitrate plus hexamine ECD method, it was also shown 
that the ZnO crystal quality, and in turn optical quality, of ZnO nanowires could 
be modified by growth conditions such as the applied potential and relative hex-
amine concentration during growth [45]. More negative growth potentials and a 
larger relative hexamine concentration lead to ZnO nanowires with a stronger 
UV emission and very little defects. Much like in the dissolved oxygen method, 
the addition of Cl− to the electrolyte in the zinc nitrate plus hexamine process 
enables filling of native defects with Cl impurities and the removal of defect PL 
emissions [46].

Bandgap Tuning
Another key parameter with regard to ZnO’s optical properties is its bandgap energy. 
Because ZnO maintains such a wide bandgap, the ability to modulate the bandgap 
even further into the UV as well as into the visible region becomes highly desirable. 
Interestingly, several studies have shown that the bandgap of ECD ZnO materials is 
highly tunable with specific growth conditions as well as doping. The results on 
doped ZnO will be discussed at length further in the chapter, but even undoped ECD 
ZnO can show a range of bandgaps by changing the applied potential during growth 
[47]. The ZnO bandgap is tunable within a range of about 0.2 eV with wider band-
gaps being associated with more negative growth potentials.
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 Electrical Properties and Electrical Characterization Techniques
A sound understanding of the electrical properties of ECD ZnO materials is 
paramount to their eventual application in advanced devices. Unfortunately, ECD 
processes demand the use of a conductive substrate, stifling the ability to perform 
standard semiconductor electrical characterization without complications and 
errors.

Thin Film Transfer
Efforts have been made in the past to isolate semiconductor thin films obtained by 
ECD methods from their conductive substrate, most notably on solar cell materials 
such as CdTe [48], CdS [48], CIS [49], and Cu2O [50]. Upon successful film trans-
fer, resistivity and Hall effect measurements can be carried out as with any other 
semiconductor material. Only very recently have such methods been demonstrated 
with regard to ECD ZnO, and finally there are viable data available for the electrical 
properties of ZnO materials obtained by electrochemical methods [36, 51, 52].

Electrochemistry-Based Characterization Techniques
Another approach is associated with electrochemical impedance spectroscopy (EIS) 
and Mott–Schottky analysis (MS) in which the conductive growth substrate required 
for ECD processes is actually utilized in the electrical measurement. A wide variety 
of ZnO thin films and even 3D nanowire structures have been characterized by such 
EIS and MS methods [26, 27, 36, 38, 41, 53, 54]. For more details regarding the 
theory and practice of EIS and MS analysis, see Refs. [27, 36, 38, 53].

The final technique for characterizing the electrical properties of ECD materials 
is a photoelectrochemical cell (PEC) measurement [55–57]. This method cannot 
provide any detailed quantitative information regarding charge carrier concentra-
tion or mobility, but it can give qualitative insight into the conductivity type and 
relative magnitude of carriers. A PEC measurement involves a semiconductor and an 
electrolyte interface, and the charge transfer between the two is monitored upon 
illumination of the semiconductor with an external light source. A schematic of a 
typical PEC setup is shown in Fig. 11. A positive change in potential signifies p-type 
behavior, while a negative voltage change indicates n-type properties. Both ZnO thin 
films [58, 59] and nanowires [57] have been characterized by PEC measurements in 
order to gain information regarding their conductivity type and capability.

Specific Results on Various ECD ZnO Materials
While the available work on the electrical properties of ECD ZnO is somewhat 
minimal, certain trends and consistencies are beginning to develop. Highly uniform 
and dense 2D films grown by the dissolved oxygen method have shown electron 
concentrations close to the 1020 cm−3 range when highly doped with Cl [27]. 
Meanwhile, the same study found that films deposited by the zinc nitrate method 
were also n-type, but had electron concentrations nearly two orders of magnitude 
lower than those obtained in the standard dissolved oxygen process [27].

The electrical properties of ZnO nanowires obtained by the dissolved oxygen 
method have also been explored with EIS and MS. It is necessary to modify the 
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analysis in order to compensate for the 3D geometry of the nanowires [53], but very 
consistent data has been obtained by a variety of groups [26, 53, 54]. As-grown ZnO 
nanowires by the dissolved oxygen method are typically highly n-type, with carrier 
concentrations at least in the 1019 cm−3 range [26, 53, 54]. This may stem from the 
fact that Cl doping takes place due to the Cl− supporting electrolyte. Similar experi-
ments have been performed on ZnO nanowires obtained by the zinc nitrate plus 
hexamine method, and they show that undoped nanowires have carrier concentra-
tions in the mid-1017 cm−3 range [60]. Then, purposeful Cl doping can be utilized to 
increase their electron concentration to the mid-1020 cm−3 range [60]. It seems Cl 
doping is very much a part of the electrical properties of ECD ZnO nanowires, 
whether it is desired or not. In related studies [26], it was shown that Cl− ions in 
particular inhibit the O2 reduction reaction, which lowers the production of OH- ions 
and alters the [Zn2+]/[OH−] ratio during growth. The increased availability of Zn2+ in 
comparison to OH− leads to more “Zn heavy” ZnO nanowires with an increased 
electron concentration due to zinc interstitial and oxygen vacancy defects [26].

The electrical properties of ZnO materials obtained by the zinc nitrate method have 
also been investigated. In this case, both MS and Hall effect measurements have been 
used so a more complete picture of the electrical properties can be seen. The applied 
potential during growth has been shown to be a very strong factor in determining the 
electrical properties of ECD ZnO obtained by nitrate reduction. Figure 12 displays the 
calculated carrier concentration values obtained from MS analysis for several ZnO 
films as a function of the applied potential used during growth (zinc nitrate in 50 % 
methanol). Three different films all deposited at −2.4 V are included in the data to 
show that the samples have reasonably consistent carrier concentrations for a given 
applied potential (−2.4 V ranges from 9.6 × 1015 to 2.9 × 1016 cm−3). A lower applied 
potential, which also corresponds to a lower current density and growth rate, produces 
ZnO films with higher carrier concentrations. Meanwhile, a more negative growth 
potential leads to a faster ZnO growth rate as well as lower carrier concentrations. 
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Fig. 11 Schematic of the PEC measurement setup and basic principles
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The range of carrier concentrations for growth potentials from −2.2 to −2.5 V extends 
through nearly three orders of magnitude [36].

Other works on ZnO films obtained by nitrate reduction found highly similar 
results when the effects of current density on electrical properties were tested: a 
lower current density during growth produces ZnO films with higher carrier con-
centrations as measured by the Hall effect [52]. Changes in the current density 
alone enabled a similar three orders of magnitude control of the electron concen-
tration of the ZnO films (Fig. 13) [52]. Previous work on ZnO by nitrate reduction 
using MS analysis has also shown that more negative growth potentials produce 
lower carrier concentrations with a three orders of magnitude range controlled by 
the potential [38].

A likely explanation for the observed carrier concentration changes is the growth 
conditions for ZnO associated with an increased current density and/or more nega-
tive growth potentials. Such conditions are related to an increased availability of 
OH− ions from an enhanced nitrate reduction process. More OH− ions may shift the 
ZnO growth conditions toward a more even Zn/O ratio in that there is plenty of the 
oxygen source (OH−) available for stoichiometric ZnO crystallization.

Annealing Effects
Because of their very-low-temperature deposition, moderate annealing has been 
shown to affect the various properties of ECD ZnO materials as well. MS analysis 
of ZnO films from the zinc nitrate in 50 % methanol method annealed at 200 °C 
in air reveals that they possess carrier concentrations as much as two orders of 
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Fig. 12 Carrier concentration data calculated from MS plots of ZnO films deposited by the zinc 
nitrate plus methanol method as a function of applied potential during growth (Reproduced with 
permission from Thomas and Cui [36]. Copyright (2013) The Electrochemical Society)
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magnitude higher than the as-grown films (annealed in air: high 1017 to low 1018 cm−3) 
[36]. The increase in free carriers is partially dependent on the films’ as-grown prop-
erties – those samples with lower as-grown carrier concentrations experience the 
most drastic increase in carrier concentration upon annealing.

Hall effect analysis from the same study indicates similar trends: some of the 
typical resistivities measured for such ZnO thin films are shown in Fig. 14. It is clear 
that as-grown films are highly resistive, while moderate annealing in air can improve 
their conductivity. Some other works on ZnO thin films by nitrate reduction have 
indicated a similar increase in conductivity after moderate annealing [51, 52], but 
the opposite seems to be true for ZnO nanowires obtained by ECD and then annealed 
in air [26, 53, 54]. It is interesting that as-grown nanowires by ECD have high elec-
tron concentrations and annealing can make them more “intrinsic,” in fact lowering 
their carrier density by as much as three orders of magnitude. Meanwhile, as-grown 

Fig. 13 Variation of electrical properties of electrodeposited ZnO films as a function of (a, b) 
current density and (c, d) deposition temperature (Reproduced with permission from Shinagawa 
et al. [52]. Copyright (2012) American Chemical Society)
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films by ECD are often highly resistive, but moderate annealing improves their 
conductivity. It is clear that the growth conditions leading to either 3D nanowires or 
2D film structures also affect the electrical properties of ECD ZnO.

 ECD ZnO: Doping for Device Applications

 Electrochemical Doping of ZnO

The idea to dope ZnO utilizing low-temperature, electrochemical growth methods 
is certainly not new. Once the original methods for obtaining nominally undoped 
ZnO by ECD were established, work on doping ZnO by similar processes soon fol-
lowed. To date, more than 17 dopants have been tested by various ECD growth 
processes for ZnO. In most cases, the purpose of the doping is to modulate the opti-
cal and/or electrical properties of the ZnO materials. For example, dopants such as 
Al [61, 62], Ga [61], In [62, 63], B [64], Cl [26, 27, 60, 65], and Y [66] were all 
expected to enhance the native n-type conductivity of ZnO. Dopants like Cd, Mg, 
and Eu have been shown to modify the optical properties of ZnO by changing its 
bandgap (Cd, Mg) [67–70] or utilizing excited state transitions of the dopant (Eu) 
[70]. In addition, a few particular dopants such as Ni [71], Co [71, 72], Fe [73], and 
Mn [74] were focused on introducing ferromagnetic properties into the ZnO materi-
als for the purpose of creating dilute magnetic semiconductors (DMS).

There has been less work on p-type doping of ZnO by electrochemical methods, 
with only Ag-doped ZnO being tested recently [57, 75, 76]. Other low-temperature 
solution methods (hydrothermal) have been explored more in this regard, with Sb as 
the most common dopant [77, 78]. Others such as K [79], P [80], Ag [78], and Li [81] 
have been investigated as well. Some of the more thorough and enhanced work on 
electrochemical doping of ZnO is summarized here with focus on n-type and p-type 
dopants.
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 n-Type Doping with Cl
While n-type doping of ZnO using ECD methods has been explored significantly, 
the most successful and consistent results are associated with Cl doping. In particu-
lar, the dissolved oxygen ECD method has been used to dope both ZnO thin films 
[27] and nanowires [26] with Cl, in part because Cl− or ClO4

− ions are naturally 
present in the supporting electrolyte. In fact, when a chlorine-containing electro-
lyte is used in the dissolved oxygen method, it is essentially impossible to avoid Cl 
doping in the ECD growth process. Naturally, such ECD ZnO materials become 
highly n-type with enhanced electron concentrations [26]. Upon further addition of 
Cl to the growth process, carrier concentrations as high as 9 × 1019 cm−3 for 2D 
films [27] and 4 × 1020 cm−3 for 3D nanowires [26] can be achieved. Such materials 
are excellent candidates for transparent conductor applications in solar cells and LEDs. 
In fact, Cl-doped ZnO films by ECD have been utilized as a top contact layer in 
solar cells [65]. Cl doping also widens the bandgap of both ZnO thin films [27] and 
nanowires [46, 60].

 p-Type Doping with Ag
Among various potential dopant materials, Ag has demonstrated its suitability for 
p-type doping of ZnO. So far, Ag-doped ZnO nanostructures and thin films have 
been explored by many techniques, but very few were low-temperature and/or 
solution- based methods [78, 82]. In many cases of the high-temperature methods, 
the Ag-doped materials showed p-type conductivity [83–85]; however, there is 
certainly not a guarantee that successful Ag doping of ZnO will lead to p-type 
behavior [86]. Achieving p-type ZnO via solution-based methods at lower deposi-
tion temperatures has proven to be more difficult.

In the past several years strides have been made in p-type doping of ZnO by ECD 
processes with Ag doping in the zinc nitrate plus hexamine process [57, 75, 76]. 
As was mentioned above, the zinc nitrate plus hexamine process tends to produce 
ZnO nanowires, and in the undoped case their background electron concentrations 
are not too high (~1017 cm−3) [60]. Therefore, the zinc nitrate plus hexamine method 
provides an excellent starting point for p-type doping.

Effects of Ag+ on ECD Growth Process
Ag+ maintains a much stronger influence on the ECD growth process than many 
other additive ions have shown in previous work. Whereas Cl−, ClO4

−, SO4
2−, and 

acetate ions can all be added to the ECD growth solution to relatively high concen-
trations (0.1 M) [26–28], the addition of Ag+ must be much more closely monitored 
and controlled. Basically, even at concentrations of only 1–5 % relative to Zn2+, Ag+ 
disrupts the normal ZnO nanowire growth process, making the deposition of highly 
uniform Ag-doped ZnO materials difficult [87]. Investigations with CV analysis 
show that Ag+ catalyzes the nitrate reduction electrochemical reaction much like 
Zn2+, perhaps even more so [76].

Figure 15 shows CV scans of various zinc nitrate plus hexamine electrolytes 
with different amounts of Ag+ added. It is clear that even at a very low relative con-
centration of 0.05 %, Ag+ strongly affects the nitrate reduction reaction, enhancing 
the cathodic current significantly [76]. Figure 16 displays the measured deposition 
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currents at various applied potentials along with the effects of Ag+ at different 
concentrations. At larger negative potentials, the influence of Ag+ is even more 
pronounced at the lowest concentration, indicating its true nature as a catalyst for 
nitrate reduction [76].

Structure and Morphology
The overall result of the catalyst nature of Ag+ is simply that growth conditions such 
as [Ag+] and the applied potential must be well optimized for efficient doping of Ag 
into ZnO nanowires. The well-controlled and uniform growth of ZnO nanowires 
needs to be maintained, yet sufficient Ag doping must also occur in order to obtain 
p-type properties. Such conditions include a low Ag concentration in the growth 
solution (0.05–0.5 %) as well as a minimized current density.

Figure 17 shows representative SEM images of the undoped and Ag-doped 
nanowire arrays obtained by ECD under more controlled growth conditions. The 
nanowires have diameters of 100–200 nm and lengths ranging from 0.7 to 2.5 μm 
depending on the specific growth parameters. Under these milder growth condi-
tions, the ZnO nanowire morphologies are not significantly affected by Ag doping. 
However, as discussed above, it is possible to drastically modify the morphologies 
of the Ag-doped ZnO nanomaterials by using higher Ag concentrations and poten-
tials [87].

Ag Doping Levels: ECD Growth Conditions
An approximately linear increase in the Ag content of the nanowires is observed as 
the Ag concentration is increased in the electrolyte (Fig. 18). The actual Ag content 
in the doped nanowires is much larger than the Ag concentration in the growth solu-
tion, indicating Ag is readily incorporated into the ZnO nanowires even at a very 
low concentration relative to Zn in the electrolyte. The enhanced catalytic role of 
Ag+ in the electrochemical growth process may help to explain this observation: 
much like Zn2+, Ag+ is adsorbed onto the electrode (ZnO nanowire) surface where it 
acts as a catalyst for the reduction of nitrate [76]. The CV analysis suggests Ag+ is a 
more efficient catalyst than Zn2+ for nitrate reduction; therefore, it may be more eas-
ily incorporated into ZnO than Zn despite its very low concentration relative to Zn.

Because of the very low concentration of Ag relative to Zn, Ag incorporation is 
also highly limited by diffusion. As a result, the nanowire growth rate affects the 
final Ag content because faster ZnO deposition limits the possibility for Ag incorpo-
ration. This likely explains the trend of lower Ag contents in the samples deposited 
at more negative potentials but the same Ag concentration (Fig. 18). ZnO doped 
with other materials by ECD methods has shown similar behavior [62–64], suggest-
ing the electrochemical doping process in ZnO maintains universal traits.

Optical and Electrical Properties: Evidence for p-Type Doping
The PL properties of ECD Ag-doped ZnO have also been investigated [57, 75]. 
Samples grown at increased applied potentials were very different from undoped 
ZnO with respect to their defect emission in the visible and near-band edge (NBE) 
emission in the near-UV range. These changes indicate that Ag doping enhances 
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Fig. 17 SEM images of (a) undoped and (b–f) Ag-doped ZnO nanowires. The growth conditions 
are as follows: (a) -0.7 V, 0 % Ag; (b) -0.7 V, 0.05 % Ag; (c) -0.7 V, 0.2 % Ag; (d) -0.8 V, 1 % Ag. 
(e, f) are a cross section and tilted view of the sample in (c). The scale bar in each figure is 500 nm. 
Note that all deposition potentials are reported relative to an Ag/AgCl reference electrode (Adapted 
with permission from Thomas and Cui [57]. Copyright (2010) American Chemical Society)

the concentration of native defects during the nanowire growth process and also 
may establish a reduced bandgap in ZnO [57, 75]. Intense emissions at low tem-
perature of a free electron to neutral acceptor transition at 3.323 eV were present 
in Ag-doped samples grown at more negative potentials, while a donor-bound 
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exciton emission dominated the band edge emission for undoped ZnO [75]. 
Temperature-dependent PL measurements allowed for the calculation of a binding 
energy of 117 meV for the acceptor involved in the transition at 3.323 eV [75]. The 
incorporation of Ag into ZnO enhanced the acceptor-related emission, although it 
is not clear whether this enhancement directly results from Ag impurities or native 
defects. The optical properties’ results provide evidence that Ag is a potential 
p-type dopant for ZnO.

The electrical properties of the undoped and Ag-doped ZnO nanowires were 
also explored with a solution-based PEC technique. Both as-grown-doped and 
undoped nanowires have negative PEC responses upon illumination (n-type con-
ductivity, Fig. 19). However, the doped samples tend to show a smaller magnitude 
of the negative PEC signal, indicating a possible decrease in donors and increase 
in acceptors in these samples due to Ag doping. The annealed Ag-doped nanowires 
display significant changes in their PEC responses depending on their growth con-
ditions. Much like the PL results, Ag-doped samples grown at more negative 
applied potentials were distinct from undoped and other Ag-doped nanowires. 
These samples showed positive PEC responses, a strong indicator of p-type electri-
cal properties [57]. Ag-doped samples grown at more negative growth potentials 
and annealed at moderate temperatures in air (350 °C) showed the most enhanced 
p-type properties [76]. The p-type properties of the nanowires were very repeatable 
under appropriate growth conditions and were also stable over long periods of 
sample storage. The key factors in producing Ag-doped ZnO with strong evidence 
of p-type properties from both optical and electrical characterization included suf-
ficient Ag doping, improved crystalline quality from moderate annealing, and min-
imized effects of Ag+ on the ECD growth process [57, 76].
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p-Type Doping Mechanism
It is possible that electrochemical growth parameters such as the applied potential 
and presence of Ag+ can modulate the deposition conditions for ZnO, favoring 
either Zn-rich or O-rich environments. Certainly, as the deposition proceeds and 
ZnO is formed, some of the Zn is used up, in principle lowering the [Zn2+]/[OH−] 
ratio. This should be true especially for larger growth rates. At larger negative 
potentials and with Ag+ present, the ZnO growth rate is the highest, leading to the 
fastest use of the available Zn. The availability of OH− from the electrochemical 
reduction of nitrate ions is also highly dependent on the applied potential, and from 
the CV analysis for Ag-doped growth solutions (Fig. 17), it is clear that the presence 
of Ag+ creates a similar increase in the rate of nitrate reduction. Therefore, as the 
applied potential is increased negatively and Ag+ is added to the electrolyte, the 
production of OH− ions is substantially increased, and the [Zn2+]/[OH−] ratio may 
decrease considerably. These combined effects shift the growth conditions toward 
an O-rich environment, in turn altering the native defect and Ag impurity formation 
mechanisms in the nanowires [76]. O-rich conditions are expected to minimize the 
formation of native donor defects (Zni, VO) [88, 89] while also lowering the forma-
tion energy for native acceptor defects (VZn, Oi) [88, 89] and Ag impurities [90–92]. 

a

b

Fig. 19 PEC responses 
for (a) as-grown and (b) 
annealed (600 °C) samples. 
The mol.% of Ag in the 
growth solution is 
indicated in the figure 
(Reproduced with 
permission from Thomas 
and Cui [57]. Copyright 
(2010) American Chemical 
Society)
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These ideas could help to explain the results discussed above where Ag-doped 
nanowires with p-type properties were mainly obtained at a potential more negative 
than −0.65 V [57], and the optimal p-type properties were associated with a larger 
negative potential (−0.9 V) and moderate annealing temperature of 350 °C [76]. 
Similarly, even in undoped ZnO nanowires, their PEC responses indicated reduced 
n-type character at more negative growth potentials, which fits well with the discus-
sion here and in section “Electrical Properties and Electrical Characterization 
Techniques.”

 Summary and Outlook

From their humble beginnings almost 20 years ago, ECD processes for ZnO have 
become an increasingly important choice among the various techniques for fabricat-
ing ZnO materials. The low cost and low-temperature nature of ECD, along with its 
amenability to large-scale production, suggests it will only continue to gain interest 
in the future. The electrochemical growth mechanisms associated with ECD ZnO 
processes are now very well understood. Regardless of the specific ECD method 
used, the local ZnO growth environment, specifically the [Zn2+]/[OH−] ratio, has 
been demonstrated to be the single most important parameter for governing the 
properties of ECD ZnO materials. Many strategies can be used to alter these condi-
tions, such as changing the growth potential, adjusting initial precursor concentra-
tions, and including additives with the standard ECD electrolyte. As a result of these 
modifications, it has become possible to control the structural, optical, and electrical 
properties of ZnO for use in a range of advanced device applications. ECD ZnO 
materials have been integrated into solar cells [65, 93–95], LEDs [68, 96], photon-
ics [97], and DMS applications [71, 72], just to name a few.

The future of ECD ZnO is bright, with new opportunities to further improve the 
quality and variety of ZnO structures, sharpen controlled fabrication methods for 
tunable 1D and 2D arrays, and modulate the electrical properties of thin films and 
nanomaterials for use in low-cost optoelectronics.
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Abstract

The increasing demand for energy and the need of cleaner production technologies
have turned energy storage into a hot research topic. Development of more
efficient energy storage devices, such as batteries and supercapacitors, is the key
to boost renewable energy production and the use of electric/hybrid vehicles.
Electrochemistry is one of the sciences behind these challenging technologies.
The performance of these devices relies on the nature of the electrodes they use.
2D and 3D nanostructured architectures composed of transition metal oxides, or 
their composites with carbon, have recently emerged as new materials with high
potential as electrodes for supercapacitors due to their pseudocapacitive contri-
bution and high theoretical capacitances.
For application in supercapacitors, the electrodes must present high porosity

and surface area. These are necessary properties to enhance charge-transfer and
redox reactions at the film/electrolyte interface. One of the most promising tech-
niques to produce transition metal films with such characteristics is electrodepo-
sition because of its versatility and it is easy to do. Electrodeposition is a
widespread cheap and clean one-step technique for the fabrication of metals, 
metal oxides, polymers, and composite coatings. By combining optimized depo-
sition parameters with the required electrolyte composition, the morphology and
the chemical composition of the deposited film can be tailored to achieve nano-
structured architectures.
In this chapter, recent advances in 2D and 3D nanostructured architectures of

transition metal oxide films produced by electrodeposition and their application 
as electrodes for electrochemical pseudo supercapacitors, including their
electrochemical performance, are reviewed, and recent trends and results are
highlighted.

Keywords
Supercapacitors • Electrodeposition • Transition metal oxides

 Introduction

Energy storage became the key to implement the production of energy from green/
renewable sources. The increasing production/consumption from renewable sources
(e.g., wind and photovoltaic) is demanding more reliable solutions for energy stor-
age. On the other side, the extraordinary growth of hybrid and electric vehicles is
also imposing new solutions for more efficient energy storage devices of very fast
response. Moreover, the numerous applications in electronic devices, including
mobile communications and various electronic tools, opened a new array for the
development of energy storage devices with different sizes and functionalities.
Indeed, new hi-tech applications, related with microsized devices for electronic
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circuits or for biomedical applications, raised new challenges where materials
science and electrochemistry play a major role.
Nowadays, the basic needs on energy storage are covered by the use of batteries,

with supercapacitors playing a minor role. The recent generations of Li-ion batteries
can answer several demands in what concerns energy storage needs, but there are still
numerous drawbacks to overcome. Although the most recent generation of batteries
clearly outperforms the conventional capacitors in terms of energy density, they are
still very limited in what concerns power density. This drawback limits the application
of batteries when this property becomes a requirement. On the other hand, the charge/
discharge processes of batteries are slow, limiting its application in fast storage/
demand cycles. To overcome these drawbacks, supercapacitors are the ideal solution
for energy storage applications, which require higher power density and fast charge/
discharge as well as long-term cycling ability. Supercapacitors can deliver much
higher power densities, when compared to batteries, and can supply high currents in
very short times.Another major advantage is the robust performance in what concerns
charge/discharge cycles. Supercapacitors can sustain up to millions of cycles, without
deterioration of the basic properties, whereas a battery sustains a much lower number 
of cycles (at least three orders of magnitude lower). However, the most important fac-
tor limiting a wider application of supercapacitors is still the lower energy density
when compared to the most recent batteries. Table 1 [1] provides a snapshot of the
most important properties of common batteries and supercapacitors.
Nowadays, despite the technology advances, commercial supercapacitors are still

unable to combine, simultaneously, high power with high energy densities. The
energy density is normally 5–10 times lower than that of the most recent generations
Li or Ni batteries. Therefore, the key issue is to increase the energy density while
keeping the other properties (power density, fast response, and efficiency) as high as
possible. These requirements can only be achieved by designing appropriate electrode
materials and by selecting appropriate electrolytes. Nowadays, the scientific chal-
lenge is to design materials for electrodes that can fulfill these requirements.
Supercapacitors can be classified into two main categories: the electrochemical

double layer (EDL) supercapacitors that are based on carbon-based electrodes and
the redox pseudocapacitors that make use of metallic oxide or inherent conductive
polymer electrodes.

Table 1 Comparison between the most important properties of batteries and supercapacitors 
(Adapted from Ref. [1])

Parameter Battery Supercapacitor

Energy density (Wh kg−1) 20–100 1–10
Power density (W kg−1) 50–200 1000–2000
Charge time 0.3–3 h 1–30 s
Discharge time 1–5 h 1–30 s
Life cycle 500–2000 >100 000
Charge/discharge efficiency (%) 70–85 90–95
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The most well-characterized and widely used supercapacitor device makes use
of two identical electrodes, in which a high surface area carbon material is linked by
organic binders, being then used to coat a current collector, made, for example, of
thin stainless steel or aluminum foil. The energy storage process is based on revers-
ible electrostatic accumulation of ions on the surface of the electrode, by a double 
layer mechanism.
Various forms of carbon, such as mesoporous powders, single- and multiwalled

carbon nanotubes, carbon fibers and clothes, aerogels, and graphene, including gra-
phene oxides, are being intensively studied for EDL supercapacitors. Some of these
materials are not expensive, easily available, and free of environmental concerns.
Others, such as graphene or carbon aerogels, are expensive and can be affordable
only for hi-tech applications. Thus, several carbon-based materials can be used to
fabricate electrodes, because of their low cost and availability, nontoxic nature, and
stability/robustness in a wide range of environments. Existing commercial solutions
rely on EDL supercapacitors using carbon-based electrodes, requiring the use of
binders and organic electrolytes, which can operate in a voltage window of
2.5–3.0 V. Despite the higher energy densities, some of these electrolytes have poor
stability in air and are very sensitive to alterations due to moisture. On the other
hand, the size of the solvated ions becomes much larger than that of the protons,
resulting in decreased specific capacitance values. However, the major disadvan-
tages rely on the toxicity of some of these electrolytes (like acetonitrile) and the need
of using binders and “inert” additives that may also raise environmental concerns.
For improved adhesion to the current collector, the amount of binder can be increased,
but at expenses of the electrolyte conductivity [2]. Nevertheless, carbon-based elec-
trodes have a widespread use and many new insights are reported every day [3, 4]. 
The specific capacitance depends on the pore size and surface area available for the
double layer formation and typical values fall in the range 100–300 Fg−1 [4].
More recently, graphene was introduced as material for SC electrodes due to its

increased electroactivity and conductivity, well-developed surface area, and theo-
retical capacity while allowing a wide range of 3D nanoarchitectures [5, 6]. 
Graphene has also been used as a support for the growth of metal oxides providing
additional electric conductivity and electrochemical activity [7]; however, agglom-
eration and sticking of graphene sheets are hard to overcome. Recently, flexible
macroscopic 3D graphene foams became commercially available and are an
attractive substrate for the formation of high surface area electrodes but only for
very specific hi-tech applications because of its price. Co-electrodeposition has also
been reported as a simple method to obtain of graphene–metal composites in one
single step, resulting in materials with enhanced properties when compared to
single materials [8].
Carbon structures can display good energy density, in a wide potential window,

providing that organic electrolytes are used. However, most of them are not compli-
ant with health, safety, and environmental regulations, and there is a need to find
cleaner and more environmentally friendly solutions.
In order to overcome the drawbacks of organic electrolytes, there have been

important developments concerning aqueous electrolytes. Literature reports that
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some electrolytes, such as alkali or sulfates, allow extending the working window
up to 2 V because of the highest overpotential for H2 evolution. Furthermore, inter-
esting results have been observed because faradaic contributions may contribute to
increased capacitance [9]. The pseudocapacitive contribution relies on reversible
and fast faradaic reactions between the electrode materials and the ions present in 
the electrolyte and provides an additional contribution for charge storage [10].
Thus, it has been shown that additional faradaic processes, occurring in the elec-

trode, can result in a significant increase in the specific capacitance. This opens a
new array of possibilities in what concerns the study of metallic oxides, especially 
the ones possessing multiple valence states. Current examples are manganese,
ruthenium, nickel, cobalt, and vanadium oxides. Several routes can be used to fab-
ricate these materials. However, for a wider use of these materials, there is a need
for flexible and cheap routes able to fabricate versatile combinations and architec-
tures. One of these routes is based on the electrodeposition technology.

 Electrodeposition for the Fabrication of Nanostructured 
Materials

Electrochemistry is the science behind the working principles of batteries and
supercapacitors, but it can also be used to fabricate tailored materials for more 
efficient electrodes, presenting improved performance. Electrodeposition has been
known for years, being a well-established technique, versatile, and “easy to do.”
Furthermore, scale-up and mass production are affordable and implementable, as 
electrodeposition lines are currently used to coat many materials in industrial 
applications.

Electrodeposition of metals and alloys has been performed for more than a cen-
tury, allowing the production of a coating, usually metallic, on a surface by the
action of electric current. This technique is based on simple redox process where the
surface to be coated is made of a cathode of an electrolytic cell containing a salt of
the metal to be deposited as electrolyte.
By the effect of the flowing current, the metallic cations migrate towards the

negatively charged substrate where they undergo a reduction reaction, leading to
the formation of a metallic deposit. This process allows the deposition of a wide
variety of metals on different types of substrates. Deposition of alloys is also possi-
ble, providing that two (or more) metallic cations are present in the plating bath and
that their deposition potentials are similar or can be made similar (by changing the
relative concentration of the metallic ions in the electrolyte).

Various process parameters are critical in the electrodeposition process, namely, 
applied current density, overpotential, electrolyte composition, temperature, and
agitation, among others. Adequate tuning of these parameters allows at accurately
controlling the thickness, composition, and morphology of the deposited films. The
flexibility of the electrodeposition process enables the production of surfaces in
very different architectures, ranging from homogeneous dense layers to more rough
or porous deposits and, more recently, to nanostructured compounds.
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Nowadays, the vast majority of the coatings that are produced industrially are
used for decorative or protective purposes, and for that reason, dense, uniform, and
adherent films are desirable. However, in certain applications, such as in energy
storage or materials for catalysis, high surface areas are required which can be
achieved by the development of 3D nanostructured materials.
Recent investigations [11, 12] have shown that electrodeposition can be an

attractive method for the preparation of such nanostructured materials and for the
design of functional materials. The processing route employs traditional electroplat-
ing equipment provided that the suitable processing parameters are used. The
obtained deposits show a remarkable degree of reproducibility which is related to
the fact that their morphologies are consequence of the fabrication method, rather
than those obtained in additional posttreatments.
The morphology of electrodeposited metals is determined by the interaction of

various phenomena occurring during electrodeposition, in particular the type of
control that is established during deposit growth, which is a function of the deposi-
tion parameters, namely, the applied potential (or current density). In the case of 
low overpotentials, i.e., when the applied potential is similar to the reduction poten-
tial of the species to be plated, deposits presenting large grains with generally well-
defined crystallite shapes are obtained [13, 14]. Under such conditions, since the
deposition rate is slow, charge-transfer control dominates the process. On the con-
trary, when the threshold overvoltage is exceeded [15], a dendritic structure devel-
ops, displaying a well-organized morphology, which develops and grows branches
in various 3D well-defined directions. The 3D-branched structures are nanosized
dimensions. In this case the deposition rate is high and the diffusion of metallic
cations towards the cathode plays a significant role. Dendritic growth can therefore
be explained as a protrusion formed under charge-transfer-controlled mechanisms.
One the other hand, on the remaining electrode, the cathodic process develops under
diffusion control [16, 17]. Accordingly, the formation of the 3D dendritic structure
is favored by decreasing the concentration of the ions that are electrodeposited,
temperature, and stirring or by increasing the concentration of the supporting elec-
trolyte and the viscosity of the bath.
For overpotentials higher or, at least, located on the limiting diffusion current

plateau, the formation of powders occurs. In this case, vigorous hydrogen evolution
at the electrode surface takes place and, as a consequence, the hydrodynamic condi-
tions change. In this way, powdered deposits basically represent dendritic electro-
deposits which are disrupted by mechanical action or spontaneously fall apart 
during growth. Ultimately, this approach is used to produce a variety of powders for
various technological applications.
Finally it should be mentioned that functional layers with highly porous morpholo-

gies can be synthesized through electrodeposition, using the surface of the cathode
as a template. One example is a preparation method based on a template-driven
synthesis. In this process the hard template is only used during electrodeposition
and at the end of the process.After it is removed by etching or by combustion allow-
ing to obtain a material, which replicates the morphology and structural effects of
the initial disposable template [18]. Different templates, displaying tunable pore
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sizes and structures, have been proposed. More recently, a different approach was
proposed, where hydrogen bubbles, released during the electrodeposition process,
when sufficiently high overpotentials are applied, act as a dynamic template allowing
the fabrication of metallic 3D self-supporting foams [19].
Electrochemistry is thus a powerful tool in the field of materials design and

surface functionalization, suitable for application in various domains.
Electrodeposition of various species such as metals, alloys, foams, graphene oxide,
and inherent conductive polymers plays a key role in the fabrication of innovative
materials with application in the energy storage domain, in particular effective
electrodes for supercapacitors and batteries.

 Electrodeposition of Nanostructured Metal Oxide Electrodes 
for Supercapacitors

 Current Materials

Metallic assemblies based on interpenetrated or vertically aligned wirelike, tubular,
and other 3D porous topologies offer low diffusion barrier and high density of
active surface sites, being promising solutions for redox electrodes. Traditionally
ruthenium oxides have been used because of their high theoretical capacitance,
reversible behavior, chemical stability, and electric conductivity that can attain
105 S cm−1 [20, 21].
In the presence of protons, the ruthenium oxide can undergo the following reaction:

 
RuO H e RuO OH2 2 0 2+ + = ( ) < <( )+ -

-d d dd d  (1)

which is responsible for the high theoretical capacitance of RuO2 (close to 2000 
Fg−1) [20]. However, in current applications the values are much lower (close to 700
Fg−1). This difference has been attributed to changes that occur in the crystalline
structure, irreversible reactions, low electron–proton transport, agglomeration of
oxide particles, and conductivity decrease. To overcome some of these drawbacks,
and also because ruthenium is quite expensive, many attempts have been done com-
bining it with other materials such as carbon nanotubes or graphene [22–24]. The
main goal is to increase the conductivity of the electrode, to increase the active
surface area, and to combine the high double layer capacitance response of carbon
materials with the high faradaic capacitance of RuO2. Other strategies include the
fabrication by electroplating of composites made of RuO2 and nanoporous gold
substrates [20]. Although the increased energy densities and specific capacitances
can be achieved, the cost of the materials limits very much such application, and
RuO2-based electrodes are being replaced by other metallic oxides.

RuO2 has been replaced primarily by MnO2, a material that can deliver practical
specific capacitances close to 700 Fg−1. Nowadays, several commercial systems are
based on MnO2 or MnO2 and carbon composites. The pseudocapacitive contribution
of manganese oxide is based on surface reactions or very-thin active surface layers
and depends upon several factors such as structure of the oxides, porosity, and
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valence of the species. One of the major drawbacks of MnO2, limiting its wider
application, is the increased resistivity during continuous cycling, arising from non-
reversible reactions. Many attempts have been made to increase the specific capaci-
tance and its stability over time. The manipulation of the crystalline structure, pore
size, and surface area through various additives and doping of the structure demon-
strated effective results [25, 26], including increased capacitance and decreased
electrode aging under repeated cycling.

As in the case of RuO2, the charge storage mechanism of MnO2 is mainly associ-
ated with highly reversible redox reactions within the film, in which the oxidation
state of Mn centers changes between III and IV. Simultaneously to the oxidation
process, there is a process of ion transfer between the electrolyte and the oxide, 
which maintains the electroneutrality of the metallic oxide. Two possible mecha-
nisms [27] have been proposed:

 – Adsorption/desorption of protons (H+) or other alkali cations present in the 
electrolyte on the surface of the MnO2; this mechanism seems predominant on 
amorphous oxides.

 – Intercalation/de-intercalation of H+ or alkali cations from the electrolyte in the 
bulk oxide particles constituent of the film and simultaneous oxidation reduction 
of Mn cations; this mechanism seems predominant in crystalline systems.

The specific capacitance of MnO2 can be increased when it is used in composites 
with carbon or conductive polymers. These include the use of carbon nanotubes as
support for MnO2 [27] for fabricating high-performance flexible supercapacitors or
composites combining MnO2, carbon nanotubes, and graphene nanosheets for
higher energy density (43 Whkg−1) [28]. Composites made of polyaniline fibers 
(PANI) and MnO2 have displayed capacitances above 400 Fg−1, and the procedure 
could be extended to other inherent conductive polymers [29]. In carbon compos-
ites, MnO2 loading is an approach that still requires further optimization in order to
increase both the specific capacitance and cycling performance without detrimental
increase in the charge-transfer resistance or undesired blocking of the electrode and
therefore of the electrolyte transport [30].

MnO2 can also be combined with other oxides, such as Co3O4, to increase cycling
life, specific capacitance, and energy density [31].
Alternatives to MnO2 include transition metal oxides such as NiOx, Co3O4, and 

V2O5, among others, possessing multiple oxidation states, which enable reversible
redox reactions for increased pseudocapacitance response [21, 32]. NiOx and Co3O4 
can display theoretical capacitances of 2584 and 3560 Fg−1, respectively, in KOH or
NaOH electrolytes. The following reactions can explain the pseudocapacitive
behavior of these oxides [21, 32]:

 NiO OH NiOOH e+ Û +- -  (2)

 Co O OH H O CoOOH e3 4 2 3+ + Û +- -  (3)

 CoOOH OH CoO H O e+ Û + +- -
2 2  (4)
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Ni oxides and hydroxides have been explored for hybrid SC, delivering specific
capacitances above 1700 Fg−1 [33]. 2D layered Co3O4 flakes with high surface area
and porosity were synthetized by precipitation processes, showing capacitances
around 900 Fg−1 [34].
At the present moment, there are several new alternatives arising as very promising

ones. A requisite for wider use of these alternatives is price. Therefore, to mitigate
the impact of material price, it is of key relevance to address the cheapest routes for
the fabrication of the novel electrodes. Electrodeposition is definitely the technol-
ogy in the forefront to pursue this objective. Table 2 summarizes the fabrication 
method and characteristics of various metal oxide-based materials for application as
electrodes for supercapacitors.

 2D and 3D Doped MnO2 Nanostructures

As referred, manganese oxide has been one of the most studied materials for the
development of metallic oxide-based supercapacitors electrodes due to its reduced
cost, environmental friendliness, and abundance in nature. Manganese oxide dis-
plays a theoretical specific capacitance of 1370 Fg−1, making it very attractive for
charge storage. However, electrode-based manganese oxides face two main draw-
backs: decreased electronic conductivity and low ion diffusion through the bulk
of the materials leading to lowering of the capacitive performance of the
electrode.
Several approaches have been proposed in order to improve the pseudocapaci-

tive performance of manganese oxide-based electrodes. One of the most successful
consists on the deposition of MnO2 over a porous current collector. This strategy
results in (i) improvement of the capacitive response, due to a facile transport of
electrolyte through the porous current collector framework; (ii) shortened ionic
diffusion through the bulk; and (iii) increased surface area of the electroactive
material compared to flat conducting current collectors. Nickel foams [35], carbon 
fibers and papers [36], nanoporous dealloyed gold [51], and nickel dendrites [37] 
are widely used as porous current collectors. For example, MnO2 nanowires elec-
trodeposited on nickel foam, within LiClO4–OZO quasi-ionic liquid electrolyte,
present a working voltage extended up to 2.5 V and a very high energy density of
304 W h kg−1 [36]. Using nanoporous dealloyed gold as the current collector, the
specific capacitance normalized to MnO2 of about 1145 Fg−1, almost reaching its
theoretical value [37].
Design of electroactive electrodes, with improved cycling performance and high

specific capacitance can also be done by creating hierarchical structures fabricated
by various routes such as electrodeposition. Duay et al. [38] prepared MnO2 nanow-
ire arrays via template-assisted electrodeposition. These nanowires present a hierar-
chical structure that increases the electroactive area, improving ion accessibility as
result of the smaller diameter of the nanowire, thus contributing for a higher specific
capacitance. Furthermore, the vertical structure aligned with the electric field has
proved to enhance effectively the ionic transport of electrolyte through the
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electrodes, thereby improving its specific capacitance and rate capability. The
previous work also reports the deposition of Mn(OH)2 nanofibrils in a second 
electrodeposition step, which also involves changes of the oxidation states of man-
ganese. The core/shell nanowires/nanofibrils structure shows not only a significant
improvement of the specific capacitance but also increased rate capability.
Electrodeposition of manganese oxide on the two sides of nanoporous gold sub-

strates created a novel sandwich-like structure, which results in specific capaci-
tances of about 916 Fg−1 with enhanced rate capability and increased stability 
under cycling; with 97.1 % of the maximum capacitance still observed after 3000
cycles. The high super capacitive performance of this type of electrode is conse-
quence of the smart sandwich-designed structure, in which the nanoporous gold
acting as support and current collector enhances both the electron/ion conductivity
of the electroactive material and allows fast electrolyte transport through the open
porous structure [39]. The combined sandwich/array structure has also been stud-
ied by Li et al. and once more [40] an enhanced capacitive performance was
achieved.
Another promising alternative consists in doping of the MnO2 structure with 

other metallic species via electrodeposition, providing a powerful alternative that in
one single step allows at varying surface morphology and improving electronic con-
ductivity and ionic diffusion through the bulk part of the electrode.

Hu et al. [52] reported an approach in which Mn–Ni oxides are anodically
electrodeposited on graphite substrates. As the growing rate of manganese is
faster than that of nickel, the authors used a an electrolyte with a Ni2+/Mn2+ ratio 
of 10, in order to get a high nickel content in the mixed oxide film. Results dem-
onstrated an enhanced capacitive behavior in 0.1 M Na2SO4 with pH of 10.1 
adjusted by NaOH compared with 0.1 M Na2SO4. However, no comparison
between pure manganese oxide electrodes and mixed electrode in the same elec-
trolyte has been pointed out.
Potentiostatic anodic co-electrodeposition was used to prepare Mn–Co oxide

films [53]. The co-deposition resulted in important changes of the surface mor-
phology of the deposits. It was also determined that the rate capability was
increased after doping with Co. The cycling stability of the doped electrode
showed a great enhancement compared to the non-doped one. The incorporation
of Co into the electrodeposited film contributes for a stable capacitance. On the 
other hand, a high content of Co (>10 at.%) reduces the surface area of the elec-
trodes and so the specific capacitance. The authors further clarify chemical states
of doped oxides, in which the doping Co species include Co2O3, CoOOH, and 
Co(OH)2 [41]. The introduction of Co into the birnessite framework of manganese
oxide, by electrodeposition, at temperatures of 70 °C resulted in better perfor-
mance, higher specific capacitance, and enhanced rate capability when compared
to non-doped ones [54]. Co doped manganese oxide nanorods were prepared by
the template-free electrodeposition [55]. Cobalt addition led to a reduction of the 
specific density by approx. 11 % by an increase in ion transport ability and capaci-
tance. The performance was further improved by coating the electrode with
PEDOT shells.
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Surfactants (SDS, CTAB) have also been used to assist the cathodic electrodepo-
sition of MnO2 and doping with silver. This approach resulted in deposited films
with highly porous morphology [56]. The use of surfactants promotes the formation
of foam-type and dendrite-like morphologies, which facilitate the ion transport.
Moreover, doping with Ag increases the electron conductivity, thereby enhancing
the performance of supercapacitors. Ag-doped MnO2 has also been prepared by 
cathodic electrodeposition from electrolytes containing KMnO4 with AgNO3 [57]. 
These films showed a specific capacitance of 770 Fg−1 at a scan rate of 2 mVs−1 in 
0.5 M Na2SO4. Through electrochemical impedance spectroscopy, the authors
proved that doping with Ag reduces charge-transfer resistance. Although Ag is not
an active material, it lowers the resistance of the electrode, hence improving its
capacitive behavior.
Recently, electrodeposition combined with physical vapor deposition has been

proposed for non-equilibrium-free electron metal doping of atomic gold in the
structure of manganese oxide [58]. The Au dopant has a strong atomic interaction
with the MnO2 host and improves hydration of the electrode. Density functional
theory calculations showed that Au doping creates localized states in the MnO2 
bandgap, enhancing electron conductivity. The specific capacitance increases with
Au content doping, reaches the highest value at 9.9 at.% of Au, and then decreases
with further Au additions. Moreover, doping shows a great capacitive stability with
an enhancement of 7 % over 15,000 cycles, while the capacitance of pure MnO2 
decreased by 34 % over the same cycle number. However, the use of gold as dopant
increases the cost of the supercapacitors. Therefore, other highly conductive metals
can be utilized as a dopant. Besides, pulse-reversed electrodeposition can be
employed as simply one-step approaches for preparing doped electrodes, further
reducing the cost of the electrodes.
Atomic doping leads to a significant increase in capacitive performance of man-

ganese oxide electrodes because it increases electronic conductivity. However, not
only electron conductivity plays a crucial role in enhancing pseudocapacitive per-
formance of manganese oxide electrodes, but also ion diffusion of electrolyte into
the bulk of the active material is a key factor. Many efforts have been made to
reduce bulk-ion diffusion path via nanosizing and micro-/nanodesigning as dis-
cussed above, but the problem is basically unsolved. Sodium can be incorporated
within manganese oxide layer structure via conventional anodic electrodeposition
by simply changing the concentration ratio of sodium sulfate buffer with a metal
salt precursor (Na+:Mn2+=100:1), resulting in an electrode with remarkably acceler-
ated ion diffusion and thereby greatly enhanced capacitive performance and excel-
lent cycling performance (99.9 % of initial capacitance after 1000 cycles) [42]. 
During electrodeposition, high amounts of Na+ intercalate into the MnO2 interlay-
ers. Interestingly, a redox reaction of manganese oxide with sodium sulfate
(Na2SO4), which is usually not evidenced as a peak in the cyclic voltammetry curve
of manganese electrodes in Na2SO4 electrolyte, has also been observed, proving the
redox mechanism and its contribution for the resulting capacitance.
Recently we have prepared nickel-doped manganese oxide electrodes by electro-

deposition in the cathodic region and oxidation by potential cycling. The scanning
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electron microscope (SEM) micrographs with low magnification (Fig. 1a) show that 
low-doped electrode presents a microporous structure with a lot of micro holes. 
Higher-magnification images (Fig. 1b, c) reveal a flake-like structure (Fig. 1b) 
formed outside the holes and a wirelike structure inside the holes (Fig. 1c). This
type of structure may facilitate ion transport into the electrode.
The low-Ni-dopedmanganese oxide electrode shows an increase in specific capaci-

tance in 1 M Na2SO4 solution when compared to the undoped electrode (Fig. 1f). 
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Fig. 1 SEM images of low-doped (a–c), high-doped electrode (d, e) with different magnifications
and charge/discharge curve of doped and undoped electrode (f)
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This difference arises from the enhanced electron conductivity owing to the
contribution of Ni. Electrodes with a higher dopant content present a smooth
surface (Fig. 1d, e), which leads to a decrease in the electrode specific capacitance 
due to its lower surface area.
The most recent developments in doped manganese oxide for supercapacitors

evidence that doping via electrodeposition provides a facile and cheap way to
control, optimize, and shape surface morphology, electronic conductivity, and ionic
diffusion of manganese oxide electrodes for supercapacitors. Results show that
doped manganese electrodes not only have high specific capacitance, being a
possible electrode for supercapacitors. Still, there are several approaches to be
investigated regarding the species to be used as dopants, such as its long-term
stability. Further studies in this direction will result in new promising electrodes for
supercapacitors.

 Metallic Foams

Nanoporous metallic foams (NMFs) have been considered in the search for very
high surface area conductive materials. NMFs are of particular interest for applica-
tions such as catalysis, sensors, and electrodes for energy storage devices [59], 
inviting a wide array of innovative technological solutions. NMFs are 3D structures
of interconnected pores with nanoramified walls formed of metallic particles, fila-
ments, or other morphologies. These materials usually exhibit porosities above 50
% and a wide pore size distribution that contributes to its specific surface area. They
display properties characteristic of metals, such as good electric and thermal con-
ductivities and excellent ductility and malleability with the extreme properties that
are characteristic of more advanced nanoarchitectures, like aerogels, which include
increased surface area and decreased density, making NMFs a topmost choice for
porous electrodes for today’s SC.
Metallic foams can be tailored to optimize the wetting properties while simulta-

neously providing faradaic capacitance if composed of multivalent transition metal
species [59]. For example, nickel foams, which have a very high theoretical capaci-
tance, can be used as the positive electrode in supercapacitors, being one of few
materials that can display high theoretical specific capacitances. NiO–Ni foam elec-
trodes evidence specific capacitance of approximately 2558 Fg−1, enhanced rate 
capability, energy density of 90 Wh kg−1, and power density of 10 kW kg−1 with 
slow and fast charge/discharge rates, respectively [43].
Common methods for the fabrication of highly porous networks are dealloying

ofmetal alloys, where one of themetals is preferentially removed, and hard-template
processes, where metal is deposited in the free spaces of the template followed by 
the template removal (chemical dissolution or burning) [59]. In addition to these 
methods, electrodeposition provides a one-step, low-cost method for the fabrication
of NMFs by taking advantage of the dynamic template formed by hydrogen bub-
bling that often occurs simultaneously to metal deposition. In this way, self-
supported nanoramified foam structures with properly tailored architectures can be 
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designed, enhancing mass and charge-transfer processes. Furthermore, electrode-
posited NMFs are typically formed on metallic substrates of high electronic con-
ductivity, which constitutes an advantage for fabrication of SC electrodes since the
active material is directly applied on the current collector.
Hydrogen evolution is an intrinsic phenomenon in electrodeposition from aque-

ous solutions, in particular during deposition of transition metals. Application of
sufficiently negative potentials results in hydrogen gas bubble formation and release
from the substrate and/or incorporation of hydrogen in the deposit and/or the sub-
strate (hydrogenation). This is considered detrimental for the fabrication of dense
deposits because it decreases of current efficiency of the process and may lead, for 
example, to hydrogen embrittlement, cracking, and blistering, which insert defects
and deteriorate the mechanical properties and surface quality of the deposited film 
[60]. However, Shin et al. [61, 62] showed that simultaneous metal electrodeposi-
tion and hydrogen evolution was a simple method for the production of high porous
metallic foams, where hydrogen bubbles act as a negative dynamic template. The
earlier papers on this subject concerned copper and tin metallic foams [61, 62], and 
a thorough study of the phenomenology of copper NMFs was carried out in a series
of papers by Nikolic et al. [63–65]. NMFs are deposited from highly acidic electro-
lytes containing a salt of the metal to be deposited, in a current (or potential) range
for which hydrogen evolution occurs, usually between 1 and 3 Acm−2 during short
times (20–180 s) [63, 61, 62].
The morphology of electrodeposited NMFs is closely related to the nucleation

and evolution of hydrogen bubbles that occurs simultaneously with nucleation and
growth of the metal during deposition. In the early stages of the deposition process,
both hydrogen bubbles and metal nuclei are formed at active sites at the electrode
surface. The active sites shielded by hydrogen bubbles will be isolated, preventing
the deposition of metal in those sites and concentrating the current lines around
them and on the formed metal nuclei. Hence, metal growth will proceed in inter-
stices between the hydrogen bubbles and at metal nuclei, forming metal agglomer-
ates. As deposition proceeds, both hydrogen bubbles and metal nucleation will
preferentially occur at the top of such metal agglomerates. Furthermore, the diffu-
sion of metal ions to the electrode will be disrupted by continuous gas evolution and
metal growth forced to occur between the gas bubbles (assuming that the metal
growth is diffusion controlled). In this way, hydrogen bubbles act as a negative
dynamic template around which metal grows, thus forming a foam structure with a
pore network throughout the deposited film. A simplified scheme of this process is
shown in Fig. 2.
Deposition parameters and electrolyte composition also have a significant influ-

ence on the morphology of electrodeposited NMFs [66]. In the case of copper 
foams, parameters that increase hydrogen evolution such as increasing the overpo-
tential, decreasing the Cu(II) concentration, and increasing the concentration of
H2SO4 in solution will decrease the pore size and increase pore density. Porosity can
also be controlled by additives in the electrolyte that suppress the coalescence of the
bubbles or have catalytic effect on the Cu deposition (such as Cl− ions) leading to a
decrease the size of the branches that are observed in the foam wall [67].
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As stated previously, copper NMFs have been the most studied materials
[65, 61], but NMFs of tin [61], silver [68], palladium [69], and gold [70] have also
been fabricated by electrodeposition using the dynamic hydrogen template method.
On the other hand, few papers have discussed the fabrication of NMFs containing
transition metals such as nickel and cobalt, which have an increased importance as
low-cost alternatives to noble metals for high reactive surface applications. Choi
et al. [71] reported the fabrication of nickel NMFs by electrodeposition of nickel–
copper NMFs on copper-coated alumina and subsequent electrochemical etching
of copper. As for pure copper foams, the deposits show a foamlike structure with 
nano ramified walls.

In our recent work [45], we have studied the influence of the deposition param-
eters on nanoporous Ni–Cu foams electrodeposited using hydrogen bubble template
on stainless steel substrates and evaluated their application as electrodes for SCs.
Typical Ni–Cu NMFs (Fig. 3) present an array of randomly distributed nearly 

circular pores whose walls are a network of interconnected dendrites. The variation
of the Ni–Cu NMF morphology with the deposition time is presented in Fig. 4. 
For a deposition time of 30 s (Fig. 4a), intertwined dendrites are formed around 
circular areas of the substrate, where a film formed of angular grains is visible.

cu substrate

Deposition solution

Increasing time

Liberated H2 bubbles

Cu or Sn deposit

Fig. 2 Simplified scheme of the formation of NMFs using the hydrogen bubble template
(Reprinted with permission from Ref. [61], Copyright 2013 Wiley and Sons)

Fig. 3 SEM images of Ni–Cu foams deposited at 1.8 A cm−2 for 90 s (Reprinted with permission 
from Ref. [45], Copyright 2013 Springer)
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As deposition time increases (Fig. 4b, c), a three-dimensional foam-type film is 
formed. The dendrites that form the pore walls do not present any preferential
growth direction (in relation to the substrate), being randomly oriented. As deposi-
tion time increases, dendrites assume a fernlike structure with secondary and 
tertiary branching (inset of Fig. 4c). The surface pore size in the Ni–Cu foams
increases with the deposition time, and at the same time, the density of surface pores 
decreases (Fig. 4d). This variation is in accordance with published works on Ni–Cu
foams electrodeposited on an alumina substrate [71]. The average surface pore area
varies between 108 μm2 in Ni–Cu foams deposited at 30 s and 225 μm2 for a deposi-
tion time of 180 s. If we consider that the surface pores are nearly circular, 
these values correspond to pore diameters between 12 and 17 μm. As can be seen in 
Figs. 3 and 4, the surface area of Ni–Cu NMFs is enhanced not only by the surface
pores but also by the empty spaces in the non-compact dendritic pore walls.
As expected the main elements detected in electrodeposited Ni–Cu foams, as

determined by EDS, were nickel and copper. However, and in accordance with the
literature [71], the copper content in the NMFs is much higher than that in the depo-
sition electrolyte. In solution, copper represents only 2 at.% of the metallic ions in 
solution (the other 98 at.% are Ni), but it reaches up to approximately 40 at.% in 
metallic foams deposited for 180 s. This can be explained by the large difference
between the reduction potentials of copper and nickel (about 0.6 V) so that Cu, 
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being the most noble metal, will deposit preferentially to Ni and the ratio of Cu in
the foam will be higher than in solution. Accordingly, this process can be classified
as preferential deposition as defined by Brenner [72]. This is actually the reason
why most studies on the deposition of Ni–Cu alloys are performed on solutions
containing complexing agents such as citrate, pyrophosphate, and not simple metal
solutions [72].
X-ray diffractograms of Ni–Cu NMFs depict well-defined diffraction peaks

(Fig. 5) indicating a crystalline nature. Nickel and copper have a full mutual
solubility, and it is well known that Ni–Cu alloys form solid solutions with face-
centered cubic (fcc) structure. The peaks at approximately 44.6°, 51.9°, and 76.5°
are nearly coincident with fcc nickel (ICDD 00-04-0850) and present a slight shift
to higher two theta angles. The peaks at 43.7, 50.8, and 74.7° are closer to the posi-
tion of fcc copper (ICDD 01-070-3039), presenting a shift to higher 2 theta angles.
These results indicate the formation of inhomogeneous alloys that contain segre-
gated copper-rich and nickel-rich phases, a common effect in electrodeposited
nickel–copper alloys [73].
The average lattice parameter (a) values calculated for the Ni-phase are actually

the same as for fcc nickel (a = 3.5239 Å, ICDD 00-04-0850) which indicates the 
presence of a pure nickel phase. The average a values calculated for the copper
phase are lower than fcc copper (a=3.6148 Å, ICDD 01-070-3039) suggesting the
presence of Ni in solid solution. It is also important to refer that no pure copper 
phase was detected in the diffractograms and that, although the copper content in

Fig. 5 X-ray diffractograms of Ni–Cu foams deposited at 1.8 A cm−2 for (a) 30, (b) 60, (c) 90, 
(d) 120, and (e) 180 s. Vertical lines represent diffraction peaks position for Cu (▲, ICDD 01–070–
3039) and nickel (●, ICDD 00–04–0850) (Reprinted with permission from Ref. [45], Copyright
2013 Springer)

20 Nanostructured Transition Metal Oxides Produced by Electrodeposition…



700

the films increases with the deposition time, the lattice parameters of its crystalline 
phases do not change significantly, indicating that the phases is the same, indepen-
dently of deposition time.
The electrochemical behavior of Ni–Cu foams was evaluated in 1 M KOH

solution by cyclic voltammetry and chronopotentiometry (galvanostatic charge/
discharge) after potential cycling activation. The specific capacitance of the
Ni–Cu foams was determined from chronoamperometry data. Figure 6 shows 
representative cyclic voltammograms of Ni–Cu foams. It is clearly seen that the
shape of the voltammograms is distinct from those of materials exhibiting an
electric double layer capacitance, which induces nearly rectangular curves [1]. In 
this case, voltammograms of Ni–Cu foams have a couple redox peaks in the
potential window between −0.2 V and +0.8 V. The anodic peak can be assigned to
the oxidation of Ni(OH)2 to a higher valence of oxyhydroxide (NiOOH). On the
other hand, the cathodic peak can be assigned to the corresponding reduction
reaction, following Eq. 2 [74].
Although the Ni–Cu foams have not suffered any oxidation pretreatment, their

voltammetric response is in accordance with the reports in the literature for Ni
oxides in alkaline solutions [75], suggesting that the Ni–Cu foam is oxidized upon
its immersion on the KOH solution and potential cycling. It should also be noted

Fig. 6 Cyclic voltammograms of 1 M KOH solution on Ni–Cu foams (a) deposited during 90 s at
different current densities (scan rate 100 mVs−1) (b) deposited at 1.8 A cm−2 with different deposi-
tion times (scan rate 100 mVs−1) and (c) deposited at 1.8 A cm−2 for 90 s with increasing scan rates
(Reprinted with permission from Ref. [45], Copyright 2013 Springer)
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that, in this potential range, copper undergoes a redox reaction Cu(II)/Cu(III)
involving CuO surface species [76]. However, no peaks in the voltammograms
could be attributed to these reactions, which can be explained by the fact that in 
Ni–Cu alloys copper oxidation reactions are hindered due to the formation of a
protective nickel hydroxide film [77, 78].
The increase in applied current density and deposition time both lead to an increase

in the current density and charge measured by cyclic voltammetry (Fig. 6a, b) 
having therefore a beneficial effect on the electrochemical activity of the films.
The influence of the potential scan rate on the voltammetric response of Ni–Cu

foam deposited at 1.8 A cm−2 for 90 s is presented in Fig. 6c. The cathodic current
density of the cathodic wave (ipC) varies linearly with the square root of the scan
rate (Fig. 6d), indicating that the redox reaction is diffusion controlled. On the other
hand, the potentials corresponding to the anodic peak and cathodic peak are not
independent of the scan rate (Fig. 6d), and peak separation is larger than that typi-
cally found for reversible reactions (0.059 V at 298 K) [79]. This indicates that the
redox reaction is not completely reversible.
The galvanostatic charge/discharge curves of Ni–Cu NMFs are presented in

Fig. 7. As expected, the curves are not triangular in shape and present charge and
discharge plateaus resulting from the redox reactions occurring in this potential
range. This confirms the pseudocapacitance behavior of the Ni–Cu in agreement
with the cyclic voltammetry results. The specific capacitance of the Ni–Cu foams
was calculated from charge/discharge data. Ni–Cu foams deposited for 180 s pre-
sented the highest specific capacitance value, 105 Fg−1 at 1 mA cm−2 maintaining
75 % of capacitance the charge/discharge rate changes from 1 to 10 mAcm−2. These
capacitance values are lower than those reported in the literature for Ni oxide
materials [32]. This can be explained by the fact that the Ni–Cu NMFs have
not suffered any oxidation treatment prior to testing so that the active material
(Ni oxides/hydroxides) is formed only as a superficial layer, accounting for a small
fraction of the deposited mass, for which the specific capacitance was calculated.

Fig. 7 Galvanostatic charge/discharge curves of Ni–Cu foam deposited at 1.8 A cm−2 (a) for (1) 
30, (2) 60, (3) 90, (4) 120 and (5) 180 s at 1 mA cm−2 and (b) for 180 s at different current densities 
(1) 20, (2) 10, (3) 4, (4) 2 and (5) 1 mA cm−2 (Reprinted with permission from Ref. [45], Copyright
2013 Springer)
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 Fabrication of 3D Hyperbranched Dendritic Structures

3D branched dendritic structures have been used for various applications for the
fabrication of electrode supercapacitors. These powders can be fabricated by wet
chemical routes or by electrodeposition.
The Ni–Co powders, electrodeposited from electrolytes containing ammonium

sulfate [80] and ammonium sulfate–boric acid [81], reveal a dependence of the
morphology on the Ni to Co concentration and on the applied current. A composite
3D structure, showing improved performance, was obtained by a two-step process
[44], the first step being associated with a nano-Ni film deposition and the second
one related with Co(OH)2 flake deposition. However, in this work, due to the high
cathodic current densities used to obtain such porous dendritic film (−0.4 A cm−2), 
the deposition efficiency is low, about 30 %, which was attributed to simultaneous 
and intense hydrogen evolution.
The electrodeposition of Ni–Co alloys, in the cathodic domain, on stainless steel

current collectors is a very interesting way to fabricate dendritic structures of high
porosity and surface area. However, the process reveals a typical anomalous behav-
ior as reported in literature, cobalt, the more active metal, being preferentially
deposited [72]. Moreover, it has been reported that this anomalous behavior changes
into normal at critical transition current. This fact can be explained by the diffusion-
controlled kinetics that is established at high cathodic current densities, leading to
the depletion of Co ions in the cathode diffusion layer.
Scarce literature can be found regarding fabrication of dendritic structures by

electrodeposition for supercapacitor applications. A recent work reports the prepa-
ration of porous hydrous ruthenium oxides via electrodeposition. The 3D porous
hydrous ruthenium oxide exhibits capacitances of 809 Fg−1 at 1.5 Ag−1, high energy
density (112Wh kg−1), and excellent capacitance retention under continuous charge/
discharge cycling [82].
Very recently we proposed an approach for the fabrication of Ni–Co dendritic

structures, targeted for supercapacitor electrodes [83]. One of the major advantages
of this method is the fact that the films are self-supported on the current collector 
and the anomalous deposition behavior has been overcome by controlling the
cathodic deposition current, using a pulsed route as described elsewhere [83]. When
the more negative applied current varies between −20 and −50 mA cm−2, the atomic 
Ni–Co ratio in the dendritic layer becomes identical to that of the electrolyte, which
accounts for a normal electrodeposition behavior. Consequentially, when a suffi-
ciently negative current density is applied (<−20 mA.cm−2), the cobalt content in the 
film decreases.
The SEM images depicted in Fig. 8 show the morphology of various Ni–Co films

deposited at different cathodic current densities in the lower plateau of the applied 
pulse.As it can be seen, the morphology of the electrodeposited films is very depen-
dent on the more negative current densities of the applied pulse, pointing to different
growth type regimes. In fact, for values less negative than −15 mAcm−2, (Fig. 8a, b), 
the electrodeposited Ni–Co films are quite smooth, displaying homogeneous
micrometric grains, which grow with decreasing current densities of the lower
pulse. For currents lower than -15 mA cm−2, a 3D dendritic morphology is already
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evident (Fig. 8c). This structure further develops as the applied current becomes
more negative (Fig. 8d), starting to show longitudinal and transversal growth. This
leads to the development of secondary branching, each dendrite being constituted
by several hierarchical assemblies, which expand from a central pillar. At the end
the structure is characterized by several interconnected secondary branches with
different widths and lengths.
The films deposited in the most negative current density range (−30 and −45 mA

cm−2, Fig. 9) present larger dendrites evidencing more branches. A more heteroge-
neous morphology is observed probably because the existing structure cannot sup-
port the new branches and mechanically fractures. Moreover, circular spots are
formed corresponding to H2 evolution sites (see marked areas in Fig. 9b–d).
The cross section of the Ni–Co films deposited using a current density in the

lower limit pulse of −20 mA cm−2 shows the presence of an inner compact layer, 
with a thickness between 1 and 2 μm (Fig. 10a). The 3D dendrites grow over this
compact layer. It is possible to observe various morphologies:

(i) Smaller dendrites (~2–3 μm height) without additional branches
 (ii) 15 μm high dendrites showing primary sets of branches (Fig. 10b)
(iii) Completely formed dendrites with well-developed secondary branches grow-

ing up to 100 μm

Fig. 8 SEM images of Ni–Co films formed by electrodeposition under various current densities of
the lower pulse limit: −5 (a), −10 (b), −15 (c), and −20 mAcm−2 (d) (Reprinted with permission 
from Ref. [83], Copyright 2012 American Chemical Society)
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This 3D dendritic morphology can be associated with distinct developments
stages. Previous work [84] reports that the interfacial compact structure, from where 
the dendritic structure evolves, is likely to be grown in the more positive plateau of
the applied pulse.
The results of our previous work [85] highlight that the development of the 3D

dendritic structures occurs at the same critical current density at which the change

Fig. 9 SEM images of Ni−Co films formed under various current densities in the lower pulse
limit: −25 (a), −30 (b), −35 (c), and −40 mA cm−2 (d) (Reprinted with permission from Ref. [83]. 
Copyright 2012 American Chemical Society)

Fig. 10 Cross-sectional SEM images of Ni–Co film formed at lower pulse limit of −20 mA cm−2 
(Reprinted with permission from Ref. [83], Copyright 2012 American Chemical Society)
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from anomalous to normal electrodeposition occurs. These findings show that when
the more negative current density is sufficient to guarantee that diffusional control
is established, Ni and Co deposition will be proportional to their concentrations in 
the electrolyte, providing that both elements present similar diffusion coefficients
and diffusion layer thicknesses [85].
The electrochemical behavior of 3D dendritic films deposited applying the

pulse route described above with −20 mA cm−2 for the lower current plateau, from 
electrolytes containing different Ni–Co cation ratios, was studied by cyclic voltam-
metry in 1 M KOH. Comparing the voltammograms obtained for the electrodepos-
ited films and for pure Ni and Co metals (Fig. 11), some important conclusions can 
be depicted:

(i) The main anodic and cathodic peaks are broader compared to the peaks observed
for the metallic electrodes. This behavior suggests that there are overlapped
responses from cobalt and nickel present in the electrodeposited film, as addressed 
somewhere [86]. Moreover, the full width at half maximum of these redox waves
is superior, implying a deconvolution in two peaks. Those can be associated with
the redox couples Co(II)/Co(III) and Ni(II)/Ni(III), respectively, at +0.28 V and
+0.37 V; this is further supported by the fact that the film presenting higher Co
content shows wider redox waves. This behavior leads to a larger potential win-
dow that is highly beneficial for enhanced supercapacitor performance.

(ii) The associated charge storage capacity (which can be evaluated by the area
under the voltammograms) ismuch higher in the case ofNi–Co-electrodeposited
films. This should be related with the contribution of both Ni and Co centers to
the overall charge storage process which, as referred above, leads to an increase
in the potential window where the materials are electroactive and also with the
higher surface area that dendritic morphologies allow. In fact, this kind of struc-
ture enhances the contact of the electrolyte with an increased number of active
sites through the 3D porous network.
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The optimization of the electrodeposition parameters (applied current densities,
metallic cation ratio in the electrolyte, pH and additives) led to the fabrication of
structures with optimized response, displaying specific capacities between 500 and
600 Fg−1 as determined from consecutive charge/discharge curves (Fig. 12).
The XRD patterns of films with Ni–Co ratio composition similar to those from

electrolytes (70Co:30Ni and 40Co:60Ni) are depicted in Fig. 13.
In the picture three peaks at 44.5°, 51.8°, and 76.4° can be identified, correspond-

ing, respectively, to the (111), (200), and (220) planes of Ni face-centered cubic
(fcc) crystallographic structure. The formation of a single phase is expected due to
the total solubility of nickel and cobalt at this concentration. However, the diffrac-
togram of films with 70Co:30Ni shows additional diffraction peaks associated with
the cobalt hexagonal compact phase (hcp). This result points out that with increas-
ing cobalt concentration, the crystal structure changes from fcc to hcp, in accor-
dance with Ni–Co phase diagram.

 Fabrication of Composites Carbon and Metal Oxides

In an attempt to combine the double layer charge storage mechanism of carbon and
the faradaic contribution of metallic oxides, there has been an intense research work 
towards the electrodeposition of metals on carbon substrates. These include meso-
porous carbon, carbon nanotubes, fullerene, carbon aerogels, graphene and gra-
phene oxide nanosheets, carbon fibers, and carbon clothes. There are several
methods to prepare these composites of metallic oxides and carbon materials. These
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include chemical routes, carbonization, chemical vapor deposition (CVD), photoli-
thography, and others. Interesting combinations have been reported such as the use
of carbon nanotubes (CNTs) on which MnO2 nanoflakes of high surface area are
used as spacers in graphene nanosheets (GNs). These are further used to coat flexi-
ble substrates of carbon cloth. The incorporation of α-MnO2/CNTs over GNs pro-
motes electrolyte–electrode accessibility and improves the conductivity of the
electrode through decreasing GNs agglomeration [28].
Another interesting approach relies on the electrodeposition of graphene oxide

(GO) and its reduction to graphene at the working electrode. This occurs through
two distinct steps: migration of GO sheets towards the electrode followed by their
reduction [87].
Composites of Ni/graphene were formed by electrochemical reduction of GO

sheets and Ni cations. Analysis by Raman and EDS clearly demonstrated the pres-
ence of reduced graphene oxide, a process that occurs during the electrodeposition
process (Fig. 14). In this picture a peak appearing at 2θ degrees of 26.32° can be
observed. This peak can be associated with the (002) plane of reduced graphene
with a lattice fringe of 0.34 nm [88].
Composites of various metal oxides, such as SnO2, RuO2, and MnO2, chemically 

anchored on graphene oxide and carbon substrates display energy densities that can
attain 50Whkg−1. Compared to single graphene electrodes, the improved properties
were attributed to (i) increased specific area of the produced Ni/graphene compos-
ite, induced by a spacer effect of nano-metal oxides, and (ii) graphene electrochemi-
cal double layer that is the major contribution to the overall capacitance, the metal
oxide nanoparticles’ pseudocapacitive response being negligible [89].
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The fabrication of graphene (and graphene oxide) and metal composites was
extensively reviewed by Huang et al. [90]. Among the possible methods used to
combine these classes of materials, there has been very little focus on electrodeposi-
tion. However, this can be one of the most suitable and non-expensive techniques to
fabricate these composites.
Zhang et al. reported the fabrication of composites made of MnO2 nanoflowers

and carbon nanotube array (CNTA) electrodes by electrodeposition on vertically
aligned CNTA framework [46]. These binder-free electrodes exhibited good rate
capability and good specific capacitance. An identical approach was used to fabri-
cate MnO nanoflowers on carbon nanotubes displaying capacitances above 500
Fg−1 [8]. Other oxides, such as V2O5, were also successfully deposited on carbon 
substrates, achieving specific capacities as high as 1300 Fg−1 [48] in a 2 M KCl
electrolytes.

Electrodeposition of Ni porous oxides and NiOx particles was done on GO with
improved conductive properties [49].
Kim et al. proposed the co-electrodeposition of graphene oxide treated with

poly(ethyleneimine) and Co2+ ions from nitrate solutions in a one-step route. The
electrochemical activity of the produced composite, used as anode, was improved
comparatively to that of single materials [8]. Three-dimensional nickel oxide nanopar-
ticles can be synthesized on the surface graphene oxide deposited on glassy carbon
by electrochemical routes. The composite (NiONPs/GO/GC) electrode exhibited high
electrochemical capacitance. It is reported that the graphene oxide has a major role in
the growth of the 3D – NiONPs, creating a synergistic effect [50].
Du et al. reports the formation of 3D vertical structure of aligned carbon

nanotube and graphene. These architectures are formed by intercalating carbon
nanotubes into well-organized structures of pyrolytic graphite. These structures
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combined with electrodeposited nickel hydroxide, which introduces additional 
pseudocapacitance, demonstrated increased capacitance values and very good rate
capability, outperforming many electrode materials currently used [91].
Metallic oxides displaying a pseudocapacitive behavior, combined with carbon-

based materials, especially graphene, are on the edge of the state of art of composite
materials for supercapacitor electrodes. The wide array of combinations and avail-
able materials paves the avenue to solve most of the actual barriers limiting the
application of supercapacitors.

 Conclusions and Outlook

The development of different architectures, involving nano- and microstructured
materials at different dimensions and its fabrication via electrodeposition will
undoubtedly boost the supercapacitor market and will play a major role in the next 
generation of energy storage devices displaying much better performances. 
 In detail, the introduction of species, such as metallic transition oxides, became 
extremely attractive because of the faradaic contribution of these species. The com-
bination of metals displaying high theoretical capacitances, such as manganese,
nickel, and cobalt oxides, is one of the most promising routes to fabricate new
typologies of electrodes. The careful design of oxides and its modification by
doping with others is an extremely attractive strategy. When it comes to morphol-
ogy of these materials, 1D, 2D, and 3D architectures such as nanosheets, vertically
aligned nanotubes, hyperbranched dendrites, and metallic foams lead to a very large
active surface area. This contributes to enhance the electrochemical behavior of
these materials.

On the other hand, the combination of different classes of materials such as the 
wide array of carbon-based structures (nanotubes, fullerenes, graphene, mesopo-
rous carbons, etc.) that guarantee a capacitance generated by its double layer, with
the pseudocapacitive response of metallic oxides, is attracting large interest.
Graphene is in the forefront of these materials because of its high promise of
energy density. The number of possible combinations of carbon-based materials
and metallic oxides and the resulting architectures opens such a wide range of pos-
sibilities that, undoubtedly, supercapacitors will be in the forefront of the energy
storage.
The fabrication of these single or composite materials must be simple, flexible,

easy to scale up, and, preferably, done in a one-step process. Moreover, by using the
correct approach, the electrodes can be fabricated directly over the current collec-
tors, thus eliminating steps in the assembling process. This strategy definitely con-
tributes to decreasing the production costs of the electrodes, thus lowering price and
boosting the market. By using routes based on electrodeposition and co-
electrodeposition, it is possible to tune the electrode morphology, surface area,
conductivity, and crystallinity towards more efficient materials. This facility enables
the fabrication of new electrodes, displaying much higher energy density and
specific capacitances as well as longer-term cycle ability. Moreover, these materials
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are able to work at fast charge/discharge rates fulfilling all the requirements for
high-power applications.
The key for the success of these devices resides on the joint effort of different

sciences: materials, chemistry, physics, and electrochemistry to drive the design,
development, testing, and understanding of novel electrode materials and architec-
tures with unprecedented energy densities and specific capacitances as well as
experts in electronics and integration of these electrodes in practical and safe
devices. This demands a multidisciplinary approach in which various branches of
science intersect their competences to boost a new class of energy storage devices.

Acknowledgments The authors would like to acknowledge FCT for financial support under the
projects PEst-OE/QUI/UI0100/2013 and PTDC/CTM-MET/119411/2010 “Electrodeposition of
oxide spinel films on stainless steel substrates for the development of new electrodes for superca-
pacitors” and the COSTAction MP 1004 “Hybrid Energy Storage Devices and Systems for Mobile
and Stationary Applications.”

References

1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technologi-
cal applications. Kluwer/Plenum, New York

2. Wu M-S, Lin K-H (2010) One-step electrophoretic deposition of Ni-decorated activated-
carbon film as an electrode material for supercapacitors. J Phys Chem C 114:6190–6196

3. Bondavalli P, Delfaure C, Legagneux P, Pribat D (2013) Supercapacitor electrode based on
mixtures of graphite and carbon nanotubes deposited using a dynamic air-brush deposition
technique. J Electrochem Soc 160:A601–A606

4. GhoshA, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5:480–499
5. Choi H-J, Jung S-M, Seo J-M, Chang DW, Dai L, Baek J-B (2012) Graphene for energy con-
version and storage in fuel cells and supercapacitors. Nano Energy 1:534–551

6. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices
based on graphene materials. J Phys Chem C 113:13103–13107

7. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite
electrode materials for energy storage. Nano Energy 1:107–131

8. Kim G-P, Nam I, Kim ND, Park J, Park S, Yi J (2012)A synthesis of graphene/Co3O4 thin films 
for lithium ion battery anodes by coelectrodeposition. Electrochem Commun 22:93–96

9. Frackowiak E, Abbas Q, Béguin F (2013) Carbon/carbon supercapacitors. J Energy Chem
22:226–240

10. Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater
22:E28–E62

11. Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal
electrodeposition. Int J Electrochem Sci 3:356–408

12. Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their character-
ization – a review. Sci Technol Adv Mater 9:043001

13. Allongue P, Maroun F (2006) Metal electrodeposition on single crystal metal surfaces mecha-
nisms, structure and applications. Curr Opin Solid State Mater Sci 10:173–181

14. Siegfried MJ, Choi K-S (2005) Directing the architecture of cuprous oxide crystals during
electrochemical growth. Angew Chem 117:3282–3287

15. Despic A, Popov K (1972) Transport Controlled Deposition and Dissolution of Metals.
In: Conway B, Bockris JM (eds) Modern aspects of electrochemistry, vol 7. Plenum, NewYork

16. Diggle JW, Despic AR, Bockris JOM (1969) The mechanism of the dendritic electrocrystalli-
zation of zinc. J Electrochem Soc 116:1503–1514

M.F. Montemor et al.



711

17. Popov KI, Čekerevac MI (1989) Dendritic electrocrystallization of cadmium from acid sul-
phate solution II: the effect of the geometry of dendrite precursors on the shape of dendrites.
Surf Coat Technol 37:435–440

18. Li Y, Jia W-Z, Song Y-Y, Xia X-H (2007) Superhydrophobicity of 3D porous copper films
prepared using the hydrogen bubble dynamic template. Chem Mater 19:5758–5764

19. Hsu P-C, Seol S-K, Lo T-N, Liu C-J, Wang C-L, Lin C-S, Hwu Y, Chen CH, Chang L-W, Je
JH, Margaritondo G (2008) Hydrogen bubbles and the growth morphology of ramified zinc by
electrodeposition. J Electrochem Soc 155:D400–D407

20. Chen LY, HouY, Kang JL, HirataA, Fujita T, Chen MW (2013) Toward the theoretical capaci-
tance of RuO2 reinforced by highly conductive nanoporous gold. Adv Energy Mater
3:851–856

21. Lokhande CD, Dubal DP, Joo O-S (2011) Metal oxide thin film based supercapacitors. Curr
Appl Phys 11:255–270

22. Das RK, Liu B, Reynolds JR, Rinzler AG (2009) Engineered macroporosity in single-wall
carbon nanotube films. Nano Lett 9:677–683

23. Soin N, Roy SS, Mitra SK, Thundat T, McLaughlin JA (2012) Nanocrystalline ruthenium
oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes. J Mater
Chem 22:14944–14950

24. Wu Z-S, Wang D-W, Ren W, Zhao J, Zhou G, Li F, Cheng H-M (2010) Anchoring hydrous
RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater
20:3595–3602

25. Ragupathy P, Park DH, Campet G, Vasan HN, Hwang S-J, Choy J-H, Munichandraiah N
(2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an
electrode material for supercapacitor. J Phys Chem C 113:6303–6309

26. Wang Y-T, LuA-H, Zhang H-L, Li W-C (2011) Synthesis of nanostructured mesoporous man-
ganese oxides with three-dimensional frameworks and their application in supercapacitors.
J Phys Chem C 115:5413–5421

27. KangYJ, Chung H, KimW (2013) 1.8-V flexible supercapacitors with asymmetric configuration
based on manganese oxide, carbon nanotubes, and a gel electrolyte. Synth Met 166:40–44

28. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Nanostructured ternary electrodes for
energy-storage applications. Adv Energy Mater 2:381–389

29. Han J, Li L, Fang P, Guo R (2012) Ultrathin MnO2 nanorods on conducting polymer nanofi-
bers as a new class of hierarchical nanostructures for high-performance supercapacitors.
J Phys Chem C 116:15900–15907

30. Wei W, Cui X, Chen W, Ivey DG (2008) Phase-controlled synthesis of MnO2 nanocrystals by 
anodic electrodeposition: implications for high-rate capability electrochemical supercapaci-
tors. J Phys Chem C 112:15075–15083

31. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultra-
thin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials.
Adv Mater 23:2076–2081

32. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical super-
capacitors. Chem Soc Rev 41:797–828

33. Nam K-W, Kim K-H, Lee E-S, Yoon W-S, Yang X-Q, Kim K-B (2008) Pseudocapacitive
properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film 
substrates. J Power Sources 182:642–652

34. Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applica-
tions. J Phys Chem C 115:15646–15654

35. Deng M-J, Chang J-K, Wang C-C, Chen K-W, Lin C-M, Tang M-T, Chen J-M, Lu K-T (2011)
High-performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as
electrode with a novel Li-ion quasi-ionic liquid as electrolyte. Energy Environ Sci
4:3942–3946

36. Chou S-L,Wang J-Z, Chew S-Y, Liu H-K, Dou S-X (2008) Electrodeposition of MnO2 nanow-
ires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors.
Electrochem Commun 10:1724–1727

20 Nanostructured Transition Metal Oxides Produced by Electrodeposition…



712

37. Sun Z, Firdoz S, Ying-Xuan Yap E, Li L, Lu X (2013) Hierarchically structured MnO2 nano-
wires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale
5:4379–4387

38. Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB (2013) Self-limiting electrodeposition of hier-
archical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor prop-
erties. ACS Nano 7:1200–1214

39. Kang J, Chen L, Hou Y, Li C, Fujita T, Lang X, Hirata A, Chen M (2013) Electroplated thick
manganese oxide films with ultrahigh capacitance. Adv Energy Mater 3:857–863

40. Li Q, Wang Z-L, Li G-R, Guo R, Ding L-X, Tong Y-X (2012) Design and synthesis of MnO2/
Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for
electrochemical energy storage. Nano Lett 12:3803–3807

41. Chang J-K, Lee M-T, Huang C-H, Tsai W-T (2008) Physicochemical properties and electro-
chemical behavior of binary manganese – cobalt oxide electrodes for supercapacitor applica-
tions. Mater Chem Phys 108:124–131

42. Mai L, Li H, Zhao Y, Xu L, Xu X, Luo Y, Zhang Z, Ke W, Niu C, Zhang Q (2013) Fast ionic
diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for
high-performance supercapacitor. Sci Rep 3:1–8

43. Wang H, Yi H, Chen X, Wang X (2013) Facile synthesis of a nano-structured nickel oxide
electrode with outstanding pseudocapacitive properties. Electrochim Acta 105:353–361

44. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Three-dimensional
porous nano-Ni/Co(OH)2 nanoflake composite film: a pseudocapacitive material with superior
performance. J Phys Chem C 115:22662–22668

45. Eugénio S, Silva TM, CarmezimMJ, Duarte RG, Montemor MF (2014) Electrodeposition and
characterization of nickel–copper metallic foams for application as electrodes for supercapaci-
tors. J Appl Electrochem 44:455–465

46. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Growth of manganese oxide nanoflow-
ers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive
energy storage. Nano Lett 8:2664–2668

47. Kim J-H, Lee KH, Overzet LJ, Lee GS (2011) Synthesis and electrochemical properties of
spin-capable carbon nanotube sheet/mnox composites for high-performance energy storage
devices. Nano Lett 11:2611–2617

48. Ghosh A, Ra EJ, Jin M, Jeong H-K, Kim TH, Biswas C, Lee YH (2011) High pseudocapaci-
tance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv
Funct Mater 21:2541–2547

49. Wu M-S, Lin Y-P, Lin C-H, Lee J-T (2012) Formation of nano-scaled crevices and spacers in
NiO-attached graphene oxide nanosheets for supercapacitors. J Mater Chem 22:2442–2448

50. Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, Zhang D (2013) Graphene oxide/nickel oxide
modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor.
Electrochim Acta 88:708–712

51. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for
electrochemical supercapacitors. Nat Nanotechnol 6:232–236

52. Chen Y-S, Hu C-C (2003) Capacitive characteristics of binary manganese-nickel oxides pre-
pared by anodic deposition. Electrochem Solid-State Lett 6:A210–A213

53. Chang J-K, Hsieh W-C, Tsai W-T (2008) Effects of the Co content in the material characteris-
tics and supercapacitive performance of binary Mn–Co oxide electrodes. J Alloys Compd
461:667–674

54. Nakayama M, Suzuki K, Okamura K, Inoue R, Athouël L, Crosnier O, Brousse T (2010)
Doping of cobalt into multilayered manganese oxide for improved pseudocapacitive proper-
ties. J Electrochem Soc 157:A1067–A1072

55. Babakhani B, Ivey DG (2011) Investigation of electrochemical behavior of Mn–Co doped
oxide electrodes for electrochemical capacitors. Electrochim Acta 56:4753–4762

56. Sawangphruk M, Pinitsoontorn S, Limtrakul J (2012) Surfactant-assisted electrodeposition
and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor
electrodes. J Solid State Electrochem 16:2623–2629

M.F. Montemor et al.



713

57. Wang Y, Zhitomirsky I (2011) Cathodic electrodeposition of Ag-doped manganese dioxide
films for electrodes of electrochemical supercapacitors. Mater Lett 65:1759–1761

58. Kang J, Hirata A, Kang L, Zhang X, Hou Y, Chen L, Li C, Fujita T, Akagi K, Chen M (2013)
Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chem Int Ed
52:1664–1667

59. Tappan BC, Steiner SA, Luther EP (2010) Nanoporous metal foams. Angew Chem Int Ed
49:4544–4565

60. Paunovic M, Schlesinger M, Snyder DD (2010) Fundamental considerations, ch1. In: Modern
electroplating. Wiley, Hoboken, pp 1–32. doi:10.1002/9780470602638

61. Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposi-
tion process. Adv Mater 15:1610–1614

62. Shin H-C, Liu M (2004) Copper foam structures with highly porous nanostructured walls.
Chem Mater 16:5460–5464

 63. NikolićND, BrankovićG, PavlovićMG, Popov KI (2008) The effect of hydrogen co-deposition
on the morphology of copper electrodeposits. II. Correlation between the properties of electro-
lytic solutions and the quantity of evolved hydrogen. J Electroanal Chem 621:13–21

 64. NikolićND, PopovKI, Lj JP, PavlovićMG (2006) Phenomenology of a formation of a honeycomb-
like structure during copper electrodeposition. J Solid State Electrochem 11:667–675

 65. Nikolić ND, Popov KI, Lj JP, PavlovićMG (2006) Morphologies of copper deposits obtained
by the electrodeposition at high overpotentials. Surf Coat Technol 201:560–566

 66. Nikolić N (2010) Fundamental aspects of copper electrodeposition in the hydrogen
co-deposition range. Zaštita Materijala 51:197–203

67. Soares DM, Wasle S, Weil KG, Doblhofer K (2002) Copper ion reduction catalyzed by chlo-
ride ions. J Electroanal Chem 532:353–358

68. Cherevko S, Xing X, Chung C-H (2010) Electrodeposition of three-dimensional porous silver
foams. Electrochem Commun 12:467–470

69. Yang G-M, Chen X, Li J, Guo Z, Liu J-H, Huang X-J (2011) Bubble dynamic templated depo-
sition of three-dimensional palladium nanostructure catalysts: approach to oxygen reduction
using macro-, micro-, and nano-architectures on electrode surfaces. Electrochim Acta
56:6771–6778

70. Cherevko S, Chung C-H (2011) Direct electrodeposition of nanoporous gold with controlled
multimodal pore size distribution. Electrochem Commun 13:16–19

71. Choi W-S, Jung H-R, Kwon S-H, Lee J-W, Liu M, Shin H-C (2012) Nanostructured metallic
foam electrodeposits on a nonconductive substrate. J Mater Chem 22:1028–1032

72. Brenner A (1963) Electrodeposition of alloys: principles and practice, vol 1. Academic,
New York

73. Chang JK, Hsu SH, Sun IW, Tsai WT (2008) Formation of nanoporous nickel by selective
anodic etching of the nobler copper component from electrodeposited nickel-copper alloys.
J Phys Chem C 112:1371–1376

74. Yau S-L, Fan F-RF, Moffat TP, Bard AJ (1994) In situ scanning tunneling microscopy of Ni
(100) in 1 M NaOH. J Phys Chem 98:5493–5499

75. Hu C-C, Chang K-H, Hsu T-Y (2008) The synergistic influences of OH− concentration and 
electrolyte conductivity on the redox behavior of Ni(OH)2/NiOOH. J Electrochem Soc
155:F196–F200

76. De Medina AMCL, Marciano SL, Arvia AJ (1978) The potentiodynamic behaviour of copper
in NaOH solutions. J Appl Electrochem 8:121–134

77. Ismail K, Fathi A, Badawy W (2004) The influence of Ni content on the stability of copper-
nickel alloys in alkaline sulphate solutions. J Appl Electrochem 34:823–831

78. ZakyAM,Assaf FH (2002) Cyclic voltammetric behaviour of copper-nickel alloys in alkaline
media. Br Corros J 37:48–55

79. BardAJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications.Wiley,
New York

80. Jović VD, Jović BM, Pavlović MG (2006) Electrodeposition of Ni, Co and Ni–Co alloy
powders. Electrochim Acta 51:5468–5477

20 Nanostructured Transition Metal Oxides Produced by Electrodeposition…



714

81. MaksimovićVM, LačnjevacUČ, StoiljkovićMM, PavlovićMG, JovićVD (2011)Morphology
and composition of Ni–Co electrodeposited powders. Mater Charact 62:1173–1179

82. Jeong M-G, Zhuo K, Cherevko S, Kim W-J, Chung C-H (2013) Facile preparation of three-
dimensional porous hydrous ruthenium oxide electrode for supercapacitors. J Power Sources
244:806–811

83. Silva RP, Eugénio S, Silva TM, Carmezim MJ, Montemor MF (2012) Fabrication of
three-dimensional dendritic Ni–Co films by electrodeposition on stainless steel substrates.
J Phys Chem C 116:22425–22431

84. Guo L, Searson PC (2010) On the influence of the nucleation overpotential on island growth
in electrodeposition. Electrochim Acta 55:4086–4091

85. Fan C, Piron DL (1996) Study of anomalous nickel-cobalt electrodeposition with different
electrolytes and current densities. Electrochim Acta 41:1713–1719

86. Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y (2007) Preparation and capacitive properties of
cobalt–nickel oxides/carbon nanotube composites. Electrochim Acta 52:2959–2965

87. Niu Z, Zhang L, Liu L, Zhu B, Dong H, Chen X (2013)All-solid-state flexible ultrathin micro-
supercapacitors based on graphene. Adv Mater 25:4035–4042

88. Kuang D, Xu L, Liu L, Hu W, Wu Y (2013) Graphene–nickel composites. Appl Surf Sci
273:484–490

89. Rakhi RB, Chen W, Cha D, Alshareef HN (2011) High performance supercapacitors using
metal oxide anchored graphene nanosheet electrodes. J Mater Chem 21:16197–16204

90. HuangY, Liang J, ChenY (2012)An overview of the applications of graphene-based materials
in supercapacitors. Small 8:1805–1834

91. Du F, Yu D, Dai L, Ganguli S, Varshney V, Roy AK (2011) Preparation of tunable 3D pillared
carbon nanotube – graphene networks for high-performance capacitance. Chem Mater 23: 
4810–4816

M.F. Montemor et al.



715© Springer International Publishing Switzerland 2016
M. Aliofkhazraei, A.S.H. Makhlouf (eds.), Handbook of Nanoelectrochemistry, 
DOI 10.1007/978-3-319-15266-0_21

        H.-D.   Peng      •    Y.   Zhao      •    G.-B.   Pan      (*) 
  Division of Interdisciplinary Research, Suzhou Institute of Nano-tech and Nano-bionics 
(sinano) ,  Chinese Academy of Sciences ,   Suzhou ,  China   
 e-mail: hdpeng2102@sinano.ac.cn; yzhao2012@sinano.ac.cn; gbpan2008@sinano.ac.cn  

 21      Nanoscale Electrodeposition of Metals 
and Semiconductors from Ionic Liquids 
Probed by Scanning Tunneling 
Microscopy      

       Hong-Dan     Peng     ,     Yu     Zhao     , and     Ge-Bo     Pan    

    Contents 

 Introduction  .............................................................................................................................   716 
 Technological Point of STM for ILs  .......................................................................................   719 
 Adsorption of Anions and Cations  ..........................................................................................   720 

 Anion Adsorption  ................................................................................................................   720 
 Cation Adsorption  ...............................................................................................................   722 

 Electrodeposition of Metals  ....................................................................................................   723 
 Reactive Metals (Al, Zn, Li)  ...............................................................................................   723 
 Magnetic Metals (Fe, Co, Ni)  .............................................................................................   725 
 Semimetal Elements (Sb, Bi)  ..............................................................................................   727 
 Rare Metals (Ga, Ti, Ta)  ......................................................................................................   729 
 Other Metals (Cd, Pb)  .........................................................................................................   731 

 Electrodeposition of Semiconductors  .....................................................................................   732 
 Elemental Semiconductors (Ge, Si)  ....................................................................................   732 
 Compound Semiconductors (AlSb, ZnSb)  .........................................................................   734 

 Conclusion  ..............................................................................................................................   735 
 References  ...............................................................................................................................   735 

   Abstract  
  In this chapter, we have reviewed the current state of the knowledge of the 
nanoscale electrodeposition of metals and semiconductors on single-crystal elec-
trodes from ionic liquids (ILs), which might be vital for both basic and applied 
researches. Emphasis has been placed on the atomic- or submolecular-level char-
acterization of the respective nucleation and growth by in situ scanning tunneling 
microscopy (STM), whose studies are still in its infancy. Firstly, technological 
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point of STM for ILs has been briefl y discussed as well as the adsorption behavior 
of anions and cations of ILs. Secondly, in situ STM studies on the metal electro-
deposition in ILs are reviewed. For simplicity, the discussion will be categorized 
into reactive (e.g., Al, Zn, Li), magnetic (e.g., Fe, Co, Ni), semimetal (e.g., Sb, 
Bi), coinage (e.g., Cu, Ag, Au), and rare metals (e.g., Ga, Ti, Ta). Thirdly, in situ 
STM studies on the electrocrystallization of elemental (e.g., Si, Ge) and com-
pound semiconductors (e.g., AlSb, ZnSb) are briefl y reviewed. We conclude this 
chapter with our personal perspectives on future research in this fi eld.  

  Keywords  
  Electrodeposition   •   Ionic liquid   •   Metal   •   Semiconductor   •   STM  

        Introduction 

 Ionic liquids (ILs) have been well-known for nearly 100 years; however, a tremen-
dous explosion on this diverse class of solvents started only in the past decade 
[ 1 ,  2 ]. ILs are composed of organic cations and organic or inorganic anions and 
have a melting point typically lower than 100 °C, sometimes even below room tem-
perature. They are credited with a number of unusual properties that are remarkably 
different from water and conventional organic solvents. For instance, they exhibit 
almost zero pressure of saturated vapor, extended temperature range, nonfl ammabil-
ity, high conductivity, good chemical and thermal stability, and wide electrochemi-
cal window (even up to ~6 V) [ 3 – 5 ]. In particular, the properties of ILs are adjustable 
by selecting specifi c cations and anions, which can be independently modifi ed. That 
is, ILs can be considered as a unique architectural platform, which enables tunable 
solubility and much synthetic fl exibility in designing new functional solvents or 
materials. These favorable properties make ILs very promising to improve the dura-
bility and safety of electrochemical devices, extend the range of operating tempera-
ture, and increase the power and energy density [ 1 ,  6 ]. Therefore, ILs are considered 
as novel electrolyte candidates for electrochemical devices, including electric dou-
ble layer capacitors, fuel cells, lithium batteries, and solar cells. To date, a variety of 
cations and anions have been combined to form ILs. Figure  1  shows a variety of 
cations and anions, which are used for the currently favored ILs. The commonly 
used cations include imidazolium, pyridinium, tetraalkylammonium, tetraalkyl-
phosphonium, and pyrrolidinium, and the anions include tetrafl uoroborate and 
hexafl uorophosphate, trifl uoromethanesulfonate, bis(trifl uoromethanesulfonyl)
amide,  p -toluenesulfonate, and dicyanamide [ 2 ].

   On the other hand, electrochemical deposition is very powerful tool for preparing 
novel nanostructured materials, in particular for transition metals and semiconduc-
tors. In comparison with other methods such as chemical vapor deposition, physical 
vapor deposition, and sputtering, electrochemical deposition is demonstrated to be 
least expensive, highly productive, and readily adoptable. Meanwhile, it benefi ts a 
facile control of potential and numerous electrolyte compositions of solvents and 
precursors of metals and semiconductors [ 7 ]. The development of ILs, in particular 
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air and water stable ILs, has paved the way for the electrodeposition of metals and 
semiconductors [ 8 ]. As a sustainable and green media, ILs are capable to revolu-
tionize traditional electroplating industry. Firstly, metals and alloys formerly acces-
sible only in molten salts at high temperature can be deposited in ILs at room 
temperature. Secondly, by using ILs, electrolytes make it possible to electrodeposit 
active materials, such as aluminum, magnesium, and lithium, that can’t be obtained 
in water-based baths. This is mainly because hydrogen evolution does not occur in 
ILs. More importantly, by designing and synthesizing task-specifi c ILs, toxicity of 
reagents and low effi ciencies occurred with aqueous or organic processing can be 
overcome. In particular, it is able to control redox potentials and therefore to deposit 
novel alloys. These benefi ts have turned electrochemical deposition on the nanoscale 
from ILs into a fast-growing area of research [ 9 ]. 

 However, the limited understanding of the IL/electrode interfaces severely hin-
ders the applications of ILs in electrochemistry fi eld. In comparison to those of 
molecular solvents, the IL/electrode interfaces are much more complicated and gen-
erally consist of three distinct zones: interfacial (innermost) layer, bulk phase, and 
transition zone [ 10 ,  11 ]. Recent efforts reveal that ILs form strongly adherent inter-
facial layers on electrode surfaces, which varies with the composition of ILs and the 
applied electrode potential. The unusual bulk and interfacial properties induced by 
the intrinsic strong interactions in ILs have an important infl uence on the structure 
and electrochemical processes at the IL/solid interfaces. Thus, it is highly desired to 
study the interfacial systems, in particular, to obtain either atomic- or molecular- 
level perspective. To obtain images of the IL/solid interfaces with atomic or 

  Fig. 1    A variety of commonly used cations and anions of ionic liquids       
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submolecular resolution, the most promising approach is use of scanning probe 
microscopies. In the past decade, scanning tunneling microscopy (STM) has proven 
to be a remarkable tool for direct observing the spatial arrangement of the adsorbed 
molecules and ions at the surface of metallic and semiconducting electrodes. More 
importantly, it is capable of providing direct information on the dynamic processes 
of molecule and structural defect in situ [ 12 – 14 ]. Combining with the conventional 
electrochemical methods, the mechanism of the electrodeposition of metals and 
semiconductors can be revealed on an atomic or molecular level, and the details of 
nucleation, growth, and phase can be observed in real space. 

 In this chapter, we have reviewed the current state of the knowledge of the 
nanoscale electrodeposition of metals and semiconductors from ILs (Table  1 ), 
which is of both fundamental and technological importance. Emphasis has been 
placed on atomic- or submolecular-level characterization by STM. Classical elec-
trochemical methods such as cyclic voltammetry or potential step experiments often 
give only an overall insight into the deposition process. Firstly, technological point 
of STM for ILs has been briefl y discussed as well as the adsorption behavior of 
anions and cations of ILs. Secondly, STM studies on the electrodeposition of metals 
in ILs are reviewed. For simplicity, the discussion will be categorized into reactive, 
magnetic, semimetal, coinage, and rare metals and so on. Thirdly, STM studies on 
electrodeposition of elemental and compound semiconductors are reviewed. We 
conclude this chapter with our personal perspectives on future research in this fi eld.

       Technological Point of STM for ILs 

 STM images the solid surface in real space and with high resolution by utilizing the 
ability of precise spatial localization and specifi c tip-sample interactions. By detect-
ing the tunneling current, which is exponentially varying with the tip-sample dis-
tance, it is capable of probing the surfaces with spatial resolution down to the 
atomic or submolecular scale. Moreover, the rapid development of STM has also 
enabled the study of the electrolyte/electrode interfaces with atomic or submolecu-
lar resolution since 1990 and advanced surface electrochemistry since 1990. 
However, it is noted that most of STM application is performed in aqueous 
solution. 

 In 1997, Freyland et al. performed the fi rst STM experiment in a chloroaluminate 
IL and observed in situ the growth of Ag nanostructures on a highly oriented pyro-
lytic graphite (HOPG) substrate [ 15 ]. In 2003, Mao et al. observed the reconstruc-
tion and restructuring process of Au(111) in a neat non-chloroaluminate IL [ 16 ]. 
The above works represent the initial efforts of in situ STM study of the IL/elec-
trode interfaces. It is exciting that atomic or submolecular resolution images have 
been obtained for some specifi c systems in spite of its diffi culties in obtaining high-
resolution STM images in ILs. 

 Note that in situ STM experiments performed in ILs are more diffi cult than those 
in organic and aqueous solutions. In general, all the systems are required to be put 
into an inert container. This is because trace oxygen and water can affect signifi -
cantly the physicochemical properties of ILs. Moreover, the reference and counter 
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electrodes needed to be carefully selected, to avoid the effect of potential shift. 
Figure  2  shows a schematic of the STM apparatus with the standard four-electrode 
arrangement. By using a bipotentiostat, the electrode potentials of the working elec-
trode (WE 1 ) and the tunneling tip (WE 2 ) can be controlled independently with 
respect to a reference electrode (RE).

       Adsorption of Anions and Cations 

 STMs can provide atomic and submolecular resolution images of adsorbed targets 
and are widely used in investigating the electrolyte-electrode interface. In compari-
son to aqueous or conventional organic solutions, ILs form strongly adhering salva-
tion layers that vary with and the composition of ILs and the applied electrode 
potential, which in turn alter the tunneling conditions during the STM imaging. 
Therefore, it remains a great challenge to obtaining STM images with high resolution 
in ILs. To date, relatively limited STM studies using well-defi ned single-crystalline 
metal electrodes have reached atomic or submolecular resolution in ILs. The poten-
tial-dependent long-range restructuring of electrode surfaces has also been studied 
with submolecular resolution as well as the formation of anion/cation layers. 

    Anion Adsorption 

 We have investigated for the fi rst time the adsorption of PF 6  −  anions on Au(111) in 
1-butyl-3-methylimidazolium hexafl uorophosphate ([BMI]PF 6 ). As shown in Fig.  3 , 
the adlayers show a potential-dependent two-dimensional (2D) phase transition from 
a Moiré-like pattern structure to a (√3 × √3) phase upon cathodic excursion [ 17 ]. 
The formation of well-ordered adlayers is possibly because the PF 6  −  anions 
have  different solvation energies in [BMI]PF 6  from that in aqueous solution. 

Display
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Amplifier

Bipotentiostat

Control system

Electrochemical cell

WE

Cell
SolutionTip

CE

STM Scanning system

I/V Amplifier

Current
Set
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  Fig. 2    Apparatus of in situ STM with the standard four-electrode arrangement       
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Moreover, a marked structural difference of Au(111) surface exists at potentials 
 positive and  negative of the potential of zero charge (PZC) [ 18 ]. Similarly, the 
adsorption of BF 4  −  anions has also been observed on Au(100) in 1-butyl-3-methyl-
imidazolulium tetrafl uoroborate ([BMI]BF 4 ) [ 19 ].

   The combination of quaternary ammonium chloride salts and metal chlorides has 
produced a number of ILs, leading to the formation of metal chloride anions such as 
AlCl 4  − , ZnCl 3  − , and GaCl 4  − . These anions also adsorb on metal electrode and form-
ing ordered adlayers. In situ STM studies have revealed an ordered (2√3 × 2√3) 
structure of AlCl 4  −  anions on Au(111) before the occurrence of the underpotential 
deposition (UPD) process [ 20 ]. ZnCl 3  −  anions adsorb on Au(111) at open-circuit 
potential (OCP) or under potential control and formed the Moiré-like patterns, 
which coexist with a disordered region. This phenomenon is comparable to the 
adsorption of PF 6  −  anions [ 21 ]. Similarly, GaCl 4  −  anions can adsorb and form 
ordered adlayer on Au(111) in an acidic chlorogallate melt [ 22 ].  

  Fig. 3    STM images of Au(111) in [BMI]PF 6 , revealing the adsorption layer of PF 6  − . The applied 
potentials were ( a ) E = 0.5 V; ( b ) E = 0.0 V; and ( c ) E = −0.25 V versus Pt/Pt(II). The insets are the FFT 
analysis of Fig. 2a, c (Reprinted with permission from Pan and Freyland [ 17 ]. Copyright 2006 Elsevier)       
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    Cation Adsorption 

 Similar to anion adsorption, the adsorption of cations has been investigated in neat 
ILs. High-resolution STM images, as shown in Fig.  4  have revealed ordered strip 
structures of BMI +  cations on Au (100) in [BMI]PF 6  and [BMI]BF 4  [ 19 ]. Each row 
of the strip consists of aligned BMI +  cations. The bright spots are imidazolium 
groups, while the less intense parts are butyl side chains. The BMI +  cations are 
assumed to lie fl atly on Au(100) surface, which are stabilized by π-π interactions 
between the aromatic ring systems [ 23 ]. The length of the strips can vary from 3 to 
30 nm. The adsorption of BMI +  cations shows a potential-induced transition from 
disorder to order phase. However, it is important to point out that the adsorption of 
BMI +  cations doesn’t appear on Au(111). The results imply that the structural com-
mensurability of the adsorbed BMI +  cations with the surface plays a key role in such 
a selective and ordered adsorption of BMI +  cations on Au(100).

   In contrast to the cases with imidazolium-based [BMI]PF 6  and [BMI]BF 4 , in 
which well-ordered patterns are formed on metal electrodes, no order adlayers of 
the cations are observed at negative potentials in hexaalky-substituted guanidinium-
based ILs [ 24 ]. The two possible reasons are as follows: Firstly, the absence of 
aromatic π units leads to the weak cation-cation and cation-electrode interaction. 
Secondly, there is a larger sterical hindrance between the six alkyl chains of guani-
dinium cation and electrode surface than that of the imidazolium cation. 
Consequently, it prevents the charged core being close to the surface.   

  Fig. 4    ( a ) STM image of BMI +  adsorption from [BMI]PF 6  on Au(100) at −1.0 V. Scan size: 
8 × 8 nm 2 . ( b ) Structural model of BMI +  adsorption structure (Reprinted with permission from Su 
et al. [ 19 ]. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)       
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    Electrodeposition of Metals 

 Since the initial work in 1970s, a large number of studies are carried out for the 
electrochemical deposition in ILs, especially for metals and semiconductors that 
are impossible to be obtained in aqueous solutions. Several excellent review arti-
cles have addressed the achievements in this direction [ 8 ,  11 ,  25 ]. However, rela-
tively little attention has been paid toward the initial stage of electrodeposition in 
ILs. In this section, recent progress of metal electrodeposition in both underpoten-
tial deposition (UPD) and overpotential deposition (OPD) ranges are summarized. 
For simplicity, the discussions have been categorized into reactive, magnetic, semi-
metal, coinage, and rare metals and so on. 

    Reactive Metals (Al, Zn, Li) 

 Aluminum (Al) plays an important role in modern industries, e.g., automotives and 
planes, due to its high corrosion resistance. Electrodeposition of Al from ionic 
liquids, especially from those based on organic halides and anhydrous AlCl 3 , has 
been widely studied. In a Lewis acidic melt of 1-butyl-3-methylimidazolium chlo-
ride-aluminum chloride ([MBI]Cl-AlCl 3 ), STM images have revealed two UPD 
processes on Au(111) [ 26 ]. First, nanoscale clusters appear all over the Au surface 
and later become more preferential along the step edges. The growth of Al nano-
clusters is up to 8 nm in diameter. In comparison, neither UPD process nor prefer-
ential nucleation is observed for the Al electrodeposition on Si(111):H. The growth 
of Al on Si(111):H follows a classical Volmer-Weber growth mode, which results 
in forming large islands spread all over the Si(111):H surface [ 27 ] (Fig.  5 ).

   It is noted that chloroaluminate ILs can only be handled under inert-gas 
 atmosphere due to their quite hygroscopic nature of AlCl 3 . To overcome this 
 disadvantage, air and water stable ILs, which often have 1,3-dialkylimidazolium 
or 1,1-dialkylpyrrolidium cation and more hydrophobic anions such as 
bis(trifl uoromethylsulfonyl)amide, have been developed. In 1-ethyl-3-methylimid-
azolium bis(trifl uoromethylsulfonyl)amide ([EMI]Tf 2 N), the Al islands with single 
atomic height are fi rstly grown and coalesce to form a monolayer. Then, the second 
Al layer starts to grow and 2D Al islands are formed on top of the fi rst monolayer. 
In contrast, no clear evidence is found for the Al UPD on Au(111) in 1-butyl-
1-methylpyrrolidinium bis(trifl uoromethylsulfonyl)amide ([Py 1,4 ]Tf 2 N). Moreover, 
the Al deposition in [Py 1,4 ]Tf 2 N has the low reversibility. The above observations 
demonstrate that cations and/or anions have a great infl uence on the Al nucleation 
and crystallization in ILs [ 28 ]. 

 Similar to the Al, electrodeposition of zinc (Zn) on metals is also used extensively 
in corrosion protective coatings and energy storage devices. In [MBI]Cl-ZnCl 2 , STM 
characterization in the UPD range has resolved three successive Zn monolayers. This 
layer-by-layer growth mode continues into the bulk deposition regime. The thickness 
of the Zn layers extracted from STM images is 2.4 ± 0.2 Å in the UPD and OPD range. 
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However, there is an exception that the thickness of the fi rst UPD Zn is 2.2 ± 0.2 Å. 
Via potential jumping in the UPD range, 2D spinodal structures are observed both in 
deposition and in dissolution processes. The structural evolution may be described by 
a continuum model [ 29 ,  30 ]. The quasi-layer-by-layer growth is also observed for the 
Zn UPD on Au(111) in [BMI]BF 4 . A compact layer is obtained just before the poten-
tials where the second Zn UPD is started. The same growth feature is observed for the 
third layer on the second one and the bulk on the third layer. More importantly, the 
patterns as well as the large-scale arrays of Zn nanoclusters have been produced in 
[BMI]BF 4 , which testifi ed the feasibility of nanostructuring a new category of solvent 
systems that have been impossible in aqueous solution. Together with surface engi-
neering, the STM  tip-induced nanostructuring in ILs would pave the way for the 
investigation of nanoscopic effects in various aspects [ 31 ]. 

 The electrochemical process of lithium (Li) is of practical signifi cance regarding 
its wide application in lithium batteries. In situ STM studies demonstrate that the Li 
UPD on Au(111) in [Py 1,4 ]Tf 2 N begins at potentials positive to the electrode poten-
tial of bulk deposition. Moreover, the deposition follows a layer-by-layer mecha-
nism and at least two layers can be formed. This behavior is possibly attributed to 
the solvation of the Li +  in ILs that is different from in conventional organic solvents. 
Moreover, evidence of alloying between Li and Au has been observed when the 
potential reaches the region where the alloy dissolution takes place [ 32 ,  33 ].  

    Magnetic Metals (Fe, Co, Ni) 

 The electrodeposition of magnetic materials, including Fe, Co and Ni, is widely 
used to functionalize solid surfaces for anti-corrosion, electrocatalysis, data storage, 
and magnetic sensors, which generally requires a better control of the morphologies 
of the deposits. However, the hydrogen evolution reaction, which occurs during the 
electrodeposition in aqueous solutions, often leads to the low current effi ciency and 
worse quality of deposits. In contrast, the use of ILs can avoid the hydrogen evolu-
tion reaction. Therefore, it provides a possibility to grow magnetic thin fi lms, which 
can’t be obtained in aqueous solutions. Meanwhile, the unique properties of ILs can 
change dramatically the growth mechanism of magnetic metals. 

 In situ STM studies have revealed that monodispersed Fe nanocrystals can be 
electrodeposited on Au(111) from a Lewis acidic [BMI]Cl-AlCl 3  [ 34 ]. In the initial 
stage, Fe islands grew two- and three-dimensionally on Au(111) to several monolayer 
thicknesses. In the later stage, Fe nanocrystals of with defi ned shape are formed and 
some of nanocrystals are aligned in boomerang shapes with an angle of 120–140°. 
This result is similar to the self-ordered Fe nanostructures on Si(111), indicating that 
the morphologies of electrodeposited Fe thin fi lms are closely related to their mag-
netic properties [ 35 ]. Fe can also be electrodeposited from [BMI]BF 4  by using FeCl 3  
as the precursor. Different from that in [BMI]Cl-AlCl 3 , unusual shape-ordered, 
namely, pseudo-rods and pseudo-square rings are observed on Au(111) and Au(100) 
in STM images, respectively (Fig.  6 ). The same nanostructures are observed on 
Pt(111) and Pt(100). The above interesting nanoarchitectures are resulted from the 

21 Nanoscale Electrodeposition of Metals and Semiconductors from Ionic Liquids…



726

magnetostatic interactions under crystallographic constraints. The shape ordering of 
the Fe thin fi lm serves as a paradigm of magnetostatic coupling, in which the roles 
of IL as surfactant and magnetic media may not be underestimated [ 36 ,  37 ].

   The electrodeposition of Co on Au(111) is investigated in [BMI]Cl-AlCl 3 . The 2D 
phase is formed at slightly cathodic potentials. The Co islands are mono-atomically 
high, with a radius of 2–3 nm and a narrow size distribution. When the potentials are 
negative of −0.2 V, a fast 3D growth of Co clusters is observed [ 38 ]. It is noted that 
the presence of AlCl 3  may restrict the cathodic potential limit. In order to avoid Al 
co-deposition, the initial stage of Co electrodeposition on Au(111) is carried out in 
[BMI]BF 4  [ 39 ]. It is interesting that the form of precursor has a substantially infl u-
ence on the Co electrodeposition in [BMI]BF 4 . When CoCl 2  is used as the Co source, 
the deposition starts at very negative potential at structure imperfections of recon-
structed Au(111) surface. When Co(BF 4 ) 2  is used as the Co source, the deposition 
takes place at a much less negative potential without preference in nucleation sites. 

 The electrochemical phase formation and growth of Ni on Au(111) has been car-
ried out in an acidic melt of [BMI]Cl-AlCl 3  (42: 58) [ 40 ,  41 ]. In the UPD range, 2D Ni 

  Fig. 6    STM images of ( a ) 3D pseudo-rods on Au(111) and ( b ) pseudo-square rings on Au(100). 
( c ) Schematic illustration of magnetization of grains in the pseudo-rods on Au(111) and pseudo- 
square rings on Au(100). ( d ) Magnetic fi eld-directed enrichment of magnetic reactants. The lower 
part is a real STM image of one pseudo-square ring presented in a 3D view (Reprinted with per-
mission from Wei et al. [ 36 ]. Copyright 2010 American Chemical Society)       
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phase formation sets in and a complete monolayer grows over a period of ~800 s. 
In the OPD range, different morphologies of Ni nanoclusters are obtained when a dif-
ferent procedure of potential decreasing is followed. If jumping the potential directly 
from the OCP into the OPD region, large nearly spherical Ni clusters with diameters 
of ~10 nm fi rst nucleate at the step edges of the Au(111) substrate and spread with 
time all over the surface. However, decreasing the potential through the Ni UPD stage, 
the elongated Ni clusters nucleate and grow instantaneously. Most interesting, they are 
all oriented in one direction, suggesting magnetic interaction between the Ni clusters.  

    Semimetal Elements (Sb, Bi) 

 Among the variety of UPD systems, the semimetal class of elements including Sb 
and Bi has received the enormous attention because of their interesting properties in 
forming bimetal alloys or compound semiconductors. Systematic investigation of 
the UPD of Sb and Bi on single-crystalline Au electrodes has revealed an obvious 
“solvent effect” from ILs. In [BMI]BF 4 , the initial stage of Sb UPD proceeds with 
the formation of similar short atomic strips composed of Sb on both Au(111) and 
Au(100) shown by STM measurements. However, in the later stage of Sb UPD, 
dramatically different behaviors are observed: a multilevel feature with a small 
quantity of Sb aggregates on Au(111) and a distinct second layer with islands of 
~4 nm on Au(100) [ 42 ]. These features contrast signifi cantly from those observed 
in aqueous solutions and reveals strong medium effects on the Sb UPD. 

 Undoubtedly, it is expected that special solvation properties of ILs are particu-
larly prominent in the UPD of Sb. In acidic [BMI]Cl-AlCl 3 , the UPD of Sb has 
several different processes: formation of an ordered structure of SbCl 2  + , further 
compression into a Moiré-like pattern, and a sudden smoothing of surface. In the 
later stage, the nucleation process begins to occur and the 2D-nanostripe architec-
tures are formed. The number and the length of Sb increase remarkably with time, 
while the width keeps almost constant [ 43 ]. Moreover, different processes of Sb 
UPD are observed in the neutral and basic melt of [BMI]Cl-AlCl 3 . The results imply 
that the acidity of ILs plays an important role in the electrodeposition of Sb [ 44 ,  45 ]. 

 The solvent also played an important role in the electrodeposition of Bi. In a 
Lewis acidic [BMI]Cl-AlCl 3 , STM images have revealed two different UPD pro-
cesses of Bi on Au(111): multiple domain structures and uniaxially commensurate 
monolayer [ 46 ]. Moreover, for the fi rst time some metastable intermediate super-
structures have been resolved by high-resolution STM images (Fig.  7 ). They are 
possibly resulted from either a loosely packed Bi adlayer or a coadsorption of Bi 
and AlCl 4  − , which are predominant anions in [BMI]Cl-AlCl 3 . In the OPD range, the 
needlelike structures and ultrathin fi lms have been formed through the different 
procedures of potential decreasing. On the other hand, the Bi UPD proceeds with the 
formation of a (7 × 7) structure, which further transforms into a unique “zipper-like” 
double-chain pattern with a (5 × 25√3/3) structure in [BMI]BF 4 . The adlayers are 
composed of the well-aligned Bi trigonal clusters consisting of six Bi atoms. These 
features contrast signifi cantly with those in aqueous solutions and chloroaluminate 
melt, but are comparable to those of the Sb UPD in [BMI]BF 4 .
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  Fig. 7    ( a ) Cyclic voltammograms of Au(111) in MBIC-AlCl 3  (42:58) + 5 mM BiCl 3 . The scan rate 
was 50 mV/s. ( b – f ) A set of STM images of the Bi UPD on Au(111) recorded at the different 
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       Coinage and  sp  Metals (Cu, Ag, Ru) 
 For noble metal, high-quality deposits with nanocrystals are desired, which often 
fail to be achieved in aqueous solutions. In a Lewis acidic [BMI]Cl-AlCl 3 , Cu forms 
initially island structures on Au(111) [ 47 ]. On the Cu island, a Moiré-like pattern 
with (8 × 8) superstructure has been discerned. This is due to the anion coadsorption. 
The structure is different from the (√3 × √3) coadsorption structure of sulfate 
observed in sulfuric acid solution [ 48 ]. The different behaviors of Cu UPD in the 
two media can be contributed to the different existing forms of the Cu precursor as 
well as the nature of the solvent anions. 

 The electrodeposition of silver on highly oriented pyrolytic graphite (HOPG) 
from [BMI]Cl-AlCl 3  represents the fi rst STM experiment in ILs [ 49 ]. Ag growth 
changes from 3D progressive nucleation at a fi nite number of active sites to 3D 
instantaneous nucleation with the increase of overpotential. In the far overpotential 
range, the deposition of Ag mainly takes place at steps and defects. Different from 
HOPG, the Ag UPD on Au(111) is adsorption controlled, whereas the Ag OPD on 
Au(111) is diffusion controlled in the same IL [ 50 ]. In the UPD range, the 2D Ag 
islands start to form and later merge into a uniform Ag monolayer. When the poten-
tial is further reduced, a second monolayer grows. In the OPD range, a layer-by-
layer growth of Ag clusters occurs and is diffusion controlled. 

 Ruthenium can be electrodeposited on Au(111) from 1-butyl-3-methylimid-
azolium dicyanamide ([BMI]DCA), which shows a relatively high solubility of 
RuCl 3  and has a relatively low viscosity. It is important to point out that the 
formation of Ru(IV) complex is a prerequisite for Ru electrodeposition. With a 
very slow growth rate of 0.1 nm min −1 , thin Ru fi lms with the average thickness 
of ~5 nm and with a relatively homogeneous morphology can be grown on 
Au(111) [ 51 ].   

    Rare Metals (Ga, Ti, Ta) 

 The electrodeposition of Ga on Au(111) has been investigated in [Py 1,4 ]Tf 2 N [ 52 ]. 
STM imaging shows that the fi rst layer of the Ga deposit is composed of islands. 
The average width of islands is 10–30 nm in width and the height is several nano-
meters. This is a result of an electroless deposition at the OCP. Further reducing the 
potential, the bulk deposition of Ga occurs. To clarify the evolution of the Ga nano-
structures from UPD to bulk OPD deposition, the electrocrystallization of Ga on 
Au(111) in two different ILs has been investigated. In [BMI]Cl-GaCl 3 , the UPD 
leads to surface alloying, whereby a Ga-Au surface layer is formed on top of 
Au(111), while in [BMI]Cl-AlCl 3 , 2D phase formation is driven by the conventional 
nucleation and growth of 2D Ga islands (Fig.  8 ) [ 22 ]. At potentials negative of the 
UPD, 3D Ga clusters are formed. On the basis of their shape and the coexistence of 
small and large clusters in contact, it is concluded that the clusters in the size range 
5–30 nm are solid. Taking into account that the temperatures during electrodeposi-
tion ranged up to 313 K – above the melting point of R-Ga of 303 K – this observa-
tion is remarkable. 
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 The ability to electrodeposit titanium is a breakthrough for making corrosion 
resistant layers on a variety of technically important materials. The electrodeposi-
tion of Ti has been fi rstly performed on HOPG in [BMI]Tf 2 N and an unusual phe-
nomenon, namely, a cooperative nucleation process has been observed [ 53 ]. At the 
initial stage, the fi rst Ti nanowire is formed at the step edge of HOPG; subsequent 
straight and highly aligned nanowires grow in parallel to the fi rst. Up to six nanow-
ires with a narrow width distribution grow at constant potential over a period of 
about 20 min. The width of nanowires is 10 ± 2 nm and the length is more than 
100 nm. Differently, 2D clusters presumably of TiCl 3  precipitates, which is subse-
quently reduced to metallic Ti, grow and coalesce in [BMI]Cl-AlCl 3  [ 54 ]. Ti can 
also be electrodeposited from its halides (TiCl 4 , TiF 4 , TiI 4 ) in [EMIm]Tf 2 N, [BMP]
Tf 2 N, and [P 14,6,6,6 ]Tf 2 N. In the best case, an ultrathin layer of Ti or TiCl x  with thick-
ness below 1 nm has been obtained [ 55 ]. 

 Tantalum (Ta) is another important coating material, which is capable of resist-
ing high temperature, wear, and severe chemical environments. In [BMP]Tf 2 N, a 
rough layer of Ta forms rapidly on Au(111); some triangularly shaped islands grow 
above the deposited layer and fi nally merge to a thick layer [ 56 ]. Ta can also be 
electrodeposited from [Py 1,4 ]Tf 2 N. Different from the deposition in [BMP]Tf 2 N, 
small 2D islands are grown on Au(111) and their number increases very slowly with 
time, and a complete layer is formed in more than 1 h. The deposit consists of 
5–30 nm wide islands with an average diameter of 10–15 nm and an overall height 
of 1–2 nm. Decreasing the potential, the next layers start growing, 3D growth sets 
in, and some triangularly shaped islands with heights of several nanometers rapidly 
grow above the deposited layers. These islands grow vertically and laterally and 
fi nally merge to an ordered layer [ 57 ].  
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  Fig. 8    ( a ) Cyclic voltammograms of a Au(111) electrode in AlCl 3 -[BMI]Cl (58:42) + 5 mM 
GaCl 3.  The scan rate was 50 mV s −1  and the temperature was 298 K. ( b ) STM images of the Ga 
UPD on Au(111) at E = 0.7 V versus Al/Al(III) (Reprinted with permission from Pan et al. [ 22 ]. 
Copyright 2011 American Chemical Society)       
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    Other Metals (Cd, Pb) 

 The electrodeposition and anodic dissolution of Cd on Au(111) have been studied in 
[BMI]Cl-AlCl 3  (42:58) [ 58 ]. Prior to the fi rst Cd UPD, STM imaging reveals an 
ordered adlayer of AlCl 4  −  anions at potentials positive of 1.0 V versus Al/Al(III). 
Further reducing the potential, desorption of AlCl 4  −  anions starts and a (√3 × √19) 
superstructure is formed at 0.95 V. This is presumably due to the coadsorption of 
Cd-AlCl 4  − . At lower potentials of 0.45 V, surface alloying of Cd and Au occurs. This 
is evidenced by typical spinodal structures (Fig.  9 ), which are revealed both during 
deposition and dissolution of surface alloy layer. The formation of a complete surface 
alloy layer is relatively slow and takes about half an hour. At still lower potentials, a 
layer-by-layer growth of bulk Cd sets in and the layer has a hexagonal structure.
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  Fig. 9    ( a ) Cyclic voltammograms of Au(111) in MBIC-AlCl 3  + 5 mM CdCl 2 . The inset is a cyclic 
voltammogram containing 20 mM CdCl 2 . The scan rates are 50 mV/s. ( b ) STM images of Cd-Au 
surface alloy layer on Au(111) at E = 0.45 V; ( c ) 30 min after ( b ); ( d ) dissolution of Cd-Au surface 
alloy layer at E = 0.85 V (Reprinted with permission from Pan and Freyland [ 58 ]. Copyright 2007 
Royal Society of Chemistry)       
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   Lead (Pb) can be electrodeposited on Au(111) from [BMI]Cl-AlCl 3  (42:58) [ 59 ]. 
In the UPD range, high-resolution STM images reveal three sequential processes: 
terrace expansion at 0.8 V, island growth at 0.73 V, and monolayer formation with 
triangular vacancies at 0.5 V. In the monolayer, a Moiré-like pattern of Pb adatoms 
is resolved. Moreover, a smooth surface without triangular vacancy is formed when 
potentials are changed progressively. In this case, a quasi-equilibrium process can 
be expected. These results indicate that the Pb UPD is diffusion controlled. In the 
OPD range, the nucleation of 3D Pb crystal starts.   

    Electrodeposition of Semiconductors 

 Electrodeposition of semiconductors is advantageous over vapor deposition: (1) the 
preparation is carried out typically at room temperature, (2) the amount of deposited 
material is substantially dependent on the charge passed, and (3) the geometrical 
and electronic structures of the deposits can be directly characterized in situ. 
However, in comparison with the electrodeposition of metals, in situ STM studies 
on the electrodeposition of semiconductors are relative limited. One possible reason 
is that the electrodeposition of semiconductors, in particular element semiconduc-
tors of Ge and Si, seems to fail from a variety of ILs. 

    Elemental Semiconductors (Ge, Si) 

 The electrodeposition of germanium (Ge) on Au(111) has been successfully carried 
out in [BMI]PF 6  saturated with GeX 4  (X = Cl, Br or I). In the [BMI]PF 6  + GeI 4 , STM 
images show the formation of 2D islands, which is about 230–270 pm in height 
[ 60 ]. However, stable nanoclusters or thick layers could not be obtained due to the 
low solubility of GeI 4  in [BMI]PF 6 . Thus, other Ge compounds that can dissolve 
better in [BMI]PF 6  have been investigated. In the [BMI]PF 6  + GeBr 4,  a thin rough 
layer with metallic behavior forms on Au(111) surface (Fig.  10 ) [ 61 ]. The bulk 
growth begins with the formation of nanoclusters, and 200 nm thick layers show a 
symmetrical band gap of 0.7 ± 0.1 eV, comparable to intrinsic bulk germanium. 
Moreover, the most reversible behavior has been observed in [BMI]PF 6  + GeCl 4 . Ge 
deposition starts with the decoration of Au(111) steps in the UPD regime; then 
small islands of about 150 pm in height grow. This fi nally leads to a rough thin layer. 
Similar to the GeB 4 , the thin fi lm shows metallic behavior [ 62 ]. The variation of the 
electronic structures of the Ge deposits, going from very thin to thick fi lms, is also 
investigated by in situ STM on Au (111) and Si(111):H. The interesting results 
show that a transition from metal to non-metal phase occurs with the increase of 
fi lm thickness. Moreover, it is indicated that the thin Ge fi lms are probably far from 
equilibrium and the metallic-like behavior refl ects a metastable glass state.

   Silicon has been fi rstly electrodeposited on HOPG in [BMP]Tf 2 N saturated with 
SiCl 4  [ 63 ]. STM images reveal a silicon layer with a thickness of 100 nm. However, 
it is diffi cult to perform STM on HOPG because only a weak interaction exists 
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between HOPG and silicon deposit. From this point of view, Au(111) is a much 
better substrate. Si deposition starts on the terraces of a reconstructed Au(111) sur-
face. Initially, small Si islands with the height of 0.15–0.45 nm are formed. Then, 
the islands grow slowly and cover the whole Au(111) after a while. The thickness 
of the layer is a few nanometers, and this layer has a band gap of 1.1 ± 0.2 eV, typical 
for the bulk silicon [ 64 ]. It is clear that elemental, intrinsic semiconducting silicon 
was electrochemically deposited from the [BMP]Tf 2 N ionic liquid. 

 Based on the above results, i.e., electrodeposition of Ge and Si separately, it can 
be predicted that “SiGe” might be electrodeposited from ILs. [BMP]Tf 2 N with large 
electrochemical window (roughly 6 V for a gold electrode) has been proved favor-
able for this purpose. Interestingly, the Si x Ge 1−x  deposit exhibits an obvious color 
change (from red to blue) during electrodeposition. This is possibly attributed to a 

  Fig. 10    A set of STM images recorded at different potentials: ( a ) OCP; ( b ) swept from +500 mV 
( top ) to + 50 mV ( bottom ); ( c ) swept from +50 mV ( top ) to −250 mV ( bottom ); and ( d ) held at −250 
mV. The scan rate was 1 mV s −1  (Reprinted with permission from Endres and El Abedin [ 61 ]. 
Copyright 2007 Royal Society of Chemistry)       
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quantum size effect. The as-observed colors are indicative of band gaps between at 
least 1.5 and 3.2 eV. Therefore, the potential of ILs in Si x Ge 1−x  electrodeposition is 
well demonstrated [ 65 ].  

    Compound Semiconductors (AlSb, ZnSb) 

 Compound semiconductors, such as CdTe, ZnTe, AlSb, and ZnSb, are of potentials 
in electronic and optoelectronic devices and can be electrodeposited from ILs. The 
fi rst attempt has been made in the [BMI]Cl-AlCl 3  (45:55) [ 44 ]. 3D clusters of Al x Sb y  
have been electrodeposited and characterized by in situ STM and scanning tunnel-
ing spectroscopy (STS). The results indicate that the Al x Sb y  cluster of ~20 nm in size 
exhibits semiconductor behavior with a band gap of 0.92 ± 0.2 eV. The stoichiomet-
ric AlSb has also been electrodeposited successfully from [BMI]Cl-AlCl 3  (1:1) and 
the corresponding STM images are shown in Fig.  11  [ 45 ]. The deposition potential 
for AlSb is well separated from those for pure Al and Sb. The obtained AlSb clusters 
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are with diameters of ~20 nm and exhibit a band gap of 2.0 ± 0.2 eV, the main 
 features of the electronic structure of the bulk semiconductor AlSb.

   Recently, compound semiconductor of ZnSb has been successfully electrodepos-
ited from SbCl 3 -ZnCl 2 -[C 4 mim]Cl and [MBI]Cl-ZnCl 2  [ 21 ,  66 ]. The smallest 
energy gap in ZnSb is an indirect one with a value of 0.53 eV in the bulk. Near the 
deposition potential of ZnSb, clusters with the spherical shape are formed and 
homogeneously distributed. The average diameter of clusters is up to 15 nm. The 
STS curves of the clusters exhibit an obvious semiconducting behavior with a band 
gap of −0.6 ± 0.2 eV. More importantly, the corresponding normalized conductance 
spectra of the deposits, which are grown either on the Sb-rich or Zn-rich side rela-
tive to the ZnSb deposition potential, reveal an obvious doping effect.   

    Conclusion 

 With the growing demand for nanostructured materials, the interest in fabrication and 
characterization of low-dimensional systems is continuous strong. Focusing here on 
electrochemical applications, ILs have proven to be particularly attractive for nanoscale 
electrodeposition of metals and semiconductors under environment-friendly condi-
tions. In particular, the application of in situ STM has enabled completely new insight 
into various processes of electrodeposition and comprehensive understanding of the 
growth mechanism of the deposits. However, the investigations on controlling the 
various deposition parameters preciously and designing the strategy for deposition 
of metal, alloy, and semiconductor nanostructure are still urgent and challenging. 
For example, the deposition parameters such as types of ILs, temperature, potential, 
and current density substantially affect the deposition process and the morphology of 
the deposits. We believe that the future work of electrochemical deposition from ILs 
should focus on the detailed elucidation of the elemental steps of electrochemical 
phase formation, which includes the nucleation and growth mechanism, the defi nition 
of the stability ranges of low-dimensional (1D and 2D) structures forming in UPD 
region, the infl uence of substrates, the occurrence of surface alloying, and fi nally the 
nucleation kinetics. More importantly, methods based on scanning probe microscopy 
(e.g., electrochemical STM and AFM) represent one of the most powerful tools, which 
can be successfully applied at the electrifi ed IL/solid interfaces.     
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Abstract
Establishing new protocol for nanomaterial characterization of functional 
materials is an important step in our knowledge for understanding the correla-
tion between atomic changes and electrochemical performances. We propose a 
combination of different state-of-the-art techniques as a robust approach for 
nanomaterial characterization, which is suitable in structural refinements of 
nanocrystalline active systems. This technique of studying microscopic prop-
erties of nanomaterials includes XAS (X-ray absorption spectroscopy) ex situ 
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and in situ, XRD (X-ray diffraction), high-resolution TEM (transmission electron 
microscopy), and XRF (X-ray fluorescence). In particular, we are using the 
site- selective XAS (performed at international synchrotron radiation facilities) 
that is sensible to the local structure (up to 5–10 Å around photoabsorb-
ing sites) for characterization of the nanomaterials with singular accuracy. 
An investigation of the local structure and chemical disorder dynamics of a 
commercial Pt-Co alloy nanocatalyst, used as electrode material in proton 
exchange membrane fuel cells (PEMFC), will be presented and discussed.

Keywords
Absorption spectra, clusters • EXAFS in condensed matter • Nanocrystalline
materials in electrochemistry • Structure of nanocrystalline materials

 Introduction

The study of alternative energy sources is one of the main research subjects. 
In particular, the nanomaterials developing for applications of energy devices are of 
great interest today. This interest is driven by physical properties and environmental 
advantages offered by the nanomaterial technology. For example, nanoparticles of 
platinum (Pt) used as catalyst in the polymer electrolyte membrane (PEM) fuel cells 
(FCs) exhibit significantly higher oxygen reduction reaction (ORR) electro catalytic 
activities than the same bulk material. In fact, the active catalytic sites are on the 
surface of the active material (Pt active sites); the nanoscale dimensions increase 
considerably the ratio of surface atoms/bulk atoms so that a high increase in active 
area and a strong reduction of Pt amount (very expensive material) are obtained. So 
nanosize can strongly influence the mechanical and electrochemical properties of an 
active material.

However, a deep structural characterization of nanomaterials is not simple 
because of the sample nanoscale size; in fact, the nanomaterials are made by only 
few atoms, and more common characterization techniques could be not achievable. 
So new protocols for nanomaterial characterization for understanding the correla-
tion between changes in the atomic ordering, changes, and (degradation of) perfor-
mances are important to be established. This chapter is organized as:

• Section “Experimental Techniques: Theory” presents the main theoretical 
aspects of the experimental techniques used in the characterization protocol, 
namely, X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), X-ray 
fluorescence (XRF), and transmission electrons microscopy (TEM).

• Section “Experimental Techniques: Setups and Analysis Results” presents the 
details of the experimental setups allowing characterization of the nanomaterials.

• Section “EXAFS Analysis and Effect of Chemical Disorder” reports about the 
methodology used to perform Co-Pt nanomaterial atomic structure characterization. 
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Full characterization of the pristine material Pt-Co sample is discussed in light of 
results obtained combining experimental data with theoretical calculations.

• Appendix shows experimental setup allowing characterization of the samples 
and performance of experiments under in situ conditions. Experiments were per-
formed at synchrotron ESRF (Grenoble).

 Experimental Techniques: Theory

In this section, the main characteristics of those techniques, such as XAS, XRD, 
XRF and TEM will presented. The combination of all of these techniques represents 
a powerful atomic structure characterization methodology of active nanomaterials. 
In Table 1, the main informations obtained by the characterization techniques pre-
sented are shown.

 X-ray Absorption Spectroscopy

One of the most powerful structural techniques that allows to investigate the neigh-
borhood of a photo-absorber atom in a condensed medium is X-ray absorption 
spectroscopy (XAS) [1–4]. The absorption cross section above a deep core level 
excitation threshold presents oscillation characteristic of the compound being 
examined, due to interference effects in the transition matrix element, which in 
turn are related to a suitably projected density of the unoccupied electronic states. 
The development for XAS theory has been since the early 1970s, because of the 
rapid experimental advances obtained by the advent of synchrotron radiation, in 
particular for the extended X-ray absorption fine structure (EXAFS) [44–46]. The 
structural signal of EXAFS is defined as the relative oscillation with respect to a 
smooth total atomic cross section σ 0t normalized to the atomic cross section of 

Table 1 Summary of the main results that can be obtained with the characterization techniques 
presented in this chapter

Technique Probe
Information about 
atomic structure Results

XRD X-rays Long range order Crystalline structure, primitive cell 
parameter, phase homogeneity, 
particle dimension

XAS X-rays Local structure R=distances N =coordination
number, σ2 = Debye-Waller parameter

XRF X-rays Chemical 
components

Presence of impurities not detectable 
with other techniques

TEM Electrons Morphology and 
long range order

Crystalline structure, morphology of 
a particle, particle distribution, 
particle dimension
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the edge under consideration σ0, i.e., c s s sk E E Et( ) = ( ) - ( )éë ùû ( )0 0/  where 

k m E Ee= -( )2  is the modulus of the wave vector of photoelectron (Ee being the 

threshold energy). The contribution to χ(k) of each atom at a given distance R 

with is represented by an oscillating signal A k kR k( ) + ( )éë ùûsin 2 f .

This signal suggested the use of a Fourier transform technique [5–7]; in this way, 
the contributions from the coordination shells can be isolated. A(k) is the amplitude 
and is characteristic of the backscattering atom. The dephasing term ϕ(k), which 
can be approximated with a linear function of k, is the sum of two independent func-
tions associated with photo-absorber and backscatterer atoms, respectively, called 
“amplitude and phase transferability” [8]; this is at the basis of the standard method 
of EXAFS data analysis [1–4].

The photo-absorption process can be summarized as follows: a primary probe 
(a high-energy X-ray photon) interacts with a selected atom built in a certain struc-
ture. The photon excites a deep core electron that generates a free photoelectron that 
acts as a secondary probe. The photoelectron is in the continuum state with a defined 
energy; its wave function diffuses from the excited atom that strongly interacts 
(Coulomb interaction) with the surrounding atoms. The presence of neighboring 
atoms causes an effect in the absorption cross section. This can be calculated start-
ing from the isolated atom in a perturbative scattering scheme. It is not possible to 
limit the expansion to single-scattering terms due to the strong electron-atom cou-
pling, but multiple-scattering (MS) terms of the higher order should be included.

The presence of several atoms around the photo absorber can be probed by MS 
terms, so they probe the distribution functions of n particle. MS dominant effects 
are in the low kinetic energy region that corresponds to the X-ray absorption near 
edge structure (XANES). The MS contributions allow us to perform EXAFS data
analysis based on theoretical calculations, GNXAS package [9].

 Multiple-Scattering Expansion
For a model cluster, we can consider the problem of calculating the χ(k) which is 
relevant to the structure under investigation. The total many-body absorption cross 
section σtot(ω) under general conditions can be written in the following way:
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For transitions to a dipole sorted final state of angular momentum l0 polarization 
averaged [10, 11], the XAS cross section is

 

s w s( ) = ( ) +
-( )é

ë
ù
û

é

ë

ê
ê

ù

û

ú
úå -

0

0 0

1

0 0

1 1

2 10
0

0 0


 t l

T I GT
l

m

L L

,

,

 
(2)

With good approximation, this equation is valid for complex potentials, while for 
real potentials, it is exact. A complete discussion is referred to Ref. [12].

T and G are the atomic scattering and propagator matrices in a local basis and σ0 
is the atomic cross section. One element of these matrices is identified by the indices 
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i and j overrunning the several atomic centers in the matter and by angular momenta 
set L, L′ (where L = l, m). Every atomic index couple locates an “atomic” block of 

the matrices. So the T matrix is diagonal block (Ti,j = tiδi,j), and for the atom at center 

i, the scattering matrix is diagonal in the L indices t ti
L L

i
l

L L

,

,

¢

¢=( )d  in the MT 

approximation, since in the scattering from a single site, the angular momentum is 
conserved. In terms of the lth potential phase shift δi

l at site i, one has 
t ii
l

i
l

i
l= ( ) ( )exp sind d . By solving the Schrödinger equation, these quantities can be 

calculated.
The matrices Gij contain geometrical information on the atoms i and j dispositions 

regardless of their scattering power. In fact, looking at Eq. 1, the G matrix appears 
in an inverse expression (I − GT)−1; for this reason, the effects of different structural 
dispositions on the cross section can be decoupled.

Assumed that the norm of the GT matrix (maximum modulus of its eigen-
values) is less than one, ||GT|| < 1; in this case, the formal matrix expansion 
T(I − GT)−1 = T(I + GT + GTGT + GTGTGT + ….) is convergent and gives rise to the 
familiar MS series [11]. The series include χn terms defined for each order of 
scattering n according to the number of propagators G contained in each term of 
the series.

The χn represents the oscillating signals related to the scattering path that starts 
and ends at the origin with the constraint that successive sites must be distinct:

 
c fn pk A k R kR k R( ) = ( ) + ( )éë ùû, sin ,  (3)

where A and ϕ are smooth functions of k and of the geometrical parameters R. The 
pertinent signal frequency is determined by the path length Rp.

So XAS cross sections of cluster of N atoms are possible to be calculated. Given the
photo absorber “0” and the surrounding atoms i, j, k, …., let us skip some steps (details 
in Ref. [13]); total cross section expansion in the n-body cross sections is useful as
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Let us introduce the dimensionless quantities γ(n) = σ(n)/σ0, which represent the irre-
ducible n-body contributions to the EXAFS, Eq. 5 reduces for the dimensionless 
experimental structural signal to an equivalent expansion χ:
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So we obtain a linear relationship between structure (in terms of 2, 3, 4, … 
n-body distributions) and signal.

If the system is a cluster (finite), Eq. 6 contains a finite number of terms becom-
ing a series only in the case of a system with an infinite number of atoms.

In this case, it is expected anyway, due to mean-free-path effects, that the higher- 
order n-body terms are smaller than the lower-order ones and that the series has very 
good convergence properties.

In GNXAS package, the equation solution of structural problem 1 used is based
on the MS calculations for the γ(n), substituting in equations
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the respective series of MS. Because of the matrices structure in two blocks, for the 
two-body term 6, solely TG even powers give a contribution, and the matrix 
expression is
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The MS expansion, pictorially represented in Fig. 1a, results
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The necessary number of MS terms depends on bond distance, atomic numbers, 
and k range involved.

In the region of EXAFS signal, terms up to χ6 for short bonds are found impor-
tant while χ4 is usually sufficient for longer bonds. The configurational average is 
even efficacious in the damping of MS higher-order signals. Moreover, the MS 

Fig. 1 (a) Schematic view of the expansion MS for γ(2) signals that include terms up to χ6. The γ(2) 
signals regard for an infinite number of MS paths. (b) Schematic view of the MS expansion for γ(3) 
signals that include terms up to χ4. The γ(3) signals regard for an infinite number of MS paths (From 
reference [13])
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expansion is peculiar for γ(2), the following terms have main frequencies multiple of 
2R, R that is the distance between atoms 0 and i. As a result, there is a big difference 
of frequency between the main term χ2 and the next order correction χ4.

Starting from Eq. 7, the MS succession for γ(3)(0, i, j) can be derived but is more 
complex (see Ref. [13]). By carrying out the products of matrix, for three-body part, 
we can obtain terms of any order in the scattering that contain all three atoms 0, i, 
and j or simply 0 and i or 0 and j.

These two contributions are exactly compensated by the terms resulting from the 
γ(2) signals that appear with negative sign. So in this way, γ(3)

0,i,j is equal to the sum of 
all possible MS signals that involve “all and only” 0, i, and j in any possible 
sequence. The terms with lowest order are the χ3 signals that correspond to the 
sequences O–i–j–O and O–j–i–O. Due to symmetry of time reversal, the two signals 
coincide and only one of them can be considered with double degeneracy. This hap-
pens for all the paths. When the paths are reversed, they generate a different 
sequence. These symmetric sequences under inversion happen conversely only 
once (single degeneracy). In Fig. 1b, γ(3) signal is depicted. So not taking into 
account the triangle geometry, for the χn terms successive starting from ROi + Rij + Rj0, 
the possible paths are multiple and bring a continuous distribution of dominant 
 frequencies. As results, γ(3) presents a regular oscillation in k space. Examples of the 
importance of χ5 and χ6 terms have been reported [14]. In general in the low-k range, 
these higher-order terms contribute producing a total signal modification.

 Configurational Average of the Signal
Now, there are different approaches for calculating the MS contribution configura-
tional damping. Reproduce the signal intensity correctly is not simple and is crucial. 
In particular, GNXAS package uses the algorithm based on an advanced theory,
which takes into account the related configurations of vibration of N atom [11] and 
spherical wave effects. In the small disorder case, the effect of configurational dis-
order and/or thermal vibrations can be calculated easily. In fact it has represented by 
an isolated and well-defined peak and the distribution function does not need 
Gaussian. Also the thermal broadening of crystalline and molecular peaks are 
included such as the case of low structural disorder. In case of a larger disorder the 
peaks are not well defined, but are broaden and overlapped. For both of these cases 
the signal can be reproduced and written in terms of an amplitude and a phase. 
Synthesists and skipping some steps the theoretical signal can be written in a more 
general case as a combination of terms for N neighboring atoms, and with thermal
and static disorder of σ2 (mean-square disorder in R). Then, considering a real sys-
tem, we will have the different types of neighboring atoms at different distances:
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Considering a damped wave function (photoelectron mean free path that 
includes core-hole lifetime) and amplitude reduction term S0

2 which takes into 
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account the relaxation of all the other electrons, we obtain an equation modeling 
and interpreting EXAFS:
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If we know A(k), δ(k), and the mean free path λ(k) by EXAFS analysis, we can 
determine:

 1. R distance to neighboring atom
2. N coordination number of neighboring atom
 3. σ2 mean-square disorder of neighbor distance

 X-ray Diffraction Techniques

The elastic scattering of X-rays from structures that have long range order is the 
base on X-ray diffraction (XRD) techniques. The most comprehensive description 
of scattering from crystals is given by the dynamical theory of diffraction [15].

• XRD of a single crystal is a technique used to determine the complete structure 
of crystalline materials, such as simple inorganic solids and complex macromol-
ecules (proteins).

• Powder diffraction is a characterization technique used for establishing the crys-
tal structure, crystallite size (grain size), and preferred orientation in polycrystal-
line or powdered solid samples. Powder diffraction is frequently used to identify 
substances, by comparing diffraction data against a database maintained by the 
International Center for Diffraction Data. P

 Scherrer Equation
The effects of size and strain can be often separated in the powder diffraction tech-
nique, in particular when the size broadening is independent of q (K = 1/d), strain 
broadening increases with increasing q-values. But frequently, there will be both 
size and strain broadening. By combining the two equations, it is possible to sepa-
rate these with the Hall-Williamson method:

 
B

K

D
× ( ) = + × ( )cos sinq

l
h q  (12)

Therefore, when we plot B⋅cos(θ) vs. sin(θ), we obtain a straight line with slope η 

and intercept 
k

D

l
. This expression is the combination of the Scherrer equation [16] 

for size broadening and the Stokes and Wilson expression for strain broadening. 
The η value is the strain in the crystal structure and the D value features the size of 
the crystallites. K is constant typically ranges from 0.8 to 1.39.
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X-ray diffraction and crystallography use a shape factor to correlate in a solid the 
size of sub-micrometer particles or crystallites to the peak broadening in a diffrac-
tion pattern: the Scherrer equation,

 
D

K
=

l
b qcos  

(13)

where K is the shape factor, λ is the X-ray wavelength (typically ~ 1 Å), β is the line 
broadening at half the maximum intensity (FWHM) in radians, and θ is the Bragg 
angle; D is the crystalline mean size (ordered) domains that may be equal to or 
smaller than the grain size. The shape factor is dimensionless and has a typical value 
of ~0.9, but it can vary with the real crystallite shape. It is important to know that 
the Scherrer equation is limited to the particles in nanoscale. It cannot be applicable 
to particles larger than about 0.1 μm (the Scherrer formula can calculate only a 
lower bound on the particle size; in fact, the broadening of the diffraction peak can 
include a variety of factors; one most important of these is inhomogeneous strain 
and instrumental effects).

 X-ray Fluorescence

Bombarding a material with high-energy X-rays, it will emit a characteristic “sec-
ondary” X-ray, which is called X-ray fluorescence (XRF) (or fluorescent). This phe-
nomenon is largely used for elemental and chemical analysis, particularly in the 
investigation of solid materials like glass, metals, building materials, and 
ceramics.

X-ray fluorescence spectroscopy is useful for knowing what chemical compo-
nents are present in a sample, even if those components are in small quantities and 
in amorphous phase.

The electronic orbital has a characteristic energy for each element. After inner 
electron excitation in the continuum by an energetic photon given by a primary 
radiation source, an electron from an outer shell drops into its place. The ways in 
which this can happen are limited. The main transitions are the following: an L → K 
transition is traditionally called Kα, an M → K transition is called Kβ, an M → L 
transition is called Lα, and so on. Any transition produces a fluorescent photon with 
a characteristic energy equal to the difference in energy of the initial and final 
orbital. The wavelength of this fluorescent radiation can be calculated from 
Planck’s Law:

 l = ×h c E/  (14)

This radiation can be analyzed in two ways: first by sorting the energies of the pho-
tons (energy-dispersive analysis) and second by separating the wavelengths of the 
radiation (wavelength-dispersive analysis). Once classified, the intensity of each 
radiation is related to the amount of each element in the material. This is a powerful 
technique widely used in analytical chemistry.
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 Imaging Methods

Transmission electron microscopy (TEM) utilizes imaging methods based on 
information that are contained in the electron waves exiting from the sample form-
ing an image. The used lenses permit the correct electron wave distribution onto the 
viewing system. The image intensity, I, can be considered proportional to the time- 
averaged amplitude of the electron wave function, where the exiting wave forming 
the exit beam is called Ψ [17]:
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Thus, there are different imaging methods trying to simplify the exiting electron 
waves in a useful form to obtain information regarding the sample or beam itself. 
The previous equation evidences that the observed image depends not only on the 
amplitude of beam but also on the electron phase, while at lower magnifications, 
phase effects can be ignored. But imaging at higher resolution requires higher ener-
gies of incident electrons and thinner samples. Hence, Beer’s law effect [18] cannot 
be applicable at the sample longer, rather it is possible to model the sample as an 
object which does not change the incoming electron wave function amplitude but 
the phase of the incoming wave; for sufficiently thin samples, the phase effects 
dominate and this model is known as a pure phase object [17, 19].

 High-Resolution Imaging
When an imaging formation process occurs [20], running the electron beam run 
through the microscope and different phenomena can be resulting, they can be dis-
tinguished (see Fig. 2a):

• In the plane of object, diffraction phenomena
• The image formation in the objective lens back focal plane
• The interference of diffracted beam in the image plane of the objective lens

Due to the Huygens’ principle, the electron wave function ϕex(r) at the exit face 
of the object can be considered a planar source of spherical waves. In the reciprocal 
vector g direction, the amplitude of diffracted wave is given by objected function 
Fourier transformation:

 
y yg J rg( ) = ( )  (16)

In the diffraction pattern, the intensity of the distribution is given by |ψ(g)|2 in the 
objective lens back focal plane.

 
y yg J rg( ) = ( )2 2

 (17)

If the objective is periodic, the diffraction pattern, the square of the FT of object 
function, will consist of sharp spots. In the second stage of the imaging process, 
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considered a system of lenses the back focal plane acts as a sequence of Huygens’ 
spherical wave sources which interfere in the image plane. Inverse Fourier transform 
describes this stage in the imaging process that makes an enlarged object function 
ψ(R). Finally, in the image plane, the intensity is given by |ψ(R)|2. In the second step 
during the image formation, described by the inverse Fourier transform, the electron 
beam suffers phase shift χ(g) with respect to the central beam. This phase shift is 

a

b c d e

I

+ +

Fig. 2 (a) Image formation in a electron microscope; (b–e) scheme of diffraction patterns and 
aperture configurations; +, optical axis; o, undiffracted beam; O, objective aperture A as placed in 
(a) (Adapted from reference [21])
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due to spherical aberration and defocus and damped by incoherent damping 
function D(α, Δ, g), so at the image plane, the wave function ψim(R) is obtained as

 
y yim R J T g g( ) = ( ) ( )-1  (18)

where T(g) is the contrast transfer function (CTF) of thin phase object. T(g) includes 
damping envelop D(α, Δ, g) and phase shift χ(g):

 
c pel p l a cg g C g T g D g i gs( ) = + ( ) = ( ) ( )éë ùû
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where α is the convergent angle of the incident electron beam and Δ is the half 
width of the defocus spread ε due to chromatic aberration. For the details, consult 
references [21–23].

The main experimental techniques in common use at present in the field of con-
ventional high-resolution electron microscopy, in phase contrast, are given in Fig. 
2b–e [20]. The different imaging modes are determined by the size and geometrical 
position of the objective aperture in the focal plane back of the objective lens. An 
image of a lattice fringe is obtained, if only one (or a few) diffracted beams interfere 
with the unscattered beam (aperture like type b). The period of the fringes corre-
sponds to the interplanar spacing of exited beam. Using aperture type c, many beam 
images will be observed. For thin crystal having large unit cell parameters under 
experimental conditions, obtained using type d, the “structure image” could be 
obtained if the micrograph is directly interpreted in terms of projected atomic 
arrangement of the crystal structure. If particular diffracted beam of interest inter-
feres and all other beams are excluded, a dark-field lattice image is formed, aperture 
type e (see Fig. 2).

 Experimental Techniques: Setups and Analysis Results

In this section, some important technical and scientific details about the experimen-
tal devices used for microstructure characterization of the nano-nanomaterial under 
various conditions will be discussed.

Some experiments performed on a nanocatalyst sample in different laboratories 
such as at synchrotron radiation (SR) facilities will be shown as examples.

The order in which the experimental techniques are presented reflects the ideal 
sequence of material science characterization technique used for nanoparticle analysis.

 TEM Imaging

The first important characterization regards the knowledge of mean nanoparticle 
size, their distribution, if they are well dispersed and have a homogeneous crystal-
line structure. This information can be obtained from HRTEM images (transmission 
high-resolution electron microscopy), looking at the individual particle shape and 
structure. Here, we would like to show an example: the nanocatalyst under 
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consideration is composed of Pt-Co alloy metal nanoparticles dispersed on a matrix 
of Vulcan. HRTEM images have been collected using a JOEL JEM-2100F at the 
Institute of Mineralogy and Physics of Condensed Matter (IMPMC) of UPMC 
University, Paris.

Given the size of nanoparticles, we have chosen to perform TEM measurements 
by JOEL JEM-2100F. In particular by the obtained images, we are able not only to 
calculate the average particle diameter but also to observe the crystal structure and 
calculate the distance between crystalline planes, information which allows us to 
observe possible phase separations. The JEM-2100F is equipped also with other 
techniques such as scanning transmission electron microscopy (STEM) and energy- 
dispersive X-ray spectroscopy (EXD) from which we did the elemental analysis and 
chemical characterization of the samples.

For TEM experiments, sample preparation is a complex procedure. In fact, TEM 
specimens have to be at most hundreds of nanometers thick, because of the electron 
beam that interacts quickly with the sample, and this effect increases in first approx-
imation with atomic number squared (z2) [18].

Quickly preparation by the deposition of a dilute sample containing the speci-
men onto support grids can be used for such nanomaterials, such as powders like 
Pt-Co/C nanocatalysts or nanotubes, that have dimensions small enough to be elec-
tron transparent.

An example of particle size distribution, on the basis of TEM image analysis, 
using the ImageJ program, (ImageJ, Version 1.38x, Wayne Rasband, National
Institutes of Health, USA) has been obtained and presented. The profiles of 500 
randomly selected quasi-spherical particles have been taken under a consideration. 
A typical TEM image of Pt-Co nanoparticles with almost a spherical shape is shown 
in Fig. 3a–c presenting their size distribution, which is asymmetric and shows a tail 
extended to large-sized nanoparticles. A log-normal model can be reproduced quite 
accurately in this size distribution.

The fast Fourier transforms (FFTs) of high-resolution TEM (HRTEM) images 
[25, 26] calculated by ImageJ program were compared with simulated electron dif-
fraction patterns of ordered Pt3Co (space group Pm 3 m) and ordered Pt-Co (space 
group P4/mmm) [27]. In the FFT images, each spot of diffraction pattern represents 
a set of equal spacing planes whose direction is normal and corresponds to the 
straight line connecting this diffraction spot with the transmitted one. This straight 
length line is proportional to the reciprocal of the interplanar distance. ImageJ pro-
gram allows the calculation from FFT images of the interplanar distance and the 
angle between atomic planes that permits in the HRTEM images indexing of lattice 
fringes (see Fig. 3 in the inset).

 X-ray Diffraction and X-ray Fluorescence

From X-ray diffraction technique, information on mean crystalline structure, mul-
tiple phases, mean nanocrystals size, and alloy stoichiometry can be obtained. 
Unlike the TEM results, the obtained informations from XRD are averaged all 
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Fig. 3 (Top) TEM and 
(middle) HRTEM images 
of platinum cobalt 
nanoparticles supported on 
Vulcan (E-TEK™). In the 
inset, lattice reflections are 
shown at fast Fourier 
transform (FFT) of the 
HRTEM image of 
nanoparticle. (Bottom) 
Metallic nanoparticle size 
distribution obtained by 
TEM image analysis (From 
reference [24])
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over the sample. In fact, the alloys can crystallize in different phases (depending on 
the alloy composition), such as in ordered and substitutionally disordered form. 
Furthermore, it is difficult to obtain single phase nanoalloy crystals. So before 
EXAFS analysis, it is necessary to obtain a preliminary accurate morphological 
investigation and structural characterization.

Powder diffractometer is the instrument which performs powder diffraction 
measurements. Two measurement configurations in the diffractometers can be oper-
ated: in transmission (Debye-Scherrer configuration) and in reflection mode. The 
more common is the reflection one. It is based on filling the powder sample in a 
small container disk and its surface carefully leveled. The disk is putted on one dif-
fractometer axis and tilted by an angle θ; in the meantime, a detector (scintillation 
counter) rotates around it on an arm at twice this angle. This is the Bragg- Brentano 
configuration. Theta-theta configuration represents another diffraction geometry 
consisting in a stationary position of the sample, while the X-ray tube and the detec-
tor are rotated around it. The angle formed between the tube and the detector is 2θ.

For example, in Fig. 4a, typical X-ray diffraction pattern is shown. The peaks 
represent the Bragg planes with Miller indexes (111) for the first peak, (200), (220), 
(311), and (222) of the Pt-Co nanomaterial. Peaks are smoother due to the nanosize 
of the sample. By identifying their position as a function of θ, it is possible to iden-
tify the crystalline structure and calculate the cell parameter of the sample.

XRD data analysis has been performed using the PEAKFIT and EDXRD pro-
grams that are part of the GNXAS package [9, 13, 28] for XAS/XRD analysis.

Fig. 4 X-ray diffraction pattern of platinum cobalt nanoparticle powder supported on Vulcan 
(E-TEK™). The calculated pattern was modeled using Voigt functions (solid lines), and experi-
mental data (points) are compared. Residual diffraction pattern curve is shown below
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Many factors determine the width B of a diffraction peak, including:

 1. The presence of defects in the lattice
 2. Instrumental factors
 3. The crystallites size (peak width, Scherrer equation 13)
 4. Strain differences in different grains

Pt-Co nanometric sample shows peaks’ position characteristic of fcc structure 
nanoparticles. The crystalline phase is typical of a single phase because no addi-
tional peaks or shoulders are observed in the diffraction pattern.

From the cell parameter obtained can be evaluated also the Co atomic fraction, 
fCo, by Vegard’s law [29–31]:
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where ao and as are the lattice parameters of pure Pt (0.3925 nm) and Pt-Co alloy 
(0.375 nm [32]), respectively. fs is the reference Co alloy atomic fraction in Pt-Co 
(fs = 0.5) [29, 33].

X-ray fluorescence spectroscopy is useful to know what chemical components 
that are present in a sample. The typical form of a fluorescence peak is sharp (shown 
in Fig. 5), and the spectral lines, shown in Fig. 5, are obtained by the wavelength- 
dispersive method (see Moseley’s law).

Energy-dispersive analysis means that the fluorescent X-rays emitted are con-
ducted from the material sample into a solid-state detector which yields a “continu-
ous” distribution of pulses, whose voltages are proportional to the incoming photon 
energies. A multichannel analyzer (MCA) can process this signal producing a digi-
tal spectrum which can be converted to analytical data.

Fig. 5 Typical energy-dispersive XRF spectrum: spectra of Pt-Co powder (E-TEK™)
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 X-ray Absorption Measurements

XAS spectra could be acquired in two different modes: transmission and fluores-
cence modes. The X-ray absorption coefficient μ(E) of a material as a function of 
energy is measured by XAS. The sample is hit by X-rays. The incident and transmit-
ted X-ray intensity is recorded when the incident X-ray energy is incremented. The 
transmitted number of X-ray photons through a sample (It) is equal to the number of 
X-ray photons irradiated on the sample (I0) multiplied by a decreasing exponential 
depending on the atom type embedded in the sample structure, the absorption coef-
ficient μ, and the thickness of the sample x: It = I0 e−μx. The log ratio of the incident 
X-ray intensity to the transmitted X-ray intensity represents the absorption 
coefficient

 
mx I It= ( )log /0  (20)

In performing XAS, measurements in transmission mode are necessary to prepare 
pellets by slightly grinding sample hand mixing the powdered material with graph-
ite in given proportions calculated with specific software (XASAM). Optimizing 
the absorption jump, the bulk absorption effects were minimized, improving the 
display of pre- and post-edge details. For example, the values obtained for a 30 % 
of Pt-Co and 70 % of Vulcan pellet with a diameter about 13 and 2 mm of thickness 
are shown in Table 2. Typical XAS signals obtained in transmission mode are 
shown in Fig. 6.

When the amount of the sample is very low, fluorescence XAS measurements 
are necessary, for example, during the in situ experiments, when the sample is not 
the pristine material as a powder but is an electrode.

Fluorescence mode means to measure fluorescence emitted by secondary elec-
tron falling to core level. In order to obtain reliable measurements in fluorescence 
mode, the amount of tested material in the sample has to be very low.

Table 2 XASAM program output: Information obtained for an optimal XAS jump, J is the jump 
obtained using the ρ(mg/cm2) value in 30 % Pt-Co and 70 % of Vulcan (E-TEK) sample. The pellet 
has a surface area of approximately 1.32 cm2. Multiplying the pellet area to ρ the result is the 
number of millgrams of the sample that have to be put in a mixture with high-purity graphite (Alfa 
Aesar)
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Pt L1-edge 13,892 50.64 57.64 0.17 24.1 241.0

Pt L2-edge 13,273 41.76 56.51 0.36 24.6 245.8

Pt L3-edge 11,564 26.65 58.92 0.76 23.6 235.7

Co K-edge 7,709 67.25 77.41 0.18 17.9 179.4
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In fact, the intensity measured by an X-ray fluorescence detector, If(E), is related 
to the intensity of the incoming X-ray beam, I0(E), and the “X” atomic species 
absorption coefficient μX(E) is linear Refs. [34–36]:
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where μtot = μX + μoth indicates the total linear absorption coefficient (μoth associated 
with other atoms within the sample), εX is the fluorescence produced by the pho-
toabsorbing atom X, and Ω/4π is the solid angle with the detector (angles ϕ and θ 
are defined in Fig. 11b). In our experiments, μtot is associated with electrodes of very 
low catalyst loading. In this way, the transmission of the small thickness approxi-
mation can be applied to our case [1–3]. Within this limit, the exponential in Eq. 21 
reduces to
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Taking into account the approximation in Eq. 22 and the geometry used in this 

experiment sin sin /f q= =( )2 2 , Eq. 21 becomes

a b

Fig. 6 30 % Pt-Co/C (E-TEK) X-ray absorption spectra measured at ELETTRA (Trieste); (a) Co 
K-edge, (b) Pt L3-edge
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The interpretation of the raw XAS data in relation with the catalytic layer is 
simplified by result in Eq. 23 without ulterior theoretical corrections. But, when 
there are high-absorbing catalyst supports and/or excessive catalyst loading, this 
approximation in Eq. 23 can fail. Working in fluorescence mode can be an advan-
tage for the small thickness approximation; in fact, inhomogeneities of the sample 
do not severely affect the XAS measurements as in the transmission mode.

 EXAFS Analysis and Effect of Chemical Disorder
This section presents an example of a detailed XAS structural investigation of nano-
crystalline Pt-Co supported on Vulcan (E-TEK™, 30 % of metal and 70 % of an 
amorphous and porous phase of carbon called Vulcan), used as a catalyst material 
in fuel cell applications in order to show and explain the characterization method. 
Results obtained by TEM and XRD demonstrate that the Pt-Co/C sample can be 
treated as constituted by a homogeneous ensemble of Pt3±δCo fcc nanocrystalline 
particles with a mean diameter of ~5 nm. Moreover, the average local structure of 
Pt-Co/C can be assumed very similar to the bulk crystalline Pt3Co (as for Pt nanopar-
ticles [37]) confirmed by XAS, TEM, and XRD results.

The Pt3Co alloy has an L12 structure (Cu3Au-like) [32]. In this structure, Pt atoms 
are substituted by Co atoms at the corners of the crystal structure of the face- centered 
cubic (fcc). Using theoretical calculations of the X-ray absorption cross section with 
GNXAS method, the experimental EXAFS data have been analyzed [13, 28]. The 
theoretical XAS signal for various two-body and three-body configurations of a typi-
cal fcc L12 structure has been calculated, and the details are listed in [24].

In crystalline alloys of platinum cobalt chemical, disorder is present and the 
disorder degree depends on the thermal treatment and preparation procedures.  
A simple methodology to reproduce the effect of substitutional disorder was used to 
calculate the coordination numbers (CNs) and multiplicities of the multiple-
scattering signals contributing to the EXAFS spectra.

Chemical disorder affects the CNs components (Pt-Co, Co-Pt, Co-Co and Pt-Pt first
and farther neighbor). So with a simple computer simulation scheme, the multiplicities 
of the main local two-body and three-body fcc L12 configurations as a function of the 
degree of chemical disorder (see also Ref. [38]) have been calculated. This was 
obtained by introducing the occupation probabilities of the lattice sites. We have con-
sidered a 6 × 6 × 6 supercell containing 216 fcc units (a = 3.385 Å) for a total number of 
864 atoms in order to minimize the effects of the finite size of our calculations.

By introducing a finite probability 0 ≤ p ≤ 1 for the occupancy of selected lattice 
sites with Co atoms, substitutional disorder is simulated. In detail, p is taken as the 
probability that a Co atom occupies the site at the corner of the fcc cell ((0, 0, 0) 
position in each fcc unit, see Fig. 7a). While (1 − p)/3 is the Co occupation probability 
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of any of the three other sites of the fcc unit ((1/2, 1/2, 0), (0, 1/2, 1/2), (1/2, 0, 1/2) 
positions). In this way for a great number of crystalline sites, the stoichiometry in 
the thermodynamic limit is preserved.

The range 0.25 < p < 1 is considered in the calculation that includes from a com-
pletely ordered structure (p = 1) to a completely disordered one (p = 0.25, for which 
no preferential position can be defined for Co). Three examples of spherical clusters 
in Fig. 7b (obtained using selected cutoff radii for the supercells) and different 
chemical ordering p are shown. It has to be underlined that the model does not 
reproduce a real atomic structure and dynamics in nanocrystalline materials includ-
ing grain boundaries.

We found that CNs and degeneracy associated with the amplitude of the MS
XAS signals are deep influenced by the chemical disorder. In fact, some CNs drop
to zero for the fully ordered structure, while most CNs and degeneracy are slowly
varying for p lower than 0.4. An appropriate order parameter is defined as
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where p is the occupation probability defined above and Ca is the atomic concentra-
tion of the selected chemical species (1/4 for Pt3Co). In this way, s = 0 indicates 
random occupancy (p = 1/4) and s = 1 perfect order.

Co occupation
probability

(1-p)/3

Co occupation
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(0,0,0)
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Fig. 7 (Left side) L12 primitive cell, the arrows indicate the Co occupation probability for every 
site. (Right side) Three different spherical nanocrystals with an fcc L12 structure and with a differ-
ent degree of chemical disorder (From reference [24])
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The most evident changes are founded in the CNs/degeneracy of the fourth-shell
atoms (180° configurations) that can be considered as flags for chemical ordering in 
these alloys (along with the presence of Co-Co first neighbors). Figure 8 shows the 
Fourier transforms (FTs) of the Pt L3- and Co K-edge theoretical XAS signals cal-
culated for different values of the disorder parameter s.

It has to be underlined that chemical disorder affects in particular the Co K-edge 
FT modifying the intensity of the FT peak around 5 Å that is associated with col-
linear configuration changes of a factor of 3 between the limiting cases s = 0 and 
s=1. Moreover, nanoparticle size affects also the total CNs, so reduction (first
neighbor CN is ~11 instead of 12 for particles with a mean size about 5 nm) due to
the finite size effect is taken into account using other simulations performed for fcc 
nanoparticles [37]. All of these constraints guarantee a robust structural refinement 
for double-edge EXAFS data analysis of the nanocrystalline Pt3±δCo/C sample, 
using a total of 15 structural parameters over around 1000 experimental points and 
including all of the MS signals up to the fourth coordination shell [24].

Concluding and combining all results, the nanoparticle chemical disordering was 
found to be measurable with high accuracy. Moreover, compared to Pt, Co local 
structure is characterized by a higher level of structural disorder, verified also by the 
higher variances in interatomic distances.

This approach based on combining different state-of-the-art techniques allows us 
to conclude that it is robust and successful for nanomaterial characterization and is 
also appropriate for applications in structural refinements of any nanocrystalline 
active system. The mentioned above data analysis methodology is now applied for 
analyzing changes in local structure under in-operandi condition in a real fuel cell 
and during ageing process [39].

Fig. 8 (Colors online) Fourier transforms of the Pt L3 and Co K theoretical XAS signals calculated 
for different values of the disorder parameter s (structural parameters optimized for the Pt3±δCo 
nanoalloy) (From reference [24])
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 Conclusions

This chapter describes different characterization techniques such as TEM (transmission 
electron microscopy), XRD (X-ray diffraction), and in particular the site- selective 
XAS (X-ray absorption spectroscopy) that, when combined together in the correct 
way, represent a robust method for nanomaterial characterization. In this chapter, 
also a brief theoretical base of these techniques is presented. Particular evidence is 
given to XAS technique that permits not only a deep nanomaterial characterization 
(e.g., alloy chemical ordering identification) but also in situ characterization. 
An application of this method and this statement to Pt-Co nanomaterial used as 
catalyst in proton exchange membrane fuel cell is also presented.

 Appendix

 Design and Performances of the XAS PEM Fuel Cell

This section describes the experimental setup used to perform in cell measurements. 
For optimizing in situ XAS measurements on the catalyst during original electro-
chemical activity, a standard pemmican has been modified ad hoc [40]. In situ X-ray 
investigations of active materials first need to reduce the background absorption due 
to the various components of the cells. The thickness of the electrodes and mem-
brane cell components has to be severely restricted if we would like to probe the 
valence and structure of metals participating in the catalytic process.

Due to this restriction, standard PEM fuel cells must be modified; the body of the cell 
was modified designing suitable windows for X-ray investigations. For obtaining XAS 
measurements in transmission mode with low noise, an EFC-05-02 (Electrochem) fuel 
cell was modified to achieve high transmission rates for photon energies in energy range 
about 515 keV, where the materials used as catalyst have most of the core levels.

The commercial fuel cell is made by two isotropic graphite separator plates, a 
5 cm2 active area (serpentine flow pattern) and two gold-plated current collectors. 
Eight screws keep together the plates of graphite; in this way, a high enough com-
pression on the membrane electrode assembly (MEA) is induced providing a good 
electrical contact. In order to obtain maximum X-ray transmittance, two thin graph-
ite windows (light and gas tight) are hollowed in the EFC-05-02 cells. The total 
graphite thickness obtained up to 0.25 mm, over a flat 1 mm × 7 mm area, providing 
a double window for XAS in transmission mode and possible X-ray fluorescence 
and X-ray diffraction measurements owing to the wide angular acceptance (~100° 
on the beam plane, ~5 % covered solid angle), as shown in Fig. 9. The X-ray win-
dow is positioned to be parallel (y) and in correspondence (z) with the serpentine 
channels (width 0.8 mm) in order to minimize absorption.

This modified cell allows standard condition XAS measurements at EXAFS 
beamlines with a typical beam size of ~ 0.4 mm × 5 mm. The cell position can be 
easily modified during the experiment in respect of beam, allowing the best geom-
etry for the experimental technique in use. More details are listed in [40].
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 Sample Preparation

Electrochemical and structural measurements were performed on electrodes. The 
catalytic layers were prepared using E-TEK 30 % Pt3Co supported on Vulcan XC-72 
powder (with total metal loading of about 1.0 mg/cm2).

The metal loading was counted from the weight. Membrane electrode assem-
blies (MEAs) used to perform cathode catalyst degradation were composed of 
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Fig. 9 Schematic view  
of the modified fuel cell 
optimized for in situ X-ray 
absorption measurements 
(front and side views, 
dimensions given in mm). 
The front view shows the 
drilling of the electrode of 
graphite in order to reduce 
the X-ray absorption 
saving space for the fuel 
channels (hydrogen and 
oxygen). Each graphite 
plate has a minimal 
thickness about 0.25 mm, 
thus minimizing the 
absorption along the X-ray 
path (x, see inset). The side 
view shows the wide 
angular aperture allowing 
for possible X-ray 
diffraction and X-ray 
fluorescence 
measurements; the cell 
MEA positioning is  
also shown (From 
reference [40])
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Nafion® N-112R as a proton conductive membrane and Pd (30%Pd/Vulcan XC-72
powder, Pd loading 1.0 mg cm−2) as an anode catalyst.

In the X-ray beam window region, a Pd counter electrode [41] was used in order 
to prevent perturbations of the electrical field on the catalyst under consideration 
[42, 43]. Before XAS measurements, each new MEA was subjected to conditioning 
process at a voltage of ~ 0.5 V for 15 min, and then Rapid Check cell performances 
by electrochemical cycles were done.

 In Situ Experimental Setups

A typical setup for in situ XAS experiments in transmission mode at the BM29 
(ESRF) or XAFS 11.1 (ELETTRA) beamlines is shown in Fig. 10. In those beam-
lines, the XAS fuel cell described before has been tested.

In a standard transmission configuration, the fuel cell has been positioned and 
aligned along the beam with motorized translation stages. The reference sample has 
been included for a more precise energy calibration. The cell channels for oxygen 
and hydrogen gas were connected to their lines working at 1.2 bar (the gas flow was 
set to ~100 ml min−1). During XAS measurements, the voltage output was remotely 
controlled by a computer-driven potentiostat/galvanostat and continuously stored.

Figure 11 shows the setup, which allows measurements both in transmission and 
in fluorescence modes. Looking at Fig. 11, the fuel cell has been installed between 
the ionization chambers I0 and I1 at the X-ray spectrometer BM29 (ESRF) close to 
a 13-channel Ge X-ray detector (If). Figure 10 shows the setup schematic view, and 
it is possible to identify the fuel cell, the gas lines (humidified O2 and H2), the elec-
trical connections necessary to operate the cell, and the X-ray fluorescence detector 
located on the left side. The pressure of the gases has been set to 1 atm; the gas flux 

gas

flowmeter

ionization chamb.

I2 I1

O2 H2

I0

ref.sample

heating
power supply galvanostat

primary
slits

Bend.
Magn.

synch.monochr.exper.
slits

humidifier

Fig. 10 Typical setup for XAS experiments on fuel cells under operating conditions (From refer-
ence [40])
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was about 100 ml min−1. The fuel cell has been located with an angle of 45° with 
respect to the X-ray beam direction. In order to maximize the recovered solid angle, 
the multichannel detector has been positioned close to the cell at 90° to the incident 
beam in the synchrotron (horizontal) plane.

Taking advantage of this geometry and the twofold wide aperture machined on 
both sides of the cell, simultaneous XAS measurements in transmission and energy- 
dispersive fluorescence (EDXRF) mode can be carried out (see Fig. 11) without 
further alignment.

So make the most of this geometry simultaneous XAS measurements in trans-
mission and energy-dispersive fluorescence (EDXRF) mode can be carried out (see 
Fig. 11) without further alignment. The quality of the carried-out signals is really 
good as shown in Fig. 12 where extracted EXAFS signals of Pt-Co nanocatalyst at 
different potentials are presented for both ages. It has also to be underlined that the 
Co quantity in the electrode is very few (0.1 mg/cm2) in spite of the quality of the 
signal being more than satisfactory

PEMFC (top view)

φ

θ

ref. foil

monochromator

focusing optics
synchrotron

metallic foil

z
x

x'13 ch. Ge x-ray detector

ionization chambers

I2 I1

If

I0

a

b

Fig. 11 (a) Picture taken 
at the BM29 beamline 
(ESRF) that shows the 
modified fuel cell 
positioned close to the 
13-channel Ge X-ray 
detector (on the left) on the 
beam direction. (b) The 
schematic experimental 
setup top view θ = ϕ = 45°. 
The absorption coefficient 
μ(E) of selected atomic 
species embedded inside 
the electrode can be 
measured both in 
transmission mode 
(μ(E) = ln(I0/I1)) and in 
fluorescence mode (μ(E) ∝ 
If /I0). The absorption 
coefficient of a reference 
sample is measured 
(μ(E) = ln(I1/I2)) at the same 
time
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   Abstract  
  Electrodeposition technique allows depositing nanoparticles of metals and 
alloys with variable size as a function of the deposition conditions, the deposi-
tion charge, and the nature of the substrate. In this work, the possibility of 
obtaining electrochemically core-shell submicrometric particles with a plati-
num shell has been tested; in order to design a preparation method of particles 
of different size, the general purpose is to approach the surface properties of 
platinum but with lower amounts than those in a massive platinum particle. 
Cobalt nanoparticles in the range 100–600 nm of diameter have been electrode-
posited on vitreous carbon. The size of the particles and the average distance 
between them varies as a function of the deposition potential and the transferred 
charge. Low overpotentials have been selected to obtain isolated cobalt particles 
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of similar size (around 140 nm). These particles have been covered with a skin 
layer of platinum by galvanic displacement reaction by immersion in a plati-
num-containing solution. The control of the total recovery of the particles (to 
obtain core-shell cobalt- platinum particles) has been performed electrochemi-
cally by recording the voltammetric profi le of the samples in a blank solution. 
The electrocatalytic activity of the prepared particles for methanol oxidation 
has been tested.  

  Keywords  
  Electrodeposition   •   Co nanoparticles   •   Core-shell particles   •   Platinum   • 
  Electrocatalytic properties  

        Introduction 

 During the last years, nanotechnology has been consolidated in very different fi elds 
of application from therapeutic application to computer science. One of the interests 
of nanotechnology is the preparation of different materials in submicrometric 
dimensions due to its special catalytic or magnetic properties (Table  1 ). Between the 
different methods of preparation of micro/nanostructures, electrochemical methods 
have been revealed as useful techniques to obtain small nanostructures of metals, 
alloys, and oxides [ 1 – 3 ]. Although electrodeposition is not the best method to pre-
pare metallic nanoparticles in the range of few nanometers (usually prepared by 
chemical reduction [ 4 – 6 ]), its results are very adequate to prepare nanopowders, 
nanowires, nanotubes, or particles in the range of tens of nanometers. The method 
is simple and economic, but it requires a strict control of the deposition charges to 
allow the growth of metallic structures at nano/submicrometric level.

   Different types of templates have been used to grow nanostructures electrochem-
ically [ 3 ,  7 – 11 ]. Polymeric or alumina templates have been used to electrodeposit 
nanowires and nanotubes of metals and alloys with diameters from few nanometers 
to tens of nanometers and lengths from tens of nanometers to several microns. 
Recently, the possibility of using microemulsions as templates has been tested 
[ 12 ,  13 ]. Another method to control the size of the growing nanostructures by means 
of electrodeposition is the strict control of the surface of the conductive substrate 
used and both the deposition rate and the transferred charge. 

 In this work, the possibility of preparing particles of controlled size by means of 
electrodeposition and recovering them with a shell of platinum metal is tested. The 
objective is the use of this kind of particles as catalytic objects, in substitution of 
pure platinum particles of the same size. Cobalt particles will be tested, in the man-
ner that both cobalt and superfi cial cobalt oxides spontaneously formed can react 
with a solution containing platinum species, leading to Co-Pt core-shell particles of 
tailored size. Co-Pt nanoparticles, but of very small size, have been previously pre-
pared from chemical reduction in water-in-oil (w/o) microemulsions [ 14 ]. 
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   Table 1    Resume of some previous nanostructures synthesis   

 Structure  Material  Growth technique  References  Authors 

 Metal 
nanoparticles 

 Ni  Electrodeposition (ED) 
in microemulsion 

 [ 12 ]  H. Zhou, C. Peng, 
S. Jiao, W. Zeng, 
J. Chen, Y. Kuang 

 Alloy 
nanoparticles 

 PtRuNi  Reduction in 
microemulsion 

 [ 5 ]  X. Zhang, F. Zhang, 
R. Guan, K. Chan 

 PtPd  Reduction in 
microemulsion 

 [ 6 ]  J. Solla-Gullon, 
V. Montiel, A. Aldaz, 
J. Clavilier 

 Oxides 
nanoparticles 

 Ferrites, 
manganites 

 Reduction in reverse 
micelles 

 [ 4 ]  V. Uskokocic, 
M. Drofenik 

 Core-shell 
nanoparticles 

 Co-Pt  Reduction in 
microemulsion 

 [ 14 ]  J. Solla-Gullón, 
E. Gómez, E. Vallés, 
A. Aldaz, J.M. Feliu 

 Nanowires  Bi,Co,Fe,Cu, 
Cu/Cu 

 ED  [ 1 ]  M.S. Dresselhaus, 
Y-M. Lin, O. Rabin, 
M.R. Black, J. Kong, 
G. Dresselhaus 

 CoPt  ED  [ 2 ]  S. Shamaila, R. Sharif, 
S. Riaz, M. Khaleeq-
ur- Rahman, X.F. Han 

 Co, Pt, CoPt  ED  [ 3 ]  J. Fu, S. Cherevko, 
C.H. Chung 

 Co  ED  [ 7 ]  Y. Yang, Y. Chen, 
Y. Wu, X. Chen, 
M. Kong 

 [ 11 ]  V.R. Caffarena, 
A.P. Guimarães, 
W.S.D. Folly, 
E.M. Silva, 
J.L. Capitaneo 

 Segmented 
CoNi 

 ED  [ 8 ]  S. Talapatra, X. Tang, 
M. Padi, T. Kim, 
R. Vajtai, G.V.S. Sastry, 
M. Shima, S.C. Deevi, 
P.M. Ajayan 

 CoNi  ED  [ 9 ]  A. Ghahremani 
Nezhad, A. Dolati 

 Nanotubes  Ni  ED  [ 10 ]  X.W. Wang, Z.H. Yuan, 
S.Q. Sun, Y.Q. Duan, 
L.J. Bie 

 Porous 
nanofi lms 

 CoNi  ED in microemulsion  [ 13 ]  A. Serrà, E. Gómez, 
G. Calderó, J. Esquena, 
C. Solans, E. Vallés 
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 The work described here implies (1) the defi nition of the best conditions to 
prepare cobalt particles of different size over the surface of a conductive substrate 
by means of electrodeposition, (2) the test of the formation of a superfi cial platinum 
layer on the freshly prepared cobalt particles by immersion in a platinum-containing 
solution, (3) the electrochemical characterization of these coated particles, and 
(4) the test of the catalytic properties of the core-shell particles using the methanol 
oxidation as electrocatalytic reaction. The possibility of substituting pure platinum 
particles of different size by Co-Pt ones (containing less platinum amount) for cata-
lytic purposes will be tested. Moreover, as platinum particles are not free from poi-
soning of adsorbed intermediates, there is increasing interest in the search of more 
active and less expensive catalysts than Pt and in the development of structures of 
Pt with other metals.  

    Nanoparticle Preparation 

 CoCl 2  0.5 M solution was used to prepare the cobalt nanoparticles over vitreous 
carbon electrodes by means of electrodeposition. The pH was adjusted to 4 in order 
to simultaneously avoid hydroxide precipitation and minimize hydrogen evolution 
during the electrochemical reduction process. A Na 2 PtCl 6  1 mM solution was used 
to induce the formation of the platinum skin on the cobalt nanoparticles. NaOH 
0.1 M solution was used to analyze the electrochemical behavior of the different 
prepared particles. All the reagents were of analytical grade. Solutions were pre-
pared with distilled water further treated with a Millipore Milli-Q system. 

 The electrochemical study of the electrodeposition process and the preparation 
of the deposits was performed using a thermostatized cell with Ag/AgCl(s)/KCl (3 
M) as electrode of reference, a large platinum wire spiral as counter electrode, and 
vitreous carbon, with exposed area of 0.0314 cm 2 , as working electrode. The depo-
sition temperature was maintained at 28 °C. The vitreous carbon electrode was pol-
ished with alumina of 3.75 and 1.87 μm to obtain a mirror fi nish, and it was rinsed 
with Milli-Q water in an ultrasonic bath. The solution was deaerated by argon bub-
bling before and maintained under argon atmosphere during each experiment. For 
the study of the electrochemical behavior of the prepared particles, Ag/AgCl(s)/
NaCl (1 M)/NaOH 0.5 M was used as reference electrode. Electrochemical experi-
ments were carried out using a microcomputer-controlled potentiostat/galvanostat 
Autolab PGSTAT30 with GPES software. 

 A Hitachi H-4100FE was used for the observation of the different samples.  

    Results and Discussion 

 A voltammetric study of the cobalt electrodeposition process in the selected solu-
tion was performed to defi ne the suitable potential range to prepare cobalt particles 
with low interference of hydrogen evolution. A 50 mV s −1  scan rate was selected, 
with a starting potential at which no redox process takes place (−0.3 V), scanning 
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fi rst to negative potentials. The voltammetric curves show, for moderate cathodic 
limits, the typical nucleation and growth loop characteristic of the electrodeposition 
processes (Fig.  1  – all fi gures are ours and previously unpublished). Reduction cur-
rent was detected from around −0.9 V at the selected scan rate. A single oxidation 
peak, centered at −0.2 V, was recorded, refl ecting the oxidation of only the depos-
ited cobalt and the absence of cobalt oxides or hydroxides in the substrate under 
these preparation conditions.

   From the voltammetric results, different potentials were selected to prepare 
cobalt submicrometric particles. The potentiostatic technique was used, and the 
deposition charge was adjusted to very small values to avoid the formation of cobalt 
fi lms. The equilibrium potential observed from the voltammetric curve was around 
−700 mV, and deposition potentials in the −750 to −850 mV range were selected to 
favor slow growth of the deposits, taking into account the crystallization overpoten-
tial. Figure  2  shows the chronoamperometric curves corresponding to cobalt depo-
sition at different potentials, maintaining in all cases a deposition charge of 95 mC 
cm −2  (0.5 μmol Co cm −2 ). The j-t slope (and therefore the deposition rate) varied 
drastically with the applied potential. At −750 mV, very slow process occurred, and 
1400 s of deposition were necessary to attain the desired charge. However, only 70 s 
were required at −850 mV to transfer the same charge.

   The reproducibility of the deposition process can be observed in Fig.  3 , in which 
the same j-t transient was obtained at the same potential using different vitreous 
carbon rods to obtain deposits of different charge.

   The deposits of low charge (95 mC cm −2 ) obtained through the described poten-
tiostatic curves were observed by FE-SEM (Fig.  4 ).
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  Fig. 1    Voltammetric curve of the CoCl 2  0.5 M solution, pH 4, on vitreous carbon electrode. 
Starting potential: −0.3 V. Cathodic limit: −1.0 V.  v  = 50 mV s −1        
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   At very low deposition potential (−750 mV), monodisperse cobalt particles 
homogeneously distributed on the substrate were obtained with an average size of 
140 nm for the applied deposition charge (detail in Fig.  5 ).

   By decreasing the deposition potential to −800 mV, particles of different sizes 
were obtained, revealing the progressive nucleation and simultaneous growth and 
aggregation of the particles. The greater ones present a star-like morphology (Fig.  5 ) 
as corresponds to an hcp crystalline structure of the cobalt particles, and they range 
between 250 and 600 nm. For more negative deposition potentials (−850 mV), a 
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  Fig. 2    Cronoampero metric curves of cobalt deposition on vitreous carbon substrate at ( a ) −750, 
( b ) −800, ( c ) −850 mV       
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high quantity of cobalt particles of similar size (around 200 nm) were observed; the 
increase of the overpotential leads to instantaneous nucleation and growth and, con-
sequently, to particles of similar size. However, coalescence between the star-
shaped particles was observed, favored by raising the deposition charge. The 
increase of the deposition charge leads to defi ne clearly the cobalt nanostructures 
(Fig.  6 ). The  desert rose  shape observed is the typically one almost universally 
detected for electrodeposited hcp cobalt [ 15 ].

   From these results, very low deposition potentials and low charges were required 
to obtain isolated cobalt particles, homogeneous in size. A potential of −750 mV 
was selected to prepare cobalt particles of around 150 nm. 

 Different vitreous carbon/Co particle replicas were further immersed in a Na 2 PtCl 6  
1 mM solution for different times between 10 and 120 s. For each sample, after treat-
ment with the platinum solution, an electrochemical test of the particle’s behavior in 
NaOH 0.1 M solution was performed to detect partial or total recovery of the cobalt 
particle by a platinum layer. This electrochemical detection of Pt would involve 
underpotential deposition of oxygen and hydrogen within the potential range of stabil-
ity of water. Figure  7  shows the voltammetric profi les, at 50 mV s −1 , for the vitreous 
carbon/Co-Pt particle samples. As reference, the voltammetric profi le of both electro-
deposited pure cobalt particles (Fig.  7a ) and platinum wire (Fig.  7d ) were recorded.

  Fig. 4    Co particles electrodeposited from a CoCl 2  0.5 M solution, pH = 4, over vitreous carbon 
substrates at different potentials. Final coverage is 0.5 μmol Co cm −2        
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   Figure  7b  shows that after only 10 s of immersion in the platinum solution, some 
characteristic features of pure platinum can be just detected: those corresponding to 
superfi cial platinum oxidation and reduction of the superfi cial oxides. However, the 
characteristic peaks of hydrogen adsorption were not clearly pointed out at this 
stage. By increasing the immersion time, both the superfi cial platinum oxidation 
peaks and hydrogen adsorption current were detected (Fig.  7c ), which reveals 
higher coverage of the particles. The similar voltammetric profi le of the particles 
immersed in platinum solution at 60 and 120 s demonstrates the total coverage of 
the cobalt particles by the platinum layer after 60 s of immersion, i.e., the formation 
of Co-Pt core-shell particles of submicrometric size. 

 Therefore, it is worth to note that the recording of the voltammetric profi le of the 
samples in a blank solution is a good tool to in situ follow the formation of a shell 
of platinum on the cobalt particles. 

  Fig. 5    Detail of the Co electrodeposited particles of Fig.  4        

  Fig. 6    Coalesced Co 
particles electrodeposited 
from a CoCl 2  0.5 M 
solution, pH = 4, over 
vitreous carbon substrates 
at −850 mV and  Q  = 160 
mC cm −2        
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 Electrochemical experiments demonstrate that platinum can easily substitute 
both the superfi cial cobalt of the electrodeposited particles and the native cobalt 
oxides. The applicability of the covered particles in catalytic purposes was tested. 
It has been reported that the catalytic activity of Pt can be enhanced by alloying it 
with nonprecious metals such as Fe, Co, or Ni [ 16 ]. Also, it has been reported that 
the spontaneous formation of a Pt skin layer, which presents a modifi ed electronic 
structure on the metal surface, results in the increase of the ORR activity [ 17 ]. 
The Pt skin maintains the durability of the particle, keeping the stable structure of 
the catalyst particle, particle size, and dispersed state. 

 In this respect, the possible electrocatalytic properties of the prepared Co-Pt 
particles were analyzed by testing, in this case, their reactivity for methanol oxida-
tion. Two different concentrations of methanol in NaOH 0.1 M were studied. The 
voltammetric curves in the presence of methanol in solution were recorded and 
compared with the profi les of the same particles in the NaOH solution. A defi ned 
oxidation peak corresponding to methanol oxidation is clearly observed previous 
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to the surface oxidation current of the platinum shell (Fig.  8 ). By comparing the 
position of the methanol oxidation peak with that recorded with a pure platinum 
wire (Fig.  9 ), signifi cant increase in the oxidation rate is detected at lower poten-
tials. This demonstrates that the cobalt particles totally coated with a platinum shell 
were more catalytic for this particular reaction, as corresponds to a new structure 
that differs from the conventional bulk platinum surface. A modifi cation of the cell 
parameter of the platinum of the shell with respect to that of pure Pt fcc phase is 
possible, when it is incorporated in the crystalline cell of the cobalt. The infl uence 
of the Pt-Pt distance in platinum alloys or platinum layers over the catalytic prop-
erties of this metal has been previously demonstrated [ 18 ].

    In order to test if the advancement of the methanol oxidation over Co-Pt nanopar-
ticles with respect to the process on Pt wire is due to the specifi c properties of the 
platinum layer over the cobalt core or to the size of the particles, pure platinum 
nanoparticles were prepared on vitreous carbon substrate and its effect on the meth-
anol oxidation process tested. 

 A 1.2 mM Na 2 PtCl 6  + 0.1 M NH 4 Cl + 0.16 M boric acid, pH = 4.5 solution was 
prepared to perform the platinum deposition. A voltammetric study of this solution 
on vitreous carbon substrate was carried out to detect the potential value at which 
platinum begins to deposit. The appearance of the superfi cial platinum oxidation 
peak in the anodic scan was defi ned as a criterion to detect the formation of plati-
num deposit (Fig.  10 ). It was necessary to scan up to a minimum potential of −265 
mV to induce the reduction of hexachloro platinate to platinum.

   Platinum deposits on vitreous carbon were prepared potentiostatically. A poten-
tial of −285 mV was selected to induce the formation of platinum particles, avoid-
ing the coalescence between them. Simultaneously, the deposition charge was fi xed 
to very low value (190 mC cm −2  corresponding to 0.5 μmol Pt cm −2 ). Figure  11  
shows the morphology of the vitreous carbon/platinum substrates.
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   The applied potential allows the formation of rounded platinum nanoparticles 
(NPs), both in stirring (A) and in stationary (B) conditions. The size of the nanopar-
ticles in each case is very homogeneous. Stirring of solution during platinum depo-
sition favors the nucleation on the vitreous carbon leading to small particles (around 
200 nm). For the same deposition charge and potential, nonstirring conditions lead 
to the formation of less particles of larger size. 

 The  vitreous carbon/Pt NP  substrates (Fig.  11a ) were tested in the NaOH solu-
tion, resulting in a similar profi le to that obtained with the platinum wire, although 
the region of hydrogen adsorption/desorption potentials is less defi ned (Fig.  12 , 
 solid gray line ). When methanol was added to the NaOH solution, the onset of the 
methanol oxidation process on  vitreous carbon/Pt NPs  substrate coincides with the 
value observed over the platinum wire. On the other hand, when the voltammetric 
profi les of  vitreous carbon/Co - Pt particles  and  vitreous carbon/Pt NPs  substrates in 

  Fig. 11    Pt particles electrodeposited from a 1.2 mM Na 2 PtCl 6  + 0.1 M NH 4 Cl + 0.16 M boric acid 
solution, pH = 4.5, over vitreous carbon substrates at −265 mV. 0.5 μmol cm −2        

30

20

10

0

i /
 m

A

−10

−20

−30
−0.8 −0.6 −0.4 −0.2 0

E / V

0.2 0.4 0.6
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NaOH-methanol solution were compared, a clear advancement of the oxidation was 
observed for the Pt-covered cobalt particles, which corroborates the better catalytic 
properties of the platinum layer in the recovered cobalt particles.

       Conclusions 

 The electrodeposition process using potentiostatic techniques allows preparing 
cobalt particles of tailored size as a function of the applied potential and deposition 
charge. Vitreous carbon substrate and very low overpotentials were necessary to 
attain low nucleation and very slow deposition growth. In this way, monodisperse 
isolated particles of around 100–150 nm can be formed over the carbon substrate. 
Both potential and time must be strictly controlled to avoid either the coalescence 
of the particles or the formation of particles of different size. 

 Superfi cial substitution of cobalt and probably native cobalt oxides by platinum 
takes place easily by means of a galvanic displacement reaction when substrates are 
immersed in a Pt(IV)-containing solution. The detection of the coverage of the Co 
particles and the further formation of Co-Pt has been tested voltammetrically. 
The comparison of the profi les of the recorded voltammograms, after the immersion 
of the Co particles in the solution containing Pt(IV), in an NaOH test solution, 
allows to establish the formation of a continuous layer of platinum. 

 The test of the behavior of the obtained particles with respect to the methanol 
oxidation reaction demonstrates that it is possible to substitute pure cobalt particles 
by particles with better surface properties like those of platinum. These particles 
contain a core of the nonprecious metal and the catalytic reactivity something better 
than that obtained using pure platinum. This method could be extended to other 
metallic cores following a similar procedure. A probable modifi cation of the Pt-Pt 
distance in the shell with respect to that of pure platinum can justify the modifi ca-
tion of its catalytic properties.     
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in this chapter. The main focus is given on how to perform the material selection
and formulation of printable dispersion in order to develop functional films for
electrochemical applications.
This chapter is divided into four main parts. Firstly, a brief introduction on

electrochemically active nanocrystalline metal oxide films developed via print-
ing techniques is given. This is followed by the description of the film morphol-
ogy, structure, and required functionality. A theoretical approach to understand
the impact of size and shape of nanoparticles on an ink formulation and electro-
chemical performance being the subject of the third section provides a greater
control over the material selection. We attempt to describe these properties and
show that for a given material, geometry and size of the nanoparticles have a
major influence on the electrochemical reactivity and response time. This gives
the ability to tune the performance of the film simply by varying the morphology
of incorporated nanostructures. This section is completed by the recommenda-
tions on each major step of an ink formulation, together with imposed critical
constraints concerning the fluid control. Finally, the performance of the ink-jet-
printed dual-phase electrochromic films is discussed as a case study.
By providing such a rather systematic survey, we aim to stress the importance

of proper design strategy that would result in both improved physicochemical
properties of nanoparticle-loaded inks and enhanced electrochemical perfor-
mance of printed functional films.

Keywords
Electrochromic device • Ink-jet-printing • Metal oxide • Nanoparticle engineering •
Printed electronics

 Introduction

One of the most active trends in applied electrochemistry is the development of
metal oxide (MOX) nanoparticles (NPs) with structural, electrical, and optical
properties tailored to the specific application such as chromic devices [1–3], pho-
tovoltaic cells [4], photocatalytic systems [5–8], energy storage devices [9–13],
electrolyte-gated TFTs [14, 15], gas sensors [16–18], and electrocatalytic biosen-
sors [19, 20] (see Table 1). Features of those nanostructures are equally as impor-
tant as their processability, enabling thin-film formation with desired functionality
[21, 22]. The combination of these two requirements implies a need for a set of
engineering rules combining selection/synthesis of the nanocrystalline material
and technologically oriented aspects of printing methods into one consistent
theory.
Many attempts have been made to deposit previously synthesized MOX NPs in

order to form an electrochemically active nanocrystalline film via drop-casting [2],
dip-coating [23], or electrophoretic deposition [24, 25]. In other studies, MOX 
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nanostructures were grown directly on TCO (transparent conductive oxide)-coated
glass substrate by crystal-seed-assisted hydrothermal synthesis [1, 26]. However,
obtaining a uniform nanocrystalline film with good adhesion to the substrate and
desired functionality still remains a challenge. As it was previously reported by our
group [27, 28], the advent of printing deposition techniques has led to new possi-
bilities in a field of thin solid films based on MOX NPs. Printing techniques, apart
from being widely use in graphics, are promising and attractive fabrication methods
for a cost-efficient “low-end” electronics. An innovative and dynamic research in

Table 1 Examples of an electrochemically active MOX NPs with corresponding deposition
technique and application

Material Deposition technique Application Reference

WO3 nanoplates Hydrothermal growth
using spin-coated seeds

Electrochromic [1]

WO3 nanorods Drop casting Electrochromic [2]

WO3nH2O Drop casting Photochromic [3]

ZnO nanowires Bath growth using
dip-coated seeds

Dye-sensitized
solar cells

[4]

TiO2 nanorods Particulate suspension Photocatalysis [5]

WO3 Particulate suspension/
doctor blade

Photocatalysis [6]

WO3 Doctor blade Photocatalysis [7]

α-Fe2O3 Spray pyrolysis Photocatalysis [8]

TiO2 nanosheets
and nano-octahedra

Charge storage [9]

WO3 nanorods Compressing to pellets Charge storage [10]

MnO2 Plating into gold nanopores Charge storage [11]

In2O3 Ink-jet printing Electrolyte-
gated TFTs

[14]

In2O3/SnO2 (ITO) Spin coating Electrolyte-
gated TFTs

[15]

WO3 Drop casting Gas sensing [16]

WO3 nanoplates Drop casting Gas sensing [17]

3D WO3 nanowall Drop casting Gas sensing [18]

MnO2-based colloid Drop casting/
electrodeposition

Electrocatalytic
biosensors

[19]

Hierarchical
WO30.33H2O

Dip coating [23]

WO3 nanorods Electrophoretic deposition Electrochromic [24]

V2O5 Electrophoretic deposition Electrochromic [25]

Hierarchical WO3 Hydrothermal growth
using crystal seeds

[26]

TiO2 Ink-jet printing Dye-sensitized
solar cells

[27]

a-WO3/TiO2/WOX Ink-jet printing Electrochromic [28, 29]
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this area results in new materials and devices, demonstrating their potential to cope
with ever-changing requirements and challenges of the electronic market. It was
demonstrated that the application of ink-jet printing for deposition of MOX disper-
sion provides an excellent method for the production of inorganic thin films with
controlled composition and microstructure for electrochemical devices such as dye-
synthesized solar cells (DSCs) [27] and electrochromic (EC) windows/displays
[28, 29]. The use of printing techniques is particularly promising for electrochemi-
cally active film development, because of its merits of low processing energy, precise
patterning with reduced raw material waste, high throughput, and flexibility in
deposited film composition.
Tomake genuine progress in the development of printed electrochemical devices,

it is necessary to take the time to study the problem for which an engineering solu-
tion is desired in a broad and interdisciplinary context. In order to define a strategy
for MOX NP-based printed devices, one must consider the requirements and charac-
teristics of electrochemically active material. Previous studies have shown that
MOX NP content strongly influences the final performance of ink-jet-printed elec-
trochemically active films [28, 29], underlying the demand to understand the role of
the NP properties, along all stages of their development and processing. Therefore,
the selected strategy is based on a correlation between NP properties and further
technological steps that lead to the development of a functional film for an electro-
chemical device. These technologically oriented aspects of printing methods consist
of the following:

(a) Formulation of the MOX NP dispersion according to the objectives related to
chemical composition and fluid flow aspects

(b) Film deposition with regard to the fluid properties, selected printing technique,
and substrate

(c) Posttreatment process in which printed layer is subjected to external factors
(usually highly energetic process), in order to set the required functionality

(d) Film validation in terms of physical aspects and electrochemical performance

In this chapter, we attempt to show a general view on how we can perform both
the MOX NP selection and formulation of printable dispersions in order to develop
functional films for electrochemical applications. The grain size, shape, crystallin-
ity, and stoichiometry of MOX NPs incorporated into the printed film are dependent
only on the origin of those crystals and are defined at ink/paste formulation stage
[28, 29]. This flexibility in material selection not only endows printed electrochemi-
cal devices with a better chemical stability but is also responsible for the superior
performance, e.g., shorter response time or higher reactivity. Therefore, the versatil-
ity of this method makes it an ideal tool for creating materials with predictable and
controlled properties, while maintaining their good processability via printing
techniques.
To assure the desired electrochemical performance and processability, the crite-

ria for MOX NP size, shape, crystallinity, as well as the uniformity and agglomera-
tion mechanism are going to be established in following subsections.
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 Electrochemically Active Nanocrystalline Films

 Morphology of Printed Films

Nanocrystalline film is a special category assigned to polycrystalline layers of NPs.
Furthermore, the NPs forming the film can be either sintered (mesoporous) or embed-
ded in an amorphous matrix (dual phase). Figure 1 gives a generalized overview
presenting both kinds of NP-loaded printed films for electrochemical applications.
From the broad range of available film morphologies used typically in electro-

chemical applications [30], only these two are so far feasible in a printing process.
Due to the technological limitations, development of, e.g., vertically aligned

Fig. 1 Schematically presented nanocrystalline material for electrochemical applications as (a) 
mesoporous and (b) dual-phase films; the electron paths were drawn with respect to their electrical
transport properties
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ordered nanostructures or nanoarrays is not possible via printing process. Printed
mesoporous film shown in Fig. 1a is developed using NP-loaded dispersion, usu-
ally stabilized by polymeric additives. Once the dispersion is deposited on a sub-
strate, its liquid components, i.e., solvents, NP stabilizers, thickeners, wetting
agents, and surfactants, are no longer needed. Unfortunately, additives typically
used to stabilize dispersions of MOX NPs in a liquid medium are long-chain mol-
ecules with high evaporation temperatures, which are difficult to eliminate and
usually require high energy to be applied. Such additives may deteriorate or even
inhibit electrochemical reaction. The posttreatment process which may include
application of elevated temperature or more specific techniques such as photonic
pulse curing or UV irradiation is performed in order to form and dry the film,
organic burnout or sintering of NPs. On the other hand, high temperature may
affect morphology and microstructure of NPs, due to their thermal instability [31].
As an alternative to energy requiring methods, a dual-phase composition of the

film shown in Fig. 1b can be induced by mixing NPs with liquid sol–gel precursor
or overprinting the NP film by sol–gel precursor. Resulting film contains randomly
dispersed nanocrystals in a continuous amorphous matrix of the same MOX, which
provides conductive medium for electrons and ions and physically bonds the NPs to
the surface of the substrate. This approach was successfully applied in the develop-
ment of printed EC films based on sol–gel precursor and NPs of WO3 [28]. The
sol–gel precursor of WO3 formulated from peroxopolytungstic acid requires rela-
tively low temperature of 120 °C for 1 h in order to condensate and densify, result-
ing in a non-soluble film [32]. However, formation of other metal oxides, such as
ternary Mx1My2Oz films (where M1 and M2 are metals such as In, Ga, Sn, or Zn), by
standard sol–gel route requires an annealing step at relatively high temperature
(>250 °C) [33]. In order to overcome this issue, a photochemical activation by deep
UV irradiation at low temperature should be applied to provide an amorphous MOX 
matrix [34]. In this method, photo-induced condensation and densification of the
wet gel film resulted in device with excellent electronic performance.
The main difference between mesoporous and dual-phase film microstructure

lies in the character of interconnections between NPs. Randomly oriented NPs are
separated by grain boundaries in case of nanocrystalline films or interfacial amor-
phous regions in dual-phase counterpart. Also the thickness of the printed nanocrys-
talline electrodes depends on the film morphology. Too thick mesoporous electrode
leads to the higher resistance and thus reduction in the efficiency of electrochemical
process (e.g., conversion efficiency of DSC). In case of dual-phase morphology
used in EC devices, two thick films prevent EC action to take place. The optimum
thickness is typically around 10 μm in mesoporous TiO2 film in DSCs and 1 μm in
dual-phase a-WO3/WOX film in EC devices.
This generalized overview shows nanocrystalline material with length scale in all

three dimensions which corresponds to quasi-spherical NPs. However, restriction of
nanocrystalline regions to one or two dimensions (rod-shaped or layered NPs,
respectively) results in an anisotropic charge transport, which is beneficial from
electrochemical point of view. Electron transport in elongated shape NPs is much
faster than percolation through a network of quasi-spherical crystals [4].
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Another aspect is related to the disorder at the interface between neighboring
NPs. Regardless of the film morphology, one particular weakness is the presence of
a massive number of interfacial boundaries acting as trap sites for electron trans-
port. Such trap-limited diffusion lowers overall efficiency of electrochemical
device. Grain boundaries in mesoporous films have smaller disorder when compar-
ing with amorphous interface in dual-phase film. However, in the second variant, by
reducing the NP size and increasing solid content, the volume fraction of interfacial
regions can be significantly reduced.

 Required Functionality

Printed nanocrystalline films described previously can be used interchangeably,
unless a technological step exists in a device development which is not compatible
with a given film morphology. A typical example is dye molecules anchoring on a
surface of MOX NPs, as an integral step in DSC development. The mesoporous
structure can be easily penetrated by a solution of dye, while in the case of dual-
phase film, the dye is able to anchor only on the surface of the amorphous layer.
Similarly, in electrocatalytic biosensors, immobilization of enzymes on the specific
surface area requires proper wetting of the mesoporous structure. Therefore,
the application of dual-phase film in DSCs and catalytic biosensors is very limited.
In other electrochemical devices based on MOX films such as electrolyte-gated
TFTs, EC displays/windows, or energy storage devices, the application of dual-phase
films seems to be less restricted.
Another aspect is related to the posttreatment of the mesoporous film, which is

necessary in order to sinter NPs and provide electron percolation paths. The appli-
cation of elevated temperature to sinter nanocrystalline film deposited on flexible
substrates is limited due to the heat sensitivity of those materials. Maximum pro-
cessing temperature is 90 °C for regular paper, 130 °C for polyethylene tere-
phthalate (PET), 160 °C for polyethylene naphthalate (PEN), and 250 °C for
polyimide (PI), which irrespectively of the NP size is not sufficient to sinter most
of MOX materials.
As a summary of this section, we can point out some basic requirements, which

should be fulfilled in order to obtain well performing nanocrystalline film. From the
electrochemical point of view, the film must:

(a) Provide high surface area for electrochemical reaction (e.g., large surface area
for dye absorption in DSC)

(b) Allow effective diffusion of electrolyte ions into the interface/surface
(c) Provide sufficient electronic conductivity (e.g., fast charge compensation in EC
device, low recombination rates in DSC)

(d) Be mechanically stable having good adhesion to the substrate
(e) Assure negligible deviation from the reversibility according to the application
requirements
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(f) Provide other specific functionalities if required, such as high transparency in a
visible range (in the case of, i.e., EC and DSC)

(g) Be compatible with device processing (e.g., enables dye absorption onMOXNPs,
low processing temperature for film deposited on heat-sensitive substrates)

 Influence of Chemical and Crystallographic Structure 
on Electrochemical Performance

The nature of electrochemical reaction depends on a distinct mechanism governing
the interaction between MOX and ions. In some materials (e.g., SnO2 or PbO2),
alloying/dealloying processes are responsible for reversible reaction with ions [35]. 
In other MOX (e.g., TiO2 or WOX), ions are inserted/deinserted into/out of the crys-
tal network [36]. In transition, MOX (e.g., FeXOY, NiXOY, CoXOY, RuO2, IrO2, or
MoO3) reaction with ions is conducted through an unusual conversion reaction [37].  
In many other MOX (e.g., ZnO, In2O3, or ternary and quaternary oxide systems such
as indium zinc oxide (IZO), zinc tin oxide (ZTO), indium zinc thin oxide (IZTO),
or indium gallium zinc oxide IGZO)), the reaction with ions is surface limited,
inducing field effect in the NP volume [14].
Ion-intercalation reaction is strongly dependent on chemical and crystallographic

structure of MOX, while ion diffusion coefficient and the length of diffusion path
depend on NP microstructure [38, 39]. High electronic conductivity of crystalline
phase leads to the enhancement in lithium ion diffusion rate. As an example, the
electronic conductivity of stable WOX NPs was reported to be the highest for ortho-
rhombichydrate (ortho-WO3 ·0.33H2O)andgradually smaller for sub-stoichiometric
(WO3−y where 0≤ y ≤3), monoclinic (m-WO3), and hexagonal (h-WO3) structure,
respectively [40].Thehighchargecarrier concentration inanhydrateWO3−y(0 ≤ y ≤3)
is explained by non-stoichiometry, where the free electrons are balanced by much
less mobile oxygen vacancies. Better electron transport is also a product of an inter-
nal electric field which separates the electrons from the surrounding electrolyte and
sweeps them toward the collection electrode (e.g., in DSCs) or active site (e.g., in
EC device). However, in order to support such radial electric field (depletion layer),
the minor axis width of the 1D or 2D NP should be big enough (higher than Debye–
Hückel screening length) in regard to carrier concentration in a given MOX.
Fast insertion/extraction of ions in EC and energy storage devices may be

achieved by short diffusion length typical for 1D or 2D shapes and NPs of small
size. The smaller NP dimensions, the shorter diffusion path length. In case of stor-
age devices such as thin-film batteries or super capacitors, the charge–discharge
capacity was found to be inversely proportional to the NP size [13]. The insertion/
extraction dynamics is related to the energy barrier for diffusion (preferred crystal-
lographic orientation of the facets exposed to the electrolyte) [9]. Electrochemical
properties of the MOX NPs are particularly sensitive to atomic surface structure also
in other devices. As an example, anatase TiO2 has been proved to show the highest
photo-electrochemical performance among all possible crystallographic phases of
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this MOX [41]. Moreover, the crystallographic orientation of exposed facets has
been demonstrated to play the major role in defining its intrinsic properties and thus
its catalytic activity [5, 9]. The wide bandgap semiconductors such as TiO2 become
one of the best choices to form mesoporous layer in DSCs. However, ZnO was
found to be a promising alternative to TiO2, mainly due to the much higher elec-
tronic mobility [42–46], which improves the electron transport and reduces recom-
bination loses [47, 48].
These conduction phenomena assure efficient charge compensation during the

redox process and hence improve the response time of the films in EC devices and
electron collection in DSCs. When the size of NPs dispersed in a film decreases, the
trapping and scattering effect of free charge carriers on grain boundaries result in
increased film resistivity. If the size of NPs is smaller than electron mean free path,
the scattering on grain boundaries dominates, and the advantage of nanocrystalline
composition is becoming negligible. Design of NPs with proper dimensions while
maintaining optimal crystallographic structure leads to fast response kinetics and
enhanced overall performance.

 Nanoparticle Engineering

 Size–Shape Impact: From Small Clusters to Massive Agglomerates

When the dimensions of a material system are reduced below a certain length, typi-
cally tens of nanometers, the physical properties, which are associated with this
length, may drastically change. Then, material properties are no longer solely given
by its chemical composition, but also by the size and shape of its nanoscale constitu-
ents [49, 50]. In the following section, we attempt to describe these properties and
show that for a given material, geometry (shape) and particle size have a major
influence on the overall electrochemical properties of a printed film. The size, as
well as the shape, of the NPs determines physical and chemical properties of the
material. The laws of quantum chemistry govern the smallest particles with sizes
ranging from less than a nanometer up to several nanometers. For particles with
sizes higher than tens of nanometers, the laws of solid-state physics hold. For the
intermediate sizes ranging from several to tens of nanometers, chemical and physi-
cal properties do not comply strictly with any of those theories [51]. In the follow-
ing section, we attempt to correlate electrochemical performance of NP-loaded
films such as reactivity and response time with geometrical properties of NPs.
In the large range between molecules and massive agglomerates of particles,

three size–shape regimes can be distinguished in which electrochemical properties
are mainly related to distribution of atoms on the surface and in the bulk (regime I),
geometry of nanocrystals (regime II), and agglomeration process (regime III).
In order to transform the shape into mathematical form that still would contain its
geometrical description, let us use the aspect ratio (AR). This parameter is defined
as the length of the major axis (b) divided by the width of the minor axis (a) [52]. 
Using size–shape coordinate system, all three regimes can be schematically
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presented as it is shown in Fig. 2. The highest values of AR correspond to 1D
morphologies such as nanowires and nanorods. Medium values are typical for
2D morphologies such as nanolamellas, nanoplates, and nanodisks, while the low-
est values are the domain of 3D morphologies such as nanocubes or nanospheres.
In the following subsections, we provide deeper considerations on size–shape

impact on electrochemical performance of MOX NPs. We deduce that the minimum
response time of those nanostructured systems can be achieved in a first regime of
the size–shape space. On the other hand, the electrochemical reactivity is attributed
mainly to the shape of the NPs and can be maximized in the second regime with
increase in active surface area. When the NPs are becoming larger entering the third
regime, the agglomeration process caused the properties’ deterioration and hence
lowered the electrochemical performance of the material.

 Small Clusters
Irrespectively of the size, an important factor for electrochemical reactivity, that is, the
rate at which the electrochemical reaction will proceed, is the area/volume ratio of the
nanosized object. In the first size regime, in which NPs are larger than molecules and
smaller than tens of nanometers, electrochemical properties are strongly dependent on
surface-to-volume atomic ratio (SA:V(a)), defined as the number of surface atoms to
the number of bulk atoms [53, 54]. It should be noted that by the number of atoms in
case of MOX, we understand the number of electrochemically active sites, which
means the number of metal atoms. Therefore, let us consider spherical WO3 cluster in
which each tungsten atom serves as potential electrochemically active center chang-
ing from transparent state to a colored state. A schematic drawing of the cross section
of monoclinic WO3 spherical cluster with diameter of 5 nm is presented in Fig. 3.

Fig. 2 Electrochemical properties of MOX NPs in the size–shape coordinating system
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According to calculations for such cluster (see Fig. 4), high percentage of
electrochemically active sites at the surface of NP (let us assume a hollow sphere
with thickness of 0.5 nm), being in contact with electrolyte, is a characteristic for
nanostructures with mean particle size ranging in the first regime. In the cluster of
around 2 nm in diameter, 85 % of tungsten atoms are located on the surface
(SA:V(a) =5.7), while in cluster of 5 nm in diameter, tungsten atoms are distributed
equally in the surface and bulk (SA:V(a) = 1).
According to the electrochromism theory, the mechanism of optical modulation

is different in crystalline and amorphous phase. In nanocrystalline, WOX 

Fig. 3 Schematic drawing of the cross section (along [111] plane) of monoclinic WO3 spherical
cluster with diameter of 5 nm; in this case, tungsten atoms are distributed equally, 50 % in the
surface hollow sphere and 50 % in the bulk ball which gives SA:V(a) =1; an equation represents
generalized mechanism of electrochemical reaction for coloring action
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electrochromism arises due to the increasing Drude-type (metallic) reflection,
observed especially in IR region with increasing free electron/lithium injection
[55]. On the other hand, in amorphous phase, the most widely accepted model
assumes that the optical modulation upon the double injection occurs through
increasing absorption arising from the transfer of localized electrons between W5+ 
and W6+ sites, the so-called small polaron absorption [56–58]. Figure 3 presents
generalized mechanism of electrochemical reaction of coloring in EC NP. It is
assumed that WO3 NP in transparent state can be switched reversibly to a colored
state by both insertion of ions and electrons to form tungsten bronze (a-LiyWO3,
where y is the fractional number of sites filled in the WO3 lattice). Although being
an obvious oversimplification, presented schema provides a very convenient back-
ground for further discussion. In considered situation, WO3 NP is in contact with
ion (Li+) conductor, which also serves as ion storage, and electron (e−) conductor as
negative charge collector/source. An electric field shuttles ions into and out of the
NP causing coloring (LiyWO3) and bleaching (WO3) action. A hollow sphere repre-
senting surface atoms is more conductive for ions and less conductive for electrons
when comparing with NP’s inferior made of bulk atoms. Therefore, the probability
of electrochemical reaction (redox) is the highest at the interface between surface
and bulk volume, where electrons meet ions leading to the formation of LiyWO3. 

Fig. 4 Relative numbers of tungsten surface/bulk atoms and SA:V(a) ratio as a function of spheri-
cal cluster diameter calculated for monoclinic tungsten oxide (ICSD: 98-009-1587)
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Moreover, high SA:V(a) ratio drastically reduces response time due to the fast charge
compensation during the redox process [59].
In theMOX-based electrolyte-gated TFT, external voltage applied to semiconductor/

electrolyte interface causes creation of space-charge regions which consists of
charged immobile donors or acceptors or by mobile electrons or holes from the
conduction and valence bands, respectively. High amount of surface atoms and low
sizes result in grains wholly filled with space-charge region, improving current
switching characteristics. In those NPs, the electrical conduction is no longer con-
trolled by the grain boundaries, but by the grain itself.
Similarly, in MOX-based chemical gas sensors, the space-charge region extended

to the whole NP volume causes significant improvement in the sensitivity.
Additionally, much higher concentration of surface defects leads to a higher surface
reactivity, when comparing to their hundred nanometer-sized counterparts. Thus,
the use of materials with the mean particle size ranging in the first regime signifi-
cantly improves the gas-sensing properties [60, 61]. The large active surface area
enhances the material sensitivity, while the faster response is related to short diffu-
sion paths and rapid grain boundary diffusion.

 Shaped Nanocrystals
In the second regime of size–shape coordinating system, which comprises NPs
higher than tens and lower than several hundreds of nanometers, electrochemical
properties are dependent rather on geometric shape than size. Electrochemical
properties in this size range are strongly dependent on surface-to-volume ratio
(SA:V) defined by means of geometric surface area to the volume of the object.
Let us use the aspect ratio (AR) to analyze various NPs with primary and regular
shapes drawn in Fig. 5. Please note that presented considerations are valid as

Fig. 5 Theoretical examples of various regular shaped NPs: (a) nanocube (3D), (b) square base
nanorod (1D), (c) hexagon base nanorod (1D), (d) nanoplate (2D), and (e) nanodisk (2D)

24 Metal Oxide Nanoparticle Engineering for Printed Electrochemical Applications



796

long as ideal dispersion of NPs is concerned. This means that we consider the
products of a synthesis which consists of separated nanocrystals with equal vol-
ume and shape.
Accordingly, sphere and cube are characterized by AR=1. The SA:V parameter

for other regular shaped NPs can be calculated using equations presented in Table 2. 
Although it is very rare in practice to synthesize such ideal shaped nanostructures,
by plotting SA:V in a function of AR, we can get an idea of how those regular shape
may influence electrochemical reactivity.

Table 2 Relations between
AR and SA:V derived from
various regular shaped NPs

Shape AR SA V AR: = ( )f

Nanorod (square base) b

a

2 4
2

a

b b
AR AR+

Nanorod (hexagon base) b

a 3
2 3 4

2

a

b b
AR AR+

Nanoplate b

a

2 4
2b

a

b
AR AR+

Nanodisk 2r

a

1
2r

a

r
AR AR+

Fig. 6 Simulation of
SA:V as a function of AR
for various regular shaped
NPs. Variables a and b 
were selected according to
the simple assumption that
the volume of all
individual particles is equal
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Plots presented in Fig. 6 indicate that nanoplates and nanodisks are the most pref-
erable shapes of NPs in terms of SA:V value. Along with enhanced anisotropy of NPs,
and thus higher AR value (conventionally for AR>20), nanoplates, nanodisks, and
nanorods transform into nanoribbons, nanomembranes, and nanowires, respectively.
Nanostructured MOXNPs with high SA:V and high AR enhance electrochemical

performance of printed nanocrystalline films in two different ways: firstly, in terms
of electrochemical reactivity manifested differently depending on the device func-
tionality. Higher values of optical modulation in EC devices are obtained by
increased interaction with lithium ions due to the larger interface between NPs and
amorphous coating or NPs and electrolyte. The EC reaction occurs in electrochemi-
cally active sites, and so it will be favored as the number of active sites available at
the interface increases. High AR of NPs results in high roughness factor of the film
defined as the total film area per unit substrate area [4]. Due to high roughness of the
film, it is possible to increase the dye and enzyme loading in DSC and electrocata-
lytic biosensors, respectively. In DSC, high SA:V of MOX nanocrystalline electrode
indicates high area exposed to the sensitizer during the dye absorption and thus
higher number of light-sensitive active sites. The sensitivity and response time of
electrochemical gas sensors are also highly dependent on the SA:V [62]. Moreover,
large surface area is beneficial when placing of selective catalytic dopants is
concerned.
Secondly, electronically conductive network of elongated nanostructures

enhances conductivity of the film thanks to the anisotropic diffusion of electrons,
helping the electrochemical reaction to be completed faster (e.g., efficient carrier
collection in DSCs or decreased switching time in EC devices) [28]. Additionally,
semiconducting electrode form of elongated nanostructures provides a more direct
path, with less trap sites for electron transport to the collection electrode, and, thus,
reduces electron percolation deficiency [63]. The application of 1D-shaped NPs
may also introduce an internal electric field to provide additional driving force and
enhance electrochemical reaction.

 Agglomerates
An unfavorable aspect associated with MOX NPs from the third regime of size–
shape coordinating system is agglomeration which leads to the formation of mas-
sive blocks, significantly reducing SA:V. The relation between SA:V and the
number of agglomerated particles using a simple agglomeration model (see Fig. 7) 
is presented in Fig. 8. NPs of various shapes are described with simple assumption
that the volume of all individual particles is equal. Particles presented in such simu-
lation have primary and regular shapes with unit volume.
When considering the ideal dispersion of NPs in which agglomeration does not

occur, nanoplates and nanodisks are the most preferable in terms of SA:V value. For
agglomerated NPs, high values of SA:V are obtained for agglomerates of nanorods
(agglomerates consisting of more than three NPs), although their individual specific
surface area is not the highest among shapes under consideration. The least
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favorable seem to be nanocubes in the case of which SA:V is small for fine disper-
sions and significantly drops down with increased number of agglomerated parti-
cles. As it is very rare in practice to synthesize not agglomerated NPs, it may be
assumed that 1D nanorods are the most desirable products of synthesis as long as
their electrochemical application is concerned.
In contrast to the agglomerated NPs, hollow and hierarchical nanostructures

assembled in a highly periodic and porous manner generally exhibit much higher
SA:V [64, 65]. The van der Waals attraction between hierarchical structures is

Fig. 7 Basic agglomeration model for various regular shaped NPs: (a) nanocubes (3D), (b) square
base nanorods (1D), (c) hexagon base nanorods (1D), (d) nanoplates (2D), and (e) nanodisks (2D)
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relatively weak due to larger size, which makes them more advantageous in disper-
sions when comparing to anisotropic NPs. However, the large size of such particles
restricts their application in printable dispersions. The synthesis of highly porous,
hierarchical MOX nanostructures with sub-micrometer dimensions, although very
promising, is still a challenging issue.

 Fluid Control of Printable Dispersions

The development of printable functional MOX dispersion is strictly reliant on the
development of NPs. Thereby, the key issue is to select product with morphology
tailored to assure desired physical properties of its dispersion [66]. In this section,
we attempt to provide basic recommendations on each major step of an ink formula-
tion and impose critical constraints. The requirements for MOXNP-loaded ink/paste
in the area of printed electronics are the following:

(a) The dispersion must ensure reliable print under deposition conditions.
(b) Chemical and physical stability of the dispersion must be provided.

Fig. 8 Model of agglomeration for various regular shaped NPs; the volume of all individual par-
ticles is equal to 1; the term “ideal dispersion” refers to the situation in which agglomeration does
not occur
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(c) Printable formulation is not hazardous.
(d) Printed film must display required functional performance.

In general, printable MOX dispersions are two phase fluids consisting of a disper-
sion of NPs in a liquid carrier (aqueous or organic), the so-called vehicle. The viscos-
ity of such dispersion varies between 1 and 105 cP depending mainly on the vehicle
composition and is tailored for a specific printed technique. However, NP volume
fraction, their shape as well as particle orientation in a fluidic flow, may imply critical
consequences on viscosity especially when the drop-on-demand (DOD) ink-jet-
printing process is concerned [66]. Typical viscosities of NP dispersion for basic
printing techniques are presented in Fig. 9.
The viscosity of the dispersion can be easily increased to the acceptable level

without substantially modifying its other properties, by addition of thickening
agents. For inorganic solid/liquid mixtures, it can be a low boiling point, viscous,
and miscible with the vehicle organic solvent or soluble polymer, e.g., (for aqueous
ink) polyethylene glycol (PEG) or polyvinyl alcohol (PVA). However, there is
another aspect related to fluid viscoelasticity, which makes NP-loaded fluid control
much more complicated [67, 68]. Newtonian character of pure liquid is changing
radically with the addition of NPs, due to the increased viscoelasticity of the disper-
sion [69, 70]. The most drastic consequence may be observed in the case of ink-jet
printing, where the formation of the fluid drops from the nozzle is disrupted leading
to the formation of satellite drops, which deteriorate pattern quality. Nonlinear char-
acter of the share stress in a function of share rate affects also the droplet behavior
on a substrate surface in the moment of impact (deposition, splashing, or rebound)
and spreading (pattern size) [71]. In a roll-to-roll processing (R2R) of creating elec-
tronic devices on a flexible substrate, the viscoelasticity of dispersion may signifi-
cantly limit the printing speed. Therefore, the viscosity of the dispersion should not
change with shear stress applied in a broad range of values (10−2–102 Pa), which

Fig. 9 Dynamic viscosity values of MOX NP dispersions for various printing techniques
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means that Newtonian behavior of the fluid is expected [66]. In order to fulfill this
requirement, a solid content of the ink should be in a relatively low range of 0.01–1
wt%. Additionally, an agglomeration phenomenon among NPs is not desirable,
especially in the case of low viscosity dispersion, in which stability is the main
issue. Therefore, a narrow particle size distribution is recommended.
An exception among printing techniques under consideration is screen printing

in which shear-thinning behavior (viscosity decreases with applied shear stress) is
necessary to transfer the NP-loaded paste through printing mesh.
The surface tension value for typical low viscosity inks is between 30 and 40 mN

m−1. In order to adjust this parameter to acceptable range, the nonionic surfactant
such as, e.g., Triton X-100 or Triton X-45 can be added in the amount of 0.1–0.5
wt%. It is worth mentioning that the spontaneous movement of NPs toward the ink/
air interface may affect the surface tension. However, imposed changes usually do
not affect the printing process significantly, as long as proper ink rheology is
maintained.
In order to effectively disperse nanomaterial powder in a vehicle, breaking of NP

agglomerates and stabilization by pH modification, additions of surfactants or poly-
mers are required. However, liquid medium complexity may significantly deterio-
rate electrical performance of final printed films. Therefore, in a perfect situation,
NPs are dispersed in a pure water or aqueous alcoholic solution with no other
organic additives, which allows for low posttreatment temperature. Moreover, it is
crucial that the ink components are chemically compatible with the substrate they
will be printed on.
Selected or synthesized NPs must comply with important size limitation in order

to allow its usage in printing system. The most drastic restrictions are applied in
formulation of ink-jet-printable ink. It can be assumed (with some exceptions, e.g.,
nanorods alignment in a microfluidic flow [72, 73]) that the maximum particle size
should be at least 50 times smaller than nozzle diameter. If NPs are too large, the
nozzle may clog, and printing will simply stop. Moreover, larger NPs also increase
probability that the dispersion will suffer from particle precipitation and agglomera-
tion, unless the mixture is constantly agitated or special additives are included to the
large particles in dispersion.

 Design Rule Outline

Engineering rules presented in Fig. 10 have been developed as a summary of the
previous section existing in this chapter. In order to determine preferable regime for
printed electrochemical applications, each alternative was studied until the choice is
clear, rational, and optimal according to existing knowledge and common practice.
By following the diagram, one can formulate MOX NP-loaded ink which assures
good printing processability and enhancement in electrochemical performance.
Such design rule outline is an approach to proper arrangement of various factors
including structural, morphological, electrical, and rheological properties while
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taking into account posttreatment conditions. However, those eleven parameters do
not restrict the scope of research in this area. Many other factors may be considered
as relevant, depending on the studies complexity.
As presented here, engineering rules for NP selection and ink formulation have,

to a large extent, a universal character and may be implemented to create a variety
of new ink-jet-printable nanostructured MOX materials for chromic, photovoltaic,
photo- and electro catalytic, sensing, power storage, and basic electronic devices.
It can be also expanded to other printing techniques by establishing appropriate
physical and chemical constrains.

Fig. 10 The design rule outline for the formulation of MOX NP-loaded printable dispersions for
the development of electrochemically active films; preferable regime for electrochemical applica-
tions based on ink-jet-printed inorganic film is indicated
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 Case Study: Ink-Jet-Printed Dual-Phase Electrochromic Film

 Structure and Morphology of Synthesized Products

We have already used the size–shape coordinate system in order to illustrate specific
topics on MOX NP selection. We also presented the graphical design rule outline
which is intended to resume basic requirements for a dispersion formulation and
facilitate printing experiment. We will now consider this task in a more detailed way
so that the reader can appreciate the application of the several topics that were pre-
viously described in a complete worked-out case study.
Taking under account existing state-of-the-art and our own observations, it is

expected that the incorporation of WOXNPs synthesized in external process into the
amorphous matrix of the same MOX would enhance performance of printed EC
films. Accordingly, in the present work, WOX NPs with known structure and mor-
phology were synthesized and tested in a dual-phase EC device.
Among many wet chemical syntheses, hydrothermal treatment was selected to

synthesize WOX NPs as it seems to be the most facile, cost-effective, and well-
studied technique, which additionally offers flexibility in possible nanomorpholo-
gies [6, 16–18, 74–77]. An aqueous solution of peroxopolytungstic acid (PTA)
[78, 79] with controlled acidity [2] (addition of HCl) was used as a source of tung-
sten. Selected precursor was then subjected to hydrothermal conditions in Teflon-
lined stainless-steel autoclave, which imply elevated temperature (180 °C) and high
vapor pressure (~1.1 MPa) for a certain period of time enabling nucleation and
growth of crystallites. The products of syntheses are presented in Fig. 11. Product
obtained from non-acetified precursor solution indicates the coexistence of two
WOX polymorphs, namely, monoclinic (m-WO3, ICSD: 98-009-1587) and ortho-
rhombic tungsten oxide hydrate (ortho-WO3 ·0.33H2O, ICSD: 98-003-7822) in a
shape of nanoplates and nanorods, respectively. Lowering acidity of precursor by
dissolving PTA in 0.3 M HCl and 3 M HCl causes phase unification to ortho-
WO3 ·0.33H2O (ICSD: 98-003-7822) nanowires and m-WO3 (ICSD: 98-009-1587)
nanoplates, respectively.
The enhancement in lithium ion diffusion rate, and hence faster electrochemi-

cal response, is expected for films containing orthorhombic hydrate (ortho-
 WO3·0.33H2O) NPs due to the higher electronic conductivity of this phase when
comparing to monoclinic (m-WO3) nanocrystals [40]. Therefore, the products of
synthesis from PTA dissolved in non-acidified and 0.3 M HCl seem to be the most
desirable, as long as the crystallinity is concerned.
The ortho-WO3 · 0.33H2O nanorods synthesized from non-acetified precursor

solution are 116±48 nm long, ~40 nm wide, and ~20 nm thick (AR=5.8±2.4).
Rectangular m-WO3 nanoslab fraction of the same product has uniform thickness
of ~12 nm, while length varies in size of 223±85 nm (AR=18.6±7.1). The
 ortho-WO3 · 0.33H2O nanowires prepared from PTA dissolved in 0.3 M HCl
are 187±46 nm long, having well-defined square cross section with a side
length of ~12 nm (AR=15.6±3.8). The m-WO3 cubic structures prepared from
PTA dissolved in 3 M HCl are agglomerates of rectangular nanoslabs with
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Fig. 11 The products obtained via hydrothermal syntheseswith corresponding continuous (Gaussian)
particle size distributions; models (isomeric projections) of NPs were developed based on quantitative
information concerning the preferential crystalline orientation (texture coefficient) and SEM observa-
tions; *synthesized product does not comply with size limitation for ink-jet-printing method
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uniform thickness of ~20 nm, while the length varies in size of 153±68 nm
(AR=7.7±3.4).

 Shape Impact

Size distributions of synthesized products were used also to estimate SA:V as a
function of agglomerate size, shown in Fig. 12. The highest values of SA:V were
obtained for agglomerates of ortho-WO3 ·0.33H2O nanowires prepared from PTA
dissolved in 0.3 M HCl. Their individual specific surface area is also the highest
among synthesized products. The least favorable in terms of SA:V are m-WO3 
nanoplates synthesized from PTA dissolved in 3 M HCl, irrespectively of the
agglomerate size.
Obtained estimations of SA:V stay in agreement with theoretical consider-

ations which results were plotted in Fig. 8 (see section “Shaped Nanocrystals”).
Therefore, synthesized ortho-WO3 · 0.33H2O nanowires are the most desirable
products in terms of SA:V, as long as their electrochemical application is
concerned.

 Ink Formulation and Printability

According to the printhead specification (Canon Thermal DOD FINETM) used in
Canon PIXMA iP4850 printer, the nozzle diameter is 9 μm. Therefore, not all
nanostructured products obtained in experiments comply with size limitations
(space diagonal≤180 nm; see section “Fluid Control of Printable Dispersions”),
even when assuming that agglomeration does not occur. Based on particle size
distributions and the simple model of agglomeration presented in section

Fig. 12 Estimation of
SA:V as a function of
agglomerate size, based on
particle size distribution
and basic agglomeration
model; y-axis error bars
reflect standard deviation
of a mean particle size;
*agglomerates of nanorods
(synthesized from PTA
dissolved in 0 M HCl) with
number of NPs higher than
four were not observed
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“Agglomerates” (under assumption of uniform size distribution of agglomerates
and agglomerate block not exceeding 15 NPs),it is possible to estimate that
nanorods synthesized from non-acidified are printable in 100 %, while the fraction
of nanoplates is not printable at all. Nanowires synthesized from PTA dissolved in
0.3 M HCl are printable in 48 %. Only 17 % of nanoplates synthesized from PTA
dissolved in 3 M HCl are capable to pass the printing nozzle. Therefore, the pre-
sented example shows that NP agglomeration has dramatic influence on NP print-
ability. The major concern is associated with the nanoplates, as they are relatively
large in size and tend to agglomerate significantly exceeding size limitation for this
particular Canon printing system.
Irrespectively of the complexity of an ink vehicle, controllable and reproducible

deposition of NP-loaded inks encompasses some challenges. In standard desktop
printers, such as CANON PIXMA iP4850 used in present studies, the jetting param-
eters can be controlled only by proper adjustment of ink fluid parameters, as there
is no direct access to the printhead’s driver. To assure proper droplet formulation,
the custom ink should have similar rheology to the genuine CANON inks (indicated
in Fig. 13).
At the same time, it should be water-based ink as most of the organic solvents

may dissolve the structure of the printhead. Such water-based ink offers the follow-
ing advantages when comparing with organic solvent-based counterparts:

Fig. 13 The viscosity and surface tension of an alcohol aqueous ink vehicle as a function of alco-
hol (ethanol) weight fraction, the adjustment of fluid parameters to the acceptable range via the
addition of NPs or PTA precursor, as well as the regime of genuine CANON inks (CLI-526 cyan,
magenta, and yellow) are indicated
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(a) Reduces volatility
(b) Assures low reactivity with the substrate and printhead elements
(c) Imposes fewer restrictions in terms of safe handling

In order to adjust the viscosity and surface tension to the range within which the
printer operates, the ethanol weight fraction of vehicle was selected as 0.5, accord-
ing to the plot shown in a Fig. 13, resulting in values of 2 cP and 27 mNm−1, respec-
tively. The viscosity of obtained vehicle is too high when comparing with genuine
CANON inks, but addition of NPs in the amount of 0.03 wt% (in the case of NP
dispersion ink) or 8.7 wt% of PTA (in the case of amorphous coating) transfers the
value of viscosity into CANON ink regime. Thus, the viscosity and the surface ten-
sion of both NP dispersion and WO3 sol assure expected printability.

 Film Forming

The fabrication of ink-jet-printed dual-phase EC films was performed via two
separate depositions. Firstly, printable WOX NP dispersion was deposited on the
substrate and dried. Secondly, such mesoporous-like film was coated with printable
sol, containing precursor of WO3, resulting in dual-phase a-WO3/WOX film. All
films were dried at room temperature for 24 h and annealed in air at 120 °C for 1 h.
Depending on the type of the NPs incorporated to the dispersion in the first deposi-
tion step, the following compositions of films were obtained:

(a) Dual-phase a-WO3/ortho-WO3 ·0.33H2O (nanorods)
(b) Dual-phase a-WO3/ortho-WO3 ·0.33H2O (nanowires)
(c) Dual-phase a-WO3/m-WO3 (nanoplates)
(d) Amorphous a-WO3 for reference purposes (no NPs incorporated)

The existence of amorphous phase (a-WO3) in each film under investigation pro-
vides compact mechanical structure of the film and guarantees EC effect, by allow-
ing electronic conduction to take place in the structure processed at low temperature.
The use of PTA as the precursor for NP synthesis and a-WO3 coating shows conver-
gence of the technologies. A uniform coverage of nanocrystals by amorphous coat-
ing was confirmed by SEM examination. Revealed film microstructure shows
randomly dispersed NPs embedded in continuous amorphous film.

 Electrochromic Response

Quantitative EC response analysis is based on chronoabsorptometry (CA) technique
which is a square-wave potential step method coupled with optical spectroscopy
used for analysis of switching kinetics and contrast of the film. The electrochemical
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cell consisting of working electrode (printed film on indium tin oxide (ITO) PET
substrate) and platinum wire used as counter electrode was filled with lithium-based
gel electrolyte prepared according to the recipe described elsewhere [80]. Resulting
cell was driven by power supply in order to induce EC action in a linear stair pulse
mode (from −2 V up to 2 V in a 0.5 V step, −2 V of bias, and 30 s per pulse). Spectra

Fig. 14 Change in optical density (ΔOD) as a function of operating voltage for dual-phase
ink-jet-printed films containing different types of NPs; relative values represent the difference
between ΔOD of dual-phase film and ΔOD of pure amorphous analog (reference)

Fig. 15 Variation in
coloring time as a function
of operating voltage for
dual-phase ink-jet-printed
films containing different
types of NPs; amorphous
film is presented for
comparison
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were recorded in reference to the uncoated substrate under equal conditions. The
main output is confined to the basic performance indicators consisting of:

(a) Change in optical modulation defined as ΔOD=log10(Tbl/Tcol), where Tbl and
Tcol stand for bleaching and coloring transmittance, respectively, measured at
λ=800 nm (see Fig. 14)

(b) Coloration time denoted as τcol (see Fig. 15)
(c) Bleaching time denoted as τbl (see Fig. 16), both determined using transmit-
tance modulation trace at λ=800 nm induced by linear stair pulse signal, and
defined as the requisite time for the transmittance change by 80 % of the total
difference between final states

Comparison between corresponding changes in optical densities of dual-phase
films in reference to the response of pure amorphous film is shown in Fig. 14. Such
presentation of the optical modulation provides the information regarding the role
of NP content selectively, in EC mechanism.
Films, which contain either ortho-WO3 ·0.33H2O or m-WO3 NPs, outperform

their amorphous analogs in terms of optical modulation. It is a consequence of dual-
phase microstructure which provides large interfaces between dual-phase film and
gel electrolyte, as well as between amorphous and nanocrystalline phases itself.
Such microstructure promotes ion diffusion through the porous film. The highest
ΔOD values were recorded for film containing ortho-WO3 ·0.33H2O nanowires,
which is a direct repercussion of the highest value of SA:V for those NPs, even in
spite of progressing agglomeration.
Differences in switching dynamics of dual-phase and amorphous films shown in

Figs. 15 and 16 provide an information regarding the role of NPs in the dynamics of
the EC reaction. Low potentials applied between electrodes (0.5 V and 1 V) cause

Fig. 16 Variation in
bleaching time for
dual-phase ink-jet-printed
films containing different
types of NPs; bleached
state was restored by
supplying −2 V, after
coloring under operational
voltage (an abscissa);
amorphous film is
presented for comparison
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slow but apparent transition between bleached and colored state. However, the rate
of the electrochemical reaction is lower when comparing with pure amorphous
phase (see Fig. 15). Operation with the higher voltage level (1.5 V and 2 V) results
in improved coloration time (<3 s for 2 V) of all films containing NPs in comparison
with pure amorphous film (~5 s).
The application of a reverse potential (−2 V) restores the film to its bleached state

over a short period of time denoted as τbl. The switching dynamics from colored to
bleached state depends on the voltage level at which coloration was induced.
According to Fig. 16, when restoring the pure amorphous film after coloration at
low potential (1 V), the optical change proceeds very slowly (~8.5 s). However,
bleaching period is much shorter in case of dual-phase films. Films containing
ortho-WO3 ·0.33H2O nanowires bleach within time lower than 1.9 s, irrespectively
of the level of the operational voltage which induced coloring state, owed to high
electronic conductivity of those nanostructures. For other films, NP content is ben-
eficial especially when low voltage levels are used to supply the device.
The coloration kinetics is observed to be slower than bleaching kinetics for all

the films under investigation, which stays in agreement with the well-defined,
but different, mechanism governing the two processes. While the exchange of the
current density at the EC film–electrolyte interface controls coloration kinetics, the
space-charge-limited Li+ ion diffusion current governs the bleaching time [57].
Presented case study clearly shows beneficial impact of WOX NPs on electro-

chromic performance of printed films, reflected in 2.5 times higher optical modula-
tion, and 2 times faster coloration time, when comparing with pure amorphous film.
Such improvement is mainly attributed to higher interface between amorphous and
nanocrystalline phase, as well as between MOX layer and ion conductor.

Fig. 17 Lab-testing EC pixel based on ink-jet-printed dual-phase a-WO3/WOX/TiO2 film on ITO
PET substrate and liquid electrolyte: (a) picture in a bleached and colored state and (b) schematic
cross section of the device
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 Prototypes of Printed Electrochromic Devices

The potential of the electrochemical applications as the practical devices is sup-
ported by the commercial interest in early market prototypes of printed EC displays
(e.g., Acreo Swedish ICT AB, Sweden; NTERA Inc., USA; Aveso Inc., USA).
Niche applications in smart cards, smart packaging, and automotive displays have
already been identified. However, new applications are being announced regularly
as this is still an emerging technology area. In this section, we present some exam-
ples of EC displays demonstrated by our group over the years 2010–2013, which
incorporate printed dual-phase MOX films.
The preliminary evaluation of the printed dual-phase films was performed using

a lab-testing transparent EC device presented in Fig. 17a, developed in 2010 [28]. 
The device was assembled using sandwich structure (see Fig. 17b), which consists
of an ink-jet-printed a-WO3/WOX/TiO2EC film, a liquid electrolyte for ion storage
[80] and two transparent ITO-coated PET foil substrates separated by double-sided
1 mm thick tape spacer.
When applying an operational voltage to the electrodes, the ions are driven from

the electrolyte into EC film, where they are intercalated causing the chromatic
effect. Reversing the voltage returns them to the electrolyte resulting in pixel
bleaching. Sealing with thermoplastic glue ensures integrity of the device and
allows carrying out the necessary measurements in order to evaluate performance
of printed EC film. However, this lab-testing EC device uses liquid electrolyte
based on volatile organic solvents which significantly reduces its lifetime (typi-
cally up to several days).

Fig. 18 Prototype of the 64 pixel passive EC matrix with ink-jet-printed a-WO3/WOX film on ITO
glass substrate with thermosetting solid-state electrolyte drop-casted and UV-cured in situ: (a) 
picture of the opaque display operating under driving signal and (b) schematic cross section of an
individual pixel
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In order to overcome those limitations, in 2011, we have developed EC display,
which has the advantage of high overall stability ensured by an all-solid-state
structure. An 8×8 EC passive matrix consisting of two 100 mm by 90 mm glass
substrates with 64 pixels, 1 cm2 each, is shown in Fig. 18a. Prototype of this non-
transparent display was fabricated by selective ITO etching, ink-jet printing of
optically active film (a-WO3/WOX), and drop casting of the TiO2-loaded thermo-
setting composite solid-state electrolyte (TCSE). The prepolymer of the opaque
electrolyte was then uniformly distributed by squeezing with upper glass substrate
and UV curing in situ at ambient conditions (see Fig. 18b). No additional encapsu-
lation is required, as the cured TCSE provides perfect sealing of the structure itself.
Each pixel of the developed EC matrix can be operated separately by applying a

voltage between selected pair of electrodes. Rigid structure provided by glass sub-
strates together with a strong adhesion of the TCSE assures excellent mechanical
strength. Although the long-time stability investigation of prototype was not carried
out according to standard methodology, the matrix was operated every ones in a
while within 21 months till present, functioning with no apparent performance dete-
rioration. Furthermore, no delamination was observed, which proves that this con-
figuration of materials and processes results in excellent durability.
While the abovementioned sandwich structure is used in the great majority of the

state-of-the-art prototypes of EC devices, it does not represent the only possibility.
A fully printed EC display with a thin-film structure shown in Fig. 19a has been
developed in our group in 2013. Flexible EC thin-film passive display was built up
on a single ITO PET foil substrate according to the stack structure shown in Fig.
19b. Active display area was defined as 15.5 mm by 15.5 mm. The transparent con-
ductive tracks were chemically etched using screen-printed polymer mask pattern,
defining 64 pixels with dimensions of 1.65 mm by 1.65 mm each. In the consecutive

Fig. 19 Prototype of a fully screen-printed 64 pixel passive EC matrix based on a-WO3/WOX film
developed on a single ITO PET foil substrate: (a) picture of the device displaying the pattern due
to the memory effect and (b) schematic cross section of an individual pixel
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printing steps, the following materials optimized for screen-printing processing
were deposited:

(a) TiO2-loaded UV-curable resin as optical passivation
(b) WOX NP-loaded PTA paste to form a-WO3/WOX EC film
(c) TiO2-loaded UV-curable TCSE
(d) Carbon counter electrode
(e) Silver electrode

Although, the performance measurements of the thin-film EC display were not
carried out according to classical electrochemical methodology, it is evident that the
matrix exhibits high optical contrast, while the switching time is comparable with
the fastest lab-testing EC devices developed using liquid electrolyte (<3 s for color-
ing and<2.5 s for bleaching).
There are two key reasons why this type of approach is thought to be the most

suitable for end-user devices. First, the consumer demands are oriented toward reli-
able operation assured by all-solid-state structure of the EC device. Second, the
development of the EC devices using solely printing techniques facilitates scale-up
process from a pilot plant operation to the production at commercial levels using
R2R facilities.

 Summary

Nowadays, printable films based on MOX NPs attract growing attention as con-
venient and scalable to mass production way of producing electrochemically
active thin films. The process has developed as means of depositing light and
easily ion-penetrable films from the dispersions on NPs on a variety of sub-
strates, including flexible and heat-sensitive materials such as plastic foil (PET,
PEN, PI) or paper.
The reasonable theoretical explanation of the dependence between morphology

of NPs and electrochemical performance, i.e., response time and reactivity, has been
provided in this chapter. We have deduced that the minimum response time can be
achieved when small (several nanometers) NPs are incorporated to the printed film.
On the other hand, the electrochemical reactivity can be enhanced by selection of
NPs with high aspect ratio and thus high specific surface area. We have also consid-
ered agglomeration phenomenon which causes lowering of electrochemical perfor-
mance. Basic simulations have shown that an effective way to limit the deterioration
of material properties via agglomeration is to select 1D morphologies such as
nanowires and nanorods.
We have also developed basic rules governing selection or development of a

variety of nanostructured MOX-based materials for ink-jet-printed electrochemical
applications. Proposed engineering rules can be expanded to other printing tech-
niques by establishing appropriate physical and chemical constrains. The versatility
of this outline makes it a useful guide not only in the selection of MOX NPs for high
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performance applications but also meets the challenges encountered when using
those materials in a printing process.
In the presented case study, the morphology evolution of tungsten oxide nano-

structures has been successfully controlled by acidity level of sol–gel precursor
under hydrothermal conditions. In order to evaluate EC properties of developed
NPs, dual-phase films deposited via ink-jet printing have been investigated showing
higher values of transmission modulation over the visible and solar regions as com-
pared to the EC performance of pure amorphous films. Films containing synthe-
sized NPs exhibit change in optical modulation up to 2.5 times higher than
amorphous counterparts. Such improvement is mainly attributed to higher interface
between amorphous and nanocrystalline phase, as well as between MOX layer and
ion conductor. Moreover, the presence of orthorhombic hydrate improves kinetics
of intercalation and deintercalation mechanisms due to the increased hydration of
the structure. The conductive network of interconnectedWOXNPs facilitates charge
transport in the EC layer and increases significantly the active surface area of the
amorphous matrix. Therefore, the impact of synthesized NP morphology and struc-
ture on EC performance has been identified as crucial.
Presented prototypes demonstrate that a combination of printing techniques with

controlled synthesis of NPs provides an excellent method for the production of
inorganic dual-phase electrochemically active films. Flexibility in the material
selection and simplicity of the processing give a control over the film composition
at low temperature in a direct-write fabrication.
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Abstract
Zirconia solid solutions have been actively intensively investigated as an oxide 
ion conductor in solid oxide fuel cells (SOFC), oxygen sensors, or electrochem-
ical oxygen pumps. The importance of grain size and density of grain boundar-
ies in such materials for their properties is obvious. It is generally believed that 
a formation of nanomaterials with high density of grain boundaries can lead to 
their much improved electrical properties [1]. A possibility to modify the ion 
conductor conductive properties by means of changes in its microstructure was 
shown for the first time, as the explanation of a significant difference in the 
conductivity values of zirconium dioxide solid solutions, obtained in different 
conditions [2]. However, a distinct determination the effect of microstructure on 
the ion conductive properties is not easy, if at all possible. The information on 
the impact of various elements of the microstructure on the ionic conductivity 
is scattered and fragmented and practically no systematic studies exist. In the 
case of zirconium dioxide solid solutions, an additional complication is a strong 
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connection between material microstructural changes with variations in the 
chemical and phase composition. Describing the effect of microstructure on 
the conductivity level, the influence of each factor forming the microstructure 
should be determined separately, i.e., porosity, average particle size, as well as 
their size distribution, associated with the amount of grain boundaries, and their 
condition.

Keywords
Ionic conductivity • Nanomaterials • Stabilized zirconia

 Introduction

Zirconia solid solutions have been actively intensively investigated as an oxide ion 
conductor in solid oxide fuel cells (SOFC), oxygen sensors, or electrochemical oxy-
gen pumps. The importance of grain size and density of grain boundaries in such 
materials for their properties is obvious. It is generally believed that a formation of 
nanomaterials with high density of grain boundaries can lead to their much improved 
electrical properties [1]. A possibility to modify the ion conductor conductive prop-
erties by means of changes in its microstructure was shown for the first time, as the 
explanation of a significant difference in the conductivity values of zirconium diox-
ide solid solutions, obtained in different conditions [2]. However, a distinct determi-
nation the effect of microstructure on the ion conductive properties is not easy, if at 
all possible. The information on the impact of various elements of the microstruc-
ture on the ionic conductivity is scattered and fragmented and practically no sys-
tematic studies exist. In the case of zirconium dioxide solid solutions, an additional 
complication is a strong connection between material microstructural changes with 
variations in the chemical and phase composition. Describing the effect of micro-
structure on the conductivity level, the influence of each factor forming the micro-
structure should be determined separately, i.e., porosity, average particle size, as 
well as their size distribution, associated with the amount of grain boundaries, and 
their condition.

The most commonly used microstructure model for the description of the ionic 
conductivity in solid solutions of zirconium dioxide is a brick layer model [3, 4]. 
In this model, the ion conductor is made up of particles of cubic shapes separated 
by thin, flat grain boundaries. In this model it is assumed that the grain size, 
expressed as a length of the cube side dg, is many times larger than the thickness of 
the grain boundary dgb. Another assumption is the one-dimensional current flow 
and neglecting the curvature at the cube’s corners. The model considered two 
extreme situations arising from the grain interior conductivity values (σb) and grain 
boundaries’ conductivity (σgb). When σb » σgb, the flow of electric charges is carried 
out mainly by volume of the particles and across grain boundaries and in the oppo-
site situation along the boundaries. Assuming that the grain boundaries’ conductiv-
ity is significantly lower than the conductivity of the interior of grains, which 
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actually exist in the zirconia solid solutions, it is possible to provide a relation 
 connecting the measured values of the material electrical parameters with the 
parameters describing the microstructure:
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dgb gb
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gb
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(1)

where Cgb is the capacity of grain boundaries; εb and εgb are the dielectric permittiv-
ity of grains and grain boundaries, respectively; L, A are geometric dimensions of 
the sample associated with the measurement conditions; A is the area of the parallel 
electrodes; and L is the distance between them.

This equation is derived on the assumption that the measured capacitance value 
grain boundaries, Cgb, are the sum of all the individual boundaries’ capacity perpen-
dicular to the direction of the applied electric field [4]. The values of capacitance, Cb 
and Cgb, as well as resistance, Rb and Rgb, can be directly measured by impedance 
spectroscopy. In determining the conductivity inside the grains, taking the sum of 
their total volume as an equal volume of the sample does not lead to significant 
errors.

Slightly different is the case of conductivity at the grain boundaries. The deter-
mination of the value of the conductivity from the formula:
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gives only a magnitude described as an apparent value. By means of the stereologi-
cal analysis of microscopic images of the material microstructure, it is possible to 
determine both the thickness of the borders and their total length, but this is a tedious 
procedure and an uncertain process of achieving fully reliable results. The applica-
tion of the brick layer model the size of σgb with sufficiently high accuracy is to be 
determined. Assuming that the interior volume of the grain may be treated as the 
whole sample volume capacity, it results from the described above model that
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Defining the “real” value of the grain boundaries’ conductivity, σ*
gb, also referred 

to as the microscopic conductivity at the grain boundaries, in the form of:
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based on a combination of relations (2) and (3), and assuming that the volume of the 
dielectric properties of grains and boundaries between them are not significantly 
different (εb ≈ εgb), we obtain
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(5)
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The conductivity of the grain boundaries in zirconia solid solutions depends 
mainly on two partially connected to each other factors, the space charge creation 
and the phenomenon of segregation of impurities and stabilizing cations. Structurally, 
the grain boundary is the crystallographic mismatch area of two monocrystalline 
regions and has a thickness of several interatomic distances, which is usually equal 
to about 1 nm. This boundary is typically enriched in ions, native or foreign, giving 
it a certain electric charge in opposition to the volume of grain. This charge is com-
pensated by ions of opposite signs gathered near the border in the area described as 
the space charge region (space charge layer). In a perfectly clean material, the nature 
of this space charge is dependent on the free enthalpy of point defect formation, 
specific to the type of compound. In the real material the main factor is the presence 
of additives with different valences and impurities.

The theory of the space charge and its applications are widely described in the 
literature [5–7]. Due to the charge at the boundary, the point defect concentration in 
the space charge area may even differ considerably from the corresponding concen-
tration in the interior of the grain. This effect strongly influenced the properties of 
ion conductors [8]. The size of the space charge region is a consequence of an over-
all solution to the Poisson equation describing the impact on the border of two 
phases with different electrical properties, for example, between a conductor and 
insulator. In this equation, a quantity describing the size of electrostatic interaction 
area at the phase interface appears, defined as the Debye length LD:
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which, in turn, is a measure of thickness of the double layer, λ:
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where ε⋅ε0 is permittivity, R is gas constant, T is absolute temperature, F is Faraday 
constant, z is defect charge, ci∞ is molar concentration of defects in the grain vol-
ume, e is electron charge, and ΔΦ(0) is electrostatic potential at the phase interface 
(in this case at the grain boundary).

As it can be seen, the volume of the space charge region depends on both the 
electrical properties of the ion conductor (ε⋅ε0, ci∞) and the structure of the grain 
boundaries ΔΦ(0). Presented description, from a mathematical point of view, is the 
model equivalent to a double Schottky barrier. Structurally, the space charge region 
is a part of the grain’s interiors, but from the point of view of transport properties, it 
belongs to the grain boundary. In this case, the concept of “electric” grain boundary 
can be introduced consisting of the crystallographic area mismatches and space 
charge regions. The thickness of such a border, corresponding to the double size of 
the space charge region, is many times larger than the thickness of the structural 
border and even exceeds 100 nm.

The segregation of foreign cations, both admixtures and impurities in the grain 
boundaries’ area, is a phenomenon that occurs spontaneously. In the case of solid 
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solutions stabilized by tri- or divalent cations, the grain boundaries are enriched 
with defects which have a negative charge, e.g., YZr’ or CaZr”. In the presence in the 
lattice of zirconia pentavalent cations, no segregation was observed, such as a posi-
tively charged defects NbZr

• or TaZr
• type. This indicates the existence of positive 

charge in the crystallographic grain boundary [9]. It is assumed that the reason for 
this is the presence of incomplete oxygen octahedra in grain boundaries acting as 
fixed oxygen vacancies, resulting from the lattice stress compensation [10, 11]. 
Negatively charged cationic defects form, in turn, stable complexes with the “fixed” 
oxygen vacancies, which effectively reduce the concentration of the “normal” 
anionic vacancies in this area. The concentration distribution of oxygen vacancies 
in the grain boundary area is presented in Fig. 1.

It is assumed that the above-described phenomenon of the space charge deple-
tion in oxygen vacancies is a major, although not the only, cause of extremely low 
conductivity in grain boundaries in zirconia solid solutions [3]. This conductivity is 
at least two orders of magnitude lower than the conductivity of the grain interiors, 
which is the basis for determination of the grain boundaries’ blocking nature 
 [12–14]. This situation takes place at temperatures not higher than a certain charac-
teristic temperature; in the case of zirconia it is about 1000 °C, and after exceeding 
the size of the space charge region, it is comparable with the Debye length, which 
in these circumstances may be even less than 0.1 nm. This effect causes a relatively 
rapid decrease in grain boundaries’ resistivity with temperature increase. The space 
charge model has become a good basis for a series of quantitative descriptions of 
conductivity at the grain boundaries [13, 15–17]. It can be observed from the 
descriptions of these results, among others, that the blocking nature of grain bound-
aries disappears with the increasing concentration of stabilizer in the solid solution, 
whose immediate cause is a decrease of the Schottky barrier.

Another very important factor deteriorating grain boundaries’ conductive prop-
erties is the presence of impurities such as alkali and transition metal oxides or 
compounds mainly silica-rich silicon dioxide. During sintering, these substances, 
accumulated on the grain boundaries, react with each other forming various forms 
of amorphous or crystalline phases. The presence of silica compounds border grain, 
and their destructive effects on the ionic conductivity in solid solutions of zirconium 
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oxygen vacancies’ 
concentration in the grain 
boundary area

25 Microstructural Aspects of Ionic Conductivity in Nanocrystalline Zirconia



824

dioxide have been repeatedly confirmed [18–22]. These phases, depending on the 
level of impurities and sintering conditions, are very diverse in terms of phase and 
chemical compositions, location in the microstructure, and such properties as vis-
cosity or wettability.

The morphology of the grain boundary siliceous phase can be described by mod-
els in two ways. In the first one it is assumed that the silica phase continuously cov-
ers all the grains of the conductive phase. In this case, the transport of ions from one 
grain to the other must take place through a layer of the said phase, and conse-
quently the activation energy of the ionic conductivity of the process must vary with 
the chemical composition and conductive properties. The second model assumes 
that the silica phase occurs only in certain specific areas in the sintered microstruc-
ture resulting in a reduction in the surface area contact between individual grains. 
Taking into account that the silica phase is more an insulator than electrical conduc-
tor, this means that the level of ionic conductivity is dependent only on the amount 
of the phase and its characteristic properties, such as wettability. This model also 
shows that the value of the conductivity activation energy should not be dependent 
on either the number or the type of silica phase, which is confirmed by numerous 
experiments [23–25]. As it was often frequently documented, microscopic observa-
tions using transmission electron microscopy also confirmed the second model 
of siliceous phase distribution in the microstructure of the zirconia solid solution 
[12, 13, 23–26].

Summing up the impact of grain boundaries on the ionic conductivity of zirconia 
solid solutions, it can be stated that in the case of high-purity materials, the decrease 
of the concentration of oxygen vacancies in the border areas leads to a significant 
decrease in the grain boundary conductivity and its activation energy is dependent 
on the height of the Schottky barrier. In the case of materials with “normal” purity, 
the dominant influence on the conductivity of the grain boundaries is exacted by the 
presence of a silica phase on them.

The particle size effect of on the ionic conductivity of zirconia solid solutions is 
directly related to the density of grain boundaries, resulting directly from the grain 
size and the state of boundaries. Experimental results indicate that in the case of 
solid solutions containing 3 mol% yttrium oxide in which the grain size ranges from 
about 40 nm to 1.5 μm, the conductivity of the grain interiors is increased several 
times with the increasing grain size [14]. The effect of the weaker lattice conductiv-
ity of materials with smaller grain has been attributed to a decrease of stabilizing 
cation concentration in the interior of grains, resulting from the stronger segregation 
of these cations in the case of materials with a better surface grain boundaries’ 
development. A similar volume conductivity dependence on the particle size was 
also observed in the case of a solid solution of zirconia containing 8 mol% yttrium 
oxide [3], but in the case of materials containing 15 mol% calcium oxide, the trend 
is reversed – the conductivity drops with the grain size increase [12].

The conductivity of grain boundaries, regardless of the chemical and phase com-
position of the material, decreases with increasing particle size. The use of the previ-
ously described space charge models to explain this phenomenon indicates that in 
each case the concentration of oxygen vacancies in the area boundary power decreases 
with the increasing particle size and thus increases the Schottky barrier height.
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The microstructural aspect of ionic conductivity takes on a new dimension in 
the case where the grain size in the material becomes comparable to the width of 
the space charge region. The areas of the spatial charge are then superimposed on 
each other, and the concentration of defects, either in these areas and within the 
grains, undergoes significant changes. Ionic conductivity of the material in which 
the grain size is comparable with the Debye length may vary up to several orders 
from ionic conductivity of the material with a grain size of hundreds of nanometers 
or more. This phenomenon has been forecast theoretically by J. Maier [8, 27] and 
has been confirmed in some cationic and anionic conductors, usually obtained in 
the form of thin films [28, 29]. The model calculations show that in the case of 
zirconia solid solutions, the nanometric particle size effect on the ionic conductiv-
ity would be noticeable only for the grains, according to the source, from 10 to 
100 nm [30]. The comparison of this size range with the minimum size of crystal-
lites (approximately 5 nm) present in the powders of zirconia obtained by uncon-
ventional methods [31] and the knowledge of the fact that the temperature of at 
least 1200 °C is recognized to obtain a dense material with this type of powder 
indicate restriction on the ability to obtain dense nanometric zirconia microstructure. 
Hence, the studies of the conductive properties of materials with nanozirconia 
grains are extremely rare.

In [12] the effect of particle size on the ionic conductivity of the solid solution of 
zirconia containing 15 mol% calcium oxide was investigated. The grain size in the 
sintered material varied from about 100 nm to more than 10 μm. It was observed 
that the conductivity of the grain boundaries falls rapidly, approximately six times, 
with a minimal increase in particle size, and stabilizes the grain size of about 4 μm. 
It is noteworthy that the observed effects are attributed rather to the changes in the 
distribution of the silica phase with a change in particle size than to the impacts of 
the space charge area. In another work on the zirconia solid solution containing 16 
mol%, an increase in calcium oxide ion conductivity at temperatures below 800 °C 
was observed, associated with a decrease in particle size [32]. Sintered bodies with 
smaller grains were characterized by a lower activation energy for bulk conductiv-
ity and higher activation energy for conduction at the grain boundaries.

Sintering the powder obtained by the condensation from the gas phase made it 
possible to obtain dense tetragonal zirconia, containing to 3 mol% yttrium oxide 
with a grain size of 25–50 nm and a density from 82 % to 93 % of the theoretical 
density [33]. Despite its small particle size, both the activation energy of conductiv-
ity and conductivity values of the materials were not significantly different from 
other similar results obtained by other researchers for sintering of submicron grains. 
The authors of [34] obtained similar results. They sintered a powder at temperatures 
from 1200 °C to 1400 °C obtained by decomposition of the metal nitrate mixture, 
obtaining a material having a density up to 95 % of a theoretical value and a grain 
size below 200 nm. And also in this case the level of the conductivity and its activa-
tion energy were comparable with the corresponding values characterizing the 
materials with micron and submicron grains.

Somewhat different is the situation in the case of zirconia solid solutions obtained 
in the form of thin films [35, 36]. The nanocrystalline material containing 8 mol% 
Y2O3, obtained from the organometallic polymeric precursor on an alumina substrate, 
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was characterized by conductivity two orders of magnitude higher as compared to 
the polycrystalline material with the same chemical composition as well as a 
slightly smaller conductivity activation energy [35]. Similarly, the stabilized ZrO2 
thin films with 8 mol% yttrium oxide or scandium oxide obtained by the sol–gel 
have the tenfold increase in conductivity in relation to the bulk material [36]. In 
both cases, the observed effects are attributed to the changes occurring in the grain 
boundaries, yet not directly to the size of the grains. It is worth noting that even in 
the comments of the literature, the difficulties in unambiguous interpretation of the 
results and the need to take into account the specificity of thin-film materials are 
stressed [37].

The presented relations clearly confirm the influence of the zirconia solid solu-
tions’ microstructure on their conductive properties. On the other hand, the range of 
microstructure parameters’ variation is limited by both the morphology of the used 
powder and the conditions of the process compaction. In this context, the main rea-
son for undertaking the work described in the next chapter was to investigate the 
possible influence on the ionic conductivity of zirconia solid solutions by modifying 
their microstructure. Microstructural changes of these materials due to differences 
in the conditions of preparation are also considered in the context of chemical and 
phase composition of appropriate materials. The subject of studies on the effect of 
microstructure on the conductive properties of the solid solutions is sintered zirco-
nium dioxide containing yttrium oxide in an amount from 5 to 10 mol%. A major 
motivation to undertake such studies was the lack of systematic experiment descrip-
tion in the literature, whose results would allow a correlation between microstruc-
ture and conductive properties of zirconia solid solutions to be evaluated as well as 
the limits of their modification to be determined.

The hereinafter described preparation was aimed at obtaining sintered zirconia, 
stabilized with yttria with the maximum variation in grain sizes. While the problem 
of obtaining sintered grains comprising sizes of 10 μm is relatively easily solvable 
by choosing a suitable combination of temperature and sintering time, to produce 
enough material having an extremely small grain requires the use of both ZrO2 
nanopowder and a special way of its formation.

 Preparation of Zirconia Solid Solutions of Varying 
Microstructure

In the course of studies of the microstructure influence of the zirconia solid solution, 
containing from 5 to 10 mol% yttrium oxide, pressureless sintering of nanopowders 
was applied for the conductive properties. The zirconia nanopowders were prepared 
by means of hydrothermal treatment of hydrous zirconium oxide coprecipitated 
with amorphous yttrium hydroxide. Regardless of the chemical composition of the 
powder, the process was performed in the environment of distilled water at 240 °C 
for 2 h. The obtained powders consisted of isometric-shape crystallites (Fig. 2) 
whose size depends on the chemical composition. The changes in the size of crystal-
lites in the powders determined on the basis of the observed half-width of the (111) 
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line of zirconia cubic phase were presented in Fig. 3. A linear decrease in the crys-
tallite size with the increasing yttria content in the solid solution is observed.

The X-ray phase analysis showed that the powders, regardless of their chemical 
composition, were consisting solely of cubic ZrO2. The linear dependence of the 
unit cell volume with increasing amounts of Y2O3 confirms the quantitative incor-
poration of yttria into the structure of the cubic zirconia phase.

Zirconia powders containing from 5 to 10 mol% yttrium oxide were used to 
prepare the two series of sintered samples. In the first one, the powders dried at 
70 °C after addition of 5 % solution of the wax emulsion as a lubricant were pressed 
uniaxially at the pressure of about 100 MPa and then isostatically at 250 MPa and 
finally pressureless sintered at 1300 °C for 2 h. The need to carry out the sintering 
process at a relatively high temperature is mainly due to the complex composition 
and poor compressibility of dried nanoparticles, which in turn causes the formation 
of retaining areas of varying density [38, 39]. The consequence of this is that the 

Fig. 2 Morphology of the 
powder of zirconia solid 
solution containing 8 
mol% Y2O3 obtained by 
hydrothermal method
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differential sintering phenomenon leads to a very rapid shrinkage of the material in 
the areas of higher density, for example, it can be the inside of aggregates and 
agglomerates, and very slow densification in the less packed areas, e.g., between 
agglomerate zones. A prerequisite to eliminate the large pores generated during this 
process is grain growth [40], which makes it practically impossible to obtain a dense 
material at relatively low temperatures. In this case the applied treatment led to the 
materials with a density of not lower than 98 % of the theoretical value.

A solution to this situation is the use of special methods of nanoparticle forming 
that provide appropriate density and a high degree of homogeneity of the material 
before sintering. One of such methods is filter pressing, which has been used to 
produce the second series of samples. The first step of this method is suspending the 
nanopowder, usually in an aqueous medium, with a relatively high proportion of the 
solid phase. In this case, suspensions of nanoparticles were obtained directly as a 
product of the hydrothermal reaction, using a sedimentation process, and finally 
only liquid excess was removed to obtain the solid phase of about 20 % volume. 
These suspensions were placed in the filter of the pressing device, followed by 
gradual raising of the pressure for the water excess removal. The drained materials 
were gently dried in a desiccator over anhydrous calcium chloride and then sintered 
at 1200 °C for 1 h.

The behavior of the filter-pressed materials during sintering is illustrated by dila-
tometric curves in Fig. 4. When compared to the commercial submicron 8 mol% 
yttria-stabilized powder of Tosoh company, the filter-pressed nanopowders start sin-
tering at temperatures of at least 500 °C lower, without showing the initial stage of 
the expansion of the sample. Achieving the maximum density in the case of materials 
made of nanoparticles takes place at lower temperatures at least of about 200 °C. 
Also visible is the effect of chemical composition on sinterability of the powder. 
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The powder with the stabilizer content equal to 10 mol%, despite the greater shrinkage 
at lower temperatures, ultimately reaches a maximum density at temperatures higher 
than 5 mol% of Y2O3 powder. This effect is probably related to the diversity of com-
paction mechanisms depending on the temperature. Due to the fact that at lower 
temperatures surface effects dominate, the surface is more defected for the nanocrys-
tallite powder with 10 mol% yttrium oxide as a consequence of both the higher 
concentration of vacancies and the intensive process of segregation, and they influ-
ence more strongly transport processes, for example, on the rearrangement of the 
grains. At higher temperatures, where the volume transport is predominant, higher 
quality and diversity of order-diffusing elements slows down the process of compac-
tion. The filter-pressing method as well as behavior during sintering of compacts 
obtained by this method is described in detail in [41]. The use of the filter pressing 
contributed to obtaining materials which in the process of sintering for 1 h at 1200 °C 
have been densificated to over 99 % of the theoretical density.

In the further part of the text, the materials obtained by sintering the powders 
synthesized under hydrothermal conditions and isostatically pressed are marked as 
IP and filter-pressed as FP.

 Structural Properties of Zirconia Solid Solutions with Varying 
Microstructure

Sintered bodies obtained from the powders prepared in a hydrothermal environ-
ment, series IP and FP, consisted of a tetragonal and/or cubic phase. Quantitative 
phase compositions of both series are listed in Table 1.

As it can be seen, from the materials sintered at 1200 °C for 1 h, the series of FP, 
only the one containing 7 mol% yttrium oxide is biphasic. The sintered samples 
with lower content of Y2O3 are fully tetragonal, while those with the higher consist 
solely of the cubic phase. The increase in the sintering temperature to 1300 °C and 
extending the time to 2 h, IP series, causes the appearance of the cubic phase in the 
sintered materials with the lower stabilizer content. This effect is a direct result of 
the phase diagram form.

Table 1 Phase composition of the sintered material derived from hydrothermally synthesized 
powders

Molar fraction Y2O3, %

5 6 7 8 9 10Weight fraction, %

IP series, 1300 °C, 2 h

Tetragonal phase 76.7 65.3 16.5 0 0 0

Cubic phase 23.3 44.7 83.5 100 100 100

FP series, 1200 °C, 1 h

Tetragonal phase 100 100 23.2 0 0 0

Cubic phase 0 0 76.8 100 100 100
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Figure 5 shows a part of the phase diagram of the studied system with marked 
points corresponding to compositions and sintering temperatures of individual 
materials. In the diagram, the lines are borders between areas of existence of the 
cubic phase (Cs.s.) and its mixture with the tetragonal phase (Ts.s.). These lines come 
from the selected phase diagrams [42–45]. It can be concluded that depending on 
the diagram used for the sake of comparison, the particular materials strive to 
achieve different phase compositions. Nevertheless, it can be assumed that the solid 
solutions containing minor amounts of stabilizer, regardless of sintering tempera-
ture, should consist of both regular and tetragonal zirconia forms. On the one hand 
this is due to the sintered materials at the temperatures at which ZrO2 coexist in two 
forms and on the other, due to the possibility of tetragonal phase crystallization 
upon cooling. This process involves the diffusion of the stabilizer from one grain to 
another, which corresponds to a partitioning effect, until it reaches such a concen-
tration gradient, which gives rise to a tetragonal phase.

The changeability of lattice parameters of particular phases is expressed as the 
volume of unit cells and it is shown in Fig. 6; the tetragonal cell volume has been 
calculated for the wall-centered lattice. In the case of filter-pressed materials sin-
tered at 1200 °C (FP), the volume of the unit cells exhibit a linear dependence on 
the concentration of yttria in solid solution. Elementary cell volumes of the two 
phases in the material containing 7 mol% Y2O3 are very similar, which indicates that 
even their chemical compositions are similar. In a series of isostatically pressed 
materials sintered at 1300 °C (IP), the appearance of the cubic phase causes a seg-
regation of Y2O3 between the two phases. In the solid solutions nominally contain-
ing from 5 to 7 mol% Y2O3, the content of this oxide in the cubic phase is 
approximately constant and is about 7 mol%, while in the tetragonal phase it is 
lower than the nominal from about 1 to 0.2 mol%, depending on the nominal value. 
Similarly as in the FP series, also here the cubic phase elementary cell volume is a 
linear function of the chemical composition.

The presented graph also shows the differences in the volume of the unit cells in 
powders and sintered materials increasing with the amount of stabilizer. Because 
the chemical composition of powders and sintered materials are the same, the only 

5 6 7 8 9 10
1150

1200

1250

1300

1350
[45][44][43]

Cr.s.Tr.s. + Cr.s.

te
m

pe
ra

tu
re

, 
°C

mole fraction Y2O3, %

[42]
Fig. 5 A part of the phase 
diagram of the ZrO2–Y2O3 
system. The marked points 
correspond to compositions 
and sintering temperatures 
of the tested materials. The 
lines dividing the field 
come from the cited works

M.M. Bućko



831

explanation for this phenomenon is an error in the evaluation of lattice parameters 
in the case of powders. This error is related to the deformation of the crystal lattice 
resulting from the nanometric size of the crystallites in the powders. In such a case, 
the hydrostatic pressure, due to surface tension, creates a compressive stress in crys-
tallite, causing an apparent decrease in the size of the unit cell. The smaller the 
particle size of the crystallites the stronger this effect. It is confirmed for both mate-
rial series prepared from the hydrothermally synthesized powders.

This effect of changing the size of the lattice parameters with the crystallites size 
was also observed in other substances [46]. In such a case, it is proposed to use the 
term of “apparent lattice parameter.”

 Microstructural Differentiation of Zirconia Solid Solutions

Microscopic (SEM) observations showed that all sintered materials from powders 
synthesized under hydrothermal conditions are homogeneous and consist of parti-
cles of isometric forms, as evidenced by particle size distribution and shape factors, 
determined from numerical analysis of SEM images. The collected SEM micrographs 
were analyzed on the basis of the selected parameters of the microstructure, such as 
area and circumference of a grain, Feret diameters in two mutually perpendicular, 
randomly selected directions, and also grain diameter and aspect ratio. The grain 
diameter was defined as the diameter of the circle of area equal to the measured 
surface of the grain while aspect ratio as a ratio of the measured grain circumference 
to the circle circumference, which would have a circle of the same area as the mea-
sured area of this grain. Figure 7 shows selected photomicrographs illustrating the 
variation of the microstructure of these materials.
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Figure 8 shows several examples of particle size distributions in the selected 
sinters from IP and FP series, while Fig. 9 cumulative curves of these distributions. 
These distributions are in each case unimodal. In the series of powders isostatically 
pressed and then sintered at 1300 °C (series IP) a shift of the mode values toward 
larger grains can be observed. This effect is also evident in the presented micro-
graphs (Fig. 7c) where, surrounded by smaller grains, there are grains even several 
times larger. The appearance of the large-grain population is a direct result of 
increasing the cubic phase amount with the sintering temperature; these phase 
grains have a much stronger tendency to grain growth than the tetragonal phase. It 
is worth noting that in the sinter bodies obtained from the filter-pressed powders, FP 
series, especially for materials having lower yttrium oxide content, a significant 
particle population of size less than 100 nm is observed.

In the case of particle size distribution in tested materials, due to rather large dif-
ferences in average particle sizes of individual sintered series, the standard devia-
tion of the distribution state, as a measure of the dispersion, could lead to errors in 
the assessment. The n parameter value was implemented as a degree of this particle 

Fig. 7 The microstructures of the materials of IP series
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size dispersion, which is one of the constants in the Rosin–Rammler expression for 
grain size distribution [47]:

 
W d e b dn( ) = - ×

 (7)

where W(d) is the residue, d is the grain size, and b and n are constants. Constant n 
value describes a distribution width; the n is the larger the more the particle size are 
placed in a narrower size range.

The formation of large grains, correlated with an increase in the stabilizing oxide 
content, is reflected in the values of the parameter n of Rosin–Rammler distribution 
shown in Fig. 10. In the case of IP series, particle size distributions are becoming 
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wider and wider together with the simultaneous increase in the content of yttrium 
oxide and the cubic zirconia phase. Only in the sample with the highest Y2O3 con-
tent, this trend is reversed. In the sintered materials of the FP series containing up to 
8 mol% yttrium oxide, an increase in the value of parameter n is visible and particle 
size distributions are becoming narrower. This effect is due to several factors, such 
as a very narrow particle size distribution of the powder, a small tendency for growth 
of tetragonal phase grains, or a relatively low sintering temperature. In the materials 
containing higher amounts of stabilizing oxide, a population of larger grains 
appears, which leads to their distribution expansion. It can be seen also in this case, 
grain growth is intrinsically linked to the existence of the cubic phase.

The changes in average grain size of the IP and FP sample series related to the 
change in the chemical composition are shown in Fig. 11. The increase of the yttria 
content leads to the increase in the average grain size, and the main reason is ten-
dency to grain growth of the cubic phase. A stronger effect of grain growth for IP 
series is probably due to the higher sintering temperature.

It results from the values of the parameters describing the grain shapes, that all 
the received materials consist of isometric particles. This is proved both by the simi-
larity of Feret diameters, measured in two mutually perpendicular directions (no 
statistically significant differences between them), and the values of shape coeffi-
cients which do not differ significantly from unity.

 Ionic Conductivity of Zirconia Solid Solutions with Different 
Microstructures

Conductive properties of all samples were determined according to the measure-
ments made by impedance spectroscopy. The measurements were carried out in the 
frequency range from 1 Hz to 1 MHz, using a set consisting of an impedance meter 
FRA 1260 and 1294 dielectric interface (Solartron). The parallel surfaces of the test 
specimens were covered with porous platinum electrodes. Measurements were made 
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in the range of 250–400 °C. In every case, the measurement points on the graph of 
impedance (Z′ = f (Z′)) were arranged in two clearly separated semicircles (or their 
fragments) and the straight line. It is assumed that the equivalent circuit describing 
this effect is composed of serially connected three parallel circuits, a resistor-fixed 
phase-angle element (CPE). The values of resistance, retrieved from matching the 
auxiliary circuit to measuring points, and sample geometrical dimensions allowed 
the bulk conductivity, σb, and conductivity of the grain boundaries, σgb, to be deter-
mined. In the case of the grain boundary conductivity, the calculations were per-
formed using Eq. 5.

The presentation of the obtained results in the Arrhenius system (σ · T = f(T−1)) 
in each case gave a statistically significant linear fit, which in turn allowed for con-
ductivity activation energy, E, and pre-exponential factor values, σ0

b and σ0
gb, to be 

determined, respectively.
Figure 12 shows the dependence of the bulk conductivity activation energy, Eb, 

both sample series from their chemical composition. In the materials containing 
from 5 to 7 mol% Y2O3, which corresponds to the area of the tetragonal phase or of 
two-phase coexistence, a relatively small increase in the value of Eb is observed. 
The increase in the stabilizing oxide content and interconnected presence of the 
cubic phase result in a significant increase in the activation energy of bulk conduc-
tivity. The presented dependences of Eb on the chemical composition of the material 
are in good agreement with the model description of ionic conductivity in com-
pounds with fluorite structure [48].

It is also evident that the lowest values of the bulk conductivity activation energy 
characterized materials prepared from the hydrothermally synthesized and then 
filter- pressed powders (FP series). This effect is probably due to two reasons. The 
first one is the difference in phase composition of materials with the same chemical 
constitution. Sintered materials of FP series with 5 mol% Y2O3 consist solely of a 
tetragonal phase, while the IP series samples, having the same chemical composi-
tion, contain over 23 wt% of the cubic phase. Assuming that the cubic ZrO2 phase 
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has a higher activation energy of conductivity than the tetragonal one, the observed 
effect is in line with expectations.

Figure 13 shows the relationship between the percentage of tetragonal phase and the 
activation energy for bulk conductivity in the samples containing 5 and 6 mol% yttrium 
oxide. In both cases, a correlation can be seen between these values and the difference 
between the directional coefficients of both straight lines results from changes in chem-
ical composition of the tetragonal phase in individual sintered materials.

Another factor which may have an impact on the value of the activation energy 
is the size of the grains. Figure 14 shows the correlation between the average grain 
size in a sintered material and bulk conductivity activation energy depending on the 
chemical composition of materials. In most cases, the Eb “dependences” on particle 
size are quite small and rather resulting from the already described structural 
changes. Only in the materials, in which a large number of grains have a size 
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substantially smaller than 100 nm, in particular in FP series with 5 and 6 mol% 
Y2O3, large differences are shown in the described correlation. It can be therefore 
assumed that such a significant decrease in the bulk conductivity activation energy 
in these materials is due to the phenomena associated with the nanometric grain 
sizes. The effects of these usually include forming of tensile stresses near the grain 
boundary, increased solid solution components’ segregation within the grain bound-
ary and in the surrounding areas, or overlapping of space charge areas.

A similar change character as the bulk conductivity activation energy IP series 
and the FP is altered by the exponential factor changes (Fig. 15). Again in this case, 
the initial growth of the σb

0 in the tetragonal and two-phase region is distinctly 
smaller than that observed in the materials consisting solely cubic ZrO2.

The σb values for the FP materials are smaller than in the case of the IP series. 
These differences in materials, in which the content of yttrium oxide exceeds 6 
mol%, are practically in the margin of error. For the materials with 5 and 6 mol% 
Y2O3 the differences are significant and the larger the differences in average grain 
sizes the larger differences in respective pre-exponential factors.

Figure 16a–d shows changes in the bulk conductivity of sintered materials of FP 
and IP series depending on their chemical composition, in several selected tempera-
tures. The draws for temperatures 300 °C and 400 °C have been prepared on the 
basis of measured values and those for 600 °C and 800 °C have been extrapolated 
according to the known quantities of Eb and σb

0.
Low bulk conductivity activation energy values in solid solutions containing 5 

and 6 % mol yttria caused the highest bulk conductivity to have the material of FP 
series containing 5 mol% Y2O3 at 300 °C. As the temperature rises, the maximum 
conductivity shifts toward solid solutions of the increasing conductivity activation 
energy and hence contains increasing amounts of Y2O3. In general, the materials of 
both series obtained from the hydrothermally synthesized powders are character-
ized by similar bulk conductance. The only higher differences are observed at the 
lowest temperatures in the samples with a minimum content of yttrium oxide.

An interesting correlation with bulk conductivity is shown by the n coefficient 
values that describe a constant phase element (CPE), which is an equivalent circuit 
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element, simulating electrical characteristics of the grain interior. Admittance ele-
ment of constant phase angle, also referred to as a capacitor of no Debye type, 
describes the relationship [49]:

 
Y A

nw w( ) = ( )j  (8)

where ω is current frequency, j is the imaginary unit, and A and n are constants  
(0 < n < 1).

Impedance spectra, characterizing the conductive properties of real materials, 
especially sintered polycrystalline, almost always are assigned to alternative circuits 
containing CPE elements. Their presence is associated with a number of phenom-
ena that occur in both the electrode and the interior of the material. In the latter case, 
the most important cause of no Debye capacity creation is inhomogeneity of con-
ducting properties. This feature can be a result of the statistical distribution of grains 
of a different chemical composition or phase, which promotes the path’s creation 
with a clearly higher conductivity.

There is an evident relationship between the parameter n and bulk conductivity. 
Figure 17 shows the formal changes of parameter n, dependent on the chemical 
composition of materials. It can be seen that the lowest values of this parameter are 
characterized by the tetragonal and two-phase materials with relatively broad 
 particle size distributions (IP series of 5 and 6 % mol Y2O3) and therefore those in 
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Fig. 16 Changes in the bulk conductivity of the IP and FP series depending on their chemical 
composition and temperature
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which one can expect major heterogeneity. In the FP series materials exhibiting the 
highest homogeneity, both structural and microstructural, the nature of the grain 
interior capacity is close the Debye type. The increase of temperature leads to a 
decrease in n value; this drop is significantly higher in the FP series. A comparison 
of phase compositions and microstructural parameters of both series suggests that 
the cause of this phenomenon is associated rather with the phase composition than 
the microstructure of sintered materials. The temperature-increasing differences in 
the phase conductivity, i.e., tetragonal and regular, lead to an increase in the mate-
rial heterogeneity from the point of view of ionic conductivity.

Changes in the activation energy of the grain boundary conductivity in all sample 
series, depending on their chemical composition, are presented in Fig. 18. With the 
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increase in the content of yttria in solid solution, based on the method of material 
compacting, larger (FP) or smaller (IP) increase in the activation energy of the grain 
boundary conductivity is observed.

It is obvious that this is not the chemical composition or even material phase 
which is a directly controlling factor of changes in Egb. The nature of the presented 
changes suggests that these alterations will depend largely on the microstructural 
factors such as grain size and the associated surface development of grain boundar-
ies as well as the strength and nature of the segregation phenomenon. The correla-
tions between the grain boundaries’ conductivity activation energy and the average 
grain size shown in Fig. 19 are partial confirmations of these findings.

Only in the case of materials containing 5 mol% yttrium oxide the change in 
the average grain size does not cause significant changes in Egb; in other cases, the 
decline in the grain size “induces” the increase of activation energy of the grain 
boundary conductivity. Moreover, this relationship, defined as a slope of the 
respective lines, is generally the weaker the higher is Y2O3 content in the solid 
solution. It can be assumed that this effect is associated primarily with the segre-
gation of yttrium to grain boundaries, which, understood as the relative increase 
in the concentration of yttrium on the grain boundary, will be the smaller, and 
yttrium oxide content is higher in solid solution [9, 12]. However, since the 
increase in Y2O3 leads to an increase in the value of Egb only for the materials with 
the smallest grains and sintered at relatively low temperatures, it can be assumed 
that there are other factors that control this value. The correlation with sintering 
temperature suggests that this factor may be, for example, even a small amount of 
silica-containing impurities. At lower temperatures, these impurities can block the 
transport of ions along the grain boundaries, while, at higher temperatures, they 
can spontaneously accumulate at three-grain contact points or dissolve in the 
 volume of the grains.
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Increasing Y2O3 concentration increases the grain size and thus effectively 
reduces the density of grain boundaries, which may be one of the elements affecting 
the value of the pre-exponential factor, σgb

0. Changes in σgb
0, shown in Fig. 20, are 

similar in nature to Egb change, and an increase in the amount of yttrium oxide 
causes its growth in the IP and FP series.

The changes in grain boundary conductivity of the sintered materials of both 
series at selected temperatures depending on their chemical composition were 
shown in Fig. 21a–d. The charts for temperatures 300 °C and 400 °C have been 
prepared on the basis of the measured values and those for 600 °C and 800 °C, cal-
culated on the basis of the appropriate Egb and σgb

0 values.
The presented dependences have shown two trends that are direct consequences 

of the Egb and σgb
0 values. The first one is a change in the conductivity nature of each 

material with temperature increase. At 300 °C in the materials of IP series, the con-
ductivity of the grain boundaries decreases with increasing amount of yttrium oxide 
in the solid solution. At the higher temperatures, 600 °C and 800 °C, an increase in 
the grain boundary conductivity is visible. The increase of the yttrium content in the 
solid solutions and increase of temperature cause higher increase of the grain bound-
ary conductivity. In the case of the FP series, a decrease of σgb

0 at 300 °C and 400 °C 
is associated with increasing amounts of yttrium oxide, and at elevated temperatures 
a significant increase in the conductivity of the grain boundaries appears. The con-
sequence of these effects is the fact that the higher the temperature, the more con-
ductive are grain boundaries in sintered materials with lower yttrium oxide 
content.

The second trend is due to the mutual relationship between the grain boundaries’ 
conductivity values of individual sintered series. At low temperatures, the best ionic 
conductivity is exhibited by coarse sintered materials. The temperature increase 
slightly reduces the differences, wherein the effect is also dependent on the chemi-
cal composition of materials. It should be noted that a relationship to the chemical 
composition has only formal character. The actual correlation exists in relation to 

s

Fig. 20 The values of the 
pre-exponential factor of 
the grain boundary 
conduction of the IP  
and FP series. The σgb

0 
standard deviation does not 
exceed 0.05

M.M. Bućko



843

the phenomena of induced changes in the amount of Y2O3 in the investigated solid 
solution, such as a number or grain boundaries’ structure.

The changes in the nature of the grain boundaries’ capacity correlated to the 
chemical composition of the materials are similar as in the case of bulk capacity 
variation (Fig. 22). With the increase of the yttrium oxide content in parallel with 
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the sintering temperature and therefore generally with the decrease in the grain 
boundaries’ density, the value of parameter n from Eq. 8 increases, and electric 
capacity is more of the Debye capacitor character. It appears that the relatively large 
differences between the values of the parameter n in the case of IP and FP series 
cannot be attributed solely to the differences in grain sizes. It may indicates arrang-
ing of the grain boundary caused e.g., by chemical homogenzation of the material 
or less intensive segregation process.

The values of the activation energy and the pre-exponential factors calculated on 
the basis of temperature conductivity allow us to check the applicability of the com-
pensation rules (the Meyer–Neldel rule) for the obtained materials [50]. Figure 23 
shows the correlation between Eb and σb as well as Egb and σgb for all series of mate-
rials. It was found that in each case the relationship between these two parameters, 
the activation energy and the natural logarithm of the pre-exponential factor, has a 
linear character.

Directional coefficients of fitted lines constitute a measure of the characteristic 
temperature, T0, whose values are collected in Table 2. Because each of individual 
material series consisted of the solid solutions obtained under the same conditions 
but with a different chemical composition, it can be assumed that T0 is the tempera-
ture at which the chemical composition has no effect on the value of conductivity. 
This corresponds to such a situation as a total dissociation of the all complex defects. 
In the case of bulk conductivity, characteristic temperatures of all the series do 
not vary significantly from each other as it was confirmed by a small influence of 

bulk conductivity grain boundaries conductivity 
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Fig. 23 Applicability of the Meyer–Neldel rule in zirconia solid solutions with different 
 microstructures in the case of (a) bulk conductivity and (b) the grain boundaries’ conductivity. The 
correlation coefficients higher than 0.96 (a) and 0.98 (b)

Material

T0, °C

Bulk conductivity Grain boundary conductivity

IP 858 1315

FP 819 615

Table 2 The values of T0 
characteristic temperature 
calculated from the Meyer–
Neldel rule
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microstructure on the type and number of defects. The values of T0 in the case of 
grain boundaries’ conductivity are clearly linked to the microstructural properties of 
the individual series of sintered materials. However, there is no simple correlation 
such as the average grain size which could lead to the assumption that in this case 
also other factors must be taken into account, affecting the structure of the grain 
boundaries such as the sintering temperature or the impurity level resulting from the 
method of powder preparation.

 Conclusions

The research results presented in this paper of the influence of the microstructure of 
the zirconia solid solutions on their ionic conductivity can be a good basis for evalu-
ating the application of nanomaterials, meant as the solid electrolyte. As it was 
shown, the limitation of the grain size to the nanoscale particles results in a signifi-
cant decrease in bulk conductivity activation energy and in the increase in the value 
of this conductivity at relatively low temperatures. The Eb decline, however, is simi-
larly accompanied by the pre-exponential factor depreciation, which results in a 
relative decrease in bulk conductivity with increasing temperature, with respect to 
the materials of submicron microstructure. This factor increases with increasing 
yttria content in the solid solution; thus, a natural way to increase the conductivity 
values would be to obtain a material with the nanometric microstructure and con-
taining a larger amount of Y2O3. A restriction and possibly even impossibility of 
achieving this project is related to the fact that the increase in the amount of yttrium 
oxide in the solid solution promotes grains coarsening during sintering. As it fol-
lows from the presented investigations, sintering at 1200 °C of powders consisting 
of crystallites of dimensions approximately 7 nm and containing 7 or 8 mol% Y2O3 
results in materials in which the vast majority of the particles has a size larger than 
100 nm. Lowering the sintering temperature, whose consequence would be effec-
tive, particle size reduction without the use of such a hot pressing does not seem 
possible. More hope would rather be associated with a reduction in the size of crys-
tallites, although the minimum size of them is about 4 nm, and the development of 
a new method of compaction. In the latter case, a natural obstacle is constituted by 
the surface effects forming a natural barrier in obtaining relatively dense nanopar-
ticle systems.
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   Abstract  
  Since the advent of nanomaterials, 1D nanotubes of varying materials have attracted 
attention for their unique physical and chemical properties. Whilst the utilization of 
these structures has become a reality today, many of its potential applications 
remain a far-off dream. One of the ways to move this dream closer to a reality is 
through the functionalization of the nanotubes. Carbon nanotubes are one the most 
exciting nanostructures discovered to date and still generate much interest due to 
their extraordinary thermal conductivity, mechanical, and electrical properties. 
Silicon nanomaterials are also particularly useful as they form crucial part of the 
electronic developer’s desire to make technological devices smaller and smarter. 
Titanium generates much interest as a biomaterial and for its good conductivity, 
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chemical durability, high melting point, and wide applicability. Chemical 
 functionalization allows for the alteration of the electronic properties whilst effect-
ing new functions through the chemical tailoring of the surface to suit the particular 
application. Wet chemistry techniques are one of the more popular ways of accom-
plishing these functionalizations. In this chapter, wet chemistry approaches to the 
chemical functionalization of titanium and silicon nanomaterials are explored.  

        Introduction 

 The advent of nanotechnology has the potential to change every part of our lives as 
it is the foundation of recent and major technological advances. It has the potential 
to change our approach of manufacturing, technology, electronics, bio materials, 
polymers, and ceramics. Besides the creation of novel materials using nanotechnol-
ogy, it also allows one to harness properties that would have previously been inac-
cessible in known materials, creating ultraprecise structures with the potential for 
vastly improved mechanical, chemical, and electrical properties. 

 The functionalization of nanomaterials presents a way in which nanomaterials 
can be specifi cally tailored to fulfi ll a specifi c objective. The aim is to improve spe-
cifi c properties to suit the application required. Its electronic properties and selec-
tive reactivity are some of the properties that are most often tailed. There are many 
different methods used to functionalize nanomaterials with wet chemistry tech-
niques being one of the more popular methods. 

 Wet chemistry allows for the functionalization to take place using typical bench 
top chemistry methods, therefore reducing the cost of equipment required and 
allowing for greater control of the reaction conditions. The most popular functional-
ized nanomaterial lies with porous silicon surfaces due to its relative cheapness and 
wide usage. Titanium dioxide and carbon nanomaterials have also been the subject 
of functionalization techniques to improve their already attractive properties, 
although the reported research fi ndings/data for them is much smaller than that 
available for the functionalization of porous silicon. 

 The Advent of the Wet Chemical Functionalization of Silicon Surfaces happened 
when:

•    In 1956, the discovery was made by Uhlir that during the electropolishing of 
crystalline Silicon, the upper surface did not dissolve [ 1 ].  

•   It was fi rst noted in 1971, that rather than dissolution, brownish layers of fi ne 
holes are produced [ 3 ].  

•   Silanization was then the fi rst method utilized to graft organics to SiO 2 . This 
method however, suffers from low OH-content on the surface.  

•   T-BAG- Tethering by aggregation and Growth was then used to improve on the 
silanization technique fi rst used. In this process phosphonate molecules are 
grafted onto SiO 2 .    

 Functionalization could then occur once an H-terminated surface was obtained.  
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    Wet Chemical Functionalization of Silicon 

 In 1956 Uhlir observed that during the electropolishing of crystalline silicon that the 
silicon substrate did not dissolve under the appropriate conditions but rather, as 
Watanabe et al. later reported, produced a brownish layer of fi ne holes [ 1 – 3 ]. Since 
then, silicon has been the forerunner in microelectronic technology for the past few 
decades owing to its abundance and its relative cheapness. Because its interface is 
chemically and electrically stable with its oxide it can be produced with high purity 
[ 4 ]. As the size condenses into the nanoscale and beyond, its surface properties play 
an ever-increasing role. The low concentration of the electrical defect states at the 
Si/SiO 2  interface is, in fact, the main driving factor behind its use in photovoltaic 
and electrical biosensors [ 5 ]. Precise tailoring of its interfacial and surface proper-
ties becomes necessary in order for it to be effectively used in the abovementioned 
applications. The modifi cation of the surface properties of Si/SiO 2  carried out by the 
grafting of molecules using OH groups has been the subject of many investigations. 
There are several disadvantages one has to face when attempting to modify the SiO 2  
surface. Firstly, there is poor chemical stability of the Si–O–Si bond at the organic 
layer and SiO 2  interface. This is due to the ease with which hydrolysis occurs at 
basic and even neutral pH conditions. Secondly, the activation energy required for 
the reaction with OH groups on the surface is high. It is particularly high when 
considering the grafting of phosphonic acid groups onto the surface [ 6 ,  7 ]. 

 There are two main methods that are currently used for the wet chemical func-
tionalization of silicon nanostructures:

    (i)    Silanization: 
 It is a self-assembly process whereby the surface is covered with organo-

functional alkoxysilane molecules [ 8 ]. During this process the –OH group 
“attacks” and displaces the alkoxy group on the silane thereby leading to the 
formation of a covalent –Si–O–Si– bond. There are several drawbacks when 
utilizing this method. For example, this method suffers from low OH group 
content of the Silicon surface oxide [ 7 ,  9 ]. In addition to it, the structural order 
is diffi cult to attain while the silicon surface coverage is obtained using amor-
phous siloxane polymerization whose degree of polymerization is heavily 
dependent on the water content of the deposition solvent [ 10 ,  11 ].   

   (ii)    Tethering by aggregation and growth (T-BAG): 
 It is used where phosphonate molecules are grafted onto SiO 2.  In this pro-

cess, a phosphonic solution is weakly physisorbed onto the oxide substrate and 
then chemisorbed using heat. A well-ordered layer can be easily formed 
because of the interaction of the phosphonate groups with adjacent molecules. 
Any remaining physisorbed groups are easily removed by rinsing [ 10 ]. This 
process has two main advantages over the more popular silanization. Firstly, it 
is not restricted to specifi c environmental conditions, and secondly, this method 
is simple and highly reliable. However, it does has some disadvantage espe-
cially that the chemisorption process can be very long and can take upwards of 
48 h. This particular disadvantage has recently been reported as one that can be 
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minimized by controlling the humidity under which the reaction occurs [ 12 ]. 
The –Si–O–P– bond which is formed during this process is very easily hydro-
lyzed and the sample must be heated in order to transition from the physisorbed 
phosphonic acid to the chemisorbed phosphonate.     

 Because of the disadvantages outlined, a driving force has led to a fl urry of 
research into obtaining oxide-free surfaces through a process known as H-termination 
of the Si surface. Functionalization can now therefore occur through the transforma-
tion of H-terminated Si surfaces using metal complex catalyzed reactions [ 13 ], 
radical induced hydrosilylation reactions [ 14 ,  15 ], thermal hydrosilylation, electro-
chemical methods [ 16 ], and/or reactions with lithium or Grignard reagents [ 17 ]. 
Recently advances have also been made through the immersion of N-terminated Si 
(111) in neat, anhydrous CH 3 OH at 65 °C which leads to the slow formation of 
oxide free methoxy terminated surfaces. In the compound formed, each methoxy 
center is surrounded by six Si–H surface molecules [ 18 ,  19 ].  

    H-Termination 

 Due to the instability of the Si–O native surface, H-termination is necessary as it not 
only provides us with the necessary relative stability, but also the selective reactiv-
ity required for functionalization. Si–H is easily prepared using an HF-based 
solution, usually HF/EtOH, under various chemical, electrochemical and photo-
electrochemical conditions in order to suit the crystallography and type of Si sur-
face to be treated. A solution of dilute (1–2 %) HF (aq)  is used to treat Si (100) surface 
yielding dihydride i.e., SiH 2  (100); whereas a treatment with a solution of 40 % 
NH 4 F (aq)  of Si (111) yields the fl at monohydride =SiH [ 20 ]. Originally, the under-
standing of this process proved a challenge as the SiF (~5 eV) bond was tradition-
ally thought to be more stable than the SiH (~3.5 eV) bond [ 21 ]. The Si–Si bond is 
strongly polarized because of the high electronegativity of the F- atom. This makes 
the Si–Si bond unstable leading to the easy removal of a surface Si atom in the form 
of SiF x  as has been proposed by Uhara and colleagues [ 21 ] and later confi rmed by 
experimental reports [ 22 ]. A proposed reaction scheme is shown in Fig.  1 .

   Because Si has a relatively low electronegativity, H-termination partially oxidizes 
its surface and leads to the formation of a partial positive charge. This is particularly 
advantageous because of the ability of this H-atom to act as a Lewis base [ 23 ].  

    Metal Complex Catalyzed Reactions 

 Traditionally, lower transition metals such as platinum, palladium, and rhodium were 
utilized in the hydrosilylation of alkenes and alkynes on H-terminated Si surfaces 
[ 24 ]. However, many reports and publications to date fi nd that the use of these 
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transition metals as metal complex catalysts in hydrosilylation reactions do not yield 
the desired reaction pathway. For example, Ito et al. reported that when the reaction 
was executed using RhCl(PPh 3 ) 3 , or Wilkinson’s reagent, and PdCl 2 (Pet 3 ) 2  or the 
more common Pd(OAc 2 ) 2 /1,1,2,3-tetramethylbutylisocyanide for functionalization 
with alkynes, the experiment yielded metal deposition and substantial oxidation [ 25 ]. 

 Some breakthroughs in the use of lower transition metals have however 
been made. One group of researchers has shown that Karstedt’s catalyst 
(O[Si(CH 3 ) 2 CH=CH 2 ] 2 Pt) does in fact produce the desired result. They have also 
noted that oxygen is necessary in order for hydrosilylation to take place as it plays 
a role in the stabilization of Pt colloids [ 26 ]. 

 Lewis acids also represent a good alternative to traditional transition metals as a 
catalyst in hydrosilylation reactions due to their mild reactivity and high selectivity. 
AlCl 3 , poses a solubility challenge as it is insoluble in nonpolar solvents. This prob-
lem is easily rectifi ed through the use of EtAlCl 2 , which would prevent multiphasic 
reactions from also occurring at the same time [ 27 ]. A reaction scheme for the use 
of EtAlCl 2  in hydrosilylation is shown in Fig.  2 . An excess of EtAlCl 2  can be uti-
lized in these functionalization reactions in order to add alkynes with ester, hydroxyl, 
or cyano groups.

   One example of a reaction employing this technique is the reaction of 1.0 M solu-
tion of EtAlCl 2  in hexane with H-terminated Si surfaces. Upon addition of 
1-dodecyne, dodecyl groups are found to have been successfully added to the 
surface. 

 The effi ciency of these reactions depends directly on the chemistry and stereo-
chemistry of the starting reagents used. 1-alkenes tend to produce the best effi ciencies 
at 28 % leaving approximately 70 % of the H-terminated surface bonds undisturbed. 
Cis alkenes are also more effi cient than trans alkenes [ 28 ].  
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  Fig. 1    A proposed reaction mechanism for H-termination       
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    Radical Induced Hydrosilylation Reactions 

 During hydrosilylation, a saturated bond is inserted into the Si–H groups on the 
surface. The use of a radical initiator gives us one method of achieving this. The 
surface structures produced using this method are relatively stable, with the ability 
to withstand extended boiling in aerated chloroform, acidic conditions (2.5 M 
H 2 SO 4  in 90 % dioxane v/v), and basic conditions (1 M NH 4 OH (aq) ) [ 29 ]. 

 A mechanism was proposed and has been confi rmed upon by several research 
groups [ 30 – 32 ] and is shown in Fig.  3 .

       Thermally Induced Hydrosilylation 

 Organic functionalization of H-terminated Si surfaces was fi rs carried out by 
Bateman et al. in the 1990s [ 33 ]. Thermal hydrosilylation was initially avoided as a 
viable option because it was thought that thermally treating compound would lead 
to activation of the functional groups. This activation of the functional groups would 
cause them to then react with the H-terminated Si instead of forming the unsaturated 
alkene terminals. The theory has been disproven since then with many successful 
attempts at thermally induced hydrosilylation [ 34 – 37 ]. 

 In this process, the H-terminated Si surface is immersed in a solution of 
the desired alkene at temperatures of approximately 150–200 °C, for 18–20 h. 
This slow reaction time is one of the major disadvantages as it makes the reaction 
sensitive to infi ltration by impurities. However, operating at these moderately high 
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  Fig. 2    A reaction scheme for the use of EtAlCl 2  in hydrosilylation       
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temperatures provides the advantage of a reduced risk of surface oxidation due to 
the elimination of water from the reaction sphere [ 38 ], in the process degradation 
being suppressed and ordering of the layer being promoted. 

 In the 1990s when the process was developed by Bateman et al., it was thought 
to be as a result of the presence of surface radicals [ 33 ] but now it is thought to be 
inaccurate and is actually due to the unlikelyhood of hemolytic cleavage of the rela-
tively strong H–Si bond (3.6 eV) occurring at such moderate temperatures. A more 
likely mechanism based on classical approaches was then proposed [ 28 ,  39 ] and is 
shown in Fig.  4 .

       Electrochemical Methods 

 Reduction of alkyl iodides and bromides and benzyl bromides can be done electro-
chemically to produce covalently bonded Si-functionalized surfaces. Several mech-
anisms have been proposed for this alteration using electrochemical methods. One 
suggests the reduction of alkyl and benzyl halides in order to produce their radicals 
which may then react with surface Si–H bonds (as shown in Fig.  5 ).

   Functionalization can now take place via the reaction between the Si radical and 
the alkyl or benzyl radical. A proposed reaction is shown in Fig.  6 .

   Another functionalization option involves the reduction of the Si radical which 
can then be subject to nucleophilic attack. This process is illustrated in Fig.  7 .

   Another option also includes the in situ reduction of alkyl and benzyl radical to 
carbanions in a manner similar to the reaction of Grignard reagents. A reactive 
mechanism for this process is shown in Fig.  8 .
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  Fig. 3    A proposed mechanism for radical induced hydrosilylation reactions       
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  Fig. 5    One possible mechanism for the electrochemical reduction of alkyl iodides and bromides 
and benzyl bromides       
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   The reduction can be done using R–X (X = Br, I) in a mixture of acetonitrile and 
tetrahydrofuran containing 0.2 M LiBF 4 . A cathodic current of 10 mA/cm 2  is applied 
for approximately 2 min in order to execute the process. The process results in sur-
faces that have been reported to be very stable when compared with hydride termi-
nated Si surfaces, sometimes referred to as 1-step process surfaces [ 40 – 42 ]. The 
surfaces were subjected to dimethylsulfoxide, aqueous Cu 2+ , 10 % ethanol in phos-
phate solution having a pH of 7.4, and Na 2 CO 3 /NaHCO 3  in ethanol-water; has 
shown greater promise than hydride terminated Si surfaces under these conditions. 

 Using anodic electrografting (AEG) and cathodic electrografting (CEG), 
alkynes can be grafted onto H terminated Si surfaces [ 43 ]. Several authors [ 44 ,  45 ] 
have reported a mechanism for the cathodic eletrografting process that includes 
the formation of a Si −  intermediate via a reduction process which is then proton-
ated [ 28 ]. This mechanism is highlighted in Fig.  9 . Anodic electrografting may 
occur via the nucleophilic attack of positively charged Si surfaces followed by 
hydride termination.

   Mattei and Valentini, in recent years, reported in situ functionalization of Si sur-
faces during its electrochemical formation process via the dissolution of alkenes 
and alkynes within the H–F solution utilized. This process is reported to be 50–60 % 
effi cient, relatively stable and quick and is shown in Fig.  10  [ 46 ].

      Applications 

     (i)    Surface Passivation. 
 Canham et al. were among the fi rst group of researchers to demonstrate the 

promise of the use of microporous surfaces such as silicon in biotechnological 
advances [ 47 ]. In one reported application, functionalized Silicon which was 
derived through the use of a Lewis acid to mediate hydrosilylation of 
1-dodecyne, was incubated at 37 °C in simulated bodily fl uids (Fig.  11 ). 

 The functionalized surface suffered layer dissolution of less than 25 nm 
whilst, the unfunctionalised portion, ~250 nm, was almost totally dissolved in 
under 70 h. The researchers reported a decrease in the corrosion rate of 
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  Fig. 9    Reaction mechanism for the cathodic eletrografting process       
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approximately by 100 due to functionalization [ 48 ]. This serves to highlight 
the ability to utilize functionalized Si surfaces to direct selective bioreactivity 
in the fi elds of biosensors and biomedical research.   

   (ii)    Electroluminescence Stabilization. 
 This phenomenon was investigated by Buriak et al. using cathodic eletro-

grafting, anodic electrografting and hydrosilylation via lewis acids to function-
alize the Si surfaces. Alkyl terminated surfaces showed bright emissions with its 
functionalized surfaces exhibiting recharging under cathodic conditions [ 28 ].   

   (iii)    Desorption/Ionization on Silicon (DIOS). 
 Buriak and Siuzdak are widely known to be the pioneers for the use of 

porous silicon in desorption/ionization mass spectroscopy. The porous silicon 
replaces the traditional classical matrix assisted mechanism required allowing 
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  Fig. 10    In situ functionalization of Silicon surfaces       
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for reliable analysis of low molecular weight molecules which is particularly 
useful in drug synthesis. The mechanism by which ionization occurs is not 
fully understood, although the infl uence of various parameters such as pore 
size and depth has been reported [ 20 ].    

        Wet Chemical Functionalization of Titanium Dioxide 

 Inorganic oxide nanotubes (titania nanotubes) were fi rst developed by Kasuga 
et al. [ 49 ] and later evolved by Chen et al. These nanoparticles are appealing 
because of their crystalline and scroll structure and can be easily assembled by 
treating crystalline titanium dioxide (TiO 2 ) with highly concentrated sodium 
hydroxide (NaOH) [ 50 ]. The inclusion of hydroscopic oxide, for example, silicon 
dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) increases water retention at high tem-
peratures and composite membranes synthesized with this component exhibit 
appreciable conductivity up to 140 °C [ 51 ].  

    Acid Functionalization of Titanium Dioxide 

 TiO 2  nanotubes were prepared using a hydrothermal method by the hydrothermal 
alkali treatment of crystalline TiO 2  [ 49 ]. Five grams of titanium dioxide (TiO 2 ) pow-
der and 200 ml of 10 M sodium hydroxide (NaOH) solution was prepared and the 
mixture was refl uxed for 5 days in a nitrogen atmosphere at 100 °C. The obtained 
product was then washed with 0.1 M hydrochloric acid (HCl) and deionized water 
until a neutral pH was obtained. The solution was then fi ltered and dried at 70 °C for 
24 h in a vacuum oven. Titania nanotubes of average length 100–200 nm and 
15–20 nm width were obtained using TEM shown in Fig.  12 . The nanotubular tita-
nia synthesized were then acid functionalized. Acid functionalization is the process 
whereby the surface groups which are attached to the nanotube can be changed into 
an acidic moiety to aid in the electrical properties of the materials. Acid functional-
ization was achieved via the mechanism shown in Fig.  13 . The process starts with 
0.5 g of nanotubular titania being dissolved in tetrahydrofuran (THF) and 5–10 ml 
of 1 M potassium tert-butoxide [(CH 3 ) 3 COK] in THF added to the solution. The 
solution reacted for 3–4 h under refl ux in nitrogen atmosphere at 80 °C with con-
tinuous stirring. The addition of 3 ml of 1,3-propane sultone was done and the solu-
tion was allowed to react under the same conditions for 24 h. Five milliliters of 
perchloric acid (HClO 4 ) (oxo-acid) was then added and the solution reacted under 
the same conditions for 3–4 h. Acid functionalized nanotubular titania was obtained 
with the centrifugation of the product followed by three wash cycles with THF and 
drying in oven at 80 °C.

     1 H-NMR studies obtained for unfunctionalized nanotubular titania and nanotubular 
titania functionalized with 1,3-propane sultone showed doublet peaks at 3.53 ppm, the 
triplet at 3.41 ppm, and the multiplet at 2.04 ppm. In functionalized nanotubes, a 
change in the structure of the unfunctionalized nanotubular titania is has been observed. 
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The peaks present in the unfunctionalized nanotubes were observed more dispersed 
as well as broader around the chemical shift values of 3.53, 3.41, and 1.61 ppm. 
The broader peaks imply the presence of an increased number of protons whilst the 
fact that the position of the peaks remains the same implies that the same structure 
is maintained. 
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  Fig. 13    Reaction showing the functionalization of titania nanotubes       
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 Acid functionalization confi rmed using X-ray diffraction (XRD) and Fig.  14  
shows the diffractograms for the sulfonated nanotubular titanium dioxide synthe-
sized using different chain lengths of sulfonated chain. Diffractograms shown is for 
(a) nonfunctionalized titania nanotubes and acid functionalized nanotubular titania 
using (b) 1,3-propane sultone and (c) 1,4-butane sultone.

   Same characteristic peaks of titania nanotubes were observed in the titania nano-
tubes that were acid functionalized by both 1,3-propane sultone and 1,4-butane sul-
tone. TEM studies were conducted on the acid functionalized titania in order to 
determine if they retained their nanotubular structure. The TEM images micro-
graphs are shown in Fig.  15  for 1,3-propane sultone nanotubular titania (left hand 
fi gure) and for 1,4-butane sultone nanotubular titania (right hand fi gure) functional-
ized titanium nanotubes. Although the acid functionalized titania showed an even 
greater propensity to coagulate than unfunctionalized titania the presence of nano-
tubular structures was still observed.
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  Fig. 14    Diffractograms for ( a ) nonfunctionalized titania nanotubes and acid-functionalized nano-
tubular titania using ( b ) 1,3-propane sultone and ( c ) 1,4-butane sultone       
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   Different properties have been found to be effected by changing the functional-
ized side chain length including ion exchange capacity (IEC), electrical conductiv-
ity, etc. The ion exchange capacity (IEC) of the unfunctionalized and functionalized 
titania nanotubes carried to determine in order to establish whether after acid func-
tionalization there were more ions available for conduction which would indicate 
the ability of the acid functionalized nanotubes to be used to contribute to the proton 
conductivity. The ion exchange capacities (IEC) values for unfunctionalized and 
functionalized nanotubular titania obtained are shown in Table  1 .

   The samples acid functionalized showed a marked increase in IEC value over 
acid functionalized nanotubular titania. The 1,3-propane sultone acid functionalized 
nanotubular titania had an IEC value approximately three times higher than that for 
1,4-butane sultone. This could be due to the fact that the additional chain length in 
the 1,4-butane sultone nanotubular titania causes entanglement and does not as 
readily allow for the passage of ions. 

 Conductivity studies shown for these acid functionalized systems showed 
improvement over the non functionalized nanotubular titania. Figure  16  shows con-
ductivity variation of ionic conductivity as a function of temperature for unfunc-
tionalized and acid-functionalized nanotubular titania.

   The acid functionalized nanotubular titania functionalized with 1,3-propane sul-
tone showed high conductivity values with maximum conductivity at 5.04 × 10 −3  S/cm. 
The highest conductivity obtained for 1,4-butane sultone was 1.94 × 10 −3  S/cm. 
Unfunctionalized nanotubular titania had its highest conductivity at 4.71 × 10 −4 S/cm. 
As temperature increased past 100 °C, the conductivity of the unfunctionalized tita-
nia began to show a marked decrease and this continued as the sample was run past 
160 °C. This may be due to loss of hydroxide groups along the surface in the form of 
condensation. This effect was not noticed in the acid functionalized titania samples.  

  Fig. 15    TEM micrographs for 1,3-propane sultone nanotubular titania ( left hand fi gure ) and for 
1,4-butane sultone nanotubular titania ( right hand fi gure ) functionalized titanium nanotubes       

   Table 1   Sample  IEC (Mequiv) 

 TiO 2  nanotubes  0.09 

 1,3-propane sultone TiO 2  nanotubes  0.49 

 1,4- butane sultone TiO 2  nanotubes  0.165 
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    Conclusion 

 In this chapter, wet chemical techniques for the functionalization of Silicon and 
titanium nanocomposites are explored with Silicon being the more popular semi 
conductor in the research community. Two main methods were investigated for 
preparation for functionalization of Silicon nanocomposite surfaces: Silanization 
and Tethering by Aggregation and Growth (TBAG). Functionalization can then 
occur on H-terminated Silicon surfaces via metal complex catalyzed reactions, radi-
cal induced hydrosilylation reactions, thermal hydrosilylation, electrochemical 
methods, and/or reactions with lithium or Grignard reagents. 

 Advantages of wet chemical functionalization of H-terminated Si includes (1) 
the preservation of the nanostructure, (2) the compatibility if Si H-terminated bonds 
with the main organic and organometallic reactions and the organic functional 
groups, and (3) the use of well-established methods for the integration of chemical 
and biofunctionality. The major limitation lies in the high number of H-terminated 
surface bonds remaining unsubstituted due steric hindrance from surrounding 
bonds. These unsubstituted bonds left behind are not protected from oxidation and 
may hinder chemical and biofunctionality. 

 Acid functionalized titania nanocomposites occur when the nanotube surface 
groups are modifi ed to an acidic moiety in order to change and enhance the elec-
tronic properties of the material. In the process outlined, 1,3-propane sultone and 
1,4-butane sultone are utilized as the reacting agents to add sulfonic acid groups and 

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008
TiO2 nanotubes

1,3-propane sultone TiO2 nanotubes

1,4-butane sultone TiO2 nanotubes

σ 
(S

/c
m

)

1000/T

  Fig. 16    Ionic conductivity as a function of temperature for unfunctionalized and acid- 
functionalized nanotubular titania       

 

26 Wet Chemical Approaches for Chemical Functionalization of Silicon…



864

confi rmed using  1 H-NMR, XRD, and TEM studies. Electrochemical impedance 
studies done revealed that the shorter the chain length of the acid chain attached to 
the nanotubular surface, the higher the conductivity obtained whilst all samples 
demonstrated good amorphous characteristics. 

 This fi eld of wet chemical functionalization will remain one of the most widely 
pursued aspects of semiconductor nanomaterials being mainly driven by their many 
applications in surface passivation and stabilization, biosensors, Polymer electro-
lyte membrane fuel cells, and battery technology.     
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Abstract
This review is focused on the fundamental developments in the charge transfer 
processes and charge storage properties of different kinds of nanoparticles. 
Special attention is paid to metallic nanoparticles and nanostructured carbon
materials. Behavior related to the discrete electron levels distribution is empha-
sized. Depending on the nanoparticle size, the electrochemistry is systemized in
three regimes: bulk-continuum electrochemistry, electrochemical behavior 
reflective of quantized double-layer charging, and molecule-like behavior. 
Recent progress in understanding charge transfer process in two- and three- 
dimensional films of metallic nanoparticles based on electron-hopping model 
is discussed. A conductivity of carbon nanostructures, nanotubes, nano-onions, 
and graphene is briefly described in terms of their electronic structure.  
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The exemplary results of nanoparticles thin film conductivity determination are
presented. The review is concluded with an outlook on the technological poten-
tial of nanoparticles in charge storage devices. Principles of double-layer and 
faradaic electrochemical supercapacitors are given. Double-layer capacitance
performances of carbon nanostructure that involved materials are summarized. 
Pseudocapacitance properties of polymeric nanoparticles that involved thin films 
are also discussed. Finally, electrochemical supercapacitors based on the nano-
composites containing carbon nanostructures are described.

Keywords
Metallic nanoparticles • Carbon nanostructures • Charge transfer process • Thin
films of nanoparticles • Capacitance and conductivity of nanoparticles

 Introduction

For more than two decades, the investigation of nanoscale phenomena has domi-
nated many domains of science. A vast number of synthesis methods have been 
performed in order to reach nanostructured materials with designed and improved 
structures and properties. They have been mainly focused on the formation of stable 
and size-controlled monolayer-protected metallic clusters. Spectacular progress in
the synthesis of carbon nanostructures has been also observed. This carbon family 
of nanomaterials has opened a large area of study for theoretical and practical inves-
tigation. Recently, nanoparticles of transition metal and nonmetal oxides have been
synthesized due to their perspective application in charge storage and photochemi-
cal and photoelectrochemical devices.

Years spent studying nanoparticles revealed the potential and limitations of these 
materials in pure and applied science. The properties of materials on the nanoscopic 
scale are determined by a material’s chemical nature, size, and shape. In most cases, 
stable nanoparticles are formed under the protection of layered organic compounds 
or ions to prevent aggregation. This protective layer may also influence the proper-
ties of the core material. Due to their size, the nanoparticles exhibit properties differ-
ent from those of both the individual molecules and the bulk material. These features 
promise extensive and unique applications of nanoparticles and nanomaterials.

The conductivity and capacitance properties of nanoscopic particles or materials 
composed of nanoparticles are particularly important because these materials are 
used in nano- and microsize electronic devices, charge storage materials, light- 
converting systems, and chemical detectors based on electrocatalytic processes. The 
electronic structure and therefore the electric and electrochemical properties of 
nanoparticles depend upon the size and shape of the nanoparticles. Relatively large 
nanoparticles have an electronic structure similar to that of the bulk material. As the 
size of the nanoparticles decreases, quantum effects begin to dominate. Finally, very 
small particles have electronic structures similar to those of individual molecules. 
Their large surface area-to-volume ratio makes these nanoparticles suitable to use in 
charge storage devices.
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A number of reviews have covered the electrochemical properties and electro-
technological applications of nanomaterials [1–19]. The early electrochemical stud-
ies of monolayer-protected metallic clusters have been summarized by Murray and 
coworkers [1]. Two other reviews by Murray that reported different aspects of nano-
electrochemistry [2, 3] are particularly important. These articles address the prob-
lems encountered while fabricating nanoparticle materials for electrochemical study 
and examining the electrochemical properties of these materials, as well as nanoelec-
trodes and electrochemistry in nanopores. Gold nanoclusters receive special atten-
tion in these reviews. Chen gives a brief overview of the recent research concerning 
discrete charge transfer processes in nanoparticle solid films [4]. Many reviews 
detail the electrical properties of carbon nanomaterials [5–11]. Selected aspects of
the synthesis and practical applications of polymeric nanoparticles were reviewed by 
Hanemann and Szabo [12]. Nanoparticles have been frequently used in charge stor-
age devices, and many reviews have reported the problems encountered during these 
applications, especially for devices using carbon nanomaterials [13–19].

The subject of this review is too large to present a comprehensive summary in the 
space available. We have thus selected areas to highlight. First, we have mainly 
focused on two major types of nanoparticles: organic monolayer-protected metallic 
nanoparticles and carbon nanoparticles. These are the most important and the most 
intensely studied nanoparticles. The first section of this chapter discusses the conduc-
tivity and electrochemical properties of these nanomaterials. The effect of size, shape, 
and composition of nanoparticles is emphasized. The second part of this section is 
concerned with the practical application of nanomaterials in charge storage devices.

 Quantum Effects in Electrochemistry of Nanoparticles

Metallic nanoparticles have two essential components: a metal core and a core- 
stabilizing organic monolayer (Fig. 1). The organic monolayer may be additionally 
covalently functionalized with redox-active groups, such as ferrocene, anthraqui-
none, and viologen. These nanoparticles form stable colloidal solutions and may be 
directly studied using potentiodynamic electrochemical techniques.

The electrochemical activity of these types of nanoparticles may be related to the 
following: (i) faradaic processes of the metallic core, (ii) faradaic process of the 
protective organic layer, and (iii) capacitive charging of the nanoparticle surface. 
Therefore, the electrochemical properties of metallic nanoparticles depend on (i) 
the core material, (ii) the nanoparticle size and shape, (iii) the composition of pro-
tective organic layer and its thickness, and (iv) the composition of the solution.

The capacitance of nanoparticles greatly influences the electrochemical behavior 
of nanoparticles and their technological applications. The change in electrochemi-
cal potential (ΔV) is related to the double-layer capacitance of the individual metal 
cluster (CCLU) through the equation [1]:

 
DV

ze
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=
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where z is the number of electrons transferred and e is the electron charge. The value 
of ΔV must be considered relative to the Boltzmann thermal energy distribution 
factor [2]. When ΔV ≪ kB T (kB T = 25.7 meV in room temperature), the system can 
be treated as a metallic bulk material, and a nanoparticle’s potential can be expected
to continuously change. If ΔV is higher than 25.7 meV, then a stepwise change in 
the nanoparticle’s potential is expected. The value of ΔV may be treated as an elec-
trochemical or optical HOMO–LUMO energy gap. The changes in ΔV for gold 
nanoparticles protected by an organothiolate ligand layer relative to core size are 
illustrated in Fig. 2 [2]. The range of particle sizes can be divided into three types: 
metallic quantum dot-like behavior for large nanoparticles and bulk material, metal-
like quantized behavior for the intermediate size, and molecule-like behavior for 
small nanoparticles (less than 100 gold atoms in the metallic core). Sufficiently low
double-layer capacitance in the nanoparticles (Eq. 1) should also change the energy 
of the metallic core’s electronic levels and consequently force metallike quantized 
behavior to occur.

The steady-state voltammetric responses of the quantized capacitance-charging 
ability of metallic particles were simulated utilizing different core sizes, core size 
dispersity, and the properties of the protective organic layer [20]. The charging ener-
getics are easily described using the simple electrostatic relationships via the fol-
lowing equation for microelectrode current response (i) [20]:
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where kB is the Boltzmann constant, r is the core radius, d is the thickness of the 
protective monolayer, rlow and rhigh are the lower and upper limit of core radius in 
dispersion, rel is the microelectrode radius, η is the solvent viscosity, CCLU* is the 
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Fig. 1 Cartoon of organic monolayer-stabilized metallic nanoparticles
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nanoparticle bulk concentration, and d is the thickness of protective dielectric 
monolayer. The αz parameter is described by Eq. 3:
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where Nz and Nz−1 are the Boltzmann population of particles having charges z and 
z − 1, EAPP is the potential applied to the working electrode, and EPZC is the nanopar-
ticle zero charge potential. This equation can be expressed in the following Nernst
equation form:
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where EPZC + [(z-0.5)e]/CCLU represents formal potential of the MNPz/MNPz−1 pair. 
This equation also predicts a series of equally separated waves at positive and nega-
tive potentials relative to the zero charge potential of the nanoparticle.

Figure 3a displays the effect of the core size on the steady-state voltammetric 
response [19]. The charging steps are easily observed for the nanoparticles with 
cores smaller than approximately 1 nm. The spacing decreases with increasing core
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Fig. 2 Estimated HOMO–LUMO energy gap and electrochemical energy gap as a function of
core size of gold nanoparticles (Reproduced from Ref. [2] with permission from American 
Chemical Society)
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size according to Eqs. 2 and 3 because the capacitance CCLU depends on the nanopar-
ticle’s size. The theoretical difference in the formal redox potentials of the 0/+ and
0/− steps, in addition to the theoretical prediction of ΔV as a function of nanoparti-
cle size, is displayed in Fig. 3b and c, respectively.
Experimentally, the electrochemical behavior expected for bulk materials was

observed for relatively large metallic nanoparticles [21–25]. Figure 4 presents exam-
ples of current-potential curves recorded on rotating disk electrodes in acetonitrile 
containing Au310 stabilized by C8/C8Fc (C8 − octanethiol, C8Fc − ferrocenyloctaneth-
iol) particles [21]. The voltammetric wave is related to the faradaic current generated 
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by the ferrocene groups’ oxidation. The changes in the current of the pre- and the
post-wave potential ranges are related to the gold cluster molecules charged after 
being transported to the electrode surface due to their double-layer capacitance prop-
erties. The slopes of the pre- and post-wave potential ranges are different.

In the pre-wave region, the capacitance is related to the capacitance of the octa-
nethiol/ferrocenyloctanethiol monolayer. The values obtained for the nanoclusters 
are remarkably close to the capacitance obtained for the self-assembled monolayers 
of the n-alkanethiols on the polycrystalline gold electrode [26]. The oxidation of the
ferrocenyl group sharply increases the clusters’ capacitance. This effect is related to 
the charging of protecting C8/C8Fc layer analogously to the adsorption of ions on 
the electrode/electrolyte interface. For spherical nanoparticles, the capacitance per 
unit area of metal can be expressed in the following way:

 
C

d

r d

r
r=

+e e0
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where εr is the relative dielectric of the monolayer, ε0 is the permittivity of the free 
space, and d is the organic monolayer thickness.

Fig. 4 Voltammogram at GC rotating disk electrode (v=10 mV/s, ω = 3600 rpm) in CH2Cl2 
 containing 1 mM Au310SC8/SC8Fc (1:5.5) and 0.1 M (n-Bt)4NClO4. Inset (a) shows the depen-
dence of the limiting current on the square root of the electrode rotation (ω1/2) and inset (b) shows 
the dependence of pre-wave and post-wave slopes on the ω1/2 (Reproduced from Ref. [21] with 
permission from American Chemical Society)
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When the single-electron transfer causes the change of nanoparticle potential 
greater that the ambient thermal voltage (kBT), the quantized double-layer charg-
ing is observed [27–31]. Such behavior observed for Au145(S(CH2)5CH3)50 parti-
cles in CH2Cl2 solution is shown in Fig. 5 [1]. The sequence of the voltammetric 
peaks relates to the single-electron transfer processes occurring in the potential 
intervals e/Cnp. An even peak spacing signifies that a metallike core that displays 
electrostatically controlled charging is present. Similar behavior was observed
during the charging processes of nanoparticles immobilized on the electrode 
 surface [32–35].

Molecule-like electrochemical behavior is observed for small A25 [36–39], Au38 
[29], and Au55 [40] nanoparticles. Voltammograms obtained for A25(SCH2CH2Ph)18 
nanoparticles are shown in Fig. 6. The potential separation between first oxidation
step at about +0.10 V vs. Ag/Ag + and first reduction process at −1.5 V (Fig. 6) 
approximately corresponds to a 1.3 eV energy gap. The two oxidation steps at +0.10
and +0.39 V are related to the A SCH CH Ph2 225 18

1 0( )- /
 and A SCH CH Ph2 225 18

0 1( ) +/
 

charging processes, respectively. This first pair of oxidation peaks is followed by
second pair of current peaks at more positive potentials. This is a typical behavior 
of electron transfer processes of gold molecular species which reflects the presence 
of doubly occupied molecular orbitals [38].
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 Electrochemical Properties of Nanoparticles in the Solid State

The charge transfer processes of mono- or multilayers of nanoparticles include the 
following: (i) the electron transfer between the electrode and nanoparticle material, 
(ii) the electron transfer within the nanoparticle, (iii) the electron hopping between 
nanoparticles, and (iv) the transport of counterions between the solution and solid 
phases. This process depends on the following: (i) the contact between the electrode 
and the nanoparticles, (ii) the nanoparticle material’s chemical nature, (iii) the 
nanoparticles’ size and shape, (iv) the protective monolayer which stabilize nanopar-
ticles, (v) the interactions between the nanoparticles, (vi) the distance between the 
nanoparticles within the material, and (vii) the solvent and supporting electrolytes 
surrounding the nanoparticle material.

The nanoparticle ensembles that produce the one-, two-, or three-dimensional 
structures are schematically presented in Fig. 7. Single separated nanoparticles are
considered 0-dimensional systems.

 Metallic Nanoparticles

 Electrochemical Behavior of Single Metallic Nanoparticles
Determining the redox properties of zero-dimensional phase is quite challenging
when studying the electrochemistry of nanoparticles. During the electrochemical
studies of single nanoparticles, a highly amplified signal current is required. 
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E (V vs. AgQRE)
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Fig. 6 (a) Cyclic voltammogram at 0.1 V/s and (b) differential pulse voltammogram at 10 mV/s 
and 25 mV pulse of Au25(SC2Ph)24 in CH2Cl2 containing (n-Bt)4NPF6 at 0.4 mm diameter Pt 
electrode. Temperature was 70 °C (Adopted from Ref. [38] with permission from American 
Chemical Society)
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The preparation and isolation of individual nanoparticles is also challenging. 
However, these studies remain advantageous. Unlike surfaces covered with multiple 
species, single nanoparticles have no size or shape distribution. Their electrochemical 
responses are also unaffected by any interparticle charge transfer process. The effects 
of material density and the distance between nanoparticles can also be omitted. The 
nanoparticle’s electrochemical properties are determined with a reversible redox
probe. The transport to a nanoparticle’s surface is described by the equation used for 
spherical diffusion under potentiostatic steady-state conditions because the nanopar-
ticle is spherical. The limiting current is expressed by the following equation:

 
i

nFA DC

rlim

*
= CLU

 (6)

where D is diffusion coefficient of the reactant, C* is the reactant concentration in 
solution, ACLU is the nanoparticle’s surface area, and r is the nanoparticle’s radius.

Tel-Vered and Bard proposed three approaches for generating a single nanopar-
ticle on a large support [41], as illustrated in Fig. 8. For controlled deposition of 
nanoparticles with a low surface density (Fig. 8a), the following procedures can be 
applied [41]: (i) nanoparticle deposition on a surface with minimal defects, (ii) 
nanoparticle formation from a dilute solution, and (iii) deposition in a diffusion- 
controlled overpotential region to increase the effect of the nucleation exclusion
zones around the growing nucleation sites.

0-dimensional structure
of single nanoparticle

at the tip of SECM

1-dimensional structure at
the crystal wall dislocation step

2-dimensional LB film Au
3-dimensional multilayer
at Au electrode surface

Fig. 7 Schematic presentation of zero-, one-, two-, and three-dimensional structures of organic
monolayer-stabilized metallic nanoparticles
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All of these approaches require a very short deposition time. The time needed to 
transition from spherical to planar diffusion (td) is given by the following equation [41]:

 
t

R

Dd =
2

2  (7)

where R is half the distance between the closest neighboring nanoparticles and D is 
the diffusion coefficient of the redox reactant (mediator species in the case of
SECM) in solution.

In the approaches presented in Fig. 8b and c, a SECM tip with extra material
deposited on the end was used to form single nanoparticles. During the contact
procedure, the substrate was mechanically crushed by the sharp microtip, generat-
ing small nanoparticles. During the procedure to anodize the material on the tip
(Fig. 8c), the problematic multinanoparticle deposition was reduced by closing the 
electrode gap between the tip and the substrate or using smaller tips. This method is 
particularly favorable for metals that undergo electrochemical etching rapidly. 
Figure 9 displays the SEM image of a tip with nickel nanoparticles that have radii
of 60±10 nm produced via potentiostatic pulse deposition from a Ni (II) solution
[41]. A similar method was applied to produce palladium nanoparticles.

The electrochemical detection of single nanoparticles has several prerequisites 
[41]. Tiny particles require electrocatalytic processes for detection to amplify the 
current signal. Under these conditions, the nanoparticle should be stable. The cata-
lytic current from a single platinum nanoparticle was tested during hydrogen evolu-
tion, oxygen reduction, and Fe2+/Fe3+ redox processes. The gas evolution reactions

SECM tip

a

b

c

Metal 
predeposited
tip

On contact mass
transfer

EC mass transfer

+

deposition

SECM tip

etch

Metal tip
or metal
predeposited tip

–

Fig. 8 Schematic presentation of different techniques of (a) well-spaced nanoparticles at HOPG
and (b and c) single nanoparticles at the SECM tip (Reproduced from Ref. [41] with permission 
from American Chemical Society)
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cause the rapid detachment of the nanoparticle from the tip. The current associated 
with oxygen reduction is similar to that of the other processes, such as underpoten-
tial metal deposition or hydrogen reduction, and is too small to use for measuring 
the nanoparticle’s electrochemical properties. Fe3+ reduction was successfully used 
to detect single nanoparticles [41]. Figure 10 displays the amperometric response 
for the Fe3+ reduction at a carbon tip attached to a 60 nm single platinum nanopar-
ticle. Significant magnification of the current is observed for the nanoparticle.
Single metallic nanoparticle charge transfer processes may also be examined

using SECM of the nanoparticle monolayer deposited on a solid phase [42, 43]. 
In Fig. 11a, the tunneling current at an STM tip addresses individual gold Au146 
core nanoparticles deposited on the mica substrate under ultrahigh vacuum [42]. 

Fig. 9 (a) SEM image of well-separated nickel nanoparticles at HOPG and (b) TEM image of
single nickel nanoparticle 60 nm in diameter at carbon fiber electrode tip (Adopted from Ref. [41] 
with permission from American Chemical Society)
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The current steps separated at regular intervals of 0.34 V, representing single- 
electron changes in the metallic core. Based on the equivalent circuit presented in 
Fig. 11a, a capacitance of 0.59 and 0.48 aF was calculated for the tip/nanoparticle 
and nanoparticle/substrate junctions, respectively. Quantized charging voltammo-
grams (CV and DPV) of Au nanoparticles with 2.2 nm cores stabilized with
hexanethiolate/ω-ferrocenylhexanethiolate groups were dispersed in toluene/aceto-
nitrile (2:1) and are shown in Fig. 11b. The DPVs qualitatively mirror the I–V
response of the STM experiment. The 0.40 V peak-to-peak potential separation
corresponds to the 0.40 aF/cluster capacitance. This value is similar to the capaci-
tance obtained from the STM measurements.

 Quantized Effects in the Nanoparticles Thin Films Charging Processes
Similar to the electrochemical behavior of metallic nanoparticles in solution, the
quantized electron exchange effect may be observed for processes involving 
two- and three-dimensional films of metallic nanoparticles [32–35, 44–50]. 
The voltammetric behavior of the self-assembled alkenethiolate-protected 
gold nanoparticle monolayer on a gold electrode is presented in Fig. 12 [49]. 
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Fig. 11 (a) Schematic picture of STM tip addressing a single Au cluster (28 kDa) adsorbed on mica
substrate and Coulomb staircase I–V response at 83 K. (b) Cyclic voltammetry at 100 mV/s and 
differential pulse voltammogram at 10 mV/s and 25 mV pulse for negative (top) and positive (bot-
tom) scan recorded in acetonitrile/toluene (2:1) containing 0.1 mM 28 kDa Au clusters and 0.5 M
(n-Hx)4NClO4 (Reproduced from Ref. [42] with permission from American Chemical Society)
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Many well-defined DPV peaks are observed within the studied potential range.
Each Coulombic step represents the average charge on a nanoparticle generated by
one electron. The formal redox potential (Eq. 4) is linearly dependent upon the par-
ticle’s charge. From the slope and intercept of this function, the capacitance of the 
metallic particle and the zero charge potential can be estimated.

Pradhan and coworkers [43] studied the temperature’s effect on single-electron 
transfer processes in Au314(C6)91 monolayers. They observed that quantized charg-
ing occurs within a small temperature range. At temperatures below 280 K, the 
monolayer conductance decreases approximately four times. The temperature
where this abrupt change occurs coincides with the AuC6 nanoparticle solids’ phase-
transition temperature [43]. Below 280 K, the conductivity exhibits almost no tem-
perature dependence, indicating that the monolayer is highly insulating.

 Conductivity of a Thin Layer Formed from a Ligand-Stabilized Metal 
Nanoclusters
In nanoparticle-based solids, the conductivity depends on (i) the disorder caused by 
different particle cores’ sizes and shapes, (ii) the distance between particles in the 
solid state, (iii) the degree of coupling between adjacent particles, and (iv) the 
Coulombic repulsion between electrons in each cluster. Highly disordered particle 
ensembles with large separations between particles protected by an organic layer 
diminish the interparticle electronic coupling. Consequently, the electronic wave 
function is localized on each individual nanoparticle, generating a large Coulombic 
barrier for charge migration.
Two-dimensional nanoparticle structures can be formed using the Langmuir–

Blodgett technique. The electrochemical properties of these systems can be probed 
using scanning electrochemical microscopy [51–53]. In a condensed system com-
posed of organic monolayer-stabilized metallic nanoparticles, a tunneling electron 
hops through a conductivity barrier formed by the organic monolayer. The SECM
tip is immersed in a solution containing an electroactive mediator (Fig. 13). When 
the tip approaches the nanoparticle film, the current increases or decreases are 
observed, depending on the film’s conductivity. Figure 14 presents the current 
changes during the approach toward a film of hexanethiol-encased silver nanopar-
ticles at different surface pressures [52]. At low pressures (large distances between 
nanoparticles), the film behaves as an insulator (negative feedback) due to the large 
Coulombic gap. After compression, the interparticle distance decreases until the 
Coulombic gap is closed, generating a conductive film (positive feedback). The col-
lective electronic wave function of the individual nanocrystals overlaps and hybrid-
izes with the wave function of neighboring nanoparticles. The critical distance (δ) 
can be established from the equation:

 
d =

D

rz  
(8)
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Similar measurements were performed on gold nanoparticle monolayers deposited
on silanized glass slides [51]. The effects of core size, thickness, and the density of 
the protective alkynethiolate layer were examined. The influence of these parame-
ters on the two-dimensional film conductivity is displayed in Fig. 15. The conduc-
tivity decreases with decreases in nanoparticle size. The films of particles protected 
with longer alkyne chains exhibit lower conductivity.

When studying the conductivity of three-dimensional structures, interdigitated 
array electrodes are usually used (Fig. 16) [50, 54–56]; nanoparticle films are 
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Fig. 14 SECM approach curves to the Ag nanoparticles film at various compressions: (1) open
barrier position−0 mN/m, (2) 11 mN/m, (3) 22 mN/m, (4) 42 mN/m, and (5) 56 mN/m. Doted 
lines represent the theoretical approach curves to an insulator (lower) and conductor (upper) 
(Reproduced from Ref. [52] with permission from American Chemical Society)
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deposited between the interdigitated arrays. Low current and voltage probes are
connected to one pad of the interdigitated electrode, while high current and voltage 
probes are connected to the other pad. The nanocrystal array electronic conductivity 
(σEL) is expressed as follows:

 
s EL

i

A E
=

D
D  (9)

where ΔE is the difference in applied potential and Δi is the current flowing between 
electrodes.
Doty et al. [54] used interdigitated microelectrode arrays to study the  

conductivity of silver nanocrystals. Two types of nanoparticles were used: size-
polydispersed and size-monodispersed samples with different particle diameters. 
There is a striking qualitative difference between the conductivity temperature 
dependencies for size-polydisperse and size-monodisperse nanocrystals (Fig. 17). 
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The size- polydisperse crystals behave as typical insulators. The conductivity drops 
off abruptly with decreasing temperature. The amount of disorder in the system 
causes the width of the energy barrier to increase. The site-to-site function also 
causes an absence of translational order in the polydisperse nanocrystal arrays, pro-
viding additional perturbation in electron transfer. For size-monodisperse samples, 
simple transition between metal and insulator behavior at temperature TMI (Fig. 17) 
is observed. However, the conductivity values of the silver macrocrystals are several 
times lower relative to the silver nanocrystals. The exchange coupling between
nanocrystals is not sufficient for true metallic behavior. The polarons formed during 
the electron–proton coupling are responsible for the metal–insulator transition at 
temperature TMI. Below TMI, the carrier concentration is lower than what is required 
for polaron gas formation, causing the insulator behavior. Above TMI, the polarons 
form gas and can be transported through the nanocrystal lattice. Lattice vibrations
are responsible for the increased polaron mobility and higher conductivity. In larger 
particles with lower Coulombic blockade energies, the carriers are more easily pro-
moted and TMI decreases. In Table 1, the conductivity parameters of polydisperse 
and monodisperse films of different sizes are compared.

Figure 18 shows the alkanethiolate chain length affecting the electronic conduc-
tivity of the Au309(Cn)92 particles via Arrhenius plots. These plots are described by 
the following relationship [55]:

 
s s bEL n

an T n
E

RT
, exp exp( ) = -[ ] -é

ë
ê

ù

û
ú0  

(10)

where n is the number of carbon atoms in alkanethiol chain, βn − the electronic cou-
pling term, Ea is the activation energy of conductivity, and σ0exp(−nβn) is the electric 
conductivity at an infinite temperature. The linear relationships between the loga-
rithm of conductivity and the number of carbon atoms in the alkanethiol obtained at 
different temperatures are presented in Fig. 19. In Table 2, the Ea values calculated 
from the slope of the logσEL-1/T functions for different alkanethiol ligands are 
collected.

Table 1 Conductivity parameters the metal–insulator transition temperature for polydisperse and 
monodisperse silver crystals with different core sizes (Adopted from Ref. [54] with permission 
from American Chemical Society)

Nanocrystals

Diameter TMI σRL at TMI Conductance 
exponent, υ

Activation energy, Ea

nm K 10−6Ω−1 eV

Polydisperse 1.5

7.7 225 0.47 0.67 0.038

5.5 241 1.8 1.22 0.069

Monodisperse 4.8 244.5 1.1 1.34 0.079

4.2 245 0.63 1.35 0.080

3.5 245 0.98 1.34 0.098
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The activation energy can be predicted based on Marcus theory [57, 58]. The free 
energy of activation for the electron exchange between two neighboring gold clus-
ters can be calculated according to the following equation:
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where λ is the outer-sphere reorganization energy, r1
CLU and r2

CLU are the radii of two 
neighboring metalloparticles, δ* is the center-to-center distance, and ε0p and εs are 
the solvent optical and static dielectric constants, respectively. For symmetrical self- 
exchange reactions, the entropic activation factor equals zero and ΔG* equals Ea.

The conductivity of metal nanoparticles may also be described using the granular 
metal conductivity model [59, 60]. In this model, the activation energy of conduc-
tivity is described by the following equation:
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where δ is the core-to-core distance (Fig. 19) and ε is the dielectric constant of the 
intervening medium.

Theoretical activation energy values for the conductivity of Au309(Cn)92 three- 
dimensional films are presented in Table 3. Marcus theory predicts slightly lower Ea 
values than observed experimentally. Values calculated based on the granular metal
conductivity model are larger and closer to the experimentally obtained Ea values. 
However, a large discrepancy between the theoretical or experimental values is still
observed.

 Charge Transfer in Two- and Three-Dimensional Layer 
of Nanoparticles
The electronic mixed-valence hypothesis may explain the charge transfer process in
metallic nanoparticle (MNP) networks. For uncharged nanoparticle films, the charge
carriers are generated thermally through a disproportionation reaction:

 CLU CLU CLU CLU+ ++ -


 (13)

Table 2 Activation energies for conductivity of Au309(SCn)92 thin films (Adopted from Ref. [55] 
with permission from American Chemical Society)

Au309(Cn)92 alkanethiolate 
(carbon units)

EA, Arrhenius plots
Caled EA,  
Marcus theory

Caled EA GM 
granular model

kJ/mola kJ/molb kJ/molc

C16 19.0 5.4 14.6

C12 16.0 5.2 13.2

C10 8.8 5.0 12.3

C8 9.1 4.8 11.1

C7 6.6 4.7 10.4

C6 6.5 4.6 9.6

C5 7.5 4.5 8.8

C4 9.2 4.4 7.7
aActivation energy from Arrhenius plots (ln σEL vs 1/T)
bCalculated by Eq. 11. Chain lengths used for alkanethiolate ligands were calculated by HyperChem 
software. C16 = 2.02 nm, C12 = 1.52 nm, C10 = 1.27 nm, C8 = 1.02 nm, C7 = 0.90 nm, C6 = 0.77 nm, 
C5 = 0.65 nm, and C4 = 0.52 nm. Chain interdigitation was taken into account for all calculations
cCalculated by Eq. 12
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The charge is transferred between nanoparticles according to the self-exchange
reaction:

 
* *CLU CLU CLU CLU+ ++ +



 (14)

The protecting thiolate monolayer forms the potential barrier for the electron 
transfer. First-order electron-hopping rate constant (kET) is related to the conductiv-
ity through the equation [61]:
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The linear correlation between ln kET and the core-to-core distance is presented in 
Fig. 20 [61]. In Fig. 21, the linear relationships of ln kET − n’ and lgδ − n’ (n’ is the 
number of carbon units between the aromatic components and the thiolate center) are 
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Fig. 20 Dependence of electron exchange rate constant, kET, on the core-to-core distance for are-
nethiolate and alkanethiolate Au309 nanoparticle films (Reproduced from Ref. [61] with permission 
from American Chemical Society)

Table 3 Activation energy and conductivity data arenethiolate protected Au nanoparticle films 
(Adopted from Ref. [61] with permission from American Chemical Society)

CLU

EA, Arrhenius EA, calcd σEL (30 °C) kETcubic lattice

kJ/mol kJ/mola (εs = 3.9) Ω−1 cm−1 s−1 b

Au309(S(CH2)4C6H5)143 4.1 ± 0.4 4.1 1.5 × 10−4 2.6(±0.3) × 108

Au309(S(CH2)2C6H5)98 8.8 ± 0.2 3.9 2.6 × 10−3 6.1(±1.1) × 109

Au976(SCH2C6H5)363 6.2 ± 0.6 2.7 7.2 × 10−3 3.3(±0.3) × 1010

Au309(SC6H4CH3)363 5.7 ± 0.2 2.6 1.3 × 10−2 1.1(±0.1) × 1011

aCalculated from Eq. 11
bCalculated from Eq. 15 using the σEL value
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displayed [61]. The conductivity values and kinetic parameters of the electron hopping 
between gold alkanethiolate-protected nanoparticles are collected in Table 3.
The rate of electron exchange depends on the nanoparticle size. For example, the

conductivity of a Au25(SC2Ph)18 nanoparticle film is 10−3-fold in lower relative to the 
alkenethiolate-protected Au140. This behavior may be because the inner-sphere 
energy barrier controls the electron transfer processes due to the structural changes 
in Au–SC2Ph.

Charge transfer processes within three-dimensional metallic nanoparticle film 
may also be investigated in solutions containing redox pairs (Fig. 22). Nanoparticles
in these films may remain unlinked [33, 47, 48, 62, 63] or linked together [34, 44, 64] 
with covalent or electrostatic interactions, as illustrated in Fig. 22b. In these sys-
tems, the electron-hopping mechanism also describes the charge transfer process. 
The changed electrode potentials alter the Fermi level potentials of the nanoparti-
cles, corresponding to the metallic core’s charge state. The charge carriers (electron 
or holes) propagate from the electrode–nanoparticle interface into the bulk of the 
metallic nanoparticle film until the entire film equilibrates with the applied poten-
tial. The film charging process may force the electron exchange reaction to occur
with the redox couple in solution or by supporting the transfer of electrolyte ions
into the layer, balancing the film’s charge.

In Fig. 23, the voltammetric behavior of a Au140(MUA)20(C6)33 multilayer with 
(n-Bu)4NPF6 in dichloromethane is illustrated [44]. The gold nanoparticles are 
bound together via carboxylate–zinc (II) ion–carboxylate bridges. The sequence of
the voltammetric peaks corresponds to the successive charging of the gold 
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nanoparticle film. For gold nanoparticles with a cubic lattice, the rate constant for 
electron hopping is expressed as a first- (kHOP) or second-order process (kex); the 
reaction order is determined using the electron diffusion coefficient DE:

 
D

k k C
E

np= =HOP exd d

d

2 2

6  
(16)

where C is the concentration of nanoparticles in the film. A kHOP value near 106 s−1 
was obtained from chronoamperometric measurements. This value significantly 
exceeded the rapid electron-hopping rate that would have been measured for redox
polymerization [65] or ferrocene-to-metal electron transfer reactions measured in 
gold nanoclusters stabilized by ferrocene alkanethiolates [66, 67].

 Charge Transfer in Thin Films Composed of Carbon Nanomaterials

Carbon nanostructures form a relatively large structural family. Graphene is the
youngest member of this family and is the basic unit of all other members. The most 
important structures are the carbon nano-onions and nanotubes displayed in Fig. 24 
[68]. Other less important structures include bamboo-shaped nanotubes, nanohorns,
nanorods, nanocones, nanocups, nanoribbons, and others.

 Capacitance and Charge Transfer Properties of Carbon Nanotubes
Carbon nanotubes exist as single-wall (SWCNTs) and multiwall (MWCNTs) nano-
tubes. MWCNTs are composed of coaxial nanotube cylinders of different helicities
typically spaced ca. 0.34 nm apart. These adjacent layers exhibit usually different
chirality properties and a very small interlayer electronic interaction. In these struc-
tures, charge transfers occur through the outer nanotube cylinder under flowing cur-
rent [69] with only a minor contribution from inter-tube coupling [70]. Therefore, 
MWCNTs are pseudo-1D-conductors [5].
The electronic structure and conductivity properties of SWCNTs depend on the

atoms arranged in the hexagonal lattice [7, 71–73]. Carbon atoms covalently bonded 
to three neighbor carbons via sp2 molecular orbitals form graphene sheets. A carbon 
nanotube is a rolled-up graphene sheet that forms a concentric cylinder. The chiral 
vector is expressed as follows (Fig. 25a):

 C na mah = +1 2  (17)

This expression describes how graphene is wrapped to form a nanotube. The n and 
m integrals in Eq. 17 indicate the number of steps along the zigzag carbon atoms 
in the hexagonal lattice, while a1 and a2 are the unit vectors. The electrical proper-
ties of CNTs are structurally related and depend on how the graphene sheet is
rolled [7, 71–73]. When n−m = 3z (where z is integer) or n = m (the armchair struc-
ture), the CNT exhibits metallic properties. In all others cases, the CNT demon-
strates nonmetallic/semiconducting behavior. In Fig. 25b and c, the density state 
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distribution as a fraction of energy is shown for armchair (5, 5) and zigzag (7, 0) 
nanotubes. In the first case, there is finite value for the charge carriers at the Fermi 
energy level at zero. No charge carriers are expected at the Fermi energy level for
a zigzag (7, 0) single-wall nanotube.

Fig. 24 Graphene as the basic unit of fullerenes, single- and multiwalled carbon nanotubes, nano-
onions, and graphite (Adopted from Ref. [68] with permission from Nature Publishing Group)
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The energy gap between the conducting and valence levels depends on the 
nanotube diameter:

 
E

a

d
c c

gap =
-2 0g

 
(18)

where γ0 denotes the tight C–C binding overlap energy (2.45 eV), ac–c is the nearest 
neighboring C–C distance (~1.42 A), and d is the diameter of the nanotube.
Since 1997, when the first charge transfer measurements were reported for nano-

tubes devices [74–77], many papers have been published on the conductivity and 
charge transfer behaviors of CNTs [78–85]. The simple three-terminal device pres-
ent in Fig. 26 was used most frequently for these studies [76, 86–88]. The nanotube 
is aligned between two metallic electrodes (source and drain) on an oxidized silicon
wafer. Subsequently, experiments are typically carried out with three terminals,
 utilizing a silicon wafer as a buck gate.
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If the coherence effect is neglected, the total resistance is a sum of the nanotube 
resistance RCNT and the resistance of a metal–CNT connection:

 R R R= +CNT contact  (19)

Intrinsic nanotube resistance can be expressed using the following equation:

 
R

h

e

L

lCNT =
4 2  

(20)

where L is the tube length and l is the electron mean-free path for momentum relax-
ation (L≫l). The contact resistance depends on the Schottky behavior at the metal/
nanotube interface.

In Fig. 27 the current–voltage curves generated as a function of the gate voltage 
Vgate are presented. The carrier mobility (μ) is related to the measured conductance 
(G) [89]:

 
G

C V V

L
g g go=

-( )¢ m
 (21)

where Cg′ is the capacitance of the CNT per length L and Vgo is the trans hold 
voltage.

At low temperatures, the nonlinear transport behavior related to a quantized 
effect can be observed. This behavior is similar to the behavior of metallic 

Fig. 26 (a) SEM image of
gatedCNTand (b) schematic 
of the device cross section 
(Reproduced from Ref. [86] 
with permission from 
AmericanChemical Society)
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nanoparticles when kBT < EF. The addition of each electron to the array exhibits a
very small capacitance (~10−18 F), resulting in a large increase in charging energy 
(e2/2C). The conductance peaks that correspond to the addition of each electron to 
the CNT are observed as a function of the gate voltage (Fig. 28) [90].
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Fig. 27 Room temperature current–voltage traces measured in vacuum for a nanotube device at a 
series of gate voltages (Vg). Inset shows small-signal conductance (s) vs. Vg (Adopted from Ref. 
[76] with permission from Nature Publishing Group)
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The electrochemical properties of carbon nanotubes may be studied in the differ-
ent configurations [91–96]. Two of the most common orientations are displayed 
schematically in Fig. 29. The vertical orientation (Fig. 30b) was achieved using 
specially designed substrates for nanotube deposition [97–100], gas flow [101], or 
dc-current electric field [102, 103].
The redox pair in solution may also be used to benchmark the electron transfer

properties of the nanotube films [91–96, 104]. Representative results obtained for a 
Fe CN( ) - -

6

3 4/
redox couple at aGC electrodemodifiedwith SWCNTs andMWCNTs

are displayed in Fig. 30 [91]. The normalized faradaic current increased for the 
Fe CN Fe CN( ) ( )- -

6

3

6

4
/ redox couple due to the increased coverage of the electrode

by the nanotubes. The separation between the cathodic and anodic peak current 
indicates that the electron transfer rate through the films of nanotubes is higher for 
SWCNTs than MWCNTs.
The voltammetric response of a redox pair also depends on the orientation of the

carbon nanotubes at the electrode surface [92]. Figure 31. displays the voltammo-
grams from Fe CN( ) -

6

4
oxidations on silicon wafers covered with vertically or ran-

domly/horizontally oriented MWCNTs. The voltammetric response of the
Fe CN( ) - -

6

3 4/
redox process over the vo-CNTs layer is much more reversible than

the process over the r/h-CNTs film.

3.0E-05

1.5E-05

0.0E+00

I (
A

/m
m

2 )

−1.5E-05

−3.0E-05
−0.40 −0.20 0.00 0.20 0.40

E (V vs. Ag/AgCI(3M KCI))

0.60 0.80

Fig. 30 Cyclic voltammograms of Fe CN Fe CN( ) ( )- -

6

3

6

4
/ redox couple at a multiwalled

(thick line) and single-walled (thin line) carbon nanotube-modified electrode in aqueous solution 
containing 5 mM K3Fe(CN)6 and 0.1 M KCl at 20 mV/s. Current was normalized to the geometric 
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 Capacitance and Charge Transfer Properties of Graphene
Graphene is a two-dimensional planar sheet composed of sp2 hybridized carbon 
atoms. These graphene sheets (between two and ten) may be stacked to form three- 
dimensional graphene nanoplates. A single graphene nanosheet is equivalent to a 
SWCNT, and graphene nanoplates are equivalent to MWCNTs.

A schematic representation of a graphene sheet’s band structure is presented in 
Fig. 32 [105]. The unit cell for graphene consists of two carbon atoms generating 
two π bands, a π-band of delocalized electrons and a π*-band. These bands overlap 
at the K-point within the hexagonal first-Brillouin zone at Fermi energy level.
The close carbon–carbon distance in graphene leads to interatomic overlap that 
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spreads these bands over a vide energy range, resulting in the large velocity of electrons. 
Graphene may be either a semimetallic or a zero-gap semiconductor that combines
metallic and semiconducting properties. Graphene conductivity can be determined
using a system similar to the one used to measure the conductivity of carbon nano-
tubes [106–108]. According to the theoretical predictions, the minimum conductiv-
ity of a graphene sheet depends on its geometry and the microscopic details of its 
edges to approach 4e2/πh for large width-to-length (W/L) ratios [108]. The theoreti-
cal models also predict that the electrical conductivity in perfect graphene occurs 
via tunneling between the electrical contacts while at the Divac point. For samples
that are not perfect, the conductivity is affected by scattering centers, such as 
implies, defects, and photons [109]. These theoretical predictions are confirmed by 
experimental results [110, 111].

Capacitance properties of a single layer of graphene can be measured using the 
setup displayed in Fig. 33a [112]. Total capacitance consists of two components: the 
interfacial capacitance arising from the double layer formed by the ions at the gra-
phene/solution interface and the quantum capacitance of graphene. These compo-
nents are connected in series, and the smaller of the two contributors dominates the 
total capacitance. The changes in the total capacitance and the quantum component 
in ionic liquid solutions relative to the gate potential are shown in Fig. 33b [112]. 
The quantum capacitance has a nonzero minimum at the Dirac point related to the
charged impurities present within the graphene sheet.

The electrochemical properties of graphene films deposited at an electrode sur-
face were also studied in a solution containing different redox couples [113–115]. 

conduction band
E

EF

valence band

Γ
→
K K

Fig. 32 A schematic 
representation of the band 
structure in graphene 
(Reproduced from Ref. [68] 
with permission from 
Nature Publishing Group)
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The model results obtained for GC modified with reduced graphene sheet films in a
water solution containing KCl as the supporting electrolyte and Ru NH3 6

2 3( ) + +/
 as 

the redox pair are shown in Fig. 34 [113]. The large increase in the capacitance cur-
rent depends on the observed increases in surface area.
The parameters of the charge transfer processes on the GC covered with a gra-

phene film are collected in Table 4. The electron exchange processes significantly
speed up at the surface of graphene [113].

10

9

8

C
ap

ac
ita

nc
e 

(µ
F

 c
m

−2
)

7

6

5

−0.6 −0.4 −0.2 0.0

Gate potential (V)

RE

a

b

− +

− −
−

−

−−−

+ +

+
+

+

+++
Photoresist

Graphene

Au

Si

SiO2

VTG

CE

Au

Graphene

Fig. 33 (a) Single-layer graphene device used for quantum capacitance measurement. The edge
of graphene sheet is covered with an insulation layer so the top surface is exposed to an ionic
liquid electrolyte. The inset is an optical micrograph of the graphene device. (b) Total capacitance 
(a) and quantum capacitance (b) of graphene measured in ionic liquid BMIM-PF6 as a function 
of gate potential (Reproduced from Ref. [112] with permission from Nature Publishing Group)

27 Electron Transfer and Charge Storage in Thin Films of Nanoparticles



902

Carbon Nano-onions
Carbon nano-onions are quasi-spherical nanoparticles consisting of concentric 
graphitic shells. These structures are essentially multiwalled fullerenes. Knowledge 
about the electronic structure of these materials is limited. Pudlak and Pincak [116] 
calculated the HOMO and LUMO level energies for C60 and C240 nano-onions con-
sisting of two carbon spheres. They observed a decrease in the HOMO–LUMO
energy gap for the nano-onion relative to that of C60. The C 1 s core excitation spectra
and electron-energy-loss spectra of nano-onions 4–8 nm in diameter indicate that the 
electronic structure and conducting properties of nano-onions are strongly governed 
by the band structure of graphite for particles as small as 4 nm in diameter [116].
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The nano-onion agglomerates produced by nanodiamond annealing demonstrate 
variable range hopping conductivity [117]. The conductivity depends on the annealing 
temperature, size of nano-onions, and degree of their interaction in agglomerates.

The conductivity of individual carbon nano-onions functionalized with thiols 
was investigated using STEM [118]. Figure 35 depicts the current–voltage 

Table 4 Comparison of cyclic voltammetry data and electron transfer rate constant for selected 
redox couples at bare glassy carbon electrode (GC) and glassy carbon covered with graphene sheet
films (GSF) (Adopted from Ref. [113] with permission from WILEY-VCH Verlag GmbH & Co.)

Parameter Redox system

Fe CN( ) - -

6

3 4/
Ru NH3 6

2 3( ) + +/

Dopamine0/+

ΔEp (mV) 68GC 65GSF 64GC 61GSF 73GC 60GSF

E1/2 (mV) 259GC 266GSF −157GC −178GSF 532GC 585GSF

ip
ox (μA/cm2) 117GC 128GSF 221GC 248GSF 328GC 886GSF

kapp
o  (cm/s) 0.029GC 0.049GSF 0.055GC 0.18GSF 0.024GC 0.25GSF

α 0.5 0.5 0.35

ΔEp − difference in cathodic and anodic peak potentials, E1/2 − half wave potential, ip
ox − oxidation

peak current, kapp
o − heterogenous standard rate constant, α − charge transfer coefficient. The sup-

porting electrolyte for Fe CN( ) - -

6

3 4/
 and Ru NH3 6

2 3( ) + +/
 was 1 M KCl and for dopamine was 1 M 

HClO4. Scan rate was 100 mV/s
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characteristics obtained based on the current–distance curves. The current–voltage 
curves are symmetric and display a sigmoid slope. From the slope of these curves, 
conductivity values of 1.4±0.1 and 0.16±0.05 nS were found for CNO-(CONH-
(CH3)2SH)x and CNO-(CONH-(CH3)3SH)x nanoparticles, respectively. The overall 
electron transmission through the CNOs is affected by the alkanethiol chains that
determine the tunneling behavior. The intrinsic conductivity of CNO was calculated
to be ~72 μS [118].

 Nanoparticle Material Thin Films in Charge  
Storage Devices

 General Characteristics of Supercapacitors

Supercapacitors are also known as electrochemical capacitors, ultracapacitors, elec-
trical double-layer capacitors, pseudocapacitors, gold capacitors, or power caches; 
these devices are energy storage devices that accumulate energy as charge on the 
electrode surface or subsurface layer [119, 120]. The stored electrical charge can be 
converted to electric current. Typical supercapacitors consist of two electrodes, one 
positive and one negative, separated by a dielectric material. The total capacitance, 
C, is expressed by the following equation:

 
C

A

d
=
e

 
(22)

where A is the total area of the electrode surface, d is the distance between two 
electrodes, and ε is a dielectric constant. These electrodes are charged by the exter-
nal potential, consequently storing energy. The maximum energy storage of a super-
capacitor is proportional to the capacitance and to the voltage squared (V2):

 
E CV=

1

2
2

 (23)

The total power (P) of supercapacitor is given by the following equation:

 
P

V

R
=

2

4  (24)

where R is the internal resistance of the capacitor [16].
The charge storage mechanism of electrochemical capacitors is controlled by 

two principle mechanisms: (i) an electrostatic interaction called electric double- 
layer capacitance (EDLC) and (ii) an electrochemical reaction named pseudoca-
pacitance. Pure carbon materials, such as carbon aerogels, single- or multiwall 
carbon nanotubes, carbon nano-onions, and graphene, store charges electrostati-
cally [17, 19, 120–140]. However, carbon materials modified with metal oxides,
conducting polymers, or metallic nanoparticles store charge both electrostatically 
and through a redox reaction [14, 120, 123–125, 141–161]. Conductive polymers 
and metal oxides are competent pseudocapacitors that accumulate charge from
chemical processes [16, 162–177].
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The electrodes in double-layer capacitors consist of highly porous carbon materials 
and therefore possess a large surface area-to-volume ratio. In these systems, the 
electric charge accumulates at the carbon electrode/electrolyte interface. Figure 36 
displays the schematic representation of an EDLC consisting of two carbon elec-
trodes. The mechanism of the surface charge formation occurs as three processes: 
surface dissociation, ion adsorption, and crystal lattice defects [120]. The small 
charge separation in the double-layer, high surface area of the electrode material, 
and high field strength generate the high energy density in EDLCs [178].
In the pseudocapacitive system, the fast and reversible oxidation and reduction

processes in the electrode material drive the charging process [120, 122]. Figure 37 
illustrates a charging process that utilizes conductive polymer chains during redox
reactions. Conductive polymers exhibit two different electrochemical behaviors.
P-type conductive polymers are electroactive in the positive potential range and are 
able to donate electrons; this system is the most common. During electrochemical
reactions, p-type polymer chains are oxidized and doped with the anion from the
electrolyte solution (Fig. 37a). The n-type polymers exhibit electron-accepting
behavior. These polymeric chains have a negative charge and are subsequently 
doped with cations (Fig. 37b).
Mixed capacitors may be constructed using nanoporous carbon materials and

redox systems. These supercapacitors characteristically have a higher capacitance
and energy density than the EDLCs and redox capacitors because they can accumu-
late charge on both the conducting material/solution interface and within the bulk 
electrode material [119].

Tab

a

b

Sealant Current collector Electrolyte

ElectrolytePore

Separator
Activated carbon

electrode

Fig. 36 Schematic representation of (a) double-layer capacitor based on activated carbon and (b) 
charge transfer distribution in pore of carbon electrode active layer

27 Electron Transfer and Charge Storage in Thin Films of Nanoparticles



906

 Double-Layer Capacitors Based on the Carbon Nanoparticles

Carbon materials have a long history of use in energy storage devices as electrocon-
ductive additives, supports for active materials, electron transfer mediators, interca-
lation hosts, and capacitors [120, 123, 130, 138, 140, 179–185]. Due to their porous
structures and high surface area, they are able to accumulate large amounts of charge 
in the double layer formed at the interphase between the carbon and the electrolyte 
solution. To improve capacitance, the structure of carbon materials may be modified 
using heat during chemical treatment [186–191].

In the last two decades, research has focused on the capacitance properties of 
materials composed of carbon nanostructures, such as carbon nanotubes, nano- 
onions, and graphene [17, 119, 121, 124–129, 131–137, 139, 192]. Carbon nano-
structures exhibit unique morphology, relatively good electrical conductivity,
exceptional mechanical properties, and large surface areas. These properties make
the nanostructures attractive as components of electrochemical capacitors. The 
preparation of nanostructured carbon thin films is quite complicated. The general 
procedures to generate systems with CNTs are displayed schematically in Fig. 38. 
Functionalized nanotube surfaces can be generated in solution (Fig. 38) or by using 
material deposited on an electrode’s surface. Two types of carbon nanotube 
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electrodes can be developed: binder free [127, 193–195] and binder enriched [128]. 
In the binder-free electrodes, the carbon nanotubes are mechanically loose. The 
electrical contact is limited between the carbon nanostructures. The binder intro-
duction can solve these problems. However, binders might introduce contaminants 
to the electroactive material and therefore reduce capacitance performance. The 
surface morphologies of thin films of SWCNTs, graphene, and CNOs are presented
in Fig. 39.

The capacitance properties of carbon nanoparticle-based materials are collected 
in Table 5. These materials all exhibit typical double-layer responses under voltam-
metric conditions (Fig. 40a). Rectangle-shaped cyclic voltammograms were obtained 
over a wide range of scan rates within a large potential window. For the unmodified 
carbon nanoparticles, the double-layer charging at the carbon nanoparticle film/elec-
trolyte solution interface can be represented by a simple equivalent circuit:

Cdl

Rf

Rs

 

specifically oriented randomly distributed carbon nanoparticle/binder 
composite

dispersion of carbon
nanoparticles in solution

dispersion of modified
carbon nanoparticles

chemical 

modification

electrode

thin film of
nanoparticles

Fig. 38 Schematic representation of thin film of the carbon nanoparticles (CNTs) formation at the
electrode surface
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where Rs and Rf represent internal and self-discharge resistance, respectively, and C 
is the capacitance. Figure 40b displays the representative impedance spectra 
obtained from thin films of CNT/paper electrode.

Wide ranges of specific capacitances have been reported for each type of carbon 
nanoparticle (Table 5). The electrochemical properties of these materials depend on 
the procedures for their formation, the particle size, the solvent and supporting elec-
trolyte, and the method used to prepare the nanostructured thin film. Despite the
large surface areas observed for carbon nano-onions, the specific capacitances 
reported for these nanoparticles are relatively low [134, 139, 206, 207]. CNOs that
agglomerate at the electrode surface are dense materials with low porosity, as illus-
trated in Fig. 39b. These structures explain the CNOs’ relatively poor capacitance
properties. Additionally, CNO inner shells do not participate in the charge storage
process. Therefore, the specific capacitances are lower. Similar behavior is expected
for nanostructured films composed of MWCNTs.
Graphene is an outstanding candidate for double-layer capacitor construction.

[113, 126, 132, 137, 192, 203–205, 208, 209]. It exhibits exceptionally high specific

Fig. 39 SEM images of surface morphology of (a) SWCNTs (Reproduced from Ref. [196] with 
permission from Elsevier Ltd.), (b) CNOs, (Reproduced from Ref. [197] with permission from 
Elsevier Ltd.), and (c) graphene (Reproduced from Ref. [133] with permission from American 
Chemical Society)
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surface area up to 2675 m2g−1. The intrinsic capacitance of graphene is 21 μF g−1 [112], 
setting the upper limit for the double-layer capacitance of carbon-based materials. 
Graphene has a 200 F g−1 specific capacitance in ionic liquids [101, 210]. The capaci-
tance behavior of graphene materials depends on the graphene preparation procedure, 
as well as the material used for synthesis [126, 143]. In Fig. 41, structures of graphene 
sheets obtained from graphitic oxide and nanodiamond are compared. The capaci-
tance behavior of these films differs significantly, as demonstrated in Fig. 42 [126].

Table 5 Selected values of specific capacitances obtained for thin films of unoxidized and oxidized
carbon nanostructures

Cs of carbon 
nanostructure

Cs of oxidized  
carbon nanostructure

Carbon nanostructure F g−1 Condition of modification F g−1

SWCNTs 45 [198] Humid air at 225 °C 65 [198]

20 [199] 6 M KOH 56 [199]

18 [145]

40 [145]

64 [126]

MWCNTs 12 [200] H2SO4+HNO3 (3:1) 33.5 [200]

80 [148] HNO3, T = 80 °C 137 [148]

33 [196] Electrooxidation in 0.2 M HNO3 335 [196]

36 [148]

62 [148]

14 [126]

CNOs 34 [201] H2SO4+HN3 (3:1), T = 80 °C, 70 [201]

10 [139] 3 M HNO3 7 [139]

Grapheme 187 [200] Electrooxidation in 1 M H2SO4 297 [202]

26 [202]

118 [203]

233 [204] KMnO4 in H2SO4 211 [205]
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27 Electron Transfer and Charge Storage in Thin Films of Nanoparticles



910

To enhance the capacitance performance of carbon-based nanostructured materials, 
a nanoparticle surface is modified with electrochemically active functional groups 
that contribute to the pseudocapacitance of the materials [127, 131, 137, 139]. 
Nitrogen-containing functional groups may enhance the capacitance through the
interaction between the protons and electron-donating nitrogens [211]. Oxygen
atoms also improve charge storage performance by participating in electron transfer 
reactions. Oxygen-containing functional groups may also enhance the operating
voltage and the energy density. Carbon nanoparticles can be modified chemically 
[198, 200–202, 212–220], photochemically [221, 222], electrochemically 
[196, 199], or using plasma-induced technique [223, 224]. The chemical modifica-
tions are usually performed in concentrated nitric acid or in the mixture of nitric and
sulfuric acids. Schematically, the chemical modification of a carbon nanotube sur-
face is described in Fig. 43. The hydroxyl, carbonyl, and carboxylic groups formed
on the surface of nanotubes can participate in the following electrochemical reactions:

 ñ - ñ = + ++ -C OH C O H e

 (25)

 ñ = + ñ -- -C O e C O

 (26)

 ñ ® + ++ -COOH CO H e2  (27)
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Fig. 41 TEM images and AFM height profiles of (a) graphene obtained by the thermal exfoliation
of graphitic oxide (EG) and (b) thermal conversion of nanodiamond (DG) (Reproduced from
Ref. [126] with permission from Springer-Verlag)
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Because carboxylate reductions are irreversible, higher ratios of hydroxyl and
carbonyl groups to carboxylate groups should generate better capacitive perfor-
mance. The distribution of oxygen-containing functional groups depends on the
oxidant (Fig. 44) [225]. These results suggest that better capacitance performance 
can be expected for materials oxidized by weak oxidants, such as H2O2.
The electrochemical oxidation of carbon nanostructures are performed under

potentiostatic or voltammetric conditions at positive potentials [196]. For SWCNTs,
electrooxidation takes place at the nanotubes’ caps to form open-end structures
modified with oxygen functional groups.
The equivalent circuit for the carbon nanotubes chemically modified with redox-

active groups is shown bellow. It additionally considers pseudocapacitive compo-
nent (Cp) and resistance Rf’ representing faradaic reaction.
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The representative voltammetric responses of the unmodified and electrochemically 
oxidized MWCNTs are compared in Fig. 45. The oxidized MWCNTs exhibit
pseudocapacitive behavior with well-developed faradaic current peaks from  
the electron transfer reactions of the oxygen-containing functional groups (−OH,
−C=O, −CHO).
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Table 5 compares the capacitance properties of unmodified and chemically 
modified carbon nanoparticle thin films. In all cases, a significant improvement in 
capacitance performance was reported.

 Supercapacitors Containing Conductive Polymer  
and Metal Oxide Nanoparticles

Conducting polymers [172, 176, 226–228] and transition metal oxides [229–231] are 
considered promising materials for supercapacitors because they have a high specific 
capacitance, highly reversible charge transfer processes, redox reactions with wide
potential windows, and stable behavior during discharge/charge steps. The specific 
capacitances of selected transition metal oxides and conductive polymer bulk materi-
als are collected in Table 6. The electrochemical performance of these materials was 
enhanced when nanostructured materials were used [161–165, 170, 171, 232–238]. 
The smaller particle size and high surface-to-volume ratio strongly influence the 
capacitance properties of these materials. However, the conductivity of nanoparticle-
derived material is usually lower than the conductivity of the bulk material because 
the resistance toward electron transfer is higher between nanoparticles.

The conductivity properties of the nanoparticle-derived materials depend on the 
type of polymer and the preparation conditions. The conductivity of these nano-
structured materials may be tuned with the degree of doping, the oxidation state of
the electroactive material, the particle morphology and size, the crystallinity of the 
material, the effective conjugation length, and the amount of stabilizer on the par-
ticle surface. Usually, increasing the amount of nanoparticle stabilizer causes a 
decrease in a nanostructured material’s conductivity [238–242]. However, if the 
stabilizer works as a counterion during the polymeric nanoparticle formation, the 
conductivity of nanoparticles may be enhanced. For p-doped polyaniline and poly-
pyrrole nanoparticles, the anionic surfactant stabilizers enhance the nanoparticles 
conductivity [243–246] when compared to similar materials prepared without 
anionic surfactant or with cationic surfactant.

The generation of polymeric nanoparticles is often performed in microemul-
sions [247–251]. Nanoparticles formed under these conditions exhibit higher crys-
tallinity and highly ordered polymeric chain structures. These factors enhance the 

Table 6 Ranges of specific capacitances reported for selected metal oxides and conductive
polymer bulk materials

Material

Range of Cs

F g−1

Polypyrrole (PPy) 78–1000

Polyaniline (PANI) 400–1300

Polythiophene (PTh) 25–240

Poly(3,4-ethylenedioxythiophene) (PEDOT) 90–110

RuO2 220–1300

MnO2 145–720

NiO 85–840
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polymeric nanoparticles’ conductivity. For example, 4 nm polyaniline nanoparticles
synthesized in a low temperature microemulsion using cationic surfactants displayed 
conductivity as high as 85 S cm−1 [251].

The particle size also influences the capacitive properties of nanostructured 
materials. This effect was observed in material formed from a two-component 
C60–Pd polymer [233]. This polymer may be formed electrochemically [252–256] 
or chemically [257, 258]. Electrochemical polymerization generates relatively uni-
form and compact material at the electrode surface. Good capacitance performance
is observed for this material. A capacitance of ca. 200 F g−1 was reported for a 
C60–Pd polymer in acetonitrile containing tetra (n-butyl) ammonium perchlorate 
[259]. Chemical polymerization performed in a benzene solution between fullerene 
and a zero-valent palladium complex generated large, irregular, and superficial
cubic crystalline structures with size ranging from 20 to 80 μm. The electrochemi-
cal behavior of films formed from these crystalline structures is much less reversible 
because the resistance is higher and the specific capacitance is much lower [258]. 
The cubic structures formed during the chemical synthesis of C60–Pd may be easily 
disintegrated to furnish spherical nanoparticles using high energy ultrasound. The 
capacitance properties of the films formed from these nanoparticles depend on the 
particle size. The specific capacitance increased when a decrease in nanoparticle 
diameter was observed [233]. Additionally, the voltammetric response becomes 
more reversible for material composed of smaller polymeric nanoparticles. The 
capacitance properties of C60–Pd polymer-derived nanostructured material are dem-
onstrated in Fig. 46, and the specific capacitance values for different C60–Pd 
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Fig. 46 (a) Voltammetric responses of C60Pd3 polymer at scan rates changed in the range from 20 to 
500 mV/s in acetonitrile containing 0.1 M (n-C4H9)4NClO4. (b) Voltammetric response in the poly-
mer reduction potential range at 200 mV/s. (c) Dependence of the capacitance current on the scan rate
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materials are collected in Table 7. Similar behavior was observed for the stabilizer-
free polypyrrole nanoparticles synthesized in glycerol [235].

The particle size effects were also observed for nanostructured transition metal 
oxide materials [161–163, 236, 237]. RuO2 electrodes were prepared using elec-
trostatic spray deposition of ruthenium oxide on a glassy carbon electrode [162]. 
The film was composed of large agglomerated particles that were 100–200 nm in 
diameter (Fig. 47a). The electrochemical lithiation/delithiation process produces 
nanostructured material with 2–5 nm particles. The porosity of the material also 
increases (Fig. 47b). Figure 47c displays representative cyclic voltammograms of 
both materials, as well as the relationship between the specific capacitance and 
the scan rate [162]. The nanostructured RuO2 film that was prepared by electro-
chemical lithiation/delithiation exhibited much a specific capacitance of ca. 650 F
g−1; this capacitance was higher than the capacitance of the as-prepared material 
(250 F g−1).
To combine the properties of conductive polymers and transition metal oxides,

nanocomposites of these materials were synthesized, and their electrochemical 
properties were investigated [260–263]. For nanostructured materials composed of 
polyaniline and ZnO or CdO, the conductivity of the composites increased relative
to the conductivity of the polyaniline [262, 263]. Composites of PEDOT nanowires
and MnO2 nanoparticles demonstrate better capacitance performance then PEDOT
alone [260]. The nanocomposite formed during the oxidation of the PEDOT nanow-
ire with KMnO4 occurs according to the following reaction:

nanowire
O

S n n

KMnO4  + +  MnO2   and +  MnO2

nanowire + nanoparticle

n

O O

S

O

OO

OO O

S

 

Table 7 Specific capacitance and conductivity of C60–Pd films formed under different conditions 
in acetonitrile containing 0.1 M (n-C4H9)4NClO4

Polymeric film

Specific capacitance Conductivity

(F g−1) (μS)
C60–Pd synthesized electrochemicallya 200 44

C60–Pd3 large cubic crystalline structuresb 30 –

C60–Pd nanoparticles (ca. 65 nm)c 180 35

C60–Pd2 nanoparticles (ca. 125 nm)c 120 31

C60–Pd3 nanoparticles (ca. 180 nm)c 95 28
aRef. [259]
bRef. [258]
cRef. [233]
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The voltammetric curves for the PEDOT nanowires and the PEDOT/MnO2 
nanocomposites are compared in Fig. 48. Galvanostatic charge/discharge measure-
ments also revealed the superior capacitive performance of the nanocomposite 
material.

 Composites of Conducting Polymers or Metal Oxides and Carbon 
Nanostructures

Combining carbon nanomaterials with redox-active systems, such as conductive
polymers or metal oxides, generates highly effective charge storage composites 
[14, 16–18, 119, 124, 131, 141–147, 149–153, 155–161, 197, 264–273]. In these 
systems, the power and energy density are both significantly enhanced due to the 
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Fig. 47 HRTEM images of (a) as-prepared RuO2 thin film and (b) nanostructured RuO2 thin film 
after lithiation/delithiation. (c) Cyclic voltammetry of the as-prepared RuO2 thin film (1) and nano-
structured RuO2 thin film (2) (Reproduced from Ref. [162] with permission from WILEY-VCH
Verlag)
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redox-active materials’ faradaic processes. They possess novel properties and better
characteristics than either of the individual components [14, 172, 271–273]. 
Scheme 1 compares the properties of carbon nanostructures, redox systems, and the
composite materials.

Three general procedures are used to form nanocomposites containing carbon 
nanoparticles: (i) in situ chemical polymerization, (ii) chemical polymerization of 
monomers attached to carbon nanostructure, and (iii) electrochemical polymeriza-
tion carried out on an electrode surface modified with carbon nanostructures  
(Fig. 49). In most cases [269, 274–276], electrochemical synthesis provides homog-
enous films. However, the chemical polymerization generates polymers with a more 
porous morphology [149, 269]. Additionally, the morphology of the composites 
depends on the polymeric material [149]. Figure 50 displays the SEM images of
carbon nanotubes composited with three types of conducting polymers using 
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chemical methods. In contrast to the MWCNTs/PPy and MWCNTs/PEDOT com-
posites, the polyaniline nanocomposite is very homogenous.

The electrochemical properties of carbon nanostructure-derived composites are 
usually studied using cyclic voltammetry and electrochemical impedance spectros-
copy. The electrochemical behavior of MWCNTs, polyaniline (PANI), and a PANI/
MWCNT composite is compared in Fig. 51 [270]. The cyclic voltammogram 
obtained for the MWCNTs is typical of the double-layer capacitors, displaying the
ideal symmetric response relative to the zero current line. For PANI and PANI/
MWCNT, the current’s response to the change of potential scan is slower. The current
obtained for the PANI/MWCNT composite is larger than the current obtained for
pure PANI. The high surface area and low resistivity of the MWCNTs improved the
contact between the PANI matrices. Well-coated MWCNTs exhibit porous three-
dimensional composite networks that have a large surface area; these materials are 
also highly susceptible to doping by the electrolyte ions, and charge storage is efficient 
in three-dimensional systems. The PANI/MWCNTs composite has more available

COMPOSITES

high surface area
high power density
high capacitance
high potential range
high conductivity
high mechanical stability

Thin films of carbon nanoparticles
(SWCNTs, MWCNTs, CNOs,

graphene)

high surface area
high power density
high double-layer
capacitance
good conductivity
high mechanical stability

Thin films of conducting polymers
(PPy, PANI, PEDOT) and

transition metal oxides (RuO2,
NiO, MnO2, Fe2O3, Co3O4)

small surface area
poor cycle life
high redox capacitance
good conductivity
low mechanical stability
easy of synthesize
low cost

Scheme 1 Properties of separate components (carbon nanostructures, conducting polymers, 
metal oxides) and their composittes
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active sites for faradaic reactions and a larger specific capacitance compared to the 
pure PANI film. The specific capacitance obtained for PANI/MWCNTs is 328 F g−1, 
which is significantly higher than the capacitance of PANI (193 F g−1) [270].
The impedance spectra obtained for the PANI and PANI/MWCNT composite are

displayed in Fig. 51b. Both plots are similar. The semicircle obtained in the high- 
frequency region is due to the faradaic process of PANI oxidation. The linear capac-
itive response in the low frequency region is accompanied by a diffusion-controlled 

chemical polymerisation

a monomer

polymer

polymer

chemical 
polymerisation

b

monomerchemical modification

with monomer

electrode

electrochemical polymer

deposition

c

electrode

electrode

electrode

electrode

electrode

Fig. 49 A schematic representation of different procedures of nanocomposites formation for elec-
trochemical measurements. (a) In situ chemical polymerization, (b) chemical polymerization of 
monomers attached to carbon nanostructure, and (c) electrochemical polymerization carried out on 
an electrode surface modified with carbon nanostructures
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doping process caused by Warburg behavior. The charge transfer resistance of the 
PANI/MWCNTs composites is much smaller than the resistance of pure PANI.
The MWCNTs/PANI composite also exhibits better capacitance properties at

higher current densities (Fig. 52). The decrease in the specific capacitance of 
PANI/MWCNTs with increased current density is lower relative to that of pure
PANI [270].

Two-component C60–Pd polymers are n-doped materials. The capacitance prop-
erties of pure C60–Pd and its composites with different carbon nanostructures 
(SWCNTs, MWCNTs, CNOs) have been studied [197]. The C60–Pd polymer dem-
onstrates pseudocapacitance behavior due to the faradaic reduction of C60 in the 
negative potential range; at potentials lower than this threshold, the material exhib-
its very high resistance. Composites of C60–Pd and carbon nanomaterials demon-
strate capacitive properties in a larger potential range (Fig. 53). At positive potentials, 
behavior typical of double-layer capacitors is observed. Porous carbon nanostruc-
tures are responsible for these properties. At negative potentials, pseudocapacitive 
behavior is observed. The capacitive depends on the type of carbon nanomaterial 
because they have different porosities. The specific capacitances obtained for the 
composites are also significantly higher relative to the pure C60–Pd film. The 

Fig. 50 SEM images of (a) MWCNT/polyaniline, (b) MWCNT/polypyrrole, and (c) MWCNT/
PEDOT composite (Reproduced from Ref. [149] with permission from Elsevier Ltd.)
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improvement in the specific capacitance is caused by the increased active surface 
area in the composites.
The capacitive properties of composites containing oxidized carbon nano-onions

with covalently attached polyaniline [158, 159] and composites of carbon nano- 
onions and chitosan [206] were also investigated.

Very promising storage behavior was also reported for composites based on gra-
phene and conductive polymers. For these systems, very high specific capacitances 
relative to the capacitance of a pure conductive polymer or graphene were reported. 
Representative specific capacitances obtained for graphene/PPy [153] and graphene 
nanosheets/PANI [152] are 1510 and 1046 F g−1, respectively.
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The composites utilizing carbon nanostructures with transition metal oxides,
such as hydrous RuO2 [141, 142, 160], NiO [277–279], MnO2 [142, 266, 277], 
Fe2O3 [280], Co3O4 [155], and NiCo2O4 [281], that exhibit properties typical of
redox capacitors were also prepared. The main goal was to improve the capacitance
properties of these systems by depositing metal oxides on the porous surface of
carbon nanotubes. Electrically conductive carbon nanotubes complement the high
resistivity of the metal oxides. These systems also exhibit superior mechanical sta-
bility because of the carbon nanostructures. Of the transition metal oxides, MnO2 
has seen the most frequent use as an electroactive material in faradaic 

Fig. 52 Specific capacitance of PANI and PANI/MWCNTs composite electrodes as a function of
discharge current density (Reproduced from Ref. [270] with permission from Elsevier Ltd.)
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Fig. 53 SEM and cyclic voltammogram of MWCNT/C60-Pd at 100 mV/s in acetonitrile contain-
ing 0.1 M (n-C4H9)4NClO4 (Adopted from Ref. [197] with permission from Elsevier Ltd.)
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supercapacitors because it is inexpensive, readily available, and environmentally
benign [14, 266]. The specific capacitance of this material is in the range of 200 Fg−1 [282]. 
Compositing MnO2·xH2O with carbon nanomaterials generates superior capaci-
tance properties. Specific capacitances of 580 Fg−1 and 315 Fg−1 were reported for 
MnO2·xH2O/MWCNTs [276] and MnO2·xH2O/graphene [283] composites, respec-
tively. Additionally, improved electrochemical stability through repeated charge/
discharge cycles was observed [266].
Hydrous ruthenium oxide (RuO2·xH2O) exhibits excellent capacitance proper-

ties (720 F g−1 [284]), relatively high conductivity, and exceptional electrochemi-
cal reversibility. However, the high cost and toxicity limit its practical application
[285]. To reduce the cost of this material and enhance its capacitance properties, 
composites containing carbon nanostructures and RuO2 have been proposed 
[141, 142, 160].
In most studies, the metal oxide particles were deposited onto the CNTs’ surface.

It is also possible to encapsulate metal oxides with CNTs. The MnO2@CNTs mate-
rial exhibits a significantly higher specific capacitance compared to MnO2 outside 
of the carbon nanotubes [286].
To improve the capacitance properties of metal oxides or conducting polymers,

three component composites containing carbon nanoparticles, conductive polymer, 
and metal oxides were constructed [287–289].

Very promising properties were also reported for composites of conductive poly-
mers or metal oxides based on activated carbon or carbon aerogel. For example,

Table 8 Capacitance properties of selected composites containing carbon nanostructure and 
conducting polymer or transition metal oxide

Specific capacitance

Carbon nanostructure Composite F g−1

SWCNT SWCNT/PANI 190 [146]

SWCNT/PANI 247 [158]

SWCNT/C60–Pd 994 [197]

SWCNT/NiC2O4 1642 [281]

MWCNT MWCNTs/PANI 670 [262]

MWCNT/PPy 506 [262]

MWCNT/C60–Pd 758 [197]

MWCNT/PEDOT 160 [150]

MWCNT/NiO 523 [279]

CNO CNO/PANI 496 [158]

ox-CNO/C60–Pd 284 [197]

CNO/RuO2 151 [160]

Graphene Graphene nanosheet/PANI 1046 [152]

Graphene/PPy 1510 [153]

Graphene nanosheet/RuO2 375 [142]

Reduced graphene/NiO 770 [292]

Graphene nanosheet/Mn3O4 708 [155]
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specific capacitances as high as 771 F g−1 and 515 F g−1 were reported for PANI/
activated carbon [290] and MnO2/carbon aerogel [291], respectively. The capaci-
tance properties of selected composites of carbon nanoparticles and transition metal 
oxides are reported in Table 8.

 Conclusion

Now a pool of synthetic methodologies are available for production of different
material nanoparticles with controlled size, structure, and properties. These struc-
tures have been commonly used in basic and applied research. Nanoparticles not
only have unique structures and physical and chemical properties but also provide a 
great opportunity to understand chemical and physical processes at the molecular 
level. The quantized electron transport in nanoparticles has played dominant role in 
these studies. The first section of this chapter is devoted to the nanoparticle involved 
in charge transfer phenomena. The proper description of this process in nanoscale 
material has been possible due to the progress in the development of computational/
theoretical tools and experimental techniques, such as scanning probe microscopy/
spectroscopy, particularly.

While many of the basic electron transfer phenomena are now understood, end-
less opportunities await the utilization of this unique nanoscale world. For example,
high-frequency phenomena, such as quantized vibration moods, or plasmons, could 
be used to investigate the charge transport propagation in carbon nanostructures. The 
more attention should be focused on polymeric nanoparticles and transition metal 
oxide nanoparticles. These classes of material have been still waiting for progressive
investigation in the field of quantized charge transfer process. They should be capa-
ble of stepwise single-electron charging similar to the behavior observed for metallic 
nanoclusters and carbon nanotubes. In the case of carbon nanostructures, more 
research has to be focused on the electron transfer phenomena in thin solid films. 
Such materials are particularly suitable to study the size and the intrinsic conductiv-
ity (SWCNTs chirality) effects in the interparticle electron exchange process.

Although nanoparticles can find applications in a number of fields, the signifi-
cant part of this chapter mainly focuses on application involving charge storing 
materials. Conductivity and charging properties are particularly important for these 
applications. With a large ratio of surface area to volume, tuned porous structure, 
and surface chemistry, nanoparticle materials demonstrate excellent properties for
charge storage applications. Despite of large number of experimental work done in
this area, several important aspects have to be considered in future studies. 
Systematic investigation of capacitance properties of carbon nanomaterials sorted
according to their size and chirality in the case of nanotubes should be performed. 
Atomic and electron level control of carbon nanostructures remains the main elec-
trotechnological challenge. More attention has to be also focused on the molecular 
architecture of materials used for the supercapacitors fabrication. Although, a num-
ber of prototypical nanoparticle-based charge storage devices have already been 
made, the massive production and integration of the nanoparticle components into 
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easily reproduced device structures is very challenging. Well-ordered multicompo-
nent systems should exhibit more efficient charge storage properties and ability to
tune their properties. The charge transfer processes in such systems and energy stor-
age properties can be also easily theoretically described, what is particularly impor-
tant in modeling of the capacitance behavior of these materials. This progress 
requires development of new techniques for all-nanoparticle composites synthesis. 
There is also a whole issue of practical aspects for careful consideration, such as 
mechanical, thermal, and electrochemical stability of nanostructured materials, 
voltage limit in which they can operate, solvent and electrolyte use for capacitor 
fabrication, and many others. Advancement in these areas should develop a new 
generation of nanostructured materials with finely tuned electronic properties.
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Abstract
The chapter presents fields of electrodeposition where nanostructuring of nickel 
is challenging (electroforming, replication of fine-structured surfaces, filling of 
small- and large-scaled notches, e.g., in microsystem technology and for electro-
formed slush-tools for automotive of dashboards for automotive applications).  
It outlines the special requirements for the electroforming process of thick com-
plex 3D-shaped deposits including bath analytics and stress measurements which 
are essential for the production of thick deposits, where the properties are hardly 
affected by impurities and internal stresses. Methods for the filling of the notches 
are presented. We further describe a new electrodeposition method to produce 
continuous fiber-reinforced metal matrix composites. Incorporating the fibers 
modifies the electrocrystallization and produces nanocrystalline structures 
around the fibers. As a hot special topic a new electrodeposition method is 
described to coat 3D porous structures as metal foams that there is an almost 
homogeneous coating thickness over the total cross section of the foams. The 
special experimental setup, special mass transport, and deposition mechanism in 
order to produce nanocrystalline nickel coatings around the foam struts are 
explained.

Keywords
Electroforming • Magnetic-field assisted electroplating • Fibre metal matrix 
composites • Hybrid metal foams

 Challenges and Problems in Nanostructuring of Nickel

 Fundamentals of Electroforming

The electroforming process is a widely spread technique for the formation of struc-
tures in different dimensions ranging from nanoscaled to macroscopic objects. The 
production of very complex product shapes (undercuts, high-aspect-ratio structures) 
and also a very good moulding behavior are features of this a further characteristic 
of this method. For this reason electroforming was used in different branches of 
production. An overview is given in Table 1.

Electroforming processes can be divided in five groups depending on the size, 
the shape, and the surface structure of the electroformed product:

 1. Large-sized products (0.5 × 0.5–1 × 2 m2) with thick walls (several centimeters) 
and a functionalized or decorative surface; product shape is complex.

 2. Large-sized products (0.2 × 0.2–1 × 1 m2) with a complex shape consisting of a 
sophisticated material.

 3. Large-sized products (0.2 × 0.2–1 × 1 m2) with thin walls (sub-mm to mm range) 
with a very smooth or complex-shaped surface structure including foils or stripes 
manufactured by reel-to-reel plating.
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 4. Small-sized products (1 × 1–10 × 10 cm2) with a complex shape or surface, mas-
sive, or hollow structures.

 5. Supported or unsupported micro- or nanosized structures.

Depending on the products, the electroforming process has to be optimized 
according to plating rate, shape homogeneity, molding properties, and deposit 
composition. In all cases the formation of pores, voids, and inclusions has to be 
avoided because these faults lead to a decrease in strength and imprecise shapes of 
the final products. Most of the mentioned problems can be avoided by the use of 
suitable additives: surfactants (sodiumdodecylsulfate, alkyl polyglucoside [21]) 
reduce the adhesion of gas bubbles onto the deposit surface; anorganic additives 
and complex formers (arsenic acid, EDTA [22], citric acid [23]) reduce the overpo-
tential of metal deposition; grain refiners (saccharin [24], butindiol) decrease the 
crystallite size; and stress relievers (cyanides [25]) reduce the microstrain and tex-
tures. The pH value is kept constant with buffer systems (boric acid, citric acid). 
Depending on the product type, electrolytes for electroforming purposes have 
more or less a complex composition. Especially, for thick-walled products like 
tools for injection molding or slush casting, only moderate and low plating rates 
are used. The complete production time takes several weeks. For these applica-
tions, the monitoring of the electrolyte and the product is very extensive. It can be 
reduced by minimizing the chemical components and by the use of mechanical 
devices (stirrer, linear motion tools).

Table 1 Applications of electroforming

Industry sector Product feature Products Reference

Automotive Molding of 
microstructures

Tools for slush molding 
process

[1–4]

Micromachining Micron-sized structures Microparts for machines [5–7]

MEMS  
(microelectromechanical 
systems)

High-aspect-ratio 
microstructures or 
parallel side walls

Sensors, optical systems, 
replication of complex 
parts, absorber patterns for 
X-ray lithography, 
micro- actuators, 
micro-piezoelectronics

[8–10]

Medicine/dentistry Complex shapes Dental implants, coronal 
restorations, prosthesis parts

[11–13]

Energy Complex shapes, 
special materials

Beam dump manufacturing, 
electroformed parts 
consisting of binary and 
ternary alloys, flow fields 
for fuel cells, molds for 
solar reflectors

[14–16]

Jewelry manufacturing Complex designs  
of jewelries

Hollow, thin-walled jewelry 
manufacturing

[17, 18]

Optical Parabolic, elliptical, 
and off-axis products

Reflectors, lighting products [19]

Aerospace Complex shapes, 
special materials

Combustion chambers, jets, 
concentrators

[20]

28 Electroforming and Electrodeposition on Complex 3D Geometries…



944

Serious problems for the manufacturing of nano- and microformed products are 
gas bubble evolution, inclusion of dust or microparticles, and the inhomogeneous 
filling of parts with an extreme aspect ratio. The filling of extreme geometries like 
very sharp profiles, needlelike structures, micron-sized parallel walls, and parts 
with an elongated aspect ratio of 1:3 and above is also a challenge for electroform-
ing procedures. For some electroformed products, the use of strong adsorbing 
agents could be a problem because the organic molecules were incorporated in the 
metal matrix. Depending on the amount of organic agents, the products embrittle at 
temperatures above 100 °C which leads to a mechanical failure.

As shown before electroforming is one of the most sophisticated electrochemical 
deposition techniques because all physical (bath temperature, hydrodynamic condi-
tions) and chemical (bath composition, pH value, additives) parameters strongly 
depend on shape, surface structure, and the application of the electroformed prod-
uct. For this reason it is very difficult to develop a procedure which is universally 
usable for a large number of products. In this chapter we show solutions for the 
formation of large-sized and thick-walled products with complex geometries that 
also consist of a nanosized structure.

 Advantages of Nanostructuring

Many electroformed products were used in technical processes or built in mechani-
cal, optical, or electronical devices. These parts were often used under very rough 
conditions, e.g., at high temperatures and under thermally or mechanically alter-
nating loads. The dimensions of electroformed parts of electronic devices and 
microelectromechanical systems (MEMS) are very small (0.5–100 μm) and there-
fore fragile. Large electroformed molds and machine parts are very expensive. The 
production costs of tools for the manufacturing of polymer skins for vehicle interi-
ors are in the range of 100.000 Euros. A cost reduction by long-term stability can 
only be achieved by a sufficient mechanical strength and corrosion stability. The 
nanostructuring of the material could be a solution for the mentioned problems. 
Table 2 shows that various mechanical properties of nanostructured Ni (crystallite 
sizes up to 10 nm), submicrocrystalline nickel (100 nm), and polycrystalline nickel 

Table 2 Mechanical properties of nickel with different crystallite sizes

Property at 25 °C in air
Microcrystalline 
nickel 10 μm

Nanostructured 
80–100 nm

Nickel 
10 nm Reference

Yield strength, MPa 103 690 >900 [26]

Ultimate tensile strength, MPa 403 1,100 >2,000 [27]

Tensile elongation, % 50 >15 1 [26, 27]

Young’s modulus, GPa 207 214 204 [28]

Vickers hardness, kg/mm2 140 300 650 [29, 30]

Fatigue strength, MPa (108 cycles) 241 275 – [26]

Wear resistance (Taber Wear 
Index)

32 27 21 [30]
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(crystallite size 10 μm) depend strongly on the crystallite size. In addition to the 
remarkable increases in hardness, yield strength, and ultimate tensile strength with 
decreasing grain size, it is interesting to note that the wear resistance increases by 
40 % for nanostructured nickel with a crystallite size of 10 nm. The ductility of 
nickel decreases with decreasing grain size from 50 % elongation to failure for 
conventional material to 15 % at 100 nm grain size and about 1 % at 10 nm grain 
size. As a result of Hall–Petch strengthening, nanocrystalline materials display sig-
nificant increases in hardness and strength relative to their coarse-grained counter-
parts due to their ultrafine grain size [30]. The literature [31] reports about the 
tensile properties of electrodeposited nanocrystalline cobalt which were compared 
with that of a coarse-grained polycrystalline counterpart. The greater than twofold 
increase in yield and tensile strength while maintaining considerable ductility is 
quite remarkable.

Materials with a very high hardness find extensive use in numerous industrial 
applications. They require a high intrinsic hardness (600–1,000 HV) and low fric-
tion coefficient (<0.20) in order to impart the desirable wear performance. It could 
be shown that it is possible to prepare nanocrystalline metals and alloys with these 
special properties by different electrodeposition techniques [32, 33]. The nanostruc-
turing of electroformed free-standing microparts is extreme essentially for their 
mechanical stability [34, 35]. If the wall thickness of a structure is only 1 μm, the 
material should consist of crystallites with a size of at least 20 nm. In this case about 
50 crystallites can be found along the cross section of the wall. If the structure of the 
metal is more coarse grained (e.g., 200 nm), the wall consists only of five grains. 
From the mechanically point of view, this bamboo-like structure is very fragile and 
tends to crack formation and mechanical failure.

In conclusion nanostructuring offers a lot of advantages, but also there are some 
disadvantages such as higher processing costs. Figure 1 summarizes the advan-
tages and disadvantages of nanostructuring mentioned in this chapter. The many 
advantages leading to longer lifetime of nanostructured products in contrast to 
coarse- grained products prevail the few disadvantages.

Fig. 1 Summary of disadvantages and advantages of nanostructuring
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 Electrochemical Nanostructuring

Nanostructuring by electrochemical methods is a well-established technique which 
enables the deposition of metals and alloys in crystallite sizes from several nm up to 
one micron. Electrochemical techniques have been developed for the synthesis of 
nanostructured materials for over twenty years. Several direct current (DC) [36, 37] 
and pulse techniques (PED) [38–40] offer the ability to synthesize a large number 
of metals, alloys, composite materials, and compounds in any size or shape. First 
routes for the production of nanostructures are different kinds of DC techniques 
using electrolytes with a relatively high amount of organic additives [41]. The pro-
cess parameter of these techniques is limited to the current density and bath compo-
sition. In most cases organic grain refiners were used [42–44]. The amount and the 
molecular structure of the additive have to be optimized for each metal: specific 
additives are arsenic acid for gold deposition [45], saccharin for nickel deposition 
[40], and citric acid for copper deposition [23]. A crucial disadvantage of this 
method is the careful adjustment of the current density to the bath chemistry, and 
therefore the crystallite size can only be varied in a small range.

The pulsed electrodeposition technique (PED) is a more advanced method for 
the preparation of nanostructured metals and alloys. One prerequisite of the nano-
structuring by PED is the formation of a high nuclei number onto the electrode 
surface combined with a very well-controlled nuclei growth. Effective parameters 
for a controlled nuclei formation and growth are the pulse parameters Ip, ton, and toff, 
whereas Ip denotes to the pulse current, ton is the duration of the pulse, and toff belongs 
to the toff-time. According to the theory of nucleation [46], the size and the number 
of nuclei depend on the overvoltage (η):
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In this electrochemical version of the Kelvin equation, r means the critical nucle-
ation radius, σ the specific surface energy, V the atomic volume in the crystal, and z 
the number of elementary charges e0. A high nucleation density on the electrode 
surface can be achieved by a high overvoltage. This enormous overvoltage can only 
be applied for a few milliseconds because the metal ion concentration in the vicinity 
of the cathode decreases very strong, and therefore the process would become dif-
fusion controlled. During the toff-time, the metal ions diffuse from the bulk electro-
lyte to the cathode and compensate the metal ion depletion. Meanwhile Ostwald 
ripening sets in that means that the larger crystallites are the energetically more 
preferred growth on expense of the smaller crystallites. Figure 2 shows the crystal-
lite sizes of different copper samples prepared with increasing toff-times. For com-
parison reasons, the deposits were prepared with same charge during the pulse 
period – that means the Ip-values have to increase for long toff-times. The number of 
nuclei increases with increasing current density resulting in a reduced crystallite 
size. Results shown in Fig. 2 are in accordance with the nucleation and growth 
theory presented above. The smallest crystallite size was observed for high deposi-
tion currents (Ip) and long toff-times. With an eightfold increase of the ton-time, the 
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crystallite size increases the two-and-a-half fold up to 25 nm. The ton-time has no 
strong influence on the electrocrystallization process, because during this state of 
deposition, nuclei were generated – at the observed time scale, the process is nearly 
time independent (Fig. 3).

Fig. 2 Influence of the toff-time on the crystallite size of copper deposits [23]. Electrolyte 
composition: CuSO4 28 g/l, (NH4)2SO4 50 g/l, citric acid 50 g/l. Dvo1ume denotes the volume- 
weighted crystallite size

Fig. 3 Influence of the ton-time on the crystallite size of copper deposits [23]. Electrolyte composition: 
CuSO4 28 g/l, (NH4)2SO4 50 g/l, citric acid 50 g/l
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The surface diffusion of the so-called adatoms can be influenced by the addition 
of substances which have a very weak interaction with the surface. If the interaction 
between the molecule and the surface is too strong, the additive is built in the metal-
lic matrix. In the case of a moderate or weak interaction, the molecules are not 
bound to the surface and are able to desorb. The adsorption–desorption equilibrium 
depends on the chemical structure of the molecules and the temperature. At high 
temperatures, most surface active additives are inactive. Experimental results con-
cerning this parameter are reported for gold [45] and copper [47]. The pulse electro-
deposition is an economically viable method for the large-scale manufacture of near 
net-shape components, coatings, and foils and also for massive bulk products pre-
pared in electroforming processes [48, 49]. This technique enables the preparation 
of a large number of metals, alloys, and composite materials in various forms. While 
production rates are significant, the capital investment required for electroplating 
lines remains modest. The existing infrastructure for electroplating and electro-
forming operations is a further benefit. Adjusting bath chemistry and pulse plating 
parameters provides significant flexibility in controlling grain size. The addition of 
particles to the plating bath yields nanometal matrix composites with properties 
tailored to desired applications. Tank plating processes are very suitable to fabricate 
nanostructured bulk materials or electroformed products [50].

 Electroforming of Thick, Complex 3D Deposits

 Problems of Electroforming

It is very difficult to transfer for complex 3D geometries and for deposition of thick- 
walled deposits experiences and plating parameter from galvanic coating techniques 
to electroforming pocesses. Based on the longer deposition times, effects are arising 
which are neglectable in the electrodeposition of thin deposits. Such effects are:

• 3D and rough surfaces. Based on the high current densities on edges and peaks, 
they lead to uncontrolled growth and bud formation and induce further rough-
ness. Also co-deposited impurities are a source of roughness.

• Internal stresses. These may result in the spalling, blistering, or warping of the 
deposit.

• Formation of delamination layers. Delamination layers are formed by changes 
in the composition of the electrolyte, in the plating parameter, or geometrically in 
interior edges and corners. Such delamination planes lead to a mechanical 
weakening of the deposits.

 Current Distribution and Coating Thickness Distribution
Based on the difference in the interdistance of anode and cathode for complex 
3D-shaped cathodes, there is a lower electrolyte resistance at prominent edges 
and hence a higher local current density compared to notches and undercuts. 
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According to this there are different deposition thicknesses at edges and undercuts 
or planar regions on 3D-shaped cathodes. The metal layer is thicker at edges and 
peaks and thinner in undercuts and valleys. Also at rough surfaces, there are 
higher current densities on the peaks and lower ones in the valleys besser recesses. 
Hence, in order to produce smooth deposits, it is necessary to guarantee particle-
free and dust-free electrolytes to prevent the co-deposition of impurities which 
may arise, e.g., from insoluble components of the anodes.

 Internal Stresses
Internal stresses establish in electrodeposits as tensile or compressive stresses and 
do strongly affect the mechanical properties of the deposits. Internal stresses result 
from the electrocrystallization process or by the incorporation of impurities like 
sulfur, hydrogen, and organic compounds. The electroformed tool can be compared 
with a spring. If the tool is free of internal stresses, the deposit is unwrapped and has 
the same angles as on the mandrel. Are there internal compression stresses in the 
tool, in analogy to a compressed spring, it tries to expand after the removal from 
the mandrel. Hence, in comparison to the mandrel, there are obtuse angles. At the 
appearance of tensile stresses like a spring under tension, the tool tries to contract. 
As a result of this contraction, the angles in the tool are flatter than in the mandrel. 
Thus in electroforming, internal stresses should not be neglected. In the case of 
coatings, there are much lower forces in the deposits, and mostly internal stresses 
can be neglected.

The common methods to measure the internal stresses are X-ray diffraction and 
the bent strip method. For routine in situ measurements during the deposition pro-
cess, the bent strip method is best suitable. The stresses are measured by deposition 
on a thin strip that is isolated on the rear side. According to the nature of the stresses, 
the strips deforms by bending to the direction of the anode or away from it. The 
method is based on the beam theory. In the case of tensile stresses, the strip bends 
toward the anode; in the case of compressive stresses, it bends away from the anode. 
The degree of bending is a quantitative measure for the internal stresses. For evalu-
ation of the internal stresses σ, the formula of Sykes and Rothwell is used [51].
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4
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whereas F belongs to the acting force on the strip; L, B, and T denotes for the length, 
width, and thickness of the strip; and t represents the thickness of the deposited layer.

 Formation of Delamination Layers
The formation of delamination layers or interfacial layers leads to the weakening of 
the deposited components. There are several reasons for the formation. In the case 
of interior angles, growing metal layers from both edges of the angle collide and 
build an angle bisecting plane. If an electroformed tool is loaded under pressure, 
mostly it fails at such bisecting planes. Besides this geometrical reason, other layers 
arise from every change in the electrolyte composition or in the plating parameter. 
These include changes in the pH, metal content, content of additives or surfactants, and 
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also in the current density, electrolyte temperature, or hydrodynamic conditions. 
In order to prevent the layer formation, the whole composition of the electrolyte and 
all other plating parameter have to be maintained constant.

 Special Requirements for Electroforming

According to the most complex 3D geometries and the high internal stresses, it is 
not possible to use very high pulse or average current densities. These would cause 
large bud formation, undesired roughness, and large internal stresses of the depos-
its. Hence, in order to produce nanocrystalline electroformed deposits, it is neces-
sary to use grain-refining additives like the sodium salt of saccharine, the trisodium 
salt of naphthalene trisulfonic acid, or other organic molecules which absorb on the 
growing metallic grains during the electrodeposition process and act as inhibitors 
for the surface diffusion of the adatoms. Hence, the formation of new nucleation 
sites is for the adatoms energy to be more favorable than the surface diffusion to 
nucleation sites which are distant. By blocking the surface diffusion of the adatoms, 
the inhibitors increase the nucleation rate and reduce the growth rate. This leads to 
the production of very fine-grained nanocrystalline deposits (Fig. 4).

Besides the addition of organic additives, it is possible to use inorganic additives. 
The latter ones have a lot of advantages in comparison of organic additives:

• Easy analysis methods (e.g., ICP-OES)
• No decomposition products
• No embrittlement at higher temperatures

Unfavorably, there is only a slight effect on the grain size, and there are shifts 
in the deposition potential and the pH, and alloying might be possible. Alloying is 
mischievous because it needs very sophisticated control of the deposition 

Fig. 4 SEM image of a cross section of a sample deposited at jm = 20 mA/cm2 under the addition 
of saccharin during the plating
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conditions, and according to the changes in the local current density on complex 
geometries, it is not possible to guarantee a uniform composition of the alloy over 
the complete geometry.

In literature, there are only a few reports about the effect and the acting mecha-
nism of inorganic additives. Possible inorganic additives are, e.g., magnesium 
chloride or manganese sulfate (for the case of nickel deposition). Magnesium chlo-
ride is a conducting salt and does not form any alloy with nickel. According to 
Makar’eva [52], the addition of magnesium chloride increases the hardness and 
brightness of the deposit by reducing the grain size. The effect makes itself felt 
only at very high concentrations of 4 mol/l and is independent of the choice of the 
counterion. Magnesium acts as electrolyte film inhibitor. It does not only increase 
the density and viscosity of the electrolyte, but it also acts by the formation of 
magnesium hydroxide in the diffusion layer on the diffusion velocity of the protons 
and nickel ions [53]. Hence, it increases the overall overvoltage, and according to 
equation 1, it leads to a nanostructuring of the deposit. A similar mechanism mech-
anism can be assumed for other metallic additives which do actively interfere in 
electrocrystallization.

A further inorganic additive for nickel electrodeposition is manganese sulfate. 
Compared to magnesium chloride it works in small amounts. Concentrations of 0.1 
mol/l are enough for grain refinement into the nanoscale. The mechanism is totally 
different. Manganese has a deposition potential of −1.18 V and is up to now the 
most electronegative metal that could be electrochemically deposited from aqueous 
solutions [54]. It makes the formation of an alloy with nickel, but only up to 1.5 % 
of manganese can be alloyed with nickel [55–57]. Based on the less alloying ten-
dency there is no complex control of the metal contents on the electrolyte needed. 
The manganese content decreases very slowly. By the addition of manganese sul-
fate to nickel electrolyte, it is possible to increase the hardness by grain refining of 
the deposit by 150 % [58].

 Bath Analytics
Besides the purity of the electrolyte, in order to produce thick deposits which are 
from good quality and show homogeneous properties over the whole thickness 
without the formation of delamination layers, it is important to guarantee a constant 
composition of the electrolyte. That is the reason why in contrast to the deposition 
of coatings, the electroforming needs a lot of bath analytics. The following section 
describes the necessary analytics in the case of nickel plating with a nickel sulfa-
mate electrolyte which is the most common used electrolyte for electroforming.

For the electroforming of nanocrystalline nickel, it is important to monitor the 
following bath components:

• Metal content
• Additive content

For the deposition of metals and alloy it is important to determine the elctrolyte’s 
metal content. There are several spectroscopic methods applicable such as UV–VIS, 
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Raman, absorption, or emission spectroscopy. These methods are no absolute 
methods; hence, a calibration is necessay. The best methods for routine observation 
of the metal content are AAS (atomic absorption spectrometry) and ICP-OES 
(inductively coupled plasma optical emission spectrometry). The best method for the 
simultaneous determination of several metals is ICP-OES.

The electroforming of nanocrystalline deposits requires the addition of organic 
or inorganic additives. The concentration of these additives strongly affects the 
properties of the deposits. Most of the organic grain-refining additives can be deter-
mined by high-performance liquid chromatography (HPLC). The content of inor-
ganic additives can be easily determined like the metal content by ICP-OES. The 
advantage of inorganic additives is that they can simultaneously be determined with 
the metal content of the depositing metal.

 Special Methods for the Filling of Notches

The widespread application of electroplating leads to problems. It is not possible 
to use a standard procedure for all length scales, and so different methods for the 
replication of complex geometries have to be used. In the following we want to 
present a review of the methods to replicate sophisticated structures on different 
length scales.

 Leveling Agents and Suppressors

An important field of electroforming is the production of strip conductors for elec-
tronic industries. Nowadays, the dimensions of computer components get smaller 
and smaller. For the upcoming generations of computer chips, size reduction is a 
real challenge [59]. A possible solution for this task is a 3D integration of computer 
chips and thereby the usage of through silicon vias (TSV).

The major difficulty in the production process is the superfilling of small notches 
[60–62] without voids, which leads to an enhanced electrical resistance, higher 
shifting times, and a reduced element lifetime. Several approaches to solve this 
problem are proposed in literature and partly established in industrial processes. 
Usually leveling agents (e.g., thiourea, benzotriazole, 1,4-butynediol) [63], sup-
pressors (e.g., polyethylene glycol, polypropylene glycol) [64], a combination of 
both [65], or catalysts [61] are used to enhance the deposition process.

The mode of action for suppressors is to adsorb on free surfaces of the cathode. 
Due to its high molecular mass, the diffusion rate of these molecules is very low. 
Therefore, the smaller metal ions can diffuse faster into the cavities. On top of the 
surface, a passive layer of suppressors is formed. Inside the cavities, an electrical 
conductive surface enables to reduce the positively charged metal ions and creates 
a deposited metal film. So the deposition only takes place inside the notch, where 
no suppressor molecules are adsorbed on the walls and a filling of the notch can be 
realized.
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But this approach can only be applied for small structures. If the width of the 
notch is too wide, the diffusion of large molecules is not hindered, and therefore a 
passivation of the whole cathodic surface takes place. So the notch filling is not 
enhanced, and the overall deposition rate is significantly reduced.

The second approach for additives in a plating bath is the so-called curvature- 
enhanced accelerator coverage (CEAC) model [61]. In this case, the electrolyte of 
the plating bath contains a catalytic active species which supports the deposition 
process.

Performing a deposition on a nonplanar surface, the plating process causes a 
change in the surface topography. Thus, locally, the curvature of the surface is 
changed. As a result of this change of curvature, the local density of adsorbed cata-
lytic active species is changed. For a convex-curved surface, the density of catalyst 
molecules is lowered; for the concave case, it is enhanced. Due to a proportionality 
of deposition rate and the amount of catalyst on the surface, the deposition is favored 
on concave areas of the surface. In average the growth occurs parallel to the cathodic 
surface.

A very complex procedure is necessary to perform this process in an industrial 
scale. For bigger parts of systems that will be investigated in the following, this 
approach is not meaningful. Therefore, other ways for optimizing the deposition 
procedure have to be found.

In conclusion, additives are a promising way to enhance the plating process itself 
and the material properties of deposited layers. Some dissadvantages arising for the 
use of additives. So a complex procedure for keeping the concentration of the addi-
tives in the electrolyte constant is required. In addition additives act on a global 
scale, and therefore negative effects like embrittlement due to their incorporation in 
the deposited layer can occur. Thus, other methods for enhancing the plating pro-
cess have to be found. One promising approach is the superposition of a magnetic 
field during deposition process, which is described in the following.

 Magnetic Field-Assisted Electroplating

There are many investigations on the influence of a magnetic field during electro-
plating in literature. Some review articles give a good survey of this topic [66–68].

There are two different ways in which magnetic fields influence the deposition 
process. On the one hand, the mass transport during electroplating can be enhanced, 
or on the other hand, reaction kinetics are influenced [69–71]. Therefore, an appli-
cation of magnetic fields for enhancing the deposition rate inside a notch seems to 
be possible.

During the electrodeposition process, different forces are acting on the involved 
ions. There are three main forces that have to be considered:

• Convection
• Migration
• Diffusion
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The above mentioned forces play an important role in every deposition process. 
For the special case of deposition with a superposed magnetic field, further resulting 
forces have to be regarded. In literature [66], three main forces, related to the mag-
netic field, are mentioned: a paramagnetic gradient force, a field gradient force, and 
the Lorentz force.

These forces have a different influence on the plating process. But they are all 
related to the magnetic properties. Important parameters are the molar susceptibility 
χm and the vacuum permeability μ0. Furthermore, the concentration of magnetic 
ions c and the magnetic field B influence the resulting forces.

At first we want to take a closer look on the paramagnetic gradient force FP.
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A gradient in the concentration of paramagnetic ions evokes a force leading ions to 
the electrode. Coey and coworkers [72] showed in simulations and experiments that 
this force has only to be considered for ferromagnetic solids and ferrofluids. For all 
other materials, the contribution of this force is negligible. For aqueous electrolytes 
like sulfamate electrolytes used for nickel deposition, the force can be assumed as 
zero. Therefore, this force is not considered in the following.

In contrast, a big influence on the plating process is proven for the field gradient 
force FB.
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Different authors showed [73–75] that a gradient in the magnetic field influences the 
electrochemical deposition if metal ions. This gradient results from inhomogene-
ities in the magnetic field, e.g., caused by different materials for cathode support.

Due to this gradient, a force is acting on the ions in front of the electrode. 
Depending on the magnetic properties of the ions, different magnetic effects can be 
distinguished. Paramagnetic ions are attracted to the magnetic field and diamagnetic 
ones are pushed off.

Tschulik and coworkers [76] showed that the field gradient force plays an impor-
tant role for structuring surfaces by superposing a magnetic field. Comparing the 
deposition process of diamagnetic and paramagnetic ions, they could prove that the 
main influence results from the field gradient force. So it should be possible to 
locally influence the plating process by tailoring magnetic field gradients.

A further force that has to be considered is probably the best known one: the 
Lorentz force FL.

 
F v BL = ´( )q  (5)

This force acts on every moving charge carrier in a magnetic field. In contrast to the 
field gradient force, there is no need for a gradient in the magnetic field. Equally 
there is no significance of the magnetic properties of the electrode or the involved 
ionic species [75]. The Lorentz force acts in the case that the magnetic field and the 
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electrical field are not parallel. The force acting on the ions leads to a deviation of 
them. On a global view, this can be seen as a stirring of the electrolyte. In literature 
this effect is known as the magneto hydrodynamic effect (MHD effect) [77, 78].

It can be distinguished between two effects by observing different length scales. 
On a macroscale, there is the so-called macro-MHD effect. The Lorentz force leads 
to a global stirring of the electrolyte and enhances the mass transport to the elec-
trode surface. Thereby the thickness of the diffusion layer is reduced [79].

On the other hand, there is a second effect of the Lorentz force. Even for mac-
roscopically parallel magnetic and electrical fields, an influence of the Lorentz 
force can be observed. In this case, we talk about the micro-MHD effect [80]. 
Inhomogeneities of the surface topography evoke disturbances in the electrical 
field lines. So even for a macroscopically parallel magnetic field at special points, 
the magnetic and the electric field are not parallel and the Lorentz force is unequal 
to zero.

The magnetic field does not only affect the mass transport by the Lorentz force 
but also the surface morphology. A higher magnetic field is responsible for smoother 
surfaces of the deposited material [81, 82].

Bund and coworkers [69] showed that the current efficiency increases with 
increasing magnetic field. They explain it with the mass transport-limited hydrogen 
evolution reaction (HER) and a mixed-controlled deposition of nickel. They 
observed a shift of the deposition potential to more negative values with increasing 
magnetic field strength. Due to this potential decrease, the nickel deposition rate is 
enhanced; meanwhile, the hydrogen evolution reaction is not affected by the 
changes in deposition potential. A slight enhancement of HER can be observed due 
to the higher mass transport of protons evoked by the Lorentz force-induced stirring 
of the electrolyte.

This enhanced deposition rate of metals in a magnetic field can be used in indus-
trial applications, e.g., for filling notches. Probably the most important effect on the 
filling process of a notch is the influence on the mass transport [83]. In the follow-
ing, we want to present the main problems during the filling of notches with a low 
aspect ratio. The problem is schematically shown in Fig. 5.

Fig. 5 Electrochemically notch filling. Due to a inhomogeneous distribution of the electrical field 
lines the deposit growth much faster at the edges of the notch (Fig. 5b). Fig. 5a shows a homoge-
neous notch filling process
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Due to electrical shielding effects and a lowered mass transport to the ground of 
the notch, the deposition rate decreases. Additionally the deposition of ions is 
favored in upper parts of the notch. The wall-thickness at the upper rim of the notch 
is much thicker than at the bottom. So there are two different ways to enhance the 
deposition rate. The first one is to reduce the electrical shielding, e.g., by auxiliary 
anodes, and the second one is to enhance the mass transport into the notch. Using an 
auxiliary anode creates new positioning problems at complex geometries. So this 
approach is not suitable for industrial applications, and we will only consider the 
second approach in the following.

Basic experiments were performed to measure the influence of the magnetic field 
strength in the homogeneous field of an electromagnet. Cyclovoltammetric mea-
surements, as shown in Fig. 6, were performed without a magnetic field and with 
field strengths of 250 mT and 500 mT. As reported in the literature [69] an influence 
of the magnetic field on the deposition process can be observed. Performing a 
cyclovoltammetric measurement, the amount of dissoluted nickel in the anodic 
regime corresponds to the deposited nickel. With increasing magnetic field, a higher 
charge for the stripping peak can be observed. So we can conclude that with increas-
ing magnetic field, the deposition rate of nickel increases.

But these investigations on basic principles of deposition in a magnetic field do 
not suffice to establish an industrial process. Therefore further examinations consid-
ering the deposition conditions for certain geometries are necessary. For investigat-
ing the influence of a magnetic field on the filling process of a real notch – e.g., for 
applications in automotive dashboards – various experiments with different resins 

Fig. 6 Investigation of the influence of a magnetic field on the deposition of nickel by 
cyclovoltammetry
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for producing the cathode backing were performed. Permanent magnets were 
directly positioned behind the cathode backing in areas with notches. In contrast to 
additives in the electrolyte, the magnetic field only acts in a short range, and there-
fore the influence on the material behavior is limited to a small area and not affect-
ing the whole part.

The superposition of a magnetic field in the range of 40 mT enhances the wall 
thickness in the notch area by 10–15 %. In Fig. 7 the filling of notches electroplated 
without and with a superposed magnetic field is compared. The enhancement in 
wall thickness is clearly visible.

Additionally the magnetic field also influences the material properties of depos-
ited nickel [84]. The grain size is reduced, and therefore the hardness is increased 
according to the Hall–Petch relation [85, 86]. The development of grain sizes of a 
nickel deposit with increasing magnetic field is reported in Table 3.

Beside the higher lifetime due to thick walls of the elements, a finer grain struc-
ture also enhances a lifetime. Using cheap permanent magnets during plating pro-
cess helps to improve the economic feasibility for deposited parts of system.

 Continuous Fiber-Reinforced Metal Matrix Composites

Metal matrix composites (MMCs) consist of a continuous metallic matrix phase 
which is predominant in the composite in mass, volume, and thickness and of a rein-
forcing second phase which improves particular properties of the matrix phase or 
evokes new properties. Typical reinforcing phases are fibers, particles, or 3D phases 
that built up an interpenetration phase composite (IPC) with the matrix phase.

Fig. 7 Comparison of a notch filled (a) without and (b) with superposed magnetic field

Table 3 Development of 
grain size and hardness in 
dependence of the applied 
magnetic field during the 
deposition process [83]

Field strength (mT) Crystallite size DV (nm)

0 107

250 78

500 56
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 State of the Art to Continuous Fiber-Reinforced MMCs

The most common composites are particle- and fiber-reinforced composites. 
According to the length of the fibers, there are three types of fiber-reinforced 
MMCs: short fiber-, long fiber-, and continuous fiber-reinforced composites. Short 
fibers have a length of 0.1–1 mm, long fibers are of a length of 1–50 mm, and all fibers 
longer than 50 mm are called continuous fibers. Among the MMCs, continuous 
fiber-reinforced MMCs (CFR-MMCs) exhibit the highest strengths but are also 
very expensive in manufacturing [87]. Typical fields of application are space and 
aerospace industry as well as engine manufacturing industry. The composites show 
high ductility of the matrix combined with high temperature resistance. A further 
advantage is the better application of force between the matrix and the fiber accord-
ing to the higher fracture strength of the matrix in comparison to ceramic an poly-
mer matrix composites.

State-of-the-art methods for the synthesis of continuous fiber-reinforced MMCs 
are the dispersion bonding, infiltration processes, and powder metallurgical (PM) 
methods. At the dispersion bonding, the pre-oriented fibers are sprayed with the 
liquid matrix metal. The consolidated fibers are pressed to the resulting component 
under high temperature. Between the infiltration processes, there are two versions. 
Either the fiber mats are positioned in the mold and poured with the liquid matrix 
metal or the fiber mats are pulled through the liquid matrix metal. According to the 
mostly bad wetting of the molten metal, the bonding of the metal to the fibers causes 
some difficulties [87]. Using PM methods, fiber mats or fleeces are embedded into 
powdery matrix metal and solidified via sintering to the dense component. For all 
this production methods, only fibers with a higher melting point as the matrix are 
possible.

 New Electroforming Method for the Production  
of Continuous Fiber-Reinforced MMCs

The present chapter outlines a new production method for CFR-MMCs by electro-
forming. We investigated the incorporation of glassy, carbon, and aramid fibers into 
a nickel matrix via the electrodeposition of nickel onto a bath model. A bath model 
is a 3D form mostly made of plastics that has been made conductible by coating 
with a conductive ink. Fiber mats known from the production of glassy fiber- 
reinforced plastic (GFRP) have been used. The electroforming method consists of 
three steps:

 1.  Deposition of a thin nickel layer on the bath model
 2.  Positioning of the fiber mats on the as-deposited nickel layer
 3.  Further deposition of nickel
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Steps 2 und 3 can be repeated in order to produce 3D composites. The process is 
schematically outlined for a planar bath model in Fig. 8. Only nonconductive fibers or 
fibers with a nonconductive coating can be used. The usage of conductive fibers leads 
to the electrodeposition of the metal onto the fibers unless the interspaces have not 
been completely filled. Hence, there is a bad bonding between the metallic layers.

Figure 9a shows scanning electron microscopy (SEM) images of the microstruc-
ture of the resulting composite deposited from a nickel sulfamate electrolyte (Ltd. 
Candorchemie, Bochum, Germany) at a current density of 20 mA/cm2. According to 
the considerations in sections “Challenges and Problems in Nanostructuring of 
Nickel” and “Electroforming of Thick, Complex 3D Deposits” under the fiber, there 
is a coarse, columnar microstructure. This structure forms due to the growth- dominated 
electrodeposition process, which is typical for sulfamate nickel. Over the fiber, there 

Fig. 8 Process steps for the electrochemical production of continuous fiber-reinforced MMCs

Fig. 9 SEM images of continuous fiber-reinforced MMCs, nanostructuring by fiber incorporation. 
(a) Cross section perpendicular to fiber direction, (b) cross section in fiber direction
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is an untypical very fine-grained microstructure. That suggests a grain- refining effect 
of the fiber incorporation. Based on the fact that this grain refinement is also visible 
by using aramid fibers or glassy fibers with different coatings and it is more pro-
nounced by the presence of more fibers, the grain refinement effect of fiber incorpora-
tion is independent of the fiber material and only belongs to the incorporation of new 
surfaces that disturbs the normal grain growth. A closer look (Fig. 9b) shows the very 
complex microstructure around a single fiber.

Impinge a growing grain on the fiber; it does not stop growing; instead, it grows 
around the fiber. Behind the fiber, the grain grows together in building up a rooflike 
structure over the fiber. These grains show the typical columnar structure of sulfa-
mate nickel. Over and under these coalescensing columnar grains, there are the very 
fine-grained regions. The grain refinement in these regions is based on heterogenous 
nucleation. In this early state of deposition at the fibers, there is a nucleation- 
dominated electrodeposition, if there are no more hindrances in grain growth direc-
tion. Sometimes later, the electrodeposition process will change already to the 
growth-dominated process in building up columnar microstructure, but by the 
incorporation of more fibers, e.g., in the form of mats, at every new surface, there is 
the disturbance of the growth-dominated deposition mechanism and the new forma-
tion of the nucleation-dominated mechanism. A further explanation of the grain 
refinement is given by Weibach [88]. According to him, fibers are able to fix grain 
boundaries during the formation of the matrix and therefore lead to a reduction in 
the grain size.

Hence, the incorporation of fibers is a method for the nanostructuring of metal 
matrixes by electrodeposition without the usage of organic additives and the disad-
vantages of these, like embrittlement and complex bath analytics. Figure 10 con-
cludes schematically the observations of the microstructure in Fig. 9.

Advantages of this method for the production of CFR-MMCs are not only the 
relatively low process temperature of no more than 50 °C, the possible use of fibers 
with a lower melting point than the matrix and the flexibility in the forming of the 
composite components but also the nanostructuring of the metal matrix.

Fig. 10 Schematic structure evolution in nanostructuring by fiber incorporation
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 Coating of Metal Foams

 Metal Foams: Basics

Metal foams are a very interesting class of materials for engineering and science. 
They are 3D porous structures which mimic the construction elements of large natu-
ral load-bearing materials as bones and wood. Open-cell foams consist of a 3D 
network of interconnected pores and are characterized by the so-called ppi-number, 
the number of pores per inch (Fig. 11).

The fields of application for metal foams are wide spread and range based on 
their high stiffness to weight ratio from lightweight construction materials over 
kinetic energy absorbers according to their special stress versus strain diagram up 
to functional applications like heat exchangers, sound absorbers, and catalyst sup-
ports, based on the large internal surface. But metal foams did not gain large attrac-
tion up to now, because they are quite expensive and have to compete with 
established materials. Hence, a breakthrough is only possible if one is able to cre-
ate foams which are not only good in one of the three fields of application but also 
in two or even all three fields. Such foams would be ideal multifunctional materials. 
In order to create such multifunctional foams, there is the effort to improve the 
foam properties.

 Coating of Metal Foams by Electrodeposition

A coating of metal foams could be done by electrodeposition to improve mechani-
cal properties or for the production of catalysts. The deposition has to take place not 
only on the outer geometric surface but also on the inner surface.

The first efforts to coat open-cell metal foams via electrodeposition have been 
made in 2008 by Boonyongmaneerat et al. [89]. They coated aluminum foams with 

Fig. 11 Closed-cell metal foam (a), open-cell metal foam (b)
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a NiW alloy. They were able to demonstrate that the coating enhances the stiffness, 
strength, and energy absorption capacity, but due to the parallel increase in mass, 
the positive effect of the coating was not reflected by the specific properties per 
mass or density of the coated foams. Further efforts have been done in 2009 by 
Bouwhuis et al. [90]. They performed electrodeposition of nanocrystalline nickel on 
aluminum foams. According to Boonyongmaneerat et al., there was an enhance-
ment of the absolute mechanical properties but a degradation of the specific 
mechanical properties. The reason for the degradation is the bad coating homogene-
ity over the cross section of the foams. Arising from the 3D deposition process not 
only on the outer geometric surface but also on the inner surface, there are mass 
flow limitation problems [91, 92]. A further problem is the Faraday effect. The foam 
structure itself acts as a Faraday cage. This shielding prevents or impedes the plat-
ing of the foam center. Figure 12 outlines the prescribed situation. Regarding the 
concentration profile, in front of planar electrodes, there are two regimes for direct 
current plating and three for pulsed electrodeposition. In a large distance to the 
electrode surface, there is the constant concentration c∞ of the bulk electrolyte. With 
decreasing distance to the electrode, the concentration in the electrolyte decreases 
according to the consumption of metal ions by the deposition process and the lim-
ited diffusion of the metal ions. If the deposition rate, expressed by the applied cur-
rent density, is much larger than the diffusion rate, the current is called the limiting 
diffusion current (LDC) ilim, and metal ion concentration at the cathode becomes 
zero. In the case of pulse plating, there is a second diffusion layer which oscillates 
in the concentration with the pulse frequency between the concentration of the 
abovementioned stationary diffusion layer according to direct current plating and 
the cathode surface concentration cs.

For metal foams, the theory of the concentration profiles have to be extended into 
the porous structure of the foams, whereas each strut acts as a 2D planar electrode 
in the abovementioned manner. If no current is applied, the metal ions are homoge-
neously distributed all over in the electrolyte both in the porous electrolyte and in 
the bulk electrolyte (case 1). After a current is applied (case 2), all metal ions in the 
porous electrolyte and in the vicinity of the outer surface of the foam will be sud-
denly deposited. In order to maintain the deposition process (case 3a), metal ions 
have to diffuse from the bulk electrolyte up to the foam center. This diffusion pro-
cess is superposed by the deposition process at every point in the foam, and this 
leads to a depletion of the electrolyte in the porous structure; only a small amount 
of metal ions reach the center part of the foam. As a result, there is an increasing 
concentration gradient from the outer geometric surface to the center of the foam. 
This is responsible for the inhomogeneous coating thickness (case 3b).

The usage of pulsed electrodeposition improves the coating homogeneity. Up to 
the end of the ton-time, there is the same situation as for direct current plating. 
During the ton-time, there is the buildup of the concentration gradient between the 
inner and the outer parts of the foam structure (case 2b). But in the following toff- 
time, there is an unimpeded diffusion of metal ions to the foam center without 
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superposed deposition. As a result of long toff-time, the metal ion concentration in 
the porous electrolyte will be homogeneously distributed over the cross section of 
the foam and in the range of the bulk concentration (case 3). From this, there is a 
much homogeneous coating thickness distribution.

According to the strong mass transport limitations during the plating, the deposi-
tion is nucleation dominated; hence, the deposited metal has a nanocrystalline grain 
structure even in the case of direct current plating.

current
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Fig. 12 Mass transport problems in plating of open-cell metal foams
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 A Special Method for the Production of Ni/Al Hybrid Metal Foams

Cubic aluminum foams with an edge length of 40 mm and a pore size of 10 ppi 
(AlSi7Mg0.3, m-pore GmbH, Dresden, Germany) were coated by direct current plat-
ing with nanocrystalline nickel. Plating of aluminum needs special pretreatments. 
First there is an alkaline pickling followed by an acid pickling and an electroless 
coating of the aluminum foam in an alkaline zincate solution.

The electrodeposition process is carried out with a commercial nickel sulfamate 
electrolyte with a concentration of 110 g/l nickel (Enthone GmbH, Langenfeld, 
Germany). The electrolyte is maintained at 50 °C and pH of 3.8. As shown in sec-
tion “Metal Foams: Basics,” the electrodeposition on metal foams is strongly gov-
erned by mass transport limitations. In order to simplify the mass transport, Jung 
et al. [91, 93] developed a special anode–cathode arrangement. The anode consists 
of a double-walled hollow cube filled with nickel pellets (A.M.P.E.R.E. GmbH, 
Dietzenbach, Germany) as sacrificial anode. The anode cage is shown in Fig. 13. 
The foams were coated with current densities of 0.5, 1.0, 2.0, 7.5, and 20 mA/cm2, 
respectively. The crystallite size of the nickel coating has been determined by X-ray 
diffraction using a modified Warren–Averbach method. For all foams, the crystallite 
size was in the range of 43 ± 2 nm. Table 4 shows the relative coating thickness in a 
depth of 20 mm of the foams plated at the different current densities. The use of 
low current densities leads to the strong increase in the homogeneity of the coating. 

Fig. 13 Special anode–cathode arrangement for plating of open-cell metal foams
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For higher current densities, there is a strong decrease in the coating thickness. The 
reason for this is that the current exceeds the LDC for the foam center. For higher 
current densities, it exceeds also the local LDC for regimes which are closer to the 
outer geometric foam surface. Hence, most of the applied current is used to deposit 
nickel at the outer geometric surface. Figure 14 shows an X-ray computed tomog-
raphy (CT) image of a 10ppi aluminum foam coated with nanocrystalline nickel at 
a current density of 0.5 mA/cm2.

In order to achieve a very homogeneous coating over the complete cross section 
of porous substrates like metal foams, there must be the use of very low current 
densities. But according to the Faraday effect of such porous substrates, it is not 
possible to create coatings with a homogeneity of 100 %.

 Conclusion

The present contribution shows how the mechanical properties of deposits and 
the formation of electroformed structures can be influenced by electrochemical 
nanostructuring. Furthermore, pulsed electrodeposition methods are used for the 

Table 4 Homogeneity of the 
coating as function of the 
applied current density

Current density mA/cm2 Rel. coating thickness %

0.5 61

1.0 54

2.0 36

7.5 32

20.0 31

Fig. 14 X-ray CT image of an 10 ppi Ni/Al hybrid foam, produced at a current density of 0.5 mA/cm2
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electrodeposition of metal matrix composites and the filling of complex 3D 
structures. Electrodeposition is a powerful tool for the tailor-made nanostructur-
ing of metals and alloys by the variation of the different chemical and physical 
process parameters. An efficient way to adjust the crystallite size is to influence 
the electrocrystallization by the current parameters, the temperature, and the 
addition of chemical additives. If no chemical additives were used, very small 
crystallite sizes and stress- free deposits are difficult to archive, but on the other 
hand these chemical molecules, like grain refiners and stress relievers, can be 
co-deposited, and therefore the mechanical properties are changed in a negative 
way. For this reason, a brief combination of the physical and chemical process 
parameters is necessary. The field of process parameters is more or less complex, 
but following the electrocrystallization theory, the crystallite size decreases with 
short ton-times, moderate toff-times, and high pulsed current densities. The iden-
tification of the active additives is not so easy because each metal is sensitive to 
a special molecule structure. The following rule of thumb is very helpful: func-
tionalities with free electron pairs like amino-, carboxylic-, or carbonylic groups 
are potential additives. An effective identification of the right combination of 
process parameter can be found out with a combinative design of experiments.

It could be demonstrated that based on the thick deposition thickness, it is not 
possible simply to transfer experiences and plating parameter from galvanic coating 
technologies to electroforming. Problems are the highly complex current distribu-
tion for 3D substrates, internal stresses, and formation of delamination layers. Bath 
analytics is a very important fact in order to guarantee reproducible and high quality 
properties of the deposits.

A brief overview about the resulting forces during a magnetic field supported 
deposition was given. It could be shown that the problem of notch filling can be 
attenuated by the superposition of a magnetic field. The magnetic field affects the 
deposition and enhances the deposition rate locally. Different measurements could 
prove this phenomena, and the mode of action was discussed. The wall thickness of 
the regarded parts of the system could be enhanced by 10–15 %. Additionally the 
crystallite size is reduced, and according to the Hall-Petch relation, the strength of 
the material is enhanced. For this reason, the lifetime can be raised.

A new method for the synthesis of continuous fiber-reinforced metal matrix com-
posites has been presented. The incorporation of electrically nonconducting fibers 
leads to the strengthening of the deposit not only by the production of a composite 
but also by grain refinement based on heterogenous nucleation at the fibers. Finally 
the electrochemical coating technology was expanded on very complex 3D sub-
strates as metal foams where there is not only a coating of the outer geometric but 
also of the inner surface. For quite homogeneous coatings, very low current densi-
ties have to be used.
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Abstract
In this chapter, we give an overview of selected experimental and computer sim-
ulation literature research on thermodynamic modeling applied to the under-
standing of metal electrodeposition on metallic nanostructures. A brief survey on
underpotential deposition, galvanic replacement, and dendrimer-encapsulated
nanoparticles is given first. Focus is made on applications related to size and
shape control and the formation of hollow, core/shell, and reversed nanoparticles.
Then, a nanothermodynamic model is proposed, providing understanding on the
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physics behind the electrodeposition problem.At the end of the chapter, we highlight
the main conclusions drawn from the chapter and give some perspectives in
advanced modeling of the present problem.

Keywords
Metal electrodeposition • Underpotential deposition • Nanothermodynamic •
Nanoparticles • Galvanic replacement

 On the Nanoscale

Nanoscience has been defined as the study of the fundamental principles of structures
with at least one dimension roughly in the range between 1 and 100 nm [1]. Within
this conception, we have in it the confluence of various branches of science, like
chemistry, physics, biology, engineering, medicine, mathematics, psychology, etc. To
address the topic given in the title, we will give a representative example. Let us think
of a cubic piece of Au, containing Avogadro’s number of atoms, N = ´6 022 1023. . 
The number of atoms on its surface, say, Nsurf, will be of the order N Nsurf µ 2 3/ , that
is, about ~ ´4 1016 , and corresponds to about ~ ´ -6 10 6% of the total number
of atoms. In this case, the relation area to volume is about ~ ´ - -3 10 7 1nm .  
In other words, the ratio of the number of atoms at the surface to the total number of
atoms is under these conditions negligible. The question is at which size of the Au
piece will this situation drastically change? To answer this, we show in Fig. 1 the 

Fig. 1 Percentage of surface atoms (black) and bulk atoms(red) in a cubic piece of metal as a
function of the total number of atoms in the cube
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percentage of bulk and surface atoms of the Au piece as a function of the total number
of atoms. It comes out that the number of surface atoms appears as negligible for
metal pieces where N >106 . On the other hand, we see there that the number of total
atoms of the NP at which the number of surface atoms is equal to the number of inner
atoms is close to 1000, corresponding in the case of a Au cubic particle to an edge of
about 3 nm. Under these conditions, no proper bulk or surface regions may be clearly
defined. Thus, we can expect that when metallic particles are of the order of a hundred
of nanometers or smaller, special properties may appear, becoming particularly
remarkable in the region of a few nanometers.
The singular properties of nanobjects and their consequences for technological

development may become manifest in different ways, as has been pointed out in
extensive theoretical and experimental work (see Table 1).

Table 1 Some milestones of nanoscience and nanotechnology

1931 Invention of the transmission electron microscope by M. Knoll and E. Ruska

1942 Development of the scanning electron microscope by V. Zworykin

1952 L. V. Radushkevich and V. M. Lukyanovich show the first image of 50 nm carbon
nanotubes

1959 The term “nanotechnology” is introduced for the first time in R. Feynman’s lecture:
“There is a plenty of room at the bottom: an invitation to enter a new field of physics”

1963 T. L. Hill edits his book: “Thermodynamic of Small Particles.” Although the term
“nano” is absent there, this work settled the theoretical basis for tackling
nanothermodynamics

1965 G. E. Moore settles his first law, concerning the doubling of the number of transistors
of integrated circuits every 2 years

1966 R. Young suggests the use of piezomotors for positioning

1981 G. Binning and H. Röhrer develop the scanning tunneling microscope, making it
possible to observe individual atoms

1981 Quantum dots are discovered by L. E. Brus, A. L. Efros and A. Ekimov

1985 R. Curl, H. Kroto and R. Smalley discover fullerene. Nanofabrication based on carbon
begins

1986 G. Binnig, C. Gerberand C. Quate develop atomic force microscopy

1986 E. Drexler edits his book: “Engines of Creation,” one of the most popular books on
nanobjects

1986 A. Ashkin invents “optical tweezers.” These make it possible manipulations on
nanobjects through a laser beam

1987 J-M. Lehn introduces the “self-organization” and “self-assembly” terms

1990 D. Eigler writes “IBM” using 35 individual Xe atoms using STM

1991 Multiwalled carbon nanotubes are discovered by S. Ijima

1998 C. Dekker fabricates the first nanotransistor based on carbon nanotubes

2003 The sequence of the human genome is decoded

2003 Intel launches to the marked the first processor in the nanoscale (90 nm)

2004 Synthesis of graphene

2008 The force required to move individual atoms on a surface is determined experimentally
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From this table we see that the emergence of nanoscience is strongly linked to
technological advance in the area. Reciprocally, increased understanding of phe-
nomena at the nanoscale leads to technological progress.

 On Nanoelectrochemistry

Electrochemistry is a mature science, whose origin dates back to the work of
Galvani and Volta, at the end of the eighteenth and at the beginning of the nine-
teenth century [2]. Establishing the origin of the studies on nanometric electro-
chemical systems is abitmoredifficult. Schmickler [2] hasdefinedelectrochemistry
as the science that studies structures and processes at the interface between an
electronic conductor (the electrode) and an ionic conductor (the electrolyte) or at
the interface between two electrolytes. This statement, along with the definition of
nanoscience given above and the fact that the electrochemical interphase typically
extends over lengths of a few nanometers, would lead to the conclusion that the
study of most electrochemical interfaces belongs to nanoelectrochemistry. While
this could be in principle an alternative, we would be led to the conclusion that
electrochemists have been already working in the field of nanoscience for centu-
ries. To remain more specific and be in rule with other areas of science where the
word “nano” denotes a particular approach in a given discipline, it is better not to
base our definition on a certain dimension of the system but rather on the proper-
ties of the materials under study. To give an example, let us consider a bulky Pt
electrode, which is set in contact with a given redox system (say, oxygen/water)
and is polarized to study its potentiostatic behavior. Although, as previously
stated, the electrochemical interphase in consideration has nanometric dimen-
sions, all the concepts and formalisms used to describe this phenomenon do not
come from concepts that emerged during the recent “nano” revolution. In a differ-
ent example, let us think of a nanometer-sized Pt nanoparticle (NP) supported on
a conductive but otherwise inert foreign surface. As this Pt NP is polarized at the
same potential as the bulk Pt material and in contact with the same redox system,
a very different behavior may be found from the previous one concerning the cur-
rent measured per unit area [3]. Both electrocatalysts are made of the same type
of atoms, and the redox system and the solution are the same, but the behavior
may be radically different. Where is the difference? The point is that the elec-
tronic state and thus the reactivity of the NP and the bulk material may be differ-
ent. Thus, nanoelectrochemistry may be more properly defined as that branch of
electrochemistry that deals with the understanding and prediction of properties
that cannot be understood by the sole presence of a surface, but have to do with
the overall size scale where the processes occur. Curvature effects are in many
cases responsible for the deviation of the behavior of nanomaterials from that of
the bulk constituents, and they provide the reason why macroscopic thermodynam-
ics fails to explain the behavior of these materials. It is clear that the smaller the
size of the objects, the larger these contributions will be.
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 Physical Versus Electrochemical Control of Metal Surface 
Coverage

Adsorption from (desorption towards) the gas phase has provided for numerous
experimental systems valuable information on adsorption equilibrium.Wewill shortly
analyze here why this methodology is not practicable in most metallic systems and
further show why electrochemistry provides an interesting alternative tool. Let us
consider desorption of adatoms constituting an adlayer on a foreign metal surface. To
take a straightforward example, let us think of a Agmonolayer deposited on aAu(100)
surface, yielding a pseudomorphic monolayer. The binding energy of Ag on this sur-
face is slightly larger than (but close to) the cohesive energy of Ag, Ecoh

Ag eV= 2 95. ,
a moderate value for a metal. The potential energy curve for desorption of a Ag
adatom from the surface is shown schematically in Fig. 2 in the black full line.
We can roughly estimate from Ecoh

Ag the average desorption time tdes of a Ag
atom towards the gas phase using the transition state theory expression
t Edes des

- = -[ ]1 n bexp , where v is an attempt frequency and Edes is the adatom
desorption energy. Setting approximate values of n = -1013 1s and E Edes coh

Ag=  in 
this equation, we get tdes s» ´2 1038 at room temperature. This is a huge number,
even compared with the age of the universe, tuniv s» ´4 1018 . Even a time span of
the latter order of magnitude would be needed to observe the desorption of a single

Fig. 2 Schematic comparison between the desorption of a metal adatom from a metal surface by
physical detachment (continuous line) and electrochemical oxidation (broken lines). The full line
illustrates the potential energy curve of the adatom as function of the distance from the surface
(reaction coordinate (RC)). The dotted lines represent the potential energy of the cations in solu-
tion plus the electron located in the metal for two different overpotentials η, where h h2 1> . The
arrows show the point where the potential energy of the adatom and the ion+electron systems
meet. The heights of these arrows give an idea of the activation energy for the detachment
process
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atom from an ensemble of macroscopic size, say, 1020 atoms. It could be proposed
to increase the temperature to get a faster desorption rate. However, to get the
desorption of a single atom in 1 s, we need a temperature of the order of 1200 K.
This is close to the melting point of Ag and not far from that of Au. Already well
below this temperature, the increased mobility of substrate and adsorbate adatoms
would allow diffusion of the former into the later, and the identity of the system (as
adsorbate/substrate) would be lost. The introduction of the present system in an
electrochemical environment provides an alternative path for the desorption of a Ag
adatom: if the substrate is adequately polarized in an electrolyte with a large dielec-
tric constant, a Ag+ ion core may leave the surface, and its corresponding electron
will be left on the electrode. The final energetic status of the Ag+ ion is illustrated in
broken lines for two different dissolution overpotentials (η1 and η2). The larger the
overpotential (here η2), the more stable the ion in solution will be, and the mono-
layer will become desorbed. A measure of the ability of the electrochemical system
to exchange adatoms is the exchange current density. This is the current in the
absence of net electrolysis and at zero overpotential, and in a redox reaction it
reflects intrinsic rates of electron transfer between the analyte (in this case Ag+ ions) 
and the electrode. For an electron to be left on the substrate according to the reaction
Au Ag Ag Au e100 100( ) - ® + ( ) -+ -, a Ag+ ion must be transferred, so the
exchange current density measures here the rate of disappearance of Ag atoms from
the surface at zero overpotential. To make an estimation of this rate for the electro-
chemical system, we consider the exchange current density reported for Ag adatoms
on Ag(100) given in Ref. [23], of 0 06 2. Acm- . This corresponds to an exchange rate
of 3.7×1017 atoms s−1 cm−2. Assuming a surface density of 1.3×1015 atoms cm−2, we
arrive to the conclusion that on the average all surface atoms are exchanged every 3
ms. Thus, measurement in the time scale of several seconds, as performed in voltam-
metry, may measure equilibrium properties, as long as care is taken to get rid of
diffusional limitations.

 Selected Recent Experimental Work

Metallic nanosystems such as clusters, nanoparticles, nanoalloys, nanocavities, etc.,
appear within the most promising materials in current engineering and materials sci-
ence, because of the unique size-dependent properties of noblemetals on the nanoscale
[4–15]. These size- and shape-tailorable physical–chemical properties have potential
applications in areas such as optics, spectroscopy, biological labeling, electronic,
medicine, and catalysis just to mention some [16–22]. Several types of syntheses,
which include thermal, photochemical, electrochemical, and template methods, have
been used to achieve control over the size and shape of these nanomaterials [4, 5,
7, 11–16]. One of the main goals of current scientists is precisely the design (and
synthesis) of nanomaterials with tailored shape, size, and composition. In this
sense, electrochemical and particularly wet-electrochemical methods are favored
for the cost-effective and large-scale production of such nanomaterials [4, 8, 12]. 
The main advantage of electrochemical nanostructuring methods with respect to
physical ones, is that they allow the precise adjustment of under/oversaturation
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conditions at the interface [4, 8, 11–13, 16, 23, 24], making them one of the best
bottom-up methods (or approaches) with great prospects for the future.
Extensive experimental and theoretical investigations along with computer sim-

ulation of nanoelectrochemical systems have greatly enhanced our understanding
on the nature of this cutting-edge topic. Because nanosystems contain a relatively
small number of atoms, they exhibit a different behavior from the corresponding
bulk materials, and even the macroscopic thermodynamic description may be insuf-
ficient to try to understand their thermodynamic behavior [25, 26]. This special
behavior of nanomaterials was recognized in the 1960s by Terrell Hill [27], who
described the basis of the thermodynamics that originally he called “of small sys-
tems.” Hill described in a visionary way how size could affect various thermody-
namic properties of these systems. This formalism has recently been renamed by
Hill as nanothermodynamics [28]. We redirect the interested reader to find some
application of the formalism of Hill for the case of nanothermodynamic stability of
nanomaterials in Chapter 10 of Ref [4].
Two electrochemical methods employed in the 1990s to modify flat surfaces,

like underpotential deposition (upd) and galvanic replacement (gr), are today being
successfully applied to the manipulation and modification of metallic nanoparticles
(NPs) [4, 5, 8, 12, 29–34]. Figure 3 gives an overview of the topics addressed along
the present section.

Fig. 3 Schematic representation of the different approaches used to synthesize nanobjects: under-
potential deposition (upd) and galvanic replacement (gr). The upper sequence of Figures shows the
progress of upd techniques used as a tool: upd decoration of infinite planar surfaces (a), upd on 
nanoparticles limited by a given amount of adsorbed molecular species (b), upd on nanoparticles
mediated by a redox couple dissolved in solution (c), selective decoration of facets of a nanopar-
ticle by upd (d). For a detailed description see below section “Underpotential Deposition.” The
lower sequence of Figures illustrates the progress of gr techniques used as a tool: gr on infinite
planar surfaces (a), gr on nanoparticles previously decorated by upd (b), gr replacement at
expenses of the less stable atoms of a preexisting nanoparticle (c), two-component gr at expenses
of the less stable atoms of a preexisting nanoparticles (d). For a detailed description see below
section “Galvanic Replacement”
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In the next three sections, we describe some of the latest experimental developments,
aimed at controlling the sizes and shapes and the formation of hollow, core/shell,
and reversed NPs.

 Underpotential Deposition

In the upd process, metal ions are deposited on a foreign substrate at potentials more
positive than those predicted by the Nernst equation [4, 8, 29, 35–37]. This phenom-
enon is characteristic of systems (some selected metal couples) where the interac-
tion of the adsorbate with the substrate is stronger than the interaction of the
adsorbate with its bulk material. The upd monolayer is stable and has been widely
characterized in electrochemical experiments since it may remain stable as long as
diffusion of the adsorbate into the substrate is hindered by a kinetic barrier.
Fonticelli et al. [38] have proposed in 2007 an electrochemical method for the

generation of bimetallic Au(core)/Ag(shell) NPs in solution. In this method, the
deposition potential is controlled by means of a redox couple (p- benzoquinone+ 
p-hydroquinone) and the pH of the solution. The method is based on two well-
known electrochemical phenomena: upd and the ability of redox couples to control
the potential at a given metallic interface. Figure 4 shows the voltamperogram
for this system and the adsorption isotherms for upd of Ag on Au(111) obtained
using electronic potentiostatic control and the redox couple, respectively, both in
similar conditions. The coincidence of the resulting Ag coverages obtained by both
methods shows that it could be possible to use upd for surface modification of
free-standing NPs in solution, where the redox couple fixes the potential of the
system in the same way as a potentiostat does.
Inspired by the former experimental results, Oviedo et al. [39] addressed theo-

retically in 2008 the topic of metal deposition on nanoparticles using a redox cou-
ple to set potential control. These studies were based on a nanothermodynamic
formalism and computer simulations. These authors extended the theoretical con-
cepts of upd to the case of NPs. Three important new aspects of upd emerged from
this work:

1. The behavior of the free energy as a function of number of atoms in the nano-
structure differs remarkably from that currently used to understand nucleation
and growth phenomena.

2. The fact that upd phenomena may disappear.
3. Selective decoration of facets of NPs may be achieved in upd systems.

These studies showed that the upd phenomenon seems to vanish in the Au–Ag
[40–43] and Pd–Au [44] systems when the size of the substrate (core) is reduced
below 2 nm in diameter. Figure 5a shows the energy excess as a function of the
numbers of Ag atoms deposited on Au octahedral truncated NPs of 201, 586, and
1289 atoms obtained from Grand Canonical Monte Carlo (GCMC) simulations at a
zero overpotential (equivalently to m = -2 77. eV at 300 K). It can be seen on Fig. 5a 
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how the atoms deposited on Ag are considerably less stable on the 201 seed-NP than
on the other two seeds. Deposition on the 586 seed-NP leads to some particular
structures that appear to be energetically more stable than bulk Ag, as denoted by
the presence of minima. In the case of the 1289 seed-NP, practically all simulated
structures show lower energies than that corresponding to the bulk Ag material.

Fig. 4 (a) Current density (j) vs. potential (E) profile for Au(111) in 5 10 4´ - MAg2SO4 + 0.1 M
H2SO4. Scan rate = 1 10 3 1´ - -Vs .  (b) θAg vs. E plot obtained from different data. Circles corre-
spond to coverages obtained using the Q/QH2 redox couple. Other data taken from the literature as
reported in [38]. Inset: Er Q QH/ 2( )  vs. pH plot for the Q/QH2 redox couple (concentration =
1 10 3´ - M). The horizontal dashed lines indicate the potential selected for depositing Ag by using
the Q/QH2 redox couple (Reprinted with permission from Ref. [38] Copyright 2007. American
Chemical Society)
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In the upd region ( m < -2 77. eV ) at 300 K, different structures may be obtained,
some of them are shown in Fig. 5b–e.
Experiments by Compton and coworkers [31–33] have shown experimentally

that the upd phenomenon in fact vanishes in the nanoscale. There, the upd of Pb and
Cd on Ag NPs was analyzed at different NP sizes, with the remarkable finding that
upd is absent for NPs smaller than 70 nm in diameter. On the other hand, Carino
et al. [45] showed that NPs containing 55, 147, and 225 atoms of Pt, with size rang-
ing between 1.5 and 2.0 nm, show Cu upd features. As we see, experimental and
theoretical evidence shows that the occurrence of this phenomenon may reach a
limit for very small NPs but is dependent on the metal couple used and the environ-
mental variables. We go back to this issue in the section “Upd–opd Transition in the
Nanoscale.”
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Fig. 5 (a) Excess energy ΔU as a function of the number of deposited Ag atoms for the three Au
seed nanoparticles at zero over potential. Representative atomic configurations taken for Au(1289)
at (b) mAg eV= -2 99. , (c) mAg eV= -2 81. , (d) mAg eV= -2 79. , and(e) mAg eV= -2 77.  
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Upd is currently being used for the generation of NPs with a predefined shell
thickness, for their selective decoration, and for tuning their sizes and shapes.
Recently, upd has been used to block selectively the growth of the material of which
the NPs are made. By changing the concentration of the metal being deposited, it is
possible to obtain NPs of different sizes and shapes. Mirkin and coworkers [46] 
have shown that a fine control of particle shape is possible using Ag upd to direct
the growth of different Au NP morphologies: for example, octahedra with {111}
facets, rhombic dodecahedra with {110} facets, truncated ditetragonal prisms with
{310} facets, and concave cubes with {720} facets (see Fig. 6).
In a later work, Mirkin and coworkers [47] analyzed in detail the effect of includ-

ing other additives like chloride, bromide, and iodide on NP growth under Ag upd 
control. These authors showed how different sets of NP shapes can be obtained via

Fig. 6 Scanning Electron Microscopy (SEM) images of (a) octahedra, (b) rhombic dodecahedra,
(c) truncated ditetragonal prisms, and (d) concave cubes synthesized from reaction solutions con-
taining Ag Au+ +/ 3 ratios of 1:500, 1:50, 1:12.5, and 1:5, respectively. Scale bars: 200 nm
(Reprinted with permission from Ref. [49])
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kinetic control, surface passivation, or a combination of both. A number of important
findings emerged from this work; some of them are the following:

(a) In the absence of bigger halides (bromide and iodide), increasing concentrations
of silver ions stabilize particles with a larger number of exposed surface atoms
per unit surface area, enabling the formation of high-index nanostructures.

(b) In the presence of silver ions as a shape-directing additive, the addition of a
large amount of the bigger halides (bromide and iodide) greatly decreases the
stability of the Ag upd layer and blocks silver deposition, limiting the number
of particle shapes that can form.

(c) The enhanced stability of the Ag upd layer in the presence of chloride causes
growing Au NPs to become kinetically “trapped” or “locked” into a particular
facet structure early in their growth, enabling the formation of a wide variety of
shapes as well as concave particles.

 Galvanic Replacement

The main handicap for the application of the upd process to a wide number of sys-
tems is probably the fact that it is limited to the deposition of a less noble metal on
a more noble one. A way to circumvent this problem has been found by Brankovic
et al. [48], who produced the galvanic replacement (gr) of a sacrificial monolayer.
The driving force of gr is the difference in electric potential between two metals.
The deposition occurs as a spontaneous irreversible redox process in which a mono-
layer (eventually submonolayer), obtained via upd process, is oxidized by the ions
of a more noble metal, which are reduced and simultaneously deposited. Nowadays,
galvanic replacement is used to obtain reversed NPs, hollow particles, hollow
nanorods, nanorattles, nanoboxes, alloys, and dealloys, among others [49–55]. Yin
et al. [49] showed that Ag NPs with a spherical shape act, in the presence of Au3+,
as precursors for formation of hollow Au nanocrystals with truncated octahedral
shape. Figure 7a shows a transmission electron microscopy (TEM) image of a Ag
NP before the galvanic replacement reaction. A replacement reaction between gold
and silver removes silver atoms preferentially from (111) facets while depositing
Au atoms selectively on the higher-energy facets such as (100) and (110). Figure 7b 
shows the TEM image of the Au NP after the gr reaction, resulting in a hollow NP
of Au with truncated octahedron geometry. The exposure time and/or the Au3+  
activity can be used as control variable to determine the percentage of Au and Ag in
the hollow NP. It has been postulated that a possible mechanism may be that a large
fraction of vacancies in the NP finally coalesce, producing a well-defined void in the
center of each nanocrystal [56]. These pinholes were observed in other similar
experiments with other NPs.
The study of pinholes or nanocavities was initially developed by Li et al. [57]. 

These authors managed to create a Ag nanostructure on a previously formed
nanocavity on graphite. A double potential pulse of an electrochemical scanning
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tunneling microscopy (ESTM) arrangement was used to create a pit on the surface
of graphite and subsequently dissolve the Ag from the tip that deposited selectively
into the newly created nanocavity. Further research on defect nanostructuring was
undertaken by Xia et al. [58], who managed to create defects on a Au(111) surface
by the application of ultrashort (10 ns) voltage pulses to the ESTM tip. This led to
local confinement of the reactions and to the formation of nanostructures, so that for
every pulse applied, just one nanohole was created directly under the tip. The nano-
holes generated in this way were then filled with Cu by an accurate potentiostatic
control. This technique has been also employed by Solomun and Kautek [59] to 
study the filling of nanocavities on Au(111) by Bi and Ag. In this last work, the
behavior of Bi was contrasted with that of Ag. While the nanoholes are filled at
underpotentials in the first case, the Au nanoholes are only filled by Ag during the
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layer-by-layer growth of Ag at overpotentials. Computer simulations of this
phenomenon were undertaken by Luque et al. [60] using the GCMC methodology.
These studies showed that depending on the interaction between the adsorbate and
the substrate as compared with the adsorbate–adsorbate interactions, the deposit
may grow defining a cluster over the surface level, like Cu/Au(111), or heal the
damage on the surface with the subsequent formation of a monolayer, like Ag/
Au(111). In the former case, Cu deposition remains confined to the defects gener-
ated on the surface, since the formation of clusters on the Au(111) is disfavored. On
the contrary, Ag deposition on the flat Au(111) surface occurs after the filling of the
nanocavity. Figure 8 shows the confined and heal growth [60].
Going back to the problem of NPs, some experimental strategies are directed to

minimize the amount of noble metal material used as a substrate, in order to lower
economical costs. In this respect, Zhang et al. [61] have developed the strategy
depicted in Fig. 9. A bimetallic NP made of a noble (Au or Pd) and a nonnoble
material (Co or Ni) is synthesized with a certain amount of (controlled percentage)
alloying. In a subsequent stage, noble metal segregation is driven by temperature,
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favoring the formation of a core/shell structure, where the most noble material
migrates towards the surface of the NP. A Cu upd monolayer is then deposited on
the noble metal, and subsequent irreversible gr by Pt leads to the final structure of
the NP, an onion with an inner core of Co(or Ni), an intermediate shell of Au(or Pd),
and an outer shell of Pt. Depending on the percentage of the initial alloy, different
widths of the intermediate shell may occur.

 Dendrimer-Encapsulated Nanoparticles

In the early 2000s, Crooks and coworkers developed a technique for the generation
of metallic NPs, yielding the so-called dendrimer-encapsulated nanoparticles
(DENs) [12, 62, 63]. An actual scheme of this procedure is shown in Fig. 10a. In the 
first step, S2+ cations are embedded into the dendrimer matrix, yielding a complex

G
n

6 2- ( )é
ë

ù
û

+OH S , where G6-OH is sixth-generation, hydroxyl-terminated poly

(amidoamine) (PAMAM) dendrimers and n is the number of ions encapsulated in
the dendrimer. The driving force for encapsulation of metal ions within dendrimers
is usually based on covalent bond formation, electrostatic interactions, complex-
ation reactions, or a combination thereof [62]. In the second step the cations are
completely reduced using borohydride, being obtained in this way metallic NPs
within the cavities of the dendrimers. In a further step, a monolayer of less noble
metalmaybeelectrodepositedonto theDENsbyupd toyield G en m6- ( )éë ùûOH S M@
. Subsequent gr of the upd monolayer may yield different core/shell NPs. Carino
et al. [45] have analyzed the voltammetric behavior of Cu deposition on 55, 147,
and 255 Pt atoms NPs (see Fig. 10b). Their results indicate that a single atomic
monolayer of Cu is deposited onto Pt DEN cores containing an average number of
147 and 225 atoms, while more than one monolayer deposits onto Pt DEN cores
containing an average of 55 atoms. Two remarkable features emerge from the
voltammetry of these systems:

(a) As NP size decreases, the peak potentials of anodic and cathodic processes show
a shift towards lower potentials, that is, Cu updweakens for relatively small NPs.

(b) Deposition and stripping peaks become split into two components.

Fig. 9 Model for the synthesis of Pt monolayer catalysts on nonnoble metal–noble metal core/
shell nanoparticles (Reprinted with permission from Ref. [61])
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As we will see below, some of these features can be explained from the ther-
modynamic model mentioned in section “Underpotential Deposition” and will be
described in more detail in section “Upd–opd Transition in the Nanoscale.”
The development of NP synthesis by means of dendrimers presents two appeal-

ing aspects: on one side, it allows the generation of metallic NPs with a very sharp
size distribution. On the other side, this method allows the generation of metal
NPs with very small sizes, between 1 and 2 nm. These two factors allow correlat-
ing directly experimental results with theoretical predictions. In this respect, it is
worth mentioning the work of Yancey et al. [64] and Carino et al. [45], who con-
trasted experimental results of electrochemical deposition with density functional
(DFT) calculations for NP of similar sizes. In the last study, these authors showed
that upd of Cu onto Pt NP(147) occurs in two steps: first onto the {100} facets
(partial deposition) and then onto {111} facets(full deposition). The partial and
full shell structures were characterized by voltammetry, and the experimental
results were compared with computational models generated using DFT and
molecular dynamics (MD) simulations. Figure 11a shows the different models
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Fig. 10 (a) Scheme of the
method dendrimer-
encapsulated nanoparticles.
(b) Cyclic voltammograms
obtained using G6-OH(Ptn) 
DENs in aqueous
electrolyte solutions
containing 0.10 M H2SO4+
0.010 M CuSO4. The scans
started at 0.64 V and were
initially swept in the
positive direction at a rate
of 10 mV/s (Adapted with
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Fig. 11 Different models used to consider the adsorption of sulfate ions on (a) a Pt NP made of
147 atoms. (b) A core/shell NP Pt(147)/Cu(full). Left and right images show the NP without and
with adsorbed SO4 molecules, respectively, (c) DFT-calculated Cu deposition and stripping ener-
gies, as compared with the experimental voltammogram obtained for Cu upd on Pt NPs (black 
dashed line) (Reprinted with permission from Ref. [45])
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used by Carino et al. [45] to emulate the Cu deposition phenomena. Binding ener-
gies were calculated using DFT for Cu adsorbed on Pt(100) and Pt(111) facets of
a “solvated” NP, in which SO4 ligands were adsorbed on the surface to mimic the
solvent−surface interactions existing in the experiments. The calculated binding
energies were found to correspond well with the peaks observed in the CVs of Cu
upd onto Pt NPs(147) (see Fig. 11b). In contrast, the same calculations performed
on a naked, SO4-free (solvent free) NP model did not fit the electrochemical data.
From the preceding discussion, it comes out that the understanding of the upd 

phenomenon may be of paramount importance for the synthesis of some metallic
nanostructures. Hereafter, we will concentrate on aspects of metal electrode posi-
tion at the nanoscale related to curvature effects. Therefore, we go deeper into the
essential physical concepts of the electrodeposition problem. We will find how the
formulation of a simple model that includes surface and curvatures terms allows
rationalizing and understanding the occurrence of different sizes and shapes in
nanoelectrodeposits.

 Nanothermodynamic Stability

We will take now a first step towards the understanding of the thermodynamic sta-
bility of metallic systems by making some basic considerations. The effects of sol-
vent, electric field, and ion adsorption will be left aside in the present approach.

 Some Basic Considerations

One of the advantages of electrochemical methods (discussed in section “Physical
Versus Electrochemical Control of Metal Surface Coverage”) with respect to physi-
cal ones is that the growth of the new phase may be achieved under a precise control
of the over(under) saturation conditions of the interface. This is possible by means
of a proper adjustment of the deposition potential, which results in the control of the
electrochemical potential of the species being deposited [4, 8, 12, 29, 35–37]. As 
stated previously in section “Underpotential Deposition,” this control may be
achieved by a potentiostat or by selection of a proper redox couple [38, 39].
Most electrochemical methods start by the reduction of the metal ions, say, M z+:

 M e Mz z+ + ®  (1)

where z is the valence and e is the elemental charge. The thermodynamic stability of
the metal adatoms (M) depends on the local morphology of the nanosystem. In this
way, the binding energy of an adatom is not the same in a nanocavity as in a sup-
ported cluster. Figure 12 illustrates some possible arrangements for the formation of
different adatom structures on a foreign substrate.
Depending on the chemical nature of the substrate, metal electrodeposition phenom-

ena can be divided into two big groups: homoatomic and heteroatomic deposition.
The first of these refers to phase growth on a substrate of the same chemical nature.
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On the contrary, the second refers to deposition on a foreign substrate. The reduction
reaction involved in the electrodeposition process may be generally rewritten as

 M S e S Mz z+ + + ® /  (2)

where S represents the substrate. In the case of metal electrodeposition in the pres-
ence of a redox couple, electrons in Eq. 2 are provided by an oxidation reaction like

 Red Ox e® +  (3)

where we have assumed a single electron transfer for mathematical simplicity and
we are omitting any other species that may participate in the process. If the oxida-
tion reaction given in Eq. 3 is actually accompanied by other species (i.e., protons
in the case of benzoquinone), then the concentration of these other species can be
used to control the surface potential of the nanosystem (see Fig. 4). We will also
assume that the activities of Red and Ox species are large enough to undergo a rela-
tively small change upon reaction with M z+ to yield M. Thus, the electric potential
at the surface of the NPs will be determined only by the Red/Ox ratio and will
remain relatively unchanged throughout the process. Thus, we will consider a
situation where electrodeposition takes places in an environment where the pres-
sure (p), the temperature (T), the size of the nanoparticle (NS), and the chemical

Fig. 12 Schematic representation of the early stages of the formation of a new phase at the
nanoscale on different morphologies of a foreign substrate. Its growth may take place by potential
control via a potentiostat (dotted line) or via a redox system (full line)
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potentials of M, Ox, and Red (μM, μOx, and μRed) are fixed. The thermodynamic
potential that characterizes the representative statistical mechanical ensemble of
this system is a modified free energy that we will denote with Ĝ(μM,μOx,μRed,
NS,p,T) and corresponds to an open system in M, Ox, and Red but closed in the S
component. This system can be shown to be equivalent to another one with the
thermodynamic potential Ĝ(μM,μOx,μRed,NS,T) if we consider it as incompressible
[4, 65]. Figure 13 shows a schematic view of the thermodynamic system required to
analyze the present electrochemical problem. Four different reservoirs are con-
nected to the system: a heat reservoir and three reservoirs with chemical species.
These allow controlling the temperature and the chemical potential of the M, Ox,
and Red species.
The driving force for metal electrodeposition is twofold:

• On one side, it is enforced by the electrochemical potential of the electrons in the
redox couple (or potentiostat), in equilibrium with the electronic system of S.

• It is also promoted by the concentration (activity) of the M z+ ions in solution.

Let us denote with Φ(NM,NS,T) the excess of Gibbs free energy required to gen-
erate an S/M structure made of a nanophase containing NM-type M atoms on a pre-
formed structure having NS atoms, starting from the bulk material M. Thus, Φ is 
given by

 
F N N T G N N T G N T NM S S M M S S S M M

bulk, , , , , , ( ) = ( ) - ( )éë ùû -/ 0 m  (4)

Fig. 13 Thermodynamic view of the present electrochemical system, consisting in a nanoparticle
in contact with heat, M, Ox, and Red reservoirs, which serve to set the temperature and the chemi-
cal potentials of the different species involved
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where GS/M is the Gibbs free energy of the nanostructure and GS is the Gibbs free
energy of the naked substrate. The work of shell formation for the electrochemical
generation of the S/M system is given by

 
D FĜ h, , , , ,M S M S MN N T N N T N ze( ) = ( ) + h  (5)

The detailed derivation of this equation is given in Refs. [60, 66, 67]. η corresponds
to the overpotential set by the redox couple with respect to the bulk deposition of
metal M according to

 
h

m m
=

-( )M
bulk

M

ze  
(6)

Usually η is worked out as a negative quantity, since bulk metal deposition
always occurs at h < 0 due to kinetic hindrances. As we will see below, when con-
sidering metal deposition phenomena in the nanoscale, it is useful to consider both
signs for η.
Going back to Eq. 5, it appears that the problem of predicting the thermodynamic

stability of a nanostructure at different overpotentials from a theoretical–computa-
tional approach reduces to know Φ. However, important physical insight may be
gained from a qualitative analysis of the different contributions involved in it. In the
following section, we introduce some simplifying modeling with this purpose.

 Electrodeposition on Planar Surfaces

We start the present analysis considering electrodeposition in a simple system: an
infinite, planar surface. With this purpose, we use a model with three types of atoms
with different free energy: a monolayer, a surface layer of the substrate, and its bulk.
This is illustrated in Fig. 14.

Fig. 14 Schematic representation of the three-component model, used to analyze the deposition
on flat surfaces
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M and S may be of the same or different chemical nature, so that the model may
be applied to the study of homoatomic or heteroatomic systems. For the present
system, the total Gibbs free energy is

 
G G G N g N g Nsystem substrate monolayer

S
bulk

S
bulk

S
surf

S
surf

M= + = + + // /S
monolayer

M S
monolayerg( )  (7)

where NSbulk and NSsurf denote the number of substrate atoms in the bulk and in contact
with the monolayer, respectively, and NM/Smonolayer is the number of atoms in the mono-
layer. gSbulk and gM/Smonolayer denote the average free energy per atom of the substrate and
the monolayer, respectively, and gSsurf is the free energy of the S atoms in contact
with the monolayer. Note that N N NS

substrate
S
bulk

S
surf= + and gS

bulk
S
bulk= m , where μSbulk 

is the chemical potential of the bulk S species.
The free energy of the naked substrate is

 G N g N gsubstrate
S
bulk

S
bulk

S
surf

S
surf= + ,0  (8)

where gSsurf,0 now denotes the free energy per surface substrate atom when the
monolayer is not present. Note that the monolayer adsorption may affect the ener-
getic stability of the surface atoms of the substrate, so that g gS

surf
S
surf, .0 ¹

Using Eq. 4, we obtain

 
F = -( ) + -N g N g gM S

monolayer
M S
monolayer

M
bulk

S
surf

S
surf

S
surf

/ /
,m 00( )  (9a)

Since NSsurf and NM/Smonolayer are linearly related, say, by N NS
surf

M S
monolayer=a / , where α 

is a geometrical coefficient. We rewrite the previous equation as

 
F = -( )N gM S

monolayer
M S
monolayer eff

M
bulk

/ /
, m  (9b)

where we have collected into g g g gM S
monolayer eff

M S
monolayer

S
surf

S
surf

/
,

/
,= + -( )a 0 terms corre-

sponding to both the monolayer and the substrate.
According to Eq. 5, the work of monolayer formation from the bulk material at

the overpotential η is given by

 
DG N g ze= - +( )M S

monolayer
M S
monolayer eff

M
bulk

/ /
, m h  (10)

Although Eq. 10 seems to contain variables only referred to the monolayer, it must
be noted that the value of gM/Smonolayer,eff depends on the chemical nature of S as well as
on its crystal orientation. The term gM S

monolayer eff
M
bulk

/
, -( )m corresponds to the free

energy difference between an M-type atom on the surface of S and this atom in the
bulk M material. Depending on the chemical nature of S and M, we can distinguish
three different categories of systems:

(a) Metal couples of the same chemical nature (M=S), gM M
monolayer

M
bulk

/ = m
(b) Metal couples of different chemical natures, with a relatively strong adsorbate–
substrate interaction gM S

monolayer eff
M
bulk

/
, < m

(c) Metal couples of different chemical natures, with a relatively weak adsorbate–
substrate interaction, gM S

monolayer eff
M
bulk

/
, > m
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The first category refers to homoatomic, while the second and the third refer to
heteroatomic deposition.
In the first case, when gM M

monolayer
M
bulk

/ = m , Eq. 10 reduces to

 D ˆ
/G = ze Nh M M

monolayer  (11)

Figure 15a shows a schematic picture ofΔĜ vs. NM/Mmonolayer for different overpotentials.

Fig. 15 (a) Schematic representation of ΔĜ as a function of NM/Mmonolayer at different overpoten-
tials, for homoatomic deposition. (b) Schematic representation ΔĜ as a function of NM/Smonolayer at
zero overpotential, for heteroatomic deposition. See discussion in the text
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Equation 11 and Fig. 15a indicate that homoatomic metal deposition on planar
surfaces only occurs upon application of a negative overpotential (h < 0 ).
In the case of heteroatomic systems, categories (b) and (c), the term

gM S
monolayer eff

M
bulk

/
, -( )m may be positive or negative, depending on the interaction

between S and M. Figure 15b shows ΔĜ vs. NM/Smonolayer for both cases at h = 0 . The
systems with a relatively strong S–M interaction should show the spontaneous for-
mation of a monolayer ( DĜ < 0 ) at zero overpotential, which should remain even at
a certain range of positive overpotentials. The latter phenomenon, where a metal
monolayer occurs at positive potentials with respect to that given by the Nernst
equation, is the denominated underpotential deposition already defined in section
“Underpotential Deposition.” The maximum potential at which the upd monolayer
remains stable is given by

 
D

D
f mupd

N
g= = -( )

ˆ

/
/

,G

M S
monolayer M S

monolayer eff
M
bulk

 
(12)

Δϕupd is known in the literature as underpotential shift and in the case of voltam-
metric profiles corresponds to the difference between the peak potential correspond-
ing to the stripping of the upd phase and the Nernst reversible deposition potential
[4, 8, 35–37]. In many systems more than one upd phase is found to exist, and it
comes out that this phenomenon is affected by the adsorption of anions, solvent
molecules, surfactants, and any other factor that may change the value of gM/
S
monolayer,eff. As an example, it has been observed that the Δϕupd of the (1×1) mono-
layer of Ag on Au(111) electrodes is increased by the presence of chloride, while it
is decreased by the presence of bromide and iodide anions [68–70]. This fact indi-
cates that chlorides contributes favorably to gM/Smonolayer,eff, while the opposite occurs
with the other anions. Anions also seem to play a role in the formation of expanded
monolayers. This is, for example, the case of the formation of overlayer domains
with commensurate structures for Pb c(2×2) on Ag(100), Pb c(2×2) on Au(100),
and Pb c( 3 2 2x ) R45° on Au(100) [23, 24, 71].

Upd of Cu on Au(111) constituted for a long time some sort of paradox. While
this system has been considered as an experimental upd paradigm, all energy calcu-
lations performed for the (1×1)Cu monolayer on Au(111) showed that it should be
less stable than the bulk Cu material [23, 24]. This apparent contradiction was
recently explained by Oviedo et al. [72], who showed that the extraordinary stability
of the Cu(1×1) monolayer is due to the adsorption of sulfate anions.
According to previous discussion, gM/Smonolayer,eff can be visualized as the average

adsorption energy of a new species, say, X M- , where X Cl Br I SOm- - - - -= , , , 4
2 , etc.

These species may be considered as oriented perpendicular to the surface of the sub-
strate in the case of coadsorption at full metal coverage or parallel to the surface of the
substrate in the case of expanded structures. Within this reinterpretation of 
gM/Smonolayer,eff, Eqs. 9–12 remain valid. However, the correct description of the problem
requires consideration of the free energy of formation of the X M- bond from its
precursors in solution (with activity a zM + and a mX - ) using a correct Legendre trans-
form. The reader interested in this point is addressed to the work of Oviedo et al. [72].
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 Straightforward Generation of Nanoparticles from Their 
Precursors

In this section we focus on the electrochemical formation of homoatomic NPs from
their precursors. The synthesis of NPs may lead to a variety of shapes, as shown in
Figs. 6 and 7. It is even possible to get NPs with a diversity of forms, like stars,
cylinders, etc., where control of kinetic factors plays the key role to reach the desired
structure [4, 5, 7–9]. Such types of studies are out of the scope of the present chap-
ter, and to the best of our knowledge, a comprehensive picture of this type of phe-
nomena (kinetics of electrodeposition at the nanoscale) is still missing.
From a thermodynamic perspective, the most stable NP shapes do not differ

strongly from the most compact ones [4, 65–67]: icosahedra, octahedra, cuboctahe-
dra, etc. A first glance to these objects induces to classify the surface sites in two
types: facet and border sites. A closer inspection reveals that in many cases the dif-
ferent facets present different crystalline orientations, as well as the existence of a
different coordination of the particles at the vertices. In the present section and in
order to emphasize on some key concepts on the electroformation of nanostructures,
we will differentiate only two types of sites on the surface of the NP.
The electrochemical reaction associated with the formation of an NP made of N 

atoms may be represented as a sequence of N reactions, as those given above in
Eqs. 1 and 3:

 

M Red M Ox

M Red M M Ox

M Red M M Ox

z

z

z
N N

z z

z z

z z

+

+

+
-

+ ® +
+ + ® +

¼
+ + ® +

2

1

_________________________________

N Nz zNz
N( ) + ( ) ® + ( )+M Red M Ox  

(13)

where Red corresponds to the chemical species that provide the electron for the
reduction of the metal ions. As it was introduced in the previous paragraphs, we
will consider a model of three types of atoms with different free energies: facets,
borders, and bulk material. This is shown schematically in Fig. 16.
The free energy of this system may be written as

 G N N g N gsystem
M
core

M
bulk

M
facet

M
facet

M
border

M
border= + +m  (14)

where NMfacet, NMborder, and NMcore correspond to the number of atoms at the facets, at the
borders, and in the core, respectively. These quantities fulfill the following condi-
tions: N N N NM = + +M

core
M
facet

M
border and N N NM

surf
M
facet

M
border= + .

The free energy of formation of a homoatomic NP from the bulk Mmaterial may
be obtained using Eqs. 4 and 14, setting Gsubstrate = 0, since the NP is formed from
its precursors:

 
F = -( ) + -( )N g N gM

facet
M
facet

M
bulk

M
border

M
border

M
bulkm m  (15)
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and the corresponding work of nanoparticle formation is

 
DĜ = -( ) + -( ) +N g N g N zeM

facet
M
facet

M
bulk

M
border

M
border

M
bulk

Mm m hh  (16)

The first term on the rhs of Eq. 16 takes into account the free energy difference
between an atom on the facet of the NP and another one in the bulk of the material,
while the second term considers the free energy difference between a border atom
and one in the bulk. Since the system is homoatomic, both terms are positive.
Equation 16 may be written in terms of a single variable, say, NM, if a relationship
is given between NMfacet, NMborder, and NM, that is, if a given geometry is assumed. In the
case of a spherical NP, we can write

 

N N

N N
M
facet

M

M
border

M

=
=
a
d

2 3

1 3

/

/  
(17)

where α and δ correspond to geometrical coefficients. Replacing (17) into (16),
we get

 
D ˆ / /G = -( ) + -( ) +a m d m hN g N g N zeM M

facet
M
bulk

M M
border

M
bulk

M
2 3 1 3

 (18)

Similar equations may be obtained by means of geometrical relationships applicable
to icosahedra [41, 73], truncated octahedra [66, 67], and other geometries [73, 74].
We can see in Fig. 17 that the behavior of ΔĜ is that of the classical nucleation

and growth modeling. At zero or positive overpotentials (h ³ 0 ), the curve shows a
monotonic growth, indicating that the generation of the NP is thermodynamically
not spontaneous. At negative overpotentials, the curve exhibits a maximum, corre-
sponding to the critical nucleus size (NM*). Clusters of size smaller than the critical
one ( N NM M< * ) will dissolve, while larger ones ( N NM M> * ) will evolve towards
the bulk state.

Fig. 16 Schematic representation of a portion of a homoatomic NP where the atoms may exist in
three different types: facet and border atoms at the surface and core atoms inside
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Generally speaking, for a given η, the work of nanoparticle formation is larger
than the work of formation of a flat surface, due to curvature effects given by gMborder. 
For NPs of intermediate sizes, such that border contributions are negligible, we can
write

 
D ˆ /G » -( ) +a m hN g N zeM M

facet
M
bulk

M
2 3

 (19)

This is the typical form of the free energy equation for homoatomic nucleation and
growth [23, 24]. At h = 0 we get the usual curve proportional to NM2/3 so that to get
phase growth, we need h < 0.
For very large NPs, the first term on the rhs of Eq. 19 turns negligible as com-

pared with the second term, yielding

 DĜ » N zeM h  (20)

which results similar to Eq. 11 for metal deposition on infinite flat homoatomic
systems.
Figure 18a shows ΔĜ as a function of particle size for the growth of an icosahe-

dral Au NP, obtained by means of molecular dynamics annealing simulations using
tight binding interaction potentials. The overall behavior is similar to that given
previously in Fig. 17. However, the ΔĜ vs. NM curve is not smooth but presents a
number of kinks and/or maxima and minima (see enlargement in the inset of Fig.
18a). This behavior is typical of small clusters, where the discrete character of the
variable NM becomes apparent. For h < 0 , the largest ΔĜ value observed at a given

Fig. 17 Scheme of the work of nanoparticle formation ΔĜ as a function of the number of depos-
ited atoms NM for the electrochemical formation of a metallic nanostructure at different overpoten-
tials (Reprinted with permission from Ref. [42])
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overpotential corresponds to the critical cluster size N*
M, as described previously.

The role of the discrete nature also becomes obvious in Fig. 18b, where N*
M is plot-

ted as a function of overpotential. At difference with the continuummodeling, in the
atomistic approach, there are some overpotential ranges where one or more cluster
sizes could become locally stable, leading to metastability.
As a final remark it must be noted that when border effects are considered, the

whole ΔĜ vs. NM profile is shifted upward. This is a consequence of the fact that
g gM

facet
M
border< and also due to the increase in NMborder at expenses of NMfacet. Thus, NPs

with higher curvatures need larger overpotentials for their growth.

Fig. 18 (a) Work of nanoparticle formationΔĜ vs. number of metal atoms NM curves correspond-
ing to growth of a Au icosahedron at different overpotentials, (b) Critical cluster size as a function
of applied overpotential for the same system as that of (a)
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 Nanoparticle Growth from Preexisting Seeds

In the present section, we analyze the electrochemical formation of NPs from
preexisting seeds. We are here interested in describing the thermodynamic stability
of NPs stemming from two types of experiments: on one side the growth of homoa-
tomic NPs and on the other the formation of core/shell structures each from a pre-
existing NP.
Figure 19 shows a scheme of the simplified model we address here. We define

three regions in the system: an inner part(inner), an intermediate part(intermediate),
and an external part (monolayer). The former two belong to the preexisting seed and
will build the core of a core/shell structure in the case of heteroatomic growth.
We will characterize the free energy of the inner atoms by the chemical potential

of the bulk S atoms, μSbulk, and define two types of atoms in the intermediate region:
those located at the facets, characterized by the free energy gSfacet, and those located
at border sites, with the free energy gSborder. In the case of the monolayer, we also dif-
ferentiate between facet and border adatoms, with their free energies given by gM/Sfacet 
and gM/Sborder, respectively:

 G N N g N gsubstrate
S
core

S
bulk

S
facet

S
facet

S
border

S
border= + +m , ,0 00  (22)

According to Eq. 4 the excess of free energy for the formation of the core/shell NP
is given by

 

F = -( ) + -(N g N gM S
facet

M S
facet

M
bulk

M S
border

M S
border

M
bulk

/ / / /m m ))
+ -( ) + -(N g g N g gS

facet
S
facet

S
facet

S
border

S
border

S
border, ,0 0 ))  

(23a)

Fig. 19 Schematic representation of the NP model described in terms of five different atom types
that we use to analyze the electroformation metal NP on preexisting metal seeds
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where gSfacet,0 and gSborder,0 denote the free energy per atom of the facet and border site,
where the shell is not present. As we did above (section “Electrodeposition on
Planar Surfaces”) to switch from Eq. 9a to 9b, we can define quantities gM/Sfacet,eff and
gM/Sborder,eff, which embed substrate terms, to get

 
F = -( ) +N g N gM S

facet
M S
facet eff

M
bulk

M S
border

M S
border eff

/ /
,

/ /
,m --( )mM

bulk
 (23b)

Using the previous equation, we get for the work of formation of the core/shell NP:

 
D ˆ

/ /
,

/ /G = - +( ) +N g ze N gM S
facet

M S
facet eff

M
bulk

M S
border

M S
bordm h eer eff

M
bulk, - +( )m hze  (24)

where the first term on the rhs is a facet contribution and the second is a border
contribution. There are two important differences between Eqs. 16 and 24 con-
cerning the overpotential contribution. While in Eq. 16 the η term is proportional
to all the atoms of the NP, in Eq. 24 the overpotential term is only proportional to
the number of atoms of the monolayer (shell). We come back to this point below.
It is possible to distinguish among two growth cases for the present system,

depending on the relative bond strengths:
Homoatomic systems (M=S) and heteroatomic ones with a relatively weak M–S

interaction:

(a) gM S
facet eff

M
bulk

/
, > m and gM S

border eff
M
bulk

/
, > m

Heteroatomic systems with a strong M–S interaction:

(b) gM S
facet eff

M
bulk

/
, < m and gM S

border eff
M
bulk

/
, > m .

As was previously analyzed in section “Electrodeposition on Planar Surfaces,” if
a relationship between NM/Sfacet and NM/Sborder is known, it is possible to express Eq. 24 
as a function of a single variable. In the case of a spherical NP, we have
N NM S

border
M S
facet

/ /

/
= ( )d

1 2
.

The ΔĜ vs. NM/Sfacet behavior of case (a) may be generally represented in
terms of Fig. 17, as previously discussed. Case (b) may be described in terms of
Fig. 20.
Figure 20 shows the case where the M–S interaction is stronger than the M–M

one. A relatively strong M–S interaction may generate a minimum, NMmin, in the ΔĜ 
vs. NM/Sfacet curve, indicating the occurrence of thermodynamic stable structures. At
zero or positive overpotentials (h ³ 0 ), the minimum of ΔĜ at NMmin shown in Fig.
20 is a global one, corresponding to a thermodynamically stable state. However, if
this minimum is deep enough, it also may subsist at h < 0 , yielding a metastable
S/M system. In this case, the curve exhibits a maximum, corresponding to the criti-
cal nucleus size (NM*). At very negative overpotentials, h << 0 , the system will be
able to surmount the free energy barrier, ΔĜ*, and will grow evolving towards the
bulk structure.
If a metal atom deposited on a facet of S is more stable than in the bulk state,

gM/Sfacet,eff will be more negative than μMbulk (case b) and we will have the inequality
gM S

facet eff
M
bulk

/
, -( ) <m 0 , which is corresponds to the condition h > 0. Thus, the atoms
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will subsist on the surface of S at more positive potentials than the Nernst reversible
potential for bulk M deposition. This reminds us the occurrence of the upd phenom-
enononplanarmetalsurfaces.Thereversesituationwilltakeplacewhen gM S

facet eff
M
bulk

/
, -( ) >m 0  

(case a), yielding h < 0, corresponding to overpotential deposition (opd). The latter
is clearly an unsuitable condition for size and shape control of nanosystems, since
when h < 0 the bulk deposit can be formed, so that the application of an overpoten-
tial allowing the deposition on S should inevitably drive it to M-bulk growth, at least
from a thermodynamic viewpoint.

ΔĜ atomistic calculations for different systems are given in Fig. 21. There, ΔĜ is 
shown as a function of NM/Smonolayer, for the systems Ag(core)/Au(shell) and Pt(core)/
Au(shell) at zero overpotential [39]. The behavior of the first system is similar to that
of the homogeneous systems shown in Figs. 17 and 18a. On the other hand, for the
second system, the function ΔĜ presents a minimum at NM

monolayer =165, which corre-
sponds to a fraction of 0.8 of the first pseudomorphic shell on the surface of the Pt
NP. On a perfect flat surface (infinite large NPs), the ΔĜ vs. NMmonolayer curve would
yields a linear decreasing curve (like Fig. 15b). However, in an NP there are sites with
different adsorption energies that lead to the observed minimum. For instance, the
borders where the facets merge present sites with a particularly high binding energy.
The number of particles at the minimum of the free energy curve observed for

Pt(core)/Au(shell), say, NMmin, may be shifted by the application of an overpotential.
Figure 21b presents ΔĜ vs. NMmonolayer curves for different overpotentials, while the
inset shows how the value of NMmin shifts with the overpotential applied. It is found
that the Pt NP should become partially covered by Au at underpotentials. Note the
similarity of the inset of Fig. 21b with the adsorption isotherm of Fig. 4.

Fig. 20 Scheme of the work of shell formationΔĜ as a function of the number of deposited atoms
NM/Sfacet for the electrochemical formation of a metallic nanostructure at different overpotentials. In
the present case, the interaction of the deposited atoms with the substrate is stronger than the inter-
action with each other (Reprinted with permission from Ref. [42])
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A straightforward and representative comparison between metal upd on 
nanoparticles and planar substrates may be observed in Fig. 22. We show there
results from Grand Canonical Monte Carlo Lattice (GCMC-L) simulations using
embedded atom potentials for Ag deposition on an octahedral Au NP, Au(111), and
Au(100) planar surfaces. It is found that Ag deposition on Au(100) occurs at

Fig. 21 (a) Work of shell formation profiles of Au deposition on Pt and Ag nanoparticles at
h = 0 . (b) Work of shell formation profiles for Au deposition on Pt nanoparticles at different
overpotentials. The inset shows the number of particles at the minimum, NMmin, as a function of
overpotential. Note the possibility of decorating selectively different facets, as indicated by the
arrows (Adapted from Ref. [39] with permission from the PCCP Owner Societies)
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mAg Au eV,/ ,100 3 018( ) » - while on Au(111) it takes place at mAg Au eV/ ,111 2 968( ) » - . 
These values are represented with dashed lines. Nanoeffects are evident in the
results for Ag deposition on the octahedral Au NP made of 1289 atoms. In this
case, Ag deposition on the Au(100) facets takes place at mAg Au NP eV/ _ ,100 2 990( ) » - ,
showing a shift of 28 meV towards the bulk deposition chemical potential. On its
side, deposition on (111) facets occurs at mAg Au NP eV/ _ ,111 2 907( ) » - , presenting a
shift of 61 meV towards the bulk metal. These simulations clearly show the exis-
tence of a positive shift of metal deposition towards larger chemical potentials
(more negative electrode potentials in the electrochemical system), thus weaken-
ing upd, as predicted qualitatively by Eq. 24.
Going back to homoatomic metal deposition on preexisting NPs, characterized

by gM M
facet

M
bulk

/ > m and gM M
border

M
bulk

/ > m , we note that for medium size NPs, surface
effects predominate over border effects. In this limit the work of formation may be
written as

 
D ˆ

/ /G » - +( )N g zeM M
facet

M M
facet

M
bulkm h  (25)

In the case of very large nanoparticles, the facet term gM/Mfacet approaches the bulk one,
μMbulk, the term gM M

facet
M
bulk

/ -( )m goes to zero, so that Eq. (25) yields the limits of Eq. (20).
It is well known that the redox potential delivered, for example, by citrate is not

enough to generate nucleation and growth of new phases, but it is enough to gener-
ate growth on preexisting NPs [4, 7, 8, 12, 14–16]. We can note on the basis of Eq.
25 that the energy required per atom to build a homoatomic layer decreases as NP
size increases.

Fig. 22 Adsorption isotherms for Ag deposition on a Au truncated octahedral nanoparticle made
of 1289 atoms, in comparison with Ag deposition on Au(100) (black dashes) and Au(111) (red 
dashes)
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 Upd–opd Transition in the Nanoscale

The more the border (or curvature) effects become important, the smaller the NPs
are [25, 26, 75, 76]. As a consequence of this, the upd phenomenon could disappear
in the limit of small particles, thus defining an upd–opd transition. The particle size
at which this transition occurs may be estimated assuming a given geometry and
setting Eq. 24 equal to zero at h = 0 [41]. Thus, the number of particles of the facet
at which the upd–opd transition occurs, say, NM S

facet upd opd
/ ,®( ) will be given by

 

N
g

g
M S
facet upd opd M S

border eff
M
bulk

M S
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-
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mmM
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ê
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where we have assumed N NM S
border

M S
facet

/ /

/
= ( )d

1 2
for the relationship between border

and facet atoms. d > 0 is a geometrical factor that depends on the shape of the
NP. Equation 26 shows that the stronger the border effects, given by gM S

border eff
M
bulk

/
, -( )m ,

the larger the NP size at which the upd–opd transition occurs will be. On the oppo-
site, systems with large upd shifts in planar surfaces (large gM S

facet eff
M
bulk

/
, -( )m ) will

present the upd–opd transition at smaller NP sizes. According to computer simula-
tions, upd has been predicted to disappear in the systems Au(core)/Ag(shell) [40–43] 
and Au(core)/Pd(shell) [44]. In the case of experiments, upd has been found to disap-
pear for Pb andCd deposition onAgNPs [31–33]. Figure 5 in section “Underpotential
Deposition” shows GCMC simulations for the system Au(core)/Ag(shell) where it is
evident that the upd phenomenon disappears for cores smaller than 512 atoms.
As mentioned in section “Dendrimer-Encapsulated Nanoparticles” of the present

chapter, the upd–opd transition is not evident for the system Pt(core)/Cu(Shell) as
small as 1.3 nm. However, it must be noted in the experiments of Crooks and
coworkers that the peak potential associated with Cu upd shifts towards larger posi-
tive potentials, as predicted by the present model (see Fig. 10).
In a similar way to what happens with NPs, an upd–opd transition may be found

in nanocavities, but in the opposite direction, small enough cavities, with large nega-
tive curvatures, may present upd, even in those systems where upd is absent in planar
surfaces. This phenomenon has been found in atomistic simulations using embedded
atom potentials. The analytic formalism to predict such transitions is analogous to
that developed in section “Nanoparticle Growth from Preexisting Seeds” for NPs,
but considering a negative curvature. According to this, the size of the nanohole at
which the opd–upd transition occurs, say, NM S

facet opd upd
/

, ®( ) , may be estimated from
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which looks similar to Eq. 26 for the NP case.
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Figure 23 shows the results from GCMC atomistic simulations for the decoration
of nanocavities on Au(111) with Ag atoms. The decoration of the nanocavity starts
at mAg eV» -3 155. at its bottom, being the first Ag atoms deposited on the border
sites. The base of the nanocavity becomes completely covered at mAg eV» -3 12.  
and its filling occurs at mAg eV» -3 03. . All these processes take place at chemical
potentials more negative than that corresponding to the bulk Ag metal,
mAg eV= -3 00. . In this way, these atomistic simulations showed for the first time
that negative curvatures allow metal deposition at more negative chemical poten-
tials (more positive electrode potentials in the electrochemical scale) than those
corresponding to upd on planar surfaces with the same crystal orientation, as pre-
dicted by Eq. 27.

Fig. 23 (a) Number of deposited Ag atoms as a function of the chemical potential for decoration
of a nanocavity on a Au(111) surface. (b) Snapshots of the simulation showing the different
stages of nanohole decoration, corresponding to the numbers of part (a). The chemical potentials
were mAg eV= -3 155. , mAg eV= -3 12. , mAg eV= -3 03. , mAg eV= -3 00. , and
mAg eV= -2 87. (Reprinted with permission from Ref. [60])
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 Conclusions and Perspectives in Upd Modeling

The present chapter attempted to focus on some aspects of metal deposition that are
relevant at the nanoscale. The approach was essentially nanothermodynamic, and
some of the conclusions that were drawn may be summarized as follows:

• The use of electrochemical methods (by these we understand quite generally
those methods where electron transfer is involved) appears as the most suited
alternative to handle metal deposition at the nanoscale, especially concerning the
thermodynamic control of the structures being formed on the substrate. The
reason for this is that material exchange with the environment is greatly enhanced
in the electrochemical systems.

• Underpotential deposition, combined with galvanic replacement, allows rela-
tively simple control of metal deposition at the submonolayer level. These meth-
ods have been successfully employed to generate nanoparticles of different
shapes and composition.

• Relatively simple modeling has been described here, based on experimental evi-
dence and on results from atomistic simulations. The modeling is not only able
to account for some aspects of experimental findings but also to make some
remarkable predictions.

• One of the predictions emerging from the present modeling is the fact that under-
potential deposition, depending on the strength of the substrate–adsorbate inter-
action, may vanish in the nanoscale. This underpotential–overpotential transition
may be understood in terms of a curvature effect. The high curvature of very
small nanoparticles results in a weaker binding of foreign adatoms to them.
Conversely, the same modeling predicts that the filling of nanocavities may lead
to an enhancement of underpotential deposition. Even systems showing no
underpotential deposition on planar surfaces may yield underpotential deposi-
tion into small enough cavities.

It is desirable for the extension of the present modeling to include the following:

• The presence of capping agents on the nanoparticles that may contribute to their
stabilization.

• The presence of other adsorbed species on the nanostructures, mainly anions.
• Electrostatic (electric double layer) effects.
• Kinetic effects in metal deposition at the nanoscale. A suitable option would be
the application of kinetic Monte Carlo techniques.
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Abstract
Nanoscaled noble metals exhibit unique optical properties. One of these is the 
ability to create localised surface plasmon resonances upon light illumination, 
which makes it possible to study adsorbed molecules via surface enhanced 
spectroscopy. Silver and gold nanostructured electrodes with plasmonic 
properties can be created via electrochemical roughening or electro deposi-
tion methods. For studying enzyme/electrode systems the metal surface has 
to be functionalised with a biocompatible surface layer. Once the electrode is 
incorporated in an electrochemical cell the system can be studied by spectro-
electrochemistry. With this combinational approach catalytic efficiency can be 
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tested via electrochemistry while the structural state of the enzyme is probed via 
surface enhanced Raman spectroscopy. Several techniques will be presented in 
this book chapter to create plasmonic electrode systems via electrochemical 
methods with defined optical and chemical properties. A focus will be given on 
the formation of hybrid electrode systems that make it possible to study enzyme/
electrode interactions also on non plasmonic interfaces. Furthermore spectro-
electrochemical investigations on several enzyme/electrode systems are discussed. 
It is shown how the combination of electrochemistry with spectroscopy can be 
used to get mechanistic insight into the functionality of enzymes on surfaces. 
This information can then be used for rational design of biosensors and bio-
fuel cells.

Keywords
Biofuel cells • Enzymes • Nanostructured noble metals • Surface plasmon reso-
nances • Surface enhanced Raman spectroscopy • Spectro-electrochemistry •
Structure-function relationships

 Introduction

Nanoscaled noble metals exhibit unique optical properties. One of them is the ability 
to create localized surface plasmon resonances upon light illumination [1]. Surface 
plasmon resonances are collective oscillations of the metal’s free electron gas triggered 
by the oscillating electric field of incoming light. Depending on the nanostructure’s 
size, geometry, and chemical composition, resonant coupling between light and 
electron gas is achieved for certain wavelengths of the incoming light. Under 
resonance conditions the surface plasmons create a strong local electric field 
enhancement at the metal/dielectric interface which can be used for spectroscopic 
analysis of surface-bound molecules. The most developed spectroscopic analytical 
method that makes use of plasmon-enhanced fields is surface-enhanced Raman 
(SER) spectroscopy that has an enormous abilities regarding molecular and struc-
tural identification of surface-bound analytes.

A variety of procedures are described in the literature to create plasmonic nano-
structures with defined optical properties. However most of them are based on 
high- cost lithographic methods [2–4]. In contrast techniques based on electro-
chemical roughening or electrodeposition are much easier to apply and do not need 
high-cost equipment. Although they lack a much defined surface morphology, 
electrochemically created nanostructures do exhibit plasmonic enhancement suf-
ficient for SER spectroscopy. Additionally these plasmonic supports can be used as 
working electrodes in an electrochemical cell allowing spectroscopic analysis of 
adsorbed molecules during a potential-induced redox reaction [5]. Special interest 
for plasmonic electrode systems lies in the field of biosensor and biofuel cell 
development. In biosensors the electrocatalytic response of an enzyme/electrode 
system in the presence of substrate is used for substrate identification [6], while in 
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biofuel cells enzyme/electrode complexes are employed for fuel generation or con-
sumption [7]. Optimization of these systems requires a detailed knowledge about 
the structure- function relationship of the surface-bound enzymes. This can be 
gained by simultaneous use of electrochemical and spectroscopic methods. With 
such a combinational approach, catalytic efficiency can be tested via electrochem-
istry, while the structural state of the enzyme is probed via surface-enhanced Raman 
spectroscopy (SERS).

However, the choice of electrode material does have a great influence on the 
efficiency of enzyme/electrode systems. Standard materials in bio-electrocatalysis 
include noble metals like gold and platinum or metal oxides such as ITO or TiO2 
[8, 9]. On the other side the highest plasmonic field enhancement for excitation 
wavelengths in the visible region is given by silver, which is used as a standard 
support material in SER spectroscopy. Silver, however, plays only a minor rule as 
a support material in bio-electrocatalysis. This makes the transformation of the 
results obtained from SER spectro-electrochemisty to real systems difficult. 
Several approaches to solve this problem are described in the following sections:

In section “Nanostructured Multilayer Electrodes,” procedures are described to 
design plasmonic hybrid electrodes that contain silver as plasmonic amplifier but a 
different metal or metal oxide interface for enzyme adsorption. Here the small redox 
proteins cytochrome c (Cyt c) and cytochrome b5 (Cyt b5) are used as model 
enzymes. In section “Calculation of Raman Enhancement Factors,” it is explained 
how the surface field enhancement can be calculated for these systems with the help 
of electrochemical methods.

Section “Determining Electron Transfer Pathways in Bio-Electrocatalysis” then 
describes how electrochemical and surface spectroscopic analysis can be combined 
on the example of two heme-containing enzymes, human sulfite oxidase (hSO) [10] 
and the membrane-bound hydrogenase trimer from Ralstonia eutropha (MBH) [11]. 
A summary of (spectro)-electrochemical investigations on the abovementioned 
enzyme/electrode systems is given in Table 1.

Table 1 Previous work in (spectro)-electrochemistry of the enzyme/support systems discussed in 
this book chapter

Enzyme Electrode Methods References

Cyt c Silver-SAM SERRS [14]

Y-Cyt c Silver-SAM SERRS [38]

Cyt c ITO Electrochemistry
SERRS

[39]

hSO/Cyt c Gold-polymer Electrochemistry [34]

hSO Silver-SAM Electrochemistry
SERRS

[35]

hSO TiO2 Electrochemistry [9]

MBH Graphite Electrochemistry [36]

[NiFeSe] hydrogenase TiO2 Electrochemistry [8]

MBH Silver-SAM Electrochemistry
SERRS

[37]
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 Nanostructured Multilayer Electrodes

In this section the use of electrochemically roughened silver and silver containing 
multilayer electrodes will be discussed with respect to SERR spectro- 
electrochemistry of enzyme/electrode systems. A summary of the systems investi-
gated is given in Table 2.

 Roughened Silver Electrodes

Nanostructured silver and other noble metal electrodes can be fabricated via elec-
trochemical surface roughening procedures. Hereby an oxidation-reduction cycle 
(ORC) is applied to a polished metal bulk electrode. Depending on the metal’s 
oxidation- reduction potential, a time-dependent potential sequence is applied that 
leads to the formation of a nanostructured surface. Roughened silver electrodes 
exhibiting SERS activity can be easily created by ORC techniques. In Fig. 1b an 
SEM picture of an electrochemically roughened silver electrode can be seen, which 
shows a randomly, coral-like nanostructure. A detailed description on what 
sequences have to be applied to silver and other metals in order to achieve optimum 
SERS activity can be found in Tian et al. [12]. In comparison with highly ordered 
nanostructures made from lithographic methods, no clear resonance frequency can 
be determined for electrochemically roughened electrodes. This is especially true 
for roughened silver electrodes for which surface enhancement can be achieved in 
a wavelength range from 400 nm to near infrared [13]. While this very broad 
enhancement profile is clearly a disadvantage with respect to signal intensity of 
adsorbates, it gives more freedom to the choice of excitation line. Specifically for 
investigations of chromophores, the wavelength of the illuminating light has to be 
chosen with respect to the molecular absorption maximum of the analyte to make 
use of the resonance Raman (RR) effect. This analyte specific molecular absorption 
maximum will not necessarily match a specific surface plasmon resonance of the 
nanostructured electrode. The broad enhancement profile of roughened electrodes 
makes it much easier to combine the effect of surface enhancement and resonance 
Raman scattering in order to apply surface-enhanced resonance Raman spectros-
copy (SERRS) for adsorbate analysis.

Next to silver also other noble metals such as gold and copper are able to create 
surface plasmon resonances in the red to near-infrared regime. However, silver 

Enzyme Electrode Reference

Cyt c Silver-gold [20]
[23]
[22]

Cyt c Silver-platin [26]

Cyt b5 Silver-TiO2 [28]

Table 2 SERR spectro-
electrochemistry of proteins 
on multilayer electrodes
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remains the only material that can provide plasmonic field enhancement in the 
wavelength range from 500 to 400 nm. Many common protein cofactors such as 
hemes or flavins show strong molecular absorbance in this region. For SERR analy-
sis of such biological systems, only silver can be used as support material.

Fig. 1 (a) Preparation scheme of nanostructured multilayer electrodes. A bulk silver electrode is 
first electrochemical roughened (Step 1) and then passivated by coating with a dielectric spacer 
(Step 2). In the third step metal ions attached to the coated electrode are electrochemically reduced 
to create a thin overlayer film. In b–e SEM pictures of the silver electrodes are shown after the 
following steps: roughening (b), coating with SiO2 (c), and overlayer deposition of platin (d) or 
gold (e). (f, g) Electric field calculations of a silver-SiO2-platin multilayer electrode geometry 
without (f) and with (g) defects. The introduction of defects into the platin film strongly promotes 
field enhancement at the platin/water interface (Adapted with permission from Feng et al. [20] 
Copyright 2009 American Chemical Society, Feng et al. [23] Copyright 2010 Wiley-VCH and Ly 
et al. [26] Copyright 2012 American Chemical Society
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Unfortunately for electrochemical investigations, silver is a second choice 
material, as the small potential range of silver electrodes limits their applicability, 
i.e., for development of sensors. Furthermore with respect to protein electrochemistry, 
the low biocompatibility of silver can have a harmful effect on the nativity of 
adsorbed proteins. The latter effect can partially be overcome by coating the silver 
surface with thin layers of self-assembled monolayers (SAMs) [14], SiO2 [15], or 
polymers [16]. Any coating, however, increases the distance from the analyte to the 
plasmonic silver surface and thus reduces signal intensity of analytes. This effect is 
huge as dielectric coatings with a thickness of ca. 2 nm roughly result in a drop in 
SER intensity of one order of magnitude [17, 18].

The strong distance effect can be rationalized if one looks at the decay of the 
surface electric field into the dielectric medium. Localized surface plasmons can be 
considered as dipole oscillations. The electric field, generated by this oscillation, 
will decay with d−3, d being the distance between dipole and analyte. The intensity 
of the electric field is given by the square of the absolute value of the electric field. 
One further has to take into consideration that also the Raman-scattered light, emit-
ted from the analyte, will be enhanced. Therefore, the SER enhancement will 
roughly scale with the fourth power of the electric field enhancement. This leads in 
a first approximation to a distance dependence of the SER enhancement that is pro-
portional to d−12. In this estimation several assumptions were made: First it is stated 
that the enhancement of the Raman-scattered light is the same as for the incident 
light which might not be true for plasmonic materials with very defined surface 
plasmon resonance conditions. Second the surrounding environment has to consist 
of a dielectric medium with a homogeneous dielectric constant. These assumptions 
can be made for rough electrodes with a single dielectric coating layer. Consequently 
a d−12 distance behavior of SER enhancement could be demonstrated for analytes on 
electrodes coated with a single layer of different thickness [17, 19]. As a rule of 
thumb, this limits SERR spectroscopic investigations to analytes that are closer than 
4 nm to the plasmonic surface.

 Silver-Gold and Silver-Platin Electrodes

Strong deviations of the SER enhancement distance dependence are observed if the 
single dielectric coating is replaced by a multilayered structure with respective dif-
ferent dielectric properties. One example would be an alternating coating layer 
structure of a dielectric spacer and a thin metallic film. In such multilayer structures 
theoretical calculations predict enhanced electric fields at the outer interface at dis-
tances much larger than determined for systems with a single homogeneous layer of 
comparable thickness [20, 21].

Also experimentally unexpected high SER signals are observed for analytes on 
multilayer electrodes in which only the underlying support consists of a plasmonic 
material (i.e., silver). Such SERS-active multilayer electrodes can be constructed 
very simply by electrochemical deposition presented schematically in Fig. 1a. 
To build up these multilayer structures, first an electrochemically roughened silver 
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electrode is coated with a dielectric spacer consisting of either a SAM [20, 22] or a 
thin silica film [23]. Functionalization with a SAM can be achieved by incubating the 
electrode in a solution of alkanethiols with an appropriate functional group. 
The thickness of the spacer can hereby be tuned by choosing SAMs with different 
alkane chain lengths. However, with this method only coating layers with a thickness 
up to 2.5 nm can be built up. A much broader tuning of spacer thickness is possible 
using silica coatings, for which procedures are well established [24]. Hereby thin 
SiO2 films are created via hydrolysis of precursor silicates (i.e., tetraethyl orthosilicate 
or sodium silicate). The thickness of the SiO2 layer is controlled by the concentration 
of the precursor [25]. The resulting SiO2 coating covers the silver electrode com-
pletely without changing its surface nanostructure, as shown exemplarily in Fig. 1c. 
The introduction of a spacer is needed to passivate the silver surface and to separate the 
silver from a second metal film. This second metal film is created by incubating 
the coated silver electrode in a solution containing the respective metal ion salt. 
Electrostatic attraction leads to adsorption of the metal ions on top of the dielectric 
spacer. The functionalization of the spacer layer has therefore to be made with 
respect of the metal ion’s sign of charge. For negatively charged ions like AuCl4

− or 
PtCl4

−, a silver electrode coated with an amino-terminated SAM would be preferable. 
In the case of silica coating, a final functionalization with aminopropyltriethoxysi-
lane (APTES) has to be made. After the electrode has been incubated for several 
hours in the metal ion solution, it is put back into an electrochemical cell- containing 
buffer solution. Upon applying a negative potential, the adsorbed metal ions are 
reduced. This final step results in the formation of an overlayer metal island film on 
top of the coated silver electrode. The overlayer film shows a coral-like nanostruc-
ture that is quite different from the morphology of the underlying silver. Typical 
examples are shown in Fig. 1d, e [20, 26]. In general the grain sizes of the overlayer 
nanocorals are smaller and the film contains a lot of holes that allow the light going 
through the coating layers to interact with the plasmonic silver surface.

The existence of holes and defects in the overlayer film is very crucial as demon-
strated by calculations of the electric field enhancement at the overlayer film/dielec-
tric interface shown in Fig. 1f, g [26]. There the electric field enhancement is shown 
for a multilayer electrode-like geometry. The layers consist of silver as a solid sup-
port, SiO2 as spacer layer, and platin as overlayer metal. It can be clearly seen that a 
defect-containing platinum film promotes field enhancement at the platin/water 
interface. Such defect-containing films are automatically created upon electrochem-
ical deposition methods. In contrast other techniques such as film sputtering would 
create a closed film. While this clearly has other advantages with respect to surface 
chemistry, it will not work in favor of a high surface enhancement suitable for SER 
spectroscopy.

The high surface enhancement of multilayered electrodes is confirmed by 
SER(R) measurements of test proteins attached to the functionalized overlayer 
metal island film. The functionalization of the overlayer metal with either carboxyl- 
or amino-terminated SAMs is necessary to avoid protein denaturation. Suitable test 
molecules are heme-based redox proteins such as cytochrome c (Cyt c) or cyto-
chrome b5 (Cyt b5). Due to the presence of the heme cofactor, strong SERR signals 

30 Plasmonic Nanostructured Supports for Spectro-Electrochemistry of Enzymes…



1020

are expected upon illumination with violet laser light, i.e., the 413 nm line of a 
krypton laser. Furthermore the redox properties of these proteins, which do mainly 
function as electron transfer units in biology, can be used to test the electrochemical 
properties of the system.

A SERR spectrum of Cyt c, attached to a functionalized platin overlayer film, is 
shown exemplarily in Fig. 2a. In comparison to the spectra that are observed if the 
protein is directly attached to a functionalized silver electrode, only a very minor loss 
in Raman intensity is observed for multilayer electrode systems. For dielectric spacers 
with a thickness of ca. 2 nm, roughly a decrease by a factor 1.5–2 in SER intensity is 
observed if the analyte is exclusively bound to the overlayer film. From the SER sig-
nal intensity of the redox-active analyte, the enhancement factor of the Raman signal 
can be derived. A detailed description on the calculation procedure is given in section 
“Calculation of Raman Enhancement Factors.” Interestingly the choice of overlayer 
metal plays only a minor role for the Raman enhancement factor (REF). This can be 
rationalized if one assumes that the electric field enhancement is solely created by the 
plasmonic silver support. The overlayer film is not plasmonic active and only mirrors 
the dipole oscillation of the silver surface plasmons. The exclusive role of silver in the 
amplification of the SER signal is supported by the decreased Raman signals of ana-
lytes for increased spacer layer thickness, shown in Fig. 3. The thickness of the spacer 
layer, however, is not as crucial as one might expect having the d−12 dependency in 
mind. Even for a 20 nm silica spacer layer, the decrease in signal intensity is just one 
order of magnitude [23]. The choice of metal used as overlayer film again does not 
influence the observed distance dependence seen in Fig. 3.

 Spectro-Electrochemistry

SERR spectro-electrochemistry can be used to probe the electric communication 
between redox protein and electrode in multilayer systems. Cyclo-voltammetric mea-
surements of Cytc attached to gold or platin overlayer films show a fast redox response 
of the protein to a change in the applied potential. This is shown exemplarily for a 
silver-platin electrode in Fig. 2c trace b. Comparing the amplitude of the cathodic and 
anodic peaks of Cytc to its value on pure roughened silver (trace a), one can estimate 
that the amount of proteins in multilayer systems is increased by a factor 3–4. The 
protein’s redox potential is identical in silver, silver-gold, and silver-platin systems.

Redox-dependent changes of the heme cofactor can also be monitored very sen-
sitive with SERRS as the resonance Raman spectra of hemes have been studied 
intensively [27]. The Raman spectra of oxidized and reduced heme cofactors show 
well-defined differences in the wavenumber region between 1300 and 1700 cm−1 
such that a change in oxidation state can easily be detected. Analysing the SERR 
spectra of Cytc attached to gold or platin overlayer films at different potentials 
allows thus determining the molar ratio of reduced and oxidized protein for each 
applied potential. In Fig. 2a the spectra of Cyt c at an applied potential of -0.4 V and 
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Fig. 2 (a) SERR spectra of the redox enzyme Cyt c adsorbed on functionalized silver-platin 
electrodes at an applied potential of −0.4 (top) and 0.15 V (bottom), respectively. (b) SERR 
spectra of Cyt b5 adsorbed on silver-TiO2 electrodes at an applied potential of −0.3 (top) and 
0.1 V (bottom), respectively. For both electrodes the vibrational marker bands show a complete 
reduction and oxidation of the protein. (c) Cyclovoltammogram of Cyt c on functionalized 
silver (trace a) and silver-platin (trace b) electrodes. The amount of redox-active species has 
increased on the silver- platin electrode. (d) Cyclovoltammogram of Cyt b5 on silver-TiO2 elec-
trodes for different scan rates (100, 300, 600, 800, and 1000 V/s) (Adapted with permission 
from Ly et al. [26] Copyright 2012, Sivanesan et al. [28] Copyright 2013 American Chemical 
Society)
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0.15 V (vs. Ag/AgCl) are shown. The redox-dependent shifts of the porphyrin ring 
vibrations (v4, v3, v2, and v10) can be clearly seen and show that the protein can be 
completely reduced and oxidized at the respective potentials.

 Silver-TiO2 Electrodes

In principle one could rationalize the strong enhancement seen at the overlayer/
analyte interface by an induced plasmon oscillation of the free electrons of the metal 
overlayer film. In this case the overlayer film itself is not able to enhance the electric 
field. However, if the field is already enhanced by the nearby silver, the overlayer 
film is capable to couple to this plasmon oscillation and to transport the electric field 
to the outer metal/analyte interface. Such an explanation is reasonable if the over-
layer film consists of a metal. However, also strong Raman signals are observed if 
the metal oxide TiO2 is used as overlayer film material [28].

Silver-TiO2 multilayer electrodes are created very similar as the previously 
described silver-metal electrodes. The main difference lays in the coating of the 
silver as in this case carboxyl-functionalized SAMs are used as spacer layers. 
Attachment of TiO2 is done using commercially available TiO2 nanoparticles which 
are covalently bound to the carboxylate groups of the SAM under acidic conditions 
[29, 30]. With this procedure a TiO2 overlayer island film is created that looks very 
similar to the metal films shown in Fig. 1d, e.

Due to its high biocompatibility, TiO2 does not need further functionalization for 
protein attachment. Cytochrome b5 (Cytb5) was used as test redox enzyme since it 
exhibits several carboxylic residues close to the heme which are expected to bind 

Fig. 3 Raman 
enhancement factors (REF) 
at the metal/protein 
interface as a function of 
silica spacer thickness for 
silver-gold (hollow 
squares) and silver-platin 
(solid squares) electrodes 
(Reprinted with permission 
Ly et al. [26] Copyright 
2012 American Chemical 
Society)
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covalently to the TiO2 interface in the same way as the carboxylate groups of the SAM. 
With this setup SERR signals of Cytb5 are obtained (Fig. 2b) that under acidic 
conditions even exceed the signals of the protein directly attached to a functional-
ized silver electrode. To explain this high Raman signals by plasmon coupling is not 
as straightforward as in the case of metal overlayer films. TiO2 is a semiconductor 
with no free electrons that could couple to an external oscillating field. Therefore, 
also geometrical effects have to play a role. This could be the case if, i.e., the TiO2 
layer is placed in the interspace between two silver corals. Interestingly the covalent 
attachment to silver also influences the electronic properties of the TiO2 nanostruc-
ture. Cyclovoltammic measurements show a strong redox response and a fast elec-
tron transfer from the redox protein to the electrode as shown in Fig. 2d. This is 
unexpected as the conductivity of TiO2 itself is rather poor. However, TiO2 and 
silver are connected via a spacer layer and it might be that silver under these con-
ditions injects electrons into the conducting band of TiO2 [31]. Such a scenario 
would be able to explain the high conductivity of the system. Additionally the 
injected electrons could couple to plasmon oscillations supporting the observed 
high SERR signals.

In conclusion silver-TiO2 electrodes exhibit very interesting properties. The 
underlying mechanism that is responsible for the high SERS activity and fast elec-
tron transfer, however, still needs to be further elucidated.

 Calculation of Raman Enhancement Factors

The local electric field enhancement of a given nanostructure is a very important 
parameter, which, unfortunately, cannot be easily extracted from experiments. 
An experimentally accessible parameter is the SERS intensity of an analyte 
attached to the surface under investigation. From this intensity in principle, the 
Raman enhancement factor can be derived if the number of surface-bound ana-
lyte molecules is known.

Under the approximation that the Raman enhancement is equal to the forth 
power of the field enhancement, the latter can be calculated from REF values. 
In doing so one has always to be aware that the measured Raman intensities give 
average enhancement factors of all molecules that are probed within the laser spot. 
This average Raman enhancement factor can generally be derived by the following 
equation [3]:

 
REF = × = ×

×
×
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IR and ISERS are the Raman intensities of probe molecules in solution and adsorbed 
on the SERS-active surface, respectively. These intensities have to be normalized 
to the same accumulation time and laser intensity. NR and NSERS refer to the number 
of molecules that are in the focus of the laser beam. The latter quantities are related 
to the product of illuminated volume VL and the bulk concentration cR in the normal 
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Raman and to the product of the illuminated area AL and the surface concentration 
ΓSERS in the SER experiments. While some parameters like cR,IR and ISERS can easily 
be measured, a precise determination of the surface coverage, the laser illuminated 
volume VL and the surface area AL is very difficult.

To determine AL and VL, one has to know very precisely the radius rL of the laser 
beam. If rL is known, the illuminated surface area of an ideally flat electrode is given 
by AL = πrL

2. However, as we look at nanostructured surfaces, a so far unknown 
roughness factor f has to be multiplied to this equation. VL is standardly approxi-
mated by a cylinder with radius rL and a height given by h = 2rL

2π/λ, where λ is the 
wavelength of the laser light. Since the true laser spot has a shape of a Gaussian 
beam, it becomes clear that VL gives the highest uncertainty in the calculation of the 
Raman enhancement factor.

An option for determination of the surface coverage ΓSERS is the use of redox- 
active Raman probes in combination with electrochemical measurements. 
Integrating the peak area of the cathodic or anodic current Ia at a given scan rate ν 
yields the surface coverage of redox-active molecules Γa on the surface via the fol-
lowing equation [32]:

 
Ga =

× × ×
× × ×
4

2 2

I R T

A n F
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n  
(2)

In this equation n is the number of transferred electrons. T, R, and F refer to tem-
perature, gas and Faraday constant, respectively. The highest uncertainty in this 
equation is again given by the surface area A of the nanostructured electrode. To 
solve this problem, the electrode area is now also expressed by the product of its 
geometrical area A0 (i.e., the area exposed to electrolyte solution of an ideally flat 
electrode) and its roughness factor f. If the SERS and the electrochemical experi-
ment probe the same molecules, ΓSERS in Eq. 1 can be substituted by Γa of Eq. 2 
yielding the following equation for REF:
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Equation 3 now only contains experimental accessible parameters. However, two 
points have to be considered when applying Eq. 3. First this equation is only valid if 
all molecules that contribute to the SERS signal are also electro-active. Here again 
the advantage of using Cytc as model analyte becomes clear, since it exhibits, next to 
its high-resonance Raman intensity, almost full redox activity when adsorbed on 
carboxyl-functionalized electrode surfaces. However, even in a case when only a 
portion of the surface molecules is electro-active, SERS measurements can be used 
to determine the redox-inactive molar fraction. This fraction has then to be treated as 
a factor in the denominator of Eq. 3. Secondly it is assumed that all molecules in the 
area of the laser spot are actually seen in the SERS spectrum. This is not necessarily 
true, as, due to the nanostructured surface, some molecules might be shielded from 
the laser light. Therefore, in the given calculation, REF is possibly underestimated.
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 Determining Electron Transfer Pathways 
in Bio-Electrocatalysis

In section “Nanostructured Multilayer Electrodes” of this chapter, the redox chemistry 
between a protein and a nanostructured electrode was investigated by SERR 
spectro-electrochemistry. The same technique can also be applied to enzymatic 
systems in which electron transfer processes are coupled to an catalytic reaction. 
Understanding the interplay between catalytic substrate conversion and charge 
transfer in such enzyme/electrode complexes is of high interest for development of 
biosensors and biofuel cells. To get efficient substrate conversion, the enzyme has 
to be bound to a functionalized electrode surface in a way that first the catalytic 
reaction is not altered and second the electrons, which are produced or consumed in 
the catalytic reaction, are transported very fast from and to the electrode. This 
requires finding an appropriate electrode functionalization that prevents enzyme 
denaturation and that promotes a closed electron transfer pathway from the catalytic 
center to the electrode.

Although for each enzyme optimum conditions have to be found individually, 
certain immobilization strategies have shown great potential. One established 
procedure is done by covalent binding of the enzyme to the support via a specific 
single amino acid residue, such as a surface-exposed cysteine. While this immobi-
lization strategy certainly gives the highest control over enzyme orientation, it 
strongly restricts its mobility on the surface. Alternatively electrostatic attraction 
can be used for immobilization if the enzyme exhibits a significant dipole moment. 
While this strategy lacks the defined orientation of the enzyme on the surface, it 
allows the enzyme to maintain some flexibility. This flexibility can work in favor of 
the charge transfer kinetic as the enzyme is capable of having different orientations 
on the surface over time.

Electrochemistry is a strong technique in order to determine electron transfer 
and catalytic turnover rates. It is however silent to inactive species on the surface. 
Furthermore structural information of the redox or catalytic center that would help 
to understand the mechanism of electron transfer and substrate conversion cannot 
be extracted by applying electrochemistry. This information is given by SER(R) 
spectroscopy, which on the other hand is not capable to determine overall catalytic 
efficiency. Therefore, only the combination of both methods allows drawing a 
comprehensive picture of the processes that take place at the electrode/enzyme 
interface.

Additional insight is given by time-resolved (TR)-SER spectroscopy. Hereby the 
Raman measurement is coupled to a trigger event like a change in applied potential 
or addition of substrate [33]. The schematic setup of such a TR-SERS measurement 
is drawn in Fig. 4a. As the time resolution is much smaller than the accumulation 
time needed to obtain one SER spectrum, the reaction has to be triggered repeatedly. 
In this case laser light accesses the probe only in a short time interval after a defined 
delay time to the trigger event.
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Whether the catalytic center itself can be analyzed via SERRS depends strongly 
on its optical properties. While some cofactors such as flavins and hemes do have 
strong absorbance (and therefore high RR signal intensity) in the visible light 
region, many others such as Fe-Ni or molybdenum (Mo) catalytic centers do not. 
The latter ones are consequently not accessible by SERR spectroscopy.

Fig. 4 (a) Schematic setup of a time-resolved SERR measurement conducted after a defined delay 
time with respect to substrate addition or change in potential. (b) SERR spectrum of hSO before 
and after addition of sulfite. (c) Cyclovoltammogram of hSO on amino-functionalized electrodes 
under low-(trace a) and high-(trace b) ionic-strength buffer conditions. (d) SERR spectrum of 
MBH before and after addition of H2 which shows the reduction of the heme due to H2 splitting. 
(e) Cyclovoltammogram of MBH on a functionalized electrode demonstrating catalytic activity of 
the immobilized enzyme. (f, g) Mechanistic schemes of the electron transfer pathway of hSO and 
MBH on electrodes. In the first case electron transfer via the heme is a requirement for catalytic 
activity; in the second case it is not (Adapted with permission from Sezer et al. [35], Copyright 
2010 Royal Society of Chemistry and Sezer et al. [37], Copyright 2011 American Chemical 
Society)
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However, catalytic activity strongly depends on fast supply and removal from elec-
trons to and from the catalytic center. In many enzymes heme-containing subunits 
fulfill this task. For the majority of enzymes, the electron transfer pathway and kinet-
ics are altered when immobilized on a solid electrode. As a consequence catalytic 
turnover of the enzyme might stop although the catalytic center is still intact. SERR 
spectro-electrochemistry can simultaneously probe catalytic turnover currents with 
structural changes of the heme cofactor and is thus able to determine electron transfer 
pathways on electrodes for complex enzyme systems. This will be demonstrated in 
the following on the two enzymes human sulfite oxidase (hSO) and the membrane-
bound hydrogenase (MBH) trimer from Ralstonia eutropha. In both enzymes the 
electron transfer pathway goes via a heme subunit under physiological conditions. 
However, their behavior on electrodes is quite different.

 Human Sulfite Oxidase (hSO)

Sulfite oxidases (SO) catalyze the oxidation of sulfite to sulfate and play an essential 
role in sulfite detoxification of living organisms. In biotechnology SO/electrode 
systems can be used as sensors for sulfite detection in food and wine [34]. The 
human sulfite oxidase (hSO) consists of three domains, one harboring a catalytic 
molybdenum (Moco) center and a second one that contains a heme cofactor. The 
third domain is used for dimerization. The Moco and heme domain are loosely con-
nected via a flexible loop. This flexibility allows the heme domain to transiently 
bind to the Moco domain and to take up one of the electrons that are generated dur-
ing sulfite oxidation. The domain then desorbs and binds, again transiently, to an 
external redox partner. This redox partner would be Cyt c under physiological con-
ditions and a functionalized electrode in a biosensor. The process is then repeated 
for the second electron.

SERR spectroscopic investigations of hSO on amino-functionalized nanostruc-
tured silver electrodes show a strong Raman signal that exclusively depicts the 
vibrational fingerprint of the heme cofactor [35]. The strongest SERR intensity is 
obtained using a low-ionic-strength buffer solution (10 mMTris), which indicates 
that a high amount enzyme is immobilized on the surface under this condition. 
The electrochemical response, however, is weak as no catalytic currents can be 
observed in the presence of sulfite (Fig. 4c trace a). This observation suggests that 
the electron transfer pathway is at some point interrupted. Potential-dependent 
SERR spectroscopy shows that the heme can be fully oxidized and reduced as a 
function of applied electrode potential. Therefore, interruption of electron transfer 
does not occur between the heme and the electrode. On the other hand the heme is 
not reduced in the presence of sulfite under open-circuit conditions. This observa-
tion strongly indicates that the intramolecular electron transfer pathway between 
Moco and heme domain is not established once the enzyme is immobilized on the 
electrode surface.
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The situation changes drastically if the ionic strength of the buffer solution is 
increased. Efficient catalytic turnover is then observed in the presence of sulfite 
(Fig. 4c trace b), concomitant with reduction of the heme under open-circuit poten-
tial measured with SERRS (Fig. 4b). Here the heme reduction can be identified by 
a shift of the v4 vibration from 1372 cm−1 (oxidized heme) to 1360 cm−1 (reduced 
heme). The overall SERR intensity is decreased but can be regained by going back 
to low ionic strength. This demonstrates that the enzyme is not desorbed at high 
ionic strength. However, the interaction between the heme domain and the electrode 
is weakened such that it is able to switch between a conformation close to the 
electrode and a conformation close to the Moco domain as illustrated in Fig. 4f. 
Only when this flexibility is maintained, a closed electron pathway from the cata-
lytic center to the electrode is established.

 The Membrane-Bound Hydrogenase (MBH)

Immobilization strategies cannot be easy generalized and adapted to other enzyme/
electrode systems. A good example is in this respect the membrane-bound hydrog-
enase trimer from Ralstonia eutropha (MBH). This enzyme consists of three subunits. 
A large hydrogenase subunit harbors the catalytic bimetallic [NiFe] core. A second 
subunit contains three iron sulfur clusters acting as an electron relay unit. The third 
subunit anchors the enzyme to the membrane and ensures electron transfer between 
the hydrogenase dimer and the quinone pool of the respiratory chain via two sepa-
rated heme cofactors. MBH/electrode complexes are very promising candidates for 
hydrogen biofuel cells especially since they are able to work in the presence of 
oxygen [36].

SERR spectra of the MBH trimer adsorbed on carboxyl-functionalized nano-
structured silver electrodes exclusively display the vibrational fingerprint the 
heme cofactor [37]. The high intensity of the SERR spectra suggests that the 
enzyme is bound to the electrode in an orientation where at least one of the hemes 
is close to the electrode surface. This is supported by a fast heterogeneous elec-
tron transfer between heme and electrode measured with time-resolved SERR 
spectroscopy.

Upon addition of H2 electrochemical measurements reveal a good turnover sig-
nal as shown in Fig. 4e. Furthermore SERR measurements at open-circuit potential 
clearly indicate a reduction of the heme (Fig. 4d). Although this scenario looks simi-
lar as in the case of hSO, there are clear differences regarding the electron transfer 
pathway on electrodes. Using potential-dependent SERR spectroscopy, the redox 
potential of the hemes is determined to be at −0.3 V (vs. Ag/AgCl). If one takes a 
closer look at Fig. 4e, it can be seen that catalytic turnover starts already at a more 
negative potential. At this potential the hemes are still reduced and therefore not 
capable to participate in the electrocatalytic electron transfer pathway. This leads to 
the conclusion that for the immobilized MBH, the electron transfer pathway can 
either go via the heme cofactors or directly from the hydrogenase dimer to the elec-
trode. The two pathways are illustrated in Fig. 4g.
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 Determination of Turnover Rates

Quantitative determination of catalytic turnover rates from cyclovoltammic current/
voltage scans is derived by the following equation [32]:

 
k

I

A n Fcat
cat

cat
=

× × ×
lim

G  
(4)

Ilim refers to the maximum catalytic current obtained in an experiment where mass 
transport is not the rate limiting step. A is the surface area of the electrode as defined 
in section “Calculation of Raman Enhancement Factors.” As already mentioned 
determination of A is highly uncertain for nanostructured surfaces as the surface 
roughness factor f is not known. This problem can again be solved by concomitant 
measurements of the redox transition under nonturnover conditions and applying 
Eq. 2. By replacing Γcat with Γa from Eq. 2 the following equation is derived, in 
which all variables are experimentally accessible:
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The only requirement to make Eq. 5 valid is that all catalytic active molecules have to 
be also redox active. This assumption is not necessarily true, as demonstrated by the 
hSO measurements under low-ionic-strength conditions. It is however possible to 
extract this information directly from SERRS measurements as here the molar fraction 
of redox-inactive and catalytically inactive molecules can be determined, respectively.

 Conclusions

In this chapter it was shown how electrochemical methods can be used to create unique 
nanostructured surfaces that are suitable platforms for SER spectro- electrochemistry. 
Upon designing multilayer silver-metal or silver-metal oxide electrodes, SER spec-
troscopic investigations of analytes on non-plasmonic supports become possible. 
At the same time the electrochemical response of redox proteins attached to the 
outer overlayer film is not altered with respect to single-layer silver electrodes.

By the combination of surface-enhanced Raman spectroscopy with electrochemical 
analysis, insight into the structure-function relation of enzyme/electrode systems can 
be given. The specific spectroscopic analysis of a heme cofactor in a complex enzyme 
system gives insight into the electron transfer pathway of enzymes on electrodes used 
for electrocatalytic applications. In the case of hSO/electrode systems, electron transfer 
over the heme domain is essential for its functionality as a biosensor. In contrary bio-
electronic devices using the MBH trimer as biocatalyst also can establish an electron 
transfer on the electrode that shortcuts the pathway over the heme subunit.
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Abstract
Introduction of nanostructure into electrochemistry has been widely confirmed
to succeed in the performance enhancement. The morphology control of electro-
chemical material has become a key to the combination of electrochemistry and
nanoscience. Normally, it is not easy to realize the regular structures in nanoscale
by self-organization for all materials. This must rely on the well-understood
properties of the desired material. The crucial control parameter of morphology
should be recognized first. In this case, the design of fabrication approach can
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fix a direction. For the electrochemical material, application normally requires
the immobilization on electrode surface. Therefore, in situ formation methods
are more appreciated. Here in this chapter, two different kinds of electrochemical
materials – Prussian Blue, an inorganic complex compound, and Ni(en)3Ag2I4, a
hybrid material – served as examples to describe the nano/microstructure con-
trol of crystal growth by the targeted design of novel preparation approaches.
Focusing on the different issues of structure control, different synthesis
techniques have been developed to reach the goal. According to characteriza-
tions, these self-organized nanostructures can obviously increase the electro-
chemical performance of original materials which exhibits the meaningful and
useful functions for the nanostructure self-organization that relied on this tar-
geted design of fabrication approach.

Keywords
Self-organized structure • Fabrication design • Electrochemical materials •
Performance enhancement

 Introduction

As an important subject in chemistry, electrochemistry still keeps its activity in
scientific development. Currently, one hot topic and strong tendency of electro-
chemistry is the knowledge cross with other fields [1, 2]. Optical [3], physical [4],
magnetic [5], and structure chemistry [6] can all be employed in the new inspira-
tion of electrochemistry development, while the basement of this big fusion
should require the “powerful” materials, which own excellent performance, vari-
ous abilities, and easy production. Of course, not all electrochemical materials
can satisfy the above requirement with birth. According to recent researches in
material science, morphology control, especially in nano/microscale, is an effec-
tive strategy for the performance improvement [7, 8]. Meanwhile, the introduc-
tion of nano/microstructure into electrochemistry has widely started to show its
energy to push the advance of application [9, 10]. However, the structure control
of electrochemical materials is always a challenge for the combination of electro-
chemistry and nanoscience. Lots of traditional techniques of material synthesis
cannot satisfy the demands of microstructure creation; hence, the targeted design
of novel preparation method for the structure control should generate with
requirement.
Normally, new design of fabrication approach should follow the characters of

materials. Not all materials can easily self-organize their regular structures in
nano/microscale. Therefore, for the consideration of structure control, it must
rely on the well study of the material which is aimed to synthesize. The crucial
parameter of morphology control should be recognized first. In this case, the
design direction of fabrication approach can be determined. For electrochemical
materials, they are normally immobilized on electrode surface for usage [11]. 
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Accordingly, in situ formation methods are often appreciated. Electrodeposition is
a very common method in electrochemical material synthesis [12, 13]. Through the
control of deposition current, potential, electric quantity, or electrolyte composition,
some substances can self-form various nanoshapes. Like gold, the structures of
nanoflower, nanosheet, and nanorod have already been obtained [14, 15]. But
many materials are not suitable. Hence, new inspiration should be aroused.
Surely, as abovementioned, innovation should follow the inherent principles

of targeted materials. In this chapter, two different types of materials – Prussian
Blue (PB), an inorganic complex compound [16], and Ni(en)3Ag2I4, a hybrid
material [17] – served as samples for analysis. Due to some reasons, both of them
cannot easily in situ form regular structures on support surface in nano/microscale
(shown in Table 1). Here, we provide a new design route to solve the above prob-
lems on the regular growth of these materials. Then the advantages of these novel
approaches were demonstrated to exhibit the importance of approach design
for self-organized nano-/microstructure. According to the success in structure
control, these strategies are promising to be extended for morphology control and
nano-/microsynthesis of electrochemical materials.

 The Defect Analysis of Material Growth

 Rapid Reaction Rate of PB

PB, iron hexacyanoferrate, was initially served as a dark blue pigment [21]. Its unit
cell is a face-centered cubic structure. Only Fe, C, and N are the three elements that
construct its cell structure (Fig. 1). In iron atoms located at the vertices of the cube,
C and N construct the edges. Specially, the neighbor Fe atoms own different
valances which can provide a natural electron transfer channel for electrocatalysis
[22]. However, before a long time, it is just applied as a dark blue pigment. Till the
1980s, because of its high electrocatalytic ability and low operation potential, PB
began to be used in the fabrication of modified electrode [23]. Compared with other
electrode materials, its morphology is really hard to control which caused the rare
self-formation of regular nano/microstructure. This has already become one obstruc-
tion for its performance development.
PB formation is mainly dependent on the reaction between Fe3+ and [Fe(CN)6]4−. 

The related equation is shown as follows:

 
4 33

6

4

4 6 3
Fe Fe CN Fe Fe CN+ -

+ ( )éë ùû ® ( )éë ùû  (1)

Table 1 The common preparation methods of PB film

Prepared approach Microstructure Time consumption References

Self-assembly Round nanoparticle Slow [18]

Electrodeposition Microparticle Medium [19]

Chemical deposition Irregular Rapid [20]
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As shown in Fig. 2, this reaction rate is considerably rapid. Although the fast
synthesis rate is benefited to the large-scale preparation, it will cause the difficult
control of PB structure. Electrochemical materials, usually, should be modified on a
substrate for application. Crystal growth on a support normally requires two steps
[24]: one is the formation of crystal nucleus on some active sites; the other is the
continuous growth around the formed nucleus. Commonly, the first step is more
time consuming, belonging to the control step [25]. Meanwhile, it was also the
basement for the further crystallization process. Therefore, its distribution and
structure are essential to the final state of modified materials. Rapid growth could

Fig. 1 Unit cell of PB

Fig. 2 The instantaneous reaction process between FeCl3 and K4[Fe(CN)6] solutions

Z. Chu et al.



1037

produce two results: (1) abundant nucleuses rapidly and chockablock formed on the
initial crystal growth and (2) tight growth space of crystal that can limit the ade-
quate morphology growth which could lead to amorphous shapes. Therefore,
according to the above description, two strategies can be designed:

1. If the whole PB formation rate can be reduced during the film preparation, the
amount of PB nucleus will decrease to provide a free space for the regular
crystallization.

2. If the crystallization behavior can occur only on some partial sites, it will also offer
a relaxed environment and sufficient crystallization source for crystal growth.

 Overlarge Size of Ni(en)3Ag2I4

Ni(en)3Ag2I4 is a hybrid material constructed by coordination center Ni(en)3 and
ligand Ag2I4. This substance is first synthesized in 2008 [17]. In its structure, AgI
chains served as a cage to pack Ni(en)3 molecules (Fig. 3). Owing to the existence
of AgI, this material is of semiconductive behaviors which can be prepared as an
electrode material.
Different with PB, the free growth of Ni(en)3Ag2I4 will obtain the quite big crystal.

Under the room temperature and normal pressure, the size of single crystal can
reach millimeter (Fig. 4). As well known in electrocatalysis theory, surface area of
one material is very important to determine the electrochemical performance [26]. 

Fig. 3 Cell structure of Ni(en)3Ag2I4
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Too large size of single crystal will directly decrease the surface area of prepared
film which leads to the lack of active sites for target reaction. Besides, the immo-
bilization of material on support will also meet challenge if the size is too big.
Therefore, if this material is expected to apply in electrochemistry, its size should be
required to change smaller.

 The Strategies of Structure Control

According to the abovementioned, both PB and Ni(en)3Ag2I4 encounter the same
problem: how to control their structures to satisfy the requirements of electrochemi-
cal applications. However, due to the different types of these two materials, the
solutions should be separately considered and designed as Fig. 5.

Fig. 4 Digital photo of
Ni(en)3Ag2I4 single crystal

Fig. 5 The scheme of structure control design for PB and Ni(en)3Ag2I4

Z. Chu et al.
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 Reduction of PB Reaction Rate

As the above analysis, PB formation between reactive solutions is too rapid. To solve
this problem, the principle of chemical reaction rate should be first comprehended.
In the terms of reaction kinetics, the description of reaction rate has already been
summarized by a classical equation [27]:

 
r kc c k cA
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where r represents one reaction rate; aA and aB represent the reaction order of compo-
nents A and B, respectively; CA and CB are the concentrations of substances A and B,
respectively; and k is the kinetic parameter of this reaction.
According to this equation, we can recognize that under the same reactive envi-

ronment, the lesser the concentration of reactants, the slower the whole reaction
rate. Now, the problem has altered to the reduction of the reactive concentration per
unit time.
One common treatment is decrease of reactive solution concentration. Traditional

PB preparation technologies, such as electrochemical deposition [28] and chemical
deposition [29], both belong to rapid synthesis approaches. Although the reactive
solution concentration can be reduced, the whole formation period is still very fast.
Tremendous decrease may be possible, but not realistic. The concept of reactive
concentration is description of the reactive molecule amount per volume. Therefore,
from another understanding, decrease of the molecules per unit time to participate
in this PB reaction process can also realize the goal.
If we presume the solution is a big collection of molecules, cutting half volume

of original solution will obtain 50 % molecules. Ideally, through the continuous
separation of solution volume, the satisfied amount can be harvested. Naturally,
fog is consisted of numinous droplets with microsize to suspend in air [30]. 
Compared with rain, the size of fog droplet is much smaller. With this inspiration,
if we change the reactive solution to “fog” in lab, the slow reaction rate may be
expected.
Aerosol is a suspension of fine solid particles or liquid droplets in a gas [31]. 

It satisfies the requirement of the above hypothesis. Therefore, we designed to cre-
ate the lab “fog” by aerosols for the formation of PB film-modified electrode.
Ultrasonic vibration can be used to disperse the reactive liquids as microdroplets.
Fe(CN)64− and Fe3+ small aerosols with fewer molecules are then successively
sprayed onto metal substrate for reaction. In this process, the aerosol volume can be
greatly expanded, so the average amount of aerosol reached on electrode surface is
very few. Moreover, due to the light weight of aerosols, they can suspend in the air
which effectively avoids the influence of gravity for the uniform adsorption on sub-
strate. Hence, it can eliminate the over-rapid formation of PB caused by the partially
high concentration of reactive solution. According to the above characteristics of
this method, the reaction rate is promising in realizing the reduction which is attrib-
uted by the fewer molecules in reaction per unit time.

31 Self-Organized Nano- and Microstructure of Electrochemical Materials…
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 Partially Rapid Crystallization of PB

Based on the description in the section of defect analysis, another way to realize the
regular growth of PB is the control of partial crystallization. However, the common
PB preparation methods, such as electrodeposition, chemical deposition, or self-
assembly [32], are all uniform growth behaviors. The obtained film only exhibits a
homogeneous state for every site of surface. Hence, if we want to break this uniform
preparation, an extra force will be introduced to impel the crystal rapid accumulation
on partial regions. It should be noticed that this force cannot be strong; otherwise, the
whole film morphology will be totally changed instead of partial stimulation.
According to the reaction mechanism of PB which relies on the combination of

cation Fe3+ and anion [Fe(CN)6]4−, electric field may be an effective force to affect
the common growth rule. The intensity should be weak to avoid the global influence.
Besides the extra force, the selection of main synthesis approach must be carefully
considered. Chemical reaction, electrodeposition, and self-assembly are the most
applied preparation methods for PB-modified electrode. Ranking on the basis of
particle size, self-assembly can obtain the smallest PB crystal to benefit the enhance-
ment of performance. Moreover, due to the weak electric field intensity we adopted,
if the reaction time is too rapid, the effects of external force may be hard to function.
Consequently, we developed an electric field-assisted self-assembly to fulfill the PB
preparation for its regular structure formation.
However, the amount of PB crystal nucleus prepared by self-assembly will still

be huge. If all these cores keep the same distribution style at the beginning growth,
the introduction of extra force will be useless for realization of partial rapid crystal-
lization. Therefore, the key to success is how to produce different nucleus deposi-
tion environments on partial sites of substrate.

 Increase of the Ni(en)3Ag2I4 Crystal Nucleus

The problems of crystal growth to PB and Ni(en)3Ag2I4 are opposite: with PB, we
hope that its crystal can sufficiently grow on some sits; but to Ni(en)3Ag2I4, we pre-
fer the limited and minified crystallization. Accordingly, strategies of preparation to
these two materials should be distinguished.
At the beginning growth of crystal, nucleus formation is essential to donate the

basement for the further crystallization. Normally, the size of completely grown
crystal of electrode material is related to the amount of nucleus which initially
formed on the substrate. More nucleuses can reduce the amount of accumulation
source for each crystal to result in smaller size. However, this objective is not easy
to be realized. Due to the newborn of this material, its preparation method is rare.
According to literature reports, till now, only solvent thermal method can be applied
to obtain the Ni(en)3Ag2I4 crystals. But this approach is mainly specific to powder
synthesis instead of film; therefore, the amount and distribution of nucleus can
hardly be adjusted during the whole process.

Z. Chu et al.
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Since there is inability to minify crystal size through its free growth, an extra
force can be also considered to introduce for the intervention of crystallization
stage. As noted, electrochemical material is often immobilized on support electrode
or other substrates for application. According to lots of researches, the surface state,
such as roughness and element composition, is confirmed to be really important for
the morphology, structure, and manner of crystal growth. Hence, maybe the surface
modification method is possible to endow some functions of substrate for the in situ
limited growth of Ni(en)3Ag2I4 crystals.
Ni(en)3Ag2I4 is composed by the complexation of Ni(en)32+ and AgI2−. Element

Ni has already firmly combined with ethylenediamine (en); comparatively, Ag can
more easily interact with some strongly electronegative group. Meanwhile, for a
convenient application, formed crystal should be adhered on substrate surface.
Accordingly, the modification agent can be selected to own both interaction abilities
between substrate and Ag element. Normally, in the nano/microstructure control,
metal substrate can make a promotion of the regular morphology formation [33, 34]. 
Here, the design scheme is clear: modifying an agent on metal support which owns
the ability to strongly link metal and AgI2−. In the process of reaction between
Ni(en)32+ and AgI2−, this agent can preferentially catch a large amount of AgI2− as a
reactive site; then partial Ni(en)32+ will complex around these first arrived mole-
cules. According to the adjustment of modified agent concentration, the nucleus
quantity can be expected to be controlled.

 Purposed Development of Novel Fabrication Method

 Aerosol Deposition Approach for Nanocubic PB Formation

 Methodology Process
On the basis of the above conception, the preparation scheme of aerosol prepara-
tion has been designed and illustrated in Fig. 6. Different with the direct reaction
between K4Fe(CN)6 and FeCl3 solution of traditional preparation methods, devel-
oped aerosol deposition approach adds an extra step before reaction: transfer from
reactive liquids to aerosols. 1.7 MHz frequency of ultrasonic vibration is implied
to generate aerosols. In this experiment, we selected a bare platinum (Pt) electrode
as a growth bed for aerosol adsorption. Due to the special interaction between Pt
electrode and C atoms from K4Fe(CN)6 molecules, K4Fe(CN)6 was prior to be
injected into an airtight container for free absorption on the substrate. Since the end
of first injection, FeCl3 aerosol was subsequently deposited to react with the already
combined K4Fe(CN)6 molecules. In this process, environment temperature and
deposition time are control parameters of PB film synthesis. According to our pre-
vious study [35], deposition time is mainly affected by the amount of PB surface
concentration and temperature determines the final structure of PB crystal. In this
chapter, we mainly focus on the importance of new method design on purpose
for the realization of self-organized nanostructure to electrochemical materials.
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Accordingly, the next contents are related to the comparisons of traditional and
novel fabrication approaches on micromorphology and electrochemical properties
dominated by nano/microstructure.

 Nano/Microstructure Investigation
For convincing illustration, we selected electrodeposition approach which is mostly
applied in PB film preparation as a contrasted method. In order to ensure the similar
synthetic conditions, the following measures should be adopted:

1. Both preparations apply the same types and concentrations of reactive solutions.
2. The substrate electrodes are both bare Pt electrodes with the same pretreatment.
3. Both deposition temperatures should be kept the same.
4. The final surface concentrations of PB films prepared by two methods should be
nearly same.

The process of electrodeposition is referred to Karyakin’s work [36]. Pt electrode
was dipped into the mixture solution of 0.1 M K4Fe(CN)6 and FeCl3 with 0.01 M
HCl. Cyclic voltammetry (CV) scanning between −0.2 and 0.4 V was implied for
deposition. Since 300 cycles were fulfilled, the peak current value of PB film was
nearly same with that prepared by aerosol deposition approach. The preparation
parameters of aerosol deposition were set as 6 h, 35 °C. According to the calculation
of PB surface concentrations, electrodeposition and aerosol deposition can, respec-
tively, form 6.54 and 6.82 nmol · cm−2 PB on Pt electrode surface. In this case, mor-
phology comparison stands the equal altitude.
From the shapes of CV results (Fig. 7a), two PB electrodes prepared by different

methods were different. The potential differences of redox peaks were 0.078 and

Fig. 6 Designed process of aerosol deposition approach for PB formation

Z. Chu et al.
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0.039 V for electrodeposition and aerosol deposition, respectively. This parameter
can reveal the electron transfer rate of redox material, and the higher value illus-
trates stronger transfer resistance. Consequently, the result can be obtained that PB
film prepared by aerosol deposition will own better ability for electrochemical signal
transport. Due to the similar amounts of PB films, the difference of electrochemical
performances should be attributed by the change of microstructures. Therefore, it is
necessary to investigate the surface morphologies of two PB films.
As shown in Fig. 7b, c, although the synthesis solvents, material composition,

and surface concentration are all the same, the morphologies of PB fabricated by
different approaches caused absolute distinction. PB film synthesized by aerosol
deposition can self-organize a cubic shape on Pt substrate, and the size of PB
cube is ca. 250 nm. Besides some cubic crystals, other sites of film were com-
posed of lots of edges which come from imperfect crystals. On the contrary, if

Fig. 7 CV diagrams (a) and FESEM images (b), (c) of PB-modified Pt electrodes, respectively,
prepared by aerosol deposition [32] and electrodeposition

31 Self-Organized Nano- and Microstructure of Electrochemical Materials…
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electrodeposition was adopted as the synthesis method, instead of regular structure,
only nanoparticles can be observed on electrode surface. Moreover, the irregular
aggregation behavior is more obvious. What causes these differences?
Compared with the preparation time of two methods, whole aerosol deposition

should consume 6 h, and CV electrodeposition only required half an hour. In the
terms of crystallography [24], rapid reaction will tend to harvest more crystal nucle-
uses. The application of rapid preparation method such as electrodeposition could
lead to the tight distribution of nucleuses on substrate in the beginning. With the
prolonging crystallization, each crystal obtains slow growth due to the average dis-
tribution of reacted formation onto lots of nucleuses. Therefore, the film surface is
consisted of the accumulation of small-sized particles. But this is a difficult manner
in realizing the regular structure which is mainly caused by the too many nucleuses
at the first step. Differently, aerosol deposition initially provides a slow formation
rate, which relies on the transformation of liquid to aerosol. Thus, the formation of
PB nucleuses on substrate will be much fewer. Under the same prepared amount,
the formed PB can assemble, surrounding only few cores. This can ensure abundant
space and amount to crystallize for regular structure formation. Thereby, the above
evidences can demonstrate the importance of targeted approach design to morphol-
ogy construction.

 Performance Characterization
In order to exhibit the advances of regular nanostructure, electrochemical perfor-
mance was characterized. PB possesses a strong selectivity to and electrocatalysis
abilities for hydrogen peroxide (H2O2) [37]; hence, it is widely named “artificial
hydrogen peroxidase” by researchers [38]. Here, we also applied H2O2 as a target
to evaluate the competences of PB films prepared by aerosol deposition and
electrodeposition.
Electrocatalytic performances of PB films were tested by chronoamperometry

technology. In this detection process, H2O2 solution of 0.01 mM concentration was
continuously added in the phosphate buffer system at each 80 s. Electrochemical
workstation can receive the current signal from PB-modified electrode by reduction
of H2O2. According to linear fitting of chronoamperometry data, the sensitivity
which is an important parameter to represent the electrocatalytic ability can be cal-
culated. As shown in Fig. 8, for each addition of H2O2, the response strength of
regular PB nanostructure based film is much higher than irregular PB film. For more
clarity, the values of sensitivity were analyzed as 1309.8 and 535.5 μA·mM·cm−2 
for PB films synthesized by aerosol deposition and electrodeposition, respectively.
Obviously, the performance of PB electrode fabricated by aerosol deposition owns
more than two times of that prepared by electrodeposition. However, the amounts
of PB formed on substrates were nearly same, but the electrocatalytic abilities were
really different. This should be attributed to the structure differences. According to
the mechanism analysis in H2O2 catalytic reaction, for nano- or micromaterials, the
edges of their geometrical configurations can arouse stronger catalytic activity than
other sites [39]. Compared with the morphologies of PB films in Fig. 6b, c, aerosol
deposition can produce a film surface with abundant nanocubes. They own perfect

Z. Chu et al.
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and long edges to consist an ideally regular structure. Besides the cubes, the ground
film is consisted of lots of broken crystals which can also provide edges. On the
contrary, there are rare regular crystals with no edges for the film prepared by elec-
trodeposition. Therefore, not only the actively catalytic sites decrease, but also the
surface area is much less. Surely, the performances of PB films prepared by differ-
ent approaches are quite different.
According to the above evidences, the advantages of performance enhancement

by regular nanostructure formation have been shown.

 Electric Field-Induced Self-Assembly for Double Structures  
of PB Formation

 Methodology Process
With the purpose of rapid crystallization on partial sites, a novel PB preparation
strategy – electric field-induced self-assembly – has been designed. The main syn-
thesis process is similar as the traditional self-assembly method [40]. Two reactive
solutions of K4[Fe(CN)6] and FeCl3 were prepared as certain concentration and pH
value, respectively. Deionized water was served as a cleaner to remove the redun-
dant solutions after each dip-coating. The difference is the addition of electric field
generation system [41]. Bare platinum foil electrodes were selected as the electric
field producer. These two electrode surfaces are kept parallel to make the field line
vertical (shown in Fig. 9). Hence, reactive ions can move along the field direction
to arrive on electrode surface. The time of dip-coating in reactive solution was set
to 60 s which referred to our previous investigation results [32]. Since electrodes
finished the dipping following the orders K4[Fe(CN)6], deionized water, FeCl3, and
deionized water, a cycle has ended (Fig. 9). Normally, a whole preparation process
requires multiple cycles. The standard can be evaluated by the characterizations of
electrochemistry and microscopy technologies.

100

80

60

40

20

0

Aerosol Deposition
Electrodeposition

0.00 0.02 0.04 0.06 0.08
H2O2 Concentration / mM

Aerosol Deposition

Electrodeposition

Time / s

200 300 400 500

C
ur

re
nt

 / 
µA

C
ur

re
nt

 / 
µA

.c
m

−2

35a b

30

25

20

15

10

5

Fig. 8 (a) Chronoamperometry data of PB-modified electrodes prepared by aerosol deposition
and electrodeposition; (b) linear fitted diagram to chronoamperometry results
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 Nano/Microstructure Investigation
In order to realize the heterogeneous growth, initially, the substrate should be pre-
treated to provide the different environments for PB crystal nucleus formation. The
Pt electrode was repeatedly polished by a metallographic abrasive paper which can
cause a coarse surface for crystal deposition. As shown in Fig. 10, the roughness
state of polished substrate can be monitored by surface roughness measuring
instrument. Since the polishing finished, lots of “ravines” which will benefit the
formation and accumulation of crystal nucleuses can be produced on metal surface.
Meanwhile, in consideration of the regular distribution of formed crystals, a uniform
distribution of cavities is also preferable. According to the illustration in Fig. 10,
the average roughness of substrate surface is 0.12 μm. This depth is big enough to
promote the rapidly together assembly of numerous cores at the initial PB formation.
Oppositely, on the even sites, the formation of PB nucleus could be much slower
and fewer. Therefore, at the beginning, the distinction of nucleus growth occurs due

Fig. 9 Designed process of electric field-assisted self-assembly approach for PB formation

Fig. 10 The roughness characterization result of polished Pt electrode surface

Z. Chu et al.



1047

to the different growth environments. Moreover, under the stimulation of electric
field, this distinction will be widened with the prolonging deposition cycles. Electric
field can arouse the travel of reactive ions. Crystal growth would like to stack on
already formed nucleus. Bigger nucleus can offer more combination sites for further
growth. Just like the snowball effect, the difference of crystal grown on coarse and
even surface will be more and more obvious; hence, hierarchical growth has hap-
pened. In order to demonstrate the above deduction, self-assembled PB films
induced by electric field or not were respectively characterized by FESEM. Here,
the applied field was weak – only 125 V/m – and the assembled cycles were kept the
same: 40 layers.
As shown in Fig. 10, introduction of electric field has brought a huge change of

PB film. Just using self-assembly, it obtained a uniform and smooth film surface.
This film is consisted of tight irregular particles with the size of ca. 50 nm.Moreover,
the boundary of each particle was vague, and the whole surface looks like an inte-
gral plane instead of fluctuation. However, if a lasting electric field was implied on
the preparation process, lots of regular cubes were observed on film surface, and the
size of each cube was ca. 1.5 μm [41]. The distribution of PB cubes was consider-
ably uniform. Every 5 μm distance, one cube was observed. During further magni-
fication of scanning area, besides the well-defined cubic structure, the bottom film
was very coarse. Small particles were aggregated toward the direction which was
vertical to the film plane, shown as a mastoid-like shape. These behaviors can dem-
onstrate that electric field owns an oriented force to push the crystal growth along
its field direction. This external force can also enhance the hierarchical growth of
PB crystals due to the coarse substrate by pretreatment. Surely, compared with the
PB-modified electrode prepared by traditional self-assembly, performance must
be changed because of this special film structure.

 Performance Characterization
According to lots of literatures, the morphology of material surface owns essential
effects on electrochemical performance [42, 43]. Therefore, firstly, CV method was
also adopted to investigate the series of film properties. As shown in Fig. 12a, the
redox peaks of PB prepared by electric field-induced self-assembly were much
higher than that without electric field. This result illustrates that the introduction of
extra force can obviously promote the formation of PB. Under the lasting function
of electric field, reactive ions will crowd around the work electrode which leads to
the sudden enhancement of partial solution concentration to accelerate its reaction.
The potential differences of redox peaks which belonged to electric field addition or
not were, respectively, calculated as 0.0919 and 0.0483 V. Only from the above
data, it seems that using electric field excitation will cause an increase of electron
transfer resistance. However, in consideration of the possible catalysis improve-
ment due to the high PB amount, which preparation approach owns better perfor-
mance should be further investigated.
The current responses to H2O2 additions for two types of PB films were charac-

terized by chronoamperometry tests. Relevant results were linear fitted as the rela-
tions between current signals and H2O2 concentration (Fig. 12). For each addition of
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H2O2, the current change for electric field preparation was much higher than only
self-assembly preparation. According to calculation, the sensitivities of PB films syn-
thesized with electric field or not were 1774.3 and 568.2 μA·mM·cm−2, respectively.
The performance has increased nearly two times since the assistance of electric
field in preparation. It ismainly dependent on the special film structure inmicroscale.
As in the analysis of film morphology in Fig. 11, the electric field-prepared film
owns double different structures of PB: one is microcube and another is nanomastoid.
The regular shape has been demonstrated to own strong catalytic ability because of
the perfect edge supplement. These structure-based crystals can produce huge
amount of catalytic electrons. Moreover, the isolate distribution style of each cube
can also increase the contact area of H2O2 solution as the function collection of
many microelectrodes obviously improve the total performance. It should be noted
that the ground film was consisted of lots of nanomastoids which were of large sur-
face area. In this case, the produced electrons can be rapidly transferred through this
wide route. Although the electron transfer resistance of electric field-prepared film
was stronger according to the above CV results, however, higher catalytic ability
can not only offset this deficiency but also improve the performance effectively.
Hence, the final H2O2 detection performance has obtained tremendous enhancement.
Also, the targeted design of novel preparation approach has shown its effective and
important function in the control of self-organized PB nano/microstructure.

Fig. 11 FESEM images of PB films prepared by (a), (b) self-assembly and (c), (d) electric field
(125 V/m)-induced self-assembly
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 Interfacial Molecule-Induced Approach for Hybrid Film Formation

 Methodology Process
In order to realize the reduction in crystal size of Ni(en)3Ag2I4, different with the
demand of PB structure controlling, novel synthesis strategy should be again designed.
The preparation of hybrid mother solution of Ni(en)3Ag2I4 was described in the

literature [17]. As a brief, silver nitrate dissolving in DMF was firstly added to a
saturated potassium iodide solution in DMF to yield a KAgI2 solution. Subsequently,
nickel nitrate was added to 1,2-ethylenediamine solution and then mixed with the
as-prepared KAgI2 solution. To realize the controllable regulation on the crystal

Fig. 12 (a) CV diagrams of
PB films prepared by electric
field-induced self-assembly
and just self-assembly; (b) 
chronoamperometry results
of the above two PB films
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size, here special treatment toward the hybrid solution was needed. Firstly, the
hybrid solution was heated to 80 °C and kept for 72 h and then 100 °C for 24 h and
finally cooled slowly to the room temperature. This process was essential and criti-
cal during the synthesis of the desired hybrid crystals, during which more crystal
nucleuses were prone to form in the mother solution and simultaneously the growth
rate of the nuclei was improved, forming a facile method to regulate both the dimen-
sion and growth rate of the hybrid crystal.
Organic self-assembled monolayers (SAMs) were usually introduced to modify

the various substrates for the growth of versatile films [44–51]. According to
reported research [49–51], the interfacial SAMs might provide more binding sites
for crystal nucleus formation and even induce the orientation growth of formed
film, which was mainly dependent on the conformation of the adopted molecules.
Here, a SAM of 1,4-benzenendithiol molecule was adopted on account of its inter-
action abilities with Ag and metal substrate [52–54]. One thiol group at the terminal
of the SAM was anchored onto the gold substrate via the covalent bond of Au–S,
while the other thiol group would bind with Ag ions in the hybrid crystal. Moreover,
another advantage of this method should be noticed: because of the rigid backbone
and relatively aligned monolayer, the thiol groups at the free terminal of SAM were
deemed to orient along some special orientation [47, 48]; therefore, the binding of
thiol groups with Ag+ may enable crystal growth only along this direction to give
the highly oriented hybrid films, which is schematically illustrated in Fig. 13.
To get a satisfactory SAM on the substrate, prior to the modification of SAM,

the gold substrate was polished with alumina slurry and then sonicated with water
and electrochemically cleaned by cycling between −0.3 and 1.55 V versus Ag/AgCl
in 0.5 MH2SO4 until a stable voltammogram was obtained [55]. The freshly cleaned
gold substrate was immersed in the 1,4-benzenendithiol solution for different times
(e.g., 2, 6 and 10 h) to form the SAM, which was followed by rinsing with sufficient
ethanol.
Finally, after removing the sediment formed in the hybrid mother solution using

the filter membrane, the SAM-modified gold substrate was dipped vertically into
the hybrid filtrate and crystallized at 25 °C.

Fig. 13 Schematic illustration for the oriented growth of hybrid films on gold substrates modified
with the SAM of 1,4-benzenendithiol. Hybrid crystals grow in some special direction
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 Nano-/microstructure Investigation
As shown in Fig. 14a, a highly integrated and uniform hybrid film, composing of
the hexagonal prism-shaped crystals, was obtained on the gold substrate which
was modified with 1,4-benzenendithiol SAM. For this oriented hybrid film, only
two Bragg reflections indexed as (002) and (004) exhibited in the XRD profile
(Fig. 14c), indicating that the fabricated hybrid film was highly oriented along the
crystallographic [001] direction. In contrast, in the absence of 1,4-benzenendithiol
SAM, bare gold substrate was also served for the growth of hybrid films. As shown
in Fig. 14b, the hybrid film with disordered structure was obtained on the bare gold
substrates. In this condition, it is noted that crystals with various sizes were
obtained, and particularly the XRD showed no crystallographic orientation
(Fig. 14d). It is obvious that the formed SAM induced the oriented and uniform
growth of hybrid film on the gold substrate.
In addition, the effect of surface coverage of SAM molecules on the morpholo-

gies of hybrid film was explored. With the gold substrates immersing into the
SAM solution for 2, 6, and 10 h, respectively, the density of hybrid films changed
accordingly (Fig. 15). A sparse hybrid film was created when the assemble time
was short (Fig. 15a), while a crowded filmwas harvested with a longer time (Fig. 15c). 

Fig. 14 (a), (b) FESEM images of hybrid films with distinct morphologies grown on the gold
substrate modified with 1,4-benzenendithiol SAM and bare gold substrate, respectively. (c), (d) 
X-ray diffraction patterns corresponding to (a), (b)
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With an appropriate assembled time of 6 h, homogenous film was prepared with
each microcrystal separated at a proper distance (Fig. 15b).
In summary, as the thiol groups at the free terminal of 1,4-benzenendithiol SAM

molecules are considered to orient along [001] [50, 51], the binding of thiol groups
with Ag ions in hybrid crystals will enable crystal growth only along the [001] direc-
tion to produce the highly oriented hybrid film. Meanwhile, a higher coverage of the
SAMwould provide more binding sites, resulting in the formation of a more crowded
hybrid film. In addition, because there was no agent on the bare gold substrates to
induce the oriented growth of hybrid crystals, disordered hybrid films were obtained
subsequently. Particularly, in the absence of the binding strength arising from the
SAM, the obtained hybrid film was prone to peel from the gold surfaces.

Performance Characterization
Due to the unique framework of [Ag2I4]2−, two novel properties of photons and elec-
tronics were observed on this hybrid material. One fascinating feature was a high
chemical stability in a phosphate buffer saline (PBS, pH=6.8–7.8), and the other was
a robust resistance to ambient illumination compared with silver iodide (AgI).

Fig. 15 Hybrid films with various distribution densities on the gold substrates modified with the
1,4-benzenendithiol solution for (a) 2 h, (b) 6 h, and (c) 10 h, respectively
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Especially, due to regularly distributed Ag ions on the hybrid framework, the hybrid
material could serve as a promising platform for the controllable immobilization of
thiolated biomolecules through Ag–S bonds [56], which would facilitate the distribu-
tion of biomolecules.
Based on the proposed hybrid films, a label-free electrochemical DNA biosensor

was prepared for the assay of an oligonucleotide fragment of the avian flu virus
H5N1. As expected, a significantly ultralow detection limit of 5 pM with a wide
linear response from 10 pM to 10 nM, as well as excellent selectivity, good regen-
eration, and high stability, was observed on the highly oriented hybrid film (Fig. 16). 
As a comparison, in the condition of disordered hybrid film, a higher detection limit
of 4 nM was obtained. It needs to be mentioned that the highly oriented hybrid film
would improve immobilization sites for the DNA probes, provide more interfacial
reaction positions, and make the molecules easily accessible to electrode surface.
All these merits of the highly oriented hybrid film contribute to the ultrasensitive
detection limit of 5 pM, which is significantly lower than that of disordered hybrid
film. The above performance results exhibit the function promotion arising from
microstructure adjustment through the approach design [57].

 Conclusions

In this chapter, focused on the difficulties of traditional methods in nano/micro-
structure control for electrochemical materials, we have provided a strategy route to
break this obstruction:

1. Investigating the main reasons of hard structure control of each electrochemical
material

2. Searching the key parameters which strongly affect the structure establishment
in material preparation

Fig. 16 (a) SWVs of 5 mM K3Fe(CN)6 at the oriented hybrid film after hybridization with com-
plementary targets of various concentrations. (b) Calibration sensitivity curves based on hybrid
films with different morphologies fabricated on bare gold substrates and SAM-modified gold sub-
strates, respectively
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3. Designing a novel synthesis approach to control the above key parameters
4. Checking the nano/microstructure by microscopy techniques
5. Demonstrating whether the performance enhancement is related by the realization
of self-organized regular structure

Based on the above route, two different types of electrochemical materials, PB
and Ni(en)3Ag2I4, were served as samples to confirm the validity of this design
thought. In consideration of the different challenges for each material on self-
organized structure, different strategies were adopted. Two novel PB preparation
techniques, aerosol deposition approach and electric field-induced self-assembly,
both successfully realized the goals of structure control based on the principles of
reduction of whole reaction rate and acceleration of partial crystallization rate,
respectively. For Ni(en)3Ag2I4, we applied an interfacial molecule-induced approach
to also obtain an oriented microarray structure with size minimization. All as-
prepared PB or Ni(en)3Ag2I4 films of regular nano/microstructure exhibited a supe-
rior electrochemical performance which further confirmed the powerful advantage
of this design concept in material structure control. We expect that the description
of this chapter can give an assistance and inspiration in the microstructure design
and synthesis approach development of materials.
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 Introduction

The control of the dimensions of the particles and layers of particles in the 
electrochemical processes is one of the basic problems of the various forms of elec-
trochemical technologies. The transition from macro- to micro- and nanotech-
nologies is one of the basic tendencies in the development of the modern 
electrochemical dimensional treatment methods. The nucleation phenomenon plays 
a dominant role in the nanotreatment processes.

The nucleation phenomenon, i.e., the formation of the nuclei, has long been stud-
ied in kinetic of phase transition.

Some stages in the development of nucleation theory are presented in this table:

Thermodynamic theory of nucleation Gibbs-Thomson theory 1878: [1–4]

Phenomenological theory of phase transitions [5, 6]

Kinetic methods for calculating the time of nucleation [7, 8]

Spinodal decomposition in theory of nucleation [9–13]

The statistical theory of nucleation [14–18]

The modern theory of nucleation [19–29]

Along with the particular technological problems of the resolution of the electro-
chemical questions are the general approaches to these problems, specifically the 
evaluation of the possible dimensions of the particles and their connection with the 
energetic parameters. The present article is devoted to this question. While the first 
part of the article is a critique of the conventional thermodynamic approach, in the 
second part we point out the place of this approach and find its applicability 
criterion.

The thermodynamic approach makes it possible to obtain simple relations for the 
radius of the resulting particle rс (see, e.g., [2, 10, 19, 22]):

 r Kc ~ s m/ ,  (1)

where σ is the specific surface energy, μ is the change of the volume energy in the 
phase transition (i.e., upon nucleation), and K is the particle shape factor. The 
account for the fact that nucleation may take place on the surface of the macro-
scopic body (or in the pores) reduces in essence the change of the constants in Eq. 1 
with account for the phenomenological interaction with the surface of the macro-
scopic material. The further generalization of the results of the thermodynamic rela-
tions to the evaluation of the kinetic phenomena reduces to the introduction of the 
equilibrium thermodynamic potential (with account for formula (1)) and the use of 
fluctuation theory. However, in this approach the connection between the thermody-
namic concepts and the possible statistical model that is able to include the nucle-
ation phenomenon is not a priori evident.

At the present time the computational methods are used for the statistical mod-
els, but in this case it is difficult to generalize the solution and compare it with the 
general thermodynamic relations.

Therefore, the analytic solutions are of interest particularly since – in our view – 
the solution of a similar problem has already been examined [14–16] where the 
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two-dimensional model that is not completely adequate for our problem was 
examined) and is not entirely suitable for the discussion of the physics on the sub-
ject phenomenon. Therefore, the first objective of the present work is to derive the 
analytic expression that is convenient for the discussion and to draw conclusions 
relating to the corresponding nucleation problem. We shall show that the division of 
the total system energy into the free surface energy and the bulk (corn) energy for 
the phenomenon of the nucleation of the micro- and nanoparticle – as was done in, 
e.g., [22] – is quite arbitrary. This division is easily realized for the systems with 
induced anisotropy.

The manuscript is structured as follows:

After the introductory (section “Introduction”), the first goal of the present work is 
to find an explicit form of the energy, which allows describing the nucleation 
phenomenon in a particle of cylindrical shape, taking into account the surface 
anisotropy effect. We find an analytical solution for the corresponding nonlinear 
differential equation of the nucleation phenomena for this kind of object (section 
“Statistical Model of Heisenberg”).

The theoretical model for thermodynamic description is developed in section 
“Thermodynamic Analyze,” where the phase transition of the system is obtained.

The results of the theory for the case of electrochemical nucleation were adapted in 
section “Electrochemical Nucleation.”

The solutions of problems for the electrochemical kinetics are presented in section 
“Kinetic of the Nucleation Process.”

Finally, the conclusions are summarized in section “Conclusions.”
Connection for this theory with the well-known Cahn’s theory and theory of micro-

magnetism is considered in “Appendix A.”

 Statistical Model of Heisenberg

The classic Heisenberg statistical model [31] for the two-dimensional space that is 
applicable for the study of the magnetization of the ferromagnetic material is exam-
ined in [15, 16]. It is known that the statistical sum and the thermodynamic func-
tions are determined by the local energy minima. We shall use the variation 
minimum of the exchange energy (in the cylindrical coordinate system) that was 
proposed in [15, 16]. As in [14–18], we examine the low-temperature limit, when a 
single energy minimum is significant. Therefore, we replace the variation of the free 
energy by the variation of the energy of statistical model (we will discuss this 
approximation later):

 
d rò ( ) =T dV 0,  (2)

where the integration is performed over the entire volume V of particulars, and

 
T Ar q r r q r( ) = ( )éë ùû + ( )éë ùû{ }-/ sin ,2

2 2 2¢
 (3)
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where ρ = r/rс is the radial relative coordinate (0 < ρ < 1), θ(ρ) is the angle between 
the cylinder axis and the magnetization vector (π < θ(ρ) < π ⁄ 2), and A is the exchange 
interaction constant.

Next, let us analyze the energy form in cylindrical particle, and this is done by 
adding an anisotropy term; using the azimuthal symmetry, the energy in this case 
can be modeled as

 
E A ar q r r q r( ) = ( )éë ùû + [ ] ( )éë ùû{ }/ / sin ,2

2 2 2¢
 (3a)

 
a B A2 1= -( ) / ,  (3b)

where B is anisotropy constant and a is anisotropy coefficient such that a = 1 repre-
sents the previous case with no anisotropy [14, 17, 18].

We will examine the nucleation of cylindrical particle. The exchange energy Т(ρ) 
is the classic analog in the Heisenberg model for the two-dimensional space (see, 
e.g., [15, 16]). Then it follows from Eq. 2 and from Eqs. 3, 3a, and 3b the known 
nonlinear equation that was presented, specifically, in [14–18]:

 
q r q r r r q r q r² ¢ -( ) + ( ) [ ] ( )( ) ( )( ) =/ / sin cos .a

2
0  (4)

To find the nonhomogeneous equation that physically describes the nucleation 
process, we specify the corresponding boundary conditions in the form

 
q r p r( ) = =, ;0  (5)

 
q r p r( ) = =/ , .2 1  

The analogous problem of determining the magnetization of the infinite cylinder 
was examined previously [14–18], for which was found the analytic relation:

 
tg aq r/ / .2 1{ } =  (6)

We note that the mathematical solution (6) of Eq. 4 was also examined in [14–18]. 
This solution is termed the two-dimensional soliton (instanton) and is a rare example 
of the exact analytic solution of the nonlinear problem.

It is possible to obtain the analytic solution which corresponds only qualitatively to 
the real situation. We see that the obtained solution does not make it possible to clearly 
divide the system energy into the surface energy and the corn energy. We can consider 
that this conclusion will remain valid with the increase of temperature. Consequently, 
the simplified model corresponds to the real physical problem. We shall examine the 
general case that corresponds to the exactly solvable model. This case makes it possible 
to find the criterion that determines when the expression (1) can be used adequately.

We should present calculation of change of the angle θ(ρ) from the beginning of 
coordinates (when ρ = 0) of a cylindrical particle up to its surface (when ρ = 1).

If a = 1, there is no anisotropy in the system, and if a > 1, the external anisotropy 
exceeds the exchange interaction in the system.
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To compare the results for the other cases, we present the calculated variation of 
the angle θ from the coordinate origin (where ρ = 0) of the cylindrical particle to its 
surface (where ρ = 1) (Fig. 1). At the same time (Fig. 1), let us limit our examination 
to the four extreme cases of the value of the parameter a:

• Curve 1 corresponds to the case a = 1, which relates to the condition when micro-
scopic anisotropy is absent.

• Curve 2 corresponds to the case a = 10, which refers to the condition when micro-
scopic anisotropy exists.

• Curve 3 corresponds to the case a = 50.
• Curve 4 corresponds to the case a = 100.

It is shown that, in the first case, it is difficult to isolate the volume of the cylinder 
that can be attributed to the surface energy, since the angle θ changes smoothly as a 
function of ρ. In the second case, when a = 10, a range can be chosen whose volume 
amounts to the surface energy of the cylindrical particle. In the framework of our 
qualitative examination, we may conventionally assume, for example, that the sur-
face layer is counted from the value ρ ~ 0.8. We make this choice using only the 
shape of curve 2, which sharply decreases for ρ > 0.8. The volume that defines the 
surface energy of the cylinder amounts to 30 % of the cylinder’s volume in this case. 
When a increases further (e.g., by a factor of a = 100), this volume will amount to 
less than 10 % of the cylinder’s volume.
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Fig. 1 Function θ(ρ) is the angle of an inclination to an axis of the cylinder (which characterizes 
energy of a particle in Heisenberg model from the given relative radius ρ coordinates of a particle). 
(Insets: 3D behavior of θ(ρ) as a function of a and ρ (See Ref. [32]))
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 Thermodynamic Analyze

Formation of nanocrystalline structures often depends on the kinetics of nucleation, 
which includes the thermodynamics of the nucleation process only as an elementary 
step or event. Thus, the most probable dimensions of the particles in various physico-
chemical processes are also determined from simple thermodynamic relationships 
involving thermodynamic functions. The nucleation is usually treated as a chain of 
sequential processes; that is, the N-atom nucleus is formed by addition of one atom 
to an (N–1)-atom cluster or by a similar loss of atoms. Constructing a chain of 
Markov processes, one can obtain the Einstein-Fokker-Planck equation. It is worth 
noting that the kinetics of the nucleation process is simplified if the process of 
steady-state nucleation is examined. Therefore, we shall further evaluate the possi-
ble dimensions of the particles and their correlation with the energy parameters 
using the simple ideas and thermodynamic functions.

The further analysis of the kinetic phenomena reduces to description where the 
velocity of the steady-state stream of formation of the most probable nuclei is 
defined (see, e.g., [1, 4, 17, 18, 22]).

 
J E kTa~ - ( ){ }exp / ,  (7)

where Ea is the activation energy of formation of the nucleus. The solution of the 
problem further reduces to calculation of the magnitude of the activation energy.

Further, we assess how the free energy changes from the center of the particle to 
its surface. The layer-by-layer change of the free energy of the cylindrical particle 
is examined. The formula for the energy that was used to obtain the equation of 
motion has the form

 ò ( ) ~E dV Ear ,  (8)

the integration is performed over the entire volume V of particulars, and

 
E T Wr( ) = + ,  (9)

where Т is determined in Eq. 3 as exchange energy and W is determined as anisot-
ropy energy in particle:

 
W A a= -( ) ( )2 2 21 2sin / .q r r  (10)

We use the solution (8) in Eq. 9, and we find:

 

T W
Aa a

a
+ =

+( )é
ë

ù
û

4

1

2 2

2
2

r

r r
.

 

(11)

Let’s analyze solution (11). In that specific case in the absence of anisotropy 
(when a2 = 1), the energy of the surface of the cylinder (at ρ2 = 1) goes to A. In a case 
when a2 > 1, the energy on a surface of the cylinder goes to Аa2. It is possible to 
consider given parameter Аa2 as the value of the surface energy.
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The energy inside a particle goes to a nonzero value if a2 = 1. On the other hand, 
the energy is equal to zero if a2 > 1.

This characteristic for gap of the free energy can correspond to phase transition, 
when in the system is infinitesimal anisotropy. For example, such phase transition 
can give the result in jump of change of distribution of magnetization. The similar 
phase transitions are known. But in this case, it is received here as a result of the 
simple analytic solutions.

The energy Т of particles, in a case a2 = 1, is equal А.
With decrease of sizes of particles, the role of a thermodynamic condition of the 
surface is increasing. The given elementary model showed that in this case it 
becomes difficult to separate thermodynamic functions on the volumetric thermo-
dynamic functions and the surface thermodynamic functions (Fig. 2). It is possible 
to do so using large parameter a2 > 10.

 Electrochemical Nucleation

Then we shall investigate the physical nature of the examined anisotropy for the 
case of electrochemical nucleation. This anisotropy can be generated using the dis-
tribution of the electric field in the near-electrode layer, because the dimensions of 
the particles become comparable with the dimensions of the layer.

Let the surface energy change dσ in the nucleation process according to the 
Lippmann equation (see, e.g., [33]).

 - =d qds j,  (12)

a
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Fig. 2 Density plot 
(diagram of levels) for the 
function of energy 
dependence E(ρ)/A (see 
Eqs. 9 and 11) as a 
function of ρ (relative 
radius of a particle) and a 
(anisotropy coefficient) 
(See Ref. [32]) (Insets: 3D 
behavior of E(ρ)/A as a 
function of a and ρ)
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where q and φ are the charge and potential on the surface. In the approximation of 
the constant capacity of the double layer C, (Fig. 3)

 q C= j.  (13)

Note that the constant capacity C is defined as the specific amount, namely, the 
capacitance per unit area as the surface energy σ is defined as the amount of energy 
per unit area.

We obtain for the change in the surface energy σ

 
s j= ( )C

2
2/ .  (14)

The change in the surface energy may be due to the anisotropy introduced above. 
Actually, if we assume that an asymptotic functional dependence occurs,

 
j r( ) ~

2 21 / ,  (15)

and then we finally obtain for the parameter a2 [17]:

 a r Cc
2 2/ / ,~  (16)

where rс ~ 10−6 cm is the equilibrium value of the nanoparticle dimension.
For the evaluation, we take the specific capacity of a mercury electrode that is 

known to be on the order of

 
C CGS/ / .2 10 17~ ( ) ( )cm  (17)

If we confine ourselves to the upper limit of the rс value, then we obtain for the 
evaluation of the dimensionless quantity a

 a ~10.  (18)

Fig. 3 Scheme of the 
physical process of 
nucleation for the case of 
electrochemical nucleation. 
The charge is q, and the 
potential is φ. The capacity 
of the double layer is C. 
The relative coordinates of 
the particle are ρ, and the 
radius of particle is rс
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 Kinetic of the Nucleation Process

In the framework of the case where formula (7) is applicable, we obtain the formula 
for the velocity of the steady-state stream of formation of the most probable nuclei 
in the form (8)

 
J Aa D a V r kTc~ - ( )( ) ( ){ }exp / ,4 2 0

 (19)

where V is the volume of the particle

 

D a d
a

a
( ) =

+( )é
ë

ù
û

ò
0

1 2

2
2

1
r r

r

r r
.

 

(20)

Let us consider the physical meaning of formula (20).
The factor

 A a B2 ~  (21)

represents the specific surface anisotropy having an electrochemical nature, and D(a) 
is the fraction of the surface with the given energy. Thus, we come to formula (7), 
where Ea has the meaning of the surface energy of the nanoparticle (which dominates 
in the given case).

Let us discuss a possible variant of a high-temperature limit of the kinetic theory. 
With increasing temperature, the processes of growth of a stationary stream due to 
temperature transitions over the energy barrier of the instanton are possible. The 
energy height of the barrier (by analogy with magnetic problems) is defined in this 
case by the magnitude:

 
E BA rcr( ) ~ ( )½ / .  (22)

For the potential energy of our topological model, we introduce instead of the 
usual time a complex time inversely proportional to the temperature (see, e.g., [35]). 
Then we obtain for the evaluation of the potential barrier

 
W BA V r kTc~ - -( ) ( ){ }( )1 0exp / .

½

 (23)

The aforementioned effects will be significant only for temperatures

 
k T BA V rc c

0 ~ ( )½ / .  (24)

Note that, precisely for such temperatures, the conditions of steady-state kinetics 
are violated. In this case, no activation processes that we do not examine here will 
define the kinetics of the process. Therefore, we shall consider the following expres-
sion to be the applicability criterion of Eq. 16:

 T Tc
0 0< .  (25)
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It is clear from simple physical reasons that, when the temperature approaches 
the critical value Tс, the formed particles will begin to be destroyed owing to the 
effect of the temperature. To assess Tс, we assume that the volume of the particle V 
is on the order of 10−24 m3, and

 
E V E Jm Jma / .~ ( ) - - - -r varies from to10 102 3 1 3  (26)

Then we obtain for Tc
0 the range from 1000 K to 10000 K.

Note that an increase in the energy of anisotropy also leads to an increase in the 
temperature limit at which the conditions of steady-state kinetics are not yet 
violated.

 Conclusions

• With the decrease of the dimension of the particles, the thermodynamic state of 
its surface will play an ever-increasing role in describing its thermodynamic 
state. This article presents a very simple model that shows it becomes more and 
more difficult to separate the thermodynamic functions into the corn and surface 
functions.

• The physical consequence of the examined model reduced to the fact that this 
separation into the corn energy and the surface energy can be performed if the 
anisotropy in the system significantly exceeds the close order isotropic exchange 
interaction.

• The concept of the energy of anisotropy, introduced in theory, acquires the mean-
ing of the electrostatic energy of a double electric layer. With the aim of creating 
equilibrium particles with nanodimensions, the electric capacitance of the sys-
tem where such a particle is grown should be increased.

• For the velocity of the steady-state stream of motion of the most probable nuclei, 
we obtain a result that allows us to suggest that effective control is possible over 
the nucleation process by electrochemical methods.

In this research, as far as was possible, we did not examine the mathematical 
problems. For the mathematical problems discussed in other publication, see, e.g., 
[15, 16, 36–38]. Here, the greater attention was given to the application of these 
mathematical solutions to the problems of electrochemical nucleation.

A weakness of the examined model is that a cylindrical symmetry was used 
instead of a spherical symmetry. We had to examine only examples of very elon-
gated nanoparticles whose geometrical properties can be well approximated by an 
infinite cylinder. Actually, such particles are often obtained by an electrochemical 
method. Synthesis of sphere-shaped particles is also interesting. However, in the case 
of spherical symmetry, it is not possible to obtain analytical solutions, but we put 
forward hope for the development of approximate numerical calculation methods.

Topological ideas applied, in particular, in the theory of field and elementary 
particles and later in the theory of magnetism have led to a number of new results in 
statistical physics as well. One of these results obtained in this article is a fundamental 
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solution in the form of instanton waves (see, e.g., [15, 36–38]), which are used to 
describe the physical behavior of magnetic materials (see, e.g., [14, 39]) and nem-
atic liquids.
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 Appendix A

Considered above theory is connected with the well-known theory of Cahn and Co. 
(see, e.g., [9, 10, 12, 13).

As you can see, the free energy of the theory of Cahn represents the following form:

 
F c B f c A c c cx y z( ) ~ ( ) + ¢( ) + ¢( ) + ¢( )é

ëê
ù
ûú

/ ,2
2 2 2

 (27)

where c (meaning c(x, y, z)) is “concentration field,” as the generalized coordinate.
The variation F(c) gives the well-known equation, which was studied in a 

one-dimensional
case (see, e.g., [11]).

 
Ac cx

²+ ( ) =j 0,  (28)

where φ(c) = B fc′(c) – μ (μ is a Lagrange multiplier).
That gives for phase boundary in the form of Landau-Lifshitz domain wall with 

energy gap ΔE, where ΔE is proportional: [38]

 
DE BA~ ( )½  (29)

(see also from Eq. 22).
The above problem is mathematically similar to the problem of thin cylinder 

micromagnetism (see, e.g., [14, 39]).
The problem of finding the free energy for the more complex models in the 

future will be decided by asymptotic methods (see, e.g., [11, 30]).
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Abstract
Scanning electrochemical microscopy (SECM) translates the current generated
by an electrochemical reaction occurring at a tip electrode scanned across a sur-
face substrate into an image. SECM not only provides a simple electrochemical
image of the conductive and/or insulating substrate but also provides kinetic
information of the heterogeneous electron transfer reactions when the tip elec-
trode approaches the surface. Applications including biosensing have been
demonstrated. In this chapter, we will focus on recent advances in the application
of SECM toward the label-free detection of base pair mismatches in DNA.
Despite having nanometer dimensions, the base pair mismatches along a

DNA strand can be readily detected by SECM in an array format through
exploiting the negative charge in the vicinity of self-assembled DNAfilms. The
response can be amplified using metal ions to enhance the discrimination
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between matched and mismatched DNA films. This simple strategy has been
used to probe the position of a single nucleotide mismatch, the type of the mis-
match, and hybridization position of complementary strand and even allows the
identification of various animal species.

Keywords
Scanning electrochemical microscopy • Impedance spectroscopy • DNA •
Mismatch • Surfaces • Biosensor

 Introduction

Scanning electrochemical microscopy (SECM) is a surface probe microscopic
(SPM) tool to study surfaces by electrochemical profiling of surfaces at submicron-
level resolution. Electrochemical profiling is monitoring an electrochemical reac-
tion between a biased tip and substrate in contrast to monitoring force in atomic
force microscopy and tunneling current in scanning tunneling microscopy. SECM
has been widely employed to study nonbiological and biological systems in research
areas ranging from corrosion science, catalysis and fuel cells, self-assembled mono-
layers, polymer coatings, transport through membranes and biological tissue, enzy-
matic reactions, high-throughput DNA biosensing, studying cell metabolism, and
monitoring immiscible interfaces such as gas/liquid interface. SECM also has
potential to be coupled with other analytical techniques such as surface plasmon
resonance [1] and atomic force microscopy [2]. This present chapter will provide a
brief overview of the principles and feedback modes of SECM operation followed
by a discussion of label-free DNA hybridization and mismatch detection by
SECM. There are a number of excellent reviews available that cover the theory of
SECM [3, 4]and its application to the study of biophysical and bioanalytical sys-
tems [5, 6], including the study of living cells and their metabolism [7].

 History of SECM

In 1986, the fundamental experiments by Engstrom et al. [8] and Liu et al. [9] on
using microelectrodes to probe diffusion layers and studying electrode surfaces
by scanning electrochemical and tunneling ultramicroelectrode microscope in
solution laid the foundation of scanning electrochemical microscopy. In 1989,
Kwak and Bard [10] framed a quantitative detail of the diffusion-limited current
at a UME as a function of the distance d above a macroscopic planar substrate
providing a theoretical description of (a) how the Faradaic current measured at the
tip can be a function of charge transfer properties of substrate, (b) the relationship
between the Faradaic current obtained at the tip and the tip-substrate distance, and
(c) the relationship between diffusion and homogeneous reaction kinetics in the
gap between tip and substrate.

M.H. Shamsi and H.-B. Kraatz



1075

SECM imaging is carried out either in generation-collection mode (GC) or in
feedback mode (FB). Because of the extensive use of feedback mode to study self-
assembled DNA films, we will focus on the principle and theory of FB mode here.

 Principle of Feedback Mode of SECM

Typically, a three-electrode assembly, consisting of a working, a counter, and a
reference electrode, is used (Fig. 1a) in which a biased ultramicroelectrode tip
approaches a substrate in presence of a redox-active mediator. The substrate can be
conductive or insulating. The current is generated by a diffusion-limited redox
reaction at the tip, i.e., R→O+ne−, thus generating a current. The current for a disk
electrode can be given as

 i nFDC ao¥ =4 (1)

where n=number of electrons/redox couple, F=Faraday constant, D=diffusion
coefficient of redox couple, Co=concentration of redox mediator, a=radius of the
disk electrode. The tip current (iT) follows the relationship when away from sub-
strate. When the tip approaches the substrate in micrometer steps using a piezoelec-
tric positioner, the diffusion-limited tip current (iT) either rises or falls, depending
on the charge transfer property of the substrate as shown in Fig. 1b–d. If the sub-
strate is insulating or electrochemically inert, the diffusion of the redox mediator to
the tip from bulk solution is physically hindered, causing a decrease of the current,
i.e., iT < i∞. If the substrate is conducting, the rate of reaction Eq. 1 can be controlled
by applying a suitable potential to the substrate. Otherwise, the potential of a con-
ductive substrate Es may be determined by the concentration of redox species in
solution without an external bias. For example, if the solution contains only the
reduced form of the redox species, most of the substrate surface, which is usually
much larger than that of the tip, is exposed to solution of R.According to the Nernst
equation

 
E E C Cs o r= + ( )0 RT nFln/ /  (2)

considering, Co~0, and Es – E0<<0, where E0=redox mediator standard potential,
thus all oxidized species reaching the substrate get reduced at the surface.
Since regeneration is faster at the distance almost equal to the radius of the tip,

between the tip and substrate, it causes a sharp increase in the current, i.e., iT > i∞. 
This mode of SECM is called “feedback mode” where a positive feedback (iT > i∞) 
is observed on conducting surfaces and a negative feedback (iT < i∞) is observed
on insulating surfaces. The rate of heterogeneous electron transfer on the tip
electrode is the main parameter that can be extracted from these measurements.
There may be one of three ways to regenerate a mediator, i.e., (a) electrochemical
conversion of the mediator at the substrate, (b) an enzyme-catalyzed reaction
with consumption of O and regeneration of R, or (c) local oxidation of the
substrate by O.
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Fig. 1 (a) Block diagram of SECM cell connected to a stepper and piezoelectric controller and
bipotentiostat. Piezoelectric positioning and applied potential can be controlled through software
in PC. (b) SECM tip away from substrate in redox mediator solution. When a positive potential is
applied, a reducing agent in solution diffuse to the UME tip and get oxidized. (c) When UME tip
approaches close to a conductive substrate, the oxidized redox mediator is regenerated at the sur-
face of substrate resulting in positive feedback. (d)When UME tip approaches close to a insulating
substrate, the diffusion of the redox mediator is hindered due to a very small distance between the
tip and substrate as well as oxidized redox mediator is not regenerated at the surface of substrate
resulting in negative feedback
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 Approach Curve and Tip Geometry

When the tip is laterally – from the z-direction – brought to the surface with high
accuracy of submicron steps, iT is recorded versus lateral distance d and plotted as
“approach curves” (Fig. 2a). The approach curves represent the normalized current
IT = iT/iT,∞ as a function of the normalized distance L = d/a, where d is the distance in
z-direction and a is the radius of disk electrode. The normalized approach curves are
independent of the mediator concentration Co, the diffusion coefficient D, and the
tip radius a. The normalized tip current IT depends only on L and the thickness of
the insulating sheath forming thin-layer cell with the substrate. Simulations account-
ing for the amperometric response due to diffusion of the redox species around the
corner of the insulating sheath for a wide range of tip-substrate distances over con-
ducting and insulating substrates were performed for several RG ratios [11]. 
Diffusion around the edge of the insulating sheath was found to have a pronounced
effect on the approach curves. The tip currents for conducting substrates were found
significantly dependent on the tip geometry. The resolution of the image largely
depends on the geometry and size of the ultramicroelectrode probe tip. Sharper tips
(i.e., lower RG) produce a high-resolution image and a high feedback current.
SECM also provides quantitative information about the electrochemical properties
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feedback current. (b) Sketch of numerical simulation to extract the reaction kinetics between the
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cally assuming irreversible substrate kinetics, in dimensionless form using the finite element
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of species. Chem Comm 47:1431–1433 with permission from The Royal Society of Chemistry)
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of a surface through numerical modeling. The simulations are useful to assess the
SECM topographical sensitivity, i.e., the rate of change of tip current with respect
to tip-substrate distance, and spatial resolution, i.e., the ability of the microdisk
electrode to distinguish two conducting islands embedded in an insulating substrate.
A system under investigation can be numerically modeled using the dimensions
of the tip electrode, substrate, and the inter tip-substrate distance, which provides
kinetics of the reaction under observation by simulations as shown in Fig. 2b. 
Theoretical approach curves can be obtained by setting the boundaries and varying
d in numerical simulation. Recently, COMSOL Multiphysics 3.5a software with
Chemical Engineering Module has been used to solve steady-state diffusion prob-
lems for SECM geometry by assuming irreversible substrate kinetics and using the
finite element method in dimensionless form [12, 13].
Numerical simulation allowed the calculation of theoretical approach curves for

different values of a dimensionless rate constant, Λ, which can be described as

 L= k a D0 / (3)

where k0=apparent rate constant, a=radius of the tip, and D=diffusion coefficient
of the redox mediator. In this case, the apparent rate constant accounts for the com-
bined contributions of electron transfer across the film and penetration of the redox
mediator into the film [14]. The diffusion coefficient for the redox mediator can be
obtained from Eq. 1 i nFDC ao¥ =4 . Experimental data modeled on the above
method allows evaluation of the apparent rate constants for electron transfer across
DNA films.
The tips in the range 5–25 μm have been widely used for biophysical application

along with the development toward submicron probes to study smallest possible
areas with high resolution. Traditionally, the SECM tip is prepared by heat sealing
of a metal wire having diameter in micron scale in a glass capillary under vacuum
(Fig. 3) followed by connection with external copper wire using silver epoxy on the
other side of the capillary. The size of the glass sheath surrounding the disk elec-
trode is reduced through manual polishing with rotating polishing pads using 3.0
and 0.05 μm alumina particles to minimize the electrode RG. The obtained tip elec-
trodes can be evaluated under microscope and tested electrochemically by perform-
ing cyclic voltammetry and SECM approach curves on conducting or insulating
surfaces. Following procedures carefully may allow obtaining tip electrodes with
RG value between 2 and 3. Nanometer- and submicron-sized tips can also be pro-
duced for the application of SECM-AFM by chemical etching of a metal wire fol-
lowed by insulator coating leaving the apex exposed. Mirkin and coworkers studied
the kinetics of fast heterogeneous ET reactions using flat Au nanoelectrodes by
SECM [15]. The rate of mass transfer by diffusion was varied by changing the tip
radius (a) and the tip-substrate distance (d); the kinetic parameters were found to be
independent of both a and d. The reaction kinetics were found dependent on elec-
trode material for some electroactive species, such as [Ru(NH3)6]3+, and indepen-
dent of electrode material for species such as ferrocene or ferrocenemethanol when
compared to Pt nanoelectrodes [15].
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 DNA Films and Self-Assembled Monolayers (SAMs)  
on Gold Surface

After providing a brief introduction to SECM, we next want to redirect the discus-
sion to the application of SECM for the study of thin films composed of deoxyribo-
nucleic acid (DNA). DNA is a biological polymer composed of nucleotide
monomeric blocks, which are linked through a phosphodiester linkage. There are
two purine bases, adenine (A) and guanine (G), and two pyrimidine bases, thymine
(T) and cytosine (C), which pair up in theWatson-Crick sense asA-T and G-C pairs,
resulting in the formation of two antiparallel strands of DNA. Deoxyribonucleic
acid has three different conformations,A, B, and Z. Under physiological conditions,
the most common conformational form is B-DNA, which is a right-handed helix
with a diameter of approximately 2.0 nm, a pitch of 10.5 base pairs (bp), and a sepa-
ration of 0.34 nm between two successive bases. The separation of the sugar-
phosphate backbone of the two antiparallel strands due to base pair stacks and
repulsion between anionic phosphate groups give rise to a pair of grooves, the minor
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Fig. 3 (a) Schematic depicting the catalytic electron transfer between the biased gold substrate to
the tip electrode through self-assembled DNA film via intercalated methylene blue and solution
based ferro/ferricyanide. MB is reduced by the electron transfer from the biased gold substrate and
then regenerated by donating electron to ferrocyanide which is reoxidized to ferricyanide on the tip
electrode. (b) Multiplexed SECM image and current profiles of a DNAmicroarray immobilized on
a gold disk substrate biased at −0.4 V containing 2 mM K4Fe(CN)6 and 2 μM MB. Both rows of
spots correspond to (1) ss-DNA, (2) complementary ds-DNA, (3) one base mismatch ds-DNA, (4) 
two base mismatches ds-DNA, and (5) three base mismatches ds-DNA (Reprinted with permission
fromWain A, Zhou F Langmuir 24:5155–5160. Copyright (2008) American Chemical Society)
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and major grooves, that runs along the length of the duplex. These grooves facilitate
base access for molecular recognition events. When DNA strands are immobilized
on gold surfaces through Au-S linkages, the footprint area occupied by a ds-DNA
strand on surface is about 3.14 nm2, neglecting the hydrodynamic volume, while the
length for a 30 base pair construct of ds-DNA is ~10.2 nm. A surface-immobilized
single-stranded or double-stranded DNA not only physically passivates the surface
but also makes the surface negatively charged due to poor shielding of the backbone
charge by monovalent cations. The presence of base pair mismatches in ds-DNA
can create significant distortions in the backbone structure. The presence of a mis-
match destabilizes a duplex relatively by 1.7–10.0 kcal/mol depending upon posi-
tion and type of mismatch as well as concentration of Na+ ions [16], consequently
lowering the melting temperature Tm [17]. The important parameters of different
conformers of double-stranded DNA are given in Table 1.
Self-assembly of DNA on gold surfaces is similar to organic self-assembled

monolayers (SAMs), therefore it seems appropriate to discuss SAM behavior briefly
in the light of SECM. Please note that DNAfilms lack the organization that is char-
acteristic to alkythiols including the tight packing of molecules. Organic SAMs
have been extensively studied by SECM. Steady-state measurements by SECM
eliminate problems associated with double-layer charging as well as contributions
due to oxide film formation and reduction. The small size of the tip and currents
minimizes problems of iR drop and allows fast mass transport to occur, which is
good for monitoring fast reactions [18]. Patterned SAMs on gold have been imaged
through the local inhibition of electron transfer [19–21]. Awell-packed nonconduc-
tive SAM covers the gold substrate and behaves like an insulator. Possible defects
in the monolayer can be readily detected by SECM due to a lower iT in the SAM-
modified gold region and high iT in the loosely packed areas or bare gold region.
A sharper tip, having a lower RG, provides high-resolution details by providing a
good contrast between SAM-covered areas and bare gold surfaces thus detecting

Table 1 Parameters of common conformers of double stranded DNA

Properties Z-DNA B-DNA A-DNA

Helical turn Left-handed Right-handed Right-handed

Length/residue (Å) 3.7 3.4 2.55

Pitch (residue/turn) 11.6 10.5 11

Rotation/residue −60○/2 bp 36.0○ 32.7○

Inclination of basepair towards axis 0.1○ 2.8○ 22.6○

Diameter (Å) 20

Foot print area (Å) 314

Destabilization due to single
mismatch (kcal/mol)

1.7–10.0

Parameter values adopted from P. Belmont, J.-F. Constant, M. Demeunynck, Chem. Soc. Rev. 30,
70 (2001); S. Neidle, Nucleic Acid Structure and Recognition, Oxford University Press,
New York, 2002
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the defects on the SAM-covered areas. The quality of the SAM can be evaluated
by following the reaction kinetics using approach curves. SECM can differentiate
the properties of terminally functionalized SAMs as a function of different chain
length, amount of protonation, or complex formation [22, 23]. SAMs can be neutral
or charged depending on the end groups, therefore a thoughtful selection of the
redox mediator is required to address a specific question since if the SAM is nega-
tively charged, then use of positively charged redox mediator will give an opposite
response on measuring current in contrast to negatively charged redox mediator.

 Multiplexed DNA Visualization of Hybridization  
and Mismatch Detection

Yamashita et al. [24] first time visualized DNA duplexes, poorly though, on gold
surface in microarray format (DNA spot ~300 μm) by SECM in the electrolyte con-
taining the intercalator ferrocenylnaphthalene diimide as a hybridization indicator.
The idea was to discriminate ds-DNA containing base pair mismatches from a
matched ds-DNAmonitoring the difference in the amounts of intercalation between
matched and mismatched duplexes. The study did not provide any quantitative
information or clear discrimination between matched and mismatched ds-DNA.
Zhou and coworker [25] demonstrated the DNAhybridization detection by stain-

ing the DNA spots with silver particles. The higher feedback current due to regen-
eration of [Ru(NH3)6]3+redoxmediator by silver particles confirmed the hybridization
event. They claimed achieving detection limit of 30 mol of target per spot, however
with poor imaging and significantly large microarray format~500 μm size/spot.
They also demonstrated the DNA hybridization detection through tip-induced oxi-
dation of guanine residues in the DNA molecules by generating [Ru(bpy)3]2+at the
tip electrode. Imaging of DNA hybridization via guanine oxidation is a label-free
approach. However, its oxidation is a destructive approach to discriminate between
guanine-rich and guanine-poor DNA [26]. This strategy may not be an attractive
way of detection for the samples lacking guanine bases. Subsequent studies
employed methylene blue (MB) as a redox-active DNA intercalator and ferrocya-
nide as redox mediator in solution to image DNA microarrays fabricated on gold
substrates (Fig. 4) [27]. The labeled approach involved catalytic regeneration of
intercalated MB, by tip-generated ferricyanide, which was electrochemically
reduced by electron transfer from the gold substrate. Subsequently, the feedback
current is used to extract the heterogeneous electron transfer rate constant for the
MB-intercalated DNA. In this work, they were able to discriminate between single-
stranded and double-stranded oligomers as well as mismatched ds-DNA.
In contrast to Zhou and coworkers’ insight of electron transfer through DNAfilm,

there is another view, which involves electron transfer through the DNA π-stack
from substrate to tip. It was postulated that the electrocatalytic cycle involving
the oxidation of leucomethylene blue (LB) by tip-generated [Fe(CN)6]3− proceeds
via long-range heterogeneous electron transfer mediated by the DNA π-stack.
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Disruptions in the DNAπ-stack due to a single-base mismatch or a basic site disrupts
the electrochemical catalytic cycle [28]. A similar approach was used in a study
reported by Gorodetsky et al [29] to probe long-range charge transfer through the
π-stack of DNA film containing the redox-active intercalator Nile blue (NB) cova-
lently attached at discrete sites along the individual DNAhelices. NB attached close
to the solution side of the film is involved in the catalytic regeneration of ferrocya-
nide present in solution. It is important to note here that there is conflicting data,
which will undoubtedly require further investigation of a possible DNA-mediated
charge transfer between redox probes and the electrode surface. The impact of small
defects in the SAMs as well as possible electronic conduction by hopping between
differently located intercalated redox species by intra- and interstrand exchange
need to be investigated. Since the biopolymer films are usually constructed of dense
monolayers, one may query as how hopping and tunneling mechanisms would
work, even though the redox signals measured are within a potential range where
DNA bases are neither reduced nor oxidized [30].

SECM tip
a b c d

Bulk Solution
0

I0 IAu IssDNA

IdsDNA

ss-DNA ds-DNAC3H9-SH

Fe(CN)6
4−Fe(CN)6

3−

Fig. 4 Scheme depecting repelling-mode SECM. (a) A diffusion-limited steady state reduction
current is recorded in [Fe(CN)6]3− solution at 0 mV (vs. Ag/AgCl) tip potential. (b) Recycling of
tip-generated [Fe(CN)6]4− to [Fe(CN)6]3− occurs with the SECM tip close to a propane thiol-
modified gold surface resulting in increase in tip current because of positive feedback redox
cycling. (c) Above a ss-DNA, tip-generated [Fe(CN)6]4− experience charge repulsion with the
oligonucleotide backbone causing a hindrance in diffusion of the mediator to the gold surface,
thus modulating the diffusion rate which decreases tip current. (d) Hybridization increases the
density of anionic phosphate groups leading to a further drop in tip current owing to enhanced
repulsion of the redox mediator molecules (Extracted from Turcu F, Schulte A, Hartwich G,
Schuhmann W Angew. Chemie (Int. Ed. in English) 43:3482–3485. John Wiley & Sons, Inc.
(2004))
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Turcu et al. [31] introduced an electrostatic approach, exploiting charge repulsion,
to visualize the surface-bound DNA hybridization process. The approach involves
exploiting the Coulombic interactions between a negatively charged solution-based
redox mediator, [Fe(CN)6]4−, and the backbone phosphodiester groups of the immo-
bilized DNA strands as shown in Fig. 5. Electrostatic repulsion between phosphate
groups of DNA and ferricyanide controls the diffusion transport properties of the
dissolved mediator to the gold surface at DNA-modified regions. The increase in the
density of the negative charge due to hybridization makes electrostatic repulsion a
sensitive method to visualize hybridization. The effects of different factors including
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probe and mediator concentrations, ionic strength, and tip-to-sample distance were
studied in a separate study [32]. The feedback mode is particularly versatile in
detecting hybridization events by exploiting biocatalytic reactions [33], signal
amplification through enzymatic reaction by labeling capture or target strand [34, 35],
and detecting surface-adsorbed matched and mismatched genomic DNA in a micro-
array format on polymer-coated carbon screen-printed electrodes [36].
Using the charge-repelling mode, Liu et al. [37] calculated the rate of electron

transfer across self-assembled DNA duplexes on gold surfaces in absence and
presence of Zn2+. In absence of Zn2+, the apparent rate constant for heterogeneous
electron transfer from a dissolved redox probe, [Fe(CN)6]3−/4−, to the gold surface
through ds-DNA was ~4.6×10−7 cm s−1, which increased to ~5.0×10−6 cm s−1 in
presence of the metal ion. The increase in rate constant was also observed with
noncomplexing Ca2+ and Mg2+ ions, which inferred that the binding of these cat-
ions facilitated the penetration of DNA film by the negative probe mediator,
thereby resulting in an increased redox signal. In contrast, cationic and neutral
mediators were found to be unaffected by the ds-DNA film. In a combined SECM
and impedance spectroscopy study in the presence of Zn2+ [38], Kraatz and
coworkers addressed several interesting and legitimate questions in the area of
DNA hybridization and mismatch detection. Diakowski and Kraatz [39] demon-
strated that repelling-mode SECM can detect the presence and position of A-C
single-nucleotide mismatches in unlabeled ds-DNA films, by monitoring change
in the amperometric feedback current in the absence and presence of Zn2+ (Fig. 6). 

Fig. 6 Scheme depicting the self-assembled ds-DNA on gold surface through Au-S linkage. Well
assembled and defect free layer resists the diffusion of the negative redox probe, by physical hin-
drance as well as negative charge repulsion, to reach the gold surface and get recycled, which
ultimately decreases the feedback current on tip. Defects in ds-DNA layer allow the redox media-
tor to diffuse through the film and give higher feedback current (Adapted from Diakowski P,
Kraatz H-B (2011) Towards the electrochemical identification of species. Chem Comm 47:431–
1433 with permission from The Royal Society of Chemistry)

M.H. Shamsi and H.-B. Kraatz



1085

The heterogeneous electron transfer rates were obtained by finite element method
to fit experimental approach curves to theoretical curves. The increase of the elec-
tron transfer rate constant (Table 2) in the presence of single-nucleotide mis-
matches was attributed to better penetration of the redox probe into the film. This
is rationalized considering that the presence of a mismatch causes localized dis-
tortion in the backbone of the DNA, which ultimately gives rise to defects in the
film (Fig. 7). The differences in feedback current and thus rate constants were
amplified between matched and mismatched ds-DNA after the addition of Zn2+. 
The discrimination of positions clearly demonstrates that ds-DNA films with sin-
gle-nucleotide mismatch at different positions possess different electrochemical
properties, presumably with respect to probe penetration. In a separate study
based on impedance spectroscopy and SECM, Shamsi and Kraatz found that
position of single-nucleotide mismatch is dominant over the type of mismatch.

Table 2 Apparent electron transfer rate constants determined in the absence and presence of Zn2+ 
(Values extracted from Diakowski P, Kraatz H-B (2009) Detection of single-nucleotide mis-
matches using scanning electrochemical microscopy. Chem Comm 45:1189–1191)

Strand k0/cm s−1 (No Zn2+) k0/cm s−1 (Zn2+ present)

Fully matched 3.52±0.24×10−5 7.03±0.3×10−5

Bottom mismatch 6.75±0.39×10−5 2.81±0.21×10−4

Top mismatch 9.98±0.47×10−5 1.26±0.28×10−3
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Fig. 7 Apparent rate constant (k0) with respect to the position of mismatches in the presence of
Zn2+ ds-DNA film. Error bars were calculated for at least three measurements. Solid circle (—)
shows fully matched DNA, dashed circle (—) represents barely distinguishable single nucleotide
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(Alam MN, Shamsi MH, Kraatz H-B (2012) Scanning positional variations in single-nucleotide
polymorphism of DNA: an electrochemical study. Analyst 137:4220–4225 with permission from
The Royal Society of Chemistry)
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This means that different mismatch types would give similar electrochemical film
properties on surface with the exception of those located in the center of the DNA
[40]. Most reported model studies involving mismatches involve the detection of
one or two well-defined single-nucleotide mismatches at one or two positions.
However, in a real sample, the analyst would be blind of the actual position or
nature of the mismatch. Therefore, Kraatz’s group decided to map out a single-
nucleotide mismatch in all 25 positions of a 25-mer ds-DNA bound to a gold
surface [41]. This systematic approach was expected to provide some insight as
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(Adapted from Shamsi MH, Kraatz H-B (2013) Electrochemical signature of mismatch in over-
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to the specificity and sensitivity of this approach. The results showed that ds-DNA
films containing single-nucleotide mismatch at the extreme positions along the
strand (positions 1, 2, and 23–25) and in the middle of the strand (positions 12–15)
show similar electrochemical properties and therefore are barely distinguishable
from fully matched ds-DNA films. However, there are positions, which are
moderately and highly distinguishable from fully matched duplex as shown in
Fig. 8. Moreover, it is suggested that such highly distinguishable and barely dis-
tinguishable positions may differ with the length of the duplex. Another interest-
ing issue, whichwas addressed by the group [42], was related to sample preparation
and the inability to control the size of the target sequence. Can mismatches be
detected in ds-DNAwith unequal lengths of the probe and target strands, causing
overhangs at the solution or electrode side of the film? Therefore, in order to study
the potential impact of unmatched lengths of probe and target strands, the probe
and target strands of unequal size were hybridized in absence and presence of
single-nucleotide mismatches along the sequence. As a result of hybridization
between unequal lengths of strands, the shorter target sequences formed over-
hangs in probe strand and longer target sequences formed overhangs in com-
plementary strand. SECM images showed higher feedback current for all
mismatched films regardless the length and the type of overhangs (Fig. 9). This is
an important result, indicating that SECM is able to distinguish even nonideal
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length-mismatched ds-DNA. The kinetic rate constants monitored right above the
ds-DNA films showed that hybridization position is critical for mismatch detec-
tion in short complementary stands, while mismatches are easily detectable in
absence of bottom overhangs in longer complementary strands.
This detailed study on the variation in electrochemical response due to the pres-

ence of mismatch in ds-DNA films paved the way to exploit SECM for high-
throughput discrimination of animal species. For this purpose, the bovine CYTbos1
primer sequence was hybridized with the related sequences of animal species of
different families [13]. A fully matched ds-DNA SECM signature was obtained by
hybridization with a bovine complement. Mismatched ds-DNA combinations con-
taining various numbers of mismatches were obtained for pig, chicken, buffalo,
deer, quail, and horse. The analysis of a microarray prepared of a range of ds-DNAs
of different hybrids shows that different feedback currents are obtained. The magni-
tude of the feedback current is a function of the position and number of mismatches
in the ds-DNA prepared from the CYT1bos1 primer and respective animal strands
(Fig. 10). This barcoding approach to DNA testing, by exploiting the mitochondrial
CO1 gene, was also effective to detect species from same family of Bovinae, i.e.,
dairy cattle, North American buffalo, and European buffalo [43]. Essentially, this
approach allows the identification of minute quantities of DNA that are admixed to
a matrix. This is of course of relevance given the most recent issue with food adul-
terations of beef and the discovery of nonbeef species in meat meant for human
consumption. This clearly brings into focus one of the potential applications of
SECM as a bioanalytical tool.

 Conclusion

The electrochemical detection of DNA mismatches remains an attractive area of
research. Initial studies exploiting voltammetric or amperometric measurements
have led to a series of interesting controversies of the electron transfer properties of
ds-DNA. More recent impedance spectroscopic studies have been more focused on
the colligative properties of the ds-DNA, which has led to the development of label-
free mismatch detection with ferri/ferrocyanide as a convenient electroactive probe.
It was recognized that resistive differences are responsible for the impedance obser-
vations. This brings into focus the recent studies exploiting SECM for monitoring
ds-DNA films. SECM allows convenient multiplexing of the measurement, while
providing information on the electrochemical properties of the film. In this chapter,
the value of SECM for the detection of single-nucleotide mismatches was the focus.
Not only is it possible to distinguish any particular mismatch, but it is also possible
to obtain information about the positional parameters of the mismatch. A simple
application for the identification of animal species is an example for the versatility
of SECM for bioanalysis. SECM as a laboratory-based bioanalytical method is
undervalued but provides a promising alternative to other assays that make use of
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optical/spectroscopic detection, and one can expect to see significant results in this
area over the next few years. Table 3 summarizes some of the key developments in
the area of SECM and its application to the study of thin films with particular refer-
ence to the study of oligonucleotide films.
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Fig. 10 (a) Multiplex detection of Bovine species by SECM images. (b) Current profile of DNA
duplexes after hybridization of CO1 gene fragments of cow, NA buffalo and European buffalo
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Analyst 136:4724–4731 with permission from The Royal Society of Chemistry)
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Table 3 Selected key references highlighting the development of scanning electrochemical
microscopy and its applications

A new approach based on the combination of scanning
electrochemical microscopy and surface plasmon
resonance imaging (SECM/ SPR-i)

2005 Electroanalysis
17:495–503

Exploring the motional dynamics of end-grafted DNA
oligonucleotides by in situ electrochemical atomic force
microscopy

2007 J Phys Chem B
111:6051–6058

Scanning electrochemical microscopy for direct imaging
of reaction rates

2006 Angew Chemie (Int Ed
English) 46:1584–617

Scanning electrochemical microscopy in the 21st century 2007 Phys Chem Chem Phys
9:802–823

Scanning electrochemical microscopy: principles and
applications to biophysical systems

2006 Physiol
Meas 27:R63–R108

Advances in the application of scanning electrochemical
microscopy to bioanalytical systems

2007 Biosens Bioelectron
23:301–318

Recent advances in high resolution scanning
electrochemical microscopy of living cells – A review

2013 Analytica Chimica Acta
775:1–13

Measurements within the diffusion layer using a
microelectrode probe

1986 Anal Chem 58:844–848

Scanning electrochemical and tunneling
ultramicroelectrode microscope for high-resolution
examination of electrode surfaces in solution

1986 J Am Chem Soc
108:3838–3839

Scanning electrochemical microscopy. Apparatus and
two-dimensional scans of conductive and insulating
substrates

1989 Anal Chem 61:1794–1799

Scanning electrochemical microscopy. Theory of the
feedback mode

1989 Anal Chem 6:1221–1227

Scanning electrochemical microscopy (SECM): an
investigation of the effects of tip geometry on
amperometric tip response

1998 J Phys Chem B
102:9946–9951

Towards the electrochemical identification of species 2011 Chem Comm 47:431–1433

Analytical expressions for quantitative scanning
electrochemical microscopy (SECM)

2010 ChemPhysChem
1:547–556

Scanning electrochemical microscopy. Effect of defects
and structure on electron transfer through self-assembled
monolayers

2008 Langmuir 24:2841–2849

Scanning electrochemical microscopy with gold nanotips:
the effect of electrode material on electron transfer rates

2009 J Phys Chem C
113:459–464

Effect of base pair A/C and G/T mismatches on the
thermal stabilities of DNA oligomers that form
B-junctions

1997 Biochemistry
36:11419–11427

Single-base-pair discrimination of terminal mismatches
by using oligonucleotide microarrays and neural network
analyses

2002 Appl Environ Microbiol
68: 235–244

Electron transfer at self-assembled monolayers measured
by scanning electrochemical microscopy

2004 J Am Chem Soc
126:1485–1492

(continued)
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Table 3 (continued)

Patterned self-assembled alkanethiolate monolayers on
gold. Patterning and imaging by means of scanning
electrochemical microscopy

1997 Electroanalysis 9:746–750

Localized electrochemical desorption of gold
alkanethiolate monolayers by means of scanning
electrochemical microscopy (SECM)

2000 Microchim Acta 133:1–9

Scanning electrochemical microscope observation of
defects in a hexadecanethiol monolayer on gold with
shear force-based tip–substrate positioning

2006 Langmuir 22:7923–7927

Investigation of carboxylic-functionalized and
n-alkanethiol self-assembled monolayers on gold and
their application as pH-sensitive probes using scanning
electrochemical microscopy

2005 Surf Sci 597:51–64

Studying the binding of Cd2+ by ω-mercaptoalkanoic acid
self-assembled monolayers by cyclic voltammetry and
scanning electrochemical microscopy (SECM)

2005 J Electroanal Chem
581:310–319

Visualization of dna microarrays by scanning
electrochemical microscopy (SECM)

2001 Analyst 126:1210–1211

Silver-enhanced imaging of dna hybridization at DNA
microarrays with scanning electrochemical microscopy

2002 Langmuir 18:6653–6658

Scanning electrochemical microscopic imaging of
surface-confined DNA probes and their hybridization via
guanine oxidation

2002 J Electroanal Chem
537:95–102

Scanning electrochemical microscopy imaging of DNA
microarrays using methylene blue as a redox-active
intercalator

2008 Langmuir 24:5155–5160

Detection of DNA π-Stack lesions using scanning
electrochemical microscopy

2009 ECS Transactions
166:55–62

Scanning electrochemical microscopy of DNA
monolayers modified with Nile Blue

2008 Langmuir 24:14282–14288

Electron transfer in DNA and in DNA-related biological
processes. Electrochemical insights

2008 Chem Rev 108:2622–2645

Label-free electrochemical recognition of DNA
hybridization by means of modulation of the feedback
current in SECM

2004 Angew Chemie (Int Ed
English) 43:3482–3485

Imaging immobilised ssDNA and detecting DNA
hybridisation by means of the repelling mode of scanning
electrochemical microscopy (SECM)

2004 Biosens Bioelectron
20:925–932

Electrochemical imaging of localized sandwich DNA
hybridization using scanning electrochemical microscopy

2007 Anal Chem 79:7206–7213

Optimization of an electrochemical DNA assay by using
a 48-electrode array and redox amplification studies by
means of scanning electrochemical microscopy

2009 Chem Bio Chem
10:1193–1199

Scanning electrochemical microscopy assay of DNA
based on hairpin probe and enzymatic amplification
biosensor

2010 Biosens Bioelectron
25:1953–1957

(continued)
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Abstract
In the last 30 years, electrochemical promotion of catalysis (EPOC), also referred
to as the non-Faradaic electrochemical modification of catalytic activity
(NEMCA), has been extensively studied by research groups due to its ability to
considerably enhance catalytic activity of heterogeneous catalysts. Application
of a very small electrical stimulus to a catalyst-working electrode results in the
modification of its electronic properties due to the controlled in situ addition or
removal of the ionic species. Modification of the electronic properties alters the
adsorption strength of the reaction components resulting in a distinct change in
catalytic performance. Throughout the years, it has been shown that this phe-
nomenon can be applied to various types of reactions, solid electrolytes, and
conductive catalysts. Recent studies have been focused on developing these
catalytic systems toward a more practical application. One aspect in regard to
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this includes introducing nanostructured catalysts in the form of nanoparticles or
nano-thin films as the working electrode to lower manufacturing costs or with the
goal of applying EPOC to commercial highly dispersed catalysts. This involves
the synthesis of new nanosized catalysts as well as altering the electrochemical
cell design. A review of the current progress (from 2005 up to date) and chal-
lenges encountered in EPOC with nanoparticle catalysts using various ionic con-
ducting ceramic and polymer supports will be discussed.

Keywords
Heterogeneous catalysis • Nanoparticles • Metal-support interaction •
Electrochemical promotion of catalysis

 Introduction

 Heterogeneous Catalysis: Nanoparticles, Promotion,  
and Metal–Support Interaction

The form of catalysis where the reactants are in a different phase as the catalyst itself
is referred to as heterogeneous catalysis [1]. The steps carried out during a hetero-
geneous catalytic reaction are first diffusion of the reactants to the catalyst surface
then intraparticle diffusion of the reactants through the catalyst pores to the active
sites. The reactants adsorb on the active sites and a surface reaction occurs. The
products then desorb from the catalyst sites, intraparticle diffusion of the products
occurs, and, finally, there is diffusion of the products away from the catalyst [1].
In heterogeneous catalysis, only the surface atoms are considered active for cata-

lytic reactions; that is, for bulk material, most of the material is not being used (i.e.,
low volume-to-surface area ratio). The introduction of nanostructured catalysts
changed the catalytic ability in heterogeneous catalysis research areas, giving an
approach to optimize this volume-to-surface area ratio. To be considered “nano,”
the catalyst is defined as having at least one dimension in the range of 1–100 nm.
There are several methods that have been developed to prepare such nanostructured
catalysts. For instance, nanofilms can be prepared through techniques such as phys-
ical vapor deposition [2, 3], chemical vapor deposition [4, 5], and atomic layer
deposition [6, 7], while nanoparticles can be prepared by impregnation [8–13],
deposition–precipitation [8, 14–18], coprecipitation [19–23], sol–gel [24–27], and
polyol [28–40] as summarized in Table 1. The nanoparticle catalysts can be sup-
ported on two different types of supports, those considered non-active supports (i.e.,
γ-Al2O3, SiO2, activated carbon) or active (i.e., TiO2, CeO2, YSZ, SDC).
An important factor related to the type of support is the dispersion of the catalyst

which is defined as the ratio of the number of gas-exposed surface atoms to the total
number of catalyst atoms. In general, dispersion increases with decreasing particle
size and theoretically approaches 100 % for particles with diameter in the range of
1 nm. It has been shown that, typically, higher dispersion leads to higher catalytic
activity due to the presence of more active sites [40, 41–43]. This trend has been
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shown for the same support material (i.e., SiO2) synthesized with different surface
areas [41]. Moreover, the catalytic activity of supported metal or metal oxide
nanoparticles can be further enhanced or stabilized by using catalyst promoters or
through the metal–support interaction (MSI) phenomenon.
Enhancing the activity of a catalyst through the concept of promotion involves

adding a chemical species, referred to as a promoter, during the catalyst preparation
procedure to the catalyst in order to change its catalytic behavior. The discovery of
this concept was first employed through what is referred to as chemical promotion
[44–48]. The addition of such species can result in a change in the electronic and/or
crystal structure of the catalyst which improves its catalytic performance, stability,
and selectivity for the desired chemical reaction.

Table 1 Summary of preparation methods for nanoparticles

Method Synthesized catalyst Reference

Impregnation Au/TiO2 [8]

Fe2O3/SiO2 [9]

Ru/SnO2, Ru/CeO2, Ru/ZrO2, Ru/γ-Al2O3 [10]

Pt/YSZ [11, 12]

Pt–Ir/TiO2 nanotubes [13]

Deposition–precipitation Au/TiO2 [8]

Au/γ-Al2O3 [14]

Au/TiO2, Au/CeO2, Au/Al2O3, Au/SiO2 [15]

Au–Ag/TiO2 [16]

Ag/SiO2 [17]

Ag/TiO2, Au–Ag/TiO2 [18]

Coprecipitation Pd-doped CeO2 [19]

Fe3O4 [20]

Pd/Al2O3 [21]

Co0.5-xMnxZn0.5Fe2O4 [22]

LiFePO4/C [23]

Sol–gel ZnO, CuO, Cu0.05Zn0.95O [24]

CoFe2O4 [25]

SnO2 [26]

Ni0.7-xMgxCu0.3Fe2O4 [27]

Polyol Pt [31]

Pt [36–39]

Ru [40]

PtRu [29]

PtRu [34]

Pt7Sn3 [35]

FePt [28]

Ru, Pt [32, 38]

Ag [30]

Cu [33]
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In general, promoters can be divided into two categories – structural and
electronic promoters [46, 49]. Structural promoters (e.g., Al2O3) enhance and stabi-
lize the active phase while not participating in the catalytic reaction itself. Contrary
to this, electronic promoters (e.g., alkali metal atoms) have a role in the catalytic
reaction; they enhance the catalytic properties of the active phase by altering its
chemisorptive properties, with respect to bond strength, of the reactants and inter-
mediate species. The focus of this discussion will be on electronic promoters since
they are a common factor between chemical and electrochemical promotion, as will
be discussed later. Table 2 summarizes some of the different types of electronic
promoters and corresponding applications. The most commonly used electronic
promoters include potassium [50–53] and sodium [54–58]. Other chemical promot-
ers include other alkali metals (i.e., Cs) [51, 59], alkaline earth metals (i.e., Mg, Ba)
[51, 60, 61], and some transition metals (i.e., Co, Cr, Mo) [62].
Potassium, as a chemical promoter, has been used for a variety of chemical reac-

tions and fundamental chemistry studies [50, 51]. A fundamental study was done on
a single crystal of Fe(111) and Fe(100) showing a pronounced electron transfer
from K to the Fe surfaces; this is attributed to the lowering of the “local” work func-
tion near where the potassium atoms are adsorbed [50]. Bécue et al. [51] demon-
strated the effect of K promoters on the surface of a zeolite-X-supported Ru catalyst
(2 wt%) for the synthesis of ammonia. It was found that the presence of K promot-
ers increases the activity by approximately 70 % for optimal potassium coverage.

Table 2 Summary of the type and use of some electronic promoting species

Promoting species Catalyst Reaction Reference

Potassium (K) Fe(111), Fe(100) Adsorption of N2 [50]

Ru/
Zeolite-X (Ru–KX)

NH3synthesis [51]

Fe3O4(111),
α-Fe2O3(0001)

Dehydrogenation  
of ethylbenzene to styrene

[52]

K–Fe (S6-20) BASF Dehydrogenation  
of ethylbenzene to styrene

[53]

Sodium (Na) Pd/YSZ NOx reduction by C3H6 [54]

Pt/γ-Al2O3 NOx reduction by C3H6 [55]

Pt/γ-Al2O3 NOx reduction by C3H6 and CO [56]

Rh/YSZ NOx reduction by CO [57]

Pt/YSZ C2H4 oxidation [58]

Cesium (Cs) Ru/CsX NH3 synthesis [51]

Cesium (Cs), chlorine (Cl) Ag2O Epoxidation of C2H4 [59]

Barium (Ba) Pt/γ-Al2O3 NOx reduction by C3H6 [60]

Magnesium (Mg), barium (Ba) Ru/BaX, Ru/MgX NH3 synthesis [51]

Magnesium (Mg), barium (Ba),
calcium (Ca), strontium (Sr)

Au/Al2O3 Partial oxidation  
of methanol to H2

[61]

Cobalt (Co), chromium (Cr),
molybdenum (Mo)

VPO/TiO2,
VPO/γ-Al2O3

Ammoxidation of 2-chloro
benzaldehyde to 2-chloro
benzonitrile

[62]

Carbon monoxide (CO) Au(111) Methanol oxidation [63]
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For coverage higher than the optimal amount of potassium, it was observed that the
activity did not increase; instead, a decrease in activity was attributed to the block-
ing of active sites due to excess potassium coverage.
More recently, chemical promotion has been shown using other alkali metals

such as cesium or alkaline earth metals and transition metals. A recent review on the
epoxidation of ethylene to ethylene oxide (EO) over a silver catalyst demonstrated
the industrial application of using cesium and chlorine as promoters for the selectiv-
ity of EO [59]. It was found that the unpromoted metallic silver catalyst had an EO
selectivity around 50 %, while, with the addition of the promoters, the selectivity
was enhanced to as high as 90 %. It is proposed that the Cl blocks the nonselective
sites and promotes the active oxygen, while Cs acts as a structural promoter. It is
said that the Cl promoters weaken the Ag–O bond creating more reactive oxygen to
enhance the EO isomerization. On the other hand, Cs interacts with the Ag2O sur-
face and subsurface oxygen resulting in CsOx-type complexes.
The use of alkaline earth metals (i.e., Mg, Ca, Sr, Ba) as promoters was shown in

one study to enhance both the activity and selectivity of supported gold catalysts
(Au/Al2O3) in the partial oxidation of methanol to H2 [61]. It was found that H2 selec-
tivity increased with increasing basicity of the promoting oxide species (i.e., unpro-
moted<MgO<CaO<SrO<BaO); however, the opposite trend was observed for the
selectivity toward CO and CH4. Similarly, the effect of transition metal additives on
the catalytic properties of a vanadium phosphate (VPO) catalyst was studied for the
selective ammoxidation of 2-chloro benzaldehyde to 2-chloro benzonitrile [62].  
To observe the effect of such promoters, Co, Mo, and Cr were added to the VPO
structure and supported on two different oxide supports – TiO2 and γ-Al2O3. It was
observed that a significant improvement in both selectivity and activity existed com-
pared to the bulk VPO catalyst. More specifically, in the case of TiO2-supported
VPO, the addition of Cr exhibited the best performance followed by Mo. From these
results, it was also found that the ability of the promoter appears to depend on the
nature of the support and its interaction with the catalyst.
Furthermore, traditionally, it has been observed that electropositive species usu-

ally promote catalytic reactions, while electronegative species poison the catalyst
surface. One electronegative species, CO, has been well known to act as a poison for
many metal catalysts; however, recent studies have shown a promotional effect of
this species [63, 64]. Rodriguez et al. [63] have demonstrated the promotional effect
of adsorbed carbon monoxide for the oxidation of alcohols over a gold catalyst.
It was proposed that neighboring adsorbed CO enhances the OH bond on the 
surface of the catalyst in addition to promoting the breaking of the C–H bond of the
alcohol molecules, thus increasing catalytic activity.
A related phenomenon to the promotion of catalytic activity is referred to as

metal–support interaction (MSI), where the support plays a key role in changing the
properties of the catalyst due the interaction between the two materials, usually
resulting in higher catalytic activity [65, 66]. It should be noted that despite the vast
amount of MSI studies reported up-to-date, the mechanism and appearance of this
effect are still under discussion. Both fundamental and catalytic reaction studies
with regard to metal–support interaction are summarized in Table 3.
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Overbury et al. [41] showed that for equally sized Au nanoparticles supported on
SiO2 (lower surface area) and TiO2 (higher surface area), the catalytic activity was
higher for the TiO2-supported catalysts due to stronger metal–support interaction.
Similarly, Kimura et al. [43] demonstrated that for the same loading of metal cata-
lysts deposited on Al2O3 and TiO2, a lower dispersion was obtained for the particles
supported on Al2O3 compared to TiO2 indicating aggregation of the metal particles.
This was attributed as a stronger metal–support interaction between Pt and TiO2 
compared to Pt and Al2O3. It is especially noted that the smaller the nanoparticle,
the stronger the interactions are with the support, therefore, increasing the effect of
the support used [79].
A more specific term, strong metal–support interaction (SMSI), was first intro-

duced in 1978 to describe the significant change in the chemisorptive properties of
group VIII noble metals when they were supported on TiO2 [67, 80]. It was shown
that these metals, both unsupported and supported on common materials such as
Al2O3, chemisorb one hydrogen atom per metal atom; however, in the case of TiO2,
the ability to chemisorb H2 was either decreased or disappeared completely. It was
suggested that SMSI is due to TiOx migration to the catalyst surface. Among other
theories, the possibility of d-orbital overlap between the Ti4+ cations and supported
metal atoms was suggested [80]. More recently, Lewera et al. [68] carried out a
study to further understand the change in electronic properties of nanosized metals
when deposited on TiO2 through the analysis of X-ray photoelectron spectroscopy
(XPS) data. Pt nanoparticles with an average size of 2 nm were deposited on a com-
posite of TiO2/C. A downshift in binding energy of the Pt 4f7/2 peak was observed
which indicated a local charge density change due to the interaction between the

Table 3 Summary of metal–support interaction studies

Metal catalyst Support Reaction Reference

Ru, Pd, Os, Ir, Pt TiO2 H2, CO sorption [67]

Pt YSZ Not applicable (XPS study) [39]

Pt WO3/C, TiO2/C, C Not applicable (XPS study) [68]

Au SiO2, TiO2 CO oxidation [41]

Pt Al2O3, TiO2 (P25, rutile, anatase),
CeO2, SiO3, MgO

CO oxidation [43]

PdO CeO2, TiO2, Co3O4, Mn2O3, SnO2 CO oxidation [69]

Pt, Ni YSZ, γ-Al2O3, TiO2, CeO2 CO oxidation [70]

Cu YSZ, γ-Al2O3 CO oxidation [71–73]

Pt YSZ, γ-Al2O3, C CO oxidation [74]

Pt YSZ, CeO2, Sm-doped CeO2,  
C, γ-Al2O3

CO oxidation, C2H4 
oxidation

[75]

Au CeO2/TiO2 CO oxidation, water–gas
shift reaction

[76]

Pd CeO2/YSZ CH4 oxidation [77]

Pt YSZ, RO2, SiO2 C3H8 oxidation [12]

Pt YSZ, γ-Al2O3 Toluene oxidation [78]
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metal and TiO2. In addition, the presence of an additional (O 1s) peak for the 
Pt/TiO2/C spectrum, compared to Pt/C and TiO2/C, is attributed to oxygen bonded
to Ti alloyed with Pt indicating the interaction between the two materials. The anal-
ysis of the Ti 2p peak also showed a downshift in binding energy for the supported
Pt sample suggesting a new electronic state of Ti.
Similarly, Ntais et al. [39] conducted an XPS study for YSZ-supported Pt

nanoparticles which also showed a downshift in the binding energy for smaller Pt
nanoparticles indicating a stronger interaction with the support.
Several recent studies have studied the MSI phenomenon, not only using TiO2- 

supported metals but employing other ionic and mixed ionic–electronic conducting
materials as well. High catalytic activity toward the water–gas shift reactions was
shown for a Au/CeOx/TiO2(110) catalyst [76]. The high catalytic activity was attrib-
uted to the chemical properties of Ce2O3, which was formed through the interaction
with TiO2 and its effect at the ceria–gold interfaces. Similarly, Jiménez-Borja et al. [77] 
demonstrated a strong interaction between Pd and CeO2 for a Pd/CeO2/YSZ catalyst
for the oxidation of methane. It was observed that the presence of ceria caused a
decrease in the size of Pd0 particles (from 280 to 103 nm) and an increase in the size of
PdO particles. This is attributed to the oxygen storage properties of CeO2which seems
to play a key role in the formation of PdO. Higher catalytic activity was observed for
the catalysts containing more PdO compared to Pd. Furthermore, Pd catalysts sup-
ported on highly ordered mesoporous metal oxides (i.e., CeO2, TiO2, Co3O4, Mn2O3,
and SnO2) for the oxidation of CO were carried out to demonstrate the interaction
between the metal and metal oxide supports [69]. It was found from XPS results that
the binding energy of the Pd 3d5/2 peak for Pd/meso-CeO2, Pd/meso-SnO2, and Pd/
meso-TiO2 catalysts shifted more than that for Pd/meso-Co3O4 and Pd/meso-Mn2O3 
indicating that the former catalysts have more surface interactions with the Pd metal.
From the catalytic experiments, the bare supports and supported Pd catalysts showed
high catalytic activity in the order of Co3O4>Mn2O3>CeO2>SnO2>TiO2; however,
the increase in catalytic activity from bare support to supported Pd catalyst was the
highest for the Pd/meso-CeO2, Pd/meso-SnO2, and Pd/meso-TiO2 catalysts indicating
the significant role of the support.
Ionically conductive supports or solid electrolytes have immerged as a class of

very promising catalyst supports due to their high ionic conductivity, and chemical
and mechanical stability [81]. For a material to be ionically conductive, it must pos-
sess the structure that allows for either ions to transfer through a series of interstitial
sites (i.e., Frenkel defects) or ions to transfer through vacancies in the crystal struc-
ture (i.e., Schottky defects) [45, 82, 83]. Some examples include yttria-stabilized
zirconia (YSZ) (O2− conductor), K-βAl2O3 (K+ conductor), and Na-β″Al2O3 (Na+ 
conductor). As an extension, mixed ionic–electronic materials not only possess
ionic conductive capabilities but electronic conductive properties as well [84, 85]. 
Ion transfer in such materials occurs through structure defects as discussed; how-
ever, electronic conductivity occurs through delocalized states in the conduction or
valence band, or through localized states by a thermally assisted hopping mecha-
nism. It should be noted that the reason for these properties is independent of each
other – ion conductance depends on crystal structure, while electronic conductance
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depends on electronic bandgap corresponding to the properties of the constituent
ions [84]. Examples of mixed ionic–electronic conducting materials include ceria
(CeO2), titania (TiO2), and perovskite-type materials in a form of La1-xAxCo1-yByO3-δ 
(where A=Sr, Ba, Ca, and B=Fe, Cu, Ni) [85, 86].
Initially, the concept of SMSI was attributed to electronic effect; however, fur-

ther studies have shown an effect of oxygen vacancies in metal oxides as well.
Metcalfe and Sundaresan [70] demonstrated this concept for CO oxidation over Pt
and Ni catalysts supported on YSZ, γ-Al2O3, TiO2, and CeO2. It was found that cata-
lytic activity for the Pt catalysts ranged from Pt/TiO2>Pt/YSZ>Pt/γ-Al2O3. The
most interesting results are those for the Ni catalysts where Ni/TiO2, Ni/YSZ, TiO2,
and YSZ showed significant catalytic activity, with the supported Ni catalyst show-
ing higher activity than their corresponding pure supports. The difference in the
activity of Ni/TiO2 and pure TiO2 could be attributed to only the electronic effects
of TiO2; however, after observing higher activity for Ni/YSZ compared to pure
YSZ, it was proposed that oxygen ion transfer between the metal and support also
plays a role in enhancing the catalytic activity. A similar conclusion was found for
studies of a copper catalyst supported on γ-Al2O3 and YSZ [71–73]. The higher
catalytic activity was attributed to the presence of Cu+ due to the interaction between
the copper oxide on the surface of the YSZ and the nearby oxygen vacancies.
Vernoux et al. [87] also observed such migration of ionic species from the support
to the surface of the nanocatalyst, referring to it as self-induced electrochemical
promotion. This concept has been suggested as an explanation for higher catalytic
activity for the oxidation of CO over YSZ-supported Pt nanoparticles [36, 74].  
It was shown that the catalyst was active for a temperature as low as 40 °C. This
high catalytic activity was attributed to the migration of O2− species to the surface
which may lead to alterations in the catalytic properties of the Pt nanoparticles. This
phenomenon has also been observed for both propane oxidation [87] and toluene
oxidation [78] over a Pt/YSZ catalyst. Most recently, Isaifan and Baranova [37, 38,
75] also demonstrated the role of ionic and mixed ionic–electronic supports and the
mobility of O2− from these supports for the oxidation of CO and C2H4 in an oxygen-
free environment. It was found that Pt/YSZ, Pt/CeO2, and Pt/Sm-doped CeO2(SDC)
have high catalytic activity for CO and C2H4 oxidation while Pt/C and Pt/γ-Al2O3 as
well as the blank supports show no catalytic activity in the absence of gaseous O2. 
These results imply that O2− from the support reacts with CO and C2H4 in an elec-
trochemical reaction at the three phase boundary and the mechanism of nano-
galvanic cells was proposed [37].

 Electrochemical Promotion of Catalysis

Discovered in the 1980s [88], the phenomenon of electrochemical promotion of
catalysis (EPOC), also referred to as non-Faradaic electrochemical modification of
catalytic activity (NEMCA), demonstrated a new approach to enhancing the cata-
lytic activity and opened up a new class of promoters previously unknown in hetero-
geneous catalysis (e.g., O2−, H+, OH−, H+). By applying an electrical current or
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potential between the catalyst-working electrode and a counter electrode deposited
on a solid electrolyte, it was found that the catalytic activity and selectivity can be
significantly altered due to modifications of the electronic properties of the catalyst.
Consequently, the adsorption strength of the reaction components is altered result-
ing in a distinct change in catalytic performance [45]. Compared to chemical pro-
motion, the addition of promoter species is done in situ and can be controlled
depending on specified reaction conditions [44, 45, 89–98]. This also implies that
promoters with short lifetimes can still effectively be utilized as its coverage on the
catalyst surface can be fixed through the application of a current or potential.
Therefore, it is said that there is an operational and not a functional difference
between chemical and electrochemical promotions [45, 49, 57, 90, 99, 100]. 
Currently, EPOC has been studied for more than 100 catalytic systems and does not
appear to be limited to any specific type of catalytic reaction, metal catalyst, or solid
electrolyte. Since the discovery of EPOC, several comprehensive reviews [48, 94,
95, 100–113], book chapters [114–118], and a book [45] have been published to
describe this phenomenon; the authors invite the reader to consult these works for
comprehensive reading on the EPOC phenomenon. Here, a short overview of the
principles, a common experimental setup and reactors, as well as some examples of
EPOC with thick, low dispersion film catalysts will be discussed followed by recent
studies using nanostructured catalysts.
The concept behind EPOC is that, initially, before current or potential is applied,

the catalyst surface is covered by chemisorbed reactants (e.g., O2 and C2H4) in an
equilibrated state. Depending on the concentration of the species, there may be
more or less of each species adsorbed on the catalyst surface. By applying a current
or potential, ions (i.e., O2− in the case of YSZ) from the solid electrolyte either back-
spillover (i.e., move to the surface of the catalyst) or spillover (i.e., move from the
surface of the catalysts) depending whether the electrochemical cell is positively or
negatively polarized, respectively. In the case of back-spillover of the O2− species, it
is said that these species form a strong bond on the catalyst surface. The mechanism
of this transformation can be seen in the following reaction (Eq. 1) [45]:

 
O YSZ O e2 2- - -( ) ® - +éë ùû ( ) +d d catalyst  (1)

where Oδ− is the general form of the back-spillover species corresponding to its
image charge δ+, indicating that the back-spillover species is overall neutral. The
formation of this layer is referred to as an effective double layer. Due to this back-
spillover, the oxygen reactant from the gas phase is forced into a weakly bonded
state resulting in a more reactive chemisorbed species. Therefore, it is observed that
the catalytic rate increases until a new steady-state is reached through the equilib-
rium of the strongly and weakly bonded oxygen species [45]. The opposite effect is
observed for the spillover of the O2− species.
In general, the property of a solid surface that dictates its chemisorptive and cata-

lytic properties is its work function (Φ). By definition, the work function is the mini-
mum energy required for an electron to move from the Fermi level of the solid to an
outer point, a few μm outside the surface [45, 119]. Depending on the type of spe-
cies adsorbed or spilled over onto the catalyst surface, the work function can be
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altered accordingly. An electron donor species (e.g., C2H4) will cause the work
function to decrease, while an electron acceptor species (e.g., O2) will cause the
work function to increase. Four different types of reaction behaviors, in regard to
the presence of these species, have been established to classify the relationship
between work function and catalytic rate (r) for EPOC studies – electrophobic (δr/
δΦ>0), electrophilic (δr/δΦ<0), volcano type (exhibits a minimum), and inverted
volcano type (exhibits a maximum).
More specifically, to evaluate the performance of the catalyst in terms of electro-

chemical promotion, there are two main parameters that are calculated – rate
enhancement ratio (ρ) and Faradaic efficiency (Λ) [45]. The rate enhancement ratio
(Eq. 2) is defined as

 r = r r/ 0 (2)

where r0 is the open circuit oxidation rate of the reactant species (mol · s−1) and r is
the oxidation rate (mol · s−1) for an applied current/potential. The Faradaic efficiency
(Eq. 3), for an O2− conducting system, is defined as the following:

 
L = -( ) ( )r r I F0 2/ /  (3)

where I is the current measured across the cell (A) and F is Faraday’s constant
(96,485 C ·mol−1). It should be noted that the enhancement is considered to be the
effect of electrochemical promotion only when |Λ| >1, which indicates non-Faradaic
enhancement [45].
First discovered by Comninellis and coworkers [120], another important aspect

that is considered in EPOC studies is what is referred to as “permanent” electro-
chemical promotion of catalysis (P-EPOC). It has been shown that the reversibility
of EPOC strongly depends on the duration of polarization and magnitude of applied
current or potential. With P-EPOC, after current interruption, the catalytic rate
remains higher than the initial open circuit value. In the case of P-EPOC, the perma-
nent rate enhancement can be evaluated using Eq. 4 [120]:

 
g = r rp / 0  (4)

where γ is the permanent rate enhancement ratio and rp is the catalytic rate (mol · s−1) 
at the new steady-state value after current interruption.
Two types of experimental reactors exist to carry out conventional EPOC stud-

ies – a fuel cell type reactor and single-chamber type reactor [45]. The fuel cell
type reactor (Fig. 1a) consists of two chambers, one in which the catalyst-working
electrode is exposed to the reactants and products, while the other chamber con-
tains the counter and reference electrodes which are exposed to a reference gas
only. Contrary to this, the single-chamber type reactor (cell configuration in
Fig. 1b and typical experimental setup in Fig. 1c) consists of all electrodes exposed
to the same reactants and products. The important consideration with this type of
reactor is that the reference electrodes must be made of an inert material with
respect to the reactants (in most cases, gold is used) to ensure no contribution
to the catalytic rate. Conventional EPOC studies were carried out using metal
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(deposited with metallic paste) catalyst films, typically, of a thickness in the range
of 5–10 μm [90, 121] and a metal dispersion less than 0.1 % [122]. Typical solid
electrolytes include YSZ (O2− conductor), β′Al2O3 (Na+ conductor), or β″Al2O3 
(K+ conductor).
The EPOC phenomenon has been shown to be effective for various reactions;

however, the most common model reaction used in conventional EPOC studies is
the complete oxidation of ethylene (Table 4) [88, 90, 94, 121–130]. This was the
reaction under observation over a porous Ag film when it was first discovered that
pumping and removing oxygen ions from the surface of the catalyst through an
applied current can alter the catalytic rate and selectivity [88]. It was then later dem-
onstrated that this effect is not specific to any type of reaction system, although the
most significant enhancement (i.e., tenfold increase, Λ up to 15,000) was shown for
the oxidation of C2H4 over a Pt catalyst [90, 121].

Reactants

Reactants

a Catalyst
Electrode (W)

Catalyst
Electrode (W)

Reference
Electrode (R)

Solid
Electrolyte 

Products

UWR
UWC

UWR UWC

Solid
Electrolyte

G/P
G/P

A
A

Counter
Electrode (C)

Counter
Electrode (C)

4PV

Infrared 
analyzer

Mass
spectrometer

Gas
chromatograph

Vent
W Potentiostat-

Galvanostat

X-t Recorder

Reactants

Feed system Reactor Gas Analysis

R
C

Air
Reference
Electrode (R)

b

c

Fig. 1 Schematic of the (a) fuel cell type reactor, (b) single-chamber type reactor, and (c) typical
gas flow experimental arrangement using the single-chamber type reactor (Reproduced from
Vayenas et al. [45])
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Enhancement in catalytic activity through this phenomenon for C2H4 oxidation
has been shown over Pt catalysts supported on YSZ and TiO2, O2− conducting sup-
ports [128]. Further studies for IrO2 film catalysts supported on YSZ electrolyte
showed an enhancement in catalytic activity through an applied positive potential
(i.e., oxygen ions migrate to the surface of the catalyst) [125–127]. Permanent pro-
motion was also observed for this system which was attributed to the formation of
a higher coordinated oxide at the catalyst/solid interface [126]. Moreover,
Koutsodontis et al. [122] demonstrated that the catalyst film thickness for a Pt/YSZ
cell is an important factor that affects the magnitude of electrochemical promotion
as well, showing that the catalytic rate increases with the increase in film thickness.
In addition to O2− conducting electrolytes, positive ion (i.e., Na [128, 131–134], K
[135], and H [128–130, 136]) conducting electrolytes have been employed. The
electronic effect of these types of promoters are the opposite of that for oxygen
ions; that is, by pumping positive ions to the catalyst surface, the work function
decreases. In studies involving Na+ promoters, Na-β″Al2O3 is used as a solid elec-
trolyte. In general, it has been found that catalytic activity, for CO [131] or C2H4 
[128] oxidation and NO reduction by hydrocarbons [132–134], is increased with
low Na coverage, while as Na coverage increases, this leads to poisoning of the
catalyst surface. Similar observations were found in the case of potassium promot-
ers from a K-β′Al2O3 electrolyte for CO oxidation over a Pt catalyst [135]. With
regard to the use of H+ promoters, several different electrolytes have been studied
(e.g., Nafion [128, 136], Gd-doped BaPrO3 [129], Y-doped BaZrO3 [129], and
La0.99Sr0.01NbO4-δ [130]). Compared to Na and K, H+ promoters do not seem to have
a significant enhancement of the catalytic activity [129, 130]. In addition to a weak
non-Faradaic effect [130].

Table 4 Electrochemical promotion of ethylene oxidation for various catalytic systems

Catalyst Solid electrolyte Temperature (°C)

Promotion parameters

Referenceρmax Λmax/min
Ag YSZ 320–420 – <300 [88]

Pt YSZ 260–420 – <15,000 [121]

Pt YSZ 300–450 – 74,000 [90]

Pt YSZ 375 300 289 [122]

Pt YSZ 510 – 144 [123]

Rh YSZ 320–450 1.4 123 [124]

IrO2 YSZ 380 – 200 [125]

IrO2 YSZ 380 13 ~100 [126]

IrO2 YSZ 380 2.5 2000 [127]

Pd
Pt

YSZ, β″-Al2O3
TiO2

300–400
500

–
21

3000
1880

[128]

Pt Gd-doped BaPrO3
Y-doped BaZrO3

400–600 1.3 – [129]

Pt La0.99Sr0.01NbO4-δ 350–450 1.4 −100 [130]
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Although much research has been performed regarding this technology, limita-
tions have been identified that prevent its commercialization. These include elimi-
nating the conventionally used thick film catalysts which have low surface areas and
high material costs and moving from theoretical to more practical reactor designs
[100]. Overall, the objective is to be able to apply the concept of EPOC to high
dispersion heterogeneous catalysts.

 Application of Nanostructured Catalysts for EPOC

 Highly Dispersed Nanocatalyst Preparation

In heterogeneous catalysis, dispersion of a catalyst has been shown to be an impor-
tant factor in terms of catalytic performance; the higher the dispersion, the more
available the active sites, typically resulting in higher catalytic activity. Dispersion
is one aspect of commonly used electrochemical promotion catalysts that has been
recognized as an important factor that requires improvement in order to be competi-
tive with the state-of-the-art commercial heterogeneous catalysts. To address the
limitation of low metal dispersion found for the catalyst-working electrodes of
conventional electrochemical promotion systems, several deposition techniques
have been studied (Table 5).

Table 5 Preparation methods of highly dispersed nanocatalysts

Method Catalyst Dispersion/loading Particle size Film thickness Reference

Impregnation Pt 0.2 or higher – – [137]

Pt 34, 40, 42 % 3.5, 3.0 nm – [12]

Pd 4.9 % 2.6 nm – [138]

Ag 1 % 100 nm – [139]

Ru 3 mg Ru – 4 μm [140]

RuO2 1.72 g RuO2/m2 – – [141]

Metal sputtering Pt – 40 nm – [142,143]

Pt – – 30, 90 nm [144]

Pt 2.2, 32 μg Pt/cm2 – 2, 22 nm [145]

Pt – – 150 nm [146]

Pt 5 % 50 nm – [147,148]

Pt 40 % – 40 nm [149]

Rh 10 % – 40 nm [150]

Rh, Pt 13–40 % – 40 nm [151]

Rh, Pt >10 % – 40 nm [152]

Rh–Pt >15 % – 40 nm [153]

Electroless deposition Pd 5 mg Pd – – [155]

Electrostatic spray
deposition (ESD)

Pt 250 μg Pt
320 μg Pt
420 μg Pt

9 nm
9 nm
23.2 nm

65
85
110

[156]
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The first technique that has been used in recent electrochemical promotion studies
that results in near-nanometric or porous films is wet or dry impregnation [137–141]. 
In general, this type of technique employs a precursor salt of the desired metal dis-
solved in the solution. The solution is dried on the solid electrolyte, calcined, and
reduced in H2. For example, Marwood and Vayenas [137] dissolved H2PtCl6 in water,
dried at 80 °C (catalyst 1) and 90 °C (catalyst 2), calcined in air at 450 °C for 1 h,
and reduced in 2 % H2 in helium at 250 °C for 2 h. Using the CO titration technique
[157] to determine dispersion, it was found that catalyst 2 had a dispersion of D=21%
while for catalyst 1, which had a similar mass as catalyst 2 but a surface area of a
factor of 5 higher, the dispersion was estimated to be approximately D≈100 %.
A similar procedure was carried out by Jiménez-Borja et al. [138] using a 0.1 M
Pd(NH3)4(NO3)2 aqueous solution which resulted in a Pd metal dispersion of 4.9 %
for 0.85 mg of Pd deposited. Even though not in the nanometric scale, other groups
have demonstrated a decrease in metal required through porous micrometric films, as
shown by Theleritis et al. [140] who deposited a porous film of thickness ~4 μm for
a loading of approximately 3 mg of catalyst. In addition, Li and Gaillard [139] dem-
onstrated the use of a less expensive metal, Ag, for working electrode films that was
of a micrometric thickness of 1.8 and 3.9 μm, and an average crystallite size of
approximately 100 nm.
Another common deposition technique that has been employed by many research

groups [142–153] to increase catalyst dispersion is metal sputtering, in which the
solid electrolyte substrate is placed inside a vacuum chamber in close proximity to
the desired metal to be deposited. The desired metal is bombarded with ionized gas
molecules in order to displace the metal in small quantities and slowly deposit a
thin, nanometric layer on the substrate. This technique has been used by several
groups to deposit Rh [150–152], Pt [12, 142–149], or Rh–Pt bimetallic [153] thin-
film catalysts. Both Balomenou et al. [151, 152] and Baranova et al. [150, 158, 159] 
have achieved a film thickness of approximately 40 nm and a dispersion of approxi-
mately 13–40 % and 10 %, respectively. Other groups have also shown sputter
deposition of Pt that achieves a thickness ranging from 30 to 150 nm, corresponding
to dispersions from 5 % to 40 % [142–144, 146–149]. Uniquely, Karoum et al.
[145] sputter deposited a thin layer of Pt (~2 nm) on an 80 nm LSM (La0.7Sr0.3MnO3) 
interlayer where the Pt layer did not necessarily cover the entire surface; however, it
was shown to be viable for electrochemical promotion and electronically conduc-
tive due to the LSM interlayer. Finally, co-deposition of both Rh and Pt (atomic
ratio, 1:1) was performed by Koutsodontis et al. [153] which resulted in an approxi-
mate thickness of 40 nm and a total active metal surface area of 1.9×10−5 mol metal.
Other research groups have also employed alternative, less common techniques

such as electroless deposition [155] and electrostatic spray deposition (ESD) [156]. 
Lintanf [156] describes the ESD method as using less material compared to conven-
tionally used paste deposition and being fully reproducible. It was reported that
three different types of films can be produced – reticulated, dense, and dense – with
particles corresponding to film thicknesses of 110, 65, and 85 nm, respectively. The
average crystallite size was found to be 23.2 nm for the reticulated film and 9.0 nm
for both dense films. Also, an approximate dispersion of 40 % was reported.
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 Cell Configurations and Reactor Design

Another factor that has been identified and discussed in previous reviews [100, 109] 
which is preventing commercial application of electrochemical promotion from being
achieved is the configuration of the cell and design of the reactor. In a recent compre-
hensive review, Tsiplakides and Balomenou [100] summarized the considerations
taken to address the need for cell configurations that can accommodate thin films and
nanoscale catalysts along with designing a more compact reactor that has efficient
current collection. The development of electrocatalysts, new configurations such as
bipolar or monolithic, and concept of “wireless” EPOC is discussed in this review.
As alluded to in the previous section, the simplest modification to the conven-

tionally used electrochemical promotion cell is to deposit less metal for the working
electrode. An important factor to consider, though, is that the metal deposited as a
working electrode must remain electronically connected; otherwise, some of the
film will not be polarized. Lintanf’s [156] description includes a gold mesh on the
working electrode side of the cell in order to ensure electronic connectivity for their
thin (65–110 nm) Pt catalyst films deposited by ESD. These details are not indicated
in other studies [138, 140, 146–148, 160]; however, electrochemical promotion
using the conventional cell configuration was observed for catalyst films exhibiting
dispersions ranging from 5 % to 80 % demonstrating the presence of at least some
electrical connectivity. Similarly, another approach to establish electrical connectiv-
ity involves introducing a mixed ionic–electronic conductive (MIEC) interlayer
between the nanostructured catalyst and solid electrolyte. Some examples of
MIEC interlayer materials that have been used in recent studies include TiO2 
[144, 150, 159], LSM (La0.7Sr0.3MnO3) [145], CeO2 [161], and LSCF/GDC
(La0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.9Gd0.1O1.95) composite (30 % GDC) [162]. Several meth-
ods were used to introduce these interlayers. Baranova et al. [150, 159] deposit TiO2 
(~5 μm thickness) on a YSZ pellet by applying a solution of 20%TiO2 in EtOH:H2O
(1:1), evaporating at 60 °C for 10 min, and thermal treatment at 450 °C for 30 min
in air; following this deposition, Rh is sputter deposited overlaying the TiO2. 
Alternatively, another study showed the use of sputter depositing for both the TiO2 
interlayers (~90 nm thickness) along with the deposition of Pt (~30 nm thickness)
[144]. Figure 2 shows SEM micrographs of the deposited layers on the YSZ pellet.
It was noted that the YSZ pellet is not fully covered by the TiO2 interlayer (Fig. 2b).
Both interlayer (LSM) and Pt catalyst were also sputter deposited in a study

performed by Karoum et al. [145]; however, interesting to note, the use of a CGO
(Ce0.9Gd0.1O2-δ) pellet was shown to be an alternative to using YSZ. For a tempera-
ture range of 200–400 °C, the ionic conductivity of the CGO pellet was shown to be
at least 10 times higher than that of the YSZ pellet. Finally, as described byKambolis
et al. [162], the electronic conductivity of the catalyst electrode in their EPOC cell
was not ensured by the impregnated Pt nanoparticles but by the MIEC interlayer of
LSCF/GDC which was deposited through screen printing on a GDC pellet.
The first step toward a modified cell configuration is shown in Fig. 3, proposed

by Marwood [163] in the 1990s, in which the catalyst is not used as an electrode as
in the conventional EPOC, but rather it is instead electronically isolated with current
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passing between two gold electrodes. This pioneering work showed that Pt was
deposited using the commonly used paste to determine whether a direct electrical
connection between the catalyst and counter electrode was necessary to observe the
effect of electrochemical promotion [163].
Similarly, a preceding study demonstrated the use of highly dispersed impregnated

Pt (~5 nm) nanoparticles [137]; however, they were deposited on a gold working
electrode. From this study, it was shown that direct contact between the catalyst and
the solid electrolyte was not necessary as well. In addition, it was also not necessary
for the catalyst to be continuous to observe the effects of electrochemical promotion.

Fig. 2 SEM micrographs of (a) YSZ surface, (b) sputter-deposited TiO2 on YSZ surface, and (c) 
sputter-deposited Pt on TiO2/YSZ surface (Reproduced from Papaioannou et al. [144])

Au1 Au2Pt

Au1 Au2

Au3

Pt

YSZ
Au3

Fig. 3 Schematic of first proposed bipolar configuration, Pt catalyst and Au working (Au1), coun-
ter (Au2), and reference (Au3) electrodes (Reproduced from Marwood [163])
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Various other cell designs have been proposed and tested by other research
groups which fall under the bipolar configuration category. These include deposit-
ing Pt metal paste in the forms of stripes or dots between two gold electrodes [164],
coating glass beads with Rh and placing them inside a YSZ tube that is coated with
two gold electrodes on the outer surface [99], and sputtering Pt between the comb-
like gold electrode structures (distance of 2 mm between electrodes) [142]. Figure 4 
depicts a bipolar cell configuration presented by Xia et al. [143]. As shown in the
figure, it was proposed that upon application of an electrical field, the dispersed Pt
nanoparticles form partially or completely polarized galvanic cells, one side being
positively polarized and the other negatively polarized.
Further cell modifications were first proposed by Wodiunig et al. [141] through

the use of a cylindrical YSZ solid electrolyte monolith. A RuO2 catalyst was depos-
ited through thermal decomposition (i.e., impregnation) inside the channels of the
monolith, while two gold electrodes were deposited symmetrically on the outside of
the cylinder. A similar honeycomb monolith was used in a previous study where
dispersed Pd particles were introduced into the channels by electroless deposition;
however, instead of both electrodes deposited on the outside of the cylinder, a gold
working electrode was deposited on the entire outside surface, while a continuous
Pd film was deposited (as a counter electrode) on the center channel of the monolith
[154]. Furthermore, using this concept of a monolithic reactor and in regard to both
the desire for efficient current collection and a compact reactor design, the mono-
lithic electrochemically promoted reactor (MEPR) was proposed by Balomenou
et al. [151, 152]. Details of the design and construction of this reactor are well out-
lined, describing that the main advantage is that it can be assembled and dismantled
easily and the plates can be replaced as necessary [151]. This type of reactor has
also been employed by Koutsodontis et al. [153] who describe the design as a
hybrid between the classical honeycomb monolith and a flat- or ribbed-plate
solid oxide fuel cell; a feasible solution in order to minimize electrical connections.

Fig. 4 Schematic of bipolar configuration of electrochemical cell, consisting of two Au electrodes
and polarized Pt particles deposited on YSZ solid electrolyte (Reproduced from Xia et al. [143])
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More recently, as modified from the reactor in Fig. 1c, a single-chamber reactor
(SCCR) was developed to accomodate highly-dispersed nanocatalysts [155].
A more recent concept that has been related to the electrochemical promotion

phenomenon is that of self-induced electrochemical promotion. One of the main
advantages of this type of catalytic cell is that there is no electrical contacts required
which, in turn, means no external circuit. It has also been a suggestion in order to
overcome the limitation of the electrical connectivity of nanocatalysts. This concept
has been demonstrated for the oxidation of CO over YSZ-supported Pt nanoparti-
cles [36, 74] as well as for propane oxidation [87] and toluene oxidation [78] over a
Pt/YSZ catalyst.
Similarly, the concept of a wireless configuration has been studied as well which

involves a concentration driving force that causes the migration of promoting ion
species from the support toward the surface of the nanostructured catalyst [165–167]. 
These studies were also performed for a Pt catalyst deposited on a MIEC support (or
membrane). The cell is placed inside a dual chamber reactor which consists of a reac-
tion side (i.e., catalyst, reaction gases) and a sweep side (i.e., catalyst, sweep gas). In
this case, open circuit conditions correspond to using the same reaction mixture on
each side. To induce back-spillover (i.e., pushing oxygen toward the surface of the
reaction side catalyst), oxygen was introduced on the sweep side. This creates an
oxygen chemical potential difference across the membrane driving the oxygen
toward the reaction side. Furthermore, spillover (i.e., removing oxygen from the sur-
face of the reaction side catalyst) was induced by sweeping hydrogen on the sweep
side creating a driving force in the opposite direction [165–167]. It should be noted
that the same in situ control of catalytic activity as EPOC can be achieved with this
type of wireless configuration by altering the oxygen concentration difference across
the membrane.

 Electrochemical Promotion of Nanostructured Catalysts

Several model reactions have been used to evaluate and investigate the viability of
electrochemical promotion for the nanocatalyst systems (as shown in Table 6). These
include complete oxidation of ethylene [40, 141, 144, 150, 151, 158, 159, 163, 164] 
and propane [12, 145, 146, 148, 162], combustion of CO [142, 143, 147] and natural
gas [138, 154, 161], reduction of NO in the presence of hydrocarbons [99, 152, 153,
156, 160], and, more uniquely, SO2 oxidation [149] and the reverse water–gas shift
(RWGS) reaction [140]. Each study has shown promising results for electrochemical
promotion over nanocatalysts for different cell configurations and reactor designs
which prove to be furthering this technology toward commercialization.
In general, it has been concluded that the reaction rate of ethylene oxidation is

significantly increased when a positive polarization is applied [141, 144, 150, 151,
158, 159, 163, 164]; however, a recent study showed an increase in catalytic rate
when negative polarization is applied. This was attributed to partial reduction of
CeO2, the catalyst support, causing a stronger MSI of the Ru nanoparticles and
CeO2 [40]. The introduction of a MIEC interlayer, especially TiO2, was shown to
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enhance the catalytic activity even more [144, 150]. Baranova et al. [150] discuss
that this enhancement due to the addition of the TiO2 interlayer is attributed to the
higher surface area of the catalyst deposited on TiO2 compared to the catalyst depos-
ited on the bare YSZ pellet. Further explanation of this behavior outlines that the
TiO2 layer, under polarization, acts as a catalyst in transforming the gaseous O2 to
promoter O2− species at the Pt/gas interface [144]. Figure 5 shows a comparison of
the catalytic performance of the Pt catalyst with and without the incorporation of a
TiO2 interlayer. Some of the observations discussed from these results include that
there is an increase in UWR for the Pt/TiO2/YSZ catalyst which implies an increase
in work function indicating a higher coverage of promoting O2− species on the cata-
lyst surface resulting in greater enhancement in activity; also, a new steady state,
upon positive polarization, was achieved significantly faster for the Pt/TiO2/YSZ
catalyst compared to the Pt/YSZ catalyst.
Similar results were found using the bipolar configuration by both Marwood

[163] and Balomenou et al. [164]; however, it was observed that the magnitude

Table 6 Electrochemical promotion of nanocatalytic systems

Reaction Catalyst
Solid
electrolyte Temperature (°C)

Promotion
parameters

Referenceρmax Λmax/min
C2H4 oxidation Pt YSZ 353 1.38 688 [163]

Pt YSZ 400 3.8 – [164]

Pt YSZ
TiO2/YSZ

280 67
168

188
753

[144]

Pt, Rh YSZ 300–380 1.45 77 [151]

Rh YSZ
TiO2/YSZ

300–420 60
78

1400
1791

[150,158,159]

Ru YSZ 350–400 2.46 96 [40]

RuO2 YSZ 360 – 90 [141]

C3H8 oxidation Pt YSZ 350 5.6 330 [146]

Pt YSZ 150–500 22.4 480 [148]

Pt Ce0.9Gd0.1O2-δ 170–250 1.3 6 [145]

Pt Ce0.9Gd0.1O0.95 267–338 1.38 85 [161]

CO oxidation Pt YSZ 300 500 1.5 [142,143]

Pt YSZ 250 4 530 [147]

CH4 oxidation Pd YSZ 400 – 47 [130]

Pd YSZ 120–500 3.65 – [138]

Pd CeO2/YSZ 480 5.6 764 [160]

NOx reduction Pt YSZ 300–510 2.3 48 [156]

Pt, Rh YSZ 290–305 14 900 [152]

Pt–Rh YSZ 335–380 6.46 13.75 [153]

Rh YSZ 275–450 6 5 [99]

Rh YSZ 370 220 1207 [160]

SO oxidation Pt YSZ 330–370 2 30 [149]

RWGS Ru YSZ 200–300 2.5 1000 [140]
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of electrochemical promotion (in terms of rate enhancement ratio and Faradaic effi-
ciency) was factors lower than that observed for the conventional configuration.
Both groups attributed this to two effects, current bypass and individual bipolar
electrodes. Current bypass involves the possibility of current passing through the
bulk of the YSZ without affecting the Pt catalyst. Some possible solutions in order
to obtain similar catalytic performance include applying much larger currents, or
using a thinner YSZ pellet or appropriate electrode geometry to lessen the loss of
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Fig. 5 Transient effect of applied constant current on the rate of C2H4 oxidation: (top) Pt/YSZ
catalyst, (bottom) Pt/TiO2/YSZ catalyst (Reproduced from Papaioannou et al. [144])

H.A.E. Dole and E.A. Baranova



1115

current. The concept of individual bipolar electrodes means that each individual Pt
nanoparticle catalyst behaves as a bipolar electrode; one side is positively charged,
and the other side is negatively charged. This causes a nonuniform work function,
contrary to that of a conventional electrode configuration; therefore, the resulting
effect is a combination of catalytic activity due to both positive and negative polar-
izations. It has been suggested that this can be overcome by using this type of con-
figuration for reactions that exhibit both electrophobic and electrophilic behavior.
A similar limitation (i.e., underestimation of promotion parameters) was found

by Kambolis et al. [162] for the oxidation of propane over Pt/LSCF-GDC/GDC
catalyst. It was stated that a minor part of the applied current between the LSCF/
GDC electrode and the counter electrode passes over the Pt nanoparticles resulting
in an underestimation of the Faradaic efficiency values. These results are shown in
Fig. 6, summarizing the effect of positive polarization at three different tempera-
tures. It can be seen that at 267 °C, a two-step increase of propane conversion was
observed. This was attributed to the fact that the LSCF/GDC electrode conductivity
is quite low at such a temperature indicating that the movement of oxygen ions
requires some time to be delocalized from the bulk of the electrode; the opposite is
observed when the current is interrupted [162].

Fig. 6 Transient effect of
applied constant current on
the rate of C3H8 oxidation for
T1, 267 °C; T2, 307 °C; and
T3, 338 °C (Reproduced from
Kambolis et al. [162])
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Xia et al. have attempted to quantify this difference in promotion parameters
compared to the conventional equations, taking into account that when the catalyst
is highly dispersed and not directly electronically connected, it acts as individual,
isolated galvanic cells during polarization [143]. They proposed a new technique
where a galvanostatic step is applied to a system in the presence of C16O and isotope
18O2 under high vacuum conditions. The formation of C18O2 (Faradaic reaction; 16O
from YSZ) and C16O18O (non-Faradaic reaction; 18O from 18O2) is observed, and the
number of galvanic cells is quantified, thus, resulting in the following modified
equation (Eq. 5) for rate enhancement ratio being proposed:
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+r r
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C O C O O

C O O
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where r
C O16

2
is the rate of Faradaic formation of C16O2, rC O O16 18 is the rate of non-

Faradaic formation of C16O18O, and r
C O O16 18

0 is the initial open circuit catalytic rate.
In addition, an adjustment to the equation (Eq. 6) for Faradaic efficiency was shown
to be
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or in the more conventional form (Eq. 7); however, accounting for the equivalent
number of galvanic cells (ncell),
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where Dr
C O O16 18 is the enhancement of the catalytic rate of C16O18O during

polarization.
From this discussion, it is evident that some limitations still exist with regard to

the application of nanostructured catalysts and the corresponding modified cell con-
figurations and reactor designs; however, these have been identified and are being
investigated for possible solutions and explanations. Further fundamental research
with regard to these new designs would prove to be beneficial in the understanding
of the behavior of these nanostructured catalysts compared to the commonly known
systems. In addition, adjusting the reaction environment to more practical operation
conditions would make it possible to evaluate the nanostructured catalysts for com-
mercial applications.

 Conclusion

Recent progress in the implementation of nanostructured catalysts to overcome the
commercial limitations of conventional electrochemical promotion systems and to
gain a better understanding of the related MSI phenomenon was presented. The
limitations for practical application include the low metal dispersion, high metal
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loading of expensive metals, and inefficient cell configuration and reactor design.
It was shown that metal dispersion can be increased (by a factor of 10–100) through
catalyst preparation techniques such as impregnation, sputter depositing, electroless
deposition, and electrostatics spray deposition. In addition, adjustments to the cell
configuration to accommodate these nanostructured catalysts, such as using the
bipolar configuration or incorporating a mixed ionic–electronic conducting inter-
layer, have been studied along with new reactor designs, such as the monolithic
electrochemical promotion reactor. These modifications have been shown to be the
potential solutions to progressing toward commercial applications of electrochemi-
cal promotion. However, some of the limitations identified for these new designs
include current bypass and individual bipolar electrodes, which cause an underesti-
mation of conventional promotion parameters.
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   Abstract  
  Biological building blocks such as peptides or proteins are able to self-organize 
into nanostructures with particular properties. There are several possibilities for 
their use in varying applications such as drug delivery, biosensing, clean-room 
fabrication methods, and tissue engineering. These biological nanostructures 
have recently been utilized for bionanotechnological applications thanks to their 
easy and low-cost fabrication, their stability, and their facile functionalization. 
These features suggest the usage of self-assembled peptide nanostructures in 
the development of biosensing platforms, and the present chapter explores their 
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use for such purposes. Several immobilization strategies, mechanisms, and 
detected substrates are described. Moreover, different possibilities to function-
alize and modify their structure toward utilization in sensing applications are 
also discussed.  

  Keywords  
  Self-assembly   •   Peptides   •   Biosensors   •   Amperometry   •   Biomedical analysis   • 
  Dielectrophoresis   •   Environmental analysis   •   Impedance   •   Cyclic voltammetry   • 
  Conductive polymers  

        Introduction 

 Traditionally, nanomaterials such as carbon nanotubes (CNTs), silicon nanowires, 
as well as gold, platinum, and silver nanowires or nanoparticles have been used in 
the development of electrochemical and optical biosensors due to their large surface 
area, mechanical stability, electrochemical properties, and advantages in terms of 
signal amplifi cation (Table  1 ). However, issues involving fabrication costs, biocom-
patibility, and functionalization have directed much attention to fi nding alternatives 
to overcome these challenges.

   Self-assembled peptides are natural molecular building blocks able to self- 
organize into structures such as nanofi bers, nanotubes, or nanoparticles. Peptides, 
e.g., the short aromatic dipeptides diphenylalanine or diphenylglycine, octapeptides 
such as NSGAITIG, or more complex linear peptides, have been reported to form 
nanotubes, nanofi bers, or nanoparticles. These structures can, in most cases, be fab-
ricated under very mild conditions: room temperature, aqueous media, and outside 
a clean room. Fabrication costs can thus be lowered as compared with the 

   Table 1    Nanostructures commonly used in the development of electrochemical biosensors   

 Nanostructure  Fabrication method  References 

 Metallic nanowires  Template assisted electrodeposition 
 Electrochemical deposition 
 Electroless deposition 
 Template fi lling 

 [ 1 ] 

 Si nanowires  Reactive ion etching 
 Photolithography 

 [ 2 ] 

 Carbon nanotubes  Chemical vapor deposition 
 Arc discharge 
 Laser ablation 
 Gas-phase catalytic growth 

 [ 3 – 5 ] 

 Polymer nanowires  Electrochemical deposition 
 Template fi lling 
 Reactive ion etching 

 [ 1 ,  6 ] 

 Graphene nanostructures  Exfoliation 
 Chemical vapor deposition 
 Epitaxial growth 

 [ 7 ] 
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fabrication of CNTs or silicon nanowires. Due to these advantages and properties, 
self- assembled peptide nanostructures (SAPNs) have been used in several applica-
tions ranging from tissue engineering to microfabrication processes [ 8 ]. 

 In addition to their easy fabrication, self-assembled peptide nanostructures have 
proven to be resistant to high temperatures and chemical attacks [ 9 ]. Moreover, 
SAPNs are easily functionalized through chemical modifi cation with structures 
such as quantum dots, magnetic and metallic nanoparticles, or enzymes. This leads 
to new possibilities for their utilization in the development of ultrasensitive biosens-
ing devices [ 10 ,  11 ]. 

 Even though SAPNs are not yet mentioned in the literature review articles 
reporting the latest advances in the use of nanomaterials for electrochemical sensing 
[ 5 ,  12 ,  13 ], more and more reports are appearing, presenting the possibilities, 
advantages, and challenges to overcome when using SAPNs for the development 
of electrochemical sensing platforms [ 8 ,  14 – 22 ]. 

 The use of SAPNs involves several challenges. Due to their biological origin, 
their conductivity is very low, and depending of the fabrication method, the control 
of the size of the fi nal structure may prove to be diffi cult; the fabricated structure 
needs to be manipulated and immobilized in specifi c locations and some of the 
SAPNs are not stable in liquid environments [ 15 ]. These challenges need to be 
overcome in order to integrate them with transducers and accelerate their use in the 
fabrication of sensing devices. 

 The present chapter discusses these challenges and present various solutions for 
the use of SAPNs in the development of electrochemical biosensors, as well as 
methods to deposit these nanostructures on transducer surfaces and their decoration 
with functional molecules (such as enzymes, antibodies, conductive polymers) are 
listed and discussed.  

    Fabrication and Deposition of Self-Assembled Peptide 
Nanostructures on Transducers 

 As previously mentioned, one of the features that make SAPNs an attractive option 
for bionanotechnological applications is the easy fabrication under very mild condi-
tions. Numerous techniques have been reported for the synthesis of nanotubes, 
nanofi bers, and nanoparticles using SAPs as building blocks. These synthesis tech-
niques include very simple steps ranging from the dilution and mixing of two liq-
uids containing the precursor compounds in a small container or the controlled 
mixing in a microfl uidic chip to the use of more complex instruments like in the 
case of physical vapor deposition of SAPNs [ 23 – 25 ]. Cyclic, linear, chemically 
modifi ed linear peptides and short aromatic dipeptides have been used for the self- 
assembling of nanostructures using the fabrication techniques mentioned above. 

 One of the simplest methods to fabricate nanostructures through the self- assembly 
of peptides is by mixing a peptide stock solution with a solution that will promote the 
self-assembly of the peptide nanostructure. A very well-documented method is the 
self-assembly of the short aromatic dipeptide diphenylalanine. The dissolution of 
this peptide in 1,1,1,3,3,3-hexafl uoro-2-propanol (HFIP) and further dilution with 
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water cause multiwall nanotubes to form in seconds at room temperature [ 25 ]. 
Another example of the fabrication of peptide nanotubes involves dissolving bis(N-
α-amido-glycylglycine)-1-7-heptane dicarboxylate in water. In this case, the nano-
tubes were formed after 1 week at room temperature [ 26 ]. 

 In both cases, the size of the obtained nanotubes differed both in diameter and 
length. In order to obtain nanostructures with more defi ned dimensions, various 
methods exist, such as on-chip fabrication, where a more controlled mixing of the 
precursor solutions is possible due to a laminar fl ow, or the use of templates that 
defi ne the fi nal diameter of the fabricated nanostructures [ 24 ,  27 ,  28 ]. 

 A novel solid-phase method to grow vertically aligned crystalline peptide nanofi -
bers in the absence of water and driven by aniline vapor was reported by Ryu and 
coworkers [ 29 ]. By using a μ-channeled polydimethylsiloxane (PDMS) mold, a 
micropattern of peptide nanofi bers was fabricated. Figure  1  shows vertically aligned 
self-assembled peptide nanofi bers prepared with the aniline vapor aging method.

   Thanks to this method, it was possible to integrate these biological nanofi bers in 
metallic electrodes for the development of a cell culture-biosensing platform for the 

  Fig. 1    Growth of vertically aligned nanofi bers from an amorphous diphenylalanine thin fi lm 
by high-temperature aniline vapor aging (Figure from Ryu and Park [ 29 ] with permission from 
John Wiley & Sons)       
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detection of neurotransmitters from cells [ 30 ]. This method requires temperatures 
around 140 °C but assures the synthesis of vertically well-aligned peptide nanofi bers. 

 Physical vapor deposition was used for the controlled fabrication of dense and 
homogeneous peptide nanostructures to be used in microelectronics. The employed tech-
nique requires temperatures above 200 °C and the use of more specialized equipment, 
vacuum chambers, heating control systems, and thickness control systems among others, 
but enabled a controlled deposition of either nanotubes or nanofi bers [ 23 ]. 

 Another advantage of the last two preparation techniques is that the peptide nano-
structures can – as they are being fabricated – be deposited on specifi c locations such 
as metallic electrodes or SiO 2  wafers for the development of biosensing devices. 

 Apart from these two methods that require temperatures over 120 °C, other 
deposition techniques can be used at room temperature for the controlled deposition 
of peptide nanostructures on top of transducers. The simplest method to immobilize 
peptide nanostructures on top of electrochemical transducers is the deposition of 
droplets of a solution containing the biological modifi ed or unmodifi ed nanostruc-
tures; once the solvent is evaporated, the nanostructures are physically immobilized 
on the transducer surface. Although this approach is both simple and rapid, it does 
not ensure a stable layer of nanostructures on the transducer surface: when the mod-
ifi ed transducer is dipped in the sample to be measured, some of the nanostructures 
may become detached. In order to prevent this, an additional layer of polymer, e.g., 
poly(allylamine hydrochloride) (PAH), glutaraldehyde, or polyethyleneimine (PEI), 
is added to trap and keep the peptide nanostructures in the desired position [ 31 ,  32 ]. 
Figure  2  displays the use of glutaraldehyde as a cross-linker to immobilize glucose 
oxidase on peptide nanotubes and PEI to keep the functionalized peptide nanotubes 
on top of gold electrodes.

   Dielectrophoresis is a technique where an inhomogeneous electric fi eld is used 
to move a neutral but polarizable particle. It has been used for the controlled deposi-
tion of nanofi bers and nanotubes on top of gold electrodes, as shown in Fig.  3 . After 
deposition of the biological nanostructures on the electrodes, their electrical charac-
terization and utilization as sensors were made possible, as previously reported. 
This deposition technique is a noncontact method ensuring that the peptide nano-
structure does not become damaged during the manipulation step [ 33 – 35 ].

   An inkjet printing technology was used for the deposition of peptide nanotubes 
and nanoparticles forming specifi c patterns on top of indium tin oxide electrodes, as 
shown in Fig.  4 . This method was found to rapidly produce durable patterns at room 
temperature, making it very attractive for the deposition of peptide nanostructures 
at a high scale. However, challenges regarding clogging of the printing device need 
to be overcome [ 36 ].

   Another way to immobilize peptide nanostructures on a transducer, both hori-
zontally and vertically, involves the functionalization of peptide nanostructures 
with magnetic nanoparticles and then exposition of the modifi ed tubes to an exter-
nal magnetic fi eld. With this technique, very highly organized peptide nanotube 
arrays were immobilized on siliconized glass [ 37 ]. 

 A similar approach was used by Zhao and Matsui, in which case antibody- 
functionalized peptide nanotubes were accurately immobilized on protein-patterned 
arrays by optimizing their ligand-receptor interactions. In their work, peptide 
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nanotubes self-assembled from bolaamphiphile peptide monomers were coated with 
antihuman-IgG antibody and immobilized on 150 × 600 nm trenches modifi ed with 
human gamma immunoglobulin (IgG). Perfectly vertically aligned peptide nano-
tubes were deposited on the modifi ed trenches with nearly 100 % effi ciency [ 38 ,  39 ]. 

 The direct transfer of octapeptide fi ber arrays on gold surfaces was achieved 
using laser-induced forward transfer (LIFT). This immobilization technique 
involves a single pulse from a focused laser beam to transfer a peptide solution from 
a donor-coated surface to an acceptor surface [ 40 ]. The method provides the high- 
resolution, noncontact, direct, fl exible, and parallel transfer of more than one type 
of material resulting in the deposition of peptide-based microarrays maintaining the 
biological functions of the nanostructures [ 41 ,  42 ]. As in the case of the physical 
vapor deposition method, this technique requires additional equipment such as laser 
systems, translation stage drivers, and microscopes. 

 In addition to the fabrication and manipulation-immobilization techniques men-
tioned in this section, there are a few others that could interest the reader. However, 
this chapter only presents techniques relevant for the development of electrochemi-
cal biosensors. The readers are thus invited to learn more about other methods to 
fabricate, manipulate, and immobilize SAPNs in some very good reviews and chap-
ters focusing on these topics recently published [ 40 ,  43 ,  44 ].  
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  Fig. 2    Immobilization of 
GOX-modifi ed peptide 
nanotubes on Au 
electrodes using PEI as an 
immobilization matrix 
(Reprinted with permission 
from Yemini, M. et al. 
Peptide nanotube-modifi ed 
electrodes for enzyme- 
biosensor applications. 
Anal. Chem. 77 (16): 
5155–5159. Copyright 
(2005) American Chemical 
Society [ 32 ])       
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antibody-coated
peptide nanotube

AC field

a

b

c

d

gold electrodes

virus

  Fig. 3    Immobilization of antibody-coated peptide nanotubes using dielectrophoresis (Figure from 
de la Rica et al. [ 34 ] with permission from John Wiley & Sons)       

  Fig. 4    Scheme of the inkjet printing deposition of self-assembled peptide nanotubes. ( a)  Image of 
a single printing cycle. ( b ) Scanning electron microscopy image of the printed area in  a . ( c ) Image 
of a 10-cycle print on transparent foil (Figure adapted from Adler-Abramovich and Gazit [ 36 ] with 
permission from John Wiley & Sons)       
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    Functionalization of Self-Assembled Peptide Nanostructures 

 An important advantage of self-assembled peptide nanostructures, when compared 
with carbon nanotubes or silicon nanowires, is how easily these biological sub-
strates can be decorated with functional compounds that increase the sensitivity and 
selectivity to the biosensing device. Thanks to the amino acids present on the struc-
ture of the self-assembled peptide, a variety of possible chemical interactions 
between the peptide nanostructure and the functional compound are available and 
have been utilized to decorate the surface of SAPNs. 

 If we focus only on the functionalization of SAPNs with the purpose of using them 
in electrochemical biosensing, we can fi nd that these bionanostructures have been 
decorated with enzymes, antibodies, conductive polymers, metallic nanoparticles, 
and organic acids or integrated with inorganic nanomaterials, just to mention a few. 

 The manner in which SAPNs are functionalized varies depending of the type of 
peptide used to fabricate the nanostructure and the functional groups available on its 
surface. For instance, by taking advantage of the amino groups exposed on the 
external wall of diphenylalanine nanotubes, a biotinylation procedure was employed 
to decorate these nanotubes with gold nanoparticles, InGaP quantum dots, and a 
fl uorescent labeling (Ato-610). The functionalization was performed through a 
rapid chemical reaction without any special requirements regarding equipment or 
temperature [ 45 ]. 

 In a different study, antibodies were anchored via hydrogen bonding on the 
amide groups of self-assembled nanotubes of the bolaamphiphile peptide bis(N-α- 
amido-glycylglycine)-1,7-heptane dicarboxylate [ 38 ]. Using the same type of 
bolaamphiphile peptide nanotubes,  Candida rugosa  lipase – an enzyme previously 
used for the potentiometric detection of pesticides [ 46 ] – was encapsulated inside 
the nanotubes with a simple incubation process. The immobilization of the enzyme 
was possible via hydrogen bonding between amide groups present in the nanotube 
structure and the complementary functional groups of the enzyme [ 26 ]. This func-
tionalization process required the incubation of the enzyme with the nanotubes 
during 1 week at 4 °C. A scheme of the functionalization process is shown in Fig.  5 . 
This encapsulation process resulted in a catalytic activity of the enzyme which was 
33 % higher than for a free-standing enzyme at room temperature.

   Horseradish peroxidase and glucose oxidase, enzymes used for the electrochem-
ical detection of hydrogen peroxide and glucose, were encapsulated within the 
internal cavity of diphenylalanine peptide nanotubes by capillary effect [ 47 ,  48 ]. 
The self-assembled nanotubes were incubated in the respective enzyme solutions at 
5 °C during 1 week with constant shaking. The encapsulation of the enzymes inside 
the peptide nanostructures was confi rmed by scanning transmission electron micros-
copy (STEM). 

 Kasotakis and coworkers presented a means to incorporate metallic nanoparti-
cles at specifi c locations of nanofi bers formed by self-assembly of the octapeptides: 
NSGAITIG, NCGAITIG, CNGAITIG, and CSGAITIG from the fi ber protein of 
adenovirus [ 49 ]. The functionalization involved the mixing and incubation during 
18 min of the peptide fi bril solution with an aqueous solution of the metal salt 
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(AgNO 3 , HPtCl 6  H 2 O, or HAuCl 4  3H 2 O). After the incubation, a reducing agent was 
added (1 % citric or ascorbic acid depending of the salt used). The mixed solution 
was then incubated during 1 h at room temperature. Figure  6  illustrates the 
NSGAITIG nanofi bers after incubation with a platinum solution.

peptide
nanotube

lipase

Lipase Hydrolysis of

p-nitrophenyl
butyrate

p-nitrophenyl
butyrate

O O

N+

N+

O

O

OH +
O

O−

−O

O−

p-nitrophenol butyrate

incubation
(<0.009mg/mL)

  Fig. 5    Scheme of the immobilization of  Candida rugosa  lipase inside bolaamphiphile nanotubes 
(Reprinted with permission from Yu, L.T. et al. Fabrication and application enzyme-incorporated 
peptide nanotubes. Bioconjugate Chem. 16 (6): 1484–1487. Copyright (2005) American Chemical 
Society [ 26 ])       

  Fig. 6    Transmission electron microscopy images of the deposition of platinum on octapeptide 
nanofi brils. ( a ) Fibrils formed from the NSGAITIG peptide; ( b ) NCGAITIG peptide; ( c ) 
CNGAITIG peptide; ( d ) CSGAITIG peptide (Figure from Kasotakis et al. [ 49 ] with permission 
from John Wiley & Sons)       
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   Glucose oxidase was covalently immobilized on the surface of EAK16-II 
nanofi bers using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 
(EDC)/N-hydroxysuccinimide (NHS) coupling. The functionalized EAK16-II 
nanofi bers were deposited on highly ordered pyrolytic graphite for the amperomet-
ric detection of glucose. As in the case of the  Candida rugosa  lipase encapsulated 
on bolaamphiphile nanotubes, the activity and stability of the immobilized glucose 
oxidase were increased [ 50 ]. 

 A recent study reported on the use of EDC as a linker agent between folic acid 
and diphenylalanine peptide nanotubes [ 51 ]. The functionalized peptide nanotubes 
were then deposited on a graphene electrode in order to capture cancer cells over- 
expressing folate receptors. The folic acid-functionalized self-assembled nanotubes 
were characterized using atomic force microscopy (AFM). 

 The templated polymerization of polyaniline (PANI), a conductive polymer, on 
the external wall of self-assembled peptide nanofi bers was reported by Ryu [ 52 ]. 
For this, the formed nanofi bers were immersed in a polymerizing solution of aniline 
for a desired time without stirring. The result was the formation of peptide nanofi -
bers/PANI core/shell nanostructures, as shown in Fig.  7 . Through doping/dedoping 
tests and electrochemical characterization, it was confi rmed that the peptide/PANI 
nanofi bers were electrochemically active.

   Another example of the integration of SAPNs with conductive polymers was 
demonstrated by Hamedi and coworkers. Their work involved the decoration 
of amyloid fi brils synthesized from bovine insulin with poly(3,4- 
ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS). The PEDOT- 
functionalized amyloid fi brils were used to fabricate an electrochemical 
transistor device [ 53 ]. 

 The same type of nanofi bers was functionalized with Co 3 O 4  nanostructures by 
treating the peptide nanofi bers with 1 mM CoCl 2  solution in 10 mM Tris (pH 7.0) 

  Fig. 7    Cross-sectional scanning electron microscope images of bare ( left image ) and PANI covered 
( right image ) self-assembled peptide nanofi bers (Figure from Ryu and Park [ 52 ] with permission 
from John Wiley & Sons)       
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overnight and reducing the adsorbed Co 2+  ions with 5 mM NaBH 4 . The resultant 
peptide/Co 3 O 4  composite nanofi bers were then subjected to structural and electro-
chemically characterizations [ 54 ]. 

 Finally, an interesting example of the integration of SAPNs with carbon nanostruc-
tures was developed in order to fabricate peptide/graphene hybrid assemblies into core/
shell nanowires by a single-step solution process. The prepared core/shell nanowires 
exhibited electroconductivity suggesting their use as a supercapacitor electrode [ 55 ]. 

 As presented in the previous examples, there are many possibilities to function-
alize SAPNs with a variety of functional molecules in order to improve the perfor-
mance of the developed electrochemical sensing platform. These functionalization 
methods vary depending on the peptide used for the synthesis of the nanostructure 
and the target of the biosensing platform.  

    Applications 

 A majority of the electrochemical biosensing devices developed using SAPNs are 
used for the detection of relevant compounds in two main fi elds: biomedical and 
environmental applications. For the detection of these compounds, electrochemical 
techniques such as amperometry, cyclic voltammetry, and square wave voltamme-
try and impedance have been applied. 

 As mentioned before, SAPNs can be employed to encapsulate or support the 
biorecognition element in its structure. Additionally, SAPNs have been integrated 
with carbon nanomaterials such as graphene or carbon nanotubes in order to add 
extra functionalities. 

 Table  2  summarizes some of the electrochemical biosensors fabricated using 
SAPNs.

      Biomedical Applications 

 Glucose and hydrogen peroxide are compounds of biomedical relevance that are 
connected with the diagnosis of diseases such as diabetes. The detection of glucose 
constitutes one of the biggest markets in the electrochemical biosensing industry 
[ 56 ,  57 ]. SAPNs offer a new alternative for the development of electrochemical 
biosensors aimed to follow changes in the concentrations of glucose, hydrogen per-
oxide, neurotransmitters, and metals involved in different pathologies. 

 Glucose oxidase was attached to peptide nanotubes through Traut’s reagent 
for the electrochemical detection of glucose [ 32 ]. The modifi ed nanotubes were 
then attached to a gold electrode using glutaraldehyde as a cross-linker as 
depicted in Fig.  2 . 

 The electrochemical detection of tumor necrosis factor α (TNF-α) was reported 
using a biosensor combining ferrocene carboxylic acid-functionalized peptide 
nanofi bers [ 58 ]. The sensor response was linear from 5 pg/mL to 10 ng/mL with a 
calculated detection limit of 2 pg/mL. 
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 Vertically aligned self-assembled peptide nanofi bers patterned on a microchip 
containing gold electrodes were used to fabricate a combined cell culture- biosensing 
platform for the detection of dopamine released from PC12 cells [ 30 ,  59 ]. The 
advantage of this combined platform was that it offered a 3D environment mimick-
ing the situation experienced by cells in vivo and at the same time enabled the in situ 
detection of the neurotransmitter release upon stimulation with KCl, decreasing the 
loss of the signal due to the diffusion of the sample in the electrolyte. 

 Figure  8  shows PC12 cells grown on top of vertically aligned peptide nanofi bers 
and the amperometric signal corresponding to the release of dopamine.

   Folic acid, a ligand used for targeting cell membranes was deposited on the 
external wall of self-assembled peptide nanotubes; these functionalized nanotubes 
were then immobilized on graphene electrodes for the electrochemical detection of 
cancer cells over-expressing folate receptors [ 51 ]. A limit of detection of 250 cells/
mL was obtained with the developed biosensor. This sensing platform could be used 
also with cells infected with parasites causing tropical disease such as leishmaniasis 
or Chagas disease over-expressing folate receptors.  

    Environmental Applications 

 Lead is a highly toxic heavy metal and environmental pollutant that can be poison-
ous at very low concentrations [ 60 ]. By taking advantage of the high affi nity and 
specifi city of some peptides to bind target metals, a Pb ion biosensor could be fab-
ricated by integrating a gold transducer with self-assembled peptide nanotubes able 
to bind Pb ions and template the growth of Pb crystals via molecular recognition [ 61 ]. 
The biosensor was highly selective, displaying a linear response between 0 and 1 
nM Pb II , and the signal was not affected by the presence of other heavy metals such 
as Hg II , Zn II , Co II , or Cu II  as shown in Fig.  9 .

  Fig. 8    Scanning electron microscope image of PC-12 cells on top of vertically aligned peptide 
nanofi bers for the electrochemical detection of dopamine ( left ). Amperometric current-time curve 
corresponding to the dopamine release from PC12 cells triggered with KCl ( right ) (Reprinted with 
permission from Taskin, M. et al. Combined cell culture-biosensing platform using vertically 
aligned patterned peptide nanofi bers for cellular studies. ACS Appl. Mater. & Interf. 5 (8): 
3323–3328. Copyright (2013) American Chemical Society [ 30 ])       
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   In a study aimed to detect phenol, a graphite electrode was coated with 
tyrosinase- functionalized diphenylalanine peptide nanotubes [ 62 ]. Phenol concen-
trations as low as 50 nM were recorded using the developed electrochemical bio-
sensor. The deposition of the tyrosinase-functionalized nanotubes resulted in an 
increased surface area between 0.06 and 0.07 cm 2  compared with an unmodifi ed 
graphite electrode.   

    Conclusions and Outlook 

 Due to its mild fabrication conditions, low-cost synthesis, and easy functionaliza-
tion, self-assembled peptide nanostructures are being used in the development of 
electrochemical biosensors. SAPNs can be immobilized on electrochemical trans-
ducers using cross-linking agents, physical adsorption or deposited using dielectro-
phoresis. Different functional molecules are used to decorate the structure of SAPNs 
in order to improve the sensitivity and selectivity of the biosensing device. 
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  Fig. 9    Ultrasensitive detection of Pb (II) using an electrochemical biosensor with peptide nano-
tubes ( a ) in the absence of Pb (II) and ( b ) in the presence of 0.01 nm Pb (II); ( c ) conductance of 
the peptide nanotubes after incubation with different heavy metal ions (Figure from de la Rica 
et al. [ 61 ] with permission from John Wiley & Sons)       
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 Additionally, SAPNs were integrating with carbon materials (e.g., carbon 
nanotubes and graphene) and conductive polymers (e.g., PANI, PPY) in order to 
produce hybrid nanomaterials. Up to now electrochemical biosensors fabricated 
using SAPNs were applied for the detection of samples in two main areas: biomedi-
cal and environmental. Samples such as neurotransmitter metal, ions, and cancer 
cells among others are some of the compounds detected using this type of electro-
chemical sensors. 

 Studies evaluating the immunogenicity and toxicity of SAPNs could accelerate 
its use in implantable electrochemical biosensors. Additionally, new immobilization 
methods aiming to produce a more stable layer containing SAPNs together with the 
biorecognition element will improve the stability and reproducibility of the biosens-
ing platforms and will expand its use in new application fi elds. Deposition methods 
such as inkjet print or airbrush will be convenient techniques for the industrial pro-
duction of SAPNs paper-based electrochemical biosensors for point-of-care devices.     
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   Abstract  
  Nanostructured materials became in the past years the materials of choice for the 
design of new electrochemical sensors. Enhanced electrocatalytic properties 
obtained due to the increase of active surface and the electrocatalytic activity 
of the nanostructured material were recorded for the amperometric sensors. 
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Stochastic sensors based on channel conductivity improved the quality and reli-
ability of measurements especially when used in biomedical analysis. Design of 
sensors based on graphene, carbon nanotube, and carbon nanopowder will be 
discussed. Surface analysis is essential in the evaluation of the active area of the 
sensors. The most important applications of the sensors based on nanostructured 
materials will be shown.  

  Keywords  
  Electrochemical sensor   •   Nanostructured material   •   Carbon nanotube   •   Graphene  

        Introduction 

 The term “nanotechnology” in its evolution covers many applications in nanoscale 
electronics. At present, the term “nanotechnology” deals with particles or assem-
blies of particles which vary from a few nanometers to about 100 nm. New develop-
ments using nanoparticles or subassemblies of them are found in industry and 
research studies [ 37 ,  39 ]. 

 The nanomaterials have extremely important applications due to the follow-
ing characteristics: the materials (i) present a wide range of properties; (ii) usu-
ally present improved properties, e.g., conductivity and stiffness, and a broad 
range of fl uorescent emissions in the case of quantum dots; (iii) can mix the best 
 properties of classical and quantum behaviors; (iv) represent a bridge between 
classical and biological materials; and (v) offer improved methods for “materi-
als by design.” 

 The well-known engineered nanostructures include to date the following 
materials: ceramics, nanostructured materials, and polymers. Nanocomponents 
such as coating materials and connectors and nanodevices such as sensors, 
switches, and reactors can also be engineered and synthesized accordingly with 
the needs. 

 The extremely small sizes of materials had as result improved properties such as 
signifi cant enhancement of optical, mechanical, electrical, structural, and magnetic 
properties and extremely large specifi c surface area [ 39 ,  46 ]. 

 Design of materials from building blocks was also possible using nanotechnol-
ogy. It was proved several times that at the nanosize the theories of classical and 
quantum mechanics are changed, this being refl ected also by the special proper-
ties of the designed materials. Few of the properties that are changing by downsiz-
ing are transparency, hydrophobicity, photoluminescence, toughness and hardness, 
chemical sensing, and bioavailability. The products obtained from these materials 
proved to have a high commercial value helping also in rapidly expanding 
markets. 

 The interest in nanotechnology and engineered nanostructured fi elds is from the 
design of nanomaterials up to applications, which attract the attention of materials 
developers [ 39 ] (Fig.  1 ).
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       Methods Used for Producing of Nanomaterials 

 Development of new surface analysis techniques facilitated the study of nanostructured 
systems (nanotubes, nanowires, nanoparticles, nanoporous materials) fabricated using 
novel technologies. Therefore, the electrons may be confi ned strongly in any dimension, 
the materials’ characteristics being improved versus the bulk material [ 66 ]. 

 Besides direct atom manipulation, there were many methods developed to pro-
duce nanomaterials: plasma arcing (the very high temperatures associated with the 
formation of an arc or plasma are used to effectively separate the atomic species of 
feedstock), chemical vapor deposition (feed gases are reacted in a chamber and the 
resulting species attracted to a substrate), electrodeposition (involves a similar pro-
cess; however the controlled coating is deposited from solution by the application 
of an electric fi eld), sol–gel synthesis (uses chemical means to produce intimately 
mixed compounds that are hydrolyzed into gels, which decompose to leave a thin 
layer of the desired coating). Mechanochemical processing (MCP) technology 
developed by Advanced Nanotechnologies based in Perth is a new solid-state pro-
cess for the manufacture of a wide range of nanopowders [ 39 ]. 

 Two methods are commonly employed for fabrication of nanostructures:

 –    Bottom-up [ 22 ,  38 ] (by using the techniques of molecular synthesis [ 22 ], colloid 
chemistry [ 13 ], polymer science [ 43 ], and related areas to produce engineered 
nanostructures; these nanostructures produced in parallel are nearly identical, 
but with no long-range order when incorporated into extended materials).  

 –   Top-down [ 76 ] (uses the lithography to pattern materials).    

 Materials needed an accessible strategy to bridge the two methods of formation. 
This strategy is self-assembly [ 76 ,  82 ] (synthesized bottom-up to organize them-
selves into regular patterns or structures by using local forces to fi nd the lowest- 
energy confi guration and to guide this self-assembly using templates fabricated 
top-down) (Table  1 ).

Engineeredna nostructures include:
(Lines 2008).

nanostructured materials (ceramics,
 optical materials, polymers, and metals);

nanocomponents (coating materials and 
connectors);

nanodevices (sensors, switches and 
reactors).

  Fig. 1    Classifi cation of engineered nanostructures       
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       The Advantages of Using Nanomaterials 

 During the last years, electrochemical sensors based on nanomaterials were very 
often used in chemical analysis due to their advantages: rapidity, simplicity, and low 
costs [ 60 ]. Utilization of nanomaterials and nanosensors improved the response 
characteristics of the sensors due to high surface area/volume ratios as well as 
enhanced optical properties (quantum dot fl uorescence, gold nanoparticle quench-
ing) [ 8 ,  10 ]. For example, nanoscale materials have a higher mechanical resistance 
compared with macroscopic samples of the same material. Substructures of the 
materials over a range of scales infl uenced the fracture strength and character, duc-
tility/ fl exibility, as well as various mechanical modules. 

 Downsizing of the materials used for sensor design infl uenced the properties of 
the materials with direct effects on sensor behavior and reliability. Few examples 
related to this point are as follows: materials at the nanometer scale have a lower 
melting point [ 6 ] and reduced lattice constant [ 18 ]. Nanomaterials may show differ-
ent elastoplasticities compared with the macromaterials [ 9 ]. 

 Functionalization of the nanostructured materials is essential in many cases for 
the design of new sensors and biosensors. Using these materials, new stable and 
reliable solid-state sensors and biosensors offering compatibility of inorganic mate-
rials with the chemical/biological agents were designed for reproducible screening 
of biological fl uids [ 66 ]. 

 Many processing methods have been developed for producing bulk nanostruc-
tured materials with a size less than 100 nm [ 51 ]. Typical sizes were known at 
electrochemical interfaces at the nanoscale. There are three aspects that deserve 
attention regarding the use of nanoscale materials in electrochemical fi eld [ 25 ]:

 –    Downsizing of microelectrodes  
 –   Utilization of materials with pores or surface roughness in nanometer range  
 –   Utilization of materials with a large number of defects caused by extremely 

small-size crystallized amorphous-state or noncrystalline materials    

 The downsizing takes all the new instruments to new working conditions and 
optimized parameters, methods, and models. The size and the surface area/volume 
ratio play an essential role for the sensor behavior [ 25 ].  

   Table 1    Methods used to produce nanomaterials   

 No.  Method  References 

 1  Plasma arcing  [ 39 ] 

 2  Chemical vapor deposition 

 3  Electrodeposition 

 4  Sol–gel synthesis 

 5  Mechanochemical processing (MCP) technology 
(a relatively new technique termed) 

 6  Self-assembly layers  [ 76 ,  82 ] 
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    Types of Sensors 

 Electrochemical sensors had a fast progress in the term of electroactive materials, 
matrix materials, and size [ 3 ,  59 ]. Compared to the other instruments, electrochemical 
sensors are attractive due to screening capabilities, easy and reliable design, short time 
of analysis, and low cost. They are leaders among the other types of sensors. Some of 
them reached the commercial stage and found a wide range of important applications 
in the areas of clinical, industrial, food, and biomedical analyses [ 41 ]. Recent develop-
ments in nanomaterials used for the design of chemically modifi ed sensors have 
opened new fi elds of applications such as screening of whole blood for early detection 
of diseases. The response of them converts chemical information in analytical signals 
and the chemical information can come from a chemical reaction of the target analyte 
or a physical property of the system investigated [ 27 ]. Optical sensors based on nano-
materials progressed due to utilization of nanomaterials in their design. 

    Classification of Sensors 

 Chemical sensors contain a receptor part and a transducer part. Some sensors need 
membranes attached to the active side to avoid its contamination. The role of the 
receptor part is to chemically transform the analyte in a measurable form by the 
transducer, and the transducer is capable of transforming the chemical information 
obtained from the receptor in a useful measurable analytical signal which is a physi-
cal property like electrode potential, intensity, or current. The transducer alone does 
not show selectivity; the selectivity may only be improved by the receptor part. 

 Chemical sensors are classifi ed according to the type of the transducer – corre-
lated with the result of the chemical reaction favorized by the receptor in the 
following:

 –    Optical sensors: when the result of an interaction of the analyte with the receptor 
is an adsorption/emission, fl uorescence, or chemiluminescence phenomenon.  

 –   Electrochemical sensors: transform the effect of the interaction between analyte 
and electrode into a useful electrochemical signal, potential, intensity, or current. 
These effects may be stimulated electrically (an intensity or potential is applied) 
or may result in a spontaneous interaction at the zero-current condition. The fol-
lowing types of sensors are:
    1.    Voltammetric sensors, including amperometric sensors:(current is measured 

in the continuous current or alternating current): examples are the sensors 
based on chemically inert electrodes, modifi ed electrodes, and chemically 
active electrodes.   

   2.    Potentiometric sensors: the potential of the electrode (ion-selective electrode) 
is measured against a reference electrode, at zero current.   

   3.    Chemically sensitized fi eld effect transistor (CHEMFET): the effect of the 
interaction between the analyte and the active coating is transformed into a 
change of the source–drain current.      
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 –   Mass-sensitive sensors.  
 –   Magnetic sensors.  
 –   Thermometric sensors.    

 Another way of sensor classifi cation is accordingly with their applications, e.g., 
that are determining a given analyte (e.g., sensors for pH, for metal ions, or for 
determining oxygen or other gases), and with the type of application, e.g., sensors 
for in vivo analysis or sensors for process in vitro analysis [ 63 ]. 

 Researchers developed platforms for multianalyte assay by combining sensors in 
sets, called in the 1990s multisensors [ 27 ]. 

 The following electroanalytical methods are used: conductometric, potentiomet-
ric, and voltammetric/amperometric methods. Conductometric method is versatile 
and is not selective but the principles of operation are very simple; measurement of 
solution resistance allows the deduction of the concentration of charge between two 
electrodes. The selectivity of this method can be improved by using it as detection 
method in high-performance liquid chromatography. 

 Potentiometric method. The equilibrium potential of an electrode is measured 
against a selected reference electrode at zero current. Ion-selective electrodes and 
enantioselective sensors can present a good selectivity for one analyte, especially if 
determined from a well-known matrix. 

 Ion-selective electrodes were developed since 1950. Glass membranes, solid- 
state homogeneous and heterogeneous membranes, and ion-exchange membranes 
and neutral carrier membranes were proposed for their design. Nernst equation was 
used for all quantitative measurements, one of the limitations being the interfer-
ences; therefore, the types of applications were limited later to pharmaceutical anal-
ysis. The limit of detection (often above 10 −7  M), the response, and lifetime were 
acceptable for pharmaceutical analysis. The response time is particularly critical if 
the electrodes are placed in a fl ow system [ 5 ]. 

 Voltammetric method. A current–voltage is recorded where the current is regis-
tered as a function of applied potential using a potentiostat, or potential is recorded 
as a function of applied current using a galvanostat. Amperometric sensors operate 
at fi xed applied potential [ 5 ]. The fi rst voltammetric device was the dropping mer-
cury electrode proposed by Heyrovsky in 1922, for which he won the Nobel Prize 
in 1959 [ 23 ]. Later, electrode materials have been developed based on various forms 
of carbon [ 5 ]. 

 In potentiometric analysis, the sensors are designed to be selective for a certain 
analyte in a certain matrix. In voltammetric analysis, the material of electrode, as 
well as the pH and composition of the solution, can infl uence the half-wave poten-
tial of species in mixtures, in this way enabling the separation of two similarly 
oxidizing or reducible species solving some interference problems. The choice the 
electrode material can lead to selectivity potentiometric and voltammetric sensors. 
An applied potential in voltammetric or amperometric sensors can lead to high 
selectivity [ 5 ]. 

 Stochastic analysis is a novel technique and the most spectacular method devel-
oped so far in electrochemistry [ 20 ]; it is an approach based on observation of 
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individual events of target analyte. This class of sensors is based on pore/nanopore 
conductivity. Pores are promising elements for stochastic sensors, and they produce 
fl uctuations simplistic in their binary manifestations, namely, τ on  and τ off , represent-
ing response/ionic current through the pore [ 19 ]. 

 Until now there have been built many sensors based on biological molecules 
(proteins, α-HL) and artifi cial pore with controlled size and shape. First occurrence 
of stochastic analyze was launched at a much larger scale. At the end of year 1940, 
Wallace H. Coulter has invented counters based on a resistive hole for the counting 
and classifi cation by size of the blood cells [ 12 ]. 

 The fi rst biosensor based on an artifi cial nanopore was constructed from a cylin-
drical pore from gold nanotubes placed in a polymeric membrane, mechanically 
stable, by the group of researcher Charles Martin in 2005 [ 53 ]. 

 The applications of these sensors are until now in the biomedical (e.g., DNA 
sequencing and analysis [ 24 ], enantioanalysis of pipecolic acid [ 58 ]), pharmaceuti-
cal, and environmental fi elds.   

    Sensors’ Design 

 The design of the sensors infl uences the reliability of the analytical information. 
Matrix composition and ratio between electroactive materials used as matrix modi-
fi er infl uence the response characteristics of the electrode. Electroactive material 
has an essential role in the electrode response; therefore it will be attentive to choose 
according to selectivity, sensitivity, and detection limit. Another issue that must be 
considered in the construction of the sensors is the biocompatibility of the materials 
used for sensors’ design [ 57 ]. 

 Characteristics of the electrode can be adjusted by the appropriate designs and 
architectures. 

 New nanostructured materials were designed and used as modifi er on different 
substrates like carbon or metal substrates. Carbon materials such as nanotubes and 
graphene, nanoparticles, and nanowires, and also conducting polymers engineered as 
nanowires, have been synthesized, characterized, and applied for the design of sen-
sors. The use of nanomaterials increased the current intensity by increasing the active 
surface area with respect to a fl at substrate where the sensor reaction can occur [ 5 ]. 

 Solid-state electrodes based on noble metals and different forms of carbon have 
been used intensively in the past years. The electrodes based on carbon, platinum, 
gold, silver, nickel, and copper were used for many applications due to their charac-
teristics like versatile potential window, low background current, low cost, and 
chemical inertness [ 60 ]. 

 Chemically modifi ed electrodes represent a modern approach in sensors’ tech-
nology. Modifi cation of the sensor surface is performed by incorporation of an 
appropriate surface modifi er. By chemical modifi cation of the active surface of sen-
sors, the characteristics of the sensors may be improved. The interest for modifi ed 
surfaces of sensors is motivated especially by the increase of selectivity and sensi-
tivity for many potential applications. 
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 Covering of the electrode surfaces with different fi lms represents an easy and 
reliable method for surface modifi cation; polymer fi lms (most polymers are applied 
to electrode surfaces by a combination of adsorptive attraction and low solubility in 
the electrolyte solution) and inorganic fi lms (metal oxide, clay, zeolite, metal fer-
rocyanide) are often used as modifi ers [ 60 ]. 

 There is signifi cant progress in synthesis and characterization of nanostructured 
materials using surface characterization techniques which helped the evolution of 
the design and surface characterization of sensors. Special properties of carbon 
nanotubes (CNTs) modifi ed with functional groups improved the properties of CNT 
and made possible its application in high-tech sensors’ design [ 64 ,  65 ]. 

 The sensors based on nanotube include also metal oxide-based tubes such as 
Co 3 O 4 , Fe 2 O 3 , SnO 2 , and TiO 2  and metal tubes such as Pt nanosensor. The sensors 
based on nanomaterials present improved sensitivity and selectivity, fast response, 
high recovery, and potential for integration in arrays on a massive scale. All these 
properties represent an improvement from classics sensors. These advantages are 
helping the detection of biomolecules at molecule level [ 26 ]. 

    Nanostructured Materials Used for Design of Sensors 

 Carbon materials are preferred for the design of electrochemical sensors due to their 
high reliability, low residual current, wide potential window, readily renewable sur-
face, and the large overpotential for O 2  reduction and H 2  evolution [ 72 ]. The carbon 
materials include zero-dimensional (e.g., fullerenes, nanodiamond), one- 
dimensional (carbon nanotubes), and two-dimensional carbon materials such as dia-
mond and graphite [ 55 ]. 

    Zero-Dimensional Nanostructures (Nanoparticles) 
 Nanoparticles (20–200 nm) include single crystals, polycrystalline, and amorphous 
materials with all possible morphologies, such as spheres, cubes, and platelets. 
The most used techniques used for their synthesis are top-down and bottom-up 
techniques. A very important issue of metal nanoparticles is that their optical prop-
erties depend on the size and shape of the nanoparticle. Magnetic nanoparticles 
have numerous applications which include targeted drug delivery, ultrasensitive 
disease detection, gene therapy, high-throughput genetic screening, biochemical 
sensing, and rapid toxicity cleansing [ 66 ].  

    One-Dimensional Nanostructures (Carbon Nanotubes) 
 Carbon nanotubes are 100 times stronger than steel, although they have only one- 
sixth the weight. Their conductivity is comparable with the one of copper or struc-
tures that act as semiconductors [ 39 ]. The discovery of carbon nanostructures in 1985 
and the carbon nanotubes (CNTs) by Iijima in 1991 [ 28 ] made possible the faster 
evolution of nanotechnology. The progress in synthesis technologies favorized the 
development of various nanostructured and advanced electronic materials with 
remarkable properties and unique applications. These materials show a high potential 
for the development of new electrochemical and optical devices and sensors [ 65 ]. 
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 CNTs can be presented as single- (SWNTs), double- (DWNTs), and multiwalled 
(MWNTs) structures. SWNTs consist of one single graphene sheet rolled up into a 
cylinder with internal diameters from 1 to 2 nm. MWNTs present essentially a num-
ber of concentric SWNTs presenting diameters between 2 and 100 nm. CNTs have 
excellent electrochemical properties presenting a large surface area [ 36 ]. 

 Carbon-based nanostructures exhibit unique properties and morphological fl ex-
ibility making them multifunctional and compatible with organic and inorganic sys-
tems [ 77 ]. The form is a tubelike structure that results from a special arrangement 
of carbon atoms. Also, they are fullerene-related structures consisting of graphene 
cylinders closed at either end with caps containing pentagonal rings, of the order of 
half a fullerene molecule [ 21 ,  56 ]. In Fig.  2  different arrangements of nanotube 
formation from the graphene sheet are presented.

   The advantages of using CNTs as electrode materials were demonstrated for 
food, clinical, and environmental analysis. The sensors based on CNTs exhibited 
lower limits of detection and faster responses due to the signal enhancement pro-
vided by high surface area, lower overvoltage, and faster electrode kinetics if one 
compares these characteristics with those obtained for the same compounds with 
other electrochemical sensors. Other properties that made CNTs important for sens-
ing applications are thermal conductivity, mechanically robustness, and chemical 
stability. Their high surface area/volume ratio is an important quality for the devel-
opment of biosensing platforms for single-molecule detection [ 67 ]. It is advanta-
geous to use them in the design of sensors due to their low cost, good electron 
transfer kinetics, and biocompatibility. 

  Fig. 2    Different types of nanotubes (Kind permission from Springer Science+Business Media B.V.)       
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 The sensors based on carbon nanotube exhibited higher sensitivities, lower limits 
of detection, and faster electron transfer kinetics compared with sensors based on 
other carbon materials, although performances of these sensors depend on the syn-
thesis method of the nanotube, CNT surface modifi cation, and the addition of elec-
tron mediators [ 29 ].  

   Two-Dimensional Nanostructures (Graphene) 
 Graphene can be wrapped up into fullerenes, stacked into graphite, and rolled into 
carbon nanotubes [ 52 ,  68 ] (Fig.  3 ). In 2004 the graphene was prepared by Novoselov 
and Geim [ 42 ].

   Graphene has versatile properties, such as high electron mobility, large surface 
area, and robust mechanical strength. It provides the greatest sensing area per unit 
volume because each atom of graphene is a surface atom [ 48 ] and is categorized 
according to the number of stacked layers in single-layer, few-layer (2–10 layers), 
and multilayer or thin graphite [ 11 ]. To keep its distinct properties ideally, its use 
should be narrowed to single- or few-layer morphology. The number of layers needed 
for graphene’s properties to completely match those of bulk graphite is over 100 [ 44 ]. 

graphite

graphene carbon nanotube

fullerene

  Fig. 3    The structures of graphene, graphite, carbon nanotube, and fullerene [ 16 ]       
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 The electrochemical properties of graphene are wide electrochemical potential 
window, low charge resistance (compared with glassy carbon) [ 83 ], and well- 
defi ned redox peaks [ 62 ]. The sensors based on graphene exhibit high enzyme load-
ing due to their high surface area, leading to increased catalytic activity and 
sensitivity [ 11 ]. 

 Other properties that made graphene attractive for electrodes’ design are low 
atomic thickness [ 79 ], fl exibility, hardness (it is harder than diamond), electric con-
ductivity at 25°, and higher catalytic activity than any other material [ 80 ]. Graphene 
represents the next-generation electronic material due to its remarkable electronic, 
optical, mechanical, thermal, and electrochemical properties [ 11 ]. The uniform dis-
tribution of electrochemically active sites compared with graphite [ 44 ] is making the 
active surface of sensors more reliable. Its 2D structure made the sensors effi cient in 
detecting adsorbed molecules [ 11 ]. Molecular detection can be performed using this 
material, the sensors presenting low noise in electrochemical measurements [ 11 ].    

    Surface Analysis 

 The properties of nanomaterials are signifi cantly different from those of atoms or 
bulk materials. The underlying theme of nanotechnology is downsizing. Many inno-
vative methods for the synthesis of nanoparticles and nanotubes were developed [ 45 ]. 

 The nanoscale morphology and topography can now be analyzed with innovative 
surface analysis techniques: atomic force microscopy (AFM), transmission electron 
microscopy (TEM), and scanning electron microscopy (SEM) [ 5 ]. These techniques 
are powerful tools for the study of nanostructures [ 45 ]. 

 Some characteristics of the nanomaterial may cause several changes in the ana-
lytical performance of detection systems, e.g., limit of detection and sensitivity are 
closely associated with the transduction mechanism with morphological character-
istics of sensors [ 7 ] being an important tool for the determination of reliability of 
techniques and devices [ 30 ]. Nanostructured polymers, ceramics, metals, semicon-
ductors, and composite materials are used for sensors’ design with high mechanical 
strength and heat resistance. The structural and chemical properties of these materi-
als must be determined at the atomic level; therefore the surface analysis techniques 
are employed. High-resolution transmission electron microscopy (HRTEM) and 
analytical electron microscopy (AEM) are used for this purpose as well as for the 
correlation between microstructure/microchemistry on the one hand and materials 
properties on the other [ 49 ]. 

 The combination between surface analysis and nanotechnology can lead to mul-
tiple questions, namely, what role does the analysis of surface in handling the prop-
erties of nanomaterials; how can the surface of materials for a better functionality 
change; how does it work mechanical surfaces and which are the means for charac-
terizing nanostructured surfaces; how we can consolidate electrical, mechanical, 
and electronic properties in nanostructures; and what are the roles of these surface 
techniques? There are many things to be researched and studied in nanotechnology, 
and the most important key role in this research is the analysis of the surface [ 50 ].  
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    Applications 

 Use of the nanomaterials such as graphene, carbon nanotube, carbon nanopowder, 
and others in sensors’ design has been responsible for the development of a wide 
variety of nanoelectronic devices on environmental, food, and clinical applications, 
since such nanostructures display particular electrical, chemical, and transport 
properties [ 31 ]. 

 Application areas of these nanostructures include pharmaceutical and chemical 
industry, electronic industry, metallurgical industry, biotechnology, food industry, 
optics, medicine, electronics, metrology, etc. Engineering of surface and handling 
of surfaces play an important role [ 31 ]. 

 In the past years the graphene was proving to have excellent electrocatalytic 
material properties for the detection of variety of electroactive species; it can be 
used as matrix modifi er for the design of different sensors, for example, for detec-
tion of glucose [ 32 ], dopamine ([ 40 ], [ 74 ], [ 75 ]), DNA base [ 4 ], H 2 O 2  ([ 73 ]), 
4 aminophenol [ 81 ], p-nitrophenol [ 2 ], catechol and hydroquinone ([ 15 ,  84 ]), 
paracetamol [ 33 ], and others. 

 Wang et al. [ 75 ] proposed a sensor based on modifi ed graphene – doped with 
nitrogen. Nitrogen doping was realized by immobilizing the graphene in chitosan 
solution on a glassy carbon electrode. Peroxide was analyzed using this electrode in 
a linear range from 0.1 to 1.1 mM with a detection limit of 0.01 mM. 

 Xu et al. [ 80 ] developed a device with encapsulated hemoglobin (Hb) alongside 
graphene in a chitosan solution. The electrode showed a linear range from 6.5 to 230 
μM and a detection limit of 5.1 × 10 −7  M. The response time of this electrode changed 
with 19.9 % from initial response after 2 weeks of storage. 

 Another electrochemical sensor using graphene as modifi er was studied by 
Majid Arvand and Mohsen Anvari for sensitive detection of quercetin in apple and 
onion [ 1 ]. The method used for quantifi cation of quercetin in samples was differen-
tial pulse voltammetry. The accumulation potential was analyzed between −0.6 and 
0.3 V, a maximum peak was achieved at 0.2 V, and the peak currents of DPV 
increased linearly with the quercetin concentration in the range from 0.006 to 10 
and from 10 to 100 μmol L −1  with a limit of detection 3.6 nmol L −1 . 

 Madeline Shuhua Goh and Martin Pumera have studied the electrochemical 
reduction of 2,4,6- trinitrotoluene (TNT), using single-, few-, and multilayer gra-
phene nanoribbons and graphite microparticle-based electrodes. Few-layer gra-
phene exhibits about 20 % enhanced signal for TNT after accumulation when 
compared to multilayer graphene nanoribbons. However, graphite microparticle- 
modifi ed electrode provides higher sensitivity, and there was no signifi cant differ-
ence in the performance of single-, few-, and multilayer graphene nanoribbons 
and graphite microparticles. The limit of detection of TNT in untreated seawater 
was 1 μg/mL [ 17 ]. 

 Seul Ki Kim and her collaborators have synthesized different types of graphene 
nanosheet and have used them as electrocatalysts. The surface morphologies of the 
graphene nanosheets were determined using X-ray photoelectron spectroscopy 
(XPS) and fi eld emission scanning electron microscopy (SEM). They have synthe-
sized three kinds of RGO (reduced graphene oxide) using different reductants 
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(hydrazine together with ammonia solution (RGO1), only hydrazine (RGO2), and 
hydroxyl amine together with ammonia solution (RGO3)). The effi ciency for the 
electrochemical detection of serotonin was also studied. Among the tested graphene- 
modifi ed GCEs, RGO1 had the lowest detection limit, highest sensitivity, best 
selectivity, widest linear range, fastest response time, and best-defi ned peak of 
5-HT. The oxidation mechanism of 5-HT demonstrated an irreversible diffusion- 
controlled electrode process [ 35 ]. 

 A nanostructured fi lm electrode, a multiwalled carbon nanotube (MWNT)-
modifi ed glassy carbon electrode (GCE), was designed and characterized by 
Kangbing Wu et al. The sensor was used for the simultaneous determination of 
guanine and adenine. The properties of the MWNT-modifi ed GCE were determined 
using scanning electron microscopy (SEM) and cyclic voltammetry. The oxidation 
peak currents of guanine and adenine increased signifi cantly at the MWNT-modifi ed 
GCE in contrast to those at the bare GCE. The oxidation peak current of 5 × 10 −7  mol L −1  
guanine was stable in the presence of adenine from 0 to 1 × 10 −5  mol L −1 . Further 
increasing the adenine and guanine concentration caused a decrease in the peak cur-
rent. The MWNT-modifi ed GCE was also used for the measurement of native 
DNA. A detection limit of 30 ngmL −1  with 2 min of open-circuit accumulation was 
obtained. Ten continuous measurements of 5 and 50 μgmL −1  calf thymus dsDNA 
show good reproducibility with a 4.1 % and 3.2 % RSD, respectively [ 78 ]. 

 Insulin is an important protein hormone secreted by pancreatic islet cells. 
Detection of insulin is of high interest in research due to of the central role of insulin 
in diabetes. The fi rst electrode based on CNT and metal oxides for direct ampero-
metric determination of insulin was developed by Wang’s group [ 71 ]. Cliffel and 
coauthors have also developed an electrochemical insulin sensor based on a com-
posite of MWCNT and dihydropyran polymer [ 54 ]. The sensors based on CNT have 
great features for rapid detection of insulin [ 29 ]. 

 The immunosensors/biosensors are capable of selectively detecting target ana-
lytes at very low concentration. The detection of cancer biomarkers in human serum 
and whole blood is essential for the early diagnosis of cancer. Accordingly, the 
development of highly sensitive detection devices for the point-of-care analysis of 
such biomarkers is a challenging task. The nanomaterials have been well exploited 
for the fabrication of sensing devices for cancer biomarkers [ 14 ]. Various CNT bio-
sensors have been developed for prostate-specifi c antigen (PSA) [ 34 ,  47 ,  70 ] and 
carcinoembryonic antigen (CEA) [ 69 ] detection (Table  2 ).

       Conclusions 

 Utilization of nanomaterials in sensors’ design was a great challenge for the reli-
ability of the analytical information as well as for applications of sensors in clinical 
analysis using stochastic mode. By using the nanomaterials in amperometric sensor 
design, one can obtain from a certain point the same value for the active area like 
for a macrosensors based on macromaterials. Accordingly, the downsizing of mate-
rials and surface of sensors should be done with precautions. The modifi cation of 
nanomaterials was done using either nano- or macro-inorganic or synthetic organic 
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materials or using biomolecules such as enzymes or antibodies. Like for all sensors 
the advantages of modifi cations of the active surface with such molecules improved 
the selectivity of the sensors.     
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Abstract
Biocomposite nanomaterials composed of biological receptors and various inor-
ganic and organic components have recently attracted a great deal of interest due 
to their peculiar properties and use in electrochemical sensors and biosensors. 
Recognition systems based on biocomposite nanomaterials were developed as 
highly sensitive and selective elements for electrochemical biosensors technol-
ogy. Since the development of the first marketed biosensor almost 25 years ago, 
the biosensor technology has benefited from the use of electrodes modified with 
nanostructured biomaterials that enhanced the selectivity and the sensitivity of 
the measurements. The use of electrochemical methods for in situ preparation 
and characterization of biocomposite nanomaterials resulted in the occurrence of 
unique electrocatalytic properties and enhanced analytical performances.  
In recent years, there has also been much progress in understanding the electro-
chemical behavior of biological elements, such as enzymes, antibodies, cells, 
tissues, peptides, and nucleic acids, immobilized within conducting polymer- 
based composite nanomaterials, as well as the synergy between their biocatalytic 
activity and affinity and the electrocatalytic activity of various inorganic/organic 
fillers towards the target analytes.

Keywords
Biocomposite nanomaterials • Conducting polymers • Electrochemical biosen-
sors • Langmuir-Blodgett based biosensors • Layer-by-Layer based biosensors •
Sinusoidal voltages

 Introduction

Biosensors are analytical devices consisting of a biological sensing element either 
integrated within or in intimate contact with a transducer element which transforms 
the primary (bio)chemical information, resulted upon the interaction of the biological 
sensing element with the analyte, into a measurable signal. Typically, biosensor 
architecture comprises three parts: the biological sensing element which is usually 
immobilized on the surface of a suitable transducer, the transducer and an amplifica-
tion or processing element. Actually, biosensors are a subset of chemical sensors, but 
are often considered as a distinct class of analytical devices. The key difference is 
that the sensing element in biosensors is biological in nature. Chemical sensors and 
biosensors are related with sensing and measuring various chemicals which may be 
biological themselves. These chemicals are referred to as analytes, although the term 
substrates is sometimes used. The design of biosensor architecture for a given ana-
lyte depends on various demands and analytical parameters such as selectivity, sensi-
tivity, limits of detection and quantification, linear response range, time response, 
stability, reusability, precision, reproducibility, and the cost of the sought measure-
ment. The research pursued in biosensors technology aimed to improve these analyti-
cal parameters by developing new sensing elements and transducer structures.  
The sensing element may be an enzyme, an antibody, a tissue, or a microorganism 

S. Lupu et al.



1163

which can specifically recognize species of interest (analyte). The transducer con-
verts the biochemical signal into a measurable signal which is usually an electronic 
signal. Many forms of transducers were investigated during the last three decades 
such as electrochemical transducers, optical and optoelectronic detectors, field-effect 
transistors, mass sensitive devices, and thermistors. The most studied are electro-
chemical devices based on potentiometric, amperometric, voltammetric, and imped-
ance  transducers. These electrochemical transducers use the powerful features of the 
corresponding electrochemical methods, i.e., potentiometry, amperometry, cyclic 
and dynamic voltammetry, and electrochemical impedance spectroscopy. The use of 
electrodes modified with composite nanomaterials as electrochemical transducers 
proved to be a viable way in enhancing the selectivity and the sensitivity of measure-
ments. A schematic picture of biosensor architecture is depicted in Fig. 1.

The biological sensing element should be in intimate contact with transducer 
surface. Moreover, the biological receptor immobilization step is crucial for the 
proper functioning of the resulting biosensor. The most used immobilization proce-
dures are: adsorption, physical entrapment, cross-linking, and covalent bonding. 
Some of these immobilization procedures have benefited from the development of 
various pioneering nanotechnology approaches and their integration into advanced 
preparation techniques underpinned the biosensor technology. The main prepara-
tion techniques can be summarized as follows: (i) screen-printing technology; (ii) 
sol–gel method; (iii) self-assembled monolayers; (iv) Langmuir–Blodgett tech-
nique; (v) layer-by-layer assembling; (vi) photolithographic techniques. An over-
view of the use of these techniques in biosensors development together with some 
characteristics and applications is given in Table 1.

The aim of this chapter is to highlight the importance of biocomposite materials 
and electrochemical transducers in the field of electrochemical biosensors by giv-
ing an overview of the recent achievements. First, spatially organized multilayers of 
biocomposite materials will be discussed by giving reference to specific methods of 
preparation like Langmuir-Blodgett and layer-by-layer techniques. Then, new prep-
aration procedures of biocomposite materials are presented in connection with the 
research activities carried out in our research group. Finally, a section is devoted to 
thick layer technology for biosensors development making reference to the use of 
conducting polymers as viable matrix for biological sensing elements immobiliza-
tion. This chapter is also devoted to the combination of biological molecules with 
nanomaterials as well as to new strategies for nanoscale patterning electrode sur-
faces with biocomposite materials in the process of developing analytical devices 
for clinical, environmental, and food analysis.

Biological sensing element

enzymes, antibodies,
nucleic acids, tissue,
microorganisms

Transducer

electrochemical,
optical,
thermoresistor,
piezoelectric

Measuring device

Analyte

Fig. 1 A general biosensor architecture
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 Nanostructured Thin Films for Biosensors

 Spatially Organized Biocomposite Multilayer Structures

The most important feature of electrochemical biosensors is their ability to detect 
the target analyte with high selectivity. Important advances in electrochemical bio-
sensors technology have been achieved with the utilization of various nanomaterials 
such as nanoparticles [11], quantum dots [12], carbon-based nanostructures [13, 14], 
in connection with biological elements. The availability of advanced fabrication 
[15, 16] and characterization [17] techniques underpinned the development of 
commercially available biosensors.

Recent advances in nanobioelectrochemistry are related to the use of biocompos-
ite nanomaterials as sensing elements in connection with modified electrodes, 
including new technologies for the fabrication and characterization of microelec-
trodes and their arrays [18–20]. The preparation of the sensing element as a thin film 
onto the transducer surface provides enhanced sensitivity of electrochemical bio-
sensors. In this sense, the Langmuir–Blodgett approach [21–23] was the pioneering 
technique for the preparation of thin films formed by transferring the material film 
from air/water interface to a solid substrate. Another technique for preparing nano-
structured thin films composed of multilayers was developed by Decher in the 
1990s [24, 25]. This layer-by-layer technique provides a versatile strategy for fabri-
cation of multilayers films with high control of thickness at nanoscale level. The 
main examples of Langmuir–Blodgett and layer-by-layer based biosensors are sum-
marized in Table 2.

 Langmuir–Blodgett Based Biosensors
The deposition of monolayers of organic molecules was firstly investigated by 
Katharine Blodgett and Irving Langmuir early in the beginning of twentieth century 
[21–23]. The Langmuir–Blodgett (LB) technique consists in the self-organization 
of amphiphilic molecules at the air–water interface in order to form a monolayer. 
The monolayer is compressed by moving two barriers throughout the Langmuir 
cube providing a more stable monolayer conformation. The formed monolayer can 
then be deposited onto a solid substrate. The amphiphilic molecules contain a 
hydrophobic (alkyl or perfluoro) side chain and a hydrophilic head group such as –
OH, –COOH, –NH2. The amphiphilic molecules dissolved in a water-immiscible 
solvent are cast on a clean water surface. After solvent evaporation, the disordered 
layer of amphiphilic molecules is compressed by two moving barriers which cause 
the molecules to pack more closely. At the end of process, a quasi two-dimensional 
monolayer film is obtained. The amphiphilic molecules are all aligned in the same 
direction with their hydrophilic head groups to the water surface. By dipping a solid 
substrate in the cube, the LB film is transferred onto the surface of the immersed 
substrate. By repeating the transfer step several times, multilayer LB films on solid 
substrates are built up. This process may be applied for other molecules by a proper 
design of the substrate surface functionalization.
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The LB films present important properties, such as uniform thickness, molecule 
orientation, and electrical properties. These properties enabled the use of LB films 
in several applications including chemical sensors and biosensors, electronics, 
optics, and semiconductors. The key issue in preparing electrochemical biosensors 
is the preservation of the biocatalytic activity of the biological sensing elements 
after their immobilization onto the transducer surface. The use of biological sensing 
elements such as enzymes, antibodies, proteins, and DNA in the field of electro-
chemical biosensors has benefited from the advantages of LB technique [15, 26]. 
The main goal in using LB technique is the control of the thickness of the deposited 
layer and the study of various related properties like charge transport, optical effects, 
and the interaction of biological elements with the substrate.

Glucose is an analyte of significant importance due to the related disease diabe-
tes. The most demanded approach nowadays in managing diabetes is the continuous 
monitoring of glucose level in blood by patients themselves. For this purpose, com-
mercially available glucose sensors are used worldwide. These biosensors are based 
on electrodes (usually platinum or screen printed electrodes) covered with a gel or 
a polymer containing glucose oxidase (GOx). In the early stage, these analytical 
devices measure usually the hydrogen peroxide produced in the enzymatic reaction. 
Later, the use of mediators like organometallic compounds and redox or conducting 
polymers eliminated the drawback associated with the constant oxygen level 
required in the earlier biosensors. By their intrinsic properties, redox enzymes that 
are able to shuttle electrons between the redox-active sites and electrodes are the 
most used in electrochemical biosensors. Among redox enzymes, the oxidases and 
the dehydrogenases are extensively studied. The basic reactions of redox enzymes 
can be depicted according to the following scheme:

 S E S Ered ox ox red+ ® +  (1)

 S E S Eox red red ox
¢ ¢+ ® +  (2)

In the case of GOx (as oxidized and reduced forms Eox, Ered), the Sred, Sox, S′
ox and S′

red 
correspond to glucose, gluconolactone, oxygen, and hydrogen peroxide, respec-
tively. The consumption of oxygen or the formation of hydrogen peroxide can be 
measured. However, several drawbacks associated with a constant level of oxygen 
or interferences due to the high operating potential values for hydrogen peroxide 
monitoring were encountered in practice. These drawbacks were eliminated by the 
use of redox mediators.

Due to their market availability, glucose biosensors are considered as reference 
devices in developing new biosensor technologies. For this reason, the use of LB 
technique will be focused on the glucose biosensors development. Consequently, it 
is also worth noting some historical aspects related to the birth of this biosensor. 
In 1956, Professor Leland C. Clark Jr. [27] published his important paper on 
the oxygen electrode. A couple of years later, Clark and Lyons [28] introduced the 
term enzyme electrode. Since then, there was a tremendous research interest in 
developing efficiently enzyme immobilization strategies. Several examples are 
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reported for the LB immobilization of GOx in glucose biosensors development. 
These strategies are based mainly on hybrid inorganic–organic materials and 
organic conducting materials. For instance, GOx was immobilized in an organic–
inorganic hybrid LB films that consist of octadecyltrimethylammonium (ODTA) 
and Prussian blue (PB) nanosize clusters [29]. The ODTA positively charged mol-
ecules can adsorb PB clusters during the film formation on the water surface. The 
successful immobilization of GOx into LB films was confirmed by FTIR spectrom-
etry. The PB is known as an excellent catalyst for hydrogen peroxide reduction and 
it has been extensively used in biosensors technology. In this case, the PB clusters 
are reducing the hydrogen peroxide produced by the enzymatic reaction of GOx. 
The biosensors prepared by using ODTA/PB/GOx LB films composed of six layers 
showed the best analytical performance toward glucose detection at a working 
potential of 0.0 V vs. Ag/AgCl in neutral buffered aqueous solution. The biosensor 
displayed a linear response up to 8 mmol/L glucose concentration. Ravaine and co-
workers [30] previously reported the use of PB in LB films and demonstrated that 
the electrochemical and optical properties of PB-based hybrid LB films are strongly 
influenced by the number of deposited layers. In another example, LB films of Gox 
and lipid were transferred onto a PB-modified Pt electrode for biosensor prepara-
tion [31]. The LB-PB based biosensor displayed a linear calibration range from 
5 × 10−6 to 6 × 10−5 M and a detection limit of 1.5 × 10−6 M. Further information 
related to the use of PB in sensors and biosensors preparation can be found in a 
review by Ricci and Palleschi [32]. The use of organic conducting LB films is 
another approach for GOx immobilization. Watanabe and coworkers [33] have used 
organic conductors based on radical and anion salts for GOx immobilization. The 
GOx-LB films were investigated by infrared absorption spectrometry. The change 
in the dc conductivity of the GOx-LB films after immersion in 3 × 10−2 mol/L 
 glucose for 2 min was ranging from −13.4 to 7.9 %. It was demonstrated that GOx 
maintains its bioactivity and sensitivity after immobilization into LB films. Other 
conducting LB films based on conducting polymer for GOx immobilization have 
also been reported. Pyrrole derivatives were used to prepare derivatized polypyrrole 
Langmuir–Blodgett films characterized by shorter pathways for electron transfer 
reactions. Skotheim and coworkers [34] have prepared copolymers formed by 
chemical copolymerization of 3-alkylpyrrole and iron chloride ferrocene-modified 
3-alkylpyrroles at the air–water interphase, with the subphase containing iron(III) 
chloride. After transferring the LB film on an electrode surface, the resulting modi-
fied electrode was used for reoxidizing reduced flavin enzymes such as GOx. 
Another LB film consisting of a lipid- modified GOx and poly(pyrrole) was used in 
the preparation of a multilayer enzyme electrode for detecting glucose [35]. The 
proposed biosensor response is based on the voltammetric detection of hydrogen 
peroxide produced by the modified enzyme layers. A linear response of the biosen-
sor to glucose concentration ranging from 15 to 100 mM and a detection limit of 5 
mM were obtained. Polyaniline (PANI) is an extensively studied organic conduct-
ing polymer for biosensor technology due to its high conductivity, rapid electron 
transfer, biocompatibility with biological sensing elements, and chemical stability 
in both organic and aqueous media [36]. LB films of the polyemeraldine base form 
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of PANI have been deposited on an indium tin oxide (ITO) electrode and then 
the GOx was entrapped between the LB layers [37]. The immobilized GOx retained 
its catalytic activity and the biosensor showed linear response toward glucose 
 detection. Other examples of using LB technique for biological elements immobili-
zation include enzymes, such as glutamate dehydrogenase [38], horseradish peroxi-
dase [39], urease [40], and galactose oxidase [41], redox proteins [42], antibodies 
[43, 44], and DNA [45, 46]. Here some examples of using conducting polymers in 
LB films were presented. This approach has the advantage of controlled thickness 
and high quality of the prepared LB film, but the practical applications are limited 
due to the very specific experimental conditions and equipments for films growth. 
In a later section, the entrapment of enzymes within conducting polymers to pro-
duce thicker and more stable films is discussed. Finally, one can conclude that the 
LB technique proved over time to be an appealing approach for preparing highly 
ordered biological sensing elements for electrochemical biosensors used in bio-
medical, environmental, and food analysis.

 Layer-by-Layer Based Biosensors
A critical step in the construction of electrochemical biosensors is designing of 
adequate molecular architectures able to assure a proper connection at the nanome-
ter scale between the biological sensing and the surface of the working electrode 
(the transducer element of the biosensor) as biosensors work properly only if these 
two component elements are in close spatial proximity [47]. Immobilization of the 
bioreceptor on the transducer surface can be achieved by several methods such as: 
physical adsorption, Langmuir–Blodgett technique, layer-by-layer (LbL) deposi-
tion, entrapment, electrochemical doping, cross-linking, covalent binding and 
affinity binding [47, 48].

In its original version, LbL deposition is based on electrostatic immobilization of 
the bioreceptor as first described by Decher [24, 25]. In LbL technique, the deposi-
tion surface is first derivatized to produce a stable charge excess, and then multi-
layer films of polyelectrolytes of opposite electric charges are alternately deposited 
in virtue of electrostatic attractions. Figure 2 illustrates the principle of LbL deposi-
tion method in the case of an enzymatic electrochemical biosensor for nitrate ions [49]. 
In the first step, the gold electrode surface is functionalized with 2-mercaptoethane-
sulfonic acid (MESA) by chemisorption of the thiols groups; thus the gold elec-
trode surface acquires a net negative charge due to the ionization of the sulfonic 
acid moiety at the working pH. The second step involves binding by electrostatic 
attractions of a cationic redox polymer, the polyviologen derivative denoted as 
PV. Now, a negatively charged enzyme, that is an enzyme having an isoelectric 
point below the working pH value, which in this case is nitrate reductase (NR), can 
be bound to the positively charged redox polymer surface (step three). Repeating 
steps two and three identically, multiple layers can be deposited on the electrode 
surface. The mechanism of the electrochemical sensing of the nitrate ion is depicted 
in Fig. 3. The formation of an organized PV/NR multilayer structure on the gold 
electrode surface was confirmed by cyclic voltammetry experiments that illustrated 
a proportional dependence of both cathodic and anodic peak currents to the 
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potential scan rate in the range of 50–500 mV/s (see Fig. 4) [49]. Using an incre-
ment of 0.75 mM in the concentration of the nitrate ion, a linear amperometric 
response in the concentration range 0.75–3 mM was obtained (see Fig. 5) [49].

The LbL method to fabricate nanostructured films exhibits a series of important 
advantages when compared to other techniques. First of all, it is very versatile 
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its reduced form to its polycationic oxidized form. The reduced form of the redox mediator can be 
regenerated by electron transfer from the electrode. Thus, the cationic redox polymer PV acts like a 
redox mediator facilitating the electron transfer between the redox enzyme and the electrode

Fig. 4 Cyclic voltammograms of Au/MESA/(PV/NR)9 modified electrode vs. sweep rates regis-
tered in 0.1 M phosphate buffer aqueous solution, pH = 7.5 (a), and the dependence of the cathodic 
peak current on the number of PV/NR pair layers (b) (Reproduced with permission from Ref. [49] 
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allowing for utilization of a quite broad scale of different materials including poly-
electrolytes, dendrimers, redox polymers, carbon-based materials, and biomole-
cules [50–53]. Second, it is a tunable method as it allows an effective control of 
important parameters such as thickness, roughness, porosity of films by modifying 
the film preparation conditions like pH, temperature, polyelectrolyte concentration, 
ionic strength of the media, and so on [54]. Although initially the construction of 
multilayer films by LbL method was restricted to electrostatic attractions between 
oppositely charged layers of polyelectrolytes, recently other types of binding like 
hydrogen bonding [51], π-π stacking between carbon nanotubes, and polyaromatic 
hydrocarbon derivatives [55] or even covalent linkage have also been developed. 
Figure 6 shows some representative examples from the different types of materials 
used in the preparation of nanostructured multilayers films for biosensing purposes. 
In the following, some selected relevant applications of the LbL method in the fab-
rication of electrochemical biosensors will be presented.

Enzymatic biosensors. The first biosensor was an enzymatic glucose sensor devel-
oped by Clark and Lyons in 1962 [28]. Although more than five decades have passed 
since Clark and Lyons reported their pioneering work, the detection principle is still 
valid and GOx remained one of the most used enzymes due to a series of favorable 
features such as high turnover rate, excellent selectivity, good thermal and pH sta-
bility, and low cost [56]. Several suggestive examples of GOx-based electrochemi-
cal biosensors are given below.

Layer-by-layer assembly through electrostatic attractions. An amperometric glu-
cose biosensor was constructed using the LbL method by alternate deposition of 

Fig. 5 Current response to nitrate of a Au/PV/NR electrode at −0.6 V vs. Hg/Hg2SO4 in 0.1 M 
phosphate buffer solution (pH = 7.5). Nitrate was added to the stirred solution in the 
electrochemical cell at the time moments indicated by the arrows (Reproduced with permission 
from Ref. [49] Copyright @ 2007 Rev. Roum. Chim.)
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successive layers of the cationic redox polymer PVI-Os (see Fig. 6e1) and nega-
tively charged glucose oxidase – single-walled carbon nanotubes conjugates (GOx- 
SWCNT) on a screen printed carbon electrode. The biosensor response was linear 
in a broad range from 0.5 to 8.0 mM, displayed a response time less than 5 s and a 
high sensitivity, these qualities making it a promising amperometric sensing device 
for the flow injection analysis of glucose [57]. In another example, carbon nano-
tubes (CNT) were first functionalized with carboxylic acid groups by oxidation, 
thus their surface becoming negatively charged. Then, the CNT suspension 
was deposited as a thin film on the surface of a glassy carbon (GC) electrode. 
The surface of the CNT modified GC electrode was further functionalized by alter-
natively assembling of successive layers of positively charged polyelectrolyte, poly-
ethyleneimine (PEI), and negatively charged GOx. The so prepared PEI/{GOx/
PEI}n/CNT/GC electrode biosensor exhibited improved analytical performances 
such as greater stability, a high sensitivity of 106.57 μA mM−1 cm−2, and is also able 
to measure as low glucose levels as 0.05 mM [58]. An interesting paper [59] is 
based on the synergy resulted from the combined utilization of multiwalled carbon 
nanotubes (MWCNT), gold nanoparticles (GNPs), conducting polymers (CP), and 
LbL assembly in order to obtain effective electron shuttling between the electrode 
(the transducer), and GOx (the bioreceptor). In this approach, an ITO electrode was 
drop coated with an aqueous solution of amine functionalized MWCNTs and dried. 
Then, poly(4-aminothiophenol) designated as PANI(SH) was grafted onto the 
MWCNT-NH2 modified ITO electrode by electrochemical polymerization. Further, 
GNPs were electrodeposited onto PANI(SH)-MWCNT-NH2 assembly. To this posi-
tively charged assembly, a layer of negatively charged GOx was stacked by virtue 
of electrostatic attractions. Repeating the above steps, the {GOx/GNPs- PANI(SH)-
MWCNT-NH2}n/ITO biosensor was prepared. It showed fast electron transfer prop-
erties (rate constant 27.84 s−1), a linear response to glucose in the concentration 
range 1–9 mM, and a low detection limit of 0.06 μM [59]. Another interesting 
achievement in the biomedical field is the use of polyethylene terephthalate (PET) 
as constructing material for artificial blood vessels in cardiovascular implants due to 
its excellent mechanical flexibility and moderate biocompatibility. Thin films of Ti 
and Au were successively deposited on the PET support by plasma immersion ion 
implantation and sputtering, respectively. Then, a negatively charged monolayer of 
sodium 3-mercapto-1-propane sulfonate (MPS) was attached on the gold surface by 
chemisorption. Further, a layer of the cationic polyelectrolyte polydiallyldimethyl-
ammonium chloride (PDADMAC; see Fig. 6b2) was adsorbed followed by a nega-
tively charged sodium dodecyl sulfate (SDS) wrapped MWCNTs layer. Repeating 
the deposition steps, a film composed of three {SDS-MWCNT/PDADMAC}3 
bilayers was obtained. The LbL assembly process was further continued by succes-
sive deposition of alternately opposite charged layers of PDADMAC and GOx. 
Eventually, a nanostructured composite film {GOx/PDADMAC}3/{SDS- MWCNT/
PDADMAC}3/MPS/Au/Ti/PET glucose biosensor was fabricated. The biosensor 
displayed a linear response in the concentration domain 0.02–2.2 mM and a detec-
tion limit of 10 μM [60]. Chitosan (CHT; see Fig. 6d) was also used as cationic 
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polyelectrolyte in preparation of biosensors by the LbL method. A polyelectrolyte 
multilayer film, composed of three bilayers of oppositely charged polyallylamine 
(PAA; see Fig. 6b1) and potassium polyvinyl sulfate (PVS; see Fig. 6a2), was 
deposited on the surface of a Pt electrode. The {PVS/PAA}3/Pt modified electrode 
was further functionalized by chitosan conjugated multiwalled carbon nanotubes 
(CHT-MWCNT) and GOx resulting in the formation of the {GOx/CHT- MWCNT}n/
{PVS/PAA}3/Pt amperometric glucose biosensor. The analytical performances pre-
sented by this biosensor were a linear response in the range 1–10 mM, a response 
time less than 8 s, a sensitivity of 0.45 μA/mM, and a detection limit of 21 μM [61].

Layer-By-Layer Assembly Through Covalent Bonds
Multilayer films formed through electrostatic attractions between oppositely 
charged layers of polyelectrolytes have been widely used due to the simplicity and 
low cost of the synthetic procedure. However, they suffer from instability when 
changes in pH, ionic strength, or temperature occur during measurements [62, 63]. 
To overcome this lack of stability, multilayer films with covalent interlayer bond-
ing have been synthesized. As covalent interlayer bond, formation of a Schiff base 
between an amino group and a carbonyl group is the most used method as it occurs 
in mild conditions and without need for additional reagents that could denature the 
enzyme bioreceptor. In an elegant synthetic procedure, multilayer films composed 
of alternately layers of amino functionalized silica nanoparticles (ASNPs) and 
GOx have been deposited on the surface of a gold electrode which was first func-
tionalized by treatment with cystamine dihydrochloride (step 1 Fig. 7). After this 
amino functionalization of the gold electrode surface, the electrode was treated 
with an aqueous solution of glutaraldehyde (step 2). Separately, an aqueous solu-
tion of ASNPs was prepared by surface functionalization of silica nanoparticles 
with 3-aminopropyltrimethoxysilane (APTMS). In the third step of the synthetic 
procedure, the electrode modified in steps 1 and 2, was immersed in the ASNPs 
solution. Then, after being washed with water, the electrode was again placed in 
aqueous glutaraldehyde solution (step 4). Finally, the electrode was immersed in a 
phosphate buffer solution (pH = 6.8) of GOx (step 5). Thus, a GOx/ASNPs bilayer 
was successfully assembled on the Au electrode. Repeating steps 2, 3, 4, and 5 
identically, a film {GOx/ASNPs}n with the desired number of GOx/ASNPs bilay-
ers could be assembled on the surface of the Au electrode. The sensitivity of the 
biosensor increased with the number of GOx/ASPNs bilayers from 1.87 μA mM−1 
cm−2 for one bilayer to 5.11 μA mM−1 cm−2 for four bilayers. The detection limit 
was 9 μM, and the glucose biosensor showed also good long-term stability as the 
catalytic current response maintained over 90 % of the initial value after four 
weeks of storage in phosphate buffer solution (pH = 6.8) at 4 °C [64]. In another 
similar approach, a glucose biosensor composed of several bilayers of covalently 
linked GOx and GNPs assembled on the surface of a gold electrode {GNPs/
GOx}n/Au was constructed. The biosensor exhibited a fast response time (less 
than 4 s) and a linear response in a wide concentration domain ranging from 
10 μM to 13 mM [65].
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Immunosensors. Both amperometric and potentiometric immunosensors for deter-
mination of hepatitis B surface antigen (HBsAg) were constructed by the following 
synthetic protocol. The surface of a Pt electrode was modified with a negatively 
charged layer of plasma polymerized Nafion film (PPF) and subsequently positively 
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charged tris(2,2′-bipyridyl)cobalt(III) (Co(bpy)3
3+) and negatively charged GNPs 

were sequentially adsorbed onto the modified electrode to form the nanostructured 
assembly {GNPs/Co(byp)3}n/PPF/Pt. Eventually, hepatitis B surface antibody 
(HBsAb) was electrostatically adsorbed on the GNPs surface. The resulted HBsAb/
{GNPs/Co(byp)3}n/PPF/Pt immunosensor was used to analyze HBsAg in human 
serum with similar results as those obtained when the analysis was carried out by 
the standard ELISA method [66]. Another multilayered architecture was used in the 
construction of an amperometric immunosensor for the detection of carcinoembry-
onic antigen (CEA) which is well known as a tumor marker used for clinical diag-
nosis of colon, pancreas, breast, ovaries, and lung tumors. The immunosensor is 
based on LbL assembly of GNPs, MWCNTs, and CHT. First, MWCNTs were con-
jugated with thionine (THI, see Fig. 8a). THI is a redox dye which, acting as a 
mediator, has good electron conductivity. The driving force for formation of the 
MWNTs-THI conjugate is the π-π stacking between these two conjugated frames. 
The MWNTS were functionalized with carboxylic acid groups by oxidation with 
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nitric acids and then mixed with THI in water and sonicated to obtain the conjugate. 
CHT was solubilized in aqueous acetic acid solution and then mixed with GNPs 
solution to prepare the GNPs-CHT solution. By dispersing the MWCNTs-THI con-
jugate in the GNPS-CHT solution followed by sonication, an aqueous solution of 
the positively charged conjugate GNPs-MWCNTs-THI-CHT was obtained. In this 
solution, a gold electrode modified with a negatively charged self-assembled mono-
layer of MPS was immersed for 30 min followed by immersion of the modified 
electrode in negatively charged polystyrene sulfonate (PSS, see Fig. 6a1). The self-
assembling process was completed by repeating the last two steps for several times 
to obtain the multilayer nanostructured film on which the anti-CEA antibody was 
eventually adsorbed. The resulting electrode was incubated in bovine serum albu-
min (BSA) solution. The detection limit of this immunosensor was 0.01 ng mL−1 
and the electrode showed good stability, retaining 85.2 % of its initial response after 
a 60 days storage period due to the multilayer nanostructured assembly and to the 
biocompatibility of the microenvironment created by gold nanoparticles, multi-
walled carbon nanotubes–thionine and chitosan matrix [67].

Genosensors. Development of DNA biosensors, also called genosensors, increased 
tremendously over the last decade. The LbL electrostatic deposition method was 
used to fabricate an electrochemical biosensor for monitoring the damage produced 
to DNA by styrene oxide. The surface of a GC electrode was coated with a nega-
tively charged monolayer of aminobenzoic acid. Then, self-assembling of several 
bilayers of positively charged pentaerythritol-based metallodendrimer with Ru(II) 
terpyridine subunits (RuDen, see Fig. 8b) and ds-DNA (ds, double- stranded), which 
is negatively charged due to its sugar–phosphate backbone, led to the formation of 
a nanostructured multilayer film on the electrode surface. Any unraveling of the ds-
DNA produced by damage was monitored by RuDen-catalyzed oxidation of 
exposed sites, e.g., guanine [68].

A different approach is based on the preferential binding of complementary 
single- stranded nucleic acid sequences. This system usually relies on the immobili-
zation of ss-DNA (ss, single-stranded) probe onto a surface to recognize its comple-
mentary DNA target by hybridization [69]. Transduction of DNA hybridization can 
be measured electrochemically, for instance impedimetric by electrochemical 
impedance spectroscopy using a microarray configuration of interdigitated elec-
trodes [70, 71]. The immobilized ss-DNA is surrounded by counter cations, which 
initially support ionic conductivity. After hybridization there is a reduction in the 
density of these cations leading to a corresponding increase in the overall electrical 
impedance between the interdigitated electrodes. Affinity binding can be used for 
DNA immobilization taking advantage of the high affinity of avidin (Avi) or strep-
tavidin to biotin. Thus, DNA can be biotinylated as shown in Fig. 9 and then the 
biotin moiety binds strongly to avidin or streptavidin [72]. As Avidin and streptavi-
din are tetrameric proteins that have four identical binding sites for biotin, as much 
as four biotinylated DNA can be conjugated to these proteins. An Avi-CHT- 
MWCNTs/ITO electrode was prepared by the following procedure. A composite 
film composed of carboxyl functionalized MWCNTs and CHT was electrodepos-
ited on the surface of an indium-tin-oxide (ITO) electrode. Then, using Avi as a 
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cross-linker, biotinylated DNA (BDNA) was further immobilized on the surface of 
the CHT-MWNT/ITO modified electrode. The amino groups of Avi were first acti-
vated by reaction with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 
then covalently linked to the carboxyl groups on the surface of MWCNTs in the 
presence of N-hydroxysuccinimide (NHS). Thus, the biocomposite Avi-CHT- 
MWNT/ITO electrode was obtained. Then, the electrode, after washing previously, 
was incubated for 5 min with biotinylated oligonucleotide probes. The obtained 
BDNA-Avi-CHT-MWCNT/ITO bioelectrode was subjected to hybridization by 
incubation in the complementary target oligonucleotide solution and used as bio-
sensor for the bacterium Neisseria gonorrhoeae [73].
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 Novel In Situ Sinusoidal Voltages Electrodeposition Procedures 
of BioComposite Materials

Recently, a great deal of interest has been devoted to the development of tyrosinase- 
based electrochemical biosensors for electroanalysis of biologically active com-
pounds like catecholamines and phenolic compounds. Tyrosinase (Ty, polyphenol 
oxidase, E.C. 1.14.18.1) catalyzes the oxidation of o-diphenols (diphenolase or cat-
echolase activity) to the corresponding o-quinones, in the presence of molecular 
oxygen, and the hydroxylation of monophenols to catechols (monophenolase or 
cresolase activity) and their subsequent oxidation to o-quinones [74]. The enzymati-
cally generated o-quinone specie can be reduced at the electrochemical transducer 
surface at very low potentials, with the formation of o-diphenol (see Fig. 10, re-used 
from Ref. [75] with permission from MDPI under the MDPI Open Access Policy). 
The scheme depicted in Fig. 10 shows that there is an amplification of the measured 
signal, thanks to the regenerated analyte and this enables enhanced sensitivity of the 
analytical measurements. The Ty containing amperometric biosensors are based on 
this mechanism [76–80]. Several studies have indicated that there is a loss of enzy-
matic activity after enzyme immobilization and this issue was solved by incorpora-
tion of the enzyme into organic conducting polymer layers during the electrochemical 
polymerization of the corresponding monomers [81–84]. Usually, the polymeric 
coating is prepared via electrochemical polymerization by using electrochemical 
methods like chronoamperometry (potentiostatic method), cyclic voltammetry, and 
galvanostatic methods. In this context, we have investigated the development of a 
new enzyme immobilization method for biosensor fabrication. The principle of the 
proposed method is based on the application of sinusoidal voltages (SV) with vari-
ous amplitudes and frequencies onto a fixed dc potential. The fixed dc potential is 
purposely chosen depending on the final goal, i.e., the electrochemical polymeriza-
tion of a given monomer or synthesis of noble metal nanoparticles. As a conse-
quence of the applied excitation signal, the current response displays a sharp 
transient at very high frequencies, followed by a constant value at medium 

−

Fig. 10 Principle of functioning of amperometric biosensors based on immobilized tyrosinase 
(Re-used from Ref. [75] with permission from MDPI under the MDPI Open Access Policy)
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frequencies, and a sinusoidal trend (current oscillations) at low frequencies. As will 
be shown below, these peculiarities proved to be very useful in the biosensors devel-
opment. We have applied this new preparation method for the in situ electrodeposi-
tion of Pt nanoparticles onto poly(3,4-ethylenedioxythiophene) (PEDOT) layers 
[85], the electrodeposition of PEDOT coatings onto microelectrode arrays [86], and 
for the entrapment of Ty within PEDOT coating [75, 87].

The Ty-based amperometric biosensors were prepared via electrochemical 
polymerization of the 3,4-ethylenedioxythiophene (EDOT) monomer in phosphate 
buffer solution containing various amounts of Ty onto conventional-size Au disk 
electrodes and Au disk microelectrode arrays, respectively. The novel preparation 
procedure consists in the application of SV, with frequency in the range 100 kHz to 
0.1 Hz and excitation amplitudes of 50 and 100 mV, respectively, onto a fixed dc 
potential value of +0.95 V vs. Ag/AgCl [75]. On the other hand, Ty-based ampero-
metric biosensors were prepared via potentiostatic method (chronoamperometry, 
CA) at the same fixed dc potential value in order to compare the efficiency and the 
usefulness of the proposed preparation method. In order to perform the comparison 
between these two preparation procedures, the electrodeposition time was kept con-
stant in both preparation methods, assuming that all the electrical charge is used in 
the electrodeposition of the PEDOT and/or PEDOT-Ty layers, respectively. Several 
experimental parameters such as, the amplitude of the sinusoidal voltages, the 
working detection potential, the enzyme concentration, and the pH of the deposition 
and the sample solutions, were optimized during the construction of the biosensors. 
The optimum experimental parameters were as follows: amplitude of sinusoidal 
voltages of 50 mV; working detection potential value of −0.2 V; enzyme concentra-
tion in the deposition solution of 2 mg/mL; pH of 7.5 for both deposition and sam-
ple solutions [75]. The morphology and the chemical structure of the prepared (bio)
composite coatings were also investigated. During the optimization of the prepara-
tion procedure, the linear response range, the sensitivity, the repeatability, and the 
stability of the prepared biosensors were investigated. Finally, the electroanalytical 
determination of dopamine (DA) and catechol (CT) was achieved at the prepared 
amperometric biosensors in aqueous solutions.

The scanning electron microscopy (SEM) measurements [75] revealed that the 
PEDOT layer prepared by SV procedure has a higher roughness than that of the 
polymer coating obtained via CA method (see Fig. 11a, c). The proposed SV prepa-
ration procedure is characterized by current response oscillations, as a result of the 
applied sinusoidal signal, during the electrochemical polymerization process, and 
this influences the rates of the polymerization and the p-doping processes with clear 
effects on the roughness of the resulting polymer layer. In the case of PEDOT-Ty 
coating, the Ty incorporation takes place during the electrochemical polymerization 
of the EDOT monomer in the presence of Ty at a pH of 7.5. At this pH value, Ty is 
under anionic form and it is incorporated within the PEDOT layer as a counterion 
thanks to the electrostatic interactions with the positive charges of the polarons. 
As a result of the features of the SV approach and the enzyme incorporation within 
the polymer layer, the roughness of the PEDOT-Ty coating (see Fig. 11d) is smaller 
than that of the PEDOT-Ty coating deposited via CA method (see Fig. 11b). 
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Furthermore, the SV preparation procedure enabled a higher amount of immobilized 
enzyme and consequently better analytical performance of the proposed biosensor.

The DA electroanalysis was performed at biosensors obtained by both SV and CA 
preparation procedures using the amperometric detection method. The amperometric 
responses of both biosensors were recorded simultaneously using the bipot module of 
the potentiostat in the array operation mode. Figure 12a displays the responses of 
biosensors prepared by SV (Au-2 mm/PEDOT-Ty-SV-50 mV modified electrode) and 
CA (Au-2 mm/PEDOT-Ty-CA modified electrode) methods, respectively, in aqueous 
solution, at different DA concentrations [75]. The obtained results clearly demonstrate 
that the biosensor prepared via SV method has a better analytical response.

For instance, the new amperometric biosensor displayed a linear response for DA 
concentrations ranging from 10 to 300 μM, a sensitivity of 0.83 nA/μM, as 

Fig. 11 2D SEM images of (a) PEDOT and (b) PEDOT-Ty layers prepared via CA method; 2D 
SEM images of (c) PEDOT and (d) PEDOT-Ty layers prepared via SV method (Re-used from 
Ref. [75] with permission from MDPI under the MDPI Open Access Policy)
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computed from the corresponding calibration plot depicted in Fig. 12b, and limits of 
detection (LD) and quantification (LQ) of 4.18 μM and of 13.95 μM, respectively. 
The amperometric biosensor obtained by CA method showed LD and LQ of 4.83 
μM and 16.09 μM, respectively [75]. The repeatability and the stability of the bio-
sensor prepared via SV procedure were superior with respect to those of a biosensor 
obtained by classical method. Furthermore, the biosensor based on microelectrode 
arrays was used in the simultaneous detection of DA and CT. A semiquantitative 
method for DA and CT monitoring was developed by using a PEDOT-Ty based 
biosensor prepared onto one electrode from the chip and a PEDOT-based electro-
chemical sensor prepared on the second electrode from the chip, respectively. 
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Fig. 12 (a) Amperometric 
responses recorded 
simultaneously in array 
mode at a biosensor 
prepared via SV method 
(Au-2 mm/PEDOT-
Ty- SV-50 mV modified 
electrode, thick solid line) 
and a biosensor prepared 
via CA method (Au-2 mm/
PEDOT-Ty-CA modified 
electrode, dotted line), 
respectively, in aqueous 
phosphate buffer solution 
at various DA 
concentrations: 10, 20, 40, 
60, 80, 100, 150, 200, 250, 
300, 400, 500, 600, and 
700 μM. Working detection 
potential: −0.20 V vs. Ag/
AgCl; (b) Calibration plots 
obtained from the 
amperometric responses 
presented in (a) (Re-used 
from Ref. [75] with 
permission from MDPI 
under the MDPI Open 
Access Policy)
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The array and bipot operation modes of the bipot module of the potentiostat were 
employed in the simultaneous analytical measurements. In conclusion, the obtained 
results pointed out that the SV preparation procedure has ensured enhanced immo-
bilization of the enzyme within the PEDOT matrix and better analytical performance 
of the new biosensor.

 Thick Films Based Biosensing Devices

 Conducting Polymers Based Biosensors

Conducting polymers (CPs) are polyconjugated polymers (extended π–conjuga-
tion along the polymer backbone) with a unique electronic structure which is 
responsible for their electrical conductivity, low ionization potentials, and high 
electron affinity. They can be prepared either by chemical or electrochemical oxi-
dation, the latter being the preferred choice. In neutral state, they are insulators or 
semiconductors, but during doping the conductivity increases with several orders 
of magnitude. The doping process of CPs involves a partial oxidation (p-doping) or 
reduction (n-doping) of the π–system of the polymer chain. Simultaneously, ions 
from the supporting electrolyte diffuse into/out of the polymeric film in order to 
compensate the electronic charge. Polarons and bipolarons are the main charge 
carriers in CPs. A polaron is a radical cation or anion whereas a bipolaron is a dica-
tion or dianion. For low doping levels most of the charge carriers are polarons and 
for high doping levels are bipolarons. The conductivity of the polyconjugated poly-
mers is influenced by the effective conjugation length, the overall chain length and 
by the charge transfer to adjacent molecules, which are determined by the synthe-
sis experimental conditions. CPs possess switching ability to bind oppositely 
charged molecules in their oxidized conducting states and to release them in their 
neutral insulating state. In order to have a mediating electroactive coating, the elec-
trons should be able to move through the modifying layer to/from the electrode 
surface, depending on whether an oxidation/reduction reaction is occurring. Owing 
to these distinguished properties they were used for obtaining light emitting diodes 
(LEDs) [88], electrochromic materials [89], antistatic coatings [90], solar cells 
[91], batteries [92], anticorrosion coatings [93], sensors [94], biosensors [95], and 
drug release systems [96].

Most of the electrodeposited CPs used for immobilization of biomolecules are 
polyaniline [97, 98], polypyrrole [99], polythiophene [100], polyindole [101], poly-
azulene [102, 103], and their derivatives [104]. The chemical structures of the most 
important CPs are presented in the Table 3.

The mechanism of electropolymerization of CPs can be explained by using 
poly(3-thiophene acetic acid) as an example. During the first step 3-thiophene acetic 
acid radical cation is formed at the electrode surface. This process is followed by 
dimerization with deprotonation. The dimer oxidizes more easily than the monomer 
and thus gets reoxidized to allow further coupling reaction to proceed. Figure 13 
reports the electropolymerization of 3-thiophen acetic acid:
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During the last years, a major challenge for the researchers was the development 
of the selective, sensitive, and fast biosensors as powerful tools for clinical and food 
analysis, drug and agricultural industries, and environmental monitoring. CPs are 
successfully used in biosensors manufacturing process owing to their outstanding 
properties concerning direct electron transport between oxidoreductase enzymes 
and electrode surface [98]. They are versatile materials for biosensors being easily 
produced with controlled thickness and porosity, and also can be selectively immo-
bilized by electropolymerization over different sizes of surfaces of various mor-
phologies. The sensitivity and response time of CPs-based biosensors are dependent 
on the film thickness, porosity, and the surface morphology. Therefore, a higher 
sensitivity and faster response time are expected for thinner films.

Table 3 Chemical structures of CPs used as matrix for enzyme immobilization

CP for immobilization of biomolecules Chemical structure Reference

Polyaniline N

H

x

[97, 98]

Polypyrrole

N

H

x

[99]

Polythiophene S

x

[100]

Polyindole

N

H x

[101]

Polyazulene

x

[102, 103]

Poly(thiophene-3-acetic acid)

S

COOH

x

[104]
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Often, CPs have been used to obtain either a simple carrier matrix for enzyme 
immobilization or a polymeric redox environment via copolymerization/polymer-
ization of appropriate monomers, bearing chemical/affinity groups or redox moi-
eties. The derivatization of the surface is very attractive and the resulting polymers 
possess high adherence on the surfaces without any surface activation. Obtaining of 
copolymers from a mixture of different monomers is a way to modify the structure 
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Fig. 13 The reactions scheme for the electropolymerization of 3-thiophen acetic acid
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and the properties of CPs. By electrochemical copolymerization materials with 
 controlled properties are obtained without the experimental disadvantages related to 
the preparation of new homopolymers [102].

The high selectivity of the biomolecular receptors as antibodies, enzymes, bind-
ing proteins, and nucleic acids is a key factor for the fabrication of electrochemical 
biosensors. These biomolecules can be integrated with an electrochemical, optical, 
or piezoelectric transducer. The immobilization of biomolecules in or on conduct-
ing polymer films is one of the few methods that have attracted interest for its elec-
trochemical addressing property. By electropolymerization are obtained simple and 
reproducible films with precise spatial resolution over surfaces, whatever their size 
and geometry. CPs have an organized molecular structure on metal substrates, 
which permit them to function as a three dimensional matrix for the immobilization 
of biosensing molecule and preserve the activity for long duration. Conducting 
polymer films can be electrodeposited on a wide variety of electrode materials such 
as gold [105], platinum [106], glassy carbon [107], screen printed electrodes [108], 
thin oxide surfaces [109], and boron-doped diamond [110].

CPs-based biosensors can be divided into several categories depending on how 
the chemical signal is sensed and transmitted: amperometric (measures current), 
potentiometric (measures potential), optical (measures light absorbance or emis-
sion), impedimetric (measures change in conductivity), calorimetric (measures 
change in enthalpy), and piezoelectric (measures mechanical stress).

The immobilization of the biomolecules assumes: (a) simple adsorption onto 
polymeric films, (b) entrapment within the polymer matrix during its electrodeposi-
tion, (c) covalent binding between the biomolecules and functionalized polymers, 
and (d) attachment of the biomolecule by affinity interactions with the film. In the 
first approach, specific noncovalent immobilization of biomolecules is achieved by 
physical adsorption processes based on the electrostatic forces, hydrogen bonding, 
Van der Waal’s forces, etc. This method is simple but has some limitations as desorp-
tion of biomolecule over time, limited control over immobilization and random ori-
entation on surface. Obtaining of biosensor by entrapment of biomolecules during 
the polymerization is the most popular approach. The entrapment technique has 
several advantages as: it is simple (one step), faster than other immobilization tech-
niques, good proximity between elements, the film thickness is well controlled 
through the charge involved in the electrodeposition step, the distribution of the 
immobilized enzyme is spatially controlled (no matter geometry, shape and dimen-
sion of the electrode), it allows a reproducible polymer film formation. Of course, 
even in this case there are some limitations such as: potential loss of enzyme activity, 
the need for high concentrations of enzyme. By covalent linking of biomolecules on 
transducer is obtained a strong and an efficient bonding between enzyme and the 
immobilizing material. Covalent linking of a biomolecule to polymer matrix is per-
formed in a two steps, i.e., synthesis of functionalized polymer followed by covalent 
immobilization that takes place only on the outer surface of the polymer. The main 
advantages of this technique are: good control over biomolecule orientation, high 
accessibility of analytes, negligible enzyme loss over time, and a very accurate con-
trol during immobilization. The last approach, the attachment of the biomolecule by 
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affinity interactions with the film allows a good control over molecule orientation, a 
high accessibility of analytes and a minimal loss of enzyme activity. A limitation of 
this immobilization procedure is that it requires preimmobilization of one of the 
affinity molecules. The analytical performance in terms of limit of detection for 
various biological receptors’ immobilization techniques are listed in Table 4.

In the future, owing to excellent electrical, chemical, mechanical properties, it is 
expected that CPs based biosensors will likely find specific therapeutic applications 
in using as bioanalytical microelectrodes. CPs have an excellent flexibility, biocom-
patibility, and ability to be electrodeposited onto desired geometrical surfaces, they 
have a huge potential to be integrated into micro- or nanoscale devices for in vivo 
sensing and monitoring of bioanalytes (microfluidic lab-on-chip devices or lab-on-
tube devices smart catheters used as smart medical diagnostic tools).

 Conclusions

This chapter has presented the combination of biological molecules with nanomateri-
als in the process of developing electrochemical biosensors for clinical, environmental, 
and food analysis. Nanobioelectrochemistry is an interdisciplinary science covering 
various fields like bioelectrochemistry, nanotechnology, and materials science. The 
immobilization of biological molecules within nanostructured thin film was discussed 
in the light of classical approaches Langmuir-Blodgett and layer-by- layer techniques. 
The organization of biocomposite materials at nanoscale provided new insights in the 
interaction between biomolecules and various materials as well as improved analytical 
performances of the final analytical devices. Thick film technology based on conduct-
ing polymers showed a versatile and reliable approach for developing new electro-
chemical sensors. New biomolecules immobilization procedures developed in our 

Table 4 Analytical performance of various biological receptor’s immobilization techniques

Method of 
immobilization

Biological 
receptor Analyte

Limit of 
detection (M)

Type of 
transducer Reference

Langmuir- Blodgett GOxa

GOx
Glucose
Glucose

1.5 × 10−6

5 × 10−3

Amperometric
Voltammetric

[31]
[35]

Layer-by-layer GOx Glucose 9 × 10−6 Amperometric [64]

Sinusoidal voltages Tyrosinase Dopamine 4.2 × 10−6 Amperometric [75]

Adsorption on CPs Alcohol 
oxidase
Phytase

Ethanol
Phytic acid

5 × 10−6

1.5 × 10−4

Amperometric
Amperometric

[97]
[99]

Covalent bonding  
to CPs

HRPb

GOx
Tamoxifen
Glucose

7 × 10−11

2.5 × 10−9

Amperometric
Amperometric

[98]
[104]

Co-immobilization 
within CPs

HRP H2O2 6 × 10−8 Amperometric [105]

Affinity interactions Streptavidin 
HRP

H2O2 5 × 10−5 Impedimetric [111]

aGOx glucose oxidase
bHRP horseradish peroxidase

S. Lupu et al.



1189

research group were also discussed in comparison with classical immobilization 
routes. Proof of concept, laboratory-based research and practical-oriented biosensor 
architectures were presented. The information presented throughout this chapter is 
based on recent achievements but also on classical and pioneering works in order to 
give a background overview of the use of biocomposite materials in biosensor technol-
ogy. Therefore, this chapter devoted to various aspects of nanobioelectrochemistry 
may be used as a valuable source of information by students and scientists working in 
electrochemical biosensors field.
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Abstract
Innovations based on nanotechnology are introduced in the field of chemical 
sensors to reduce the sensor dimensions and increase the surface-to-volume 
ratio and for low power operation of a reliable sensor with faster response and 
quicker recovery. The formation of nanoporosity with controlled dimensions is 
another important parameter of the superior nanomaterials and thin films for 
chemical sensors. The response time can be reduced to as low as millisecond by 
the choice of appropriate nanostructures, and the selectivity can be improved to 
a large extent. Thus the material properties can be tailored to enhance the sensor 
performance. The electrochemical anodization is one of the modern techniques 
to meet the above challenges. This simple yet versatile method introduces a 
significant difference for achieving superb nanostructure morphology by manip-
ulating the simple parameters like electrolyte composition, concentration, con-
ductivity, and anodization voltage. It is realized by now that the electrochemical 
method can control the architecture from well-separated nanostructures to 
densely packed arrays where the aspect ratio can be monitored by selecting the 
appropriate electrolyte, the anodization voltage, and UV radiation. Moreover, 
the electrochemical anodization can be performed at room temperature that can 
avoid the grain growth and degradation of the grown materials, normally expe-
rienced in high- temperature growth technique. This chapter also highlights the 
appropriate characterization methods for nanocrystalline and nanoporous mate-
rials and thin films. The state-of-the art chemical sensors using electrochemi-
cally grown nanostructures of ZnO, TiO2, SnO2, and porous silicon are 
analytically discussed. The updated relevant literature references are included 
in the chapter.

Keywords
Electrochemistry • Anodization • Nanostructure • Thin films • Characterizations •
Chemical sensors
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 Introduction

Electrochemistry is a classical branch of science. The electrochemical methods are 
applied commercially for decades in different arenas of technology. The electro-
chemistry and the electrochemical technology have also taken important roles in the 
material preparations because of their simplicity and economic advantages. Of late, 
the emergence of nanomaterials and nanotechnology has brought a revolution in 
almost all the technological aspects. Electrochemical technology has also shown its 
mettle in the preparation of high-quality nanomaterials and thin films. Nano-thin 
film formation by anodization is fairly popular nowadays. The thin films of nano-
size semiconductor materials including the oxides are useful for electronic, opto-
electronics, solar cells, and sensors. The special advantage of electrochemical 
deposition method over the other conventional physical and chemical methods is 
the ease of forming porous materials and thin films in the nanocrystalline form. 
Photoelectrochemical etching can facilitate the formation of nanoporous materials 
with well-defined pore size, pore volume, and thickness by illuminating the sub-
strate surface during anodization. The aspect ratio of the nanoporous materials are 
much better controlled for solar cell and chemical sensor applications. In fact, the 
creation of porosity by photoelectrochemical etching has given birth to a new area 
of porous silicon technology. By controlling the etching rate during thin film growth, 
one can produce macro-, micro-, and nanoporous configurations useful for the fab-
rication of various electronic devices.

“Chemical sensors are devices that respond to external stimuli to convert it into 
an appropriate output signal mostly electrical in nature” [1]. Chemical sensors are 
mostly used in process industries, environmental monitoring, extraterrestrial explo-
ration, defense, domestic safety, and biomedical diagnosis. Normally chemical sen-
sors are widely known for gas, vapor, and humidity sensing; however, their 
sensitivity toward liquid analyte is also appreciable. They are active devices and 
need external power for their operations. A resistive sensor device is the simplest of 
its kind that manifests a change in resistance by interactions with analyte gases or 
vapor molecules. Generally, chemical gas sensors are widely used for safety appli-
cations, e.g., detection of poisonous (e.g., CO, NOx) and/or inflammable gases (e.g., 
CH4, H2). They are also used to control climatic conditions inside the buildings and 
vehicles by monitoring the air quality. There is a growing interest to create large 
active surface area within a very small geometrical configuration to improve the 
efficiency of the gas sensors. The emergence of nanotechnology has made this task 
relatively easy. The use of nanocrystalline and nanoporous materials has consider-
ably increased the surface area of interaction with the analyte, and therefore the 
device performance of sensors has also improved. The use of wide band gap oxides 
like ZnO, SnO2, and TiO2 is very lucrative to the researchers for the fabrication of 
chemical sensors. Apart from the oxides, abundantly available conventional semi-
conductor like silicon has been used ever since the Taguchi sensors were invented. 
Nowadays, emergence of nanotechnology has made possible the use of nanoporous 
silicon for sensing purposes.
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Generally, nanostructure-based sensors are much faster and more efficient than 
the conventional solid state sensors. Kong et al. [2] has reported an increase of effi-
ciency by almost an order of magnitude for single-walled carbon nanotube-based 
sensors. The factors to improve the performance of chemical gas sensors and the 
role of nanoelectrochemistry are discussed below. There are reports of varieties of 
thin films that have been deposited by electrochemical method. However, the pres-
ent chapter is restricted to oxides and porous silicon thin films that are mostly used 
for chemical sensor applications.

 High Surface Area

The main advantage of introducing nanodimensions in the sensor devices is the 
improvement of the sensor performance. Especially since the operating temperature 
has been reduced considerably, the sensitivity has been increased, and the response 
time and recovery time have been reduced due to the increased surface-to-volume 
ratio of the sensor configuration. For a solid spherical particle, the surface-to- 
volume ratio is inversely proportional to the particle radius, and its surface density 
(defined as area per unit mass) is (6/ρd), where “ρ” and “d” are density of material 
and diameter of the particle, respectively. This indicates that a change in particle 
diameter from micro- to nanodimension leads to an increase in surface density by 
an order of 103. So, the decrease in particle size allows greater accumulation of 
atomic clusters on the surface compared to that in the bulk. This undoubtedly 
increases the catalytic effect of the material and improves chemical sensing. 
Parallely, it can be argued from theoretical point of view that for cylindrical pore 
(open at both ends) of wall thickness “t” and wall height “h,” the surface density, 
given by 2 2/ /r rt h+( ) , increases with either the decrease in wall thickness or 
decrease in wall height. However, it is not feasible because the growth of porous 
nanostructure proceeds in a particular direction. So, it is obvious that wall thickness 
will have decreasing trend and wall height will have an increasing trend during 
growth. But the electrochemical anodization can achieve this by the self-adjustment 
of the etching process. In this technique, once well-defined pores are formed, the 
rest of the nanostructure growth is defined by the directional electrochemical etch-
ing. This directional etching is often amplified by optical illumination (usually UV 
radiations). Since for a hollow cylinder, the internal curved surface area is less 
exposed compared to the base of the pore to intense radiation, the etching is more 
significant at the base rather than the pore wall. As a result, the height increases with 
the increase in etching time.

 Effect of Nanocrystalline Grains

The nanocrystalline grains display a monumental role in improving the performance 
of a chemical sensor. In fact, the selectivity of a chemical sensor can be conve-
niently controlled by nanocrystalline grains. A one-dimensional hollow tube can be 
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considered as a single phase or a multiphase with the reduced dimension. By reducing 
the grain size, an extra surface is exposed, and the boundary between two grains 
contains defects like vacancies and dangling bonds that control the transport proper-
ties of nanomaterials. By minimizing the interface energy either by exchanging or 
by sharing electrons with other atoms, the grain boundary interface can be stabilized. 
Thus, a space charge layer can be created, and it is dependent on the Debye length. 
The width of this space charge layer (LS) is defined as follows:
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where V is the barrier height, ND is the ionized donor density, and ε is the 
permittivity.

At a particular temperature, the ionized donor density is constant, and so the 
width is proportional to the square root of the barrier potential. When the space 
charge is depleted of electrons, the barrier potential maximizes. During sensing, the 
electrons generated at the sensing electrode by solid–gas interactions traverse 
through the material, and the potential barrier height is reduced. The modulation of 
the barrier potential leads to the change in the space charge layer width, LS, and 
three cases may arise out of this change, viz., D (grain size) >> 2LS, D LS> 2 , and 
D LS£ 2 . For large grains (D>> 2LS), the grain remains unaffected by change in LS, 
and therefore, the conductivity is governed only by the grain boundary contact. 
When D is slightly greater than 2LS, the space charge region extends deep into the 
grains, and the conductivity is now controlled by grain boundary area as well as by 
neck areas arising due to the space charge width. However, when D LS£ 2 , the 
depletion region extends into the whole grain, and the conductivity is fully con-
trolled by neck cross-sectional area. The electron transport is controlled by the 
charges generated during solid–gas interaction. So, it is obvious that the grain 
size can influence the size dependence sensitivity [3–7] (Fig. 1) and the nanomaterials 
can improve the sensor performance.

 Effect of Noble Metal

The gas sensor performance can be significantly improved using noble metals 
which act as catalyst in the solid–gas interactions. Basically, these noble metals 
increase the rate of dissociation of analyte test gases without themselves getting 
chemically transformed. The noble metals can be incorporated in the nanostructure 
as (i) thin film electrode on the material surface and/or (ii) dispersed phase on the 
oxide or porous silicon surface. There are reports of the applications of nanoporous 
noble metal thin films as the electrode contact onto the metal oxides [9, 10]. 
M. Lofdahl [11] studied the role of noble metal gate morphology for sensing hydro-
gen and hydrocarbons. The other technique to use noble metal catalysts is to modify 
the material surface by dispersion. This is a wet chemical process, in which noble 
metal salt solutions are used. The dispersion is done either by dip coating in the 
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noble metal salt solution or by putting a drop of the noble metal salt solution on the 
material surface, followed by low temperature drying. The dispersion can also be 
possible by electrochemical method. The noble metal solution can be added to the 
electrolyte to deposit the metal on the thin film substrate in the dispersive manner 
by cathodic deposition method. By the electrochemical method, the density of dis-
persion may be controlled more precisely by adjusting the concentration of the 
noble metal salt in the electrolyte. Moreover, nanoporosity of the dispersed noble 
metals may be better achieved by electrochemical means.

The surface modification passivates to a large extent the surface defect states 
which act as charge trapping sites during the sensing process. Basically, charges 
generated at the sensing electrode during solid–gas interaction must reach the 
receiving electrode for maximum response. However, if most of them get trapped 
during the charge transfer process, the response magnitude gets reduced and the 
sensor performance deteriorates. The catalytic additive used for surface modifica-
tion segregates into microscopic islands on the materials surface and acts as the 
activator for the surface reactions. Such activation can be explained on the basis of 
“collective” and “local” site concepts. The idea of “collective” site along with the 
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chemisorption theory was proposed by F. Volkenstein [12]. It provides the concept 
of how the adsorbate affects the overall band structure of the modified semiconducting 
matrix. This theory correlates the catalytic activity of the modifier directly to the 
valence state of the dopant in the material and their influence on the charge carrier 
concentration in the semiconductor. In fact, the surface space charge develops due 
to chemisorptions on the modified semiconductors. In case of materials with the 
nanodimension, where the grain sizes are very small, the surface and the bulk prop-
erties merge due to the penetration of the space charge layer into the whole grain. 
So, the change in conductivity is mostly due to the catalytic effect of the modifier. 
On the other hand, the “local” sites approach is based on the consideration of a 
nonuniform semiconducting surface, whose interaction with the gas phase leads to 
the formation of surface complexes. In this model, the chemical nature of the modi-
fier and its reactivity during the redox reactions play a vital role. The spilled-over 
species migrate to the intergranular contact as shown in Fig. 2. Fine dispersion of 
the catalyst on the semiconducting matrix ensures solid–gas interaction near all 
intergranular contacts. Moreover, the influence of dimensional effects such as the 
size of surface clusters and the average distance between two catalytic clusters does 
also play an important role. It has been reported that the surface cluster size should 
not exceed 1–5 nm and the optimal distance between the clusters should approxi-
mately be equal to the oxygen surface diffusion length at the suitable operating 
temperature [14–17]. The nanoelectrochemistry is one of the most promising tech-
nologies for achieving these optimal conditions.

 Brief Review of Electrochemically Grown Sensing Materials

The prime concern in the development of sensor technology is the choice of materials. 
To achieve a useful sensing device, it is necessary to understand design parameters like 
size, cost, and durability. The transducer part, i.e., reading the sensor device output in 
terms of resistance, current, voltage, capacitance, etc., is also influenced by the choice 
of sensor materials. Basically all these concerns need to be addressed a priori to 
streamline the sensor parameters like sensitivity, response, recovery, selectivity, and 
drift. Obviously a single material cannot satisfy all the criteria [18].
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Metal oxide materials are widely used due to their ability to sense a wide spectrum 
of test gases. They are able to operate at low as well as elevated temperatures and 
also in harsh environments without much deterioration. It is also possible to develop 
quantum confinement effect in the nano-oxides by controlling the grain size. 
Therefore, the tailor-made energy band gap can be developed. The oxides are rela-
tively inexpensive and so are preferred for large-scale productions. Furthermore, it 
is easy to introduce nanomorphology onto metal oxide surfaces [19].

Titanium dioxide is an important material for chemical gas sensor applications in 
harsh industrial environments and at low as well as high temperatures by develop-
ing anatase or rutile crystal lattice. Titania-based devices are mainly used as oxygen 
sensors [20, 21]; however, their sensing property in the reducing ambient is also 
reported [22, 23]. With proper control of the microstructure, crystalline phase, and/
or addition of impurities or surface functionalization, this material can also be used 
for the detection of reducing gases. Particle size reduction and generation of poros-
ity from micrometer down to nanometer are positive approaches for improving the 
sensor performance [24]. Creation of nanopores or nanotubes is of utmost impor-
tance for highly sensitive and fast-responding chemical sensors.

A large section of the researchers have devoted toward the development of 
nanostructured ZnO since the reactions at the grain boundaries and a complete 
depletion of the carriers in the grains can strongly modify the material transport 
properties of ZnO. Nanocrystalline ZnO thin films have good gas-sensing proper-
ties when the crystallite size is of the order of Debye length. The response of 
nanograin ZnO is comparatively high because of the grain size effect. ZnO nanorod 
with Pd clusters showed very high and fast response toward hydrogen at relatively 
low power [25].

SnO2-based gas sensors were developed in 1970 by Taguchi [26]. SnO2 has high 
reactivity to reducing gases at relatively low operating temperatures due to the 
easy adsorption of oxygen on its surface because of the non-stoichiometry of SnO2. 
Also, the possibility of tailoring SnO2 sensing properties exists, by introducing 
nanocrystallinity and porosity. Surface modification using noble metals improves 
the properties of this material for sensing certain gases. The performance of tin 
dioxide is also related to its particle characteristics and composition which can be 
varied with dopant [27–32]. The gas sensitivity of SnO2 can be explained on the 
basis of crystallite dimension and Debye length. By decreasing the crystallite size, 
the interparticle necks become thin and long. As a matter of fact, electrons might 
face resistance depending on the size of the necks. For SnO2, if the particle size is 
less than 10 nm, the mechanical properties, viz., strength, is deteriorated [28]. 
Furthermore, as- prepared nanomaterials generally need some pretreatment at ele-
vated temperatures before sensor applications, the nanoparticles may agglomerate 
thereby increasing the particle size. So, the whole purpose of reducing the particle 
size may be lost in such cases. However, an optimum particle size is desirable for 
efficient sensing.

It is found that porosity in the active matrix improves the sensor performance. 
However, the amount of porosity is directly related to the amount of surface. 
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Hence, a highly porous surface has very large surface area for solid–gas interactions. 
Electrochemical anodic oxidation is a convenient technique to grow microporous 
and nanoporous materials even at room temperature. Gong et al. [33] developed 
uniformly oriented porous titania nanostructures by anodic oxidation of high-
purity titanium in hydrofluoric acid electrolyte under potentiostatic bias. The pore 
diameter as reported by Gong et al. varied from 15 nm to 30 nm. Varghese et al. 
[34, 35] reported hydrogen sensitivity of the titania nanostructures grown from 
high-purity titanium both at high temperature and at room temperature. For these 
sensor structures, the reduction of sensor temperature down to room temperature 
was achieved by incorporating Pd catalytic layer. Shimizu et al. [36] deposited 
TiO2 films with nanosized holes on Ti plate by electrochemical anodization in 
0.5 M H2SO4 aqueous solution at 20 °C. These porous films were then contacted 
with palladium for hydrogen sensor study. The structures were fast responsive and 
highly sensitive at 250 °C under a reverse bias of 0.1 V. Iwanaga et al. [37] pre-
pared TiO2 thin films by anodic oxidation of Ti plates in 0.5 M H2SO4 electrolyte 
at different temperatures and studied the hydrogen sensitivity with palladium cata-
lytic contact under forward and reverse bias conditions. The current–voltage (I-V) 
characteristics of the sensor structures were ohmic in 0.8 % H2 in N2. Such nano-
structures of the oxide materials not only have sensor applications, but it can be 
used for dye-sensitized solar cells [38–41], hydrogen generation by water photo-
electrolysis [42–49], photocatalytic reduction of carbon dioxide [50], etc. These 
structures possess good charge transfer ability with negligible carrier annihilation. 
Porosity can also be generated in titania matrix by potentiostatic electrochemical 
as well as photoelectrochemical etching. Sugiura et al. [51, 52] fabricated TiO2 
nano-honeycomb structure in 0.1 M H2SO4 aqueous electrolyte under potentio-
static condition by illuminating the electrodes with a high-pressure mercury arc 
lamp for the applications as photocatalysts and dye-sensitized solar cells. Similar 
study was also reported by Hazra et al. [53] for hydrogen sensors.

Porous ZnO films have been prepared by electrochemical anodization process 
[54]. In the recent past, templating of colloidal crystals was one of the most attrac-
tive methods used to obtain a porous structure. Both two- and three-dimensional- 
ordered porous zinc oxide films were fabricated by electrodeposition using 
three-dimensional polystyrene opal templates and alumina templates. A template- 
free electrochemical deposition route to ZnO nanoneedle arrays and their optical 
and field emission properties were reported by Bingqiang Cao et al. [55]. A constant 
current supply method was studied by Atsushi Ashida et al. [56] for the preparation 
of ZnO thin films on sapphire substrate to study the growth rate of the films. It was 
found that samples grown with relatively larger currents showed small grains with-
out sharp edges. Only the samples grown with currents in the range of 22–71 μA/
cm2 showed large XRD intensities and hexagonal grains with sharp edges. Chi- Jung 
Chang et al. [57] studied the electrochemical deposition of ZnO pore-array struc-
tures. ZnO films with hexagonal-packed pores were fabricated on indium tin oxide 
(ITO) from an aqueous solution of 0.1 M Zn(NO3)2 at 80 °C by the electrochemical 
deposition and microsphere lithography method.
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There are reports of the fabrication of nanoporous tin dioxide film by electrochemical 
anodization technique [58]. Mesoporous SnO2 has been used for ethanol sensing. 
The central pore sizes in mesoporous SnO2 are 4.1 nm, 6.1 nm, and 8.0 nm [59]. 
These ethanol sensors exhibit fast response and recovery to low concentration of 
ethanol gas. Porous SnO2 foam fabricated by electrochemical anodization was found 
to have good gas sensing properties [60]. The anodization was carried out in sulfuric 
acid and tin sulfate electrolyte. The working assembly used was tin film coated on 
SiO2/Si substrate. Various test gases (H2, CO, NH3, NOx, and C2H5OH) were used to 
study the response of SnO2 foams. The foams showed selectively higher response 
toward ethanol vapor.

The different research groups have utilized the crystalline silicon or silicon carbide 
as the substrates to fabricate Schottky diodes for sensor applications [10, 61–64], 
keeping in mind the development of smart systems-on-chip using silicon IC technol-
ogy. Since crystalline silicon is an insensitive sensing material due to negligible inter-
actions with oxidizing and reducing chemicals and gases, nanocrystalline porous 
silicon (PS) is gaining importance as a potential platform for chemical sensors and 
photonic devices [64–70]. The extremely large surface-to-volume ratio of PS 
(≥500 m2/cm3), the ease of its formation, and the control of the surface morphology 
through variations of the formation parameters have drawn considerable attention for 
chemical sensors.

The most efficient and effective method to generate PS layer is the electrochemi-
cal etching of silicon crystal either in HF and methanol/ethanol [71, 72] or HF and 
water or HF and N,N dimethylformamide (DMF) [73] as the electrolyte. The pore 
geometry can be controlled by passing current for a fixed duration of time and by 
UV radiation. The pore morphology of the PS layer is characterized by the pore size 
distribution, the mean size of the pores, the void fraction or porosity, the intercon-
nectivity of the pores, the passivation, and the mean size of the skeleton enclosing 
the pores. The quality of the PS depends on the additives in the electrolyte solution 
and doping concentration of the silicon wafer [74].

A simple and cheap supersensitive gas detector is based on resistive PS ele-
ments [75, 76]. Researchers at the University of Brescia, Italy, have patented a 
technique using a porous silicon membrane on alumina substrate which could 
sense NO2 down to the concentrations of 100 parts per billion (ppb) at room tem-
perature and at low power, with a minimum interference from the contaminant 
organic vapors [77–79].

Therefore, the branch of electrochemistry is so much useful for developing the 
nanomaterial and nanoporous thin films for the use in modern devices, e.g., opto-
electronic, photonic, and chemical sensors. Some recent information on the devel-
opment of chemical sensors using nanostructured and nanoporous thin films 
developed by electrochemical method are presented in this chapter. The electro-
chemical method is simple and relatively less hazardous as it can be operated in a 
close environment and at room temperature. Also, there are provisions for doping 
the materials and for creating porosity with defined dimensions by using the source 
of illumination during deposition. A brief description of the above discussions is 
summarized in Table 1.
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 Theory of Electrochemistry and Electrochemical Growth 
of Nanostructured and Nanoporous Thin Films

In an electrolytic conductor, the ions carry charges, unlike free electrons in metallic 
conductors. The conduction path in an electrolytic solution is completed with the 
metallic electrical contacts (electrodes) to and from the electrolyte. Such a system 
with immersed electrodes in an electrolytic solution constitutes an electrochemical 
cell assembly. This assembly is useful to grow and/or etch the oxide films at room 
temperature. The electrode where such deposition/growth/etching occurs is called 
the anode, and the other metallic electrode is called the cathode. So, this process is 
sometimes called anodization technique, and the anode and cathode are also called 
working and counter electrodes, respectively. However, the deposition of pure metal 
films or metallic dispersions on a substrate can be achieved on the cathode.

The two electrodes are often accompanied by a reference electrode. A reference 
electrode is an electrode which has a stable and well-known electrode potential with 

Table 1 Brief summary in the tabulated format

Characteristics/materials Remarks
Nanomorphology Nanostructured material morphologies make sensors faster and 

more efficient [2]
Nanocrystalline grains 
and their boundaries

The barrier potential is responsible for the width of the space 
charge layer, and the conductivity is modulated by the variation of 
the space charge [3–7]

Noble catalytic metals Used as thin film electrode on the material surface [9–11] and/or 
dispersed phase on the material surface [14–17]

Metal oxide materials Easy to introduce nanomorphology for better performance [18, 19]
Titanium dioxide Suitable chemical sensor material for robust applications. Initially 

used as oxygen sensing material; however, it is useful for reducing 
gases as well [20–24]
Easy to anodize in different electrolytes to generate nanolevel 
porosity for applications like chemical sensors, solar cells, etc. 
[33–53]

Zinc oxide A versatile material for many applications and especially used to 
fabricate chemical sensor devices with surface- modified films [25]
Nanostructures could be generated using both template- assisted 
and template-less techniques [54–56]

Tin dioxide This oxide has high activity toward reactive gases. Also, the 
activity can be tuned by altering its material composition [27–32]
Electrochemical anodization technique is implemented to enhance 
the solid–gas or solid–vapor interaction ability of tin dioxide 
[58–60]

Porous silicon A smart and potential platform for applications in sensing and 
photonic devices due to very high surface-to-volume ratio [64–70]
Electrochemical etching of crystalline silicon in acid medium is 
the preferred technique to generate porosity; the porous 
morphology can be modified by using suitable additives in the 
electrolyte [71–74]
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respect to standard hydrogen electrode. The stability of the electrode potential is 
usually reached by employing a redox system with saturated concentrations of com-
ponents. For example, Ag/AgCl reference electrode has a long Ag wire dipped in a 
solution saturated with AgCl. KCl is added to stabilize the AgCl solution. This com-
bination functions as a redox system based on the equations written below:

 

Ag+ -

+ -

+ ( )
( ) +
e Ag s ,

Ag Cl



AgCl s  
(2)

The electrochemical potential is given by the Nernst equation:
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where Eo is the standard electrode potential, i.e., the potential difference between 
the electrode and the solution, when the activity, ai, of the ions is unity. F, R, n, and 
T are Faraday’s constant, gas constant, number of electrons involved, and tempera-
ture, respectively. For Ag/AgCl reference electrode, the Nernst equation is
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where Eo against standard hydrogen electrode (SHE) is 0.230 V mV.±10
When the electrochemical potential varies from its standard value due to the 

application of an external potential, either a reduction (i.e., formation of solid) or an 
oxidation (i.e., formation of ions) takes place until the new equilibrium is reached. 
This difference in potential is called the overpotential or overvoltage. This overpo-
tential has to be carefully controlled to avoid electrolysis of solvent or deposition of 
impurity phases; so electrochemical processes are normally performed using a good 
potentiostat which functions in the feedback mode with the help of the reference 
electrode.

Basically the reference electrode divides the electrochemical cell into two half 
cells. The reference electrode is used as a half cell to build an electrochemical cell. 
This allows the potential of the other half cell to be determined accurately. As a mat-
ter of fact, concepts like anodization under constant voltage condition (i.e., poten-
tiostatic) and anodization under constant current (i.e., galvanostatic) arise from 
these electrochemical phenomena. In the potentiostatic condition, a fixed supply 
voltage is maintained between anode and cathode, and the current changes depend-
ing on the resistance of the path. Normally for oxide growth, potentiostatic condi-
tions are preferable due to continuous increase in the path resistance owing to the 
growth of barrier oxide films. However, galvanostatic conditions can also be imple-
mented for oxide growth provided we have higher power rating of the system.

The choice of the electrolytes for electrochemical deposition is important. The 
electrolyte must not dissolve the growing oxide or the rate of dissolution must be 
very slow, so that a substantial amount of oxide layer remains on the electrode after 
the process is completed. This is a prime concern when barrier oxide films are 
deposited. Sometimes, dissolution property of the electrolyte is necessary, if there is 
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requirement to grow a porous matrix. Therefore, electrolyte composition also 
determines whether the film will be a barrier layer or a porous layer. Basically, bar-
rier layers are formed in neutral solution (most commonly ammonium borate, phos-
phate, or tartrate compositions), which hardly has any dissolving power. For porous 
oxide growth, acid-based electrolytes are suitable because along with oxide deposi-
tion they also favor dissolution in certain directions to generate porous channels. 
The most common choice of acid electrolytes is dilute sulfuric acid, typically about 
1 M or 10 wt% in concentration. Hydrofluoric acid (HF)-based electrolytes (0.5 
wt%) are also used to generate porous morphology [33, 80–84]. Addition of acetic 
acid to 0.5 % HF electrolyte in a ratio of 1:7 yields robust nanostructures [85, 86]. 
A combination of 2.5 % HNO3 and 1 % HF water solution (with or without boric 
acid) can be used to carry out anodization at 20 V. This will result in high current 
densities for the formation of oxide coatings [87]. In this way, several combinations 
can be made with fluoride-based electrolytes. So, far, the use of mixed electrolytes 
like (H2SO4/HF), (H2Cr2O7/HF), (CH3COOH/NH4F, H2SO4/NH4F), and (H3PO4/HF, 
H3PO4/NH4F) have been reported [88–93]. If a very thin film is desired, the weak 
electrolyte like phosphoric acid is used for slow growth kinetics of the formation of 
oxide films [94].

 Current Density Concern

Metals can be readily anodized under potentiostatic conditions. However, metals 
have the inherent tendency to develop a thin native oxide layer (2–3 nm thick) in air 
ambient to stabilize the surface against further reactions and thereby to protect the 
bulk purity. Such a piece of metal, when used for anodization, in a neutral electro-
lyte, will not allow much current to flow at low voltages due to the presence of the 
native barrier layer. So, a high voltage is applied to start the current conduction. 
This happens because the electric field is high enough to drive electrons. Also in the 
presence of such high field, oxidation of solvents like water can happen, and oxygen 
may evolve. However, oxygen evolution is not observed in the case of pure metals. 
So, it is obvious that the oxide blocks electrons moving into the direction from elec-
trolyte to metal. Therefore, the high field drives metal and oxygen ions through the 
oxide layer. Basically, the current through the oxide is an ionic current, and these 
ions react to form the oxide layer. The process of high-field ionic conduction is the 
sole mechanism in anodization. Oxygen ions move inward to react with the metal, 
at the metal/oxide interface, to form oxide. Metal cation moves outward from the 
metal to react with water at the oxide/electrolyte interface to form oxide at that sur-
face. The schematic of basic ion transport at metal–electrolyte interface is shown 
below (Fig. 3).

At the counter cathode, the electronic process is completed by the reduction of 
hydrogen ions to hydrogen gas. The rate of the oxide growth is proportional to the 
current density (A/cm2). The field (V/m) inside the oxide layer remains constant 
with time if the potentiostatic conditions are employed. So, the voltage drop 
increases as the barrier oxide layer becomes thicker. If the voltage drop is not 
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uniform, the current will change and as a result the current density will vary. So, a 
less resistive path, implying low voltage drop and hence high current density, will 
accelerate the barrier layer formation and vice versa. Therefore, for the uniformity 
of thickness across the surface of anodization, the voltage drop must be the same. 
This becomes significant when the barrier layer formation and dissolution in certain 
favorable directions occur to generate porous morphology. At the pore regions, the 
current density increases due to reduced barrier layer thickness. For an electrolytic 
composition at a certain temperature, there is a limit to the maximum voltage that 
can be tolerated before the breakdown of the dielectric barrier layer starts. At the 
breakdown, oxygen evolution, solute oxidation, or sparking due to electron ava-
lanche through the oxide may occur in addition to the oxide growth. A dilute elec-
trolyte enhances the ionization process by creating large number of mobile ions to 
maintain the high current density. Hence, the rate of anodization and the breakdown 
voltage are higher with the dilute electrolyte. However, it is not apparent from this 
discussion how the pores initiate. Usually, a surface has some degree of roughness. 
This may be due to the fabrication processes, such as rolling, chemical etching, 
cleaning, etc., prior to anodization or due to evaporation-assisted film deposition 
followed by annealing. Initially, the anodized oxide film growing on ridges and 
bulges becomes thicker than in the depressions because the ions move through 
oxide more easily at these ridge–bulge locations possibly due to higher film stress 
or high current concentration in these locations. Gradually, the oxide thickness 
becomes more uniform at the ridges and bulges, and the concentration of current 
shifts toward concave depressions where the oxide layer is thin and the electric field 
is high. Therefore, the field-assisted dissolution/breakdown is initiated. As a result, 
the thinning of the local oxide layer is likely to occur because of high current con-
centration at those locations. Thus, the pore formation starts, and as the steady state 
is reached, the size and the distribution of the pores are stabilized.

The development of the porous morphology due to the variation of potential and 
current density is also significant. Taveira et al. [95] anodized Ti foil using a constant 
current density, and they reported the tubular structure of the diameters in the range 
40–50 nm and 60–90 nm by using the current density of 0.5 mA/cm2 and 1.0 mA/cm2, 
respectively. Basically, when anodization starts, a compact oxide layer is formed first, 
and the voltage drop maximizes. So, the current through the circuit slowly decreases 
from a maximum initial value to the saturation. At the point of dissolution, the growth 
rate balances the dissolution rate because of the change of the path resistance leading 
to the variations of potential and current and eventually reaches equilibrium. However, 
this equilibrium can be perturbed by an external optical irradiation. For example, the 
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oxides are wide band gap materials, and so their optical absorption is maximum in the 
ultraviolet (UV) range. If UV rays are incident on the anode surface during anodiza-
tion, the additional positively charged holes are generated that increase the rate of 
dissolution, and so the equilibrium is disturbed.

 Growth Methods

High-purity metallic foils of either titanium or zinc or tin (~0.2 mm thick) is usually 
chosen as the starting material for the growth of metal oxides by electrochemical 
method. The samples are cut to desired sizes and are thoroughly washed in acetone, 
methanol, dilute hydrochloric acid, and deionized water successively. They are then 
used as anode in a Teflon/quartz electrochemical cell containing the electrolyte. 
Normally, a platinum counter electrode and Ag/AgCl reference electrode (Fig. 4) 
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Fig. 4 Electrochemical etching assembly (Reprinted with permission from Hazra and Basu [96] 
and Kanungo et al. [98]. Copyright: Elsevier)
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are used [96, 97]. The anodization can be carried out at a potentiostatic or a galva-
nostatic condition. For developing a porous structure, the oxide anode surface is 
illuminated with an ultraviolet (UV) radiation for photoelectrochemical etching.  
As mentioned earlier, UV radiation helps to generate excess holes in the material 
matrix, and this enhances the dissolution process. After the completion of oxide 
growth and etching, the samples need to be thoroughly washed with deionized 
water and dried in ambient air. The oxide surface may be annealed at a moderate 
temperature of 300–400 °C for 15–30 min to stabilize the surface structure.

For porous silicon formation, silicon wafers with the resistivity in the range of 
2–5 Ωcm are normally chosen, and the anodization is carried out in a mixture of HF 
and ethanol as the electrolyte. The typical electrochemical etching assembly for 
porous silicon formation is shown in Fig. 4 [98]. Since, fluoride electrolytes attack 
glass and quartz, the Teflon container is used for porous silicon formation. For faster 
rate of pore formation a light of wavelength corresponding to the band gap energy 
of silicon (~1.1 eV) or higher may be used during the electrochemical etching 
process.

 Basic Electrochemical Equations Highlighting  
Growth and Etching

From the above discussions, it is apparent that the electrochemical method is con-
venient and simple for the growth of nanomaterials and nanoporous thin films. 
Moreover, the thickness and the porosity of the nano-thin film may be better 
controlled by precisely adjusting the voltage or current and the time duration of 
anodization. The added advantage of the anodization is room temperature opera-
tion thereby minimizing the possibility of defect generation on the oxide surface 
at high temperature. The use of nanocrystalline and nanoporous oxides and 
nanoporous silicon thin films for the development of nanochemical sensors has 
demonstrated that the electrochemical deposition can produce much superior 
nanomaterials for efficient sensing of gases and volatile organic compounds (VOC). 
The steps of electrochemical depositions mentioned in Table 2 above clearly show 
the unique and versatile mechanism for thin film deposition without any inten-
tional inclusion or doping of impurity.

 Structural, Morphological, Optical, and Electrical 
Characterizations of Electrochemically Grown Thin Films

 X-Ray Diffraction (XRD)

X-ray diffraction (XRD) technique is utilized to check the crystallinity and identify 
the phases of the anodized materials. Normal angle XRD is not adequate to reveal 
the detailed information of thin films, and therefore, the glancing angle x-ray dif-
fraction (GAXRD) is used. The incident X-ray beam is focused at a small angle on 
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the surface of the specimen under investigation. This requires a very small diver-
gence of the primary beam or the use of a narrow parallel beam.

GAXRD performed at 0.2° glancing angle shows the crystalline character of the 
oxidized zinc surface as shown in Fig. 5 [99]. It is evident from the figure that the 
intensity of ZnO peaks [100] and [101] decreases and that of Zn peak increases with 
decreasing molar concentration of oxalic acid from 0.3 to 0.05 M because of the 
lower oxidation rate. Practically negligible ZnO formation occurs at 0.01 M electro-
lyte as observed from the plot of Fig. 5.

Glancing angle X-ray diffraction technique was used to find out the crystalline 
nature of the surface of anodized titania thin film at different incident angles (0.2°, 
0.5°, 1°, and 10°) [53]. With the increasing incident angle, the penetration depth of 
X-rays increases. Figure 6 displays that at low incident angles, the surface peak 
intensity of the rutile TiO2 is higher than the bulk TixO phases (TixO ≡ Ti3O and 
Ti6O), which are titanium-rich non-stoichiometric phases and are isostructural to 
titanium. It is observed that the intensities of TixO phases are almost negligible for 
0.2° glancing incidence angle. So, we can infer that the minimum incidence angle 
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is required to obtain the surface information and, at higher incidence angle, the 
information for both bulk and surface are revealed by GAXRD.

Figure 7 [100] shows the GAXRD for as-prepared and modified porous silicon 
surfaces. The GAXRD analysis of the distribution of noble metals (Pt, Pd, and Ru) 
on the surface-modified porous silicon is also shown. The distribution of metal ions 
near the surface of porous silicon is apparent from the GAXRD plots.

 Morphological Studies (SEM, TEM, AFM)

A field-emission cathode in the electron gun of a scanning electron microscope 
provides narrow probing beams at low as well as high electron energy, resulting in 
both improved spatial resolution and minimized sample charging and damage. 
FESEM produces distinct and less distorted images with spatial resolution down to 
1–1/2 nm that is three to six times better than conventional SEM. Using FESEM, a 
high-quality and low voltage images are obtained with negligible electrical charg-
ing of the samples (acceleration voltages range from 0.5 to 30 kV).

Surface morphology of the ZnO thin films grown electrochemically using differ-
ent concentrations of oxalic acid as electrolyte is shown in Fig. 8 [99]. The FESEM 
images reveal that ZnO thin film deposited in 0.05 M oxalic acid has poor crystal-
line feature and the sample in 0.01 M oxalic acid has only metallic Zn surface 
(Fig. 8c and d). This attributes to the lower oxidation rate at very low oxalic acid 
concentrations. On the other hand, nanocrystalline and nanoporous ZnO thin films 
were deposited in the increased oxalic acid concentrations (0.1 M, 0.3 M) as shown 
in Fig. 8a and b.
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Fig. 5 XRD images of Zn substrate and deposited ZnO thin films at 0.2° glancing angle grown in 
different concentrations of aqueous oxalic acid electrolyte (Reprinted with permission from Basu 
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Scanning electron microscopy was employed to analyze the electrochemically 
etched titanium oxide surfaces using sulfuric acid electrolyte in the absence and 
presence of UV light illumination [53]. Figure 9 represents the polycrystalline 
nature of the oxide surface with tetragonal grains.

The tetragonal rutile grain size is reduced upon etching in acid medium. The 
grain size of the etched grains is in the range of 115–140 nm. Basically the electro-
chemical etching is governed by holes, and the grain boundaries or the bulk grains 
are selectively dissolved. A typical etching pattern appears on the oxide surface [51]. 
As the etching progresses in random directions, the oxide is removed from the 
surface, and the porosity is developed. However, the formation of uneven porosity 
is due to random surface orientations of the grains. When illuminated with UV light, 
the etching rate of the oxide surface is enhanced because of the excess holes gener-
ated in titania band. So, etching in the presence of UV light increases the depth of 
porosity. The grain size in the range of 100–250 nm was reported for UV-etched 
oxide samples.
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Fig. 7 GAXRD spectra at incidence glancing angle of 0.5° of (a) as-anodized porous silicon 
and metal-modified porous silicon using (b) 0.01 M PdCl2 for 5 s, (c) 0.1 M RuCl3 for 15 s, and 
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Elsevier)
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Due to the high etching rate in the presence of UV light, after a certain time, the 
underlying titanium layers may be exposed to the etching solution under the poten-
tiostatic bias condition. Then the exposed titanium metal is anodically oxidized to 
titanium dioxide in 0.1 M sulfuric acid. However, the newly formed oxide cannot 
get strongly bonded to the substrate as it is etched once again. Hence, the newly 
formed oxide is deposited along the grain boundaries immediately after its forma-
tion and adheres to the skeleton porous structure. This may lead to nonuniform 
increase in the size of the grains as seen in Fig. 9.

Figures 10 and 11 represent the AFM pictures of the electrochemically etched 
surfaces. The rms roughness of the samples etched in the absence and presence of 
UV light are 36.309 nm and 123.04 nm, respectively. This is probably due to the 
fact that the etch pits are deeper and are frequently repeated on the surface. 
Basically surface roughness is defined as “the change in the profile of the surface in 
which the height and the depth of ridges and valleys vary in the nanometer order.” 

Fig. 8 (a–d) are the FESEM pictures of ZnO thin films obtained by anodic oxidation of Zn in dif-
ferent aqueous oxalic acid concentrations (Reprinted with permission from Basu et al. [99]. 
Copyright: Springer)
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From the AFM data, the maximum height of a ridge/hill is 600 nm when the samples 
are etched without UV illumination. On the other hand, the minimum depth of 
samples etched in the presence of UV light is 1,000 nm. This demonstrates that the 
porous channels of the UV light-assisted-etched surfaces are deeper. But the width 
of the ridges/hills for the samples etched in the presence of UV light is relatively 
less as shown in Figs. 10b and 11b. So, the average aspect ratio (height/width) of a 
ridge/hill is high for the samples etched in the presence of UV light because “h” 
increases and “w” decreases. Since the increase in “h” is relatively higher than the 
decrease in “w,” the etching direction is more likely perpendicular to the surface.

The scanning electron microscopy technique was used to analyze the porous sili-
con (PS) surface modified with noble metals like Pd, Ru, and Pt [100]. Figure 12 
shows the FESEM images of the PS surfaces before and after surface modifications. 
It is clearly observed that even after modifications, the porous silicon layer remains 
nanoporous in nature. For structural imaging, 10 KV accelerating voltage with 
In-lens detector was used, and all the images were taken without using any conduct-
ing coating over the sample surface in order to study the virgin state of the modified 
surface. The transverse section was investigated with EDX line scanning using 
Genesis EDAX Line Scan software for qualitative depth profiling. 20 KV potential 
and different magnifications were applied for identifying the metal particles/clusters. 
The agglomerated diameter of ~5.8 μm was obtained for Pd island, whereas for 

Fig. 9 Scanning electron micrographs of (a) as-grown oxide surface, (b) electrochemically etched 
surface, (c) photo (UV) electrochemically etched surface of titanium dioxide thin film (Reprinted 
with permission from Hazra et al. [53]. Copyright: Elsevier)
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Ru and Pt, the size was reduced to ~4.2 μm and ~3.1 μm, respectively. The Pd 
agglomerates are more frequently distributed over the uniform nanostructure of PS 
surface, whereas Ru and Pt are locally observed. Line scan analysis across the cross 
section of the modified PS sample confirms the presence of Pd and Ru in the surface 
structure but the rare presence of Pt. However, the presence of oxygen indicates the 
mild surface oxidation in the presence of noble metals. From the cross-sectional 
EDAX analysis shown in Fig. 13, the thickness of the PS layer (from the surface up 
to the depth where the Si intensity comes to a saturation value) was measured as ~5 μm.

Transmission electron microscopy (TEM) was employed to analyze the elec-
trochemically grown single titania nanotube. The tube was grown at pH 5.0 and 
annealed at 600 °C [46, 101]. The TEM data revealed the anatase phase in the 
nanotube walls. Basically, titania exists in three phases, viz., brookite, anatase, 
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Fig. 10 AFM (a) topography and (b) surface image of the electrochemically etched titania surface 
without UV light (Reprinted with permission from Hazra et al. [53]. Copyright: Elsevier)
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and rutile. Brookite is the low temperature phase, anatase is the intermediate 
crystallinity (normally below 600 °C), and rutile is the most stable high-tempera-
ture phase. The conversion from anatase to rutile is irreversible. As-anodized tita-
nium is amorphous and slowly derives its crystalline character upon annealing. 
This crystallinity in titania nanotube was reported using a model by Grimes et al. 
[102, 103]. As per this model, anatase crystals are formed at the nanotube–tita-
nium interface due to high- temperature treatment. The rutile crystallites are then 
formed in the oxide matrix by phase transformation of anatase phase. The nano-
tube geometry also imposes some constraint on the phase transformation [46, 104, 
105]. For annealing temperatures below 600 °C, it can be assumed that titania 
nanotubes have anatase crystallites stacked above rutile phase formed at the base 
of the nanotubes. Such results were also confirmed from high-resolution 
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Fig. 12 FESEM of (a) unmodified, (b) Pd-, (c) Ru-, and (d) Pt-modified PS surfaces (Reprinted 
with permission from Kanungo et al. [100]. Copyright: Elsevier)

SiK
aPdL

00.0 Distance

In
te

ns
ity

18
0

1 µm

SiK
b

c

RuL

00.0 Distance

In
te

ns
ity

18
0

1 µm

SiK
PtM

00.0 Distance

In
te

ns
ity

18
0

1 µm

Fig. 13 EDAX line scan intensity distribution of (a) Pd-, (b) Ru-, and (c) Pt-modified PS surfaces 
(Reprinted with permission from Kanungo et al. [100]. Copyright: Elsevier)
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transmission electron microscopy (HRTEM) studies carried out with 45 μm long 
titania nanotube grown electrochemically in mixed HF electrolyte at 40 V bias 
and are shown in Fig. 14 [38].

 Optical Studies

The optical response of a material is used to determine its optical constant, required 
for various optical-related applications. The thin film of the material is normally 
used for the measurements of the optical reflectance, transmittance, and absorption. 
The optical data is generally evaluated by Swanepoel method [106], based on the 
idea of Manifacier [107] as the standard technique. According to this method, the 
envelope through the interference maxima and minima is drawn in the spectrum. 
The value of the refractive index of the thin film in the spectral region of medium 
and weak absorption is calculated by using the following expression:
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and TM and Tm are the transmission maxima and the transmission minima at a cer-
tain wavelength, λ, and “s” is the substrate refractive index. The basic equation for 
interference fringes is given by

 2nd mo= l  (6)

The accuracy of the refractive index depends on the calculation of the thickness, d, 
of the film. “mo” is an integer for maxima and a half integer for minima in the 
transmission spectra. If n1 and n2 are the refractive indices of two adjacent maxima 

Fig. 14 High-resolution TEM images of a ~45 μm long titania nanotube sample: (a) as-prepared 
and (b) after 550 °C anneal in oxygen for 6 h. The corresponding selected area diffraction patterns 
are given in the insets (Reprinted with permission from Shankar et al. [38]. Copyright: IOP; 
doi:10.1088/0957-4484/18/6/065707)
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and minima at wavelengths λ1 and λ2, the thickness of the film is given by the 
expression:
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The extinction coefficient (k) can be obtained using the relation
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where α is the absorption coefficient [106] and is given by
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where “x” is the absorbance.
The optical behavior of the semiconductor and insulator materials can be utilized 

to calculate the optical band gap. However, the mode of measurement depends on 
the nature of the substrate on which the material is grown or deposited. For exam-
ple, for glass, quartz, or any other transparent substrates, the transmission spectrum 
is recorded, but for nontransparent substrates the reflection/absorption spectra are 
considered.

The reflection spectrum of porous TiO2 thin film deposited electrochemically on 
titanium substrate as obtained from UV–VIS–NIR spectrophotometer is shown in 
Fig. 15a. The absorption coefficient, α, and the optical band gap, Eg, of the material 
are related by the Tauc relation [108]

 
a n nh A h Eg

n
= -( )  (10)

30

25

E g
 = 3.898 ev

20

(α
hν

)1/
3

hν (eV)

15

10

5

0

R
 (

%
)

12

10

8

6

4

2

0
200 300 400 500 600

Wavelength (nm)

Reflection Spectrum
a b

Optical band gap determination

700 800 3.90 3.92 3.94 3.96 3.98
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reflection spectra and (b) optical band gap determination (Reprinted from Hazra et al. [94]. 
Copyright: Science and Engineering Publishing Company; OPEN ACCESS)
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where “Eg” is the optical energy gap, “A” is constant, and the index “n” can have 
values 1/2, 3/2, 2, and 3, depending on the nature of electronic transition responsible 
for reflection. The absorption coefficient, α, is obtained from the relation,

 
2a t R R R R= -( ) -( )éë ùûln /max min min  (11)

where “t” is the thickness of the film, Rmax and Rmin are maximum and minimum 
values of reflectance, and R is the reflectance at any photon energy, hν. Combining 
the above two equations,
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The above equation has a straight line characteristic, and the value of the power n 
can be obtained from the slope of the plot ln ln /max min minh R R R Rn -( ) -( )éë ùû( )  
versus ln h Egn -( ) .

For the spectra shown in Fig. 15a, n = 3 was obtained [94]. So, the optical band 
gap of the titania sample was determined by plotting (αhν)1/3 versus hν and then 
extrapolating to a nh( ) =

1 3
0

/
 (Fig. 15b).

Basu et al. reported the variation of the band gap of electrochemically grown 
nano-ZnO thin film by varying the molar concentration of the oxalic acid electrolyte 
[99] and showed that the band gap increases with the decreasing concentrations of 
oxalic acid. The widest band gap of 4.20 eV at room temperature was obtained by 
using 0.05 M oxalic acid electrolyte. This blue shift of the band gap of nanocrystal-
line ZnO film was further confirmed by photoluminescence spectra (Fig. 16) and 
was explained as due to the quantum size effect.

 Photocurrent Transient Measurement

The nanostructures normally respond to light of appropriate wavelength. In tran-
sient photocurrent measurements, the porous layer is illuminated with a pulse of 
light, and the photo current generated is measured. Tsuchiya et al. [109] reported the 
photo current transient measurements of TiO2 nanotubes using a light pulse of 
350 nm wavelength. The exposure time was 10s. There was an initial increase of the 
current followed by a gradual decrease with time. The observed photocurrent was 
theoretically correlated with the equation

 
I t I t I t kt I tph ph ph ph( ) = =( ) - = ¥( ){ } -( ) + = ¥( )0 exp ,  (13)

where k denotes a rate constant.
The annealed porous layer gave the lowest k = 0.14 s−1 when compared with 

annealed compact layers. They found that the rate constants for the annealed compact 
layer and the as-formed compact layer were comparable (0.393 s−1 and 0.315 s−1). 
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Theoretically, the as-formed compact layer should have higher rate constant than 
annealed ones. Further, the samples without annealing showed continuous increase 
of the photocurrent with time during illumination. This phenomenon could be 
attributed to the filling of traps from the localized defect states introduced in the 
TiO2 energy band gap during anodization and acting as the recombination centers. 
The unannealed porous layer could contain both shallow and deeper traps. During 
illumination the trap-filling behavior is prevalent, and the traps are preferentially 
filled with photogenerated charge carriers. So, to avoid the doubt and confusion, the 
above Eq. 13 was modified as

 
I t kt I t I t I tph ph ph ph( ) = - -( ){ } = ¥( ) - =( ){ }+ =( )1 0 0exp . ,  (14)

and k = 0.49 s−1 was obtained for as-anodized porous layer by fitting the appropriate 
data. Photocurrent studies with porous ZnO, SnO2, and silicon have been reported 
by other researchers [110–113].

 Hot Probe, Four-Probe Resistivity, and Hall Effect Measurements

The semiconducting parameters of the grown nanostructures can be determined by 
hot electron probe, four-probe resistivity, and Hall effect measurements. Hot elec-
tron probe method is used to determine the type of conductivity of the semiconduc-
tors. A digital multimeter is attached to the sample, and a heat source (like soldering 
iron) is used to heat one terminal. The thermal energy causes charge carriers (elec-
trons if n-type or holes if p-type) to move away from the heated lead. This generates 

Fig. 16 Optical properties of ZnO thin films. (a) Optical absorption spectra and (b) PL spectra of 
nano-ZnO thin films obtained by anodization of Zn in different concentrations of oxalic acid. 
There is a significant increase in the optical band gap and PL energy of the film grown in 0.05 M 
oxalic acid due to blue shift (Reprinted with permission from Basu et al. [99]. Copyright: Springer)
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a voltage difference, and the sign of the voltage determines the type of conductivity. 
Four-probe arrangement with van der Pauw configurations is a convenient method 
to determine the material resistivity of a flat sample with arbitrary shape, because 
the resistivity can be measured without knowing the actual current paths. The sam-
ple needs to meet the following requirements:

 1. The electrical contacts are on the perimeter of the sample.
 2. The contacts are sufficiently small (compared to the dimensions of the sample).
 3. The sample is uniformly thick.
 4. The surface of the sample is singly connected, i.e., without isolated holes or 

other nonconducting macrodefects.

By this method, the measurements are quite accurate, and no additional correc-
tion factors have to be considered for the resistivity calculations.

As shown in Fig. 17 below, the two characteristics resistances RA and RB are 
related to the sheet resistance, RS, by the van der Pauw equation
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The current is passed between two adjacent contacts, while the voltage is measured 
between the two opposing contacts. The contacts are interchanged and the measure-
ment is repeated. For accuracy, thus, for all possible combinations of adjacent con-
tacts, four pairs of measurements are done. The two resistances are then calculated 
as an average of the respective resistances of the opposing pairs of contacts, e.g.,  
RA = (R21;34 + R12;43 + R43;12 + R34;21)/4 and RB = (R32;41 + R23;14 + R14;32 + R41;23)/4, 
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Fig. 17 van der Pauw geometry
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respectively. If the sample has nonuniformity, the individual resistances belong-
ing to RA or RB differ. However, for a uniform sample with symmetrically located 
contacts, the two resistances RA and RB may be nearly equal. In that case, RA  =  RB  =  R 
and the van der Pauw equation reduces to
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The sheet resistivity, RS, can be generally obtained from the van der Pauw equation. 
The bulk electrical resistivity (ρ) can then be calculated as ρ  =  Rs,d, where “d” is the 
thickness of the thin film. Since bulk resistivity is directly proportional to the film 
thickness, the uniformity of the thickness across the sample and the measurement of 
accurate thickness value are the prime requirements for precise estimation of the 
bulk resistivity.

The van der Pauw configuration can be used to perform the Hall effect experi-
ments in order to determine the carrier density and the carrier mobility. In this 
method, magnetic field is applied perpendicular to the current path. The voltage 
difference (i.e., the Hall voltage) across the material transverses to the electric cur-
rent, and the magnetic field is measured. The Hall coefficient (RH) is given by

 

R
V d

IBH
H= ,

 (17)

where VH, d, I, and B are the Hall voltage, material thickness, current, and magnetic 
field, respectively. The carrier density, n, is obtained from the relation
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where q is the charge of electron.
The carrier mobility is obtained from the equation
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(19)

where σ, ρ, and μ are conductivity, resistivity, and carrier mobility, respectively.
The hot probe technique was used by Hazra et al. to determine the n-type con-

ductivity of electrochemically grown porous titania using soft drink electrolyte [94]. 
Titania nanotubes grown electrochemically using ammonium fluoride (NH4F) in 
glycerol as electrolyte showed the resistivity ~1 × 10−2 Ω-cm [114].

The basic difference between microstructure and nanostructure can be realized 
from the characterization results. For surface morphology, SEM and AFM images 
reveal structural size variation either in micron order or in nanometer order. 
Normally, nanotechnology is limited to a maximum of 100 nm, which is 0.1 μm. 
So, the resolution of 1 μm is 10 times the maximum resolution for nanotechnology. 
As a matter of fact, the observation at micron resolution for nanostructures does not 
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have any contrast. Similarly, the observation of microstructure at nanoresolution 
lacks the clarity. Other than morphology, the subtle difference between micro- and 
nanodimensions is observed in the optical band gap. As the size is reduced, the band 
gap of nanomaterials increases, which is the quantum confinement effect [99]. 
Furthermore, the electrical properties, which are functions of defect states, grain 
boundaries, and stoichiometry, do also vary in micro- and nanoregimes. For a 
fixed device area, microdimensions have less grain boundaries and relatively 
less number of grains compared to nanostructures. Hence, the electrical transport 
parameters like mobility, carrier lifetime, etc. should be different for micro- and 
nanostructures.

 Fabrications of Nanochemical Sensors by Electrochemical 
Method

 Choice of Substrate

Both insulating and conducting substrates can be used for electrochemical anodiza-
tion. The anodization process and subsequent device fabrication are easier for con-
ducting substrates compared to the insulating ones, because the back surface of a 
conducting substrate can be directly used to make electrical contact with the control 
circuit. The important advantage of the conducting surface is that the whole front 
surface can be anodized and the rear surface is protected from the corrosive electro-
lyte. For titanium, zinc, tin, and other conducting substrates, high-purity thin sheets 
are used. Depending on the type of conductivity (p-type or n-type), the back side of 
the highly doped silicon substrate is coated with aluminum or antimony for good 
ohmic current transport. But for the insulating substrates like glass, quartz, alumina, 
and intrinsic silicon, a thin film of the material to be anodized is deposited on the 
insulating substrates, and the electrical connections are taken from one corner of the 
metal film by using conducting clips. Care must be taken so that the connecting 
clips do not touch the electrolyte or get immersed into it. In case the whole substrate 
needs to be immersed into the electrolyte, the clipped contact area is protected by 
epoxy coating which does not react with the electrolyte.

 Device Structure Fabrication

The porous structure developed by electrochemical method is considered as the active 
layer favorable for sensor device fabrication. The most important part of the device 
fabrication is that the active porous layer must be properly connected electrically to 
the conducting circuit. Depending on the type of the substrate on which the porous 
layer is grown, two device configurations are generally very popular, viz., planar 
geometry and vertical geometry (Fig. 18). In planar configuration, two metal contacts 
are deposited closely on the same horizontal plane (laterally) such that the current 
path between the two contacts should be shortest. On the other hand, in vertical 
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geometry, one contact is made on the top of the active layer, and the other one is taken 
from the back of the substrate (in case the substrate is conducting) so that the shortest 
charge carrier path is limited to the vertical gap between the two electrical contacts.

For the nonconducting substrates like glass, quartz, alumina, etc., planar geom-
etry is the only choice. The main advantage of the vertical geometry is that the 
active layer thickness is the minimum distance between the two electrodes which is 
normally very short. The electrical contacts are mostly deposited by physical vapor 
deposition techniques, e.g., thermal and e-beam evaporation methods. So, the metal 
films percolate down to the base of the porous layer, and the electrical barrier is 
limited to a thin interfacial oxide layer as shown in Fig. 19 below.

The small current path in the vertical configuration ensures maximum transport 
of the charge carriers with negligible annihilation that normally occurs due to the 
traps present in the defective porous layer. As a matter of fact, the device perfor-
mance of the vertical structure is expected to be better than the planar geometry.

The choice of the device geometry and the nature of the top contact material have 
serious relevance for the gas sensor performance. The nature of the top contact 
material also plays a significant role. For example, if palladium (Pd) is used for the 
metallic contact, it is considered as a catalytic contact material for hydrogen and 
oxygen gas sensors. During the deposition, the active porous layer may act as a 
template, and Pd is deposited on the wall of the tubes as shown in Fig. 19. So, a 
vertical device using Pd may be defined as catalytic metal thin active layer/metal 
junctions for sensor applications. In this case, the sensing is limited mainly to the 
area of the palladium film dimension. Therefore, the sensing will be directly propor-
tional to the catalytic interaction over the area of Pd. This is also convenient for 
miniaturization of the sensor devices. However, for enhanced sensitivity, the area of 
Pd contact may be optimized for larger coverage by the catalytic contact. But for the 
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Fig. 18 Schematic view of planar and vertical device geometries
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porous materials with high surface area, the contact area geometry is apparently not 
much significant. For all the practical purposes, 2–5 mm contact diameter is suffi-
cient to study the sensing by a vertical device configuration. On the other hand, the 
planar geometry is more versatile due to the fact that the sensor devices can be 
fabricated with or without catalytic metal contacts. The porous layer between the two 
non-catalytic contacts may act as the active sensing area. The sensitivity of the 
oxides and porous silicon is proportional to the number of active sites available on 
the surface. It is worth mentioning that the number of active sites varies from mate-
rial to material. So, for higher sensitivity of the planar geometry sensor devices, the 
surface modification of the active sensing layer by the catalytic metal salt solutions 
may be beneficial. By this process metal clusters are deposited on the wall of the 
porous layer (Fig. 20) and enhance the solid–gas interaction on the surface of the 
sensing material.

Therefore, the planar devices can be fabricated on a chemically modified porous 
surface with non-catalytic or catalytic contacts for higher sensitivity. The choice of 
the sensor configuration is determined by the ease of fabrication and the cost- 
effectiveness of the device for large-scale production. The electrical connections are 
completed by using very fine copper/gold wires bonded on the contacts either by 
spot welding or by using high-temperature silver paste.

 Sensing Procedure

Normally, the resistance, current, and voltage of the device are the parameters 
which are monitored during sensing studies. Usually the change in resistance/cur-
rent/voltage in response to the inclusion of low concentration of test gas mixed with 
air or an inert gas like nitrogen as the carrier gas is measured using an electronic 
multimeter. The multimeter can be interfaced with a computer for automatic data 
collections (Fig. 21).

The change in resistance/current/voltage in the porous devices is due to the che-
misorptions of the test gases. Basically, the gas molecules are adsorbed on the sur-
face sites of the sensing layer and dissociate to the ionic species, and the free charge 
carriers are transferred to the conduction band/valence band of the sensing material. 
Hence, there is a change in the resistance of the sensor assembly depending on the 
conductivity type of the active porous layer. If the sensing material is n-type and 
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Fig. 20 Schematic presentation of surface sensitization by dispersion of catalytic metal
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the sensing gas is reducing, e.g., H2, the resistance decreases due to solid-reducing 
gas interaction, and the opposite behavior is observed if the sensing layer is p-type 
material.

 Sensor Performance Using Different Gases and Chemicals

 Fundamentals

Hydrogen is the simplest reducing gas, and its molecule consists of two hydrogen 
atoms bonded covalently. The bond dissociation energy is 436 kJ/mol or 4.52 eV per 
molecule. This bond is strong, nonpolarizable, and cleaved only by catalytic metals or 
by strong oxidants present in the sensing layer. Although, the porous oxide matrix 
grown electrochemically is extremely sensitive to reducing gases, the sensing experi-
ments with hydrogen are performed with the devices having catalytic metals like pal-
ladium, platinum, and ruthenium to enhance the sensitivity. The catalytic metal thin 
films may be used as the contact electrodes. The surface modification with the salt 
solutions of catalytic metals may also be incorporated into the sensor layer. Molecular 
hydrogen, despite its large bond dissociation energy, can easily dissociate in the pres-
ence of palladium or platinum [115]. The dissociated hydrogen atoms occupy tetrahe-
dral/octahedral holes in the crystal structure of palladium. These hydrogen atoms have 
enough mobility to move from one hole to another. As a matter of fact, the surface 
chemisorbed atoms slowly move into the bulk of palladium, and the whole metal 
matrix is eventually saturated. The interaction of hydrogen with palladium in the pres-
ence of electric field leads to the formation of palladium–hydrogen complexes, PdHx

+ 
(x = 1, 2, 3, 4) [116]. The sensor device is operated at a specified applied voltage, 
which is not so high. So, the non- stoichiometric hydrides of palladium, PdHx 
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(x = 0−0.7), are likely formed [117, 118]. For low hydrogen concentration in PdHx 
(x = 0–0.02), the hydride lattice and the pure palladium lattice are almost well 
matched, and this low concentration hydride phase is known as the α-phase. For 
higher concentration of hydrogen, β-phase of the hydride is formed. The β-phase 
makes palladium brittle due to lattice mismatch, and therefore the use of Pd-modified 
sensor is restricted to very low concentrations of hydrogen. However, to prevent the 
formation of β-phase of palladium hydride and make it more efficient for gas sensing, 
it is normally alloyed with an optimum percentage of silver (~12 % to ~30 %).

Both α- and β-phases readily release hydrogen by the reverse process of desorp-
tion mechanism as the partial pressure of hydrogen on the sensor surface is reduced. 
However, the α-phase has better reproducibility for the long-term sensing of ppm 
level of hydrogen. The sensing mechanism for bare oxide films can be realized in 
terms of electron exchange during solid–gas interactions. In a porous oxide, apart 
from lattice oxygen atoms, dangling oxygen ions can be found at the material 
boundaries. Further, not all dangling bonds are saturated. So, during sensing at ele-
vated temperature, oxygen can be chemisorbed from the ambient by gaining one 
electron from the surface. Due to the chemisorptions and binding of free electrons 
from the surface, the resistivity of the material shows an increasing trend. The fol-
lowing equations support the above mechanism:

 

O e O

2O e O

+
+

- -

- -



 2  
(20)

In the presence of the reducing gases like hydrogen, methane, etc., the chemi-
sorbed oxygen reacts with them at the material grain boundaries and at the pore 
region with large surface-to-volume ratio. At higher temperature of sensing, the 
lattice oxygen can also migrate toward the surface and react with the reducing 
gases. Eventually, the bonded electron is released, and the resistance/resistivity 
decreases.

 
CH O ads CO H O e4 2+ ( ) ® + +- -4 2 22  (21)

 
H O ads H O e22 + ( ) ® +- -

 (22)

When the flow of the reducing gases is discontinued, the material again recovers 
its initial resistivity value by the oxygen chemisorptions’ mechanism. However, 
this process is not so fast. When catalytic metal like palladium is used, the sensing 
process is the combined effect of two mechanisms. Since oxygen is an integral 
part of the ambient atmosphere, the catalytic metal surface will have weakly 
bonded oxygen, which is first removed by the reducing gas. The second step is 
dissociative adsorption of reducing gas into the metal matrix. For hydrogen, 
atomic hydrogen goes into the holes; for methane, both H and CH3 radicals are 
produced upon dissociation. Hydrogen diffuses in and fills the holes in the metal 
lattice. These diffused hydrogen atoms form a dipole layer at the metal oxide 
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junction, which reduces the work function of the metal. The lowering of the metal 
work function lowers the barrier height of the metal/oxide junction resulting in an 
increase in the current flowing through the device at a fixed biased potential. 
However, CH3 radical is bigger in dimension compared to hydrogen, and so its 
diffusion is not easy.

 Sensor Parameters

The response is defined as the ratio of the change in resistance in the presence of test 
gas mixed with air/nitrogen (Ra,n−Rg) to the initial resistance in air/nitrogen (Ra, n) at 
the constant voltage and is expressed as
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where Ra,n is the resistance in air/nitrogen and Rg is the resistance in the presence of 
test gas mixed with air/nitrogen. If current is monitored instead of resistance, the 
“R” in the above formula is replaced by current, “I.” When resistance increases in 
the presence of test gas, the response is modified as
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The response time of the sensor is calculated as the time taken by the sensor signal 
to reach 90 % of its saturation value upon exposure to test gas mixed with air/
nitrogen gas, and the recovery time is calculated as the time corresponding to the 
decrease of the sensor signal by 90 % of its saturation value after the test gas sup-
ply is cut off.

 Sensor Performance of Different Porous Materials

In this subsection, the sensor performance of the electrochemically grown porous 
oxide and porous silicon thin films is presented. A high change in resistance (3–9 
orders of magnitude) was obtained for titania nanotube array-based sensors [119]. 
The normalized change in electrical conductance is shown in Fig. 22. The measure-
ments were performed with 1,000 ppm hydrogen in nitrogen as carrier gas. As it 
appears from the figure, the conductance at lower temperature (180 °C) is minimum, 
and it maximizes at around 400 °C. The pore size has considerable influence on the 
sensitivity toward hydrogen. For smaller tube diameter, the conductance variation is 
maximum (Fig. 23) due to the increase in the surface area. As reported earlier [119], 
an increase in surface area by a factor of 2 increases the sensitivity by a factor of 200. 
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Further, the nanotube wall thickness and tube length are important factors for the 
increase of sensitivity. When the wall thickness goes down the space charge layer 
created by hydrogen chemisorptions, it extends throughout the wall and reduces the 
overall resistance of the device leading to appreciably high conductance. For 1 μm 
tube length, the change in electrical resistance is almost 9 orders of magnitude in the 
presence of 1,000 ppm hydrogen, while for 20 μm tubes, a change of only 3 orders 
of magnitude in response is obtained with 2,000 ppm hydrogen [120].

Similar studies with electrochemically etched titania revealed high performance 
for both vertical and planar device geometries. The response time of 5 s was obtained 
for the vertical sensor configuration of Pd/(porous TiO2)/Ti–Au with UV-etched 
titania thin films in 1,000 ppm hydrogen at 300 °C [96]. Although there was not 
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much difference in terms of response for planar and vertical devices, the stability of 
the planar geometry was poor in hydrogen (Fig. 24). This is due to the loss of elec-
trons via recombination or trapping while traversing the least resistance path 
between the electrodes. For vertical configuration, the loss is reduced due to exis-
tence of a very thin tunneling oxide layer.

Porous silicon (PS) is a potential material for gas sensing applications mainly 
due to its large surface-to-volume ratio and strong adsorption of gases [121]. 
Khoshnevis et al. studied the effect of the anodization parameters during PS formation 
on the sensor response for oxygen [122]. For Pd-modified porous silicon-based 
hydrogen sensors, it was reported that the distribution of Pd over the porous silicon 
controls the sensor characteristics [123, 68, 124]. However, the distribution of Pd is 
related to the concentration of the binding sites, i.e., the porosity. The influence of 
the etching time, the anodization of current density, the effect of the catalytic layer 
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thickness, and the stability of a Pd-doped hydrogen sensor were studied by Sekhar 
et al. [125]. Further, the effect of different parameters on the nucleation and growth 
of Pd particles on PS along with the gas response in hydrogen at room temperature 
was reported by Rahimi and coworkers [126].

The porous silicon surface was modified at room temperature using dilute PdCl2 
solution [127, 98]. The samples with different porosities were dipped into 10 % HF 
solution for 10 s to remove the native oxide layer from the PS surface. Then the samples 
were immediately soaked in the weakly acidic PdCl2 solution (0.01 M) for 5 s, rinsed in 
DI water, dried, and annealed in air at 110 °C for 10 min. The decomposition of PdCl2 
produces Pd2+ which is subsequently reduced to Pd metal, and two holes (h+) are 
released. The released h+ oxidizes the PS surface to form a thin SiO2 layer [128, 129].

A simple MIS vertical device configuration using nanoporous silicon was 
employed for gas sensor study (Fig. 25).

The gas sensor response is calculated as the ratio of the change in current in the 
presence of hydrogen mixed with nitrogen (In−Ig) to the initial current in nitrogen 
(In), at a constant voltage.

 
S I I In g n

V
= -( )éë ùû/ ,

 (25)

where In, Ig are currents in pure nitrogen and in hydrogen mixed with nitrogen, 
respectively. The current magnitude depends on the type of porous silicon used.  
If p-type PS is used, the device current decreases in the presence of hydrogen 
(Ig < In), whereas for n-type, the current increases (Ig > In).

Figure 26 demonstrates that the response of palladium-modified PS increases 
with increasing porosity at room temperature for 1 % hydrogen. However, there is 
an optimum porosity of 55 % beyond which the response starts decreasing. The 
response and recovery time (Fig. 27) follow the similar trend. The effect of the 
variation of porosity on the sensor response is basically due to the defect states pres-
ent. The increasing density of the defect states with increasing porosity provides 

Fig. 25 Schematic of the 
PS-based sensor structure 
for hydrogen sensing 
(Reprinted with permission 
from Kanungo et al. [127]. 
Copyright: Elsevier)
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more nucleation sites for Pd dispersion. Hence, there is an enhancement of Pd den-
sity over the PS surface with increasing porosity.

However, there is an optimum loading of the Pd metal in PS [28] depending upon 
the porosity, and beyond the optimum (above 55 % porosity in this case), the 
increase in metal deposition may reduce the effective surface area of the dispersed 
Pd [28]. In the present investigation, the gas response behavior of PS was found to 
decrease with porosity higher than 55 %. Also a relative decrease in the recovery 
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time was observed after the optimum loading of Pd in PS with >55 % porosity. 
However, the measured value of the recovery time is appreciably large due to slow 
desorption kinetics (Fig. 27). In pure nitrogen and at room temperature, the desorption 
of hydrogen took long time after the hydrogen supply was cut off [127, 130, 131].

Normally, the sensors should operate in air for practical applications, and the 
desorption is much faster in air. But in this study, nitrogen was deliberately used to 
avoid the cross sensitivity due to oxygen [125]. The PS-based MIS device with a 
thin over layer of zinc oxide (ZnO) demonstrated an improved gas response behav-
ior at relatively higher temperature (150 °C) [127, 131]. However, the temperature 
of sensing was reduced well (~55 °C), and the higher response for hydrogen was 
obtained after the Pd modifications of both ZnO and PS surfaces.

The potential of palladium sensitization of porous matrices is also evident from 
the studies performed with electrochemically grown nanoporous ZnO thin film for 
methane sensing. In two separate studies, reported by Basu et al. [132, 133], it was 
shown that the sensor parameters like the response, response time, and recovery 
time improved in the presence of dispersed sensitizers like palladium (Table 3). 
As reported by Basu et al. [133], the surface modification of nano-ZnO film by 
using an aqueous solution of PdCl2 reduced the optimum operating temperature 
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Table 3 Response, response time, and recovery time without and with Pd sensitization

Device: (Pd-Ag)-(Porous ZnO)-(Zn): MIM

Without Pd sensitizer With Pd sensitizer
Response 3.85 (at 220 °C) 32 (at 100 °C)
Response time 5 s (at 220 °C) 2.7 s (at 100 °C)
Recovery time 16 s (at 220 °C) 16 s (at 100 °C)
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from 220 °C to 70 °C and to 100 °C for planar resistive and for vertical MIM 
(metal–insulator–metal) configurations, respectively. The response of 48, the 
response time of 4.5 s, and the recovery time of 22.7 s were obtained for the planar 
structures, while the MIM structures showed the response of the order of 32, the 
response time of 2.7 s, and the recovery time of 16 s. The sensor studies were per-
formed in the presence of 1 % methane in nitrogen and in synthetic air separately. 
The performance of the surface-modified device was somewhat reduced in synthetic 
air for both the sensor configurations at the respective optimum operating temperatures 
(Fig. 28). In the case of synthetic air as the carrier gas, oxygen is also chemisorbed 
on the Pd-catalyzed ZnO surface, and there is a competitive equilibrium between 
oxygen and methane adsorptions on ZnO; it may well be depicted that the adsorp-
tion sites for methane is reduced and also the chemisorbed oxygen traps hydrogen 
produced by the dissociation of methane. As a result, the current through the elec-
trodes is reduced, and so a lower response to methane is obtained in synthetic air.

Fabrication of nanoporous SnO2 is also possible by employing anodization tech-
nique. Reports are available on the use of porous tin oxides with honeycomb-like 
channels for lithium batteries [134]. However, very few reports are available on the 
use of nanoporous SnO2 fabricated by electrochemical deposition technique for 
chemical sensor applications. Feng et al. fabricated mesoporous SnO2 nanomateri-
als with the central pore sizes of 4.1 nm, 6.1 nm, and 8.0 nm by a novel carbon- 
assisted synthesis method (CAS) [59]. The pore size was regulated by adjusting the 
concentration of glucose in the precursor solution. The gas sensing properties of the 
mesoporous SnO2 nanomaterials are reported, and the results reveal that this sensor 
exhibits short response/recovery time to ethanol gas and has ultralow detection lim-
its of 50 ppb. The proper mesoporous nanostructure network (MNN) is responsible 
for the distinct response–recovery behavior and the mechanism to achieve the 
ultralow detection limit. However, more details on the numerical values of the sen-
sor parameters are not available. Other than CAS method, microwave-assisted 
hydrothermal method is also reported to grow nanostructured SnO2 to sense alcohol 
vapors at 240 °C [135].

 Response of Electrochemically Grown Oxides to Volatile  
Organic Compounds

Electrochemically grown oxides have also been used to sense volatile organic com-
pounds (VOCs). A two-step method was employed by Wu et al. [136] to grow TiO2 
nanotubes of ~400 nm in length and pore diameter of ~100 nm. These as-anodized 
TiO2 nanotubes showed good sensitivity to formaldehyde at room temperature with 
or without UV illumination. The sensors responded linearly to 10–50 ppm concen-
tration of formaldehyde under UV illumination. SnO2 nanotubes synthesized using 
carbon nanotube template showed improved sensitivity to trace concentrations of 
methanol vapor compared to the compact tin dioxide thin films at quite high tem-
perature [137]. This is due to the high active surface provided by porous SnO2 sur-
face (Fig. 29).
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Selectivity and Stability of the Chemical Sensors Fabricated 
from Electrochemically Grown Nanosized Oxide Materials

Oxide materials are sensitive to both reducing and oxidizing gases. Hence, the cross 
sensitivity toward other gases and chemicals is an important concern for sensor 
researchers. Since, the cross sensitivity cannot be eliminated, a suitable way out is 
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necessary to reduce the effect of cross sensitivity. Temperature is an important 
parameter. Basu et al. reported the temperature effect on the cross sensitivity of 
methane mixed with hydrogen for nanocrystalline and porous ZnO sensors [133]. 
The response of 1 % H2 and 1 % CH4 in nitrogen with the variation of temperature 
is shown in Fig. 30 for both planar and MIM sensor structures. At 50 °C hydrogen 
shows maximum response (more than 50) for both the structures, and methane 
shows >10. However, the selectivity for methane is better for MIM structure because 
at 100 °C, CH4 shows maximum response (>30), and H2 has almost no response. 
Actually, methane is a heavy molecule, and it needs higher activation energy for 
dissociation compared to that of hydrogen. Temperature selective sensing was also 
performed using different catalytic metal contacts (Fig. 31). Rh and Pd-Ag(26 %) 
contacts showed selective hydrogen sensing at room temperature, whereas methane 
was sensitive at 220 °C [132].

Porous titania-based chemical sensors also show cross-sensitivity effects.  
Wu et al. [136] examined the sensitivity of TiO2 nanotube to ammonia, alcohols, 
and formaldehyde under UV illumination. The selectivity toward low concentration 
of formaldehyde was confirmed from the response data, which showed maximum 
response in the presence of relatively higher concentrations of ammonia, alcohol, 
and methanol vapors (Fig. 32). This was attributed to the enhanced diffusion of 
formaldehyde into the nanotubes relative to other analytes causing a large change in 
conductivity.

The stability of oxide-based sensors of different configurations needs to be veri-
fied in order to make the device reliable and compatible with the actuating electron-
ics. If the resistance/current keeps on changing with time, it is difficult to use the 
device with standard electronic circuit. So, the stability of the sensor device needs 
to be checked in the presence of sensing gases mixed with air/nitrogen. We have 
shown in Fig. 24 that a porous morphology was developed by electrochemical etch-
ing of the thermally grown titania and it showed poor long-term stability specially 
for the planar device compared to the vertical device geometry [96]. This poor sta-
bility is often attributed to the defects present in the oxide matrix. Since titania was 
prepared thermally at high temperature, it is likely that a large number of defects 
were generated mainly due to migration of lattice oxygen from the bulk to the sur-
face that is responsible for charge trapping/annihilation. However, the distance 
between the two electrodes of the sensor device plays a significant role in reducing 
the trapping effect. Since the vertical configuration provides the shortest path of 
charge transfer, it has relatively higher stability compared to the planar geometry 
[96]. But the good quality nanostructures developed electrochemically also show 
very high degree of stability for the planar devices [97]. Figure 33a shows that the 
electrochemically developed porous ZnO sensors in both planar and MIM configu-
rations show long stability for sensing 1 % methane mixed with nitrogen [133]. The 
stability of the porous silicon MIS sensor was studied in 1 % hydrogen in nitrogen 
at 27 °C for 24 h in a discrete manner with 8 h duration per day at the biasing volt-
age corresponding to the maximum response and is shown in Fig. 33b. The stability 
is found to be quite good with time [138]. As shown in the figure, the Pd-modified 
PS sensor shows more stable sensing compared to the unmodified PS sensor over a 
long time. The deterioration of the unmodified PS sensor is due to loss of the charge 

38 Development of Nanostructures by Electrochemical Method…



1240

6.0

5.5

5.0

4.5

4.0
R

es
p

o
n

se
 (
DI

 / 
I)

a

b

3.5

3.0

0 30 60 90

Temperature (°C)

120

X1

X2
1%H2

1%CH4
X1

X2

150 180 210 240 270 300

5.0

4.5

4.0

R
es

p
o

n
se

 (
DI

 / 
I) 3.5

3.0

2.5

2.0

1.5

1.0

0.5
30 60 90

Temperature (°C)
120

X3

X4
1%H2

1%CH4

X3

X4

150 180 210 240 270 300

Fig. 31 Temperature 
selective response of 
electrochemically grown 
nanoporous ZnO MIM sensor 
structures for 1 % H2 and 1 % 
CH4 in pure N2 atmosphere 
with different catalytic metals 
(a) Rh/ZnO/Zn [X1 and X2] 
(b) Pd-Ag(26 %)/ZnO/Zn 
[X3 and X4] (Reprinted with 
permission from Basu et al. 
[132]. Copyright: Elsevier)

carriers because of recombination at the defect states. Pd surface modification helps 
in eliminating the defect states to large extent, and so the stability is visibly 
improved. Similar stability study was performed with titania-based metal–active 
insulator–metal (MAIM) sensors, which showed negligible baseline fluctuations 
over a period of 7 days [97].

The titania nanoparticle sensors containing either anatase or rutile phase or both 
show appreciable sensitivity to hydrogen, and their response behavior is highly 
reproducible. Also, the sensitivity improves with temperature. Physical parameters 
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like nanotube diameter and tube length affect the sensor performance. The sensors 
based on ZnO, SnO2, and porous silicon also respond well to hydrogen and meth-
ane. Although oxide-based sensors have high sensitivity toward hydrogen, the 
cross sensitivity toward oxygen in air (used as the carrier gas) reduces the overall 
response. The effect of oxygen can be eliminated by using inert carrier gases like 
argon and nitrogen. But for the field applications, air is imminent, and so the stud-
ies are to be carried out in air ambient. The cross sensitivity toward other oxidizing 
or reducing gases can also be diminished by controlling the operating temperature. 
For heavier molecules like methane, the reactions are feasible at higher temperatures, 
whereas for lighter gases like hydrogen, low temperature and even room tempera-
ture are sufficient to get appreciable response from these nanocrystalline- and 

Fig. 32 Response of TiO2 
nanotube sensor toward gas 
and vapor at ~19 °C and 
RH ~ 33 % with UV 
illumination (Reprinted with 
permission from Guoqiang 
et al. [136]. Copyright: 
Elsevier)

Fig. 33 Stability study of (a) porous zinc oxide and (b) porous silicon sensors (Reprinted with 
permission from Basu et al. [133] and Kanungo et al. [138]. Copyright: Elsevier)
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nanoporous oxide-based devices. The presence of moisture in ambient atmosphere 
can deteriorate the sensor performance. Therefore, calibration of the device to relative 
humidity is essential for all oxide-based sensors.

Nanoporous oxide sensors grown electrochemically have versatile applications in 
harsh industrial environments and over a long range of temperatures. The sensors can 
also be used in the biomedical area to detect disorders such as lactose intolerance. 
With respect to sensor design, the development of both theoretical model and experi-
mental results are vital. CMOS (complementary metal–oxide–semiconductor) or 
CMOS-MEMS (complementary metal–oxide–semiconductor microelectromechani-
cal system) has been presently employed in sensor technology for miniaturization of 
the devices, low power consumption, higher sensitivity, faster sensor response, batch 
fabrication at industrial standards, and low cost. Form these considerations, electro-
chemically fabricated thin film oxides and porous silicon can play an important role.

 Summary and Conclusion

In this chapter, theory of nanoelectrochemistry has been discussed for the develop-
ment of nanostructures by electrochemical methods. Mainly the nano-oxides and 
nanoporous silicon have been focused because they are promising materials for 
chemical sensor application. The growth methodologies along with the chemical 
reactions have been discussed in detail. The optimum conditions to grow thin films 
on insulating and conducting substrates by varying the electrochemical parameters 
have been highlighted. The effect of UV illumination on thin film growth and etching 
has been discussed in details with special references to ZnO, TiO2, and nanoporous 
silicon. The structural, electrical, and optical characterizations of the electrochemi-
cally deposited nanostructured thin films have been elaborated with the specific 
illustrations. The fabrication of sensor structures using the electrochemically depos-
ited nanomaterials covers a major part of the chapter. A comparative study of the 
lateral and the vertical device geometry for gas sensing has been presented with 
special reference to ZnO and TiO2 nanostructures developed by electrochemical 
method. The performance of the sensors made of electrochemically deposited nano-
oxides, e.g., TiO2, ZnO, SnO2, and nanoporous silicon, has been discussed in great 
details with the reported results from the literature. Further studies on chemical 
modification of the surfaces of nanocrystalline materials are necessary to improve 
the magnitude of sensor parameters like response, response time, and recovery time. 
The selectivity and the stability of the sensor structures based on electrochemically 
developed nanocrystalline and nanoporous materials have been discussed for reli-
able sensor devices. Although some efforts to quantify and establish correlations 
between the nanostructure of materials and sensor performance are available in the 
published literature, there still remains the scope for better understanding of the 
fundamental mechanisms important for the surface-modified nanostructured and 
nanoporous materials. It is well known that defective and porous oxide matrices 
have high chemical sensor response owing to the presence of large number of active 
sites for the solid–gas/vapor interactions. But the carrier loss by recombination or 
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trapping is also important for defecting matrices. The surface sensitizers have 
indeed improved the sensor performance as reported in the published literature. 
Therefore, surface-sensitive characterizations can locate the state and the effect of 
sensitization of the oxide matrix. Using high-resolution TEM coupled with XPS 
and Raman spectroscopy, it may be possible to capture lattice defects and their pas-
sivation by surface sensitization.

In conclusion, the development of nanostructures by electrochemical method is 
indeed very convenient from the operational point of view because the method 
avoids the harsh conditions of high temperature and corrosive and polluting atmo-
sphere; the growth process is largely hassles free, economic, and highly reproduc-
ible. The porous structures can be suitably grown by electrochemical method by 
illuminating the surface with the light of appropriate wavelength during anodiza-
tion. The quality of the nano-thin films is of high standard for applications in chemi-
cal sensors and also in other technology. The electrochemical deposition method is 
specially suitable for the development of miniaturized chemical sensors with high 
efficiency and long-term performance.
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Abstract
Reducing cost and improving conversion efficiency are the main tasks in order to 
make photovoltaic energy competitive and able to substitute traditional fossil 
energies.

Nanotechnology seems to be the way by which photovoltaics can be devel-
oped, whether in inorganic or organic solar cells. Wide-bandgap nanostructured 
materials (nanomaterials) prepared from II–VI and III–V elements are attracting 
an increased attention for their potential applications in emerging energy. They 
can be prepared in different geometric shapes, including nanowires (NWs), nano-
belts, nanosprings, nanocombs, and nanopagodas. Variations in the atom arrange-
ments in order to minimize the electrostatic energy originated from the ionic 
charge on the polar surface are responsible for a wide range of nanostructures.

This book chapter will focus on contribution of nanomaterials in solar cell 
technology advancement.
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 Introduction

Solar cells have known a big expansion these last years due to the voluntary move 
to cleaner energies like photovoltaics. Table 1 summarizes the chronological evolu-
tion of photovoltaic cells with their main characteristics.

After solid-state physics has shown its limits by reaching the maximum possible 
conversion efficiency for silicon, CdTe, and CuInSe2, the highest conversion effi-
ciency was obtained for triple-junction compound InGaP/GaAs/InGaAs solar cell 
with 37.9 % [6]. Chemistry seems to be another way by which an increase of the 
solar cell conversion efficiency is possible.

Nanomaterials made by chemical ways present high opportunity in efficiency 
enhancement by increasing light trapping and photocarrier collection without addi-
tional cost in solar cell fabrication.

The physical and chemical properties change from the bulk material to the nano-
material. As an example, the melting point is lowest for the nanomaterial compared 
to its bulk one. This can be due to the high surface-to-volume ratio of atoms in a 
nanoparticle [7].

The main nanomaterial physical property is the large surface-to-volume ratio [6] 
due to different forms created; nanowires [8, 9], nanopillars [10, 11], nanocones 
[12], quantum dots [13].

It has been shown that light trapping is due to the increase of the photon path inside 
nanostructures [14–16] which enhance the electron–hole pair creation probability.

Quantum dots (QDs) have the particularity to have a size-dependent bandgap 
[13, 17, 18] so it can be adjusted to fit the maximum solar spectrum.

 Classical Solar Cells

Before introducing the added value of nanomaterials in solar cells, a brief comeback 
should be presented to understand the work mechanism of solar cells.

Table 1 The four generations of solar cells and their characteristics

Solar cells evolution Characteristics

First generation: bulk silicon High cost with high efficiency [1]

Second generation: thin film solar cells Amorphous or polycrystalline silicon,  
CIGS and CdTe [2, 3]

Third generation Organic solar cells with nanocrystalline films [4]

Fourth generation Combines the low cost/flexibility of polymer thin 
films with inorganic nanostructures [5]
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A solar cell is an electronic device, a P/N junction in its basic form, which has 
the ability to convert sunlight into electricity. This phenomenon was discovered by 
Edmond Becquerel in 1839 and is called the photovoltaic effect [19].

Not all materials can be solar cell components. Because the main feature should 
be the capacity to convert the visible spectrum of the sun into electricity,this can 
occur only by the creation of electron-hole pairs when the material absorbs photons 
corresponding to an energy greater or equal to its energy gap (Fig. 1).

The air mass (AM) is the level at which the atmosphere reduces the light reaching 
the Earth’s surface [21].

AM0: The spectrum outside the atmosphere.
AM1.5: The used standard solar spectrum for terrestrial solar cells, it corre-

sponds to a solar zenith angle of 48.2°.
From the figure, the blackbody radiation increases from 1,000 to 2,000 K in 

200 K steps (small values overlapping with solar spectra are not shown). The black-
body maximum values are given by Wien’s displacement law, also shown (black). 
The AM1.5 solar spectrum (black) shows strong absorption bands, whereas the 
AM0 spectrum (black) closely matches a 5,800 K blackbody at Sun-Earth distance 
(gray) [20].

One can see clearly that the blackbody maximum shifts toward higher wave-
lengths with its temperature according to Wien’s displacement law. This law implies 
that a photovoltaic (PV) cell with a higher-energy bandgap corresponds to higher 
radiator temperature. The bandgap for silicon solar cells is hυ = 1.12 eV (which 
responds up to 1.11 μm) and matches to the maximum of a blackbody at 2,610 K 
[20, 22]. The most important part of the solar spectrum ranges in the visible light 
from 0.38 to 0.76 μm. It reaches its maximum at the wavelength of 4 μm [20].
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Fig. 1 Comparison of solar spectra at Sun-Earth distance and blackbody spectra in semi- 
logarithmic scale reprinted with permission from Ref. [20]
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So, the selection criterion of a photovoltaic absorbant is first its energy gap 
around 1 eV. Many materials fit with this bandgap energy. The most widely used is 
silicon, with its different forms: monocrystalline or multicrystalline, gallium arse-
nide GaAs, cadmium telluride CdTe, copper indium diselenide CIS, Cu2ZnSnS4 
(CZTS), and other materials [23–25].

As cited above, a basic solar cell is a P/N junction. A P-type semiconductor has 
holes in excess while an N-type semiconductor has electrons in excess. There is free 
carrier migration from one side to the other until reaching equilibrium.

A built-in electric voltage is then created and, in consequence, electron–hole 
pairs. When the solar cell is connected to an electrical circuit, a current is formed 
across the PV cell [21] (Fig. 2).

The conversion efficiency (η) and the fill factor (FF) are calculated according to 
the equations listed below [26]:
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Jsc: The short-circuit current density (mAcm−2)
Voc: The open-circuit voltage (V)
Pin : The incident light power
Jmax: The current density at the maximum power output in the J-V curves
Vmax: The voltage at the maximum power output in the J-V curves

Each parameter has its specific influence on solar cell performance.
The fill factor, abbreviated FF, is a parameter which characterizes the nonlinear 

electrical behavior of the solar cell. Fill factor is defined as the ratio of the maximum 
power from the solar cell to the product of Open Circuit Voltage Voc and Short- Circuit 
Current Isc. The typical fill factor for commercial solar cells is usually 0.70 [27].

Classical solar cells require thicker materials to perform good optical absorption 
but loose carrier collection efficiency due to the higher minority carrier length [28].
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Fig. 2 Basic solar cell 
structure and effect of light 
(Reprinted with permission 
from Ref. [21])
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 Different Forms of Nanomaterials

 – Nanowires Different architectures have been proposed by researches to improve 
the light absorption and carrier collection [10, 29, 30]

As an example, silicon nanowires enhanced the incident solar radiation path 
length up to a factor of 73 [31].
• It has been found that Ag nanowire mesh electrodes show low transparency 

and low sheet resistance. They match very well with flexible substrates in 
organic solar cells. An increase of 19 % in the photocurrent has been 
reported [32].

• The nanowires of silver can be deposited by a very low-cost method: simple 
brush painting, as performed by J.-W. Lim et al. with a conversion efficiency 
of 3.231 % [33].

• There are many deposition techniques for nanowire or nanocone arrays. One 
of the simplest is colloidal lithography, which is time effective, reproductive, 
and suitable for large-scale deposition [34]. Another one is the vapor-liquid–
solid (VLS) method usually used for a core different from an outer shell 
(core-shell nanowires) [35].
The figure below illustrates the scanning electron microscopy (SEM) images 

for ZnO nanowires and nanorods [36] (Fig. 3).
 – Nanotubes

• Carbon nanotube conductive layers were deposited on n-type silicon to form 
a Schottky junction photovoltaic cell with a conversion efficiency of 1.9 % 
under AM1.5 illumination. This efficiency has been increased to 8.6 % just by 
chemical charge transfer doping with bis (trifluoramethane sulfanyl) amide 
[(CF3SO2)2NH] (TFSA) [37].

The main advantage of this solar cell type is that the graphene’s work func-
tion can be varied to optimize the solar cell efficiency compared to the basic 
Schottky solar cell with indium tin oxide ITO over silicon (ITO/Si).

Fig. 3 Scanning electron micrograph from the different temperature zone showing (a) nanowires 
and (b) star nanorods (Reprinted with permission from Ref. [36])
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• Titanium dioxide nanotubes have been employed as transparent photoanodes 
for dye-sensitized solar cells. The nanotube shape for TiO2 permits to have 
unequal electronic properties such as low carrier recombination, high electron 
mobility, and high surface-to-volume ratio [38]. It increases the electron 
transport by using direct pathways for the charge transfer [39, 40].

 – Nanocones:
According to Fig. 4, one can remark that the absorption in a nanocone is 

greater than the absorption in a nanowire, which is greater in turn than a thin 
film. It is obvious that nanomaterials by their specific architectures contribute 
sensibly in conversion efficency increase.

Silicon nanowires have shown a short collection length for excited carriers, 
which enhances considerably the carrier collection efficiency [14].

For classical hydrogenated amorphous silicon [a-Si:H] solar cells, there is 
an intrinsic problem which lowers the conversion efficiency. It is due to the 
high trap amounts that reduce the carrier lifetime.

An alternative is proposed by using a nanocone array structure as shown in Fig. 5.
With carrier collection enhancement, an efficiency increase has been observed 

from 1.43 % to 1.77 % and so an enhancement of 24 % [41].
 – Nanopillars: Nanopillar photovoltaics has many features that confer to it the 

capacity to replace classical photovoltaics due to its low cost. They can be listed 
below:
 1. Growth of cristallized materials without using expensive techniques
 2. Increase of carrier collection efficiency
 3. Reduction of optical losses

The fabrication process of nanopillars is well illustrated in Fig. 5. There are 
four main steps: electropolishing, first anodization, wet etching, and finally the 
second anodization step [42] (Fig. 6).

Fig. 4 Absorption of 
ITO/a-Si:H samples with 
a-Si:H thin film, nanowire 
arrays, and nanocone 
arrays as top layer over 
different angles of 
incidence at at wavelength 
λ = 488 nm (Reprinted with 
permission from Ref. [28] 
(copyright 2011, Elsevier) 
and Ref. [12] (copyright 
2011, American Chemical 
Society))
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 – Nanobelts
• Transparent graphene, i.e., carbon nanotube (CNT), layers have been used to 

cover CdSe nanobelts along certain positions. Really interesting solar cells 
based on Schottky junction have been made with this method by using dif-
ferent configurations and several connections from single or multiple assem-
bled nanobelts [44].
The above solar cell has been fabricated by following three steps: the first one 

is the CdSe nanobelt deposition, then the graphene transfer, and finally the Ag 
paste contact formation.

The particularity of this solar cell is its low-cost manufacturing method based 
essentially on the chemical vapor deposition (CVD) process for both CdSe 
 nanobelts and graphene films in addition to being a flexible thin-film photovol-
taic cell [45].

A conversion efficiency of 0.1 % has been reached with an open-circuit volt-
age of 0.5 V and a short-circuit current density Jsc of 0.94 mA/cm2 [44]. The cited 
photovoltaic structure is shown in Fig. 7:

One can remark that the small value of the conversion efficiency (0.1 %) is 
affected essentially by the weak value of the fill factor (FF) (less than 23.7 %) 
[44]. An improvement of this parameter is required to increase sensibly the 
conversion efficiency and to assess the position of this solar cell type as an alter-
native to the classical ones.

 – Nanopagodas
Aligned ZnO nanopagoda arrays have been succesfully carried out by Chang 
Yu-Cheng et al. [46]. They have very interesting properties in field emission 
devices and will permit to manufacture promising devices, especially dye- 
sensitized solar cells.

 – Nanocombs
The nanocomb-shaped nanomaterials are represented in Fig. 8.

Fig. 5 The schematic 
structure for a nanocone 
solar cell. Enlarged part of 
the a-SiH-nanocone 
structure describes the 
photogeneration and 
transport mechanism 
(Reprinted with permission 
from Ref. [41])
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Fig. 6 R2R Al texturing system: (a) optical image of the R2R system used for Al texturization. 
The important components of the system are highlighted as (1) Al feeding roll, (2) electrical con-
tact to the Al foil, (3) reaction chamber, (4) rinse bath, (5) capstan roll, and (6) rewinding roll. (b) 
Zoomed-in optical image of the reaction chamber, and (c) The rinse bath, respectively (d) 
Schematic diagrams of the process, and (e) The resulting surface structure after (i) electropolish-
ing, (ii) first anodization, (iii) AAO wet etching and (iv) second anodization steps used for the 
fabrication of various surface textures (Reprinted with permission from Ref. [42] (copyright 2011, 
Elsevier) and Ref. [43] (copyright 2011, American Chemical Society))

 – Nanorods
• Conjugated polymer donor and a ZnO acceptor have been used for elabora-

tion of hybrid polymer solar cells. For this purpose, ZnO nanorods were 
grown on an indium tin oxide–coated glass from a mixture containing Zn+2 by 
using a hydrothermal method [47].
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The ZnO nanorods which contain the filtered solution poly [1-methoxy-4-(2-
ethylhexyloxy- 2,5-phenylenevinylene)] form the active layer for the hybrid bulk 
heterojunction solar cells. An efficiency of only 0.045 % was obtained, which 
reveals that work should be done to reduce the high interior resistance of the PV 
cell [47].

Figure 9 illustrates the scanning electron microscopy images for different 
Zn+2 concentrations: 0.0125, 0.025, 0.05, and 0.1 mole. The ZnO nanorod diam-
eter becomes bigger with increasing Zn+2 concentration [47].

It has been found that the electron mobility is 10−1 to 10−3 cm2 V−1 s−1 for nano 
zinc oxide and 100 cm2 V−1 s−1 for bulk zinc oxide. There is a considerable  difference 
which explains the higher quality of nano ZnO compared to bulk ZnO [47].

The 0.3 eV energy level difference of zinc oxide with polymer donors leads to 
the efficient separation of excitons into free carriers [48, 49].

Fig. 7 Graphene – CdSe 
nanobelt schottky junction 
solar cells: illustration of a 
single layer graphene 
covered on the top surface 
of a CdSe nanobelt. The 
overlapped area forms the 
junction that is responsible 
for charge separation 
(Reprinted with permission 
from Ref. [44])

Fig. 8 Scanning electron 
micrograph of comb-like 
structures (Reprinted with 
permission from Ref. [36])
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 Nanomaterials in Inorganic Solar Cells

 – Silicon: Increase in silicon solar cell performance can be obtained by improving 
silver screen-printed contact. This can be done by introducing silver nanoparti-
cles in the paste to increase contact compactness and consequently the fill factor 
and the conversion efficiency η.

Silicon can be also used as nanowires in solar cells. Their diameters vary from 
200 nm to 1.5 μm. It has been found that the minority carrier diffusion length is 
around 2 μm, the minimum carrier lifetime is 15 ns, while the maximum surface 
recombination velocity is approximately 1,350 cm s−1 [50].

These values are really different for silicon bulk material: the diffusion length 
is around 200 μm, the minimum carrier lifetime 30 μs, and finally the surface 
recombination velocity 8,600 cm/s [51].

The effect of nanomaterials in improving solar cell efficiency seems to be 
obvious when the previous data are compared. The recombination velocity is 
reduced with the nanomaterial structure, which means that photon collection is 
increased (Fig. 10).

 – CuInSe2 Copper indium diselenide (CIS) thin layers represent another type of 
absorbant widely used in photovoltaics due to the fact that their energy gap 
matches perfectly the maximum solar spectra [53].

Fig. 9 SEM top-view image of ZnO nanorods under different Zn+2 concentrations: (a) 0.0125;  
(b) 0.025; (c) 0.05; and (d) 0.1 M (Reprinted with permission from Ref. [47])
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This type of material has the advantage compared to silicon of quantity of 
matter: the CIS is deposited as thin films with approximately 1 μm thickness 
while for silicon thick substrates of around 300 μm are required.

A second CIS advantage comes from the fact that to have type n or p semicon-
ductor, there is no need of doping; just a small deviation of stoichiometry is 
necessary.

The classical CIS has generally the following structure: Mo/CuInSe2/CdS/
ZnO solar cell

Mo is molybdenum and represents the rear contact.
CuInSe2 is the CIS pn junction CIS(p)/CIS(n).
CdS is the buffer layer
ZnO is the window layer

Many techniques have been used to deposit CIS layers: coevaporation and sput-
tering [54–56].

A conversion efficiency of 20.1 % has been reported for CIS films deposited 
by coevaporation [55].

The CIS morphology can be tuned just by changing the amount of strong and 
weak surfactants which passivate the surface. For example CIS nanowires can be 
obtained by using weakly binding dioctylphosphine oxide (DOPO), an impurity 
in trioctylphosphine oxide (TOPO) [57].

Band gap for spherical CIS nanoparticles can be adjusted according to the nanoparticles 
radius. While for CIS nanorods influence directly the energy gap, the diameter of the 
nanorods influence directly [57].

Fig. 10 FESEM 
micrograph of the as 
-prepared silver 
nanoparticles prepared by 
solvothermal process 
(Reprinted with permission 
from Ref. [52])
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For p-type CuIn1−xGaxSe2 (CIGS) layers introduced in solar cells, electron 
 mobilities vary from 0.02 to 0.05 cm2/Vs. These values are less than those for 
n-type CIGS materials, which sweep from 2 to 1,100 cm2/Vs [58].

An efficiency of 15 % for classical CIGS solar cells has been reported [58].
CdTe Cadmium telluride (CdTe) is one of the absorbant PV materials with its 

bandgap of 1.45 eV. It is used also combined to cadmium sulfide (CdS).
The solar cell structure ITO/CdTe/CdS/CNTs acts as front electrode/p-type 

semiconductor/n-type semiconductor/rear contact.
where CNTs: carbon nanotubes
ITO: indium tin oxide
A conversion efficiency from 3.5 % at ortogonal azimuthal angle to 7 % at 45° 

solar incidence [34].
 – CdS

Cadmium sulfide (CdS) enters in the fabrication of the solar cells based on 
fluorine- doped tin oxide (FTO)/Au/TiO2/CdS photoanode and polysulfide elec-
trolyte. Gold nanoparticles have been used as an interfacial layer between FTO 
and TiO2. Conversion efficiency increases from 0.86 % to 1.62 % for the struc-
tures FTO/Au/TiO2/CdS and FTO/TiO2/CdS respectively. So there is an enhance-
ment of 88 % due basically to the Au nanoparticle incorporation [31].

Successive ionic layer adsorption and reaction (SILAR) techniques have been 
used for CdS deposition onto TiO2 layers [59].

 – CdSe
• The combination CdTe/CdSe core/shell structures have the particularity to 

emit in the near-infrared region, which doesn’t exist for CdTe or CdTe 
nanoparticles taken apart [60].

The success of the structure core/shell depends directly on the lowest lat-
tice mismatch between the used materials [61].

Polymeric solar cells with CdTe quantum dots (QDs) with single-wall car-
bon nanotubes (SWNTs) incorporated into a poly(3-octylthiophene)-(P3OT) 
composite have shown good exciton dissociation and carrier transport. An 
open-circuit voltage Voc = 0.75 V and short-circuit current density Jsc=0.16 
μA/cm2 have been obtained [62].

 Nanomaterials in Organic Solar Cells

Organic solar cells have gained attention these last years. Key phenomena in PV cell 
manufacturing were consequently mastered like exciton generation effect, light 
trapping, and one-dimensional material for Schottky barrier arrays [63].

Organic solar cells, also called photoelectrochemical solar cells, are composed 
of photoactive electrode (semiconductor) and counter electrode (metal or semicon-
ductor) immersed, both of them, in an electrolyte which contains redox couples. 
Electron/hole pairs are created when light with energy greater than those of the 
semiconductor is absorbed [64] (Fig. 11).
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 Photoanodes for Dye-Sensitized Solar Cells

 – TiO2
The corresponding solar cell performances are represented in Tables 2 and 3 [65].
TiO2 nanomaterials can also be prepared by following a novel method, by 

combining dealloying process with chemical synthesis. A hierarchical nano-
structure was obtained with a thickness of approximately 10 μm. It has the shape 
of nanoflower arrays and nanorods [66].

The nanoflower is composed of many nanopetals of 100–200 nm in diameter [66].
For titanium dioxide TiO2, a new process called low-temperature solid-state 

dye- sensitized solar cell (LT-SDSC) has been carried out. As its name denotes, 
everything is obtained at low temperatures, which reduces directly the energy 
cost and yields cheaper solar cells [67].

Pt

A
Pt cathode

P3HT:PCBM PV Layer

PEDOT:PSS
FTO

Glass substrate

V

P3HT and PCBM

Dye/tiO2/PEDOT:PSS

Anode buffer layer

FTO

glass

Fig. 11 Schematic diagram of FTO/TiO2/dye/PEDOT:PSS/P3HT:PCBM (PSCs-1) and FTO/
PEDOT:PSS/P3HT:PCBM (PSCs-2) heterojunction solar cells (Reprinted with permission from 
Ref. [65])

Table 2 Photoelectric performances for PSC-1 (Reprinted with permission from Ref. [65])

P3HT:PCBM (2:1) Voc (V) Jsc (mAcm−2) FF η (%)

Barrier 0.82 3.63 0.68 2.04

Atm. annealed 0.83 3.96 0.67 2.19

Vacuum annealed 0.83 4.30 0.67 2.37

Table 3 Photoelectric performances for PSC-2 (Reprinted with permission from Ref. [65])

P3HT:PCBM (2:1) Voc (V) Jsc (mAcm−2) FF η (%)

Barrier 0.80 2.83 0.65 1.48

Atm. annealed 0.78 3.27 0.62 1.58

Vacuum annealed 0.80 3.59 0.66 1.90
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It consists in a mesoporous TiO2 (mp-TiO2) layer realized from a binder-free 
nanoparticle TiO2 paste at room temperature. A conversion efficiency of 1.30 % 
was found for a photovoltaic cell with LT-SDSC 0.9 μm mp-TiO2 and 20 nm 
ALD-TiO2 [67].

 – ITO: According to reference [68], an organic solar cell (OSC) has been prepared 
by using electrochemistry method.

The structure of this organic solar cell is presented in Fig. 12:
The bilayer heterojunction (OSC) had followed a two-step solution-based 

method: firstly electrodepositing polythiophene (PTh) and secondly a spin- 
coating chloroform solution of [6, 6]- phenyl C61-butyric acid methyl ester 
(PCBM) onto the PTh layer [68].

The PTh layer plays the role of a donor material due to its high hole mobility [68].
The conversion efficiency of this structure is around 0.1 % [68].

 – ZnO
Hybrid solar cells based on the structure FTO/TiO2/N719/P3HT:PCBM/Au 

have been fabricated [69] with

FTO: fluorine-doped tin oxide SnO2:F
TiO2: titanium dioxide shaped as nanotube arrays
N719: Ruthenium (II) dye
P3HT: poly (3-hexyl-thiophene)
PCBM: [6, 6]-phynyl-C61-butyric acid methyl ester (PCBM)

TiO2 nanotube arrays have been deposited on FTO by using a liquid-phase 
deposition method with ZnO template while the zinc oxide nanorods have been 
grown according to the method detailed in the references [70–73].

The hydrothermal process for ZnO nanorods can be summarized as follows:
Zn(CH3COO)2 was added to water with stirring; after 10 min, citric acid was 

added to the previous mixture. After that, these solutions were sealed in stainless 
autoclaves at temperatures 120 °C, 160 °C, and 200 °C during 20 h. A white 
product was obtained and dried at 60 °C [71].

A conversion efficiency of 0.656 % was obtained [69].

LiF/Al line profile

PTh surface

PCBM

PTh

ITO

glass

0 1 2 3 4 5
0

1

0

13

nm
µm

µm

Fig. 12 The schematic structure of ITO/PTh/PCBM/LiF/Al organic solar cell (left) and AFM 
image (bottom right) of PTh/PCBM interface with profile line (top right) (Reprinted with permis-
sion from Ref. [68])
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• Anodic titanium oxide (ATO) nanotube–based dye-sensitized solar cells have 
shown a conversion efficiency of 2.9 %, 3.9 % and a fill factor of 0.51, 0.65 with 
and without bottom reductive doping treatment respectively [74].

I(V) characteristic for CdS NW core and Cu2S shell [75] (Figs. 13 and 14).
Table 4 shows the organic solar cell performance [68]:

• Concerning the nanocone silicon solar cells, their performance is reported in 
Table 5 [41].

Thus, there is an efficiency increase when the nanocone architecture is 
adopted. The effect of the nanomaterial shape is confirmed.

• The characteristic of the structure FTO/TiO2/CdS with and without gold nanopar-
ticles is shown in Table 6.

• SWNTs, in other words “the semiconducting single-walled carbon nanotubes”: 
by using this material, Zhang et al. have achieved a solar cell with a conversion 
efficiency of 12.6 % [76].

• For dye-sensitized solar cells (DSSCs) based on TiO2 nanocrystalline electrodes, 
Andréa de Morais et al. have improved their efficiency by introducing acid- 
treated multiwall carbon nanotubes (MWCNT-COOH). A conversion efficiency 
of 3.05 % was obtained for DSSC based on MWCNT-TiO2 and 2.36 % for DSSC 
based on TiO2 [77].
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Fig. 13 I(V) characteristics of the MEH-PR/ZnO nanorod hybrid polymer solar cell illumination 
with a 100 mW/cm2 light density (Reprinted with permission from Ref. [47])
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Fig. 14 I(V) performances of crystalline silicon solar cells based on different silver paste under 
AM1.5 (1,000 W/m2) (Reprinted with permission from Ref. [52])

Table 4 The performances of single-layer (PTh) and bilayer (PTh/PCBM) solar cell devices 
under illumination of AM1.5 (100 mWcm−2) (Reprinted with permission from reference [68])

Active layer Jsc (mAcm−2) Voc (V) FF PCE (%)

PTh 0.02 0.8 0.26 0.004

PTh/PCBM 0.4 0.6 0.42 0.1

Table 5 The detailed photovoltaic properties of a-Si:H nanocone solar cell, PCE power conver-
sion efficiency, Jsc short circuit current density, Rsh shunt resistance, Voc open circuit voltage,  
Rs series resistance (Reprinted with permission from Ref. [41])

Type PCE (%)
Jsc (mA/cm2)/
Rsh(Ω-cm2)

Fill  
factor (%)

Voc (V)/ 
Rs (Ω-cm2)

PI/N 1.43 5.0/624 36.4 0.78/176

P/I(nanocone)/N 1.77 5.7/572 38.5 0.80/160

P/I(nanocone)/N (H2 Plasma) 2.0 5.8/800 41.4 0.83/62

P/I(nanocone)/N (H2 
Plasma + 10 nm)

2.2 5.9/847 44.3 0.83/61

Table 6 Photovoltaic parameters of FTO/TiO2/CdS and FTO/Au/TiO2/CdS cells (Reprinted with 
permission from Ref. [59])

Electrode Voc (V) Isc (mA/cm2) FF η (%)

FTO/Au/TiO2/CdS 0.56 7.11 0.41 1.62

FTO/TiO2/CdS 0.47 5.72 0.38 0.82
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 Conclusion

Solar cell performance is the perpetual challenge for researchers to make photovol-
taic energy widely used in our daily life.

Nanoelectrochemistry seems to be a non-negligible alternative for widely used, 
high-performance, and low-cost solar cell fabrication by employing processes based 
essentially on chemistry.

It is due basically on the fact that these processes are carried out at low tempera-
tures or at ambient temperature, which reduces sensibly the energy bill for photo-
voltaic cell manufacturing.

Despite the fact that the conversion efficiency obtained by conventional solar 
cells is relatively high compared to nanomaterial-based solar cells, they remain 
more attractive because of their low manufacturing cost and potential wide imple-
mentation in people’s everyday life.

This shift to nanoelectrochemistry tends to overcome the limits encountered by 
solid-state physics. High opportunities to increase light trapping and photocarrier 
collection have been reached.

Different and interesting architectures were carried out like nanowires, nanorods, 
nanosprings, nanocones, nanotubes, nanopillars, nanobelts, nanopagodas, nano-
flowers, nanopetals, and others.

But the real improvement is observed in inorganic solar cells rather than the 
organic ones.

Organic solar cells are promising next-generation solar cells but cannot be com-
petitive with the inorganic ones. Their actual conversion efficiency is too small to 
provide electricity and to have large-scale application. Efforts should be made to 
make this possible.
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Abstract
We present unique results on methods for producing electric contacts on the illu-
minated side of solar cells based on novel wet chemical processes [1]. We are 
describing about the copper–nickel–tin deposition on the silver pores in contra-
diction of the rule based on the standard electrode potentials (or the electrochemi-
cal series). The special feature of this process is the deposition of metal from a 
water solution on a silver surface and pores under the action of intrinsic electrical 
fields in solar cell absorber. Silver technologies are widely used for manufacture 
of crystalline silicon-based photovoltaic devices [2]. The role of small particles 
in solar cells was described previously [3]. The inclusion of nanoparticles into 
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pores of photon absorbers increases their efficiency. Copper micro(nano)clusters 
were chemically introduced into pores of a silver contact. They changed the elec-
trical properties of the contact: the dark current, which is unknown for metals, 
was detected [4]. The experimental data on electrical properties of the structures 
fabricated by the technique mentioned above are discussed in the framework of 
semiclassical nanoscaled metal–semiconductor junctions.

Keywords

Metall • Electroless • Deposition • Water solution • Dark currentcopper-nickel-tin • 
Micro(nano)clusters

 Introduction

Manufacture of low-cost and reliable high-effective photovoltaic converters is still 
a challenge. Novel electrochemistry has developed unique methods not only for the 
production of various oxide-semiconductor nanoscaled structures (among them TiO 
and ZnO) but also for fabrication of effective photovoltaic devices (e.g., dye- 
sensitized solar cells). However, different chemical techniques (in particular, wet 
technology) based on intrinsic electrochemical processes in the components of the 
commercial silicon-based solar cells can significantly contribute to solution of the 
problem mentioned above. Chemical processes are widely employed in the fabrica-
tion of electrical contacts arranged at the irradiated surface of solar cells. Silver 
technology is extensively used in fabrication of silicon solar cells. The function of 
small particles employed in solar cells is described in [5–8]. Entering nanoparticles 
into the pores of photon absorbers enhances their efficiency. In this chapter, we 
describe how, for the first time, copper clusters were chemically entered into the 
micropores of a silver contact. The clusters have affected the electrical properties of 
the contact; a dark current, which was previously unknown in the case of metals, has 
been revealed. We have summarized these results in Table 1.

 Metallization of Electrical Contacts for Solar Cells

The main task of the metallization of electrical contacts for solar cells is the enhance-
ment of its efficiency. It means that the transformation of the radiation energy sup-
plied by our Sun is to be maximal, and the principal way for reaching this goal is 
lowering the electrical resistance of the solar cell. To solve this problem, we propose 
to fill in the pores of the silver electrical contact with micro(nano)clusters of silver 
or other metals. The working-out technology is to be commercially profitable and 
consistent with the common technology of silicon wafer-based solar cells.

The manufacture of standard solar cells based on silicon wafers uses the silver 
paste in connection with porous printing. The paste film at the elevated temperatures 
is fired in the emitter layer through the antireflection coating. To provide the higher 
conductivity, the contact stripes of 140 μm width are fabricated. It leads to about 
10 % shadowing effect of the surface of the solar cell and, consequently, to the con-
siderable losses of produced electrical current and efficiency of the cell. These effects 
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can be eliminated by the very fine porous printing step with producing contact stripes 
of about 50 μm width and the following wet chemical deposition of metals as silver, 
aurum, and copper. This problem can be solved by the wet chemical current- free 
metal deposition with the rate of 1 mm/min under temperatures lower than 70 °C.

The suitable wet chemical solution is to have the following features:

• A high selectivity, e.g., the metal deposition, is to be realized onto the front side 
of the solar cell and on the Al/Ag soldering pads of the backside only.

• The deposition of the metal on the antireflection coating as well as on the free 
silicon surface and Al layer is forbidden.

• The contact structures prepared early by the porous printing of the silver paste are 
to be not damaged, i.e., the parasite deposition on the edges of the contacts has 
not exceeded the 1.5 times magnified thickness value of the deposited metal layer.

• The contact resistance and the adhesiveness of the deposited contact are to be not 
affected.

• The process as a whole is to be environmentally friendly.

 Solar Cell as an Object of Investigation

A solar cell based on the SiP/SiNx/SiB-crystal silicon structure with an aluminum 
contact made on the backside of a wafer and with a front-mounted silver contact was 
taken as a matter for inquiry; the silicon nitride layer was 70 nm thick. The principal 
construction of the common silicon-based solar cell is presented in Fig. 1.

Table 1 Summary of fundamental reference data

References Result

[1] Discovery of method allowing copper deposition on silver nanoclusters  
in metallic contacts for commercial Si-based solar cells

[2] Discovery of unique structural and chemical characteristics of metallic  
Cu/Ag nanoclusters

[3] Analysis of experimental data on structural characteristics of unique 
metallic Cu/Ag nanoclusters

[4] Analysis of unique properties discovered under investigation  
of room-temperature electric characteristics of metallic Cu/Ag nanoclusters 
(room-temperature dark currents in metallic structure)

[5] Formation of Si-based solar cells with front electrode consisted  
of porous network structure of double-walled carbon nanotubes  
(technology: chemical vapor deposition)

[6] Demonstration of absorption and emission enhancement from Si solar cells 
by making use of the nanoscale properties of metals and demonstration  
of the effect of scattering by silver metal nanoparticles into Si devices

[7] The vacuum pore-filling technique is applied to enhance efficiency of energy 
conversion in solid-state dye-sensitized solar cells (DSSCs) based on 
nanocomposite polymer electrolytes

[8] Demonstration of photon recycling in strain-balanced quantum-well solar 
cells in both the dark current and the electroluminescence
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A current-free enhanced metal layer serves as an electrical contact which repre-
sents a silver stripe-geometry element (further SGE) arranged at the silicon surface. 
The silver paste produced by DuPont was taken as a source material for obtaining the 
contact; the paste was deposited onto a silicon surface through a tungsten net-shaped 
mask. When drying was completed, the organic components of the paste were burned 
out in an inert atmosphere at 820–960 °C. At the same time, silver was burned in sili-
con through a 70-nm-thick silicon nitride SiN antireflection coating (ARC).

The crossed silver contacts on the surface of the silicon wafer are of two kinds 
(Fig. 2). The narrow silver stripe is called “gird,” and the wide one is called “bus 

front electrical contact layer
(in grid pattern) terminal F

circuit

terminal B

top junction layer

back electrical
contact layer

back junction layer

absorber
layer

antireflection
layer

light

Fig. 1 Principal construction of common silicon wafer solar cell [4]

Fig. 2 Electron-beam image of the SGE contact surface – the bus bar and gird on the silicon wafer 
before the metal deposition. The width of the gird is 111 μm, and the width of the bus bar is no 
more than 1 mm (61× magnification)
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bar.” After annealing, the electric contact gird is made up from the silver SGEs of 
10–20 μm thickness and 120–130 μm width. The bus bar has 1 mm width.

The morphology of the surface of the solar cell and the contact strips before and 
after copper deposition was investigated with a KEYENCE-5000 3D optical micro-
scope. Figure 3 presents the result of computer processing of images of layer-by- 
layer optical scanning of the silver contact surface.

The porous structure of silver has been determined with the use of an electron 
microscope. The electron-beam image of the cleavage of a wafer with a SGE con-
tact is shown in Fig. 4. It can be seen that the silver SGE is not balk metal but a 
porous structure. Cavities are 1–2 μm in length. The electron-beam image of a con-
tact SGE surface is shown in Fig. 5, where numerous pores are visible; the pores 
have access to these cavities.

The crystal structure of the metal phases was studied by grazing incidence X-ray 
diffraction (GIXRD). In a contact SGE 10 μm high and 120 μm wide, silver features 
the face-centered cubic structure referred to the Fm3m crystallographic space group 
of symmetry. The X-ray diffraction pattern obtained with the grazing incidence X-ray 
diffraction (GIXRD) technique is presented in Fig. 6. The X-ray beam incidence 
angle was 2. For reference, the X-ray diffraction pattern of a silver structure is shown 
in the lower part of the figure. Single-crystal silicon wafers were aligned to (110). The 
associated X-ray diffraction peak with a significant half-width is shown in Fig. 6.

The crystal structures of the electrical collector (bus bar) and the contact on 
the backside of the wafer were examined by the GIXRD technique. The X-ray 
 diffraction pattern of a silver structure is shown in Fig. 7. The silver features 
are demonstrated: the face-centered cubic structure referred to the Fm3m 
 crystallographic space group of symmetry is shown in the lower part of the Fig. 6. 
The dash diagram of the Pb crystalline structure is shown in Fig. 7. As is seen, the 
contact contains some crystalline lead phases.

Fig. 3 Grid-contact morphology optical scanning area 430 × 580 μm2; magnification 5000×
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Fig. 4 Electron-beam image of a cross-section of a contact SGE made of porous silver and a 
cleavage of silicon wafer. The SGE is 11 μm in height; 2116× magnification

Fig. 5 Electron-beam image of surface of the contact SGE made of silver on a wafer. The linear 
size of pores occurring in silver is under 1 μm; 7834× magnification
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Fig. 6 X-ray diffraction pattern of a silver contact SGE and a single-crystal silicon wafer

Pb

Ag

Ag

0

2-Theta - Scale

20 30 40 50

Intensity

Fig. 7 X-ray diffraction pattern of a silver contact SGE (of the bus bar) and the back contact with 
the porous printing paste produced by DuPont. This pattern demonstrates the presence of both 
metals: silver and lead

40 Characterization of Metallic Micro(Nano)cluster-Based Contacts…



1278

Figure 8 shows the X-ray diffraction pattern of the backside of the silicon wafer 
with an Al contact. The dash diagrams of crystalline structures for lead and silicon 
are presented in the lower part of Fig. 8. Its correspondence to the diffraction pattern 
indicates on the mixture of crystalline phases of Al and Pb.

At the next step, we have analyzed the reference samples with the EDX method. 
This technique allows analyzing the samples with two different values of the elec-
tron energy: the elemental analysis of the surface is made with 5 keV electron beam, 
and the deeper layers were studied with the 25 keV electron beam. The next three 
pictures present the results (Figs. 9, 10, and 11).

Thus, the EDX study carried out with two different voltages showed that the Ag 
paste contains no lead (Kα = 10.55 keV); zinc is registered in this paste. Furthermore, 
we can define the following properties of the reference sample:

• The grid and bus bar contain Ag + Zn phase mixture.
• There is no crystalline Zn phase in the Ag paste, and zinc is to be seemed as a 

doping agent only.
• Polycrystalline lead is placed between the grid and the wafer.
• Crystalline phases of Ag and Pb are mixed in the front and backside contacts.
• Crystalline phases of Al and Pb are mixed in the backside layer.
• Polycrystalline silicon is placed between the metal and Si wafer.
• The Ag layers have a porous structure.

Further, we will use these results for building the chemical model and descrip-
tion of chemical reactions taking place in the reference sample.

Si

Pb

Al

Al

2-Theta - Scale

0 30 40 50 6

Intensity

Fig. 8 X-ray diffraction pattern of the backside Al contact on the single-crystal silicon wafer
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Intensity

O Zn
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Ag

Ag
Zn

0

0.40 0.80 1.20 1.60

Electron energy, keV

2.00 2.40 2.80 3.20 3.60 4.00

Fig. 9 EDX is registered with the acceleration voltage of 5 keV. The Pb-containing Ag paste from 
DuPont is deposited on the surface. This experiment showed no lead on the surface of the sample. 
The presence of zinc is found out

Intensity

Zn Si

25 keV

Ag

Ag
Si

Zn

0.40 0.80 1.20 1.60

Electron energy, keV

2.00 2.40 2.80 3.20 3.60 4.00

Fig. 10 EDX registered with the acceleration voltage of 25 keV. The Ag paste from DuPont is 
deposited on the surface. The deep regions of the surface are studied. The Si peaks force us to 
conclude that we examine the wafer through the double metal layer. No lead is detected in the 
semiconductor part of the sample
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 Cu Metallization from Water Solution

 Basic Reference Data

The topic “current-free deposition of copper on silicon, silver, and aluminum 
 surfaces” is almost not investigated. We have to note that:

• “Copper is one of the most effective charge carrier lifetime killers in silicon” [9].
• “Copper does not penetrate through the thin chromium diffusion barrier at low 

temperatures” [10].
• Ni layer can serve as a protective coating for silicon against copper. The system 

“current-free Ni/Cu-halvanometallization of Si” is now studied [11].
• Organic salts are to be origins of metals Ag, Bi, Ti, and Nb for the silicon metal-

lization [12].

For Cu deposition on silicon, we have applied the following process [13]:

• Copper hexanoate → Cu + Cu2O at 200 °C
• Cu + Cu2O + H2 + N2 → Cu (Metal) at 200 °C

The current-free Cu deposition on TiN/SiO2/Si and WN/SiO2/Si is carried out 
from organic solutions of copper sulfates with the help of the following reagents [14]:

• EDTA – ethylenediaminetetraacetate
• Glyoxylic acid
• 2,2-dipiridine
• Polyethylene glycol
• Tetramethylammonium hydroxide

At the start of the process of Cu deposition, the electrical impulse is necessary. 
The parameters of the process are as follows: temperature 60–70 °C, time up to 15 
min, thickness of the copper layer up to 0.5 μm, and pH ~11.

CuLa

CuKa

CuKb
CuLI

AgLa

AgLb

AgLg

2.00 4.00 6.00 8.00

Electron energy, keV

Intensity 

10.00 12.00 14.00 16.00 18.00

AgLI

Fig. 11 EDX results for electron beam with energy 0–20 keV
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The laser beam irradiation of the alkali Cu solution (CuSO4/H3BO3/NaH2PO2) leads 
to the metal film deposition at the following parameters: pH 9.2/60 °C/60 min [15].

As is known [16], the Firma SEG proposes the current-free Ni deposition and 
electrochemical technology for copper: “It should be now be clear that a specifica-
tion that calls for “ELECTROLESS NICKEL” is totally inadequate. There are 
“horses for courses” and without knowledge of what the deposit has to do, the fin-
isher is operating completely in the dark.” Going back to the history of chemistry, 
we should refer the reader to some important facts: in old Egypt, the Cu-covered 
mirrors were found out in the Pharaoh tombs. It also is known that in waters of 
many rivers in Altai Mountains (Russian Federation) iron precipitates were slowly 
covered by copper.

We also should remember that Cu-containing systems are available in three solid 
phases: metal, oxide, and hydroxide. So, in the solution, the following ions can be 
presented: Cu+, Cu2+, HCuO2−, and CuO2

2−. Then the following reactions are 
possible:

 Cu e Cu+ -+ = ,  

 Cu e Cu2 2+ -+ = ,  

 CuO H e Cu H O2
2

24 2 2- + -+ + = + .  

It is important that the value of the electrochemical potential of these reactions can 
be about zero. So, the wafers with contact stripes processed with porous printing 
technology have unavoidable micro-galvanic elemental pairs which are presenting 
immediately before the Cu metallization. We suggest the potential difference of 
these elemental pairs is very low. Thanking to this minimal value of the potential 
difference, the Cu deposition on the silver contact stripes is possible without apply-
ing additional electrical potential.

To conclude, we have to note that the current-free Cu deposition is possible with-
out any additional conditions.

Now we briefly consider the most important requests for the metallization 
processes:

• Selectivity of the metallization
• High adhesion of the substrate
• Advantages compared to commercial baths
• Compatibility with industrial end processes and materials

The technological requests for the Cu metallization are as follows:

• Cyanide-free solutions.
• Deposition rates of the materials used in the process are to be about 1 μm/min.
• The temperatures in the technological chamber are to be about 40–60 °C.
• Using the most common (not rare components and compounds) materials in 

order to keep the cheapest process prices.
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Let us consider the special requests:

• Material can be deposited only on the surface with contacts previously fabricated 
by the porous printing technique. The ARC-covered front side is not to be cov-
ered with any film.

• The long stability of the process.
• Safe and reliable recycling of the components after the process is finished.

 Experimental Cu Metallization

Objects of investigations are the structures with 125 × 125 and 156 × 156 mm2 active 
area (solar cells) with contacts on the front side and backside, ARC layers and 
edges, different porous printing stripes, Al and Ag pastes, and single-crystal and 
polycrystalline Si wafers. The principal chemical reagent is inorganic Cu-containing 
salt with 35.3 % Cu content. The experiments were carried out with the following 
copper-containing solutions:

Solution 1: 1.0 g Cu/100 ml H2O
Solution 2: 0.5 g Cu/100 ml H2O
Solution 3: 0.2 g Cu/100 ml H2O
Solution 4: 2.0 g Cu/100 ml H2O
Solution 5: 5.0 g Cu/100 ml H2O

These solutions have various reaction speeds.
The Cu-containing solution after Cu metallization was examined by the means of 

chemical analysis. The aim of this analysis was to establish how silver dissolves 
from the solution. The analytical method is based on the fact that the following reac-
tion is possible:

 Ag Cl AgCl+ -+ = ¯,  

and we have obtained the following:
(i) AgCl is not found in the solution for metallization; (ii) while the metallization 

of the bus bar and contacts takes place, no exchange reaction between Cu and Ag is 
registered; (iii) copper covers silver. Thus, copper covers silver without chemical 
reaction between the metals.

Crystalline copper clusters were deposited from aqueous solutions; they pene-
trated into pores and covered the silver contact SGE surface of a silicon solar cell. 
The deposition time varied within 160 min.

The morphology of the surface of the solar cells before and after Cu deposition 
was investigated by scanning electron microscope. Results are illustrated in Figs. 5 
and 12. As is seen, all structures have the porous silver surface layer.
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The surface structure after the porous printing before the metallization is shown 
in Fig. 5. The electron-beam image of the surface of a silver contact SGE with cop-
per deposited is presented in Fig. 12. This electron-beam image of the surface of a 
silver contact SGE was obtained on a wafer after 5 min copper deposition. As shown 
in Fig. 12, copper particles are smaller than 0.1 μm and smaller than the pore diam-
eter in silver.

Comparison between the initial porous printed surface (Fig. 5) and the same 
surface after the Cu deposition from the solution (Fig. 12) shows the fine porous 
film on the porous printed layer. We have suggested that the pores in the Ag surface 
prepared by the porous printing are filled in with Cu particles.

Comparing this picture with Fig. 5, one also can conclude that copper particles 
are evenly distributed over the silver SGE. The copper particle size is below the pore 
diameter: copper penetrates into cavities of silver. The initial section of the curve 
shown in Figs. 13, 14, and 15 corresponds to the partial filling of the silver pores.

The deposited copper features a cubic face-centered crystal structure with Fm3m 
crystallographic point group of symmetry. For a contact SGE with a copper coating, 
an X-ray diffraction pattern with peaks of maximum intensity is shown in Fig. 14. 
As it can be seen, the copper reflections show an increase in the intensity with depo-
sition time. Their intensities are compared in Fig. 15. It is noted that the intensity 
ratio steadily grows for 40 min. This means that the copper deposition rate is held 
constant for this period. The deposition rate decreases when copper has filled silver 
cavities; then, after 90 min, the copper deposition is essentially brought to 
completion.

Fig. 12 The surface structure after the 5 min Cu deposition. 8695× magnification
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Fig. 14 X-ray diffraction pattern of a silver contact SGE obtained before and after copper 
deposition

Fig. 13 Electron-beam image of cross-sectional cleavage of a silver contact SGE obtained on a 
wafer after 5 min copper deposition. The thickness is 13.7 μm, and it has increased up to 37 %
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The morphology of the solar cell surface and contact SGEs was investigated 
before and after the deposition of copper with the use of a KEYENCE-5000 optical 
scanning microscope. The computer image processing of the data on the in-layer 
optical scanning of the surface obtained before and after the deposition gives the 
results presented in Fig. 16. The copper deposition onto silver SGE leaves the 
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Fig. 15 Copper-to-silver peak intensity ratio depending on the deposition time

Profile control
line

Labeling

Fig. 16 Test record sheet on the imaging of the silver contact SGE with the use of a scanning optic 
microscope. The SGE is 25.0 μm in height and 129 μm in width
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contact form and profile unchanged; the contact profile alone consists of regularly 
alternating thicker parts and contractions of a contact SGE. The difference in the 
height and width ranges up to 5 μm. In some instances, the thin copper layers were 
responsible for a modest size contraction throughout the height of the contact. It was 
found that, when copper layers up to 1 μm thick are deposited on a silver contact, 
they are able to initiate the thinning out of an SGE up to 10 %.

The electron-beam image of the cleaved facet of a silicon wafer with a contact 
SGE obtained with the copper deposition is given in Fig. 17. It is easily seen that the 
silver SGE remained a porous body. The SGE thickness grew up to 17.8 μm.

The chemical composition of the contact and the copper distribution over the 
contact depth were investigated by energy-dispersive X-ray (EDX) analysis, sec-
ondary ion mass spectrometry (SIMS), and X-ray photoelectron spectrometry 
(XPS). It was found that the copper composition in the silver pores declines with the 
contact depth. Copper was detected at the silicon–silver interface. Copper diffusion 
in the silicon escaped detection.

To examine the material properties of the contacts, we have used the EDX 
method (Fig. 18).

As we can see in Figs. 18 and 19, on the surface of the contact, only copper is 
registered. We note that the thickness of the copper layer cannot be measured by the 
EDX method.

Now we would like to describe our observations of changes taking place in pro-
files of the finger contacts and bus bar under the Cu metallization from water solu-
tions without external electrical field. The parts of the standard solar cells with 

Fig. 17 Electron-beam image of cross-sectional cleavage of contact SGE made of silver on a 
wafer after 15 min copper deposition. The SGE is 17.8 μm in height, 2102× magnification; the 
pore diameter in silver is 1–2 μm, 8695× magnification
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dimensions 125 × 125 and 156 × 156 mm2 were chosen as objects of examination. 
The deposition area did not exceed 15 cm2.

The process of the Cu metallization was carried out at the room temperature. 
The samples were placed in the glass cuvette of 180 mm height and 1 l volume. 
The cuvette was filled in with 1.4 g/l Cu acetic acid solution and 0.02 N catalyst 
concentration. The time of the copper deposition was 5 min.

The next important question is the uniformity of the copper layer. We have stud-
ied the solar cells which were stored during various times after the screen printing 
(contact finger fabrication, the paste annealing was performed in the temperature 

Intensity
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C O

0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00

Fig. 18 EDX analysis with 5 keV. As is seen, copper (but not silver) is placed on the surface

Cu Ag

Cu Ag20 keV

0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00

Fig. 19 EDX analysis using the electron beam with 20 keV energy. The deep layers of the sample 
are also investigated. The additional Ag signal is registered
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range 810–960 °C) and the chemical bath (Cu metallization of these contacts). First 
of all, we have to observe how uniform will be the copper layer produced by the 
metallization performed immediately after screen printing and paste etching. At the 
same time, we have found that the solar cells stored 6 months after the screen print-
ing had poor copper covering (only at the edges of the grid), and in the middle of the 
solar cell, we also had seen no Cu layer. How one can explain this fact? We suppose 
the center of the solar cell has lower potential compared with the outside section of 
the cell. Why? Because the edge of the solar cell has got higher potential after the 
chemical bath than the area in the middle of the cell because the electromagnetic 
field is larger on the edges than that in the central part of the solar cell.

Besides that, the Ag contacts have various widths (from 80 μm to 120 μm). Our 
studies showed that the more slim contacts had larger Cu-covering ratio.

Many Ag pastes contain lead (Pb) as a component. We have checked the possible 
effect of lead on the formation of Cu layer on the silver contacts. Our investigations 
have showed no difference between metallization results for Ag contacts fabricated 
by using the Pb-free pastes and lead-containing ones.

We also have examined the uniformity of copper layer deposited on silver con-
tacts immediately after the paste annealing and after 1 day storage of the industrially 
fabricated solar cells. The copper layer was completely uniform in the first case. 
For the set of the samples stored 24 h, we have registered lowering Cu deposition rate 
only for two samples; for other 98 structures, we have observed no changes either in 
uniformity of the copper layer or the rate of Cu deposition. Thus, we can conclude 
that the “fresh” samples (with storage times no more than 24 h) are the most suitable 
objects for Cu metallization in the sense of the layer uniformity and deposition rate.

The next stage of our experiments was studying the contact profiles before and 
after the metallization. Dektak measurement unit gave us a possibility to define the 
width and height of the contact fingers and, consequently, to calculate the cross sec-
tion of the contacts. We have chosen two sets of the solar cells with various pastes:

• Solar cells from set 1: silver-containing paste DuPont with lead and DuPont  
Al- containing paste with lead

• Solar cells from set 2: silver-containing paste DuPont with lead and Heraeus  
Al- containing paste with lead

Tables 2 and 3 and Figs. 20 and 21 illustrate the results. The statistical working 
out was carried out for each experimental point (ten measurements for each point). 
The Dektak software allowed us to estimate the geometrical parameters of the Ag 
finger contacts.

What did we obtain? Let us analyze the experimental results. First of all, we see 
the sufficient mean variation of the geometrical parameters of the contact fingers. 
The height of the fingers produced using DuPont paste is varied between 11.1 μm 
and 17.1 μm. The statistically estimated mean value is about 14.0 ± 1.6 μm.  
The cross section of the fingers is in the range from 534 to 1,665 μm2, and the mean 
value is 1,234 ± 242 μm2. The width of the contact finger is 125 ± 3.5 μm.

The similar statistical estimation was carried out for the height and cross section 
of the busbar. It was found that the height of the contact finger is 6.62 ± 16.6 μm with 
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Table 2 Changes of width and thickness of the finger and bus bar before and after Cu metallization 
for the samples from set 1

Property

Finger Bus bar

Reference After Cu deposition Reference After Cu deposition

Height, μm 14.0 ± 1.6 16.5 ± 1.0 12.5 ± 1.5 16.6 ± 1.8

Δ, % 2.5 μm or 18 % 4.1 μm or 33 %

Width, μm 125 ± 3.5 138 ± 7.2 1,510 ± 20 1,510 ± 30

Δ, % 8 μm or 10 % 0

Cross-section, μm2 1,234 ± 242 1,519 ± 167 8,500 ± 4,800 13,700 ± 2,400

Δ, % 285 μm2 or 23 % 5,200 μm2 or 61 %

Table 3 Changes of width and thickness of the finger and bus bar before and after Cu metallization 
for the samples from set 2

Property

Finger Bus bar

Reference After Cu deposition Reference After Cu deposition

Height, μm 9.75 ± 1.22 12.2 ± 1.8 12.6 ± 1.2 14.0 ± 1.0

Δ, % 2.45 μm or 25 % 1.4 μm or 11 %

Width, μm 114 ± 6 139 ± 17 1,500 ± 10 1,530 ± 20

Δ, % 24 μm or 21 % 30 μm or 2 %

Cross-section, μm2 746 ± 154 1,110 ± 180 11,800 ± 1,700 13,900 ± 1,400

Δ, % 364 μm2 or 49 % 2,100 μm2 or 18 %

Fig. 20 Profile scan of the contact finger without copper. The height of the finger is 15.7 μm; its 
width is 124 μm
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the mean value of 12.5 ± 1.5 μm (eight measurements for each point). The cross- 
section value changes from 6,913 to 13,972 μm2. The width of the contact finger is 
estimated to be 151 ± 0.02 μm.

The analysis of the geometry of contact fingers showed no changes for narrow 
and wide contacts after the Cu metallization. The statistical dispersion of the contact 
parameters after the metallization has lowered. For example, the height of the finger 
has been decreased from 1.6 to 1.0 μm. The range of the cross-section values for 
narrow contacts changed from 242 to 167 μm2, and for the busbar, this value 
decreased from 4,800 to 2,400 μm2.

As is seen, the height and width of the contact finger are increased: 33 % and 21 %, 
respectively. The cross section of narrow contact fingers after the Cu metallization 
was increased in about 49 % and that of the busbar up to 61 %.

We should note that the aim of metallization carried out for the contact fingers is 
lowering of the specific resistance. The expression for calculating specific resistivity 
includes the cross-section value. It is impossible to estimate the efficiency of the 
contact metallization using the width and height of the copper layer. Our experiments 
showed the 60 % effective increase of the cross-section surface of the contact finger. 
It means that the Cu metallization may enhance the efficiency of common solar cells.

However, it is important to know: is there a possibility to decrease the contact 
surface without minimizing the cross-section surface of the contact finger after the 
Cu metallization?

To answer this question, we had performed the profile measurements of the con-
tact fingers using the Dektak profilometer. The results are plotted in Figs. 20, 21, 22, 
23, 24, and 26.

It is seen that the contact height of the sample from set 1 increases, and its width 
decreases after Cu metallization. The same dependence is observed for the samples 
from set 2 (Figs. 18 and 19). Figures 21 and 22 show that the profile and height as 
well as the cross section of the plateau have been changed. Figure 24 demonstrates 

Fig. 21 Profile scan of the contact bus bar without copper. The bus bar height is 12.3 μm; its width 
is 1.50 mm
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Fig. 22 Profile scan of the bus bar contact after Cu deposition. The bus bar height is 14.7 μm; the 
width is 1.50 mm
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Set 1 before Cu-plating: average height 15.8 ± 1.8 µm,
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Set 1 after Cu-plating

Width, mm

Height, µm

Fig. 23 Busbar height as a dependence of the width of the bus bar before and after metallization 
(set 1)

40 Characterization of Metallic Micro(Nano)cluster-Based Contacts…



1292

that the cross section of the plateau is changed after the Cu deposition. This feature 
of the process allows us to keep the contact cross section regardless of minimizing 
its width. Arrows in Fig. 25 point out that the cross section is kept (12,000 μm2) 
without changes, and at the same time, the bus bar width has decreased from 
1.50 mm to 0.87 mm.
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18 000

20 000

After Cu-plating

Before Cu-plating
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Al-Paste DuPont + Pb
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Fig. 25 Bus bar cross-sections of the samples of set 1 before and after Cu metallization
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Fig. 24 Bus bar cross-sections of samples from set 1 and set 2 after Cu metallization
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 Results and Discussion

The resistivity of the contacts was measured at room temperature with the use of a 
Keithley 236 two-probe conventional meter. As shown in Fig. 26, two measuring 
probes were arranged at the contact SGEs which were 8 mm apart. The probe con-
sists of a tungsten needle with a point of 120 μm in diameter (Figs. 26 and 27). The 
measurements were performed for two specimens placed in a box with black walls 
and a solar simulator. The experimental results are presented in Fig. 28.

Curve 1 is the current–voltage dependence for the initial silver contact SGEs 
arranged at a wafer surface. Other curves in Fig. 28 are the current–voltage depen-
dences for contacts obtained after copper deposition. All the curves support the 
metallic conduction of the contact SGEs. The distinction between them resides in 
the fact that, in the case of contacts with copper clusters, these curves do not pass 
through the origin for either the forward current or for the back one. The phenom-
enon of a current flowing through a metal in the absence of an applied electric field 
is not outlined in the literature. In our experiment, the luminous current of 450 μA 
flows along the contact with copper clusters disposed only in silver pores and that 
of 900 μA flows along the contact with copper clusters disposed in the pores and at 
the silver surface.

Of fundamental importance is the fact that, in the absence of an applied electric 
field, the electric current continues to flow along the same samples when a solar 
simulator was taken out of service. The luminous and dark currents flowing along 
the contact SGEs are presented in Fig. 29. As can be seen, under the zero bias, in the 
case of darkness, the generation of charge carriers is kept constant in the duration of 
the experiment. In the silver contact, the dark current is associated with charge car-
riers generated in the contact itself. The silver clusters positioned in pores and at the 
silver surface serve as a source of charge carriers for the dark current.

We should note that various nanoscaled solar devices are proposed for high- 
effective photon harvesting [18–21]. Now let us describe our results.

As we have shown previously [17], the first attempt for explanation is to consider 
a Si-based p–n junction with Ag/Cu contacts with different heights of barriers 
formed at the metal–semiconductor interfaces: ¢Beff = ¢Bn + ¢Bp ~ 0.05 eV 
(this value characterizes the effective barrier heights for electrons and holes, 

Fig. 26 Tungsten- measuring needle arranged in a holder and shown at the right of the figure
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respectively) [17 and Refs. therein], and, on the other side, the barrier may be 
formed due to the difference of work functions of the contact metals: φB = φCu – 
φAg = 0.17 eV [17 and Refs. therein]. Remembering how the solar cell operates 
(under illumination, the device harvests generated carriers, and in darkness, our 

Fig. 27 The point of 
tungsten needle seen 
through an optical 
scanning microscope. The 
point is 120 μm in 
diameter; 5000× 
magnification

Fig. 28 Current–voltage dependences for 1 a contact SGE made of silver, 2 a contact SGE with 
copper clusters positioned in the silver pores, and 3 SGE with a copper layer positioned on the 
surface and with copper clusters positioned in the silver pores
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active element produces practically no work; therefore, there should be no current!), 
we tried to calculate possible currents according to the semiclassical theory of 
 semiconductor devices [17 and Refs. therein]:

 
I A A T T e k T eV k TCu el tun Beff B a B= -( ) ( )** exp / exp / ,2 f  (1)

where ICu denotes the current produced by illumination of the sample where Cu atoms 
are in Ag pores, and on the surface of the Ag finger, Ael is an electrical area of the 
contact, A** is the effective Richardson constant, Ttun is a coefficient of the barrier 
tunneling transparency, kB is the Boltzmann constant, and Va is an applied voltage.

What can we obtain for a dark current, when only the deformation of clusters in 
the contact stripe due to difference between the lattice constants of silver and copper 
can change the work function and the barrier height, respectively? The expression is 
as follows:

 
I A A T T e k T eV k TCu el tun B f B a B1

2
1= -( ) ( )** exp / exp / ,f  (2)

where ICu1 denotes the current observed under illumination of the sample with Cu 
atom in Ag pores of the Ag finger only; we should note that values of the tunneling 
transparency coefficient are in the range 10−7–10−5 (they are determined numerically 
basing on the experimental data). Figures 30 and 31 show results of the numerical 
experiment.

As one can see, the numerical experiment performed in the region of very small 
applied bias (up to 40 mV) produces only a qualitative agreement with the measure-
ments. First, there is no “solar cell feature” (calculated IVCs are beginning from 

Fig. 29 Time dependencies of dark and luminous currents in the absence of applied bias at contact 
SGEs with copper clusters positioned in silver pores
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zero unlike that of the illuminated solar cells); second, the values of experimental 
and calculated currents are also different. The semiclassical approximation (we 
introduced it by using the tunneling transparency coefficient) does not take into 
account all features of the conductivity of nanoscaled cluster structures. Before we 
discuss the further results, we would like to say some words about current–voltage 
dependencies of nanostructures. The overlap energy between different sites is 
related to the width of the energy bands. The second factor is disorder-induced 
broadening of the energy levels. If the ratio of these values is small, it is hard to 
match the width of the energy level on one site with that of a neighboring site so that 
the allowed energies do not overlap, and there is no appreciable conductivity through 
the sample. On the other hand, if the ratio is large, the energy levels easily overlap, 
and we have bands of allowed energy, so that there are extended wave functions and 
a large conductance through the sample [17 and Refs. therein].

The current flowing along a silver contact with copper clusters is induced by 
charge carriers generated in the semiconductor section of the wafer when the solar 
cell is illuminated. The density of carriers generated within the p–n junction is two 
orders of magnitude higher than that which occurred in the copper clusters, because 
the luminous current is two orders of magnitude larger than the dark one (Fig. 29).

Depositing copper onto silver does not result in the formation of the silver–cop-
per solid solution. The contact between the crystal structures assures the electrical 
potential difference. The difference is inadequate to generate current carriers. 
However, the contact between the silver–copper crystal structures may result in the 
compressive deformation of a metallic SGE and in a decrease in the electron work 
function for copper clusters.

It is our opinion that, in darkness, charge carriers generated by copper clusters 
within a contact SGE, which is the component part of the solar cell, are governed by 
the deformation of the SGE [5]. It is known [6] that the deformation of metal cluster 
structures may result in high-temperature superconductivity. This is why it is neces-
sary to investigate the behavior of the studied specimens in a magnetic field.

 Conclusions

The conversion of the solar energy is in wide use in the production of electric power. 
In regular and industrial units, its efficiency depends on the grade of the component 
base [7]. As revealed in this paper, the dark current flowing along the silver contact 
arranged at the illuminated side of a silicon element makes it possible to produce 
additional electricity in the amount of 5 % of the averaged “light” value. Therefore, 
even with no changes in the semiconductor part of any solar cell, the efficiency of 
the solar energy conversion will be elevated when the copper–silver contacts are 
used in these units.

We have presented the method of metallization for silver contacts used under 
fabrication of commercial silicon wafer-based solar cells. This technique is 
 applicable for covering the silver contacts with Ni, Sn, other metals, and their 
 mixture layers.
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Abstract

First proposed more than 20 years ago, dye-sensitized solar cells represent one 
of the most interesting non-silicon solar harvesters, with outstanding potential as 
low-cost devices with easy fabrication process. Their standard architecture is 
constituted by a dye-sensitized TiO2 nanoparticle-based photoanode, a hole- 
conducting liquid electrolyte and a platinized counter electrode. Even if nanopar-
ticles offer a high number of sites for dye molecule chemisorption, they exhibit 
limited transport and recombination properties with respect to 1D nanostructures 
such as nanowires or nanotubes. In view of increasing the dye-sensitized solar 
cell conversion efficiency, new one-dimensional metal–oxide nanostructures are 
suggested to be employed as photoanodes.

In this chapter the fabrication and characterization of free-standing TiO2 
nanotube membranes and their integration in front-side illuminated dye- 
sensitized solar cells are reported. Vertically oriented TiO2 nanotube arrays are 
fabricated by anodic oxidation, a simple electrochemical technique. The charge 
transport and recombination mechanisms in the oxide nanostructures are studied 
by electrochemical impedance spectroscopy.

The first part of the chapter is devoted to describe the dye-sensitized solar cell 
working principles, the anodic oxidation process, and the electrochemical imped-
ance spectroscopy measurements. In the second part the TiO2 nanotube mem-
brane fabrication and the results obtained on dye-sensitized solar cells are 
presented, showing the effectiveness of the use of 1D nanostructures as photo-
anode materials.

Keywords
Anodic oxidation • Dye-sensitized solar cells • Electrochemical impedance 
spectroscopy • Equivalent circuit • TiO2 nanotubes

 A Brief Overview on Photovoltaics

One of the major challenges that mankind has to face in the twenty-first century 
consists in passing the actual energy economy, essentially based on the diminishing 
fossil fuels (coal, oil, and natural gas) as primary energy sources. Such nonrenew-
able reserves require millions of years to be formed, and for this reason, alternative 
sources have to be found to allow the continuity of life when the reserves will finish. 
Moreover the continuous increase of prices, the delivery problems connected to 
geopolitics in the Middle East, and, most importantly, the pollutant and dangerous 
combustion products responsible of the greenhouse effect spur the research of new 
renewable energy solutions.

Till today solar energy is the only infinite, the most abundant, and clean 
renewable energy resource. The Earth’s surface (at the upper atmosphere) 
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receives from the Sun something like 1.8 × 1011 megajoule per second (MW), and 
this value is many times larger than the actual rate of the global energy consumption. 
Photovoltaics (PV), the technology of harvesting solar radiation for generating 
electric power, is a renewable energy form that experienced an impressive growth 
over the past decade. In 2012 the world’s cumulative PV capacity achieved 102 
GW of installed electric power and, despite being in an economic crisis time, the 
global annual PV market is foreseen to grow, with estimated values that will 
reach more than installed 50 GW per year in 2017 [1].

Actually, the terms “photovoltaic cells” and “photovoltaic modules” indicate a 
wide group of different devices and technologies for the conversion of the sun 
energy into electric power. The principal parameter determining the effectiveness of 
the device is its power conversion efficiency (the ratio between the generated elec-
tric power produced by the cell and the solar power impinging on the cell itself). 
Due to thermodynamic considerations, the maximum theoretical efficiency of such 
energy conversion cannot overcome 81–82 %, but when considering a device, 
strong limitations arise, depending on the operation principles. For instance, when 
considering the traditional c-Si devices based on single p–n junction, this limit falls 
down to a value of about 31 % (Shockley–Queisser limit) [2].

Three different categories – the so-called first, second, and third generation – have 
recently been suggested [3] for classifying the solar cells. First-generation solar cells 
are silicon-based, large area, high-quality, and single junction devices. This technol-
ogy is the most mature and currently leads the market, with an efficiency higher than 
20 % that had been measured in the laboratory. The main drawback stands in the rela-
tively costly technology for the module fabrication. The second-generation devices 
are obtained from a series of thin semiconducting films applied to a supporting sub-
strate; the most employed semiconductors are amorphous or microamorphous sili-
con, cadmium telluride (CdTe), and copper indium gallium selenide (CIGS). The 
manufacturing of second-generation PV is made with techniques that permit a roll-
to-roll processing and a noticeable cost reduction. However, performances are lower 
with respect to crystalline silicon counterparts, and some environmental issues 
related with waste disposal for some materials like cadmium or selenium have to be 
taken into account. The third generation is looking to find new solutions, alternative 
to the traditional p–n single junction, in order to achieve on one side efficiencies 
overcoming the 31 % limit (even if at higher production costs) and on the other side 
moderate efficiencies (15–20 %) at very low cost, with very cheap materials and 
process. Dye-sensitized solar cells belong to this category.

In Table 1 the best efficiencies measured for the different families of solar cells 
are reported.

 Dye-Sensitized Solar Cells

Dye-sensitized solar cells (DSCs) are essentially photoelectrochemical devices that 
convert solar light into DC electric current [3]. Their name is due to the presence of 
the dye molecules, which have the task to capture the sunlight photons, playing a 
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role similar to that of the chlorophyll in green leaves. A typical DSC – as shown in 
Fig. 1 – is confined between two substrates, made in glass or polymer and covered 
by transparent conducting oxide (TCO) films: they constitute the anode and the 
cathode of the device, they provide the electron collection, and at least one of them 
(the front electrode) has to be transparent to sunlight. The essential elements of a 
DSC are:

• A molecular dye: ruthenium-based synthetic metal–organic molecules are actu-
ally the most employed, even if different natural dyes present, for example, in 
blackberries, raspberries or hibiscus flower can be employed.

• A nanostructured oxide semiconductor thick film, deposited on the front elec-
trode and generally made in porous nanocrystalline titanium dioxide, TiO2 in the 
anatase form, with nanocrystals that are electrically interconnected through a 
sintering process.

• A hole-conducting electrolyte: liquid or solid, containing ions for the reduction/
oxidation reaction, typically the couple I

−
/I3

−
.

In order to obtain a functioning device, also a catalyst, generally Pt, a sealant, 
and a packaging architecture are needed. The dye molecules are chemisorbed on the 
surface of the oxide film, forming a random network of sensitized TiO2 nanoparti-
cles (NPs), and the electrolyte impregnates the pores of such dye–TiO2 layer. Upon 
light absorption electrons are excited in the lowest unoccupied molecular orbital of 

Table 1 Best efficiencies for different families of photovoltaic devices [4]

Cell Efficiency (%) Company/Institution

Silicon

Crystalline 25.0 UNSW PERL

Multicrystalline 20.4 FhG-ISE

III–V cells

GaAs (thin film) 28.8 Alta Devices

GaAs (multicrystalline) 18.8 RTI

InP 22.1 Spire

Thin film

CIGS 19.6 NREL

CdTe 19.6 GE Global Research

Si (amorphous) 10.1 Oerlikon Solar-Lab

Si (nanocrystalline) 10.7 EPFL

Emerging PV

Dye sensitized 11.9 Sharp

Organic (thin film) 10.7 Mitsubishi chemical

Multijunction cells

InGaP/GaAs/InGaAs 37.9 Sharp

a-Si/nc-Si/nc-Si (thin film) 13.4 LG Electronics
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the dye and fast injected from the dye into the conduction band of the semiconductor, 
leaving the dye molecule to an oxidized state. The electron possesses sufficient 
energy to migrate through the nanocrystalline TiO2 and through the transparent con-
ductive oxide layers to the external circuit. A closed circuit is required to enable 
electric current to flow and, so, to regenerate the molecules of dyes missing elec-
trons: at the counter electrode, the electrons from the electricity-consuming device 
are transferred to the redox-couple ions present in the electrolyte. This process is 
enhanced by the catalyst presence. The ions carry the electrons through the liquid 
and the pores of the TiO2 network until they meet with the dye molecules: electrons 
are transferred to the triiodide ions to obtain the iodide ions and the latter reduce the 
oxidized molecules of dye, to finally obtain the original molecule and the triiodide 
ion again. The “recharged” dye molecule is again capable of repeating the process 
of transforming light into electricity.

 Nanoparticles and Nanostructures for DSC Photoanodes

In typical DSC photoelectrodes, the oxide nanoparticles are surrounded by the 
electrolyte, which impregnates the pores of the nanocrystalline film, forming an 
interpenetrated junction, with a very high contact area. Considering the typical 
low doping density of titania and the nanometric dimensions of the NPs, the 

Fig. 1 DSC structure and 
schematic working 
principle
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photoinjected electrons are essentially the only free carriers in the semiconductor, 
and in the oxide neither an electric field nor a significant band bending is present 
[5]. The ions in the redox mediator electrically compensate the electron excess; 
thus, the charge gradient is the main driving force for the electrons, which move 
by diffusion following a random walk. The motion of electrons in the semicon-
ductor and ions in the electrolyte is capacitively coupled and an ambipolar diffu-
sion occurs, which reduces the electron mobility. In a simplified picture, the 
motion of charges in the network of colloidal particles can be described as a 
sequence of hops from one crystallite to the adjacent one till the conducting elec-
trode, where electrons are collected from the external circuit. More precisely, the 
charge dynamics is usually described with the Multiple Trapping Model that fore-
sees the capture of electrons in localized states immediately below the conduction 
band and the subsequent release by thermal activation. The traps for electrons can 
be located either in the core of the NPs, at the interface between the semiconduc-
tor and the electrolyte, and in particular at the grain boundaries, where their den-
sity is significantly higher. It is obvious that such a trapping–detrapping process 
and the significantly tortuous path followed by the photogenerated electrons are 
associated with conspicuous charge losses. Therefore, experimentally the electron 
diffusion coefficient in mesoporous films is orders of magnitude lower with 
respect to that measured for single-crystalline anatase TiO2 [6].

It is evident that to engineer the nanomorphology of a DSC photoanode with 
optimal performances, an equilibrium between conflicting requirements has to be 
found. A nanocrystalline network of particles takes benefit from the very high 
exposed area, which means the possibility to load a huge number of dye molecules 
linked to the surface of the semiconductor and thus harvest a large number of pho-
tons. On the other hand, when photogenerated, electrons need to survive without 
recombination until their collection at the electrode, and the tortuous path in the 
randomly oriented film is subjected to significant losses, noteworthily limiting the 
achievable electron dynamics [7]. A more ordered structure with an optimized mor-
phology could be beneficial, especially in conjunction with solid-state or quasi 
solid-state electrolytes, where the kinetics of the redox shuttles is limited. Thus, 
nanostructures with lower dimensionality like nanowires (NWs) and nanorods able 
to allow a direct and faster pathway for the photogenerated electrons have attracted 
consistent attention during recent years [8]. On that topic, zinc oxide emerged as a 
valuable alternative to titanium dioxide for the fabrication of photoanodes in dye- 
sensitized solar cells with controlled nanoshaped morphology. It presents a conduc-
tion band edge positioned approximately at the same level as in TiO2 with respect to 
vacuum reference and higher electron mobility. More interestingly, it is almost an 
ideal material for the synthesis of an incredibly wide range of nanostructures, and it 
is thus particularly suitable to investigate the morphological effect in electron col-
lection in DSC photoanodes [9]. In particular, ZnO is suitable for the fabrication of 
high-quality 1D single-crystalline structure in the wurtzite phase, and the first 
example of ZnO NW-based DSC was presented by Law et al. in 2005 [10], showing 
a very fast electron transfer. However, the strong reduction in surface area with 
respect to NP networks and the technological difficulties in synthesizing very long 
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NWs (up to tens of μm in length) strongly limit the possible applications. Synthesis 
and characterizations of materials with a more complex geometry, like branched 
nanorods [11], porous single crystals [12], or coral-shaped structures [13, 14], have 
been reported showing good conversion efficiencies, but still lower with respect to 
the ones achievable in TiO2 mesoporous films. Coming back to titania, the synthesis 
of well-ordered films using technological approaches like polymer-templated syn-
thesis [15] or impregnation of alumina templates [16] has been explored. In such 
field, the synthesis and application of TiO2 nanotubes (NTs) grown by anodic oxida-
tion of titanium emerged as probably the best compromise. In the following section, 
we present information on perhaps the most impressive and unexpected 1D metal–
oxide nanostructure: the self-organized TiO2 nanotube arrays. The synthesis is car-
ried out by a simple, low-cost, and straightforward approach: the conventional 
electrochemical anodization of a metallic titanium substrate under a specific set of 
appropriate conditions. Currently, the publication rate on this topic shows an almost 
exponential increase, characterized by more than 1000 papers published over the 
last 5 years [17].

Some examples of the efficiencies obtained on DSCs based on different kinds of 
nanostructured photoanodes are reported in Table 2.

 Anodic Oxidation

Anodic oxidation [19] is the process of forming an oxide (MxOy) on a metal surface 
by applying an electric current or potential through a cell containing a suitable elec-
trolyte. The metals that can be anodized belong to the so-called valve-metal group 
(Al, Ti, Zr, Nb, W, Ta, etc.). The main feature of these metals is the possibility to 
grow compact oxide layers (some hundreds of nm in thickness) by anodization in 
aqueous electrolytes [20]. The characteristics of the layer obtained by anodic oxida-
tion can vary according to the type and concentration of the electrolytes as well as 
the processing variables used during the oxidation. Compared with other synthesis 
approaches, electrochemical anodization is a simple and convenient technique to 
fabricate uniform layers of vertically self-oriented nanostructures.

Table 2 Efficiencies of 
some DSCs based on 
different kinds of 
nanostructured photoanodes 
(NP nanoparticle, NW 
nanowire, NR nanorod, NT 
nanotube)

Photoanode Efficiency (%) References

TiO2 NP 7.1 [3]

ZnO NW 1.5 [10]

ZnO hybrid NW/NP 1.3 [11]

ZnO/EosinY hybrid 
thin film

2.3 [12]

ZnO spongelike 6.7 [14]

Polymer-templated 
TiO2 film

4.0 [15]

TiO2 NR 5.4 [16]

TiO2 NT 7.6 [18]
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The best investigated system, in which almost perfect self-organization of pores 
in oxide can be established, is the growth of anodic aluminum oxide (AAO). Over 
50 years ago, Keller and coworkers [21] proved that electrochemical oxidation of 
aluminum in neutral or alkaline electrolytes allows compact oxide layer formation, 
while by employing acidic electrolytes, relatively regular hexagonal porous oxide 
structures could be produced. It has been widely accepted that the formation of the 
pores in anodic metal oxides is based on two continuous processes: the oxide dis-
solution at the electrolyte/oxide interface and the oxidation of metal at the oxide/
metal interface.

In the last decade several research groups proposed different models trying to 
provide an explanation to the formation of hexagonal self-arrangement of pores in 
AAO involving three possible causes: (1) stress at the metal–oxide interface (volume 
expansion/electrostriction) [22], (2) repulsion of electric fields [23], or (3) establish-
ment of maximum current–flow conditions [24].

Particularly the case of anodic titanium oxide encouraged considerable interest, 
since TiO2 is a material with unique properties employed in various functional 
applications. In general, the morphology and the structure of the ordered layer are 
strongly affected by the electrochemical conditions (anodization voltage, distance 
between the electrodes, temperature) and the electrolyte composition. Indeed, it is 
possible to differentiate three generations of TiO2 nanotubes [25]. The first genera-
tion refers to TiO2 nanotube arrays grown in acidic HF mixtures [26]. These tubular 
structures showed very rough walls, low-defined tube top, and a limited thickness 
that does not exceed 600 nm. The second generation is characterized by the use of 
buffered neutral electrolytes containing NaF or NH4F instead of HF, and in this 
case, self-organized nanotube TiO2 layers with thicknesses higher than 2 μm could 
be grown [27]. Lastly, third-generation nanotubes were grown in NH4F-based elec-
trolytes with a very small content of water. Earlier work carried out in glycerol 
showed tubes with extremely smooth walls, well-defined tube tops, and a tube 
length exceeding 7 μm [28], while using ethylene glycol electrolytes and by a fur-
ther optimization of parameters, the nanotube length has reached 500 μm [29] and 
perfectly smooth walls. Water content in the electrolyte affects the growth rate and 
the etching speed (chemical dissolution rate) of the nanotubes; therefore, it is 
required for oxide formation (at the bottom), but it also accelerates the dissolution 
of the nanotube layer (particularly at the top).

The formation of TiO2 nanotube membranes in fluorine-based electrolyte starts 
with the oxidation of the metallic surface which releases Ti4+ ions and electrons 
(Eq. 1):

 Ti Ti e® ++ -4 4  (1)

An oxide layer is deposited on the metal surface from interaction of Ti4+ ions and 
O2 or OH− ions of water. Equations 2 and 3 describe the formation of hydrated 
anodic and oxide layers:

 
Ti OH Ti OH4

4
4+ -+ ® ( )  (2)
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 Ti O TiO4 2
22+ -+ ®  (3)

The titanium dioxide is produced from the hydrated anodic layer by a condensa-
tion reaction (Eq. 4):

 
Ti OH TiO H O( ) ® +

4 2 22  (4)

At the cathode (Eq. 5), hydrogen evolution occurs and the entire process of oxide 
formation is expressed in Eq. 6:

 
2 2 2H e H+ -+ ®  (5)

 
Ti H O TiO H+ ® +2 22 2 2  (6)

The fluorine ions in the electrolyte attack the hydrated and oxide layers, where 
the F− ions are mobile in the anodic layer and can react with Ti4+ under the applied 
electric field. Field-assisted dissolution of the oxide occurs therefore at the interface 
between oxide and electrolyte. Localized dissolution of the oxide creates small pits 
(Eqs. 7 and 8):

 
TiO F H TiF H O2 6

2
26 4 2+ + ® +- + -  (7)

 
Ti OH F TiF OH( ) + ® +- - -

4 6
26 4  (8)

These locally etched pits act as pore-forming centers, which convert into pores 
uniformly distributed over the whole surface. The pores start to grow at the bottom 
with inward movement of the oxide layer, as depicted in the inset of Fig. 2. Ionic 
species migrate from the electrolyte toward the metal/oxide interface. The Ti-O 
bond undergoes polarization and is weakened to assist dissolution of the metal cat-
ions. Ions Ti4+ migrating from the metal to the oxide/electrolyte interface dissolve in 
the HF electrolyte (Eq. 9). The free oxygen anions migrate toward the metal/oxide 
interface and further interact with the metal:

 
Ti F TiF4

6
26+ - -+ ®  (9)

The formation of the oxide can then be monitored by recording the current–time 
characteristics during growth. In Fig. 2 a typical current density–time curve for 
conditions that lead to nanotube formation is reported. The curve shows three 
regimes: In the initial stage I of anodization, a compact oxide layer is formed. In 
stage II, a current increase occurs, and nanoscale pores are initially formed penetrat-
ing the initial compact oxide (the current increases as the reactive area increases). 
In stage III, the current slowly drops again as a regular nanotube layer is formed.

The as-grown material is amorphous. The NT array grown onto the opaque Ti 
foil, once crystallized and dye sensitized, can be used as DSC photoanode employ-
ing a backside illumination setup [30, 31]. In this configuration, the cell is illumi-
nated from the counter electrode side, so the number of incident photons that can be 
absorbed by dye molecules is partially reduced by the absorption and the reflection 
on the Pt thin film. Moreover, the iodine-based electrolytic solution between the two 
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electrodes can absorb in the UV-region, further reducing the device performances. 
A possible alternative is to fabricate front-side illuminated NT-based DSC starting 
by Ti thin films deposited on transparent conductive substrate [32]. In this case, the 
relatively low film thickness attainable with common sputtering or evaporation 
techniques in reasonable time limits the maximum NT length achievable. To over-
come these constraints, self-standing TiO2 NT membranes can be anodically grown 
on Ti foil, detached, and bonded on transparent sheet.

Since dye-sensitized solar cells found an ideal characterization tool in the elec-
trochemical impedance spectroscopy, we briefly introduce the major features of 
such technique. Subsequently, the main aspects in the synthesis of TiO2 nanotubes, 
their integration in DSC photoanodes, and the results of photovoltaic conversion are 
reported.

 Electrochemical Impedance Spectroscopy Characterization 
of DSCs

Electrochemical impedance spectroscopy (EIS) is a well-established technique, 
widely used for the study of electrochemical devices and systems, being at the same 
time a simple but powerful tool; this technique is based on the analysis of the electric 
response of a cell to an applied periodic voltage of variable frequency superimposed 
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Fig. 2 Schematic representation of anodic oxidation process of Ti into fluorine-based electrolyte 
matched with the current density versus anodization time characteristics recorded during the 
process
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to a constant bias voltage [33]. Even if the transport and charge transfer processes 
occurring in real systems are described by nonlinear equations that connect the driv-
ing forces to the flux of the particles, in the case of excitation voltages with amplitude 
comparable with the thermal voltage (i.e., under small-signal condition), it is possi-
ble to describe all the processes by linear equations in which the coefficient between 
the potential and the current is the electric impedance [34].

EIS have been employed in a large variety of different fields, i.e., electrochemis-
try [35], biology [36], and physics [37], and for a wide range of applications, like 
energy storage [38] and production [39, 40] devices. In particular, this technique is 
a powerful tool in the characterization of dye-sensitized solar cells [14]. For a DSC, 
since the different transport and recombination processes occurring in the device 
are characterized by quite different time constants, this technique permits to distin-
guish all these mechanisms: the diffusion-recombination electronic processes in the 
TiO2 layer and at the semiconductor/electrolyte interface, the diffusion mechanism 
of the redox species in the electrolyte, and also the charge transfer at the counter 
electrode [41]. In this framework, the electrochemical cell behavior can be described 
by an equivalent electric circuit. Usually the shape of the I–V curve of a solar cell 
can be fitted quite well exploiting the simple diode circuit model reported in Fig. 3 
corresponding to the following equation [42]:
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mv= - -
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where iPH is the photocurrent modeled as an ideal current generator, i0 is the diode 
reverse saturation current (the so-called dark current), vth is the thermal voltage, m 
is the diode ideality factor, and Rs and Rsh are the series and shunt resistances of the 
cell, respectively. All these parameters can be determined by fitting the model to a 
measured solar cell I–V curve. However, in the fitting process, Rs needs to be 
assumed constant, but this is not the case in DSCs, because the series resistance 
takes into account also the contributions from the current-dependent resistances of 
charge transfer and mass transport at the counter electrode [42]. For this reason the 
modeling circuit that is usually adopted to fit the EIS data (the transmission line 
model, TLM) is more complicated, and it will be presented in the next section.

Fig. 3 Basic diode 
equivalent circuit model 
of a solar cell
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 The Transmission Line Model

Figure 4 shows the widely used equivalent circuit model of DSCs. In this picture, 
the representation of the nanostructured oxide has been simplified to a columnar 
model that represents the mesoporous layer (with thickness d) in which the electro-
lyte solution interpenetrates. The circuit components and their units are [43]:

• RS (Ω): ohmic series resistance of the cell, accounting for the sheet resistance of 
the TCO substrates, and electric contacts and wiring of the cell.

• RCO (Ω): substrate contact resistance at the interface between the TCO and the 
TiO2 film.

• CCO (F): substrate contact capacitance at the interface between the TCO and the 
TiO2 film.

• RTCO (Ω): substrate charge transfer resistance accounting for electron recombi-
nation from the uncovered layer of the TCO to the electrolyte.

• CTCO (F): substrate double-layer capacitance at the TCO/electrolyte interface.
• rt (Ω/m): electron transport resistance in the semiconductor layer. The total 

transport resistance of the film is Rt = rt·d.
• rct (Ω·m): recombination charge transfer resistance at the TiO2/electrolyte inter-

face. The total recombination resistance of the film is Rct = rct/d.
• cμ (F/m): photoanode chemical capacitance that stands for the change of elec-

tron density as a function of the Fermi level. The total chemical capacitance is 
Cμ = cμ·d.

• Zd (Ω): electrolyte diffusion impedance, accounting for mass transport of redox 
species in the electrolyte.

• RCE (Ω): counter electrode charge transfer resistance at the Pt/electrolyte interface.
• CCE (F): counter electrode double-layer capacitance at the Pt/electrolyte interface.

Fig. 4 Equivalent circuit based on the transmission line model for a DSC
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Usually two assumptions can be made in order to simplify the above presented 
circuit [42]. First of all, the electron recombination through the TCO layer can be 
neglected if compared to the one occurring at oxide/electrolyte interface; this 
 usually happens at normal light intensity (of the order of 1 sun, equivalent to 
100 mW/cm2) and also at low intensity when a blocking layer is present onto the 
TCO substrate. Regarding the interface between the substrate and the oxide layer, it 
can be assumed that the contact has negligible resistance, since the effects of non-
zero RCO are present only for particular recombination blocking layer. Moreover, the 
ideal capacitors present in the circuit are often replaced by the constant phase ele-
ments (CPEs) that are a generalization of conventional capacitances included to 
take into account frequency dispersion that can be present in the impedance spectra, 
especially when dealing with porous interfaces. The equivalent impedance of a CPE 
is given by

 

Z
Q j

CPE =
( )
1

w b
 

(11)

where Q is called CPE prefactor, β is the CPE index, j is the imaginary unit, and ω 
is the small-signal angular frequency [34]. As for what concerns the components 
denoted in lowercase letter in the above list, which are rt, rct, and cμ, they are consid-
ered as material properties that are independent on the photoanode thickness, 
because they are distributed in a repetitive arrangement of a transmission line (this 
is the reason for the transmission line model name given to this circuit), with an 
equivalent impedance Zph. With the above reported considerations, by neglecting 
the electron recombination through the TCO substrate and the contact resistance 
between the TCO and the TiO2 layer, and by replacing the ideal capacitors with the 
constant phase elements, the modeling circuit can be modified as reported in Fig. 5; 
the total cell impedance can be written as

 
Z R Z Z Z= + + +S ph d CE  (12)

Fig. 5 Simplified equivalent circuit of a DSC
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The components of this circuit (the series resistance, the photoanode impedance, 
the electrolyte impedance, and the counter electrode impedance) will be described 
in the following.

Series Resistance. The contribution of the series resistance is due to the sheet resistance 
of the substrates and also to the electric wiring; this value is constant for each frequency, 
and also it does not change upon illumination and by varying the bias voltage.

Photoanode Impedance. The impedance related to the oxide/electrolyte interface 
accounts for the so-called diffusion–reaction model, because it gives information 
about the electron transport properties of the semiconductor layer and about the 
recombination properties at the interface with the liquid solution. The general pho-
toanode impedance has the form [44]:

 

Z
R R

j
jph

ct t

n

t n n=
+ ( )
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ù
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where

 
t m
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m

b

t t t= ( ) = ( )r q d R Q2 1 1/ /

 (14)

is the electron transport time in the semiconductor layer and

 
t m

b

m

b

n ct ct= ( ) = ( )r q R Q
1 1/ /

 (15)

is the electron lifetime. By fitting the experimental EIS curve using the circuit 
depicted in Fig. 5, the chemical diffusion coefficient Dn can be evaluated by using 
the formula

 

D
d

n
t

=
2

t  
(16)

The transport and recombination properties can be summarized by means of a 
sole parameter, namely, the diffusion length Ln, which represents the mean path 
traveled by an electron inside the oxide layer before recombination. Its expression 
is given by

 
L Dn n n= t  (17)

In order to have an efficient electron collection, Ln needs to be higher than the 
oxide thickness (or electron transport time lower than lifetime) [6]. By combining 
the Eqs. 14, 15, 16, and 17, the following relation can be found:
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(18)

Looking at Eq. 18, in order to have Ln > d, Rct needs to be higher than Rt, i.e., the 
recombination resistance must be larger than transport resistance. In the opposite case, 
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which is when large recombination occurs, only a fraction of the photogenerated 
carriers is collected and the condition Rt >> Rct applies; the general impedance of 
Eq. 13 becomes

 

Z
R R

j
G

ct t

n

=
+ ( )1 wt b

 
(19)

known as Gerischer impedance [43]. This behavior corresponds to the diffusion in 
semi-infinite space, meaning that when transport resistance is large, the diffusion in 
the semiconductor becomes the limiting process in the device.

All the impedance elements related to the photoanode/electrolyte interface are 
strongly dependent on the distribution of conduction band electrons, and so their 
behavior depends on illumination and potential conditions. In particular the chemi-
cal capacitance, reflecting the density of states, is larger for high potential values 
but is quite independent from illumination. Regarding the transport resistance, its 
value remains constant as the light intensity varies for a given value of bias volt-
age; for this reason, the electron transport time (see Eq. 14) does not have an illu-
mination dependency. On the other hand, while the applied potential is increasing, 
the TiO2 Fermi level is displaced toward the band edge, thus increasing the free 
electron concentration and, as a consequence, the oxide conductivity. Accordingly, 
the transport resistance presents an exponential dependence on the bias voltage, 
becoming negligible for values around the open circuit voltage, because the oxide 
becomes sufficiently conductive. For what concerns the recombination resistance, 
also its value exhibits the same exponential voltage dependency of Rt, but it also 
depends on the illumination conditions: for example, under dark, its value is higher 
with respect to illumination, and correspondingly the dark electron lifetime is 
larger than under light. This can be explained with a difference of local I−

3 concen-
tration (which is responsible for the electron recombination). In fact under illumi-
nation, the I−

3 can be formed near the oxide/electrolyte interface because of the large 
number of oxidized dye molecules, while under dark it is formed at counter elec-
trode and then it can diffuse toward the semiconductor. The higher concentration 
of holes produced in proximity of the TiO2 can be responsible for the reduction of 
the electron lifetime [41].

Electrolyte Impedance. As stated in section “Dye-Sensitized Solar Cells,” the 
charge transport in the electrolyte solution is a diffusion-driven process, which can 
be described by the so-called finite-length Warburg impedance equal to [41, 42]
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in which Rd is the electrolyte diffusion resistance and ωd is the characteristic frequency 
of diffusion in the electrolyte solution:

 
w

dd =
-D
I3
2  

(21)
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The characteristic frequency ωd depends on the diffusion coefficient D
I3
-  and on 

the thickness of the diffusion layer δ (approximately equal to the half of the electro-
lyte layer thickness [45]).

Counter Electrode Impedance. The counter electrode impedance accounts for the 
charge transfer at the Pt/electrolyte interface; its expression is given by [42]:

 

Z
R

j R Q
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jCE
CE

CE CE

CE

CE
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=
+ ( )

=
+1 11w wtb/

 
(22)

where

 
t b
CE CE CE

CE= ( )R Q
1/

 (23)

is the counter electrode charge transfer time. The value of the counter electrode 
impedance is practically nondependent on the applied bias voltage.

 TiO2 Nanotube Membrane Fabrication and Characterization

Titania nanotube arrays were grown by a two-step anodic oxidation [18] of Ti foil 
in an electrolytic solution consisting of 0.5 wt% NH4F and 2.5 vol.% deionized 
water in ethylene glycol. A Pt sheet was employed as cathode in a two-electrode 
configuration o-ring cell. A one-step anodic oxidation process can lead to the syn-
thesis of disordered TiO2 nanowires on the top of the TiO2 nanotubes. The formation 
of NWs is due to the chemical dissolution of the tube top by means of the fluoride 
species, and it is detrimental to the DSC operation, since NWs can hamper the infil-
tration of dye molecules during the sensitization step [17]. In order to achieve a 
debris-free open-top nanotube morphology, a two-step electrochemical process was 
employed. The first 30 min anodization at 60 V forms a disordered sacrificial NT 
layer, which is subsequently removed by an ultrasonication treatment in acetone. 
Thus, the resulting Ti surface is patterned by almost periodic hollows that previ-
ously contained the removed NT bottom. This surface texture allows the electric 
field to be focused into each hole during anodic oxidation [46], and these hollows 
act as growth centers for the second electrochemical step leading to a more homo-
geneous debris-free NT distribution. This step was performed with different time 
intervals, and after this procedure hexagonal close-packed TiO2 nanotube array was 
successfully obtained. Figure 6a shows the surface of the disordered NWs obtained 
on the top of the tubes after the first anodization. The surface of the Ti foil after the 
removal of the sacrificial NT layer is illustrated in Fig. 6b. The hollow-textured Ti 
surface was then again anodized, thus obtaining the well-ordered NT array shown 
in Fig. 6c (top view) and Fig. 6d (bottom view). The average external diameter of 
the tubes was 130 nm, with wall thickness of about 20 nm. After the anodization, the 
oxidized Ti substrates were repeatedly rinsed in deionized (DI) water and ethanol in 
order to remove the residual fluoride contaminants and other impurities. During this 
step a self-detachment of the NT array from the metal substrate was obtained avoiding 
crack occurrence.
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The dependence of TiO2 NT array length on the anodization time was investigated. 
The results obtained with the FESEM characterization are reported in Fig. 7. For the 
anodization times chosen (2, 3, and 4 h), TiO2 NT membranes of different thick-
nesses were obtained (12, 22, and 30 μm, respectively, as shown in Fig. 7).

Chemical composition of the nanostructured thin film was investigated using 
energy-dispersive X-ray (EDX) analysis. The results on the as-grown material 
(reported in Lamberti et al. [47]) reveal the presence of fluorine and carbon atoms 
in addition to the expected titanium and oxygen atoms, as confirmed by the semi-
quantitative standardless analysis. This contamination is consistent with the results 
of Albu et al. [48] that describe the TiO2 NTs as composed by two layers: an outer 
shell of pure and dense TiO2 and an inner porous core containing incorporated elec-
trolyte components. However, EDX analysis shows that after the annealing at 
450 °C, fluorine and carbon disappear, thus resulting in an optimal control of the 
oxide stoichiometry.

The specific surface area as measured by Brunauer–Emmett–Teller method is 
about 40 m2/g, in line with the value measured for TiO2 nanotubes array obtained by 
anodic oxidation in organic electrolyte [17].

Fig. 6 FESEM micrographs showing the surface of the TiO2 NT array after the first step of anodic 
oxidation (a) and the Ti surface after the growth and removal of the sacrificial NT layer (b); the top 
(c) and the bottom (d) of the TiO2 NT array grown after the second anodization
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The X-ray diffraction (XRD) pattern, reported in Fig. 8, shows the completely 
amorphous nature of the NT array after anodic oxidation while a crystalline anatase 
film was obtained after the thermal treatment.

 TiO2 Nanotube-Based DSCs

In order to fabricate DSC photoanodes, the TiO2 NT membranes were transferred 
and bonded on fluorine-doped tin oxide (FTO) transparent substrates employing a 
drop of a TiO2 sol, previously casted on the FTO surface. The sol of amorphous 
TiO2 NPs (used to obtain a good interface between the FTO and the TiO2 NT bot-
tom) was prepared by sol–gel technique [18]. Afterwards, samples were heat treated 
at 450 °C for 1 h for crystallization, then treated with TiCl4 for 20 min at 70 °C, and 

Fig. 7 Dependence of TiO2 NT array length on the anodization time (2 h, 3 h, and 4 h from the 
top to the bottom)
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Fig. 8 X-ray diffraction pattern of as-grown and annealed TiO2 NT array: the peak positions are 
in perfect agreement with JCPDS reference patterns (89–4921)

heat treated again at 450 °C. The various steps involved in the fabrication process of 
the NT-based transparent photoanode are summarized in Fig. 9. When the anodized 
Ti foil was removed from the electrochemical cell (Fig. 9a), NT membranes can be 
detached by the metal substrate without any crack following a self-detaching mech-
anism based on repeated rinsing in DI water and ethanol (Fig. 9b). This is a very 
simple procedure since it does not involve any chemical etching or mechanical 
splitting, unlike what has been proposed up to now. Subsequently the free-standing 
membranes were removed (Fig. 9c) and attached (Fig. 9d) on the transparent con-
ductive substrates employing the sol as binding medium. Finally (Fig. 9e), a thermal 
treatment is performed for all the samples in order to crystallize both the nanotube 
array and the binding film of TiO2 nanoparticles.

A FESEM micrograph of the multilayered structure showing the TiO2 nanopar-
ticle adhesion layer (derived from the sol) is presented in Fig. 10. There, a higher 
magnification of the interface confirms the good adhesion between the two layers. 
This process for membrane bonding is easier than others previously reported 
[49, 50] since just one thermal step is required for membrane crystallization and for 
interface formation.

The as-prepared photoanodes were incubated for 18 h into a 0.3 mM N719 
ethanolic dye solution at room temperature. Then DSCs based on NT membrane 
photoanodes were assembled exploiting a microfluidic architecture [51].
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Fig. 10 Cross-sectional view of the multilayer structure consisting of glass/FTO/TiO2-NP/
TiO2-NT layers at low (above) and high (below) magnification

Anodic Ox.

Nts detachment

Ti foil

Amorphous Tio2 nts

Tio2 sol

FTO/glass substrate

crystallized TiO2 nts and nps

Nts transfer

Nts bonding - sol

450°C 1hr

a

b
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d

e

Fig. 9 Schematic of the fabrication process flow of transparent photoanode employing TiO2 NT array
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In Fig. 11 the I–V curves of the cells fabricated using the NT membranes with 
different nanotube lengths (namely, 12, 22, and 30 μm) are reported; moreover, the 
effect of the TiCl4 treatment is also presented. The photovoltaic parameters evalu-
ated from the experimental data are reported in Table 3. An enhancement of the 
current density was obtained by increasing the nanotube thickness, leading to a 
higher photoconversion efficiency. This improvement has to be expected since an 
increase of the membrane thickness led to an enlargement of the total surface available 
for the dye molecule anchoring. Moreover, the TiCl4 treatment is responsible for 
a further improvement of the photovoltaic performances of the cells. In fact, as 

Fig. 11 Current density–voltage curves of TiO2 NT-based DSCs with and without TiCl4 treatment 
for different nanotube lengths (adapted from Lamberti et al. [18] with permission from the PCCP 
Owner Societies)

Table 3 Photovoltaic parameters of TiO2 NT-based DSCs with and without TiCl4 treatment for 
different nanotube lengths (Jsc short circuit current density, Voc open circuit voltage, FF fill factor, 
PCE photoconversion efficiency)

Cell Jsc (mA/cm2) Voc (V) FF PCE (%)

12 μm 10.07 0.628 0.66 3.64

12 μm TiCl4 11.41 0.657 0.62 4.65

22 μm 11.84 0.651 0.64 4.97

22 μm TiCl4 13.17 0.677 0.65 5.82

30 μm 14.77 0.646 0.66 6.26

30 μm TiCl4 17.47 0.677 0.64 7.56
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already reported in literature [52], the effect of this treatment is to downward shift 
the TiO2 conduction band, thus enhancing the electron injection efficiency from the 
dye molecules to the semiconductor layer. In addition the light absorption is also 
amplified due to a higher number of charge separation interfaces [53]. The combina-
tion of the two effects is an increase of the short circuit current density values, and 
consequently of the photoconversion efficiency, with a maximum value of 7.56 % 
exhibited by the cell fabricated with TiCl4-treated 30 μm-thick membrane.

The incident photon-to-electron conversion efficiency (IPCE) measurements 
performed on the nanotube-based cells in order to evaluate the light harvesting and 
conversion efficiency [54] are reported in Fig. 12 for the TiCl4-treated cells. The 
already observed increase of short circuit current density while increasing the nano-
tube length was confirmed by these measurements. In fact, the spectra present an 
upward shift in the wavelength range from 400 to 750 nm, and in particular the 30 
μm-length nanotube-based cell is characterized by a noticeable maximum value of 
89 % at the wavelength of 530 nm.

The effect of the membrane thickness on the recombination kinetics was ana-
lyzed by the open circuit voltage decay (OCVD) technique [55]. The results of this 
measurement (reported in Fig. 13) show no difference in the exponential decay for 
the different NT membrane thicknesses, meaning that the recombination process is 
not dependent on nanotube length. On the other hand, TiCl4-treated cells exhibit a 

Fig. 12 Incident photon-to-electron conversion efficiency spectra of TiCl4-treated NT-based 
DSCs for different nanotube lengths (adapted from Lamberti et al. [18] with permission from the 
PCCP Owner Societies)

A. Sacco et al.
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slower decay of the photovoltage (i.e., a higher electron lifetime) if compared to 
not-treated devices, as witnessed by the curves presented in the inset of Fig. 13. 
In fact, after the treatment, the nanotube walls are covered by nanoparticles; these 
NPs could occupy surface impurities, defects, and grain boundaries [56], acting as 
a barrier for the interfacial recombination, thus increasing the charge lifetime [52].

A detailed study of the recombination and transport properties of the NT membranes 
was carried out by means of EIS measurements. The electron lifetime τn and the diffu-
sion length Ln values were evaluated by fitting the experimental curves through the 
equivalent circuit reported in Fig. 5, and the results are reported in Figs. 14 and 15. For 
comparison, the same parameters were evaluated for a cell fabricated with a 8 
μm-thick TiCl4-treated layer of TiO2 NPs. The increase of the carrier lifetime in the 
NT-based DSCs due to the TiCl4 treatment observed from the OCVD was confirmed by 
impedance measurements; in the meanwhile, comparable values (about 70 μm at Voc) 
were obtained for the Ln for treated and not treated samples, evidencing that the charge 
transport properties of the NTs are sufficient for electron collection even without the 
treatment [52]. With respect to the NP-based cells, both electron lifetime and diffusion 
length values of the membrane-based devices result significantly enhanced. Regarding 
the former, since the number of surface states is proportional to specific area, and the NT 
surface is one order of magnitude lower with respect to the NP one, the NT array presents 
a reduced number of defects and trap sites; for this reason the charge recombination rate 

Fig. 13 Open circuit voltage decay curves of not-treated NT-based DSCs for different nanotube 
lengths. In the inset the comparison between the cells fabricated with 22 μm-thick NT membranes 
with and without TiCl4 treatment is reported (adapted from Lamberti et al. [18] with permission 
from the PCCP Owner Societies)

41 Anodically Grown TiO2 Nanotube Membranes…



1322

Fig. 14 Electron lifetime dependence on the bias voltage for the cells fabricated with 22 μm-thick NT 
membranes with and without TiCl4 treatment and for a cell fabricated with 8 μm of TiCl4- treated TiO2 
nanoparticles (adapted from Lamberti et al. [18] with permission from the PCCP Owner Societies)

Fig. 15 Diffusion length dependence on the bias voltage for the cells fabricated with 22 μm-thick 
NT membranes with and without TiCl4 treatment and for a cell fabricated with 8 μm of TiCl4- 
treated TiO2 nanoparticles (adapted from Lamberti et al. [18] with permission from the PCCP 
Owner Societies)

A. Sacco et al.
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is subsequently greatly reduced [57]. In addition, thanks to the NT monodimensional 
nature, the membrane- based DSCs are characterized by improved charge transport 
properties if compared to NP-based ones, in which the transport mechanisms result 
more complicated due to a longer pathway for the electrons: for the NP-based device, in 
fact, the calculated diffusion length values lie in the range 10–30 μm.

 Summary and Perspectives

Free-standing NT membranes to be employed as DSC photoanodes have been fab-
ricated through a two-step anodic oxidation of Ti foil. It has been possible to obtain 
a maximum efficiency equal to 7.56 %, in a DSC fabricated with a 30 μm-thick 
TiCl4-treated nanotube membrane. The presented approach, with a simple self- 
detachment procedure, is innovative if compared to other photoanode fabrication 
processes: no chemical dissolution or mechanical splitting is involved for mem-
brane separation, and membrane crystallization/attachment steps are coupled in the 
same thermal treatment.

Future applications of TiO2 NT membranes can be envisaged in solid-state 
flexible DSCs: these devices will avoid the poor long-term durability mainly 
caused by leakage of the liquid electrolyte. Due to the open NT structure that 
allows the polymer electrolyte to easily penetrate inside the membrane, the cou-
pling of TiO2 nanotubes with such an electrolyte can lead to numerous advantages 
with respect to nanoparticle-based electrodes.
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   Abstract  
  The vision and future of nanoelectrochemistry and application area of nanoelec-
trochemistry are wide, varied, and versatile. Nanotechnology is the ultimate 
engineering vision of tomorrow. Nanoparticle applications in bioanalysis, cataly-
sis, and electrocatalysis and nanoparticles such as fullerenes, carbon nanotubes, 
and networks, semiconductor nanoparticles, and arrays of nanoelectrodes and 
nanopores are the vision of tomorrow’s science, technology, and engineering. 
A scientist’s vision is far-reaching and groundbreaking. For the range between 1 
and 10nm, for the nanoparticles, progress has been stimulated by synthetic inno-
vations and for single nanoelectrodes and single nanopores, similarly by advances 
in methods of innovation and also by the march of nanoscience. The author’s 
endeavor is to highlight and review the advances in the fi eld of nanoelectrochem-
istry and nanotechnology as a broad area. The application area of colloid chem-
istry also comes into play. Nanotechnology will help the million homes in years 
to come and will be a great boon to our mankind. Our vision is to delineate the 
advances in the vast domain of nanotechnology and nanoelectrochemistry as a 
whole. It will also touch upon the progress in colloid chemistry. The answers and 
fruits of scientifi c endeavor in the fi eld of nanoscience and nanotechnology will 
be greatly enhanced. The vision and the objective of the treatise are targeted 
toward the application areas of nanotechnology, nanoelectrochemistry, and envi-
ronmental engineering tools such as nanofi ltration. An extensive review work is 
attempted with deep comprehension and cogent insight. An engineer’s as well a 
scientist’s vision is emboldened with strong insight in the paper.  

  Keywords  
  Nano   •   Nanofi ltration   •   Chemistry   •   Electrochemistry   •   Vision  

        Introduction 

 Application area of nanotechnology as well as nanoelectrochemistry is far-reaching 
and proven. Nanotechnology is breaking one scientifi c boundary over another. The 
world of unknown is opening up new and realistic domains of nanoscience and 
nanotechnology. This review highlights the importance of nanotechnology and 
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nanoelectrochemistry in the future advancement of science, engineering, and tech-
nology. Nanoelectrochemistry refers to a dimensional scale of electrodes and 
electrochemical events as opposed to time or volume or mass. 

 Nano is a visionary terminology. Much of the contemporary and traditional chem-
istry focuses on small and minute structures, and indeed molecular science and 
molecular engineering is on the nanometer scale. Nano describes and delineates 
dimensional scale of electrodes and electrochemical events. Still, most of molecular 
and atomic chemistry is relevant within the 1–1000 nm range of dimensions, as does 
a larger body of charged or conducting substances, e.g., micro- and nanoparticles, col-
loids, and aerogels. The concerned geometry of conducting substances can have nano-
scopic dimensions, with mesoporous materials such as aerogels and xerogels being 
contemporary examples. These are focal points and primordial issues as are nanopar-
ticle applications in bioanalysis, catalysis, and electrocatalysis and nanomaterials 
such as fullerenes, carbon nanotubes and networks, semiconductor nanoparticles, 
nanoelectrodes, and nanopores [ 1 ]. The vision and objective is to delineate electro-
chemistry of nanoparticles and single nanoelectrodes and nanopores [ 1 ]. Murray [ 2 ] 
delineated in a phenomenal and a visionary review the ever-increasing truth and 
potential of the vast and visionary domain of electrochemistry. The author dealt with 
intuitive truth the application area of electrochemistry of metal nanoparticles. The 
intricacies of the linkages between colloid chemistry and nanoelectrochemistry are 
brought to the forefront of scientifi c vision. Oja et al. [ 3 ] dealt with accurate lucidity 
a review on the application area of nanoscale electrochemistry. The review elucidated 
on the varied, visionary, and proven applications of nanoelectrochemistry with inci-
sive details. Electrochemical properties of nanoscale electrodes are delineated with 
extreme lucidity. The visionary defi nitions of this treatise will be incomplete without 
the application of nanotechnology on nanofi ltration and environmental engineering. 
The visionary foundations are restructured and rebuilt in the area of nanofi ltration and 
wastewater treatment. Hassani [ 4 ] dealt lucidly on the effi ciency of nanofi ltration 
and the application of nanofi ltration membranes in water treatment. Visionary strides 
in the fi eld of molecular nanotechnology have moved surpassing one barrier over 
another. So a detailed description on this area of nanotechnology is done with details. 
Nanoelectrochemistry and the application area of nanoelectrochemistry have an 
umbilical cord which is challenging as well as visionary.  

    Vision, Innovation, and Progress in Macroscopic 
Electrochemistry 

 Traditional macroscopic electrochemistry started 200 years ago with immense and 
effective technological, engineering, and scientifi c connection to energy technology 
and electrolysis [ 5 ]. In the last 10–15 years, electrochemical nanotechnology has 
been relevant, but in fact it is a domain of electrochemical science. As a link between 
these different fi elds, microelectrochemistry is fast and emerging growing part of 
electrochemistry forming interdisciplinary bridges to science, technology, and med-
icine. The emphasis of electrochemical micro- and nanotechnologies is an urgent 
and concerning activity since otherwise electrochemists do not realize the wide 
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application of their own fi eld and on the other hand electrochemical methods are 
used without suffi cient background and effi ciency. Special developments in corro-
sion science and engineering need to be addressed with scientifi c vision. The vision 
is clear and sound to unravel the hidden truths of nanoelectrochemistry and colloid 
chemistry. In the path of success, there are a lot of scientifi c hurdles. Yet the truth 
and greatness of this vast domain of nanoelectrochemistry are revealed [ 5 ].  

    Vision in the Field of Nanoelectrochemistry 

 The determinant and vision of the science and engineering of nanoelectrochemistry 
are immense and varied. The question of application of nanoelectrochemistry to 
mankind comes into the horizon. A scientist’s urge for knowledge is unquestion-
able. Nanoelectrochemistry is a relatively new branch of nanotechnology, so its 
vision is wide and visionary. 

 Nanoscale electrochemistry is critically important for modern electrochemical 
science as well as many other key research areas such as energy conversion and 
storage, catalysis, sensor development, and environmental science. Nanoscale 
electrochemical investigations have been successful in spite of the limitations of 
traditional methods [ 5 ]. 

 New electrochemical phenomena, properties, and technological capabilities 
essential to reducing the dimensions of an electrochemical probe to the nanometer 
scale as well as electrochemical properties of new nanoscale electrode materials 
will be the focal point and a primordial issue of this journey through the frontiers of 
nanoelectrochemistry. Conventional defi nition of nanoscale refers to lengths 
between 1 and 100 nm. 

 Nanoscale electrochemical investigations have provided unique and genuine 
information unattainable by traditional methods. For example, nanoelectrodes can 
measure ultrafast electron-transfer kinetics that are often too fast to investigate with 
conventional electrodes. Nanoscale electrochemical materials, such as metal/semi-
conductor nanoparticles, have unique chemical and physical properties, and 
nanoscale electrochemical methods can be used to prepare advanced electrocata-
lytic materials. In addition, the use of nanoscale electrodes has envisioned electro-
chemical imaging with nanoscale spatial resolution, resulting in unique information 
for better understanding of heterogeneous electrode/solution interfaces [ 5 ].  

    Application Areas of Nanotechnology in the Wider Domain 
of Electrochemistry and its Relevance to Human Society 

 Application area of nanotechnology is wide and varied. The question of application 
of nanoelectrochemistry to the common man and his/her problems comes into the 
horizon of man’s vision. The grit and determination on the researcher’s point of 
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view is unrelenting and unequivocal. The world of unknown is unfolding into a 
world of known with proven scientifi c resources. Human society is today fragile in 
the question and aspects of environmental and energy sustainability. Here, the 
application of nanoelectrochemistry comes into immediate play. The answers to the 
burning question of environmental sustainability have brought our mankind in the 
brink of disaster. The willpower and strength of the researcher are visionary and 
far-reaching. Every step forward in the scientifi c endeavor is a giant step forward to 
human society and mankind. 

 The fi eld of nanoelectrochemistry burgeoned about three decades ago shortly 
after the fast development and widespread development of microelectrodes. Since 
then this domain has generated enormous enthusiasm and has seen dramatic increase 
in scientifi c judgment and popularity in the last two decades. This growth is largely 
due to rapid developments in nanofabrication and characterization and the introduc-
tion of numerous bottom-up and top-down processes capable of preparing well- 
defi ned nanoelectrodes and nanomaterials [ 5 ]. 

 Nanoscale electrochemistry has played a crucial and critical role in gaining a 
deep understanding of electron-transfer processes at the electrode/electrolyte inter-
face and will effectively enhance and promote both fundamental, applied, and basic 
electrochemical research. Nanoscale electrodes are of central and vital importance 
in almost all aspects of nanoscale electrochemistry, from understanding electron- 
transfer kinetics and probing single catalytic nanoparticles to nanoscale electro-
chemical imaging. 

 Key challenges, thrust areas, and visionary-targeted domains in nanoscale elec-
trochemistry have been the lack of structural control in nanoelectrode preparation 
and the need for advanced methods for structural characterization. This can be 
largely solved and addressed by the use of nanofabrication and nanocharacteriza-
tion methods. Nanopore-based electrochemical methods have attracted global inter-
est in research endeavor and will continue to grow rapidly and steadfastly in the 
near and distant future [ 5 ].  

    Doctrine Behind the Relevance of Nanoelectrochemistry 
to Mankind/Research Frontiers and Energy Sustainability 

 Energy sustainability is of major concern in today’s world. The world is stepping 
toward a new vision of energy sustainability relevance. The concerns are exquisite 
and groundbreaking. The results are many. Here, comes the question of application 
of nanoelectrochemistry to energy scenario and energy sustainability. The depletion 
of fossil fuel resources is causing great burden to mankind. Renewable energy will 
be the researcher’s main focus in days and years to come. The burden to mankind 
has also become a question of social responsibility. Nanoelectrochemistry can be an 
immediate vision of future in the area of energy sustainability, renewable energy, 
and application of solar energy. 
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 Some thrust areas of nanoelectrochemistry in the present-day world is 
explained below [ 2 ]:

    (a)    Nanoelectrodes   
   (b)    Extraordinary properties of electrodes   
   (c)    Nanoelectrode fabrication    

      Research Endeavor in the Field of Nanoelectrochemistry 

 Research pursuit in the fi eld of nanoscale electrochemistry is far-reaching, ground-
breaking, as well as visionary. The path of struggle in this domain is immature and 
latent yet widely proven.

•    Over the last decade, several developments in electrochemistry have contributed 
signifi cantly and effectively in the fi eld of nanoscience and nanotechnology. 
Most important are the advances in nanoscale characterization of electrochemi-
cal interfaces, advances in electrochemical processing methods for the formation 
of micro- and nanostructures, and the rediscovery of electrochemical techniques, 
concepts, and future dimensions by the nanotechnology community, in particular 
for studying nanoscale structures (Table  1 ).

      Murray [ 2 ] did a comprehensive, detailed, and visionary review on nanoelectro-
chemistry adding cogent insights on metal nanoparticles, nanoelectrodes, and nano-
pores. This is an absolutely phenomenal approach to nanoelectrochemistry. The 
author dealt extensively on the electrochemistry of each of the abovementioned 
nanomaterials. 

 Rauf et al. [ 6 ] did a phenomenal and groundbreaking research on the fabrication 
and characterization of gold nanohole electrode arrays. A fabrication method using 
photolithography, deep reactive ion etching, wet etching, and focused ion beam 
lithography techniques was discovered. According to the authors, due to good 
reproducibility, high accuracy, and miniaturization compatibility of the proposed 
fabrication technique, it has high, visionary, and proven potential in developing 
portable devices for bio-sensing. 

 Zheng et al. [ 7 ] dealt lucidly on electronic manipulation of DNA, proteins, and 
nanoparticles for potential circuit assembly. Using gold electrodes lithographi-
cally fabricated onto microscope cover slips, DNA and proteins are interrogated 
both optically (through fl uorescence) and electronically (through conductance 
measurements). 

 Yang [ 8 ] dealt with intuitive observation on enzyme-based ultrasensitive electro-
chemical biosensors. This is an extensive review and a lucid treatise on enzyme- 
based biosensors. Signal amplifi cation in conventional enzyme-based biosensors is 
not high enough to achieve the ultrasensitive detection of biomolecules. According 
to the authors, in recent years, signal amplifi cation has been improved by 
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combining enzymatic reactions with redox cycling or employing multienzyme 
labels per detection probe. A deep and cogent insight evolves newer vision in the 
fi eld of electrochemistry and biotechnology. 

 Mirksich [ 9 ] dealt lucidly on usage of self-assembled monolayers to model 
extracellular matrix. This is a widely researched review dealing with applications of 
cell biology. Cell biology as in the research endeavor will go a long way in opening 
up new dimensions of nanotechnology and electrochemistry. 

 Taufany et al. [ 10 ] dealt in a phenomenal work on the kinetically controlled auto-
catalytic chemical process for bulk production of bimetallic core–shell structured 
nanoparticles. Although bimetallic core–shell structured nanoparticles (NP) are 
achieving prominence due to their multifunctionalities and exceptional catalytic, 
magnetic, thermal, and optical properties, the rationale underlying their design 
remains unclear, and the vision of this domain is immature. The authors of this 
scientifi c endeavor open up new vistas and newer vision in the application area of 
nanotechnology. 

 Janin et al. [ 11 ] dealt with severe precision on the subject of formation of metal-
lic nanowires via electrochemistry in aqueous surfactant media. Atomic contacts 
between two copper microelectrodes, with conductance close to the conductance 
quantum, have been generated using simple electrochemical methods in aqueous 

   Table 1    A brief introspection on outstanding and far-reaching scientifi c endeavor in the fi eld of 
nanoelectrochemistry   

 Investigators  Visionary scientifi c research pursuit in nanoelectrochemistry 
 Murray [ 2 ]  The research endeavor on a comprehensive treatise and review on the 

status of nanoelectrochemistry 
 Rauf et al. [ 6 ]  A deep insight on fabrication and characterization of gold nanohole 

electrode arrays 
 Zheng et al. [ 7 ]  Lucid details on electronic manipulation of DNA, proteins, and 

nanoparticles 
 Yang [ 8 ]  Description of enzyme-based ultrasensitive electrochemical biosensors 
 Mirksich [ 9 ]  Usage of self-enabled monolayers to model extracellular matrix 
 Taufany et al. [ 10 ]  Phenomenal work on the kinetically controlled autocatalytic chemical 

process 
 Janin et al. [ 11 ]  Formation of metallic nanowires via electrochemistry 
 Lin et al. [ 12 ]  Combined experimental and theoretical investigation of nanosized 

effects of Pt catalyst 
 Bard [ 13 ]  Single-size molecule electrochemistry 
 Miao et al. [ 14 ]  Review of new developments of assays for cholinesterase activity and 

inhibition 
 Oja et al. [ 3 ]  Review of recent advances of electrochemistry 
 Kraph et al. [ 15 ]  Report on the fabrication and characterization of nanopore-based 

electrodes 
 Zhan et al. [ 16 ]  Report on adsorption/desorption of hydrogen on Pt nanoelectrodes 
 Sun et al. [ 17 ]  Investigation of electrochemistry of individual molecules on Zeptoliter 

volumes 
 Amemiya et al. [ 18 ]  Report on generalized theory on nanoscale voltammetric 

measurements 
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media containing various types of surfactants. Colloid chemistry and electro-
chemistry goes a long way in the successful future scientifi c endeavor. The authors 
delve deeply into these areas and unravel the hidden truths of this fi eld of 
nanoelectrochemistry. 

 Lin et al. [ 12 ] dealt with impeccable scientifi c rigor on the subject of combined 
experimental and theoretical investigation of nanosized effects of Pt catalyst on 
their underlying methanol electrooxidation activity. The nanosized effects of Pt 
catalysts in terms of surface coverage, electrochemical response, and reaction 
kinetics during the electrocatalytic methanol oxidation reaction (MOR) have been 
extensively investigated. The areas of catalysis along with electrochemistry have 
widely opened up the visionary doors of innovation and scientifi c judgment. 

 Bard [ 13 ] delved deep into the science of single-enzyme molecule electro-
chemistry. Single-molecule studies, including those of single-enzyme molecules, 
have led to newer insights about the effects of environment and confi guration on the 
behavior of these molecules. In this phenomenal and far-reaching review, scientifi c 
advancements toward studying a single-enzyme molecule by protein fi lm voltam-
metry are dealt in details. 

 Miao et al. [ 14 ] dealt with cogent insight on the history and new developments 
of assays for cholinesterase activity and inhibition. They detailed with immense 
scientifi c rigor on the subject of cholinesterase which are key enzymes in the fi eld 
of neurobiology and pharmacology. 

 Oja et al. (2012) [ 3 ] dealt with immense lucidity in a review on nanoscale 
electrochemistry. The review reports on the recent advances in electrochemistry. 
The specifi c focus and primordial issues were on new electrochemical phenomena, 
properties, and technological capabilities essential to reducing the dimensions of an 
electrochemical probe to the nanometer scale. 

 Krapf et al. [ 15 ] investigated in a report on the fabrication and characterization 
of nanopore-based electrodes with radii down to 2 nm. The authors reported on 
fabrication and characterization of gold nanoelectrodes with carefully controlled 
nanometer dimensions in a matrix of insulating silicon nitride. 

 Zhan et al. [ 16 ] reported on adsorption and desorption of hydrogen on Pt nano-
electrodes and evidence of surface diffusion and spillover. Nanoelectrochemical 
approaches were used to investigate adsorption/desorption of hydrogen on Pt 
nanoelectrodes. The world of challenges, diffi culties, and barriers opened up new 
avenues of immense intuition and innovation. 

 Sun and Mirkin [ 17 ] dealt incisively on electrochemistry of individual molecules 
in Zeptoliter volumes. Electrochemical experiments were carried out in a nanometer- 
sized cylindrical thin layer cell (TLC) formed by etching the surface of a disk-type 
platinum nanoelectrode (5–150 nm radius). 

 Amemiya et al. [ 18 ] dealt lucidly on the subject of generalized theory of 
nanoscale voltammetric measurements. Investigations were done on a generalized 
theory of scanning electrochemical microscopy. This research work revolutionized 
the areas of nanoelectrochemistry and future visions of nanotechnology.  
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    Emerging Trends, Visionary Hope, and Future Challenges 

 The unending and mindboggling questions in the fi eld of nanoelectrochemistry are 
instinctive and far-reaching. The challenges are far and wide. The future trends are 
unchallengeable. Man’s vision in the fi eld of nanoscale electrochemistry and nano-
technology needs to be validated in future endeavors. 

 Emerging trends and future challenges are visionary as well as immature or 
latent. The questions arising in today’s world are the application of nanotechnology 
and nanoscale electrochemistry to the common mass or the human society. 
Remediation of groundwater contamination in Southeast Asian countries particu-
larly arsenic groundwater contamination is a serious challenge to mankind. 
Researchers worldwide are pondering over this vicious fact of nature. Arsenic in 
drinking water is directly linked to various ailments such as cancer which is a curse 
to mankind. The future of arsenic research is extremely bright, promising, as well as 
inspiring. The fruits of this area of research have already shaken mankind, and more 
results will follow. Besides another aspect of modern-day interest is the vicious 
question of environmental sustainability. The answers to sustainability are revolu-
tionizing mankind. 

    A Deep Perspective into the Technological Applications 
of Nanoelectrochemical Science 

 Although an impressive and a wide range of electrochemical processes for nano-
structure formation have been demonstrated already, only few of them have made it 
out of the laboratory. Many practical problems like reliability and compatibility 
with existing production methods must be addressed, specifi cally for methods based 
on nanoscale templates or self-ordering. 

 Technological advancements in the fi eld of nanoelectrochemical science are far- 
reaching and has crossed several endless frontiers. It has taken the world by storm. 
Intensive research in the fi eld of electrochemistry has revealed its enormous and 
visionary potentials. The world of unknown is slowly shedding its past to usher in a 
new generation science and technology [ 19 ].  

    Required Skills and Vision of Implementation in Education 

 All the abovementioned areas will provide ample opportunities for basic and applied 
sciences, i.e., jobs for scientists trained in electrochemistry [ 20 ,  2 ]. To prepare 
students, learners, and researchers adequately for these upcoming challenges is the 
task of modern electrochemical education, which brings us back to education and a 
vision of a classroom. Electrochemical education for students with different back-
grounds may place the emphasis on slightly different aspects. 
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 The visions of electrochemical education are as follows:

•    Solid and sound working knowledge on every detail and every minute concepts  
•   Concepts of surface science, surface chemistry, and condensed matter physics  
•   Modern experimental and theoretical concepts      

    Insight, Innovation, and Ideas in the Field of Nanoscale 
Electrochemistry 

 The insight in the fi eld of nanoscale electrochemistry is immense and varied. The 
innovation and ideas behind this phenomenon are of visionary importance. Science 
and technology are moving at a rapid pace in successive generations from now. The 
world of unknown is opening its doors to the world of known and vitality. The ques-
tion of application area of nanoscale electrochemistry to the grassroots level and 
mankind is of vital importance. 

    Development of Electrochemical Science 

 Stimulated by substantial progress made in the study of surfaces under ultrahigh 
vacuum conditions, new concepts and innovations have started to emerge in inter-
facial electrochemistry in the 1980s. These have rapidly gained ground bringing in 
a new era in nanoscience and nanotechnology. The most important of these devel-
opments are as follows [ 21 ,  2 ]:

•    Structurally defi ned electrodes  
•   In situ methods  
•   Modern theoretical approach    

 The answers to the various diffi cult hurdles of nanoelectrochemistry are obtained 
and validated by the scientifi c community by continuous and painstaking research 
endeavors. Nanoscale electrochemical science is the future vision of the science and 
engineering of nanotechnology. New methods of nanofabrication will surely revo-
lutionize the scientifi c domain.   

    Vision of Future Research in the Far-Reaching Areas 
of Nanoelectrochemistry, Colloid Chemistry, 
and Environmental Engineering 

 The future of nanotechnology and nanoelectrochemistry is unquestionable and 
rigorous. Colloid chemistry nurtures nanoelectrochemistry. The world of nanotech-
nology is crossing visionary frontiers. The varied answers to the intricacies of 
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nanoelectrochemistry and colloid chemistry are slowly unfolding. The future will 
be truly visionary and far-reaching. 

 Colloid chemistry can cross unsurpassed frontiers. This area of science is 
advanced yet immature. The vision of potentialities in this branch of science is 
immense and groundbreaking. Application area of colloid chemistry to the grass-
roots level needs to be addressed in view of the future of mankind. 

 Colloid chemistry is a discipline of great importance and of greater scientifi c 
vision to both science, engineering, and technology. In today’s world, colloid 
chemistry is surpassing many visionary frontiers. The challenges and barriers in the 
domain of colloid chemistry are vast, varied, and far-reaching. The electrical behav-
ior of colloidal dispersions in solutions classically encompasses colloidal nanopar-
ticles with surface charges caused by adsorption of small ions, surfactants, or 
polyelectrolytes and with consequent electrokinetic properties. Such phenomena 
have great practical and visionary importance in chemical manufacturing and other 
chemical processes, in sanitary water treatment, and in ocean chemistry, among 
 others [ 22 ]. 

 The question and future of nanofi ltration and application of nanotechnology in 
environmental engineering are truly unquestionable. The immediate future is bright 
in regard to the application areas such as desalination and industrial wastewater 
treatment. Intense environmental restrictions and regulations have urged the world 
order to reassess and revamp the environmental engineering paradigm. Man’s vision 
will be validated in years to come with the successful projects of providing clean 
water to rural millions in developed as well as developing world [ 22 ,  2 ]. 

 Here, the successful implementation of nanofi ltration process to human society 
and the successful application of nanotechnology in environmental engineering 
come into play. In developing world, the question of contaminated water is a vicious 
and diffi cult problem. In such respect, nanofi ltration and other membrane separation 
processes can change the horizon of nanotechnology research [ 22 ,  2 ].  

    An Investigation in the Field of Application of Nanotechnology 
in Environmental Engineering 

 Nanotechnology is crossing wide and immeasurable frontiers. Desalination and 
wastewater treatment are the relevant technologies of today and the visionary future. 
Nanofi ltration as well as other membrane separation processes has insightful vision. 
It has been found to be extremely effective, visionary, and demanding in the years 
to come. Vision, hardship in scientifi c endeavor, and visionary truth will surely 
propel the scientifi c pursuit in the fi eld of membrane separation processes. 
Engineering vision in the fi eld of membrane separation processes will create won-
ders in the years to come. 

 Nanotechnology, nanofi ltration, and environmental engineering are inseparable. 
In the similar vein, reverse osmosis, membrane separation processes, and desalina-
tion are bound by fetters of innovation. More research endeavor in advanced waste-
water treatment will create waves in the scientifi c horizon.  
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    Doctrine of Application of Electrochemistry in the Domain 
of Environmental Engineering 

 Electrochemistry and environmental engineering will be inseparable identities in 
years to come and in the distant future [ 20 ]. The question of application of electro-
chemistry to environmental engineering comes into the mind’s horizon. The scien-
tifi c world is moving at a rapid pace. The answers to the various intricate questions 
of the applicability of nanoscale electrochemistry to environmental engineering are 
dealt with in the present scientifi c scenario. The unknown world of nanoscale elec-
trochemistry is opening up its new chapter of history and is unraveling the hidden 
facts [ 23 ,  2 ]. 

 Scientifi c endeavor is immense and versatile. A short step in the path to destiny 
in nanoelectrochemical science can be a giant step toward environmental engineer-
ing horizon. The vision of the present is slowly changing with the rigors of question 
of environmental sustainability. Man’s recreation of nature’s gifts is awaiting. 
A large amount of research in the fi eld of environmental sustainability can bring a 
revolutionary change to mankind [ 19 ,  24 – 26 ].  

    A Critical and Rigorous Approach of Application 
of Nanofiltration in Environmental Engineering 

 The world of environmental engineering is moving at a rapid and steadfast pace. 
The hurdles and barriers of the intricate science of nanofi ltration are won in an 
equally unbelievable pace. The discovery of Loeb–Sourirajan model in membrane 
separation process has revolutionized the entire chemical engineering and environ-
mental engineering paradigm [ 19 ,  27 ,  28 ]. The only question lies in the fact of the 
success of this technology to developing countries around the world with respect to 
desalination and provision of clean drinking water. Also the question of environ-
mental sustainability comes into the mind’s horizon. The truth of future of nanofi l-
tration and membrane separation processes will be truly achieved in years to come 
with the invention of new technologies and newer vision [ 20 ,  27 ,  28 ].  

    Nanotechnology as well as Developed and Developing Society 

 Nanotechnology is the next-generation science. Its potential is immense and versa-
tile [ 20 ]. The developed as well as developing world is gearing toward a next- 
generation scientifi c extravaganza in the fi eld of nanotechnology [ 28 ]. Hurdles and 
barriers are won, and a new era is being expected in the near future. The only diffi -
cult question is the application of nanotechnology to the rural mass in developing 
nations throughout the world. In this endeavor, the world is not lagging behind. The 
vicious problem of groundwater contamination and arsenic contamination of drink-
ing water in Southeast Asian countries has come to a scenario of resounding 
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success. Again one has to stress upon the fact that nanotechnology is breaking 
visionary barriers and is bearing fruits for countless millions [ 28 ]. 

 Developed as well as developing society is moving briskly from one giant step 
over another in its progress in science. The question of validation of human 
knowledge is witnessing a new dawn and a new awakening. The world and human 
civilization today is witnessing a new chapter and a new era as regards the applica-
tion of nanotechnology [ 28 ].  

    The Invigorating and Coherent World of Nanoscience, 
Nanotechnology, and Molecular Nanotechnology 

 The dimensions of nanoscience and nanotechnology are both invigorating and 
coherent to mankind and society [ 28 ]. It is opening up new vistas and new avenues. 
Unanswered questions in nanoscience and nanotechnology are dealt with lucidly 
with intellectual rigor and impeccable acuity. The application of nanotechnology 
and nanoscale electrochemistry to the area of immense engineering avenues and 
technological vistas will be the research for the future. Man’s as well as scientist’s 
vision will be successfully validated in the years to come with the advancement of 
nanoscale electrochemistry and nanotechnology. 

 The concern of the scientist is to unravel the intricate vision of nanotechnology 
and nanoscale electrochemistry. The future is wide and varied. The question of 
application of nanotechnology to the common mass and grassroots level will always 
be a forerunner in targets toward future scientifi c endeavors. A new world on the 
application of nanotechnology and nanofi ltration is gearing up for the future. So in 
such a situation the answers to the varied questions need to be dealt with lucidity 
and intense scientifi c endeavor [ 20 ,  28 ]. 

 In today’s civilization, nanotechnology can be an immense boon to the applica-
tion areas of environmental engineering such as monitoring, pollution prevention, 
and remediation methods. There are a number of avenues of applications such as 
contaminated water and air treatment, self-cleaning materials, energy applications, 
novel functionalized adsorbents for environmental and industrial applications, and 
nanomaterials for sustainable energy production [ 22 ,  29 ]. The defi nite and proven 
world of immense challenges in molecular level nanotechnology will surely be an 
eye opener to the major intricacies of research in nanoelectrochemistry and nano-
technology [ 22 ,  28 ,  29 ].  

    Future Dimensions in the Field of Nanoelectrochemistry 

 The future of nanotechnology is far-reaching and groundbreaking [ 2 ]. The ques-
tions are not unsurmountable. The vision of the future for the fi eld of nanotech-
nology is extremely undoubtful. In a similar manner, nanoelectrochemistry can 
be the visionary technology of the future. The answers to nanoscale 
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electrochemistry can break barriers and cross frontiers. Today’s urge and 
endeavor at every step of science are tomorrow’s vision. Application area in 
grassroots level is not a mirage anymore. Nanoelectrochemistry will reach its 
vision in years to come [ 21 ]. 

 Future dimensions in the fi eld of nanoscale electrochemistry are instinctive and 
at the same time intuitive in nature [ 21 ]. The question of application to mankind and 
human society vibrantly comes into the mind’s horizon and scientist’s vision. 
Application areas are vast and visionary, but the applicability is immature and 
latent. So, here, the world of dedicated research endeavor comes into play. The 
developed as well as developing world is gearing up resources to tackle the intricate 
problems behind this widely unknown phenomenon. Time will soon be a witness to 
the immeasurable discoveries in years to come [ 21 ].  

    Engineering Vision, Engineering Innovation, 
and Vision of Tomorrow 

 The vision of today is the vision of tomorrow and the future. The greatness of 
today’s research endeavor will bear fruits for a better tomorrow. New electrochemi-
cal phenomenon, properties, and technological capabilities essential to reducing the 
dimensions of an electrochemical probe to the nanometer scale as well as electro-
chemical properties of new nanoscale electrode materials are the ultimate vision of 
tomorrow. Lots of questions are unanswered, but the future of nanoscale electro-
chemistry is immense, bright, and inspiring [ 28 ]. 

 The vision of tomorrow in the fi eld of nanoscale electrochemistry lies at the 
hands of immeasurable endeavors of nanotechnologists. Nanoelectrochemistry has 
unquestionable resources and potential. The areas of nanoelectronics, nanoelec-
trodes, nanoparticles, and smart nanomaterials are opening up new vistas in the 
path to destiny. Visionary aims in the fi eld of application area of nanoelectrochem-
istry to mankind will surely bear fruits in future generations with immense convic-
tion and truth [ 28 ]. 

 The methodical developments of the last two decades helped to establish electro-
chemistry as a modern and visionary nanoscience [ 28 ]. Current interfacial electro-
chemistry has many and widely oriented questions and often offers unique or 
superior possibilities heralding in a new era of nanoscience and nanotechnology. All 
these should be a bright future for this discipline and make it an interesting topic for 
students and researchers coming from diverse areas. To meet the challenges faced 
in future research, modern electrochemical education must convey a surface 
science- oriented, microscopic picture without sacrifi cing fundamental knowledge 
on electrochemical methods and electrode kinetics. Balancing and interconnecting 
these two sides are a delicate task that, in view of the ongoing rapid development of 
this fi eld, requires continuous adaptation and depends to some extent on the back-
ground, interests, and vision of the audience [ 4 ,  30 ,  31 ].  
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    Challenges in Scientific Pursuit and Progress in the Domain 
of Nanoelectrochemistry 

 Challenges in scientifi c pursuit, scientifi c progress, and scientifi c determination are 
immense and versatile [ 28 ]. The domain of nanotechnology and nanoelectrochem-
istry is moving and striving toward a newer generation of advancements of science 
and engineering [ 32 ,  33 ]. The visionary challenges and the intricacies in the fi eld of 
nanoelectrochemistry need to be restructured and revamped. History of mankind 
and the future of human civilization are witnesses to the immense strides made in 
the fi eld of nanotechnology. The visionary challenges will open a wide avenue of 
innovation in successive generations of immense scientifi c pursuit [ 28 ]. 

 Challenges in the domain of electrochemistry and nanotechnology are moving 
toward a visionary era. The world of scientifi c determination is validated at every 
turn of human life. The vision of nanotechnology needs to be changed and reframed. 
The effi cacies and the upshot will surely open up new generations of scientifi c 
thoughts [ 28 ].  

    The Visionary Challenges in the Domain of Nanoscience 
and Nanotechnology 

 Nanotechnology heralds in a new age and a resurgent era of science and engineering. 
The path to progress is surpassing many visionary frontiers [ 27 ,  28 ]. The answers to 
the intricacies in the fi eld of nanoscience and nanoengineering have made our scien-
tifi c domain to surge toward a new generation of scientifi c advancement. Hurdles, 
barriers, and immense vision will surely be the frontrunners to a new age of inven-
tion, innovation, and ideas in the fi eld of nanotechnology. Nanotechnology has vast 
frontiers in diverse areas of scientifi c pursuit. Medical science in today’s world is 
revolutionized and reframed. The restructuring has inputs from the ability to over-
come serious and debilitating illnesses. Physicians would seriously delve into the 
depths of nanosurgery and be able to attack illness and injury at the molecular level. 
This would of course and surely eradicate cancer. Cancer cells would be identifi ed 
and removed, and the surgical implantation of healthy cells would soon follow. 
Moreover, there would be an entire nanosurgical domain to help cure everything 
from natural aging to diabetes to bone spurs. The visionary frontiers of the applica-
tion area of nanotechnology in diverse fi elds and engulfi ng diverse phenomena are 
vast and unimaginable. The application of basic science and the application of both 
nanotechnology and nanoelectrochemistry have an umbilical cord linked with great 
fi rmness. In today’s civilization, validation of scientifi c knowledge and scientifi c 
innovation is the need of the hour in the progress of humanity. Nanoscience, nano-
technology, or nanoelectrochemistry will soon remove the barriers of scientifi c chal-
lenges as civilization plunges into the deep sea of the twenty-fi rst century. Validation 
of knowledge will be surely restructured and rebuilt in years to come.  
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    Scientific Vision, Scientific Truth, and the Progress 
in Nanotechnology 

 Nanotechnology in today’s world is moving briskly and steadfastly toward one 
newer vision over another. Progress of science, technology, and engineering in 
today’s scientifi c generation needs to be reassessed and re-envisioned. The scien-
tifi c vision and the scientifi c truth will open up new areas in nanotechnology with 
years to come. The progress in nanotechnology is inspiring and immensely proven. 
In today’s world, nanotechnology is inevitable connected with energy and environ-
mental sustainability. Vision of the future needs scientifi c assessment and immense 
scientifi c fortitude. History of mankind will witness a new era in the domain of 
nanotechnology with the turn of this century of science and engineering. 

 Scientifi c truth and immense scientifi c resilience are the visionary prefi xes or 
coin words of today’s world of nanotechnology and its branches. Nanoelectrochemistry 
needs to be scientifi cally readdressed and restructured. This branch of science along 
with colloid chemistry is the torchbearer of the newer vision of nanotechnology. 
The scientifi c truth will pave the way for newer vision and newer scientifi c break-
throughs. The area of nanofi ltration will be restructured with the immense applica-
tion in wastewater treatment, desalination, drinking water treatment, and other areas 
of environmental engineering science. History of nanoscience and nanotechnology 
will witness a new revolution in a new era. 

 Nanotechnology in today’s world has an umbilical cord with energy and environ-
mental sustainability. Application of nanofi ltration in environmental engineering 
science is a glorious example. Environmental catastrophes are boon to disaster to 
mankind. Stringent restrictions have urged scientifi c community to restructure their 
thoughts and plunge into the deep vision and strong comprehension of nanofi ltra-
tion. The world of challenges will surely witness a new era in the application domain 
of nanotechnology.  

    March of Science in the Domain of Nanoscale Electrochemistry 
and the Future Scientific Vision 

 History of mankind is witnessing visionary challenges and ever-growing scientifi c chal-
lenges [ 28 ]. The doctrine of nanoscale electrochemistry is vast, versatile, and ground-
breaking. The effectivity and greatness of the application areas of nanoelectrochemistry 
need to be restructured with the progress of science and technology. The burgeoning 
world of nanotechnology will surely surpass many visionary frontiers with years to 
come. The strong notion of validation of laboratory scale research to human society also 
needs to be envisioned with the turn of every decade as science progresses. 

 March of science and engineering is awesome and inspiring [ 28 ]. The applica-
tion areas of nanoelectrochemistry and nanofi ltration are surpassing visionary 
frontiers. The vision of application domain of nanofi ltration in environmental 
engineering science will witness a dawn in science as civilization progresses [ 28 ]. 
Nanotechnology will also open up wide windows of futuristic vision and usher in 
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a defi nitive visionary scientifi c generation. It will truthfully absorb the immense 
barriers and overcome scientifi c frontiers with the passage of time and with prog-
ress of human civilization [ 28 ].  

    Future Thoughts, Future Application Areas 
of Nanoelectrochemistry and Nanotechnology, 
and the Ultimate Vision for the Future 

 Future thoughts, future application areas, and ultimate vision are wide and bright. 
Nanoelectrochemistry and nanotechnology need to be linked to nanofi ltration and 
environmental engineering [ 32 ]. Water crisis and water shortage of our present-day 
civilization are boons to disaster. In such a crucial and critical juncture of history 
and time, application areas of nanoelectrochemistry and nanotechnology need to be 
restructured. The world of challenges and hurdles will open a new era of hope and 
immense vision if targets are achieved in the path to progress [ 27 ,  28 ]. The scien-
tist’s vision will be equally validated in years and generations to come [ 32 ]. 

 Future vision in the domain of nanotechnology needs to be redrafted and rejudged 
with the immense application of nanoelectrochemistry. A scientist’s vision will be 
only emboldened if scientifi c justifi cation in scientifi c endeavor is addressed and 
scientifi c validation is envisioned.  

    Conclusion 

 The world of unknown is opening up the barriers of science and technology to the 
world of imagination of known. The fruits of nanotechnology are impressive and 
greatly visionary. Vision of nanoscience and nanotechnology is an unfi nished jour-
ney. It is still latent and immature. The fruits of this domain of nanoscale electro-
chemistry are enviable and unquestionable. Daring ventures in the fi eld of nanoscale 
electrochemistry particularly in environmental science can open up innumerable 
avenues in years to come, and then scientist’s vision will be validated. 

 The treatise on nanoelectrochemistry will be incomplete if one does not acknowl-
edge the vision of scientifi c endeavor and the immense hardship in the path to vali-
dation, success, and glory. The world of scientifi c challenges and scientifi c barriers 
will move into oblivion with the turn of the century along with validation of scien-
tifi c endeavor. History of nanotechnology will then witness a new dawn of scientifi c 
breakthroughs.     
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Abstract
Supported nanostructures represent the cornerstone for numerous applications in 
different fields such as electrocatalysis (fuel cells) or electroanalysis (sensors). 
In contrast to other methods, electrochemical deposition allows the growth of 
the nanostructures directly on the final support, improving the electron pathway 
within the substrate, nanostructure, and electrolyte. However, despite the increas-
ing number of publications in the field, the early stages of electrochemical 
 nanocrystal formation are still under discussion.

In this chapter, we first provide a survey on the traditional approaches to study 
the early stages of electrochemical nucleation and growth, together with the 
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 classical theories used to understand them. Next, we describe our most recent 
 findings which have led to reformulate the Volmer-Weber island growth mecha-
nism into an electrochemical aggregative growth mechanism which mimics the 
atomistic processes of the early stages of thin-film growth by considering nano-
clusters of few nm as building blocks instead of single atoms. We prove that the 
early stages of nanoelectrodeposition are strongly affected by nanocluster self-
limiting growth, surface diffusion, aggregation, and coalescence.

Keywords
Supported nanoparticles • Electrodeposition • Nucleation and growth • 
Aggregative growth

 Introduction

Supported nanostructures represent the cornerstone for numerous applications in 
different fields such as electrocatalysis (fuel cells) [1–3] or electroanalysis (sensors) 
[4–6] among others [7]. In both cases, supported metal nanoparticles (NPs) are the 
active materials whose development can boost both technologies to levels almost 
unimaginable a few years ago.

Metal nanoparticles can be synthesized by multiple methods either in solution or 
in the gas phase, as reviewed many times [3, 8, 9], colloidal synthesis and other 
solution-based methods being the most common approach [10–13]. Nonetheless, 
when generated particles are required to be attached to a surface, previously men-
tioned methods do not always provide the best solution. Physical vapor deposition 
methods such as sputtering or electron beam deposition require expensive high- 
vacuum facilities, whereas colloids may lose some of their properties due to the 
organic ligands used during the synthesis procedure or because of unwanted aggre-
gation during deposition on a given support [14–16].

Alternatively, electrochemical deposition allows the growth of the nanostruc-
tures in one step, directly onto the final support, without needing further sample 
preparation, thus improving the electron pathway within the substrate, nanostruc-
ture, and environment. Consequently, the technique has been proven effective to 
obtain highly electroactive nanostructures with potential for fuel cell [17–20] or 
(bio)sensing [5, 4] applications. Moreover, the technique is surfactant free, highly 
selective, cost effective, and allows the nature of the nanoclusters to be easily tuned 
by changing electrolyte composition and deposition parameters [21, 22].

However, compared to other synthesis methods, the reliability of the synthesis 
procedures, size and shape tunability, or size dispersion control is far from being at 
the same level of development. The main reason for this is a lack of knowledge of 
the fundamental aspects of nanoscale electrodeposition. Despite the increasing 
number of publications in the field, the early stages of nanocrystal formation mech-
anisms in electrochemical processes are still under discussion.
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 Early Stages of Electrochemical Nucleation and Growth:  
Classical Approach

Nucleation and growth phenomena have been thoroughly studied since more than a 
century for colloidal syntheses [23], thin-film growth [24], and electrochemical 
deposition processes [25] among others, resulting in a classic nucleation and growth 
theory which predicts that nanocrystals grow irreversibly by atomic addition until 
the reaction is halted.

Contrarily to other nanoparticle synthesis or thin-film deposition methods, elec-
trochemical deposition processes can be followed in situ by recording the current 
(or potential) transients after applying different potential (or current) pulses. In the 
case of potentiostatic single-pulse electrodeposition, the evaluation of the current- 
time transients, or chronoamperograms, provides invaluable time-resolved infor-
mation about nucleation and growth processes and is hence performed and reviewed 
on countless occasions [26–30].

If we consider a homogeneous surface such as amorphous carbon, when a given 
overpotential, η, is applied, nuclei are supposed to form at random locations over 
the surface according to Eq. 1:

 
N t N At( ) = - -( )éë ùû0 1 exp  (1)

N0 is the saturation number density (maximum number of nuclei within the surface), 
A is the nucleation rate constant, and AN0 is the nucleation rate. In principle, 
all formed nuclei have r ≥ rCrit, so they will grow irreversibly until the potential 
pulse is stopped or the concentration of active species in their surroundings decreases 
below a certain level. By considering that the only growth mechanism is that of 
direct reduction of ions onto the surface of three-dimensional hemispherical 
nuclei (direct attachment), plenty of theoretical work has been carried out to relate 
the chronoamperometric response I(t) to the nucleation rate and N(t) (Eq. 1)  
[26, 31–33, 28].

In short, the growth of each nucleus affects both the concentration of active 
species and the overpotential distribution in the cluster vicinity, creating zones of 
reduced concentration and overpotential and thus reduced nucleation rate. Then, if 
multiple clusters are considered, their local zones of reduced nucleation rate 
spread and gradually overlap. This is a very complex problem which is frequently 
solved by approximating the areas of reduced nucleation rate by overlapping pla-
nar diffusion zones in which nucleation is fully arrested. Then, if it is considered 
that these growth centers, which are randomly distributed on the electrode surface, 
grow under spherical diffusion control, the total electrochemical current can be 
expressed by
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if the nucleation is progressive, and
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if the nucleation is instantaneous. It is important to note here that Eq. 1 accounts for 
progressive nucleation, but instantaneous nucleation can be thought as the limit 
A → ∞ and then N = N0, so N0 nuclei are instantaneously formed at t = 0. S is the elec-
trode area, j(t) is the current density, F is the Faraday constant, z is the number of 
transferred electrons, c is the electrolyte concentration, D is the diffusion coefficient, 
ρ is the density, M is the molar mass, β equals 1 according to references [26, 31] and 
4/3 according to references [32, 33], and γ equals 4/3 according to references [26, 34] 
and 1 according to the other references. In the next sections, we will consider β = 1 
and γ = 4/3. Equations 2 and 3 lead to I(t) profiles which display a peaked shape, 
characteristic of 3D nucleation and diffusion-limited growth processes.

Other widely cited reformulations of the model have been developed by 
Scharifker and Mostany (SM) [31], Mirkin and Milov (MM) [32], and Heerman and 
Tarallo (HT) [33]. Additional theoretical approaches considered to study electro-
chemical nucleation and growth phenomena can be found elsewhere [35–38, 30]. 
It is not the purpose of this chapter to elaborate more on details of these theoretical 
models, but the reader can find more information in the bibliographic references 
provided in Table 1.

Table 1 Selected bibliographic references that describe theoretically the early stages of 
electro chemical nucleation and growth

Ref. Year Type of publication Comments

1 [26] 1983 Journal paper Scharifker-Hills Model (SH)

2 [31] 1984 Journal paper Scharifker-Mostany Model (SM)

3 [32] 1990 Journal paper Mirkin-Nilov Model (MN)

4 [35] 1998 Journal paper Non-stationary nucleation approach

5 [36] 1998 Journal paper Non-stationary nucleation approach

6 [33] 2000 Journal paper Herman-Tarallo Model (HT)

7 [37] 2005 Journal paper Model including proton co-reduction

8 [38] 2008 Journal paper Multistep electrochemical reactions

9 [27] 1999 Review paper –

10 [28] 2003 Review paper –

11 [29] 2003 Review paper –

12 [30] 2008 Review paper –

13 [25] 1997 Book Electrochemical nucleation and growth

14 [21] 2006 Book Electrodeposition

15 [22] 2007 Book Nanoelectrodeposition
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The important feature to emphasize here is that independently of the slight 
 modifications of the mathematical description of the processes, all the models 
describing three-dimensional electrochemical nucleation and growth are based on 
several assumptions that have no direct proof. One of them is the fact that all nuclei 
are pinned to a specific site on the surface, and another is that they only grow by 
direct attachment. This concept will be thoroughly discussed throughout this 
chapter. Further description of electrochemical nucleation and growth phenomena 
can be found in several books and review papers (see Table 1).

Qualitative agreement of the current transients with the referred models has been 
reported on countless occasions. However, the models allow a quantitative analysis 
which has been carried out on much less occasions. The most typical approach is to 
first fit the chronoamperograms obtained at different overpotentials. This way, if we 
take Eq. 2 as an example, the diffusion coefficient D and the nucleation rate AN0 can 
be obtained by a standard least-squares algorithm. On the other hand, morphologi-
cal characterization of the substrates is carried out to estimate the number of parti-
cles at different deposition times in order to get N(t). The nucleation rate constant A 
and saturation number density N0 can be inferred from Eq. 1 in order to compare the 
values with these obtained with the model fit and hence check the validity of the 
models for different experimental systems.

One important aspect which is emphasized here is related to the experimental 
determination of N(t), N being the number of formed nuclei after a given deposition 
time. Obviously, an accurate determination of N will depend on the dimensions of 
the nuclei and on the size resolution of the characterization technique employed. 
Inherent to any electrochemical deposition system, the attachment of the nanopar-
ticles to a surface has restricted traditionally the range of applicable techniques to 
surface analytical techniques such as Field Emission Scanning Electron Microscopy 
(FESEM) [19, 39, 40] or Atomic Force Microscopy (AFM)/Scanning Tunneling 
Microscopy (STM) [41–44]. In practice, however, the resolution of a FESEM is 
limited to particles with diameters larger than 5–6 nm, and AFM/STM can only be 
carried out accurately on very flat substrates, its lateral resolution being much 
affected by the geometry of the tip. Also, in situ Transmission Electron Microscopy 
(TEM) imaging has been developed and used to study the electrodeposition of cop-
per nuclei on gold thin films [45–49]. Unfortunately, the fact that the electrons had 
to be transmitted through the electrolyte made their TEM spatial resolution rise up 
to about 5 nm, making it again impossible to detect smaller nuclei.

Several groups have reported quantitative analyses in which experimental obser-
vations agree [40, 41, 50, 51] or are in conflict with electrochemical nucleation and 
growth models [42, 44, 46, 52]. Further details and more bibliographic references 
are provided in Table 2. Anyhow, it is clear that even in the best of the cases, the 
presence or absence of nanoparticles of d ≤ 5 nm cannot be ascertained. Critical 
clusters are known to be much smaller than 5 nm. Hence, it is doubtful to which 
extent experimental observations of particle number densities can be directly related 
to N(t). Therefore, it can be asserted that the early stages of electrochemical nucle-
ation and growth are far from being fully understood.
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 New Insights into Nanoelectrodeposition:  
An Electrochemical Aggregative Growth Mechanism

To clear the uncertainties derived from a lack of resolution, a novel approach has been 
introduced by our research group. Such an approach consists in using carbon- coated 
TEM grids (CCTGs) as electrochemical electrodes. In this way, an accurate determi-
nation of the nanoparticle size distributions and structural characterization at the 
atomic scale can be combined with electrochemical measurements. More details on 
the use of CCTGs as electrochemical electrodes can be found elsewhere [57–59]. The 
next two sections describe the studies, performed by means of this approach, of silver 
[58] and platinum [60] electrodeposition. The authors would like to acknowledge 
Prof. Sara Bals, Dr. Xiaoxing Ke and Thomas Altantzis for the excellent TEM analysis 
carried out at the Electron Microscopy for Materials Science (EMAT) research group 
of the University of Antwerp. The authors would also like to acknowledge Dr. Joshua 
Hammons for his active involvement in the research described in this chapter.

 Silver Electrodeposition

Potentiostatic single-pulse depositions were performed by pulsing the electrode 
potential to E = −0.4 V vs Ag/AgCl, in a solution of 0.1 M KNO3 + 1 × 10−3 M 
AgNO3, where the process should be diffusion controlled and no other reactions 
such as hydrogen evolution are present. The early stages of Ag electrochemical 
nucleation and growth were then analyzed according to the classical electrochemi-
cal models described in the section “Early Stages of Electrochemical Nucleation 
and Growth: Classical Approach.” More details on the experiments explained here-
after can be found elsewhere [57–59].

 Comparison Between Theoretical Models and Experimental Data
On the one hand, the fact that the potentiostatic current transients satisfy the SH 
model for progressive nucleation implies that the dimensional chronoamperogram 
can be fitted to Eq. 2 so that the nucleation rate AN0 is obtained. Good agreement is 
obtained with the best-fitting parameter being AN0 = 4.21 × 1011 ± 5.69 × 109 parti-
cles/cm2s. Figure 1a shows the experimental chronoamperogram and the theoretical 
model for the best-fitting parameters and different values of AN0.

On the other hand, it is possible to determine experimentally the evolution with 
time of the particle density, N(t). Figure 1b shows N(t), after analyzing FESEM 
pictures such as this of Fig. 2a. This means that it is possible to fit these data to an 
exponential curve to obtain A and N0, as shown in Fig. 1b.

We clearly identify an exponential behavior which agrees with Eq. 1, A = 92 ± 43 s−1 
and N0 = 5.28 × 109 ± 8.85 × 108 particles/cm2 being the best-fitting parameters. The 
product of these two values gives AN0 = 4.86 × 1011 ± 2.27 × 1011 particles/cm2s, 
which is in good agreement with the value obtained from the fitting of the chrono-
amperometric curve to Eq. 2. This means that the evolution with time of the particle 
distribution agrees with the classical progressive nucleation model.

43 New Insights in Nanoelectrodeposition…



1356

Fig. 1 (a) Experimental chronoamperogram of the potentiostatic electrodeposition of silver at 
E = −0.4 V vs Ag/AgCl and dimensional plots of the SH model for progressive nucleation (Eq. 2) 
with different values of the nucleation rate constant AN0. (b) Evolution of “large” nanoparticle 
number density with deposition time obtained from the analysis of HAADF-STEM pictures and 
the best exponential fit of 1
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Fig. 2 Typical FESEM (a) and HAADF-STEM (b) pictures after potentiostatic electrodeposition 
of silver at E = −0.4 V vs Ag/AgCl during 10 ms. Evolution of “large” and “small” nanoparticle 
number density (c) and size (d) with deposition time obtained from the analysis of STEM pictures. 
Probe-corrected HAADF-STEM pictures of a monocrystalline (e) and polycrystalline (f) Ag 
nanoparticle
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 Particle Analysis: Bimodal Size Distribution and High-Resolution 
TEM studies
In this case, High-Angle Annular Dark-Field Scanning Transmission Electron 
Microscopy (HAADF-STEM) has also been used to analyze particle distributions 
after potentiostatic electrodeposition (see Fig. 2b). This way, no doubt should arise 
from the limits of resolution because this TEM mode can yield sub-Angstrom 
resolution.

In contrast with FESEM images (Fig. 2a), two populations are clearly distin-
guished corresponding to a bimodal size distribution in which “large” particles have 
d ≥ 6 nm whereas the diameter of the “small” particles is always smaller than 
2.5 nm. Figure 2 shows the evolution of particle density (c) and diameter (d) as a 
function of deposition time. The number of “large” particles grows exponentially 
with time until it becomes saturated after 30 ms. Accordingly, their average diame-
ter and size dispersion also grow with time.

On the other hand, the number of randomly dispersed “small” particles also 
grows with time during the first 10 ms but then decreases during the following 
20–30 ms. For longer times, the number of those kinds of particles is negligible. 
Surprisingly, the size of these particles remains constant with d = 1.70 ± 0.55 nm, 
independently of the deposition time.

The presence of such a bimodal size distribution in the early stages of the process 
in which such “large” growing particles coexist with randomly dispersed nongrow-
ing “small” clusters cannot be predicted by the classical models. It is logical that the 
nucleation of the “small” clusters is not reflected in the chronoamperograms because 
their contribution to the total current compared to the larger particles is very small, 
though the understanding of why these nuclei are present and which parameters 
may affect their size and number density is certainly of great importance for 
nanoscale electrodeposition.

In addition, probe-corrected HAADF-STEM was also used to investigate the 
atomic-scale structure of the particles. Contrarily to what would be expected from a 
growth mechanism based on direct attachment, most of the medium-sized particles 
(6 ≤ d ≤ 15 nm) obtained after short deposition times (tdep ≤ 20 ms) presented poly-
crystalline structures in which the crystalline domains had dimensions ranging from 
1 to 3 nm (Fig. 2f). It must be pointed out that the dimension of these structural 
domains coincides with the size of the dispersed nongrowing shown in Fig. 2b. Only 
a small fraction of medium-sized nanoparticles (Fig. 2e) was found to be monocrys-
talline. This suggests that a mechanism such as aggregation–coalescence of small 
clusters governs the early electrochemical growth of the nanoparticles.

In contrast, larger particles obtained at longer deposition times (tdep ≥ 20 ms) 
showed in most of the cases monocrystalline structures with defects such as stack-
ing faults and twinnings, typical from coalescence events [61, 62]. This may be 
explained by the tendency of polycrystalline nanoparticles to reduce its internal 
energy by recrystallizing into a monocrystalline structure [63] and indicates that 
further nanoparticle growth is again governed by direct attachment because other-
wise larger nanoparticles should present polycrystalline domains at least in their 
outer surface.
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 Ag Electrodeposition on Carbon: An Electrochemical Aggregative 
Growth Mechanism
The data here presented indicates that classical electrochemical nucleation and 
growth theories do not fully account for some nanoscale phenomena occurring dur-
ing the early stages of silver electrodeposition. Hence, we have suggested that an 
Electrochemical Aggregative Growth Mechanism might be the clue to understand 
the observed phenomena on the early stages of electrochemical nanoparticle forma-
tion and growth. Figure 3 represents schematically the stages of the proposed mech-
anism. Further information about the discussion presented in this section can be 
found elsewhere [58, 59].

In the first instants after the application of a negative potential, very small clus-
ters of r ≈ rc are formed randomly distributed through the carbon substrate (parti-
cles such as 1 in Fig. 3a). Then, as the nucleation is progressive, more small clusters 
will be formed until the nucleation exclusion zones have overlapped and covered 
the entire surface. Although those small clusters do not dissolve because r ≥ rc, they 
are unstable and can easily move through the surface because of their small size 
[64] and the weak van der Waals (VDW) forces between carbon and silver atoms.

These small clusters aggregate with each other or with other aggregates. This 
aggregation mechanism takes place due to a thermodynamic driving force altering 
the system toward its lowest energy configuration, as small nuclei may move 
through the surface because of the same reasons that adatoms move toward edges or 
kink sites [64].

Then, until the conditions of planar diffusion are reached (i.e., when nucleation 
exclusion zones have overlapped and covered the entire surface as in Fig. 3c), three 
phenomena happen in parallel: nucleation of new small clusters, surface movement 
of small clusters which aggregate with each other or with other aggregates, and 
direct attachment (i.e., incorporation of Ag+ ions onto aggregates and small clus-
ters). A small fraction of monocrystalline structures (particles such as 4 in Fig. 3b) 
is also present. Therefore, we suggest that both aggregation and direct attachment 
are responsible for early nanoparticle growth, aggregation being predominant over 
the classical growth mechanism.

Afterward, when nucleation exclusion zones have completely covered the sur-
face (Fig. 3c), no more nucleation is supposed to happen on the carbon surface so 
the concentration of the randomly dispersed small clusters decreases due to their 
aggregation or incorporation in the other aggregates.

Finally, when all the small clusters have been consumed (Fig. 3d), the number of 
aggregates reaches saturation. At this stage, previous polycrystalline and aggre-
gated particles undergo recrystallization into monocrystalline structures so most of 
the larger particles are monocrystalline with a high amount of defects (particles 
such as 7 and 8 in Fig. 3c and d). In later stages, as no more small clusters are pres-
ent on the carbon surface and nucleation exclusion zones cover all the carbon sur-
face, further nanoparticle growth should be due to direct attachment.

The most significant feature introduced by the proposed mechanism is that in the 
early stages of electrochemical nucleation and growth, surface movement and 
aggregation of clusters of d ≈ 1 − 2 nm cannot be considered negligible and 
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Fig. 3 Top: Electrochemical Aggregative Growth mechanism. Red dots represent the nanoparti-
cles and blue circles the projection of their corresponding nucleation exclusion zones. Black stripes 
within a particle represent defects, whereas the absence of stripes represents a defect-free mono-
crystalline structure. Bottom: Representation of the classical electrochemical growth by direct 
attachment and the Electrochemical Aggregative Growth mechanism
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determine in great extent the size and structure of electrodeposited nanostructures. 
This is a striking result not only because these mechanisms had never been consid-
ered in the widely accepted electrochemical models for nucleation and growth but 
also because as a result, nanoparticles in the early stages of their electrochemical 
growth are polycrystalline instead of monocrystalline, which is the most commonly 
accepted hypothesis.

 Platinum Electrodeposition

To get new insights into the electrodeposition of another metal, platinum deposi-
tion was studied with a similar strategy to the one described in the section “Silver 
Electrodeposition.” Hence, potentiostatic single-pulse depositions were performed 
by pulsing the electrode potential to various potentials in a solution of 1 × 10−3 M 
H2PtCl6 + 0.1 M KCl. The early stages of Pt electrochemical nucleation and growth 
were again analyzed according to the classical electrochemical models described 
in the section “Early Stages of Electrochemical Nucleation and Growth: Classical 
Approach.” More details on the experiments explained hereafter can be found 
elsewhere [60, 59].

Comparison Between Theoretical Models and Experimental Data
Contrarily to the case of Ag electrodeposition, the current-time transients obtained 
for the early stages of platinum electrodeposition, shown in Fig. 4a, do not always 
display the typical peaked-shape characteristic of the 3D island growth mechanism 
[26, 25].

However, for some potentials, such as E = −0.5 V, the peaked shape of the current 
transients allows an analysis according to the theoretical models described in the 
section “Early Stages of Electrochemical Nucleation and Growth: Classical 
Approach.” In this case, a good fit is found for an instantaneous nucleation model, 
leading to a saturation particle density, N ≈ 4 × 105 particles/cm2 [65]. It must be 
noted that platinum electrodeposition occurs together with different hydrogen 
reduction reactions catalyzed by the actual platinum surface. Therefore, the obtained 
current-time transients represent a convolution of both phenomena. If we take into 
account the effect of H adsorption in the model fit [37, 56], a good fit is in this case 
found for a progressive nucleation model. In this case, the nucleation rate is found 
to be approximately AN0 = 7.8 × 104 particles/cm2.

On the other hand, it is possible to determine experimentally the particle den-
sity, N, for different potentials and times, as shown in Fig. 4b. For E = −0.5 V and 
t = 20s, N = 3 × 1010 particles/cm2, being approximately five orders of magnitude 
larger than the value obtained by fitting the chronoamperograms to the classical 
models. Although this reflects an important contradiction, a literature analysis 
reveals that for Pt electrodeposition, the difference in number density between 
experimental and calculated values has also been reported to rise up to several 
orders of magnitude [42]. Similar phenomena also occur with other metals such as 
Cu [46] or Pd [56].

43 New Insights in Nanoelectrodeposition…



1362

Particle Analysis: Bimodal Size Distribution and High-Resolution 
TEM Studies
To clear the doubts arising from a lack of resolution, HAADF-STEM was also used to 
analyze particle distributions. HAADF-STEM images at low magnification have 
shown that for high overpotentials (E ≤ −0.4 V), a population of nanoclusters of 
d ≈ 2 − 4 nm coexists with larger nanostructures regardless of deposition time. However, 
only large dendritic structures are observed at low overpotentials (E ≥ −0.2 V) [60].

Fig. 4 (a) Chronoamperommetric current transients obtained for the electrodeposition platinum 
onto CCTGs from a solution of 1 × 10−3 M H2PtCl6 + 0.1 M KCl. (b) Evolution of particle number 
density with applied potential for different deposition times
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Although the morphology of the deposits and the current transients are very 
 different from the ones obtained for Ag electrodeposition (section “Silver 
Electrodeposition”), bimodal size distributions for the early stages of Pt electrode-
position at certain potentials suggest that similar growth by nanocluster aggregation 
may be taking place.

To get more hints on their formation mechanism, electron tomography and 
HAADF-STEM at higher magnification were used to observe representative nano-
structures obtained at the two potential regimes and different deposition times. 
Figure 5a–c are representative for the low overpotential regime, and Fig. 5d–f are 
representative for the high overpotential regime.

At low overpotentials, nanodendritic morphologies are depicted in all cases, con-
sisting of many randomly oriented “branches” which build up a quasicircular shape 
(Fig. 5a, b). Different deposition times do not influence the dendritic morphology. 
In all cases, many spherical protuberances of d ≈ 2 nm can be seen on the outer 
edges of the nanostructure, most of the times linked to the rest of the body by a nar-
rower neck. Even if lattice fringes extend coherently through large domains within 
the nanostructure, domains with different crystallographic orientation coexist within 
the same “particle” as shown by Fig. 5c.

Fig. 5 Three-dimensional electron tomography reconstructions (top views: electrode surface 
below the particle) of platinum dendritic nanostructures obtained by electrodeposition at potential 
of (a) −0.1 V for 20 s and (d) −0.6 V for 200 s. High magnification HAADF-STEM images of 
platinum nanostructures obtained after electrodeposition at a potential of (b) −0.1 V for 200 s, (e) 
−0.6 V for 3 s and (f) −0.6 V for 200 s. (c) Region showing several domains with different crystal-
lographic orientation, together with the corresponding FFT shown as inset
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When deposited at high overpotentials, platinum nanoparticles also display an 
irregular porous shape but are more compact (Fig. 5d). After short deposition times, 
Fig. 5e shows that many spherical protuberances are again connected to the body of 
the structure by necks as narrow as few atomic layers. These protuberances have an 
equivalent diameter of 2–3 nm, just as in the case of low overpotentials. Figure 5e, f 
show that in contrast with the case of low overpotentials, an increase in deposition 
time leads to more compact structures and smoother edges. In these cases, lattice 
fringes are coherent within larger domains. However, structural defects such as twin 
planes or the open pores indicated by arrows in Fig. 5f point again toward nanoclu-
ster coalescence events [61, 62].

Pt Electrodeposition on Carbon: An Electrochemical Aggregative 
Growth Mechanism. Influence of Recrystallization and Coalescence
Traditionally, the growth of dendritic nanostructures had been associated to 
diffusion- limited growth [66]. However, pure epitaxial growth can be ruled out in 
the cases that spherical protuberances are linked through narrow necks (Fig. 5a or e) 
[67, 62, 61, 68, 69], that domains with different crystallographic orientation coexist 
(Fig. 5c) [70, 71, 62, 61, 72], or that structural defects such as twin planes or stack-
ing faults are abundant [61, 62], as all these features indicate cluster coalescence 
events. At high overpotentials, the coexistence of large nanostructures with isolated 
nongrowing small nanoclusters points again toward nanocluster aggregation- 
mediated growth [71, 58] (see section “Silver Electrodeposition”). Accordingly, 
dendrite branch thickness, spherical protuberances, and isolated nanoclusters have 
the same dimensions (d ≈ 2 nm), regardless of applied potential and deposition time.

This is an important concept to take into account as metal electrodeposition had 
traditionally been considered to proceed by nucleation and direct attachment, due to 
the assumption that growing nuclei would be pinned to the surface and motionless. 
Although some groups have found irregular Pt nanostructures and suggested that 
cluster aggregation could take part [73, 42, 74], cluster aggregation mechanisms 
and their influence in electrochemical growth have not been discussed in detail. 
Alternatively, the suggested growth mechanism is schematized in (Fig. 6).

At low overpotentials, even at later stages of the electrochemical deposition pro-
cess, large nanostructures keep growing by the addition of clusters of the same size. 
This in turn indicates that a self-limiting growth mechanism stops the epitaxial 
growth of primary clusters and dendritic aggregates.

At high overpotentials, though, the situation is slightly different. After long 
deposition times, the electrodeposited nanostructures are more compact, less 
porous, and their lattice fringes extend over very large domains, indicating that 
they have undergone a higher degree of recrystallization and epitaxial growth by 
atomic incorporation. Firstly, this indicates that recrystallization kinetics are over-
potential dependent and are accelerated at high overpotentials. Secondly, this indi-
cates that a certain degree of nanocluster coalescence and recrystallization is 
needed to overcome the self-limiting growth mechanism and allow further growth 
by atomic incorporation.
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 A Generalized Electrochemical Aggregative Growth Mechanism

Sections “Silver Electrodeposition” and “Platinum Electrodeposition” describe 
the discovery of new insights into Ag and Pt electrodeposition on carbon sub-
strates, by using carbon-coated TEM grids as electrodes, and different TEM char-
acterization modes. Although many differences exist between the growth 
mechanisms inferred for both materials, it has been shown in both cases that nano-
cluster self-limiting growth, surface diffusion, aggregation, and coalescence need 
to be taken account to understand the early stages of electrochemical growth. 
In this section, we analyze both systems together and elaborate on a Generalized 
Electrochemical Aggregative Growth Mechanism that can be used to describe the 
process of metal electrodeposition on low-energy substrates. More details can be 
found elsewhere [65, 59].

Evaluation of Different Growth Pathways
Figure 7 shows a summary of the different growth pathways of Ag and Pt electrode-
position on carbon.

When the main growth mechanism is atomic addition, monocrystalline defect- 
free nanoparticles are expected to be the most abundant species. However, in the 
case of silver electrodeposition, only a very small portion of particles are found to 
present such a structure. Contrarily, most of the silver nanoparticles are found to 
grow through a mechanism such as the one depicted by growth pathway “a” (see 
section “Ag Electrodeposition on Carbon: An Electrochemical Aggregative Growth 
Mechanism”). Platinum, though, forms irregular porous dendritic nanostructures 
rather than hemispherical nanoparticles, as indicated by the growth pathways “b” 
and “c” (see section “Platinum Electrodeposition”).

Fig. 6 Schematic representation of the electrochemical aggregative growth mechanism of plati-
num porous dendritic nanostructures
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A first important conclusion that can be derived from this analysis is that such an 
Electrochemical Aggregative Growth Mechanism is common for two metals from 
different rows and columns of the periodic table such as Ag and Pt. Therefore, it can 
be suggested as a general metal electrodeposition mechanism onto low-energy sub-
strates such as carbon. Secondly, recrystallization and coalescence kinetics are 
dependent on material, overpotential, and adsorbed species and dictate the morphol-
ogy of the final nanostructures to a large extent. Thirdly, direct attachment must not 
be excluded from the growth process, but its contribution is only noticeable after the 
aggregates have undergone a high degree of recrystallization.

To fully understand the described mechanism and its different growth pathways, 
an evaluation of electrochemical chronoamperograms and resulting nanoparticle 
size distributions is carried out in the next sections. Some concepts such as self- 
limiting growth, cluster surface diffusion, coalescence, and recrystallization will be 
used. Although they are common in other new phase formation fields, they are 
barely used in electrochemical systems. Therefore, the reader is encouraged to look 
up the discussion provided in a recent publication [65].

Evaluation of Nanoparticle Size Distributions
Figure 8 shows characteristic FESEM pictures presenting an overview of the distri-
bution of silver (a–c) and platinum (d–f) nanoparticles electrodeposited at high 
overpotentials and different deposition times. Figure 8 shows also the correspond-
ing evolution of average diameter (g) and particle number density (h) of both  
“large” and “small” particle populations for silver and platinum electrodeposition. 

Fig. 7 Schematic diagram showing the growth pathways inferred by HAADF-STEM observation 
during the electrodeposition of silver (a) and platinum (b, c) onto CCTGs. (a) Growth by nanoclu-
ster aggregation and full coalescence resulting into monocrystalline nanoparticles with defects.  
(b) Growth by nanocluster aggregation and partial coalescence resulting in porous nanostructures. 
(c) Growth by nanocluster aggregation and small extent of coalescence resulting in ultra-porous 
dendritic nanostructures
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Fig. 8 Representative FESEM pictures after the electrodeposition of silver onto CCTGs at a 
potential of −0.4 V for (a) 10, (b) 100 and (c) 500 ms. Representative FESEM pictures after the 
electrode-position of platinum onto CCTGs at a potential of −0.6 V for (d) 3, (e) 20 and (f) 200 s. 
Insets: high magnification HAADF-STEM figure of a monocrystalline silver nanoparticle (c) and 
3D reconstruction of a porous platinum nanostructure (f). Time evolution of silver and platinum 
nanoparticle (g) average diameter and (h) number density after electrodeposition onto CCTGs at
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Silver nanoparticles are formed at much shorter deposition times than platinum due 
to differences in reaction kinetics, and so the deposition time is represented in a 
logarithmic scale for the sake of comparability.

Figure 8g shows that small particles do not grow with deposition time in any of 
the cases. However, the size of such isolated small clusters is material dependent. 
This implies that a self-limiting growth mechanism prevents the growth of primary 
nanoclusters and stabilizes particles of different sizes depending on the material. 
On the other hand, we have shown that Pt aggregates which undergo a very small 
amount of recrystallization still show a self-limiting growth mechanism, whereas 
fully recrystallized aggregates do not (see section “Platinum Electrodeposition”) 
[60]. One possible explanation, linked to closed-shell magic sizes, would be that the 
nanoclusters have a metastable atomic configuration, which hinders epitaxial growth, 
but become unstable after coalescence. However, in all the cases, primary nanoclu-
sters have relative large size dispersion (33 %), indicating that adsorption- driven 
stabilization is more plausible than closed-shell magic sizes. Therefore, another 

Fig. 8 (continued) potentials of −0.4 and −0.6 V respectively. Evolution of “large” particle (i) 
average diameter and (j) number density with surface coverage for silver and platinum electrode-
position onto CCTGs at potentials of −0.4 and −0.6 V respectively
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possible explanation would be that stabilization is related to specific adsorption 
onto the exposed facets of the primary nanoclusters, which change after coales-
cence. On the other hand, Fig. 8g also shows that “large” Ag and Pt nanoparticles 
only start to grow after a certain induction time (tInd ≈ 30 ms for Ag; tInd ≈ 10 s for 
Pt); before this time, their size remains more or less constant (d ≈ 15 ± 5 nm for Ag; 
d ≈ 8 ± 2 for Pt). Such an induction time corresponds to the aggregation of primary 
nanoclusters onto larger entities which may grow at later stages [58]. Such a phe-
nomenon, which can be considered an aggregative nucleation process, has been 
recently reported in the field of colloidal synthesis [71, 75, 76].

In the case of Ag electrodeposition, the induction time corresponds to the period 
in which the number of aggregates increases by the assembly of isolated primary 
nanoclusters. Figure 8h shows that after the induction period (tInd ≈ 30 ms), no more 
aggregates are created because the surface has been depleted of primary nanoclus-
ters. In the case of platinum, large aggregates start to grow after tInd ≈ 10 s, but small 
primary clusters are continuously being formed on the carbon surface, and conse-
quently, more and more large aggregates are also created continuously.

In fact, if one looks at the evolution of the aggregate diameter (i) and number 
density (j) with the surface coverage, shown in Fig. 8, it becomes clear that in the 
case of silver, the number of aggregates reaches saturation at small surface cover-
age of about 1 %, whereas for platinum, the large-particle number density keeps 
increasing even at large surface coverage of about 30–40 %. Correspondingly, for 
silver, the large-particle size starts to increase at low surface coverage, whereas 
platinum aggregates remain small even after large surface coverage has been 
reached. Under the assumption of growth by direct attachment, growth under diffu-
sion control generates diffusion zones around growing islands of about 10 times 
their diameter [77]. This would imply that when diffusion fields cover the whole 
surface, surface coverage should be about 1 %. This is exactly the case for silver 
electrodeposition, indicating that silver aggregates grow by direct attachment under 
diffusion control. This behavior is confirmed by their monocrystalline structure 
after long deposition times, shown in the growth pathway “a” in Fig. 7. Such gen-
eration of diffusion zones around the growing aggregates implies that the concen-
tration of ions close to the surface gets gradually smaller, which in turn implies that 
after a certain moment, no more primary clusters and hence no more aggregates can 
be generated. On the other hand, Fig. 8j shows that the number of platinum aggre-
gates keeps increasing at high surface coverage, meaning that new primary nano-
clusters are continuously generated over the carbon surface. This implies that no (or 
very small) diffusion fields are created around the aggregates, which in turn indi-
cates that their growth by atomic incorporation is not limited by diffusion of active 
species toward the surface.

As shown in Fig. 7, the main difference between platinum and silver growth 
pathways is the fact that silver aggregates recrystallize into monocrystalline 
nanoparticles, whereas platinum forms porous dendritic structures which only seem 
to partially recrystallize at large overpotentials. Therefore, silver aggregates behave 
as traditional islands and grow by atomic incorporation once they have undergone 
total recrystallization. This is why the evolution of large-particle or aggregate distri-
butions follows the trends established by conventional electrochemical nucleation 
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and growth theories and correlates with classical chronoamperometric models with 
good agreement (see section “Silver Electrodeposition”). On the other hand, par-
tially recrystallized platinum dendritic nanostructures behave halfway between 
growing islands and small “stabilized” nanoclusters which cannot grow due to a 
self-limiting growth mechanism. Therefore, even under electrochemical diffusion 
control, the evolution of particle morphology and size distribution does not follow 
the assumptions of the Volmer-Weber 3D island growth mechanism.

Evaluation of Chronoamperometric Data
The potentiostatic current transients obtained for silver (a) and platinum (b) electro-
deposition have been shown in previous sections (see Figs. 1a and 4a). The analysis 
of the silver current transients performed in the section “Silver Electrodeposition” 
leads to a calculated nucleation rate, AN0, in agreement with the number of “large” 
aggregates derived from HAADF-STEM analysis. Silver aggregates, which have 
fully recrystallized into monocrystalline islands, grow by direct attachment. Hence, 
the assumptions from the classical models are fulfilled, and good agreement between 
experimental and theoretical data is achieved.

On the other hand, it has been shown that most of the current-time transients 
obtained for the early stages of platinum electrodeposition do not display the typical 
peaked-shape characteristic of the 3D island growth mechanism [26, 25]. At E = −0.1 
V, I(t) has a constant value, characteristic of a charge transfer–limited electrochemi-
cal reaction. However, kinetically limited island growth should lead to an increasing 
current density due to an increasing active surface area, until physical island overlap 
is reached. This is not the case, indicating that the deposited islands do not act as 
active surface area for direct atomic incorporation. Under these conditions, plati-
num aggregates are ultraporous nanostructures which have not undergone almost 
any recrystallization and present no signs of growth by direct attachment (Fig. 7, 
growth pathway “c”). At E = −0.2 V, I(t) shows long-term decaying characteristics 
that cannot be due to double-layer charging because they extend over ≈ 15 s. The 
current decay in this case is due to the fact that platinum reduction takes place in 
diffusion-limited or mixed-control regime. Still, no signs of current increase indi-
cate that primary nanoclusters are being formed under planar diffusion limitations 
and that large aggregates are not contributing to an increase in active surface area 
for direct attachment. This is again correlated to the ultraporous nanodendritic mor-
phology obtained at these potentials (Fig. 7, growth pathway “c”).

At E = −0.4 V, I(t) starts by a long-term decay, followed by a slight increase in 
current, indicating that a certain degree of uncoupled diffusion toward growing 
active centers occurs. At E = −0.5 V and E = −0.6 V, current starts increasing at ear-
lier times indicating an earlier onset of island growth by direct attachment. This is 
again linked with the fact that the obtained nanostructures have undergone a certain 
degree of recrystallization and are thus smoother and less porous than those obtained 
at smaller overpotentials (Fig. 7, growth pathway “b”).

We have shown in the section “Comparison Between Theoretical Models and 
Experimental Data” that the fitting of Pt chronoamperograms to classical models 
leads to a saturation particle density approximately five orders of magnitude smaller 
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than the value observed experimentally. The fact that we experimentally observe 
much more particles and much smaller than predicted by the models points again 
toward a self-limiting growth mechanism, which prevents primary nanoclusters to 
grow by atomic incorporation.

Revision of the Nucleation and Growth Mechanism: A Generalized 
Electrochemical Aggregative Growth Mechanism
In conclusion, the data presented throughout this chapter indicate that metal 
 electrodeposition onto low-energy substrates, such as carbon, proceeds by an 
Electrochemical Aggregative Growth Mechanism instead of by a classical Volmer-
Weber mechanism in which only direct attachment is considered. The proposed 
mechanism starts with the nucleation of primary nanoclusters that grow until a certain 
self-limiting growth mechanism stabilizes them at a given size. Then, electrochemical 
potential-driven surface diffusion of these primary nanoclusters leads to aggregation, 
which can be interpreted as aggregative-nucleation events. Finally, the degree to 
which aggregates undergo partial or full coalescence dictates to which extent further 
growth by direct attachment (or classical island growth) occurs. Figure 9 (top) sche-
matically represents the stages of the proposed mechanism. Its implications on the 
interpretation of the potentiostatic current transients are shown in Fig. 9 (bottom).

In the first moments after the application of a negative potential, very small pri-
mary nanoclusters are formed, randomly distributed over the substrate as shown in 
Fig. 9.1. These clusters are single crystalline nanoparticles that grow by direct 
attachment until they reach a metastable size. These size-stabilized primary nano-
clusters can diffuse over the carbon surface due to their small size and weak VDW 
forces between them and the carbon support. Due to particle-particle attractive 
VDW forces, primary nanoclusters stick together when they hit each other, resulting 
in aggregative-nucleation events, which give birth to aggregated particles from 
nanocluster building blocks (Fig. 9.2 and second column of Fig. 7). Silver aggre-
gates (Figs. 9.2a and 7a) are much more compact than platinum ones (Figs. 9.2b, c 
and 7b, c) because they undergo more and faster recrystallization. Until this stage, 
new primary nanoclusters and consequently new aggregates are continuously 
formed on the substrate in both cases, because even under the assumptions of island 
growth by direct attachment, the diffusion zones of potentially growing nuclei 
would not have yet covered the whole carbon surface.

An important point here is related to the interpretation of the electrochemical 
current-time transients. Traditionally, the first decaying part is related to double- layer 
charging, whereas island nucleation and growth is correlated to hemispherical diffu-
sion to an increasing active surface, leading to an increasing current. We have shown, 
though, that longer current decays should be of faradic origin, and hence we believe 
that such I(t) feature reflects the formation of primary nanoclusters that do not grow 
beyond a given size. This period may be considered an induction time because large 
aggregates do not grow significantly yet. Such a phenomenon is normally correlated 
to a prenucleation stage where metal ions are being discharged before nuclei have 
been formed. However, we believe that such induction time corresponds to a preag-
gregation or precoalescence stage where primary nanoclusters have already 
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nucleated but cannot grow over a given size unless they undergo aggregation and 
recrystallization. Subsequent current rise and maximum are due to the growth of 
recrystallized aggregates. In fact, the degree to which such aggregates undergo 
coalescence and recrystallization dictates the subsequent growth pathways.

A first possibility is that the aggregates fully coalesce and recrystallize fast into 
monocrystalline nanoparticles (Figs. 9.2a and 7a), as it happens for silver electrode-
position. Then, the self-limiting growth mechanism vanishes, and the particles may 
grow by direct attachment. This is probably the most common case, and it implies 
that classical island growth concepts apply. Thus, diffusion zones are generated 
around growing particles until they cover the entire surface and particle number 

Fig. 9 TOP: Schematic diagram showing the different stages of the Generalized Electrochemical 
Aggregative Growth Mechanism and respective potentiostatic current transients. Dots represent 
the non-growing nanoclusters and blue circles around the aggregates represent the projection of 
their corresponding nucleation exclusion zones. BOTTOM: (2.a) Full recrystallization. (1) 
Induction time: Formation of non-growing primary nanoclusters, (2) Formation of primary nano-
clusters + uncoupled “island” growth of completely recrystallized aggregates, (3) Coupled “island” 
growth of completely recrystallized aggregates. (2.c) Almost no recrystallization. Continuous for-
mation and aggregation of non-growing primary nanoclusters
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density reaches saturation at small surface coverage of 1 %, while small primary 
nanoclusters are consumed. Therefore, a classical interpretation of the potentio-
static current-time transients can be carried out taking into account that the derived 
nucleation rate corresponds to an “aggregative-nucleation + recrystallization” rate 
rather than to primary nanocluster formation (Fig. 9.2a).

A second possibility is that aggregates undergo partial recrystallization as it hap-
pens for platinum electrodeposition at high overpotentials (Figs. 9.2b and 7b). In 
this case, classical growth concepts do not apply, as partially recrystallized aggre-
gates behave halfway between traditional islands and nongrowing clusters. This 
way, small diffusion zones may be generated around growing aggregates, slowing 
down the nucleation rate of both primary nanoclusters and aggregates. However, the 
extent to which the particles grow by direct attachment is smaller than in the first 
case, and hence, diffusion zones do not cover the entire surface until longer deposi-
tion times. In this case, particle number density keeps increasing even at high sur-
face coverage. The fact that many aggregates do not grow by atomic incorporation 
may favor the nucleation of new primary nanoclusters, as discharged atoms may be 
repelled by nongrowing particles, thus increasing their concentration on the carbon 
surface. In this case, the shape of the current transients depends on the degree of 
coalescence and recrystallization and growth by direct attachment.

A third possibility is that recrystallization happens to a very small extent leading 
to a lower degree of direct attachment (Figs. 9.2c and 7c). In these cases, highly 
porous dendritic nanostructures are obtained, ever decaying current transients are 
measured (Fig. 9.2c), and aggregates behave as nongrowing primary nanoclusters, 
which do not contribute to an increase in reactive surface area.

In conclusion, particle number density, size, and morphology depend on the bal-
ance between primary nanocluster nucleation, cluster surface diffusion, cluster 
aggregation, and coalescence kinetics. So do the obtained potentiostatic current 
transients and their interpretation.

 Conclusions

Although the synthesis of supported nanostructures by electrochemical deposition 
offers many advantages compared to other synthesis methods, a lack of knowledge 
of the fundamental aspects of the early stages of electrochemical nucleation and 
growth had been identified. This book chapter summarizes the research which has 
been carried out in this field by using CCTGs as electrochemical electrodes, which 
has allowed to combine electrochemical characterization with structural character-
ization at the atomic scale.

By the combination of aberration-corrected HAADF-STEM, FESEM, and 
 electrochemical characterization of different electrochemical deposition systems, a 
reformulation of the Volmer-Weber island growth mechanism for the early stages of 
metal electrodeposition on low-energy substrates has been provided. A Generalized 
Electrochemical Aggregative Growth Mechanism has been elaborated, which mim-
ics the atomistic processes of the early stages of thin-film growth by considering 
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nanoclusters of a few nm as building blocks instead of single atoms. This way, the 
influence of new processes, such as nanocluster self-limiting growth, surface diffu-
sion, aggregation, and coalescence, on the growth mechanism, morphology of the 
resulting nanostructures, and interpretation of potentiostatic current transients have 
been discussed.

This mechanism, apart from being an important scientific breakthrough from the 
fundamental point of view, is crucial to gain better control of electrochemical depo-
sition processes in order to obtain supported nanostructures with desired morphol-
ogy and enhanced properties. Besides, it provides exciting possibilities for 
electrochemical nanostructuring with nanoclusters as building blocks.
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   Abstract  
  Titania nanotube arrays (TNAs) as one of the hottest metal oxide nanomaterials 
has a unique one-dimensional highly ordered array structure, good mechanical 
and chemical stability, as well as excellent anticorrosion, biocompatible, and 
photocatalytic performance. It has been controllably synthesized by a simple 
electrochemical anodic oxidation in electrolytes containing small amounts of fl u-
oric ions. In combination with our last research work, in this chapter, we review 
the recent advances of the new research achievements of TNAs on the prepara-
tion techniques, formation mechanism, and modifi cation. In addition, we will 
review the potential and signifi cant applications in the photocatalytic pollutant 
degradation, solar cells, hydrogen generation, biomedical implant, wetting tem-
plate, and other aspects. Finally, the existing problems and further prospects of 
this renascent and rapidly developing fi eld are also briefl y addressed and 
discussed.  

  Keywords  
  TiO2   •   Nanotube   •   Electrochemical Anodization   •   Photocatalyst   •   Solar Cells   • 
  Water Splitting   •   Biomedical Scaffold   •   Wetting Template  

        Introduction 

 Nanostructured materials with peculiar properties are not expected in bulk phase 
and have already led to a breakthrough in various fi elds of science and technology. 
Moreover, much of the current interest in one-dimensional (1D) nanostructures, 
such as nanotube, nanowire, nanorod, and nanobelts, initiated by the discovery of 
carbon nanotubes by Iijima in 1991 [ 1 ], the intensive researches of TiO 2 -based 
nanotubes, therefore, attracted extensive and engrossing interest due to their merits 
of high specifi c surface area, ion-changeable ability, and photocatalytic ability. Over 
the past decades, nanostructured materials derived from TiO 2  have extensively been 
investigated for many promising applications, including solar cells/batteries, self- 
cleaning coatings, electroluminescent hybrid devices, and photocatalysis, owing to 
their peculiar chemical and physical behaviors. Currently developed methods of 
fabricating 1D TiO 2 -based nanotubes comprise the assisted-template method [ 2 ,  3 ], 
hydrothermal treatment [ 4 – 6 ], and electrochemical anodic oxidation [ 7 – 10 ]. 
Detailed features description of each fabrication method is given in Table  1 . 
Regarding the template-assisted method, high-quality anodic aluminum oxide 
(AAO) nanoporous membrane, which consists of an array of parallel straight nano-
pores with controllable diameter and length, is usually used as template. However, 
the template-assisted method usually encounters diffi culties of prefabrication and 
post-removal of the previous templates and often results in impurities. Concerning 
hydrothermal treatment, the self-assembled TiO 2  nanotubes are based on the treat-
ment of Ti foils or TiO 2  powders in a tightly closed vessel containing high concen-
trated alkaline solution (e.g., 5–10 M NaOH) to obtain TiO 2  nanotube layer or 
dispersed TiO 2 -based nanoparticles [ 6 ,  11 ]. For comparison, electrochemical 

J. Huang et al.



1381

   Ta
b

le
 1

  
  C

om
pa

ri
so

n 
of

 ty
pi

ca
l T

iO
 2  n

an
ot

ub
e 

sy
nt

he
si

s 
m

et
ho

d   

 Sy
nt

he
si

s 
m

et
ho

d 
 R

es
ou

rc
es

 a
nd

 r
ea

ge
nt

 
 C

ry
st

al
 s

tr
uc

tu
re

 
 D

is
tr

ib
ut

io
n 

 M
ai

n 
fa

ct
or

 
 A

dv
an

ta
ge

 a
nd

 d
is

ad
va

nt
ag

e 
 R

ef
. 

  Te
m

pl
at

e-
as

si
st

ed
 

m
et

ho
do

lo
gi

ca
l  

 A
A

O
 te

m
pl

at
e 

an
d 

pr
ec

ur
so

r 
so

lu
tio

n 
 A

m
or

ph
ou

s,
 

cr
ys

ta
lli

ne
 

 W
el

l o
rd

er
 a

nd
 

ve
rt

ic
al

ly
 a

lig
ne

d 
 Te

m
pe

ra
tu

re
, 

co
nc

en
tr

at
io

n,
 

pH
, t

im
e 

 D
if

fi c
ul

tie
s 

of
 p

re
fa

br
ic

at
io

n 
an

d 
po

st
-r

em
ov

al
 o

f 
te

m
pl

at
es

 
an

d 
of

te
n 

re
su

lts
 in

 im
pu

ri
tie

s 

 [ 2
 ,  3

 ] 

  H
yd

ro
th

er
m

al
 

sy
nt

he
si

s  
 M

et
al

lic
 T

i, 
T

iO
 2  

na
no

pa
rt

ic
le

 p
ow

de
r, 

pr
ec

ur
so

r 
so

lu
tio

n,
 a

nd
 

al
ka

lin
e 

so
lu

tio
n 

 T
ita

na
te

, a
na

ta
se

 
 R

an
do

m
 

di
st

ri
bu

tio
n 

 Te
m

pe
ra

tu
re

, 
tim

e,
 p

re
ss

ur
e 

 V
es

se
l c

on
ta

in
in

g 
hi

gh
 

co
nc

en
tr

at
ed

 a
lk

al
in

e 
so

lu
tio

n 
an

d 
re

qu
ir

ed
 h

ig
h 

pr
es

su
re

 

 [ 4
 – 6

 ] 

  E
le

ct
ro

ch
em

ic
al

 
an

od
iz

at
io

n  
 M

et
al

lic
 T

i, 
va

cu
um

-s
pu

tte
r 

T
i fi

 lm
 o

n 
co

nd
uc

tin
g 

gl
as

s 
an

d 
F −

  io
ns

 c
on

ta
in

in
g 

el
ec

tr
ol

yt
e 

 A
m

or
ph

ou
s,

 
an

at
as

e 
(h

ig
he

r 
an

od
iz

in
g 

vo
lta

ge
) 

 W
el

l o
rd

er
 a

nd
 

ve
rt

ic
al

ly
 a

lig
ne

d 
 E

le
ct

ro
ly

te
, 

po
te

nt
ia

l, 
w

at
er

 
co

nt
en

t, 
tim

e 

 R
el

at
iv

el
y 

si
m

pl
e 

an
d 

ef
fi c

ie
nt

 
pr

oc
es

s 
to

 f
ab

ri
ca

te
 r

ob
us

t, 
pu

re
 

T
iO

 2  n
an

ot
ub

es
 

 [ 7
 – 1

0 ]
 

44 Recent Advances in Synthesis, Modifi cation, and Applications…



1382

anodization is a relatively simple and effi cient process to fabricate robust, vertically 
aligned, and highly ordered TiO 2  nanotube arrays. The demonstrated architecture of 
TiO 2  nanotube arrays (TNAs) by a facile electrochemical anodizing process is capa-
ble of an ordered alignment with high aspect ratio and establishment of pure-phase 
TiO 2  structure in one step under ambient environment. More importantly, the elec-
trochemical anodization technique allows the growth of other oxides with self-
ordering nanostructures for several transitional and valve metals, such as Ti, Al, Zr, 
Nb, V, Hf, Ta, W, and Fe, and their corresponding alloys, TiAl, TiZr, TiNb, Ti6Al4V, 
and so on [ 8 ,  10 ].

   The self-ordered TiO 2  nanostructures were fi rstly reported in 1999 by Zwilling 
et al. by a simple electrochemical anodizing process in a fl uoride electrolyte [ 12 ]. 
Since then, several anodizing approaches, mainly focused on fi nding the optimal 
electrolyte and experimental parameters, have been explored to effi ciently achieve 
high-quality self-organized TNAs (Fig.  1 ) [ 13 – 18 ], such as short and rough TNAs 
[ 13 ], tapered and conical-shaped TNAs [ 18 ], smooth and high-aspect-ratio TNAs 
[ 16 ,  17 ], transparent TNAs [ 19 ,  20 ], free-standing and open-ended TNAs [ 21 ,  22 ], 
highly ordered TNAs by multistep anodization [ 23 ,  24 ], and TNAs with a sub- 
micrometer size in diameter [ 25 ,  26 ]. These results demonstrated that structure and 
morphology of TNAs, including tube diameter, length, wall thickness, and crystal-
linity, can be controlled by adjusting key parameters such as composition/shape of 
Ti substrate, electrolyte, pH, temperature, anodization voltage, current, and anod-
ization time. It is, therefore, essential to understand the various factors infl uencing 
the characterizations of as-prepared amorphous TNAs. Also, it should be noted that 
either the annealing posttreatment or the modifi cation of TiO 2 -based nanotubes 
would dominate the corresponding features and the performance of TiO 2 -based 
devices. The aim is to make the material more suitable for various applications that 
rely on specifi c electrical, optical, or chemical properties. In view of electronic 
properties, annealing to a crystalline structure mainly changes the conductivity and 
lifetime of charge carriers, while modifi cation with active doping or band gap engi-
neering by introducing other elements targets decreasing the optical band gap, thus 
enabling a visible light photoresponse [ 27 ].

   Based on extensive literatures with regard to self-ordered TNAs, the authors 
have categorized three broad groups, preparation and formation mechanism, 
 modifi cations, and applications, which are further subdivided according to their 
pertinent studies. First, the formation mechanisms and phenomenon of the electro-
chemical formation of nanopores and nanotubes by a self-ordering process are 
explained. Among the aforementioned experimental parameters, both electrolyte 
and anodizing voltage will be focused on and discussed. Then the properties and 
modifi cation of the TNA materials are addressed briefl y, including technique 
examples of doping, noble metal decoration, and semiconductor composite which 
are to be discussed. Finally, the current stage of knowledge and recent studies on 
their potential applications, such as photocatalysis, solar cell, water splitting, bio-
medical scaffold, etc, are introduced. The analysis of the physicochemical proper-
ties and recent advances in their modifi cation and applications allow the 
identifi cation of gaps in our knowledge and highlight the need for critical studies 
in the area of TNAs.  
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Short and rough TNAs

Tapered, conical-shaped TNAs

TNAs with a sub-micrometer
size in diameter

2003

2001

2005

2007

2010

Year

(3) Transparent TNAs
      on conducting glass

(1) Free-standing and
     open-ended TNAs

(2) Highly ordered TNAs by
     multi-steps anodization

(1) High-aspect-ratio of
      TNA in neutral

(2) Smooth TNA anodized
      in organic electrolyte

(3) Random TNAs with small diameter
      in F- ions free electrolyte

Morphology of TiO2 nanotube arrays (TNAs):

a b

c d

e

  Fig. 1    SEM images of TNA layers grown with different electrolytes. ( a ) Typical morphology 
obtained in acidic fl uoride or HF electrolytes, ( b ) glycerol/fl uoride electrolytes, ( c ) ethylene glycol/
fl uoride electrolytes containing small amount of water. The  insets  show top views, bottom views, and 
side walls in detail. ( d ) Fluoride ions free electrolyte; these tubes grow in disordered bundles within 
seconds at comparably high anodic potentials. ( e ) Morphology of new type of TNAs with time       
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    Electrochemical Anodization of TNAs 

 This section presents recent developments on the preparation of self-ordered nano-
porous and nanotubular, focusing primarily on TNAs by electrochemical synthesis. 
First, the related statistics of the manuscript about TNAs and the phenomenon of the 
electrochemical formation of nanoporous TiO 2  materials by a self-organization pro-
cess are introduced. Then some experimental parameters of synthesis, which are 
responsible for regulation of the morphology of TiO 2  nanostructures, are consid-
ered. Finally, the formation mechanisms of TNA materials fabricated by electro-
chemical anodization are presented. 

 The progressively increasing research interest in the TNA layers formed by elec-
trochemical oxidation can be easily seen from publication statistics (see Fig.  2 ). 
Publication number and corresponding aggregated citations increased several times 
from the fi rst work by Zwilling et al. [ 12 ], where only a tube length of a few hundred 
nanometers with a rough and high degree of disorder morphology could be obtained, 
to nowadays, where smooth and almost ideally hexagonally ordered arrays can be 
produced with individual nanotube lengths of hundreds of micrometers [ 22 ]. 
In other words, by controlling the electrochemical anodization parameters of Ti 
(temperature, potential ramping speed, applied potential, electrolyte species, elec-
trolyte pH, viscosity, aqueous or organic electrolyte, etc.), one can obtain different 
titanium oxide structures such as a fl at compact oxide, a disordered porous layer, a 
highly self-organized porous layer, or fi nally a highly self-organized nanotube layer 
(schematically shown in Fig.  3a ).

       Effects of Fabrication Factors on TNAs 

    Electrolyte 
 Hydrofl uoric acid (HF) is the fi rst and most widely studied electrolyte in titanium 
anodization to produce TiO 2  nanostructures. Since then, several optimized electro-
lytes of diverse acid/HF mixed electrolytes are put forward to successful fabrication 
of TiO 2  nanostructures [ 14 ]. A brief summary of various synthesis generations of 
TNAs is given in Table  2 . However, the nanotube length in this fi rst synthesis gen-
eration is limited to a few hundred nanometers. This second generation of TNAs 
was obtained with high aspect ratio, in a neutral type of electrolyte containing fl uo-
ride ions, e.g., Na 2 SO 4 /NaF and (NH 4 ) 2 SO 4 /NH 4 F [ 28 ,  29 ]. The reason for the tube 
length increase is the limited dissolution on the top of nanotubes in the neutral 
electrolyte. The nanotubes by the above inorganic electrolyte always were accom-
panied with a rough external structure, i.e., “rings” or “ripples,” due to current oscil-
lations along the anodization process. The third-generation electrolyte, organic 
electrolytes with additions of fl uoride salts, allows construction of smooth and 
much taller TNAs to the regime of hundreds of micrometers. To date, the highest 
tube lengths can be up to 1000 μm in organic viscous electrolytes [ 22 ]. The pH of 
the electrolyte and the amount of water greatly infl uence the morphology, structure, 
and growth rate of the as-formed TiO 2  nanotube. Recent synthesis development of 
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TNAs by using fl uoride-free electrolytes is commonly considered as the fourth 
 generation. The results of this rapid breakdown anodization (RBA) are also bundles 
of disordered nanotubes that grow within very short times (several minutes) [ 30 , 
 31 ]. Depending on electrolyte nature, each electrolyte provides unique geometrical 
 feature of the nanotubes and consequently varying surface properties; thereby a 
selection of electrolyte medium for the TNA fabrication is a primary concern.
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  Fig. 2    The number of articles ( a ) published on the topic of TNAs formed by electrochemical 
anodization and corresponding aggregated citations ( b ) in the last decade. (Statistics analysis was 
obtained from the web of science database on May 30, 2013). Topic: TiO 2  nanotube, with the 
exclusion of nanotube by hydrothermal, sol–gel, template, or carbon nanotube       
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       Voltage 
 The anodization voltage infl uences the morphology of formed nanostructures [ 34 ]: 
pores instead of tubes grow at low voltages of 5 V (Fig.  3b-1 ), while at voltages 
higher than 8 V, the diameter of the TiO 2  nanotubes is also infl uenced linearly by the 
applied voltage (Fig.  3b-2 ). However, at high anodization voltages (>50 V), break-
down events can be observed inside the nanotube resulting in the formation of 
sponge-like structures (Fig.  3b-3 ). At even higher anodization voltages (>80 V), 
electropolishing of the samples would take place at a high current density (>100 
mA/cm 2 ) in this electrolyte. Therefore, the retardation of breakdown events taking 
place is vital for the creation of larger tube diameter. Yin et al. reported TNAs with 
larger diameter about 600 nm can be obtained in ethylene glycol electrolytes con-
taining 0.09 M ammonium fl uoride and 10 vol.% water [ 35 ]. Albu and coworkers 
further increase the tube diameter to reach 800 nm. However, these tubes are not 

Set-up & mophologya

b

c

Cathode Anode
I

II

III

IV

M

V

F- ions electrolyte

b-1 b-2 b-3

200 nm

700 nm600 nm

F- ions free electrolyte
Nanopores Nanotubes

+e–

  Fig. 3    ( a ) The electrochemical anodization process and typical morphologies: ( I ) metal electropo-
lishing, ( II ) formation of compact anodic oxides, ( III ) self-ordered oxides (nanotubes or nano-
pores), ( IV ) ordered nanoporous layers, ( V ) rapid (disorganized) oxide nanotube formation. 
Examples of morphologies of obtained structures: ( b ) Classical ordered TiO 2  nanopores ( b-1 ), 
nanotubes ( b-2 ), sponge-like nanoporous structures ( b-3 ) anodized in F −  ions containing electro-
lyte, ( c ) disordered TiO 2  nanotubes growing in bundles anodized in F −  ions free electrolyte       
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highly organized and seem loosely assembled in a mesoporous matrix rather than as 
a neatly defi ned nanotube array [ 26 ]. Recently, Jin et al. successfully demonstrated 
well-defi ned, large diameter (680–750 nm) TNAs, with the most uniform and clean 
morphology by using a higher voltage regime of up to 225 V [ 25 ].  

    Other Factors 
 In addition to the vital factor of the electrolyte and voltage to the high aspect ratio 
of the as-prepared nanotube, anodizing time and step, fl uoride concentration, and 
pH and temperature also have a great synergistic effect on the morphology, struc-
ture, growth rate, and even crystallization of the as-prepared TNAs [ 8 ,  36 – 40 ]. For 
example, the transition from porous TiO 2  to a nanotubular structure is not only 
dependent on water content [ 41 ,  42 ] but also depends on the anodization voltage. 
The applied voltage directly determines the tube diameters but also strongly infl u-
ences the rate of TNA growth, length, and crystallization.   

    Growth Mechanism of Anodized TNAs 

 Self-organized oxide tube arrays or pore arrays can be obtained by an anodization 
process of a suitable metal, such as transition metal, valve metal, etc. When metals 
are exposed to a suffi ciently anodic voltage in an electrochemical confi guration, an 
oxidation process will be initiated. Depending mainly on the electrolyte and the 
particular anodization parameters, essentially three possibilities for reactions exist 
(see illustration of Fig.  3a ): (I) the metal is continuously dissolved (metal corro-
sion, or electropolishing); (II) the metal titanium ions (M n+ ) formed react with O 2−  
(provided by H 2 O in the electrolyte) and forma compact oxide layer; (III) under 
some electrochemical conditions, competition between dissolution and oxide for-
mation is established leading to porous structures. Under even more specifi c exper-
imental conditions, a situation is established where self-organized growth of TNAs, 
formation of thick self-organized mesoporous layers (IV in Fig.  3a ), or disordered 
rapid breakdown anodization (RBA) of nanotube bundles (V in Fig.  3a, c ) can be 
observed [ 10 ]. 

 In general, it can be concluded that all investigated organized oxide structures 
grown by anodization in fl uoride-containing electrolytes on different metals or 
alloys seem to follow the same growth mechanism and infl uence by key factors [ 7 , 
 8 ,  10 ]. Ti was fi rstly oxidized to form a thin barrier oxide layer of TiO 2  due to inter-
action of the metal with O 2−  or OH −  ions. Then, the presence of electric fi eld and 
fl uoride ion led to the creation of random pits and small pores. Finally, self-ordered 
TNAs formed resulted from the allowance of optimal pores to grow continuously 
and wall opening by chemical dissolution. The tube diameter is determined by the 
anodization voltage, etching of the tubes (and thus the achievable length of the 
tubes) depends on the chemical resistance of the oxide against fl uoride etching (in a 
particular electrolyte), and water plays the key role for providing the oxygen source 
for tube growth, splits pores into tubes, and is responsible for sidewall rings 
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formation. Obviously, anodization techniques in fl uoride-containing electrolytes 
allow the fabrication of nanostructured oxide layers on an extremely wide range of 
valve  metals and alloys that enable the controllable fabrication of mixed nanostruc-
tured oxides with virtually endless possibilities to create enhanced properties and 
therefore have also a very high and widely unexplored technological potential.   

    Modification of TNA 

 TiO 2  semiconductor material plays the most important role owing to its excellent 
chemical and physical properties. However, the higher band gap of the annealed TiO 2  
between the valence band (VB) and conduction band (CB) makes them inactive 
under visible irradiation (Fig.  4a ). In this regard, great efforts have been made to 
extend the absorption of the wavelength range into the visible light range via the 
modifi cation of its electronic and optical properties. Over the past decade, consider-
able effort has gone into the modifi cation of TiO 2  to exploit the solar spectrum much 
better. Up until now, several methods and techniques have been proposed to enhance 
the photoelectrocatalytic activity of TNTs, such as doping, fi lling, decoration, and 
others. For example, dye sensitization or doping TiO 2  using either nonmetal anions or 
metal cations is one of the typical approaches that have been largely applied (Fig.  4b ). 

  Fig. 4    Schematic energy level of pure TiO 2  ( a ) and corresponding modifi cation (BD). ( b ) Doping 
or dye sensitization; semiconductors ( c ) and noble metal ( d ) coupling       
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Coupling TiO 2  with a narrow band gap semiconductor represents another approach 
(Fig.  4c ). Decoration of noble metal particles with surface plasmon effects allows for 
more effi cient charge transfer (Fig.  4d ). In all of these cases, essentially three benefi -
cial effects are expected: (I) promotion of the photogenerated separation between the 
electron–hole (e − /h + ) and prevention of their recombination; (II) surface plasmon 
effects, leading to fi eld enhancement in the vicinity of noble metal particles, thus 
allowing more effi cient charge transfer and effective visible light absorption; and 
(III) heterojunction formation that either changes the band bending (metal clusters on 
semiconductor) or provides suitable energy levels for synergic absorption and charge 
separation for enhanced utilization of solar energy.

      Doping 

 Doping or sensitizing pure TiO 2  by introducing a secondary electronically active 
species into the lattice for sensitizing TiO 2  to visible light promotes the harness of 
the main range of the solar spectrum and also ensures the charge traps for effective 
photogenerated carrier separation (Fig.  4b ). Asahi et al. fi rstly reported the nitrogen 
doping TiO 2  by sputtering in nitrogen containing gas mixture improves the photo-
electrochemical reactivity under visible light irradiation [ 43 ]. In the following years, 
other doping species such as a number of nonmetals like carbon [ 44 ], fl uorine [ 45 ], 
sulfur [ 46 ], and boron [ 47 ] have been introduced into TiO 2  by using various tech-
niques, and these nonmetal elements showed positive effects in the visible absorp-
tion and higher photoelectrical transfer effi ciency. The impurity states are normally 
near to the valence band edge but do not play the role of charge carriers [ 48 – 50 ]. 
Among all these anions, the doping of TNAs with nitrogen or carbon has been 
found to receive signifi cant attention [ 51 – 58 ]. Highly promising N-doping approach 
for TNAs includes one-step direct electrochemical anodization of a TiN alloy or 
growing TNAs in a solution containing doping species [ 58 ]. High-energy ion 
implantation or sputtering in an atmosphere of doping species following an anneal-
ing process has been verifi ed to be an effective doping method [ 59 ,  60 ]. However, 
these methods require special high-energy accelerators operated in a high-vacuum 
environment and the doping depth limited to several micrometers. Thermal treat-
ment of TNAs in gas atmospheres of the doping species is regarded as a facile one- 
step doping technique [ 61 ,  62 ]. Moreover, such surface-modifi ed nanotubes show a 
signifi cant photoresponse in the visible range compared to nonmodifi ed nanotubes. 

 At the same time, TiO 2  doped with transition metal cations (e.g., Fe, V, Cr, and 
Mn) [ 63 – 66 ] have also been reported to widen visible light absorption range, 
increase the redox potential of the photogenerated radicals, and enhance the conver-
sion effi ciency by extending the life of photogenerated electrons and holes. Although 
the metal cation doping of TiO 2  improves the visible light absorption of the host 
material to increase photocatalytic activity, a large amount of research also con-
cluded that when the doping content is excessively high, extra defects can also act 
as recombination centers to decrease the photocatalytic activity. This adverse effect 
could be avoided by a suitable doping amount or annealing the doped TiO 2 .  
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    Semiconductor Composites 

 In the past decade, many efforts have been devoted to extend the light absorption 
range of TNAs and to alleviate the charge carrier recombination, such as the forma-
tion of semiconductor heterostructures with visible light excited narrow band gap 
semiconductors (Fig.  4c ), e.g., CdS, CdSe, etc. [ 67 – 70 ]. However, it must be 
expected that the stability of many applied narrow band gap semiconductors fails 
quickly, not only due to corrosion or photocorrosion but also due to instability of 
some of the materials under applied voltage [ 71 ]. 

 TNAs essentially provide a very versatile tool to fi ll or decorate other semicon-
ductors to form composite electrode [ 72 – 74 ]. One of the most followed up schemes 
to establishing p-n heterojunctions for highly effi cient photoelectrocatalytic devices 
is the direct deposition of p-type semiconductor onto TNAs [ 75 – 77 ]. For example, 
Lin et al. prepared Cu 2 O/TiO 2  p-n heterojunction photoelectrodes by depositing 
p-type Cu 2 O nanoparticles on n-type TiO 2  nanotube arrays via an ultrasonication- 
assisted sequential chemical bath deposition (Fig.  5a–d ) [ 78 ]. The largely improved 
separation of photogenerated electrons and holes was revealed by photocurrent 
measurements. Consequently, p-n Cu 2 O/TiO 2  heterojunction photoelectrodes exhib-
ited a more effective photoconversion capability than single TiO 2  nanotubes 
(Fig.  5e ). Furthermore, Cu 2 O/TiO 2  composite photoelectrodes also possessed supe-
rior photoelectrocatalytic activity and stability in rhodamine B degradation with a 
synergistic effect between electricity and visible light irradiation (Fig.  5f–h ).

   Homogeneous TiO 2  nanoparticle decoration on TiO 2  semiconductor materials 
can enhance photoelectrocatalytic activity [ 20 ,  79 ,  80 ]. In DSSCs, the TNAs deco-
rated with TiO 2  nanoparticles show higher solar cell effi ciency in comparison to 
pure TNAs. The TiO 2  nanoparticles can be deposited inside as well as outside of the 
tube wall by hydrolysis of a TiCl 4  solution, which signifi cantly increases the surface 
area and thereby improves the solar cell effi ciency [ 81 ].  

    Noble Metal Nanoparticle Decoration 

 Another approach related to TiO 2  modifi cation is the decoration of TiO 2  surfaces 
with noble metal nanoparticles (such as Ag, Au, Pt, Pd, or alloys) [ 82 – 87 ]. Noble 
metal loading is proved to be an effective way to restrain the recombination of 
photogenerated electron–hole pairs resulting in photoelectrocatalytic activity 
enhancement (Fig.  4d ). Moreover, recent study reveals noble metal nanoparticles 
can improve the photoresponse ability of TiO 2  in the visible region based on the 
surface plasmon resonance (SPR) [ 88 ,  89 ]. It is known that the free electrons of 
metal can collectively oscillate, induced by light irradiation when the oscillation 
frequency of light electromagnetic fi eld is in accordance with the free electrons, the 
SPR effect generates, and light energy is coupled into the metal nanoparticles in the 
meantime. For example, Ag nanoparticles can be deposited on the tube wall by a 
photocatalytically reducing process on a TiO 2  surface with UV illumination [ 90 ]. 
Other metal nanoparticles are preferably deposited by UHV evaporation, 
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sputtering, or chemical/electrochemical deposition techniques [ 82 ,  91 ]. Pt/TiO 2  or 
Pd/TiO 2  nanotubes also show a signifi cantly higher photocatalytic activity and 
water splitting performance compared with plain nanotubes [ 83 ,  84 ].  

    Other Aspects 

 More recently work deals with decoration of graphene [ 92 ,  93 ], Ag/AgX (X = Cl, 
Br, I) [ 94 ,  95 ], other specifi c functional materials [ 96 – 98 ], or multiple hybrid com-
posites [ 99 – 102 ] onto TiO 2  nanotube arrays to enhance their photocatalytic activity. 
Amorphous nanotubes synthesized by room-temperature electrochemical anodiza-
tion are also reported to be annealed in oxygen-rich (O 2 ), oxygen-defi cient (Ar, N), 
and reducing (H 2 ) environments, to modify TiO 2  crystal structure, morphology, and 
electronic properties [ 103 ,  104 ].   

    Applications of TNA Materials 

 Porous and tubular titanium dioxide nanostructures have attracted great interest 
because of their applications in photocatalysis, photovoltaic cells (solar cell), water 
splitting, biomedical scaffold, wetting template, and other aspects. This porous TiO 2  
material is desirable for these applications because of its multifunctional semicon-
ductor properties that are based on its excellent physical and chemical behavior, 
along with its specifi c nanostructured architecture that owns it high surface area, 
high surface activity, and fast carrier transfer path. 

    Photocatalyst 

 One of the most practical applications of TiO 2  today is in photocatalytic toxic pol-
lutant decomposing. After Fujishima and Honda reported for the fi rst time on light- 
induced water electrochemical photolysis on TiO 2  surfaces, this functional 
semiconductor material has been intensively investigated for applications in hetero-
geneous catalysis [ 105 ]. Since then, TiO 2  has shown to be an excellent photocatalyst 
due to the fact that the material has a set of good properties of long-term stability, 
low-cost preparation, and a strong enough oxidizing power to be useful for the 
decomposition of unwanted organic compounds [ 106 – 111 ]. 

 The basic principles involved in the photocatalytic mechanism are shown in 
Fig.  6 . UV light promotes electrons excited from the valence band to the conduction 
band, and then separated holes and electrons will transport to the semiconductor–
environment interface and react with adsorbed molecules. In aqueous solution, 
highly reactive •OH radicals are generated by charge exchange at the valence band 
(H 2 O + h +   → • OH), whereas excited electrons at the conduction band mainly reduce 
dissolved molecular oxygen to superoxide anions  O e O2 2+ ®( )- -

 
 . These •OH radi-

cals and  O2
-

   ions are able to virtually oxidize all organic materials to CO 2  and H 2 O.
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   However, as discussed in previous sections, although TiO 2  has very suitable band 
edge positions for high photocatalytic activity, the band gap of about 3.2 eV allows 
only UV light to be effi ciently used. In order to achieve maximal decomposition 
effi ciency, in addition to adequate band edge positions, rapid charge separation, and 
high quantum yield, a large area of the catalyst is desired. TNAs fi t these require-
ments comparably well [ 106 – 108 ,  112 ]. In previous work, we used anatase TNAs as 
the photoanode and verifi ed such novel TNAs showed higher effi ciencies than com-
mon TiO 2  nanoparticle photocatalysts (Fig.  6b–d ) [ 107 ]. A similar work reported 
that a pulse current deposition of Ag nanoparticle-modifi ed TNAs was used as the 
photoanode for photoelectrocatalytic decomposition of methyl orange (MO) pollut-
ant [ 113 ]. In this case, we found that photocatalytic activity of titania nanotube lay-
ers can be signifi cantly increased by applying an external bias [ 113 ]. In addition, 
Xie et al. performed photocatalytic decomposition of a model organic pollutant 
(methylene blue) in self-organized TNAs decorated with Ag and CdS nanoparticles. 

  Fig. 6    ( a ) Scheme of photoinduced processes at a TiO 2  semiconductor/electrolyte interface. Light 
(hv) excites valence band electron to conduction band. Electron and hole react with environment 
acceptor ( A ) and/or donor ( D ). ( b ) XRD patterns of TNA fi lm. ( c ) Comparison of photocatalytic 
degradation rates of MO for nanoparticle fi lm and two different thicknesses of nanotube fi lms 
under the high-pressure mercury lamp illumination. ( d ) ATR-IR spectra of MO before and after 
photocatalytic degradation       
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The CdS–Ag–TiO 2  three-component nanotube array system exhibited superior 
 synergy effect on both photoelectrochemical and photocatalytic activities to those of 
the pure TiO 2  and Ag or CdS-modifi ed TiO 2  systems [ 114 ].  

    Solar Cells 

 One of the most promising applications of TiO 2  today is in dye-sensitized solar cells 
(DSSCs), a concept introduced by Grätzel and coworkers in 1991 [ 115 ]. The classi-
cal DSSCs operate with sintered or compressed nanoparticulate TiO 2  layers as elec-
tron harvesting material. Compared to agglomerate TiO 2  nanoparticle layer 
containing a high number of grain boundaries that can act as recombination sites, 
the new architecture of TNAs by electrochemical anodization has been verifi ed to 
be an ideal photoanode in photoelectrocatalytic devices due to its improved charge- 
collection effi ciency and short pathway for the photogenerated excitons along the 
vertically aligned tubes to the conducting substrate. As such, it may be expected that 
optimized TNAs can signifi cantly increase the solar energy conversion effi ciency. 

    Dye-Sensitized Solar Cells (DSSCs) 
 Owing to well-defi ned structural parameters and enhanced electronic properties, 
highly ordered TNAs have been employed to substitute TiO 2  nanoparticles for use 
in DSSCs [ 116 ]. Mor et al. reported the integration of TiO 2  nanoparticles modifi ed 
transparent nanotube array (360 nm in length) architecture on fl uorine-doped tin 
oxide (FTO) glass for front-side illuminated dye solar cell and displayed a photo-
conversion effi ciency (PCE) of 2.9 % (Fig.  7a ) [ 20 ]. They also observed that solar 
cells constructed by longer nanotubes formed from titanium foils (back-side illumi-
nation) have superior charge transfer effi ciency and more dye absorption in com-
parison with solar cells fabricated with transparent short nanotubes formed on FTO 
glass. However, the overall power conversion effi ciency of dye-sensitized TNA 
solar cells remained relatively low as a result of incomplete coverage of dye mole-
cules on the TNAs and insuffi cient infi ltration of electrolyte into nanotubes. For 
example, back-side illuminated N719 DSSC based on 6 μm long TNA fi lm on tita-
nium substrate shows a PCE of 4.24 % under AM 1.5 sunlight source (Fig.  7b ) 
[ 117 ]. To further improve the performance of dye-sensitized TNA solar cells, efforts 
have been directed toward the improvement of dye loading, charge transport, light 
absorption, and optimization of TiO 2  nanostructures [ 81 ,  118 – 122 ]. Recently, Misra 
and coworkers applied double-sided TNAs for bifacial dye-sensitized solar cells 
and reported that a photocurrent density of such bifacial DSSCs was almost twice 
that of one-sided illumination (Fig.  7c ) [ 119 ]. Sun et al. demonstrated a new parallel 
confi guration of DSSCs using double-sided TNAs as the photoanode and a dielec-
tric mirror for sunlight to irradiate on both sides of TNA photoanode (Fig.  7d ) [ 123 ]. 
An average 70 % increment in photocurrent and 30 % enhancement in PCE 
were obtained relative to those of the single cells. Zheng et al. constructed a layer-
by- layer hierarchical photoanode consisting of TiO 2  particles and free-standing 
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TNAs for DSSCs with a PCE of 8.80 %, which exhibited increased light-harvesting 
effi ciency, longer electron lifetimes, and more effi cient electron extraction than 
those in single particle fi lm or nanotube array-based devices [ 124 ].

       Quantum Dot-Sensitized Solar Cells (QDSSCs) 
 Typically, CdX (X = S, Se, and Te) QDs with size-dependent band gaps provide new 
opportunities for harvesting light energy in the visible and infrared regions of solar 
light [ 125 ]. In addition, through the impact ionization effect, it is possible to gener-
ate multiple excitons from single-photon absorption in QDs [ 126 ]. In the case of the 
QDSSCs, excited electrons of CdX nanocrystals are injected into a large band gap 
semiconductor (e.g., TiO 2  and ZnO), and holes are reacted with a redox couple. 
Recently, Kang and coworkers prepared the CdS/CdSe coupled TiO 2  nanofi brous 
electrode with a maximum PCE of 2.69 % [ 127 ], while Shen et al. fabricated a CdSe 
QD-sensitized TNA photoelectrode with an optimal photovoltaic conversion effi -
ciency of 1.80 % [ 128 ]. Recently, we report that a PCE of 2.74 % is achieved on a 
novel QDSSCs based on the CdS/CdSe QD co-sensitized TiO 2  nanocrystal arrays 
by a sealed annealing process (Fig.  8 ) [ 67 ]. We found that such coupled CdS/CdSe 
QDSSC exhibited a greatly enhanced short-circuit current density (Fig.  8e ) as com-
pared to pure TNAs and single CdS or CdSe QDSSC because the combination of 
CdS and CdSe QDs has a complementary effect in light harvest, surface area incre-
ment, and a stepwise band edge level structure of CdSe/CdS@TNAs benefi ciated 
for electron injection into TNAs. Peng et al. reported a novel CdS QD-sensitized 
TNA photoelectrode by a sequential chemical bath deposition technique and found 
that the CdS QDs among the TNAs signifi cantly increased the QDSSC effi ciency up 
to 4.15 % [ 129 ]. These results clearly demonstrate that the unique nanotube struc-
ture can facilitate the propagation and kinetic separation of photogenerated charges, 
suggesting potentially important applications of the inorganic TNA QDSSCs in 
solar cell applications. However, compared to DSSCs with PCE up to 12 %, 
QDSSCs have not been demonstrated as an effi cient inorganic dye than expected. 
Therefore, great efforts are still needed to inhibit charge recombination at the semi-
conductor surface for the effi ciency improvement of QDSSCs [ 130 ].

        Water Splitting 

 Considering that the principle of photoelectrolysis for water splitting is the same 
with photocatalysis, TNAs are considered as good candidates for high-effi cient 
water splitting (see Table  3 ). The photoelectrolysis process using TiO 2  nanotube- 
fabricated cells as a photoanode is as follows: when the photoanode is immersed in 
water and exposed to light irradiation, it absorbs photonic energy over its band gap 
energy, and then electron–hole pairs are generated in it. The generated holes oxidize 
O 2−  ions from absorbed water and produce oxygen gas and an electric current that 
moves through the external circuit to the conducting cathode in which it reduces H +  
ions to produce hydrogen gas. Recently, TNAs prepared by anodization of titanium 
have attracted extensive interest in photocatalytic water splitting. Grimes et al. fi nd 
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a hydrogen generation rate of 96 μmol/h/cm 2  for the utilization of nanotube array 
(224 nm in length) for water splitting under a constant voltage bias of −0.4 V (vs. 
Ag/AgCl) [ 131 ]. Recently, we reported an enhanced hydrogen generation rate of 
150 μmol/h/cm 2  by a three-step electrochemical anodized TNAs with a regular 
porous top layer (Fig.  9a, b ) [ 132 ]. Moreover, we found that palladium quantum 

  Fig. 8    Top view and cross-sectional SEM images of TNAs ( a ); CdS@TNAs ( b ); CdSe/CdS@
TNAs ( c ). ( d ) Schematic of CdSe/CdS@TNAs for QDSSC. ( e ) J-V characteristics of correspond-
ing QDSSCs       
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  Fig. 9    Top and cross-sectional SEM images of pure TNAs ( a ,  b ) and Pd QDs@TNAs ( c ,  d ). The  insets  
show the corresponding magnifi ed images. TEM images of TNAs coated with Pd QDs. ( g ) Schematic 
of TNAs on photoelectrolytic water splitting for hydrogen production. ( h ) Schematic illustration of 
TNAs deposited with Pd QDs and the charge transfer process from TiO 2  to Pd ( lower right panel )       
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dot-sensitized TNAs exhibited highly effi cient photocatalytic hydrogen production 
rate of 592 μmol/h/cm 2  under 320 mW/cm 2  irradiation (Fig.  9c–h ) [ 83 ]. In general, 
the hydrogen production rate is greatly depending on the electrolyte, external bias, 
light intensity, TiO 2  morphology, and structure (e.g., exposed high reactivity crystal 
facets) [ 133 ,  134 ]. Therefore, it is important to optimize these parameters and fun-
damentally understand their possible correlations to clarify the approaches toward 
constructing high-effi cient cell for hydrogen generation.

        Biomedical Scaffold 

 Biocompatibility is a prerequisite for the application of new biomaterials, and it is 
defi ned in terms of cellular response and tissue integration of implantable biomate-
rials. Titania and its alloys have been proven as biocompatible and consequently 
widely used in biomedical implant materials due to their good biocompatibility and 
excellent mechanical and chemistry stabilities [ 8 ]. Efforts to use smooth-surfaced 
titania have been widely reported in the past, but recent studies have moved toward 
nanostructured TiO 2 , which shows better osteoblast cell attachment, activation, and 
bone formation [ 145 – 149 ]. However, the infl uence of surface micro- and nanotop-
ography on osteogenesis is still not well understood. Therefore, studies on the TNAs 
and its modifi cation with other bioactive inorganic materials or organic entities 
(mainly enzymes, proteins, or DNA) in regard to a biorelevant environment are of 
a very high signifi cance. Mainly two directions have so far been explored with TNA 
substrates: (a) cell interactions and (b) hydroxyapatite growth. 

    Cell Interactions 
 Several studies have demonstrated that the nanotubular titania surface is a favorable 
template for bone cell growth and differentiation and provides clear evidence that 
osteoblast activity can be signifi cantly enhanced using controlled nanotopographies 
[ 146 ,  147 ,  149 – 151 ]. Improved blood compatibility and anticoagulation on anod-
ized titanium with nanotube structures compared with unanodized titanium have 
also been reported [ 152 ]. From the in vitro blood compatibility evaluation, it was 
observed that very few of platelets were attached onto the superhydrophobic surface 
than that on smooth counterpart (Fig.  10 ). Furthermore, the sparsely attached plate-
lets were not activated on the nanotube surfaces with superhydrophobic property, 
suggesting that the superhydrophobic TNA layers exhibited excellent blood com-
patibility and remarkable performance in preventing platelets from adhering to the 
implant surface on superhydrophobic TNA surfaces.

   In addition to surface wettability, the dimension of nanotube was also found to 
be an important parameter for cell adhesion, spreading, growth, and differentiation 
[ 153 ]. Two groups recently demonstrated that culture media prepared from TNAs 
can infl uence human and rat mesenchymal stem cells (MSC) [ 146 ,  147 ,  151 ]. Park 
et al. reported the adhesion, spreading, growth, and differentiation of mesenchymal 
stem cells increased on 15 nm nanotubes and dramatically decreased cell functions 
on 70 and 100 nm nanotubes [ 147 ]. This drastic effect of the nanoscale microenvi-
ronment on cell fate was ascribed to specifi c interactions between a specifi c 
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  Fig. 10    SEM images of adhered platelets on three kinds of surfaces for different periods: ( a – c ) 30 
min; ( a-1 ,  b-1 ,  c-1 ) 120 min. ( a-2 ), ( b-2 ) and ( c-2 ): magnifi ed images of the corresponding images 
of ( a-1 ), ( b-1 ) and ( c-1 ). Group ( a ) mechanically polished and cleaned Ti substrate; group ( b ), 
superhydrophilic TNA surface; group ( c ), superhydrophobic TNA surface; group ( d ), correspond-
ing schematic illustration of platelet morphology and the corresponding interactions       
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nanotube size and the focal adhesion (FA) complex [ 146 ]. Recently, Oh et al. found 
that small (approx. 30 nm diameter) nanotubes promoted adhesion without notice-
able differentiation, whereas larger (approx. to 70–100 nm diameter) nanotubes 
elicited a dramatic human mesenchymal stem cell (hMSC) elongation (approx. 
10-fold increased), which induced cytoskeletal stress and selective differentiation 
into osteoblast-like cells [ 151 ]. These different fi ndings motivated us that more sys-
tematic studies on the infl uence of TNA geometry, processing parameters, surface 
chemistry, crystal structure, and other differentiation approaches should be investi-
gated on the response of various cells. 

 In addition to bioassay of cell viability, the TNAs are also desirable for certain 
applications to control drug release by environmental stimuli such as pH, temperature, 
light, voltage, magnetic fi eld, or site-selective area drug release [ 154 – 158 ]. Song et al. 
reported the fabrication and use of an amphiphilic TNA structure that provides a 
highly controllable drug release system based on a hydrophobic cap on a hydrophilic 
TNA [ 154 ]. This hydrophobic cap prevents uncontrolled leaching of the hydrophilic 
drug into an aqueous environment. By exploiting the photocatalytic nature of TiO 2  for 
UV-induced chain scission of attached organic monolayers, the cap can be removed 
and a highly controlled release of drugs and proteins can be achieved. 

 In conventional uniform payload samples, the release of drugs usually follows a 
sustained kinetic mechanism that can be expressed in terms of diffusion of loading 
drugs without site selection. The microscale encapsulation of specifi c drug has 
received a great deal of attention because of the exciting possibilities of using these 
precious drugs in on-demand targeted place. For example, microscale silver 
nanoparticle patterns could be transported, released, and concentrated at pretargeted 
locations within the specifi c place in order to exert a specifi c function with high 
local and temporal precision. Lai et al. reported construction of microscale cur-
cumin (a broad-spectrum anticancer drug) patterns on titania nanotube layers based 
on the utilization of the superhydrophilic–superhydrophobic templates and demon-
strated the use of these patterned chip devices to targeted drug release for site- 
specifi c and high-sensitivity cancer cell bioassays [ 159 ]. Compared to that of the 
control group without payload, there exists signifi cant difference in quantity and 
shape of cancer cell. With the curcumin site selectively loaded in the superhydro-
philic regions that cancer cells preferentially adhered, few cells were found and 
most of the adhered MG-63 cells that remained spherical in shape indicated the cells 
were dead or inactivated. These in vitro anticancer results indicate that site-specifi c 
curcumin releasing can signifi cantly inhibit MG-63 cell proliferation and migration 
and induce cancer cell apoptosis in superhydrophilic regions. This extraordinary 
example of using titania nanotubes as a biomedical scaffold for cell culture and the 
treatment of cancer cells opens many new opportunities for drug delivery applica-
tions, which need to be explored in the future [ 160 ].  

    Hydroxyapatite Growth 
 In biomedical fi eld, another key feature of TNAs interacting with body fl uids is that 
it can stimulate hydroxyapatite growth and enhance osseointegration [ 161 ,  162 ]. 
Tsuchiya et al. reported the nanotube layers signifi cantly enhanced apatite forma-
tion compared with a fl at TiO 2  compact layer, i.e., on the fl at surface, no apatite was 
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formed even after 14 days soaking in simulated body fl uid (SBF), whereas for the 
nanotubes after 14 days of soaking, a thick apatite coverage can be achieved. 
Moreover, compared to amorphous layers, anatase or a mixture of anatase and rutile 
enhances apatite formation. Apatite was initiated on both annealed crystalline lay-
ers already after 2 days soaking in SBF, whereas no apatite was formed on the 
amorphous nanotube layer [ 163 ]. The growth of the hydroxyapatite onto the TNAs 
was also achieved by a facile electrodeposition process, and the cell adhesion for the 
composite coating was observed to be greatly improved [ 164 – 166 ].   

    Wetting Template 

 For many applications of TiO 2  structures, alterations of surface topography and 
wetting behavior are of great importance for controlled drug delivery and bio-
medical engineering applications [ 167 ,  168 ]. Several approaches using UV light 
or organic monolayers have been reported to control the whole surface wettability 
or prepare the patterned wetting of TiO 2  nanostructures [ 34 ,  169 ,  170 ]. TNA 
structures show typically a superhydrophilic behavior, that is, quick spreading of 
water on the entire surface, penetrating into the aligned tubes due to side penetra-
tion of the liquid by capillary forces. In order to alter the surface properties, low-
energy organic materials, e.g., fl uoroalkylsilane or octadecylphosphonic acid 
molecules, can be attached to the TNAs [ 34 ]. The original hydrophilic surface 
becomes superhydrophobic with a water contact angle of about 158 ± 2° for the 
silane SAMs. However, the CA for the “fl at” TiO 2  surface and its corresponding 
silane modifi ed sample is about 46° (hydrophilic) and 115° (hydrophobic), respec-
tively, indicating the rough nanotube structures have an amplifi cation effect to 
construct surfaces with extreme wetting property, e.g., superhydrophilic or super-
hydrophobic (Fig.  11 ).

   Using UV illumination the wetting behavior of the SAM-coated tube surface can 
be altered. After about 5 min irradiation for the silane SAM, the nanotube surface 
can be changed from superhydrophobic to superhydrophilic with a contact angle 
lower than 5° because the organic monolayers start to decompose as a consequence 
of the photocatalytic activity of TiO 2  fi lms [ 159 ]. Moreover, the rough nanotube 
sample exhibited superhydrophobic character once again when it was assembled 
with low-energy materials. Therefore the surface can be reversibly switched between 
superhydrophobic and superhydrophilic by alternating SAM and UV photocatalysis 
on the rough TNAs (Fig.  11e ). 

 The combination of organic modifi cation with a controllable photocatalytic reac-
tion of TiO 2  was used to create microscale patterning surfaces with any desired 
wettability value [ 159 ,  171 ]. Wetting micropatterns with different physical or chem-
ical properties, without the need for ultraprecise positioning, have frequently been 
acted as templates for fabricating various functional materials in a large scale, such 
as CaP [ 165 ,  169 ], ZnO [ 172 ], CdS [ 173 ], Ag [ 174 ], drug and biomolecules in a 
highly selective manner [ 159 ]. Moreover, wetting patterns with tailored and 
improved properties for a wide range of applications have been reported [ 170 ]. For 
example, Ag@TNA micropatterns show not only the high-throughput molecular 
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  Fig. 11    Typical SEM image of a typical rough TNA fi lm ( a ) and smooth TiO 2  (S-TiO 2 ) fi lm ( b ) 
by electrochemical anodizing at 20 V for 20 min in 0.5 wt% HF solution and 1 M H 2 SO 4  solution, 
respectively. ( c ) Contact angles of the as-prepared, PTES modifi ed, following UV irradiated (5 
min) rough TNA and S-TiO 2 , respectively. ( d ) The effect of UV light irradiation (366 nm) on con-
tact angle. ( e ) Reversible surface wettability on TNA fi lm by alternating PTES modifi cation and 
UV irradiation       

sensing feature with high-sensitive, reproducible performance but also show 
 promising targeted antibacterial properties [ 159 ]. The principle used to construct 
TiO 2  patterns with highly extreme wettability can be transferred to other semicon-
ductor substrates.  
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    Other Applications 

 As mentioned above, another special feature of TNAs or some other TiO 2  nanotube- 
based materials is its ability to serve as a host for small ion insertion, typically 
hydrogen ion or lithium ion, into the lattice, leading to the drastic change of elec-
tronic and optical properties for potential applications in lithium battery [ 175 ,  176 ], 
electrochromic devices [ 177 ,  178 ], and supercapacitor [ 179 – 181 ]. The kinetics, 
magnitude, and reversibility of the ion insertion and electrochromic reaction 
strongly depend on the ion diffusion length and therefore on geometry of the elec-
trode surface. Due to the specifi c vertical alignment of the TNAs, a very high con-
trast can be obtained using vertically oriented nanotubes. By the deposition of Ag 
nanoparticles on the TNAs, a material can be created that shows considerable pho-
tochromic contrast [ 182 ]. Furthermore, the TNA has also been proved to be good 
support for Pt or Pt/Ru catalysts for enhanced methanol electrooxidation [ 183 ,  184 ]. 

 Other applications of the TNAs for biomedical implant are specifi c gas/liquid 
(e.g., H 2 , CO, H 2 S, NO x , glucose, dopamine, insulin) sensing, electrochemical 
detection, photogenerated cathode protection [ 71 ,  185 – 193 ]. For instance, Grimes 
et al. have shown instant resistance response in order of several magnitudes for the 
TNA layer upon exposure to 1000 ppm H 2  containing nitrogen atmospheres at room 
temperature [ 187 ]. 

 The applications of TNAs can signifi cantly be expanded, if secondary material 
can successfully be deposited into the tubes. The TNAs can also be converted to 
other titanates MTiO 3  (M = Sr, Pd, Zr) with specifi c bioactive, piezoelectric, or fer-
roelectric properties and keep its original tube structure by a simple hydrothermal 
process in the corresponding precursor solution or a direct anodizing process in 
appropriate alloy substrates [ 194 – 197 ].   

    Conclusion 

 Till now, a large number of fundamental studies and application-oriented researches 
and developments are extensively carried out by many researchers for this low- 
dimensional nanomaterial due to the expected various properties of TiO 2  (high sur-
face area and controllable nanotube dimensions, geometries, and surface chemistry). 
This chapter has presented the recent progress of preparation and modifi cation on 
the electrochemically anodized TNA materials. These unique low-dimensional 
nanostructure materials have been shown to have many favorable properties for 
potential applications, including pollutant photocatalytic decomposition, photovol-
taic cells, biomedical scaffold, and wetting template. On the other hand, extensive 
challenges to fabricate high-quality TNAs and develop various oxide nanotubes 
have been continued. For instance, rapid and high-effi cient synthesis of anatase 
TNAs and other multicomponent nanotubes under ambient low-temperature condi-
tions have recently been reported [ 198 ]. Some other aspects aim to encompass the 
new progress of TiO 2  for an effi cient utilization in photocatalytic or photovoltaic 
applications under visible light, emphasize the future trends of ТiO 2  in the 
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environment and/or energy-related fi elds, and suggest new research directions, 
including the preparation aspects for the development of this promising material 
[ 199 – 206 ].     
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   Abstract  
  This chapter is prepared into six different sections. The fi rst part will provide a 
brief introduction of spinel ferrite nanoparticles synthesis, the use of chelating 
agents in the sol–gel method, and applications of spinel ferrite nanoparticles in 
biomedical fi elds. The second part will cover an overview of the structure and 
magnetism of spinel ferrites. The third part will present a summary of different 
types of chelating agents. The fourth part will provide information of the sol–gel 
synthesis for ceramic nanoparticles. The fi fth part will focus on the preparation 
of cobalt ferrite nanoparticles by sol–gel methods using polyvinyl alcohol (PVA) 
and citric acid (CA) as chelating agents. The infl uence of chelating agents on the 
physical properties and antibacterial property of cobalt ferrite nanoparticles will 
be highlighted in the last part. A discussion on chelating agent–metal ion forma-
tion and the antibacterial mechanisms of spinel ferrite nanoparticles will be 
presented.  

  Keywords  
  Antibacterial   •   Biomedical   •   Chelating agent   •   Nanoparticles   •   Sol-gel   •   Spinel 
ferrite  

        Introduction 

 Nanocrystalline metal oxides have been the focus of intense research for more than 
a decade due to their unique crystallographic structure and microstructure, e.g., high 
surface area and high volume fraction of atoms at interfacial regions. The resulting 
properties, such as superplasticity, catalytic activity, and increased hardness, as well 
as the processing route of the fi nal products, are distinctly different from those of 
their micrometer-sized counterparts. The use of spinel ferrite nanoparticles has been 
summarized in Table  1 .

   Table 1    The use of spinel ferrite nanoparticles   

 Researchers  Year  Applications 
 Sugimoto et al. [ 1 ]  1999  Magnetic materials 
 Wang et al. [ 2 ]  2005  Refractory materials 
 Mathew et al. [ 3 ]  2003  Catalysts 
 Gupta et al. [ 4 ]  2005  Improved drug solubility and stability and reduced side effects 
 Kalambur et al. [ 5 ]  2005  Heat mediators in hyperthermia treatments 
 Nasongkla et al. [ 6 ]  2006  Magnetic guidance in drug delivery 
 Reddy et al. [ 7 ]  2006  Imaging agents and treatment of brain tumors 
 Byrappa et al. [ 8 ]  2008  Drug delivery carrier in biomedical treatment 
 Sun et al. [ 9 ]  2004  Improved bacterial activity of drug carrier 
 Buteicǎ et al. [ 10 ]  2010  The carrier in drug delivery system for brain and kidney 
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   Chelating agents can reduce the condensation reactions in liquid-phase synthesis. 
From this reason, it has been used in inorganic chemistry to prevent particle agglom-
eration. They have been proven to control the cobalt ferrite phase in sol–gel chemical 
synthesis [ 11 ]. Chelating agents can function as good selective fl occulants because 
of their metal specifi city and selectivity. From the synthesis point of view, chelating 
agents present advantages over conventional mineral processing in terms of metal 
selectivity. The variety of major donor atoms, such as sulfur, nitrogen, oxygen, and 
phosphorus, make chelating agents useful in several applications. It is important to 
understand the chemical behavior of donors to predict the properties of chelating 
groups. Normally the choice of a chelating agent or a group is made on the basis of 
its function in analytical metal separations. 

 The enhanced control of homogeneity, elemental composition, and morphology of 
nanoparticles can be achieved from sol–gel processes. Moreover, uniformly nanosized 
metal clusters can be obtained, which are crucial for improving the properties of the 
nanoparticles. These advantages make the sol–gel route a favorable alternative to other 
conventional methods for the preparation of ceramic oxide composites [ 12 ]. Hence, the 
objectives of this chapter are fourfold. The fi rst section is to develop novel multifunc-
tional magnetic iron-based nanoparticles that also exhibit biocompatible and antibacte-
rial properties to fulfi ll the requirements of a drug delivery system. The second is to 
synthesize spinel ferrite nanoparticles (CoFe 2 O 4 ) by the sol–gel process using polyvinyl 
alcohol (PVA) and citric acid (CA) as the chelating agents. The third is to investigate the 
effect of chelating agents on the physical and antibacterial properties of the synthesized 
spinel ferrite nanoparticles. And the fi nal one is to discuss the formation between chelat-
ing agents and metal ions during the synthesizing period and explore the possible inter-
action mechanism of nanoparticles in a bacterial environment.  

    Ferrites 

 Ferrites are well-known ferrimagnetic materials that consist mainly of ferrimag-
netic oxides and, therefore, are electrically insulating. Since an alternating current 
fi eld does not induce undesirable eddy currents in an insulating material, then fer-
rites are broadly used in high-frequency applications [ 13 ]. 

 When ferrites are determined by the size and charge of the metal ions, it can be 
divided into two different structural symmetries, so that the charge of the oxygen 
ions and their relative amounts is balanced [ 14 ]. 

    Cubic Ferrites 

 The cubic ferrite has the general formula MO.Fe 2 O 3  where M is a divalent metal ion. 
These ferrites crystallize in the spinel structure and the spinel lattice is composed of 
a close-packed oxygen arrangement in which 32 oxygen ions form the unit cell. 
These anions are packed in a face-centered cubic (FCC) arrangement leaving two 
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types of space between anions: tetrahedrally coordinated sites (A), surrounded by 
four nearest oxygen atoms, and octahedrally coordinated sites (B), surrounded by 
six nearest neighbor oxygen atoms (Fig.  1 ). In total, there are 64 tetrahedral sites 
and 32 octahedral sites in the unit cell, of which only 8 tetrahedral sites and 16 octa-
hedral sites are occupied, resulting in a structure that is electrically neutral [ 14 ].

       Cobalt Ferrite 

 Some properties of the ferrites can be enhanced by incorporation of divalent metal-
lic ions inside their structure. In the case of cobalt ferrite, the incorporation of cobalt 
ions results in an increase in coercivity due to an increased magnetocrystalline 
anisotropy resulting from the coupling of the spins of the cobalt and iron ions [ 15 ]. 
Cobalt ferrite (CoFe 2 O 4 ) is a cubic ferrite with an inverse spinel structure where 
Co +2  ions are located in B sites and Fe +3  in the A and B sites. This ferrite is character-
ized by having an anisotropy constant higher than the common ferrites (Table  2 ) 
such as magnetite and maghemite. The anisotropy constant of bulk cobalt ferrite is 
in the range of 1.8–3.0 × 10 6  erg/cm 3 , and the saturation magnetization is 80.8 emu/g 
at room temperature and 93.9 emu/g at 5 K. [ 16 ].

   It has been observed that the magnitude of magnetic properties depends on the 
particle size. A decrease in particle size results in a decrease in coercivity and satu-
ration magnetization; whereas the susceptibility and anisotropy constant have been 
reported to increase [ 17 ].   

  Fig. 1    The unit cell structure of spinel ferrite       

 Ferrite 
 Anisotropy constant 
 K 1  (erg/cm 3 ) 

 FeFe 2 O 4   −1.1 × 10 3  
 Co 0.8 Fe 2.2 O 4   3.9 × 10 6  
 MnFe 2 O 4   −28 × 10 3  
 Co 0.3 Mn 0.4 Fe 2 O 4   1.1 × 10 6  

   Table 2    Anisotropy 
constants of some ferrites [ 14 ]   
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    The Sol–Gel Method 

    History 

 The history of sol–gel technology has been summarized in Fig.  2 .
   The study of sol–gel processing on glass materials and inorganic ceramic started 

in the mid-1800s by Graham et al. [ 18 ]. These investigators found that the hydroly-
sis of tetraethyl orthosilicate under acidic conditions yielded SiO 2  in the form of a 
“glass-like material.” However, little technological interest was raised by these 
studies due to the long drying times required to obtain large monolithic pieces due 
to the discovery of the Liesegang rings phenomenon. The gels attracted the atten-
tion of chemists and researchers [ 19 ] in the late 1800s through to the 1920s. Despite 
the huge volume of descriptive literature published about these studies, understand-
ing of physical–chemical properties of gels was limited. The second revival of the 
technique arose when the sol–gel method was employed by the ceramic industry in 
the 1950s and 1960s to synthesize a high number of novel ceramic oxide composi-
tions (Al, Si, Ti, Zr, etc.). These ceramics were unavailable by traditional ceramic 
powder methods. The third boom came in the 1980s, when the sol–gel method was 
rediscovered by the micro-optical and heterogeneous catalytic industries. There are 
many key factors that made sol–gel gain its popularity such as the outstanding ver-
satility, excellent control over the properties of the material, and the high degree of 
homogeneous component distribution. This phenomenon is indicated by the increase 
in the number of registered US patents using sol–gel elements, as depicted in Fig.  3 .

  Fig. 2    The fl owchart of sol–gel history       
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       The Sol–Gel Processing Method 

 In order to manufacture the ceramic oxide powders, sol–gel processing is consid-
ered one of the best chemical engineering. The term  sol  refers to the initial solution 
of the chemical components from which the fi nal powder will eventually be derived. 
 Gel  is a term used to describe the fi nal product of the ceramic material. 

 Ceramic method is the most broadly used synthetic technique for bulk metal 
oxides, which is based on the direct reaction of powder mixtures. The reactants and 
products controlled the diffusion of the atomic or ionic species. Both high tempera-
ture and small particle sizes are needed for solid-state processes in order to bring the 
reaction partners suffi ciently close and to provide high mobility. The reaction condi-
tions lead to thermodynamically stable phases, preventing the formation of meta-
stable solids. There are various products that can be collected from the sol–gel 
process (Fig.  4 ), which depends on the synthesizing route.

   Sol–gel procedures were successful in the nanoparticle synthesis for both inor-
ganic and organic bulk metal oxides [ 20 ]. Liquid-phase routes represent the most 
promising alternatives for the size- and shape-controlled synthesis of nanoparticles 
[ 21 ]. The number of oxide nanoparticles obtained by sol–gel chemistry is small 
compared to the variety of compounds obtained via powder routes [ 12 ]. 

 A synthesis procedure used for a bulk metal oxide may not be directly applied to 
the formation of its corresponding nanooxide. The reasons for this observation are 
manifold. Liquid sol–gel chemistry is considered a complex process because of the 
double role of water as ligand and solvent and the high reactivity of the metal oxide 
precursors toward water. However, there are many reaction parameters that must be 
controlled to provide good reproducibility of the synthesis protocol. Those param-
eters are the pH and temperature, the method of mixing, hydrolysis and condensa-
tion rate of the metal oxide precursors, the rate of oxidation, and the nature and 
concentration of anions [ 22 ].   

  Fig. 3    Number of annually registered US patents related to the sol–gel method       
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    Chelating Agents 

 Chelating agents are chemical compounds that can form the stable metal complexes 
characterized by ring structures. Normally the choice of a chelating agent or a group 
is made on the basis of its function in well-known analytical metal separations. 
Several researchers have studied the application of using chelating agents in min-
eral processing [ 23 ]. 

 Somasundaran et al. [ 24 ] studied the application of using chelating agents in 
mineral processing systems, the basis of the donor properties of the chelating groups 
and the metal species, and recent approaches to understand the chelation. Moreover, 
emphasis was given to the criteria for selection of chelating agents as collectors for 
various minerals and the predictability of the behavior of a chelating agent for a 
given mineral system. It was found that although chelating agents can be used effec-
tively for the fl otation of ores, they do not possess absolute specifi city toward min-
eral species. The chelating agents must be carefully chosen in consideration of the 
conditions and mineral for benefi ciation of the ore. Moreover, the chemical interac-
tion between chelating agents and mineral species in the bulk and on the surface 
becomes more essential for understanding the mechanism. The reactions in the 
interfacial region might be understood only by use of new experimental approaches 
that will permit direct probing of this region. 

 Chelating agents can be classifi ed either on the basis of donor atoms involved 
(O-O, N-O, N-N, S-O, S-S, S-N), ring size (4-, 5-, or 6-membered), charge on the 
complex (anion, cation, neutral), or number of bonds to the metal for every chelat-
ing molecule. However, there are fi ve categories of compounds that are commonly 
mixed with minerals and that have been used in manufacturing. These chelating 

  Fig. 4    Various steps in the sol–gel process to control the fi nal morphology of the product       
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agents are (i) synthetic chelates, (ii) polymeric, (iii) lignosulfonates, humic or fulvic 
acids, (iv) organic acids, and (v) amino acids. 

 Each type of chelating agent has a different chemical structure, physical proper-
ties, and chelated mechanism to the minerals. The illustration of these chelating 
agents will be presented in sections “ Synthetic Chelating Agents ,” “ Polymeric 
Chelating Agent ,” “ Humic or Fulvic Acids ,” “ Organic Acids ,” and “ Amino Acids ” 
including the information that serves as a guide to understand the advantages and 
disadvantages of each type. 

     Synthetic Chelating Agents 

 Synthetic chelating agents have been used in many industrial applications, e.g., in 
the textile, detergents, metal cleaning, cosmetics, pharmaceuticals, agrochemicals, 
printing inks, concrete admixtures, photography, and pulp and paper industries as 
well as in electrochemical coating industries [ 25 ]. They are poorly degraded by 
microbes and present good water solubility. For these reasons, they are classifi ed as 
environmentally acceptable. It has also been reported that the toxicity of the inves-
tigated synthetic chelating agents is low [ 26 ]. 

 The most common form of a synthetic chelating agent is EDTA (ethylenediami-
netetraacetic acid) which is usually used as the form of disodium salt of EDTA in 
agricultural mineral industry. A synthetically chelated mineral is the strongest form 
of chelation used in commercial agricultural applications [ 27 ]. The chemical struc-
ture of EDTA is presented in Fig.  5 .

   Normally alkaline earth divalent cations such as Ca 2+ , Mg 2+ , and Ba 2+  form insol-
uble precipitates with carbonates, sulfates, and phosphates that may cause detrimen-
tal effects in several industrial processes. Moreover, the activation of corrosion 
process, the catalytic degradation, polymerization inhibition, redox reactivity, and 
changes in the coloring of products may be activated when the transition metal ions 
such as those of copper, iron, zinc, and manganese are added in the system [ 28 ]. 
Some of transition metal cations may also be added as a metal species for specifi c 
reasons, but they may later suffer undesired alterations due to changes in concentra-
tion, pH value, oxidation, or reactions with other ingredients during the process. 
Therefore, metal–EDTA complexes have been used as a chelate ligand with a high 
affi nity constant. 
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  Fig. 5    Chemical structure of 
EDTA       
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 In 1935, EDTA was patented in Germany by F. Munz. It is a powerful complex-
ing agent of metals and a highly stable molecule which offered considerable versa-
tility in industrial and household uses [ 28 ]. Since it is applied mostly in an aqueous 
medium, it is released into the environment through wastewaters. Moreover, the use 
of EDTA in agrochemical application may cause the presence of EDTA in soils or 
the disposal of products containing EDTA in landfi ll sites. It is highly unlikely to 
fi nd the compound in air because it does not volatilize from waters or soils, even 
though this might arise during agrochemical use.  

     Polymeric Chelating Agent 

 Most chelating agents in the polymer group are considered to be water soluble and 
of low toxicity. Polymer, in this context, refers to the long-chain hydrocarbon back-
bone structure that consists of different functional groups such as hydroxyl, carbox-
ylic, carbonate, and sulfonate groups. 

 Polyvinyl alcohol or PVA was fi rst discovered from the experiment using poly-
vinyl acetate in ethanol and potassium hydroxide by Hermann and Haehnel in 1924 
[ 29 ]. Polyvinyl alcohol is synthesized from the hydrolysis of polyvinyl acetate by 
ester interchange with methanol in the presence of anhydrous sodium methylate or 
aqueous sodium hydroxide. 

 Vinyl acetate monomer is the primary raw material used in the manufacture of 
polyvinyl alcohol. It is manufactured by the polymerization of vinyl acetate fol-
lowed by partial hydrolysis. The process of hydrolysis is based on the partial 
replacement of the ester group in vinyl acetate with the hydroxyl group and is com-
pleted in the presence of aqueous sodium hydroxide. The addition of an aqueous 
saponifi cation agent is required. Eventually, PVA is precipitated, washed, and dried. 
The degree of hydrolysis is determined by the time point at which the saponifi cation 
reaction is stopped. Moreover, the degrees of hydrolysis and polymerization reac-
tion are the main factors that specify the physical characteristics and its specifi c 
functional uses. Polyvinyl alcohol is classifi ed into two classes of either partially 
hydrolyzed or fully hydrolyzed alcohol. Polyvinyl alcohol is the white or cream 
granular powder, odorless, tasteless, and translucent. PVA has several applications 
in the food industries as a binding and coating agent. It has been commercially used 
as a fi lm-coating agent, especially in applications where moisture barrier and pro-
tection properties are required [ 30 ]. The food products in which PVA is intended to 
be used should have neutral pH and are stored at either low temperature or at room 
temperature conditions that would not have any impact on the stability of the PVA 
fi lm. The repeating unit of polyvinyl alcohol is presented in Fig.  6 .

CH2 CH
n

OH

  Fig. 6    Chemical structure of 
PVA repeating unit       
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        Humic or Fulvic Acids 

 Fulvic acid is one of the most important compounds that constitutes the humic 
structure in rich composting soil [ 31 ]. There is no single fulvic acid chemical for-
mula because it quickly forms into complex molecular combinations that may be 
needed to suit the varied environments. It is created in nature separately to fulfi ll 
many specifi c and essential functions. There are many publications concerning the 
chemical structure and the function of humic and fulvic acids [ 32 ]. Most of them 
debate the actual structure of these molecules; however, one commonly accepted 
structure is presented in Fig.  7 .

   The structure of fulvic acid is complex, and it is unable to be clearly identifi ed 
and, therefore, synthesized by chemical methods. It is reported that fulvic acid has 
been applied in medical applications [ 32 ]. Many of these health examples have 
shown that fulvic acid is disease preventative and may enhance longevity. For this 
reason, fulvic acid potentially poses an opportunity to the future products of phar-
maceutical companies, medical doctors, and health professionals. 

 Another interesting point of fulvic acid is about their absorptive interaction with 
environmental chemicals, either before or after they reach concentrations that are 
toxic to living organisms. Fulvic acid reacts strongly on the demise of organic com-
pounds when it is applied to soil as a pesticide [ 32 ]. It has been found that fulvic 
acid is vital to aid the formation of new species of metal ions. It binds with organic 
pollutants such as pesticides and herbicides and catalyzes the breakdown of toxic 
pollutants [ 33 ].  

     Organic Acids 

 Organic acids are essential for the transportation and solubility of divalent elements 
(Zn 2+ , Mn 2+ , Fe 2+ , and Cu 2+ ) in plants [ 34 ]. The organic acids can be called “anionic 
organic acids” because of their negative charge. One of the most popular organic 
acids used for manufacturing and agriculture is citric acid which is considered a 
weak organic acid. It is produced as a white crystalline powder and the chemical 
structure is presented in Fig.  8 .

HOOC

HOOC

COOH

COOH

COOH

COOH

OH

OH

OH

OH
O

O

  Fig. 7    Chemical structure of 
fulvic acids       
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   The discovery of citric acid has been credited to Islamic alchemist Jabir ibn 
Hayyan in the eighth century [ 35 ]. Later, medieval scholars of the thirteenth century 
in Europe were aware of the acidic nature of lemon and lime juices. Citric acid was 
fi rst extracted in 1784 by the Swedish chemist Carl Wilhelm Scheele [ 36 ], who 
crystallized it from lemon juice. Industrial-scale citric acid production began in 
1890 and was based on the Italian citrus fruit industry. 

 Under the chemical structure consideration, citric acid presents the properties of 
other carboxylic acids. It decomposes through the loss of water and carbon dioxide 
when heated above 175 °C. The acidity of citric acid is slightly higher than other 
typical carboxylic acids because the anion can be stabilized by intermolecular 
hydrogen bonding from other protic groups. 

 Citric acid is one of the most useful ingredients in the food and beverage indus-
tries. The examples of the products that are produced using citric acid are jams, 
jellies, candies, preserved food, and frozen foods.  

     Amino Acids 

 In nature, plants produced amino acids for solubilizing and translocating minerals [ 37 ]. 
Amino acid compounds are produced from plants in order to make minerals bio-
logically available in the cell. Although uncomplexed or unchelated minerals are 
sprayed on plants such as 10 % zinc sulfate, the mineral has to integrate with an organic 
compound such as an amino acid before it can be effectively used by the plant. 

 Moreover, amino acid compounds play a role in mineral uptake into plant tissue 
because of the increase in permeability effect of the amino acid on the cuticle. 
Figure  9  presents the complex structure of an amino acid chelate of copper:

   The benefi t of amino acid-chelated mineral systems is that they are considered less 
phytotoxic to plants, especially during stress points in plant development. In addi-
tional, iron glycinate complex, which is considered an iron amino acid, has been 
developed and used as a food fortifi er and therapeutic agent in the prevention and 
treatment of iron defi ciency anemia [ 38 ]. The most studied and broadly used chelate 
complex is ferrous bis-glycine chelate (FeBC). The primary experimental results have 
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shown that FeBC is effi cacious in treating iron defi ciency anemia. The ingestion of 
FeBC-fortifi ed liquid milk, dairy wheat rolls, products, and multi- nutrient beverages 
is related with an improvement of iron status [ 39 ]. The limitations of using FeBC in 
widespread national fortifi cation programs can be divided into two parts. The fi rst one 
is the cost and the second issue is the effi ciency for applying organoleptic changes in 
some food matrices. Moreover, the additional research is needed to establish the bio-
availability of FeBC in different food matrices. Finally, there is a requirement for 
more rigorous potential trials designed to defi ne the relative merits of amino acid 
chelates when compared with bioavailable iron salts such as ferrous sulfate and fer-
rous fumarate and to determine appropriate fortifi cation levels.   

    Approach and Methodology 

 The prior background discussion has indicated the importance and need for focused 
studies concerning the infl uence of chelating agents on materials formed from 
nanoparticles such as spinel ferrites. Therefore, spinel ferrite nanoparticles were 
prepared via a sol–gel route using citric acid (CA) and polyvinyl alcohol (PVA) as 
a chelating agent. The infl uence of chelating agents on physical properties and anti-
bacterial properties of these nanoparticles against  E. coli  and  S. aureus  was investi-
gated. The intent of the following sections is to present data, the document, and the 
effi cacy of such an approach that develops potentially therapeutic agents. 

    Fabrication of Spinel Ferrite Nanoparticles 

 The chelating agents, which are PVA and citric acid gel, were prepared by dissolv-
ing these powders in distilled water (5 %, 10 % and 15 % w/v) at 70 °C. The chelat-
ing agent solutions were maintained at 70 °C for 5 h or until the solution became 
clear. Cobalt nitrate (Co(NO 3 ) 2 .6H 2 O) and iron nitrate (Fe(NO 3 ) 3 .9H 2 O) powders 
were mixed with the chelating agent solution at ratios of cobalt nitrate weight (mol): 
iron nitrate weight (mol) : gel volume (ml) equal to 1:2:10. The sol–gel reaction was 
continued for about 3 h, and the temperature increased to 80 °C for 10 h or until the 
gel dried into the form of a powder. Finally, all samples were sintered at 800 °C for 
4 h and then ground to a powder. Figure  10  diagrams the method employed.

       Analytical Techniques Employed 

 Elemental composition analyses of the nanoparticles were carried out using energy- 
dispersive X-ray spectroscopy (EDX). Phase analyses of cobalt ferrite nanoparticles 
were conducted using X-ray diffraction (Bruker AXS D8 Advance XRD). Surface 
wettability, an indicator of the surface interaction of the metal oxide with a given sol-
vent and an important measure for biomedical applications, was measured using the 
water contact angle technique (WCA-FTA200). The morphology (i.e., homogeneity 
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and particle size) of the materials was observed using a fi eld emission scanning 
electron microscope (ZEISS SUPRA 40 VP SEM). Particle size characterization of 
nanoparticles was performed using a 90Plus Particle Size Analyzer (Brookhaven 
Instruments Corp., USA). The antimicrobial activity of cobalt ferrite nanoparticles 
was tested against gram-negative bacteria,  Escherichia coli  ( E. coli ), and gram- 
positive bacteria,  Staphylococcus aureus  ( S. aureus ). 

 For the modifi ed Kirby–Bauer method [ 40 ], an equal amount of cobalt ferrite 
nanoparticles obtained from CA and PVA were coated on fi lter papers. All samples 
were placed on the  E. coli  growth lysogeny broth (LB) agar plate and incubated 
overnight at 37 °C. The zone of inhibition was measured in these studies.  

    Surface Charge Measurements 

 In order to determine the surface charge of nanoparticles, zeta potential analysis has 
been selected as the general experiment. Nanoparticles have a surface charge that 
attracts a thin layer of ions of opposite charge to the nanoparticle surface. This 
double layer of ions travels with the nanoparticle as it diffuses throughout the solu-
tion (Fig.  11 ). The electric potential at the boundary of the double layer is known as 

  Fig. 10    The preparation of spinel ferrite nanoparticles       
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the zeta potential of the particles which typically show the values between +100 mV 
to −100 mV. Zeta potential is considered an important method to interrogate the 
state of the nanoparticle surface and can be used to forecast the long-term stability 
of the nanoparticle. Zeta potential measurements were performed using a ZetaPALS 
Zeta Potential Analyzer BIC (Brookhaven Inst. Corp.).

        Experimental Results 

    Microstructure of Spinel Ferrite Nanoparticles 

 Figure  12  reveals SEM images of the cobalt ferrites synthesized using different 
types and concentrations of a chelating agent. These micrographs indicate that the 
nature of the chelating agent infl uences the morphology of the synthesized nanopar-
ticles. The nanoparticles synthesized using 5 % PVA as chelating agent (Fig.  12a ) 
exhibit a sheet-type morphology. Meanwhile, the micrographs in Fig.  12b  and  c  
show irregular particles and some agglomeration where particles form large clus-
ters. The nanoparticles prepared using 5 %, 10 %, and 15 % PVA as the chelating 
agent exhibit a polydisperse distribution with an average particle size of 350, 210, 
and 100 nm, respectively [ 41 ].

   No difference for both microstructure and particle size was observed when using 
CA as the chelating agent at different concentrations as shown in Fig.  12d–f . 
However, they show an angular morphology along with a polydisperse distribution 
of an average particle size of 65, 55, and 48 nm for 5 %, 10 %, and 15 % CA, 
respectively.  

  Fig. 11    Electric double layer 
surrounding nanoparticles       
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    Contact Angle Measurement 

 Figure  13  shows the contact angle measurements of cobalt ferrite nanoparticles 
obtained from CA and PVA and recorded with a CCD camera. Both images demon-
strate that the water droplets were spread equally in all directions. The surface of 
cobalt ferrite was hydrophilic since the water contact angle was less than 90°.

   Figure  14  depicts the stable water contact angle of the synthesized cobalt ferrite 
nanoparticles. The results indicate that cobalt ferrite nanoparticles obtained from CA 
as a chelating agent are marginally more hydrophobic than those prepared using PVA. 

  Fig. 12    SEM images of synthesized cobalt ferrite nanoparticles using ( a ) 5 % PVA, ( b ) 10 % 
PVA, ( c ) 15 % PVA, ( d ) 5 % CA, ( e ) 10 % CA, and ( f  ) 15 % CA       
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Signifi cant differences in the concentration of chelating agents have been noticed with 
respect to the contact angles of the cobalt ferrite nanoparticles. The water contact 
angles increase on increasing the concentration of the chelating agents [ 41 ].

       Particle Size Analysis 

 Figure  15  shows the particle size distribution of cobalt ferrite nanoparticles pre-
pared using PVA (a) and CA (b). Both types of nanoparticles present polydisperse 
particle size distributions.

  Fig. 13    The water contact angle images of cobalt ferrite nanoparticles obtained from ( a ) CA and 
( b ) PVA       

  Fig. 14    The stability of water contact angles of the synthesized cobalt ferrite nanoparticles using 
( a ) 15 % PVA, ( b ) 10 % PVA, ( c ) 5 % PVA, ( d ) 15 % CA, ( e ) 10 % CA, and ( f  ) 5 % CA       
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   In Fig.  15a , the particle diameter ranges of cobalt ferrites prepared using 5 %, 
10 %, and 15 % PVA are 25–260, 20–230, and 20–200 nm, respectively, and their 
average particle sizes are 112, 92, and 86 nm, respectively. In Fig.  15b , the particle 
diameter ranges of cobalt ferrites prepared using 5, 10, and 15 % CA are 20–135, 
15–130, and 15–100 nm, respectively, and their average particle sizes are 62, 55, 
and 50 nm, respectively. 

 The particle size data indicates that the cobalt ferrite nanoparticles prepared using 
CA exhibit a smaller particle diameter distribution and average particle size than 
those prepared using PVA. Moreover, both particle diameter distributions and the 
average particle size decrease when increasing the concentration of PVA and CA.  

    Zeta Potential 

 Figure  16  shows the zeta potential of spinel ferrite nanoparticles prepared using 
different types and concentrations of chelating agents as a function of pH val-
ues. All the curves show isoelectric points (pH iep ) in the range of 6.5–8, which 

  Fig. 15    Particle size 
distribution of cobalt 
ferrite particles obtained 
from PVA ( a ) and CA ( b )       
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are in good agreement with previously reported data on these spinel nanoparti-
cles [ 42 ]. The isoelectric point is the pH value at which a particular molecule or 
surface carries no net electrical charge. The results show that the pH iep  of cobalt 
ferrite nanoparticles decreased in the order of 5 % PVA < 10 % PVA < 15 % 
PVA < 5 % CA < 10 % CA < 15 % CA. Moreover, it can be seen that at a pH value 
below their pH iep , cobalt ferrite nanoparticles carry a net positive charge, while 
they carry a net negative charge at a pH value above their pH iep.  This result 
unambiguously indicates that the electrical characterization of the cobalt ferrite 
surface can be used to identify different types and concentrations of chelating 
agents.

       XRD Analysis 

 The XRD results of the cobalt ferrite nanoparticles prepared using PVA and CA are 
shown in Fig.  17 . According to the literature [ 43 ], the spinel phase cobalt ferrite 
pattern exhibits eight peaks located between 15° and 70°.

   The peaks at 18.29°, 30.08°, 35.44°, 37.06°, 43.06°, 53.45°, 56.98°, and 62.59° 
are indexed as the refl ection planes of (111), (220), (311), (222), (400), (422), 
(511), and (440), respectively. The cobalt ferrite nanoparticles prepared using 5 %, 
10 %, and 15 % CA (traces “e,” “f,” and “g” in Fig.  17 ) and 15 % PVA (trace “d” 
in Fig.  17 ) reveal that all peaks are related to the ideal spinel cobalt ferrite phase 
(JCPDS:00- 002-1045). The appearance of these diffraction peaks demonstrates 
that single-phase polycrystalline cobalt ferrite nanoparticles can be formed by cal-
cination of the precursor and chelating agent derived from the sol–gel process. 
However, additional peaks of an impurity hematite phase (JCPDS:01-089-2810) 
[ 21 ] were observed from cobalt ferrite nanoparticles prepared without using a 
 chelating agent (trace “a” in Fig.  17 ) and 5 % and 10 % PVA (traces “b” and “c,” 
respectively, in Fig.  17 ) [ 41 ].  

  Fig. 16    Zeta potential of 
cobalt ferrite particles as a 
function of pH in different 
NaCl concentrations       
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    Antibacterial Activities of the Spinel Ferrite Nanoparticles 

 The contact biocidal property of cobalt ferrite nanoparticles prepared using PVA 
and CA was determined using a modifi ed Kirby–Bauer technique. Filter papers are 
partially covered with and without cobalt ferrite nanoparticles and placed on a lawn 
of  E. coli  in an agar plate. The contact antibacterial property can be measured by the 
clear zone of inhibition around the fi lter papers after a 24 h incubation (Fig.  18 ). The 
diameter of inhibition zone for the cobalt ferrite nanopowders obtained from PVA is 
17 mm, whereas that of cobalt ferrite nanoparticles prepared using CA is 25 mm 
(where the size of both fi lter papers is 5 mm). The result indicates that the cobalt 
ferrite nanoparticles prepared using CA have a more effective contact biocidal prop-
erty than those prepared using PVA.

   The antibacterial activities of the cobalt ferrite nanoparticles against  E. coli  and 
 S. aureus  are shown in Fig.  19 . All tests were repeated ten times after culture incu-
bation at 37 °C overnight for statistical studies. The concentration of cobalt ferrite 
nanoparticles was fi xed at 1 g/L. Two typical cobalt ferrites prepared using PVA and 
CA were tested. Compared to the control, both types of cobalt ferrite nanoparticles 
inhibit the growth of  E. coli  and  S. aureus , and the nanoparticles prepared using 
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  Fig. 17    X-ray diffraction 
patterns of cobalt ferrite 
nanoparticles synthesized 
at different conditions: ( a ) 
without chelating agents, 
( b ) with 5 % PVA, ( c ) 
10 % PVA, ( d ) 15 % PVA, 
( e ) 5 % CA, ( f  ) 10 % CA, 
and ( g ) 15 % CA       
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  Fig. 18    Image of  E. coli  incubated for 24 h at 37 °C together with fi lter paper: ( a ) without cobalt 
ferrite nanoparticles, ( b ) with cobalt ferrite nanoparticles prepared using PVA, and ( c ) CA       

  Fig. 19    Antibacterial 
testing against  E. coli  and 
 S. aureus  of the cobalt 
ferrite nanoparticles 
synthesized at different 
conditions: ( a ) without 
cobalt ferrite nanoparticles, 
( b ) with 5 % PVA, ( c ) with 
10 % PVA, ( d ) with 15 % 
PVA, ( e ) with 5 % CA, ( f ) 
with 10 % CA, and ( g ) 
15 % CA       
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PVA showed 70 % of  E. coli  and 90 % of  S. aureus  survival, while 30 % of  E. coli  
and 80 % of  S. aureus  survival were detected from nanoparticles prepared using CA. 
Their antibacterial abilities became slightly stronger with increasing chelating agent 
concentration [ 41 ].

   There are several possible mechanisms for the antibacterial action to ceramic 
nanoparticles. It has been noted that ceramic nanoparticles bind to the membranes of 
microorganisms, similar to mammalian cells, prolonging the lag phase of the growth 
cycle and increasing the generation period of the organisms so that it takes each 
organism more time to make cell division fi nished [ 44 ]. Moreover, the main chemi-
cal species contributing to the occurrence of the antibacterial activity were assumed 
to be active oxide, hydrogen peroxide (H 2 O 2 ), and superoxide (O 2  − ), generated from 
the surface of these ceramics [ 45 ]. Hydrogen peroxide generated from the surface of 
ceramic nanoparticles can easily penetrate the cell wall of bacteria and cause cell 
destruction as presented in Fig.  20  [ 46 ]. The killing rate of ceramic nanoparticles 
against bacteria may depend on the penetration rate of an active oxide through the 
bacteria cell wall. Furthermore, the structure and the chemical composition of the 
cell wall are quite different between  E. coli  and  S. aureus . That is,  E. coli  has a cell 
wall consisting of lipid A, lipopolysaccharide, and peptidoglycan, whereas the com-
ponent of cell wall of  S. aureus  is peptidoglycan. These results indicate that active 
oxides generated from cobalt ferrite nanoparticles have more capability to penetrate 
the cell wall and decrease the cell division of  E. coli . However, the interaction mech-
anism between cobalt ferrite nanoparticles and  E. coli  and  S. aureus  needs further 
investigation, and it is not intended to be the focus of the current contribution.

   The  E. coli  and  S. aureus  killing rate of cobalt ferrite nanoparticles prepared 
using PVA is signifi cantly lower than those prepared using CA. The fi rst reason is 
that the killing rate is intimately associated with the surface area of nanoparticles 
dispersed into the  E. coli  and  S. aureus  suspension media. Since the cobalt ferrite 
nanoparticles prepared using CA exhibit a smaller crystalline size than those pre-
pared using PVA as indicated in Fig.  15 , these nanoparticles also exhibit a higher 
surface area, which leads to a higher killing rate of  E. coli  and  S. aureus . These 
results are in good agreement with those reported by Ohira et al. [ 47 ]. 

  Fig. 20    The mechanisms for the antibacterial action of spinel ferrite nanoparticles       
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 A second effect may arise from the structural characteristics of the cobalt ferrite 
nanoparticles. XRD results (Fig.  17 ) indicate that cobalt ferrite nanoparticles pre-
pared using CA present a single spinel cobalt ferrite phase, while those prepared 
using PVA exhibit a mixture of spinel and hematite phases. The spinel phase may 
play an important role in killing  E. coli  and  S. aureus . It has been noticed that the 
sample with 15 % PVA demonstrates a higher  E. coli  and  S. aureus  survival rate 
than those with CA, even though they show the same single spinel cobalt ferrite 
phase. In this case the microstructural property may play a dominant role in killing 
 E. coli  and  S. aureus .  

    Effect of the Chelating Agents 

 Chelating agents are used in inorganic chemistry to prevent particle agglomeration 
by reducing condensation reactions in liquid-phase synthesis [ 48 ]. From the point 
of chemical structure, PVA was used as a hydroxyl chelating agent, while CA was a 
carboxyl chelating agent. In this study, both types of chelating agents were used to 
chelate both inorganic precursors to form either a monodentate or bidentate metal 
complex as presented in Fig.  21  [ 49 ]. In addition, they prevent both metal cations 
from undesired spontaneous condensation reactions.

   Powders without a chelating agent did not have a media through which they 
could interact with the mineral ions. Homogeneous sols were obtained by 

  Fig. 21    Formation of monodentate and bidentate metal complexes obtained from ( a ) carboxyl 
chelating agent and ( b ) hydroxyl chelating agent       
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hydrolysis, but the time of homogeneity was on a small timescale compared to 
the overall reaction period. Phase separation usually took place at the gelling 
stage and resulted in a mixture of oxides. The random nature of the mixing pro-
cess indicates that the fi nal product contains a larger amount of the other oxides, 
for example, hematite as shown in Fig.  17a . Addition of PVA allows the forma-
tion of three oxide structures, i.e., cobalt–iron oxide, iron oxide, and cobalt 
oxide. On the other hand, CA permits the formation of individual molecular units 
that are free to diffuse so that the initial stoichiometry can be maintained as indi-
cated in Fig.  17 . 

 It has been observed that the addition of 5 %, 10 % and 15 % CA enables cobalt 
ferrite nanoparticles to be prepared under optimum processing conditions that 
result in the single-phase spinel cobalt ferrite without impurities. On the other 
hand, only the 15 % PVA formulation produces the same purity level of cobalt fer-
rite nanopowders that, however, exhibit a coarse microstructure. It can be con-
cluded that a carboxyl chelating agent such as citric acid enables the manufacture 
of cobalt ferrites with a higher purity than those using a hydroxyl chelating agent 
(i.e., PVA). The variation in microstructure and morphology of the cobalt ferrite 
nanoparticles prepared from different chelating routes infl uences the  E. coli  and 
 S. aureus  survivor rate.   

    Conclusion 

 This work initially reviews the interrelationships between nanoparticles and chelat-
ing agents. It is emphasized that signifi cant advances in material developments for 
many industries, i.e., mining, agricultural, and biomedical, have been implemented. 
Against this backdrop, a case is made concerning cobalt ferrite nanoparticles that 
have been modifi ed by chelating agents of citric acid and polyvinyl alcohol. 

 A sol–gel technique for synthesizing cobalt ferrite nanoparticles using polyvinyl 
alcohol (PVA) and citric acid (CA) as chelating agents was developed. For the 
nanoparticles prepared using PVA, a crystal structure evolved from sheet to cube 
and presented a polydispersed distribution with an average particle size of 350, 210, 
and 100 nm as the PVA concentration increased from 5 % to 10 % to 15 %. However, 
those nanoparticles prepared under all concentrations of CA exhibited the same 
angular morphology along with a polydisperse of an average particle size of 65, 55, 
and 48 nm for 5 %, 10 %, and 15 % CA, respectively. 

 The cobalt ferrite nanoparticles prepared using CA as a chelating agent were 
marginally more hydrophobic than those prepared using PVA. Pure spinel cobalt 
ferrite nanoparticles were obtained when using CA and 15 % PVA. On the other 
hand, nanoparticles synthesized from 5 % and 10 % of PVA presented some impuri-
ties in the form of hematite phases. The results demonstrated that both types of 
cobalt ferrite nanoparticles exhibited effective antibacterial activity against  E. coli  
and  S. aureus . In the test of LB agar plates, the cobalt ferrite nanoparticles exhibited 
surface-dependent antibacterial activities and could be used as drug delivery sys-
tems and for other biomedical applications.     
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  Carbon 
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 novel G-CP synthesis, 486 
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900, 914, 915  

  Core-shell particles, electrodeposition 
 cobalt, 773–776 
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  Equivalent circuit, 1309–1311, 1321  
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 Cu metallization, water solution, 

1280–1292 
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1295–1296 
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 Richardson constant, 1295 
 solar cells   ( see  Solar cells) 
 time dependencies, 1293, 1295 
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 spectroscopy, 1084, 1085, 1088  
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 electrochromic response, 807–810 
 fi lm forming, 807 
 ink formulation and printability, 805–807 
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451–454 
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 electrochromic response, 807–810 
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 shape impact, 805  
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