
Chapter 10

AMP-Activated Protein Kinase: A Metabolic

Stress Sensor in the Heart

Martin Pelosse, Malgorzata Tokarska-Schlattner, and Uwe Schlattner

Abstract AMP-activated protein kinase (AMPK) is a central cellular signaling

hub that senses and responds to different kinds of stress, mainly those triggered by

impaired cellular energy homeostasis. Since this is of major importance for the

heart, the kinase plays important roles for cardiovascular function in human health

and disease. Here, we review recent progress on the molecular structure and role of

AMPK and summarize regulation and biological actions of the AMPK pathway, in

particular those relevant for the heart. Activation of the kinase is involved in the

myocardial response to ischemia, pressure overload, and heart failure. Pharmaco-

logical activation of AMPK may prove to be a useful therapeutic strategy in the

treatment of these pathologies.

The heart is one of the most energy-requiring organs, and it needs a perfect match of

energy supply with energy demand to maintain its continuous contractile perfor-

mance. The most relevant protein kinase in the context of metabolic stability and

energy homeostasis is the AMP-activated protein kinase (AMPK). Many studies

have confirmed the importance of AMPK signaling for a correct functioning of the

cardiovascular system (reviewed in Arad et al. 2007; Dyck and Lopaschuk 2006;

Kim et al. 2009; Young 2008; Zaha and Young 2012).

AMPK can be characterized as gatekeeper of cellular energy homeostasis and

key regulator of energy metabolism, since it plays a central role in sensing and

regulating energy state at the cellular, organ, and whole-body level (Winder and

Hardie 1999; Hardie and Carling 1997). It is an evolutionary conserved and

ubiquitously expressed protein kinase (Hardie 2007, 2011) which is thought to

have evolved as one of the first kinase signaling pathways in unicellular eukaryotes

in response to starvation for a carbon source. It only later during evolution devel-

oped into a more general metabolic and energy stress sensor (Hardie 2011, 2014b;

Hardie and Ashford 2014).
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Activation of AMPK is triggered by a diverse array of signals linked to limited

energy availability in physiological and pathological situations, including extracel-

lular (e.g., hormones, cytokines, nutrients) and intracellular stimuli (e.g., AMP,

ADP, Ca2+) (Hardie et al. 2012a). AMPK activation occurs in the context of

metabolic stress that decreases ATP and increases intracellular AMP, ADP, or

Ca2+ concentrations. These include nutrient starvation, hypoxia (Hardie

et al. 1999; Marsin et al. 2002), metabolic poisons (e.g., that inhibiting mitochon-

drial ATP production), or muscle contraction (Winder and Hardie 1996). AMPK

activation involves covalent phosphorylation and allosteric effects of AMP, ADP,

and possibly other metabolites (Calabrese et al. 2014). Generally, these activation

mechanisms cooperate in a very complex manner, even though new findings

suggest they may also occur independently (Scott et al. 2014). They are coordinated

to activate AMPK in situations of energy deficit and aim at compensating ATP loss,

mostly via accelerated catabolism and inhibited anabolism. However, AMPK exerts

pleiotropic control not only of metabolic pathways but also of other physiological

functions more indirectly linked to cell energetics. These include growth, prolifer-

ation, shape, and motility of cells, autophagy and apoptosis, and even central,

systemic control of appetite in the hypothalamus (reviewed in Steinberg and

Kemp 2009). In all these cases, AMPK mediates fast (acute) effects by regulating

the activity of metabolic key enzymes and others and slow (chronic) effects by

tuning gene expression of these proteins. The downstream targets of AMPK have

made this kinase also a prime pharmacological target for treating type II diabetes,

cancer, and other pathologies (Hardie 2008b; Zhang et al. 2009; Inoki et al. 2012;

Srivastava et al. 2012).

It is to note that the majority of our knowledge on AMPK comes from

noncardiac cells, and part of it may not be applicable to the heart. For example,

this may concern the nature of activating stimuli and/or the threshold of activation

(Zaha and Young 2012). The heart is a quite unique organ in several aspects, in

particular in the context of its energy metabolism. The cardiac metabolic network is

characterized by an unusual stability. Energy homeostasis in the heart is maintained

by multiple regulatory mechanisms controlling cellular ATP production, utiliza-

tion, and transfer, including allosteric regulations and feedback loops, micro-

compartmentation, and metabolic channeling with concerted action of several

metabolic and signaling kinases (Neumann et al. 2007; Saks et al. 2006). AMPK

activation in the heart, in contrast to most other tissues, seems rather to act as a last

safeguard during severe energy deprivation and in pathological situations. It plays

an important role in the myocardial response to pathological stimuli like ischemia

reperfusion (Kudo et al. 1995; Russell et al. 2004), pressure overload (Kim

et al. 2012a; Tian et al. 2001), or heart failure (Sasaki et al. 2009). Thus, it functions

also in the heart as a metabolic master regulator, orchestrating the cardiac response

to various stress-related stimuli (Arad et al. 2007; Kim et al. 2009; Young 2008;

Zaha and Young 2012). Importantly, pharmacological activation of AMPK also

holds promise as a therapeutic strategy for treating different cardiovascular diseases

(Calvert et al. 2008; Sasaki et al. 2009; Shinmura et al. 2007).
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Here, we briefly review the AMPK structure, the way the kinase is activated, the

regulated metabolic pathways and cellular functions relevant for the heart, as well

as the available AMPK-targeted drugs. For any more extensive information on

these or other issues of AMPK signaling, the reader is referred to the many

excellent general reviews (Hardie 2014a, b, c; Hardie et al. 2012a; Mihaylova

and Shaw 2011; Steinberg and Kemp 2009) and reviews on the role of AMPK in

the heart (Kim and Dyck 2015; Kubli and Gustafsson 2014; Wang et al. 2012b;

Zaha and Young 2012b).

10.1 Evolving Physiological Roles

AMP-activated protein kinase (AMPK) was first described in studies on the regu-

lation of lipid metabolism, where an enzyme activity was identified that is respon-

sible for phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) and

3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase, HMGR) (Beg

et al. 1980), and which was activated by AMP (Ferrer et al. 1985). Since both

phosphorylations are inhibitory, AMPK was first perceived as a downregulator of

lipid synthesis.

However, it then became evident that AMPK more generally functions as a

cellular “fuel gauge” and can regulate many metabolic processes related to the

cellular energy state. With the discovery that both AMP and ADP are activators

(Oakhill et al. 2011; Xiao et al. 2011), AMPK regulation became quite similar to

what has been described already 50 years ago by Atkinson as the so-called energy

charge regulation of cell metabolism (Atkinson 1968). In fact, AMPK is able to

respond to low energy charge by reorganizing energy and metabolic fluxes toward a

nonstressed state. It thus represents a true control point for maintaining energy and

metabolic homeostasis.

The role of AMPK has been even further extended, with AMPK activity also

depending on physiological stimuli independent of the cellular energy charge like

hormones and nutrients (Minokoshi et al. 2002, 2004). As mentioned above, more

recently identified AMPK substrates reveal that AMPK signaling acts far beyond

the control of primary metabolism, as, e.g., in proliferation, autophagy, and central

appetite control. Thus, AMPK can now be defined as a “metabolic sensor” or

“metabolic master switch.” However, also in these cases, AMPK signaling some-

how acts to prevent a low energy state of cells, tissues, or the entire organism, by

preventing ATP-consuming processes (growth, motility) or favoring potentially

ATP-generating processes (autophagy, appetite).
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10.2 Molecular Structure

The AMPK family consists of evolutionary conserved and ubiquitously expressed

serine/threonine kinases that present complex structural and functional features.

Structurally, AMPK occurs in vertebrates exclusively as an obligatory

heterotrimeric protein complex composed of a catalytic subunit, α, and two regu-

latory subunits, β and γ. As a first layer of complexity, in vertebrates, each subunit

occurs as different isoforms (α1, α2, β1, β2, γ1, γ2, and γ3) encoded by distinct

genes (Carling 2004; Hardie et al. 2003), including some splice variants (of γ2 and

γ3), generating a large variety of heterotrimeric complexes. Alternative promoters

can further increase this complexity (Kahn et al. 2005). The precise physiological

significance of all these isoforms is not yet entirely clear.

Much has been learned about the molecular structure of AMPK by crystallo-

graphic studies on AMPK domains and heterotrimeric core complexes (carrying

larger truncations) (Townley and Shapiro 2007; Amodeo et al. 2007, 1; Chen

et al. 2009, 2012, 2013; Oakhill et al. 2011; Xiao et al. 2007, 2011) and most of

all by the most recently published structures of AMPK holo-complexes (Xiao

et al. 2013; Calabrese et al. 2014; Li et al. 2014). The so far most complete X-ray

structure covers the entire α2-subunit (with some internal truncations), the β1-
subunit (lacking only the flexible N-terminal portion), and the entire γ1-subunit
(Xiao et al. 2013) (Fig. 10.1). This work, stimulated by a growing interest in AMPK

as a putative drug target, revealed the overall topology of the heterotrimer, the

conserved global fold of large parts of the subunits, and suggested putative activa-

tion mechanisms. However, a high-resolution structure of full-length heterotrimeric

complex in both active and inactive states is still lacking.

α-Subunit The α-subunit contains a typical Ser/Thr protein kinase catalytic

domain in its N-terminal part, with features conserved throughout the entire protein

kinase superfamily (Hanks et al. 1988). It harbors a typical activation loop carrying

the critical Thr172 residue which is phosphorylated for activation by AMPK

upstream kinases like liver kinase B1 (LKB1) or Ca2+-calmodulin-dependent

protein kinase kinase beta (CamKKβ ; see Chap. 4) (Hawley et al. 2003, 2005;

Woods et al. 2003, 2005). This phosphorylation is considered as essential for

AMPK activity (Hawley et al. 1996), although this has been recently challenged

(Scott et al. 2014). Thr172 phosphorylation is also often used as a readout for

AMPK activity, although this may not always be correct (see Chap. 4). The

C-terminal part of the α-subunit carries different and important functionalities.

Immediately downstream of the catalytic domain follows the autoinhibitory domain

(AID) (Crute et al. 1998), which when fused to the kinase domain reduces AMPK

activity as compared to kinase domain alone (Chen et al. 2009; Pang et al. 2007). In

the further C-terminal sequence follows the so-called linker peptide and finally the

very C-terminal region (~150 amino acids) which is required for association with

the β-subunit. The latter also contains a long Ser/Thr-rich loop (not resolved in

X-ray structures), as well as a nuclear export sequence [known to be functional in

α2 (Kazgan et al. 2010)].
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Fig. 10.1 AMPK structure. (a) AMPK domain structure of the three AMPK subunits (SID,

subunit interaction domains; AID, autoinhibitory domain; CBM, carbohydrate-binding module;
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Of particular importance is the linker peptide, since it wraps around the

γ-subunit like in a close embrace. A part of this linker peptide, first identified as

α-hook, closely contacts γ-subunit (Xiao et al. 2011). Chen et al. (2013) more

recently corrected the amino acid register for the electron density in this region,

revealing the true γ-interacting sequence termed α-regulatory subunit interacting

motif (α-RIM), interacting with CBS site 3 (see below) and with a pocket formed by

a newly observed β-subunit loop. More recent structures of the near full-length

heterotrimers confirmed these interactions of α-linker with β- and γ-subunits (Xiao
et al. 2013) and its role in moving AID away from the kinase domain in the

activated state (Li et al. 2014). In addition to Thr172, the α-subunit can be

phosphorylated on several other residues both in vitro and in vivo. Most of these

phosphorylations occur in the Ser/Thr-rich loop and seem to inhibit the activating

Thr172 phosphorylation (see Chap. 4). Further structural studies will be necessary

to delineate covalent and non-covalent activation of the kinase domain in molecular

detail.

β-Subunit The regulatory β-subunit represents the core of the heterotrimeric

complex, since it provides a scaffold for binding of catalytic α- and regulatory

γ-subunits. The N-terminal domain of the β-subunit carries an additional regulatory
element, the conserved carbohydrate-binding module (CBM; also called glycogen-

binding domain, GBD). Its structure complexed to beta-cyclodextrin has been

solved (Polekhina et al. 2005), and it was shown that glucose α1-6-branched
glycogen can behave as allosteric inhibitor, negatively regulating AMPK phos-

phorylation by its upstream kinases (McBride et al. 2009). In addition, CBM may

serve to recruit AMPK to glycogen-bound downstream targets such as glycogen

synthase (Hardie and Sakamoto 2006). The recent near full-length AMPK struc-

tures confirmed that glycogen binding moves CBM away from the α-kinase
domain, while binding of pharmacological activators 991 and A769662 and

autophosphorylation of β-S108, both at the α/β-interface (see Chap. 4), closely

attach CBM to the kinase domain (Xiao et al. 2013; Li et al. 2014). The former

conformation seems to be rather inhibitory, while the latter strongly activates

AMPK. Thus, CBM is part of an allosteric regulatory site, which may also sense

⁄�

Fig. 10.1 (continued) CBS, cystathionine-β synthase). (b) AMPK complex topology. Subunit

interactions, secondary modifications (phosphorylations; myristoylation), and allosteric

interactors (AMP; Act, putative activator at α/β interface). (c) Molecular structure and activation

of the full-length AMPK heterotrimer (PDB 1CFF; Xiao et al. 2013). Binding of activating AMPK

ligands AMP (γ-subunit) and A-769662 (β-subunit) has to be transduced to the α-subunit kinase
domain for activation (see arrows), involving conformational changes. AMPK subunits α (green),
β (blue), and γ (magenta) with α-subunit kinase domain, activation loop (AL), and regulatory

interacting motif (α-RIM; Chen et al. 2013) indicated (dark green) and β-subunit carbohydrate-
binding module (CBM) labeled; sequences missing in the structure (dashed) include the

α-autoinhibitory domain (AID). Activation-relevant phosphosites (α-T172 in the activation loop

and β-S108 in the CBM; red brown), activating ligands [A-769662 (red) and AMP (orange/
yellow)], and kinase inhibitor staurosporine in the active site (green) are shown in spacefill

representation. For further details see text (Figure modified from Viollet et al. 2014)
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cellular energy reserves in the form of glycogen and mediate effects of certain

pharmacological activators. The large very N-terminal portion of the β-subunit is
not resolved in the known X-ray structures, and its function is not entirely clear. An

N-terminal myristoylation affects activation (Oakhill et al. 2010) and could mediate

membrane interaction. The sequence could also be involved in the interaction of

AMPK with other proteins (Klaus et al. 2013).

γ-Subunit All γ-subunits contain in their C-terminal part four tandem

cystathionine β-synthase (CBS) repeats, a motif named by analogy to the

cystathionine β-synthase in which it was first identified (Bateman 1997). In

AMPK γ-subunits, the four CBS sites (numbered CBS 1 to CBS 4 according to

their occurrence in the sequence) constitute a flattened disk with one CBS repeat in

each quadrant and two pairs of CBS motifs assembling into a so-called Bateman

domain. Four potential binding sites for adenylates (AMP, ADP, ATP) are created

in the cleft between the CBS motifs, numbered according to the CBS motif that

provides the conserved Asp for adenine ribose interaction (Kemp 2004). According

to several crystal structures of the mammalian γ1-subunit in the presence of various
nucleotides (Chen et al. 2012, 2013; Xiao et al. 2007, 2011, 2013), it appears that

only CBS sites 1, 3, and 4 are functional, while the site 2 is different and always

empty. The γ2- and γ3-isoforms contain long N-terminal extensions, which can be

subject to truncation by RNA splicing, and whose molecular structure and function

are currently unknown. The different γ-subunit isoforms and splice variants may be

involved in protein/protein interaction and confer different cellular localization and

function (Pinter et al. 2012).

10.3 Localization

Tissue Specificity; Cardiac AMPK AMPK isoforms show some differences in

their tissue- and developmental-specific expression patterns, although the physio-

logical significance is still uncertain. There is no strict tissue specificity of AMPK

isoforms, but increasing evidence suggests that a given tissue expresses a specific

subset of AMPK heterotrimers which may be linked to particular signaling path-

ways in this tissue (Table 10.1). Studies with transgenic mice lacking specific α-
and β-subunits have contributed to progress in this field (Viollet et al. 2009). While

the α1β1γ1 complex is probably the most abundant in a vast majority of cell types,

differences seem to occur in the amount of additional isoforms in a given tissue.

The heart contains high levels of the α2-isoform, which is much less expressed in

the skeletal muscle and liver and almost absent in the brain. The β2-isoform is

abundant in the heart and also in the muscle and brain. In addition to the γ1-isoform,

the heart expresses a specific intermediate-length γ2-splice variant (γ2-3B), while
γ3 seems to be quite specifically expressed only in the skeletal muscle (Stapleton

et al. 1996; Thornton et al. 1998; Pinter et al. 2012). There are also pathological and

developmental changes in cardiac AMPK expression. The α2-, β2-, and γ2-
isoforms are all upregulated by pressure overload or heart failure in rodents,
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although in patients rather the content of α1, β1, and γ2 (an intermediate form)

increases with different forms of cardiomyopathy (Tian et al. 2001; Kim

et al. 2012a). During embryonic development in rodents, γ1 increases, while high

levels of γ3 disappear, and the embryonically predominant full-length γ2-form is

replaced by γ2-3B in the heart but by short γ2b in other tissues (Pinter et al. 2012).

These developmental and tissue particularities may also explain why γ2-gene
mutations in the CBS domains cause hereditary hypertrophic cardiomyopathy but

no other pathological symptoms (see Chap. 6). Full-length γ2 and γ2-3B share an

N-terminal domain with unknown function that could localize the AMPK complex

to specific compartments or signaling pathways (Pinter et al. 2012). Total cardiac

AMPK activity increases after birth, contributing to the switch toward the predom-

inant use of fatty acids (Makinde et al. 1997). AMPK levels may also be determined

by ubiquitin-dependent protein degradation (Qi et al. 2008; Moreno et al. 2010).

Subcellular Distribution The subcellular distribution and recruitment of AMPK

isoforms to specific cellular sites is increasingly recognized as an important factor

for their signaling function. AMPK is generally observed as a soluble complex with

diffuse cytosolic localization. However, at least α2-containing complexes in their

activated form, e.g., after exercise in the skeletal muscle, also translocate into the

nucleus to phosphorylate nuclear substrates such as transcription factors, histones,

and histone deacetylases (McGee et al. 2003, 2008; Suzuki et al. 2007). Minor

portions of AMPK may associate with cellular structures like specific membranes,

where processes are regulated by AMPK (e.g., ion channel activity, cell polarity, or

cell junction formation) (Forcet and Billaud 2007; Andersen and Rasmussen 2012;

Nakano and Takashima 2012; Ramı́rez Rı́os et al. 2014). Myristoylation of the

AMPK β-subunit can localize the kinase complex to membranes and increases its

activability, thus possibly favoring activation of membrane-bound complexes

(Suzuki et al. 2007; Oakhill et al. 2010).

Multiprotein Complexes AMPK can also be recruited into specific complexes via

interaction with its upstream kinases, downstream substrates, or more general with

Table 10.1 Tissue expression of AMPK subunit isoforms

Isoform Heart Skeletal muscle Brain Liver Lung

Alpha 1 ++ ++ ++ ++ ++

Alpha 2 + + +

Beta 1 ++ + ++ ++ +

Beta 2 ++ ++ ++ +

Gamma 1 ++ + ++ + +

Gamma 2 +a + +

Gamma 3 +

Data from Mahlapuu et al. (2004), Quentin et al. (2011), Stapleton et al. (1996), Thornton

et al. (1998)
aSpecific splice variant (Pinter et al. 2012)
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scaffolding proteins. However, the AMPK interactome is only partially known so

far from some targeted and non-biased interaction studies conducted by us and

others (e.g., Behrends et al. 2010; Klaus et al. 2012), and more research is needed

on this issue, in particular in the heart. AMPK interaction with LKB1, its major

upstream kinase in the heart, could recruit AMPK to places of LKB1 localization,

including the mitochondrial surface or E-cadherin in adherens junctions (Sebbagh

et al. 2009). Close co-localization of both, AMPK and LKB1, can also be mediated

by membrane interaction of both, farnesylated LKB1 and myristoylated AMPK

(Houde et al. 2014).

Scaffolding proteins can in principle provide high specificity in cell signaling by

isolating activated kinases from bulk signaling and directing the information flow

into specific pathways. In the heart, for example, AMPK competes with p38 MAPK

for binding to the scaffolding protein TAK-1–binding protein-1, thus blunting p38

activation during ischemia (Li et al. 2005). Mitochondrial VDAC may represent yet

another anchoring protein that recruits AMPK to this organelle (Strogolova

et al. 2012). Most interestingly, the scaffold protein axin together with the

Ragulator complex at the lysosomal surface has been proposed as important

regulators of AMPK activation (Zhang et al. 2013, 2014). These data support a

model where axin bound to LKB1 recruits AMPK in the AMP-bound state, leading

to AMPK phosphorylation and activation. Further, in particular under nutrient-poor

conditions, the axin-LKB1-AMPK complex seems to interact with the Ragulator

complex which is tethered via its LAMTOR1 component to the lysosomal surface.

The Ragulator complex, apparently by its interaction with the lysosomal v-type

ATPase, seems to be an independent sensor of cellular nutrient conditions. It is

known to recruit the nutrient-signaling TORC1 complex (see Chap. 5) to lysosomes

under nutrient-rich conditions (Bar-Peled and Sabatini 2014), thus suggesting

reciprocal recruitment and activation of axin-LKB1-AMPK or mTORC1,

depending on the cellular nutrient state (Hardie 2014c). It is currently unknown

whether such regulation exists in the heart.

There is also some evidence that AMPK subunit isoforms determine specific

protein/protein interactions. The β-subunit may in some cases confer substrate

specificity, as has been shown in yeast (Vincent and Carlson 1999) and plants

orthologs (Polge et al. 2008), but with mammalian AMPK [IntAct database

(Kerrien et al. 2012)]. We recently found the β2-isoform interacting with Mu-

and Pi-type glutathione transferases (GSTs) to favor glutathionylation of the

α-subunit (Klaus et al. 2013). However, in the case of fumarate hydratase (FH),

we identified a specific interaction with α2-containing AMPK complexes to facil-

itate FH phosphorylation (Klaus et al. 2012).

10 AMP-Activated Protein Kinase: A Metabolic Stress Sensor in the Heart 195

http://dx.doi.org/10.1007/978-3-319-15263-9_5


10.4 Activation

AMPK integrates various intra- and extracellular signals and maintains cross talk

with other signaling pathways. This makes the kinase a central signaling hub in

sensing and regulating cellular energetics and ATP-dependent functions. Indeed,

the most recent research revealed that AMPK activation is much more complex

than initially anticipated and that it depends on multiple covalent modifications and

allosteric effectors (Fig. 10.2). Such AMPK regulation evolved from a more simple

state as, e.g., in the yeast AMPK homologues that lack allosteric activation by AMP

to the more complex regulation present in vertebrates.

Fig. 10.2 AMPK signaling. AMPK is activated by intra- and extracellular metabolic and endo-

crine signals and affects various downstream processes. Activation of AMPK is triggered by

upstream kinases (covalent activation by LKB1, CamKKβ, inhibition by Akt and PKA) and

phosphatases. They mediate mainly extracellular signals carrying, e.g., information on the energy

and nutrient state of the cellular environment and the entire organism (endocrine signals; systemic

control of AMPK). Covalent activation also depends on some intracellular parameters (Ca2+,

possibly also ROS/RNS), as well as the allosteric ligands. The second layer of regulation is

represented by AMPK activation via AMP and ADP (allosteric regulation), both acting as second

messengers of cellular energy stress (metabolic control of AMPK). This signaling is linked to

conversion of nucleotides via the adenylate kinase (AK) and creatine kinase (CK) reactions.

Activated AMPK compensates for ATP loss by accelerating catabolism and inhibiting anabolism

and exerts further effects on cell motility, growth, proliferation, and others, via regulation of key

enzymes and transcription factors. For further details see text
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Covalent Regulation by Phosphorylation The phosphorylation state of the con-

served threonine within the kinase domain activation loop (conventionally referred

as Thr172) determines the primary activation of AMPK. As compared to an

inactive state, this phosphorylation can increase kinase activity by more than

100-fold (Suter et al. 2006). The AMPK phosphorylation state depends on the

balance between the activity of different upstream kinases and phosphatases. The

two well-established upstream kinases are tumor suppressor kinase complex LKB1-

STRAD-MO25 (Woods et al. 2003; Shaw et al. 2004; Hawley et al. 2003) and Ca2+-

calmodulin-dependent protein kinase kinases (CamKK), in particular CamKKβ
(Hawley et al. 2005; Woods et al. 2005; Hurley et al. 2005). LKB1 is the major

AMPK kinase in most cells, including cardiomyocytes. However, this kinase seems

to mostly exhibit constitutive activity and may thus not be the limiting step in

AMPK activation. More recent studies suggest that close co-localization of LKB1

with AMPK involving the scaffold protein axin and the lysosomal surface may be

necessary for efficient AMPK activation via the LKB pathway (see Chap. 3; Zhang

et al. 2013, 2014). In some cell types, in particular in the brain but much less in the

heart, AMPK is activated predominantly in a Ca2+-dependent manner by CamKKβ.
Such CamKKβ-mediated AMPK activation might anticipate an increasing energy

turnover that accompanies a rise in cytosolic Ca2+ during muscle contraction, but its

role in the heart is not well understood. Transforming growth factor-β (TGF-β)-
activated kinase 1 (TAK1) has been suggested as another AMPK kinase (Herrero‐
Martı́n et al. 2009) and also as an AMPK substrate (Kim et al. 2012b). TAK-1 is

present in the heart, but not activated during ischemia, and it is unclear whether it

acts via direct AMPK phosphorylation (Xie et al. 2006b).

Protein phosphatases are possibly the more critical parameter governing the

α-Thr172 phosphorylation state, and this may also apply to the heart. AMPK

covalent activation is modulated by the protein phosphatase 1 (PP1) (Garcia-Haro

et al. 2010), the protein phosphatase 2C (PP2Cα) (Sanders et al. 2007a), and the

calcium-mediated protein phosphatase 2A (PP2A) (Park et al. 2013). It was also

proposed that α-SNAP may exhibit phosphatase activity on AMPK Thr172

according to in vitro dephosphorylation assay (Wang and Brautigan 2013). How-

ever, in tissues including the heart and endothelial cells, especially expression

levels PP2C and 2A, respectively, correlate well with AMPK activation (Wang

and Unger 2005; Wu et al. 2007).

There seems to be a cross talk of AMPK with many other cellular signaling

pathways. Mainly the α-Thr172 phosphorylation state is negatively controlled by

hierarchical phosphorylation at other sites in the AMPK heterotrimer, in particular

in the α-Ser/Thr-rich loop. Protein kinase B (PKB/Akt) that is activated under

glucose-rich conditions by insulin signaling is inhibiting AMPK by phosphoryla-

tion at rat α1-Ser485 (much less so at the equivalent α2-Ser491) which reduces

phosphorylation at the activating α-Thr172 (Hawley et al. 2014; Horman

et al. 2006). Thus, hyperactivation of PKB/Akt as occurring in many tumor cells,

and also in the heart under doxorubicin treatment (see Chap. 6), can strongly

downregulate AMPK activation, with negative effects on proliferation control
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and cell energetics, respectively. Similar inhibitory phosphorylations of AMPK

were reported for protein kinase GSK3β (Suzuki et al. 2013) and protein kinase A

(PKA) (Hurley et al. 2006; Djouder et al. 2010). In the latter case, not the Ser/Thr-

loop phosphorylations (including Ser485/Ser491) seem to be inhibitory but rather

another one at α-Ser173 (Djouder et al. 2010). The physiological rationale under-

lying AMPK inhibition by GSK3β and PKA is, however, less obvious. AMPK is

further negatively controlled by the Ras/Raf/MEK/ERK pathway in a more com-

plex manner, involving negative feedback loops. While active AMPK can reduce

MEK/ERK signaling via phosphorylation of upstream B-Raf (Shen et al. 2013),

active ERK can reduce AMPK signaling by inhibitory phosphorylation of the

AMPK upstream kinase LKB1 (Zheng et al. 2009). Further phosphorylation sites

were identified in both AMPK α- and β-subunits, many of them targeted by

autophosphorylation, but their functional role remains uncertain. As recently

discovered, (auto)phosphorylation of β-Ser108 close to the glycogen-binding

domain seems to be an important second allosteric regulatory site (see below).

Endocrine Signals Information about the cellular environment and whole-body

energy and nutrient state is linked to AMPK signaling via endocrine, paracrine, and

autocrine mechanisms. These include a diverse array of hormones and cytokines

(Table 10.2). They regulate AMPK mainly by triggering AMPK phosphorylation

via upstream kinases, and this regulation often occurs in a tissue-specific manner.

Best studied are probably the orexigenic/anorexigenic hormones ghrelin and leptin.

In peripheral tissues, leptin activates AMPK to regulate fatty acid oxidation and

glucose uptake. In hypothalamus, leptin inhibits and ghrelin activates AMPK to

decrease and increase appetite, respectively, in order to regulate food intake

(Steinberg and Kemp 2009; Steinberg 2013). Other endocrine factors that affect

AMPK activity are sex hormones that act via LKB1 (McInnes et al. 2012) and

angiotensin 2 (Nagata et al. 2004; Steinberg 2013). Endocrine signals in the heart

are discussed in Chap. 6.

Calcium Signals As described above, cellular calcium can regulate the Thr172

phosphorylation state of AMPK via calcium-homeostasis-related kinases in phos-

phatases, in particular CamKKβ (Hawley et al. 2005) and PP2A (Park et al. 2013),

respectively. This can also be demonstrated with calcium ionophores (e.g.,

A23187) in LKB1-deficient cells. Ca2+- and AMP-dependent AMPK activation

occurs independently and can be synergistic, since AMP binding (see below)

protects the Ca2+-induced phosphorylation (Fogarty et al. 2010).

Non-covalent Regulation The second major mechanism of AMPK activation

relies on non-covalent, allosteric regulation. It mainly occurs by AMP and ADP,

competing with MgATP for binding to the γ-subunit CBS domains. At a low

cellular energy state, increases of AMP and, as discovered more recently, also of

ADP can be sensed by AMPK as altered AMP/ATP and ADP/ATP concentration

ratios (Oakhill et al. 2011; Xiao et al. 2011). In many cell types and in particular in

the heart and skeletal muscle, breakdown of ATP to ADP at the onset of high

workload or cellular stress has only minor immediate effects on ATP levels. Due to
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the energy buffer and transfer function of the CK/PCr system, global and local ATP

pools are rapidly replenished (Schlattner et al. 2006; Wallimann et al. 2011). Thus,

ATP is not a very suitable signal for indicating developing energy deficits. How-

ever, minor decreases in ATP levels lead to more pronounced relative increases in

free ADP and even more in AMP due to the adenylate kinase (AK) reaction. Under

these conditions, AK uses two ADPs to regenerate ATP and AMP, thus increasing

AMP concentrations from the sub-micromolar range under resting conditions to the

lower micromolar range (Hardie et al. 2011). To a lesser extent, AMP levels also

depend on pyrophosphates (cleaving the β-phosphate bond of ATP) and the activity
of AMP degradation pathways [AMP-deaminase and 50-nucleotidase, whose inhi-

bition may be useful to activate AMPK (Kulkarni et al. 2011)]. As a consequence, a

decrease in ATP levels by only 10 % translates into a ten- to 100-fold increase in

AMP, making AMP an ideal second messenger of energy stress. Regulation of

AMPK activation by the balance between ATP, ADP, and AMP concentrations

resembles to what was put forward by Atkinson 50 years ago as “energy charge”

Table 10.2 Hormones and cytokines affecting AMPK activity

Compound Effect Mechanism Tissue Ref.

Leptin + AMP increase Muscle Minokoshi

et al. (2002)

Leptin � Melanocortin receptor

signaling?

Hypothalamus Minokoshi

et al. (2004)

Interleukin-6 + Not known Muscle Carey

et al. (2006)

Tumor necrosis

factor α
� Increased PP2C

expression

Muscle Steinberg

et al. (2006)

Resistin � Not known Liver, muscle,

adipose

Banerjee

et al. (2004)

Ghrelin + G protein coupled recep-

tor signaling CamKK

activation

Hypothalamus,

heart

Kola et al. (2005),

Nakazato

et al. (2001)

Ghrelin � Liver Barazzoni

et al. (2005)

Adiponectin + Adiponectin receptor

1 signaling?

Muscle, adi-

pose,

hypothalamus

Kubota

et al. (2007)

Estrogen + Not known Muscle D’Eon
et al. (2005)

Testosterone;

dihydrotestosterone

� Decrease in LKB1

mRNA

Adipocytes McInnes

et al. (2012)

17β-estradiol + Increase in LKB1 mRNA Adipocytes McInnes

et al. (2012)

Angiotensin 2 + AT1R-NADPH oxidase

axis

Vascular

smooth muscle

cells

Nagata

et al. (2004)
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regulation (Atkinson 1968; Hardie and Hawley 2001; Xiao et al. 2011; Oakhill

et al. 2011).

The molecular basis of AMPK activation by AMP and ADP is not yet fully

understood but involves binding to CBS sites on the γ-subunit that trigger multiple

interconnected mechanisms. Binding of AMP leads to an up to a ~tenfold allosteric

activation of AMPK (Gowans et al. 2013). Earlier in vitro studies suggested that the

α2-subunit has a higher sensitivity to this allosteric activation (Salt et al. 1998a). In
addition, AMP and ADP binding increase the phosphorylation status of α-Thr172
through protection of the α-subunit activation loop from dephosphorylation by

phosphatases (Davies et al. 1995; Xiao et al. 2011). In addition, AMP (but not

ADP) promotes α-Thr172 phosphorylation by LKB1 but not by CamKKβ (Gowans
et al. 2013). The γ-subunit CBS sites involved in these allosteric effects are sites

1, 3, and 4. However, there is some debate on the role of these sites, in particular

which sites mediate direct allosteric activation and which ones the protection of

dephosphorylation. There is a consensus that changes of AMP and ADP concen-

trations in the physiological range are mainly sensed at sites 1 and 3, called

exchangeable binding sites. Here, free AMP and ADP probably compete mainly

with free ATP, since the most abundant Mg2+-complexed ATP has tenfold lower

affinity for the CBS sites (Xiao et al. 2011). Sites 1 and 3 differ about 30-fold in

their affinity for adenylates, and initial evidence suggested site 1 as high-affinity

site, sensing low micromolar concentrations of AMP for allosteric activation, and

site 3 as low affinity site, involved in protection of dephosphorylation at higher

AMP and ADP concentrations (Xiao et al. 2011). However, the role of CBS sites

may not be defined as clearly. A more recent study suggests that site 3 is the most

important for allosteric activation (Chen et al. 2012). Indeed, mutation of site

3 residues abrogates allosteric AMPK activation (Chen et al. 2012; Scott

et al. 2004), and this site is also in contact with the α-subunit (see below). In

addition, site 4 may play a role in allosteric activation. This is a tight AMP-binding

site, generally reported as non-exchangeable site since purified protein or protein

crystals always retain AMP in this site, even when treated with ATP. However,

Chen et al. (Chen et al. 2012) observed ATP at site 4 when co-crystallizing AMPK

core complex in the presence of 2 mM free ATP, a very high concentration that may

not be physiologically relevant. However, ATP binding to site 4 forces site 3 to

remain empty, and this affects allosteric AMPK activation, consistent with the

model of CBS site 3 being the major site of allosteric regulation. A complicating

fact is that some nucleotide-binding CBS residues can interact with nucleotides at

different sites, thus precluding a clear-cut functional assignment of CBS sites

(Hardie 2014c).

All known direct AMPK activators act via allosteric effects (see Chap. 7). They

either act like AMP at the CBS sites (e.g., 5-aminoimidazole-4-carboxamide

riboside, AICAR; Giri et al. 2004) or they exert their effects by binding to an

entirely different site, discovered only recently (e.g., A-769662; Scott et al. 2008).

This site is situated in a cleft between the α-kinase domain and the β-CBM domain

and stabilized by autophosphorylation of the β-Ser108. Occupation of this α/β site
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confers protection of dephosphorylation. It can be speculated that there exists an

endogenous activating metabolite binding at the α/β site, and/or an endogenous

activating kinase, able to phosphorylate Ser108 (Hardie 2014c).

All these allosteric mechanisms, whether they involve binding events at the CBS

sites or at the novel α/β site, require close communication between the sensing

subunit (γ or β) and the catalytic subunit (α). We and our collaborators have

proposed that subunit communication and activation occur via a conformational

switch within the AMPK full-length complex (Riek et al. 2008; Chen et al. 2012).

Indeed, AMP-induced conformational changes have been evidenced through struc-

tural studies by SAXS (Riek et al. 2008), electron microscopy (Zhu et al. 2011), and

X-ray crystallography (Chen et al. 2012) within different parts of the AMPK

heterotrimer. Recent structures of the holo-AMPK complex in its active state, as

well as low-resolution structures in Thr172 phosphorylated and unphosphorylated

states, suggest that conformational changes and intramolecular movements involve

α-RIM, α-AID, the two lobes of the α-kinase domain, as well as the entire γ-subunit
(Chen et al. 2013; Xiao et al. 2011; Calabrese et al. 2014; Li et al. 2014). High-

resolution apo-AMPK structures of holo-AMPK complex will be necessary to

answer the remaining questions, in particular how a different occupation of CBS

sites communicates via α-RIM and α-AID with the kinase domain. Collectively,

these non-covalent AMPK activation mechanisms add an important layer to the

regulation of AMPK activity, since they allow a direct response to intracellular

metabolites.

Exercise and Hypoxia Given the sensitivity of AMPK for adenine nucleotides,

any physiological or pathological situation that changes adenylate ratios will affect

AMPK signaling. AMPK is activated by a plethora of stimuli such as metabolic

stresses and drugs and xenobiotics that either (1) inhibit ATP production, such as

starvation for glucose (Salt et al. 1998b) and oxygen (Marsin et al. 2002), or

metabolic poisons or (2) increase ATP consumption, such as muscle contraction

(Lantier et al. 2014). Muscle contraction and exercise in general trigger rapid

activation of AMPK (Chen et al. 2003), and this may be one of the fastest

mechanisms that mediate metabolic adaptation to exercise. When AMPK is

knocked out in the skeletal muscle of β1β2 transgenic mice, they lose exercise

tolerance and glucose uptake during contractions, become physically inactive, and

present an importantly impaired capacity for running linked to reductions in

skeletal muscle mitochondrial content (O’Neill et al. 2011). During hypoxia,

from the early stage on, a drastic drop in the ATP/AMP level occurs, resulting in

AMPK activation.

Other Covalent and Non-covalent Regulations In addition to the above-

described conventional regulation of AMPK, there is increasing evidence for

additional activation and inactivation mechanisms. Here, different secondary pro-

tein modifications play an important role. Myristoylation at Gly2 in the β-subunit
increases the sensitivity of AMPK for allosteric activation and promotes Thr172

phosphorylation (Oakhill et al. 2010). The β2-subunit, but not β1, is sumoylated by

the E3-small ubiquitin-like modifier (SUMO) ligase protein inhibitor of activated
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STAT (PIASy), which attaches SUMO2 but not SUMO1 moieties. This seems to

enhance AMPK activity and competes with ubiquitination that results in inactiva-

tion of AMPK complex (Rubio et al. 2013). Ubiquitination of AMPK occurs via

complexes of laforin (a dual-specificity protein phosphatase) and malin (an -

E3-ubiquitin ligase), mainly at the β-subunit, and leads to K63-linked ubiquitin

chains that are involved in functions different from proteasome degradation

(Moreno et al. 2010). Glutathionylation at Cys299 and Cys304 in the α-subunit
activates the kinase under oxidative conditions in cellular models and is favored by

binding to certain GST isoforms (Klaus et al. 2013). This latter mechanism may be

part of a more general redox regulation of the kinase (Han et al. 2010; Jeon

et al. 2012). ROS and RNS activate AMPK, but it is unclear whether this happens

via increases in ADP and AMP concentrations or whether noncanonical mecha-

nisms at the level of AMPK (like glutathionylation) or upstream kinases play a role.

Vice versa, AMPK regulates NADPH homeostasis and an entire battery of

ROS-detoxifying enzymes. Another non-covalent allosteric regulator is glycogen

as well as other synthetic branched oligosaccharides that inhibit AMPK activity by

binding to the β-CBM domain (McBride et al. 2009) (see above).

10.5 Regulation

Metabolism AMPK regulates cellular metabolism at many levels, reducing anab-

olism (ATP-demanding processes) and upregulating catabolism (ATP-generating

processes) to restore a healthy energy status at a cellular and whole-body level. To

do so, AMPK directly acts on metabolic key enzymes and signaling proteins (acute

effects) or on transcription factors (chronic effects, see Fig. 10.2) (Hardie

et al. 2012b). Interestingly, drugs of the two main classes of antidiabetic drugs,

biguanides (e.g., metformin) and thiazolidinediones (e.g., rosiglitazone), both act at

least in part through activation of AMPK (Morrison et al. 2011; Musi et al. 2002). In

the heart, AMPK is part of the signaling network that allows a predominant use of

fatty acid oxidation for ATP generation and also provides the metabolic flexibility

to respond to changes in substrate availability, thus continuously matching ATP

generation and demand. Failing of AMPK to provide this flexibility under certain

pathological conditions can contribute to the pathogenesis of heart failure (see

Chap. 6, reviewed in Kim and Dyck 2015).

Lipid Metabolism Activated AMPK induces transfer of fatty acid transporter

(FAT/CD36) to the plasma membrane to increase fatty acid uptake (Luiken

et al. 2003). AMPK further inhibits ATP-consuming lipid synthesis, notably in

the liver and in the adipose tissue, but stimulates lipid catabolism for ATP gener-

ation. Phosphorylation of acetyl-CoA carboxylase (ACC) decreases ACC-catalyzed

formation of malonylCoA a precursor in the fatty acid synthesis pathway. At the

same time, reducing malonylCoA levels will relieve their inhibition of carnitine

palmitoyltransferase 1 (CPT-1), which triggers fatty acid import into mitochondria
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and subsequent β-oxidation. AMPK also phosphorylates and inhibits other anabolic

enzymes: 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a key enzyme in

cholesterol synthesis that converts 3-hydroxy-3-methylglutaryl-CoA into

mevalonic acid, and glycerol phosphate acyltransferase, involved in triglyceride

and phospholipid synthesis (Liao et al. 2014). Since AMPK acts by stimulating

lipolysis and inhibiting lipogenesis, its pharmacological activation seems to be

useful to treat obesity, diabetes type 2, and more generally the metabolic syndrome

(Hardie 2008a; O’Neill et al. 2013).

Carbohydrate Metabolism AMPK also interferes with carbohydrate metabolism

at different levels, including carbohydrate uptake, glycolysis, and glycogen synthe-

sis. Activated AMPK promotes cellular glucose uptake via glucose transporters

GLUT1 (expressed in most cells except muscle, liver, and adipose tissue) and

GLUT4 (expressed mainly in adipose tissue and striated muscle). AMPK activation

promotes GLUT4 translocation to the plasma membrane (Kurth-Kraczek

et al. 1999) and stimulates GLUT4 transcription by phosphorylation of the tran-

scription repressor histone deacetylase 5 (HDAC5) which reduces its affinity for the

GLUT4 promoter (McGee et al. 2008). GLUT1-dependent glucose uptake is

activated via an unclear mechanism that involves GLUT1 already located at the

plasma membrane (Barnes et al. 2002). Notably in case of energy deprivation in the

heart, AMPK phosphorylates and activates the 6-phosphofructo-2-kinase/fructose-

2,6-bisphosphatase (PFKFB) to increase the steady-state concentration of fructose-

2,6-bisphosphate (Marsin et al. 2000). This metabolite then acts as an allosteric

activator of glycolysis by stimulating the glycolytic enzyme 6-phosphofructo-1-

kinase (PFK1), a rate-limiting glycolytic enzyme. Once activated, AMPK also

represses anabolic glucose storage into glycogen by directly phosphorylating and

inactivating glycogen synthase (Bultot et al. 2012). Finally, AMPK affects carbo-

hydrate metabolism indirectly by phosphorylation of the mTor–raptor complex,

which was proposed to modulate insulin sensitivity by regulating protein levels of

IRS-1 (Haruta et al. 2000; Kahn et al. 2005).

Transcription AMPK phosphorylates and regulates various transcription factors

and coregulators, including forkhead box O (FoxO) proteins FoxO1 and FoxO3

(Kubli and Gustafsson 2014) and peroxisome proliferator-activated receptor

(PPAR) γ coactivator-1a (PGC-1α) (Patten and Arany 2012), both having important

roles in the regulation of cardiac energetic homeostasis and beyond. PGC-1α is a

central transcriptional coactivator that orchestrates mitochondrial biogenesis and

dynamics, fuel transport and/or consumption, angiogenesis, and antioxidative

effects. PGC-1α phosphorylation by AMPK results in improved metabolism of

fatty acids and more efficient energy utilization (Schilling and Kelly 2011). FoxO

transcription factors regulate expression of genes involved in the antioxidative

stress response and in the balance between apoptosis, autophagy, and energy

metabolism. These functions are critical for cardiac function (Ronnebaum and

Patterson 2010). FoxO-regulated genes also encode proteins that contribute to

improved energy metabolism, including FAT/CD36 and GLUT4 indirect metabolic

effects.
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Growth and Proliferation Many effects of AMPK on cell growth, cell cycle, and

autophagy are mediated by another evolutionary conserved serine/threonine protein

kinase further downstream, the mammalian target of rapamycin (mTor). mTor

occurs as two functional multiprotein complexes, mTORC1 and mTORC2

(Loewith et al. 2002). mTORC1 comprises mTOR, raptor, mLST8, and PRAS40

and is regulated by cellular energy and nutrient state, whereas mTORC2 is not.

Raptor also plays a significant role in intracellular localization of mTORC1 in

response to amino acid availability, which is an essential cellular signal for

mTORC1 activation (Sancak et al. 2008). Activation of mTORC1 occurs at the

lysosomal surface as a part of complex, multiprotein assemblies (Bar-Peled and

Sabatini 2014). Active mTORC1 stimulates several ATP-demanding cellular pro-

cesses such as translation, transcription (protein synthesis), ribosome biogenesis,

mitochondrial metabolism, proliferation, and autophagy. Unlike mTORC2,

mTORC1 is sensitive to rapamycin, a molecule used as immunorepressor due to

its capacity to downregulate protein synthesis, notably of antibodies.

Two important substrates of mTORC1 in its response to nutrients and cellular

energy status are S6 kinase (S6K) and eIF4E binding proteins (4EBPs). Raptor, a

component of mTORC1, functions as a scaffolding protein to recruit such sub-

strates for phosphorylation (Nojima et al. 2003). S6K is a ribosomal kinase regu-

lating translation initiation, mRNA processing, and cell growth and notably

enhances protein synthesis once phosphorylated. 4EBPs are translational repressors

that are inactivated upon phosphorylation by mTORC1. To precisely regulate these

mTORC1-dependent, energy-demanding processes, AMPK inhibits mTORC1 sig-

naling through two distinct mechanisms (Inoki et al. 2012). First, it directly

phosphorylates raptor at the conserved Ser722 and Ser792, leading to recruitment

of 14-3-3 protein and an inactive mTORC1 complex (Gwinn et al. 2008). Second, it

phosphorylates tuberous sclerosis protein 2 (TSC2), a GTPase-activating protein

(GAP), thus stimulating the downstream GTPase Ras homologue enriched in brain

protein (Rheb). This transforms Rheb from its GTP-bound form that activates

mTORC1 into its inactive, GDP-bound form (Inoki et al. 2003). This latter pathway

of mTORC1 regulation by AMPK may depend on cell type and tissue (Wolff

et al. 2011). Collectively, the AMPK and mTORC1 pathways serve as a signaling

nexus to regulate cellular metabolism, energy homeostasis, and cell growth. Dis-

order of each pathway may strongly contribute to the development of pathologies

such as type II diabetes or cancer.

Autophagy and Apoptosis While AMPK activation by upstream kinases is well

studied, much less is known about regulation of AMPK stability and activity by

components of the ubiquitin–proteasome system, responsible for cellular recogni-

tion and degradation of proteins. Growing evidence suggests that AMPK regulates

overall proteasome activity and individual components of the ubiquitin–proteasome

system (Ronnebaum et al. 2014). Autophagy is important for maintaining homeo-

stasis when nutrient supply becomes limiting. It is important for the cellular

turnover of proteins and organelles and is rapidly upregulated during stress. In

metabolic disorders including obesity and diabetes, autophagy is reduced, leading
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to accumulation of protein aggregates and dysfunctional organelles which can

contribute to pathogenesis.

10.6 Cardiac Signaling in Health and Disease

Cardiac AMPK activity is increased by many stimuli, acting either via upstream

kinases or modulation of adenylate levels under both pathological and physiolog-

ical stress and involving various hormones and cytokines (Fig. 10.2; Zaha and

Young 2012). However, within the physiological range, the role of cardiomyocyte

AMPK is possibly different from other cell types, mainly because of the remarkable

metabolic stability of this organ maintained by multiple other mechanisms. Two

classical physiological stimuli of AMPK, exercise and hypoxia, also act on cardiac

AMPK (Coven et al. 2003; Frederich et al. 2005; Musi et al. 2005) and promote the

metabolism of glucose and fatty acids via its different downstream targets. How-

ever, it is unclear whether this activation is due to altered energy state as in the

skeletal muscle or rather relies on alternative upstream signaling. At least one other

physiological AMPK stimulus, nutrient deprivation, seems not to operate in a

canonical manner in the heart (Clark et al. 2004). Apart of these key roles, cardiac

AMPK mediates the cardiomyocyte response to a variety of other physiological or

pathological situations, including some forms of pressure overload, heart failure,

intracellular calcium overload, or reactive oxygen and nitrogen species (Dolinsky

et al. 2009; Zaha and Young 2012).

Ischemia As a pathological stimulus, ischemia is the best studied both in form of

no-flow and partial ischemia in isolated perfused animal hearts, as well as regional

ischemia due to coronary ligation in vivo (Kim et al. 2011; Kudo et al. 1996; Paiva

et al. 2011; Russell et al. 2004; Wang et al. 2009), for a review see Young (2008).

They lead to rapid and lasting AMPK activation. As already mentioned, oxidative

stress may be a determinant of such activation, acting through different forms of

ROS (Sartoretto et al. 2011; Zou et al. 2002). In endothelial cells, it is rather

peroxynitrite formation that affects AMPK via the protein kinase Cζ-LKB1 axis

(Xie et al. 2006a; Zou et al. 2004), while in other non-excitable cells, it may be

rather an ROS-induced Ca2+ release that triggers the CamKKβ axis (Mungai

et al. 2011). ROS-facilitated glutathionylation of AMPK (see Chap. 4) as observed

in cellular systems represents yet another direct activation mechanism but still has

to be verified in cardiomyocytes (Klaus et al. 2013; Zmijewski et al. 2010). How-

ever, the signaling function of ROS may be lost at more intense oxidative stress that

inactivates AMPK (Gratia et al. 2012). Stress resulting from many but not all forms

of pressure overload also results in AMPK activation, mainly increasing glucose

uptake and glycolysis (Allard et al. 2007; Li et al. 2007; Tian et al. 2001; Zhang

et al. 2008), as well as changing the gene expression profile (Hu et al. 2011).

Endocrine Regulation Cardiac AMPK is also regulated by extracellular signals as

adiponectin (Shibata et al. 2004), leptin (Minokoshi et al. 2002), resistin (Kang
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et al. 2011), ghrelin (Kola et al. 2005), IL6 (Kelly et al. 2004), and CNTF (Watt

et al. 2006). Best studied are probably the hormones adiponectin and leptin (the

latter at least during ischemia; McGaffin et al. 2009) which activate cardiac AMPK

or the proinflammatory cytokine IL-6 which appears to reduce AMPK content and

activity (Zaha and Young 2012). Cardiac AMPK seems to be involved in the

positive effects of adiponectin for cardioprotection during ischemia and for reduced

cardiac hypertrophy (Shibata et al. 2004, 2005). Also, leptin may modulate AMPK

in the heart, since impaired leptin signaling correlates with reduced AMPK activa-

tion and metabolic defects or reduced postconditioning after ischemia (Bouhidel

et al. 2008; McGaffin et al. 2009). Proinflammatory cytokines like IL-6 rather

reduce AMPK protein and activation (Ko et al. 2009), although there may be

opposite effects in specific tissues like skeletal muscle due to a specific autocrine–

paracrine effect (Kelly et al. 2004). Another cytokine with functions in the heart is

macrophage migration inhibitory factor (MIF), which is involved in AMPK acti-

vation during ischemia and hypoxia, and its decrease with age in mice seems to

reduce AMPK activation during ischemia (Ma et al. 2010; Miller et al. 2008).

Protein Turnover AMPK has been suggested to play an important role in regu-

lating cardiac turnover of proteins and organelles (Baskin and Taegtmeyer 2011;

Zaha and Young 2012), also during ischemia. This process is critical for the

survival and self-renewal of terminally differentiated cells as cardiomyocytes and

requires tightly regulated degradation of misfolded and damaged proteins or dam-

aged/dysfunctional organelles (as, e.g., mitochondria) and their replacement by

new and functional entities. Recent evidence suggests that AMPK regulates degra-

dation at two levels. Individual proteins are eliminated by the ubiquitin–proteasome

system, with AMPK activating the cardiac ubiquitin ligases atrogin-1 and MuRF.

Whole organelles are digested by stimulation of autophagy via activation of ULK1

and inhibition of mTOR (Baskin and Taegtmeyer 2011; Hardie et al. 2012a; Zaha

and Young 2012). Thus, under conditions of metabolic stress, AMPK activation

inhibits protein synthesis (via mTOR) and activates degradation of proteins and

organelles. The recycling of nutrients from breakdown of cellular components

(macromolecules and organelles) contributes to the maintenance of the cellular

ATP-regenerating capacity, to the control of protein and organellar quality, as well

as to the maintenance of cardiomyocyte size and their survival. It is to note that

slowing down protein synthesis also prevents accumulation of unfolded proteins

under stress situation such as hypoxic or ischemic injury and the related endoplas-

mic reticulum stress (Terai et al. 2005).

Inflammation As mentioned above, cytokines can directly regulate cardiac

AMPK activity. On the other hand, AMPK has the capacity to repress inflammatory

responses and exert anti-inflammatory and immunosuppressive effects in a variety

of cell types by interfering with cytokine signaling (Salminen et al. 2011; Salt and

Palmer 2012). There is evidence that in several tissues, including the cardiovascular

system, activation of AMPK impairs leukocyte infiltration (an early key step in

development of inflammation) by reducing expression of chemokines and adhesion

molecules (Salt and Palmer 2012). This is important for the heart, since
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inflammation is a critical component in the pathogenesis of many common cardio-

vascular diseases (Pankuweit et al. 2004), including the diabetic heart

(Ko et al. 2009).

Cardioprotection Most mechanisms triggered by active cardiac AMPK, though

possibly not all, are recognized to promote cardioprotective effects. For example,

AMPK-dependent stimulation of glucose metabolism (glucose uptake by GLUT4

and stimulated glycolysis by PFK2) is of particular importance for the anaerobic

ATP synthesis during ischemia and thus for protection of the ischemic heart (Young

2008). It is to note, however, that AMPK activation persisting after ischemia during

early reperfusion is considered rather detrimental, because excessive stimulation of

fatty acid oxidation impairs glucose oxidation via Randle cycle/uncoupling of

enhanced glycolysis from glucose oxidation (Dyck and Lopaschuk 2006). The net

result of AMPK activation during an ischemia/reperfusion episode can still be

considered as beneficial (Zaha and Young 2012). Finally, AMPK was suggested

to mediate the cardiac response to different known cardiac protectants, mostly in

pathological setting, as, e.g., during ischemic episodes or pathological hypertrophy

(review in Kim et al. 2009). For example, AMPK contributes to the

cardioprotective effects of adiponectin and metformin during coronary occlusion

in mice (Calvert et al. 2008; Shibata et al. 2005), as well as to cardiac

preconditioning by regulating the activity and recruitment of sarcolemmal K

(ATP) channels (Sukhodub et al. 2007).

As AMPK activation has predominantly pro-survival character, it is considered

as promising potential therapeutic target in the treatment of different cardiovascular

diseases (Inoki et al. 2012; Kim et al. 2011; Zaha and Young 2012).

Cardiomyopathies Mutation of specific CBS residues is associated with patho-

logical disorders (Kemp 2004; Ignoul and Eggermont 2005). Mutations in the CBS

domains of the AMPK γ2-subunit, expressed at particularly high levels in the heart,
cause the Wolff-Parkinson-White (WPW) syndrome, a hereditary cardiomyopathy

of varying severity, involving cardiac hypertrophy, contractile dysfunction, and

arrhythmias. Mutations impair adenylate binding and thus AMPK activation (Scott

et al. 2004; Burwinkel et al. 2005), but the major cause for the cardiomyopathy is

the increased AMP-independent basal AMPK activity. This leads to higher glucose

uptake, accumulation of glycogen in cardiac myocytes, and finally impairment of

heart muscle development (Burwinkel et al. 2005; Davies et al. 2006).

Cardiac Contractility Cardiac troponin I was identified in a yeast 2-hybrid screen

to interact with the AMPK γ2-subunit N-terminal domain and to be phosphorylated

by AMPK at Ser150 in vitro and during ischemia in the heart (Oliveira et al. 2012).

This results in increased myocyte contraction and prolonged relaxation by an

increase in myofilament Ca2+ sensitivity. These effects were also triggered by the

AMPK activator AICAR, suggesting that pharmacological AMPK activation could

improve heart function.
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Doxorubicin-Induced Cardiotoxicity The anthracycline antibiotic doxorubicin

(Adriamycin; DXR) remains one of the most largely prescribed chemotherapeutic

drugs for the treatment of a variety of human cancers (Eschenhagen et al. 2011;

Ewer and Ewer 2010; Gianni et al. 2008; Minotti et al. 2004, 2010). It is still a

cornerstone of combination therapies together with more targeted, new generation

drugs. Unfortunately, the potent antitumor effect of DXR is accompanied by a

number of unwanted side effects, in particular a serious cardiac toxicity. This

complication represents a major obstacle when using the drug for prolonged time

and/or at a higher cumulative dose (Curigliano et al. 2012; Menna et al. 2008).

Detrimental effects of DXR are thought to be mediated by different kinds of stress

induced by the drug: energetic stress, oxidative stress, and genotoxic stress (Gratia

et al. 2012). Given the stress-sensing function of AMPK, an activation of the kinase

is expected in the heart as a result of drug action. Paradoxically, it seems that in the

heart DXR does not increase but rather decrease the basal phosphorylation of

AMPK, thus inactivating the kinase. Such AMPK inhibition has been observed in

different model systems of acute and chronic cardiotoxicity, including cultured

cardiomyocytes (Konishi et al. 2011; Wang et al. 2012a), perfused heart (Gratia

et al. 2012; Tokarska-Schlattner et al. 2005), and in vivo models of rat (Cai

et al. 2010; Gratia et al. 2012; Russell 2003) and mice (Kawaguchi et al. 2012;

Kim et al. 2010; Konishi et al. 2011). AMPK appears to be an early and sensitive

DXR target: in rat hearts perfused with rather low clinically relevant DXR concen-

trations, AMPK is inhibited already after 1–2 h, well before changes in myocardial

function can be observed. In rats, AMPK inactivation persists several weeks after

the end of treatment (Gratia et al. 2012; Konishi et al. 2011). Thus, it seems that

DXR generates conditions which normally should activate AMPK but instead

inhibits the stress response of AMPK. This may create a vicious cycle for the

heart, important for drug toxicity.

DXR-induced inhibition of cardiac AMPK signaling is, at least partially, due to

the negative cross talk with other signaling pathways, in particular Akt and ERK.

These two pro-survival kinases respond in the heart to a variety of stimuli (Kehat

and Molkentin 2010; Sussman et al. 2011) and are activated by DXR (Gabrielson

et al. 2007; Gratia et al. 2012; Horie et al. 2010; Khalil et al. 2012; Kobayashi

et al. 2010; Lee et al. 2006; Lou et al. 2005; Tokarska-Schlattner et al. 2010). Both

kinases are known to inhibit AMPK (Du et al. 2008; Esteve-Puig et al. 2009; Hahn-

Windgassen et al. 2005; Horman et al. 2006; Kovacic et al. 2003; Soltys

et al. 2006).

This interplay of AMPK with Akt seems especially pronounced in heart, and

AMPK inhibition by the Akt pathway has been also reported for other cardiac

pathologies (Dyck and Lopaschuk 2006). We could substantiate the role of the Akt–

AMPK cross talk for drug-induced AMPK inhibition by using the specific Akt

inhibitor MK2206 (Gratia et al. 2012). Akt is mainly activated by DNA-damage

signaling in response to strong DNA damage that is induced in cardiomyocytes by

the drug. This involves DNA-dependent protein kinase (DNA-PK), activated by

DNA double-strand breaks which are a typical consequence of DXR action.
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Interestingly, several most recent studies indicate a more general relationship

between a reduced LKB1–AMPK signaling and cardiac disease (Dolinsky

et al. 2009; Ikeda et al. 2009; Shaw 2009). Decreased activation state of the

LKB1–AMPK axis occurs in several cardiac pathologies, and in some of them a

similar AMPK inhibition by cross talk with Akt has been suggested as underlying

mechanism (Hahn-Windgassen et al. 2005; Horman et al. 2006; Kovacic

et al. 2003; Soltys et al. 2006). In spontaneously hypertensive rats, another mech-

anism has been put forward, namely, oxidative damage of LKB1 due to formation

of adducts between 4-hydroxy-2-nonenal (HNE, product of lipid peroxidation) and

LKB1 which inhibits LKB1 and thus also AMPK activity (Dolinsky et al. 2009).

Taken together, these data suggest that AMPK activation as a potential preventive

or therapeutic strategy during DXR treatments.

10.7 Pharmacological Activation

AMPK controls metabolic pathways and cellular processes that are critical to the

etiology of various, otherwise unrelated pathologies. For many of them, including

cardiovascular disease, activation of AMPK has been recognized as a potential

treatment, mimicking, for example, the positive effects of exercise on many of these

pathologies. However, one has to keep in mind that systemic, constitutive AMPK

activation by drugs also carries risks. These include, as already described above, a

risk of cardiac pathologies as seen in the WPW syndrome and are due to the highly

pleiotropic target spectrum of AMPK and in particular its central effects as, e.g., in

hypothalamic appetite control.

A large panel of natural or synthetic agents were reported to activate AMPK

(Yun and Ha 2011). However, the caveat with most of these molecules is that,

where analyzed, they do not directly activate AMPK and have numerous cellular

effects (Hardie 2014a). They often include mild inhibition of mitochondrial ATP

generation by interfering with either the respiratory chain or mitochondrial ATPase

(El-Mir et al. 2000; Gledhill et al. 2007), thus leading to a small but chronic

increase in cellular AMP/ATP and ADP/ATP ratios. This group of compounds

includes antidiabetic drugs like metformin and many plant polyphenols like res-

veratrol contained in grapes, green tea, peppers, garlic, or traditional products of

Chinese medicine (Gu et al. 2010; Huang and Lin 2012; Kim et al. 2012c; Wang

et al. 2009; Yang et al. 2012).

Also, some direct activators act via the allosteric mechanisms known for AMP.

The long-known 5-aminoimidazole-4-carboxamide riboside (AICAR; Giri

et al. 2004) is metabolized within the cell to ZMP, an AMP analogue that binds

to CBS domains and acts like AMP. However, such AMP analogues may affect any

AMP-sensitive processes, a condition potentially avoided by the novel AMP

analogue, 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid or C2. This com-

pound was reported to be 1,000-fold more potent than ZMP in vitro (G�omez-Galeno

et al. 2010). All these allosteric mechanisms involve the γ-subunit CBS sites, and
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activation is lost in cells expressing mutant AMPK insensitive to AMP (Hawley

et al. 2010).

A third group of AMPK activators exerts its effects by binding to an entirely

different site, situated at the interface of α-kinase domain and β-CBM domain. Its

occupation confers protection of dephosphorylation and allosteric activation. Acti-

vators binding at this site include A-769662 (Scott et al. 2008), the 991 compound

(Xiao et al. 2013) and its derivatives, as well as salicylate (Hawley et al. 2012).

As a result of almost 15 years of research, a total of 26 patents have been

disclosed, describing 10 classes of direct AMPK activators (Giordanetto and

Karis 2012). However, no direct AMPK activator has succeeded so far in clinical

studies, although promising trials are ongoing (Ballantyne et al. 2013). Abbott

Laboratories were the first in 2005 to identify thienopyridones as direct AMPK

activators (Abbott Laboratories 2005). High-throughput screening first identified

A-592107 that was then optimized to yield the more potent A-769662 (EC50:

0.8 μM) which did not show immediate signs of cytotoxicity or activity at second-

ary biological targets (Cool et al. 2006). Discovery of A-769662 represented a shift

in AMPK-targeted pharmaceutical research, since it demonstrated that the kinase

can be directly activated by non-nucleotide ligands. Since then, A-769662 has been

used as a standard AMPK activator in basic research, and much has been learned

about its action mechanism and pharmacology. A-769662 activates AMPK alloste-

rically and by inhibition of Thr172 dephosphorylation mediated by PP2C, similar to

AMP (Goransson et al. 2007; Sanders et al. 2007b). However, it does not bind to the

γ-subunit CBS sites but to a novel allosteric regulatory site identified at the

interface between the α-kinase and the β-CBM domain (Calabrese et al. 2014;

Xiao et al. 2013). Importantly, A-769662 has a much stronger inhibitory effect on

β1-containing complexes as compared to those containing β2. This showed for the

first time that isoform-specific small molecule activators can be developed that

would allow a more tissue-specific pharmacological modulation of AMPK activity.

Most recently, it was shown that AMP and A-769662 have a synergistic effect on

AMPK activation (Scott et al. 2014; Ducommun et al. 2014) that even allows to

bypass phosphorylation of Thr172, a step thought to be essential for AMPK activity

(Scott et al. 2014; Viollet et al. 2014). This observation has put a note of caution

onto the widespread use of Thr172 phosphorylation as a reliable readout for AMPK

activity (Scott et al. 2014; Viollet et al. 2014). Although in the meantime also some

off-target effects of A-769662 have been observed (Benziane et al. 2009; Treebak

et al. 2009), the compound remains a very useful tool to explore AMPK-mediated

cellular processes.

Most other direct AMPK activators that have been described bear structural

similarities to A-769662, such as the 991 compound (Xiao et al. 2013). Only more

recently, compounds that do not resemble to such thienopyridones have been

described. For most patented direct AMPK activators, there is limited documenta-

tion available concerning their selectivity profile across the various AMPK isoform

combinations (Giordanetto and Karis 2012; Yun and Ha 2011) apart from

A-769662 (Scott et al. 2008; Goransson et al. 2007; Sanders et al. 2007b) and the

991 compound (Xiao et al. 2013). Given the plethora of processes controlled by

AMPK, heterotrimer-specific AMPK activation would allow to preferentially target
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a specific tissue and thus has the strongest potential for pharmacological

applications.

Taken together, very few structurally different AMPK activators are known so

far (Giordanetto and Karis 2012; Yun and Ha 2011). Although this could represent

a true limitation of potentially AMPK-activating compounds, it may also be related

to the applied screening procedures. A critical point in screening chemical libraries

may be the readout system used to identify AMPK activation. AMPK activators

bind at allosteric sites, but the readout generally relies on the activity of the AMPK

kinase domain. This implies the use of MgATP and accumulation of ADP and even

traces of AMP during the assay. The presence of these nucleotides may obscure

effects of activating compounds, at least of those acting at the CBS domains. Tools

that report AMPK activation without the need of kinase assays would therefore

have a clear advantage.

10.8 Concluding Remarks

Defects in cardiac energy metabolism contribute to the pathogenesis of cardiovas-

cular disease and heart failure. AMPK is now recognized as the central sensor and

regulator of cellular energetics, and AMPK activation has been proposed as a

suitable strategy for the treatment of insulin resistance/type II diabetes, cancer,

and some other pathologies (Steinberg and Kemp 2009). However, the potential for

pharmacological activation of AMPK in the heart has not yet been analyzed in

much detail. For its application in cardiac pathologies, more work is still necessary

to evaluate efficacy and safety in short-term and long-term activation protocols.

There is continued interest of the pharmaceutical industry in developing AMPK

agonists. Indeed, the search for clinically applicable, specific AMPK activators remains

an urgent need to evaluate and fully exploit the pharmacological potential of AMPK.
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