
Chapter 9
A Story on Adaptive Finite Element
Computations for Elliptic Eigenvalue Problems

Agnieszka Międlar

What we have done for ourselves alone dies with us; what we
have done for others and the world remains and is immortal

Albert Pike

Abstract We briefly survey the recent developments in adaptive finite element
approximations of eigenvalue problems arising from elliptic, second-order, selfad-
joint partial differential equations (PDEs). The main goal of this paper is to present
the variety of subjects and corresponding results contributing to this very complex
and broad area of research, and to provide a reader with a relevant sources of
information for further investigations.

9.1 Introduction

The PDE eigenvalue problems can be divided into several categories depending on
different criterion. This article intends to introduce the state-of-art results and new
advancements for elliptic, second-order, selfadjoint and compact partial differential
operators. A well-known example of this class is the Laplace eigenvalue problem:
Find � 2 R and u 2 H 1

0 .˝/ such that

�u D �u in ˝

u D 0 on @˝;
(9.1)

where ˝ 2 R
d ; d D 1; 2; : : : is a bounded, polyhedral Lipschitz domain and @˝ is

its boundary. This simple but how important model problem can, however, illustrate
many interesting phenomena of eigenvalues and eigenfunctions of general elliptic
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selfadjoint partial differential equations. We refer the reader to a wonderful survey
article [71] on Laplace eigenvalue problem which contains many references to the
original papers.

Throughout this survey we are going to concentrate on selfadjoint problems,
however, we mention some results and further reading for the non-selfadjoint case
when relevant.

The paper is organized as follows. We present a variationally stated PDE
eigenvalue problem, discuss its properties and present its Galerkin approximation in
Sects. 9.1.1 and 9.1.2. In Sect. 9.1.3 we introduce the main ingredients of adaptive
FEM. The whole Sect. 9.2 is dedicated to error analysis of AFEM. We discuss
an a priori as well as an a posteriori error estimators in Sects. 9.2.1 and 9.2.2,
respectively. The state-of-art eigensolvers used in the context of adaptive FEM
are presented in Sect. 9.3, whereas issues like convergence and optimality are the
subject of Sect. 9.4. Last but not least, Sect. 9.5 sheds some light on the fundamental
role of linear algebra not only in eigenvalue, but in all adaptive FE computations.

9.1.1 An Eigenvalue Problem for Partial Differential Equation

Let V and U be real Hilbert spaces with V � U densely and continuously
embedded in H , e.g. V WD H 1

0 .˝/ and U WD L2.˝/, and k � kV and k � kU the
associated norms, respectively. Let a.�; �/ W V � V ! R and .�; �/U W U � U ! R be
symmetric and continuous bilinear forms. We consider the following variationally
stated eigenvalue problem: Find � 2 R and u 2 V such that

a.u; v/ D �.u; v/U for all v 2 V: (9.2)

We assume that a.�; �/ is continuous, i.e., there exists ˇ WD kakV < 1 such that

ja.w; v/j � ˇkwkV kvkV ; (9.3)

and V -elliptic (coercive), i.e., there exists ˛ > 0 such that

a.v; v/ � ˛kvk2
V for all v 2 V: (9.4)

Remark 1 The bilinear form a.�; �/ satisfies all properties of the scalar product on V .
The norm induced by a.�; �/ is the so-called energy norm

jjj�jjj WD a.�; �/1=2; (9.5)

which is equivalent to the standard norm k � kV in V . Namely

˛kvk2
V � jjjvjjj2 � ˇkvk2

V : (9.6)
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Due to conditions (9.3) and (9.4) the existence and uniqueness of a weak eigenpair
.�; u/ is a simple consequence of the classical Lax-Milgram Lemma [95], see,
e.g., [66, Theorem 2.12, p. 52], [77, Theorem 6.5.9, p. 140], [118, Theorem 5.5.1,
p. 133] or [122, §5.5, Theorem 13]. For the selfadjoint eigenvalue problem
the existence of a unique eigenpair .�; u/ can also be proved using the Riesz
Representation Theorem [122, §5.4, Theorem 11].

Let us consider, for any f 2 V , the following (variational) boundary value
problem

Find w 2 V such that a.w; v/ D .f; v/U for all v 2 V:

Following the results in classical spectral approximation theory [44, 83, 132, 133]
we introduce a linear, compact solution operator T W V ! V , such that for any
given f 2 V

a.Tf; v/ D .f; v/U for all v 2 V:

Now, using the definition of the operator T with f D u and Eq. (9.2) yields

a.Tu; v/ D .u; v/U D 1

�
a.u; v/ D a.

1

�
u; v/ for all v 2 V: (9.7)

Hence .�.i/; u.i// is a solution of the eigenvalue problem (9.2) if and only if
.�.i/; u.i//, �.i/ D 1

�.i/ , is an eigenpair of the operator T. The assumptions on a.�; �/
guarantees that the operator T has countably many real and positive eigenvalues
whose inverses are denoted by

0 < �.1/ � �.2/ � : : : � �.i/ � : : : ;

according to their multiplicity, and the corresponding (normalized) eigenfunctions
u.i/ form the orthogonal basis for the space U . Obviously, the eigenfunctions u.i/

are orthogonal with respect to a.�; �/ and .�; �/U , i.e.,

a.u.i/; u.j // D �.i/.u.i/; u.j //U D 0; for i ¤ j:

For further details see, e.g. [14, Chapter 2, pp. 692–714], [44, Chapter 4, pp. 203–
204] or [25, 90, 127].

9.1.2 The Galerkin Approximation and the Finite Element
Method (FEM)

In order to find an approximation .�h; uh/ to the exact solution of a variational
problem (9.2), we consider the idea of approximating the exact solution by an
element from a given finite dimensional subspace Vh, known as the Galerkin
method (also known as Bubnov-Galerkin or Ritz-Galerkin method in the selfadjoint
case) [48].
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For Vh � V the variationally stated eigenvalue problem (9.2) is approximated by
the discrete eigenvalue problem: Find �h 2 R and uh 2 Vh such that

a.uh; vh/ D �h.uh; vh/U for all vh 2 Vh: (9.8)

Remark 2 One should mention that there exist a number of other approximate
methods, i.e., the Petrov-Galerkin method, the generalized Galerkin method, the
method of weighted residuals, collocation methods etc., see [118, 122]. In general,
the trial space Uh where the solution uh lives and test space Vh are not related
to each other. Intuitively, the trial space is responsible for the approximability
of the solution, whereas the test space for stability (or quasi-optimality) of the
discretization method, see [9, 131]. The Galerkin method is simple to analyze, since
both spaces are taken to be the same, i.e., Uh D Vh, however, in many cases one
should consider them to be distinct [82].

Since Vh � V , the bilinear form a.�; �/ is also bounded and coercive on Vh.
Therefore, the existence of a unique Galerkin solution .�h; uh/ is inherited from the
well-posedness of the original problem [122]. Analogously, there exists a discrete
compact solution operator Th W V ! V such that for any given f 2 V

a.Thf; v/ D .f; v/U for all v 2 Vh;

and therefore the eigenpairs of Th can be identified with those of (9.8), accordingly.
At this point, let us discuss some of the possible choices for space Vh, namely,

basics of the Finite Element Method (FEM) [48]. For simplicity, we restrict ourself
to consider only polygonal domains in R

2.
Let Th be a partition (triangulation) of a domain ˝ into elements (triangles) T ,

such that

Th WD
[

T 2Th

D ˝;

and any two distinct elements in Th share at most a common edge E or a common
vertex � . For each element T 2 Th by E .T / and N .T / we denote the set of
corresponding edges and vertices, respectively, where Eh and Nh denote all edges
and vertices in Th. Likewise, we define a diameter (the length of the longest edge)
of an element as hT . For each edge E we denote its length by hE and the unit normal
vector by nE . The label h associated with the triangulation Th denotes its mesh size
and is given as h WD max

T 2Th

hT . We say that the triangulation is regular in the sense

of Ciarlet [48] if there exist a positive constant � such that

hT

dT

< �;
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with dT being the diameter of the largest ball that may be inscribed in element T ,
i.e., the minimal angle of all triangles in Th is bounded away from zero. Of course
the choice of triangle elements is not a restriction of the finite element method and
is made only in order to clarify the notation.

Consider a regular triangulation Th of ˝ and the set of polynomials Pp of total
degree p � 1 on Th, which vanish on the boundary of ˝ , see, e.g., [29]. Then the
Galerkin discretization (9.8) with V

p

h � V , dim V
p

h D nh, taken as

V
p

h .˝/ WD ˚
vh 2 C 0.˝/ W vhjT 2 Pp for all T 2 Th and vh D 0 on @˝

�
;

is called a finite element discretization. The Finite Element Method (FEM) [48] is a
Galerkin method with a special choice of the approximating subspace, namely, the
subspace of piecewise polynomial functions, i.e., continuous in ˝ and polynomials
on each T 2 Th. For the sake of simplicity we consider only P1 finite elements, i.e.,
p D 1, and use Vh WD V 1

h . The last condition, which is crucial from the practical
point of view, states that the space Vh should have a canonical basis of functions
with small supports over Th. It is easily seen that the simplest set satisfying this

condition is the set
n
'

.1/

h ; : : : ; '
.nh/

h

o
of the Lagrange basis (also known as nodal or

hat functions) [48]. With this special choice of basis, the solution uh is determined
by its values at the nh grid points of Th and it can be written as

uh D
nhX

iD1

uh;i '
.i/

h :

Then the discretized problem (9.8) reduces to a generalized algebraic eigenvalue
problem of the form

Ahuh D �hBhuh; (9.9)

where the matrices

Ah WD Œa.'
.i/

h ; '
.j /

h /�1�i;j �nh
; Bh WD Œ.'

.i/

h ; '
.j /

h /U �1�i;j �nh

are called stiffness and mass matrix, respectively. The representation vector uh is
defined as

uh WD Œuh;i �1�i�nh
:

Since
n
'

.1/

h ; : : : ; '
.nh/

h

o
are chosen to have a small support over Th, the resulting

matrices Ah; Bh are sparse. The symmetry of Ah; Bh and positive definiteness of Bh

are inherited from the properties of the bilinear forms a.�; �/ and .�; �/U , accordingly.
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For conforming approximations, i.e., Vh � V , the Courant-Fisher min-max
characterization, see, e.g. [14, Equation (8.42), p. 699], [130, Equation (23), p. 223]
or [49, 138], implies that exact eigenvalues are approximated from above, i.e.,

�.i/ � �
.i/

h ; i D 1; 2; : : : ; nh:

On the contrary, for the nonconforming discretizations, e.g., the Crouzeix-Raviart
method [29, 50] or [56, Sections 1.2.6, 3.2.3], the discrete eigenvalues provide
lower bounds [8, 25, 40] for the exact eigenvalues. The convergence of discrete
eigenvalues/eigenfunctions towards their continuous counterparts preserving the
multiplicities and preventing spurious solutions is discussed in details in [25, 26].

9.1.3 The Adaptive Finite Element Method (AFEM)

The standard finite element method would proceed from the selection of a mesh and
basis to the generation of a solution. However, it is well-known that the overall
accuracy of the numerical approximation in determined by several factors: the
regularity of the solution (smoothness of the eigenfunctions), the approximation
properties of the finite element spaces, i.e., the search and test space, the accuracy
of the eigenvalue solver and its influence on the total error. The most efficient
approximations of smooth functions can be obtained using large higher-order
finite elements (p-FEM), where the local singularities, arising from re-entrant
corners, interior or boundary layers, can be captured by small low-order elements
(h-FEM) [47]. Unfortunately, in real-world applications, none of those phenomena
are known a priori. Therefore, constructing an optimal finite dimensional space
to improve the accuracy of the solution requires refining the mesh and (or) basis
and performing the computations again. A more efficient procedure try to decrease
the mesh size (h-adaptivity) or (and) increase the polynomial degree of the basis
(p-refinement) automatically such that the accurate approximation can be obtained
at a lower computational cost, retaining the overall efficiency. This adaptation
is based on the local contributions of the global error estimates, the so-called
refinement indicators, extracted from the numerical approximation. This simple
algorithmic idea is called Adaptive Finite Element Method (AFEM) and can be
described as a following loop

SOLVE ESTIMATE MARK REFINE

The number of manuscripts addressing adaptive finite element methods is constantly
growing, and its importance can not be underestimated. In the following sections
we present a small fraction of material presented in [4, 14, 16, 17, 29, 32, 48, 55–
57, 66, 67, 73, 77, 82, 83, 93, 94, 113, 114, 117, 118, 121, 123, 128, 130, 136].
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The application of the adaptive FEM to the variationally stated eigenvalue
problem (9.2) yields to the following scheme: first the eigenvalue problem is solved
on some initial mesh T0 to provide a finite element approximation .�h; uh/ of the
continuous eigenpair .�; u/. Afterwards, the total error in the computed solution is
estimated by some error estimator �h. Unfortunately, even the most accurate global
error estimators itself do not guarantee the efficiency of the adaptive algorithm. If
the global error is sufficiently small, the adaptive algorithm terminates and returns
.�h; uh/ as a final approximation, otherwise, the local contributions of the error are
estimated on each element. A local error indicator (refinement indicator) for an
element T 2 Th is usually denoted by �T and related to a global error estimator �h

through

�h D � X

T 2Th

�2
T

�1=2
:

Based on those, the elements for refinement are selected and form the set M �
Th of marked elements. The final step involves the actual refinement of marked
elements and creating a new mesh. Since the resulting mesh may possess hanging
nodes, an additional closure procedure is applied is order to obtain a new regular
(conforming) mesh. As a consequence, the adaptive finite element method (AFEM)
generates a sequence of nested triangulations T0;T1; : : : with corresponding nested
spaces

V0 � V1 � : : : � Vnh
� V:

In the upcoming chapters we will concentrate particularly on SOLVE and ESTI-
MATE steps, however, let us shortly discuss the marking and refinement procedures.

As we already know the set M of marked elements is determined based on
the sizes of refinement indicators �T . Now, a question arises: How do we decide
which elements T 2 Th should be added to the set M such that the newly obtained
adaptive mesh fulfil the regularity condition. The process of selecting the elements
of M is called the marking criterion or the marking strategy. Let us keep in mind
that by marking an element we actually mean marking all its edges. The simplest
marking strategy takes a fixed rate (e.g. 50 %) of elements of Th with the largest
values of �T or elements T for which the refinement indicators �T are larger than
some fixed threshold 	 2 R; 	 > 0, i.e.,

M WD fT 2 Th W 	 � �T g:
Notice that the choice of a threshold 	 is essential for the efficiency of the adaptive
algorithm since it directly determines the size of the set M . A more sophisticated
strategy is the maximum criterion, where the elements selection is based on a fixed
fraction 
 of the maximal refinement indicator in Th, i.e.,

	 WD 
 max
T 2Th

�T ;
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with 0 � 
 � 1. The most interesting, especially in the context of optimality of a
standard adaptive finite element method, is a Dörfler marking strategy [53], where
the set of marked elements is defined as the subset M � Th of smallest cardinality
such that

.1 � 
/2
X

T 2Th

�2
T �

X

T 2M
�2

T ; (9.10)

where 0 � 
 � 1. i.e., 
 D 0 corresponds to M D Th and 
 D 1 to M D ;. For
more details see [31].

The refinement of the finite element space can be performed using various
techniques like moving grid points (r-refinement), subdividing elements of a fixed
grid (h-refinement), applying locally higher-order basis functions (p-refinement) or
any combinations of those [47], see Fig. 9.1 for illustration.

For the sake of exposition, here, we consider only the h-refinement of the triangle
elements. The most common h-refinement subdivision rules (techniques) based on
edge marking are presented in Fig. 9.2.

a b c

Fig. 9.1 (a) Original mesh, (b) a uniform h-refinement and (c) a uniform p-refinement

Fig. 9.2 Bisec3, red, green and blue refinement. The edges marked by MARK step are colored.
The new reference edge is marked through a second line in parallel opposite the new vertices
new1, new2 or new3 [38]
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As we have mentioned before, applying these refinement procedures may lead
to nonconforming meshes with the so-called hanging nodes. Therefore, the closure
algorithm [38] is applied to overcome this drawback and get a regular triangulation.
Summarizing, if any edge E of the element T is marked for the refinement, the
reference edge (e.g. longest edge) of T should also be marked. Since each element
has k D 0; 1; 2; or 3 edges marked for the refinement, if k � 1, the reference edge
belongs to it. Moreover, the choice of a refinement method, see Fig. 9.2, depends on
k, for instance, if k D 1 the green refinement is used etc. For more details about
adaptive refinement strategies see, e.g., [4, 47, 135]. In the remainder of this survey
we will focus on the h-adaptivity, hence, we will denote the finite dimensional space
over the partition Th as Vh and the associated Galerkin approximation as .�h; uh/.

9.2 Error Estimates

Over the years, research in fundamental spectral approximation by [10–13, 59,
83, 91, 130] resulted in the unified spectral approximation framework, nowadays
referred to as a so-called Babuška-Osborn Theory [14, Theorem 7.1–7.4, 8.1–8.4].

Theorem 1 ([14, 25]) Let u.i/ be a unit eigenfunction associated with the eigen-
value �.i/ of multiplicity m and let u.i/

h ; : : : ; u.iCm�1/

h denote the eigenfunctions
associated with the m discrete eigenvalues converging to �.i/, then for each index i

�.i/ � �
.j /

h � �.i/ C C sup
u2E

�.i/

kukD1

inf
v2Vh

ku � vk2
V ; j D i; : : : ; i C m � 1;

and there exists w.i/

h 2 spanfu.i/

h ; : : : ; u.iCm�1/

h g such that

ku.i/ � w.i/

h kV � C sup
u2E

�.i/

kukD1

inf
v2Vh

ku � vkV ;

where E�.i/ denotes the eigenspace associated with �.i/ and C is a generic constant.

Remark 3 For �.i/ being simple, we get the following estimates

j�.i/ ��
.i/

h j � C sup
u2E

�.i/

kukD1

inf
v2Vh

ku�vk2
V and ku.i/ �u.i/

h kV � C sup
u2E

�.i/

kukD1

inf
v2Vh

ku�vkV :

Theorem 1 have some important consequences. First, it is easy to notice that
the convergence rate of the eigenvalue/eigenfunction of interest is directly related
to the approximability of the associated eigenfunctions (eigenspace). Namely, the
approximation rate for the eigenvalue is double with respect to the approximation
rate of the corresponding eigenfunctions, which is a well-known fact in the standard
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perturbation theory for the matrix eigenvalue problems and explains nicely why the
eigenvalues are usually much more accurate than the corresponding eigenfunctions.
On the other hand, the approximability of the eigenfunctions depends strongly on
their regularity and the approximability conditions of the discrete solution space Vh,
e.g. the finite element space. Hence, following [127, Theorem 3.6], we consider the
regularity result for the eigenvalue problem (9.2) as

kukH 2.˝/ D C
p

�;

where C is a generic constant depending on the data, but not on � itself. The latter
condition, is a well-known phenomena, called the best approximation property of
the solution space. The choice of Vh being a space of piecewise polynomials of
degree p guarantees the best approximation property of the finite element space [25,
48], i.e.,

inf
v2Vh

ku � vkL2.˝/ � ChminfpC1;rgkukH r .˝/;

inf
v2Vh

ku � vkH 1.˝/ � Chminfp;r�1gkukH r .˝/;

where r is the regularity of the eigenspace (in the case of a simple eigenvalue,
the regularity of the corresponding eigenfunction). These two facts immediately
explain the common fact of deteriorating rates of convergence in the presence of
singularities (singular eigenfunctions). Moreover, the eigenfunctions present more
oscillations when the associated eigenvalue increases and the largest eigenvalues are
much harder to approximate [38].

The Babuška-Osborn Theory provided important basis for further developments
in a priori and a posteriori estimates and designing efficient numerical algorithms.
In the remainder of this section we will focus in more details on estimating the
eigenvalue/eigenfunction errors.

9.2.1 A Priori Error Estimates

In general, a priori error estimators give information about the asymptotic behavior
of the error or the stability of the applied solver independent of the actually
computed approximation. Likewise, they require particular regularity conditions
of the solution, the stability properties of the discrete operator or the continuous
solution u itself [4, 135] and approximability conditions of the discrete solution
spaces. Except of some simple one-dimensional boundary value problems, where an
optimal finite element space can be constructed based on a priori estimates, see [112,
Lecture 1] or [113] for details. All these conditions make a priori error estimators not
computable and hardly applicable in practice. Of course, if some a priori information
about the solution is known it can be relevant for the construction of efficient
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numerical algorithms, e.g. a priori adaptivity technique [117], unfortunately, this
is often not the case.

One of the simplest a priori error results obtained in [121] gives estimates to
the piecewise linear eigenvalue/eigenfunction error in L2.˝/ and energy norm
depending on the regularity of the solution space, i.e.,

jjju�uhjjj � Chr ; ku�uhkL2.˝/ � Chr jjju�uhjjj; j���hj � C jjju�uhjjj2 � Ch2r ;

for u 2 H 1Cr .˝/, where r 2 .0; 1� is a regularity constant and C > 0 is a
constant depending on the eigenvalue �, the eigenfunction u and on the triangulation
Th, see, e.g. [77, Corollary 11.2.21, p. 264]. Note that if r D 1 (convex domain),
the solution u has to fulfil a H 2.˝/-regularity condition, which is very restrictive
and excludes a large class of problems, e.g., the Laplace eigenvalue problem on
the L-shape domain. More details can be found in [72] for nonconvex domains
and in [1, 2, 65] for higher order polynomials. As mentioned before, also here, the
eigenvalue approximation is much more accurate (double) than the corresponding
eigenfunction approximation, i.e., the eigenfunctions are first order convergent in
H 1.˝/ and second order convergent in L2.˝/. In [14] this result was generalized
for multiple eigenvalues. Also, in this case, the error behaves like O.h/ for the
energy norm of the eigenfunction and O.h2/ for the eigenvalue. Several further
results include improved eigenvector estimates in [12, 13], refined estimates in
H 1.˝/�norm together with the lower and upper bound for the eigenvalue error
in the case of multiple eigenvalues [43, 45], to mention just a few.

In [90, Theorems 3.1, 3.2 and 3.3] some new a priori FEM error estimates for
simple, multiple and clustered eigenvalues were proposed. The error estimate for a
simple eigenvalue [90, Theorem 2.7] depend on the continuous eigenfunction u.i/

and its approximability properties in space Vh, but do not involve any underdeter-
mined constants. Analogously, for the multiple or clustered eigenvalues [90, The-
orem 2.11], the a priori error estimates depend only on approximability properties
of eigenfunctions in the corresponding eigenspace (invariant subspace). Moreover
for clustered eigenvalues the presented estimates are cluster robust, i.e., they do
not depend on the width of the cluster. This work has improved several previous
results involving the approximability properties of all previous eigenvectors and
easily explained different convergence rates of Ritz values approximating a multiple
eigenvalue [12–14]. To conclude, we present an a priori eigenvalue error estimator
for the FEM approximation of a simple eigenvalue introduced in [90, Theorems 3.1
and 3.2], i.e.,

Theorem 2 Knyazev [90, Theorem 3.2] For a fixed index i such that 1 � i � nh

suppose that

di;Vh
WD min

j D1;:::;i�1
j�.j /

h � �.i/j ¤ 0;
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then

0 � �
.i/

h � �.i/

�
.i/

h

�
 

1 C max
j D1;:::;i�1

�
�

.j /

h �.i/
�2

j�.j /

h � �.i/j2
jjj.I � Ph/TPh;1;:::;i�1jjj2

!

sin2 †jjj�jjj.ui ; Vh/;

where Ph W V ! Vh is an jjj�jjj-orthogonal projector on Vh, i.e., for all u 2 V ,
a.Phu � u; v/ D 0; for all v 2 Vh and Ph;1;:::;i�1 is the jjj�jjj-orthogonal projector

onto Eh;1;:::;i�1 D span
n
u.1/

h ; : : : ; u.i�1/

h

o
.

Remark 4 If i D j , Theorem 2 turns into [90, Theorem 3.1], namely

0 � �
.i/

h � �.i/

�
.i/

h

� jjj.I � Ph/P1;:::;i jjj2: (9.11)

Finally, we would like to mention an a priori error estimate obtained in [125,
Theorem 3], [85, Theorem 3.3], [127, Theorem 4.11], i.e.,

Theorem 3 (Saad [125, Theorem 3], [127, Theorem 4.11]) Let .�.i/; u.i//, 1 �
i � nh be the i -th eigenpair of the operator T defined in (9.7) with normalization
ku.i/kH 1.˝/ D 1. Suppose that

bdi;Vh
WD min

j ¤i
j�.j /

h � �.i/j ¤ 0;

then there exists u.i/

h such that

ku.i/ � u.i/

h kH 1.˝/ �
�

1 C
k.I � Ph/TPhk2

H �1.˝/

bd 2
i;Vh

�1=2

inf
v2Vh

ku.i/ � vkH 1.˝/:

The aforementioned theorem is a special case of a more general result for
eigenspaces and invariant subspaces proposed in [85, Theorem 2.1, 3.1]. Obviously,
the a priori error estimators are not limited to those listed above and include work
presented in [75, 87, 92, 115] etc.

9.2.2 A Posteriori Error Estimates

Although a priori error estimates are usually not available for practical problems, we
would still like to determine the quality of the numerical approximation, i.e., obtain
a reliable estimate of the error eh D u � uh in a specified norm k � k or quantity
of interest (quality measure), e.g., energy norm jjj�jjj [4, 34, 135], or to terminate the
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algorithm as soon as a prescribed tolerance " is reached, e.g. kehk � ". Therefore,
we need some computable quantity �h (a posteriori error estimator) which can
estimate the actual error kehk, i.e.,

ku � uhk 	 �h:

The formal definition, see [34], states as follows:

Definition 1 (A posteriori error estimator) A computable quantity �h is called
a posteriori error estimator if it can be extracted from the computed numerical
solution uh and the given data of the problem, e.g. the known domain ˝ and its
boundary @˝ .

There are several important practical requirements on a posteriori error esti-
mators. First, as the definition states, they should be computable. Secondly, in
contrast to a priori error estimators, they depend on the stability properties of the
continuous operator which are known and use the approximate solution itself to
check its quality. Last but not least, calculating the estimator should be cheaper
than computing the new numerical approximation (e.g., assembling the matrices).
Besides, it is of great importance, especially in the context of the AFEM, to be
able to extract the local contribution of the error estimator, i.e., the refinement
indicators �T ,

�h D
� X

T 2Th

�2
T

�1=2

:

As far as a global upper bound is sufficient to assure the accuracy of the solution, an
a posteriori error estimator should also provide local lower bound for the true error.
These properties of a posteriori error estimator �h are called reliability (guaranteed
upper bound)

jjjehjjj � Crel�h C h:o:trel

and local efficiency

�T � Ceff kehkbT C h:o:t:eff ;

with constants Crel; Ceff > 0 independent of the mesh size h or polynomial degree
p, bT the union of T and neighbouring elements and higher-order terms h:o:trel,
h:o:teff related to data oscillations. Both these bounds are crucial from the point of
convergence and optimality, respectively. Namely, it is well-known that a reliable
and efficient a posteriori error estimator, i.e.,

1

Ceff
�h � jjjehjjj � Crel�h:
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decays with the same rate as the actual computational error up to higher-order terms.
We discuss this issue in detail in Sect. 9.4. The aforementioned definition of the
reliability, where the constant Crel is present, is called a weak form of reliability. In
the ideal situation we would like the estimator to satisfy

jjjehjjj � �h;

which is very rarely the case.
In order to conclude, the main goal is to obtain an accurate solution with an

optimal use of resources and guarantee that the a posteriori error estimator captures
the behavior of the actual error as h ! 0. In practice, we are often interested in the
asymptotical exactness or efficiency of the a posteriori error estimator. Following
[4], we call the error estimator �h asymptotically exact if

lim
h!0

� D 1;

where � WD �h

kehk is called a global efficiency index. An error estimator is called
efficient if its efficiency index � and its inverse are bounded independent on the
mesh size [34].

The pioneering work of Babuška and Rheinboldt [15] initiated decades of
research devoted to a posteriori error estimates. We strongly encourage the reader
to further explore the vast literature on the a posteriori error estimates, see
e.g., [4, 16, 32, 135, 136]. Following [47, 135], the a posteriori error estimators can
be classified as residual error estimators (explicit error estimators), local problem-
based estimators (implicit error estimators), averaging estimators (recovery-based
estimators), hierarchical estimators (multilevel estimators) and goal-oriented error
estimators. For the sake of exposition, let us concentrate on the residual type
estimators and provide only some general information for the other classes.

9.2.2.1 The Residual Error Estimators (Explicit Error Estimators)

Whereas a priori error estimators relate the error ku � uhkV to the regularity of the
exact solution, residual a posteriori error estimators consider the connection of the
error to the residual of the computed finite element solution uh.
Let us consider the residual

Resh.�/ WD �h.uh; �/U � a.uh; �/U 2 V �

and the residual equation

Resh.v/ D a.u � uh; v/ � .�u � �huh; v/U for all v 2 V; (9.12)

where V � denotes the dual of the space V .
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First of all, notice that the Galerkin orthogonality property does not hold for
variationally stated eigenvalue problems, namely

a.u � uh; vh/ D .�u � �huh; vh/U ¤ 0 for some vh 2 Vh: (9.13)

Secondly, since eh 2 V , Eq. (9.12) combined with the higher-order term [54]

.�u � �huh; eh/U D � C �h

2
kehk2

U (9.14)

imply

jjju � uhjjj2 D � C �h

2
ku � uhk2

U C Resh.u � uh/; (9.15)

which provides the crucial relation in the residual type error analysis, namely, the
equivalence between the energy norm of the error and the residual, which, up to the
higher-order terms was proved for the selfadjoint eigenvalue problems in [38].

Theorem 4 Let eh D u�uh and Resh.�/ WD �h.uh; �/U �a.uh; �/. Then the following
holds

˛ku � uhkV . kReshkV � . ˇku � uhkV ; (9.16)

where 0 < ˛ � ˇ < 1 are the coercivity and continuity constants introduced
in (9.4) and (9.3), respectively.

Proof The coercivity (9.4), the residual equation (9.12) and (9.14) imply

˛ku � uhkV � a.eh; eh/

kehkV

D Resh.eh/

kehkV

C .� C �h/

2

kehk2
U

kehkV

� sup
v2V

Resh.v/

kvkV

C .� C �h/

2

kehk2
U

kehkV

D kReshkV � C .� C �h/

2

kehk2
U

kehkV

:

Since �C�h

2
kehk2

U was proved to be of higher order, see e.g. [54], it can be neglected
and the left inequality holds. Furthermore the continuity (9.3) implies

Resh.v/ D �h.uh; v/U � a.uh; v/

D �h.uh; v/U � a.uh; v/ C a.u; v/ � �.u; v/U

D a.u � uh; v/ C .�uuh � �u; v/U
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D a.u � uh; v/ C .� C �h/

2
kvk2

U

� ˇku � uhkV kvkV C .� C �h/

2
kvk2

U (9.17)

and therefore

kReshkV � D Resh.v/

kvkV

� ˇku � uhkV C .� C �h/

2

kvk2
U

kvkV

;

which completes the proof.

Theorem 4 proves that the dual norm of the residual, i.e., kReshkV � is equivalent to
the error ku � uhkV . Nevertheless, it is still a challenge to estimate the dual norm of
the residual Resh.v/ in the most reliable and efficient way.

Remark 5 Since the standard norm k � kV in V is equivalent to the energy norm
jjj�jjj, see Remark 1, the dual norm of the residual kReshkV � is also equivalent to the
energy norm of the error, i.e., jjju � uhjjj.
Now, exploiting the variational eigenvalue problem (9.2) and its Galerkin discretiza-
tion (9.8) it is easy to derive a simple residual type a posteriori estimator

�res;h 

0

@
X

T 2Th

h2
T k�uh C �huhk2

L2.T /
C
X

E2Eh

hEk Œruh � nE� k2
L2.E/

1

A
1=2

;

hT WD diam.T / and hE WD length.E/, such that

jjju � uhjjj2 � C �res;hjjju � uhjjj C � C �h

2
ku � uhk2

L2.˝/
; (9.18)

see [27, Section 6.3], [54, Theorem 3.1], [137, Section 4], or the earlier work of
Larson [92]. Here, the constant C > 0 depends on the minimal angle allowed
in the mesh elements, on the Poincaré-Friedrichs inequality constant (which is a
function of the volume of ˝ and the area of the portion of @˝ corresponding to
the Dirichlet condition, see [135, p. 11]) and on the constants ˛, ˇ from the Lax-
Milgram conditions (9.3) and (9.4), see [95]. However, the possibly large value of
C can produce a significant overestimate of the error, see e.g. [36, 46].

In (9.18) the energy norm of the error is bounded by the sum of local contribu-
tions of the interior (volumetric) element residuals �uhC�huh, measuring how good
the finite element approximations �h; uh satisfy the original PDE in its strong form
on the interior of the domain, and of the edge residuals, the jumps of the gradient of
uh over the element edges E , reflecting the accuracy of the approximation [31, 135].
Here hT , hE denote the mesh-depending weights and k�kL2.T /, k�kL2.E/ the problem
dependent, local norms.



9 Adaptive Finite Element Eigenvalue Computations for Partial Differential Equations 239

As it was shown in [54] that the L2-norm of the error is of higher order than the
energy norm of the error (9.18) represents an a posteriori estimate for the energy
norm of the error. This residual a posteriori error estimator is reliable in a weaker
form with the constant C in, e.g. [36, 37, 134], and it is locally efficient, see e.g. [4,
135]. The asymptotic exactness of the estimator usually does not hold in practical
computations. Many interesting results on residual type a posteriori error estimates
for eigenvalue/eigenvector approximations were proposed in the last two decades,
see e.g. [74, 92, 108, 115, 137], to mention only few.

The residual a posteriori estimators, though well-understood and well-
established in practice, may significantly overestimate the actual error due to
the possibly very large constant C present in the bound. Therefore, several other
techniques, which we now briefly review, were introduced over the last years, see,
e.g. [4, 16, 47, 69, 136].

9.2.2.2 Local Problem-Based Estimators (Implicit Estimators)

In the case of explicit error estimators all information about the total error is
obtained only from the computed approximation. The main idea behind implicit
estimators is to enrich these information by solving some supplementary problem,
e.g., local analogues of the residual equations. In order to capture the local behavior
of the solution and to get accurate information about the error, the local problems
usually involve only small subdomains of ˝ (subdomain or element residual
method) and more accurate finite element spaces, see [69] for more details. In terms
of complexity the solution of all local problems should cost less than assembling
the stiffness matrix of the original discrete problem. Implicit error estimators for
boundary value problems, e.g. partition of unity or equilibration estimators, are
discussed in [4, Chapter 3], [47, Section 6.3.2], [66, Section 15.3], [135, Section 1.3]
and [3, 31, 42]. A proof of the local efficiency for this type of estimator can be
found, e.g., in [4], whereas reliability and asymptotic exactness are usually satisfied
in practical computations. To the best of the author’s knowledge there are no local
problem-based error estimators designed specifically for eigenvalue problems.

9.2.2.3 Averaging Estimators (Recovery-Based Estimators)

These error estimators, also known as ZZ-estimators [145], exploit a local extrapo-
lation or averaging techniques. Due to the high accuracy, practical effectiveness and
robustness they are widely used in engineering applications. In general, the error
of the approximation is controlled by a difference of a low-order approximation
(e.g., a piecewise constant function) and a finite element solution obtained in
the space of higher-order elements (e.g., globally continuous piecewise linear
functions) satisfying more restrictive continuity conditions than the approximation
itself e.g. [4, Chapter 4], [47, Section 6.3.3] or [135, Section 1.5]. For example,



240 A. Międlar

if a quantity to be recovered is a gradient ruh, the main idea is to compare the
smoothed and unsmoothed gradients to estimate the actual error. Reference [34]
gives a nice overview of averaging techniques in a posteriori finite element error
analysis in general, whereas [16, 143, 144, 146, 147] discuss the gradient recovery-
based estimators in details. A local averaging technique for eigenvalue problems
was proposed in [97]. Here, we present an improved averaging a posteriori error
estimator neglecting the volumetric contributions introduced in [38].

Let Ah W L2.˝/ ! S 1.Th/, S 1.Th/ WD P1 \ H 1
0 .˝/ be a local averaging

operator, i.e.,

Ah.v/ WD
X

z2Nh

1

j!zj
� Z

!z

v dx
�
'z;

with a nodal hat function 'z and a nodal patch !z associated with node z. Then the
averaging error estimator for problem (9.2) reads

�2
avg;h WD

X

T 2Th

kAh.ruh/ � ruhk2
L2.T /

: (9.19)

The reliability of the averaging error estimator (9.19) is proved in [38], whereas the
efficiency follows from the fact that the averaging estimator is locally equivalent to
the residual estimator [33, 34, 135]. The proof of the asymptotic exactness can be
found, e.g., in [4, 135]. More details on recovery-based a posteriori error estimators
for higher-order polynomials can be found in [35, Section 9.4]. Recovery type
a posteriori error estimates for the eigenvalues and eigenfunctions of selfadjoint
elliptic equations by the projection method are derived in [104, 139] and [96] for
conforming and nonconforming finite elements, respectively.

9.2.2.4 Hierarchical Estimators (Multilevel Estimators)

The main idea of a hierarchical error estimator is to evaluate the residual obtained
for the finite element solution uh 2 Vh with respect to another finite element space
Vh0 satisfying Vh � Vh0 � V . Then the error jjju � uhjjj can be bounded by

�hie;h WD jjjuh0 � uhjjj;
where uh0 2 Vh0 , see [20, 52, 58], [47, Chapter 6], or [135, Section 1.4] for details.
The finite element space Vh0 corresponds usually to a refinement Th0 of Th or
consists of higher-order finite elements. The idea behind goes back to a so-called
saturation assumption [21] stating that the error of a fine discrete solution uh0 is
supposed to be smaller than the error of the coarse solution uh in the sense of an
error reduction property, i.e.,

jjjuh0 � ujjj � � jjjuh � ujjj;
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where � 2 .0; 1/. Good general references concerning hierarchical estimators
are [20, 21, 52, 58]. Hierarchical error estimators for eigenvalue problems are
discussed in [98, 108].

9.2.2.5 Goal-Oriented Estimators

The objective in goal-oriented error estimation is to determine the accuracy of the
finite element solution uh with respect to some physically relevant scalar quantity
of interest given as a linear functional J.�/ W V ! R of the solution u, e.g. velocity,
flow rates, deformations, stresses or lifts and drags in the case of Navier-Stokes
problems etc. The error in the quantity of interest is then related to the residual, i.e.,

�h WD jJ.u/ � J.uh/j 	
X

T 2Th

�T .uh/!T ;

where �T .uh/ denotes the so-called “cell residuals” of the approximate solution,
and !T a corresponding “cell weights”. The latter are obtained from the solution
u� of the so-called dual problem, which, in practice, is replaced by its locally
postprocessed discrete approximation u�

h . In order to make this abstract concept a
little more explicit, for a simple boundary value problem L u D f the cell residuals
read

kL uh � f kL2.T / C h
1=2
T kŒruh � nE�kL2.@T /;

with @T being the boundary of an element T 2 Th. Probably, one of the most well-
known techniques of goal-oriented error estimation is the Dual Weighted Residual
(DWR) method introduced in [119]. The reliability, efficiency and asymptotic
exactness of goal-oriented estimators are typically hard to prove, however, they
are very successful in many challenging practical applications. For eigenvalue
problems, the full potential of a goal-oriented a posteriori error estimation was
demonstrated in [81] as a successful application of the DWR method to non-
selfadjoint operators. For eigenvalues � and �h being simple, the DWR a posteriori
error estimator of the following form is proposed

j� � �hj � c
X

T 2Th

h2
T

�
�T .�h; uh/ C ��

T .��
h ; u�

h/
�
;

where �T .�h; uh/ and �T .��
h ; u�

h/ denote cell residuals of the primal and dual
problem, respectively. See [18, Chapter 7], [81, 116] for more details.
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9.3 Adaptive Finite Element Eigenvalue Solver

The choice of a proper iterative eigenvalue solver is an integral part of the successful
adaptive finite element scheme. We present some well-established iterative methods
which admit the quasi-optimal computational complexity on uniform meshes.
However, since generated meshes are refined adaptively, there is an increasing
demand for designing efficient and reliable matrix-free eigensolvers with mesh size
independent convergence rates. We will discuss this issue, in more details, in the
following sections.
Let us consider the generalized algebraic eigenvalue problem

Ax D �Bx (9.20)

resulting from the finite element discretization of (9.8), namely,

A D Ah; B D Bh and x D uh;

defined as in (9.9).

9.3.1 PINVIT

The preconditioned inverse iteration (PINVIT), introduced and analyzed in series
of papers [89, 105, 106, 109], is an iterative method for solving the generalized
eigenvalue problem (9.20) written as a system of linear equations AxkC1 D
�.xk/Bxk , where the new iterate xkC1 is determined as

xkC1 D xk � M �1
�
Axk � �.xk/Bxk

�
;

with a symmetric and positive definite optimally scaled preconditioner (e.g.,
multigrid preconditioner) M �1 of the matrix A such that

kI � M �1AkA � ;  2 Œ0; 1/:

The corresponding error propagation equation

xkC1 � �.xk/A�1Bxk D .I � M �1A/
�
xk � �.xk/A�1Bxk

�
;

not only illustrates the dependence between the initial error xk � �.xk/A�1Bxk , the
new iterate error xkC1 � �.xk/A�1Bxk and the error propagation matrix (reducer)
I � M �1A, but presents a more general relation between preconditioned gradient
eigensolvers [68, 126] and preconditioned inverse iteration. PINVIT can be viewed
as a counterpart of multigrid algorithms for the solution of boundary value problems.
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As a simple mesh-free eigensolver, with convergence independent on the largest
eigenvalue and the mesh size, it is perfectly suitable for grid-dependent eigenvalue
problems. More details about the subspace version of the method can be found
in [30, 107]. A continuous counterpart of the preconditioned inverse iteration was
proposed and analyzed in [142].

9.3.2 LO(B)PCG

Let us assume that we are given the smallest eigenvalue �1 of our problem. Then
obtaining the corresponding eigenvector requires solving the homogeneous linear
system .A � �1B/x1 D 0. The method of choice in this case would be a (precon-
ditioned) conjugate gradient ((P)CG) method [28]. Though, in practice, the exact
eigenvalue is not known, the underlying idea is still useful and can be combined
with the standard preconditioned steepest descent (PSD) method [78, 126]. A sharp
convergence estimate and a subspace variant of PSD combined with AFEM are
discussed in [110, 111].

The Locally Optimal (Block) Preconditioned Conjugate Gradient (LO(B)
PSCG) [86] method combines a three-term recurrence method with the robust
and simple Rayleigh-Ritz minimization procedure which allows (allowing)
efficient solutions of large and sparse eigenvalue problems. The main idea
of the method is to determine a new eigenvalue/eigenvector approximation
as the smallest Ritz value/vector with respect to the three-dimensional space
spanfxk; M �1.Axk ��.xk/Bxk/; xk�1g. The new iterate xkC1 is now determined as

xkC1 D xk � #kxk�1 � �kM �1.Axk � �.xk/Bxk/;

where

.#k; �k/ D arg min
.#;�/

�.xk � #xk�1 � �M �1.Axk � �.xk/Bxk//:

It is important to notice that the preconditioner is not used in inner iterations to
solve the linear system, but it is directly integrated into a Krylov-based iteration.
LO(B)PCG is broadly used eigensolver within the AFEM due to its low memory
requirements (only one additional vector has to be stored), reasonable complexity
(few additional inner products to determine the Rayleigh-Ritz projection) and its
convergence. On every step, the LO(B)PSCG is not slower than the preconditioned
steepest descent in terms of the maximizing the Rayleigh quotient [84], however, in
practice the convergence is much faster and robust than PSD or Jacobi-Davidson.
A commonly used implementation of the method, released by its developer under
GNU Lesser GPL, together with several benchmark model problems, is available as
Block Locally Optimal Preconditioned Eigenvalue Xolver (BLOPEX) [88].
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9.3.3 Two-Grid Discretization

Already in 1979, the idea of using the multigrid-method for solving mesh eigen-
problems was introduced in [76]. A simple one-stage method requires computations
of one eigenpair on the coarse grid and approximates further fine grid eigenpairs
in a recursive way. Its computational effort is proportional to the dimension of
the finite dimensional space and convergence is proved also for the approximate
eigenpairs. A well-known example of the class of multigrid approaches is the two-
grid discretization method introduced in [140, 141]. The idea of the method is
quite simple and uses the underlying expertise from the study of boundary value
problems. In particular, we consider to linear finite element spaces VH .˝/ �
Vh.˝/ � H 1

0 .˝/, e.g., coarse and fine space, respectively. The solution of an
eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem
on a much coarser grid (mesh size H ) followed by the solution of a boundary value
problem on the fine grid (mesh size h), whereas the resulting solution maintains an
asymptotically optimal accuracy for H D O.

p
h/. We can summarize the method

within three steps:

Step 1 Find .�H ; uH / 2 .R; VH / s.t. a.uH ; vH / D �H .uH ; vH /U ; for all vH 2
VH .

Step 2 Find uh 2 Vh s.t. a.uh; vh/ D �H .uH ; vh/U ; for all vh 2 Vh.
Step 3 Compute �h as Rayleigh quotient of uh.

In other words the method can be reformulated as finding a correction eh in the fine
space, such that

a.eh; vh/ D �H .uH ; vh/U � a.uH ; vh/ for all vh 2 Vh

and setting

uh D uH C eh:

9.4 Convergence and Optimality Results

In the classical sense the convergence of the FEM requires that for each value
h ! 0 the approximation error is of required order or accuracy. When dealing with
AFEM the goal is to show that the method is a contraction between two consecutive
loops. The algebraic convergence rates for adaptive FEM, under the assumption of
the exact solution of the algebraic eigenvalue problem, were first proved in [103]
and later on improved in [129]. A first convergence results for adaptive finite
element methods for eigenvalue problems have been obtained in [64]. Assuming
a sufficiently fine initial mesh, Dörfler’s strategy for marking separately error and
oscillation indicators, and enforcing the interior node property, the authors proved an
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error reduction result for consecutive iterates, which is essential for proving quasi-
optimality, but very hard to satisfy in practice. Uniform convergence and optimal
complexity, relaxing the assumptions of [64], was introduced in [51]. In order to
prove convergence, marking of oscillation terms is not required. Moreover, the
optimal complexity was shown without any additional assumptions on the data. At
the same time, an independent adaptive finite element eigenvalue solver (AFEMES)
enabling a contraction property up to higher-order terms (also known as Q-linear
convergence) and global strong convergence, was proposed in [38]. Also this result
requires no assumptions on the inner node property and small enough mesh size.
Furthermore, the same authors provided the first adaptive finite element method
combined with an iterative algebraic eigenvalue solver of asymptotic quasi-optimal
computational complexity [39]. Another important contribution to be mentioned is
the convergence result given in [62]. Here, despite less restrictive initial assumptions
(any initial triangulation and marking strategy is allowed) and only minimal
refinement of marked elements, the convergence was proved for simple as well as
for the multiple eigenvalues. A recent article [35] presents a general framework
on optimality of adaptive schemes covering linear as well as nonlinear problems,
which embeds the previous results of [38, 51]. The authors consider optimality and
convergence of the adaptive algorithm with an optimal convergence rate guaranteed
by the efficiency of the error estimator �h, see [35, Theorem 4.5]. In particular,
in the case of determining a simple eigenvalue, following [35, Lemma 3.4 and
Proposition 10.5], [39, Lemma 4.2] and the convergence of the conforming finite
element discretization [130], one can prove that the following four properties,

(A1) Stability on non-refined elements,
(A2) Reduction property on refined elements,
(A3) General quasi-orthogonality,
(A4) Discrete reliability of the error estimator;

together with sufficiently small initial mesh size h0, are sufficient for optimal
convergence of an adaptive scheme. Finally, in conclusion, we point the reader
to [39, 60, 61] for more results on clustered eigenvalues, nonconforming AFEM,
inexact solves and algorithms of optimal computational complexity.

9.5 The Role of Linear Algebra in AFEM for PDE
Eigenvalue Problems

In this section we would like to point the attention of the reader to a very important,
though commonly neglected, aspect of practical realization of adaptive FEM.
The majority of the AFEM publications consider exact solutions of the algebraic
problems (linear systems or eigenvalue problems). When the cost for solving these
problems is small and the problems itself are well conditioned independently of
the mesh refinement, see [19] and [32, Section 9.5], this assumption is acceptable.
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However, in real-world applications, adaptive finite element methods are used for
challenging, very large and often ill-conditioned problems, for which an exact (up
to machine precision) solution is not available. Notice that even a small algebraic
residual does not guarantee a good accuracy of the resulting solution, neither for
linear systems nor eigenvalue problems. We refer to [79], [5, Section 4] for more
details. Moreover, solving the linear algebraic problems to a (much) higher accuracy
than the order of the discretization error not only does not improve the overall
accuracy but also significantly increases the computational cost [66, Section 13.4.1].

Because of these reasons, in the following, we will advocate for considering
the algebraic error as an integral part of the adaptive FEM, especially, in practical
applications. Hence, when estimating the total error we will aim at estimates of the
form

ku � u.n/

h k 	 �h;n; (9.21)

where �h;n is a function of the approximate solution u.n/

h (or �
.n/

h and u.n/

h ) of the
linear algebraic problem. Moreover, the fact that the algebraic problems are not
solved exactly (and the Galerkin orthogonality does not hold when uh is replaced
by u.n/

h ) should be also taken into account in the derivation of all a posteriori error
estimators discussed in Sect. 9.2.2.

A pioneering work in this direction was published in 1995 by Becker, Johnson,
and Rannacher [22]. Although dedicated to boundary value problems, it proposes
a posteriori error estimates in the H 1.˝/- and L2.˝/-norms that incorporate
algebraic errors and design of the adaptive algorithm, and they suggest stopping
criterion for the multigrid computations. Several aspects concerning the interplay
between discretization and algebraic computation in adaptive FEM are discussed in
a recent survey [6].

Now, at step SOLVE of the adaptive FEM applied to problem (9.2), the
generalized eigenvalue problem is solved inexactly and we obtain an eigenvector
approximation u.n/

h and a corresponding eigenvalue approximation �
.n/

h , associated
with the following algebraic errors

uh � u.n/

h 2 R
nh or uh � u.n/

h 2 Vh; and �h � �
.n/

h :

The total errors are then given as a sum of the discretization and the algebraic error,
i.e.,

u � u.n/

h D .u � uh/ C .uh � u.n/

h / and (9.22)

� � �
.n/

h D .� � �h/ C .�h � �
.n/

h /: (9.23)
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For boundary value problems minimizing the total error can be achieved by applying
the CG method, which naturally minimizes the algebraic energy norm of the error.
However, the same task is much more complicated in the case of eigenvalue
problems which, by their nature, are nonlinear. Even the definition of an appropriate
(in the physical sense) norm to measure the error for the eigenvalue problem is not
trivial and still under intensive consideration, see [80].

In [98], exploiting backward error analysis and saturation assumption, the
authors introduce a residual a posteriori error estimators for total errors (9.22)
and (9.23) and develop an adaptive FEM, called AFEMLA (LA standing for linear
algebra), which incorporates the inexact iterative eigensolver, i.e., the Lanczos
method. In particular, this new approach allows for mesh-free adaptation, which
is of great interest in the context of the discrete finite element modeling [99], being
known in engineering practice for decades.

The concept of a functional backward error and condition number introduced
in [7] for boundary value problems is used again in [101] for selfadjoint eigenvalue
problems in order to analyze the continuous dependence of the inexact solution on
the data, in particular to analyze the approximation error and the backward stability
of the algebraic eigenvalue problem. This resulted in a combined residual a posteri-
ori error estimator and a balanced AFEM algorithm, where the stopping criteria are
based on the variant of the shift-invert Lanczos method introduced in [80]. A similar
direction was considered in [70] in the context of bound-constrained optimization;
the ideas introduced there can be applied to the minimization of the Rayleigh-
quotient in the case of eigenvalue computations.

When dealing with inexact AFEM, issues such as convergence and optimality are
of even greater interest. The convergence of the perturbed preconditioned inverse
iteration (PPINVIT), see Sect. 9.3.1, i.e., an algorithm in which the application
of the operator is performed approximately, was proved in [24] with bounds
for the convergence rate depending on the eigenvalue gap and the quality of
the preconditioner. Regarding the optimality of AFEM for eigenvalue problems,
in [124] the authors exploited the theory of best N-term approximation. Namely,
the number of degrees of freedom needed to obtain the AFEM solution of a given
accuracy should be proportional to the number of degrees of freedom needed to
approximate the exact solution up to the same accuracy. Under the assumption that
the iteration error jjjuh � u.n/

h jjj2 C j�h � �
.n/

h j for two consecutive AFEM steps is
small in comparison with the size of the residual a posteriori error estimate quasi-
optimality of the inexact inverse iteration coupled with adaptive finite element
method (AFEM) for a class of elliptic eigenvalue problems was proved in [39].
Moreover, the proposed method admits also a quasi-optimal complexity. A similar
analysis of convergence and a quasi-optimality of the inexact inverse iteration
coupled with adaptive finite element methods was presented in [142] for operator
eigenvalue problem.

The aforementioned results have been derived in the context of selfadjoint
eigenvalue problems. To deal with non-selfadjoint problems, one can follow
results in [23, 100] and their DWR approach. Here duality techniques are used to
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estimate the error in the target quantities in terms of the weighted primal and dual
residuals, i.e.,

Resh.uh; �h/.v/ 
 �h.uh; v/U � a.uh; v/; (9.24)

Res�
h .u�

h; ��
h/.v/ 
 ��

h.v; u�
h /U � a.v; u�

h /; (9.25)

respectively. The resulting estimates, based on a perturbation argument, can be
written as

� � �
.n/

h .
�
�h;n C ��

h;n C �
.it/
h;n

�
; (9.26)

with the primal and the dual eigenvalue residual estimators

�h;n 
 1

2
Resh.u.n/

h ; �
.n/

h /.I
.2/

2h u�.nC1/

h � u�.n/

h /; (9.27)

��
h;n 
 1

2
Res�

h.u�.n/

h ; �
�.n/

h /.I
.2/

2h u.nC1/

h � u.n/

h /; (9.28)

the iteration error indicator

�
.it/
h;n D Resh.u.n/

h ; �
.n/

h /.u�.n/

h /; (9.29)

and the interpolation operator I
.2/

2h . For more details we refer to [120]. Another
approach, based on a homotopy method which allows adaptivity in space, in the
homotopy step-size as well as in the stopping criteria for the iterative algebraic
eigenvalue solvers has been derived in [41], see also [63, 102].

9.6 Concluding Remarks

This short survey gives a very brief introduction to the adaptive approximation of
PDE eigenvalue problems, but it is far away from being complete in any sense. At
this point, we excuse for any missing contributions about whose existence we were
not aware in the time of preparation of this manuscript. Due to the lack in space,
we mentioned only shortly some results on non-selfadjoint eigenvalue problems,
and did not consider at all a very important class of nonlinear eigenvalue problems.
As our study on adaptive FEM has no end, we will leave the reader with their own
thoughts, questions and ideas to contemplate. There are still many doors to be open
and we encourage researchers from many fields such as mathematical and numerical
PDE analysis and discretization, functional analysis and matrix computations to
write further chapters of this wonderful story.
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64. Giani, S., Graham, I.G.: A convergent adaptive method for elliptic eigenvalue problems.
SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)

65. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics
in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

66. Gockenbach, M.S.: Understanding and Implementing the Finite Element Method. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia (2006)

67. Gockenbach, M.S.: Partial Differential Equations, 2nd edn. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia (2011). Analytical and Numerical Methods

68. Godunov, S.K., Ogneva, V.V., Prokopov, G.P.: On the convergence of the modified method of
steepest descent in the calculation of eigenvalues. Am. Math. Soc. Transl. Ser. 2 105, 111–116
(1976)

69. Grätsch, T., Bathe, K.-J.: A posteriori error estimation techniques in practical finite element
analysis. Comput. Struct. 83(4–5), 235–265 (2005)

70. Gratton, S., Mouffe, M., Toint, P.L.: Stopping rules and backward error analysis for bound-
constrained optimization. Numer. Math. 119(1), 163–187 (2011)

71. Grebenkov, D.S., Nguyen, B.-T.: Geometrical structure of Laplacian eigenfunctions. SIAM
Rev. 55(4), 601–667 (2013)

72. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Volume 24 of Monographs and
Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)

73. Grossmann, C., Roos, H.-G.: Numerical treatment of partial differential equations. Universi-
text. Springer, Berlin (2007). Translated and revised from the 3rd (2005) German edition by
Martin Stynes
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