
Chapter 6
Canonical Forms of Structured Matrices
and Pencils

Christian Mehl and Hongguo Xu�

Abstract This chapter provides a survey on the development of canonical forms
for matrices and matrix pencils with symmetry structures and on their impact in the
investigation of application problems. The survey mainly focuses on the results from
three topics that have been developed during the past 15 years: structured canonical
forms for Hamiltonian and related matrices, structured canonical forms for doubly
structured matrices and pencils, and singular value-like decompositions for matrices
associated with two sesquilinear forms.

6.1 Introduction

Eigenvalue problems frequently arise in several applications from natural sciences
and industry and therefore the corresponding theory is a fundamental topic in
Linear Algebra, Matrix Theory, and Numerical Analysis. The practical applications
typically lead to matrices, matrix pencils, or matrix polynomials with additional
symmetry structures that reflect symmetries in the underlying physics. As a
consequence also the eigenstructures (i.e., eigenvalues, eigenvectors, root vectors,
Jordan blocks, singular blocks and other invariants as, e.g., algebraic, geometric,
and partial multiplicities) of such matrices, matrix pencils, and matrix polynomials
inherit certain symmetries or patterns. As these reflect the nature and characteristics
of the original application problems, they play critical roles both in theory and
practice.

�Partially supported by Alexander von Humboldt Foundation and by Deutsche Forschungsgemein-
schaft, through the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

C. Mehl (�)
Institut für Mathematik, Technische Universität Berlin, Sekretariat MA 4-5, Straße des 17.
Juni 136, D-10623 Berlin, Germany
e-mail: mehl@math.tu-berlin.de

H. Xu
Department of Mathematics, University of Kansas, 603 Snow Hall, Lawrence, KS 66045, USA
e-mail: feng@ku.edu

© Springer International Publishing Switzerland 2015
P. Benner et al. (eds.), Numerical Algebra, Matrix Theory, Differential-Algebraic
Equations and Control Theory, DOI 10.1007/978-3-319-15260-8_6

131

mailto:mehl@math.tu-berlin.de
mailto:feng@ku.edu


132 C. Mehl and H. Xu

Typically, the solution of structured eigenvalue problems is a challenge, because
there is demand for the design of new algorithms that are structure-preserving in
each step, so that the corresponding symmetry in the spectrum is maintained in finite
precision arithmetic and the obtained results are physically meaningful [48]. Simple
variations of the QR algorithm or methods based on standard Krylov subspaces
may not be sufficient to achieve this goal so that new ideas and concepts need to be
developed. This requires a deeper understanding of the corresponding eigenstruc-
tures and therefore the derivation of structured canonical forms is essential. It is the
aim of this chapter to review such forms for some particular classes of structured
matrices or matrix pencils.

The most important and well-known matrices with symmetry structures are
probably real or complex Hermitian, skew-Hermitian, and unitary matrices. Still,
there are many other kinds of important structured matrices like complex symmetric,
skew-symmetric, and orthogonal matrices as well as nonnegative matrices all of
which are discussed in the classical books [13, 14]. In this chapter, we focus
on structured matrices that are self-adjoint, skew-adjoint, or unitary with respect
to an inner product associated with a possibly indefinite Hermitian or skew-
Hermitian matrix and give a brief review on their theory, also including the
corresponding matrix pencils that generalize those structures. We do not consider
the corresponding structured matrix polynomials in this chapter, but refer the reader
to Chap. 12of this book instead.

Let F be either the real field R or the complex field C. Suppose M 2 F
m�m

is an invertible Hermitian or skew-Hermitain matrix, and define the bilinear or
sesquilinear form

Œx; y�M D x�My DW Œx; y�; x; y 2 F
m; (6.1)

where � is the conjugate transpose, which reduces to just T , the transpose, if F D R.
Then three sets of structured matrices can be defined:

1. The set of M -Hermitian matrices or M -selfadjoint matrices:
HM D ˚

A
ˇ
ˇA�M D MA

� D ˚
A

ˇ
ˇ ŒAx; y�M D Œx;Ay�M for all x; y 2 F

m
�
.

2. The set of M -skew-Hermitian matrices or M -skew-adjoint matrices:
SM D ˚

K
ˇ
ˇK�M D �MK

� D ˚
K

ˇ
ˇ ŒKx; y�M D �Œx;Ky�M for all x; y 2 F

m
�
.

3. The set of M -unitary matrices:
UM D ˚

U
ˇ
ˇU �MU D M

� D ˚
U

ˇ
ˇ ŒUx;Uy�M D Œx; y�M for all x; y 2 F

m
�
:

The concept of M -Hermitian and M -skew-Hermitian matrices can be general-
ized to matrix pencils via

�M � BI with M D ˙M �; B D ˙B�: (6.2)

In fact, if M is invertible, the generalized eigenvalue problem with underlying
matrix pencil as in (6.2) is equivalent to the eigenvalue problem for the matrix
A D M�1B , which is M -Hermitian or M -skew-Hermitian, depending on whether
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M and B are Hermitian or skew-Hermitian. M -unitary matrices may be related to
structured pencils indirectly by using a Cayley-transformation [24, 28, 38].

Another structured matrix pencil of the form

�A� � A;

which is called palindromic [22, 29, 43, 44], can also be transformed to a
Hermitian/skew-Hermitian pencil with a Cayley-transformation and can therefore
be considered a generalization of M -unitary matrices as well.

The study of matrices and matrix pencils with the symmetry structures outlined
above started about one and a half centuries ago (we refer to the review article [25]
and the references therein for more details) and continues to be of strong interest as
there are many important applications in several areas of science and engineering,
see, e.g., [16, 24, 38, 41, 45, 48, 49, 55].

A particular example is given by Hamiltonian matrices that arise, e.g., in systems
and control theory [27, 38, 45, 55] and in the theory of dynamical and Hamiltonian
systems [19–21]. These matrices are J-skew-Hermitian, where the skew-symmetric
matrix J is given by

J WD Jn WD
�
0 In

�In 0
�

2 R
2n�2n: (6.3)

(We drop the subscript n whenever it is clear from the context.) Due to their many
applications, in particular those in system and control theory, the investigation of
Hamiltonian matrices has been an important part of Volker Mehrmann’s research
interest and he and his coauthors have contributed many results to their theory,
like discovering the reason for the difficulty in computing Hamiltonian Hessenberg
forms [1], finding necessary and sufficient conditions for the existence of the
Hamiltonian Schur form [28], and developing several algorithms for the Hamil-
tonian eigenvalue problem [4, 8, 38, 39]. For the understanding of the underlying
theory, it was crucial to be aware of the presence of additional invariants besides
the eigenvalues, eigenvectors, and root vectors of Hamiltonian matrices, the so
called signs in the sign characteristic of purely imaginary eigenvalues. The classical
Jordan canonical form cannot display these additional invariants, because it is
obtained under general similarity transformations that ignore the special structure
of Hamiltonian matrices. Therefore, it was important to develop a canonical
form that is obtained under structure-preserving transformations, so that additional
information like the sign characteristic is preserved and can be read off.

The phenomenon of presence of a sign characteristic not only occurs for the
special case of Hamiltonian matrices, but for all three types of matrices structured
with respect to the inner product (6.1) induced by M . To be more precise, it occurs
for real eigenvalues of M -Hermitian, purely imaginary eigenvalues of M -skew-
Hermitian, and unimodular eigenvalues of M -unitary matrices, as well as for the
classes of related matrix pencils as in (6.2). In all cases, the sign characteristic has
proven to play a fundamental role in theory and applications, like in the analysis of
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structured dynamic systems [19–21], in perturbation analysis of structured matrices
[31–33, 40], and in the investigation of solutions of Riccati equations [12, 24, 28],
to name a few examples.

After introducing the well-known canonical forms for Hermitian pencils andM -
Hermitian matrices in the next section, we will give a survey on three related topics
in the following sections:

(a) Structured canonical forms for Hamiltonian and related matrices.
(b) Canonical forms for doubly structured matrices.
(c) Singular value-like decompositions for matrices associated with two sesquilin-

ear forms.

Throughout the chapter, we will use the following notation. A1 ˚ � � � ˚Am is the
block diagonal matrix diag.A1; : : : ; Am/. The n�n identity matrix is denoted by In
and 0m�n (0n) stand for the m � n (n � n) zero matrix. If the size is clear from the
context, we may use I and 0 instead for convenience. We denote by ej the j th unit
vector, i.e., the j th column of I .

The n�n reverse identity will be denoted byRn while Jn.˛/ stands for the upper
triangular n � n Jordan block with eigenvalue ˛, that is

Rn D

2

6
6
4

1

. . .

. . .

1

3

7
7
5 2 F

n�n; Jn.˛/ D

2

6
6
6
4

˛ 1
: : :

: : :
: : : 1

˛

3

7
7
7
5

2 F
n�n

Finally, the m � .mC 1/ singular block in the Kronecker canonical form of matrix
pencils is denoted by

Lm.�/ D

2

6
4

� 1
: : :

: : :

� 1

3

7
5 :

6.2 Canonical Forms for Hermitian Pencils
and M -Hermitian Matrices

For all the structured pencils of one of the forms in (6.2), the theory of structured
Kronecker canonical forms is well-established, see, e.g., [9, 25, 26, 46, 47], follow-
ing the work from the second half of the nineteenth century [23, 51, 52]. These forms
are obtained under congruence transformations .�M �B/ 7! X�.�M �B/X with
X invertible, because those preserve both the Hermitian and the skew-Hermitian
structure of matrices and thus the structure of pencils �M �B of the forms in (6.2).
For instance, a Hermitian pencil �M � B , i.e., a pencil such that both M and
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B are Hermitian, has the following structured Kronecker canonical form under
congruence.

Theorem 1 Let �M � B be a complex n � n Hermitian pencil. Then there exists
an invertible matrix X such that

X�.�M � B/X D JC .�/˚ JR.�/˚ J1.�/˚ L .�/; (6.4)

where

JC .�/ D
�
�

�
0 Rm1
Rm1 0

�
�

�
0 Rm1Jm1.�1/

Rm1Jm1.
N�1/ 0

��
˚ � � �

˚
�
�

�
0 Rmp
Rmp 0

�
�

�
0 RmpJmp .�p/

RmpJmp.
N�p/ 0

��
;

JR.�/ D s1Rn1
�
�In1 � Jn1.˛1/

� ˚ � � � ˚ sqRnq
�
�Inq � Jnq .˛q/

�
;

J1.�/ D sqC1Rk1
�
�Jk1.0/� Ik1

� ˚ � � � ˚ sqCrRkr
�
�Jkr .0/� Ikr

�
;

L .�/ D
�

0 L`1.�/

L`1.�/
T 0

�
˚ � � � ˚

�
0 L`t .�/

L`t .�/
T 0

�
˚ 0���;

with Im�j > 0; j D 1; : : : ; pI ˛j 2 R; j D 1; : : : ; qI sj D ˙1; j D 1; : : : ; qCr
and p; q; r; t 2 N.

If two pencils C.�/ and D.�/ are equivalent, i.e., X1C.�/X2 D D.�/ for some
invertible matricesX1;X2 independent of �, we use the notation C.�/ � D.�/. It is
easy to show that the blocks in (6.4) satisfy

JC .�/ � �
�Im1 � Jm1.�1/

� ˚ �
�Im1 � Jm1. N�1/

� ˚
� � � ˚ �

�Imp � Jmp .�p/
� ˚ �

�Imp � Jmp . N�p/
�

JR.�/ � �
�In1 � Jn1.˛1/

� ˚ �
�Inq � Jnq .˛q/

�

J1.�/ � �
�Jk1.0/� Ik1

� ˚ � � � ˚ �
�Jkr .0/� Ikr

�

L .�/ � L`1.�/˚ L`1.�/
T ˚ � � � ˚L`t .�/˚ L`t .�/

T ˚ 0���:

Therefore, the classical Kronecker canonical form of the pencil �M �B can easily
be read off from the structured version (6.4). In particular, the pairing of blocks
elegantly displays the corresponding symmetry in the spectrum: the block JC .�/

contains the nonreal eigenvalues that occur in complex conjugate pairs �j ; N�j , both
having exactly the same Jordan structures. If the pencil is singular, then the singular
blocks – contained in L .�/ – are also paired: each right singular block L`j .�/ has
a corresponding left singular block L`j .�/

T .
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However, the structured canonical form (6.4) has an important advantage over
the classical Kronecker canonical form of a Hermitian pencil. It displays additional
invariants that are present under congruence transformations, the signs s1; : : : ; sqCr
attached to each Jordan block of a real eigenvalue and each Jordan block of
the eigenvalue infinity. The collection of these signs is referred to as the sign
characteristic of the Hermitian pencil [25], see also [15].

As a corollary of Theorem 1, one obtains a canonical form for M -Hermitian
matrices, also known as M -selfadjoint matrices, see [15, 25].

Corollary 1 Let M 2 C
n�n be Hermitian and invertible and let A 2 C

n�n be
M -Hermitian. Then there exists an invertible matrix X 2 C

n�n such that

X�1AX D JR ˚ JC ; X�MX D MR ˚ MC ;

where

JR D Jn1.˛1/˚ � � � ˚ Jnq .˛q/; MR D s1Rn1 ˚ � � � ˚ sqRnq

JC D
�
Jm1.�1/ 0

0 Jm1.
N�1/

�
˚ � � � ˚

�
Jmp .�p/ 0

0 Jmp.
N�p/

�
; MC DR2m1˚ � � � ˚R2mp ;

where ˛j 2 R, sj D ˙1, j D 1; : : : ; q, Im�j > 0, j D 1; : : : ; p, and p; q 2 N.

Indeed, the form is easily obtained by recalling that a matrix A is M -Hermitian
if and only if the pencil �M � MA is a Hermitian pencil and applying Theorem 1
to this pencil. By convention, we will call sj in Corollary 1 the sign of the Jordan
block Jnj .˛j /.

For the other three types of matrix pencils in (6.2), structured canonical forms
can be derived directly from (6.4). If �M � B is Hermitian/skew-Hermitian, skew-
Hermitian/Hermitian, or skew-Hermitian/skew-Hermitian, then Theorem 1 can be
applied to the Hermitian pencils �M � .�iB/, �.�iM /� B or �.�iM /� .�iB/,
respectively, to obtain (6.4). As a consequence, these pencils also have a sign
characteristic. In the case of pencils of “mixed” structure, i.e., one matrix being
Hermitian and the other skew-Hermitian, now the purely imaginary eigenvalues
(including the eigenvalue infinity) have signs.

For the case of real pencils of the form (6.2), also real structured Kronecker
canonical forms under real congruence transformations are known. We refer the
reader to [26, 47] for details.

6.3 Structured Canonical Forms for Hamiltonian Matrices

When the matrix defining the inner product (6.1) is the skew-symmetric matrix
J from (6.3), then a J-Hermitian matrix is called skew-Hamiltonian, a J-skew-
Hermitian is called Hamiltonian, and a J-unitary matrix is called symplectic.



6 Canonical Forms of Structured Matrices and Pencils 137

In many applications, in particular in systems and control, invariant Lagrangian
subspaces are of interest. A Lagrangian subspace is an n-dimensional subspace
L � F

2n that is J-neutral, i.e., Œx; y�J D 0 for all x; y 2 L : Suppose the columns of
the matrix W1 2 F

2n�n span an invariant Lagrangian subspace L of a Hamiltonian
matrixH 2 F

n�n. Then there exists a 2n � n matrix W2 such that W D ŒW1;W2� is
symplectic. Indeed, one may chooseW2 D JTW1.W

�
1 W1/

�1. Then

W �JW D
�
W �
1 JW1 W

�
1 JW2

W �
2 JW1 W

�
2 JW2

�
D

�
0 In

�In 0
�

D J;

because W �
1 JW1 D 0 D .W �

1 W1/
�1W �

1 JJJT W1.W
�
1 W1/

�1 D W �
2 JW2 as L is

J-neutral. Since L is also an invariant subspace of H , we obtain

W �1HW D
�
T D

0 �T �
�
; D D D�: (6.5)

From the decomposition (6.5), we can easily see that a necessary condition for the
existence of an invariant Lagrangian subspace is that the algebraic multiplicities
of all purely imaginary eigenvalues must be even, because any purely imaginary
eigenvalue i˛ of T is also an eigenvalue of �T �. This condition, however, is not
sufficient as the following example shows.

Example 1 Consider the Hamiltonian matrices

H1 D

2

6
6
4

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3

7
7
5 D J2; H2 D

2

6
6
4

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

3

7
7
5 D

�
J1 0

0 �JT1

�

Then the matrix H1 does not have a decomposition (6.5) since for any symplectic
matrix W , by definition, W �H1W D W �J2W D J2. The matrix H2 on the other
hand already is of the form (6.5). Surprisingly, the matrices H1 and H2 are similar.
It is easy to check that they both have the semi-simple eigenvalues i and �i , which
both have the algebraic multiplicity two.

To explain this surprising behavior, a closer look at a structured canonical form of
Hamiltonian matrices is necessary. One way is to consider instead of a Hamiltonian
matrix H the iJ -Hermitian matrix iH and to apply Corollary 1. This yields the
existence of an invertible matrix X such that

X�1HX D HI ˚ HC ; X�JX D MI ˚ MC
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where

HI D iJn1.˛1/˚ � � � ˚ iJnq.˛q/; MI D s1iRn1 ˚ � � � ˚ sqiRnq

HC D i

�
Jm1.�1/ 0

0 Jm1.
N�1/

�
˚ � � � ˚ i

�
Jmp.�p/ 0

0 Jmp .
N�p/

�
;

MC D iR2m1 ˚ � � � ˚ iR2mp :

Here, sj is the sign of the Jordan block Jnj .i˛j / of H , for j D 1; : : : ; q, i.e.,
the purely imaginary eigenvalues come with a sign characteristic. Although this
canonical form reveals these additional invariants, one cannot tell immediately
whether a decomposition as (6.5) exists. One possible way to proceed is to apply
further transformations to transform X�JX back to J, say by constructing an
invertible matrix Y such that

H WD .XY/�1H.XY/; .XY/�J.XY/ D J

Then, the matrix XY is symplectic, because .XY/�J.XY/ D J . Clearly, there
are many such transformations and then the task is to choose among all these
transformations a particular one so that H is as close to a block upper triangular
form (6.5) as possible. In [28] such an optimal canonical form is presented in the
sense that the (2,1) block of H has the lowest possible rank. The result is given in
the following theorem.

Theorem 2 ([28]) Let H 2 C
2n�2n be a Hamiltonian matrix. Then there exists a

symplectic matrix W 2 C
2n�2n such that

W �1HW D

2

6
66
6
6
6
66
6
6
6
4

Tc 0

Tie Die

Tio Dio

Tior Dior

�T �
c

�T �
ie

�T �
io

Mior �T �
ior

3

7
77
7
7
7
77
7
7
7
5

;

where the blocks have the following properties:

(i)

Tc D Jm1.�1/˚ Jm2.�2/˚ � � � ˚ Jmp .�p/;

where �1; : : : ; �p 2 C with Re �1; : : : ;Re�p > 0.
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(ii)

Tie D Jn1.i˛1/˚ � � � ˚ Jnq .i˛q/; Die D s1en1e
�
n1

˚ � � � ˚ sqenq e
�
nq
;

where ˛1; : : : ; ˛q 2 R and s1; : : : ; sq D ˙1. Each sub-matrix

"
Jnj .i˛j / sj enj e

�
nj

0 �.Jnj .i˛j //�
#

corresponds to an even-sized Jordan block J2nj .i˛j / of H with sign sj .
(iii)

Tio D T
.1/
io ˚ � � � ˚ T

.r/
io ; Dio D D

.1/
io ˚ � � � ˚D

.r/
io ;

and

T
.j /
io D

2

6
4
J`j .iˇj / 0 �

p
2
2
e`j

0 Jkj .iˇj / �
p
2
2
ekj

0 0 iˇj

3

7
5 ; D

.j /
io D

p
2i

2
�j

2

6
4

0 0 e`j
0 0 �ekj

�e�̀
j
e�
kj

0

3

7
5 ;

where ˇ1; : : : ; ˇr 2 R and �1; : : : ; �r D ˙1. For each j D 1; : : : ; r , the
sub-matrix

"
T
.j /
io D

.j /
io

0 �.T .j /io /
�

#

corresponds to two odd-sized Jordan blocks of H associated with the same
purely imaginary eigenvalue iˇj . The first is J2`j C1.iˇj / with sign �j and the
second is J2kjC1.iˇj / with sign ��j .

(iv)

Tior D T
.1/
ior ˚� � �˚T

.t/
ior ; Mior DM

.1/
ior ˚� � �˚M

.t/
ior; Dior DD

.1/
ior ˚� � �˚D

.t/
ior;

where

T
.j /
ior D

2

6
4
J�j .i�j / 0 �

p
2
2
e�j

0 J�j .iıj / �
p
2
2
e�j

0 0 i
2
.�j C ıj /

3

7
5; M

.j /
ior D �rCj

2

4
0 0 0

0 0 0

0 0 � 1
2
.�j � ıj /

3

5;

D
.j /
ior D

p
2i

2
�rCj

2

6
4

0 0 e�j
0 0 �e�j

�e�
�j
e�
�j

�
p
2i
2
.�j � ıj /

3

7
5
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and �j ; ıj 2 R, �j ¤ ıj , �rCj D ˙1 for j D 1; : : : ; t . The submatrix

"
T
.j /
ior D

.j /
ior

M
.j /
ior �.T .j /ior /

�

#

corresponds to two odd-sized Jordan blocks of H associated with two distinct
purely imaginary eigenvalues i�j and iıj . The first one is J2�jC1.i�j / with
sign �rCj and the second one is J2�jC1.iıj / with sign ��rCj .

Thus, the spectrum of H can be read off from the Hamiltonian submatrices

Hc WD
�
Tc 0

0 �T �
c

�
; Hie WD

�
Tie Die

0 �T �
ie

�
;

Hio WD
�
Tio Dio

0 �T �
io

�
; Hior WD

�
Tior Dior

Mior �T �
ior

�

The submatrix Hc contains all Jordan blocks associated with eigenvalues that are
not purely imaginary. To be more precise, Tc contains all the Jordan blocks of
eigenvalues of H with positive real parts, and �T �

c contains all the Jordan blocks
of eigenvalues of H with negative real parts. The submatrix Hie contains all even-
sized Jordan blocks associated with purely imaginary eigenvalues of H , whereas
Hio andHior contain all Jordan blocks associated with purely imaginary eigenvalues
of H that have odd sizes. Here, Hio consists of pairs of Jordan blocks of (possibly
different) odd sizes that are associated with the same purely imaginary eigenvalue,
but have opposite signs. On the other hand, Hior consists of the remaining Jordan
blocks that do not allow such a pairing. In particular, if Hior contains more than one
Jordan block associated to a particular purely imaginary eigenvalue, then all such
blocks must have the same sign in the sign characteristic.

While the canonical form in Theorem 2 looks quite complicated at first sight,
its advantage is that the conditions for the existence of a decomposition of the
form (6.5) can now be trivially derived by requesting the submatrix Hior being
void. Thus, with the interpretation of Hior in terms of the sign characteristic, we
immediately obtain the following result that is in accordance with a corresponding
result in [42] in terms of M -selfadjoint matrices.

Theorem 3 ([28]) A Hamiltonian matrix H has a decomposition (6.5) if and only
if for each purely imaginary eigenvalue of H , it has an even number of odd-sized
Jordan blocks half of which have sign C1 and half of which have sign �1.

The theorem also gives necessary and sufficient conditions for the existence of
the Hamiltonian Schur form. A Hamiltonian matrix H is said to have a Hamilton-
ian Schur form, if it allows a decomposition of the form (6.5) with T being upper
triangular andW being both symplectic and unitary, i.e., satisfyingW �JW D J and
W �W D I . Under the same conditions as in Theorem 3, we obtain the existence of
a symplectic matrix W such that W �1HW is in the Hamiltonian canonical form of
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Theorem 2 without the blocks fromHior. Since the blocks Tc , Tie, and Tio are upper
triangular, we find that W �1HW has the form (6.5) with T being upper triangular.
A Hamiltonian Schur form can then be derived by performing a symplectic QR-like
decomposition to the symplectic matrixW , see [7, 28].

Corollary 2 ([28]) LetH be a Hamiltonian matrix. Then there exists a unitary and
symplectic matrix W such that W �1HW has the form (6.5) with T being upper
triangular if and only if for each purely imaginary eigenvalue, H has an even
number of odd-sized Jordan blocks half of which have sign C1 and half of which
have sign �1.

The following example, borrowed from [30], shows that the two Jordan blocks
that are paired in one of the particular submatrices ofHio in Theorem 2 may indeed
have different sizes.

Example 2 Consider the two matrices

H D

2

6
6
4

i 1 1 0

0 i 0 0

0 0 i 0

0 0 �1 i

3

7
7
5 and X D 1p

2

2

6
6
4

2i 0 i 2i

0 1 �i �i
0 0 1 0

0 �i 1 1

3

7
7
5 :

Then H is a Hamiltonian matrix in Hamiltonian Schur form and X is the transfor-
mation matrix that brings the pair .iH; iJ/ into the canonical form of Corollary 1:

X�1.iH/X D

2

6
6
4

�1 1 0 0

0 �1 1 0

0 0 �1 0

0 0 0 �1

3

7
7
5 ; X�.iJ/X D

2

6
6
4

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 �1

3

7
7
5 ;

Thus,H has the eigenvalue i and two corresponding Jordan blocks with sizes 3 and
1. The Jordan block of size 3 has the sign C1 and the Jordan block of size 1 has the
sign �1 thus satisfying the condition of Theorem 3.

Example 3 Revisiting the matrices H1 and H2 from Example 1, one can easily
check that the eigenvalues i and �i of H2 have one Jordan block with sign C1
and one Jordan block with sign �1 each. In fact, H2 is a matrix of the form Hio

as in Theorem 2. On the other hand, for the matrix H1 the signs corresponding to
i are both C1 and the signs corresponding to �i are both �1. In fact, H1 is in the
canonical form of Theorem 2 corresponding exactly to a matrix in the formHior.

However, for the matrix X D Œe1; e3; e2; e4�, which is not symplectic, we
obtain that X�1H1X D H2 is in the form (6.5). Although the transformation
with X maps the Hamiltonian matrix H1 to the Hamiltonian matrix H2, it is
not a structure-preserving transformation in the sense that for small Hamiltonian
perturbations H1 C �H the transformed matrix H2 C X�1�HX is in general not
Hamiltonian. This fact in a sense allows the similarity transformation with X to
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take a bypass by ignoring the sign constraints shown in Theorem 3. It was shown in
[28] that the existence of the decomposition (6.5) with a non-symplectic similarity
transformation only requires the algebraic multiplicities of all purely imaginary
eigenvalues of H to be even.

In the case that the Hamiltonian matrix under consideration is real, there is
also a canonical form under real symplectic similarity, see [28, Theorem 22].
In this case, the eigenvalues of a Hamiltonian matrix are not only symmetric
with respect to the imaginary axis, but also with respect to the real axis. Thus,
in particular the Jordan blocks associated with purely imaginary eigenvalues i˛,
˛ > 0 occur in complex conjugate pairs and it turns out that their signs in the
sign characteristic are related. It can be shown that if Jm1.i˛/; : : : ; Jmp.i˛/ are
the Jordan blocks of a Hamiltonian matrix H associated with the eigenvalue i˛
and having the signs s1; : : : ; sp , then the signs of the corresponding Jordan blocks
Jm1.�i˛/; : : : ; Jmp.�i˛/ are �s1; : : : ;�sp , respectively. Another key difference
between the real and the complex case is the behavior of the eigenvalue 0 when
H is singular. While in the complex case this eigenvalue can be treated as any
other purely imaginary eigenvalue, it has a special Jordan structure in the real case:
each odd-sized Jordan block associated with zero must have an even number of
copies and in the corresponding sign characteristic, half of the signs must be C1
and half of the signs must be �1. In contrast, there is no such pairing for Jordan
blocks associated with zero that have even sizes. This extraordinary behavior of the
eigenvalue zero leads to a real version of Theorem 3 that yields slightly different
conditions in comparison with the complex case.

Theorem 4 ([28]) A real Hamiltonian matrix H has a decomposition (6.5) with
a real symplectic transformation matrix W if and only if for each nonzero purely
imaginary eigenvalue, H has an even number of odd-sized Jordan blocks half of
which have sign C1 and half of which have sign �1.

For most of the problems arising from systems and control, one actually is
interested in special invariant Lagrangian subspaces of Hamiltonian matrices. For
instance, for the existence of solutions of algebraic Riccati equations [24, 38, 55]
one is interested in the invariant Lagrangian subspaces of a Hamiltonian matrix
corresponding to the eigenvalues in the closed or open left half complex plane. A
more general question is the following: if H is a 2n � 2n Hamiltonian matrix and
a list 	 of n of its eigenvalues (counted with multiplicities) is prescribed, does
there exists an invariant Lagrangian subspace associated with the eigenvalues in 	,
and if so, is this subspace unique? This question can be answered with the help of
Theorem 3 or its corresponding real version. As we already know, the existence of
an invariant Lagrangian subspace for a Hamiltonian matrix H is equivalent to the
existence of a decomposition of the form (6.5). From (6.5), the spectrum ofH is the
union of the spectra of both T and �T �. So one may assume that H has pairwise
distinct non purely imaginary eigenvalues

�1;�N�1; : : : ; �p;�N�p; with algebraic multiplicities �1; �1; : : : ; �p; �p
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and pairwise distinct purely imaginary eigenvalues

i˛1; : : : ; i˛q with algebraic multiplicities 2
1; : : : ; 2
q:

In order to have an invariant Lagrangian subspace, or, equivalently, a decomposi-
tion (6.5), it is necessary that the spectrum of T contains �j and �N�j with algebraic
multiplicities kj and �j � kj , respectively, for each j D 1; : : : ; p, and 
j copies
of i˛j for each j D 1; : : : ; q. Let ˝.H/ denote the set of all possible spectra for
T in a decomposition of the form (6.5) of H . Then this set contains

Qp
jD1.�j C 1/

different selections, because kj can be any number from 0 to �j for each j . Among
them there are 2p selections that contain either �j or �N�j , but not both, for all j .
This subset of ˝.H/ is denoted by Q̋ .H/.

The answer to the question of existence of invariant Lagrangian subspaces with
a prescribed spectrum is then given in the following theorem.

Theorem 5 ([12]) A Hamiltonian matrix H has an invariant Lagrangian sub-
space corresponding to every ! 2 ˝.H/ if and only if the conditions Theorem 3
(or Theorem 4 in real case) hold. Concerning uniqueness, we have the following
conditions.

(i) For every ! 2 ˝.H/, H has a unique corresponding invariant Lagrangian
subspace if and only if for every non purely imaginary eigenvalue �j (and �N�j )
H has only a single Jordan block, and for every purely imaginary eigenvalue
i˛j , H only has even-sized Jordan blocks all of them having the same sign.

(ii) For every ! 2 Q̋ .H/, H has a unique corresponding invariant Lagrangian
subspace if and only if for every purely imaginary eigenvalue i˛j , H has only
even-sized Jordan blocks all of them having the same sign.

When the Lagrangian invariant subspaces corresponding to the eigenvalues in
˝.H/ or Q̋ .H/ are not unique, then it is possible to parameterize their bases.
Moreover, the results in Theorem 5 can be used to study Hermitian solutions to
algebraic Riccati equations, see [12].

We will now turn to skew-Hamiltonian matrices. Analogously to the case
of Hamiltonian matrices, it can be shown that if the columns of W1 span an
invariant Lagrangian subspace of a skew-Hamiltonian matrix K , then there exists
a symplectic matrixW D ŒW1;W2� such that

W �1KW D
�
T D

0 T �
�
; D D �D�: (6.6)

Structured canonical forms for complex skew-Hamiltonian matrices can be con-
structed in the same way as for complex Hamiltonian matrices, using the fact thatK
is skew-Hamiltonian if and only if iK is Hamiltonian. Thus, the conditions for the
existence of invariant Lagrangian subspaces are the same as in Theorem 3 replacing
“purely imaginary eigenvalues” with “real eigenvalues”.
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Interestingly, for any real skew-Hamiltonian matrix the real version of the
decomposition (6.6) always exists, see [50]. Also, it is proved in [10] that for a
real skew-Hamiltonian matrix K , there always exists a real symplectic matrix W
such that

W �1KW D N ˚NT ;

whereN is in real Jordan canonical form. The result shows clearly that every Jordan
block of K has an even number of copies.

Finally, if S 2 F
n�n is a symplectic matrix and if the columns of W1 span an

invariant Lagrangian invariant subspace of S , then similar to the Hamiltonian case
one can show that there exists a symplectic matrix W D ŒW1;W2� such that

W �1SW D
�
T D

0 T ��
�
; DT� D .DT�/�: (6.7)

The case of symplectic matrices can be reduced to the case of Hamiltonian matrices
with the help of the Cayley transformation, see Chap. 2 in this book for details on the
Cayley transformation. Therefore, structured Jordan canonical forms for symplectic
matrices can be derived using the structured canonical forms for Hamiltonian
matrices in Theorem 2 and its real version. Then, conditions for the existence of
a decomposition of the form (6.7) can be obtained which are essentially the same
as in Theorems 3 and 4, with purely imaginary eigenvalues replaced by unimodular
eigenvalues in the symplectic case, see [28].

6.4 Doubly Structured Matrices and Pencils

In this section we discuss canonical forms of doubly structured matrices and pencils.
This research was mainly motivated by applications from quantum chemistry [2, 3,
16, 41, 49]. In linear response theory, one has to solve a generalized eigenvalue
problem with a pencil of the form

�

�
C Z

�Z �C
�

�
�
E F

F E

�
; (6.8)

where C;E; F are n�n Hermitian matrices andZ is skew-Hermitian. The simplest
response function model is the time-dependent Hartree-Fock model (also called
random phase approximation) in which the pencil (6.8) takes the simpler structure
C D I and Z D 0 so that the corresponding eigenvalue problem can be reduced to
a standard eigenvalue problem with a matrix of the form

A D
�
E F

�F �E
�
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with E and F being Hermitian. It is straightforward to check that A is Hamiltonian
(or J-skew-Hermitian) andM -Hermitian, where

M D
�
In 0

0 �In
�
:

In the general setting, we consider matrices that are structured with respect
to two invertible Hermitian or skew-Hermitian matrices K and M . Because any
skew-Hermitian matrix K can be transformed to the Hermitian matrix iK and any
K-skew-Hermitian matrix A can be transformed to the K-Hermitian matrix iA, we
may assume that bothK andM are invertible and Hermitian and consider two cases
only:

(a) A is K-Hermitian and M -Hermitian, i.e., KA D A�K; MA D A�M ,
(b) A is K-Hermitian and M -skew-Hermitian, i.e., KA D A�K; MA D �A�M .

The task is now to find an invertible matrix X to perform a transformation

A D X�1AX; K D X�KX; M D X�MX

so that the canonical form of Corollary 1 (or the corresponding version for M -
skew-Hermitian matrices) for both pairs .A;K/ and .A;M/ can simultaneously be
recovered. As shown in [34], this is not always possible, because the situation is
too general. So it is reasonable to restrict oneself to the situation where the pencil
�K � M is nondefective, meaning that all the eigenvalues of the Hermitian pencil
�K � M are semisimple. (This assumption is satisfied in the case K D i Jn and
M D diag.In;�In/ which is relevant for the applications in quantum chemistry.)
Then by (6.4), there exists an invertible matrix Q such that

Q�.�K �M/Q D .�K1 �M1/˚ � � � ˚ .�Kp �Mp/; (6.9)

where, for each j D 1; : : : ; p, either

�Kj �Mj D �

�
0 1

1 0

�
�

�
0 �jN�j 0

�

containing a pair of nonreal eigenvalues �j ; N�j , or

�Kj �Mj D sj
�
�

	
1


 � 	
˛j


 �
; sj D ˙1;

containing a single real eigenvalue ˛j with a sign sj . (We highlight that the same
eigenvalues �j ; N�j or ˛j , respectively, may appear multiple times among the blocks
�K1 �M1; : : : ; �Kp �Mp.)

Under this assumption, the following structured canonical form can be obtained
for a matrix that is doubly structured in the sense of case (a) above.
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Theorem 6 ([34]) SupposeK;M are Hermitian and invertible, such that the pencil
�K �M is nondefective. Suppose A is both K-Hermitian andM -Hermitian. Then
there exists an invertible matrix X such that

A WD X�1AX D A1 ˚ A2 ˚ � � � ˚ Ap

K WD X�KX D K1 ˚K2 ˚ � � � ˚Kp

M WD X�MX D M1 ˚M2 ˚ � � � ˚Mp;

where for each j D 1; 2; : : : ; p the blocks Aj ;Kj ;Mj are in one of the following
forms.

(i) Blocks associated with a pair of conjugate complex eigenvalues of A:

Aj D
�
Jmj .�j / 0

0 Jmj .
N�j /

�
; Kj D

�
0 Rmj
Rmj 0

�
; Mj D

�
0 �jRmj

N�jRmj 0

�
;

where �j 2 C n R, �j D cj C idj ¤ 0 with cj ; dj 2 R and dj � 0.
(ii) Blocks associated with real eigenvalues of A and real eigenvalues of �K�M :

Aj D Jnj .˛j /; Kj D sjRnj ; Mj D sj �jRnj ;

where sj D ˙1, 0 ¤ �j 2 R, and ˛j 2 R. The sign of the block Aj with
respect to K is sj and the sign with respect to M is sign.sj �j /.

(iii) Blocks associated with real eigenvalues of A and a pair of conjugate complex
eigenvalues of �K �M :

Aj D
�
Jnj .˛j / 0

0 Jnj .˛j /

�
; Kj D

�
0 Rnj
Rnj 0

�
; Mj D

�
0 �jRnj

N�jRnj 0

�
;

where ˛j 2 R and �j D cj C idj with cj ; dj 2 R and dj > 0. Thus Aj
contains a pair of two nj � nj Jordan blocks of A associated with the same
real eigenvalue ˛j . The pairs of corresponding signs are .C1;�1/ with respect
to both K andM .

It is easily seen that the structured canonical forms for A with respect to K and M ,
respectively, can immediately be read off from the canonical form in Theorem 6. In
addition, the structured canonical form of �K �M as in (6.9) can easily be derived
from �K �M . Therefore, Theorem 6 combines three different structured canonical
forms into one.

On the other hand, Theorem 6 shows that the presence of two structures in
A leads to additional restrictions in the Jordan structure of A which can be seen
from the blocks of type (iii) of Theorem 6. This block is indecomposable in a
sense that there does not exist any transformation of the form .Aj ;Kj ;Mj / 7!
.Y �1AjY; Y �KjY; Y

�MjY / that simultaneously block-diagonalizes all three
matrices. As a consequence, the Jordan structure of a matrix A that is both
K-Hermitian andM -Hermitian is rather restricted if the pencil �K�M (is defective
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and) has only nonreal eigenvalues. In that case, each Jordan block associated
with a real eigenvalue of A must occur an even number of times in the Jordan
canonical form ofA. In particular, all real eigenvalues ofAmust have even algebraic
multiplicity.

In case (b), i.e., when A is K-Hermitian and M -skew-Hermitian, then the
eigenstructure of A has even richer symmetry than in case (a), because now
the spectrum has to be symmetric to both the real and the imaginary axes. Also,
the Jordan blocks associated with real eigenvalues of A will have signs with respect
to K while the ones associated with purely imaginary eigenvalues will have signs
with respect toM . Thus, the eigenvalue zero will play a special role, because it will
have signs both with respect to K and to M . A structured canonical form for this
case will be given in the next theorem, for which we need extra notation. By˙n, we
denote the n � n anti-diagonal matrix alternating sign matrix, i.e.,

˙n D

2

6
6
4

.�1/0
.�1/1

. . .

.�1/n�1

3

7
7
5 :

Theorem 7 ([34]) Suppose K;M are Hermitian and invertible, and �K � M is
nondefective. Suppose A is both K-Hermitian and M -skew-Hermitian. Then there
exists an invertible matrix X such that

A WD X�1AX D A1 ˚ A2 ˚ � � � ˚ Ap
K WD X�KX D K1 ˚K2 ˚ � � � ˚Kp

M WD X�MX D M1 ˚M2 ˚ � � � ˚Mp;

where for jD 1; 2; : : : ; p the blocksAj ;Kj ;Mj are in one of the following forms.

(i) Blocks associated with nonreal, non purely imaginary eigenvalues of A:

Aj D

2

66
4

Jmj .�j / 0 0 0

0 �Jmj .�j / 0 0

0 0 Jmj .
N�j / 0

0 0 0 �Jmj . N�j /

3

77
5 ;

Kj D

2

66
4

0 0 Rmj 0

0 0 0 Rmj
Rmj 0 0 0

0 Rmj 0 0

3

77
5 ; Mj D

2

66
4

0 0 0 �jRmj
0 0 �jRmj 0

0 N�jRmj 0 0

N�jRmj 0 0 0

3

77
5 ;

where �j D aj C ibj with aj ; bj 2 R and aj bj > 0, and the parameter �j
satisfies one of the following three mutually exclusive conditions: (a) �j D ˇj
with ˇj > 0, (b) �j D iˇj with ˇj > 0, or (c) �j D cj C idj with cj ; dj 2 R

and cj dj > 0.
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(ii) Blocks associated with a pair of real eigenvalues ˙˛j of A and nonreal non
purely imaginary eigenvalues of �K �M :

Aj D

2

66
4

Jnj .˛j / 0 0 0

0 �Jnj .˛j / 0 0

0 0 Jnj .˛j / 0

0 0 0 �Jnj .˛j /

3

77
5 ;

Kj D

2

66
4

0 0 Rnj 0

0 0 0 Rnj
Rnj 0 0 0

0 Rnj 0 0

3

77
5 ; Mj D

2

66
4

0 0 0 �jRnj
0 0 �jRnj 0

0 N�jRnj 0 0

N�jRnj 0 0 0

3

77
5 ;

where 0 < ˛j 2 R and �j D cj C idj with cj ; dj 2 R and cj dj > 0. The
two Jordan blocks associated with ˛j have the signs 1 and �1 with respect to
K and the two Jordan blocks associated with �˛j also have the signs 1 and
�1 with respect to K .

(iii) Blocks associated with a pair of real eigenvalues ˙˛j ofA and real or purely
imaginary eigenvalues of �K �M :

Aj D
�
Jnj .˛j / 0

0 �Jnj .˛j /
�
;

Kj D sj

"
Rnj 0

0
�
�j

j�j j
�2
Rnj

#

; Mj D
�

0 �jRnj
N�jRnj 0

�
;

where 0 < ˛j 2 R, sj D ˙1, �j D ˇj or �j D iˇj with 0 < ˇj 2 R. The
Jordan block of A associated with ˛j has the sign sj with respect to K and
the one associated with �˛j has the sign .�1/njC1sj .�j =j�j j/2 with respect
to K .

(iv) Blocks associated with a pair of purely imaginary eigenvalues ˙i˛j ofA and
nonreal non purely imaginary eigenvalues of �K �M :

Aj D

2

66
4

iJnj .˛j / 0 0 0

0 �iJnj .˛j / 0 0

0 0 iJnj .˛j / 0

0 0 0 �iJnj .˛j /

3

77
5 ;

Kj D

2

66
4

0 0 0 Rnj
0 0 Rnj 0

0 Rnj 0 0

Rnj 0 0 0

3

77
5 ; Mj D

2

66
4

0 0 �jRnj 0

0 0 0 �jRnj
N�jRnj 0 0 0

0 N�jRnj 0 0

3

77
5 ;
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where 0 < ˛j 2 R and �j D cj C idj with cj ; dj 2 R and cj dj > 0. The
two Jordan blocks associated with i˛j have the signs 1 and �1 with respect
to M and the two Jordan blocks associated with �i˛j also have the signs 1
and �1 with respect to M .

(v) Blocks associated with a pair of purely imaginary eigenvalues ˙i˛j ofA and
real or purely imaginary eigenvalues of �K �M :

Aj D
�
iJnj .˛j / 0

0 �iJnj .˛j /
�
;

Kj D
�
0 Rnj
Rnj 0

�
; Mj D sj j�j j

"
Rnj 0

0
� j�j j
�j

�2
Rnj

#

;

where 0<˛j inR, sj D ˙ 1, �j Dˇj or �j D iˇj with 0<ˇj 2R. The
Jordan block of A associated with i˛j has sign sj with respect to M and the
one associated with �˛j has sign .�1/njC1sj .�j =j�j j/2 with respect to M .

(vi) A pair of blocks associated with the eigenvalue zero of A and nonreal, non
purely imaginary eigenvalues of �K �M :

Aj D
�
Jnj .0/ 0

0 Jnj .0/

�
; Kj D

�
0 Rnj
Rnj 0

�
;

Mj D sj

�
0 �j˙nj

.�1/njC1 N�j˙nj 0

�
;

where sj D ˙1, �j D cj C idj with cj ; dj 2 R and cj dj > 0. The two
Jordan blocks of A associated with the eigenvalue 0 have the signs 1 and �1
with respect to both K andM .

(vii) A pair of blocks associated with the eigenvalue zero of A and real or purely
imaginary eigenvalues of �K �M :

Aj D
�
Jnj .0/ 0

0 Jnj .0/

�
; Kj D

�
0 Rnj
Rnj 0

�
; Mj D

�
0 �j˙nj

��j˙nj 0

�
;

where �j D ˇj if nj is even and �j D iˇj if nj is odd for some 0 < ˇj 2 R.
The two Jordan blocks of A associated with the eigenvalue zero of A have the
signs 1 and �1 with respect to bothK andM .

(viii) A single block associated with the eigenvalue zero of A and real or purely
imaginary eigenvalues of �K �M :

Aj D Jnj .0/; Kj D sjRnj ; Mj D �j �j˙nj ;

where sj ; �j D ˙1; and �j D ˇj if nj is odd and �j D iˇj if nj is even for
some 0 < ˇj 2 R. The Jordan block of A associated with the eigenvalue zero
has the sign sj with respect toK and the sign �j

j�j j�j i
nj�1 with respect to M .
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Theorem 7 shows the intertwined connection of the three different structures: the
double structure of A with respect to K and M and the structure of the Hermitian
pencil �K � M . The property of being K-Hermitian forces the spectrum of A
to be symmetric with respect to the real axis and the property of being M -skew-
Hermitian forces the spectrum to be symmetric with respect to the imaginary axis.
The particular structure of blocks, however, depends in addition on the eigenvalues
of the Hermitian pencil�K�M . Interestingly, there is not only a distinction between
real and nonreal eigenvalues of �K �M , but also the purely imaginary eigenvalues
of �K � M play a special role. This effect can in particular be seen in the blocks
associated with the eigenvalue zero, the only point in the complex plane that is both
real and purely imaginary. Depending on the type of the corresponding eigenvalues
of �K �M , we have the following cases:

(a) Real eigenvalues of �K � M : in this case, even-sized Jordan blocks of A
associated with zero must occur in pairs (vii), but odd-sized Jordan blocks need
not (viii);

(b) Purely imaginary eigenvalues of �K�M : in this case, odd-sized Jordan blocks
ofA associated with zero must occur in pairs (vii), but even-sized Jordan blocks
need not (viii);

(c) Nonreal, non purely imaginary eigenvalues of �K �M : in this case, all Jordan
blocks of A associated with the eigenvalue zero must occur in pairs (vi).

Structured canonical forms for A as a K-Hermitian matrix, for A as an M -
Hermitian matrix and for the Hermitian pencil �K � M can be easily derived
from the canonical form in Theorem 7, so again the result combines three different
canonical forms into one.

As the particular application from quantum chemistry shows, there is also interest
in doubly structured generalized eigenvalue problems. In general, we can consider
a matrix pencil �A � B with both A;B being doubly structured with respect to
two invertible Hermitian or skew-Hermitian matrices K and M . It turns out that
a structured Weierstraß canonical form for a regular doubly structured pencil can
easily be derived by using the results of the matrix case as in Theorems 6 and 7.

Theorem 8 ([34]) Suppose K;M are both invertible and each is either Hermitian
or skew-Hermitian, i.e.,

K� D �KK; M � D �MM; �K; �M D ˙1:

Let �A� B be a regular pencil (that is det.�A� B/ 6	 0) with A;B satisfying

A�K D "AKA; A�M D ıAMA; "A; ıA D ˙1
B�K D "BKB; B�M D ıBMB; "B; ıB D ˙1:
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Then there exist invertible matrices X; Y such that

Y �1.�A� B/X D �

�
I 0

0 E

�
�

�
H 0

0 I

�

X�KY D
�
K1 0

0 K2

�
; X�MY D

�
M1 0

0 M2

�
;

where E is nilpotent and all three matrices in .H;K1;M1/ and .E;K2;M2/,
respectively, have the same sizes. Furthermore, we have that

K�
1 D �K"AK1; M

�
1 D �M ıAM1I H�K1 D ."A"B/K1H; H

�M1 D .ıAıB/M1H;

K�
2 D �K"BK2; M

�
2 D �M ıBM2I E�K2 D ."A"B/K2E; E

�M2 D .ıAıB/M2E:

Clearly, H is a doubly structured matrix associated with the Hermitian or skew-
Hermitian matricesK1;M1, andE is a doubly structured matrix associated with the
Hermitian or skew Hermitian matricesK2;M2. Thus, the pencil �A�B is decoupled
and becomes .�I �H/˚ .�E � I /. Hence a structured Weierstraß canonical form
of �A � B can be derived by applying the results in Theorems 6 and 7 to H and E
separately.

Note that in Theorem 8 one does not require �K � M to be nondefective.
However, in order to apply Theorems 6 or 7 to obtain structured Jordan canonical
forms for the matrices H and E , the condition that both �K1 �M1 and �K2 �M2

are nondefective is necessary.
Finally, we point out that for the special type of doubly structured matrices and

matrix pencils from linear response theory [16, 41, 49], necessary and sufficient
conditions for the existence of structured Schur-like forms (obtained under unitary
transformations) were provided in [36].

6.5 Structured Singular Value Decompositions

The singular value decomposition (SVD) is an important tool in Matrix Theory
and Numerical Linear Algebra. For a given matrix A 2 C

m�n it computes unitary
matrices X; Y such that Y �AX is diagonal with nonnegative diagonal entries. The
condition thatX and Y are unitary can be interpreted in such a way that the standard
Euclidean inner product is preserved by the transformation with X and Y . Thus, to
be more precise, we have a transformation on the matrix triple .A; In; Im/ that yields
the canonical form

Y �AX D
�
� 0

0 0

�
; X�InX D In; Y �ImY D Im;

where � is diagonal with positive diagonal entries. But the singular value decom-
position even yields more information as the nonzero singular values are the square
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roots of the positive eigenvalues of the matrices AA� and A�A. Thus, in addition to
a canonical form forA under unitary equivalence, the SVD simultaneously provides
two spectral decompositions

Y �.AA�/Y D
�
�2 0

0 0

�
; X�.A�A/X D

�
�2 0

0 0

�
;

for the Hermitian (positive semi-definite) matrices AA� and A�A.
This concept can be generalized to the case of possibly indefinite inner products.

Suppose that the two spaces Cn and C
m are equipped with inner products given by

the Hermitian invertible matricesK 2 C
n�n andM 2 C

m�m, respectively. Then the
task is to find invertible matrices X and Y such that

A D Y �AX; K D X�KX; M D Y �MY; (6.10)

are in a canonical form, so that also the canonical forms of the K-Hermitian matrix
T and the M -Hermitian matrix Z can easily be derived, where

T D K�1A�M�1A; Z D M�1AK�1A�: (6.11)

Equivalently, we obtain structured canonical forms for the two Hermitian pencils
�K � A�M�1A and �M � AK�1A�

The transformation (6.10) has several mathematical applications. For instance,
the existence of a generalization of a polar decompositions for a matrix A in a
space equipped with an indefinite inner product as in (6.1) given by the invertible
Hermitian matrix fM 2 C

n�n is related to the matrices AAŒ�� and AŒ��A, where
AŒ�� WD fM�1A�fM . By definition, a matrix A 2 C

n�n is said to have an fM -polar
decomposition, if there exists an fM -Hermitian matrix H and an fM -unitary matrix
U , such that A D UH, see [5, 6]. In contrast to the classical polar decomposition in
the case of the Euclidean inner product, an fM -polar decomposition need not exist
for a given matrix A 2 C

n�n. In [37], it was proved that a matrix A 2 C
n�n allows

an fM -polar decomposition if and only if the two fM -Hermitian matrices AAŒ�� and
AŒ��A have the same canonical forms (as in Corollary 1) – a fact that was already
conjectured in [18]. If a canonical form under a transformation as in (6.10) is given
with the matrices T and Z as in (6.11), then we have that AAŒ�� D MZM�1 and
AŒ��A D T with K D fM and M D fM�1. Thus, structured canonical forms can
easily be derived from the canonical form under the transformation (6.10).

On the other hand, the simultaneous transformation (6.10) provides more flexibil-
ity in solving the eigenvalue problem of a structured matrix as B D A�M�1A from
a numerical point of view. That is, instead of performing similarity transformations
on B , one may use two-sided transformations on A. For example, when K D J and
M D I , a structured condensed form for a matrix A was proposed in [53] and a
numerical method was given in [54].

In the case when A is invertible (hence square), the following theorem provides
the desired canonical form for the transformation in (6.10). Here, we use the
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notation J 2m.˛/ for the square of a Jordan block Jm.˛/ of size m associated with
the eigenvalue ˛.

Theorem 9 ([35]) LetA2C
n�n be nonsingular and letK;M 2C

n�n be Hermitian
and invertible. Then there exist invertible matrices X; Y 2C

n�n such that

Y �AX D Ac ˚ Ar; X�KX D Kc ˚Kr; Y �MY D Mc ˚Mr: (6.12)

Consequently, for the K-Hermitian matrix T D K�1A�M�1A and the M -
Hermitian matrix Z D M�1AK�1A�, one has

X�1TX D Tc ˚ Tr; Y �1ZY D Zc ˚Zr: (6.13)

The diagonal blocks in (6.12) and (6.13) have the following forms.

(i)

Ac D
�
Jm1.
1/ 0

0 Jm1. N
1/
�

˚ � � � ˚
�
Jmp .
p/ 0

0 Jmp . N
p/
�
;

Kc D
�
0 Rm1
Rm1 0

�
˚ � � � ˚

�
0 Rmp
Rmp 0

�
;

Mc D
�
0 Rm1
Rm1 0

�
˚ � � � ˚

�
0 Rmp
Rmp 0

�
;

Tc D
�
J 2m1.
1/ 0

0 J 2m1. N
1/
�

˚ � � � ˚
"
J 2mp .
p/ 0

0 J 2mp . N
p/

#

;

Zc D
�
J 2m1.
1/ 0

0 J 2m1. N
1/
��

˚ � � � ˚
"
J 2mp .
p/ 0

0 J 2mp. N
p/

#�
;

where 
j D aj C ibj with 0 < aj ; bj 2 R for j D 1; : : : ; p. For each j ,
both the diagonal block diag

�
J 2mj .
j /; J

2
mj
. N
j /

�
of Tc as well as the diagonal

block diag
�
J 2mj .
j /; J

2
mj
. N
j /

��
ofZc are similar to a matrix consisting of two

mj �mj Jordan blocks, one of them associated with the nonreal and non purely
imaginary eigenvalue 
2j and the other one with N
2j .

(ii)

Ar D Jn1.ˇ1/ ˚ � � � ˚ Jnq .ˇq/;

Kr D s1Rn1 ˚ � � � ˚ sqRnq ;

Mr D �1Rn1 ˚ � � � ˚ �qRnq ;

Tr D s1�1J
2
n1
.ˇ1/ ˚ � � � ˚ sq�qJ

2
nq
.ˇq/;

Zr D s1�1
�
J 2n1.ˇ1/

��˚ � � � ˚ sq�q
�
J 2nq .ˇq/

��
;
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where ˇj > 0, and sj ; �j D ˙1 for j D 1; : : : ; q. For each j , the block
sj �j J

2
nj
.ˇj / of Tr is similar to an nj � nj Jordan block associated with a real

eigenvalue sj �j ˇ2j of T with the sign with respect to K being



sj if nj is odd, or if nj is even and sj �j D 1,
�j if nj is even and sj �j D �1,

and the block sj �j
�
J 2nj .ˇj /

��
of Zr is similar to an nj � nj Jordan block

associated with a real eigenvalue sj �j ˇ2j of Z with the sign with respect to M
being



�j if nj is odd, or if nj is even and sj �j D 1,
sj if nj is even and sj �j D �1.

For a general rectangular matrix A 2 C
m�n, the situation is more complicated

because of (a) the rectangular form of A and (b) the presence of the eigenvalue 0 in
T orZ. Indeed, note that these two matrices T andZ can be represented as products
of the same two factors, but with different order, i.e., T D BC and Z D CB, where
B D K�1A� andC D M�1A. By a well-known result [11], the Jordan structures of
the nonzero eigenvalues of the two matrix products BC and CB are identical, while
this is not the case for the eigenvalue zero. Despite this additional complexity in
the problem of finding a canonical form under the transformation (6.10), a complete
answer is still possible as shown in the next theorem.

Theorem 10 ([35]) Let A 2 C
m�n, and let K 2 C

n�n and M 2 C
m�m be

Hermitian and invertible. Then there exist invertible matrices Y 2 C
m�m and

X 2 C
n�n such that

Y �AX D Ac ˚ Ar ˚ A1 ˚ A2 ˚ A3 ˚ A4;

X�KX D Kc ˚Kr ˚K1 ˚K2 ˚K3 ˚K4; (6.14)

Y �MY D Mc ˚Mr ˚M1 ˚M2 ˚M3 ˚M4:

Moreover, for the K-Hermitian matrix T D K�1A�M�1A 2 C
n�n and for the

M -Hermitian matrix Z D M�1AK�1A� 2 C
m�m we have that

X�1TX D Tc ˚ Tr ˚ T1 ˚ T2 ˚ T3 ˚ T4;

Y �1ZY D Zc ˚Zr ˚Z1 ˚Z2 ˚Z3 ˚Z4:

The blocks Ac;Ar ;Kc;Kr ;Mc;Mr have the same forms as in (6.12). Therefore, the
blocks Tc; Tr and Zc;Zr have the same forms as in (6.13). The remaining blocks
are associated with the eigenvalue 0 of T and Z and have the following forms.
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(i)

A1 D 0`�k; K1 D diag.Ik1 ;�Ik2/; M1 D diag.I`1 ;�I`2/; T1 D 0k; Z1 D 0`;

where k1 C k2 D k and `1 C `2 D `. So there are k copies of 1 � 1 Jordan
blocks associated with the eigenvalue 0 of T such that k1 of them have the sign
C1 and k2 of them the sign �1 with respect to K , and there are ` copies of
1� 1 Jordan blocks associated with the eigenvalue 0 of Z such that `1 of them
have the sign C1 and `2 of them the sign �1.

(ii)

A2 D J2r1.0/ ˚ J2r2.0/ ˚ � � � ˚ J2ru.0/ ;

K2 D R2r1 ˚ R2r2 ˚ � � � ˚ R2ru ;

M2 D R2r1 ˚ R2r2 ˚ � � � ˚ R2ru ;

T2 D J 22r1.0/ ˚ J 22r2.0/ ˚ � � � ˚ J 22ru.0/ ;

Z2 D �
J 22r1.0/

�T˚ �
J 22r2.0/

�T˚ � � � ˚ �
J 22ru.0/

�T
:

For each j D 1; : : : ; u, the block J 22rj .0/ of T2 is similar to a matrix consisting
of two copies of the Jordan block Jrj .0/ of T with one of them having the
sign C1 and the other having the sign �1 with respect to K , and the block�
J 22rj .0/

�T
is similar to a matrix consisting of two copies of the Jordan block

Jrj .0/ of Z with one of them having the sign C1 and the other having the sign
�1 with respect to M .

(iii)

A3 D
�
Is1
0

�

.s1C1/�s1
˚

�
Is2
0

�

.s2C1/�s2
˚ � � � ˚

�
Isv
0

�

.svC1/�sv
;

K3 D �1Rs1 ˚ �2Rs2 ˚ � � � ˚ �vRsv ;

M3 D  1Rs1C1 ˚  2Rs2C1 ˚ � � � ˚  vRsvC1 ;

T3 D �1 1Js1 .0/ ˚ �2 2Js2 .0/ ˚ � � � ˚ �v vJsv .0/ ;

Z3 D �1 1J
T
s1C1.0/˚ �2 2J

T
s2C1.0/˚ � � �˚�v vJ

T
svC1.0/;

where for j D 1; : : : ; v, �j D 1 and  j D ˙1 if sj is even, and �j D ˙1
and  j D 1 if sj is odd. Hence, for each j , the block �j j Jsj .0/ of T3 is a
modified sj � sj Jordan block associated with the eigenvalue 0 of T with sign
�j if sj is odd and j if sj is even; the block �j j J Tsj C1.0/ ofZ3 is a modified
.sj C 1/ � .sj C 1/ Jordan block associated with the eigenvalue 0 of Z with
sign �j if sj is odd and  j if sj is even.
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(iv)

A4 D 	
0It1



t1�.t1C1/˚

	
0It2



t2�.t2C1/˚ � � � ˚	

0Itw


tw�.twC1/ ;

K4 D �1Rt1C1 ˚ �2Rt2C1 ˚ � � � ˚ �wRtwC1 ;

M4 D 
1Rt1 ˚ 
2Rt2 ˚ � � � ˚ 
wRtw ;

T4 D �1
1Jt1C1.0/˚ �2
2Jt2C1.0/˚ � � �˚ �w
wJtwC1.0/;

Z4 D �1
1J
T
t1
.0/ ˚ �2
2J

T
t2
.0/ ˚ � � � ˚ �w
wJ

T
tw
.0/ ;

where for j D 1; : : : ;w, �j D 1 and 
j D ˙1 if tj is odd, and �j D ˙1
and 
j D 1 if tj is even. Hence, for each j , the block �j 
j JtjC1.0/ of T4 is a
modified .tj C 1/ � .tj C 1/ Jordan block associated with the eigenvalue 0 of
T with sign 
j if tj is odd and �j if tj is even; the block �j 
j J Ttj .0/ of Z4 is a
modified tj � tj Jordan block associated with the eigenvalue 0 of Z with sign

j if tj is odd and �j if tj is even.

Theorem 10 shows that the sizes of the Jordan blocks and signs associated with the
eigenvalue zero may be different for the matrices T and Z. Still, they are related
and the canonical form for A exactly explains in which way.

As mentioned earlier, the investigation of the canonical forms of the matrices
AAŒ�� and AŒ��A is crucial if one wants to check if A 2 C

n�n has an M -polar
decomposition with respect to the invertible Hermitian matrix M . Therefore, the
possible difference in the canonical forms of AAŒ�� and AŒ��A has been analyzed
in [17]. With the canonical form from Theorem 10 there is now a complete
classification of all possible canonical forms for the matrices AAŒ�� and AŒ��A for
a general matrix A.

A real version of (6.14) for real A, K , M can be derived essentially in the same
way. In the case that all A, K , andM are real and at least one ofK andM is skew-
symmetric, the real canonical forms of the simultaneous transformation (6.10) can
be derived too, but with some additional techniques. The details can be found in
[35].

6.6 Conclusion

Applications in different areas provide a variety of eigenvalue problems with differ-
ent symmetry structures that lead to symmetries in the spectra of the corresponding
matrices or matrix pencils. It is crucial to use structure-preserving algorithms
so that the symmetry in the spectra is not lost due to roundoff errors in the
numerical computation and that the computed results are physically meaningful.
For the understanding of the behavior of these algorithms and the effect in the
corresponding perturbation theory, structured canonical forms are an essential tool.
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In this survey, we have presented three particular structured canonical forms with
respect to matrices that carry one or two structures with respect to possible indefinite
inner products. Moreover, we have highlighted the important role that the sign
characteristic plays in the understanding of the behavior of Hamiltonian matrices
under structure-preserving transformations.
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