Chapter 4
Theory and Numerical Solution of Differential
and Algebraic Riccati Equations

Peter Benner

Abstract Since Kalman’s seminal work on linear-quadratic control and estimation
problems in the early 1960s, Riccati equations have been playing a central role in
many computational methods for solving problems in systems and control theory,
like controller design, Kalman filtering, model reduction, and many more. We will
review some basic theoretical facts as well as computational methods to solve them,
with a special emphasis on the many contributions Volker Mehrmann had regarding
these subjects.

4.1 Introduction

The algebraic and differential Riccati equations (AREs/DREs) play a fundamental
role in the solution of problems in systems and control theory. They have found
widespread applications in applied mathematics and engineering, many of which
can be found in the monographs [1, 36, 68, 86]. In this chapter, we focus on
Riccati equations associated to control problems, as these have always inspired
Volker Mehrmann’s work, and he has mainly focused on the resulting symmetric
Riccati equations — symmetric in the sense that the associated Riccati operators map
symmetric (Hermitian) matrices onto symmetric (Hermitian) matrices. Hence, also
the solutions to the Riccati equations we will consider are expected to be symmetric
(Hermitian). A class of nonsymmetric AREs that arises, e.g., in queuing theory,
certain fluid flow problems, and transport theory (see, e.g., [360]) is of importance
as well, but for conciseness, we will omit these AREs even though Volker has also
contributed to this area [81].

In most of the literature on AREs and DREs, the motivation is taken from the
classical linear-quadratic regulator (LQR) problem. This was the topic of Volker’s
habilitation thesis [74], where, building upon earlier work by Bender and Laub [6,
7], he extended the LQR theory to so-called descriptor systems, i.e., systems with
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dynamics described by differential-algebraic equations (DAEs). Much of Volker’s
early work on AREs culminated in this thesis which later became the appraised book
[76]. We therefore also start by formulating the LQR problems in continuous- and
discrete time and how they relate to AREs. These optimal control problems can be
formulated in various levels of generality. The setting we consider is:
minimize
o0

/(xo, u) = % / (y(t)TQy(t) +2y(0)T Su(t) + u(t)TRu(t)) dt 4.1)

0

subject to the linear time-invariant (LTI) system

Ex(t) = Ax(t) + Bu(t), x(0) = x°, (4.2a)
y(t) = Cx(1), (4.2b)

in the continuous-time case and
minimize
o0

1
k=0

subject to the discrete-time LTI system

Exg+1 = Axy + Bug, xo = x°, (4.4a)
Yk = ka, (4.4b)

in the discrete-time case. In both settings, 4, E € R™" B € R"™" C e R/,
Q € R’ R € R™" and § € R, Furthermore, we assume Q and
R to be symmetric. In both cases, the initial state x° € R" can be chosen
freely if E is nonsingular and is constrained to a manifold in the descriptor
case, see the Chap. 16 for more details on this. In the continuous-time case, u is
considered as an element of an appropriate function space like k times continuously
differentiable functions C¥(0,00) or square-integrable functions L, (0, cc). No
further constraints are imposed in this setting. In discrete-time, u represents a
sequence (ug)g>, that should be (square-)summable in an appropriate sense. A
formulation in complex arithmetic is possible, and most of the results considered
here remain valid (cf. [68] for a detailed treatment of real and complex AREs), but
as most practical applications are formulated using real data, we stick to this case
here.

Under fairly general conditions, the LQR problems have solutions of the form
u(t) = F.(x()) and ux = F4(xr), respectively. As they appear in feedback
form, that is, the current control input depends on the current state information, this
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observation lays the basis for modern (feedback) control [54]. Possible sufficient
conditions to obtain such feedback solutions are: E is nonsingular, 0 and R are

positive definite, S is “small” enough such that [ s% ;] is positive semidefinite,

and the matrix triples (E, A, B) and (E, A,C) are stabilizable and detectable,
respectively. Here, stabilizable means that rank[A — AE,B] = nforall A € {z €
C|R(z) = 0} in the continuous-time case and for all A € {z € C||z| > 1} in the
discrete-time case, while detectability of (E, A, C) is equivalent to stabilizability of
(ET, AT, CT). Under these conditions, the LQR problems have unique solutions.
These are given by the feedback laws

u(t) =—RYBTX.E +STC)x(t) =1 —F.x(t), t >0, (4.5)
in the continuous-time case and

up = —(R+BTX,B) " (BT X4A+STC)xy = —Fyxx, k=0,1,..., (4.6

in the discrete-time case. Now, the relation of the LQR problem to AREs becomes
evident as X, is the unique stabilizing solution to the (generalized) continuous-time
algebraic Riccati equation (CARE)

0=%(X):=CTQC+ ATXE + ETXA—
4.7
(ETXB+ CTS)R™Y(BTXE + ST (),

while X, is the unique stabilizing solution of the (generalized) discrete-time
algebraic Riccati equation (DARE)

0=%(X):=CTQC+ A"XA — ETXE—

(ATXB+ CTS)(R + BTXB)"'(B"XA + ST ().
(4.8)
The solutions X, and X, are stabilizing in the sense that the feedback solutions
generated by inserting (4.5) and (4.6) into (4.2) and (4.4), respectively, are asymptot-
ically stable, i.e., x(t), xx — 0 for ¢,k — oo and all initial values x° € R”. Under
the given assumptions, CAREs and DAREs have exactly one stabilizing solution,
despite the fact that there may exist many other solutions [68]. These stabilizing
solutions are symmetric and positive semidefinite, the latter property again uniquely
identifies the solutions X, X in the respective solution sets.
In his work, Volker has often considered the case that E is singular. This
is in particular the case in his habilitation thesis and the resulting book [76].
In general, in this case the relation between the AREs (4.7) and (4.8) and the
feedback solutions to the LQR problems is lost. Several modifications of the AREs
to re-establish this connection have been suggested in the literature. They usually
require special conditions, and the resulting generalized AREs are often not easily
solvable numerically. Only recently, efficient methods for a class of generalized
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CAREs with singular E have been suggested in [35]. Similarly to [6, 7], Volker
shows in [76, § 5] how the LQR problem for descriptor systems (i.e., £ singular)
can be reduced to a problem with nonsingular £ for which the Riccati solutions
exist. Nevertheless, this procedure requires strong conditions, in particular quite
complicated consistency conditions for the initial values, that are often not satisfied
in practice. This observation, among others, led Volker to work on alternative
approaches to solve the LQR problem for descriptor systems, avoiding AREs
completely. This is the topic of [63, 64, 66, 67], where also extensions to systems
with time-varying coefficients are considered and the theory of strangeness-free
DAEs [65] is applied to the LQR problem. We will not further discuss these
fundamental contributions to optimal control for DAEs, as they do not directly relate
to Riccati equations anymore. Recently, a solution concept for LQR problems based
on purely algebraic considerations was derived in the Ph.D. thesis of Matthias Voigt
[88]. This theory relates the feedback solution of the LQR problem for descriptor
systems to dissipation inequalities, even matrix pencils (see the Chaps. 6 and 12),
and the stabilizing solutions of Lur’e equations. This work may complete three
decades of the quest for a general algebraic solution theory for the LQR problem
that does not require a special index concept or restrictions on the index of the
underlying DAE. Notably, Matthias is Volker’s academic grandchild!

In [76], Volker also considers LQR problems with finite time-horizon, i.e., the
cost functionals are replaced by finite integrals fOT, where 0 < T < oo, or finite
sums Zf;ol, K € N. In this situation, usually also the final states x(7"), xx are
penalized in the cost functional. Often, the LQR problem is used for stabilization
problems so that it is desired that the final state is close to zero, which suggests
a positive definite quadratic weighting function. This is particularly the case when
the modeling is done in such a way that x represents the deviation of the state of
a dynamical system from a desired state. In the continuous-time case, the LQR
problem can then be formulated as follows:

minimize

T

/(xo, u) = % x(T)"Mx(T) + / (y(t)TQy(t) + 2y (1) Su(t) + u(t)TRu(t)) dt
0

subject to (4.2)
with M = MT e R™" positive semidefinite. Note that for consistency, one could
write the penalty term at 7 in terms of y(7') instead of x(7"). As we can replace
y(T) by Cx(T) using (4.2), this is merely a notational issue.

Under similar conditions as in the infinite-time horizon case, the unique solution
of the finite-time LQR problem is then given by the feedback control

u(t) = —R Y BTXW)E + STC)x(t) = —F.(t)x(1), t >0, (4.9)
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where X (¢) is the unique solution of the DRE
—ETX()E = Z.(X(1)) (4.10)

with terminal condition ET X (TYE = M and %, as in (4.7). The existence and
uniqueness of the DRE solution is considered in [1, 86]. The theory can also be
extended to time-varying systems, i.e., systems with A = A(¢), etc. In general, if E
is singular, again the relation of the solution to the finite-time LQR problem and the
DRE is lost, but is re-established using a reduction procedure described by Volker in
[76, § 3]. We will re-visit this technique, as well as a numerical procedure to solve
(4.10) as suggested by Mehrmann and Kunkel in [62], in the next section.

The finite horizon discrete-time LQR problem is also treated in [76]. This leads
to the solution of difference Riccati equations of the form

— ET"XyE = %y (X+1) 4.11)

with terminal condition ET Xx E = M. As in the other cases considered so far, a
reduction to the case E nonsingular is necessary to establish the link between the
LQR problem and (4.11). Such a reduction procedure is suggested again in [76, § 3].
A numerical procedure to solve (4.11) is sketched in [76, § 19]. As (4.11) is solved
backwards starting from X g, advancing from X4 to X can be achieved by simply
evaluating Z; (X +1) using, e.g., a Cholesky decomposition of R + BTXk+lB, and
then solving a linear system of equations using, e.g., the LU decomposition of E.
Due to its conceptual simplicity, we will not discuss this approach here any further.
The remainder of this chapter is organized as follows. As already mentioned
above, we will focus on Volker’s contributions to the solution of DREs in the next
section. The relation between CAREs and DAREs is explored in Sect.4.3. The
bulk of this chapter summarizes Volker’s contributions to the numerical solution of
ARESs and comprises Sect. 4.4, while we briefly touch upon Volker’s passion to solve
control problems avoiding AREs in Sect. 4.5. Final remarks are given in Sect. 4.6.

4.2 Numerical Methods for Differential Riccati Equations

In [62], the DRE (4.10) is considered with § = 0, and in the simplified
representation

—ETXW)E=F+A"X(t)E+ E"X(t1)A— ETX(1)GX(1)E (4.12)

with terminal condition ETX(T)E = M, where even time-dependence of
A, E, F, G is allowed under the assumption of sufficient smoothness.

The contributions of [62], and [76, § 3,19] are twofold. First of all, conditions
are derived under which the solution of the finite-time horizon LQR problem is
given via the feedback control law (4.9), defined by the solution of the DRE. In
case of singular E, this requires a reduction procedure resulting in a DRE with
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nonsingular £ matrix. We will sketch this procedure briefly. Second, a numerical
solution method for (4.12) is derived that resolves some singularity issues when
(4.12) is solved in vectorized form as a DAE. In the notation derived later on
by Kunkel and Mehrmann [65], it is assumed that the DAE Ex(t) = Ax(t) is
strangeness-free (see the Chap. 16 for details), (E, A) is a regular matrix pair, and
rank(E) is constant on [0, T']. For the ease of presentation, in the following we will
only consider the time-invariant case, but the derivations in the time-varying case in
[62] are formally completely analogous.

4.2.1 Reduction to a Standard LQR Problem
Basically, the singular value decomposition of £,

o [zxo],r
E_U[O 0:|V (4.13)

is the key step in the reduction procedure. Here, U,V € R™" are orthogonal,
Y € R™ is nonsingular, and r = rank(E). Not that we do not necessarily need a
reduction of X' to diagonal form, a URV-type decomposition with a nonsingular ¥
suffices. Therefore, we do not assume symmetry of X' in the following. If we now
insert the SVD of E in (4.2), multiply the first equation with U7 from the left, and
using

Ay Ap T B
UTAV = , U'B = . Ccv=][c, ,
|:A21 A22:| |:sz| [C1. €]

as well as the change of basis [} ] = VT x with the partitioning implied by the SVD
(4.13), the descriptor system (4.2) becomes

Xx1(t) = Anx1(t) + Apx2(t) + Buu(r), (4.14a)
0= Ayxi(t) + Anxa(t) + Bou(t), (4.14b)
y() = Cix1(t) + Caxa(2). (4.14¢)

The strangeness-freeness assumption implies that A, is nonsingular, so that we can
solve the second of these equations for x, and insert the result in the first and third
equations. This leads to the standard LTI system

TX1(t) = (A — AnAy An) xi(t) + (Bl — ApAy By u(t),  (4.15)
N—

=: A =: B
y(t) = (C1 — Cr A5 Az) x1(t) + (—C2 45, By) u(t). (4.16)
N— N ——’

=:é‘ =:D
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Now also performing the change of basis in the cost functional results in a standard
finite-time horizon LQR problem which can be solved via the DRE

X ~ A A PUEDN A A Ar\NT A PN ~
—XTX)E =0+ XTXA+ATX Y- (BTXE + ST) R (BTXE + ST)
“.17)

with terminal condition X7 X ¥ = M , where M results from the terminal condition
of the original LQR problem after the change of coordinates. Note that when
B, # 0, u(T) appears in the terminal penalty term which changes the nature of the

problem. As M can usually be chosen freely, it is therefore convenient to assume
My Mo

in the partitioning of VTMV = [ Ml Mzz] that My, = 0, M5, = 0. The coefficient
matrices Q, S.Rin (4.17) can be read off from the cost functional after applying
the change of coordinates and inserting the modified output equation (4.16) in the
first integrand:

y(@)" (1) = (Cxi(t) + Du())" Q(Cx(t) + Du(r))
=xi()T CTOC x1(t) + 2x1()T CTOD u(t) + u(t)T DT Q Du(r).
N — N——

=;Q =:8

With R = R + DT Qﬁ, and the assumption that S = 0, the LQR theory for LTI
systems yields the feedback solution via the DRE (4.17). In order for this reduction
procedure to work, it is of course necessary that the modified matrices defining the
LTI system and cost functional inherit the properties like positive (semi)definiteness
of Q, R as well as the stabilizabilty and detectability properties. In a numerical
procedure, this needs to be checked before the solution of the original LQR problem
can be derived from that of the reduced LQR problem. While often, these properties
indeed carry over, a more severe restriction is caused by the consistency condition

implied by (4.14b) for r = 0: if ["E] — VTx9, then (4.14b) implies
X2

Xy = =45 (A21x) + Bou(0)).

If B, # 0, this is a restriction on the possible controls, while for B, = 0, it
yields a consistency condition for the initial values. Whether or not this restricts the
applicability of the reduction approach to the LQR problem for descriptor systems
certainly depends on the application. It should also be noted that under certain
conditions on the system matrices, higher-index DAE problems can be reduced to
regular index-1 problems using output feedback. This topic is discussed in more
detail in Chap. 15.

Remark 1 The reduction procedure using the SVD (4.13) of E can also be applied
directly to the DRE (4.12) without considering the LQR background. This basically
leads again to the DRE (4.17) with additional consistency and solvability conditions,
see [62, Section 3].
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4.2.2 Numerical Solution of DREs

In[62] and [76, § 19], it is suggested to solve the DRE (4.12) by vectorization. This
uses the “vec” operator

vec : RF — R* : X 1> vec(X),

which stacks the columns of a matrix on top of each other. Vectorization of
expressions like AXB is simplified by using the Kronecker product ®, see, e.g.,
[61, 69]. In particular, the formulas

vec(AXB) = (BT ® A)vec(X), (AT ®@ BT)=(4® B)" (4.18)

are useful for our purposes. Applying vectorization to (4.12) and using (4.18) yields
the system of ordinary differential equation (ODEs) or DAEs

—(E ® E) vee(X (1)) = vec(F) + ((E QAT +(4® E)T) vec(X (1))

—(EQ E)T (X(1) ® X(1)) vec(G).
(4.19)
The terminal condition yields

(E ® E) vec(X(T)) = vec(M). (4.20)

Together, (4.19) and (4.20) form an initial value problem (in reverse time) for a
system of ODEs/DAE:s if E is nonsingular/singular with quadratic nonlinearity. (In
case n = 1, a classical Riccati differential equation is obtained, thus the name
“differential Riccati equation”.)

In case of E being nonsingular, this initial value problem can be solved by any
integration method for ODEs. As (4.19) is then a system of n> ODEs, already one
time step of an explicit integrator would require ¢'(n*) floating point operations
(flops) in general for the matrix vector products. In an implicit integration technique,
linear systems of equations need to be solved at a computational cost of &'(1°) flops.
Therefore, this approach is limited to very small dimensions 7, even if one exploits
the symmetry of the DRE as suggested in [62] and only works with the n(n + 1)/2
necessary equations, ignoring the redundant other ones (which is possible, but the
data handling is cumbersome). After this initial work on numerical methods for
DRESs by Kunkel/Mehrmann, it was suggested in [48] to re-write ODE integrators
in matrix form. This reduces the cost to &(n?) flops in dense arithmetic. Due to
the usual inherent stiffness of DREs, in the literature, mostly implicit integrators are
discussed. In [48], in particular the backward differentiation formulas (BDF) were
considered. This was followed up in [53], where an efficient implementation of the
matrix-valued BDF for DREs was described. Later, this was extended to large-scale
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problems employing sparsity in the coefficient matrices in [29]. Also other popular
implicit integration techniques were investigated, e.g., the Rosenbrock methods in
matrix form in [30, 70] by members of Volker’s academic descendants family.

The case that E is singular is much more involved, though. Let E := (E ® E)”
and A := (E ® A)7 + (4 ® E)". Then it is shown in [62] that even in the simplest
form of a strangeness-free DAE Ex = Ax, the matrix pencil AE — 4 is singular.
If the nilpotency index of (E, A) is 1, then so is the nilpotency index of A E — A,
and the DRE (4.19) can be solved by simply omitting the singular “zero blocks”. A
procedure to achieve this is suggested in [62, Section 5]. Apart from the SVD (4.13)
and the associated reduction, it includes consistency checks and requires additional
algebraic equations to be solved. The reduced DRE is then solved by standard
DAE integrators for index-1 systems. Also, a variant for time-dependent coefficients
A(t), E(t), ... is provided in [62]. If the nilpotency index of the regular matrix
pencil AE — A is larger than 1, then in addition to singularity of A E — A, this matrix
pencil may have even a larger nilpotency index, and also different kinds of singular
blocks. Therefore, a numerical procedure for this situation cannot be derived easily,
and this is an open problem up to now to the best of this author’s knowledge. An
interesting question for further research would be whether the singularity problem
can be avoided in matrix-valued DRE solvers. Recently, a first step in this direction
was proposed by another of Volker’s many Ph.D. students, Jan Heiland. In his
thesis [58], he suggests a matrix-valued implicit Euler scheme for a special index-2
DRE, which he calls a differential-algebraic Riccati equation and which arises in the
finite-time horizon LQR problem for flow control problems. Further research in the
area of matrix-valued solvers for DREs or differential-algebraic Riccati equations is
certainly needed.

4.3 A Unified Treatment of CAREs and DAREs?

A unified treatment of discrete- and continuous-time algebraic Riccati equations is
discussed in [77]. We will recall the main result from this paper related to AREs:
a then new result on the solution of DAREs using the idea of a unified treatment
of continuous- and discrete-time control problems. As this result was derived in
complex arithmetic, we will (in contrast to the other sections) in this chapter also
formulate the results in complex arithmetic. For this, we denote by M the complex
conjugate transpose of a matrix or vector M, while [t denotes as usual the complex
conjugate of the scalar u € C.

In addition to the Hamiltonian and symplectic matrices introduced already in
Chap. 1, we will need the following structures in this section.
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Definition 1 Let J = [_0}” (I)Z ] € R¥"21 with I,,, 0, the identity and zero matrices
of order n.

(a) A matrix pencil AK — H is Hamiltonian iff KJH? + HIK? = 0.
(b) A matrix pencil AT — S is symplectic iff TIT? = SJSH.

In this and the next section, a special class of n-dimensional subspaces in C*" plays
a prominent role.

Definition 2 Let ¥ C C*" and dim(.¢) = n. Then . is Lagrangian if xJy = 0
forall x,y € Z.

A typical example of a Lagrangian subspace is the graph subspace [ ;g] for a
Hermitian matrix M, see the Chap. 5 for more on the use of graph subspaces.
If we now consider the continuous- and discrete-time LQR problems from

Sect.4.1 with S = 0 for simplicity, and the associated AREs, then we have
the following well-known observation: let £ = [,, and define F := C "o,
G = BR'B¥  and
A G I, —G A0
H = , AT —S :=A|" — . 4.21
] sty e v BT

Then H is Hamiltonian, AT — § is symplectic. We then have the following result,
which is a collection of results that can be found, e.g., in [68]:

Proposition1 Let E =1,,S =0,and H,S, T asin (4.21).

(a) Assume that X, = X f is a solution to the CARE (4.7), then the columns of
[_13’((] span a Lagrangian H -invariant subspace. On the other hand, if the
columns of [g] span a Lagrangian H -invariant subspace with U € C""
invertible, then X, = —VU™" is a Hermitian solution to the CARE (4.7).

(b) Let A be nonsingular. Assume that Xg = Xf is a solution to the DARE (4.8),
then the columns of [ _1)”( , ] span a Lagrangian deflating subspace of A\T —S. On
the other hand, if the columns of [ v ] span a Lagrangian deflating subspace of
AT — S with U € C™" invertible, then X4 = —VU ™" is a Hermitian solution
to the DARE (4.8).

Note that the CARE (DARE) solutions requested in the LQR problems are
associated to the stable invariant (deflating) subspaces of H (AT — ), that is, those
associated to the n eigenvalues in the open left half of the complex plane (inside the
open unit disk)."

This result can be used in order to link the CARE and DARE in the following
way, employing the generalized Cayley transformation: given u € C with |u| = 1,

This spectral dichotomy of the Hamiltonian matrix and symplectic pencil exists under the
assumptions used in Sect. 4.1, i.e., there are no eigenvalues on the boundaries of these regions,
that is the imaginary axis in the continuous-time and the unit circle in the discrete-time case.
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w? # —1. Then the generalized Cayley transformation of a matrix pencil AL — M
is given by the matrix pair

€L, M) = (L — uM), (uL + M)). (4.22)

With this, Volker proved the following result:
Lemma 1 ([77, Lemma 2])

(a) IfAT =S is a symplectic pencil, then 6, (T, S) = (K, H) defines a Hamiltonian
pencil A\K — H.

(b) If AK — H is a Hamiltonian pencil, then ¢, (K, H) = (T, S) defines a
symplectic pencil A\T — S.

As the Hamiltonian matrix H from (4.21) also defines a Hamiltonian pencil A/ — H ,
this lemma relates the Hamiltonian matrix and associated CARE to a symplectic
pencil via Lemma 1(b), to which, using some cumbersome algebraic manipulations
and some further assumptions on the Cayley shift 1, a DARE can be associated.
Vice versa, the symplectic pencil associated to the DARE (4.8) can be related
to a Hamiltonian pencil via Lemma 1(a). As it is easy to see that the Cayley
transformation leaves deflating subspaces invariant, we thus can use numerical
methods for computing deflating subspaces of Hamiltonian pencils to solve DAREs
via Cayley transformation and Proposition 1. An algorithm for the Hamiltonian
pencil eigenproblem with the desirable properties of being numerically backward
stable, requiring only &'(n?) flops, and being structure-preserving in the sense
that the symmetry of the spectrum is preserved exactly, was then derived later
in [28]. This algorithm extends the method for Hamiltonian matrices based on
the symplectic URV decomposition presented in the same paper and discussed
in detail in Sect. 1.4. Unfortunately, this algorithm only computes eigenvalues,
but no deflating subspaces. Already the extension of the method for Hamiltonian
matrices to compute also invariant subspaces turned out to be rather complicated
[27], so an extension for the Hamiltonian pencil algorithm was never derived. But
it turned out a bit later that the better structure to consider was that of skew-
Hamiltonian/Hamiltonian pencils (see the Chap.?2), or even more general, that of
even/odd pencils, or palindromic pencils (see the Chap. 3). Numerically stable and
efficient algorithms respecting these structures have been derived by Volker and co-
workers in the last decades, see various chapters in this book and the recent overview
[24].

The main contribution of [77] was to extend the use of the generalized Cayley
transformation to more general situations than those discussed in Proposition 1 and
Lemma 1. In particular, E # I, is allowed, and the quite restrictive assumption
of A being nonsingular in the discrete-time case is dropped. In the situations
where £ # I,, the matrix pencils associated to the CARE and DARE are no
longer Hamiltonian and symplectic, respectively. Nevertheless, the same spectral
symmetries are observed (which is evident when one considers, as done later,
the associated even and palindromic pencil structures). A number of interesting
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relations of the Cayley transformed pencils are derived in [77], and it is shown
that controllability properties of the linear-time invariant systems associated to
the Hamiltonian and symplectic matric pencils before and after Cayley trans-
formation remain invariant. This lead Volker to suggest an implication scheme
which states that if one can prove “A = B” for a continuous-time system, one
can prove the analogous result for the discrete-time system obtained via Cayley
transformation (and vice versa). This eventually lead to the proof of the following
result for the existence of DARE solutions which generalizes Proposition 1(b)
and is proved using this implication scheme applied to a variant of Proposi-
tion 1(a).

Theorem 1 ([77, Theorem 14(b)]) Consider the symplectic matrix pencil

A0 I, —BR'BH

AT —S§ =1 S .

AR

Let the columns of [ llf] span an n-dimensional deflating subspace of AT — S with

UV e C VEU = UHV, and not containing eigenvectors corresponding to

infinite eigenvalues. Suppose there exists i € C, |u| = 1, such that I, — A and
wl + A—BR™'BH (ul, — A")™'F are invertible, as well as

W(u) = R+ B (A—pul,)"" F(A—pt,)™'B

is definite. Assume further that (A, B) is controllable (i.e., rank([A — Al,, B]) =n
forall A € C).
Then U is invertible and X, := —VU™! solves the DARE

0=F+ A"XA— X + A"XB(R + B"XB)"'BH XA.

This result does not require A to be invertible. The nonsingularity assumptions in
the theorem are needed to apply the generalized Cayley transformation with shift
@ to AT — S and to convert the resulting Hamiltonian pencil to a Hamiltonian
matrix, for which a variant of Proposition 1(a) can then be used to prove the
assertions in the continuous-time case. The proof then follows from the implication
scheme.

Highlighting this result gives a glimpse on the often observed interdisciplinary
work of Volker Mehrmann, here linking systems and control theory with matrix
analysis. It also demonstrates his keen interest in deriving fundamental and general
principals that allow to solve classes of problems rather than just specific instances
of a given problem.
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4.4 Numerical Methods for AREs

We note that this section is based in large parts on [10] which concentrated on the
CARE and continued the effort of providing surveys of ARE solvers given as in [4]
and by Volker with co-workers [40]. We use an abridged and updated version of
the survey given there, with pointers to corresponding methods for DAREs which
appear throughout Volker’s work. In this section, we restrict ourselves again to
ARE:s in real arithmetic. Also, we will now always assume that E is nonsingular
such that there is a clear relation of the LQR problem and the related ARE as
outlined in the Introduction. For the ease of presentation, we will use the following
simplified ARE versions. We consider CAREs of the form

0=%(X) := F+ A"X + XA — XGX, (4.23)
and DAREs
0=%;(X)=F+ ATXA— X — (ATXB)(R + BTXB)"1(ATxB)",  (4.24)

where in the LQR setting, F := C”QC and G := BR™' B The solution of (4.23)
yielding the optimal feedback control then is the unique stabilizing solution X,
i.e., A — GX, is stable in the sense that all its eigenvalues are in the open left half
plane C~. Similarly, in the discrete-time case, the stabilizing solution X, yields a
stable closed-loop matrix A — B(R + BT X;B)™' BT X, A in the sense that all its
eigenvalues are inside the open unit disk.

It should be noted that in the non-descriptor, non-singular case, i.e., when
E and R are invertible, it is always possible to rewrite CAREs and DAREs in
this simplified way. In practice, though, this should only be done in case all
transformations are well-conditioned. See, e.g., [4,9, 31, 76] for algorithms working
in the more general formulations and avoiding inversions and matrix products in
forming the coefficients as far as possible and necessary.

4.4.1 Methods Based on the Hamiltonian and Symplectic
Eigenproblems

As discussed in the previous section, solving AREs can be achieved using methods
to compute certain invariant or deflating subspaces of Hamiltonian matrices or
symplectic pencils. If such a subspace [(‘f ] is Lagrangian with U € R™*" invertible,
the formula

X =-vUu! (4.25)
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yields a symmetric solution to the CARE or DARE, respectively. Of course,
for numerical stability the condition number of U should be small, which can
be achieved by certain scaling procedures (see [9] for a comparison of several
scaling strategies) or, more recently, using the principle of permuted graph matrices
introduced by Mehrmann and Poloni, see the Chap. 5 for details of this approach.

The required solutions for solving the LQR problems are obtained if [l‘ﬁ]
corresponds to the stable eigenvalues of the corresponding Hamiltonian matrix or
symplectic pencil as explained in the previous section. Due to spectral symmetries of
Hamiltonian matrices H explained in Chap. 1, i.e., with A also —A is an eigenvalue
of H, and the analogous property of symplectic pencils (with A also 1/A is
an eigenvalue), a sufficient condition for the existence of n-dimensional stable
invariant subspaces is spectral dichotomy, i.e., no eigenvalues lie on the boundary
of the respective stability region. This dichotomy property is usually satisfied under
assumptions that lead to the unique solvability of LQR problems via AREs and is
thus assumed throughout this section.

First, we will consider methods for CAREs based on solving the Hamiltonian
eigenproblem for H asin (4.21). Using Proposition 1(a), in order to solve the CARE
it is sufficient to find a nonsingular matrix 7 € R?**2" such that

(4.26)

T HT — Hy Hyp
0 Hyp|’

where the eigenvalues of Hy; € R"*" are all in C™. Partitioning 7" analogously, the
columns of [ ;:; ] span the stable Lagrangian H -invariant subspace, and the desired
stabilizing solution X, of the CARE (4.23) is obtained via (4.25) setting U = T},
and V = T12.

Most algorithms for solving matrix eigenproblems, i.e., for computing eigenval-
ues and -vectors or invariant subspaces of some matrix M € R are based on the
following approach:

Generic procedure to compute invariant subspaces:

1. Compute an initial transformation matrix Sy € R in order to reduce M to
some condensed form, i.e., compute

My = Sy 'MS,. (4.27)
2. Then construct a sequence of similarity transformations such that in each step

Mjyy = S;{M;S;p,  j=01.2,..., (4.28)

the reduced form is preserved and moreover, if we define T; = ]_[]](:0 Sk, then
lim; 00 T; = T andlim; oo M; = M exist and eigenvalues and eigenvectors
and/or M -invariant subspaces can be read off from My and T .
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The purpose of the initial reduction to a condensed form and the preservation
of this form throughout the iteration is twofold: first, such a reduction is usually
necessary in order to satisfy the complexity requirements — an iteration step
(4.28) on a reduced form can usually be implemented much cheaper than for a
full matrix; second, using such a reduced form it is usually easier to track the
progress of the iteration and detect if the problem can be decoupled (deflation)
into smaller subproblems that can then be treated separately. For details see
[56, Chapters 7-8].

For numerical stability, one usually requires all S; and thus 7;, T to be orthog-
onal. Under this requirement, the real Schur decomposition of H is a reasonable
choice in (4.26), and this was suggested in the seminal paper by Laub [71]. A
disadvantage is that the structure of the Hamiltonian matrix is already destroyed
in the initial Hessenberg reduction, leading to the loss of spectral symmetry in finite
precision arithmetic. In the worst case, this may lead to violation of the spectral
dichotomy as perturbations may move the eigenvalue to or across the boundary of
the stability region. This can be avoided by using symplectic similarity transforma-
tions as then all iterates in the generic procedure above remain Hamiltonian and
thus, the spectral symmetry is preserved. As already seen in Chap. 1, implementing
the above procedure satisfying both demands, symplectic and orthogonal similarity
transformations is only possible under certain assumptions due to the lack of an
efficient procedure for computing the Hamiltonian Schur form, also called Van
Loan’s curse.

We will now briefly discuss the numerical methods for the Hamiltonian and
symplectic eigenproblems that can be used to solve CAREs and DAREs. As most
of them have already been discussed in Chap. 1, we keep this discussion short and
highlight only Volker’s contributions in more or less chronological order.

4.4.1.1 The SR Algorithm

In [41], Bunse-Gerstner and Mehrmann suggest to use the SR algorithm to
implement the generic procedure to compute the stable H -invariant subspace and
then to solve the CARE via (4.25). The SR algorithm is described in some detail in
Sect. 1.2. Its obvious advantage is the preservation of the Hamiltonian structure due
to the exclusive use of symplectic similarity transformations. Another advantage is
that it is fast: it requires only &'(n) flops per iteration and generically converges with
a cubic rate. As non-orthogonal transformations are required, numerical stability is
lost and the computed CARE solution may not be as accurate as desired. A possible
remedy for this problem is defect correction (see Sect. 4.4.2), which can be used to
improve the accuracy of an approximate CARE solution.
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Given that the method is not numerically backward stable, some variations have
been suggested that compute the approximation to the CARE solution even faster by
giving up orthogonal transformations altogether, see [42]. Another idea is to iterate
directly on the approximation of the CARE rather than computing the Lagrangian
invariant subspaces explicitly. For this, an updating procedure is suggested in [47].

Moreover, an SR algorithm for symplectic eigenvalue problems was also derived
by Volker and co-workers, see [55] for a first variant and Chap.1 for further
developments of this method.

4.4.1.2 The Hamiltonian QR Algorithm

The ideal algorithm for the Hamiltonian and symplectic eigenvalue problems would
be a method that computes the Hamiltonian Schur form using the generic method
described above, where only symplectic and simultaneously orthogonal similarity
transformations are used. The existence of the Hamiltonian Schur form under
rather generic assumptions, in particular under the spectral dichotomy condition
we assume here, was proved in [82]. The resulting quest for a Hamiltonian QR
algorithm became known under the name Van Loan’s curse and is described in
some detail in Chap. 1. In summary, the lack of the existence of a Hamiltonian or
symplectic QR algorithm of cubic complexity under the same general assumptions
that allow for structured Schur forms is due to the non-existence of structured
Hessenberg-like forms that stay invariant under structured QR iterations. Byers
[43, 44] was able to derive such a Hamiltonian Hessenberg form for the special
case that rank(F) = 1 or rank(G) = 1 in (4.21). This allows to compute the
Hamiltonian Schur form using orthogonal and symplectic similarity transformations
in €' (n®) flops and to solve the CARE (4.23) and the associated continuous-time
LQR problem via (4.25).

Under the same rank assumptions on G or F for the symplectic pencil in (4.21),
Volker was able to derive an analogous QZ-type algorithm [75]. This algorithm then
was probably the most involved eigenvalue algorithm of QR-type, with a technically
demanding sequence of elementary eliminations in the bulge-chasing process!

In the following, we will discuss the Hamiltonian QR algorithm and Volker’s
contribution to stop the search for a Hamiltonian Hessenberg form in the general
situation. We omit the symplectic case as it is technically much more involved and
refer to the original paper [75] for details.

As already noted, the Hamiltonian QR algorithm should be based on orthogonal
and symplectic similarity transformations. This implies a special structure.

Lemma 2 ([82]) IfU € R?"*?" is orthogonal and symplectic, then

Ll LZ nxn 2
l/ = l/ l/ S R . 4 9
[ Uz Ul:| s 1, V2 ( )
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Moreover, as the intersection of two matrix groups, orthogonal symplectic matrices
form a matrix group U >, with respect to matrix multiplication.

As elements of %5, are determined by the 2n? parameters given by the entries of
Ui, U,, only these parameters need to be stored and updated throughout a sequence
of similarity transformations.

Now, the following theorem raises the hope that it is possible to find an algorithm
based on symplectic and orthogonal similarity transformations for solving CAREs.

Theorem 2 ([82]) If H is Hamiltonian and A(H) N 1R = @, then there exists
U € %Y, such that

Hyy Hp

UTHU = 2o Hy,, Hy, € R, 4.30
[ 0 _HITI} 1, Hpp € (4.30)

where Hyj is in real Schur form and A(ﬁn) = A (the stable part of the spectrum
of H).

Partitioning U from (4.30) as in (4.29), we have from (4.25) that the stabilizing
solution of the CARE (4.23) is given by X, = UzUl_l.

Remark 2 The decomposition given in (4.30) is called the Hamiltonian Schur form.
It can be shown that such a form may also exist if eigenvalues on the imaginary axis
are present. They have to satisfy certain properties, the most obvious one is that their
algebraic multiplicity needs to be even; see [72] and Chap. 6.

As the OR algorithm is considered to be the best method for solving the dense
non-symmetric eigenproblem, it is straightforward to strive for a symplectic variant
of the QR algorithm converging to the Hamiltonian Schur form given in (4.30).
A framework for such an algorithm can easily be derived. Denote the iterates of such
an algorithm by H;. If we choose the QR decomposition performed in each step,
ie., pj(H;) = S;j11R; 41, suchthatall S; are symplectic and orthogonal, then it
follows that all iterates H ;1 = SjT 4+1H;S;+1 are Hamiltonian. Unfortunately, such
a symplectic QR decomposition does not always exist. Sets of matrices in R***?" for
which it exists are described in [39]. In particular, it is also shown there (see [44]
for a constructive proof) that if M is symplectic, then there exists S € %%, such
that

(4.31)

R11 R12:| _ V D
0, RjT| B ’

where Ryj, R € R™". Uniqueness of this decomposition can be achieved by
requiring all diagonal entries of Rj; to be positive.

M:SR=S|:
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As the matrix R in (4.31) is permutationally similar to an upper triangular matrix
and the Hamiltonian Schur form is similar to the real Schur form using the same
permutations, it can be shown under mild assumptions that such a Hamiltonian
OR algorithm converges to Hamiltonian Schur form if it exists. Moreover, as only
similarity transformations in %%, are used, the algorithm can be shown to be
strong backward stable in the sense of Bunch [38].

Byers shows in [44] that if the rational function p; is chosen to be the Cayley
shift ¢ (t) := (t — ) (t + ux)~', where ju; is an approximate real eigenvalue of
H,ordi(t) ;= (t — i)t — ) (t + pux) "' (¢ + )", where py is an approximate
complex eigenvalue of H, then p; (H;) is symplectic, and hence, the symplectic OR
decomposition of p; (H ;) exists. In case &/4; are exact eigenvalues of H and hence
of Hj;, then deflation is possible, and we can proceed with the deflated problem of
smaller dimension without ever being forced to invert a singular matrix. In this way,
a double or quadruple Hamiltonian QR step can be implemented.

Unfortunately, the so derived algorithm is of complexity &'(n*) as each symplec-
tic OR decomposition requires ¢ (n*) flops and usually, &'(n) iterations are required
(based on the experience that for each eigenvalue, 1-2 iterations are needed). The
missing part that would bring the computational cost down to &'(n?) is an initial
reduction analogous to the Hessenberg reduction in the QR algorithm that

* is invariant under the similarity transformation performed in each step of the
Hamiltonian QR algorithm (the Hamiltonian QR step);
+ admits an implementation of the Hamiltonian QR step using only &'(n?) flops.

In [44] Byers shows that such a form exists.

Definition 3 A Hamiltonian matrix H € R*"?" is in Hamiltonian Hessenberg
form if

(4.32)

= ] - Qg ’

where H;; € R™", i, j = 1,2, Hy; is upper Hessenberg, and H,| = qoenenT with
¢ € R and e, being the nth unit vector. The Hamiltonian Hessenberg matrix H is
unreduced if h;4;; #0,i =1,...,n—1,and ¢ # 0.

Byers [44] shows that if H; is in Hamiltonian Hessenberg form and the rational
function p; is chosen as a Cayley shift, then H;; is in Hamiltonian Hessenberg
form again and the Hamiltonian QR step can be implemented in &'(n?) flops.

The crux of this algorithm is the initial reduction of a Hamiltonian matrix to
Hamiltonian Hessenberg form. Byers shows how this can be achieved if one of
the off-diagonal blocks of the Hamiltonian matrix H in (4.21) has rank 1. (This is
related to control systems of the form (4.2) having only one input (m = 1), i.e.,
single-input systems and/or only one output (p = 1), i.e., single-output systems.)
But unfortunately no algorithm is known for reducing a general Hamiltonian matrix
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to Hamiltonian Hessenberg form. But the situation is even worse. Analogous to the
standard QR algorithm where the OR step is performed on unreduced Hessenberg
matrices (possibly zeros on the subdiagonal are used for deflation, i.e., splitting the
problem in two or more subproblems consisting of unreduced Hessenberg matrices),
the Hamiltonian QR algorithm works for unreduced Hamiltonian Hessenberg
matrices. The following theorem due to Ammar and Mehrmann [3] shows that
the situation is in general hopeless with respect to the existence of the unreduced
Hamiltonian Hessenberg form.

Theorem 3 If H € R*>?" s Hamiltonian, then there exists an orthogonal and
symplectic matrix transforming H to unreduced Hamiltonian Hessenberg form if
and only if the nonlinear set of equations

x'x=1 and xTIH*'x=0 for k=1,....n—1,

has a solution that is not contained in an H -invariant subspace of dimension n or
less.

Obviously, if JH is positive definite, such a vector cannot exist, showing that there
really exist situations in which the unreduced Hamiltonian Hessenberg form does
not exist. A similar result holds in the symplectic case. Therefore, other approaches
have been investigated during the last decade.

4.4.1.3 The Multishift Algorithm

From Theorem 3 we know that the reduction to Hamiltonian Hessenberg form which
is necessary to efficiently implement the Hamiltonian QR algorithm is in general not
possible. Nevertheless, the same paper [3] suggested a possible alternative method
that became the topic of my diploma thesis [8] and eventually lead to the paper [2].

The basis of this idea is that by orthogonal symplectic similarity transformations,
the following reduction due to Paige and Van Loan [82] can be achieved.

Theorem 4 Let H € R¥™2" Then there exists U € UL 5, such that

Hay le}: N L
el N[

where Hyy € R™" is upper Hessenberg and Hy, € R"" is upper triangular. The
transformation matrix U can be chosen such that

UTHU = [ (4.33)

(4.34)
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If in addition, H is Hamiltonian, then

Hy; H12i|: XID
R A NIN|

UTHU = [ (4.35)

i.e., Hy is diagonal and H,, is symmetric.

The reduced form (4.35) of a Hamiltonian matrix will be called PVL form in the
following. An algorithm for computing the transformation given in (4.35) is derived
in [82]. It can be implemented using a finite number of similarity transformations
and requires ¢'(n®) flops. Unfortunately, the PVL form is not preserved under the
Hamiltonian QR iteration and can therefore not serve for the initial reduction step
of the Hamiltonian QR algorithm. In the following, we will see that the PVL form
can be used in what can be considered as a Hamiltonian multishift QR algorithm.
First, we need some more theory. As before, we denote J = [_0?” éz ]

Definition 4 A real subspace . C R?" is isotropic iff xTJy = 0 forall x, y € .Z.
If . is maximal, i.e., not contained in an isotropic subspace of larger dimension,
then . is a Lagrangian subspace (cf. Definition 1).

By the definition of symplectic matrices, we obtain immediately the following
lemma.

Lemma 3 Let S € R¥*%" be symplectic. Then the first r columns of S, 1 <r <n,
span an isotropic subspace of R*". For r = n, this subspace is Lagrangian.

The basis for the multishift algorithm is contained in the following result.

Proposition 2 ([3]) Let H € R>>?" pe a Hamiltonian matrix with spectrum
AH) = A, U(=4y), Ay N (—=A,) =0,and Ay = Ay = { A1, ..., Ay} Then the
multishift vector

X = (X(H —Allzn)---(H —An12n)el, o e R, (436)

where e; € R is the first unit vector, is contained in the n-dimensional H -invariant
subspace corresponding to —A,. Moreover, this subspace is Lagrangian. In partic-
ular, if A, C CT := {z € C|N(z) > 0}, then this Lagrangian subspace is the
stable H -invariant subspace.

So, once we know the spectrum of H, we can compute one vector that is contained
in the subspace required for solving the corresponding CARE. This observation can
be combined with the computation of the PVL form in order to derive a multishift
step as follows — assuming for simplicity that H has no eigenvalues on the imaginary
axis.

Using this approach, it is possible to get the whole stable H -invariant subspace.
The following theorem will indicate how Algorithm 1 can be used to achieve this.
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Algorithm 1 One step of the multishift algorithm for Hamiltonian matrices
Multishift step

1. Compute the multishift vector as in (4.36) with A; € CcT, j =1,...,n. Choose « in (4.36)
such that ||x ||, = 1. (If this is not possible, i.e., x = 0, then exit.)

2. Compute U, € %%, such that UlTx = *+e,.

3. Set H| = UITHUI.

4. Compute the PVL form of Hj, i.e., compute U, € %%, such that H, = U2TH1 U, =
(U1Uy)T H(U, Uy) is in PVL form.

Theorem 5 Let H € R¥**2" pe Hamiltonian and let ¥, be an n-dimensional
H -invariant Lagrangian subspace corresponding to A, C A(H) with A, as in
Proposition 2. Further, let the multishift vector x from (4.36) be computed using
—A, = {A1,..., A, } as the shifts. If | < p < n is the dimension of the minimal
isotropic H -invariant subspace V), containing x, then after Step 4 of the multishift
step, Hy has the form

A Ap| G Gy ip
T _
H, = 0 A G21T Gxn |in P, 4.37)
0 01]-4y, O D
0 Fyp _Asz _Asz jn—p

where Ay € RP*P, A(Ay1) C A, and the Hamiltonian submatrix

Axn Gxn 2(n—p)x2(n—
Hy, = € R2(n=p)x2(n—p)
2 [Fzz —Asz

is in PVL form.
Furthermore, for Uy, Uy € %S>, from the multishift step we have

U:=UU=[u,....up,upsi1,... .U € U0, uj eRznforjzl,...,Zn,

and span{uy,... .up} =¥, C Y.

The detailed proof of this result is contained in [10].

The theorem shows that if the multishift vector x from (4.36) has components in
all directions of a Lagrangian H -invariant subspace, then after one multishift step, a
basis for this invariant subspace is given by the first n columns of U, U,. Otherwise,
the first p columns of U, U, span a p-dimensional H -invariant subspace contained
in this subspace and the problem decouples into two subproblems. Algorithm 1
can then repeatedly be applied to the resulting Hamiltonian submatrix H,, €
R2>("=P)>*2(1=P) yntil p = n. The implementation of this algorithm is described in
detail in [2].
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As only orthogonal symplectic similarity transformations are used, a multishift
step is strongly backward stable. The computational cost of one multishift step for
p = 0is around 15 % of the Schur vector method [71]. The complete computational
cost depends on the number of iteration steps necessary. In a worst case scenario,
i.e., in each step only one basis vector of ¥, is found, the complexity of this
algorithm becomes basically &'(n*). This is rarely observed in praxis, though.
On the other hand, rounding errors during the computation, in particular while
forming the multishift vector, and the fact that the eigenvalues are usually only
known approximately, make it practically impossible that deflation occurs exactly.
Often, some iteration steps are necessary to detect deflation when using finite
precision arithmetic. Generally speaking, as long as the size of the problem is
modest (n < 100), the method is feasible and the number of required iterations
is acceptable.

When solving CAREs, usually the stable H -invariant subspace is required. In
that case, A, in Proposition 2 has to be chosen such that {(A;) < 0 for all j =
1,...,n. Note that the stable H -invariant subspace is Lagrangian; see, e.g., [3, 76].
But observe that in principle, the multishift algorithm can be used to compute the
CARE solution corresponding to any Lagrangian H -invariant subspace. This is of
particular importance in some applications, e.g., in some .7#%,-control problems,
ARE solutions exist and have to be computed if H has eigenvalues on the imaginary
axis. As long as these eigenvalues permit a Lagrangian invariant subspace, the
corresponding ARE solutions can be computed by the multishift algorithm.

The computation of the multishift vector in (4.36) requires the knowledge of
the spectrum of H. Hence, what remains to show is how to obtain the eigenvalues
of a Hamiltonian matrix H. One possibility is to run the QR algorithm without
accumulating the transformations. But then the problems with eigenvalues close to
the imaginary axis as mentioned above have to be expected. A different approach,
which costs only one third of the QR algorithm and takes the symmetry of A(H)
into account, was suggested by Van Loan [87]. Consider K := H?. Obviously,
if A € A(H), then Ag := A* € A(K). If R(L) # 0, then Ak is a double
eigenvalue of K due to the symmetry of A(H). Squared Hamiltonian matrices are
skew-Hamiltonian, that is, they satisfy KJ = —(KJ)T and therefore have the explicit
block structure

K K; T T
K = , K, =-K,, K;=-K;. 4.38
|:K3 KlT:| 2 2 3 3 ( )

The skew-Hamiltonian structure is preserved under symplectic similarity trans-
formations [87]. Hence, computing the PVL form (4.33) for skew-Hamiltonian
matrices yields

. (4.39)

1&11;2}2 N [
0 KT N

UTH?U =UTKU = [
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Hence, A(K) can be obtained by computing the eigenvalues of the upper
Hessenberg matrix K, e.g., by applying the QR iteration to K;. Let A(K;) =
{1, .. i}, then A(H) = {£,/i1,..., £ /ity }. Note that no information
about eigenvectors or invariant subspaces of H is obtained.

The resulting method is strongly backward stable for K and preserves the
symmetry structures of A(K) and A(H). An implicit version of this algorithm is
also suggested in [87]; U from (4.39) is applied directly to the Hamiltonian matrix
such that H := UT HU is square-reduced, i.e., H* has the form given in (4.39).
The disadvantage of Van Loan’s method is that a loss of accuracy up to half the
number of significant digits of the computed eigenvalues of H is possible. An error
analysis in [87] shows that for a computed simple eigenvalue A corresponding to
A € A(H) we have

|A — | ~ min

elHI3 VEIHI) _ IH ], Xmm% 1A L} o
s(MIA s(d) s(4) Al Ve

where s(4), the reciprocal condition number of A, is the cosine of the acute angle
between the left and right eigenvectors of H corresponding to A. Basically, this
error estimate indicates that eigenvalues computed by Van Loan’s method are as
accurate as those computed by a numerically backward stable method provided that
A =~ || H > while for A < || H ||, the error grows with the ratio || H ||2/|A|.

Usually, eigenvalues computed by Van Loan’s method are satisfactory as shifts
for the multishift algorithm and in most other practical circumstances. On the other
hand, removing the possible 1/./¢ loss of accuracy provides the motivation of the
algorithm presented in the next section.

4.4.14 A Method Based on the Symplectic URV Decomposition

The method described in this subsection was the key to breaking Van Loan’s curse
as already described in Chap. 1. As we investigate it here in the context of solving
CAREs, we will also need some details and therefore repeat the essential steps.”
The central problem of Van Loan’s method is that squaring the Hamiltonian
matrix leads to a possible loss of half of the accuracy. For products of general
matrices, this possible loss of accuracy caused by forming the product can be
circumvented by employing the periodic or cyclic QR algorithm [37, 59, 60].

2A personal remark: We derived this method over several months in 1995/1996, regularly meeting
with Hongguo Xu, then a Humboldt fellow at TU Chemnitz-Zwickau in Volker’s group, on
Thursdays in Volker’s office. The quest was to avoid the loss of accuracy due to the explicit squaring
of H in Van Loan’s method. When Hongguo wrote the key step, the symplectic URV decomposition,
on Volker’s blackboard one Thursday morning, this was one of the most beautiful and enlightening
moments in my career as a mathematician.
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If A = A;-Ay---Ap, where A; € R™" j = 1,..., p, then this algorithm
computes the real Schur form of A without forming A explicitly. This is achieved
by cyclically reducing the factors A; to (quasi-)upper triangular form:

UTAU = (UITA1U2)(U2TA2U3)"‘(UpTApUl) = [?l:| . [?ﬂ [t’} .
(4.41)

Here, UITAIUZ is in real Schur form while UjTAj Uj+tymod p>» j = 2,...,p, are
upper triangular such that the product is in real Schur form. The eigenvalues are
then obtained from computing the eigenvalues of the 1 x 1 and 2 x 2 blocks on
the diagonal of the product in (4.41). This method is numerically backward stable
and avoids the loss of accuracy in the eigenvalues as the product A is never formed
explicitly.

The idea is now to employ this approach to H? by replacing the reduction of H?
to PVL form by UT H2U = (UTHV)(VTHU), where U,V € %% ,. This can be
achieved by the symplectic URV-like decomposition given in [28].

Proposition 3 For H € R*"*?" there exist U,V € %Y, such that

H, H3}: N
0 —HS 0&’

i.e., Hy is upper triangular and H, is upper Hessenberg. If, in addition, H is
Hamiltonian, then

VTHU = [ (4.42)

H>H, HyH3 — (Hsz)T} _ XI |:| (4.43)

0 (HZHI)T 0 &

and the eigenvalues of H are the positive and negative square roots of the
eigenvalues of the upper Hessenberg matrix Hy H,.

UTH?U = [

That is, using the decomposition given in (4.42) we obtain the PVL form of H?
without explicitly squaring H. In order to obtain the eigenvalues of H we then
apply the periodic QR algorithm to H, H;.

In [28] an algorithm for computing the decomposition given in (4.42) is
presented. It requires a finite number of transformations. The combined cost of
computing the decomposition (4.42) and applying the periodic QR algorithm to
H, H is about 48n° flops — this is 1.5 x the computational cost of Van Loan’s
method and about 60 % of the cost of the QR algorithm applied to a non-symmetric
2n x 2n matrix. The method is numerically backward stable as only orthogonal
transformations are used. The symmetry property of A(H) is preserved and in this
sense the method can be considered to be strongly backward stable.
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A detailed error analysis of the above method yields the following result [28].
Essentially (under mild assumptions), for a nonzero and simple eigenvalue A of
a Hamiltonian matrix H € R?>"*?", the algorithm based on the symplectic URV-
like decomposition followed by applying the periodic QR algorithm to H, H; from
(4.42) yields a computed eigenvalue A satisfying

= 2||H ||e 2
A=Al < 2 4 (D).
| | < 5 + 0(&%)

This is the accuracy to be expected from any backward stable method like the OR
algorithm and shows that by avoiding to square H, we get the full possible accuracy.

Nevertheless, as Van Loan’s method, the approach presented above does not
provide the H -invariant subspaces. But based on (4.42) it is possible to derive an
algorithm that can be used to compute the stable H -invariant subspace and the
solution of the CARE (4.23) [27]. The basis for this algorithm is the following
theorem.

Theorem 6 ([27]) Let A € R™*" and define B = [(/)1 ’g ] Then the spectra of A
and B are related via A(B) = A(A) U (—A(A)). Further, let A(A) N1R = @.

If the columns of [UIT, UzT]T € R?™" span an orthogonal basis for a B-invariant
subspace such that

Ul _ Ul +
p[4]=[4]r  aweenam

then range (U + U,) is the A-invariant subspace corresponding to A(A) NC* and
range (U; — U,) is the stable A-invariant subspace.

An orthogonal basis for the subspace defined by range (U, — U,) can be obtained,
e.g., from a rank-revealing QR decomposition of U; — Us; see, e.g., [56].

In general it is of course not advisable to use the above result in order to obtain the
stable invariant subspace of a matrix A as one would have to double the dimension
and thereby increase the computational cost and required workspace significantly as
compared to applying the QR algorithm to A. But we will see that for Hamiltonian
matrices, the given structure makes this approach very attractive.

Let H € R*™2" be Hamiltonian with A(H) N:R = @. Define a permutation
matrix P € R¥# by

o o o
oS~ oo
cofSo

o oo

;

Then PT [191 a ] P is a Hamiltonian matrix in R*"*#"_ The basic idea is now to
employ the decomposition (4.42) in order to make P T HP block-upper triangular.
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Therefor, let U , Vewus 2n be as in Proposition 3 such that VT HU has the form
given in (4.42). Then we apply the periodic QR algorithm to H, H;. From this we
obtain orthogonal matrices Vi, V, € R"*" such that both, the product

V' HaVo) (VS HiVi) =2 o Hy

and H,, are in upper real Schur form while H, is upper triangular. Define

U1:=U[VIO:|, U2:=I7[V20:|, and U::[Ulo]

0 W 0V 0 U,
Then
0 H, 0 HJ
H H H
B::PTUT[OO}UP: Olg (f —I%IT
0 0-A o

is Hamiltonian and block upper triangular with H, upper triangular, H, in real Schur
form, and Hs = V,/ (HyHy — HI HI)V;.
Now let U3 be orthogonal such that

0 A T, T
gr| 9 A2y |11 B3 4.44
3[1{10}3 [O—T2 (4.44)

is in upper real Schur form with 7; € R™", j = 1,2,3, and A(T}) = A(T») C
0 H

+ . . . .
C™. Note that this is possible as the eigenvalues of [ a0

and A(H) Ni:R = @. Hence,

] are exactly those of H?

) Ts R R,
B uj o glUO]_|0-T R R;
0 Ul 0 Us 0 0 -7 0

0 0 -7 T1rf

is in Hamiltonian Schur form. In order to apply Theorem 6, we need to reorder the
eigenvalues in the Hamiltonian Schur form such that all eigenvalues in the upper
left 2n x 2n block are in the open right half plane. This can be achieved, e.g., by
the symplectic re-ordering algorithm due to Byers [43, 44]. With this algorithm it is
possible to determine Ueus »» such that

T'T; R R,
R 07, RI R .
U'BU=| o0 e o | A=A
1

0 0 -7 -T]
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Now define
U 0 Us 0 |~
S:=pT P U. 4.45
5alrls ] (445
Then S € %Y 4, and
0 H T T,
T:—sTpT ps— |11 1 44
oo =% 40

is in Hamiltonian Schur form with A(7};) C C*. Now we can apply Theorem 6
with A replaced by H and R := T1;.

Corollary 1 Let H € R*"*?" be Hamiltonian with A(H) N1R = @ and let S be
as in (4.45) such that (4.46) holds. If PS := [ ! $2 ], with S; € R*>2", then the
n-dimensional, stable H -invariant subspace is given by range (S11 — S21).

The above transformations yielding S are described in more detail in [27]. The
solution of the CARE can be obtained from an orthogonal basis of range (S;; — S»;1)
computed by a rank-revealing QR decomposition or directly from S;; — Sy;; for
details see [27]. The latter approach saves a significant amount of work such that
the cost of the algorithm described above for computing the stabilizing solution of
the CARE (4.23) is approximately 60 % of the cost of the Schur vector method.

Remark 3 The transformation of [13 HOZ] to real Schur form and the computation

1
of the matrix Us in (4.44) can be efficiently implemented employing the available
structure. An algorithm for this is given in [27].

Itis shown in [27] that the algorithm presented above is strongly backward stable
in R¥>4"_Thatis, if S is the analogue to S from (4.45) computed in finite precision
arithmetic, then

~r. [0 H ~
S'P |:H O:|PS—T+E,
with T as in (4.46), ||[E|» < ce|H]|, for a small constant ¢ and E € R¥*>*" ig
Hamiltonian. Moreover it is shown in [27] that the computed invariant subspace is
as accurate as the maximum of its condition number and the condition number of
its complimentary (antistable) H -invariant subspace permit. This is to be expected
from the fact that at the same time we compute the stable H -invariant subspace, by
Theorem 6 we also compute the antistable / -invariant subspace. In that sense the
algorithm is not optimal as we would like the accuracy of the computed subspace to
be limited only by its own condition number.

The algorithms described in this section are implemented in Fortran 77, see [19],
while an implementation of Van Loan’s method with scaling is provided in [12]. All
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these methods are also integrated in SLICOT,? the Subroutine LIbrary in COntrol
Theory [26]. This subroutine library is based on a joint initiative of European
researchers, in which Volker also was a driving force.

The invariant subspace computation as described above turned out to be not
completely satisfactory. For some examples with eigenvalues close to the imaginary
axis, unexpectedly large errors are encountered in the computed CARE solutions.
Almost 10 years later, Volker and co-workers came up with the observation that the
orthogonal and symplectic matrix U that puts H? into skew-Hamiltonian Schur
form contains information that can be used to construct the stable H -invariant
subspace in a recursive fashion [49]. This matrix U is obtained from the symplectic
URV decomposition (4.42) with the additional step of accumulating the matrices
obtained from the periodic QR algorithm applied to H, H; into U, V. This approach
is described in some detail in Sect. 1.4, we therefore refrain from recapitulating it
here. An intuitive explanation of the method was given by Watkins in [89], and a
block version of the algorithm that can better deal with clusters of eigenvalues is
described in [79]. It can be concluded that Volker and co-workers have eventually
found a method to solve CAREs via the approach based on invariant subspaces
of the Hamiltonian eigenproblem that satisfies all desired properties regarding
numerical stability, structure-preservation, and efficiency.

Analogous procedures for solving the DARE via the symplectic pencil approach
have not yet been derived. On the other hand, by employing the generalized
Cayley transformation approach described in the previous section, one may use
the generalizations of this approach to skew-Hamiltonain/Hamiltonian or even/odd
matrix pencils described by Volker and co-workers in [15, 24]. Nevertheless, there
is still room for further improvement: the methods discussed in [15, 24] extend
the approach from [27] rather than the more robust methods from [49, 79]. Also,
the available software for structured matrix pencils [33, 34] is still based on
the skew-Hamiltonian/Hamiltonian pencil structure rather than the more general
structure of even or alternating matrix pencils.

4.4.2 Defect Correction

In this subsection, we re-visit a topic that is very important for obtaining solutions
to CAREs and DARE:s at highest possible accuracy. If a numerical solution X of the
CARE (4.23) is computed, this process is prone to roundoff errors, thus X can only
be an approximation to the solution X of (4.23). In particular for algorithms that are
not numerically backward stable, like the SR algorithm discussed in Chap. 1 and the
previous subsection, methods based on sign and disk functions, but also symplectic
QR algorithms in case the final step of obtaining X via X = —-U,U[” Vasin (4.25) s
ill-conditioned, these roundoff errors may lead to deteriorating accuracy. Improving

3 Available at www.slicot.org
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this approximation may be achieved using Newton’s method, but alternatively also
by defect correction. The necessary theory was derived in [80] and [76, Chapter 10].
We will provide this here in some detail, as the defect correction principle has,
despite its importance for practice, received little attention since, and in particular
new computing platforms including hardware accelerators may use this principle for
obtaining fast and reliable algorithms, as has been already suggested for Lyapunov
equation in [18].

The defect correction principle is most easily explained for linear systems of
equations. Given an approximate solution X of the underlying problem

Ax = b,

given A € R nonsingular, b € R", we determine the residual r = b — AX, then
compute a solution § of the linear system

AS =r,
and set
xT =x+46.

This process can be iterated until a given stopping criterion is satisfied. Defect
correction is successful as long as the residual can be computed accurately enough,
i.e., with higher precision than X. Such higher precision may be obtained, e.g., using
double precision in case X was computed in single precision. There is no need to
compute X and § by the same algorithm, providing great flexibility to the defect
correction principle.

The basis for applying defect correction to CARE:s is provided by the following
theorem due to Mehrmann/Tan [80]

Theorem7 Let X = X! bea solution of (4.23), and}? a symmetric approxima-
tion to this solution. Define P = X — X, A = A— GX, and let

F=F+A"X + XA-XGX
be the residual of (4.23) with respect to X. Then P satisfies the CARE
0=F+PA+ A" P — PGP. (4.47)

The theorem is proved by simple algebraic manipulations after inserting X = X + P
in (4.23).
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Due to the non-uniqueness of CARE solutions, it is important to guarantee that
the updated approximate solution X + P is still the one of interest, usually the
stabilizing solution in control applications. In order to show that this is indeed the
case, first it is necessary to check whether the stabilizability property related to
(4.23) carries over to (4.47).

Lemma 4 Given (4.23) with (A, G) stabilizable, i.e.,
rank[Al — A, G]=n VYAeC: RQA)=>0.

Then A = A — G X is stabilizable as well.
Proof

rank[Al, — A, G] = rank[Al, — A + GX,G]

= rank [[)Lln — A, G| [Ixf ]O i|i| = rank[Al, — A, G]. O

As we have seen before, the positive semidefinite solution of the CARE (4.23)
can be obtained from the invariant subspace of the Hamiltonian matrix

A G
m=lr

corresponding to the eigenvalues in C™. Forming the Hamiltonian matrix corre-
sponding to the defect CARE (4.47),

we see that H = Q~'HQ using

o-[ %3]

This immediately implies that A(H) = A(H), so that also H has exactly
n eigenvalues with negative real parts. Now assume the H—invariant subspace

corresponding to these eigenvalues is spanned by |:§1 :| € R?" that is,
2

A G [z _Jz
2=

where all eigenvalues of Z € R"*" have negative real parts.
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By Lemma 4, (4, G) is stabilizable. Using standard arguments of control theory
[52], it can be shown then that Z; is invertible and that Z, Z 7 is symmetric negative
semidefinite. Inserting P := —Z>Z 1_1 in (4.48), we obtain

| A (449

where Z = Z,ZZ 1_1 has only eigenvalues with negative real parts, too.
Expanding terms in (4.49), the first row yields

o,

A-Gp=27, (4.50)
implying that P is stabilizing, and from the second row,
F+A"P=-PZ=-PA+ PGP,

we see that P is a solution of (4.47). In summary, P must be the unique symmetric
positive semidefinite solution of (4.47).
Now with A = A — G X it follows from (4.50), that

A-GX+P)=Z

is stable, so that in summary we obtain the following result:

Theorem 8 Suppose the invariant subspace of the Hamiltonian matrix

~ A G
H = ~ -
]

corresponding to (4.47) is spanned by the columns of [2] € R and

P=-7,7 1_1, then X + P is the unique symmetric positive semidefinite solution
of (4.47).

Based on Theorems 7 and 8, we may now formulate a defect correction algorithm
for CAREs.

As there are no specifications given for the methods employed in Steps 1 and
3 of Algorithm 2, one could use any numerical method to solve the CAREs, and
possibly different ones in Steps 1 and 3. For instance, one could simply use a fast,
but potentially unstable, method as the SR algorithm, as there is no need to have
an X of high accuracy. As || P|| will be very small in general, the quadratic term
in the defect CARE is basically negligible, Newton’s method is a natural choice in
Step 3. Another option is to employ an algorithm like the orthogonal symplectic
multishift algorithm in which part of the computations from Step 1 can be re-used
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Algorithm 2 Defect correction for the CARE (4.23)

Algorithm DC_CARE
Input. A, G, F € R"" as in (4.23); tolerance ¢ > 0 for the stopping criterion.

Output. Approximation X to the unique stabilizing solution of (4.23) and an error estimator P €
R with || P|| < e.

Step 1. Compute stabilizing approximate solution X of (4.23) with the favorite CARE solver.
Step2.Set P := X, X :=0.

Step 3.
while || P| > s do
Set
X:=X+P
F:=F+ATX +XA-XGX
A:=A-GX

Compute a stabilizing solution of the defect CARE

0=F+A"P+ PA— PGP

end

in Step 3, so that the cost in Step 3 can be reduced. Such a variant is discussed in
[2, 8].

The Algorithm DC_CARE is numerically backward stable in the sense that X is
the exact solution of the following CARE with perturbed data:

0=F—F+ AT X + XA — XGX,

where F is the residual from Theorem 7. If the leading significant digits of the defect
P in Step 3 are computed correctly, the approximate solution X converges to the
exact stabilizing solution X of (4.23). In practice, this will lead to reduced accuracy
of the residual F due to cancelation which leads to a limitation of the obtainable
accuracy. Nevertheless, the accuracy of the CARE is often greatly improved by 1-2
steps of defect correction, as several examples in [8] indicate.

A defect correction procedure for the DARE (4.24) can be derived in a com-
pletely analogous fashion; see [80] and [76, Chapter 10]. An interesting aspect
of further research would be to derive a mixed precision CPU-GPU variant of
Algorithm DC_CARE in the fashion of [18]. Also, in case of large-scale sparse
solvers for CARE:s as recently reviewed in [32], where low-rank approximations to
the stabilizing solution are computed, it would be necessary to be able to represent
F in low-rank format to use this concept. Whether this is possible or not is an open
problem.
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4.4.3 Other Contributions to the Numerical Solution of AREs

Volker’s many contributions to the numerical solution of AREs go well beyond the
described methods based on structured eigenproblems. A classical solution method
of AREs is Newton’s method, given their nature as nonlinear systems of equations.
Volker has contributed to the convergence theory of Newton’s method applied to
the generalized CAREs (4.7) and DAREs (4.8), see [76, § 11]. He attributes these
contributions mainly to Ludwig Elsner, but they had not been published before.

A notable contribution to understanding why and when the sign function method
for CAREs [45] can be expected to yield accurate solutions was the perturbation
analysis derived in [46].

Recently, Volker together with Federico Poloni has explored the use of permuted
graph matrices to represent invariant and deflating subspaces of Hamiltonian
matrices and pencils. This has often a tremendously positive effect on the numerical
accuracy of iterative methods based on the inverse-free iteration/disk function
method [5, 11, 31] and doubling-like algorithms [50, 51]. See the Chap. 5 for further
details and references.

An important aspect in deriving numerical methods for AREs is to test them on
challenging examples and to compare the performance to existing methods using
well-defined benchmarks. Volker was the driving force in establishing benchmark
collections for CAREs [20] and DAREs [21], see [22] for an overview. This had a
very positive effect on the publication attitudes of new numerical methods for AREs
as non competitive methods can be identified easily since these benchmark collec-
tions became available. Later on, he also inspired a number of other benchmark
collections for computational control problems that became part of the SLICOT
project, see also [25].

Together with Petko Petkov and Mihail Konstantinov, Volker also contributed
and tested mathematical software for solving CAREs [84, 85].

Although Volker had not published on solving large-scale AREs until recently
[78], he inspired much of the work in this area by putting his Ph.D. student Thilo
Penzl on this track. His thesis [83] is now considered the starting point for many of
the currently used methods for large-scale matrix equations, see also the later paper
[23] that was published only 8 years after Thilo’s unfortunate passing in 1999 due to
a tragic accident. A survey on the developments of this prospering field was recently
given in [32].

4.5 Avoiding AREs

Already in his early work related to his habilitation thesis and the book [76], Volker
often made the point that in solving LQR problems, it may not be necessary to solve
ARE:s explicitly. The basic idea of this can be presented using the continuous-time
LQR problem. Borrowing the most recent representation, we can associate an even
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matrix pencil to the LQR problem (4.1) for the descriptor or LTI system (4.2):

0 EO 0 4 B
AK—L:=2|-ET00|-|AT cToC -CT5s|. (4.51)
0 00 BT STCc R

This matrix pencil considered as a matrix polynomial has the leading
coefficient skew-symmetric, the constant term is symmetric, and therefore is
skew-symmetric/symmetric, or more general, an alternating matrix polynomial, see
the Chaps. 2, 6, and 12 for more on these structures. Assuming for simplicity E, R
nonsingular, the key observation now is that if the feedback solution u(t) = F,.x(¢)
is sought, and an n-dimensional stable deflating subspace of the even pencil AK — L
from (4.51) exists, spanned by the columns of [VT, UT, WT]T with U € R™"
invertible and V, W of size according to (4.51), then, following [76, § 6], we get

F.=-R'B"X.E+STC)=wu"".

Hence, the optimal feedback control law can be determined without computing the
CARE solution! The latter is determined via X, E = VU ™! in this setting. Working
with the even matrix pencil in (4.1) has the additional advantage that no linear
systems with R need to be solved in forming the coefficients and thus, rounding
errors in forming these coefficients are avoided [14]. This principle also carries over
to the discrete-time case, see again [76, § 6] for the unstructured setting.

Avoiding the solution of AREs is even more desirable in H, control. We will
not go into the details of this problem, that has become a paradigm in robust control.
It suffices to understand that the Ho-optimal controller is usually determined
using the so called y-iteration and subsequent controller formulas based on the
output of this iteration. The y-iteration is classically formulated in such a way
that (in the continuous-time case) two CAREs need to be solved in each iteration
step, and a spectral condition of their product is checked, see, e.g., [57, 90]. The
crux is that these CAREs usually have indefinite quadratic terms which does not
allow to solve them with Newton’s method, and the eigenvalues of the associated
Hamiltonian matrices are often close to the imaginary axis (in particular close to the
“optimal” y) which makes them difficult to solve by methods based on invariant or
deflating subspaces of the associated Hamiltonian matrices. Moreover, often their
norms tend to infinity which yields poorly scaled problems, implying additional
numerical difficulties. For all these reasons, it was desirable to avoid the CAREs in
the process. Volker and co-workers were able to derive a numerically robust method
that achieves this, see [16, 17] for the LTI case and [73] for the descriptor case. Later,
also controller formula based on this approach were presented in [13]. For details,
we refer to [24], where also other applications of using extended pencil formulations
in even or alternating form are discussed.
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4.6 Concluding Remarks

Over the last 20 years, Volker and I have collaborated on methods for algebraic
Riccati equations, and on how to avoid them. We often had differing opinions on
whether or not the ARE is the right concept to use for solving certain control
problems. These were always inspiring and fruitful discussions, and they certainly
have been driving both of us to improve methods and ideas more and more. Today,
we basically agree on which problems should be solved using AREs, and where one
should avoid them by using structured matrix pencil methods as discussed, e.g., in
Chaps. 1-3, and 5. Therefore, I foresee interesting research tasks in both directions
for certainly another decade and more, as with increasing computer power, model
complexity in control engineering problems is increasing, and will require new ideas
and further development of the methods for DREs, AREs, and the related pencil
problems at hand. I truly hope Volker and I will also be part of this development.
In writing this chapter, a number of open problems and ideas already evolved,
and I hope some of these can lead to improved methods and further inside in the
theoretical and numerical treatment of DREs and AREs.
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