
Chapter 16
Differential-Algebraic Equations: Theory
and Simulation

Peter Kunkel

Abstract We give an overview of the theory of unstructured nonlinear DAEs
of arbitrary index. The approach is extended to overdetermined consistent DAEs
in order to be able to include known first integrals. We then discuss various
computational issues for the numerical solution of corresponding DAE problems.
These include the design of special Gauß-Newton techniques as well as the
treatment of parametrized nonlinear systems in the context of DAEs. Examples
demonstrate their applicability and performance.
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16.2 Introduction

Differential-algebraic equations (DAEs) arise if physical systems are modeled that
contain constraints restricting the possible states of the systems. Moreover, in
modern hierarchical modeling tools like [5], even if the submodels are ordinary
differential equations (ODEs), the equations describing how the submodels are
linked yield DAEs as overall models.

The general form of a DAE is given by

F.t; x; Px/ D 0; (16.1)

with F 2 C.I � Dx � D Px;Rm/ sufficiently smooth, I � R (compact) interval,
and Dx;D Px � R

n open. In this paper, we will not assume any further structure of
the equations. It should, however, be emphasized that additional structure should,
if possible, be utilized in the numerical treatment when efficiency is an issue. On
the other hand, a general approach is of advantage when it is desirable to have no
restrictions in the applicability of the numerical procedure.

It is the aim of the present paper to give an overview of the relevant theory of
general unstructured nonlinear DAEs with arbitrary index and its impact on the
design of numerical techniques for their approximate solution. We will concentrate
mainly on the quadratic case, i.e., on the case m D n, but also address the
overdetermined case m � n assuming consistency of the equations. The attractivity
of the latter case lies in the fact that we may add known properties of the solution
like first integrals to the system, thus enforcing that the generated numerical solution
will respect these properties as well. In the discussion of numerical techniques, we
focus on two families of Runge-Kutta type one-step methods and the development
of appropriate techniques for the solution of the arising nonlinear systems. Besides
the mentioned issues on DAE techniques for treating first integrals, we include a
discussion on numerical path following and turning point determination in the area
of parametrized nonlinear equations, which can also be treated in the context of
DAEs combined with root finding. Several examples demonstrate the performance
of the presented numerical approaches.

The paper is organized as follows. In Sect. 16.3, we give an overview of the
analysis of unstructured regular nonlinear DAEs of arbitrary index. In particular,
we present existence and uniqueness results. We discuss how these results can be
extended to overdetermined consistent DAEs, thus allowing for the treatment of
known first integrals. Section 16.4 is then dedicated to various computational issues.
We first present possible one-step methods, develop Gauß-Newton like processes
for the treatment of the arising nonlinear systems, which includes a modification to
stabilize the numerical solution. After some remarks on the use of automatic dif-
ferentiation, we show how problems with first integrals and parametrized nonlinear
equations can be treated in the context of DAEs. We close with some conclusions in
Sect. 16.5.
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16.3 Theory of Nonlinear DAEs

Dealing with nonlinear problems, the first step is to require a suitable kind of
regularity. In the special case of an ODE Px D f .t; x/, obviously no additional
properties besides smoothness must be required to obtain (local) existence and
uniqueness of solutions for the corresponding initial value problem. In the special
case of a pure algebraic (parametrized) system F.t; x/ D 0, the typical requirement
is given by assuming that Fx.t; x/, denoting the Jacobian of F with respect to x,
is nonsingular for all relevant arguments. The regularity then corresponds to the
applicability of the implicit function theorem allowing to (locally) solve for x

in terms of t . In the general case of DAEs, we of course want to include these
extreme cases into the definition of a regular problem. Moreover, we want to keep
the conditions as weak as possible. The following example gives an idea, how the
conditions for regularity should look like.

Example 1 The system

Px1 D x4; Px4 D 2x1x7;

Px2 D x5; Px5 D 2x2x7;

Px3 D x6; Px6 D �1 � x7;

0 D x3 � x2
1 � x2

2;

see [16], describes the movement of a mass point on a paraboloid under the influence
of gravity.

Differentiating the constraint twice and eliminating the arising derivatives of the
unknowns yields

0 D x6 � 2x1x4 � 2x2x5;

0 D �1 � x7 � 2x2
4 � 4x2

1x7 � 2x2
5 � 4x2

2x7:

In particular, the so collected three constraints can be solved for x3, x6, and x7 in
terms of the other unknowns, leaving, if eliminated, ODEs for these other unknowns.
Hence, we may replace the original problem by

Px1 D x4; Px4 D 2x1x7;

Px2 D x5; Px5 D 2x2x7;

0 D x3 � x2
1 � x2

2 ;

0 D x6 � 2x1x4 � 2x2x5;

0 D �1 � x7 � 2x2
4 � 4x2

1x7 � 2x2
5 � 4x2

2x7:

}
From this example, we deduce the following. The solution process may require

to differentiate part of the equations such that the solution may depend on the
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derivatives of the data. Without assuming structure, it is not known in advance
which equations should be differentiated. By the differentiation process, we obtain
additional constraints that must be satisfied by a solution.

16.3.1 A Hypothesis

In order to include differentiated data, we follow an idea of Campbell, see [1], and
define so-called derivative array equations

F`.t; x; Px; Rx; : : : ; x.`C1// D 0; (16.2)

where the functions F` 2 C.I � Dx � D Px � R
n � � � � � R

n;R.lC1/m/ are defined
by stacking the original function F together with its formal time derivatives up to
order `, i.e.,

F`.t; x; Px; Rx; : : : ; x.`C1// D

2
6664

F.t; x; Px/
d
dt F.t; x; Px/

:::

. d
dt /

`F.t; x; Px/

3
7775 : (16.3)

Jacobians of Fl with respect to the selected variables x; y will be denoted by FlIx;y

in the following. A similar notation will be used for other functions.
The desired regularity condition should include that the original DAE implies a

certain number of constraints, that these constraints should be independent, and that
given an initial value satisfying these constraints can always be extended to a local
solution. In the case m D n, this leads to the following hypothesis.

Hypothesis 1 There exist (nonnegative) integers �, a, and d such that the set

L� D f.t; x; y/ 2 R
.�C2/nC1 j F�.t; x; y/ D 0g (16.4)

associated with F is nonempty and such that for every point .t0; x0; y0/ 2 L�,
there exists a (sufficiently small) neighborhood V in which the following properties
hold:

1. We have rank F�Iy D .� C 1/n � a on L� \ V such that there exists a smooth
matrix function Z2 of size ..� C 1/n; a/ and pointwise maximal rank, satisfying
ZT

2 F�Iy D 0 on L� \ V.
2. We have rank ZT

2 F�Ix D a on V such that there exists a smooth matrix
function T2 of size .n; d/, d D n � a, and pointwise maximal rank, satisfying
ZT

2 F�IxT2 D 0.
3. We have rank F PxT2 D d on V such that there exists a smooth matrix function Z1

of size .n; d/ and pointwise maximal rank, satisfying rank ZT
1 F PxT2 D d .
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Note that the local existence of functions Z2; T2; Z1 is guaranteed by the
following theorem, see, e.g., [13, Theorem 4.3]. Moreover, it shows that we may
assume that they possess (pointwise) orthonormal columns.

Theorem 1 Let E 2 C `.D;Rm;n/, ` 2 N0 [ f1g, and assume that rank E.x/ D r

for all x 2 M � D, D � R
k open. For every Ox 2 M there exists a sufficiently

small neighborhood V � D of Ox and matrix functions T 2 C `.V;Rn;n�r /, Z 2
C `.V;Rm;m�r /, with pointwise orthonormal columns such that

ET D 0; ZT E D 0 (16.5)

on M.

The quantity � denotes how often we must differentiate the original DAE in
order to be able to make conclusions about existence and uniqueness of solutions.
Typically, such a quantity is called index. To distinguish it from other indices, the
quantity �, if chosen minimally, is called strangeness index of the given DAE.

For linear DAEs, the above hypothesis is equivalent (for sufficiently smooth data)
to the assumption of a well-defined differentiation index and thus to regularity of the
given linear DAE, see [13]. In the nonlinear case, the hypothesis, of course, should
imply some kind of regularity of the given problems.

In the following, we say that F satisfies Hypothesis 1 with .�; a; d/, if
Hypothesis 1 holds with the choice �, a, and d for the required integers.

16.3.2 Implications

In order to show that Hypothesis 1 implies a certain kind of regularity for the given
DAE, we revise the approach first given in [12], see also [13].

Let .t0; x0; y0/ 2 L� and

T2;0 D T2.t0; x0; y0/; Z1;0 D Z1.t0; x0; y0/; Z2;0 D Z2.t0; x0; y0/:

Furthermore, let Z0
2;0 be chosen such that ŒZ0

2;0 Z2;0 � is orthogonal. By Hypothesis 1,
the matrices ZT

2;0F�Ix.t0; x0; y0/ and Z0T
2;0F�Iy.t0; x0; y0/ have full row rank. Thus,

we can split the variables x and y, without loss of generalization according to x D
.x1; x2/ and y D .y1; y2/, such that ZT

2;0F�Ix2 .t0; x0; y0/ and Z0T
2;0F�Iy2 .t0; x0; y0/

are nonsingular. Because of

rank F�Ix2;y2 D rank

"
Z0T

2;0F�Ix2 Z0T
2;0F�Iy2

ZT
2;0F�Ix2 ZT

2;0F�Iy2

#

and ZT
2;0F�Iy2 .t0; x0; y0/ D 0, this implies that F�Ix2;y2 .t0; x0; y0/ is nonsingular.

The implicit function theorem then yields that the equation F�.t; x1; x2; y1; y2/ D 0
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is locally solvable for x2 and y2. Hence, there are locally defined functionsG andH
with

F�.t; x1;G .t; x1; y1/; y1;H .t; x1; y1// � 0; (16.6)

implying the following structure of L�.

Theorem 2 The set L� forms a manifold of dimension n C 1 that can be locally
parametrized by variables .t; x1; y1/, where x1 consists of d variables from x and y1

consists of a variables from y.

In order to examine the implicitly defined functions in more detail, we consider
the system of nonlinear equations H.t; x; y; ˛/ D 0 with ˛ 2 R

a given by

H.t; x; y; ˛/ D
�

F�.t; x; y/ � Z2;0˛

T T
1;0.y � y0/

�
; (16.7)

where the columns of T1;0 form an orthonormal basis of kernel F�Iy.t0; x0; y0/.
Obviously, we have that H.t0; x0; y0; 0/ D 0. Choosing T 0

1;0 such that Œ T 0
1;0 T1;0 � is

orthogonal, we get

rank Hy;˛ D rank

�
F�Iy �Z2;0

T T
1;0 0

�
D rank

2
4

Z0T
2;0F�IyT 0

1;0 Z0T
2;0F�IyT1;0 �

ZT
2;0F�IyT 0

1;0 ZT
2;0F�IyT1;0 �Ia

� Id 0

3
5 ;

where here and in the following Ik denotes the identity matrix in R
k;k and its

counterpart as constant matrix function. It follows that

rank Hy;˛.t0; x0; y0; 0/ D rank

2
4

Z0T
2;0F�Iy.t0; x0; y0/T

0
1;0 0 0

0 0 �Ia

0 Id 0

3
5

and Hy;˛.t0; x0; y0; 0/ is nonsingular because Z0T
2;0F�Iy.t0; x0; y0/T 0

1;0, representing
the linear map obtained by the restriction of F�Iy.t0; x0; y0/ to the linear map from
its cokernel onto its range, is nonsingular. Thus, the nonlinear equation (16.7) is
locally solvable with respect to .y; ˛/, i.e., there are locally defined functions OF2

and Y such that

F�.t; x;Y .t; x// � Z2;0
OF2.t; x/ � 0; T T

1;0.Y .t; x/ � y0/ � 0: (16.8)

If we then define OF1 by

OF1.t; x; Px/ D ZT
1;0F.t; x; Px/; (16.9)
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we obtain a DAE

OF1.t; x; Px/ D 0; (d differential equations)
OF2.t; x/ D 0; (a algebraic equations)

(16.10)

whose properties shall be investigated.
Differentiating (16.8) with respect to x gives

F�Ix C F�IyYx � Z2;0
OF2Ix D 0:

Multiplying with ZT
2;0 form the left and evaluating at .t0; x0/ then yields

OF2Ix.t0; x0/ D ZT
2;0F�Ix.t0; x0; y0/:

With the above splitting for x, we have that OF2.t0; x0/ D 0 due to the construction
of OF2 and OF2Ix2.t0; x0/ being nonsingular due to the choice of the splitting. Hence,
we can apply the implicit function theorem once more to obtain a locally defined
function R satisfying

OF2.t; x1;R.t; x1// � 0: (16.11)

In particular, the set M D OF �1
2 .f0g/ forms a manifold of dimension d C 1.

Lemma 1 Let .t0; x0; y0/ 2 L�. Then there is a neighborhood of .t0; x0; y0/

such that

R.t; x1/ D G .t; x1; y1/ (16.12)

for all .t; x; y/ in this neighborhood.

Proof We choose the neighborhood of .t0; x0; y0/ to be a ball with center .t0; x0; y0/

and sufficiently small radius. In particular, we assume that all implicitly defined
functions can be evaluated for the stated arguments.

Differentiating (16.6) with respect to y1 gives

F�Ix2Gy1 C F�Iy1 C F�Iy2Hy1 D 0;

where we omitted the argument .t1; x1;G .t; x1; y1/; y1;H .t; x1; y1//. If we
multiply this with Z2.t1; x1;G .t; x1; y1/; y1;H .t; x1; y1//T , defined according
to Hypothesis 1, we get ZT

2 F�Ix2Gy1 D 0. Since ZT
2 F�Ix2 is nonsingular for a

sufficiently small radius of the neighborhood, it follows that Gy1.t; x1; y1/ D 0.
Inserting x2 D R.t; x1/ into the first relation of (16.8) and splitting Y according

to y, we obtain

F�.t; x1;R.t; x1/;Y1.t; x1;R.t; x1//;Y2.t; x1;R.t; x1/// D 0:
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Comparing with (16.6), this yields

R.t; x1/ D G .t; x1;Y1.t; x1;R.t; x1///:

With this, we further obtain, setting Qy1 D Y1.t; x1;R.t; x1// for short, that

G .t; x1; y1/ � R.t; x1/ D G .t; x1; y1/ � G .t; x1; Qy1/

D G .t; x1; Qy1 C s.y1 � Qy1//j10
D R 1

0 Gy1 .t; x1; Qy1 C s.y1 � Qy1//.y1 � Qy1/ ds D 0:

ut
With the help of Lemma 1, we can simplify the relation (16.6) to

F�.t; x1;R.t; x1/; y1;H .t; x1; y1// � 0: (16.13)

Theorem 3 Consider a sufficiently small neighborhood of .t0; x0; y0/ 2 L�. Let OF2

and R be well-defined according to the above construction and let .t; x/ with
x D .x1; x2/ be given such that .t; x/ is in the domain of OF2 and .t; x1/ is in the
domain of R. Then the following statements are equivalent:

(a) There exists y such that F�.t; x; y/ D 0.
(b) OF2.t; x/ D 0.
(c) x2 D R.t; x1/.

Proof The statements (b) and (c) are equivalent due to the implicit function theorem
defining R. Assuming (a), let there be y such that F�.t; x; y/ D 0. Then,
x2 D G .t; x1; y1/ D R.t; x1/ due to the implicit function theorem defining G
and Lemma 1. Assuming (c), we set y D Y .t; x/. With OF2.t; x/ D 0, the relation
(16.8) yields F�.t; x; y/ D 0. ut
Theorem 4 Let F from (16.1) satisfy Hypothesis 1 with .�; a; d/. Then, OF D
. OF1; OF2/ satisfies Hypothesis 1 with .0; a; d/.

Proof Let OL0 D OF �1.f0g/ and let OZ2; OT2; OZ1 denote the matrix functions belonging
to OF as addressed by Hypothesis 1.

For .t0; x0; y0/ 2 F �1
� .f0g/, the above construction yields OF2.t0; x0/ D 0. If Px0

denotes the first n components of y0, then F.t0; x0; Px0/ D 0 holds as first block of
F�.t0; x0; y0/ D 0 implying OF1.t0; x0; Px0/ D 0. Hence, .t0; x0; Px0/ 2 OL0 and OL0 is
not empty.

Since ZT
1;0F Px.t0; x0; Px0/ possesses full row rank due to Hypothesis 1, we may

choose OZT
2 D Œ 0 Ia �. Differentiating (16.8) with respect to x yields

F�Ix C F�IyYx � Z2;0
OF2Ix D 0:
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Multiplying with ZT
2 from the left, we get ZT

2 Z2;0
OF2Ix D ZT

2 F�Ix , where ZT
2 Z2;0

is nonsingular in a neighborhhood of .t0; x0; y0/. Hence, we have

kernel OF2Ix D kernel ZT
2 F�Ix

such that we can choose OT2 D T2. The claim then follows since OF1I PxT2 D ZT
1;0F PxT2

possesses full column rank due to Hypothesis 1. ut
Since (16.10) has vanishing strangeness index, it is called a reduced DAE

belonging to the original possibly higher index DAE (16.1). Note that a reduced
DAE is defined in a neighborhood of every .t0; x0; y0/ 2 L�, but also that it is not
uniquely determined by the original DAE even for a fixed .t0; x0; y0/ 2 L�. What
is uniquely determined for a fixed .t0; x0; y0/ 2 L� is (at least when treating it as a
function germ) the function R.

Every continuously differentiable solution of (16.10) will satisfy x2 D R.t; x1/

pointwise. Thus, it will also satisfy Px2 D Rt .t; x1/ CRx1.t; x1/ Px1 pointwise. Using
these two relations, we can reduce the relation OF1.t; x1; x2; Px1; Px2/ D 0 of (16.10)
to

OF1.t; x1;R.t; x1/; Px1;Rt .t; x1/ C Rx1.t; x1/ Px1/ D 0: (16.14)

If we now insert x2 D R.t; x1/ into (16.8), we obtain

F�.t; x1;R.t; x1/;Y .t; x1;R.t; x1/// D 0: (16.15)

Differentiating this with respect to x1 yields

F�Ix1 C F�Ix2Rx1 C F�Iy.Yx1 C Yx2Rx1/ D 0:

Multiplying with ZT
2 from the left, we get

ZT
2 Œ F�Ix1 F�Ix2 �

�
Id

Rx1

�
D 0:

Comparing with Hypothesis 1, we see that we may choose

T2 D
�

Id

Rx1

�
: (16.16)

Differentiating now (16.14) with respect to Px1 and using the definition of OF1, we
find

ZT
1;0F Px1

C ZT
1;0F Px2

Rx1 D ZT
1;0F PxT2;

which is nonsingular due to Hypothesis 1. In order to apply the implicit function
theorem, we need to require that .t0; x10; Px10/ solves (16.14). Note that this is not
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a consequence of .t0; x0; y0/ 2 L�. Under this additional requirement, the implicit
function theorem implies the local existence of a function L satisfying

OF1.t; x1;R.t; x1/;L .t; x1/;Rt .t; x1/ C Rx1.t; x1/L .t; x1// � 0: (16.17)

With the help of the functionsL andR, we can formulate a further DAE of the form

Px1 D L .t; x1/; (d differential equations)

x2 D R.t; x1/: (a algebraic equations)
(16.18)

Note that this DAE consists of a decoupled ODE for x1, where we can freely impose
an initial condition as long as we remain in the domain of L . Having so fixed x1,
the part x2 follows directly from the second relation. In this sense, (16.18) can be
seen as a prototype for a regular DAE.

The further discussion is now dedicated to the relation between (16.18) and the
original DAE.

We start with the assumption that the original DAE (16.1) possesses a smooth
local solution x� in the sense that there is a continuous path .t; x�.t/;P.t// 2 L�

defined on a neighborhood of t0, where the first block of P coincides with Px�. Note
that if x� is .�C1/-times continuously differentiable we can just take the path given
by P D . Px�; Rx�; : : : ; .d=dt/�C1x�/. Setting .t0; x0; y0/ D .t0; x�.t0/;P.t0//,
Theorem 3 yields that x�

2 .t/ D R.t; x�
1 .t//. Hence, Px�

2 .t/ D Rt .t; x�
1 .t// C

Rx1.t; x�
1 .t// Px�

1 .t/. In particular, Eq. (16.14) is solved by .t; x1; Px1/ D .t; x�
1 ; Px�

1 /.
Thus, it follows also that Px�

1 .t/ D L .t; x�
1 .t//. In this way, we have proven the

following theorem.

Theorem 5 Let F from (16.1) satisfy Hypothesis 1 with .�; a; d/. Then every
local solution x� of (16.1) in the sense that it extends to a continuous local path
.t; x�.t/;P.t// 2 L�, where the first block of P coincides with Px�, also solves the
reduced problems (16.10) and (16.18).

16.3.3 The Way Back

To show a converse result to Theorem 5, we need to require the solvability of
(16.14) for the local existence of the function L . For this, we assume that F not
only satisfies Hypothesis 1 with .�; a; d/, but also with .� C 1; a; d/. Let now
.t0; x0; y0; z0/ 2 L�C1. Due to the construction of F`, we have

F�C1 D
�

F�

. d
dt /

�C1F

�
; F�C1Iy;z D

�
F�Iy 0

.. d
dt /

�C1F /y .. d
dt /

�C1F /z

�
; (16.19)
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where the independent variable z is a short-hand notation for x.�C2/. Since F�Iy and
F�C1Iy;z are assumed to have the same rank drop, we find that Z2 belonging to F�

satisfies

Œ ZT
2 0 �F�C1Iy;z D Œ ZT

2 0 �

�
F�Iy 0

.. d
dt /

�C1F /y .. d
dt /

�C1F /z

�
D Œ 0 0 �:

Consequently, in Hypothesis 1 considered for F�C1, we may choose Œ ZT
2 0 �

describing the left nullspace of F�C1Iy;z such that the same choices are possible
for T2 and Z1.

Observing that we may write the independent variables .t; x; y; z/ also as
.t; x; Px; Py/ by simply changing the partitioning of the blocks, and that the equation
F�C1 D 0 contains F� D 0 as well as d

dt F� D 0, which has the form

d
dt F� D F�It C F�Ix Px C F�Iy Py D 0;

we get

ZT
2 F�It C ZT

2 F�Ix Px D 0:

Using the same splitting x D .x1; x2/ as above and Px D . Px1; Px2/ accordingly, we
obtain

ZT
2 F�It C ZT

2 F�Ix1 Px1 C ZT
2 F�Ix2 Px2 D 0;

which yields

Px2 D �.ZT
2 F�Ix2 /

�1.ZT
2 F�It C ZT

2 F�Ix1 Px1/: (16.20)

On the other hand, differentiation of (16.13) with respect to t yields

F�It CF�Ix1 Px1 CF�Ix2 .Rt CRx1 Px1/CF�Iy1 Py1 CF�Iy2 .Ht CHx1 Px1 CHy1 Py1/ D 0

and thus

ZT
2 F�It C ZT

2 F�Ix1 Px1 D �ZT
2 F�Ix2 .Rt C Rx1 Px1/:

Inserting this into (16.20) yields

Px2 D Rt C Rx1 Px1: (16.21)

Hence, the given point .t0; x0; Px0; Py0/ satisfies

Px20 D Rt .t0; x10/ C Rx1.t0; x10/ Px10:
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It then follows that .t0; x10; Px10/ solves (16.14). In particular, this guarantees that the
implicit function theorem is applicable to (16.14) leading to a locally defined L .
Thus, the reduced system (16.18) is locally well-defined. Moreover, for every initial
value for x1 near x10, the initial value problem for x1 in (16.18) possesses a
solution x�

1 . The second equation in (16.18) then yields a locally defined x�
2 such

that x� D .x�
1 ; x�

2 / forms a solution of (16.18).
For the same reasons as for L�, the set L�C1 can be locally parametrized by

n C 1 variables. Among these variables are again t and x1. But since x2, Px1, and Px2

are all functions of .t; x1/, the remaining variables, say p, are now from Py. In
particular, there is a locally defined function Z satisfying

F�C1.t; x1;R.t; x1/;L .t; x1/;Rt .t; x1/ C Rx1.t; x1/L .t; x1/;Z .t; x1; p// � 0:

Choosing now x�
1 .t/ for x1 and p�.t/ arbitrarily within the domain of Z , for

example p�.t/ D p0, where p0 is the matching part of Py0, yields

F�C1.t; x�
1 .t/; x�

2 .t/; Px�
1 .t/; Px�

2 .t/;Z .t; x�
1 .t/; p�.t/// � 0;

which contains

F.t; x�
1 .t/; x�

2 .t/; Px�
1 .t/; Px�

2 .t// � 0 (16.22)

in the first block. But this means nothing else than that x� D .x�
1 ; x�

2 / locally solves
the original problem. Moreover, locally there is a continuous function P such that
its first block coincides with Px� and .t; x�.t/;P.t// 2 L�. Summarizing, we have
proven the following statement.

Theorem 6 If F satisfies Hypothesis 1 with .�; a; d/ and .� C 1; a; d/ then every
local solution x� of the reduced DAE (16.18) is also a local solution of the original
DAE. Moreover, it extends to a continuous local path .t; x�.t/;P.t// 2 L�, where
the first block of P coincides with Px�.

The numerical treatment of DAEs is usually based on the assumption that there
is a solution to be computed. In view of Theorem 5 it is therefore sufficient to work
with the derivative array F�. However, we must assume in addition that the given
point .t0; x0; y0/ 2 L� provides suitable starting values for the nonlinear system
solvers being part of the numerical procedure. Note that this corresponds to the
assumption that we may apply the implicit function theorem for the definition of L .

16.3.4 Overdetermined Consistent DAEs

Hypothesis 1 can be generalized in various ways. For example, we may include
underdetermined problems which would cover control problems by treating states
and controls as indistinguishable parts of the unknown. We may also allow
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overdetermined problems or problems with redundant equations. The main problem
in the formulation of corresponding hypotheses is for which points to require
properties of the Jacobians of the derivative array equation. Note that the restriction
in Hypothesis 1 to points in the solution set of the derivative array equation leads
to better covariance properties of the hypothesis, see [13], but it excludes problems
where this set is empty, e.g., linear least-squares problems. In the following, we want
to present a generalization to overdetermined, but consistent (i.e., solvable) DAEs.
Such DAEs may arise by extending a given DAE by some or all hidden constraints,
i.e., relations contained in OF2.t; x/ D 0 that require the differentiation of the original
DAE, or by extending a given DAE or even an ODE by known first integrals.

Hypothesis 2 There exist (nonnegative) integers �, a, d , and v such that the set

L� D f.t; x; y/ 2 R
.�C2/nC1 j F�.t; x; y/ D 0g (16.23)

associated with F is nonempty and such that for every point .t0; x0; y0/ 2 L�,
there exists a (sufficiently small) neighborhood V in which the following properties
hold:

1. We have rank F�Iy D .� C 1/m � v on L� \ V such that there exists a smooth
matrix function Z2 of size ..� C 1/m; v/ and pointwise maximal rank, satisfying
ZT

2 F�Iy D 0 on L� \ V.
2. We have rank ZT

2 F�Ix D a on V such that there exists a smooth matrix
function T2 of size .n; d/, d D n � a, and pointwise maximal rank, satisfying
ZT

2 F�Ix T2 D 0.
3. We have rank F PxT2 D d on V such that there exists a smooth matrix function Z1

of size .m; d/ and pointwise maximal rank, satisfying rank ZT
1 F Px T2 D d .

A corresponding construction as for Hypothesis 1 shows that Hypothesis 2
implies a reduced DAE of the form (16.10) with the same properties as stated there.
In particular, a result similar to Theorem 5 holds. Due to the assumed consistency,
the omitted relations (the reduced DAEs are m � n scalar relations short) do not
contradict these equations. Thus, the solutions fixed by the reduced DAE will be
solutions of the original overdetermined DAE under assumptions similar to those of
Theorem 6. Since the arguments are along the same lines as presented above, we
omit details here.

An example for a problem covered by Hypothesis 2 is given by Example 1
when we just add the two equations obtained by differentiation and elimination to
the original DAE leading to a problem consisting of 9 equations in 7 unknowns.
A second example, which we will also address in the numerical experiments,
consists of an ODE with known first integral.

Example 2 A simple predator/prey model is described by the so-called Lotka/Vol-
terra system

Px1 D x1.1 � x2/; Px2 D �c x2.1 � x1/;
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where c > 0 is some given constant, see, e.g., [14]. It is well-known that

H.x1; x2/ D c.x1 � log x1/ C .x2 � log x2/

is a first integral of this system implying that the positive solutions are periodic. The
combined overdetermined system

Px1 D x1.1 � x2/;

Px2 D �c x2.1 � x1/;

c.x1 � log x1/ C .x2 � log x2/ D H0;

where H0 D H.x10; x20/ for given initial values x1.t0/ D x10, x2.t0/ D x20, is
therefore consistent. Moreover, it can be shown to satisfy Hypothesis 2 with � D
0, a D 1, d D 1, and v D 1. In contrast to Example 1, we cannot decide in
advance which of the two differential equations should be used together with the
algebraic constraint. For stability reasons, we should rather use an appropriate linear
combination of the two differential equations. But this just describes the role of Z1

in Hypothesis 2. }

16.4 Integration of Nonlinear DAEs

In this section, we discuss several issues that play a role when one wants to integrate
DAE systems numerically in an efficient way.

16.4.1 Discretizations

The idea for developing methods for the numerical solution of unstructured DAEs
is to discretize not the original DAE (16.1) but the reduced DAE (16.10) because
of its property that it does not contain hidden constraints, i.e., that we do not need
to differentiate the functions in the reduced DAE. Of course, the functions in the
reduced DAE are themselves defined by relations that contain differentiations. But
these are differentiations of the original function F which may be obtained by hand
or by means of automatic differentiation.

A well-known discretization of DAEs are the BDF methods, see, e.g., [6]. We
want to concentrate here on two families of one-step methods that are suitable for the
integration of DAEs of the form (16.10). In the following, we denote the initial value
at t0 by x0 and the stepsize by h. The discretization should then fix an approximate
solution x1 at the point t1 D t0 C h.
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The first family of methods are the Radau IIa methods, which are collocation
methods based on the Radau nodes

0 < �1 < � � � < �s D 1; (16.24)

where s 2 N denotes the number of stages, see, e.g., [10]. The discretization of
(16.10) then reads

OF1.t0 C �j h; Xj ; 1
h
.vj 0x0 C Ps

lD1 vjlXl// D 0;

OF2.t0 C �j h; Xj / D 0; j D 1; : : : ; s;
(16.25)

together with x1 D Xs , where Xj , j D 1; : : : ; s, denote the stage values of the
Runge-Kutta scheme. The coefficients vjl are determined by the nodes (16.24). For
details and the proof of the following convergence result, see, e.g., [13].

Theorem 7 The Radau IIa methods (16.25) applied to a reduced DAE (16.10) are
convergent of order p D 2s � 1.

Note that the Radau IIa methods exhibit the same convergence order as in the
special case of an ODE. The produced new value x1 satisfies all the constraints due
to the included relation OF2.t1; x1/ D 0.

The second family of methods consists of partitioned collocation methods, which
use Gauß nodes for the differential equations and Lobatto nodes for the algebraic
equations given by

0 < �1 < � � � < �k < 1; 0 D �0 < � � � < �k D 1; (16.26)

with k 2 N. Observe that we use one more Lobatto node equating thus the order of
the corresponding collocation methods for ODEs. The discretization of (16.10) then
reads

OF1.t0 C �j h; uj 0x0 C Pk
lD1 ujlXl ;

1
h
.vj 0x0 C Pk

lD1 vjlXl// D 0;

OF2.t0 C �j h; Xj / D 0; j D 1; : : : ; k;
(16.27)

together with x1 D Xk . The coefficients ujl and vjl are determined by the nodes
(16.26). For details and the proof of the following convergence result, see again [13].

Theorem 8 The Gauß-Lobatto methods (16.27) applied to a reduced DAE (16.10)
are convergent of order p D 2k.

Note that in contrast to the Radau IIa methods, the Gauß-Lobatto methods are
symmetric. Thus, they may be prefered when symmetry of the method is an issue,
e.g., in the solution of boundary value problems. In the case of an ODE, the Gauß-
Lobatto methods reduce to the corresponding Gauß collocation methods. As for the
Radau IIa methods, the produced new value x1 satisfies all the constraints due to the
included relation OF2.t1; x1/ D 0.
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For the actual computation, we lift the discretization from the reduced DAE
to the original DAE by using Theorem 3. In particular, we replace every relation
of the form OF2.t; x/ D 0 by F�.t; x; y/ D 0 with the help of an additional
unknown y. Note that by this process the system describing the discretization
becomes underdetermined. Nevertheless, the desired value x1 will still (at least
locally) be uniquely fixed. The Radau IIa methods then read

ZT
1;0F.t0 C �j h; Xj ; 1

h
.vj 0x0 C Ps

lD1 vjlXl// D 0;

F�.t0 C �j h; Xj ; Yj / D 0; j D 1; : : : ; s;
(16.28)

and the Gauß-Lobatto methods then read

ZT
1;0F.t0 C �j h; uj 0x0 C Pk

lD1 ujlXl ;
1
h
.vj 0x0 C Pk

lD1 vjl Xl// D 0;

F�.t0 C �j h; Xj ; Yj / D 0; j D 1; : : : ; k:
(16.29)

In the case of overdetermined DAEs governed by Hypothesis 2, the discretizations
look the same.

In order to perform a step with the above one-step methods given an initial value
.t0; x0; y0/ 2 L�, we can determine Z1;0 along the lines of the above hypotheses.
We then must provide starting values for a suitable nonlinear system solver for
the solution of the nonlinear systems describing the discretization, typically the
Gauß-Newton method or a variant of it. Upon convergence, we obtain a final value
.t1; x1; y1/ as part of the overall solution (which includes the internal stages), which
will then be the initial value for the next step. Note that for performing a Gauß-
Newton-like method for these problems, which we will write as F .z/ D 0 for short
in the following, we must be able to evaluate the function F and its Jacobian Fz

at given points. Thus, we must be able to evaluate F and F� and their Jacobians,
which can be done by using automatic differentiation, see below.

16.4.2 Gauß-Newton-Like Processes

The design of the Gauß-Newton-like method is crucial for the efficiency of the
approach. Note that we had to replace OF2 by F� thus increasing the number of
equations and unknowns significantly. However, there is some structure in the
equations that can be utilized in order to improve the efficiency. We will sketch
this approach in the following for the case of the Radau IIa discretization. Similar
techniques can be applied to the case of the Gauß-Lobatto discretization.

Linearizing the equation F .z/ D 0 around some given z yields the linear
problem F .z/ C Fz.z/�z D 0 for the correction �z. The ordinary Gauß-Newton
method is then characterized by solving for �z by means of the Moore-Penrose
pseudoinverse Fz.z/C of Fz.z/, i.e.,

�z D �Fz.z/
CF .z/: (16.30)
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Instead of the Moore-Penrose pseudoinverse, we are allowed to use any other
equation-solving generalized inverse of Fz.z/. Due to the consistency of the
nonlinear problem to be solved, we are also allowed to perturb the Jacobian as long
as the perturbation is sufficiently small or even tends to zero during the iteration.

In the case (16.28), linearization leads to

ZT
1;0F

j
x �Xj C ZT

1;0F
j

Px
1
h

Ps
lD1 vjl �Xl D �ZT

1;0F j ;

F
j
�Ix�Xj C F

j
�Iy�Yj D �F

j
� ; j D 1; : : : ; s:

(16.31)

which is to be solved for .�Xj ; �Yj /, j D 1; : : : ; s. The superscript j indicates,
that the corresponding function is evaluated at the argument occurring in the j -
th equation, i.e., at .t0 C �j h; Xj ; 1

h
.vj 0x0 C Ps

lD1 vjlXl// in the case of F and

.t0 C �j h; Xj ; Yj / in the case of F�. Since (16.28) contains F
j
� D 0, we will have

rank F
j
�Iy D .� C 1/n � a at a solution of (16.28) due to Hypothesis 1. Near the

solution, the matrix F
j
�Iy is thus a perturbation of a matrix with rank drop a. The

idea therefore is to perturb F
j
�Iy to a matrix Mj with rank Mj D .� C 1/n � a.

Such a perturbation can be obtained by rank revealing QR decomposition or by
singular value decomposition, see, e.g., [7]. The second part of (16.31) then consists
of equations of the form

F
j
�Ix�Xj C Mj �Yj D �F j

� : (16.32)

With the help of an orthogonal matrix ŒZ0
2;j Z2;j �, where the columns of Z2;j form

an orthonormal basis of the left nullspace of Mj , we can split (16.32) into

Z0T
2;j F

j
�Ix�Xj C Z0T

2;j Mj �Yj D �Z0T
2;j F j

� ; ZT
2;j F

j
�Ix�Xj D �ZT

2;j F j
� :

(16.33)
The first part can be solved for �Yj via the Moore-Penrose pseudoinverse

�Yj D �.Z0T
2;j Mj /CZ0T

2;j .F j
� C F

j
�Ix�Xj / (16.34)

in terms of �Xj , thus fixing a special equation-solving pseudoinverse of the
Jacobian under consideration. In order to determine the corrections �Xj , we take
an orthogonal matrix Œ T 0

2;j T2;j �, where the columns of T2;j form an orthonormal

basis of the right nullspace of Z0T
2;j F

j
�Ix , which is of full row rank near the solution

due to Hypothesis 1. Defining the transformed corrections

�V 0
j D T 0T

2;j �Xj ; �Vj D T T
2;j �Xj ; (16.35)

we have �Xj D T 0
2;j �V 0

j C T2;j �Vj and the second part of (16.33) becomes

ZT
2;j F

j
�IxT 0

2;j �V 0
j D �ZT

2;j F j
� : (16.36)
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Due to Hypothesis 1, the square matrix ZT
2;j F

j
�IxT 0

2;j is nonsingular near a solution
such that we can solve for �V 0

j to get

�V 0
j D �.ZT

2;j F
j
�IxT 0

2;j /�1ZT
2;j F j

� : (16.37)

Finally, transforming the equation in the first part of (16.31) to the variables
.�V 0

j ; �Vj / and eliminating the terms �V 0
j leaves a system in the unknowns �Vj ,

which is of the same size and form as if we would discretize an ODE of d equations
by means of the Radau IIa method. This means that we actually have reduced the
complexity to that of solving an ODE of the size of the differential part. Solving
this system for the quantities �Vj and combining these with the already obtained
values �V 0

j then yields the corrections �Xj .
The overall Gauß-Newton-like process, which can be written as

�z D �J .z/CF .z/ (16.38)

with J .z/ ! Fz.z/ when z converges to a solution, can be shown to be locally and
quadratically convergent, see again [13]. Using such a process is indispensable for
the efficient numerical solution of unstructured DAEs.

16.4.3 Minimal-Norm-Corrected Gauß-Newton Method

We have implemented the approach of the previous section both for the Radau IIa
methods and for the Gauß-Lobatto methods. Experiments show that one can
successfully solve nonlinear DAEs even for larger values of � without having to
assume a special structure. Applying it to the problem of Example 1, however,
reveals a drawback of the approach described so far. In particular, we observe the
following. Trying to solve the problem of Example 1 on a larger time interval
starting at t D 0, one realizes that the integration terminates at about t D 14:5

because the nonlinear system solver fails, cp. Fig. 16.1. A closer look shows that
the reason for this is that the undetermined components y, which are not relevant
for the solution one is interested in, run out of scale. Scaling techniques cannot
avoid the effect. They can only help to make use of the whole range provided by
the floating point arithmetic. Using diagonal scaling, the iteration terminates then at
about t D 71:4, cp. again Fig. 16.1.

Actually, proceeding from numerical approximations .xi ; yi / at ti to numerical
approximations .xiC1; yiC1/ at tiC1 consists of two mechanisms. First, we must
provide a starting value z for the nonlinear system solver. We call this predictor and
write

z D P.xi ; yi /: (16.39)
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Fig. 16.1 Decadic logarithm of the Euclidean norm of the generated numerical solution .xi ; yi /

Then, the nonlinear system solver, called corrector in this context, yields the new
approximation according to

.xiC1; yiC1/ D C.z/: (16.40)

Thus the numerical flow ˚ of our method effectively has the form

.xiC1; yiC1/ D ˚.xi ; yi /; ˚ D C ı P: (16.41)

The problem can then be described as follows. Even if the actual solution and the
numerical approximations xi are bounded, there is no guaranty that the overall
numerical solutions .xi ; yi / stay bounded.

In [3], it was examined how different predictors P, in particular extrapolation of
some order, influence the overall behavior of the process. The result was that linear
extrapolation should be prefered to higher order extrapolation. However, even linear
extrapolation cannot avoid the blow-up.

The idea here is to modify the corrector C, in particular to introduce damping into
the nonlinear system solver. Recall that the nonlinear system to be solved does in
general not have a unique solution but that the part one is interested in, namely xiC1,
is unique. Consider the iteration given by

�z D �˛z � Fz.z/
C.F .z/ � ˛Fz.z/z/ (16.42)



454 P. Kunkel

with ˛ 2 Œ0; 1� replacing (16.30). For ˛ D 0, we rediscover (16.30). For ˛ D 1, we
have

z C �z D Fz.z/
C.Fz.z/z � F .z//;

which in the linear case F .z/ D Az � b leads to z C �z D ACb and thus to
the shortest solution with respect to the Euclidean norm. In this sense, the process
defined by (16.42) contains some damping. Moreover, if ˛ ! 0 quadratically during
the iteration, we maintain the quadratic convergence of the Gauß-Newton process.
The following result is due to [2].

Theorem 9 Consider the problem F .z/ D 0 and assume that the Jacobians Fz.z/
have full row rank. Furthermore, consider the iteration defined by (16.42) and
assume that ˛ ! 0 quadratically during the iteration. Then the so defined process
yields iterates that converge locally and quadratically to a solution of the given
problem.

Observe that replacing (16.30) by (16.42) only consists of a slight modification
of the original process. The main computational effort, namely the representation
of Fz.z/C, stays the same. Moreover, using a perturbed Jacobian J .z/ instead
of Fz.z/ is still possible and does not influence the convergence behavior. Fig-
ure 16.1 shows that with this modified nonlinear system solver we are now able
to produce bounded overall solutions in the case of Example 1.

16.4.4 Automatic Differentiation

In order to integrate (unstructured) DAEs, we must provide procedures for the
evaluation of F and F� together with their Jacobians. As already mentioned this
can be done by exploiting techniques from automatic differentiation, see, e.g., [9].

The simplest approach is to evaluate the functions on the fly, i.e., by using special
classes and overloaded operators, a call of a template function which implements F

can produce the needed evaluations just by changing the class of the variables. The
drawback in this approach is that there may be a lot of trivial computations when
the derivatives are actually zero. Moreover, no code optimization is possible.

An alternative approach consists of two phases. First, one uses automatic
differentiation to produce code for the evaluation of the needed functions. This code
can then be easily compiled using optimization. The drawback here is that one has
to adapt the automatic differentiation process or the produced code to the form one
needs for the following integration of the DAE. Nevertheless, one can expect this
approach to be more efficient for the actual integration of the DAE, especially for
larger values of �. Actually, one would prefer the first approach while a model is
developed. If the model is finalized, one would then prefer the second approach.

As an example, we have run the problem from Example 1 with both approaches
on the interval Œ0; 100� using the Gauß-Lobatto method for k D 3 and the
minimal-norm-corrected Gauß-Newton-like method starting with ˛ D 0:1 and
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using successive squaring. The computing time in the first case exploiting automatic
differentiation on the fly was 2.8 s. The computing time in the second case exploiting
optimized code produced by automatic differentiation was 0.6 s.

16.4.5 Exploiting First Integrals

If for a given ODE or DAE model first integrals are known, they should be included
into the model thus enforcing the produced numerical approximations to obey these
first integrals. The enlarged system is of course overdetermined but consistent. In
general, it is not clear how to deduce a square system from the overdetermined one
in order to apply standard integration procedures, cp. Example 2.

In Example 1, there are two hidden constraints which were found by differenti-
ation. As already mentioned there, it is in this case possible to reduce the problem
consisting of the original equations and the two additional constraints to a square
system by just omitting two equations of the original system. Sticking to automatic
differentiation and using the same setting as above, we can solve the overdetermined
system in 0.9 s and the reduced square system in 0.7 s.

For Example 2, such a beforehand reduction is not so obvious, but still possible
due to the simple structure of this specific problem. We solved the overdetermined
problem by means of the implicit Euler method (which is the Radau IIa method
for s D 1) as well as the original ODE by means of the explicit and implicit
Euler method performing 1,000 steps with stepsize h D 0:02. The results are
shown in Fig. 16.2. As one would expect, the numerical solution for the ODE
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Fig. 16.2 Numerical solutions for the Lotka/Volterra model
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produced by the explicit Euler method spirals outwards thus increasing the energy
while the numerical solution for the ODE produced by the implicit Euler method
spirals inwards thus decreasing energy. The numerical solution obtained from the
overdetermined system, of course, conserves the energy by construction.

16.4.6 Path Following by Arclength Parametrization

There are two extreme cases of DAEs, the case of ODEs Px D f .t; x/ on the
one hand and the case of nonlinear equations f .x/ D 0 on the other hand. For
F.t; x; Px/ D Px � f .t; x/, Hypothesis 1 is trivially satisfied with � D 0, a D 0,
and d D n. For F.t; x; Px/ D f .x/, Hypothesis 1 is satisfied with � D 0, a D n,
and d D 0, provided fx.x/ is nonsingular for all x 2 L0. Since t does neither occur
as an argument nor via differentiated variables, the solutions are constant in time
and thus, as solutions of a DAE, not so interesting. This changes if one considers
parameter dependent nonlinear equations f .x; �/ D 0, where � shall be a scalar
parameter. The problem is now underdetermined. Thus, it cannot satisfy one of the
above hypotheses. Under the assumption that Œ fx f� � has full row rank for all
.x; �/ 2 M D f �1.f0g/ ¤ ;, the solution set forms a one-dimensional manifold.
If one is interested in tracing this manifold, one can use path following techniques,
see, e.g., [4, 17]. However, it is also possible to treat such problems with solution
techniques for DAEs. A first choice would be to interpret the parameter � as time t

of the DAE. This would, however, imply that the parameter � is strictly monotone
along the one-dimensional manifold. But there are applications, where this is not
the case. It may even happen that the points where the parameter � is extremal are
of special interest. In order to treat such problems, we are in need of defining a
special type of time which is monotone in any case. Such a quantity is given as
the arclength of the one-dimensional manifold, measured say from the initial point
we start off. Since the arclength parametrization of a path is characterized by the
property that the derivative with respect to the parametrization has Euclidean length
one, we consider the DAE

f .x; �/ D 0; k Pxk2
2 C jP� j2 D 1 (16.43)

for the unknown .x; �/. If .x0; �0/ 2 M and Œ fx f� � is of full row rank on M,
the implicit function theorem yields that there is a local solution path . Ox.t/; O�.t//

passing through .x0; �0/. Moreover, k POx.t/k2
2 CjPO�.t/j2 D 1, when we parametrize by

arclength. Hence, the DAE (16.43) possesses a solution. Moreover, writing (16.43)
as F.z; Pz/ D 0 with z D .x; �/, we have

L0 D f.z; Pz/ j z D . Ox.t/; O�.t//; Pz D . POx.t/; PO�.t//g
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in Hypothesis 1. Because of

F0;Pz D
�

0 0

2 PxT 2 P�
�

; F0Iz D
�

fx f�

0 0

�
;

we may choose

Z2 D
�

In

0

�
:

By assumption, ZT
2 F0Iz D Œ fx f� � has full row rank and we may choose T2 as

a normalized vector in kernelŒ fx f� �, which is one-dimensional. In particular, we
may choose

T2 D
" POx

PO�

#

on L0. Finally, we observe that

FPzT2 D
�

0 0

2 POxT 2 PO�
� " POx

PO�

#
D

�
0

2

�

has full column rank at the solution and thus in a neighborhood of it. Hence, the DAE
(16.43) satisfies Hypothesis 1 with � D 0, a D n, and d D 1, where n denotes the
size of x. We can then use DAE solution techniques to solve (16.43) thus tracing the
solution path of the original parametrized system of nonlinear equations.

In order to determine points along the path, where the parameter � is extremal,
we may combine the DAE (16.43) with a root finding procedure, e.g., along the
lines of [18] or the references therein. The points of interests are characterized by
the condition P� D 0. We therefore augment the DAE (16.43) according to

f .x; �/ D 0; k Pxk2
2 C jP� j2 D 1; w � P� D 0; (16.44)

and try to locate points along the solution satisfying w D 0. Writing the DAE (16.44)
again as F.z/ D 0, where now z D .x; �; w/, we have

L0 D f.z; Pz/ j z D . Ox.t/; O�.t/; PO�.t//; Pz D . POx.t/; PO�.t/; RO�.t//g

in Hypothesis 1. Because of

F0IPz D
2
4

0 0 0

2 PxT 2 P� 0

0 �1 0

3
5 ; F0Iz D

2
4

fx f� 0

0 0 0

0 0 1

3
5 ;
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we may choose

Z2 D
2
4

In

0

0

3
5 :

Along the same lines as above, we may now choose

T2 D
2
4

POx 0
PO� 0

0 1

3
5

on L0. We then observe that

FPzT2 D
2
4

0 0 0

2 POxT 2 PO� 0

0 �1 0

3
5

2
4

POx 0
PO� 0

0 1

3
5 D

2
4

0 0

2 0

�PO� 0

3
5

fails to have full column rank at the solution. Thus, Hypothesis 1 cannot hold with
� D 0. We therefore consider Hypothesis 1 for � D 1. Starting from

F1IPz;Rz D

2
66666664

0 0 0

2 PxT 2 P� 0

0 �1 0

fx f� 0 0 0 0

� � 0 2 PxT 2 P� 0

0 0 1 0 �1 0

3
77777775

; F1Iz D

2
66666664

fx f� 0

0 0 0

0 0 1

� � 0

0 0 0

0 0 0

3
77777775

;

we use the fact that 0 ¤ . PxT ; �/T 2 kernelŒ fx f� � at a solution and therefore

�
fx f�

PxT P�
�

nonsingular

near the solution to deduce that rank F1IPz;Rz D n C 3. Choosing

Z2 D

2
66666664

In 0

0 �
0 1

0 �
0 0

0 0

3
77777775
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gives

ZT
2 F1Iz D

�
fx f� 0

� � 1

�
;

which has full row rank by assumption. Choosing

T2 D
2
4

POx
PO�
�

3
5

at the solution then yields

FPzT2 D
2
4

0 0 0

2 POxT 2 PO� 0

0 �1 0

3
5

2
4

POx
PO�
�

3
5 D

2
4

0

2

�PO�

3
5 :

Hence, the DAE (16.44) satisfies Hypothesis 1 with � D 1, a D n C 1, and d D 1,
and we can treat (16.44) by the usual techniques. The location of points Ot with
P�.Ot/ D 0 can now be seen as a root finding problem along solutions of (16.44) for
the function g defined by

g.x; �; w/ D w (16.45)

In particualar, it can be treated by standard means of root finding techniques.
In order to be able to determine a root Ot of g, we need that this root is simple,

i.e., that

d
dt g. Ox.t/; O�.t/; Ow.t//jtDOt ¤ 0; Ow.t/ D PO�.t/: (16.46)

In the case of (16.45), this condition simply reads

RO�.Ot/ ¤ 0: (16.47)

In order to determine RO�.Ot /, we start with f . Ox.t/; O�.t// D 0 along the solution.
Differentiating twice yields (omitting arguments)

fx
POx C f�

PO� D 0 (16.48)

and

fxx. POx; POx/ C fx� . POx/. PO�/ C fx
ROx C fx� . POx/. PO�/ C f�� . PO�; PO�/ C f�

RO� D 0: (16.49)
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Since PO�.Ot / D 0, the relation (16.48) gives

fx.x�; ��/v D 0; v D POx.Ot/ ¤ 0; (16.50)

with x� D Ox.Ot / and �� D O�.Ot/ for short. Thus, the square matrix fx.x�; ��/ is
rank-deficient such that there is a vector u ¤ 0 with

uT fx.x�; ��/ D 0: (16.51)

Multiplying (16.49) with uT from the left and evaluating at Ot yields

uT fxx.x
�; ��/.v; v/ C uT f� .x�; ��/ RO�.Ot / D 0: (16.52)

Assuming now that

uT fxx.x
�; ��/.v; v/ ¤ 0; uT f� .x�; ��/ ¤ 0 (16.53)

guarantees

RO�.Ot / D �.uT f� .x�; ��//�1.uT fxx.x�; ��/.v; v// ¤ 0: (16.54)

Note that the assumptions for .x�; ��/ we have required here are just those that
characterize a so-called simple turning point, see, e.g., [8, 15].

Example 3 Consider the example

�.1 � x3/ exp.10x1/=.1 C 0:01x1/ � x3 D 0;

22�.1 � x3/ exp.10x1/=.1 C 0:01x1/ � 30x1 D 0;

x3 � x4 C �.1 � x3/ exp.10x2/=.1 C 0:01x2/ D 0;

10x1 � 30x2 C 22�.1 � x4/ exp.10x2/=.1 C 0:01x2/ D 0;

from [11]. Starting from the trivial solution into the positive cone, the solution path
exhibits six turning points before the solution becomes nearly independent of � , see
Fig. 16.3, which has been produced by solving the corresponding DAE (16.44) by
the implicit Euler method combined with standard root finding techniques. }

16.5 Conclusions

We revised the theory of regular nonlinear DAEs of arbitrary index and gave
some extensions to overdetermined but consistent DAEs. We also discussed several
computational issues in the numerical treatment of such DAEs, namely suitable
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Fig. 16.3 Solution path for Example 3 projected into the .�; x2/-plane

discretizations, efficient nonlinear system solvers and their stabilization, as well as
automatic differentiation. We finally presented a DAE approach for numerical path
following for parametrized systems of nonlinear equations including the detection
and determination of (simple) turning points.
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