
Chapter 15
Regularization of Descriptor Systems

Nancy K. Nichols and Delin Chu

Abstract Implicit dynamic-algebraic equations, known in control theory as
descriptor systems, arise naturally in many applications. Such systems may not
be regular (often referred to as singular). In that case the equations may not have
unique solutions for consistent initial conditions and arbitrary inputs and the system
may not be controllable or observable. Many control systems can be “regularized”
by proportional and/or derivative feedback. We present an overview of mathematical
theory and numerical techniques for regularizing descriptor systems using feedback
controls. The aim is to provide stable numerical techniques for analyzing and
constructing regular control and state estimation systems and for ensuring that these
systems are robust. State and output feedback designs for regularizing linear time-
invariant systems are described, including methods for disturbance decoupling and
mixed output problems. Extensions of these techniques to time-varying linear and
nonlinear systems are discussed in the final section.

15.1 Introduction

Singular systems of differential equations, known in control theory as descriptor
systems or generalized state-space systems, have fascinated Volker Mehrmann
throughout his career. His early research, starting with his habilitation [33, 35],
concerned autonomous linear-quadratic control problems constrained by descriptor
systems. Descriptor systems arise naturally in many applications, including aircraft
guidance, chemical processing, mechanical body motion, power generation, net-
work fluid flow and many others, and can be considered as continuous or discrete
implicit dynamic-algebraic systems [32, 41]. Such systems may not be regular (often
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referred to as singular). In that case unique solutions to initial value problems
consistent with the system may not exist and the system may not be controllable
or observable. An important aspect of control system design is therefore to ensure
regularity of the system.

In this chapter we review the work of Volker and his colleagues on mathematical
theory and numerical techniques for regularizing descriptor systems using feedback
controls. Two key elements contributed initially to the research: the establishment
of conditions for the regularizability of descriptor systems by feedback [25, 30]
and the development of stable numerical techniques for the reduction of descriptor
systems to condensed matrix forms [33, 34, 36]. Following a stimulating meeting
at the International Conference on Linear Algebra and Applications in Valencia in
1987, these two research threads were brought together in a report on feedback
design for descriptor systems [5] and later published in [6] and [7].

Since that time, Volker has contributed to a whole sequence of exciting results on
the regularization of descriptor systems [3, 8–12, 15, 20–22, 24, 31, 37]. The devel-
opment of sound numerical methods for system design, as well as techniques for
guaranteeing the robustness of the systems to model uncertainties and disturbances,
has formed the main emphasis throughout this research. We describe some of this
work in the next sections.

We start with preliminary definitions and properties of descriptor systems and
then discuss regularization by state feedback for linear time-invariant systems.
Disturbance decoupling by state feedback is also discussed. The problem of regu-
larization by output feedback is then considered. Further developments involving
mixed output feedback regularization are given next, and finally work on time-
varying and nonlinear systems is briefly described.

15.2 System Design for Descriptor Systems

We consider linear dynamical control systems of the form

E Px.t/ D Ax.t/ C Bu.t/; x.t0/ D x0;

y.t/ D Cx.t/; (15.1)

or, in the discrete-time case,

Ex.k C 1/ D Ax.k/ C Bu.k/; x.0/ D x0;

y.k/ D Cx.k/; (15.2)

where E; A 2 R
n�n; B 2 R

n�m; C 2 R
p�n. Here x.�/ is the state, y.�/ is the output,

and u.�/ is the input or control of the system. It is assumed that m; p � n and that
the matrices B; C are of full rank. The matrix E may be singular. Such systems
are known as descriptor or generalized state-space systems. In the case E D I , the
identity matrix, we refer to (15.1) or (15.2) as a standard system.
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We assume initially that the system is time-invariant; that is, the system matrices
E; A; B; C are constant, independent of time. In this context, we are interested in
proportional and derivative feedback control of the form u.t/ D Fy.t/�G Py.t/Cv.t/

or u.k/ D Fy.k/ � Gy.k C 1/ C v.k/, where F; G 2 R
m�p are selected to give the

closed-loop system

.E C BGC/ Px.t/ D .A C BFC/x.t/ C Bv.t/ (15.3)

or

.E C BGC/x.k C 1/ D .A C BFC/x.k/ C Bv.k/ (15.4)

desired properties. Proportional output feedback control is achieved in the special
case G D 0. Derivative output feedback control corresponds to the special case
F D 0 and derivative and proportional state feedback control corresponds to the
special case C D I . The dual of the control system, an observer (or state-estimator),
is attained with an appropriate choice for v in the special case B D I . The aim of
the feedback designs is to alter the behaviour of the system response. Proportional
feedback acts to modify the system matrix A, whilst derivative feedback alters the
system matrix E . Different properties of the system can, therefore, be achieved
using different feedback combinations.

15.2.1 Structure of the System Response

The response of the descriptor system (15.1) or (15.2) can be described in terms of
the eigenstructure of the matrix pencil ˛E � ˇA, which we denote by .E; A/. The
system is regular if the pencil .E; A/ is regular, that is,

det.˛E � ˇA/ 6D 0 for some .˛; ˇ/ 2 C
2: (15.5)

The generalized eigenvalues of a regular pencil are defined by the pairs
.˛j ; ˇj / 2 C

2nf0; 0g such that

det.˛j E � ˇj A/ D 0; j D 1; 2; : : : ; n: (15.6)

If ˇj 6D 0, the eigenvalue pair is said to be finite with value given by �j D ˛j =ˇj

and otherwise, if ˇj D 0, then the pair is said to be an infinite eigenvalue. The
maximum number of finite eigenvalues that a pencil can have is less than or equal
to the rank of E .

If the system (15.1) or (15.2) is regular, then the existence and uniqueness of
classical smooth solutions to the dynamical equations is guaranteed for sufficiently
smooth inputs and consistent initial conditions [14, 43]. The solutions are character-
ized in terms of the Kronecker Canonical Form (KCF) [26]. Nonsingular matrices
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X and Y (representing right and left generalized eigenvectors and principal vectors
of the system pencil, respectively) then exist such that

XEY D
�

I 0

0 N

�
; XAY D

�
J 0

0 I

�
; (15.7)

where the eigenvalues of the Jordan matrix J coincide with the finite eigenvalues of
the pencil and N is a nilpotent Jordan matrix such that N i D 0, N i�1 6D 0, i > 0,
corresponding to the infinite eigenvalues. The index of a descriptor system, denoted
by ind.E; A/, is defined to be the degree i of nilpotency of the matrix N , that is, the
index of the system is the dimension of the largest Jordan block associated with an
infinite eigenvalue of the KCF (15.7). The index is a fundamental characteristic of a
descriptor system, determining the existence and smoothness of solutions.

By convention, a descriptor system is regular and of index 0 if and only if E

is nonsingular. In this case the system can be reformulated as a standard system.
However, the reduction to standard form can be numerically unreliable if E is ill-
conditioned with respect to inversion. Therefore it is desirable to work directly with
the generalized state-space form even where E is nonsingular.

A descriptor system is regular and has index at most one if and only if it has
exactly q D rank.E/ finite eigenvalues and n�q non-defective infinite eigenvalues.
Conditions for the system to be regular and of index � 1 are given by the following
important result.

Theorem 1 ([25, 30]) Let E; A 2 R
n�n and let S1.E/ and T1.E/ be full rank

matrices whose columns span the null spaces N .E/ and N .ET / respectively.
Then the following are equivalent:

(i) ˛E � ˇA is regular and of index � 1I
(ii) rank.ŒE; AS1.E/�/ D nI

(iii) rank.

�
E

T T1.E/A

�
/ D nI

(iv) rank.T T1.E/AS1.E// D n � rank.E/.

Systems that are regular and of index at most one can be separated into purely
dynamical and algebraic parts (fast and slow modes) [14, 23] and in theory the
algebraic part can be eliminated to give a reduced-order standard system. The
reduction process, however, may be ill-conditioned for numerical computation and
lead to large errors in the reduced order system [28]. If the system is not regular or
if ind.E; A/ > 1, then impulses can arise in the response of the system if the control
is not sufficiently smooth [27, 42]. Since the linear constant coefficient system is
usually only a model that approximates a nonlinear model, disturbances in the real
application will in general lead to impulsive solutions if the system is of index higher
than one.
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15.2.2 Controllability and Observability

If the descriptor system (15.1) or (15.2) is regular, then the following controllability
and observability conditions are sufficient for most classical design aims. To sim-
plify the notation, we hereafter denote a matrix with orthonormal columns spanning
the right nullspace of the matrix M by S1.M / and a matrix with orthonormal
columns spanning the left nullspace of M by T1.M /. The controllability conditions
are defined to be:

C0: rank.Œ˛E � ˇA; B�/ D n for all .˛; ˇ/ 2 C
2nf.0; 0/g.

C1: rank.Œ�E � A; B�/ D n for all � 2 C.
C2: rank.ŒE; AS1.E/; B�/ D n, where the columns of S1.E/ span

the null space of E .
(15.8)

The observability conditions are defined as the dual of the controllability conditions:

O0: rank.

�
˛E � ˇA

C

�
/ D n for all .˛; ˇ/ 2 C

2nf.0; 0/g.

O1: rank.

�
�E � A

C

�
/ D n for all � 2 C.

O2: rank.

2
4 E

T T1.E/A

C

3
5/ D n, where the columns of T1.E/ span

the right null space of E .
(15.9)

For systems that are regular, these conditions characterize the controllability of
the system. The condition C0 ensures that for any given initial and final states
of the system, x0, xf , there exists an admissible control that transfers the system
from x0 to xf in finite time [43]. Condition C1 ensures the same for any given
initial and final states x0, xf belonging to the solution space of the descriptor
system [5, 7]. A regular system that satisfies the conditions C0 and O0 is said to be
completely controllable (C–controllable) and completely observable (C–observable)
and has properties similar to those of standard control systems. A regular system is
strongly controllable (S–controllable) if C1 and C2 hold and strongly observable
(S–observable) if O1 and O2 hold. Regular systems that satisfy condition C2 are
controllable at infinity or impulse controllable [27, 42]. For these systems, impulsive
modes can be excluded. Condition C2 is closely related to the second condition
in Theorem 1, which characterizes regular systems of index at most one. By the
definition, a regular descriptor system of index at most one is controllable at infinity.

The controllability and observability conditions C0, C1, C2, and O0, O1, O2 are
all preserved under non-singular “equivalence” transformations of the pencil and
under proportional state and output feedback, but C2 is not necessarily preserved
under derivative feedback. Therefore, if derivative feedback is used to modify the
system dynamics, it is necessary to avoid losing controllability at infinity [5, 7].
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Whilst regularity is required for controllability and observability, it is not needed
in order to regularize the system by feedback. Many descriptor systems that are not
regular can be regularized by proportional and/or derivative feedback. Conversely,
systems that are regular can easily be transformed by feedback into closed-loop
systems that are not regular. It is important, therefore, to establish conditions that
ensure the regularity of systems under feedback and to develop numerically reliable
techniques for constructing regular feedback systems of index at most one.

Theorem 1 defines conditions that must be satisfied by a closed-loop system
pencil (15.3) or (15.4) for it to be regular and of index � 1. These conditions
are closely related to the properties C1, C2, O1, O2, but regularity is needed for
controllability and observability, whereas it is not required for regularization. In
[25, 30] it was first shown that these conditions can be used to determine a closed-
loop descriptor feedback system that is both regular and of index at most one, using
proportional feedback. The system itself does not need to be regular to achieve this
result.

In a standard system, derivative feedback does not alter the system behaviour
in any way that could not be achieved by proportional feedback alone. However,
for descriptor systems, it is possible that derivative feedback can decrease the
susceptibility to noise and change the dynamic order of the descriptor system.
One of the applications of derivative feedback is to shift infinite frequencies to
finite frequencies in order to regularize and control the system. These possibilities
together with the implications of Theorem 1, provided a challenge to Volker and
his colleagues and motivated their initial work on feedback design for descriptor
systems [5–7]. The work is based on numerically stable methods for reducing
descriptor systems to condensed forms using unitary transformations. In the next
section we summarize this research.

15.3 Regularization by Feedback for Time-Invariant Systems

The problem of regularizing a descriptor system of form (15.1) or (15.2) by feedback
is defined as:

Problem 1 Given real system matrices E; A; B; C , find real matrices F and G such
that the closed-loop pencil

.E C BGC; A C BFC/ (15.10)

is regular and ind.E C BGC; A C BFC/ � 1.

If C D I this is the state feedback regularization problem and otherwise it is the
output regularization feedback problem.

In the report [5], both the output and the state feedback regularization problems
are investigated initially, but the published version [7] treats only the state feedback
problem. A complete solution to the state feedback problem was achieved, but
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the output case proved to be more elusive, and a number of papers tackling this
problem followed later. The state feedback problem has its own importance in real
applications, so here we consider first the state feedback problem and then the output
feedback problem separately.

15.3.1 Regularization by State Feedback

In the papers [5–7], two major contributions are made. The first provides conditions
for the existence of solutions to the state feedback regularization problem. This is
achieved by numerically stable transformations to condensed forms that enable the
required feedback matrices to be constructed accurately in practice. The second
establishes ‘robust’ system design techniques for ensuring that the properties of the
closed-loop system pencil are insensitive to perturbations in the system matrices
E C BG; A C BF; B .

The following theorem gives the complete solution to the state feedback regular-
ization problem.

Theorem 2 ([7]) Given a system of the form (15.1) or (15.2), if rank.ŒE; AS1.E/;

B�/Dn, that is, if C2 holds, then there exist real feedback matrices F; G 2 R
m�n

such that the pencil .E C BG; A C BF/ is regular, ind.E C BG; A C BF/ � 1, and
rank.E C BG/ D r , where 0 � rank.ŒE; B�/ � rank.B/ � r � rank.ŒE; B�/.

To establish the theorem, we compute the QR factorization of B and the URV
factorization [28] of T T1.B/E to obtain orthogonal matrices P and Q such that

PEQ D
2
4 E11 0 0

E21 E22 0

0 0 0

3
5 ; PB D

2
4 0

B2

0

3
5 ; PAQ D

2
4A11 A12 A13

A21 A22 A23

A31 A32 A33

3
5 : (15.11)

Here E11 and B2 are nonsingular and E22 is full column rank. Both E11 and B2

can be further reduced by orthogonal transformations to full-rank positive diagonal
matrices. The theorem then follows by selecting feedback matrices to ensure that
the closed-loop pencil

.E C BG; A C BF/ (15.12)

satisfies condition (ii) of Theorem 1. If C1 holds as well as C2, the resulting closed-
loop system is then strongly controllable [7]. This system could be reduced further
to a standard system, but in this case the feedback matrices would have to be selected
with care to ensure that the reduction is numerically stable.

Additional results on state feedback regularization using only proportional
or derivative feedback are also given in [5–7]. The existence of regularizing
proportional state feedback designs is easily shown in the case where C2 holds
using the condensed form (15.11). For the derivative feedback case, the results are
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the same as in Theorem 2, with the exception that the potential rank of the matrix
.E C BG/ is now restricted from below. The maximum rank that can be obtained
remains equal to rank.ŒE; B�/.

In general the feedback designs that regularize the system (15.1) or (15.2) are not
uniquely determined by Theorem 2 and additional degrees of freedom in the design
can be exploited to obtain robustness and stability of the system as well as regularity.
For robustness we want the system to remain regular and of index at most one under
perturbations to the closed-loop system matrices. From Theorem 1 the closed-loop
pencil (15.12) is regular and of index � 1 if and only if

rank.

�
E C BG

T T1.E C BG/.A C BF/

�
/ D n: (15.13)

It is well-known that for a matrix with full rank, the distance to the nearest matrix of
lower rank is equal to its minimum singular value [28]. Hence for robustness of the
closed-loop pencil (15.12) we aim to select F and G such that the pencil is unitarily
equivalent to a pencil of the form ˛S1 � ˇS2 where

S1 D
�

˙R 0

0 0

�
; S2 D

�
A11 A12

A21 ˙L

�
; (15.14)

and the assigned singular values of ˙R; ˙L are such that the condition numbers
of ˙R and ˙L are minimal. This choice ensures regularity of the system and
maximizes a lower bound on the minimum singular value of (15.13), whilst
retaining an upper bound on the magnitude of the gains F and G. Details of the
algorithm to achieve these results are given in [5, 7, 39]. This choice also ensures
that the reduction of the closed-loop descriptor system to a standard form is as
well-conditioned as possible. In practice such robust systems also have improved
performance characteristics (see [40]).

In addition to regularity, it is desirable to ensure that a system design has stability
and even that it has specified finite eigenvalues. The following result, shown in [5, 7],
holds for descriptor systems.

Theorem 3 ([5, 7]) Given a system of the form (15.1) or (15.2), if the conditions
C1 and C2 hold and r is an integer such that 0 � rank.ŒE; B�/�rank.B/ � r �
rank.ŒE; B�/, then for any arbitrary set S of r self-conjugate finite poles there
exist feedback matrices F; G 2 R

m�n such that the pencil .E C BG; A C BF/ is
regular, ind.E C BG; A C BF/ � 1; rank.E C BG/ D r and all pairs in S are the
finite generalized eigenvalues of the pencil .E C BG; A C BF/.

For robustness of the closed-loop system, we require the maximum number of
finite eigenvalues to be assigned and both the finite and infinite eigenvalues to be
insensitive to perturbations in the closed-loop system matrices. One strategy for
obtaining a robust solution to the eigenvalue assignment problem for a descriptor
system is to apply derivative feedback alone to obtain a robust, regular index-one



15 Regularization of Descriptor Systems 423

system with rank.E C BG/ D r D rank.ŒE; B�/ using singular value assignment,
and then to use robust proportional state feedback to assign r finite eigenvalues to
the system. The problem of eigenvalue assignment by proportional state feedback
in descriptor systems is treated in [17, 25, 30]. Techniques for robust eigenstructure
assignment ensuring that the assigned eigenvalues of the closed-loop system are
insensitive to perturbations in the system matrices are established in [29, 30, 38].

The problem of designing an observer, or state-estimator, is the dual of the state
feedback control problem. An observer is an auxiliary dynamical system designed to
provide estimates Ox of all the states x of the system (15.1) or (15.2) using measured
output data y and Py. The estimator is a closed-loop system that is driven by the
differences between the measured outputs and derivatives of the system and their
estimated values. The system pencil is given by

.E C GC; A C FC/; (15.15)

where the matrices F and G must be selected to ensure that the response Ox of the
observer converges to the system state x for any arbitrary starting condition; that
is, the system must be asymptotically stable. By duality with the state feedback
problem, it follows that if the condition O2 holds, then the matrices F and G can
be chosen such that the corresponding closed-loop pencil (15.15) is regular and of
index at most one. If condition O1 also holds, then the closed-loop system is S-
observable. Furthermore, the remaining freedom in the system can be selected to
ensure the stability and robustness of the system and the finite eigenvalues of the
system pencil can be assigned explicitly by the techniques described for the state
feedback control problem.

15.3.2 Disturbance Decoupling by State Feedback

In practice control systems are subject to disturbances that may include modelling
or measurement errors, higher order terms from linearization, or unknown inputs
to the system. For such systems it is important to design feedback controllers and
observers that suppress the disturbance so that it does not affect the input-output
of the system. In research strongly inspired by the earlier work of Volker and his
colleagues on state feedback regularization, the problem of disturbance decoupling
is treated in [20, 21].

In the case that disturbances are present, the linear time-invariant system takes
the form

E Px.t/ D Ax.t/ C Bu.t/ C Hq.t/; x.t0/ D x0;

y.t/ D Cx.t/; (15.16)
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or

Ex.k C 1/ D Ax.k/ C Bu.k/ C Hq.k/; x.0/ D x0;

y.k/ D Cx.k/; (15.17)

where E; A 2 R
n�n; B 2 R

n�m; C 2 R
q�n; H 2 R

n�p; and q.�/ represents a vector
of disturbances.

To suppress the disturbances, a state feedback controller is used to modify the
input-output map, or transfer function, of the system. The disturbance decoupling
problem for the descriptor system (15.16) or (15.17) is then to find proportional and
derivative feedback matrices F; G such that the closed-loop pencil .ECBG; ACBF/

is regular and of index at most one and

T .s/ � C.s.E C BG/ � .A C BF//�1H � 0; (15.18)

where T .s/ defines the transfer function of the closed-loop system from the input
disturbance q.�/ to the output y.�/. This condition ensures that the disturbance does
not affect the input-output response of the closed-loop system for any choice of the
input control u.�/. Necessary and sufficient conditions for the existence of a solution
to this problem are established in [21]. In addition, conditions are derived under
which the feedback matrices can be chosen such that the closed-loop system is also
stable. The derivations are constructive and a numerically stable algorithm is given
for implementing the procedure.

In [20] the problem of designing a disturbance-decoupled observer system for
estimating (a subset of) the states of the system (15.16) or (15.17) is developed.
The aim is to select feedback matrices such that the closed-loop observer is regular
and of index at most one and such that the disturbances have no influence on the
error in the estimated states of the system. Necessary and sufficient conditions are
derived for the existence of disturbance-decoupled observers of this form and also
for the observer to be stable, ensuring that the estimated states converge over time
to the corresponding states of the original system. The main results are established
constructively and are again based on a condensed form that can be computed in a
numerically stable way using unitary matrix transformations.

15.3.3 Regularization by Output Feedback

The output feedback regularization problem is to find derivative and state output
feedback matrices F; G such that the closed-loop system pencil (15.10) is regular
and has index at most one.

Meeting at the Institute for Mathematics and Its Applications in Minnesota
in 1992 and following up the earlier research on regularization, Volker and his
colleagues tackled the difficult output feedback problem in earnest. The results of
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the research are published in an extensive report [8] and in later papers [9, 10].
In these papers, a condensed form of the descriptor system pencil is derived
that displays the conditions under which the system can be transformed into a
regular system of index at most one by output feedback using numerically stable
orthogonal transformations. For proportional output feedback the solution to the
design problem follows immediately from this condensed form. Necessary and
sufficient conditions for a feedback matrix F 2 R

m�p to exist such that the pencil
.E; A C BFC/ is regular and has index at most one are given by C2 and O2. The
closed-loop system is then S-controllable and S-observable if C1 and O1 also hold
[8, 10].

For combined derivative and proportional output feedback, it is also established
in [8, 10], using the condensed form, that if C2 and O2 hold, then there exist
matrices F; G 2 R

m�p such that the closed-loop pencil .E C BGC; A C BFC/ is
regular, has index at most one, and rank.E CBGC/ lies in a given range. Techniques
such as those used for the state feedback problem to ensure optimal conditioning, or
robustness of the closed-loop system to perturbations, are also described in [8, 39].

With proportional output feedback alone, if the system has index � 1, then the
number of finite eigenvalues of the closed-loop pencil .E; A C BFC/ is fixed at
r D rank.E/. With derivative and proportional feedback, the system pencil becomes
.E C BGC; A C BFC/ and the system properties that depend on the left and right
null spaces of E , such as C2 and O2, may be altered and the rank of E C BGC may
be increased or decreased from that of E . If the closed-loop system is regular with
index D 1, then the system may be separated into r D rank.E C BGC/ differential
or difference equations and n � r purely algebraic equations. In applications, it may
be useful to have more or fewer differential or difference equations. A complete
characterization of the achievable ranks r for systems that are regular and of index
at most one is, therefore, desirable.

Variations of the condensed form of [8, 10] that can be obtained by stable
orthogonal transformations have subsequently been derived in [11, 18, 19, 22]
and different approaches to the output feedback problem have been developed. A
comprehensive summary of the extended results, based on these condensed forms,
is given in [3]. The main result can be expressed as follows.

Theorem 4 ([3, 11, 18, 19, 22]) Let Ta D T1.ES1.C //; Sa D S1.T T1.B/E/,
and

Tb D T1.ŒE; AS1.

�
E

C

�
/; B�/; Sb D S1.

2
4 E

T T1.ŒE; B�/A/

C

3
5/:

Then the following statements are equivalent:

(i) There exist feedback matrices F; G 2 R
m�p such that the closed-loop pencil

.E C BGC; A C BFC/ is regular and of index at most one.
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(ii) T T
a ASb has full column rank, T T

b ASa has full row rank and

rank.T T1.ŒE; B�/AS1.

�
E

C

�
// � n � rank.

�
E B

C 0

�
/:

Moreover, if the closed-loop pencil .E C BGC; A C BFC/ is regular and of
index at most one with r D rank.E C BGC/ then

rank .ŒE; B�/ C rank.

�
E

C

�
/ � rank.

�
E B

C 0

�
/ � r �

� rank.ŒE; B�/ � rank.T T
a ASb/ � rank.

�
E

C

�
/ � rank.T T

b ASa/:

The matrices in the theorem and their ranks are easily obtained from the
following condensed form [3, 18, 22], where U; V; 2 R

n�n, P 2 R
m�m and

W 2 R
p�p are orthogonal matrices:

UEV D

2
66664

t1 t2 t3 s4 s5

t1 E11 0 0 0 0

t2 E21 E22 0 0 0

t3 E31 E32 E33 E34 0

t4 E41 E42 0 E44 0

t5 0 0 0 0 0

3
77775;

UBP D

2
66664

t3 t4

t1 0 0

t2 0 0

t3 B31 B32

t4 0 B42

t5 0 0

3
77775; (15.19)

WCV D
� t1 t2 t3 s4 s5

s4 C11 C12 0 C14 0

t1 C21 0 0 0 0

�
;

where the blocks E11, C21, E22, E33, B31, B42, and C14 are nonsingular.
Theorem 4 follows directly from the condensed form (15.19). The theorem

gives a complete characterization of the possible ranks of E C BGC for systems
that are regular and of index at most one. Additional results on output feedback
regularization using only proportional or derivative feedback are also presented
in the references. Corresponding results for observer designs can be determined
directly by duality.

In practice, it is desirable not only that the closed-loop descriptor system is
regular and has index at most one, but also that it is robust in the sense that it



15 Regularization of Descriptor Systems 427

is insensitive to perturbations in the system matrices. As in the state feedback
case, the aim is to choose F and G such that the closed-loop pencil is unitarily
equivalent to a pencil of the form (15.14) where the matrices ˙R and ˙L are well-
conditioned for inversion. This choice ensures that the reduction of the closed-loop
system to a standard system is computationally reliable. Partial solutions to this
problem are provided in [8, 9], based on the results of [24], and an algorithm is
given for minimizing upper bounds on the conditioning of ˙R and ˙L using unitary
transforms to condensed forms. This procedure generally improves the conditioning
of the closed-loop system.

15.3.4 Regularization by Mixed Output Feedback

Systems where different states and derivatives can be output arise commonly in
mechanical multi-body motion. In such systems, velocities and accelerations can
often be measured more easily than states (e.g. by tachometers or accelerometers).
Time-invariant systems of this type can be written in the form:

E Px.t/ D Ax.t/ C Bu.t/; x.t0/ D x0;

y1.t/ D Cx.t/; (15.20)

y2.t/ D � Px;

or, in the discrete time case

Ex.k C 1/ D Ax.k/ C Bu.k/; x.0/ D x0;

y1.k/ D Cx.k/; (15.21)

y2.k C 1/ D � x.k C 1/;

where E; A 2 R
n�n; B 2 R

n�m; C 2 R
p�n; � 2 R

q�n. In this case we are
interested in proportional and derivative control of the form u.t/ D Fy1.t/�G Py2.t/

or u.k/ D Fy1.k/ � Gy2.k C 1/, where F and G are chosen to give the closed-loop
system pencil

.E C BG�; A C BFC/ (15.22)

desired properties. In particular the aim is to ensure that the closed-loop system is
regular and of index at most one. The mixed output feedback regularization problem
for this system is stated explicitly as follows.

Problem 2 For a system of the form (15.20) or (15.21), give necessary and suffi-
cient conditions to ensure the existence of feedback matrices F 2 R

m�p and G 2
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R
m�q such that the closed-loop system pencil .E C BG�; A C BFC/ is regular and

ind.E C BG�; A C BFC/ � 1.

The mixed feedback regularization problem and its variants, which are signif-
icantly more difficult than the state and output feedback regularization problems,
have been studied systematically by Volker and his colleagues in [22, 37]. These
have not been investigated elsewhere, although systems where different states and
derivatives are output arise commonly in practice.

Examples frequently take the second order form

M
::
z CK Pz C P z D B1 Pu C B2u (15.23)

and can be written in the generalized state space form

�
M 0

K I

� � Pz
Pv
�

D
�

0 I

�P 0

� �
z
v

�
C

�
B1

B2

�
u: (15.24)

If the velocities Pz of the states of the system can be measured, then the states
v D M Pz � B1u are also available and the outputs

y1 D Cx D �
0 I

� �
z
v

�
; y2 D � Px D �

I 0
� � Pz

Pv
�

(15.25)

can be used separately to modify the system by either proportional or derivative
feedback, respectively. The corresponding closed-loop state-space system matrices
then take the form

E C BG� D
�

M C B1G 0

K C B2G I

�
; A C BFC D

�
0 I C B1F

�P B2F

�
: (15.26)

Different effects can, therefore, be achieved by feeding back either the derivatives Pz
or the states v. In particular, in the case where M is singular, but rankŒM; B1� D n,
the feedback G can be chosen such that M CB1G is invertible and well-conditioned
[7], giving a robust closed-loop system that is regular and of index zero. The
feedback matrix F can be chosen separately to assign the eigenvalues of the system
[30], for example, or to achieve other objectives.

The complete solution to the mixed output feedback regularization problem is
given in [22]. The theorem and its proof are very technical. Solvability is established
using condensed forms derived in the paper. The solution to the output feedback
problem given in Theorem 4 is a special case of the complete result for the mixed
output case given in [22]. The required feedback matrices are constructed directly
from the condensed forms using numerically stable transformations.

Usually the design of the feedback matrices still contains freedom, however,
which can be resolved in many different ways. One choice is to select the feedbacks
such that the closed-loop system is robust, or insensitive to perturbations, and, in
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particular, such that it remains regular and of index at most one under perturbations
(due, for example, to disturbances or parameter variations). This choice can also
be shown to maximize a lower bound on the stability radius of the closed-loop
system [13]. Another natural choice would be to use minimum norm feedbacks,
which would be a least squares approach based on the theory in [24]. This approach
is also investigated in [22, 37]. The conclusion is that although minimum norm
feedbacks are important in other control problems, such as eigenvalue assignment
or stabilization because they remove ambiguity in the solution in a least squares
sense, for the problem of regularization they do not lead to a useful solution, unless
the rank of E is decreased. Heuristic procedures for obtaining a system by output
feedback that is robustly regular and of index at most one are discussed in [8, 9, 39].

15.4 Regularization of Time-Varying and Nonlinear
Descriptor Systems

Feedback regularization for time-varying and nonlinear descriptor systems provided
the next target for Volker’s research. Extending the previous work to the time-
varying case was enabled primarily by the seminal paper on the analytic singular
value decomposition (ASVD) published by Volker and colleagues in 1991 [4]. The
ASVD allows condensed forms to be derived for the time-varying problem, just
as the SVD does for the time-invariant case, and it provides numerically stable
techniques for determining feedback designs.

The continuous form of the time-varying descriptor system is given by the
implicit system

E.t/ Px.t/ D A.t/x.t/ C B.t/u.t/; x.t0/ D x0;

y.t/ D C.t/x.t/; (15.27)

where E.t/; A.t/ 2 R
n�n; B.t/ 2 R

n�m; C.t/ 2 R
p�n are all continuous functions

of time and x.t/ is the state, y.t/ is the output, and u.t/ is the input or control
of the system. (Corresponding discrete-time systems with time-varying coefficients
can also be defined, but these are not considered here.)

In this general form, complex dynamical systems including constraints can be
modelled. Such systems arise, in particular, as linearizations of a general nonlinear
control system of the form

F .t; x; Px; u/ D 0; x.t0/ D x0;

y D G .t; x/; (15.28)

where the linearized system is such that E.t/; A.t/; B.t/ are given by the Jacobians
of F with respect to Px; x; u, respectively, and C.t/ is given by the Jacobian of G
with respect to x (see [31]).
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For the time-varying system (15.27) and the nonlinear system (15.28), the system
properties can be modified by time-varying state and output feedback as in the time-
invariant case, but the characterization of the system, in particular the solvability
and regularity of the system, is considerably more complicated to define than in the
time-invariant case and it is correspondingly more difficult to analyse the feedback
problem. The ultimate goal remains, however, to obtain stable numerical approaches
to the problem using time-varying orthogonal transformations to condensed forms.

If time-varying orthogonal transformations U.t/; V .t/; W.t/; Y.t/ are applied to
the system (15.27), and all variables are assumed to be time-dependent, then the
system becomes

U T EV Pz D .U T AV � U T EVS/z C U T BWw;

Qy D YCVz; (15.29)

where x.t/ D V.t/z.t/, u.t/ D W.t/w.t/, Qy.t/ D Y.t/y.t/ and S.t/ D V.t/T PV .t/

is a skew-symmetric matrix. We see that applying time-varying transformations
alters the system matrix A, and this must be taken into account where reducing
the system to equivalent condensed forms.

In [1, 2] it is shown that the ASVD can be used to produce a condensed form
for system (15.27), similar to the form derived in [10]. A time-varying system is
defined here to be regular and of index at most one if the conditions of Theorem 1
hold for all t and the system can be decoupled into purely dynamic and algebraic
parts. In order to establish regularizability of system (15.27), the strong assumption
is made that rank.E.t// is constant and that ranks in the condensed form are also
constant. Time-varying output feedback matrices are then constructed to produce a
closed-loop pointwise regular pencil of the form (15.10) with index at most one.
The rank assumptions ensure the solvability of the closed-loop system. The system
matrices E; A; B; C , are assumed to be analytic functions of t , but these conditions
can be relaxed provided the ASVD decompositions remain sufficiently smooth.

In the papers [12, 31], a much deeper analysis of the regularization problem
is developed. Detailed solvability conditions for the time-varying system (15.27)
are established and different condensed forms are derived, again using the ASVD.
Constant rank assumptions do not need to be applied, although the existence of
smooth ASVDs are required. The analysis covers a plethora of different possible
behaviours of the system. One of the tasks of the analysis is to determine redun-
dancies and inconsistencies in the system in order that these may be excluded from
the design process. The reduction to the condensed forms displays all the invariants
that determine the existence and uniqueness of the solution. The descriptor system
is then defined to be regularizable if there exist proportional or derivative feedback
matrices such that the closed-loop system is uniquely solvable for every consistent
initial state vector and any given (sufficiently smooth) control. Conditions for the
system to be regularizable then follow directly from the condensed forms.

In [31] a behaviour approach is taken to the linear time-varying problem where
state, input and output variables are all combined into one system vector and the
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combined system is studied. This approach allows inhomogeneous control problems
also to be analysed. Instead of forming a derivative array from which the system
invariants and the solutions of the original system can be determined, as in [14, 16],
the behaviour approach allows the invariants to be found without differentiating the
inputs and thus avoids restrictions on the set of admissible controls. Reduction of
the behaviour system to condensed form enables an underlying descriptor system
to be extracted and the conditions under which this system can be regularized
by proportional and derivative feedback are determined. The construction of the
feedback matrices is also described. The reduction and construction methods rely
on numerically stable equivalence transformations.

More recent work of Volker and his colleagues [15] extends the behaviour
approach to a general implicit nonlinear model of the form

F .t; x; Px; u; y/ D 0; x.t0/ D x0: (15.30)

The property of ‘strangeness-index’ is defined and used in the analysis. This
property corresponds to ‘index’, as defined for a linear time-invariant descriptor
system, and ‘strangeness-free’ corresponds to the condition that a time-invariant
system is of index at most one. Conditions are established under which a behaviour
system can be reduced to a differential-algebraic system, and after reinterpretation
of the variables, to a typical implicit nonlinear system consisting of differential
and algebraic parts. Locally linear state feedback can then be applied to ensure
that the system is regular and strangeness-free. Standard simulation, control, and
optimization techniques can be applied to the reformulated feedback system. Further
details of Volker’s work on nonlinear differential–algebraic systems can be found in
other chapters in this text.

15.5 Conclusions

We have given here a broad-brush survey of the work of Volker Mehrmann on
the problems of regularizing descriptor systems. The extent of this work alone
is formidable and forms only part of his research during his career. We have
concentrated specifically on results from Volker’s own approaches to the regularity
problem. The primary aim of his work has been to provide stable numerical
techniques for analyzing and constructing control and state estimation systems and
for ensuring that these systems are robust. The reduction of systems to condensed
forms using orthogonal equivalence transformations forms the major theme in this
work. Whilst some of the conclusions described here can also be obtained via other
canonical or condensed forms published in the literature, these cannot be derived
by sound numerical methods and the required feedbacks cannot be generated from
these by backward stable algorithms. Volker’s work has therefore had a real practical
impact on control system design in engineering as well as producing some beautiful
theory. It has been a pleasure for us to be involved in this work.
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