
Chapter 14
Low-Rank Approximation of Tensors

Shmuel Friedland� and Venu Tammali

Abstract In many applications such as data compression, imaging or genomic
data analysis, it is important to approximate a given tensor by a tensor that is
sparsely representable. For matrices, i.e. 2-tensors, such a representation can be
obtained via the singular value decomposition, which allows to compute best rank
k-approximations. For very big matrices a low rank approximation using SVD is
not computationally feasible. In this case different approximations are available.
It seems that variants of the CUR-decomposition are most suitable. For d -mode
tensors T 2 ˝d

iD1Rni , with d > 2, many generalizations of the singular value
decomposition have been proposed to obtain low tensor rank decompositions. The
most appropriate approximation seems to be best .r1; : : : ; rd /-approximation, which
maximizes the `2 norm of the projection of T on ˝d

iD1Ui , where Ui is an ri -
dimensional subspace R

ni . One of the most common methods is the alternating
maximization method (AMM). It is obtained by maximizing on one subspace
Ui , while keeping all other fixed, and alternating the procedure repeatedly for
i D 1; : : : ; d . Usually, AMM will converge to a local best approximation. This
approximation is a fixed point of a corresponding map on Grassmannians. We
suggest a Newton method for finding the corresponding fixed point. We also discuss
variants of CUR-approximation method for tensors. The first part of the paper is a
survey on low rank approximation of tensors. The second new part of this paper is a
new Newton method for best .r1; : : : ; rd /-approximation. We compare numerically
different approximation methods.
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14.1 Introduction

Let R be the field of real numbers. Denote by R
n D R

n1�:::�nd WD ˝d
iD1Rnj , where

n D .n1; : : : ; nd /, the tensor products of Rn1 ; : : : ;Rnd . T D Œti1;:::;id � 2 R
n is called

a d -mode tensor. Note that the number of coordinates of T is N D n1 : : : nd .
A tensor T is called a sparsely representable tensor if it can represented with a
number of coordinates that is much smaller than N .

Apart from sparse matrices, the best known example of a sparsely representable
2-tensor is a low rank approximation of a matrix A 2 R

n1�n2 . A rank k-
approximation of A is given by Aappr WD Pk

iD1 uiv>
i , which can be identified

with
Pk

iD1 ui ˝ vi . To store Aappr we need only the 2k vectors u1; : : : ;uk 2
R
n1; v1; : : : ; vk 2 R

n2 . A best rank k-approximation of A 2 R
n1�n2 can be

computed via the singular value decomposition, abbreviated here as SVD, [19].
Recall that if A is a real symmetric matrix, then the best rank k-approximation must
be symmetric, and is determined by the spectral decomposition of A.

The computation of the SVD requires O.n1n22/ operations and at least O.n1n2/
storage, assuming that n2 � n1. Thus, if the dimensions n1 and n2 are very large,
then the computation of the SVD is often infeasible. In this case other type of low
rank approximations are considered, see e.g. [1, 5, 7, 11, 13, 18, 21].

For d -tensors with d > 2 the situation is rather unsatisfactory. It is a major
theoretical and computational problem to formulate good generalizations of low
rank approximation for tensors and to give efficient algorithms to compute these
approximations, see e.g. [3, 4, 8, 13, 15, 29, 30, 33, 35, 36, 43].

We now discuss briefly the main ideas of the approximation methods for tensors
discussed in this paper. We need to introduce (mostly) standard notation for tensors.
Let Œn� WD f1; : : : ; ng for n 2 N. For xi WD .x1;i ; : : : ; xni ;i /

> 2 R
ni ; i 2 Œd �, the

tensor ˝i2Œd �xi D x1 ˝ � � � ˝ xd D X D Œxj1;:::;jd � 2 R
n is called a decomposable

tensor, or rank one tensor if xi ¤ 0 for i 2 Œd �. That is, xj1;:::;jd D xj1;1 � � �xjd ;d for
ji 2 Œni �; i 2 Œd �. Let hxi ; yi ii WD y>

i xi be the standard inner product on R
ni for

i 2 Œd �. Assume that S D Œsj1;:::;jd � and T D Œtj1;:::;jd � are two given tensors in R
n.

Then hS ;T i WD P
ji2Œni �;i2Œd � sj1;:::;jd tj1;:::;jd is the standard inner product on R

n.
Note that

h˝i2Œd �xi ;˝i2Œd �yi i D
Y

i2Œd �
hxi ; yi ii ;

hT ;˝i2Œd �xi i D
X

ji2Œni �;i2Œd �
tj1;:::;jd xj1;1 � � �xjd ;d :

The norm kT k WD phT ;T i is called the Hilbert-Schmidt norm. (For matrices,
i.e. d D 2, it is called the Frobenius norm.)
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Let I D f1 � i1 < � � � < il � d g � Œd �. Assume that X D Œxji1 ;��� ;jil � 2
˝k2Œl�Rnik . Then the contraction T � X on the set of indices I is given by:

T � X D
X

jik2Œnik �;k2Œl�
tj1;:::;jd xji1 ;:::;jil 2 ˝p2Œd �nIRnp :

Assume that Ui � R
ni is a subspace of dimension ri with an orthonormal basis

u1;i ; : : : ;uri ;i for i 2 Œd �. Let U WD ˝d
iD1Ui � R

n. Then ˝d
iD1uji ;i , where ji 2

Œni �; i 2 Œd �, is an orthonormal basis in U. We are approximatingT 2 R
n1�����nd by

a tensor

S D
X

ji2Œri �;i2Œd �
sj1;:::;jd uj1;1 ˝ � � � ˝ ujd ;d 2 R

n (14.1)

The tensor S 0 D Œsj1;:::;jd � 2 R
r1�����rd is the core tensor corresponding to S in the

terminology of [42].
There are two major problems: The first one is how to choose the subspaces

U1; : : : ;Ud . The second one is the choice of the core tensor S 0. Suppose we already
made the choice of U1; : : : ;Ud . Then S D PU.T / is the orthogonal projection of
T on U:

P˝i2Œd �Ui .T / D
X

ji2Œri �;i2Œd �
hT ;˝i2Œd �uji ;i i ˝i2Œd � uji ;i : (14.2)

If the dimensions of n1; : : : ; nd are not too big, then this projection can be explicitly
carried out. If the dimension n1; : : : ; nd are too big to compute the above projection,
then one needs to introduce other approximations. That is, one needs to compute the
core tensor S 0 appearing in (14.1) accordingly. The papers [1, 5, 7, 11, 13, 18, 21,
29, 33, 35, 36] essentially choose S 0 in a particular way.

We now assume that the computation of PU.T / is feasible. Recall that

kP˝i2Œd �Ui .T /k2 D
X

ji2Œri �;i2Œd �
jhT ;˝d

iD1uji ;i ij2: (14.3)

The best r-approximation of T , where r D .r1; : : : ; rd /, in Hilbert-Schmidt norm
is the solution of the minimal problem:

min
Ui ;dim UiDri ;i2Œd �

min
X 2˝d

i2Œd �Ui
kT � X k: (14.4)

This problem is equivalent to the following maximum

max
Ui ;dim UiDri ;i2Œd �

kP˝i2Œd �Ui .T /k2: (14.5)
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The standard alternating maximization method, denoted by AMM, for solving
(14.5) is to solve the maximum problem, where all but the subspace Ui is fixed.
Then this maximum problem is equivalent to finding an ri -dimensional subspace
of Ui containing the ri biggest eigenvalues of a corresponding nonnegative definite
matrixAi.U1; : : : ;Ui�1;UiC1; : : : ;Ud / 2 Sni . Alternating between U1;U2; : : : ;Ud

we obtain a nondecreasing sequence of norms of projections which converges to v.
Usually, v is a critical value of kP˝i2Œd �Ui .T /k. See [4] for details.

Assume that ri D 1 for i 2 Œd �. Then dim Ui D 1 for i 2 Œd �. In this case the
minimal problem (14.4) is called a best rank one approximation of T . For d D 2

a best rank one approximation of a matrix T D T 2 R
n1�n2 is accomplished

by the first left and right singular vectors and the corresponding maximal singular
value �1.T /. The complexity of this computation is O.n1n2/ [19]. Recall that the
maximum (14.5) is equal to �1.T /, which is also called the spectral norm kT k2. For
d > 2 the maximum (14.5) is called the spectral norm of T , and denoted by kT k� .
The fundamental result of Hillar-Lim [27] states that the computation of kT k� is
NP-hard in general. Hence the computation of best r-approximation is NP-hard in
general.

Denote by Gr.r;Rn/ the variety of all r-dimensional subspaces in R
n, which is

called Grassmannian or Grassmann manifold. Let

1d WD .1; : : : ; 1
„ ƒ‚ …

d

/; Gr.r;n/ WD Gr.r1; n1/ � � � � � Gr.rd ; nd /:

Usually, the AMM for best r-approximation of T will converge to a fixed point
of a corresponding map FT W Gr.r;n/ ! Gr.r;n/. This observation enables us to
give a new Newton method for finding a best r-approximation to T . For best rank
one approximation the map FT and the corresponding Newton method was stated
in [14].

This paper consists of two parts. The first part surveys a number of common
methods for low rank approximation methods of matrices and tensors. We did not
cover all existing methods here. We were concerned mainly with the methods that
the first author and his collaborators were studying, and closely related methods.
The second part of this paper is a new contribution to Newton algorithms related
to best r-approximations. These algorithms are different from the ones given
in [8, 39, 43]. Our Newton algorithms are based on finding the fixed points
corresponding to the map induced by the AMM. In general its known that for
big size problem, where each ni is big for i 2 Œd � and d � 3, Newton methods
are not efficient. The computation associate the matrix of derivatives (Jacobian) is
too expensive in computation and time. In this case AMM or MAMM (modified
AMM) are much more cost effective. This well known fact is demonstrated in our
simulations.

We now briefly summarize the contents of this paper. In Sect. 14.2 we review
the well known facts of singular value decomposition (SVD) and its use for
best rank k-approximation of matrices. For large matrices approximation methods
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using SVD are computationally unfeasible. Section 14.3 discusses a number of
approximation methods of matrices which do not use SVD. The common feature
of these methods is sampling of rows, or columns, or both to find a low rank
approximation. The basic observation in Sect. 14.3.1 is that, with high probability,
a best k-rank approximation of a given matrix based on a subspace spanned by the
sampled row is with in a relative � error to the best k-rank approximation given by
SVD. We list a few methods that use this observation. However, the complexity of
finding a particular k-rank approximation to anm � n matrix is still O.kmn/, as the
complexity truncated SVD algorithms using Arnoldi or Lanczos methods [19, 31].
In Sect. 14.3.2 we recall the CUR-approximation introduced in [21]. The main idea
of CUR-approximation is to choose k columns and rows of A, viewed as matrices
C and R, and then to choose a square matrix U of order k in such a way that CUR
is an optimal approximation of A. The matrix U is chosen to be the inverse of the
corresponding k � k submatrix A0 of A. The quality of CUR-approximation can be
determined by the ratio of j detA0j to the maximum possible value of the absolute
value of all k � k minors of A. In practice one searches for this maximum using a
number of random choices of such minors. A modification of this search algorithm
is given in [13]. The complexity of storage of C;R;U is O.kmax.m; n//. The
complexity of finding the value of each entry of CUR is O.k2/. The complexity
of computation of CUR is O.k2mn/. In Sect. 14.4 we survey CUR-approximation
of tensors given in [13]. In Sect. 14.5 we discuss preliminary results on best r-
approximation of tensors. In Sect. 14.5.1 we show that the minimum problem (14.4)
is equivalent to the maximum problem (14.5). In Sect. 14.5.2 we discuss the notion
of singular tuples and singular values of a tensor introduced in [32]. In Sect. 14.5.3
we recall the well known solution of maximizing kP˝i2Œd �Ui .T /k2 with respect to
one subspace, while keeping other subspaces fixed. In Sect. 14.6 we discuss AMM
for best r-approximation and its variations. (In [4, 15] AMM is called alternating
least squares, abbreviated as ALS.) In Sect. 14.6.1 we discuss the AMM on a
product space. We mention a modified alternating maximization method and and 2-
alternating maximization method, abbreviated as MAMM and 2AMM respectively,
introduced in [15]. The MAMM method consists of choosing the one variable which
gives the steepest ascend of AMM. 2AMM consists of maximization with respect to
a pair of variables, while keeping all other variables fixed. In Sect. 14.6.2 we discuss
briefly AMM and MAMM for best r-approximations for tensors. In Sect. 14.6.3 we
give the complexity analysis of AMM for d D 3; r1 � r2 � r3 and n1 � n2 � n3.
In Sect. 14.7 we state a working assumption of this paper that AMM converges to
a fixed point of the induced map, which satisfies certain smoothness assumptions.
Under these assumptions we can apply the Newton method, which can be stated
in the standard form in R

L. Thus, we first do a number of AMM iterations and
then switch to the Newton method. In Sect. 14.7.1 we give a simple application
of these ideas to state a Newton method for best rank one approximation. This
Newton method was suggested in [14]. It is different from the Newton method in
[43]. The new contribution of this paper is the Newton method which is discussed in
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Sects. 14.8 and 14.9. The advantage of our Newton method is its simplicity, which
avoids the notions and tools of Riemannian geometry as for example in [8, 39].
In simulations that we ran, the Newton method in [8] was 20% faster than our
Newton method for best r-approximation of 3-mode tensors. However, the number
of iterations of our Newton method was 40% less than in [8]. In the last section
we give numerical results of our methods for best r-approximation of tensors. In
Sect. 14.11 we give numerical simulations of our different methods applied to a real
computer tomography (CT) data set (the so-called MELANIX data set of OsiriX).
The summary of these results are given in Sect. 14.12.

14.2 Singular Value Decomposition

Let A 2 R
m�n n f0g. We now recall well known facts on the SVD of A [19]. See

[40] for the early history of the SVD. Assume that r D rank A. Then there exist
r-orthonormal sets of vectors u1; : : : ;ur 2 R

m; v1; : : : ; vr 2 R
n such that we have:

Avi D �i .A/ui ; u>
i A D �i .A/v>

i ; i 2 Œr�; �1.A/ � � � � � �r .A/ > 0;

Ak D
X

i2Œk�
�i .A/uiv>

i ; k 2 Œr�; A D Ar: (14.6)

The quantities ui , vi and �i .A/ are called the left, right i -th singular vectors and
i -th singular value of A respectively, for i 2 Œr�. Note that uk and vk are uniquely
defined up to ˙1 if and only if �k�1.A/ > �k.A/ > �kC1.A/. Furthermore for
k 2 Œr � 1� the matrix Ak is uniquely defined if and only if �k.A/ > �kC1.A/.
Denote by R.m; n; k/ � R

m�n the variety of all matrices of rank at most k. Then
Ak is a best rank-k approximation of A:

min
B2R.m;n;k/

kA� Bk D kA �Akk:

Let U 2 Gr.p;Rm/;V 2 Gr.q;Rn/. We identify U ˝ V with

UV> WD spanfuv>; u 2 U; v 2 Vg � R
m�n: (14.7)

Then PU˝V.A/ is identified with the projection of A on UV> with respect to the
standard inner product on R

m�n given by hX; Y i D trXY >. Observe that

Range A D U?
r ; R

m D U?
r ˚ .U?

r /
?; Range A> D V?

r ; R
n D V?

r ˚ .V?
r /

?:

Hence

PU˝V.A/ D P.U\U?r /˝.V\V?r /.A/ ) rank PU˝V.A/ � min.dim U; dim V; r/:
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Thus

max
U2Gr.p;Rm/;V2Gr.q;Rn/

kPU˝V.A/k2 D kPU?l ˝V?l
.A/k2 D

X

j2Œl�
�j .A/

2;

min
U2Gr.p;Rm/;V2Gr.q;Rn/

kA � PU˝V.A/k2 D kA � PU?l ˝V?l
.A/k2 D

X

j2Œr�nŒl�
�j .A/

2;

l D min.p; q; r/: (14.8)

To compute U?
l ;V

?
l and �1.A/; : : : ; �l .A/ of a large scale matrix A one can

use Arnoldi or Lanczos methods [19, 31], which are implemented in the partial
singular value decomposition. This requires a substantial number of matrix-vector
multiplications with the matrix A and thus a complexity of at least O.lmn/.

14.3 Sampling in Low Rank Approximation of Matrices

Let A D Œai;j �
m;n
iDjD1 2 R

m�n be given. Assume that b1; : : : ;bm 2 R
n; c1; : : : ; cn 2

R
m are the columns of A> and A respectively. (b>

1 ; : : : b
>
m are the rows of A.) Most

of the known fast rank k-approximation are using sampling of rows or columns of
A, or both.

14.3.1 Low Rank Approximations Using Sampling of Rows

Suppose that we sample a set

I WD f1 � i1 < : : : < is � mg � Œm�; jI j D s; (14.9)

of rows b>
i1
; : : : ;b>

is
, where s � k. Let W.I / WD span.bi1 ; : : : ;bis /. Then with high

probability the projection of the first i -th right singular vectors vi on W.I / is very
close to vi for i 2 Œk�, provided that s 	 k. In particular, [5, Theorem 2] claims:

Theorem 1 (Deshpande-Vempala) Any A 2 R
m�n contains a subset I of s D

4k
�

C2k log.kC1/ rows such that there is a matrix QAk of rank at most k whose rows
lie in W.I / and

kA � QAkk2 � .1C �/kA � Akk2:

To find a rank-k approximation of A, one projects each row of A on W.I / to
obtain the matrix PRm˝W.I /.A/. Note that we can view PRm˝W.I /.A/ as an m �
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s0 matrix, where s0 D dim W.I / � s. Then find a best rank k-approximation to
PRm˝W.I /.A/, denoted as PRm˝W.I /.A/k . Theorem 1 and the results of [18] yield
that

kA � PRm˝W.I /.A/kk2 � .1C �/kA � Akk2 C �kA � PRm˝W.I /.A/k2:

Here � is proportional to k
s
, and can be decreased with more rounds of sampling.

Note that the complexity of computing PRm˝W.I /.A/k is O.ks0m/. The key weak-
ness of this method is that to computePRm˝W.I /.A/ one needs O.s0mn/ operations.
Indeed, after having computed an orthonormal basis of W.I /, to compute the
projection of each row of A on W.I / one needs s0n multiplications.

An approach for finding low rank approximations of A using random sampling
of rows or columns is given in Friedland-Kave-Niknejad-Zare [11]. Start with
a random choice of I rows of A, where jI j � k and dim W.I / � k. Find
PRm˝W.I /.A/ and B1 WD PRm˝W.I /.A/k as above. Let U1 2 Gr.k;Rm/ be the
subspace spanned by the first k left singular vectors of B1. Find B2 D PU1˝Rn.A/.
Let V2 2 Gr.k;Rn/ correspond to the first k right singular vectors ofB2. Continuing
in this manner we obtain a sequence of rank k-approximations B1;B2; : : :. It is
shown in [11] that kA � B1k � kA � B2k � : : : and kB1k � kB2k � : : :.
One stops the iterations when the relative improvement of the approximation falls
below the specified threshold. Assume that �k.A/ > �kC1.A/. Since best rank-k
approximation is a unique local minimum for the function kA�Bk; B 2 R.m; n; k/
[19], it follows that in general the sequence Bj ; j 2 N converges to Ak . It is
straightforward to show that this algorithm is the AMM for low rank approximations
given in Sect. 14.6.2. Again, the complexity of this method is O.kmn/.

Other suggested methods as [1, 7, 37, 38] seem to have the same complexity
O.kmn/, since they project each row of A on some k-dimensional subspace of Rn.

14.3.2 CUR-Approximations

Let

J WD f1 � j1 < : : : < jt � ng � Œn�; jJ j D t; (14.10)

and I � Œm� as in (14.9) be given. Denote by AŒI; J � WD Œaip;jq �
s;t
pDqD1 2 R

s�t .
CUR-approximation is based on sampling simultaneously the set of I rows and J
columns of A and the approximation matrix to A.I; J; U / given by

A.I; J; U / WD CUR; C WD AŒŒm�; J �; R WD AŒI; Œn��; U 2 R
t�s: (14.11)

Once the sets I and J are chosen the approximation A.I; J; U / depends on the
choice of U . Clearly the row and the column spaces of A.I; J; U / are contained
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in the row and column spaces of AŒI; Œn�� and AŒŒm�; J � respectively. Note that to
store the approximation A.I; J; U / we need to store the matrices C , R and U .
The number of these entries is tm C sn C st . So if n;m are of order 105 and s; t
are of order 102 the storages of C;R;U can be done in Random Access Memory
(RAM), while the entries of A are stored in external memory. To compute an entry
of A.I; J; U /, which is an approximation of the corresponding entry of A, we need
st flops.

Let U and V be subspaces spanned by the columns of AŒŒm�; J � and AŒI; Œn��>
respectively. Then A.I; J; U / 2 UV>, see (14.7).

Clearly, a best CUR approximation is chosen by the least squares principle:

A.I; J; U ?/ D A.Œm�; J /U ?A.I; Œn�/;

U ? D arg minfkA� A.Œm�; J /UA.I; Œn�/k; U 2 R
jJ j�jI jg: (14.12)

The results in [17] show that the least squares solution of (14.12) is given by:

U? D A.Œm�; J /�AA.I; Œn�/�: (14.13)

Here F � denotes the Moore-Penrose pseudoinverse of a matrix F . Note that U? is
unique if and only if

rank AŒŒm�; J � D jJ j; rank AŒI; Œn�� D jI j: (14.14)

The complexity of computation of A.Œm�; J /� and A.I; Œn�/� are O.t2m/ and
O.s2n/ respectively. Because of the multiplication formula for U?, the complexity
of computation of U? is O.stmn/.

One can significantly improve the computation of U , if one tries to best fit the
entries of the submatrix AŒI 0; J 0� for given subsets I 0 � Œm�; J 0 � Œn�. That is, let

U?.I 0; J 0/ WD arg minfkAŒI 0; J 0� � A.I 0; J /UA.I; J 0/k; U 2 R
jJ j�jI jg D

AŒI 0; J ��AŒI 0; J 0�A�ŒI; J 0�: (14.15)

(The last equality follows from (14.13).) The complexity of computation of
U?.I 0; J 0/ is O.st jI 0jjJ 0j/.

Suppose finally, that I 0 D I and J 0. Then (14.15) and the properties of the
Moore-Penrose inverse yield that

U?.I; J / D AŒI; J ��; A.I; J; U ?.I; J // D B.I; J / WD AŒŒm�; J �AŒI; J ��AŒI; Œn��:

(14.16)
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In particular B.I; J /ŒI; J � D AŒI; J �. Hence

AŒŒm�; J � D B.I; J /ŒŒm�; J �; AŒI; Œn�� D B.I; J /ŒI; Œn��;

B.I; J / D AŒŒm�; J �AŒI; J ��1AŒI; Œn�� if jI j D jJ j D k and detAŒI; J � ¤ 0:

(14.17)

The original CUR approximation of rank k has the form B.I; J / given by (14.17)
[21].

Assume that rank A � k. We want to choose an approximation B.I; J / of the
form (14.17) which gives a good approximation to A. It is possible to give an upper
estimate for the maximum of the absolute values of the entries of A � B.I; J / in
terms of �kC1.A/, provided that detAŒI; J � is relatively close to

�k WD max
I�Œm�;J�Œn�;jI jDjJ jD

j detAŒI; J �j > 0: (14.18)

Let

kF k1;e WD max
i2Œm�;j2Œn� jfi;j j; F D Œfi;j � 2 R

m�n: (14.19)

The results of [21, 22] yield:

kA � B.I; J /k1;e � .k C 1/�k

detAŒI; J �
�pC1.A/: (14.20)

(See also [10, Chapter 4, §13].)
To find �k is probably an NP-hard problem in general [9]. A standard way to find

�k is either a random search or greedy search [9, 20]. In the special case when A
is a symmetric positive definite matrix one can give the exact conditions when the
greedy search gives a relatively good result [9].

In the paper by Friedland-Mehrmann-Miedlar-Nkengla [13] a good approx-
imation B.I; J / of the form (14.17) is obtained by a random search on the
maximum value of the product of the significant singular values of AŒI; J �. The
approximations found in this way are experimentally better than the approximations
found by searching for �k .

14.4 Fast Approximation of Tensors

The fast approximation of tensors can be based on several decompositions of
tensors such as: Tucker decomposition [42]; matricizations of tensors, as unfolding
and applying SVD one time or several time recursively, (see below); higher order
singular value decomposition (HOSVD) [3], Tensor-Train decompositions [34, 35];
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hierarchical Tucker decomposition [23, 25]. A very recent survey [24] gives an
overview on this dynamic field. In this paper we will discuss only the CUR-
approximation.

14.4.1 CUR-Approximations of Tensors

Let T 2 R
n1�:::nd . In this subsection we denote the entries of T as T .i1; : : : ; id /

for ij 2 Œnj � and j 2 Œd �. CUR-approximation of tensors is based on matricizations
of tensors. The unfolding of T in the mode l 2 Œd � consists of rearranging the

entries of T as a matrix Tl.T / 2 R
nl�Nl , where Nl D

Q
i2Œd � ni

nl
. More general,

let K [ L D Œd � be a partition of Œd � into two disjoint nonempty sets. Denote
N.K/ D Q

i2K ni ; N.L/ D Q
j2L nj . Then unfoldingT into the two modesK and

L consists of rearranging the entires of T as a matrix T .K;L;T / 2 R
N.K/�N.L/.

We now describe briefly the CUR-approximation of 3 and 4-tensors as described
by Friedland-Mehrmann-Miedlar-Nkengla [13]. (See [33] for another approach to
CUR-approximations for tensors.) We start with the case d D 3. Let Ii be a
nonempty subset of Œni � for i 2 Œ3�. Assume that the following conditions hold:

jI1j D k2; jI2j D jI3j D k; J WD I2 � I3 � Œn2� � Œn3�:

We identify Œn2� � Œn3� with Œn2n3� using a lexicographical order. We now take the
CUR-approximation of T1.T / as given in (14.17):

B.I1; J / D T1.T /ŒŒn1�; J �T1.T /ŒI1; J �
�1T1.T /ŒI1; Œn2n3��:

We view T1.T /ŒŒn1�; J � as an n1 � k2 matrix. For each ˛1 2 I1 we view
T1.T /Œf˛1g; Œn2n3�� as an n2 � n3 matrix Q.˛1/ WD ŒT .˛1; i2; i3/�i22Œn2�;i32Œn3�. Let
R.˛1/ be the CUR-approximation of Q.˛1/ based on the sets I2; I3:

R.˛1/ WD Q.˛1/ŒŒn2�; I3�Q.˛1/ŒI2; I3�
�1Q.˛1/ŒI2; Œn3��:

Let F WD T1.T /ŒI1; J �
�1 2 R

k2�k2 . We view the entries of this matrix indexed
by the row .˛2; ˛3/ 2 I2 � I3 and column ˛1 2 I1. We write these entries as
F .˛1; ˛2; ˛3/; ˛j 2 Ij ; j 2 Œ3�, which represent a tensor F 2 R

I1�I2�I3 . The
entries of Q.˛1/ŒI2; I3��1 are indexed by the row ˛3 2 I3 and column ˛2 2 I2.
We write these entries as G .˛1; ˛2; ˛3/; ˛2 2 I2; ˛3 2 I3, which represent a tensor
G 2 R

I1�I2�I3 . Then the approximation tensor B D ŒB.j1; j2; j3/� 2 R
n1�n2�n3 is

given by:

B.i1; i2; i3/ D
X

˛12I1;˛j ;ˇj 2Ij ;jD2;3

T .i1; ˛2; ˛3/F .˛1; ˛2; ˛3/T .˛1; j2; ˇ3/G .˛1; ˇ2; ˇ3/T .˛1; ˇ2; j3/:
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We now discuss a CUR-approximation for 4-tensors, i.e. d D 4. Let T 2
R
n1�n2�n3�n4 and K D f1; 2g; L D f3; 4g. The rows and columns of X WD

T .K;L;T / 2 R
.n1n2/�.n3n4/ are indexed by pairs .i1; i2/ and .i3; i4/ respectively.

Let

Ij � Œnj �; jIj j D k; j 2 Œ4�; J1 WD I1 � I2; J2 WD I3 � I4:

First consider the CUR-approximation XŒŒn1n2�; J2�XŒJ1; J2�
�1XŒJ1; Œn3n4��

viewed as tensor C 2 R
n1�n2�n3�n4 . Denote by H .˛1; ˛2; ˛3; ˛4/ the

..˛3; ˛4/; .˛1; ˛2// entry of the matrix XŒJ1; J2��1. So H 2 R
I1�I2�I3�I4 . Then

C .i1; i2; i3; i4/ D
X

˛j2Ij ;j2Œ4�
T .i1; i2; ˛3; ˛4/H .˛1; ˛2; ˛3; ˛4/T .˛1; ˛2; i3; i4/:

For ˛j 2 Ij ; j 2 Œ4� view vectors XŒŒn1n2�; .˛3; ˛4/� and XŒ.˛1; ˛2/; Œn3n4�� as
matrices Y.˛3; ˛4/ 2 R

n1�n2 and Z.˛1; ˛2/ 2 R
n3�n4 respectively. Next we find the

CUR-approximations to these two matrices using the subsets .I1; I2/ and .I3; I4/
respectively:

Y.˛3; ˛4/ŒŒn1�; I2�Y.˛3; ˛4/ŒI1; I2�
�1Y.˛3; ˛4/ŒI1; Œn2��;

Z.˛1; ˛2/ŒŒn3�; I4�Z.˛1; ˛2/ŒI3; I4�
�1Z.˛1; ˛2/ŒI3; Œn4��:

We denote the entries of Y.˛3; ˛4/ŒI1; I2��1 and Z.˛1; ˛2/ŒI3; I4��1 by

F .˛1; ˛2; ˛3; ˛4/; ˛1 2 I1; ˛2 2 I2;
and G .˛1; ˛2; ˛3; ˛4/; ˛3 2 I3; ˛4 2 I4;

respectively. Then the CUR-approximation tensor B of T is given by:

B.i1; i2; i3; i4/ D
X

˛j ;ˇj2Ij ;j2Œ4�
T .i1; ˇ2; ˛3; ˛4/F .ˇ1; ˇ2; ˛3; ˛4/T .ˇ1; i2; ˛3; ˛4/

H .˛1; ˛2; ˛3; ˛4/T .˛1; ˛2; i3; ˇ4/G .˛1; ˛2; ˇ3; ˇ4/T .˛1; ˛2; ˇ3; i4/:

We now discuss briefly the complexity of the storage and computing an entry
of the CUR-approximation B. Assume first that d D 3. Then we need to store k2

columns of the matrices T1.T /, k3 columns of T2.T / and T3.T /, and k4 entries
of the tensors F and G . The total storage space is k2n1 C k3.n2 C n3/C 2k4. To
compute each entry of B we need to perform 4k6 multiplications and k6 additions.

Assume now that d D 4. Then we need to store k3 columns of Tl.T /; l 2 Œ4�

and k4 entries of F ;G ;H . Total storage needed is k3.n1 Cn2 Cn3 Cn4 C3k/. To
compute each entry of B we need to perform 6k8 multiplications and k8 additions.
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14.5 Preliminary Results on Best r-Approximation

14.5.1 The Maximization Problem

We first show that the best approximation problem (14.4) is equivalent to the
maximum problem (14.5), see [4] and [26, §10.3]. The Pythagoras theorem yields
that

kT k2 D kP˝d
iD1Ui

.T /k2 C kP.˝d
iD1Ui /?

.T /k2;
kT � P˝d

iD1Ui
.T /k2 D kP.˝d

iD1Ui /?
.T /k2:

(Here .˝d
iD1Ui /

? is the orthogonal complement of ˝d
iD1Ui in ˝d

iD1Rni .) Hence

min
Ui2Gr.ri ;Rni /;i2Œd �

kT �P˝d
iD1Ui

.T /k2 D kT k2 � max
Ui2Gr.ri ;Rni /;i2Œd �

kP˝iD1Ui .T /k2:
(14.21)

This shows the equivalence of (14.4) and (14.5).

14.5.2 Singular Values and Singular Tuples of Tensors

Let S.n/ D fx 2 R
n; kxk D 1g. Note that one dimensional subspace U 2 Gr.1;Rn/

is span.u/, where u 2 S.n/. Let S.n/ WD S.n1/ � � � � � S.nd /. Then best rank one
approximation problem for T 2 R

n is equivalent to finding

kT k� WD max
.x1;:::;xd /2S.n/

T � .˝i2Œd �xi /: (14.22)

Let fT W Rn ! R is given by fT .X / D hX ;T i. Denote by S0.n/ � R
n all rank

one tensors of the form ˝i2Œd �xi , where .x1; : : : ; xn/ 2 S.n/. Let fT .x1; : : : ; xd / WD
fT .˝i2Œd �xi /. Then the critical points of fT jS0.n/ are given by the Lagrange
multipliers formulas [32]:

T � .˝j2Œd �nfiguj / D �ui ; i 2 Œd �; .u1; : : : ;ud / 2 S.n/: (14.23)

One calls � and .u1; : : : ;ud / a singular value and singular tuple of T . For d D 2

these are the singular values and singular vectors of T . The number of complex
singular values of a generic T is given in [16]. This number increases exponentially
with d . For example for n1 D � � � D nd D 2 the number of distinct singular values
is dŠ. (The number of real singular values as given by (14.23) is bounded by the
numbers given in [16].)

Consider first the maximization problem of fT .x1; : : : ; xd / over S.n/ where we
vary xi 2 S.ni / and keep the other variables fixed. This problem is equivalent to
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the maximization of the linear form x>
i .T � .˝j2Œd �nfigxj //. Note that if T �

.˝j2Œd �nfigxj / ¤ 0 then this maximum is achieved for xi D 1
kT �.˝j2Œd �nfigxj /kT �

.˝j2Œd �nfigxj /.
Consider second the maximization problem of fT .x1; : : : ; xd / over S.n/ where

we vary .xi ; xj / 2 S.ni /�S.nj /; 1 � i < j � d and keep the other variables fixed.
This problem is equivalent to finding the first singular value and the corresponding
right and left singular vectors of the matrix T � .˝k2Œd �nfi;j gxk/. This can be done
by using use Arnoldi or Lanczos methods [19, 31]. The complexity of this method
is O.ninj /, given the matrix T � .˝k2Œd �nfi;j gxk/.

14.5.3 A Basic Maximization Problem for Best
r-Approximation

Denote by Sn � R
n�n the space of real symmetric matrices. For A 2 Sn denote

by �1.A/ � : : : � �n.A/ the eigenvalues of A arranged in a decreasing order and
repeated according to their multiplicities. Let O.n; k/ � R

n�k be the set of all n�k
matricesX with k orthonormal columns, i.e.X>X D Ik, where Ik is k�k identity
matrix. We view X 2 R

n�k as composed of k-columns Œx1 : : : xk�. The column
space of X 2 O.n; k/ corresponds to a k-dimensional subspace U � R

n. Note that
U 2 Gr.k;Rn/ is spanned by the orthonormal columns of a matrix Y 2 O.n; k/ if
and only if Y D XO , for some O 2 O.k; k/.

For A 2 Sn one has the Ky-Fan maximal characterization [28, Cor. 4.3.18]

max
Œx1:::xk �2O.n;k/

kX

iD1
x>
i Axi D

kX

iD1
�i .A/: (14.24)

Equality holds if and only if the column space of X D Œx1 : : : xk� is a subspace
spanned by k eigenvectors corresponding to k-largest eigenvalues of A.

We now reformulate the maximum problem (14.5) in terms of orthonormal bases
of Ui ; i 2 Œd �. Let u1;i ; : : : ;uni ;i be an orthonormal basis of Ui for i 2 Œd �. Then
˝d
iD1uji ;i ; ji 2 Œni �; i 2 Œd � is an orthonormal basis of ˝d

iD1Ui . Hence

kP˝d
iD1Ui

.T /k2 D
X

ji2Œni �;i2Œd �
hT ;˝d

iD1uji ;i i2:

Hence (14.5) is equivalent to

max
Œu1;i :::uri ;i �2O.ni ;ri /;i2Œd �

X

ji2Œni �;i2Œd �
hT ;˝d

iD1uji ;i i2 D (14.25)

max
Ui2Gr.ri ;Rni /;i2Œd �

kP˝d
iD1Ui

.T /k2:
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A simpler problem is to find

max
Œu1;i :::uri ;i �2O.ni ;ri /

X

ji2Œni �;i2Œd �
hT ;˝d

iD1uji ;i i2 D (14.26)

max
Ui2Gr.ri ;Rni /

kP˝d
iD1Ui

.T /k2;

for a fixed i 2 Œd �. Let

U WD .U1; : : : ;Ud / 2 Gr.r;n/;

Gri .r; n/ WD Gr.r1; n1/ � : : : � Gr.ri�1; ni�1/ � Gr.riC1; niC1/ � : : : � Gr.rd ; nd /;

U i WD .U1; : : : ;Ui�1;UiC1; : : : ;Ud / 2 Gri .r;n/;

Ai .U i / WD
X

jl2Œrl �;l2Œd �nfig
.T � ˝k2Œd �nfigujk;k/.T � ˝k2Œd �nfigujk;k/

>: (14.27)

The maximization problem (14.25) reduces to the maximum problem (14.24)
with A D Ai.U i /. Note that each Ai.U i/ is a positive semi-definite matrix. Hence
�j .Ai.U i // D �j .Ai .U i// for j 2 Œni �. Thus the complexity to find the first ri
eigenvectors of Ai.U i / is O.rin2i /. Denote by Ui .U i / 2 Gr.ri ;Rni / a subspace
spanned by the first ri eigenvectors of Ai.U i /. Note that this subspace is unique if
and only if

�ri .Ai .U i // > �riC1.Ai .U i //: (14.28)

Finally, if r D 1d then each Ai.U i / is a rank one matrix. Hence Ui .U i / D
span.T � ˝k2Œd �nfigu1;k/. For more details see [12].

14.6 Alternating Maximization Methods for Best
r-Approximation

14.6.1 General Definition and Properties

Let 	i be a compact smooth manifold for i 2 Œd �. Define

	 WD 	1 � � � � � 	d ; O	i D .	1 � � � � � 	i�1 � 	iC1 � � � � � 	d/ for i 2 Œd �:

We denote by  i ,  D . 1; : : : ;  d / and O i D . 1; : : : ;  i�1;  iC1; : : : ;  d / the
points in 	i , 	 and O	i respectively. Identify  with . i ; O i/ for each i 2 Œd �.
Assume that f W 	 ! R is a continuous function with continuous first and second
partial derivatives. (In our applications it may happen that f has discontinuities in
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first and second partial derivatives.) We want to find the maximum value of f and a
corresponding maximum point  ?:

max
 2	 f . / D f . ?/: (14.29)

Usually, this is a hard problem, where f has many critical points and a number
of these critical points are local maximum points. In some cases, as best r
approximation to a given tensor T 2 R

n, we can solve the maximization problem
with respect to one variable  i for any fixed O i :

max
 i2	i

f .. i ; O i// D f .. ?i .
O i/; O i //; (14.30)

for each i 2 Œd �.
Then the alternating maximization method, abbreviated as AMM, is as fol-

lows. Assume that we start with an initial point  .0/ D . 
.0/
1 ; : : : ;  

.0/

d / D
. 

.0/
1 ; O .0;1/1 /. Then we consider the maximal problem (14.30) for i D 1 and

O 1 WD O .0;1/1 . This maximum is achieved for  .1/1 WD  ?1 .
O .0;1/1 /. Assume that

the coordinates  .1/1 ; : : : ;  
.1/
j are already defined for j 2 Œd � 1�. Let O .0;jC1/

jC1 WD
. 

.1/
1 ; : : : ;  

.1/
j ;  

.0/
jC2; : : : ;  

.0/

d /. Then we consider the maximum problem (14.30)

for i D j C 1 and O jC1 WD O jC1j .0;jC1/. This maximum is achieved for  .1/jC1 WD
 ?jC1. O .0;jC1/

jC1 /. Executing these d iterations we obtain  .1/ WD . 
.1/
1 ; : : : ;  

.1/

d /.
Note that we have a sequence of inequalities:

f . .0// � f . 
.1/
1 ; O .0;1/1 / � f . 

.1/
2 ; O .0;2/2 / � � � � � f . 

.1/

d ; O .0;d/d / D f . .1//:

Replace  .0/ with  .1/ and continue these iterations to obtain a sequence  .l/ D
. 

.l/
1 ; : : : ;  

.l/

d / for l D 0; : : : ; N . Clearly,

f . .l�1// � f . .l// for l 2 N ) lim
l!1f . .l// D M: (14.31)

Usually, the sequence  .l/; l D 0; : : : ; will converge to 1-semi maximum point

 D .
1; : : : ; 
d / 2 	 . That is, f .
/ D max i2	 f .. i ; O
i // for i 2 Œd �. Note
that if f is differentiable at 
 then 
 is a critical point of f . Assume that f is
twice differentiable at 
. Then 
 does not have to be a local maximum point [15,
Appendix].

The modified alternating maximization method, abbreviated as MAMM, is as
follows. Assume that we start with an initial point  .0/ D . 

.0/
1 ; : : : ;  

.0/

d /. Let

 .0/ D . 
.0/
i ; O .0/i / for i 2 Œd �. Compute fi;0 D max i2	i f .. i ; O .0/i // for i 2 Œd �.

Let j1 2 arg maxi2Œd � fi;0. Then .1/ D . ?j .
O .0/j1 /; O .0/j1 / and f1 D f1;j1 D f . .1//.

Note that it takes d iterations to compute  .1/. Now replace  .0/ with  .1/ and
compute fi;1 D max i2	i f .. i ; O .1/i // for i 2 Œd �nfj1g. Continue as above to find
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 .l/ for l D 2; : : : ; N . Note that for l � 2 it takes d � 1 iterations to determine
 .l/. Clearly, (14.31) holds. It is shown in [15] that the limit 
 of each convergent
subsequence of the points  .j / is 1-semi maximum point of f .

In certain very special cases, as for best rank one approximation, we can solve
the maximization problem with respect to any pair of variables  i ;  j for 1 � i <

j � d , where d � 3 and all other variables are fixed. Let

O	i;j WD 	1 � � � � � 	i�1 � 	iC1 � � � � � 	j�1 � 	jC1 � � � � � 	d ;
O i;j D . 1; : : : ;  i�1;  iC1; : : : ;  j�1;  jC1; : : : ;  d / 2 O	i;j ;
 i;j D . i ;  j / 2 	i � 	j :

View  D . 1; : : : ;  d / as . i;j ; O i;j / for each pair 1 � i < j � d . Then

max
 i;j2	i�	j

f .. i;j ; O i;j // D f .. ?i;j .
O i;j /; O i;j //: (14.32)

A point  is called 2-semi maximum point if the above maximum equals to f . /
for each pair 1 � i < j � d .

The 2-alternating maximization method, abbreviated here as 2AMM, is as
follows. Assume that we start with an initial point .0/ D . 

.0/
1 ; : : : ;  

.0/

d /. Suppose
first that d D 3. Then we consider the maximization problem (14.32) for i D
2; j D 3 and O 2;3 D  

.0/
1 . Let . .0;1/2 ;  

.0;1/
3 / D  ?2;3. 

.0/
1 /. Next let i D 1; j D 3

and  1;3 D  
.0;1/
2 . Then . .0;2/1 ;  

.0;2/
3 / D  ?1;3. 

.0;1/
2 /. Next let i D 1; 2 and

O 1;2 D  
.0;2/
3 . Then .1/ D . O ?1;2. .0;2/3 /;  

.0;2/
3 /. Continue these iterations to obtain

 .l/ for l D 2; : : :. Again, (14.31) holds. Usually the sequence  .l/; l 2 N will
converge to a 2-semi maximum point 
. For d � 4 the 2AMM can be defined
appropriately see [15].

A modified 2-alternating maximization method, abbreviated here as M2AMM, is
as follows. Start with an initial point .0/ D . 

.0/
1 ; : : : ;  

.0/

d / viewed as . .0/i;j ; O .0/i;j /,
for each pair 1 � i < j � d . Let fi;j;0 WD max i;j2	i�	j f .. i;j ; O .0/i;j //.
Assume that .i1; j1/ 2 arg max1�i<j�d fi;j;0. Then  .1/ D . ?i1;j1.

O .0/i1;j1 /; O .0/i1;j1 /.
Let fi1;j1;1 WD f . .1//. Note that it takes

�
d
2

�
iterations to compute  .1/. Now

replace  .0/ with  .1/ and compute fi;j;1 D max i;j2	i�	j f .. i;j ; O .1/i;j // for all

pairs 1 � i < j � d except the pair .i1; j1/. Continue as above to find  .l/

for l D 2; : : : ; N . Note that for l � 2 it takes
�
d
2

� � 1 iterations to determine
 .l/. Clearly, (14.31) holds. It is shown in [15] that the limit 
 of each convergent
subsequence of the points  .j / is 2-semi maximum point of f .
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14.6.2 AMM for Best r-Approximations of Tensors

Let T 2 R
n. For best rank one approximation one searches for the maximum of

the function fT D T � .˝i2Œd �xi / on S.n/, as in (14.22). For best r-approximation
one searches for the maximum of the function fT D kP˝i2Œd �Ui k2 on Gr.r;n/, as in
(14.26). A solution to the basic maximization problem with respect to one subspace
Ui is given in Sect. 14.5.3.

The AMM for best r-approximation were studied first by de Lathauwer-Moor-
Vandewalle [4]. The AMM is called in [4] alternating least squares, abbreviated
as ALS. A crucial problem is the starting point of AMM. A high order SVD,
abbreviated as HOSVD, for T , see [3], gives a good starting point for AMM. That
is, let Tl.T / 2 R

nl�Nl be the unfolded matrix of T in the mode l , as in Sect. 14.4.1.
Then Ul is the subspace spanned by the first l-left singular vectors of Tl.T /. The
complexity of computing Ul is O.rlN /, where N D Q

i2Œd � ni . Hence for large N
the complexity of computing partial HOSVD is high. Another approach is to choose
the starting subspaces at random, and repeat the AMM for several choices of random
starting points.

MAMM for best rank one approximation of tensors was introduced by Friedland-
Mehrmann-Pajarola-Suter in [15] by the name modified alternating least squares,
abbreviated as MALS. 2AMM for best rank one approximation was introduced
in [15] by the name alternating SVD, abbreviated as ASVD. It follows from the
observation thatA WD T �.˝l2Œd �nfi;j gxl / is an ni �nj matrix. Hence the maximum
of the bilinear form x>Ay on S..ni ; nj // is �1.A/. See Sect. 14.2. M2AMM was
introduced in [15] by the names MASVD.

We now introduce the following variant of 2AMM for best r-rank approximation,
called 2-alternating maximization method variant and abbreviated as 2AMMV.
Consider the maximization problem for a pair of variables as in (14.32). Since for
r ¤ 1d we do not have a closed solution to this problem, we apply the AMM for
two variables  i and  j , while keeping O i;j fixed. We then continue as in 2AMM
method.

14.6.3 Complexity Analysis of AMM for Best r-Approximation

Let U D .U1; : : : ;Ud /. Assume that

Ui D span.u1;i ; : : : ;uri ;ni /; U?
i D span.uriC1; : : : ;uni ;i /;

u>
j;iuk;i D ıj;k; j; k 2 Œni �; i 2 Œd �: (14.33)

For each i 2 Œd � compute the symmetric positive semi-definite matrixAi.U i / given
by (14.27). For simplicity of exposition we give the complexity analysis for d D 3.
To computeA1.U 1/ we need first to compute the vectors T �.uj2;2˝uj3;3/ for j2 2
Œr2� and j3 2 Œr3�. Each computation of such a vector has complexity O.N /, where
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N D n1n2n3. The number of such vectors is r2r3. To form the matrix Ai.U i / we
need O.r2r3n21/ flops. To find the first r1 eigenvectors of A1.U 1/ we need O.r1n21/
flops. Assuming that n1; n2; n3 � n and r1; r2; r3 � r we deduce that we need
O.r2n3/ flops to find the first r1 orthonormal eigenvectors of A1.U 1/ which span
U1.U 1/. Hence the complexity of finding orthonormal bases of U1.U 1/ is O.r2n3/,
which is the complexity of computing A1.U 1/. Hence the complexity of each step
of AMM for best r-approximation, i.e. computing  .l/, is O.r2n3/.

It is possible to reduce the complexity of AMM for best r-approximation is to
O.rn3/ if we compute and store the matrices T � uj1;1;T � uj2;2;T � uj3;3. See
Sect. 14.10.

We now analyze the complexity of AMM for rank one approximation. In this
case we need only to compute the vector of the form vi WD T � .˝j2Œd �nfiguj / for
each i 2 Œd �, where Uj D span.uj / for j 2 Œi �. The computation of each vi needs
O..d �2/N / flops, whereN D Q

j2Œd �. Hence each step of AMM for best rank one
approximation is O.d.d � 2/N /. So for d D 3 and n1 � n2 � n3 the complexity
is O.n3/, which is the same complexity as above with r D 1.

14.7 Fixed Points of AMM and Newton Method

Consider the AMM as described in Sect. 14.6.1. Assume that the sequence  .l/; l 2
N converges to a point 
 2 	 . Then 
 is a fixed point of the map:

QF W 	 ! 	; QF D . QF1; : : : ; QFd /; QFi W 	 ! 	i ; QFi. /D ?i .
O i /;  D . i ; O i/; i 2 Œd �:

(14.34)

In general, the map QF is a multivalued map, since the maximum given in (14.30)
may be achieved at a number of points denoted by  ?i . O i/. In what follows we
assume:

Assumption 1 The AMM converges to a fixed point 
 of QF i.e. QF.
/ D 
, such that
the following conditions hold:

1. There is a connected open neighborhood O � 	 such that QF W O ! O is one
valued map.

2. QF is a contraction on O with respect to some norm on O .
3. QF 2 C2.O/, i.e. QF has two continuous partial derivatives in O .
4. O is diffeomorphic to an open subset in R

L. That is, there exists a smooth one-
to-one map H W O ! R

L such that the Jacobian D.H/ is invertible at each
point  2 O .

Assume that the conditions of Assumption 1 hold. Then the map QF W O ! O

can be represented as

F W O1 ! O1; F D H ı QF ıH�1; O1 D H.O/:
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Hence to find a fixed point of QF in O it is enough to find a fixed point of F in O1. A
fixed point of F is a zero point of the system

G.x/ D 0; G.x/ WD x � F.x/: (14.35)

To find a zero of G we use the standard Newton method.
In this paper we propose new Newton methods. We make a few iterations of

AMM and switch to a Newton method assuming that the conditions of Assumption 1
hold as explained above. A fixed point of the map QF for best rank one approximation
induces a fixed point of map F W Rn ! R

n [15, Lemma 2]. Then the corresponding
Newton method to find a zero of G is straightforward to state and implement,
as explained in the next subsection. This Newton method was given in [14,
§5]. See also Zhang-Golub [43] for a different Newton method for best .1; 1; 1/
approximation.

Let QF W Gr.r;n/ ! Gr.r;n/ be the induced map AMM. Each Gr.r;Rn/ can
be decomposed as a compact manifold to a finite number of charts as explained
in Sect. 14.8. These charts induce standard charts of Gr.r;n/. After a few AMM
iterations we assume that the neighborhoodO of the fixed point of QF lies in one the
charts of Gr.r;n/. We then construct the corresponding map F in this chart. Next we
apply the standard Newton method to G. The papers by Eldén-Savas [8] and Savas-
Lim [39] discuss Newton and quasi-Newton methods for .r1; r2; r3/ approximation
of 3-tensors using the concepts of differential geometry.

14.7.1 Newton Method for Best Rank One Approximation

Let T 2 R
n n f0g. Define:

	i D R
ni ; i 2 Œd �; 	 D R

n1 � � � � � R
nd ;  D .x1; : : : ; xd / 2 	;

fT W 	 ! R; fT . / D T � .˝j2Œd �xj /; (14.36)

F D .F1; : : : ; Fd / W 	 ! 	; Fi . / D T � .˝j2Œd �nfigxj /; i 2 Œd �: (14.37)

Recall the results of Sect. 14.5.2: Any critical point of fT jS.n/ satisfies (14.23).
Suppose we start the AMM with  .0/ D .x.0/1 ; : : : ; x

.0/

d / 2 S.n/ such that
fT . 

.0// ¤ 0. Then it is straightforward to see that fT . .l// > 0 for l 2 N.
Assume that liml!1  .l/ D ! D .u1; : : : ;ud / 2 S.n/. Then ! is the singular tuple
of T satisfying (14.23). Clearly, � D fT .!/ > 0. Let


 D .y1; : : : ; yd / WD �� 1
d�2 ! D �� 1

d�2 .u1; : : : ;ud /: (14.38)

Then 
 is a fixed point of F.
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Our Newton algorithm for finding the fixed point 
 of F corresponding to a fixed
point ! of AMM is as follows. We do a number of iterations of AMM to obtain
 .m/. Then we renormalize  .m/ according to (14.38):


0 WD .fT . 
.m///� 1

d�2  .m/: (14.39)

Let DF. / denote the Jacobian of F at  , i.e. the matrix of partial derivatives of F
at  . Then we perform Newton iterations of the form:


.l/ D 
.l�1/ � .I �DF.
.l�1///�1.
.l�1/ � F.
.l�1///; l 2 N: (14.40)

After performing a number of Newton iterations we obtain 
.m
0/ D .z1; : : : ; zd /

which is an approximation of 
. We then renormalize each zi to obtain !.m
0/ WD

. 1
kz1k z1; : : : ; 1

kzd kzd / which is an approximation to the fixed point !. We call this
Newton method Newton-1.

We now give the explicit formulas for 3-tensors, where n1 D m; n2 D n; n3 D l .
First

F.u; v;w/ WD .T �.v˝w/;T �.u˝w/;T �.u˝v//; G WD .u; v;w/�F.u; v;w/:
(14.41)

Then

DG.u; v;w/ D
2

4
Im �T � w �T � v

�.T � w/> In �T � u
�.T � v/> �.T � u/> Il

3

5 : (14.42)

Hence Newton-1 iteration is given by the formula

.uiC1; viC1;wiC1/ D .ui ; vi ;wi /� .DG.ui ; vi ;wi //
�1G.ui ; vi ;wi /;

for i D 0; 1; : : : ;. Here we abuse notation by viewing .u; v;w/ as a column vector
.u>; v>;w>/> 2 C

mCnCl .
Numerically, to find .DG.ui ; vi ;wi //

�1G.ui ; vi ;wi / one solves the linear sys-
tem

.DG.ui ; vi ;wi //.x; y; z/ D G.ui ; vi ;wi /:

The final vector .uj ; vj ;wj / of Newton-1 iterations is followed by a scaling to
vectors of unit length xj D 1

kuj kuj ; yj D 1
kvj k vj ; zj D 1

kwj k wj .

We now discuss the complexity of Newton-1 method for d D 3. Assuming that
m � n � l we deduce that the computation of the matrix DG is O.n3/. As the
dimension of DG is m C n C l it follows that the complexity of each iteration of
Newton-1 method is O.n3/.
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14.8 Newton Method for Best r-Approximation

Recall that an r-dimensional subspace U 2 Gr.r;Rn/ is given by a matrix U D
Œuij �

n;r
i;jD1 2 R

n�r of rank r . In particular there is a subset ˛ � Œn� of cardinality
r so that detU Œ˛; Œr�� ¤ 0. Here ˛ D .˛1; : : : ; ˛r /; 1 � ˛1 < : : : < ˛r � n.
So U Œ˛; Œr�� WD Œu˛i j �

r
i;jD1 2 GL.r;R/, (the group of invertible matrices). Clearly,

V WD UU Œ˛; Œr���1 represents another basis in U. Note that V Œ˛; Œr�� D Ir . Hence
the set of all V 2 R

n�r with the condition: V Œ˛; Œr�� D Ir represent an open cell
in Gr.r; n/ of dimension r.n � r/ denoted by Gr.r;Rn/.˛/. (The number of free
parameters in all such V ’s is .n � r/r .) Assume for simplicity of exposition that

˛ D Œr�. Note that V0 D
�
Ir

0

�

2 Gr.r;Rn/.Œr�/. Let ei D .ı1i ; : : : ; ıni /
> 2 R

n; i D
1; : : : ; n be the standard basis in R

n. So U0 D span.e1; : : : ; er / 2 Gr.r;Rn/.Œr�/,
and V0 is the unique representative of U0. Note that U?

0 , the orthogonal complement
of U0, is span.erC1; : : : ; en/. It is straightforward to see that V 2 Gr.r;Rn/.Œr�/ if
and only if V \ U?

0 D f0g.
The following definition is a geometric generalization of Gr.r;Rn/.˛/:

Gr.r;Rn/.U/ WD fV 2 Gr.r;Rn/; V \ U? D f0gg for U 2 Gr.r;Rn/: (14.43)

A basis for Gr.r;Rn/.U/, which can be identified the tangent hyperplane
TU Gr.r;Rn/, can be represented as ˚rU?: Let u1; : : : ;ur and urC1; : : : ;un be
orthonormal bases of U and U? respectively Then each subspace V 2 Gr.r;Rn/.U/
has a unique basis of the form u1 C x1; : : : ;ur C xr for unique x1; : : : ; xr 2 U?.
Equivalently, every matrix X 2 R

.n�r/�r induces a unique subspace V using the
equality

Œx1 : : : xr � D Œu1 : : : un�r �X for each X 2 R
.n�r/�r : (14.44)

Recall the results of Sect. 14.5.3. Let U D .U1; : : : ; Ud / 2 Gr.r;n/. Then

QF D . QF1; : : : ; QFd/ W Gr.r;n/ ! Gr.r;n/; QFi .U / D Ui .U i /; i 2 Œd �; (14.45)

where Ui .U i / a subspace spanned by the first ri eigenvectors of Ai.U i /. Assume
that QF is one valued at U , i.e. (14.28) holds. Then it is straightforward to show that
QF is smooth (real analytic) in neighborhood of U . Assume next that there exists a
neighborhoodO of U such that

O � Gr.r;n/.U / WD Gr.r1;R
n1/.U1/ � � � � � Gr.rd ;R

nd /.Ud /; U D .U1; : : : ;Ud /;
(14.46)
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such that the conditions 1–3 of Assumption 1 hold. Observe next that Gr.r;n/.U /
is diffeomorphic to

R
L WD R

.n1�r1/�r1 : : : � R
.nd�rd /�rd ; L D

X

i2Œd �
.ni � ri /ri

We say that QF is regular at U if in addition to the above condition the matrix I �
D QF.U / is invertible. We can viewX D ŒX1 : : : Xd � 2 R

.n1�r1/�r1 : : :�R
.nd�rd /�rd .

Then QF onO can be viewed as

F W O1 ! O1; O1 � R
L; F.X/ D ŒF1.X/; : : : ; Fd .X/�; X D ŒX1 : : : Xd � 2 R

L:

(14.47)

Note that Fi .X/ does not depend on Xi for each i 2 Œd �. In our numerical
simulations we first do a small number of AMM and then switch to Newton method
given by (14.40). Observe that U corresponds to X.U/ D ŒX1.U /; : : : ; Xd .U /�.
When referring to (14.40) we identify X D ŒX1; : : : ; Xd � with 
 D .
1; : : : ; 
d /

and no ambiguity will arise.
Note that the case r D 1d corresponds to best rank one approximation. The above

Newton method in this case is different from Newton method given in Sect. 14.7.1.

14.9 A Closed Formula for DF.X.U //

Recall the definitions and results of Sect. 14.5.3. Given U we compute QFi .U / D
Ui .U i /, which is the subspace spanned by the first ri eigenvectors ofAi.U i /, which
is given by (14.27), for i 2 Œd �. Assume that (14.33) holds. Let

Ui .U i / D span.v1;i ; : : : ; vri ;ni /; Ui .U i /
? D span.vriC1;i ; : : : ; vni ;i /;

v>
j;ivk;i D ıjk; j; k 2 Œni �; i 2 Œd �: (14.48)

With each X D ŒX1; : : : ; Xd � 2 R
L we associate the following point

.W1; : : : ;Wd / 2 Gr.r;n/.U /. Suppose that Xi D Œxpq;i � 2 R
.ni�ri /�ri . Then

Wi has a basis of the form

uji ;i C
X

ki2Œni�ri �
xki ji ;iuriCki ;i ; ji 2 Œri �:

One can use the following notation for a basis w1;i ; : : : ;wri ;i , written as a vector
with vector coordinates Œw1;i � � � wri ;i �:

Œw1;i � � � wri ;i � D Œu1;i � � � uri ;i �C ŒuriC1;i � � � uni ;i �Xi ; i 2 Œd �: (14.49)
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Note that to the point U 2 Gr.r;n/.U / corresponds the point X D 0. Since
u1;i ; : : : ;uni ;i is a basis in R

ni it follows that

Œv1;i � � � vri ;i � D Œu1;i � � � uri ;i �Yi;0 C ŒuriC1;i ; : : : ;uni ;i �Xi;0 D Œu1;i � � � uni ;i �Zi;0;

Yi;0 2 R
ri�ri ; Xi;0 2 R

.ni�ri /�ri ; Zi;0 D
�
Yi;0
Xi;0

�

2 R
ni�ri ; for i 2 Œd �: (14.50)

View Œv1;i � � � vri ;i �; Œu1;i � � � uni ;i � as ni � ri and ni � ni matrices with orthonormal
columns. Then

Zi;0 D Œu1;i � � � uni ;i �
>Œv1;i � � � vri ;i �; i 2 Œd �: (14.51)

The assumption that QF W O ! O implies that Yi;0 is an invertible matrix. Hence
Œv1;i � � � vri ;i �Y

�1
i;0 is also a basis in Ui .U i /. Clearly,

Œv1;i � � � vri ;i �Y
�1
i;0 D Œu1;i � � � uri ;ni �C ŒuriC1;i ; : : : ;uni ;i �Xi;0Y �1

i;0 ; i 2 Œd �:

Hence QF.U / corresponds to F.0/ where

Fi .0/ D Xi;0Y
�1
i;0 ; i 2 Œd �; F.0/ D .F1.0/; : : : ; Fd .0//: (14.52)

We now find the matrix of derivatives. So DiFj 2 R
..ni�ri /ri�..nj�rj /rj // is the

partial derivative matrix of .nj � rj /rj coordinates of Fj with respect to .ni �
ri /ri the coordinates of Ui viewed as the matrix

�
Iri
Gi

�

. So Gi 2 R
.ni�ri /�ri are

the variables representing the subspace Ui . Observe first that DiFi D 0 just as in
Newton method for best rank one approximation in Sect. 14.7.1.

Let us now find DiFj .0/. Recall that DiFj .0/ is a matrix of size .ni � ri /ri �
.nj � rj /rj . The entries of DiFj .0/ are indexed by ..p; q/; .s; t// as follows: The
entries of Gi D Œgpq;i � 2 R

.ni�ri /�ri are viewed as .ni � ri /ri variables, and are
indexed by .p; q/, where p 2 Œni � ri �; q 2 Œri �. Fj is viewed as a matrix Gj 2
R
.nj�rj /�rj .The entries of Fj are indexed by .s; t/, where s 2 Œnj �rj � and t 2 Œrj �.

Since U 2 Gr.r;n/.U / corresponds to 0 2 R
L we denote by Aj .0/ the matrix

Aj .U j / for j 2 Œd �. We now give the formula for @Aj .0/

@gpq;i
. This is done by noting

that we vary Ui by changing the orthonormal basis u1;i ; : : : ;uri ;i up to the first
perturbation with respect to the real variable " to

Ou1;i D u1;i ; : : : ; Ouq�1;i D uq�1;i ; Ouq;i D uq;i C"uriCp;i ; OuqC1;i D uqC1;i ; : : : ; Ouri ;i D uri ;i

We denote the subspace spanned by these vectors as Ui ."; p; q/. That is, we change
only the q orthonormal vector of the standard basis in Ui , for q D 1; : : : ; ri . The
new basis is an orthogonal basis, and up order ", the vector uq;i C "uriCp;i is also
of length 1. Let U ."; i; p; q/ D .U1; : : : ;Ui�1;Ui ."; p; q/;UiC1; : : : ;Ud /. Then



14 Low-Rank Approximation of Tensors 401

U ."; i; p; q/j is obtained by dropping the subspace Uj from U ."; i; p; q/. We will
show that

Aj .U ."; i; p; q/j / D Aj .U j /C "Bj;i;p;q CO."2/: (14.53)

We now give a formula to compute Bj;i;p;q . Assume that i; j 2 Œd � is a pair of
different integers. Let J be a set of d � 2 pairs [l2Œd �nfi;j gf.kl ; l/g, where kl 2 Œrl �.
Denote by Jij the set of all such J ’s. Note that Jij D Jj i . Furthermore, the
number of elements in Jij is Rij D Q

l2Œd �nfi;j g rl . We now introduce the following
matrices

Cij .J / WD T � .˝.k;l/2Juk;l / 2 R
ni�nj ; J 2 Jij : (14.54)

Note that Cij .J / D Cji.J /
>.

Lemma 1 Let i; j 2 Œd �; i ¤ j . Assume that p 2 Œni � ri �; q 2 Œri �. Then (14.53)
holds. Furthermore

Aj .U j / D
X

k2Œri �;J2Jj i

.Cj i.J /uk;i /.Cj i.J /uk;i />; (14.55)

Bj;i;p;q D
X

J2Jj i

.Cj i.J /ukiCp;i /.Cj i.J /uq;i /> C .Cj i.J /uq;i /.Cj i.J /ukiCp;i />

(14.56)

Proof The identity of (14.55) is just a restatement of (14.27). To compute
Aj .U ."; i; p;

q/j / use (14.54) by replacing uk;i with Ouk;i for k 2 Œni �. Deduce first (14.53)
and then (14.56). ut

Recall that v1;j ; : : : ; vrj ;j is an orthonormal basis of Uj .U j /, and these vec-
tors are the eigenvectors Aj .U j / corresponding its first rj eigenvalues. Let
vrjC1;j ; : : : ; vnj ;i be the last nj � rj orthonormal eigenvectors of Aj .U j /. We
now find the first perturbation of the first ri eigenvectors for the matrix Aj .U j /C
"Bj;i;p;q . Assume first, for simplicity of exposition, that each �k.Aj .U j // is simple
for k 2 Œrj �: Then it is known, e.g. [10, Chapter 4, §19, (4.19.2)]:

vk;j ."; i; p; q/ D vk;jC".�k.Aj .U j //Inj �Aj .U j //
�Bj;i;p;qvk;jCO."2/; k 2 Œrj �:

(14.57)

The assumption that �k.Aj .U j // is a simple eigenvalue for k 2 Œrj � yields

.�k.Aj .U i //Inj � Aj .U j //
�y D

X

l2Œnj �nfkg

1

�k.Aj .U j //� �l .Aj .U j //
.v>
l;j y/vl;j ;

for y 2 R
nj .
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Since we are interested in a basis of Uj .U ."; i; p; q/j / up to the order of " we
can assume that this basis is of the form

Qvk;j ."; i; p; q/ D vk;j C "wk;j .i; p; q/; wk;j .i; p; q/ 2 span.vrjC1;j : : : ; vnj ;j /:

Hence

wk;j .i; p; q/ D
X

l2Œnj �nŒrj �

1

�k.Aj .U j // � �l.Aj .U j //
.v>
l;j ck;j;i;p;q/vl;j ;

ck;j;i;p;q WD Bj;i;p;qvk;j : (14.58)

Note that the assumption (14.28) yields that wk;j is well defined for k 2 Œrj �. Let

Wj .i; p; q/ D Œw1;j .i; p; q/ � � �wrj ;j .i; p; q/� D
�
Vj .i; p; q/

Uj .i; p; q/

�

;

Vj .i; p; q/ 2 R
rj�rj ; Uj .i; p; q/ 2 R

.nj�rj /�rj :

Up to the order of " we have that a basis of Uj .U ."; i; p; q/j / is given by columns

of matrix Zj;0 C "Wj .i; p; q/ D
�
Yj;0 C "Vj .i; p; q/

Xj;0 C "Uj .i; p; q/

�

. Note that

.Zj;0 C "Wj .i; p; q//.Yj;0 C "Vj .i; p; q//
�1

D
�

Irj
.Xj;0 C "Uj .i; p; q//.Yj;0 C "Vj .i; p; q//

�1
�

:

Observe next

Yj;0 C "Vj .i; p; q/ D Yj;0.Irj C "Y �1
j;0 Vj .i; p; q//;

.Yj;0 C "Vj .i; p; q//
�1 D .Irj C "Y �1

j;0 Vj .i; p; q//
�1Y �1

j;0 D
Y �1
j;0 � "Y �1

j;0 Vj .i; p; q/Y
�1
j;0 CO."2/;

.Xj;0 C "Uj .i; p; q//.Yj;0 C "Vj .i; p; q//
�1 D

Xj;0Y
�1
j;0 C ".Uj .i; p; q/Y

�1
j;0 � Xj;0Y

�1
j;0 Vj .i; p; q/Y

�1
j;0 /CO."2/:

Hence

@Fj

@gpq;i
.0/ D Uj .i; p; q/Y

�1
j;0 � Xj;0Y

�1
j;0 Vj .i; p; q/Y

�1
j;0 : (14.59)



14 Low-Rank Approximation of Tensors 403

Thus DF.0/ D ŒDiFJ �i;j2Œd � 2 R
L�L. We now make one iteration of Newton

method given by (14.40) for l D 1, where 
.0/ D 0:


.1/ D �.I �DF.0//�1F.0/; 
.1/ D ŒX1;1; : : : ; Xd;1� 2 R
L: (14.60)

Let Ui;1 2 Gr.ri ;Rni / be the subspace represented by the matrix Xi;1:

Ui;1 D span. Qu1;i;1; : : : ; Quri ;i;1/; Œ Qu1;i;1; : : : ; Quni ;i;1� D Œu1;i ; : : : ;uni ;i �
�
Iri
Xj;1

�

(14.61)

for i 2 Œd �. Perform the Gram-Schmidt process on Qu1;i;1; : : : ; Quri ;i;1 to obtain an
orthonormal basis u1;i;1; : : : ;uri ;i;1 of Ui;1. Let U WD .U1;1; : : : ;Ud;1/ and repeat the
algorithm which is described above. We call this Newton method Newton-2.

14.10 Complexity of Newton-2

In this section we assume for simplicity that d D 3, r1 D r2 D r3 D r , ni � n

for i 2 Œ3�. We assume that executed a number of times the AMM for a given T 2
R

n. So we are given U D .U1; : : : ;Ud /, and an orthonormal basis u1;i ; : : : ;ur;i
of Ui for i 2 Œd �. First we complete each u1;i ; : : : ;ur;i to an orthonormal basis
u1;i ; : : : ;uni ;iof R

ni , which needs O.n3/ flops. Since d D 3 we still need only
O.n3/ to carry out this completion for each i 2 Œ3�.

Next we compute the matrices Cij .J /. Since d D 3, we need n flops to compute
each entry ofCij .J /. Since we have roughlyn2 entries, the complexity of computing
Cij .J / is O.n3/. As the cardinality of Jij is r we need O.rn3/ flops to compute all
Cij .J / for J 2 Jij . As the number of pairs in Œ3� is 3 it follows that the complexity
of computing all Cij .J / is O.rn3/.

The identity (14.55) yields that the complexity of computingAj .U j / is O.r2n2/.
Recall next that Aj .U j / is nj � nj symmetric positive semi-definite matrix. The
complexity of computations of the eigenvalues and the orthonormal eigenvectors of
Aj .U j / is O.n3/. Hence the complexity of computing U is O.rn3/, as we pointed
out at the end of Sect. 14.6.3.

The complexity of computing Bj;i;p:q using (14.56) is O.rn2/. The complexity
of computing wk;j .i; p; q/, given by (14.58) is O.n2/. Hence the complexity of
computing Wj .i; p; q/ is O.rn2/. Therefore the complexity of computing DiFj
is O.r2n3/. Since d D 3, the complexity of computing the matrix DF.0/ is also
O.r2n3/.

As DF.0/ 2 R
L�L, where L � 3rn, the complexity of computing .I �

DF.0//�1 is O.r3n3/. In summary, the complexity of one step in Newton-2 is
O.r3n3/.
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14.11 Numerical Results

We have implemented a Matlab library tensor decomposition using Tensor Toolbox
given by [30]. The performance was measured via the actual CPU-time (seconds)
needed to compute. All performance tests have been carried out on a 2.8 GHz
Quad-Core Intel Xeon Macintosh computer with 16 GB RAM. The performance
results are discussed for real data sets of third-order tensors. We worked with a real
computer tomography (CT) data set (the so-called MELANIX data set of OsiriX)
[15].

Our simulation results are averaged over 10 different runs of the each algorithm.
In each run, we changed the initial guess, that is, we generated new random start
vectors. We always initialized the algorithms by random start vectors, because this
is cheaper than the initialization via HOSVD. We note here that for Newton methods
our initial guess is the subspaces returned by one iteration of AMM method.

All the alternating algorithms have the same stopping criterion where conver-
gence is achieved if one of the two following conditions are met: iterations >

10I fitchange < 0:0001 is met. All the Newton algorithms have the same stopping
criterion where convergence is achieved if one of the two following conditions are
met: iterations > 10I change < exp.�10/.

Our numerical simulations demonstrate the well known fact that for large size
tensors Newton methods are not efficient. Though the Newton methods converge
in fewer iterations than alternating methods, the computation associated with the
matrix of derivatives (Jacobian) in each iteration is too expensive making alternating
maximization methods much more cost effective. Our simulations also demonstrate
that our Newton-1 for best rank one approximation is as fast as AMM methods.
However our Newton-2 is much slower than alternating methods. We also give a
comparison between our Newton-2 and the Newton method based on Grassmannian
manifold by [8], abbreviated as Newton-ES.

We also observe that for large tensors and large rank approximation two alternat-
ing maximization methods, namely MAMM and 2AMMV, seem to outperform the
other alternating maximization methods. We would recommend Newton-1 for rank
one approximation in case of rank one approximation both for large and small sized
tensors. For higher rank approximation we recommend 2AMMV in case of large
size tensors and AMM or MAMM in case of small size tensors.

Our Newton-2 performs a bit slower than Newton-ES, however we would like
to point couple of advantages. Our method can be easily extendable to higher
dimensions (for d > 3 case) both analytically and numerically compared to
Newton-ES. Our method is also highly parallelizable which can bring down the
computation time drastically. Computation of DiFj matrices in each iteration
contributes to about 50% of the total time, which however can be parallelizable.
Finally the number of iterations in Newton-2 is at least 30% less than in Newton-
ES (Figs. 14.1–14.3).

It is not only important to check how fast the different algorithms perform but
also what quality they achieve. This was measured by checking the Hilbert-Schmidt
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Fig. 14.1 Rank (1, 1, 1) average CPU times taken over 10 initial random guesses

norm, abbreviated as HS norm, of the resulting decompositions, which serves as a
measure for the quality of the approximation. In general, we can say that the higher
the HS norm, the more likely it is that we find a global maximum. Accordingly,
we compared the HS norms to say whether the different algorithms converged to
the same stationary point. In Figs. 14.4 and 14.5, we show the average HS norms
achieved by different algorithms and compared them with the input norm. We
observe all the algorithms seem to attain the same local maximum.
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Fig. 14.2 Rank (2, 2, 2) average CPU times taken over 10 initial random guesses

14.11.1 Best (2,2,2) and Rank Two Approximations

Assume that T is a 3-tensor of rank three at least and let S be a best .2; 2; 2/-
approximation to T given by (14.1). It is easy to show that S has at least rank
2. Let S 0 D Œsj1;j2;j3 � 2 R

2�2�2 be the core tensor corresponding to S . Clearly
rank S D rank S 0 � 2. Recall that a real nonzero 2 � 2 � 2 tensor has rank one,
two or three [41]. So rank S 2 f2; 3g. Observe next that if rank S D rank S 0 D 2

then S is also a best rank two approximation of T . Recall that a best rank two
approximation of T may not always exist. In particular where rank T > 2 and
the border rank of T is 2 [6]. In all our numerical simulations for best .2; 2; 2/-
approximation we performed on random large tensors, the tensor S 0 had rank two.
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Fig. 14.3 Rank (3, 3, 3) average CPU times taken over 10 initial random guesses

Note that the probability of 2� 2� 2 tensors, with entries normally distributed with
mean 0 and variance 1, to have rank 2 is �

4
[2].

14.12 Conclusions

We have extended the alternating maximization method (AMM) and modified
alternating maximization method (MAMM) given in [15] for the computation of
best rank one approximation to best r-approximations. We have also presented new
algorithms such as 2-alternating maximization method variant (2AMMV) and New-
ton method for best r-approximation (Newton-2). We have provided closed form
solutions for computing the DF matrix in Newton-2. We implemented Newton-1
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for best rank one approximation [14] and Newton-2. From the simulations, we have
found out that for rank one approximation of both large and small sized tensors,
Newton-1 performed the best. For higher rank approximation, the best performers
were 2AMMV in case of large size tensors and AMM or MAMM in case of small
size tensors.

Acknowledgements We thank Daniel Kressner for his remarks.
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