
Chapter 12
Polynomial Eigenvalue Problems:
Theory, Computation, and Structure

D. Steven Mackey�, Niloufer Mackey, and Françoise Tisseur�

Abstract Matrix polynomial eigenproblems arise in many application areas, both
directly and as approximations for more general nonlinear eigenproblems. One
of the most common strategies for solving a polynomial eigenproblem is via a
linearization, which replaces the matrix polynomial by a matrix pencil with the same
spectrum, and then computes with the pencil. Many matrix polynomials arising
from applications have additional algebraic structure, leading to symmetries in the
spectrum that are important for any computational method to respect. Thus it is
useful to employ a structured linearization for a matrix polynomial with structure.
This essay surveys the progress over the last decade in our understanding of
linearizations and their construction, both with and without structure, and the impact
this has had on numerical practice.
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12.1 Introduction

Nonlinear eigenvalue problems of the form

P.�/x D 0 ; x 2 C
n; x ¤ 0 ;

where P.�/ is an m � n matrix-valued function of a scalar variable �, are
playing an increasingly important role in classical and contemporary applications.
The simplest, but still most important among these problems are the polynomial
eigenproblems, where P.�/ is an m � n matrix polynomial

P.�/ D
kX

iD0

�i Ai ; Ai 2 C
m�n : (12.1)

Such problems arise directly from applications, from finite element discretizations
of continuous models, or as approximations to more general nonlinear eigen-
problems, as detailed in the survey articles [69, 79]. The trend towards extreme
designs, such as high speed trains, optoelectronic devices, micro-electromechanical
systems, and “superjumbo” jets such as the Airbus 380, presents a challenge for the
computation of the resonant frequencies of these structures as these extreme designs
often lead to eigenproblems with poor conditioning.

However, the physics that underlies problems arising from applications can lead
to algebraic structure in their mathematical formulation. Numerical methods that
preserve this structure keep key qualitative features such as eigenvalue symmetries
from being obscured by finite precision error.

A recurring theme running through much of the work of Volker Mehrmann
has been the preservation of structure – in the pursuit of condensed forms, and
in the development of numerical algorithms. To quote from the 2004 paper titled
Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods by
Mehrmann and Voss [69]:

The task of numerical linear algebra then is to design numerical methods that are accurate
and efficient for the given problem. The methods should exploit to a maximal extent the
sparsity and structure of the coefficient matrices. Furthermore, they should be as accurate
as the approximation of the underlying operator problem permits, and they should include
error and condition estimates.

One of the most common strategies for solving a polynomial eigenproblem is
via a linearization, which replaces the given matrix polynomial P.�/ by a matrix
pencil L.�/ D �X C Y with the same eigenvalues as P . The eigenproblem for
L.�/ is then solved with general pencil algorithms like the QZ algorithm, or with
methods designed to work effectively on the specific types of pencils produced by
the linearization process. If the matrix polynomial has some structure, then the
linearization should also have that structure, and the algorithm employed on the
linearization should preserve that structure.
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The most commonly used linearizations in numerical practice have been the
Frobenius companion forms. Although these pencils have many desirable prop-
erties, including the extreme ease with which they can be constructed, they have
one significant drawback. They do not preserve any of the most important and
commonly occurring matrix polynomial structures – Hermitian, alternating, or
palindromic. Thus in order to implement the structure preservation principle on
the linearization strategy, it is necessary to have more linearizations available, in
particular ones that preserve the structure of the original polynomial. It is also
useful to have a large palette of easily constructible linearizations, even in the
absence of any structure to be preserved. For example, it may be possible to improve
numerical accuracy by selecting an “optimal” linearization, but only if there are
many linearizations available to choose from.

This essay will illustrate the influence that the structure preservation principle has
had on the development of linearizations of matrix polynomials, on the impact our
improved understanding of linearizations in general has had on numerical practice,
and Mehrmann’s key contributions to that effort.

12.2 Basic Concepts

We use N to denote the set of nonnegative integers, F for an arbitrary field, FŒ�� for
the ring of polynomials in one variable with coefficients from the field F, and F.�/

for the field of rational functions over F.
A matrix polynomial of grade k has the form

P.�/ D
kX

iD0

�iAi ; with Ai 2 F
m�n: (12.2)

Here we allow any of the coefficient matrices, including Ak , to be the zero matrix.
The degree of a nonzero matrix polynomial retains its usual meaning as the largest
integer j such that the coefficient of �j in P.�/ is nonzero. The grade of a nonzero
matrix polynomial is a choice of integer k at least as large as its degree [22, 59, 61].
It signals that the polynomial is to be viewed as an element of a particular vector
space – the F-vector space of all matrix polynomials of degree less than or equal
to k. Choosing a grade, in effect, specifies the finite-dimensional vector space of
discourse.

If m D n and detP.�/ is not the identically zero polynomial, then P.�/ is said to
be regular; equivalently, P.�/ is regular if it is invertible when viewed as a matrix
with entries in the field of rational functions F.�/. Otherwise, P.�/ is said to be
singular (note that this includes all rectangular matrix polynomials with m ¤ n).
The rank of P.�/ is its rank when viewed as a matrix with entries in the field F.�/, or
equivalently, the size of the largest nonzero minor of P.�/. For simplicity, in many
cases we may suppress the dependence on � when referring to a matrix polynomial.
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An m � m polynomial E.�/ is said to be unimodular if detE.�/ is a nonzero
constant, i.e., E.�/ has an inverse that is also a matrix polynomial [32]. The
canonical form of a matrix polynomial P.�/ under a transformation E.�/P.�/F.�/

by unimodular matrix polynomials E.�/ and F.�/ is referred to as the Smith form
of P.�/. This form was first developed for integer matrices by H.J.S. Smith [76]
in the context of solving linear systems of Diophantine equations [51]. It was then
extended by Frobenius in [30] to matrix polynomials.

Theorem 1 (Smith form (Frobenius, 1878)[30]) Let P.�/ be an m � n matrix
polynomial over an arbitrary field F. Then there exists r 2 N, and unimodular
matrix polynomials E.�/ and F.�/ over F of size m � m and n � n, respectively,
such that

E.�/P.�/F.�/ D diag.d1.�/; : : : ; dmin fm;ng.�// DW D.�/; (12.3)

where each di .�/ is in FŒ��, d1.�/; : : : ; dr .�/ are monic, drC1.�/; : : : ; dmin fm;ng.�/

are identically zero, and d1.�/; : : : ; dr.�/ form a divisibility chain, that is, dj .�/ is
a divisor of dj C1.�/ for j D 1; : : : ; r � 1. Moreover, the m � n diagonal matrix
polynomial D.�/ is unique, and the number r is equal to the rank of P .

The nonzero diagonal elements dj .�/, j D 1; : : : ; r in the Smith form D.�/ are
called the invariant factors or invariant polynomials of P.�/.

The uniqueness of D.�/ in Theorem 1 implies that the Smith form is insensitive
to field extensions. In other words, the Smith forms of P.�/ over F and over any
extension field QF � F are identical. Consequently, the following notions of the
partial multiplicity sequences, eigenvalues, and elementary divisors of P.�/ are
well-defined.

Definition 1 (Partial Multiplicity Sequences and Jordan Characteristic) Let
P.�/ be an m � n matrix polynomial of rank r over a field F. For any �0 in the
algebraic closure F, the invariant polynomials di.�/ of P , for 1 � i � r , can each
be uniquely factored as

di.�/ D .� � �0/
˛i pi .�/ with ˛i � 0 ; pi .�0/ ¤ 0 : (12.4)

The sequence of exponents .˛1; ˛2; : : : ; ˛r / for any given �0 2 F satisfies the
condition 0 � ˛1 � ˛2 � � � � � ˛r by the divisibility chain property of the
Smith form, and is called the partial multiplicity sequence of P at �0 2 F, denoted
J .P ; �0/. The collection of all the partial multiplicity sequences of P is called the
Jordan characteristic of P .

Note that we allow any, even all, of the exponents ˛i in a partial multiplicity
sequence J .P ; �0/ to be zero. Indeed, this occurs for all but a finite number of
�0 2 F. These exceptional �0 with at least one nonzero entry in J .P ; �0/ are of
course just the eigenvalues of P.�/.
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Definition 2 (Eigenvalues and Elementary Divisors) A scalar �0 2 F is a (finite)
eigenvalue of a matrix polynomial P whenever its partial multiplicity sequence
.˛1; ˛2; : : : ; ˛r / is not the zero sequence. The elementary divisors for an eigenvalue
�0 of P are the collection of factors .� � �0/

˛i with ˛i ¤ 0, including repetitions.
The algebraic multiplicity of an eigenvalue �0 is the sum ˛1 C ˛2 C � � � C ˛r

of the terms in its partial multiplicity sequence, while the geometric multiplicity
is the number of nonzero terms in this sequence. An eigenvalue �0 is said to be
simple if its algebraic multiplicity is one; �0 is semisimple if its algebraic and
geometric multiplicities are equal, equivalently, if all of the nonzero terms in its
partial multiplicity sequence are equal to one.

It is worth noting that defining the eigenvalues of a matrix polynomial via the
Smith form subsumes the more restrictive notion of the eigenvalues as the roots of
detP.�/, which is completely inadequate for singular matrix polynomials. We also
stress the importance of viewing the partial multiplicities of a fixed �0 as a sequence.
In a number of situations, especially for matrix polynomials with structure [58–60],
it is essential to consider certain subsequences of partial multiplicities, which can
be subtly constrained by the matrix polynomial structure. Indeed, even the zeroes in
the partial multiplicity sequences of structured matrix polynomials can sometimes
have nontrivial significance [58–60].

Matrix polynomials may also have infinite eigenvalues, with a corresponding
notion of elementary divisors at 1. In order to define the elementary divisors at 1
we need one more preliminary concept, that of the reversal of a matrix polynomial.

Definition 3 (j -reversal) Let P.�/ be a nonzero matrix polynomial of degree
d � 0. For j � d , the j-reversal of P is the matrix polynomial revj P given by

.revj P /.�/ WD �j P.1=�/: (12.5)

In the special case when j D d , the j -reversal of P is called the reversal of P and
is sometimes denoted by just revP .

Definition 4 (Elementary divisors at 1) Let P.�/ be a nonzero matrix polyno-
mial of grade k and rank r . We say that �0 D 1 is an eigenvalue of P if and only if
0 is an eigenvalue of revk P , and the partial multiplicity sequence of P at �0 D 1
is defined to be the same as that of the eigenvalue 0 for revk P , that is J .P ; 1/ WD
J .revk P ; 0/. If this partial multiplicity sequence is .˛1; ˛2; : : : ; ˛r /, then for each
˛i ¤ 0 we say there is an elementary divisor of degree ˛i for the eigenvalue �0 D 1
of P .

If P.�/ D Pg
iD0 �i Ai has grade k and rank r , then P has an eigenvalue at 1 if

and only if the rank of the leading coefficient matrix Ak is strictly less than r . For a
regular polynomial P this just means that Ak is singular. Observe that if k > deg P ,
then Ak D 0 and P necessarily has r elementary divisors at 1.
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Definition 5 (Spectral Structure of a Matrix Polynomial) The collection of all
the eigenvalues of a matrix polynomial P.�/, both finite and infinite, is the spectrum
of P . The collection of all the elementary divisors of P , both finite and infinite,
including repetitions, constitutes the spectral structure of P .

The two most frequently used equivalence relations that preserve spectral
structure between matrix polynomials are unimodular equivalence and strict equiv-
alence. They can be used only between matrix polynomials of the same size.

Definition 6 A pair of m�n matrix polynomials P and Q over a fixed but arbitrary
field F are said to be

(a) Unimodularly equivalent, denoted P � Q, if there exist unimodular matrix
polynomials E.�/ and F.�/ over F such that E.�/P.�/F.�/ D Q.�/,

(b) Strictly equivalent, denoted P Š Q, if there exist invertible (constant) matrices
E and F over F such that E � P.�/ � F D Q.�/.

Of these two relations, unimodular equivalence is the more flexible, as it allows
the degrees of the two matrix polynomials to differ, while keeping the list of finite
elementary divisors invariant. On the other hand, strict equivalence preserves both
finite and infinite elementary divisors, but because the degrees of strictly equivalent
matrix polynomials have to be identical, this relation can be a bit restrictive.

Recently the relations of extended unimodular equivalence and spectral equiva-
lence have been introduced [22] to facilitate the comparison of matrix polynomials
that are of different sizes, including rectangular, and of different grades. The
underlying goal is to investigate the extent to which it is possible for such diverse
matrix polynomials to share the same spectral structure and and the same singular
structure. These extended equivalences now open up the possibility of choosing
linearizations that can take on any size that “works.” This is in accord with the notion
of “trimmed linearizations” studied by Byers, Mehrmann and Xu in [16]. Another
important consequence is that one can now easily generalize the notion of (strong)
linearization to (strong) quadratification, and indeed to (strong) `-ification [22]!

12.3 Linearizations

For square matrix polynomials, the notion of linearization plays a central role for
both theory and computation.

Definition 7 (Linearization) An nk � nk pencil L.�/ D �X C Y is said to be
a linearization for an n � n matrix polynomial P.�/ of grade k if there exist
unimodular nk � nk matrix polynomials E.�/; F.�/ such that

E.�/L.�/F.�/ D
"

P.�/ 0

0 I.k�1/n

#

nk�nk

:
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If in addition, rev1 L.�/ WD �X C Y is a linearization of revk P .�/, then L is said
to be a strong linearization of P .

The key property of any linearization L of P is that L has the same finite
elementary divisors as P , while a strong linearization has the same finite and infinite
elementary divisors as P . Since there are well-known algorithms for solving the
linear eigenproblem this immediately suggests working on a matrix pencil L that is
a strong linearization for P .

The linearizations most used in practice are the first and second Frobenius
companion forms C1.�/ D �X1 C Y1, and C2.�/ D �X2 C Y2, where

X1 D X2 D diag.Ak; I.k�1/n/; (12.6a)

Y1 D

2

6664

Ak�1 Ak�2 � � � A0

�In 0 � � � 0
:::

: : :
: : :

:::

0 � � � �In 0

3

7775; and Y2 D

2

6664

Ak�1 �In � � � 0

Ak�2 0
: : :

:::
:::

:::
: : : �In

A0 0 � � � 0

3

7775:

(12.6b)

They have several attractive properties:

• there is a uniform template for constructing them directly from the data in P ,
using no matrix operations on the coefficients of P ,

• eigenvectors of P are easily recoverable from eigenvectors of the companion
forms,

• they are always strong linearizations for P , no matter whether P is regular or
singular.

However, they have one significant drawback – they usually do not reflect the
structure that may be present in the original polynomial P .

12.3.1 Ansatz Spaces

During an extended visit by the first two authors to Berlin in 2003, Mehrmann
proposed searching for alternatives to the companion linearizations C1.�/ and C2.�/

– alternatives that would share the structure of the parent polynomial P.�/.
In joint work with Mehrmann and Mehl, two large vector spaces of pencils that

generalize the first and second Frobenius companion forms were introduced in [55].
Christened L1.P / and L2.P /, where P is a regular matrix polynomial, these spaces
were conceived as the collection of all pencils satisfying a certain ansatz, which we

now briefly describe. With � WD �
�k�1;�k�2; : : : ; �; 1

�T
, where k is the grade of

P , define L1.P / as the set of all kn � kn pencils L.�/ satisfying the right ansatz

L.�/ � .� ˝ In/ D v ˝ P.�/; for some v 2 F
k; (12.7)



326 D.S. Mackey et al.

and L2.P / as the set of all kn � kn pencils L.�/ satisfying the left ansatz

.�T ˝ In/ � L.�/ D wT ˝ P.�/; for some w 2 F
k: (12.8)

A direct calculation shows that C1.�/ 2 L1.P / with right ansatz vector v D e1,
and C2.�/ 2 L2.P / with left ansatz vector w D e1. The pencils in these ansatz
spaces were shown to have a number of nice properties:

• like C1.�/ and C2.�/, they are all easily constructible from the coefficients of P ,
• eigenvectors of P are easily recoverable; pencils in L1.P / reveal right eigenvec-

tors of P , while those in L2.P / reveal left eigenvectors,
• for regular P , almost all pencils in these spaces are strong linearizations for P .

Furthermore, each of these spaces is of dimension k.k � 1/n2 C k. Thus each
represents a relatively large subspace of the full pencil space (which has dimension
2k2n2), and hence is a large source of potential linearizations for P . In fact, these
spaces are so large, that for any choice of ansatz vector there are many degrees of
freedom available for choosing a potential linearization in L1.P / or L2.P /.

The aim of identifying smaller, but interesting subspaces of these ansatz spaces
brings the double ansatz subspace DL.P / WD L1.P / \ L2.P / into focus. One sees
right away that linearizations in DL.P / enjoy a two-sided eigenvector recovery
property. But a DL.P /-pencil also has an unexpected feature: its right and left ansatz
vectors are identical, with this common vector uniquely determining the pencil. An
isomorphism between DL.P / and Fk now follows, which in turn induces a natural
basis for DL.P /. Described in [38], a pencil �Xi C Yi in this basis has special
structure. Every Xi and Yi is block diagonal, with the diagonal blocks being block-
Hankel. In a surprising twist, a completely different construction of Lancaster [48]
dating back to the 1960s is proved to also generate this natural basis for DL.P /.

The unique vector v 2 Fk associated with L.�/ 2 DL.P / gives us a way to test
when L.�/ is a linearization for P , and show that almost all pencils in DL.P / are
linearizations for P .

Theorem 2 (Eigenvalue Exclusion Theorem [55]) Let P.�/ be a regular
matrix polynomial of grade k and let L.�/ 2 DL.P / with ansatz vector
v D Œv1; v2; : : : ; vk�T 2 Fk . Then L.�/ is a linearization for P.�/ if and only
if no root of the grade k � 1 scalar polynomial

q.�/ D v1�
k�1 C v2�k�2 C � � � C vk�1� C vk (12.9)

is an eigenvalue of P.�/. We include 1 as one of the possible roots of q.�/, or as
one of the possible eigenvalues of P.�/.

The systematizing of the construction of linearizations [55] has spurred exciting
new research in this area. The ansatz spaces L1.P / and L2.P / were recently
revisited from a new vantage point [80]. By regarding block matrices as a device
to record the matrix coefficients of a bivariate matrix polynomial, and by using the
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concepts of the Bézoutian function and associated Bézout matrix, shorter proofs of
the key results in [55] were obtained, while simultaneously generalizing them from
regular matrix polynomials expressed in the standard monomial basis to regular
polynomials expressed in any degree-graded basis.

What can be said about the pencils in L1.P / and L2.P / when the n � n matrix
polynomial P is singular? As was shown recently in [18], almost all of them are
still linearizations for P that now allow easy recovery of the left and right minimal
indices and minimal bases of P .

Are there linearizations for P that are not in L1.P / or L2.P /? Yes! Consider the
cubic matrix polynomial P.�/ D �3A3 C �2A2 C �A1 C A0. In [6], the pencil

L.�/ D �

2

4
0 A3 0

I A2 0

0 0 I

3

5C
2

4
�I 0 0

0 A1 A0

0 �I 0

3

5

was shown to be a linearization for P ; but L.�/ is neither in L1.P / nor L2.P /, as
observed in [55]. We turn next to the discussion of these pencils.

12.3.2 Fiedler Pencils

Another source of linearizations for matrix polynomials was inspired by a 2003
paper of Fiedler [29], in which he showed that the usual companion matrix C of a
scalar polynomial p.�/ D ˙k

iD1ai �
i of degree k can be factored into a product of

n sparse matrices Mi which differ only slightly from the n � n identity matrix:

C D

2
6666664

�ak�1 �ak�2 : : : �a1 �a0

1 0 : : : 0 0

0 1
: : :

:::
:::

: : :
: : : 0

0 : : : 0 1 0

3
7777775

D Mk�1Mk�2 � � � M0 ;

where

Mj WD

2

6664

Ik�j �1

�aj 1

1 0

Ij �1

3

7775 for j D 1; : : : ; k � 1 ; and M0 WD
"

Ik�1

�a0

#
:

Fiedler observed that any permutation of the factors Mi produces a matrix that
is similar to C , and hence also a companion matrix for p.�/. Furthermore,
certain permutations produce companion matrices that are of low bandwidth, i.e.,
pentadiagonal.
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The first step in extending Fiedler’s results to matrix polynomials was taken by
Antoniou and Vologiannidis in [6]. The Fiedler factors are now block matrices:

Mj WD

2

6664

In.k�j �1/

�Aj In

In 0

In.j �1/

3

7775 for j D 1; : : : ; k � 1; M0 WD
"

Ik�1

�A0

#
;

and one extra block matrix, Mk WD diagŒAk; In.k�1/�, which is needed because
matrix polynomials cannot, without loss of generality, be assumed to be monic.
For any permutation � D .j0; j1; : : : ; jk�1/ of the indices .0; 1; 2; : : : ; k � 1/, one
can now define the associated Fiedler pencil

F� .�/ WD �Mk � Mj0Mj1 � � � Mjk�1
: (12.10)

Each member of this family of Fiedler pencils was shown in [6] to be a strong
linearization when P is a regular matrix polynomial over C, by demonstrating
strict equivalence to the Frobenius companion pencil. The regularity assumption
is essential for this proof strategy to work, so to prove that the Fiedler pencils
remain strong linearizations when P is singular requires different techniques. This
was done in [19], with the restriction on the field lifted. It was also shown that the
left and right minimal indices of a singular P are recoverable from any of its Fiedler
pencils. Additionally, eigenvectors can be recovered without added computational
cost.

Antoniou and Vologiannidis also introduced in [6] a kind of “generalized” Fiedler
pencil; exploiting the fact that every Mj for j D 1; : : : ; k � 1 is invertible, we can
“shift” some of the Mj factors to the �-term. For example, F� .�/ WD �Mk �
Mj0Mj1 � � � Mjk�1

is strictly equivalent to

QF� .�/ D �M �1
j1

M �1
j0

MkM �1
jk�1

� Mj2 � � � Mjk�2
;

so QF� .�/ is also a strong linearization. These generalized Fiedler pencils can have
additional nice properties, as illustrated by the following example for a general
square polynomial P.�/ of degree k D 5.

S.�/ D �M5M
�1
3 M �1

1 � M4M2M0

D

2
666664

�A5 C A4 �In

�In 0 �In

�In �A3 C A2 �In

�In 0 �In

�In �A1 C A0

3
777775

:
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This pencil S.�/ is not only a strong linearization for P.�/, it is also block-
tridiagonal. The low bandwidth property of certain Fiedler (and generalized Fiedler)
pencils thus opens up the possibility of developing fast algorithms to compute the
eigenstructure of high degree matrix polynomials. The eigenvector and minimal
basis recovery properties of these generalized Fiedler pencils have been studied
in [13].

In more recent work [83], Vologiannidis and Antoniou have extended Fiedler
pencils even further, showing that repetitions of the Fiedler factors Mi can some-
times be allowed in the construction of F� .�/ in (12.10), and template-like strong
linearizations for P will still be produced. These pencils are sometimes referred to
as Fiedler pencils with repetition, and have been shown to be yet another source of
structured linearizations [14, 83].

Fiedler pencils have also been shown [21] to be adaptable to rectangular matrix
polynomials P . In this case, however, the product representation in (12.10) is no
longer tractable, and other techniques for constructing these pencils are required.
Each Fiedler pencil now has its own characteristic size as well as block pattern, but
each rectangular Fiedler pencil is still a strong linearization for P . This concretely
illustrates a distinctive feature of rectangular matrix polynomials, as contrasted
with regular (square) matrix polynomials; a rectangular m � n matrix polynomial
with m ¤ n always has strong linearizations of many different sizes, while a
regular matrix polynomial has strong linearizations of only one possible size. This
phenomenon is explored in more detail in [22]. For more on the impact of Fiedler’s
work on our understanding of linearizations, see [53].

12.4 Matrix Polynomial Structures

There are several kinds of algebraic structure commonly encountered in matrix
polynomials arising in the analysis and numerical solution of systems of ordinary,
partial, and delay differential equations. To concisely define these structures, we
define the ?-adjoint of matrix polynomials, where the symbol ? is used to denote
transpose T in the real case F D R, and either transpose T or conjugate transpose 	
in the complex case F D C. Note that the structures under consideration apply only
to square matrix polynomials.

Definition 8 (Adjoint of Matrix Polynomials) Let P.�/ D Pk
iD0 �i Ai where

Ai 2 Fn�n with F D R or C be a matrix polynomial of grade k. Then

P ?.�/ WD
kX

iD0

�i A?
i (12.11)

defines the ?-adjoint P ?.�/.
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The three most important matrix polynomial structures in applications are

Hermitian/symmetric: P ?.�/ D P.�/ ; (12.12)

?-alternating: P ?.��/ D ˙P.�/ ; (12.13)

and ?-palindromic: revP ?.�/ D ˙P.�/ : (12.14)

Also of interest are skew-symmetric matrix polynomials, defined by P T .�/ D
�P.�/, and the following alternative types of alternating and palindromic structure.
Letting R 2 Rn�n denote an arbitrary involution (i.e., R2 D I ), then P.�/ is
said to be RCR-palindromic if R rev P .�/R D ˙P.�/, and RCR-alternating
if RP .��/R D ˙P.�/. Note that the C in RCR refers to the conjugation
operation in the definitions; the name ?-alternating was suggested by Mehrmann and
Watkins in [71], because the matrix coefficients of such polynomials strictly alter-
nate between symmetric and skew-symmetric (or Hermitian and skew-Hermitian)
matrices.

Matrix polynomials (especially quadratic polynomials) with Hermitian structure
are well known from the classical problem of vibration analysis, and have been
extensively studied for many years [31, 32, 48, 79]. The analysis of rail noise caused
by high speed trains also leads to a quadratic eigenproblem (QEP), but one with
a complex T -palindromic matrix polynomial. Real and complex T -palindromic
QEPs also arise in the numerical simulation of the behavior of periodic surface
acoustic wave (SAW) filters [43, 85]. Quadratic eigenproblems with T -alternating
polynomials arise in the study of corner singularities in anisotropic elastic materials
[7, 8, 70]. Gyroscopic systems [25, 48, 49] also lead to quadratic T -alternating
matrix polynomials. Higher degree 	-alternating and 	-palindromic polynomial
eigenproblems arise in the linear-quadratic optimal control problem; the continuous-
time case leads to 	-alternating polynomials, while the discrete-time problem
produces 	-palindromic ones [15]. The stability analysis of delay-differential
equations leads to an RCR-palindromic QEP [28], while a variant of RCR-
alternating structure (without conjugation) arises in linear response theory from
quantum chemistry [66]. Further details on these and other applications can be found
in [52, 69, 79], Chaps. 2 and 3 of this Festschrift, and the references therein.

An important feature of the structured matrix polynomials described above are
the special symmetry properties of their spectra, some of which are described in the
following result. The proof of this composite theorem may be found in [52] or [56],
together with [28].

Theorem 3 (Eigenvalue Pairings of Structured Matrix Polynomials) Let
P.�/ D Pk

iD0 �i Ai , Ak ¤ 0 be a regular matrix polynomial that has one of
the palindromic or alternating structures described above. Then the spectrum of
P.�/ has the pairing depicted in Table 12.1. Moreover, the algebraic, geometric,
and partial multiplicities of the two eigenvalues in each such pair are equal. Note
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Table 12.1 Spectral
symmetries

Structure of P.�/ Eigenvalue pairing

T -palindromic .�; 1=�/

�-palindromic .�; 1= � /

RCR-palindromic .�; 1= � /

T -alternating .�; ��/

�-alternating .�; �� /

RCR-alternating .�; �� /

that � D 0 is included here as a possible eigenvalue, with the reciprocal partner
1=� or 1=� to be interpreted as the eigenvalue 1.

The eigenvalue pairings seen in this theorem are sometimes referred to as sym-
plectic spectrum and Hamiltonian spectrum, because they parallel the eigenvalue
structure of symplectic and Hamiltonian matrices. Indeed, this is one of several
ways in which palindromic and alternating matrix polynomials may be viewed as
generalizations of symplectic and Hamiltonian matrices, respectively. For more on
this connection see [52].

Although Theorem 3 says quite a lot about the spectral structure of palindromic
and alternating matrix polynomials, there are several issues that are not addressed
by this result. For example, do these spectral symmetries still hold in the singular
case? And what happens when the spectral pairings degenerate, e.g., at �0 D ˙1

for T -palindromic polynomials, and at �0 D 0 or 1 for T -alternating polynomials?
Are there any additional constraints on the spectra at these degenerate points?

In joint work with Mehrmann [58, 59], these questions were resolved by charac-
terizing the Smith forms for these structure classes using a novel technique based
on the properties of compound matrices. This work showed that the eigenvalue
pairings found in Theorem 3 do indeed extend to singular polynomials in these
classes. Degenerate eigenvalues, however, have some nontrivial fine structure in
their admissible Jordan characteristics. The details are somewhat technical, but
the main message can be simply stated. For each of these structure classes, the
constraints on the admissible spectral structures of odd grade polynomials in a
class differ from the constraints on the even grade polynomials in that class. It is
interesting to note, though, that this dichotomy between odd and even grade appears
only in the fine structure of the partial multiplicities at the degenerate eigenvalues.

Next, the same compound matrix techniques were brought to bear on skew-
symmetric matrix polynomials [60]. A characterization of their Smith forms
revealed even multiplicity for all elementary divisors, with no odd/even grade
dichotomy in the admissible spectral structures.
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12.4.1 Möbius Transformations

A useful investigative tool developed by Mehrmann and his co-authors in the last
few years is the extension of linear fractional rational transformations (i.e., Möbius
transformations) to transformations that act on matrix polynomials [61]. One of the
main motivations for this work is understanding the relationships between different
classes of structured matrix polynomials. Clearly such a study can be greatly aided
by fashioning transformations that allow results about one structured class to be
translated into results about another structured class. This inquiry has its origin
in particular examples such as the classical Cayley transformation for converting
one matrix structure (e.g., skew-Hermitian or Hamiltonian) into another (unitary or
symplectic, respectively). This Cayley transformation was extended from matrices
to matrix pencils in [50], and in a 1996 paper by Mehrmann [67]. It was then
generalized to matrix polynomials in 2006 by Mehrmann and co-authors [56],
where it was shown how palindromic and alternating structures are related via a
Cayley transformation of matrix polynomials. The definition of general Möbius
transformations in [61] completes this development, providing an important and
flexible tool for working with matrix polynomials.

Definition 9 (Möbius Transformation) Let V be the vector space of all m � n

matrix polynomials of grade k over the field F, and let A 2 GL.2;F/. Then the
Möbius transformation on V induced by A is the map MA W V ! V defined by

MA

 
kX

iD0

Bi �
i

!
.�/ D

kX

iD0

Bi .a� C b/i .c� C d/k�i ; where A D
�

a b

c d

�
:

It is worth emphasizing that a Möbius transformation acts on graded polynomials,
returning polynomials of the same grade (although the degree may increase,
decrease, or stay the same, depending on the polynomial). In fact, MA is a linear
operator on V . Observe that the Möbius transformations induced by the matrices

AC1 D
�

1 1

�1 1

�
and A�1 D

�
1 �1

1 1

�

are exactly the Cayley transformations CC1.P / and C�1.P /, respectively, intro-
duced in [56]. Also note that the reversal operation described in Definition 3 is the
Möbius transformation MR corresponding to the matrix

R D
�

0 1

1 0

�
:

Some of the significant properties of general Möbius transformations proved in [61]
include the following:
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1. Möbius transformations affect the eigenvalues of P and their partial multiplicity
sequences in a simple and uniform way. In particular, if mA.�/ D a�Cb

c�Cd
denotes

the scalar Möbius function on F[f1g corresponding to the matrix A D �
a b
c d

� 2
GL.2;F/, then we have that

J
�
MA.P /; �0

� 
 J
�
P ; mA.�0/

�
(12.15)

for any �0 2 F [ f1g.
2. Eigenvectors are preserved by Möbius transformations, but Jordan chains are

not. By (12.15), though, the lengths of Jordan chains are preserved.
3. Möbius transformations preserve minimal indices, and transform minimal bases

in a simple and uniform way.
4. Möbius transformations preserve the property of being a strong linearization;

that is, if L.�/ is a strong linearization for P.�/, then MA.L/ is a strong
linearization for MA.P /. More generally, Möbius transformations preserve the
spectral equivalence relation.

5. Möbius transformations preserve sparsity patterns; for example, if P is upper
triangular, then MA.P / is also upper triangular.

For the study of structured matrix polynomials, perhaps the most significant prop-
erty of all is that Möbius transformations provide a rich source of bijections between
classes of structured polynomials, that allow us to conveniently transfer intuition
and results about one class to another. Important examples include correspondences
between

T -palindromic and T -alternating polynomials,

as well as between the three classes of

Hermitian, 	-palindromic, and 	-alternating matrix polynomials.

These last correspondences provide an opportunity to transfer over to 	-palindromic
and 	-alternating polynomials much of the existing wealth of knowledge about
Hermitian matrix polynomials, including results about such special subclasses as
hyperbolic polynomials, definite polynomials [40], and other types of Hermitian
matrix polynomials with all-real spectrum [4].

Finally, it is worth noting that the idea of linear fractional transformations acting
on matrix polynomials has been extended even further to more general rational
transformations in [73].

12.5 Structured Linearizations

I’m pickin’ up good vibrations – The Beach Boys

When a matrix polynomial P.�/ has structure, the linearization strategy for solving
the associated polynomial eigenproblem has two parts: first find a suitable structured
linearization L.�/ for P.�/, and then compute the eigenvalues of L.�/ using a
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structure-preserving algorithm. Although our focus is on the first part of this strat-
egy, it is important to note that there has also been much work on the development
of structure-preserving algorithms for matrix pencils in the last decade. Examples
of some of this work can be found in the papers [28, 45, 47, 57, 65, 68, 70, 71, 75],
as well as in the Chaps. 2 and 3 of this Festschrift.

We now turn to developments of the last decade concerning structure-preserving
linearizations, focusing mainly on the “big three” types of structure – Hermitian,
palindromic and alternating.

12.5.1 In Ansatz Spaces

The pencil spaces L1.P / and L2.P / introduced by Mehrmann and co-authors [55]
were shown in a follow-up paper [56] to provide a rich arena in which to look
for linearizations with additional properties like structure preservation or improved
numerics, thus realizing the original purpose for their development. Subspaces of
pencils that inherit the ?-palindromic or ?-alternating structure of P were identified,
a constructive method to generate these structured pencils described, and necessary
and sufficient conditions for them to be strong linearizations established.

There is a close connection between the structure of a pencil in L1.P / and the
structure of its ansatz vectors. Loosely put, if P is palindromic, then a palindromic
pencil in L1.P / will have a palindromic ansatz vector, while if P is alternating,
then an alternating pencil in L1.P / will have an alternating ansatz vector. When P

is structured, there is also a very close connection between the double ansatz space
DL.P / and pencils in L1.P / that reflect the structure of P . More precisely, let R

be the reverse identity matrix, and ˙ a diagonal matrix of alternating signs,

Rk WD
"

1
. .

.

1

#

k�k

and ˙k WD
"
.�1/k�1

: : :
.�1/0

#

k�k

(12.16)

and let L.�/ 2 L1.P / with ansatz vector v. If P is a palindromic matrix polynomial,
e.g., if revP T .�/ D P.�/, then

revLT .�/DL.�/ ”
�
RvDv; and .R˝I /L.�/ 2 DL.P / with ansatz vector v

	
:

So to find a palindromic pencil in L1.P /, begin with a palindromic ansatz vector.
Now there is a unique pencil in DL.P / corresponding to that vector. This pencil
can be explicitly constructed using the natural basis for DL.P / mentioned in
Sect. 12.3.1, and described in detail in [56]. Then reversing the order of the block
rows of that DL.P /-pencil turns it into a palindromic pencil in L1.P /. Will this
pencil be a linearization for P ? The Eigenvalue Exclusion Theorem stated in
Sect. 12.3.1 and proved in [55], determines whether the answer is yea or nay. If
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the answer is yea, and P is regular, this linearization is automatically also a strong
linearization [55].

On the other hand, if P is alternating, say P T .��/ D P.�/, then for L.�/ 2
L1.P / we have

LT .��/DL.�/ ”
�
˙vDv; and .˙ ˝I /L.�/ 2 DL.P / with ansatz vector v

	
;

which, as in the palindromic case detailed before, can be used mutatis mutandis to
construct an alternating linearization for P . Similar results were proved for the other
flavors of palindromicity and alternation, and concrete examples given in [56].

An unexpected property of DL.P / itself was proved in [38]. Consider the block
transpose of a block matrix, defined as follows.

Definition 10 The block transpose of a block k � ` matrix A with m � n blocks Aij

is the block ` � k matrix AB with m � n blocks .AB/ij D Aji.

Now consider the subspace B.P / of all block symmetric (with respect to n � n

blocks) pencils in L1.P /, that is,

B.P / WD f�X C Y 2 L1.P / W XB D X; Y B D Y g:

Then for any P , the subspaces B.P / and DL.P / are identical! Thus pencils in
DL.P / always have block symmetric coefficients, even when there is no structure
in the matrix coefficients of P . What happens when P is structured? As shown
in [38], when P is symmetric, the collection of all symmetric pencils in L1.P /

is exactly DL.P /, while for Hermitian P the Hermitian pencils in L1.P / form a
proper (but nontrivial) subspace H.P / � DL.P /.

Among Hermitian matrix polynomials, perhaps the most important are those
with all-real spectrum [4]. This includes the definite polynomials, a class of Her-
mitian polynomials introduced in [40] as a common generalization for hyperbolic
polynomials and definite pencils. In this setting, the natural structured linearization
question is whether every definite Hermitian polynomial has a linearization that is
a definite pencil. This is answered affirmatively in [40]; indeed, it is shown that a
Hermitian matrix polynomial P is definite if and only if it has a definite linearization
in H.P /, the set of Hermitian pencils in L1.P /. Thus we see that L1.P / is rich
enough to provide a structured-preserving (strong) linearization for any definite
Hermitian polynomial. It is also worth noting that the results in [40] had a significant
impact on the later characterization results of [4].

The double ansatz space has also appeared as the star player in other structured
settings. The stability analysis of time-delay systems leads to a palindromic
polynomial eigenproblem [28] with an involutory twist – the n � n complex matrix
polynomial P.�/ in this problem satisfies

R � revP .�/ � R D P.�/ ; (12.17)
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where R is a real involution (i.e., R2 D In), thus making P an RCR-palindromic
matrix polynomial in the sense described in Sect. 12.4. In order to find structured
linearizations in this context, the first issue is to specify an appropriate class of
structured pencils to search in; in other words, a suitable involution on the space of
nk�nk pencils must be chosen. In [28] it is shown that the block anti-diagonal matrix
bR WD Rk ˝R, where Rk is the k � k backwards identity matrix as in (12.16), gives
a compatible choice of involution. With this choice of involution, it now follows
that the right ansatz vector v 2 C

k of any bRC bR-palindromic pencil in L1.P / must
satisfy Rv D v. For any such vector v, there are many bRC bR-palindromic pencils
in L1.P / with this right ansatz vector, exactly one of which will also be in DL.P /.
These results, along with a constructive procedure to build these structured DL.P /-
pencils, were presented in [28], where they were also extended to the other variants
of RCR-structure mentioned in Sect. 12.4 by using the linearization theory and
techniques developed in [55, 56].

The techniques developed in [56] had an impact on eigenvalue computations
occurring in the vibration analysis of rail tracks under excitation from high speed
trains [42, 46]; see also the Chap. 3 of this Festschrift. This eigenvalue problem has
the form



�A.!/ C B.!/ C 1

�
A.!/T

�
x D 0; (12.18)

where A; B are large, sparse, parameter-dependent, complex square matrices, with
B complex symmetric, and A highly singular. Clearly, for any fixed value of !,
multiplying (12.18) by � leads to a T -palindromic eigenvalue problem. Solving this
problem directly with the QZ-algorithm without respecting its structure resulted
in erroneous eigenvalues. However, the use of a T -palindromic linearization from
[56] allowed structured deflation of the zero and infinite eigenvalues. The computed
frequencies were now accurate to within the range of the discretization error. Thus
we see that the computation of “good vibrations” is aided by the use of “good
linearizations.”

12.5.1.1 Problematic Eigenvalues

For regular matrix polynomials P , the pencils in DL.P / have repeatedly shown
themselves to be prolific sources of structured linearizations.1 However, pencils
in DL.P / have one significant drawback. Because of the eigenvalue exclusion
property described in Theorem 2, for any L.�/ 2 DL.P / there is always at least
one “problematic eigenvalue” that may prevent L from being a linearization for P ;

1The story is quite different for singular polynomials P . In that case, none of the pencils in DL.P /

is ever a linearization for P , even when P has no structure [18].
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these problematic eigenvalues are just the roots of the scalar polynomial q.�/ in
(12.9), associated with the ansatz vector v for L.

In many situations, this obstruction to L.�/ 2 DL.P / being a linearization
can be easily side-stepped simply by shifting consideration to a different pencil
in DL.P /, since almost every pencil in DL.P / is a linearization. However, in
a structured setting, where the goal is to find a structured linearization, this
problematic eigenvalue obstruction sometimes cannot be avoided, no matter what
pencil in DL.P / is used.

Consider, for example, the case of a T -palindromic matrix polynomial P of any
even grade k � 2. As described in Sect. 12.5.1, any T -palindromic pencil in L1.P /

is strictly equivalent to a pencil in DL.P / possessing a palindromic ansatz vector
v, i.e., a v 2 Fk such that Rv D v. But the scalar polynomial q.�/ in (12.9)
corresponding to any such v is necessarily palindromic of odd grade, and thus must
always have �1 as a root. Consequently, any T -palindromic polynomial P of even
grade that has the eigenvalue �0 D �1 will never have any structured linearization
in L1.P /!

This phenomenon of having an unavoidable problematic eigenvalue obstruction
to the existence of any structured linearizations in L1.P / occurs for other structures
in addition to T -palindromic structure (see [56]). However, it is significant to note
that this is only known to occur for structured polynomials of even grade.

12.5.2 Among Fiedler Pencils

Modified versions of the generalized Fiedler pencils and Fiedler pencils with rep-
etition described in Sect. 12.3.2 have shown themselves to be particularly valuable
sources for not just structure-preserving linearizations, but for structured companion
forms. Here by the term “companion form” we mean a template for producing a
pencil associated to each matrix polynomial P of some fixed size and grade that

• is constructed directly from the matrix coefficients of P , without any matrix
operations on these coefficients, and

• produces a strong linearization for every polynomial P of the given size and
grade (both regular and singular if the polynomials are square).

Every Fiedler and generalized Fiedler pencil is a companion form in this sense;
by contrast, none of the pencils in DL.P / is ever a companion form because of
Theorem 2.

A companion form is said to be structured with respect to a class C of matrix
polynomials, if for every P 2 C , the associated companion pencil is also in C .
Thus we might have Hermitian companion forms, palindromic companion forms,
und so weiter. Structured companion forms derived from generalized Fiedler pencils
have appeared in a number of papers [6, 14, 20, 58–60, 83], for a variety of structure
classes, including Hermitian, T -palindromic, and T -alternating matrix polynomials.
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Here are some simple examples from those papers. Suppose

P.�/ D �5A5 C �4A4 C � � � C �A1 C A0

is a general n � n polynomial of grade 5. Then in [58] it is shown that the block-
tridiagonal pencil template

SP .�/ D

2

666664

�A1 C A0 �I

�I 0 I

I �A3 C A2 �I

�I 0 I

I �A5 C A4

3

777775

5n�5n

(12.19)

is a companion form for the set of all n � n matrix polynomials of grade 5. Note
that SP .�/ in (12.19) is a simplified version of an example that first appeared in
[6]. It is clear how SP .�/ can be extended to a companion form for any other odd
grade. Also noteworthy is that SP .�/ is not just a companion form, it is also both
a symmetric and a Hermitian companion form; i.e., if P is symmetric (Hermitian),
then SP will also be symmetric (Hermitian). Many more symmetric and Hermitian
companion forms can be constructed by the methods developed in [83].

Pre-multiplying SP by a certain diagonal ˙1 matrix (a strict equivalence) now
immediately produces a T -even companion form

EP .�/ D

2
666664

�A1 C A0 �I

��I 0 �I

�I ��A3 � A2 ��I

�I 0 I

I �A5 C A4

3
777775

5n�5n

;

as shown in [58]. Pre-multiplication of SP by Rk ˝ In (another strict equivalence)
reverses the order of the block rows, giving

PP .�/ D

2

666664

I �A5 C A4

�I 0 I

I �A3 C A2 �I

�I 0 I

�A1 C A0 �I

3

777775

5n�5n

;

which is a T -palindromic companion form [59]. Many more palindromic compan-
ion forms are constructed in [14] and [20], all for odd grade polynomials. Indeed,
all the known structured companion forms arising from Fiedler pencils are for odd
grade matrix polynomials.
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The lack of any Fiedler-based structured companion forms for even grade
polynomials is curious; is this just an oddity2 of Fiedler pencils, or is it a sign of
some intrinsic limitation on all pencils?

12.5.3 Existence: Leave It to Smith

“The first thing to do,” said Psmith, “is to ascertain that such a place as Clapham Common really
exists. One has heard of it, of course, but has its existence ever been proved? I think not.”

– P.G. Wodehouse, Psmith in the City [84]

Several phenomena now contribute to the suspicion that structured even grade
polynomials may be intrinsically “harder” to linearize (at least by a structured
companion form) than structured matrix polynomials of odd grade. Among these
are the plenitude of Fiedler-based structured companion forms for odd grade as
contrasted with the absence of any known for even grade; another is the presence of
“problematic eigenvalues” that block the existence of any structured linearization
in the ansatz spaces for certain even grade structured matrix polynomials. The
resolution of this issue was finally achieved by the detailed investigation of the
Smith forms of various types of structured matrix polynomials in the Smith form
trilogy [58–60], described at the end of Sect. 12.4.

A structured companion form for even grade would be able to simultaneously
provide a structured linearization for every structured polynomial of that even
grade. But the Smith form results of [58] and [59] show that the admissible
Jordan characteristics of even and odd grade polynomials in the palindromic (or
the alternating) structure class are not the same. Consequently, for each structure
class there are always structured polynomials of each even grade whose elementary
divisor structure is incompatible with that of every pencil in that structure class. This
elementary divisor incompatibility thus precludes the existence of any structured
companion form for any even grade, for either palindromic or alternating matrix
polynomials.

The existence or non-existence of Hermitian or symmetric companion forms for
even grades cannot be settled by a similar argument; for these structures there are
no comparable elementary divisor incompatibilities between even and odd grade.
Nonetheless, the impossibility of such structured companion forms for even grades
has recently been shown in [22]; the argument given there is based on minimal
index incompatibilities between even and odd grade structured polynomials that are
singular.

2Pun intended.3

3The previous footnote2 , and this footnote3 to that footnote2 , are here especially for Volker.
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The impossibility of any even grade structured companion form, for any of these
three most important structure classes, suggests that a reduction to a spectrally
equivalent quadratic matrix polynomial might be a more natural alternative to
linearization for even grade structured polynomials. This is one motivation to
investigate the possibility of structure-preserving quadratifications, as part of a
wider investigation of the properties of quadratic matrix polynomials [23, 54],
quadratifications more generally, and the development of algorithms that work
directly on a quadratic polynomial, without any intervening linearization. Some
initial work in this direction can be found in [44] for palindromic structure. From
a characterization of the possible elementary divisor and singular structures of
quadratic palindromic polynomials [24], it has been recently shown that every even
grade palindromic polynomial has a palindromic (strong) quadratification. Similar
results are also now known to hold for even grade alternating polynomials [24], and
for even grade Hermitian matrix polynomials [63].

12.6 Impact on Numerical Practice

In order to analyze the numerical properties of algorithms for the polynomial
eigenproblem, both left and right eigenvectors of a matrix polynomial P must be
considered. In this context, then, the polynomial eigenproblem is more properly
formulated as

P.�/x D 0; y�P.�/ D 0 ; (12.20)

where x ¤ 0 is a right eigenvector, and y ¤ 0 is a left eigenvector for P.�/. For
this analysis, it is also usually assumed that P is regular, which we do throughout
this section. The associated generalized eigenvalue problem

L.�/z D 0; w�L.�/ D 0 (12.21)

for a linearization L of P can now be solved using standard techniques and
readily available software. In particular, if the size of L is not very large, dense
transformation-based methods can be used to solve (12.21), such as the QZ algo-
rithm [72], or a structure-preserving algorithm when L is a structured linearization
[28, 47, 57, 65, 75, 79]. Krylov methods can be used for large sparse problems
[9, 64, 68, 70, 79]. Among the infinitely many linearizations L of P , we are
interested in those which preserve the structure, if any, and whose right and left
eigenvectors permit easy recovery of the corresponding eigenvectors of P . So all
the linearizations described in Sects. 12.3 and 12.5 are obvious candidates.

The introduction of these new structured and unstructured linearizations in the
last decade has led to not only the development of structure-preserving algorithms,



12 Polynomial Eigenvalue Problems: Theory, Computation, and Structure 341

but also the development of techniques to analyze the influence of the linearization
process on the accuracy and stability of the computed solution, so as to guide us in
our choice of linearization. To indicate the key idea we assume that P is expressed
in the monomial basis as in (12.1). Let x and y denote right and left eigenvectors
of P , and let z and w denote right and left eigenvectors of L, all corresponding to
a simple, nonzero, finite eigenvalue �. Eigenvalue condition numbers are given, in
the 2-norm, by the following expressions [78, Thm. 5]:

�P .�/ D
�Pk

iD0 j�ji kAi k2

�kyk2kxk2

j�j jy�P 0.�/xj ; �L.�/ D
�j�jkXk2 C kY k2

�kwk2kzk2

j�j jw�L0.�/zj :

These condition numbers measure the sensitivity of the eigenvalue � of P and
L, respectively, to small perturbations of P and L measured in a normwise
relative fashion. Different linearizations of the same matrix polynomial can have
widely varying eigenvalue condition numbers. Unless the block structure of the
linearization is respected (and it is not by standard algorithms), the conditioning of
the larger linear problem can be worse than that of the original matrix polynomial,
since the class of admissible perturbations is larger. For example, eigenvalues that
are well-conditioned for P.�/ may be ill-conditioned for L.�/ [39, 41, 78]. Ideally,
when solving (12.20) via (12.21) we would like to have �P .�/ � �L.�/. Most
linearizations in Sects. 12.3 and 12.5 satisfy one-sided factorizations of the form

L.�/F.�/ D G.�/P.�/; E.�/L.�/ D P.�/H.�/; (12.22)

where G.�/; H T .�/; F.�/ and E.�/T are kn � n matrix functions. Assume that
F.�/ is of full rank in a neighborhood of a finite eigenvalue � of P and L, and
that y WD G.�/�w ¤ 0. Then it follows from (12.22) that z D F.�/x is a right
eigenvector of L, y is a left eigenvector of P , and w�L0.�/z D y�P 0.�/x (see [34,
Lemma 3.2]) so that

�L.�/

�P .�/
D j�jkXk2 C kY k2Pk

j D0 j�jj kAj k2

� kwk2kzk2

kyk2kxk2

: (12.23)

This expression can now be used to investigate the size of the ratio �L.�/=�P .�/ as
L varies, for fixed P , where the L-dependent terms are X , Y , w, and z. This is done
for example in [39] for pencils L 2 DL.P /, where minimization of the ratio over L

is considered.
Backward errors characterize the stability of a numerical method for solving a

problem by measuring how far the problem has to be perturbed for an approximate
solution to be an exact solution of the perturbed problem. Let .x; �/ be an
approximate right eigenpair for P.�/ obtained from an approximate right eigenpair
.z; �/ for L.�/ D �X C Y . The relative backward errors for .x; �/ and .z; �/ are
given in the 2-norm by
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	P .x; �/ D kP.�/xk2�Pk
iD0 j�i jkAik2

	
kxk2

; 	L.z; �/ D kL.�/zk2

.j�jkXk2 C kY k2/ kzk2

:

(12.24)

There are analogous formulae for approximate left eigenpairs.
We would like the linearization L that we use to lead, after recovering an

approximate eigenpair of P from one of L, to a backward error for P of the same
order of magnitude as that for L. To relate backward errors for L and P we need to
assume that the pencil L satisfies a left-sided factorization as in the right hand-side
of (12.22), with E.�/ of full rank, and that x is recovered from z via x D H.�/z.
Then E.�/L.�/z D P.�/x so that

	P .x; �/

	L.z; �/
� j�jkXk2 C kY k2Pk

iD0 j�i jkAi k2

� kE.�/k2kzk2

kxk2

: (12.25)

This bound, which largely separates the dependence on L, P , and � (in the first
term) from the dependence on E and z (in the second term), can then be analyzed
for a given linearization. This was done for Frobenius companion linearizations and
DL.P / linearizations in [37].

For Frobenius companion linearizations, a straightforward analysis of the ratio
(12.23) and the upper bound (12.25) shows that if kAi k2 � 1 for i D 0; : : : ; k,
then �L.x/ � �P .�/ and the upper bound in (12.25) will be of order 1; this
suggests that scaling the polynomial eigenproblem to try to achieve this condition
before computing the eigenpairs via a Frobenius companion linearization could be
numerically advantageous. Fan, Lin, and Van Dooren [27] considered the following
scaling strategy for quadratics, which converts P.�/ D �2A2 C �A1 C A0 to
eP .�/ D �2eA2 C �eA1 C eA0, where

� D 
�; P.�/ı D �2.
2ıA2/ C �.
ıA1/ C ıA0 
 eP .�/;

and is dependent on two nonzero scalar parameters 
 and ı. They showed that when
A0 and A2 are nonzero, then taking 
 D pkA0k2=kA2k2 and ı D 2=.kA0k2 C
kA1k2
/ solves the problem of minimizing the maximum distance of the coefficient
matrix norms from 1:

min

;ı

maxfkeA0k2 � 1; keA1k2 � 1; keA2k2 � 1g:

It is shown in [37] that with this choice of parameters and for not too heavily damped
quadratics, that is, kA1k2

2 <� kA0k2kA2k2, then �P � �L for all eigenvalues and
	P � 	L for both left and right eigenpairs. Hence, with this scaling the linearization
process does not affect the eigenvalue condition numbers, and if the generalized
eigenvalue problem (12.21) is solved by a backward stable algorithm such as the
QZ algorithm, then the computed eigenpairs for P will have small backward errors.
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These ideas have been implemented in an algorithm for the complete solution of
quadratic eigenvalue problems by Hammarling, Munro, and Tisseur [36]. The case
of heavily damped quadratics has been addressed by Zeng and Su [86].

It is now well established that for structured polynomial eigenproblems, it
is important to use algorithms that preserve the structure of the problem when
computing its eigenvalues, so that the eigenvalue pairings are preserved. This
has lead to the development of a number of structure-preserving algorithms for
structured linearizations of structured eigenproblems [45, 47, 65, 68, 70, 75, 79],
as well as the derivation of structured backward errors and structured condition
numbers corresponding to structured perturbations [1–3, 11, 12].

12.7 Related Recent Developments

The linearization strategy for the polynomial eigenproblem continues to be actively
developed for more types of matrix polynomials; this strategy is even beginning to
be extended to other types of nonlinear eigenproblems.

In recent research on matrix polynomials, for example, a new theme has started
to attract increasing attention – finding simple, template-like ways to construct
linearizations when the polynomial

P.�/ D
kX

iD0

Ai �i .�/ (12.26)

is expressed in some non-standard basis f�i.�/g. Particularly important for numeri-
cal computation are the classical examples of such bases, e.g., those associated with
the names Chebyshev, Newton, Hermite, Lagrange, and Bernstein. It is tempting
to simply convert P.�/ in (12.26) to the standard basis, and then leverage the
existing body of knowledge about linearizations. However, it is important to avoid
reformulating P into the standard basis, since a change of basis has the potential
to introduce numerical errors not present in the original problem. Instead we
should look for templates that construct linearizations for P.�/ directly from the
coefficients Ai in (12.26), without any matrix additions, multiplications, or inverses.
This could be viewed as another kind of structure preservation, i.e., a preservation
of the polynomial basis.

Although there are precedents for doing this for scalar polynomials in [10],
and even earlier in [33], the first serious effort in this direction for matrix
polynomials was [5] and the earlier [17], where concrete templates for producing
strong linearizations were provided, one for each of several classical polynomial
bases, including Chebyshev, Newton, Lagrange, and Bernstein bases. This work
has been used in [26], as part of a Chebyshev interpolation method for solving
non-polynomial nonlinear eigenproblems. Additional examples for the Hermite and
Lagrange bases have been developed and used in [81, 82]. More systematic methods
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for constructing large families of template-like linearizations for matrix polynomials
expressed in non-standard bases can be found in the very recent papers [62, 74, 80].

The linearization strategy has been so effective for polynomial eigenproblems
that researchers have started to consider ways to extend this strategy to other
nonlinear eigenproblems, especially to rational eigenproblems P.�/x D 0, where
the scalar �i.�/ functions in P.�/ as in (12.26) are now rational functions of �

rather than just polynomials. Significant advances in this direction have been made
in [77], and more recently in [35].

12.8 Concluding Remarks

Wer wirklich Neues erdenken will, muss hin und wieder ein wenig spinnen.

– Quote on Room MA 466, TU Berlin.

We hope this review has shown how the discovery of new families of linearizations
in the last decade has propelled research on polynomial eigenproblems forward,
with significant advances made in the development of theory and algorithms for
structured problems. Volker has contributed much to this effort, as a researcher
and, equally importantly, as a stimulating mentor. There is still more waiting to
be discovered, and more fun to be had in uncovering it. As Volker taught us to say
to one another, “Es gibt viel zu tun, fangt schon mal an!”

References

1. Adhikari, B.: Backward perturbation and sensitivity analysis of structured polynomial
eigenvalue problems. PhD thesis, Indian Institute of Technology Guwahati (2008)

2. Adhikari, B., Alam, R., Kressner, D.: Structured eigenvalue condition numbers and lineariza-
tions for matrix polynomials. Linear Algebra Appl. 435(9), 2193–2221 (2011)

3. Ahmad, Sk.S., Mehrmann, V.: Perturbation analysis for complex symmetric, skew symmetric
even and odd matrix polynomials. Electron. Trans. Numer. Anal. 38, 275–302 (2011)

4. Al-Ammari, M., Tisseur, F.: Hermitian matrix polynomials with real eigenvalues of definite
type. Part I: classification. Linear Algebra Appl. 436, 3954–3973 (2012)

5. Amiraslani, A., Corless, R.M., Lancaster, P.: Linearization of matrix polynomials expressed in
polynomial bases. IMA J. Numer. Anal. 29, 141–157 (2009)

6. Antoniou, E.N., Vologiannidis, S.: A new family of companion forms of polynomial matrices.
Electron. J. Linear Algebra 11, 78–87 (2004)

7. Apel, T., Mehrmann, V., Watkins, D.: Structured eigenvalue methods for the computation of
corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Eng.
191, 4459–4473 (2002)

8. Apel, T., Mehrmann, V., Watkins, D.: Numerical solution of large scale structured polynomial
or rational eigenvalue problems. In: Cucker, F., Olver, P. (eds.) Foundations of Computational
Mathematics. London Mathematical Society Lecture Note Series, vol. 312. Cambridge Univer-
sity Press, Cambridge, pp. 137–157 (2004)



12 Polynomial Eigenvalue Problems: Theory, Computation, and Structure 345

9. Bai, Z., Demmel, J.W., Dongarra, J., Ruhe, A., van der Vorst, H.A. (eds.): Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and
Applied Mathematics, Philadelphia (2000)

10. Barnett, S.: Congenial matrices. Linear Algebra Appl. 41, 277–298 (1981)
11. Bora, S.: Structured eigenvalue condition number and backward error of a class of polynomial

eigenvalue problems. SIAM J. Matrix Anal. Appl. 31(3), 900–917 (2009)
12. Bora, S., Karow, M., Mehl, C., Sharma, P.: Structured eigenvalue backward errors of matrix

pencils and polynomials with Hermitian and related structures. SIAM J. Matrix Anal. Appl.
35(2), 453–475 (2014)

13. Bueno, M.I., De Terán, F., Dopico, F.M.: Recovery of eigenvectors and minimal bases of
matrix polynomials from generalized Fiedler linearizations. SIAM J. Matrix Anal. Appl. 32,
463–483 (2011)

14. Bueno, M.I., Furtado, S.: Palindromic linearizations of a matrix polynomial of odd degree
obtained from Fiedler pencils with repetition. Electron. J. Linear Algebra 23, 562–577 (2012)

15. Byers, R., Mackey, D.S., Mehrmann, V., Xu, H.: Symplectic, BVD, and palindromic
approaches to discrete-time control problems. In: Petkov, P., Christov, N. (eds.) A Collection
of Papers Dedicated to the 60th Anniversary of Mihail Konstantinov, Sofia, pp. 81–102.
Publishing House Rodina (2009). Also available as MIMS EPrint 2008.35, Manchester
Institute for Mathematical Sciences, Manchester, Mar 2008

16. Byers, R., Mehrmann, V., Xu, H.: Trimmed linearizations for structured matrix polynomials.
Linear Algebra Appl. 429, 2373–2400 (2008)

17. Corless, R.M.: Generalized companion matrices in the Lagrange basis. In: Gonzalez-Vega, L.,
Recio, T., (eds.) Proceedings EACA, Santander, pp. 317–322 (2004)

18. De Terán, F., Dopico, F.M., Mackey, D.S.: Linearizations of singular matrix polynomials and
the recovery of minimal indices. Electron. J. Linear Algebra 18, 371–402 (2009)

19. De Terán, F., Dopico, F.M., Mackey, D.S.: Fiedler companion linearizations and the recovery
of minimal indices. SIAM J. Matrix Anal. Appl. 31, 2181–2204 (2010)

20. De Terán, F., Dopico, F.M., Mackey, D.S.: Palindromic companion forms for matrix
polynomials of odd degree. J. Comput. Appl. Math. 236, 1464–1480 (2011)

21. De Terán, F., Dopico, F.M., Mackey, D.S.: Fiedler companion linearizations for rectangular
matrix polynomials. Linear Algebra Appl. 437, 957–991 (2012)

22. De Terán, F., Dopico, F.M., Mackey, D.S.: Spectral equivalence of matrix polynomials and the
index sum theorem. Linear Algebra Appl. 459, 264–333 (2014)

23. De Terán, F., Dopico, F.M., Mackey, D.S.: A quasi-canonical form for quadratic matrix
polynomials, Part 2: the singular case (2014, in preparation)

24. De Terán, F., Dopico, F.M., Mackey, D.S., Perović, V.: Quadratic realizability for palindromic
matrix polynomials (2014, in preparation)

25. Duffin, R.J.: The Rayleigh-Ritz method for dissipative and gyroscopic systems. Q. Appl. Math.
18, 215–221 (1960)

26. Effenberger, C., Kressner, D.: Chebyshev interpolation for nonlinear eigenvalue problems. BIT
Numer. Math. 52, 933–951 (2012)

27. Fan, H.-Y., Lin, W.-W., Van Dooren, P.: Normwise scaling of second order polynomial
matrices. SIAM J. Matrix Anal. Appl. 26(1), 252–256 (2004)

28. Fassbender, H., Mackey, D.S., Mackey, N., Schröder, C.: Structured polynomial eigenproblems
related to time-delay systems. Electron. Trans. Numer. Anal. 31, 306–330 (2008)

29. Fiedler, M.: A note on companion matrices. Linear Algebra Appl. 372, 325–331 (2003)
30. Frobenius, G.: Theorie der linearen Formen mit ganzen Coefficienten. J. Reine Angew. Math.

(Crelle) 86, 146–208 (1878)
31. Gladwell, G.M.L.: Inverse Problems in Vibration, 2nd edn. Kluwer Academic, Dordrecht

(2004)
32. Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials. Academic, New York (1982)
33. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math.

Oxf. Ser. 12, 61–68 (1961)



346 D.S. Mackey et al.

34. Grammont, L., Higham, N.J., Tisseur, F.: A framework for analyzing nonlinear eigenproblems
and parametrized linear systems. Linear Algebra Appl. 435, 623–640 (2011)

35. Güttel, S., Van Beeumen, R., Meerbergen, K., Michiels, W.: NLEIGS: a class of robust fully
rational Krylov methods for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 36(6),
A2842–A2864 (2014). Also available as MIMS EPrint 2013.49. Manchester Institute for
Mathematical Sciences, The University of Manchester (2013)

36. Hammarling, S., Munro, C.J., Tisseur, F.: An algorithm for the complete solution of quadratic
eigenvalue problems. ACM Trans. Math. Softw. 39(3), 18:1–18:19 (2013)

37. Higham, N.J., Li, R.-C., Tisseur, F.: Backward error of polynomial eigenproblems solved by
linearization. SIAM J. Matrix Anal. Appl. 29, 1218–1241 (2007)

38. Higham, N.J., Mackey, D.S., Mackey, N., Tisseur, F.: Symmetric linearizations for matrix
polynomials. SIAM J. Matrix Anal. Appl. 29, 143–159 (2006)

39. Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix
polynomials. SIAM J. Matrix Anal. Appl. 28, 1005–1028 (2006)

40. Higham, N.J., Mackey, D.S., Tisseur, F.: Definite matrix polynomials and their linearization
by definite pencils. SIAM J. Matrix Anal. Appl. 31, 478–502 (2009)

41. Higham, N.J., Mackey, D.S., Tisseur, F., Garvey, S.D.: Scaling, sensitivity and stability in the
numerical solution of quadratic eigenvalue problems. Int. J. Numer. Methods Eng. 73, 344–360
(2008)

42. Hilliges, A., Mehl, C., Mehrmann, V.: On the solution of palindromic eigenvalue problems.
In: Proceedings of the 4th European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS), Jyväskylä (2004) CD-ROM

43. Hofer, M., Finger, N., Schöberl, J., Zaglmayr, S., Langer, U., Lerch, R.: Finite element
simulation of wave propagation in periodic piezoelectric SAW structures. IEEE Trans. UFFC
53(6), 1192–1201 (2006)

44. Huang, T.-M., Lin, W.-W., Su, W.-S.: Palindromic quadratization and structure-preserving
algorithm for palindromic matrix polynomials of even degree. Numer. Math. 118, 713–735
(2011)

45. Hwang, T.-M., Lin, W.-W., Mehrmann, V.: Numerical solution of quadratic eigenvalue
problems with structure-preserving methods. SIAM J. Sci. Comput. 24, 1283–1302 (2003)

46. Ipsen, I.C.F.: Accurate eigenvalues for fast trains. SIAM News 37(9), 1–2 (2004)
47. Kressner, D., Schröder, C., Watkins, D.S.: Implicit QR algorithms for palindromic and even

eigenvalue problems. Numer. Algorithms 51(2), 209–238 (2009)
48. Lancaster, P.: Lambda-matrices and vibrating systems. Pergamon, Oxford (1966)
49. Lancaster, P.: Strongly stable gyroscopic systems. Electron. J. Linear Algebra, 5, 53–66 (1999)
50. Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford University Press, Oxford

(1995)
51. Lazebnik, F.: On systems of linear diophantine equations. Math. Mag. 69(4), 261–266 (1996)
52. Mackey, D.S.: Structured linearizations for matrix polynomials. PhD thesis, The University of

Manchester, Manchester (2006). Available as MIMS EPrint 2006.68. Manchester Institute for
Mathematical Sciences.

53. Mackey, D.S.: The continuing influence of Fiedler’s work on companion matrices. Linear
Algebra Appl. 439(4), 810–817 (2013)

54. Mackey, D.S.: A quasi-canonical form for quadratic matrix polynomials, Part 1: the regular
case (2014, in preparation)

55. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix
polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)

56. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue
problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–
1051 (2006)

57. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Numerical methods for palindromic
eigenvalue problems: computing the anti-triangular Schur form. Numer. Linear Algebra Appl.
16, 63–86 (2009)



12 Polynomial Eigenvalue Problems: Theory, Computation, and Structure 347

58. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Jordan structures of alternating matrix
polynomials. Linear Algebra Appl. 432(4), 867–891 (2010)

59. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Smith forms of palindromic matrix
polynomials. Electron. J. Linear Algebra 22, 53–91 (2011)

60. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Skew-symmetric matrix polynomials and
their Smith forms. Linear Algebra Appl. 438(12), 4625–4653 (2013)

61. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Möbius transformations of matrix
polynomials. Article in Press in Linear Algebra Appl. 470, 120–184 (2015). http://dx.doi.
org/10.1016/j.laa.2014.05.013
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