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Preface

This book is dedicated to Volker Mehrmann, our mentor, co-author, colleague, and
friend. Each chapter in this book highlights one of the many topics Volker has
worked on. Inevitably, there are omissions. In this preface, we therefore make an
attempt to not only connect the book chapters to Volker’s bibliography but to also
provide additional details on topics that receive less attention in the subsequent
chapters.

M-Matrices and H-Matrices and Their Friends

A complex or real square matrix A is called a Z-matrix if its off-diagonal entries
are nonpositive. Equivalently, A D ˛In � B holds for some scalar ˛ 2 R and
a nonnegative matrix B . If, additionally, ˛ is not smaller than �.B/, the spectral
radius of B , then A is called an M -matrix. Arising frequently, for example, from
the discretization of partial differential equations, matrices with such structures have
many desirable properties that facilitate, among other things, the design and analysis
of iterative methods for solving linear systems.

Ostrowski coined the termM -matrix and proposed the following generalization:
A matrix A is called anH -matrix if its comparison matrix C (defined via cii D jaiij
and cij D �jaijj for i D 1; : : : ; n, j 6D i ) is anM -matrix. Incomplete factorizations
for such H -matrices are the topic of the first scientific paper by Volker Mehrmann,
a 1980 publication [A1] jointly with Richard S. Varga and Edward B. Saff.

Apart from M - and H -matrices, there is a myriad of other matrix classes
with similarly desirable properties, but different targets in mind. In his 1982
dissertation [T2] and subsequent publications [A2, A3, A5], Volker contributed
to this scene by proposing and analyzing the concepts of R- and V -matrices.
One major motivation for these new concepts was to find a unified treatment for
M -matrices and Hermitian positive semidefinite matrices.

Let the number l.B/ denote the smallest real eigenvalue of a matrix B , with
the convention l.B/ D 1 if B has no real eigenvalue. A matrix A is called an
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Fig. 1 Young Volker doing
Math

!-matrix if this number is finite and satisfies a monotonicity property for all princi-
pal submatrices ofA. If, moreover, l.A/ � 0, thenA is called a �-matrix. Since their
introduction by Engel and Schneider, there has been significant interest in studying
!- and �-matrices because they represent generalizations of several important
matrix classes, such as Hermitian matrices, totally nonnegative matrices, and
M -matrices. In [A4], Volker showed for n D 4 that every n � n �-matrix is
stable by establishing an eigenvalue inequality conjectured by Varga. More than
a decade later, in 1998, Olga Holtz disproved the conjecture that this property holds
for general n by constructing a whole family of unstable �-matrices.

In subsequent collaborations with Daniel Hershkowitz and Hans Schneider on the
matrix classes discussed above, Volker investigated linear preserver problems [A9],
eigenvalue interlacing properties [A11], and a generalization of sign symmetric
matrices [A12]. Joint work [A23] with Ludwig Elsner establishes the convergence
of block iterative methods for block generalizations of Z-matrices and M -matrices
that arise from the discretization of the Euler equations in fluid flow computations.
This 1991 paper also seems to mark a transition of Volker’s work into other areas.

Hamiltonian and Symplectic Matrices

Let J D
�
0 In

�In 0
�

. A matrix H 2 R
2n�2n is called Hamiltonian if .JH/T D JH

and a matrix S 2 R
2n�2n is called symplectic if ST JS D J . Hamiltonian and

symplectic matrices seem to have a certain fascination for Volker that is shared by
several of his co-authors. On the one hand, there are important applications, most
notably in optimal and robust control. On the other hand, there is rich algebraic
structure: the set of Hamiltonian matrices forms a Lie algebra, and the set of
symplectic matrices forms the corresponding Lie group. Additionally to being
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Fig. 2 Cover and table of contents of Volker’s Diplomarbeit (equivalent to a M.Sc. thesis), written
in German and pre-TEX

symmetric with respect to the real line, the spectra of H and S are symmetric with
respect to the imaginary axis and the unit circle, respectively.

The analysis and numerical solution of eigenvalue problems for matrices and
matrix pencils with structure is a major thread in Volker Mehrmann’s bibliography,
from the first works, his 1979 “Diplomarbeit” [T1] at Bielefeld (see Fig. 2 for
a copy of the cover and table of contents), until today. One major challenge in this
field had been the development of algorithms that would compute the eigenvalues
(and invariant subspaces) of Hamiltonian/symplectic matrices in a numerically
stable, efficient, and structure-preserving manner. Chapter 1 by Bunse-Gerstner and
Faßbender as well as Chap. 4 by Benner explain the substantial contributions Volker
made in addressing this challenge for small- to medium-sized dense matrices. There
have been numerous extensions of the numerical algorithms resulting from this
work, most notably to large-scale eigenvalue problems, see Chap. 2 by Watkins,
and matrix pencils with similar structures, see Chap. 4 as well as Chap. 5 by Poloni.
Their extension to structured matrix polynomials will be discussed in more detail
below.
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Fig. 3 Volker and Angelika
Bunse-Gerstner in San
Francisco during what seems
to be an enjoyable (of course
vegetarian!) dinner at Greens
Restaurant in the San
Francisco harbor area, 1990

There is a fascinating, more theoretical side to the story on structured eigenvalue
problems. Still motivated by algorithmic developments, the 1991 paper with Greg
Ammar [A21] discussed the existence (or rather the lack thereof) of structured
Hessenberg forms for Hamiltonian and symplectic matrices. This paper is rather
unique in not only thanking Angelika Bunse-Gerstner (see Fig. 3 for a picture
of her and Volker around this time) for helpful discussions but also “the German
police for a speeding ticket during one discussion”. As summarized in Chap. 6 by
Mehl and Xu, the work of Volker and his co-authors then evolved towards a more
general picture of structured canonical forms of structured matrices. Perturbation
theory plays a major role in understanding the potential benefits from structure in
the presence of uncertainty in the matrix entries, for example, due to roundoff error.
Of particular interest is the perturbation behavior of eigenvalues that are critical in
a certain sense, such as purely imaginary eigenvalues of Hamiltonian matrices; see
Chap. 8 by Bora and Karow for a summary of results in this direction. Chapter 13
by Ran and Rodman gives a more general survey of the stability of matrix analysis
problems with respect to perturbations.

Matrix Equations

Continuous-time linear-quadratic optimal control problems give rise to algebraic
Riccati equations of the form

F C ATX C XA � XGX D 0; (0.1)

where A 2 R
n�n, and F;G 2 R

n�n are symmetric and, often, positive semidefinite.
Under certain conditions, solutions X of (0.1) can be obtained from n-dimensional
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Fig. 4 Volker organized numerous workshops: one of the first was the 5-day Short Course on
Large Scale Scientific Computing in Bielefeld, 1992, jointly organized with Angelika Bunse-
Gerstner. First encounters of many in this picture

invariant subspaces of the 2n � 2n Hamiltonian matrix

�
A G

F �AT
�
:

As explained in Chaps. 4 and 5, such quadratic matrix equations and their links
to structured matrices/matrix pencils have been a major theme in Volker’s work,
ever since his 1986 joint work [A6] with Angelika Bunse-Gerstner and his 1987
habilitation thesis [T3, B1]. Among others, this work has led to robust numerical
algorithms for solving optimal and robust control problems.

In a collaboration with Mihail M. Konstantinov, Petko H. Petkov, and others,
theoretical properties of matrix equations have been investigated, establishing a
general framework for deriving local and nonlocal perturbation bounds. This work,
which has also been extended to the perturbation analysis of eigenvalue problems,
is described in Chap. 7.

Differential-Algebraic Equations

A differential-algebraic equation (DAE) arises when one imposes algebraic con-
straints on the states of a physical system that is modelled with differential
equations. DAEs in all flavors are probably the most central theme of Volker
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Fig. 5 Volker also (co-)organized many major international conferences, including the 6th
Conference of the International Linear Algebra Society (ILAS), held in 1996 Chemnitz (Germany)

Mehrmann’s work, and several chapters of this book are therefore dedicated to this
topic.

Chapter 16 summarizes the results of the long lasting and very fruitful collabo-
ration with Peter Kunkel. This collaboration gave birth to the strangeness index and
the monograph [B5], Volker’s most-cited research publication at the time of writing.

The interaction between algebraic and differential constraints in a DAE of higher
index may lead to further hidden constraints, which often result in difficulties
during the numerical solution. As discussed in Chap. 17 by Scholz and Steinbrecher,
these difficulties can be avoided by regularization techniques. Volker and his co-
authors made several important contributions to this topic, in particular for DAEs
modelling mechanical systems, electrical circuits, and flow problems as well as for
hybrid DAEs. Nonlinear DAEs for electrical circuits are discussed in more detail in
Chap. 18 by Reis and Stykel.

In the context of control theory, descriptor systems arise when the dynamics
are described by DAEs. Chapter 15 by Nichols and Chu summarizes the work of
Volker and his co-authors on regularization and disturbance decoupling. More recent
developments include model reduction [C38], the computation of state reachable
points [S10], and a behavorial approach [A103, A104] for descriptor systems.

Smooth decompositions of parameter-dependent matrices are frequently needed
in the treatment of DAEs and descriptor systems with time-varying coefficients. An
early and rather influential work in this area, the 1991 paper [A22] investigates
the analytic singular value decomposition and proposes an algorithm based on
differential equations. This and subsequent work is discussed in Chap. 11 by Van
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Fig. 6 Volker enjoying life (left) and with Ralph Byers (right) during an excursion at the 14th
International Symposium on Mathematical Theory of Networks and Systems (MTNS), 2000, in
Perpignan (France)

Vleck, which also highlights an application to the computation of Lyapunov and
Sacker-Sell spectral intervals.

The presence of time delays complicates the analysis and solution of DAEs
significantly. In [A155, A173], the solvability and regularization of such DAEs are
investigated. Chapter 19 by Linh and Thuan summarizes the work of Volker and his
co-authors on robust stability concepts for DAEs, with and without time delays.

Applications in economy, biology, or chemistry frequently lead to differential
equations that feature a nonnegative solution. Characterizing this nonnegativity
property and preserving it during the time discretization turns out to be quite
a challenge for DAEs, which has been addressed in a number of recent publica-
tions [A162, S4, S5]. This connects to earlier work on Perron-Frobenius theory for
matrix pencils [A70, A127] and sign controllability [A32].

Other Topics in Control Theory

Apart from optimal/robust control and the treatment of descriptor systems, Volker
takes a general interest in the role of numerical methods in control. A 1995
report [M10] with Chunyang He and Alan J. Laub carries the provocative title
Placing plenty of poles is pretty preposterous and points out a fundamental
numerical limitation of pole placement, which was analyzed in more detail in joint
work with Hongguo Xu [A44, A52, A60]. A more general picture of the sensitivity
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Fig. 7 A very typical
situation in Volker’s academic
life: proof-reading a paper or
thesis, often done at home

of computational control problems is given in [A96]. As explained in Chap. 19 as
well as Chap. 20 by Kressner and Voigt, distance concepts play an important role
in the numerical verification of properties for control systems. This includes the
notorious distance to singularity, for which the question Where is the nearest non-
regular pencil? [A54] still has no satisfactory answer.

Chapter 21 by Baumann, Heiland, and Schmidt summarizes the work of Volker
and his co-authors on model reduction techniques for control systems governed by
partial differential equations, based on directly discretizing the input/output map.

On the software side, Volker Mehrmann has played a key role in the design
and creation of SLICOT [C21], a Fortran library of numerical algorithms in
systems and control theory. His contributions to SLICOT are described in several
SLICOT working notes [M19, M20, M28, M29, M21, M30, M31, M35, M38]
and include – among others – benchmark collections for Lyapunov equations and
linear control systems, following up on such collections for algebraic Riccati
equations [M7, M8, A45].

Polynomial Eigenvalue Problems

A square matrix polynomial of degree d takes the form

P.�/ D A0 C �A1 C � � � C �dAd ; (0.2)

for complex or real n � n coefficient matrices A0; : : : ; Ad with Ad 6D 0. Motivated
by applications, such as the vibration analysis of mechanical systems, the treatment
of the polynomial eigenvalue problem P.�/x D 0 is a classical topic in (numerical)
linear algebra. By far the most popular approach to solving such eigenvalue
problems is linearization, which turns (0.2) into an equivalent matrix pencil A ��E
of size dn.
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Fig. 8 Volker in Szeged
(Hungary) while on an
excursion during the
Conference on Applied
Linear Algebra (in Honor of
Richard Varga) in Palić
(Serbia and Montengro, then),
October 2005 (Courtesy of
Daniel Szyld)

It seems that Volker’s interest in polynomial eigenvalue problems was triggered
around 2000 by matrix polynomials of the form K C �G C �2M with K D KT ,
G D �GT , andM D MT positive definite. Such problems arise, for example, from
gyroscopic mechanical systems and the computation of singularities in elasticity.
In a joint work [A83] with David Watkins, a structure-preserving Arnoldi method
for this problem was developed, based on a linearization for which A � �E is
a skew-Hamiltonian/Hamiltonian pencil. This and some follow-up work is described
in Chap. 2.

In a 2004 paper [C33] with Andreas Hilliges and Christian Mehl, a matrix
polynomial with a rather different structure came up from the vibration analysis
of rail tracks under periodic excitation: a matrix polynomial of the form

A1 C �A0 C �2AT1 with A0 D AT0 :

This structure was called palindromic, and a structure-preserving linearization
having the form A � �A T was proposed for the solution of the corresponding
eigenvalue problem. This early work turned out to be quite influential and has
led to a lot of follow-up work concerning the analysis and numerical solution of
polynomial eigenvalue problems with palindromic and alternating structures; see
Chap. 3 by Lin and Schröder as well as Chap. 12 by Mackey, Mackey, and Tisseur.

The two examples above naturally led to the consideration of a more general
strategy for deriving structured linearizations of structured polynomials. However,
at that time, linearizations were usually invented on an ad hoc basis and no clear
pattern was visible. Clarity to this question was brought in two 2006 papers [A108,
A109] with D. Steven Mackey, Niloufer Mackey, and Christian Mehl. This work
provides a whole vector space of linearizations, offering ample opportunities to look
for (well-conditioned) structured linearizations; see Chap. 12.

From a numerical perspective, it is highly desirable to deflate singular parts as
well as zero and infinite eigenvalues before solving the (linearized) polynomial
eigenvalue problem. To achieve this, joint work [A120] with Ralph Byers and
Hongguo Xu proposes the concept of trimmed linearizations based on (structured)
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Fig. 9 Volker, advisor of
many Ph.D., Master, and
Diplom students. A list of his
doctoral descendants can be
found after the list of Volker’s
publications on page xxxvii.
The picture shows Volker
together with Dario Bauso at
the Ph.D. defense of Puduru
Viswanadha Reddy at Tilburg
University (The Netherlands),
November 2011 – they both
served as members of the
thesis committee

staircase forms. The related problem of linearizations for higher-order DAEs is
investigated in [A111, A123].

Polynomial eigenvalue problems are a special case of the more general class of
nonlinear eigenvalue problemsT .�/x D 0, whereT is a holomorphic matrix-valued
function. Volker wrote a widely appreciated survey [A101] with Heinrich Voss on
such eigenvalue problems and participated in the creation of the NLEVP benchmark
collection [A163].

The Helmut Wielandt Project

Helmut Wielandt (1910–2001) was a German mathematician, who is most renow-
ned for his work on finite groups, but who also made fundamental contributions to
operator and matrix theory. His mathematical diaries were made available by his
family after his death. Together with Wolfgang Knapp and Peter Schmid, Volker
Mehrmann raised funding from the DFG to transcribe these diaries and make
them publicly available.1 Among others, this project involved Hans Schneider, with
whom Volker published the thought-provoking German essay [A89] on the dilemma
Wielandt faced in Nazi Germany.

Two joint publications [A97, A167] with Olga Holtz and Hans Schneider follow
up on observations made by Wielandt on commutativity properties. Consider two
complex square matricesA and B satisfying AB D !BA, where ! is a primitive qth
root of unity. Then Potter’s theorem states that Aq C Bq D .A C B/q . In [A97],
Wielandt’s matrix-theoretic proof of this theorem from his diaries is reproduced
and translated. Moreover, a counterexample is given, showing that the converse of

1See http://www3.math.tu-berlin.de/numerik/Wielandt/.

http://www3.math.tu-berlin.de/numerik/Wielandt/


Preface xv

Fig. 10 Volker at an event of
the DFG Research Center
MATHEON “Mathematics for
key technologies” in Berlin,
2007. Volker was the
MATHEON vice-chair
2002–2008 and serves as
MATHEON chair since 2008
(Courtesy of Kay
Herschelmann Photographie)

Potter’s theorem does not hold in general; a matter that was discussed in more detail
later on in joint work [A132] with Raphael Loewy. The paper [A167] follows up on
a letter from Issai Schur to Helmut Wielandt written in 1934 concerning the question
when a matrix-valued function commutes with its derivative.

Miscellaneous

The above discussion does not exhaust the research topics Volker Mehrmann has
worked on. A (certainly) incomplete list of further topics is as follows:

• Linear algebra aspects in adaptive finite element methods for PDE eigenvalue
problems, see Chap. 9 by Międlar

• Low-rank matrix and tensor approximation, see Chap. 14 by Friedland and
Tammali

• Large-scale linear systems, see Chap. 10 by Bollhöfer, and large-scale eigenvalue
problems [A68, A116]

• Matrix completion problems [C13, A36, A39]
• Inverse eigenvalue problems [A72, A94]
• Simultaneous diagonalization [A31]
• Sparse (approximate) solutions [A130, A138, S12]
• Industrial applications, such as train traffic simulation and optimization [A118,

C31].

Volker Mehrmann’s engagement in promoting mathematics in applications and
industry is witnessed in the publications [C27, B6, B8, B9, B13].

Apart from the research monographs [B1, B2, B5], Volker also co-authored two
German textbooks: on numerical analysis [B3] with Matthias Bollhöfer and on
linear algebra [B10] with Jörg Liesen.
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Fig. 11 Volker at the Mathematische Forschungsinstitut Oberwolfach, 2009. The print on his
T-shirt tells it all and might pass for Volker’s philosophy of life: “Math makes you happy!”
(Courtesy of Bildarchiv des Mathematischen Forschungsinstituts Oberwolfach)

Summary

Without any doubt, Volker Mehrmann is among the most prolific researchers in
numerical linear algebra and numerical analysis, reaching out to a diversity of
application areas, most notably in systems and control theory. On the one hand,
this is witnessed by the sheer length of his publication list (see the following pages)
and the diversity of research topics covered. On the other hand, every collaborator
of Volker has personally experienced his unmatched energy and enthusiasm about
doing mathematics. We, the editors of this book, have had the fortune to enjoy
Volker’s generous and unconditional support during our Ph.D. studies and all
subsequent collaborations. Volker would be the perfect role model for us if only
we understood how he is able to achieve all this research output in addition to his
major committments and responsibilities in research policy and administration. It
is tempting to assume that there exist at least two copies of him – a conjecture
that was supported by a machine translation, which translated Volker’s last name
“Mehrmann” into “multi man”. In any case, we wish Volker (and possibly his
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Fig. 12 The “multi-man” 2008 (left) and 2012 (right) in front of his favorite tool (Left picture
courtesy of TU Berlin/Pressestelle/Ulrich Dahl, right picture © 2012 Fernando Domingo Aldama
(Ediciones EL PAÍS, SL) All rights reserved)

copies) many more productive decades and we are looking forward to many more
fruitful discussions and collaborations with him.

Magdeburg, Germany Peter Benner
Braunschweig, Germany Matthias Bollhöfer
Lausanne, Switzerland Daniel Kressner
Berlin, Germany Christian Mehl
Augsburg, Germany Tatjana Stykel
December 2014
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Chapter 1
Breaking Van Loan’s Curse: A Quest
for Structure-Preserving Algorithms for Dense
Structured Eigenvalue Problems

Angelika Bunse-Gerstner and Heike Faßbender

Abstract In 1981 Paige and Van Loan (Linear Algebra Appl 41:11–32, 1981)
posed the open question to derive an O.n3/ numerically strongly backwards stable
method to compute the real Hamiltonian Schur form of a Hamiltonian matrix.
This problem is known as Van Loan’s curse. This chapter summarizes Volker
Mehrmann’s work on dense structured eigenvalue problems, in particular, on
Hamiltonian and symplectic eigenproblems. In the course of about 35 years working
on and off on these problems the curse has been lifted by him and his co-workers.
In particular, his work on SR methods and on URV-based methods for dense
Hamiltonian and symplectic matrices and matrix pencils is reviewed. Moreover,
his work on structure-preserving methods for other structured eigenproblems is
discussed.

1.1 Introduction

Matrix eigenvalue problems with special structure of the matrix as well as of its
eigenvalues and eigenvectors occur in numerous applications where the special
structure reflects specific physical properties of the underlying problem. Numerical
eigenvalue methods which are able to exploit the special structure may considerably
reduce the amount of storage and computing time compared to general purpose
methods. Moreover they may also preserve the problem’s special characteristics
for the computed solution, whereas in general-purpose methods they might be lost
due to rounding errors. The development and investigation of structure preserving
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eigenvalue methods is one of the research topics which Volker Mehrmann has been
pursuing since the beginning of his career.

In this chapter we will review (some of) his work on dense structured eigenvalue
problems. In particular, the work on Hamiltonian and symplectic eigenproblems
will be considered. Such eigenproblems appear quite often in various areas of
application, see (most of) the references at the end of this chapter for a wide range
of specific examples.

A real matrix H 2 R
2n�2n is Hamiltonian matrix if HJ D .HJ/T with

J WD
�
0 I

�I 0

�
2 R

2n�2n (1.1)

where the n�n identity matrix is denoted by I . It is easy to see that any Hamiltonian
matrix can be written in block form as

H D
�
A G

Q � AT

�
; G D GT ; Q D QT ; (1.2)

where A;G;Q 2 R
n�n: Eigenvalues of Hamiltonian matrices always occur in pairs

f�;��g, if � 2 R[{R; or in quadruples f�;��; �;��g, if � 2 Cn.R[{R/: In linear
quadratic control problems, an important application for the Hamiltonian eigenvalue
problem, the stable invariant subspace X of H has to be computed. This is the
invariant subspace belonging to all eigenvalues with negative real parts, see e.g. [47].
General-purpose solvers like the QR algorithm will compute eigenvalues which in
general do not display this f�;��g – eigenvalue pairing. It imposes unavoidable
unstructured errors onto the computed eigenvalues, so that each eigenvalue of an
eigenvalue pair or quadruple might be altered in a slightly different way. The correct
information on the stable invariant subspace might then be lost. This is similar to
the well-known effect that only a symmetry preserving (and exploiting) eigenvalue
method will compute just real eigenvalues for a symmetric eigenproblem, otherwise
unavoidable rounding errors can result in the computation of complex eigenvalues.

A real matrix S 2 R
2n�2n is a symplectic matrix if ST JS D J . Symplectic

matrices are nonsingular since S�1 D J T ST J and their eigenvalues occur in
reciprocal pairs, i.e. if � is an eigenvalue of S with eigenvector x, then ��1 is
also an eigenvalue of S with left eigenvector .J x/T : It is well-known that the set
of all symplectic matrices S forms a multiplicative group (even more, S is a Lie
group), while the set H of all Hamiltonian matrices forms a Lie algebra. Moreover,
symplectic similarity transformations preserve the Hamiltonian structure:

.S�1HS/J D S�1HJS�T D S�1J THT S�T D Œ.S�1HS/J �T : (1.3)

A Cayley transform turns a symplectic matrix into a Hamiltonian one and vice versa.
This explains the close resemblence of the spectra of Hamiltonian and symplectic
matrices. Unfortunately, despite the close relationship the symplectic eigenproblem
is much more difficult than the Hamiltonian one. In particular, while for Hamiltonian
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matrices the structure is explicit (see (1.2)), for symplectic matrices it is given only
implicitly. Moreover, perturbation results are quite different for Hamiltonian and
symplectic matrices. It turns out that there is no or little difference between the
unstructured condition number �.�/ and the structured one �Hamil.�/ in the case of
Hamiltonian matrices (see, e.g., [27, 39]). Here, the unstructured condition number
is defined as

�.�/ D lim
"!0

1

"
supfj O� � �j W E 2 C

n�n; kEk2 � "g; (1.4)

where O� is the eigenvalue of the perturbed matrix ACE closest to the eigenvalue �
of the n � n matrix A, and the structured condition number is given by

�struct.�/ WD lim
"!0

1

"
supfj O�� �j W E 2 struct; kEk2 � "g: (1.5)

Also, �.X / and �Hamil.X / are equal for the important case that X is the stable
invariant subspace of H . If � is a simple eigenvalue of a symplectic matrix S ,
then so is 1=�. There is no difference between �.�/ and �.1=�/, the unstructured
eigenvalue condition numbers, but the structured ones differ (see Chap. 8 for more
on this). Hence, the two matrix structures differ significantly in this aspect. While
it is absolutely necessary to use a structure-preserving algorithm for computing
invariant subspaces of symplectic matrices, the merits of structure preservation
for Hamiltonian matrices are of a more subtle nature and not always relevant in
applications.

As for the Hamiltonian eigenproblem, if a standard eigensolver is used for a
symplectic eigenproblem the computed eigenvalues do not necessarily appear in
pairs due to rounding errors.

For the Hamiltonian and the symplectic eigenproblem it is therefore of interest
to develop structure-preserving methods as this will enforce computed eigenvalues
that come in pairs or quadruples.

The following definition from Wikipedia1 states the main idea of structure
preservation, even though it refers to linguistics. The ‘Deep Structure’ of the
problem has to be preserved:

The Structure Preservation Principle is a stipulation proposed by Noam Chomsky as part
of the Generative-Transformational Grammar. Under the Structure Preservation Princi-
ple, Deep Structures should be preserved by a movement transformation, which simply
rephrases the sentence.

The following is an example of this Principle:

Fabio strangled Prince Jamal.

can be transformed into:

Prince Jamal was strangled by Fabio.

and this Principle is fulfilled.

1http://en.wikipedia.org/wiki/Structure_preservation_principle

http://en.wikipedia.org/wiki/Structure_preservation_principle
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Both sentences hold the same meaning, because their Deep Structure remains equal. Only
their Surface Structure changes, this is, just the arrangement of the words changes. Of
course, auxiliary words like by are needed for the rearrangement to work.

That is, the deep, underlying structure of a matrix problem (D sentence) which
often displays relevant physical properties induced by the original problem to be
solved, should be preserved by any transformation applied to the matrix.

Preserving structure can help for any structured eigenproblems to preserve the
physically relevant symmetries in the eigenvalues and eigenvectors of the matrix
and may improve the accuracy and efficiency of an eigenvalue computation. An
ideal method tailored to the matrix structure would

• be strongly backward stable in the sense of Bunch described in [17], i.e., the
computed solution is the exact solution corresponding to a nearby matrix with
the same structure;

• be reliable, i.e., capable to solve all eigenvalue problems in the considered matrix
class; and

• require O.n3/ floating point operations (flops), preferably less than a competitive
general-purpose method.

While for skew-Hamiltonian matrices (that is, .NJ/T D �NJ for N 2 R
2n�2n)

it was possible to derive such a method [53], it has been a long-standing open
problem to develop an ideal method for the Hamiltonian eigenvalue problem.
As symplectic similarity transformations preserve the Hamiltonian and symplectic
structure, it is straightforward to aim for methods making only use of symplectic
similarity transformations. This has the potential to construct strongly backward
stable methods. It would be perfect to have a numerical method which works in
analogy to theQR algorithm. It should use similarity transformations with matrices
which are symplectic and – for numerical stability – at the same time unitary, to drive
the Hamiltonian matrix to a Hamiltonian analogue of the Schur form. A Hamiltonian
matrixH is said to be in Hamiltonian Schur form if

H D
�
T R

0 � T �
�

D

2
64�

0 �

3
75 ; T; R 2 C

n�n (1.6)

where T is upper triangular and RH D R. It is in real Hamiltonian Schur form
if in addition T 2 R

n�n is quasi-upper triangular and RT D R 2 R
n�n. It was

in fact proved [41, 42, 50] that a real orthogonal and symplectic matrix S exists
such that STHS is in real Hamiltonian Schur form, if and only if every purely
imaginary eigenvalue � of H has even algebraic multiplicity, say 2k, and if for
any basis Xk 2 C

2n�2k of the maximal invariant subspace for H corresponding
to � the matrix XH

k JXk is congruent to J 2 R
2k�2k . Moreover, S can be chosen

such that T has only eigenvalues in the open left half plane. One was hoping for
an symplectic orthogonal QR-like algorithm to compute this Hamiltonian Schur
form. Unfortunately, the numerical computation of the Hamiltonian Schur form via
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strongly backward stable O.n3/ methods turned out to be an extremely difficult
problem. It was quite a success, when such a symplectic QR algorithm was
presented in the Householder-Prize-winning Ph.D. thesis of Byers [26] for the

very special case of a Hamiltonian matrix H D
h
A G
Q �AT

i
with rank.G/ D 1

or rank.Q/ D 1: For the general case it has been an open problem since its
introduction. It

proved difficult to solve, however, so much so that it came to be known as Van Loan’s curse

(see [48]). Unfortunately, it finally turned out [1] that the aim for symplectic
orthogonal QR-like methods to solve Hamiltonian or symplectic eigenproblems
is in general hopeless, due to the lack of an orthogonal symplectic reduction to
a Hessenberg-like form. So far there is no method known that meets all three
requirements for an ideal method satisfactorily.

Section 1.2 reviews Volker Mehrmann’s work on the SR based algorithm which
make use of (orthogonal and) symplectic transformations including the negative
result [1]. Nevertheless, Volker Mehrmann and his co-authors did not give up in
trying to beat Van Loan’s curse. Section 1.4 reviews URV-based methods [14, 16, 29]
which are considered a break-through even so some details still need to be clarified.
Some of Volker Mehrmann’s work on other structured eigenproblems is summarized
in Sect. 1.3.

1.2 SR Methods for Dense (Generalized) Hamiltonian
and Sympletic Eigenproblems

1.2.1 The SR Decomposition

It appears that one of the cornerstones for Volker Mehrmann’s work on structure pre-
serving methods was already laid in his Diplomarbeit [45]. This thesis investigated
the SR algorithm for solving the standard eigenvalue problem which was one of the
algorithms considered in a very basic form by Della-Dora [30]. The SR factorization
of a matrix A 2 R

2n�2n is given by A D SR where S 2 R
2n�2n is symplectic and

R 2 R
2n�2n is J -triangular. A matrix R D �

R11 R12
R21 R22

� 2 R
2n�2n where Rij 2 R

n�n
for i; j D 1; 2 is an (upper) J -triangular matrix ifR11;R12; R22 are upper triangular
matrices and R21 is a strict upper triangular matrix, that is,

R D

2
64��

0...0� �

3
75 :
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Note that this is a permuted upper triangular matrix, i.e. PRPT is an upper triangular
matrix, where P is the permutation matrix

P D Œe1; e3; : : : ; e2n�1; e2; e4; : : : ; e2n� 2 R
2n�2n: (1.7)

Here the i th unit vector is denoted by ei .
In [30] and later in [57, 58] very general matrix decompositions are considered

as basis for the computation of matrix eigenvalues. For a matrix group G a
decompositon A D GR is considered, where R is essentially an upper triangular
matrix and G 2 G: In analogy to the QR algorithm based on the QR decom-
position [30] proposed a very basic GR iteration based on such a general GR
decomposition. The SR algorithm follows the standard GR iteration: It begins with
a matrix B 2 K

n�n (K denotes either R or C) whose eigenvalues and invariant
subspaces are sought. It produces a sequence of similar matrices Bi that (hopefully)
converge to a form exposing the eigenvalues. The transforming matrices for the
similarity transformationsBi D G�1

i Bi�1Gi are obtained from a GR decomposition
pi .Bi�1/ D GiRi in which pi is a polynomial and Ri is upper triangular. If pi has
degree 1 one speaks of a single step, if the degree is 2, it is a double step.

Almost every matrix A can be decomposed into a product of a symplectic matrix
S and a J -triangular matrix R. The decomposition is unique up to a trivial (that is,
symplectic and J -triangular) factor.

Theorem 1 (for part (a) see [31, Theorem 11], [18, Theorem 3.8], for part (b) see
[22, Proposition 3.3]) Let A 2 R

2n�2n be nonsingular.

(a) There exists a symplectic matrix S and a J -triangular matrix R such that
A D SR if and only if all leading principal minors of even dimension of
PAT JAPT are nonzero with P as in (1.7). The set of 2n� 2n SR decomposable
matrices is dense in R

2n�2n.
(b) Let A D SR and A D QS QR be SR factorizations of A. Then there exists a trivial

matrix D such that QS D SD�1 and QR D DR. Here D is a trivial matrix, ifD is
symplectic and J -triangular. That is, D is trivial if and only if it has the form

D D
�
C F

0 C�1
�
;

where C D diag.c1; : : : ; cn/, F D diag.f1; : : : ; fn/.

There are several ways to define a unique SR decomposition. Volker Mehrmann
considered two cases in [45]:

1. Restrict the symplectic groupS to the subgroupS? with the additional constraint
that the column sum of each column of a matrix S? 2 S? is one, use the entire
group R of J -triangular matrices R.
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2. Use the entire symplectic group S for S , but restrict the group R of upper
J -triangular matrices

R D
�
R11 R12

R21 R22

�
D

2
64��

0...0� �

3
75

to the subgroup R? of J -triangular matrices R? with the additional constraint
rjj > 0 and rnCj;nCj D ˙rjj for j D 1; : : : ; n (this implies that the diagonal
elements of the tridiagonal matrix R?11 are all positive and that the diagonal
elements of R?22 are of the same absolute value as their counterparts in R?11),
and in addition rj;nCj D 0 for j D 1; : : : ; n (this implies that not only R?21, but
also R?12 is a strict upper triangular matrix), i.e.

R? D
�
R?11 R

?
12

R?21 R
?
22

�
D

2
64�

0...0�
0...0� �

3
75 ; .R?11/jj > 0; .R?22/jj D ˙.R?11/jj:

As shown in [45] (under the assumption that all leading principal minors of even
dimension of PAT JAPT are nonzero as in Theorem 1(a)), an SR decomposition
A D SR? with S 2 S; R? 2 R? does always exist and is unique. An SR
decomposition A D S?R with S? 2 S?; R 2 R exists and is unique if and
only if there exists an SR decomposition A D S 0R0 with S 0 2 S; R0 2 R andP2n

iD1 s0
ij ¤ 0 for j D 1; : : : ; n:Algorithms for computing these SR decompositions

are derived, based on symplectic transvections I˙uuT J . It is observed that an initial
reduction to upper Hessenberg form reduces the computational costs significantly
such that the cost for an SR decomposition of an upper Hessenberg matrix in case 1
is comparable to that of a QR decomposition, see, e.g., [37], but in case 2 the
costs are about twice as much. The SR algorithm as well as single and double shift
iteration steps are discussed. The additional constraint for existence and uniqueness
in case 1 does not pose a real problem in the SR algorithm as there will always be a
shift which allows the computation of the SR decomposition of p.A/: Convergence
theorems are presented (for a more general thorough analysis of the convergence
of GR algorithms see [58]). An implementation of the algorithms in PL/1 and
some numerical examples complete Volker Mehrmann’s first encounter with the SR
decomposition.

1.2.2 The SR Algorithm for Hamiltonian Eigenproblems

During his PhD studies his interests were drawn to other subjects. Inspired by work
of Bunse-Gerstner on the SR decomposition [18, 19] and Byers on Hamiltonian and
symplectic algorithms for the algebraic Riccati equation [25], Volker Mehrmann
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started to make use of the SR algorithm as a means of a structure-preserving
algorithm for the (generalized) Hamiltonian and symplectic eigenvalue problem.

As symplectic similarity preserves the Hamiltonian structure (see (1.3)) it seems
natural to devise an SR algorithm for the Hamiltonian eigenproblem as this would
enforce that each iterate is of Hamiltonian structure again (and therefore enforce
the eigenvalue structure): If Hi is the current iterate, then a spectral transformation
function q is chosen and the SR decomposition of q.Hi / is formed, if possible:

q.Hi / D SR:

Then the symplectic factor S is used to perform a similarity transformation onH to
yield the next iterate,

HiC1 D S�1HiS:

As only symplectic similarity transformations are performed, the SR algorithm
preserves the Hamiltonian structure. The same holds true for a symplectic structure
of a starting matrix.

As observed in [22], all Hamiltonian matrices up to a set of measure zero can be
reduced to Hamiltonian J -Hessenberg form

2
64����

��

3
75 ; (1.8)

where each block is an n�n matrix. Due to the Hamiltonian structure, the .1; 1/ and
the .2; 2/ block are identical up to sign, while the .1; 2/ block is symmetric. Hence
almost any Hamiltonian matrix can be represented by 4n � 1 parameters.

The Hamiltonian J -Hessenberg form is preserved by the SR algorithm. An
implementation of the (implicit bulge-chasing) SR algorithm based on symplectic
Givens, Householder and Gauss transformations is presented in [22]. The sym-
plectic Givens and Householder transformations are orthogonal (and symplectic),
while the symplectic Gauss transformations are nonorthogonal. The Gauss transfor-
mations are computed such that among all possible transformations of that form,
the one with the minimal condition number is chosen. A standard implementation
of the SR algorithm will require O.n3/ flops in each iteration step. Noting that
a Hamiltonian J -Hessenberg matrix is determined by 4n � 1 parameters, one
step of the SR algorithm for H can be carried out in O.n/ flops. The (optional)
accumulation of the transformations takes another O.n2/ flops. Moreover, the
Hamiltonian structure which will be destroyed in the numerical process due to
roundoff errors when working with a Hamiltonian (J -Hessenberg) matrix, can
easily be forced. The general convergence theory for GR methods [58] implies that
the SR algorithm for Hamiltonian matrices is typically cubically convergent. In [24]
a variant of the SR algorithm presented in [22] based solely on symplectic Gauss
transformation is developed.
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The SR algorithm described above was modified by Volker Mehrmann to
be applicable to symplectic eigenproblems. An initial reduction to symplectic
J -Hessenberg form is necessary. A J -Hessenberg matrix A D �

A11 A12
A21 A22

�
is such

that A11; A21; A22 are upper triangular matrices and A12 is an upper Hessenberg
matrix, that is

A D

2
64���
��

3
75 :

Note that PAPT is an upper Hessenberg matrix.

1.2.3 Defect Correction

It is not recommended to use the SR algorithm just by itself for solving a
Hamiltonian eigenproblem, as it is potentially unstable (due to the unavoidable
use of symplectic Gauss transformations). In [22] and [24], the goal is to solve the
linear quadratic control problem via the solution of a real algebraic Riccati equation
�XGX C XA C ATX C F D 0; where A;G;F 2 R

n�n, F D F T is positive
semidefinite and G D GT is positive definite. If Y;Z;� 2 R

n�n are matrices such
that

�
A G

F � AT

� �
Y

Z

�
D
�
Y

Z

�
�

holds and Y is invertible, then X D �ZY�1 solves the above Riccati equation, if �
contains all n eigenvalues ofH D �

A G
F �AT

�
with negative real part, i.e. if

�
Y
Z

�
spans

the stable invariant subspace of H . The purpose of the SR algorithm considered
in [22] and [24] is therefore to compute the stable invariant subspace of H . The
invariant subspace computed via the SR algorithm should be refined using a defect
correction method or by using it as a good starting estimate for Newton’s method.
See Chap. 4 in this book for more.

1.2.4 A Symplectic Orthogonal Method

In analogy to Byers’ Hamiltonian QR algorithm [26] an orthogonal SR decompo-
sition which avoids the potentially unstable symplectic Gaussian transformations
needed for the SR algorithm in [22] was developed in [46] in the context of
single input or single output discrete optimal control problems where very special
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symplectic eigenproblems have to be solved. In particular, complex-valued conju-
gate symplectic eigenvalues problemsMx D �x with

M D
�
M11 M12

M21 M22

�
2 C

2n�2n; rank.M21/ D 1 (1.9)

whereMHJM D J or generalized eigenproblems of the form

A � �B D
�
A 0

F I

�
� �

�
I �G
0 AH

�
2 C

2n�2n; rank.F / D 1; (1.10)

where F D FH and G D GH are positive semidefinite and AHJA D BHJB are
considered. The orthogonal SR decomposition used in this context decomposes a
complex conjugate symplectic matrix into the product SR where S is orthogonal
and conjugate symplectic (ST S D I and SH JS D S ) and R is a symplectic
J -triangular matrix with positive diagonal elements, that is,

R D

2
64�
0 �

3
75 ; rii > 0:

For the very special conjugate symplectic matrices (1.9), an initial orthogonal
symplectic reduction to a special symplectic Hessenberg form can be achieved
which stays invariant under an SR iteration using the just described orthogonal SR
decomposition. A QZ-like variant for the generalized problem (1.10) is developed.
This paper answered a research question posed by Byers in [25, 26] where the
analogous continuous time optimal control problem was considered which involved
computing the stable invariant subspace for a single-input Hamiltonian matrix.
Implicit single and double shift steps are discussed in [46] as well as deflation and
the choice of shifts. The proposed algorithm is (just as the analogue one proposed
in [25, 26]) strongly stable in the sense of [17].

1.2.5 Hamiltonian and Symplectic Hessenberg Forms

The question whether an efficient SR algorithm based on the decomposition into
an orthogonal and symplectic matrix S (in the real case) and a suitable upper
triangular matrix R does also exist for general Hamiltonian or symplectic matrices
was considered in [1]. The initial reduction to a suitable Hessenberg form is essential
for any GR-type algorithm in order to decrease the computational costs of each
iteration step by (at least) one order of magnitude. In particular, it is desirable that
such initial reduction (as well as the GR-type decomposition used in the iteration
steps) can be performed using orthogonal or unitary matrices. In a paper by Ammar
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and Mehrmann [1] characterizations are given for the Hamiltonian matrices that
can be reduced to Hamiltonian Hessenberg form and the symplectic matrices that
can be reduced to symplectic Hessenberg form by orthogonal symplectic similarity
transformations. The reduction of a Hamiltonian or symplectic matrix B to its
Hessenberg-like formQTBQ; whereQ is orthogonal and symplectic is considered.
It turns out that the components of the first column of Q must satisfy a system of n
quadratic equations in 2n unknowns. Consequently, such a reduction is not always
possible. Hence, a general efficient SR algorithm based on the decomposition into
an orthogonal and symplectic matrix S and a suitable upper triangular matrix R
for general Hamiltonian or symplectic matrices does not exist. An approach to
the computation of Lagrangian invariant subspaces (see Chap. 4 for a definition
and more on this subject) of a Hamiltonian or symplectic matrix in case the
corresponding eigenvalues are known is presented. These problems were a very hot
topic in the research community at that time and Volker Mehrmann got so deeply
involved in trying to answer these long-standing questions that he discussed them
almost everywhere with his co-workers. Therefore parts of the discussions resulting
in [1] took part during a car trip with Greg Ammar to a conference and they were so
intense, that this lead to a speeding ticket by the German police (probably the only
speeding ticket ever acknowledged in a mathematical paper).

1.2.6 The SR Algorithm for the Symplectic Eigenproblem

In [36] it is observed that in analogy to the Hamiltonian case discussed above a
symplectic J -Hessenberg matrix can be represented by 4n � 1 parameters. An SR
algorithm based on the decomposition into a symplectic matrix S and a J -triangular
matrix R working on the 4n � 1 parameters only is derived. A version for the
generalized symplectic eigenproblem is presented and the numerical properties of
these methods are analyzed. It is shown that the resulting methods have significantly
worse numerical properties than their corresponding analogues in the Hamiltonian
case.

The idea of a parameterized SR algorithm for the symplectic eigenproblem was
picked up by other researchers. Banse and Bunse-Gerstner [2–5] presented a new
condensed form for symplectic matrices, called symplectic butterfly form. This 2n�
2n condensed matrix is symplectic, contains 8n� 4 nonzero entries, and, similar to
the symplectic J -Hessenberg form of [36], it is determined by 4n � 1 parameters.
It can be depicted by

2
64����

����

3
75 : (1.11)
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For every symplectic matrix M , there exist numerous symplectic matrices S such
that B D S�1MS is in symplectic butterfly form. The SR algorithm preserves
the butterfly form in its iterations. As in the Hamiltonian case, the symplectic
structure, which will be destroyed in the numerical process due to roundoff errors,
can easily be restored in each iteration for this condensed form. There is reason
to believe that an SR algorithm based on the symplectic butterfly form has better
numerical properties than the one based on the symplectic J -Hessenberg form.
For a detailed discussion of the symplectic butterfly form see [7, 8, 10, 11, 32–34].
Structure-preserving SR and SZ algorithms based on the symplectic butterfly form
are developed for solving small to medium size dense symplectic eigenproblems.
A symplectic Lanczos algorithm based on the symplectic butterfly form is presented
that is useful for solving large and sparse symplectic eigenproblems.

The SR-based methods have inspired the derivation of Lanczos-like algorithms
for large sparse Hamiltonian and symplectic eigenproblems, [6–9, 35, 49, 54, 56]
and Chap. 2.

1.3 Structure-Preserving Methods for Other Structured
Eigenproblems

Volker Mehrmann (and his co-authors) also considered other structured eigenprob-
lems.

1.3.1 The HHDR Algorithm

In [23] a structure-preserving algorithm for the generalized eigenproblem F � �G,
where F;G 2 C

n�n are Hermitian and F � �G is a regular (but possibly indefinite)
pencil (i.e., det.F � �G/ ¤ 0) is considered. Like most eigenproblems tackled
by Volker Mehrmann in his early career this eigenproblem arises from a linear
quadratic optimal control problem. The algorithm proposed is based on the HDR
decomposition, that is a factorization F D HR where H 2 C

n�n is a nonsingular
matrix such that H�1DH�H D QD where D and QD are diagonal and R is upper
triangular. It exploits the symmetry structure and thus requires less storage and
work than the general QZ algorithm. Unfortunately the algorithm is not in general
numerically stable. Precautions to avoid numerical instabilities can be taken, but
may slow down convergence.

1.3.2 A Quaternion QR Algorithm

The eigenvalue problem for matrices with quaternion entries is considered in [20];
it arises naturally from quantum mechanical problems that have time reversal
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symmetry. The division ring H of quaternions is the real algebra generated by the
unit elements 1; i; j and k, with identity 1 and the relations

i 2 D j 2 D k2 D �1;
ij D �ji D k;

jk D �kj D i;

ki D �ik D j:

It is observed that for 	 2 Hn�n there is a decomposition as 	 D 
 C j� where

;� 2 C

n�n: The quaternion matrix 	 D 
 C j� can also be represented as the
2n � 2n complex matrix

O	 D
�

 � �

� 


�
: (1.12)

The map 	 ! O	 is an algebra isomorphism of Hn onto the algebra of 2n � 2n

complex matrices of the form of (1.12). A number � in the closed upper half
complex plane C

C is an eigenvalue of a quaternion matrix 	 2 Hn�n if 	 x D �x

for a non-zero eigenvector x 2 Hn: Eigenvalues and eigenvectors of matrices
of the form O	 appear in complex conjugate pairs. If � is an eigenvalue of O	
with eigenvector y 2 C

n, then � is also an eigenvalue with eigenvector Jy: The
eigenvalues of 	 are just the ones of O	 with nonnegative imaginary part. The
standard QR algorithm is extended to quaternion and antiquaternion matrices. It
calculates a quaternion version of the Schur decomposition using quaternion unitary
similarity transformations. Following a finite step reduction to a Hessenberg-like
condensed form, a sequence of implicit QR steps reduces the matrix to triangular
form. By preserving quaternion structure, the algorithm calculates the eigenvalues
of a nearby quaternion matrix despite rounding errors using only about half of the
work and storage of the unstructured QR algorithm.

1.3.3 The Chart Paper

The work on structure-preserving eigenvalue methods lead to an overview of
structure preserving methods [21] for real and complex matrices that have at least
two of the following algebraic structures:

• Orthogonal (ATA D I; A 2 C
n�n),

• Unitary (AHA D I; A 2 C
n�n),

• Symmetric (A D AT ;A 2 C
n�n),

• Hermitian (A D AH ;A 2 C
n�n),

• Skew symmetric (A D �AT ;A 2 C
n�n),
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• Skew Hermitian (A D �AH ;A 2 C
n�n),

• Symplectic (or J -orthogonal) (ST JS D J; S 2 C
2n�2n),

• Conjugate symplectic (or J -unitary) (SHJS D J; S 2 C
2n�2n),

• Hamiltonian (or J -symmetric) (JH D .JH/T ; S 2 C
2n�2n),

• J -Hermitian (JS D .JS/H; S 2 C
2n�2n),

• J -skew symmetric (JS D �.JS/T ; S 2 C
2n�2n),

• J -skew Hermitian (JS D �.JS/H; S 2 C
2n�2n).

If A 2 R
m�m some of these structures coalesce, e.g. Hermitian and symmetric,

but others have distinct features. A real skew Hermitian matrix has eigenvalues that
occur in ˙ pairs while a complex skew Hermitian matrix may not. As stated in
the abstract of [21]: In the complex case numerically stable algorithms were found
that preserve and exploit both structures of 40 out of the 66 pairs studied. Of the
remaining 26, algorithms were found that preserve part of the structure of 12 pairs.
In the real case algorithms were found for all pairs studied. The algorithms are
constructed from a small set of numerical tools, including orthogonal reduction
to Hessenberg form, simultaneous diagonalization of commuting normal matrices,
Francis’ QR algorithm, the quaternion QR-algorithm, and structure revealing,
symplectic, unitary similarity transformations.

The paper [21] is the first evidence of Volker Mehrmann’s numerous critical
endeavours to unify theory and presentation. The paper triggered a lot of work in
generating algorithms for the considered classes of problems, and inspired further
papers classifying structures and methods related to eigenvalue calculations (see,
e.g., [38, 43, 44]).

1.4 Van Loan’s Curse: URV-Based Methods for Dense
(Generalized) Hamiltonian and Sympletic Eigenproblems

As shown in [1] (and briefly discussed above) a modification of standard QR-like
methods to solve (generalized) Hamiltonian or symplectic eigenproblems is in gen-
eral hopeless, due to the missing reduction to a Hessenberg-like form. Nevertheless,
Volker Mehrmann and his co-authors did not give up in trying to derive a method
for the Hamiltonian and symplectic eigenproblem that is numerically (strongly)
backward stable, has a complexity of O.n3/ or less and at the same time preserves
the Hamiltonian or symplectic structure.

When performing eigenvalue computations one is usually restricted to similarity
transformations for matrices and equivalence transformations for pencils, since only
these preserve all the spectral properties. The first key observation made in [15] was
that a non-equivalence transformation for the original problem can be used which
leads to an equivalence transformation for a related problem. From the eigenvalues
of this related problem the desired eigenvalues can easily be computed. In particular,
for Hamiltonian matrices H it is well-known that if � ¤ 0 is a simple eigenvalue
of H , then �2 is a nondefective eigenvalue of the skew Hamiltonian matrix H2 of
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multiplicity 2. This fact has been used in the square reduced method of Van Loan
[53]. The eigenvalues � derived via the computed eigenvalues of H2 may, however,
suffer a loss of half of the possible accuracy. The eventual trick to break Van Loan’s
curse is to use a non-equivalence transformation applied to the Hamiltonian matrix.
There exist orthogonal and symplectic matricesQ1;Q2 such that

QT
1 H

2Q1 D
��H11H

T
22 H11H

T
12 �H12H

T
11

0 �H22H
T
11

�

QT
2 H

2QT
2 D

��H22H
T
11 HT

12H22 �HT
22H12

0 �HT
11H22

� (1.13)

where Hij 2 R
n�n;H11 is upper triangular and HT

22 is quasi-upper triangular. This
transformation can be viewed as a symplectic version of the URV decomposition.
URV decompositions of a matrix into a product of two unitary matrices U; V
and an upper triangular matrix R were first introduced by Stewart in order to
achieve a compromise between accuracy and computational cost between the
QR decomposition and the singular value decomposition for rank and null space
computations, see [51, 52].

In order to compute the eigenvalues of H it suffices to compute those of
�H11H

T
22 [15]. This can be done without forming the products. The periodic

QR algorithm applied to �H11H
T
22 yields real orthogonal transformation matrices

U; V 2 R
n�n such that

OH D UTH11VVTHT
22U;

OHT
22 WD .U TH22V /

T (1.14)

are quasi-upper triangular, while

OH11 D UTH11V (1.15)

is upper triangular. Next, the 1 � 1 or 2 � 2 eigenvalue problems arising from
explicitly multiplying out the diagonal blocks of OH11 and OH22 are solved. This
determines n eigenvalues �i ; i D 1; : : : ; n: Finally the eigenvalues of H are
computed by �i D p

�i and �nCi D �p
�i for i D 1; : : : ; n: See also [12]

for a short summary of the algorithm for the Hamiltonian eigenproblem and some
numerical examples.

In [15] it is also shown how to use the idea outlined above for the generalized
eigenvalues of real Hamiltonian pencils. Via the Cayley transformation a symplectic
matrix (or matrix pencil) is transformed to a Hamiltonian matrix pencil. Eigenvalues
and the stable invariant subspace of this Hamiltonian matrix pencil are then
computed with the method proposed. As the Cayley transformation preserves
invariant subspaces, the stable invariant subspace of the original symplectic problem
can be read off from the stable invariant subspace of the Hamiltonian matrix pencil.
The eigenvalues of the original symplectic problem are obtained via the inverse
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Cayley transformation. Hence, in [15] algorithms for computing the eigenvalues of
Hamiltonian and symplectic pencils and matrices are derived and analyzed.

A detailed error analysis reveals that the method is numerically backward stable
and preserves the structure (i.e., Hamiltonian or symplectic). In the case of a
Hamiltonian matrix (as outlined above) the method is closely related to the square
reduced method of Van Loan, but in contrast to that method which may suffer from a
loss of accuracy, the new method computes the eigenvalues to full possible accuracy.

Based on this algorithm a new backward stable, structure preserving method of
complexity O.n3/ for computing the stable invariant subspace of a real Hamilto-
nian matrix (and the stabilizing solution of the continuous-time algebraic Riccati
equation) is presented in [14]. The method is based on the relationship between the
invariant subspaces of the Hamiltonian matrix H and the extended matrix

B D
�
0 H

H 0

�
:

If H has no eigenvalues on the imaginary axis, then an orthogonal matrix Q 2
C
4n�4n exists such that

QTBQ D
�
R D

0 � RT

�

is in Hamiltonian Schur form (that is, R is a quasi upper-triangular matrix and
D D DT ) and all eigenvalues of R have positive real part. Q can be computed
using U and V from (1.14) and (1.15) and the transformation of

�
0 �H22H

T
11

�H11H
T
22 0

�

(with H11 and H22 from (1.13)) to real Schur form. The resulting algorithm needs
about 159n3 flops for the computation of an invariant subspace, while 203n3 flops
are needed for the computation of the same invariant subspace via the Schur vector
method [40] based on the standard QR-algorithm. The storage requirement for the
algorithm proposed in [14] is about 9n2, a little more than the 8n2 required for the
Schur vector method.

In [13] an alternative derivation for the method given in [15] via an embedding
in skew-Hamiltonian matrices and an example of a structure-preserving iterative
refinement algorithm for stable invariant subspaces of Hamiltonian matrices is
given. Moreover, Van Loan’s algorithm [53] for computing the eigenvalues of a
Hamiltonian matrix H via the skew-Hamiltonian matrix N D H2 is reformulated
to compute the skew-Hamiltonian Schur form of N . In addition, explicit formu-
las/bounds for the structured eigenvalue condition numbers and a relation between
the structured and unstructured condition numbers for stable invariant subspaces of
Hamiltonian matrices are given (see Chap. 8 for more).
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An extension of these ideas leads to algorithms for complex Hamiltonian
(.HJ/H D HJ for H 2 C

2n�2n) and skew-Hamiltonian (.NJ/H D �NJ for
N 2 C

2n�2n) matrices [16]. For any complex Hamiltonian matrix H it holds that
{H D N is a skew-Hamiltonian matrix. DecomposingN into its real and imaginary
parts, embedding it into a matrix of double size

�
N 0

0 N

�

and using a simple similarity transformation yields a real skew-Hamiltonian matrix
N 2 R

4n�4n: The eigenvalues of N can be computed by Van Loan’s algorithm
[53] which yields the real skew-Hamiltonian Schur form. This gives without any
further computations the eigenvalues of H . A stable invariant subspace of H can
be computed from the skew-Hamiltonian Schur form. Since Van Loan’s method is
strongly backward stable, the computed eigenvalues of N are the exact eigenvalues
of a real skew-Hamiltonian matrix near to N and N is similar to diag.N;N/. The
symmetry of the spectrum of N is preserved.

The ideas of [14] have also been extended to compute deflating subspaces
of matrix pencils N � �H;N;H 2 C

2n�n where H is Hamiltonian (HJ D
.HJ/H) and N is skew-Hamiltonian (NJ D �.NJ/H). The algorithms proposed
circumvent problems with skew-Hamiltonian/Hamiltonian matrix pencils that lack
structured Schur forms by embedding them into matrix pencils that always admit
a structured Schur form. For the embedded matrix pencils, the algorithms use
structure-preserving unitary matrix computations and are strongly backwards stable,
i.e., they compute the exact structured Schur form of a nearby matrix pencil with the
same structure.

If the skew-Hamiltonian/Hamiltonian pencil is not regular, the singular part and
the part associated with higher index singular blocks must be deflated first before
the method discussed above can be applied. Hence, an important remaining issue is
a structure preserving method to compute the structural invariants under congruence
associated with the infinite eigenvalues and the singular part of the pencil. This can
be done by the structured staircase algorithm proposed in [28].

In [29] a different URV-based method for computing the Hamiltonian Schur form
of a Hamiltonian matrix K that has no purely imaginary eigenvalues is proposed.
First it is observed that if U is an orthogonal symplectic matrix such that UTK2U

is in real skew-Hamiltonian Schur form

UTK2U D
�
R X

0 XT

�
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with

R D

2
64
R11 � � � R1;`

: : :
:::

R`;`

3
75

where Rjj 2 R
nj�nj ; 1 � nj � 2 for j D 1; : : : ; ` is in real Schur form, i.e. either

2 � 2 with a pair of non-real complex conjugate eigenvalues, or 1 � 1 real, and
the magnitude of the real parts of the square roots of the eigenvalues of Ri;i .i D
1; : : : ; `/ is decreasing. Let H D UTKU: Then the columns of H

h
In1
0

i
form an

invariant subspace of H2 associated with the eigenvalues of R11: By an appropriate
orthogonalization process this invariant subspace ofH2 can be transformed to a 2n�
n1 or 2n � 2n1 quasi-upper-triangular matrix, i.e., an orthogonal-symplectic matrix
Q is determined such that the Hamiltonian matrix QTHQ can be partitioned as

QTHQ D

2
664

OF1 � � �
0 OF � OG
0 0 � OF T

1 0

0 OH � � OF T

3
775

where, depending on the multiplicity of eigenvalues, OF1 is either an n1 � n1 or

2n1 � 2n1 matrix in real Schur form,
h OF OG

OH � OF T
i

is Hamiltonian, and
h OF OG

OH � OF T
i2

is

again in real skew-Hamiltonian Schur form. Once this form has been computed,

the same procedure is applied recursively to the matrix
h OF OG

OH � OF T
i
. Note that the

process has to perform two tasks simultaneously, i.e., to compute an orthogonal
basis of the invariant subspace, and at the same time to perform the transformation
in such a way, that the real skew-Hamiltonian Schur form of H2 is not destroyed
during this process. This can be achieved by orthogonal symplectic transformations.
A nice interpretation of this method which might be easier to comprehend than the
original derivation for readers familiar with the QR algorithm can be found in [55].
Numerical results given in [29] indicate that if no eigenvalues of H are close to the
imaginary axis then the method computes the exact Hamiltonian Schur form of a
nearby Hamiltonian matrix and thus is numerically strongly backward stable. The
method is of complexity O.n3/:

A modification of the method of [29] for the computation of the Hamiltonian real
Schur form is presented in [48] which avoids some of the difficulties that may arise
when a Hamiltonian matrix has tightly clustered groups of eigenvalues. A detailed
analysis of the method is presented and several numerical examples demonstrate the
superior behavior of the method.
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1.5 Concluding Remarks

The work of Volker Mehrmann reviewed here led to a new school of structure-
preservation which influenced a great number of researchers. He is a driving force
in a lot of work on related structured eigenproblems, in particular on structured poly-
nomial eigenproblems which is reviewed in Chap. 12. The palindromic eigenvalue
problem which generalizes the symplectic eigenproblem is dealt with in Chap. 3.
Canonical forms of structured matrices and pencils are reviewed in Chap. 6, while
more on structured eigenvalue perturbation theory can be found in Chap. 8. The
work also influenced the numerical solution of Riccati equations, as well as other
related matrix equations, see Chap. 4. His never ending effort to transfer the latest
knowledge on structure-preservation (and other topics) to engineers working on
real-life problems by providing adequate software and benchmark examples and
countless talks has been crowned by success. By now, the ideas have been picked
up by engineering communities and find their way into (commercial) standard
software.
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Chapter 2
Large-Scale Structured Eigenvalue Problems

David S. Watkins

Abstract Eigenvalue problems involving large, sparse matrices with Hamiltonian
or related structure arise in numerous applications. Hamiltonian problems can be
transformed to symplectic or skew-Hamiltonian problems and then solved. This
chapter focuses on the transformation to skew-Hamiltonian form and solution
by the SHIRA method. Related to, but more general than, Hamiltonian matrices
are alternating and palindromic pencils. A SHIRA-like method that operates on
alternating (even) pencils M � �N and can be used even when N is singular, is
presented.

2.1 Introduction

This chapter discusses eigenvalue problems for which the matrices are large and
sparse and have additional Hamiltonian or Hamiltonian-like structure. The plan of
the chapter is as follows. In Sect. 2.2 we define the structures that we are going
to consider and establish their elementary properties and the relationships among
them. In Sect. 2.3 we present an example that illustrates some of the structures.
Starting from a quadratic eigenvalue problem�2AxC�GxCKx D 0with alternating
(even) structure, we convert it to a first-degree eigenvalue problem .M ��N/z D 0

that also has alternating structure, then we convert the latter to a Hamiltonian
eigenvalue problem. In Sect. 2.4 we consider the problem of exploiting Hamiltonian
structure. One can work directly with the Hamiltonian problem, or one can convert
it to a skew-Hamiltonian or symplectic eigenvalue problem. We choose to focus
on the skew-Hamiltonian case. We show that Krylov subspace methods applied to
skew-Hamiltonian matrices automatically produce isotropic subspaces and therefore
preserve the structure automatically. We then describe a specific method of this
type, the skew-Hamiltonian implicitly-restarted Arnoldi (SHIRA) algorithm of
Mehrmann and Watkins [18].
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In Sect. 2.5 we present a second example, a descriptor system that yields an
alternating eigenvalue problem of the form .M � �N/z D 0. The big difference
between this example and the previous one is that here the matrixN is singular, and
as a consequence the SHIRA method cannot be applied to this problem. In Sect. 2.6
we develop a variant of SHIRA called even-IRA, due to Mehrmann, Schröder, and
Simoncini [17], that can deal with singular N . Some implementation details and
difficulties with the computation of eigenvectors and invariant subspaces are also
discussed. In Sect. 2.7 we sum things up.

2.2 The Structures

The structures we will discuss include Hamiltonian, skew-Hamiltonian, symplectic,
even, odd, alternating, and palindromic. We begin by defining the terms. Some
of these were already discussed in Chap. 1; we repeat the definitions here for the
reader’s convenience.

This author will make his life easy by considering only real matrices, while
admitting that there are important applications for which the matrices are complex.
The matrix J 2 R

2n�2n defined by

J D
�

0 I

�I 0
�

(2.1)

plays an important role here. The matrix H 2 R
2n�2n is Hamiltonian if

.JH/T D JH, i.e. JH is symmetric. The matrix K 2 R
2n�2n is skew-Hamiltonian

if .JK/T D �JK, i.e. JK is skew-symmetric. The matrix S 2 R
2n�2n is

symplectic if ST JS D J . The set of symplectic matrices in R
2n�2n is a Lie

group. Its corresponding Lie algebra (tangent space, infinitesimal group) is the
set of Hamiltonian matrices, and its Jordan algebra is the set of skew-Hamiltonian
matrices [9].

Matrix polynomials are discussed in Chap. 12; we will mention them only briefly
here. Consider a matrix polynomial (also called a matrix pencil)

P.�/ D �kAk C �k�1Ak�1 C � � � C �A1 C A0; (2.2)

whereA0, . . . , Ak 2 R
m�m.P is called even ifATj D .�1/jAj for j D 0, . . . , k and

odd ifATj D .�1/jC1Aj for j D 0, . . . , k. WhetherP is even or odd, its coefficients
alternate between symmetric and skew-symmetric. P is called alternating if it is
either even or odd. In Sect. 2.3 we will introduce a matrix polynomial�2AC�GCK ,
where A D AT , G D �GT , and K D KT . This is a quadratic alternating pencil.
We will also introduce polynomials of the form M � �N , where M D MT and
N D �NT . These are alternating pencils of degree one. Whether we speak of a
matrix pencilM ��N or a matrix pair .M;N /, we are speaking of the same object.
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A matrix pencilH � �K is called skew-Hamiltonian/Hamiltonian (SHH) ifK is
skew-Hamiltonian andH is Hamiltonian. This term appeared in the title of [18] and
several other papers published around the year 2000. If one multiplies such a pencil
by J , one obtains JH � �JK, which is an (even) alternating pencil. Nowadays we
prefer to speak of alternating pencils.

The polynomial P in (2.2) is called palindromic if Ak�j D ATj , j D 0, . . . , k.
For example, a quadratic palindromic polynomial has the form �2AT0 C �A1 C A0,
where A1 D AT1 . A linear palindromic polynomial has the form C C �CT .

2.2.1 Properties of Structured Matrices and Pencils

Let P be a matrix pencil, as in (2.2). Then a complex number � is an eigenvalue of
P if det.P.�// D 0. P is called regular if not every � 2 C is an eigenvalue. We will
consider only regular pencils. If � is an eigenvalue, then there are nonzero vectors
v, w 2 R

m, such that P.�/v D 0 and wT P.�/ D 0. The vector v is called a right
eigenvector, and wT is called a left eigenvector, of P associated with the eigenvalue
�. The set of all eigenvalues of P is called the spectrum of P .

2.2.2 Alternating Case

Proposition 1 Let P be an alternating pencil. If v is a right eigenvector of
P associated with eigenvalue �, then vT is a left eigenvector associated with
eigenvalue ��. Thus the eigenvalues of P appear in f�;��g pairs.

Proof Transposing the equation P.�/v D 0 we obtain vT P.��/ D 0. ut
Since P is assumed real, the eigenvalues also appear in f�; �g pairs. If � is purely

imaginary, then f�;��g D f�; �g. If � is neither real nor purely imaginary, then
f�; �;��;��g is a quadruple of distinct eigenvalues.

Let H 2 R
2n�2n be a Hamiltonian matrix. Then the eigenvalues of H are the

same as the eigenvalues of the pencil H � �I . Multiplying this by J we get an
equivalent pencil JH��J , which also has the same eigenvalues. From the definition
of a Hamiltonian matrix we have that JH is symmetric. Since J is skew symmetric,
we see that this is an alternating pencil. This shows that any Hamiltonian matrix can
be transformed to an alternating pencil. Therefore the spectrum of a Hamiltonian
matrix exhibits the same symmetries as the that of an alternating pencil.

Proposition 2 If � is an eigenvalue of the Hamiltonian matrix H 2 R
2n�2n, then

so are ��, �, and ��.

We have shown that every Hamiltonian matrix can be converted to an alternating
pencil M � �N D JH � �J . The converse is false. Consider an alternating pencil
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M � �N with M , N 2 R
m�m. Obviously we will not be able to convert this to

a Hamiltonian eigenvalue problem if m is odd. Notice that in this case the skew
symmetric N must be singular, so there is at least one infinite eigenvalue. Clearly
the alternating pencil concept is more general than the Hamiltonian matrix concept.

Ifm is even andN is nonsingular, we do get a converse. This is because any such
N has a factorization N D RT JR, where R can even be taken upper triangular. R
can be computed by a direct method in O.n3/ flops. We were pleased to prove
this result [4], but we found out later that Bunch [8] had beaten us to the punch.
Using the decompositionN D RT JR, we can transformM ��N to the equivalent
pencil R�TMR�1 � �J , which is also alternating. This can be transformed further
to H � �I , where H D J T R�TMR�1. H is Hamiltonian, since JH D R�TMR�1
is symmetric.

2.2.3 Palindromic Case

Proposition 3 Let P be a palindromic pencil. If v is a right eigenvector of
P associated with eigenvalue �, then vT is a left eigenvector associated with
eigenvalue ��1. Thus the eigenvalues of P occur in f�; ��1g pairs.

Proof If we transpose the equation P.�/v D 0, the coefficients get reversed. If we
then multiply by ��k , we obtain vT P.��1/ D 0. ut

If � is on the unit circle, then f�; �g D f�; ��1g. If � is neither real nor on the

unit circle, f�; �; ��1; ��1g is a quadruple of distinct eigenvalues.
The same eigenvalue symmetry holds for symplectic matrices. Let S 2 R

2n�2n
be symplectic. The defining equation ST JS D J implies that ST D JS�1J�1. Thus
ST is similar to S�1. The �, ��1 eigenvalue symmetry follows immediately.

Proposition 4 If � is an eigenvalue of the symplectic matrix S 2 R
2n�2n, then so

are ��1, �, and �
�1

.

In light of the common spectral symmetry it is reasonable to ask whether a
symplectic matrix can be transformed to a palindromic pencil, and conversely. The
answer is not as straightforward as one might hope, but we will give a partial
solution. Let S be a symplectic matrix for which 1 is not an eigenvalue, and thus
.S � I /�1 exists. If we define C D J.S � I /�1S , then CT D J.S � I /�1, as we
find by straightforward algebra, making use of the defining equation ST JS D J .
The pencil S ��I is equivalent to the pencil CT S � �CT D C ��CT . This last is
not palindromic according to the definition given above, but the trivial substitution
� D �� transforms it to a palindromic pencil C C �CT , Thus we will refer to
C � �CT as palindromic as well. (Sometimes the term antipalindromic is used.)
For more general results see Schröder [24, 25].
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2.2.4 Connecting the Alternating and Palindromic Cases

The Cayley transform � ! .� C 1/=.� � 1/ is an involution that maps the unit
circle to the imaginary axis and back. We can use this and related maps to make a
connection between the alternating and palindromic eigenvalue problems.

Let M � �N be an alternating pencil. Specifically, suppose it is even:M D MT

and N D �NT . Let v be an eigenvector with associated eigenvalue � ¤ 1: Mv D
�Nv. Then .M C N/v D .� C 1/Nv and .M � N/v D .� � 1/Nv. Combining
these equations we obtain

.M CN/v D �C 1

� � 1
.M �N/v: (2.3)

LettingC D MCN , we see that (2.3) has the (anti)palindromic formCv D �CT v.
We can also go in the other direction: .C C CT /v D .�C 1/C T v, .C � CT /v D
.� � 1/C T v, and

.C C CT /v D �C 1

� � 1 .C � CT /v:

This is alternating. In fact it’s our original pencil except for an irrelevant factor 2.
Consider the map � D .� C �/=.� � �/, where � is a positive constant that

we insert for added flexibility. The inverse map is � D �.� C 1/=.� � 1/. Let H
be Hamiltonian, and choose � so that it is not an eigenvalue of H . Straightforward
algebra shows that the matrix

S D .H C �I /.H � �I /�1

is symplectic. Going the other way, if S is a symplectic matrix that does not have 1
as an eigenvalue, then

H D �.S C I /.S � I /�1

is Hamiltonian.
To make this last Cayley transform work, we had to assume that 1 is not in

the spectrum of S . In the pencil scenario we do not have the same restriction.
An eigenvalue 1 in the original pencil corresponds to an eigenvalue 1 in the
transformed pencil. Again the pencil viewpoint is more flexible.

2.3 First Example

In the study of anisotropic elastic materials, especially the study of singularities
at corners and crack tips [11, 12, 23], a quadratic eigenvalue problem emerges.
Lamé equations are written in spherical coordinates with the origin at the point
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of interest, and the radial variable is separated from the angular variables, resulting
in an infinite-dimensional eigenvalue problem. This is then typically approximated
by the finite element method to yield a quadratic eigenvalue problem

�2Ax C �Gx C Kx D 0; (2.4)

where the matrices are real, large, and sparse. Moreover A D AT , G D �GT , and
K D KT . A is a mass matrix and �K is a stiffness matrix, so both are nonsingular
and even positive definite. This is an alternating pencil. In this application we want
to find a few of the eigenvalues that are smallest in magnitude, and these are typically
real.

In [1, 2, 18, 19] we studied methods for solving this and related problems. The
most common approach to solving quadratic eigenvalue problems is to linearize the
problem, that is, to write it as a first-degree eigenvalue problem of double size. In
the case of (2.4), one way to do this is to introduce auxiliary variables y D �Ax and
write (2.4) as a system of two equations

�y C �Gx C Kx; �x D A�1y;

which are of first degree in �. These can be combined into a single matrix equation

�

�
G I

�I 0

� �
x

y

�
�
��K 0

0 A�1
� �

x

y

�
D 0; (2.5)

which is a generalized eigenvalue problem of first degree. A nice feature of this
linearization is that it preserves the structure: Defining

N D
�

G I

�I 0

�
and M D

��K 0

0 A�1
�
;

we see that N D �NT and M D MT , so the pencil �N � M is alternating. In
[19] we showed how to linearize alternating pencils of higher degree in a way that
preserves the alternating structure. Since then a great deal has been written about
linearizations, for example [14, 15]. We will not get into this subject, as it is covered
in Chap. 12.

The matrix N is clearly nonsingular, so we can transform this alternating
eigenvalue problem into a Hamiltonian problem, as we observed in Sect. 2.2. For
this we need a factorization N D ZT JZ, and in this case one is available for free:

�
G I

�I 0

�
D
�
I � 1

2
G

0 I

� �
0 I

�I 0
� �

I 0
1
2
G I

�
: (2.6)
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The alternating pencil M � �N D M � �ZT JZ is equivalent to Z�TMZ�1 � �J ,
which is equivalent to the standard eigenvalue problem for the Hamiltonian matrix

H D �JZ�T MZ�1 D
�
0 �I
I 0

� �
I 1

2
G

0 I

� ��K 0

0 A�1
� �

I 0

� 1
2
G I

�
: (2.7)

Its inverse is also Hamiltonian, and it is no less accessible:

H�1 D ZM�1ZT J D
�
I 0
1
2
G I

� �
.�K/�1 0

0 A

� �
I � 1

2
G

0 I

� �
0 I

�I 0
�
: (2.8)

2.4 Exploiting Hamiltonian Structure

We consider the problem of finding the eigenvalues of smallest magnitude, and
associated eigenvectors, of a Hamiltonian matrix H by Krylov subspace methods.
It is well known [3, 30] that such methods are best at finding eigenvalues on the
periphery of the spectrum, so it makes sense to turn the spectrum inside out by
working with H�1 instead of H . We remark that the inverse of a Hamiltonian
matrix is always Hamiltonian. This and other basic properties are summarized in
the following proposition. The proofs are elementary.

Proposition 5 (Hamiltonian Matrices)

(a) H is Hamiltonian if and only if HJ is symmetric.
(b) The set of Hamiltonian matrices is a vector space over the real numbers.
(c) If H is Hamiltonian, then so is HT .
(d) If H is Hamiltonian and nonsingular, then H�1 is Hamiltonian.

In the case of our example from the previous section, working withH�1 presents
no special difficulties. To execute a Krylov subspace method, one needs to be able
to perform matrix-vector multiplications: x ! H�1x. Looking at (2.8), we see
that we can do this if we have a Cholesky factorization of �K . We compute this
factorization once and use it repeatedly. Thus the limitation of this approach is that
the Cholesky factor of �K must be sparse enough that we have room to store it.

Suppose we have some prior information about the location of the desired
eigenvalues; say we know they are near some target value � 2 R. Then it makes
sense to work with the shifted matrixH ��I and its inverse. Unfortunately the shift
destroys the Hamiltonian structure. Recall that if H has eigenvalues near � , then it
must have matching eigenvalues near �� . Thus it might be better to work with the
matrixK D .H � �I /.H C �I / and its inverse. This matrix is not Hamiltonian, but
it does have a related structure: it is skew-Hamiltonian. For reference we list a few
basic facts, all of which are easily proved. Recall thatK is called skew-Hamiltonian
if JK is skew-symmetric.
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Proposition 6 (skew-Hamiltonian Matrices)

(a) K is skew-Hamiltonian if and only if KJ is skew-symmetric.
(b) K is skew-Hamiltonian if and only if KTJ D JK.
(c) The set of skew-Hamiltonian matrices is a vector space over the real numbers.
(d) If K is skew-Hamiltonian, then so is KT .
(e) If K is skew-Hamiltonian and nonsingular, then K�1 is skew-Hamiltonian.
(f) The identity matrix is skew-Hamiltonian.
(g) If H is Hamiltonian, then H2 is skew-Hamiltonian.
(h) If K is skew-Hamiltonian, then Km is skew-Hamiltonian for all m � 0.

From these properties we see right away that the matrixK D .H ��I /.H C�I / D
H2 � �2I is skew-Hamiltonian, as claimed, and so is its inverse.

Another possiblity is to perform a Cayley transform S D .H C �I /.H � �I /�1
and work with the symplectic operator S . Still other possibilities are to work with
the operator H.H � �I /�1.H C �I /�1 or H�1.H � �I /�1.H C �I /�1, both of
which are easily shown to be Hamiltonian.

So far we have assumed that our target � is real, but complex targets can also be
used. One easily shows that

K D .H � �I /.H � �I /.H C �I /.H C �I /

is skew-Hamiltonian, as is its inverse, and

S D .H C �I /.H C �I /.H � �I /�1.H � �I /�1

is symplectic.
From these considerations we see that we have the option of attacking a

Hamiltonian problem directly or transforming it to a different Hamiltonian problem
or to one that is either skew-Hamiltonian or symplectic. Thus we are in a position
to take advantage of Krylov subspace methods that preserve any of these three
structures. To get an idea how to build such methods, we consider the following
easily verified facts.

Proposition 7 Let V 2 R
2n�2n be symplectic.

(a) If H is Hamiltonian, then so is V �1HV.
(b) If K is skew-Hamiltonian, then so is V �1KV.
(c) If S is symplectic, then so is V �1SV.

Thus all of the structures of interest are preserved under symplectic similarity
transformations. Recall [30] that Krylov subspace methods, such as the Arnoldi and
Lanczos processes, if carried to completion, perform similarity transformations of
the matrix to upper Hessenberg form. For example, if we apply the Arnoldi process
to a matrix A, we get

AV D VB;
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whereB is upper Hessenberg. The vectors produced by the Arnoldi process form the
columns of V . Of course, we don’t normally carry the process to completion; we just
compute a few columns of V . This is a small piece of a similarity transformation:

AVm D VmC1BmC1;m;

where Vm consists of the first m columns of V .
In light of Proposition 7, if we can produce a Krylov subspace method that builds

columns of a symplectic matrix, we will have a method that preserves the structures
of interest. And what is the property of the first columns of a symplectic matrix? A
subspace S of R2n is called isotropic if xT Jy D 0 for all x, y 2 S . The defining
equation ST JS D J shows that the first n columns of a symplectic matrix span an
isotropic subspace (and so do the last n). Thus what is needed is a Krylov subspace
method that produces isotropic subspaces.

Structured Krylov subspace methods for the Hamiltonian and symplectic cases
were developed by Benner and Fassbender [6, 7]. See also [29, 30]. We will not
discuss those methods here; instead we focus on the skew-Hamiltonian case.

The interesting thing about skew-Hamiltonian matrices is that they automatically
produce isotropic subspaces.

Proposition 8 Let K 2 R
2n�2n be skew-Hamiltonian. Then for every v 2 R

2n and
every non-negative integer m, the Krylov subspace

K m.K; v/ D span
˚
v;Kv;K2v; : : : ; Km�1v

�

is isotropic.

Proof For every i and j , .Kiv/T J.Kj v/ D vT .KT /iJKj v D vT JKiCj v D 0

because JKiCj is skew-symmetric. ut
It follows that any Krylov subspace method, when applied to a skew-Hamiltonian

matrix, will automatically preserve the structure. But there is a catch: In floating-
point arithmetic the isotropy will gradually be lost due to roundoff errors. Therefore
one must enforce it. If we consider the Arnoldi process, for example, the j th step
has the form

OvjC1 D Kvj �
jX
iD1

vibij;

where the bij are chosen so that OvjC1 is orthogonal to v1, . . . , vj . (In practice one
might like to do this orthogonalization step twice, but we omit that detail here.) The
modification we made in [18] was simply this:

OvjC1 D Kvj �
jX
iD1

vibij �
jX
iD1

J vi cij;
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where the cij are chosen so that OvjC1 is orthogonal to Jv1, . . . , Jvj . In exact
arithmetic all cij will be zero by Proposition 8, but in floating point arithmetic they
are tiny numbers that provide just the needed correction to keep the spaces isotropic.
This modification, together with implicit restarts, led to the Skew-Hamiltonian
implicitly restarted Arnoldi (SHIRA) method, which we used in [1, 2, 18, 19] to
solve (2.4) and other polynomial eigenvalue problems.

What happens if we fail to enforce isotropy? To answer this we must look into
the structure of skew-Hamiltonian matrices. Recalling that a Hamiltonian matrix
H has eigenvalues in f�;��g pairs. It follows that if H has a simple eigenvalue
�, then the skew-Hamiltonian matrix H2 will have a two-dimensional eigenspace
corresponding to �2, and similarly for .H � �I /.H C �I / and .H � �I /�1.H C
�I /�1. In fact it is true of skew-Hamiltonian matrices in general that they have even-
dimensional eigenspaces [30]. A Krylov subspace should contain only one copy of
a multiple eigenvalue in principle, but roundoff errors can allow a second copy to
creep in. This is what happens if we do not enforce isotropy. If we look for, say, ten
eigenvalues, we don’t get ten. We get only five in duplicate. In contrast, if we do
enforce isotropy, we actually get ten distinct eigenvalues.

A related complication is the computation of eigenvectors. An eigenvector v of
H2 is normally not an eigenvector of H . We have

v D cCvC C c�v�; (2.9)

where vC and v� are eigenvectors of H associated with C� and ��, respectively.
Typically both cC and c� will be nonzero. It follows that if one wants eigenvectors,
one must do some extra work. In [18] we advocated the use of inverse iteration, but
other actions are possible. If v is an eigenvector of H2 associated with eigenvalue
�2, then normally wC D .H C �I/v and w� D .H � �I/v will be eigenvectors
of H associated with C� and ��, respectively. A generalization of this procedure
that produces stable invariant subspaces was presented in [10]. However this fails
when either wC or w� is zero, i.e. cC or c� is zero in (2.9). In general we can expect
this method to do a poor job of reproducing an eigenvector whenever that vector is
poorly represented in the linear combination (2.9). We will revisit this question in
Sect. 2.6.

2.4.1 Rational SHIRA

A variant that deserves mention is the rational SHIRA algorithm of Benner and
Effenberger [5], which adapts the Rational Krylov method of Ruhe [20–22] to
the skew-Hamiltonian case. The SHIRA method as we have presented it assumes
that a target shift � is chosen and then kept fixed throughout the computation. The
rational SHIRA method allows for efficient changes of shift and is therefore useful
in situations where one begins with a crude shift and wishes to refine it in the course
of the computation.
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2.5 Second Example

The linear-quadratic optimal control problem for a descriptor system minimizes a
cost functional

Z 1

0

�
xTQx C 2uT Sx C uTRu

�
dt

subject to the descriptor system

E Px D Ax C Bu;
y D Cx:

Here x.t/, u.t/, and y.t/ are the state, control (input), and measured output,
respectively. In the cost functional, Q D QT and R D RT . If the system arises
from discretization of a system of partial differential equations, the matrices are
large and sparse.

The solution to this problems yields a feedback controller so that the closed-loop
system is stable. We can solve this problem by analyzing the even pencil

M � �N D
2
4 0 A B

AT CTQC CT S

BT ST C R

3
5 � �

2
4 0 E 0

�ET 0 0

0 0 0

3
5 :

Omitting all technicalities, we simply state that the existence of the stabilizing
controller can be checked by finding the eigenvalues near the imaginary axis. To
compute the optimal controller one must find the deflating subspace associated
with all of the eigenvalues in the open left half plane [16]. However, in many
applications a good approximation can be obtained from the subspace associated
with the eigenvalues near the imaginary axis [26].

A big difference between this and our previous example is that here the matrixN
is singular, and therefore the methods of Sect. 2.4 are not applicable. Several other
examples with this property are listed in [17].

2.6 Dealing with SingularN

Let M , N 2 R
m�m with M D MT , N D �NT , as before, and consider the even

pencil M � �N . Mehrmann, Schröder, and Simoncini [17] devised a procedure
that has some of the characteristics of SHIRA [18] but does not rely on N being
nonsingular. Suppose � is a target that is not an eigenvalue, and we want to find the
eigenvalues near � . The equationMv D �Nv can be transformed to .M � �N /v D
.�� �/Nv and finally .M � �N /�1Nv D .�� �/�1v. Thus the eigenvalues of the
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pencil that are close to � get mapped to peripheral eigenvalues of .M � �N /�1N .
Of course, this transformation destroys the structure. If we want to find eigenvalues
near � , and we want to respect the structure, we must also look for the corresponding
eigenvalues near �� . This suggests we use .MC�N /�1N.M��N /�1N , for which

.M C �N /�1N.M � �N /�1Nv D 1

�2 � �2
v:

This is one of the operators we will use; call it K:

K D .M C �N /�1N.M � �N /�1N: (2.10)

If � is either real or purely imaginary,K is a real matrix. If one wants to work with a
more general complex target while staying in real arithmetic, one can use the more
complicated operator

K D .M C �N /�1N.M � �N /�1N.M C �N /�1N.M � �N /�1N (2.11)

instead. For simplicity we will focus mainly on the simpler K defined by (2.10),
but much of the discussion carries over easily to the more complicated K given by
(2.11).

Proposition 9 Let ˛, ˇ 2 C be any two numbers that are not eigenvalues of the
pencilM � �N . Then .M � ˛N/�1N and .M � ˇN/�1N commute.

Proof if ˛ D ˇ there is nothing to prove. If ˛ ¤ ˇ we can use the evident identity

N D 1

˛ � ˇ Œ.M � ˇN/ � .M � ˛N/� : (2.12)

If we replace the sandwichedN in .M �˛N/�1N.M �ˇN/�1N by the equivalent
expression in (2.12), we obtain

.M � ˛N/�1N.M � ˇN/�1N D 1

˛ � ˇ
�
.M � ˛N/�1 � .M � ˇN/�1�N:

If we then repeat this procedure with the reversed operator .M � ˇN/�1N.M �
˛N/�1N , we get the exact same result. ut

Proposition 9 shows that the order of the two factors in the definition of K in
(2.10) is irrelevant, and similarly for the four factors in the K defined in (2.11).

Proposition 10 Let K be defined by either (2.10) or (2.11). Then

(a) KTN D NK.
(b) For all positive integers m, NKm is skew-symmetric.
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Proof These results are fairly obvious. For example, for part (b), consider NK,
whereK is given by (2.11):

NK D N.M C �N /�1N.M � �N /�1N.M C �N /�1N.M � �N /�1N:

The number of skew-symmetric N factors is odd, each M � ˛N factor has a
matchingMC˛N D .M �˛N/T factor, and the order of these factors is irrelevant.
It is therefore clear that .NK/T D �NK. The same argument works for NKm for any
m. A more formal approach would prove (a) first and then deduce (b) from (a). ut

A subspace S of Rm is called N -neutral if xT Ny D 0 for all x, y 2 S . It is
not hard to buildN -neutral spaces; for example, every one-dimensional subspace of
R
m is N -neutral.

Proposition 11 Let K be defined by either (2.10) or (2.11). Then for every v 2 R
m

and every non-negative integer m, the Krylov subspace

K m.K; v/ D span
˚
v;Kv;K2v; : : : ; Km�1v

�

is N -neutral.

Proof For every i and j , .Kiv/TN.Kjv/ D vT .KT /iNKj v D vT NKiCj v D 0

because NK iCj is skew-symmetric. ut
Notice that this proof is identical to that of Proposition 8. In the special caseN D

J , these results reduce to results from Sect. 2.4:N -neutrality becomes isotropy, and
the operatorsK considered here become skew-Hamiltonian.

Proposition 11 shows that any Krylov subspace method applied to K will
produce an N -neutral space in principle. However, it was found [17] that if one
applies, say, the Arnoldi process to K , the N -neutrality is gradually lost due to
roundoff errors. Thus one must enforce N -neutrality explicitly. This leads to the
even Arnoldi process (called even because the pencil M � �N is even), for which
the j th step has the form

OvjC1 D Kvj �
jX
iD1

vibij �
jX
iD1

Nvicij: (2.13)

The bij are chosen so that OvjC1 is orthogonal to v1, . . . , vj (as usual), and the cij

are chosen so that OvjC1 is orthogonal to Nv1, . . . , Nvj . The j th step is completed
by taking bjC1;j D k OvjC1 k

2
and vjC1 D OvjC1=bjC1;j . The cij corrections serve

to guarantee that the space span
˚
v1; : : : ; vjC1

� D K jC1.K; v1/ is N -neutral. By
Proposition 11, all of the cij will be zero in exact arithmetic, but in practice they are
tiny nonzero numbers that serve to enforce the structure.

It is a routine matter to incorporate implicit restarts of either the standard [13]
or Krylov-Schur [27, 28] type, as these will clearly preserve N -neutrality. (In [17]
they use Krylov-Schur.) Doing so, we obtain a method that computes an N -neutral
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space that is invariant under K and is associated with the largest eigenvalues of K .
This is called even-IRA.

The eigenspaces of K all have even dimension. Consider for simplicity the
version of K defined by (2.10). Each eigenvalue � D 1=.�2 � �2/ corresponds
to two eigenvalues ˙� of the pair .M;N /. The eigenspace of K associated with �
will be the sum of the eigenspaces of .M;N / associated with � and ��, and this
will have even dimension.

Consider the generic case, in which all eigenvalues are simple eigenvalues of
.M;N /. If vC and v� are eigenvectors associated with C� and ��, respectively,
the eigenspace of K associated with � D 1=.�2 � �2/ will be the set of all linear
combinations cCvC C c�v�.

An N -neutral invariant subspace V produced by the Arnoldi process on K
cannot possibly contain this entire eigenspace, as the following proposition shows.

Proposition 12 Let � ¤ 0 be a simple eigenvalue of the pair .M;N /, and let
vC and v� be right eigenvectors associated with C� and ��, respectively. Then
vT�NvC ¤ 0. Thus vC and v� cannot belong to the same N -neutral subspace.

Proof Transposing the equation .M C �N/v� D 0, we find that vT� is a left
eigenvector associated with the eigenvalue �. Since vC and vT� are right and
left eigenvectors associated with the same simple eigenvalue, they must satisfy
vT�NvC ¤ 0 (true for any pencil). ut

Thus the N -neutral invariant subspace V can contain at most a one-dimensional
cross section of each two-dimensional eigenspace of K . This implies that if
we compute, say, a ten-dimensional invariant subspace, we will get ten distinct
eigenvalues, corresponding to 20 eigenvalues of .M;N /. For this it is important
that we enforce explicitly the N -neutrality. If we do not, we get five eigenvalues in
duplicate instead of ten distinct eigenvalues.

2.6.1 Implementation

To begin with, we should mention that the enforcement of N -neutrality is less
straightforward in this algorithm than it is in SHIRA because Nv1, . . . , Nvj are
generally not orthonormal. We direct the reader to [17] for two methods of N -
neutrality enforcement. Apart from that, the application of Arnoldi and restarts in
this context is routine.

2.6.1.1 Applying the Operator

In order to apply the Arnoldi process to K , we need to be able to effect matrix-
vector multiplications x ! Kx, and for this we need LU or similar factorizations of
M � �N and M C �N . This is the main limitation on the utility of this approach.
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Notice, however, that if M � �N D LU, then M C �N D .M � �N /T D UTLT .
For complex � we haveM � �N D LU andM C �N D U �L�. Thus a single LU
decomposition is all that is ever needed. Notice also that if � is purely imaginary,
then M � �N is Hermitian, so a symmetric decomposition M � �N D LDL� can
be used.

For a more specific illustration, let us reconsider the quadratic example from
Sect. 2.3. Starting from the quadratic eigenvalue problem .�2AC �G CK/x D 0,
we began by linearizing the problem. Here we find it convenient to use a different
linearization. Letting y D �x, we get two first-order equations

�Ay C �Gx C Kx D 0; �Ay C �Ax D 0

which we write as the single matrix equation

��K
�A

� �
x

y

�
� �

��G A

�A 0

� �
x

y

�
D 0: (2.14)

Letting

M D
��K

�A
�

and N D
��G A

�A 0

�
;

we have an alternating pencilM � �N . For any � we have

M � �N D
��K � �G ��A

�A �A
�

D �
�
I �I

0 I

� �
Q.�/

A

� �
I 0

��I I
�
;

where

Q.�/ D �2AC �G CK:

Thus

.M � �N /�1 D �
�
I 0

�I I

� �
Q.�/�1

A�1
� �

I ��I
0 I

�

D �
�
I 0

�I I

� �
Q.�/�1

I

� �
I ��A
0 I

� �
I

A�1
�

and

.M � �N /�1N D �
�
I 0

�I I

� �
Q.�/�1

I

� �
I ��A
0 I

� �
G A

�I 0

�
:
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This is a bit simpler than the operator we derived in [18] for this application. We can
apply this operator provided we have an LU or similar decomposition of the matrix
Q.�/ D �2AC �GCK . IfQ.�/ D LU, thenQ.��/ D Q.�/T D UTLT ,Q.�/ D
LU , and Q.��/ D U �L�. If � is purely imaginary, then Q.�/ is Hermitian, and
we can use a symmetric decompositionQ.�/ D LDL�.

2.6.1.2 Eigenvector Computation

Suppose we are working with an operator K of the form (2.10), and we have
computed the invariant subspace V of dimension j corresponding to the j

eigenvalues of K of largest modulus. We have

KV D VB;

where V has j columns, which form an orthonormal basis for V . We say that V
represents V .

Each eigenvalue � of B corresponds to a pair ˙p�2 C 1=� of eigenvalues of
.M;N /. The eigenvector computation requires additional effort. Let

W˙ D .M ˙ �N /�1NV: (2.15)

Then

VB D KV D .M � �N /�1NW˙: (2.16)

Clearing the inverses from (2.15) and (2.16) and combining the resulting equations
into a single equation, we obtain

M
�
V W˙

� � B

I

�
D N

�
V W˙

� � I ˙�B
��I I

�
: (2.17)

The eigenvalues of B are the largest eigenvalues of K , and these are normally
nonzero. Thus B is normally nonsingular. Assuming this, (2.17) implies that�
V WC

�
and

�
V W�

�
represent deflating subspaces for .M;N /. In fact they

represent the same space, which will normally have dimension 2j and contain
eigenvectors corresponding to j plus/minus pairs of eigenvalues near ˙� . In
principle we can (normally) extract all of this information from either

�
V WC

�
or
�
V W�

�
. Each eigenvector

�
x

y

�
of the reduced pencil

�
I ˙�B

��I I

�
� �

�
B

I

�
(2.18)
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yields an eigenvector z D VByCW˙x of the original pencil. In [17] it is argued that
for reasons of numerical accuracy the eigenvectors associated with eigenvalues near
� should be extracted from

�
V WC

�
, and those near �� should be extracted from�

V W�
�
. While this is undoubtedly a good practice, one must realize that it does

not guarantee success. The success of this method depends upon W˙ containing
sufficient information beyond what is contained in V . Technically

�
V W˙

�
has to

have full rank, and in practice the rank should be “robustly” full. If not, accurate
results are not guaranteed, regardless of which of

�
V W˙

�
is used. Some of the

vectors z D VByCW˙x can be zero or very small in magnitude. A zero z is useless,
and a tiny z will be inaccurate due to cancellation.

Such outcomes are not merely a possibility; they are inevitable, as one sees by
looking at the simplest case, j D 1. The matrix V has a single column, v, which is
an eigenvector of K associated with some eigenvalue � D 1=.�2 � �2/. Thus v has
the form v D cCvC C c�v�, where v˙ are eigenvectors of .M;N / associated with
eigenvalues ˙�. Normally both cC and c� will be nonzero, and neither one will
be particularly small. This is good. But consider what happens when, say, c� D 0.
Then v is proportional to vC, so it is an eigenvector of .M;N / associated with
the eigenvalue �. W˙ has a single column w˙ D .M ˙ �N /�1Nv D 1=.� ˙
�/v. The vectors v, wC, and w� are all proportional to vC. The space represented
by
�
v wC

�
and

�
v w�

�
has dimension 1, and there is no possibility of extracting

any information about v� from it. If c� is not zero but merely small, the matrices�
v w˙

�
will have full rank, but just barely. v� will be computed inaccurately, as

cancellation will take place in the attempt to uncover the tiny vector c�v�.
It is important to realize that the relationship of cC to c� is set by the starting

vector for the Krylov process and remains invariant throughout, including restarts.
If v� is poorly represented in the spectral decomposition of the initial vector, there
is no way it can be recovered accurately. One obvious remedy is to apply inverse
iteration to compute those eigenvectors that have not been resolved adequately.

The dangers described here can be expected to occur very rarely. Normally a
starting vector (chosen at random, for example) will have a significant component
in the direction of every eigenvector, and the vectors of interest will be extracted
without difficulty. Nevertheless, one should be aware that failures are possible.

A second shortcoming of the eigenvector extraction method described here is that
the structure is not fully exploited. Once we get to the level of (2.18), the structure
is gone, and there is no way (as far as this author can see) to fix it. But perhaps a
clever solution is just around the corner.

2.7 Conclusions

We considered the problem of finding a few eigenvalues of a large, sparse matrix
having Hamiltonian or related structure. A Hamiltonian problem can be treated
directly or transformed to a skew-Hamiltonian or symplectic problem. Here we
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focused on the skew-Hamiltonian case. The SHIRA method [18, 19] yields eigen-
values efficiently. Extra work is required to obtain eigenvectors.

Related structures are even (alternating) and palindromic pencils, which are
related to Hamiltonian and symplectic matrices, respectively, but are more general.
A palindromic pencil can be transformed to an even pencil (and conversely) by
a Cayley transform. An even pencil M � �N can be transformed to a Hamiltonian
matrix ifN is nonsingular, and SHIRA can be applied. Regardless of whether or not
N is singular, the SHIRA-like method even-IRA [17] can be applied directly to the
even pencil to obtain the eigenvalues. Eigenvectors can be computed inexpensively
by a method that usually works well but can occasionally fail. Further work may
yield a more satisfactory method of computing eigenvectors.
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Chapter 3
Palindromic Eigenvalue Problems
in Applications

Wen-Wei Lin and Christian Schröder

Abstract We list a number of practical applications of linear and quadratic
palindromic eigenvalue problems. This chapter focuses on two applications which
are discussed in detail. These are the vibration analysis of rail tracks and the
regularization of the solvent equation. Special purpose algorithms are introduced
and numerical examples are presented.

3.1 Introduction

In this chapter we discuss applications of palindromic eigenvalue problems (PEPs),
a special structure of eigenvalue problems that is also introduced in Chaps. 2 and 12.
Let us recall that a polynomial eigenvalue problem P.�/x D Pk

iD0 �iAix D 0

with real or complex n � n matrices Ai and with the property Ai D A>
k�iC1 for

all i D 0 W k is called palindromic (or, more precisely, >-palindromic, but we will
omit the “>” for simplicity). Most prevalent in applications are the linear and the
quadratic case, which are of the form

Ax D .��/A>x; and .�2A> C �B CA/x D 0; with B D B>: (3.1)

It is easy to see (e.g., by transposing (3.1) and dividing by �k) that the spectrum of
a palindromic eigenvalue problem has a reciprocal pairing, that is the eigenvalues
come in pairs .�; 1=�/. Such a pair reduces to a singleton whenever � D 1=�,
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that is for � D ˙1. Note that in case of real matrices Ai the reciprocal pairing is
in addition to the complex conjugate pairing. So, in the real case the eigenvalues
come in quadruples .�; �; 1=�; 1=�/, which reduces to a reciprocal pair for real
nonunimodular eigenvalues (that is � 2 R, � ¤ ˙1), to a complex conjugate pair
for unimodular nonreal eigenvalues (that is j�j D 1, � ¤ ˙1) and to a singleton for
� D ˙1 . In many applications the absence or presence of unimodular eigenvalues
is an important property.

With the basics out of the way let us now turn to applications. A rich source
of palindromic eigenvalue problems is the area of numerical systems and control
theory, an area that belongs to the core interests of Volker Mehrmann. A list of
PEPs in this area can be found in [29] and the references therein. The linear-
quadratic optimal control problem was already mentioned in Chap. 2: this control
problem gives rise to a structured linear eigenvalue problem which is equivalent to
a palindromic one via the Cayley transformation. Another application is the optimal
H1 control problem that, when solved with the so-called � -iteration method, gives
rise to two linear even eigenvalue problems in every iteration of that method. In both
of these cases the invariant subspace corresponding to the stable eigenvalues inside
the unit circle has to be computed. A third problem from systems theory is the test
for passivity of a linear dynamical system that may be implemented by finding out
whether a certain palindromic pencil has unimodular eigenvalues or not [7].

Other applications of palindromic eigenvalue problems that we only mention in
passing include the simulation of surface acoustic wave (SAW) filters [36, 37], and
the computation of the Crawford number of a Hermitian pencil [16] (where the latter
is actually a �-palindromic eigenvalue problem, obtained by replacing A>

i by A�
i in

the definition).
In the remainder of this chapter we will focus on two applications in more

detail. First is the simulation of rail track vibrations in Sect. 3.2. This is the
application that started the whole field of palindromic eigenvalue problems. We
show the derivation of the eigenvalue problem, briefly review algorithms for general
polynomial palindromic eigenvalue problems and then discuss a special purpose
algorithm exploiting the sparse block structure of the matrices arising in the rail
problem.

Second we discuss the regularization of the solvent equation which itself
has applications in parameter estimation, see Sect. 3.3. This problem is not a
palindromic eigenvalue problem in itself, but the algorithm we describe for its
solution requires the repeated solution of many PEPs.

We will use the following notation. < and = denote real and imaginary part,
respectively. We use In (or just I ) for the identity matrix of order n. We denote
by A, A>, and A� the conjugate, the transpose, and the conjugate transpose of a
matrixA, respectively. The symbol �.A/ denotes the spectral radius of a matrix. For
a vector x we denote by kxk its standard Euclidean norm. For a matrix A, kAk2 WD
.�.A�A//1=2 denotes the spectral norm, whereas kAkF WD .

P
i;j jaijj2/1=2 denotes
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the Frobenius norm. We define for eachm; n 2 N the operator vec.�/ W Cm;n ! C
mn

that stacks the columns of the matrix in its argument, i.e., for A D Œa1; : : : ; an�

vec.M/ WD Œa>
1 ; a

>
2 ; : : : ; a

>
n �

>:

It is well-known that vec.AXB/ D .B> ˝ A/vec.X/ for each triple of matrices
A;X;B of compatible size, where ˝ denotes the Kronecker product, e.g., [18].

3.2 Rail Track Vibration

With new Inter-City Express trains crossing Europe at speeds up to 300 kph, the
study of the resonance phenomena of the track under high frequent excitation forces
becomes an important issue. Research in this area does not only contribute to the
safety of the operations of high-speed trains, but also to the design of new train
bridges. As shown by Wu and Yang [35], and by Markine, de Man, Jovanovic
and Esveld [27], an accurate numerical estimation to the resonance frequencies of
the rail plays an important role in the dynamic response of the vehicle-rail-bridge
interaction system under different train speeds as well as the design of an optimal
embedded rail structures. However, in 2004 the classical finite element packages
failed to deliver even a single correct digit for the resonance frequencies.

As reported by Ipsen [20], this problem was posed by the Berlin-based company
SFE GmbH to researchers at TU Berlin. So, Hilliges, Mehl and Mehrmann [17]
first studied the resonances of railroad tracks excited by high-speed trains in a joint
project with this company. Apart from the provided theoretical background for the
research of the vibration of rail tracks the outcome was two-fold: (a) the traditionally
used method to resolve algebraic constraints was found to be ill-conditioned and was
replaced by a well-conditioned alternative, and (b) the arising quadratic eigenvalue
problem was observed to have the reciprocal eigenvalue pairing. A search for a
structure of the matrix coefficients that corresponds to the eigenvalue pairing finally
resulted in the palindromic form (3.1). Then, searching for a structure preserving
numerical algorithm for palindromic quadratic eigenvalue problems (PQEPs), D.S.
Mackey, N. Mackey, Mehl and Mehrmann [26] proposed a structure preserving
linearization with good condition numbers. It linearizes the PQEP (1) to a linear
PEP of the form

	
�

�
A> A>
B � A A>

�
C
�
A B �A>
A A

�
�
x

�x

�
D 0: (3.2)
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In the same paper [26] a first structure-preserving numerical algorithm for the
linear PEP is presented: in a Jacobi-like manner the matrix A is iteratively reduced
to anti-triangular form by unitary congruence transformations. The eigenvalues
are then given as ratios of the anti-diagonal elements. Later, more algorithms
for linear PEPs (QR-like, URV-like, or based on the “ignore structure at first,
then regain it” paradigm) were developed by a student of Mehrmann [31] and
Kressner, Watkins, Schröder [21]. These algorithms typically perform well for
small and dense linear palindromic EVPs. An algorithm for large sparse linear
palindromic EVPs is discussed in [29]. From the fast train model, D.S. Mackey,
N. Mackey, Mehl and Mehrmann [24, 25] first derived the palindromic polynomial
eigenvalue problems (PPEP) and systematically studied the relationship between
PQEP/PPEP and a special class of “good linearizations for good vibrations” (loosely
from the casual subtitle of [24]). Based on these theoretical developments of the
PQEP/PPEP [17, 24–26], Chu, Hwang, Lin and Wu [8], as well as, Guo and
Lin [15] further proposed structure-preserving doubling algorithms (SDAs) from
two different approaches for solving the PQEP which are described in the following.

In conclusion, a great deal of progress has been achieved since the first works in
2004. Ironically, the mentioned well-conditioned resolution of algebraic constraint
in that first paper [17] alone (i.e., without preserving the palindromic structure) was
enough to solve the eigenvalue problem to an accuracy sufficient in industry. Still,
the story of the palindromic eigenvalue problem is a good example of an academic
industrial cooperation where (opposite to the usual view of knowledge transfer from
academia into industry) a question from industry sparked a whole new, still growing
and flourishing research topic in academia. Moreover, the good experience led to
further joint projects with the same company [28].

3.2.1 Modeling

To model the rail track vibration problem, we consider the rail as a 3D isotropic elas-
tic solid with the following assumptions: (i) the rail sections between consecutive
sleeper bays are identical; (ii) the distance between consecutive wheels is the same;
and (iii) the wheel loads are equal. Based on the virtual work principle, we model
the rail by a 3D finite element discretization with linear isoparametric tetrahedron
elements (see Fig. 3.1) which produces an infinite-dimensional ODE system for the
fast train:

QM Ru C QD Pu C QKu D QF ; (3.3)
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Fig. 3.1 Finite element rail models. Left: consisting of three coupled shells, used in industry.
Right: tetrahedral, used in [8]

where QM; QK and QD are block tridiagonal matrices, representing mass, stiffness
and damping matrices of (3.3), respectively. The external excitation force QF is
assumed to be periodic with frequency ! > 0. In practice, we consider QD is a
linear combination of QM and QK of the form QD D c1 QM C c2 QK with c1; c2 > 0.
Furthermore, we assume that the displacements of two boundary cross sections of
the modeled rail have a ratio �. Under these assumptions, the vibration analysis of
rail tracks induces two real symmetric matrices M andK given by

M D

2
66666664

M0 M
>
1 0 � � � M1

M1

: : :
: : :

:::

0
: : :

: : :
: : : 0

:::
: : :

: : : M>
1

M>
1 � � � 0 M1 M0

3
77777775
m�m

; K D

2
66666664

K0 K
>
1 0 � � � K1

K1

: : :
: : :

:::

0
: : :

: : :
: : : 0

:::
: : :

: : : K>
1

K>
1 � � � 0 K1 K0

3
77777775
m�m

;

(3.4)

where each block in M and K is of the size q � q. Let Mt be the block tridiagonal
part ofM , andMc be them�m matrix withM1 on the upper-right corner and zero
blocks else where. Then we can write M D Mt CMc CM>

c . Correspondingly, we
have K D Kt C Kc C K>

c and D D Dt C Dc C D>
c , where Kt;Kc;Dt ;Dc are

defined analogously.
Letting u D xe!t in the spectral model (3.3), where  denotes the imaginary unit,

leads to a PQEP of the form [8, 15]:

P.�/x D .�2A> C �B C A/x D 0; (3.5)
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Fig. 3.2 Typical distribution
of eigenvalues
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where

B D Kt C !Dt � !2Mt D

2
664
� � O
� � : : :
: : :

: : : �
O � �

3
775 2 C

n�n:

A D Kc C !Dc � !2Mc D

2
64
O � � � �
:::

:::

O � � � O

3
75 2 C

n�n

with n D mq.
The PQEP problem in (3.5) is typically badly scaled and some numerical

difficulties need to be addressed: (i) the problem size n can be 30,000–100,000
(typically, m is 50–100, and q is 700–1,000); (ii) it is needed to compute all finite,
nonzero eigenvalues and associated eigenvectors for all frequencies ! between 100
and 5,000 Hz; (iii) many of eigenvalues are zero and infinity; (iv) the range of
eigenvalues j�j is typically in Œ10�20; 1020� (see Fig. 3.2).

To solve the PQEP in (3.5), one may use an initial deflating procedure for zero
and infinite eigenvalues to obtain a deflated q � q dense PQEP [17]

Pd.�/xd 	 .�2A>
d C �Bd CAd /xd D 0: (3.6)

On the other hand, one can solve the original block-banded PQEP (3.5) directly.
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3.2.2 SDA for General PQEPs

To solve (3.6) we rewrite Pd .�/ in (3.6) as

Pd .�/ D �2A>
d C �Bd CAd D .�A>

d CXd/X
�1
d .�Xd C Ad/ (3.7)

assuming that Xd is non-singular. It follows that Pd .�/ can be factorized as (3.7)
for some non-singular Xd if and only if Xd satisfies the nonlinear matrix equation
(NME)

Xd C A>
d X

�1
d Ad D Bd : (3.8)

As shown in [25], there are many solutions to the NME (3.8). Each of them enable
to facilitate the factorization of Pd .�/. Assume that there are no eigenvalues on the
unit circle. Then, by (3.7) we can partition the spectrum into �s ˚ ��1

s with �s

containing the stable eigenvalues (inside the unit circle). We call a solution Xd;s
of (3.8) a stabilizing solution if the spectrum of X�1

d;sAd is the same as that of �s .
The structure-preserving algorithm (SDA) in [15] can then be applied to solve the
NME (3.8) and subsequently the PQEP (3.6).

Algorithm 1 (SDA_CHLW)
Let A0 D Ad ; B0 D Bd ; P0 	 0.
For k D 0; 1; : : :, compute

AkC1 D Ak.Bk � Pk/
�1Ak;

BkC1 D Bk � A>
k .Bk � Pk/

�1Ak;

PkC1 D Pk C Ak.Bk � Pk/
�1A>

k ;

if no break down occurs.

For the convergence of Algorithm 1, we have the following theorem.

Theorem 1 ([8]) Let Xd;s and OXd;s be the stabilizing solutions of NME (3.8) and
the dual NME OXd C Ad OX�1

d A>
d D Bd . Then the sequences fAkg ; fBkg ; fPkg

generated by Algorithm 1 satisfy

(i) lim sup
k!1

2k
pkBk �Xd;sk � �.X�1

d;sAd /
2,

(ii) lim sup
k!1

2k
pkAkk � �.X�1

d;sAd /;

(iii) lim sup
k!1

2k

r���Bk � Pk � OXd;s
��� � �.X�1

d;sAd /
2:

provided that all the required inverses of Bk � Pk exist.
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3.2.3 SDA for Block-Banded PQEPs

We now apply the solvent approach directly to the original block-banded
PQEP (3.5). To this end, as in (3.7), we first factorize the PQEP (3.5) into

P.�/ D �2A> C �B C A D .�A> CX/X�1.�X C A/ (3.9)

and then solve the nonlinear matrix equation (NME)

X C A>X�1A D B: (3.10)

There are two advantages of the solvent approach in (3.9) over the deflation
approach in (3.6) [2, 26]. First, the deflation procedure is used for the sake of
efficiency, which involves the inverses of two potentially ill-conditioned matrices.
Second, in the deflation approach, the eigenvalues of the smaller PQEP range in
modulus from " to "�1, where " is close to 0, while in the solvent approach the
eigenvalues of �X CA range in modulus from " to 1.

The success of the solvent approach depends on the existence of a stabilizing
solution of (3.10) and an efficient method for its computation.

From the classic Poincaré-Bendixson Theorem we obtain the following result.

Theorem 2 ([15]) Let Kt;Kc;Mt ;Mc be given as in (3.4), and set Dt D c1Mt C
c2Kt ,Dc D c1Mc C c2Kc with c1; c2 > 0. Then the PQEP (3.5) has no eigenvalues
on the unit circle.

Based on a deep result on linear operators [10] one can prove the following
existence theorem.

Theorem 3 ([15]) Under the assumptions in Theorem 2, the NME (3.10) has a
unique stabilizing solution, and the solution is complex symmetric. Moreover, the
dual equation of (3.10)

OX CA OX�1A> D B (3.11)

also has a unique stabilizing solution and the solution is complex symmetric.

The SDA as in Algorithm 1 with A0 D A; B0 D B; P0 D 0 can then be applied
to solve the NME (3.10) and the dual NME (3.11). In order to distinguish it from
Algorithm 1, we call this procedure as Algorithm 2.

Algorithm 2 (SDA)
Let A0 D A; B0 D B; P0 	 0.
For k D 0; 1; : : :, compute AkC1, BkC1 and PkC1 as in Algorithm 1.

In contrast to Theorem 1, the following theorem shows that the Algorithm 2
is well-defined and no break down occurs (i.e., Bk � Pk is always invertible).
Moreover,Bk andBk�Pk converge quadratically to the unique stabilizing solutions
of NME as well as the dual NME, respectively.
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Theorem 4 ([15]) Let Xs and OXs be the stabilizing solutions of NME (3.10) and
the dual NME (3.11), respectively. Then

(i) The sequences fAkg ; fBkg ; fPkg generated by Algorithm 2 are well-defined.
(ii) lim sup

k!1
2k
pkBk �Xsk � �.X�1

s A/2,

(iii) lim sup
k!1

2k
pkAkk � �.X�1

s A/;

(iv) lim sup
k!1

2k

r���Bk � Pk � OXs
��� � �.X�1

s A/2:

where k � k is any matrix norm.

At the first sight, Algorithm 2 (the solvent approach applied to the original
PQEP (3.5)) would be very expensive. However, the complexity of Algorithm 2
can be reduced drastically by using the special structure of the matrix A as in (3.5).
Let Bk D B � Rk . Then by induction it is easily seen that the matrices in the
sequences fAkg ; fRkg ; fPkg have the special forms

Ak D
2
4 Ek

0

0

3
5 ; Rk D

2
66664

0
: : :

0

Fk

3
77775 ; Pk D

2
66664

Gk

0
: : :

0

3
77775 (3.12)

where the q � q matrices Ek; Fk and Gk can be determined by the following
simplified algorithm in which

B D

2
6664
H0 H

>
1

H1

: : :
: : :

: : :
: : : H>

1

H1 H0

3
7775
m�m

(3.13)

is given in (3.5) with H0 D K0 C !M0, H1 D K1 C !D1 � !2M1.

Algorithm 3 (SDA_GL; a sparse version of Algorithm 2)
Let E0 D H1; F0 D 0; G0 D 0. For k D 0; 1; : : :, compute

2
6664
Sk;1 Tk;1
Sk;2 Tk;2
:::

:::

Sk;m Tk;m

3
7775 D

0
BBBBB@
B �

2
666664

Gk
0

: : :

0

Fk

3
777775

1
CCCCCA

�12
66664

Ek 0

0
:::

::: 0

0 E>
k

3
77775 ; (3.14)

where all matrix blocks on the left side of (3.14) are q � q.
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Then compute

EkC1 D EkSk;m; FkC1 D Fk C E>
k Sk;1; GkC1 D Gk C EkTk;m: (3.15)

Note that the linear systems in (3.14) can be solved by the Sherman–Morrison–
Woodbury formula. The details can be found in [15].

After the solventXs is computed, we can compute all eigenpairs. Let B D UHR

be the QR-factorization in a sparse way. Multiplying U to A and Xs from the left,
respectively, we have

UA D
�
0n�q QH>

1

0 ˚1

�
; UXs D

�
X1 X2
0 ˚2

�
; (3.16)

where X1 D R.1 W n � q; 1 W n � q/ and X2.1 W n � 3q; 1 W q/ D 0. In view of the
factorization of P.�/ D .�A> CXs/X

�1
s .�Xs CA/, the nonzero stable eigenpairs

.�s; zs/ of P.�/ are those of �Xs C A and can be computed by the generalized
eigenvalue problem

˚1zs;2 D ��s˚2zs;2; (3.17)

and set

zs;1 D �X�1
1 .X2zs;2 C ��1

s
QH>
1 zs;2/; zs D

�
zs;1
zs;2

�
; (3.18)

for s D 1; � � � ; q.
We now compute all left eigenvectors of �˚2 C ˚1 by

y>
s ˚1 D ��sy>

s ˚2; (3.19)

for s D 1; � � � ; q. The finite unstable eigenpairs .�u; zu/ of P.�/ satisfy

P.�u/zu 	 P.1=�s/zu D 1

�2s

�
A> C �sXs

�
X�1
s .Xs C �sA/ zu D 0: (3.20)

From (3.16) and (3.19), it follows that

.A> C�sXs/U>
�
0

ys

�
D
	�

0 0
QH1 ˚

>
1

�
C
�
�sX

>
1 0

�sX
>
2 �s˚

>
2

�
�
0

ys

�
D 0: (3.21)

From (3.20) the eigenvector zu corresponding to �u D ��1
s can be found by solving

the linear system

.Xs C �sA/ zu D Xs

	
U>

�
0

ys

�

D
�

0

˚>
2 ys

�
: (3.22)
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Premultiplying (3.22) by U , the finite unstable eigenpairs .�u; zu/ of P.�/ can be
computed by

�
�u;1

�u;2

�
D U

�
0

˚>
2 ys

�
; zu;2 D .˚2 C �s˚1/

�1 �u;2; (3.23)

zu;1 D X�1
1

�
�u;1 � �

X2 C �s QH>
1

�
zu;2
�
; zu D

�
zu;1

zu;2

�
; (3.24)

for u D 1; � � � ; q. The total computational cost for eigenpairs of P.�/ is 154
3

mq2

flops which is the same as the initial deflation procedure.
We quote some numerical results from [15] with .q;m/ D .705; 51/. The

matricesM andK are given by (3.4) and we take D D 0:8M C 0:2K . To measure
the accuracy of an approximate eigenpair .�; z/ forP.�/we use the relative residual

RRes D k�2A>z C �Bz C Azk2
.j�j2kAkF C j�jkBkF C kAkF /kzk2 : (3.25)

In Table 3.1 we give kFkC1 � Fkk2=kFkk2 for .q;m/ D .705; 51/, and for ! D
100, 1;000, 3;000, 5;000, respectively, computed by Algorithm 3. The convergence
behavior of Fk is roughly the same as indicated by Theorem 4.

To demonstrate the accuracy of Algorithm 3, in Fig. 3.3, we plot the relative
residuals (3.25) of approximate eigenpairs computed by Algorithm 3 (SDA_GL)
and those of the other existing methods SA_HLQ [8] as well as Algorithm 1
(SDA_CHLW) [19] for ! D 1;000 and .q;m/ D .705; 51/.

In Fig. 3.3, we see that Algorithm 3 (SDA_GL) has significantly better accu-
racy for stable eigenpairs. This is because that SA_HLQ [8] and Algorithm 1
(SDA_CHLW) [19] are structure-preserving methods only applied for the deflated
PQEP (3.7). The deflation procedure possibly involves the inverses of two poten-

Table 3.1
kFkC1 � Fkk2=kFkk2 for
different ! values with
.q;m/ D .705; 51/

! D 100 ! D 1;000 ! D 3;000 ! D 5;000

k � D 0:9593 � D 0:8745 � D 0:7925 � D 0:7406

1 1:1e � 01 1:0e � 01 7:0e � 02 5:7e � 02

2 2:8e � 02 1:2e � 02 1:0e � 02 8:8e � 03

3 4:7e � 03 3:6e � 03 1:5e � 03 7:8e � 04

4 2:1e � 03 4:2e � 04 3:8e � 05 6:4e � 06

5 5:7e � 04 5:8e � 06 2:2e � 08 4:3e � 10

6 4:0e � 05 1:1e � 09 7:7e � 15 2:9e � 19

7 1:9e � 07 3:5e � 17 0

8 4:6e � 12 0

9 0
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Fig. 3.3 Relative residuals of eigenpairs with .q;m/ D .705; 51/

tially ill-conditioned matrices so that SA_HLQ [8] and SDA_CHLW may lose the
accuracy of eigenpairs when we transform the approximate deflated eigenpairs to
the ones of the original PQEP (3.5).

We efficiently and accurately solve a PQEP arising from the finite element
model for fast trains by using the SDA_GL (Algorithm 3) in the solvent approach.
Theoretical issues involved in the solvent approach are settled satisfactorily. The
SDA_GL has quadratic convergence and exploits the sparsity of the PQEP.

3.3 Regularization of the Solvent Equation

Here we consider the nonlinear matrix equation

X C A>X�1A D B; (3.26)

where A;B 2 R
n;n with B > 0 (i.e., B is Hermitian and positive definite). Note

that this is the solvent equation we already saw in (3.8). Here, we are interested in
making sure that there is a solution X 2 R

n;n, X > 0. It is known (e.g., [9]) that
such a solution exists if and only if the matrix Laurent polynomial

Q.�/ D �A> C B C ��1A
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is regular (i.e., the matrix Q.�/ is non-singular for at least one value of � 2 C) and
Q.�/ � 0 (i.e., Q.�/ is Hermitian and positive semi-definite) for each complex
value � on the unit circle. Moreover, a stabilizing solution X (i.e., one with
�.X�1A/ < 1; as it is needed in applications) exists if and only if Q.�/ > 0 for
each unimodular �. Assuming positive definiteness of Q.�/ for at least one such �,
the last condition is equivalent to stating that Q has no generalized eigenvalues on
the unit circle.

In practice, often the coefficients A and B are affected by errors, e.g., because
they come out of data measurements, or their determination involves some form of
linearization, truncation, or other such simplifications. Then it may well be the case
that the original intended matrix equation admits a solution, whereas the perturbed
one – which is available in practice – does not.

In this section we present a method to compute perturbations QA D A C E ,
QB D B C F , with kEk and kF k small, such that Eq. (3.26) (with A;B replaced

by QA; QB) is solvable. This is achieved by removing all generalized eigenvalues of
QQ.�/ D � QA> C QB C ��1 QA from the unit circle. The presented method is described

in [6] (with an application in parameter estimation, see below) and is based upon
similar methods in [3, 7, 12, 32–34] (used there to enforce passivity, dissipativity,
or negative imaginariness of an LTI control system). Other related methods that aim
to move certain eigenvalues to or from certain regions by perturbing the matrix
coefficients in an eigenvalue problem include [13, 14] (where pseudo-spectral
methods are used) and [1, 5] by Mehrmann et. al.

We note that �Q is a palindromic matrix polynomial, and thatQ.��1/ D Q.�/>.
Thus the eigenvalues of Q come in reciprocal pairs. As a consequence unimodular
eigenvalues cannot just leave the unit circle under small perturbations of A and B .
For this to happen two of them have to move together, merge, and then split off into
the complex plane. Suppose that Q has ` unimodular eigenvalues �j D e{!j with
normalized eigenvectors vj , kvj k D 1, j D 1; 2; : : : ; `.

The method to computeE and F is iterative. In a single iteration the unimodular
eigenvalues shall be moved to e{ Q!j , j D 1; 2; : : : ; ` on the unit circle. We assume
that “the Q!j are closer together than the !j ” and that j Q!j � !j j is small for all j .
More on how to chose Q!j will be discussed later.

In order to relate the change of the unimodular eigenvalues to small perturbations
of A and B , we use the following first-order perturbation result.

Theorem 5 ([6]) LetA;B 2 R
n;n with B D B> and letQ.�/ D �A> CBC��1A

have a simple unimodular generalized eigenvalue �j D e{!j , with eigenvector vj .
Let �j WD �2=.�j v�

j A
>vj /. Furthermore, let QQ.�/ WD �.A C E/> C B C F C

��1.A C E/ be a sufficiently small perturbation of Q.�/, with F D F>. Then
�j ¤ 0 and QQ has a generalized eigenvalue Q�j D e{ Q!j such that

�j . Q!j � !j / D �<.2e{!j v�
j E

>vj C v�
j F vj /C O̊ .E; F /: (3.27)

for some function O̊ .E; F / with O̊ .E; F / D o.kE;F k/.
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Usually such perturbation results are used to find out where eigenvalues move when
the matrices are perturbed. We will use it the other way round: we know where we
want the eigenvalues to move to and use the result to find linear constraints to the
perturbation matrices.

Moreover, we wish to allow only perturbations in the special form

.E; F / D
mX
iD1
.Ei ; Fi /ıi (3.28)

for some ıi 2 R, where .Ei ; Fi / 2 R
n;n � R

n;n, with Fi D F>
i for each i D

1; 2; : : : ; m, is a given basis of allowed modifications to the pair .A;B/.
For instance, if n D 2, a natural choice for this perturbation basis is

��
1 0
0 0

�
; 0
�
;
��
0 0
0 1

�
; 0
�
;
��
0 1
0 0

�
; 0
�
;
��
0 0
1 0

�
; 0
�
;
�
0;
�
1 0
0 0

��
;
�
0;
�
0 0
0 1

��
;
�
0;
�
0 1
1 0

��
:

(3.29)

This choice gives all possible perturbations on the entries of each matrix that
preserve the symmetry of B . However, if necessary we can enforce some properties
of E and F like being symmetric, Toeplitz, circular, or having a certain sparsity
structure by choosing .Ei ; Fi /miD1 suitably.

Using the vec-operator, we can rewrite (3.27) as

�j . Q!j � !j / 
 �<.Œ2e{!i ; 1�˝ v>
j ˝ v�

j /

�
vec.E>/
vec.F /

�
;

and (3.28) as

�
vec.E>/
vec.F /

�
D
�

vec.E>
1 / � � � vec.E>

m /

vec.F1/ � � � vec.Fm/

�264
ı1
:::

ım

3
75 :

Together we obtain a system of ` linear equations in m unknowns

A ı D B; (3.30)

where ı D Œı1; : : : ; ım�
> and

A D

2
64

�<.Œ2e{!1 ; 1�˝ v>

1 ˝ v�

1 /
:::

�<.Œ2e{!` ; 1�˝ v>

` ˝ v�

` /

3
75
�

vec.E>

1 / � � � vec.E>

m /

vec.F1/ � � � vec.Fm/

�
; B D

2
64
�1. Q!1 � !1/

:::

�`. Q!` � !`/

3
75 :
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So, any sufficiently small perturbation (3.28) satisfying (3.30) moves the
unimodular eigenvalues approximately to the wanted positions. We are interested
in the smallest such perturbation. To this end we assume that the system (3.30)
is under-determined, m > `, but of full rank. Hence, we can use a simple QR
factorization to compute its minimum-norm solution, given by ı D QR�TB, where
A > D QR denotes a thin QR factorization. Note that for the system to be solved
efficiently it is sufficient that ` is small and the matrix product A is efficiently
formed (e.g., using the sparsity of Ei ; Fi ); m, on the other hand, may be large.

Using several steps of this procedure, the unimodular eigenvalues are made to
coalesce into pairs in sufficiently small steps and then leave the circle. To sum up,
our regularization algorithm is as follows.

Algorithm 4
Input: A;B D B> 2 R

n;n such that Q.�/ D �A> C B C ��1A is regular,
fEi; Fi gmiD1
Output: QA; QB D QB> 2 R

n;n such that QQ.�/ D � QA>C QBC��1 QA has no unimodular
eigenvalues.

1. Set QA D A; QB D B

2. Compute the unimodular generalized eigenvalues �j D e{!j of QQ.�/, j D
1; 2; : : : ; ` and the associated eigenvectors vj . If there is none, terminate the
algorithm. Also compute �j D �2=.�j v�

j
QA>vj /.

3. Determine suitable locations for the perturbed generalized eigenvalues Q!j .
4. Assemble the system (3.30) and compute its minimum-norm solution ı.
5. Set QA D QACPm

iD1 ıiEi , QB D QB CPm
iD1 ıiFi and repeat from step 2.

A few remarks are in order. Although the perturbation in every single iteration is
minimized, this does not imply that the accumulated perturbation is also minimal.
In numerical experiments the norm of the accumulated perturbation decreased and
finally seemed to converged when more and more steps of Algorithm 4 were used
that each move the unimodular eigenvalues by a smaller and smaller distance, see
Fig. 3.4 (top right plot) below. Second, there is nothing to prevent non-unimodular
eigenvalues from entering the unit circle in the course of the iterations. This is not
a problem since they are moved off again in the following few iterations. Finally,
step 2 consists of solving a quadratic palindromic eigenvalue problem where the
eigenvalues on the unit circle are wanted. For general eigenvalues methods it is
difficult to decide whether a computed eigenvalue is really on or just close by the
unit circle. Here, structured methods that compute the eigenvalues in pairs can show
their strengths.
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Fig. 3.4 Top left: Spectral plot (i.e., eigenvalues ofQ.e{!/ on the y-axis plotted over ! 2 Œ��; ��)
for (3.31); top right: dependence of size of cumulative perturbation and of number of needed
iterations on � ; bottom row: Spectral plot after 1, 3, and 6 iterations using � D 0:2

3.3.1 An Example and Spectral Plots

In order to get a better insight of what is happening and to explain how to choose
the Q!j it is best to look at an example. We start from the matrices [6]

A D

2
664
1 0 0 0

0 1 1 0

0 1 �1 0

0 0 0 �1

3
775 ; B D

2
664
3 2 1 0

2 3 2 1

1 2 3 2

0 1 2 3

3
775 : (3.31)

The top left plot of Fig. 3.4 shows the eigenvalues of the Hermitian matrixQ.e{!/
for these A;B on the y-axis as they vary with ! 2 Œ��; ��. Obviously the plot is
2�-periodic and symmetric (because Q.e{!/ D Q.e{.!C2�// D .Q.e�{!//>). For
instance, one sees from the graph that all the lines lie above the x-axis for ! D �=2,
so Q.e{�=2/ is positive definite. Instead, for ! D 0 (and in fact for most values
of !) there is a matrix eigenvalue below the imaginary axis, thus Q.e{0/ is not
positive definite. There are four points in which the lines cross the x-axis and these
correspond to the values of ! for which Q.e{!/ is singular, i.e., for which e{! is a
generalized eigenvalue ofQ on the unit circle. We label them !1, !2, !3, !4 starting
from left.
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Notice that in our example the lines corresponding to different matrix eigenvalues
come very close to each other, but never cross. This is not an error in the graph, but
an instance of a peculiar phenomenon known as eigenvalue avoidance, see, e.g., [22,
p. 140] or [4].

Recall that the overall goal is to find a perturbation that renders Q.�/ positive
definite on the whole unit circle. This perturbation will have to move up the two
bumps that extend below the x-axis. For this to happen the two central intersections
!2 and !3 have to move towards each other, until they coalesce and then disappear
(i.e., the curve does not cross the x-axis anymore). The other two intersections
!1 and !4 moved towards the borders of the graph, coalesce at ! D � and then
disappear as well. In particular, we see that the intersections !i in which the slope
of the line crossing the x-axis is positive (i D 1; 3) need to be moved to the left, and
the !i for which it is negative (i D 2; 4) need to be moved to the right.

Moreover, the sign of the slope with which the line crosses the x-axis is known in
the literature as sign characteristic of the unimodular generalized eigenvalue [11],
and it is well known that only two close-by generalized eigenvalues with opposite
sign characteristics can move off the unit circle through small perturbations.

These slopes are easily computable, in fact the are given by �j in Theorem 5.
In order to obtain the Q!j that are moved “to the correct direction” and that are not
too far away from the !j , we use Q!j D !j � �sign.�j /, where � is a step size
parameter. Other choices are discussed in [7].

For our example, Algorithm 4 with a step size of � D 0:2 needs 6 iterations.
The spectral plots for the intermediate polynomials QQ.�/ after 1, 3, and 6 iterations
are shown in the lower row of Fig. 3.4. One can see that the topmost eigenvalue
curves are almost unchanged, while the bottom ones are modified slightly at each
iteration, and these modifications have the overall effect of slowly pushing them
upwards. After six iterations, the resulting palindromic Laurent matrix polynomial
Q.�/ is positive definite on the whole unit circle (as shown in the bottom-right
graph), and thus it has no more unimodular generalized eigenvalues. The resulting
matrices returned by the algorithm are

QA 


2
664
0:816 0:183 0:0379 �0:0565
0:183 0:915 0:775 0:152

0:0379 0:775 �0:647 �0:173
�0:0565 0:152 �0:173 �0:922

3
775 ; QB 


2
664
3:16 1:67 0:956 0:0913

1:67 3:28 1:62 1:13

0:956 1:62 3:41 1:55

0:0913 1:13 1:55 3:13

3
775 :

The relative magnitude of the obtained perturbation is

kŒ QA � A; QB � B�kF
kŒA;B�kF D 0:157:

Such a large value is not unexpected, since the plot in Fig. 3.4 extends significantly
below the real axis, thus quite a large perturbation is needed.
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The step size � plays a role here. With a smaller value of � , one expects the
resulting perturbation to be smaller, since the approximated first-order eigenvalue
locations are interpolated more finely; on the other hand, the number of needed
steps should increase as well. This expectation is supported by the top right plot
in Fig. 3.4 where we report the resulting values for different choices of � in this
example.

Note that a naive way to move all eigenvalue curves above the x-axis is to add a
multiple of the identity matrix toB . This results in an upwards-shift of all eigenvalue
curves. In this example the minimum eigenvalue occurs for ! D 0 and is �0:675
(correct to the digits shown) which amounts to a relative perturbation in kŒA;B�kF
of 0:161. So, the perturbation found by Algorithm 4 is better in the sense that (i) it
is smaller and (ii) it perturbs the upper eigenvalue curves less.

3.3.2 Parameter Estimation

The application for enforcing solvability of (3.26) treated in [6] is the parameter
estimation for econometric time series models. In particular, the vector autoregres-
sive model with moving average; in short VARMA(1,1) model [23] is considered.
Given the parameters ˚;� 2 R

d;d , c 2 R
d and randomly drawn noise vectors

Out 2 R
d (independent and identically distributed, for instance, Gaussian), this

stochastic process produces a vector sequence . Oxt /tD1;2;::: in R
d by

Oxt D ˚ Oxt�1 C c C Out �� Out�1; t D 2; 3; : : : :

The task is to recover (i.e., estimate) the parameters ˚ , �, and c from an
observed finite subsequence . Oxt /tD1;:::;N . In [6] such an estimator is described, that
only uses (approximations of) the mean � WD limt!1 E.xt / and the autocorrelation
matrices Mk WD limt!1E..xtCk � �/.xt � �/>/. Here, E denotes the expected
value and xt is the random variable that Oxt is an instance of. Using � and Mk the
parameters can be obtained as [30]

˚ D MkC1M�1
k for any k � 1I c D .I � ˚/�I � D �AX�1; (3.32)

where X solves the solvent equation (3.26) for A WD M>
1 � M0˚

> and B WD
M0 � ˚M>

1 � M1˚
> C ˚M0˚

>. Note that X is guaranteed to exist since it
can be interpreted as the covariance matrix of u (the random variable that Out are
instances of).

Since � and Mk are unknown, the estimator approximates them by the finite-
sample moments

O� WD 1

N

NX
tD1

Oxt ; OMk WD 1

N � k

N�kX
tD1

. OxtCk � O�/. Oxt � O�/>; (3.33)
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(which converge to the true values for N ! 1) and then replace � and Mk by
O� and OMk, respectively, in (3.32) giving rise to approximations OA; OB; OX; O�; O̊ ; Oc.
Unfortunately, the finite-sample moments (3.33) converge rather slowly to the true
asymptotic ones, i.e., substantial deviations are not unlikely. Therefore, one may
encounter the situation described above, where the solvent equation (3.26) for OA; OB
admits no solution that satisfies all the required assumptions. The regularization
technique presented above can then be used to obtain solutions in cases in which
the estimator would fail otherwise; the robustness of the resulting method is greatly
increased.

3.4 Conclusion

We saw that the palindromic eigenvalue problem has numerous applications ranging
from control theory via vibration analysis to parameter estimation. Often the stable
deflating subspace is wanted, but other times just the question whether unimodular
eigenvalues exist is of interest.

The rail track vibration problem was discussed and an efficient algorithm for its
solution presented. Another presented algorithm aims to remove the unimodular
eigenvalues via small perturbations, a task that is useful for passivation and
parameter estimation.
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Chapter 4
Theory and Numerical Solution of Differential
and Algebraic Riccati Equations

Peter Benner

Abstract Since Kalman’s seminal work on linear-quadratic control and estimation
problems in the early 1960s, Riccati equations have been playing a central role in
many computational methods for solving problems in systems and control theory,
like controller design, Kalman filtering, model reduction, and many more. We will
review some basic theoretical facts as well as computational methods to solve them,
with a special emphasis on the many contributions Volker Mehrmann had regarding
these subjects.

4.1 Introduction

The algebraic and differential Riccati equations (AREs/DREs) play a fundamental
role in the solution of problems in systems and control theory. They have found
widespread applications in applied mathematics and engineering, many of which
can be found in the monographs [1, 36, 68, 86]. In this chapter, we focus on
Riccati equations associated to control problems, as these have always inspired
Volker Mehrmann’s work, and he has mainly focused on the resulting symmetric
Riccati equations – symmetric in the sense that the associated Riccati operators map
symmetric (Hermitian) matrices onto symmetric (Hermitian) matrices. Hence, also
the solutions to the Riccati equations we will consider are expected to be symmetric
(Hermitian). A class of nonsymmetric AREs that arises, e.g., in queuing theory,
certain fluid flow problems, and transport theory (see, e.g., [36]) is of importance
as well, but for conciseness, we will omit these AREs even though Volker has also
contributed to this area [81].

In most of the literature on AREs and DREs, the motivation is taken from the
classical linear-quadratic regulator (LQR) problem. This was the topic of Volker’s
habilitation thesis [74], where, building upon earlier work by Bender and Laub [6,
7], he extended the LQR theory to so-called descriptor systems, i.e., systems with
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dynamics described by differential-algebraic equations (DAEs). Much of Volker’s
early work on AREs culminated in this thesis which later became the appraised book
[76]. We therefore also start by formulating the LQR problems in continuous- and
discrete time and how they relate to AREs. These optimal control problems can be
formulated in various levels of generality. The setting we consider is:

minimize

J .x0; u/ D 1

2

1Z
0

�
y.t/T Qy.t/C 2y.t/T Su.t/C u.t/TRu.t/

�
dt (4.1)

subject to the linear time-invariant (LTI) system

E Px.t/ D Ax.t/C Bu.t/; x.0/ D x0; (4.2a)

y.t/ D Cx.t/; (4.2b)

in the continuous-time case and
minimize

J .x0; u/ D 1

2

1X
kD0

�
yTk Qyk C 2yTk Suk C uTk Ruk

�
(4.3)

subject to the discrete-time LTI system

ExkC1 D Axk C Buk; x0 D x0; (4.4a)

yk D Cxk; (4.4b)

in the discrete-time case. In both settings, A;E 2 R
n�n, B 2 R

n�m, C 2 R
p�n,

Q 2 R
p�p , R 2 R

m�m, and S 2 R
p�m. Furthermore, we assume Q and

R to be symmetric. In both cases, the initial state x0 2 R
n can be chosen

freely if E is nonsingular and is constrained to a manifold in the descriptor
case, see the Chap. 16 for more details on this. In the continuous-time case, u is
considered as an element of an appropriate function space like k times continuously
differentiable functions Ck.0;1/ or square-integrable functions L2.0;1/. No
further constraints are imposed in this setting. In discrete-time, u represents a
sequence .uk/1kD0 that should be (square-)summable in an appropriate sense. A
formulation in complex arithmetic is possible, and most of the results considered
here remain valid (cf. [68] for a detailed treatment of real and complex AREs), but
as most practical applications are formulated using real data, we stick to this case
here.

Under fairly general conditions, the LQR problems have solutions of the form
u.t/ D Fc.x.t// and uk D Fd .xk/, respectively. As they appear in feedback
form, that is, the current control input depends on the current state information, this
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observation lays the basis for modern (feedback) control [54]. Possible sufficient
conditions to obtain such feedback solutions are: E is nonsingular, Q and R are

positive definite, S is “small” enough such that
h
Q S

ST R

i
is positive semidefinite,

and the matrix triples .E;A;B/ and .E;A;C / are stabilizable and detectable,
respectively. Here, stabilizable means that rankŒA � �E;B� D n for all � 2 fz 2
C j <.z/ � 0g in the continuous-time case and for all � 2 fz 2 C j jzj � 1g in the
discrete-time case, while detectability of .E;A;C / is equivalent to stabilizability of
.ET ; AT ; C T /. Under these conditions, the LQR problems have unique solutions.
These are given by the feedback laws

u.t/ D �R�1.BTXcE C STC /x.t/ DW �Fcx.t/; t � 0; (4.5)

in the continuous-time case and

uk D �.RCBTXdB/
�1.BT XdACST C /xk DW �Fdxk; k D 0; 1; : : : ; (4.6)

in the discrete-time case. Now, the relation of the LQR problem to AREs becomes
evident as Xc is the unique stabilizing solution to the (generalized) continuous-time
algebraic Riccati equation (CARE)

0 D Rc.X/ WD CTQC C ATXE C ETXA�
.ETXB C CT S/R�1.BTXE C STC /;

(4.7)

while Xd is the unique stabilizing solution of the (generalized) discrete-time
algebraic Riccati equation (DARE)

0 D Rd .X/ WD CTQC C ATXA � ETXE�
.AT XB C CT S/.RC BTXB/�1.BT XA C STC /:

(4.8)
The solutions Xc and Xd are stabilizing in the sense that the feedback solutions
generated by inserting (4.5) and (4.6) into (4.2) and (4.4), respectively, are asymptot-
ically stable, i.e., x.t/; xk ! 0 for t; k ! 1 and all initial values x0 2 R

n. Under
the given assumptions, CAREs and DAREs have exactly one stabilizing solution,
despite the fact that there may exist many other solutions [68]. These stabilizing
solutions are symmetric and positive semidefinite, the latter property again uniquely
identifies the solutions Xc;Xd in the respective solution sets.

In his work, Volker has often considered the case that E is singular. This
is in particular the case in his habilitation thesis and the resulting book [76].
In general, in this case the relation between the AREs (4.7) and (4.8) and the
feedback solutions to the LQR problems is lost. Several modifications of the AREs
to re-establish this connection have been suggested in the literature. They usually
require special conditions, and the resulting generalized AREs are often not easily
solvable numerically. Only recently, efficient methods for a class of generalized



70 P. Benner

CAREs with singular E have been suggested in [35]. Similarly to [6, 7], Volker
shows in [76, § 5] how the LQR problem for descriptor systems (i.e., E singular)
can be reduced to a problem with nonsingular E for which the Riccati solutions
exist. Nevertheless, this procedure requires strong conditions, in particular quite
complicated consistency conditions for the initial values, that are often not satisfied
in practice. This observation, among others, led Volker to work on alternative
approaches to solve the LQR problem for descriptor systems, avoiding AREs
completely. This is the topic of [63, 64, 66, 67], where also extensions to systems
with time-varying coefficients are considered and the theory of strangeness-free
DAEs [65] is applied to the LQR problem. We will not further discuss these
fundamental contributions to optimal control for DAEs, as they do not directly relate
to Riccati equations anymore. Recently, a solution concept for LQR problems based
on purely algebraic considerations was derived in the Ph.D. thesis of Matthias Voigt
[88]. This theory relates the feedback solution of the LQR problem for descriptor
systems to dissipation inequalities, even matrix pencils (see the Chaps. 6 and 12),
and the stabilizing solutions of Lur’e equations. This work may complete three
decades of the quest for a general algebraic solution theory for the LQR problem
that does not require a special index concept or restrictions on the index of the
underlying DAE. Notably, Matthias is Volker’s academic grandchild!

In [76], Volker also considers LQR problems with finite time-horizon, i.e., the
cost functionals are replaced by finite integrals

R T
0

, where 0 < T < 1, or finite
sums

PK�1
kD0 , K 2 N. In this situation, usually also the final states x.T /, xK are

penalized in the cost functional. Often, the LQR problem is used for stabilization
problems so that it is desired that the final state is close to zero, which suggests
a positive definite quadratic weighting function. This is particularly the case when
the modeling is done in such a way that x represents the deviation of the state of
a dynamical system from a desired state. In the continuous-time case, the LQR
problem can then be formulated as follows:

minimize

J .x0; u/ D 1

2

0
@x.T /T Mx.T /C

TZ
0

�
y.t/TQy.t/C 2y.t/T Su.t/C u.t/TRu.t/

�
dt

1
A

subject to (4.2)
with M D MT 2 R

n�n positive semidefinite. Note that for consistency, one could
write the penalty term at T in terms of y.T / instead of x.T /. As we can replace
y.T / by Cx.T / using (4.2), this is merely a notational issue.

Under similar conditions as in the infinite-time horizon case, the unique solution
of the finite-time LQR problem is then given by the feedback control

u.t/ D �R�1.BTX.t/E C STC /x.t/ DW �Fc.t/x.t/; t � 0; (4.9)
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where X.t/ is the unique solution of the DRE

� ET PX.t/E D Rc.X.t// (4.10)

with terminal condition ETX.T /E D M and Rc as in (4.7). The existence and
uniqueness of the DRE solution is considered in [1, 86]. The theory can also be
extended to time-varying systems, i.e., systems with A D A.t/, etc. In general, if E
is singular, again the relation of the solution to the finite-time LQR problem and the
DRE is lost, but is re-established using a reduction procedure described by Volker in
[76, § 3]. We will re-visit this technique, as well as a numerical procedure to solve
(4.10) as suggested by Mehrmann and Kunkel in [62], in the next section.

The finite horizon discrete-time LQR problem is also treated in [76]. This leads
to the solution of difference Riccati equations of the form

�ETXkE D Rd .XkC1/ (4.11)

with terminal condition ETXKE D M . As in the other cases considered so far, a
reduction to the case E nonsingular is necessary to establish the link between the
LQR problem and (4.11). Such a reduction procedure is suggested again in [76, § 3].
A numerical procedure to solve (4.11) is sketched in [76, § 19]. As (4.11) is solved
backwards starting fromXK , advancing fromXkC1 toXk can be achieved by simply
evaluating Rd .XkC1/ using, e.g., a Cholesky decomposition ofRCBTXkC1B , and
then solving a linear system of equations using, e.g., the LU decomposition of E .
Due to its conceptual simplicity, we will not discuss this approach here any further.

The remainder of this chapter is organized as follows. As already mentioned
above, we will focus on Volker’s contributions to the solution of DREs in the next
section. The relation between CAREs and DAREs is explored in Sect. 4.3. The
bulk of this chapter summarizes Volker’s contributions to the numerical solution of
AREs and comprises Sect. 4.4, while we briefly touch upon Volker’s passion to solve
control problems avoiding AREs in Sect. 4.5. Final remarks are given in Sect. 4.6.

4.2 Numerical Methods for Differential Riccati Equations

In [62], the DRE (4.10) is considered with S D 0, and in the simplified
representation

�ET PX.t/E D F C ATX.t/E C ETX.t/A� ETX.t/GX.t/E (4.12)

with terminal condition ETX.T /E D M , where even time-dependence of
A;E; F;G is allowed under the assumption of sufficient smoothness.

The contributions of [62], and [76, § 3,19] are twofold. First of all, conditions
are derived under which the solution of the finite-time horizon LQR problem is
given via the feedback control law (4.9), defined by the solution of the DRE. In
case of singular E , this requires a reduction procedure resulting in a DRE with
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nonsingular E matrix. We will sketch this procedure briefly. Second, a numerical
solution method for (4.12) is derived that resolves some singularity issues when
(4.12) is solved in vectorized form as a DAE. In the notation derived later on
by Kunkel and Mehrmann [65], it is assumed that the DAE E Px.t/ D Ax.t/ is
strangeness-free (see the Chap. 16 for details), .E;A/ is a regular matrix pair, and
rank.E/ is constant on Œ0; T �. For the ease of presentation, in the following we will
only consider the time-invariant case, but the derivations in the time-varying case in
[62] are formally completely analogous.

4.2.1 Reduction to a Standard LQR Problem

Basically, the singular value decomposition of E ,

E D U

�
˙ 0

0 0

�
V T (4.13)

is the key step in the reduction procedure. Here, U; V 2 R
n�n are orthogonal,

˙ 2 R
r�r is nonsingular, and r D rank.E/. Not that we do not necessarily need a

reduction of ˙ to diagonal form, a URV-type decomposition with a nonsingular˙
suffices. Therefore, we do not assume symmetry of ˙ in the following. If we now
insert the SVD of E in (4.2), multiply the first equation with UT from the left, and
using

UTAV D
�
A11 A12

A21 A22

�
; U T B D

�
B1

B2

�
; CV D �

C1; C2
�
;

as well as the change of basis Œ x1x2 � D V T x with the partitioning implied by the SVD
(4.13), the descriptor system (4.2) becomes

˙ Px1.t/ D A11x1.t/CA12x2.t/C B1u.t/; (4.14a)

0 D A21x1.t/CA22x2.t/C B2u.t/; (4.14b)

y.t/ D C1x1.t/C C2x2.t/: (4.14c)

The strangeness-freeness assumption implies that A22 is nonsingular, so that we can
solve the second of these equations for x2 and insert the result in the first and third
equations. This leads to the standard LTI system

˙ Px1.t/ D .A11 � A12A
�1
22 A21/„ ƒ‚ …

DW OA

x1.t/C .B1 � A12A
�1
22 B2/„ ƒ‚ …

DW OB

u.t/; (4.15)

y.t/ D .C1 � C2A�1
22 A21/„ ƒ‚ …

DW OC

x1.t/C .�C2A�1
22 B2/„ ƒ‚ …

DW OD

u.t/: (4.16)
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Now also performing the change of basis in the cost functional results in a standard
finite-time horizon LQR problem which can be solved via the DRE

�˙T POX.t/˙ D OQC˙T OX OAC OAT OX˙ �
� OBT OX˙ C OST

T OR�1 � OBT OX˙ C OST


(4.17)

with terminal condition˙T OX˙ D OM , where OM results from the terminal condition
of the original LQR problem after the change of coordinates. Note that when
B2 6D 0, u.T / appears in the terminal penalty term which changes the nature of the
problem. As M can usually be chosen freely, it is therefore convenient to assume

in the partitioning of V T MV D
h
M11 M12

MT
12 M22

i
that M12 D 0;M22 D 0. The coefficient

matrices OQ; OS; OR in (4.17) can be read off from the cost functional after applying
the change of coordinates and inserting the modified output equation (4.16) in the
first integrand:

y.t/T Qy.t/ D . OCx1.t/C ODu.t//TQ. OCx1.t/C ODu.t//

D x1.t/
T OCTQ OC„ ƒ‚ …

DW OQ
x1.t/C 2x1.t/

T OCTQ OD„ ƒ‚ …
DW OS

u.t/C u.t/T ODTQ ODu.t/:

With OR D R C ODTQ OD, and the assumption that S D 0, the LQR theory for LTI
systems yields the feedback solution via the DRE (4.17). In order for this reduction
procedure to work, it is of course necessary that the modified matrices defining the
LTI system and cost functional inherit the properties like positive (semi)definiteness
of OQ; OR as well as the stabilizabilty and detectability properties. In a numerical
procedure, this needs to be checked before the solution of the original LQR problem
can be derived from that of the reduced LQR problem. While often, these properties
indeed carry over, a more severe restriction is caused by the consistency condition

implied by (4.14b) for t D 0: if
h
x01
x02

i
D V T x0, then (4.14b) implies

x02 D �A�1
22

�
A21x

0
1 CB2u.0/

�
:

If B2 6D 0, this is a restriction on the possible controls, while for B2 D 0, it
yields a consistency condition for the initial values. Whether or not this restricts the
applicability of the reduction approach to the LQR problem for descriptor systems
certainly depends on the application. It should also be noted that under certain
conditions on the system matrices, higher-index DAE problems can be reduced to
regular index-1 problems using output feedback. This topic is discussed in more
detail in Chap. 15.

Remark 1 The reduction procedure using the SVD (4.13) of E can also be applied
directly to the DRE (4.12) without considering the LQR background. This basically
leads again to the DRE (4.17) with additional consistency and solvability conditions,
see [62, Section 3].
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4.2.2 Numerical Solution of DREs

In [62] and [76, § 19], it is suggested to solve the DRE (4.12) by vectorization. This
uses the “vec” operator

vec W R`�k ! R
`k W X 7! vec.X/;

which stacks the columns of a matrix on top of each other. Vectorization of
expressions like AXB is simplified by using the Kronecker product ˝, see, e.g.,
[61, 69]. In particular, the formulas

vec.AXB/ D �
BT ˝ A

�
vec.X/;

�
AT ˝ BT

� D .A˝B/T (4.18)

are useful for our purposes. Applying vectorization to (4.12) and using (4.18) yields
the system of ordinary differential equation (ODEs) or DAEs

� .E ˝ E/T vec. PX.t// D vec.F /C
�
.E ˝A/T C .A˝ E/T


vec.X.t//

� .E ˝ E/T .X.t/˝X.t// vec.G/:
(4.19)

The terminal condition yields

.E ˝ E/T vec.X.T // D vec.M/: (4.20)

Together, (4.19) and (4.20) form an initial value problem (in reverse time) for a
system of ODEs/DAEs if E is nonsingular/singular with quadratic nonlinearity. (In
case n D 1, a classical Riccati differential equation is obtained, thus the name
“differential Riccati equation”.)

In case of E being nonsingular, this initial value problem can be solved by any
integration method for ODEs. As (4.19) is then a system of n2 ODEs, already one
time step of an explicit integrator would require O.n4/ floating point operations
(flops) in general for the matrix vector products. In an implicit integration technique,
linear systems of equations need to be solved at a computational cost of O.n6/ flops.
Therefore, this approach is limited to very small dimensions n, even if one exploits
the symmetry of the DRE as suggested in [62] and only works with the n.nC 1/=2

necessary equations, ignoring the redundant other ones (which is possible, but the
data handling is cumbersome). After this initial work on numerical methods for
DREs by Kunkel/Mehrmann, it was suggested in [48] to re-write ODE integrators
in matrix form. This reduces the cost to O.n3/ flops in dense arithmetic. Due to
the usual inherent stiffness of DREs, in the literature, mostly implicit integrators are
discussed. In [48], in particular the backward differentiation formulas (BDF) were
considered. This was followed up in [53], where an efficient implementation of the
matrix-valued BDF for DREs was described. Later, this was extended to large-scale
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problems employing sparsity in the coefficient matrices in [29]. Also other popular
implicit integration techniques were investigated, e.g., the Rosenbrock methods in
matrix form in [30, 70] by members of Volker’s academic descendants family.

The case that E is singular is much more involved, though. Let QE WD .E ˝ E/T

and QA WD .E ˝ A/T C .A˝ E/T . Then it is shown in [62] that even in the simplest
form of a strangeness-free DAE E Px D Ax, the matrix pencil � QE � QA is singular.
If the nilpotency index of .E;A/ is 1, then so is the nilpotency index of � QE � QA,
and the DRE (4.19) can be solved by simply omitting the singular “zero blocks”. A
procedure to achieve this is suggested in [62, Section 5]. Apart from the SVD (4.13)
and the associated reduction, it includes consistency checks and requires additional
algebraic equations to be solved. The reduced DRE is then solved by standard
DAE integrators for index-1 systems. Also, a variant for time-dependent coefficients
A.t/; E.t/; : : : is provided in [62]. If the nilpotency index of the regular matrix
pencil �E�A is larger than 1, then in addition to singularity of � QE� QA, this matrix
pencil may have even a larger nilpotency index, and also different kinds of singular
blocks. Therefore, a numerical procedure for this situation cannot be derived easily,
and this is an open problem up to now to the best of this author’s knowledge. An
interesting question for further research would be whether the singularity problem
can be avoided in matrix-valued DRE solvers. Recently, a first step in this direction
was proposed by another of Volker’s many Ph.D. students, Jan Heiland. In his
thesis [58], he suggests a matrix-valued implicit Euler scheme for a special index-2
DRE, which he calls a differential-algebraic Riccati equation and which arises in the
finite-time horizon LQR problem for flow control problems. Further research in the
area of matrix-valued solvers for DREs or differential-algebraic Riccati equations is
certainly needed.

4.3 A Unified Treatment of CAREs and DAREs?

A unified treatment of discrete- and continuous-time algebraic Riccati equations is
discussed in [77]. We will recall the main result from this paper related to AREs:
a then new result on the solution of DAREs using the idea of a unified treatment
of continuous- and discrete-time control problems. As this result was derived in
complex arithmetic, we will (in contrast to the other sections) in this chapter also
formulate the results in complex arithmetic. For this, we denote byMH the complex
conjugate transpose of a matrix or vectorM , while � denotes as usual the complex
conjugate of the scalar � 2 C.

In addition to the Hamiltonian and symplectic matrices introduced already in
Chap. 1, we will need the following structures in this section.



76 P. Benner

Definition 1 Let J D �
0n In�In 0n

� 2 R
2n�2n with In; 0n the identity and zero matrices

of order n.

(a) A matrix pencil �K �H is Hamiltonian iff KJHH C HJKH D 0.
(b) A matrix pencil �T � S is symplectic iff TJTH D SJSH .

In this and the next section, a special class of n-dimensional subspaces in C
2n plays

a prominent role.

Definition 2 Let L � C
2n and dim.L / D n. Then L is Lagrangian if xH Jy D 0

for all x; y 2 L .

A typical example of a Lagrangian subspace is the graph subspace
�
In
M

�
for a

Hermitian matrix M , see the Chap. 5 for more on the use of graph subspaces.
If we now consider the continuous- and discrete-time LQR problems from

Sect. 4.1 with S D 0 for simplicity, and the associated AREs, then we have
the following well-known observation: let E D In, and define F WD CHQC,
G D BR�1BH , and

H D
�
A G

F �AH
�
; �T � S WD �

�
In �G
0n A

H

�
�
�
A 0n

F In

�
: (4.21)

Then H is Hamiltonian, �T � S is symplectic. We then have the following result,
which is a collection of results that can be found, e.g., in [68]:

Proposition 1 Let E D In; S D 0, andH;S; T as in (4.21).

(a) Assume that Xc D XH
c is a solution to the CARE (4.7), then the columns of�

In�Xc
�

span a Lagrangian H -invariant subspace. On the other hand, if the
columns of

�
U
V

�
span a Lagrangian H -invariant subspace with U 2 C

n�n
invertible, then Xc D �VU�1 is a Hermitian solution to the CARE (4.7).

(b) Let A be nonsingular. Assume that Xd D XH
d is a solution to the DARE (4.8),

then the columns of
�
In�Xd
�

span a Lagrangian deflating subspace of �T �S . On
the other hand, if the columns of

�
U
V

�
span a Lagrangian deflating subspace of

�T � S with U 2 C
n�n invertible, then Xd D �VU�1 is a Hermitian solution

to the DARE (4.8).

Note that the CARE (DARE) solutions requested in the LQR problems are
associated to the stable invariant (deflating) subspaces ofH (�T �S ), that is, those
associated to the n eigenvalues in the open left half of the complex plane (inside the
open unit disk).1

This result can be used in order to link the CARE and DARE in the following
way, employing the generalized Cayley transformation: given � 2 C with j�j D 1,

1This spectral dichotomy of the Hamiltonian matrix and symplectic pencil exists under the
assumptions used in Sect. 4.1, i.e., there are no eigenvalues on the boundaries of these regions,
that is the imaginary axis in the continuous-time and the unit circle in the discrete-time case.
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�2 6D �1. Then the generalized Cayley transformation of a matrix pencil �L �M

is given by the matrix pair

C�.L;M/ WD ..L � �M/; .�LCM// : (4.22)

With this, Volker proved the following result:

Lemma 1 ([77, Lemma 2])

(a) If �T�S is a symplectic pencil, then C�.T; S/ D .K;H/ defines a Hamiltonian
pencil �K �H .

(b) If �K � H is a Hamiltonian pencil, then C��.K;H/ D .T; S/ defines a
symplectic pencil �T � S .

As the Hamiltonian matrixH from (4.21) also defines a Hamiltonian pencil �I�H ,
this lemma relates the Hamiltonian matrix and associated CARE to a symplectic
pencil via Lemma 1(b), to which, using some cumbersome algebraic manipulations
and some further assumptions on the Cayley shift �, a DARE can be associated.
Vice versa, the symplectic pencil associated to the DARE (4.8) can be related
to a Hamiltonian pencil via Lemma 1(a). As it is easy to see that the Cayley
transformation leaves deflating subspaces invariant, we thus can use numerical
methods for computing deflating subspaces of Hamiltonian pencils to solve DAREs
via Cayley transformation and Proposition 1. An algorithm for the Hamiltonian
pencil eigenproblem with the desirable properties of being numerically backward
stable, requiring only O.n3/ flops, and being structure-preserving in the sense
that the symmetry of the spectrum is preserved exactly, was then derived later
in [28]. This algorithm extends the method for Hamiltonian matrices based on
the symplectic URV decomposition presented in the same paper and discussed
in detail in Sect. 1.4. Unfortunately, this algorithm only computes eigenvalues,
but no deflating subspaces. Already the extension of the method for Hamiltonian
matrices to compute also invariant subspaces turned out to be rather complicated
[27], so an extension for the Hamiltonian pencil algorithm was never derived. But
it turned out a bit later that the better structure to consider was that of skew-
Hamiltonian/Hamiltonian pencils (see the Chap. 2), or even more general, that of
even/odd pencils, or palindromic pencils (see the Chap. 3). Numerically stable and
efficient algorithms respecting these structures have been derived by Volker and co-
workers in the last decades, see various chapters in this book and the recent overview
[24].

The main contribution of [77] was to extend the use of the generalized Cayley
transformation to more general situations than those discussed in Proposition 1 and
Lemma 1. In particular, E 6D In is allowed, and the quite restrictive assumption
of A being nonsingular in the discrete-time case is dropped. In the situations
where E 6D In, the matrix pencils associated to the CARE and DARE are no
longer Hamiltonian and symplectic, respectively. Nevertheless, the same spectral
symmetries are observed (which is evident when one considers, as done later,
the associated even and palindromic pencil structures). A number of interesting
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relations of the Cayley transformed pencils are derived in [77], and it is shown
that controllability properties of the linear-time invariant systems associated to
the Hamiltonian and symplectic matric pencils before and after Cayley trans-
formation remain invariant. This lead Volker to suggest an implication scheme
which states that if one can prove “A ) B” for a continuous-time system, one
can prove the analogous result for the discrete-time system obtained via Cayley
transformation (and vice versa). This eventually lead to the proof of the following
result for the existence of DARE solutions which generalizes Proposition 1(b)
and is proved using this implication scheme applied to a variant of Proposi-
tion 1(a).

Theorem 1 ([77, Theorem 14(b)]) Consider the symplectic matrix pencil

�T � S WD �

�
A 0n
F In

�
�
�
In �BR�1BH

0n AH

�
:

Let the columns of
�
U
V

�
span an n-dimensional deflating subspace of �T � S with

U; V 2 C
n�n, V HU D UHV , and not containing eigenvectors corresponding to

infinite eigenvalues. Suppose there exists � 2 C, j�j D 1, such that In � �A and
�I C A� BR�1BH .�In �AH/�1F are invertible, as well as

�.�/ WD RC BH.A � �In/�HF.A� �In/
�1B

is definite. Assume further that .A;B/ is controllable (i.e., rank.ŒA� �In; B�/ D n

for all � 2 C).
Then U is invertible and Xd WD �VU�1 solves the DARE

0 D F C AHXA �X CAHXB.RC BHXB/�1BHXA:

This result does not require A to be invertible. The nonsingularity assumptions in
the theorem are needed to apply the generalized Cayley transformation with shift
� to �T � S and to convert the resulting Hamiltonian pencil to a Hamiltonian
matrix, for which a variant of Proposition 1(a) can then be used to prove the
assertions in the continuous-time case. The proof then follows from the implication
scheme.

Highlighting this result gives a glimpse on the often observed interdisciplinary
work of Volker Mehrmann, here linking systems and control theory with matrix
analysis. It also demonstrates his keen interest in deriving fundamental and general
principals that allow to solve classes of problems rather than just specific instances
of a given problem.
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4.4 Numerical Methods for AREs

We note that this section is based in large parts on [10] which concentrated on the
CARE and continued the effort of providing surveys of ARE solvers given as in [4]
and by Volker with co-workers [40]. We use an abridged and updated version of
the survey given there, with pointers to corresponding methods for DAREs which
appear throughout Volker’s work. In this section, we restrict ourselves again to
AREs in real arithmetic. Also, we will now always assume that E is nonsingular
such that there is a clear relation of the LQR problem and the related ARE as
outlined in the Introduction. For the ease of presentation, we will use the following
simplified ARE versions. We consider CAREs of the form

0 D Rc.X/ WD F CATX C XA � XGX; (4.23)

and DAREs

0 D Rd .X/ D F CAT XA �X � .ATXB/.RC BTXB/�1.ATXB/T ; (4.24)

where in the LQR setting, F WD CTQC and G WD BR�1BT . The solution of (4.23)
yielding the optimal feedback control then is the unique stabilizing solution Xc ,
i.e., A � GXc is stable in the sense that all its eigenvalues are in the open left half
plane C

�. Similarly, in the discrete-time case, the stabilizing solution Xd yields a
stable closed-loop matrix A � B.R C BTXdB/

�1BTXdA in the sense that all its
eigenvalues are inside the open unit disk.

It should be noted that in the non-descriptor, non-singular case, i.e., when
E and R are invertible, it is always possible to rewrite CAREs and DAREs in
this simplified way. In practice, though, this should only be done in case all
transformations are well-conditioned. See, e.g., [4, 9, 31, 76] for algorithms working
in the more general formulations and avoiding inversions and matrix products in
forming the coefficients as far as possible and necessary.

4.4.1 Methods Based on the Hamiltonian and Symplectic
Eigenproblems

As discussed in the previous section, solving AREs can be achieved using methods
to compute certain invariant or deflating subspaces of Hamiltonian matrices or
symplectic pencils. If such a subspace

�
U
V

�
is Lagrangian with U 2 R

n�n invertible,
the formula

X D �VU�1 (4.25)
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yields a symmetric solution to the CARE or DARE, respectively. Of course,
for numerical stability the condition number of U should be small, which can
be achieved by certain scaling procedures (see [9] for a comparison of several
scaling strategies) or, more recently, using the principle of permuted graph matrices
introduced by Mehrmann and Poloni, see the Chap. 5 for details of this approach.

The required solutions for solving the LQR problems are obtained if
�
U
V

�
corresponds to the stable eigenvalues of the corresponding Hamiltonian matrix or
symplectic pencil as explained in the previous section. Due to spectral symmetries of
Hamiltonian matrices H explained in Chap. 1, i.e., with � also �� is an eigenvalue
of H , and the analogous property of symplectic pencils (with � also 1=� is
an eigenvalue), a sufficient condition for the existence of n-dimensional stable
invariant subspaces is spectral dichotomy, i.e., no eigenvalues lie on the boundary
of the respective stability region. This dichotomy property is usually satisfied under
assumptions that lead to the unique solvability of LQR problems via AREs and is
thus assumed throughout this section.

First, we will consider methods for CAREs based on solving the Hamiltonian
eigenproblem forH as in (4.21). Using Proposition 1(a), in order to solve the CARE
it is sufficient to find a nonsingular matrix T 2 R

2n�2n such that

T �1HT D
�
H11 H12

0 H22

�
; (4.26)

where the eigenvalues of H11 2 R
n�n are all in C

�. Partitioning T analogously, the
columns of

�
T11
T12

�
span the stable LagrangianH -invariant subspace, and the desired

stabilizing solution Xc of the CARE (4.23) is obtained via (4.25) setting U D T11
and V D T12.

Most algorithms for solving matrix eigenproblems, i.e., for computing eigenval-
ues and -vectors or invariant subspaces of some matrix M 2 R

`�`, are based on the
following approach:
Generic procedure to compute invariant subspaces:

1. Compute an initial transformation matrix S0 2 R
`�` in order to reduce M to

some condensed form, i.e., compute

M0 WD S�1
0 MS0: (4.27)

2. Then construct a sequence of similarity transformations such that in each step

MjC1 WD S�1
jC1MjSjC1; j D 0; 1; 2; : : : ; (4.28)

the reduced form is preserved and moreover, if we define Tj WD Qj

kD0 Sk, then
limj!1 Tj D T and limj!1Mj D M� exist and eigenvalues and eigenvectors
and/orM -invariant subspaces can be read off from M� and T .
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The purpose of the initial reduction to a condensed form and the preservation
of this form throughout the iteration is twofold: first, such a reduction is usually
necessary in order to satisfy the complexity requirements – an iteration step
(4.28) on a reduced form can usually be implemented much cheaper than for a
full matrix; second, using such a reduced form it is usually easier to track the
progress of the iteration and detect if the problem can be decoupled (deflation)
into smaller subproblems that can then be treated separately. For details see
[56, Chapters 7–8].

For numerical stability, one usually requires all Sj and thus Tj ; T to be orthog-
onal. Under this requirement, the real Schur decomposition of H is a reasonable
choice in (4.26), and this was suggested in the seminal paper by Laub [71]. A
disadvantage is that the structure of the Hamiltonian matrix is already destroyed
in the initial Hessenberg reduction, leading to the loss of spectral symmetry in finite
precision arithmetic. In the worst case, this may lead to violation of the spectral
dichotomy as perturbations may move the eigenvalue to or across the boundary of
the stability region. This can be avoided by using symplectic similarity transforma-
tions as then all iterates in the generic procedure above remain Hamiltonian and
thus, the spectral symmetry is preserved. As already seen in Chap. 1, implementing
the above procedure satisfying both demands, symplectic and orthogonal similarity
transformations is only possible under certain assumptions due to the lack of an
efficient procedure for computing the Hamiltonian Schur form, also called Van
Loan’s curse.

We will now briefly discuss the numerical methods for the Hamiltonian and
symplectic eigenproblems that can be used to solve CAREs and DAREs. As most
of them have already been discussed in Chap. 1, we keep this discussion short and
highlight only Volker’s contributions in more or less chronological order.

4.4.1.1 The SR Algorithm

In [41], Bunse-Gerstner and Mehrmann suggest to use the SR algorithm to
implement the generic procedure to compute the stable H -invariant subspace and
then to solve the CARE via (4.25). The SR algorithm is described in some detail in
Sect. 1.2. Its obvious advantage is the preservation of the Hamiltonian structure due
to the exclusive use of symplectic similarity transformations. Another advantage is
that it is fast: it requires only O.n/ flops per iteration and generically converges with
a cubic rate. As non-orthogonal transformations are required, numerical stability is
lost and the computed CARE solution may not be as accurate as desired. A possible
remedy for this problem is defect correction (see Sect. 4.4.2), which can be used to
improve the accuracy of an approximate CARE solution.
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Given that the method is not numerically backward stable, some variations have
been suggested that compute the approximation to the CARE solution even faster by
giving up orthogonal transformations altogether, see [42]. Another idea is to iterate
directly on the approximation of the CARE rather than computing the Lagrangian
invariant subspaces explicitly. For this, an updating procedure is suggested in [47].

Moreover, an SR algorithm for symplectic eigenvalue problems was also derived
by Volker and co-workers, see [55] for a first variant and Chap. 1 for further
developments of this method.

4.4.1.2 The Hamiltonian QR Algorithm

The ideal algorithm for the Hamiltonian and symplectic eigenvalue problems would
be a method that computes the Hamiltonian Schur form using the generic method
described above, where only symplectic and simultaneously orthogonal similarity
transformations are used. The existence of the Hamiltonian Schur form under
rather generic assumptions, in particular under the spectral dichotomy condition
we assume here, was proved in [82]. The resulting quest for a Hamiltonian QR
algorithm became known under the name Van Loan’s curse and is described in
some detail in Chap. 1. In summary, the lack of the existence of a Hamiltonian or
symplectic QR algorithm of cubic complexity under the same general assumptions
that allow for structured Schur forms is due to the non-existence of structured
Hessenberg-like forms that stay invariant under structured QR iterations. Byers
[43, 44] was able to derive such a Hamiltonian Hessenberg form for the special
case that rank.F / D 1 or rank.G/ D 1 in (4.21). This allows to compute the
Hamiltonian Schur form using orthogonal and symplectic similarity transformations
in O.n3/ flops and to solve the CARE (4.23) and the associated continuous-time
LQR problem via (4.25).

Under the same rank assumptions on G or F for the symplectic pencil in (4.21),
Volker was able to derive an analogous QZ-type algorithm [75]. This algorithm then
was probably the most involved eigenvalue algorithm of QR-type, with a technically
demanding sequence of elementary eliminations in the bulge-chasing process!

In the following, we will discuss the Hamiltonian QR algorithm and Volker’s
contribution to stop the search for a Hamiltonian Hessenberg form in the general
situation. We omit the symplectic case as it is technically much more involved and
refer to the original paper [75] for details.

As already noted, the Hamiltonian QR algorithm should be based on orthogonal
and symplectic similarity transformations. This implies a special structure.

Lemma 2 ([82]) If U 2 R
2n�2n is orthogonal and symplectic, then

U D
�
U1 U2

�U2 U1
�
; U1; U2 2 R

n�n: (4.29)
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Moreover, as the intersection of two matrix groups, orthogonal symplectic matrices
form a matrix group US 2n with respect to matrix multiplication.

As elements of US 2n are determined by the 2n2 parameters given by the entries of
U1; U2, only these parameters need to be stored and updated throughout a sequence
of similarity transformations.

Now, the following theorem raises the hope that it is possible to find an algorithm
based on symplectic and orthogonal similarity transformations for solving CAREs.

Theorem 2 ([82]) If H is Hamiltonian and �.H/ \ {R D ;, then there exists
U 2 US 2n such that

UTHU D
� OH11

OH12

0 � OHT
11

�
; OH11; OH12 2 R

n�n; (4.30)

where OH11 is in real Schur form and �. OH11/ D � (the stable part of the spectrum
of H ).

Partitioning U from (4.30) as in (4.29), we have from (4.25) that the stabilizing
solution of the CARE (4.23) is given by Xc D U2U

�1
1 .

Remark 2 The decomposition given in (4.30) is called the Hamiltonian Schur form.
It can be shown that such a form may also exist if eigenvalues on the imaginary axis
are present. They have to satisfy certain properties, the most obvious one is that their
algebraic multiplicity needs to be even; see [72] and Chap. 6.

As the QR algorithm is considered to be the best method for solving the dense
non-symmetric eigenproblem, it is straightforward to strive for a symplectic variant
of the QR algorithm converging to the Hamiltonian Schur form given in (4.30).
A framework for such an algorithm can easily be derived. Denote the iterates of such
an algorithm by Hj . If we choose the QR decomposition performed in each step,
i.e., pj .Hj / D SjC1RjC1, such that all SjC1 are symplectic and orthogonal, then it
follows that all iteratesHjC1 D STjC1Hj SjC1 are Hamiltonian. Unfortunately, such
a symplectic QR decomposition does not always exist. Sets of matrices in R

2n�2n for
which it exists are described in [39]. In particular, it is also shown there (see [44]
for a constructive proof) that if M is symplectic, then there exists S 2 US 2n such
that

M D SR D S

�
R11 R12
0n R�T

11

�
D

2
64�

�

3
75 ; (4.31)

where R11;R12 2 R
n�n. Uniqueness of this decomposition can be achieved by

requiring all diagonal entries of R11 to be positive.
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As the matrixR in (4.31) is permutationally similar to an upper triangular matrix
and the Hamiltonian Schur form is similar to the real Schur form using the same
permutations, it can be shown under mild assumptions that such a Hamiltonian
QR algorithm converges to Hamiltonian Schur form if it exists. Moreover, as only
similarity transformations in US 2n are used, the algorithm can be shown to be
strong backward stable in the sense of Bunch [38].

Byers shows in [44] that if the rational function pj is chosen to be the Cayley
shift ck.t/ WD .t � �k/.t C �k/

�1, where �k is an approximate real eigenvalue of
H , or dk.t/ WD .t ��k/.t ��k/.t C�k/

�1.t C�k/
�1, where �k is an approximate

complex eigenvalue ofH , then pj .Hj / is symplectic, and hence, the symplectic QR
decomposition of pj .Hj / exists. In case ˙�k are exact eigenvalues ofH and hence
of Hj , then deflation is possible, and we can proceed with the deflated problem of
smaller dimension without ever being forced to invert a singular matrix. In this way,
a double or quadruple Hamiltonian QR step can be implemented.

Unfortunately, the so derived algorithm is of complexity O.n4/ as each symplec-
tic QR decomposition requires O.n3/ flops and usually, O.n/ iterations are required
(based on the experience that for each eigenvalue, 1–2 iterations are needed). The
missing part that would bring the computational cost down to O.n3/ is an initial
reduction analogous to the Hessenberg reduction in the QR algorithm that

• is invariant under the similarity transformation performed in each step of the
Hamiltonian QR algorithm (the Hamiltonian QR step);

• admits an implementation of the Hamiltonian QR step using only O.n2/ flops.

In [44] Byers shows that such a form exists.

Definition 3 A Hamiltonian matrix H 2 R
2n�2n is in Hamiltonian Hessenberg

form if

H D
�
H11 H12

H21 �HT
11

�
D

2
64��

* ��

3
75 ; (4.32)

where Hij 2 R
n�n, i; j D 1; 2, H11 is upper Hessenberg, and H21 D 'ene

T
n with

' 2 R and en being the nth unit vector. The Hamiltonian Hessenberg matrix H is
unreduced if hiC1;i 6D 0, i D 1; : : : ; n � 1, and ' 6D 0.

Byers [44] shows that if Hj is in Hamiltonian Hessenberg form and the rational
function pj is chosen as a Cayley shift, then HjC1 is in Hamiltonian Hessenberg
form again and the Hamiltonian QR step can be implemented in O.n2/ flops.

The crux of this algorithm is the initial reduction of a Hamiltonian matrix to
Hamiltonian Hessenberg form. Byers shows how this can be achieved if one of
the off-diagonal blocks of the Hamiltonian matrix H in (4.21) has rank 1. (This is
related to control systems of the form (4.2) having only one input (m D 1), i.e.,
single-input systems and/or only one output (p D 1), i.e., single-output systems.)
But unfortunately no algorithm is known for reducing a general Hamiltonian matrix
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to Hamiltonian Hessenberg form. But the situation is even worse. Analogous to the
standard QR algorithm where the QR step is performed on unreduced Hessenberg
matrices (possibly zeros on the subdiagonal are used for deflation, i.e., splitting the
problem in two or more subproblems consisting of unreduced Hessenberg matrices),
the Hamiltonian QR algorithm works for unreduced Hamiltonian Hessenberg
matrices. The following theorem due to Ammar and Mehrmann [3] shows that
the situation is in general hopeless with respect to the existence of the unreduced
Hamiltonian Hessenberg form.

Theorem 3 If H 2 R
2n�2n is Hamiltonian, then there exists an orthogonal and

symplectic matrix transforming H to unreduced Hamiltonian Hessenberg form if
and only if the nonlinear set of equations

xT x D 1 and xT JH2k�1x D 0 for k D 1; : : : ; n � 1;

has a solution that is not contained in an H -invariant subspace of dimension n or
less.

Obviously, if JH is positive definite, such a vector cannot exist, showing that there
really exist situations in which the unreduced Hamiltonian Hessenberg form does
not exist. A similar result holds in the symplectic case. Therefore, other approaches
have been investigated during the last decade.

4.4.1.3 The Multishift Algorithm

From Theorem 3 we know that the reduction to Hamiltonian Hessenberg form which
is necessary to efficiently implement the Hamiltonian QR algorithm is in general not
possible. Nevertheless, the same paper [3] suggested a possible alternative method
that became the topic of my diploma thesis [8] and eventually lead to the paper [2].

The basis of this idea is that by orthogonal symplectic similarity transformations,
the following reduction due to Paige and Van Loan [82] can be achieved.

Theorem 4 Let H 2 R
2n�2n. Then there exists U 2 US 2n such that

UTHU D
�
H11 H12

H21 H22

�
D

2
64��
�

3
75 ; (4.33)

where H11 2 R
n�n is upper Hessenberg and H21 2 R

n�n is upper triangular. The
transformation matrix U can be chosen such that

U D

2
664
1 0 0 0

0 QU1 0 QU2
0 0 1 0

0 � QU2 0 QU1

3
775 : (4.34)
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If in addition,H is Hamiltonian, then

UTHU D
�
H11 H12

H21 �HT
11

�
D

2
64��
� ��

3
75 ; (4.35)

i.e., H21 is diagonal andH12 is symmetric.

The reduced form (4.35) of a Hamiltonian matrix will be called PVL form in the
following. An algorithm for computing the transformation given in (4.35) is derived
in [82]. It can be implemented using a finite number of similarity transformations
and requires O.n3/ flops. Unfortunately, the PVL form is not preserved under the
Hamiltonian QR iteration and can therefore not serve for the initial reduction step
of the Hamiltonian QR algorithm. In the following, we will see that the PVL form
can be used in what can be considered as a Hamiltonian multishift QR algorithm.

First, we need some more theory. As before, we denote J D �
0n In�In 0n

�
.

Definition 4 A real subspace L � R
2n is isotropic iff xT Jy D 0 for all x; y 2 L .

If L is maximal, i.e., not contained in an isotropic subspace of larger dimension,
then L is a Lagrangian subspace (cf. Definition 1).

By the definition of symplectic matrices, we obtain immediately the following
lemma.

Lemma 3 Let S 2 R
2n�2n be symplectic. Then the first r columns of S , 1 � r � n,

span an isotropic subspace of R2n. For r D n, this subspace is Lagrangian.

The basis for the multishift algorithm is contained in the following result.

Proposition 2 ([3]) Let H 2 R
2n�2n be a Hamiltonian matrix with spectrum

�.H/ D �n [ .��n/, �n \ .��n/ D ;, and�n D �n D f�1; : : : ; �ng. Then the
multishift vector

x D ˛.H � �1I2n/ � � � .H � �nI2n/e1; ˛ 2 R; (4.36)

where e1 2 R
2n is the first unit vector, is contained in the n-dimensionalH -invariant

subspace corresponding to ��n. Moreover, this subspace is Lagrangian. In partic-
ular, if �n � C

C WD fz 2 C j <.z/ > 0g, then this Lagrangian subspace is the
stable H -invariant subspace.

So, once we know the spectrum of H , we can compute one vector that is contained
in the subspace required for solving the corresponding CARE. This observation can
be combined with the computation of the PVL form in order to derive a multishift
step as follows – assuming for simplicity thatH has no eigenvalues on the imaginary
axis.

Using this approach, it is possible to get the whole stable H -invariant subspace.
The following theorem will indicate how Algorithm 1 can be used to achieve this.
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Algorithm 1 One step of the multishift algorithm for Hamiltonian matrices
Multishift step

1. Compute the multishift vector as in (4.36) with �j 2 C
C, j D 1; : : : ; n. Choose ˛ in (4.36)

such that kxk2 D 1. (If this is not possible, i.e., x D 0, then exit.)
2. Compute U1 2 US 2n such that UT

1 x D ˙e1.
3. Set H1 D UT

1 HU1.
4. Compute the PVL form of H1, i.e., compute U2 2 US 2n such that H2 D UT

2 H1U2 D
.U1U2/

T H.U1U2/ is in PVL form.

Theorem 5 Let H 2 R
2n�2n be Hamiltonian and let Vn be an n-dimensional

H -invariant Lagrangian subspace corresponding to �n � �.H/ with �n as in
Proposition 2. Further, let the multishift vector x from (4.36) be computed using
��n D f�1; : : : ; �n g as the shifts. If 1 � p � n is the dimension of the minimal
isotropic H -invariant subspace Vp containing x, then after Step 4 of the multishift
step, H2 has the form

H2 D

2
664
A11 A12 G11 G21
0 A22 GT

21 G22

0 0 �AT11 0

0 F22 �AT12 �AT22

3
775

gp
gn � p
gp
gn � p

; (4.37)

where A11 2 R
p�p , �.A11/ � �n, and the Hamiltonian submatrix

H22 WD
�
A22 G22

F22 �AT22

�
2 R

2.n�p/�2.n�p/

is in PVL form.
Furthermore, for U1; U2 2 US 2n from the multishift step we have

U WD U1U2 D Œ u1; : : : ; up; upC1; : : : ; u2n � 2 US 2n; uj 2 R
2n for j D 1; : : : ; 2n;

and span
˚
u1; : : : ; up

� D Vp � Vn.

The detailed proof of this result is contained in [10].
The theorem shows that if the multishift vector x from (4.36) has components in

all directions of a LagrangianH -invariant subspace, then after one multishift step, a
basis for this invariant subspace is given by the first n columns of U1U2. Otherwise,
the first p columns of U1U2 span a p-dimensional H -invariant subspace contained
in this subspace and the problem decouples into two subproblems. Algorithm 1
can then repeatedly be applied to the resulting Hamiltonian submatrix H22 2
R
2.n�p/�2.n�p/ until p D n. The implementation of this algorithm is described in

detail in [2].
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As only orthogonal symplectic similarity transformations are used, a multishift
step is strongly backward stable. The computational cost of one multishift step for
p D 0 is around 15 % of the Schur vector method [71]. The complete computational
cost depends on the number of iteration steps necessary. In a worst case scenario,
i.e., in each step only one basis vector of Vn is found, the complexity of this
algorithm becomes basically O.n4/. This is rarely observed in praxis, though.
On the other hand, rounding errors during the computation, in particular while
forming the multishift vector, and the fact that the eigenvalues are usually only
known approximately, make it practically impossible that deflation occurs exactly.
Often, some iteration steps are necessary to detect deflation when using finite
precision arithmetic. Generally speaking, as long as the size of the problem is
modest (n � 100), the method is feasible and the number of required iterations
is acceptable.

When solving CAREs, usually the stable H -invariant subspace is required. In
that case, �n in Proposition 2 has to be chosen such that <.�j / < 0 for all j D
1; : : : ; n. Note that the stable H -invariant subspace is Lagrangian; see, e.g., [3, 76].
But observe that in principle, the multishift algorithm can be used to compute the
CARE solution corresponding to any Lagrangian H -invariant subspace. This is of
particular importance in some applications, e.g., in some H1-control problems,
ARE solutions exist and have to be computed ifH has eigenvalues on the imaginary
axis. As long as these eigenvalues permit a Lagrangian invariant subspace, the
corresponding ARE solutions can be computed by the multishift algorithm.

The computation of the multishift vector in (4.36) requires the knowledge of
the spectrum of H . Hence, what remains to show is how to obtain the eigenvalues
of a Hamiltonian matrix H . One possibility is to run the QR algorithm without
accumulating the transformations. But then the problems with eigenvalues close to
the imaginary axis as mentioned above have to be expected. A different approach,
which costs only one third of the QR algorithm and takes the symmetry of �.H/
into account, was suggested by Van Loan [87]. Consider K WD H2. Obviously,
if � 2 �.H/, then �K WD �2 2 �.K/. If <.�/ 6D 0, then �K is a double
eigenvalue of K due to the symmetry of �.H/. Squared Hamiltonian matrices are
skew-Hamiltonian, that is, they satisfy KJ D �.KJ/T and therefore have the explicit
block structure

K D
�
K1 K2

K3 K
T
1

�
; K2 D �KT

2 ; K3 D �KT
3 : (4.38)

The skew-Hamiltonian structure is preserved under symplectic similarity trans-
formations [87]. Hence, computing the PVL form (4.33) for skew-Hamiltonian
matrices yields

UTH2U D UTKU D
� QK1

QK2

0 QKT
1

�
D

2
64��

��

3
75 : (4.39)
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Hence, �.K/ can be obtained by computing the eigenvalues of the upper
Hessenberg matrix QK1, e.g., by applying the QR iteration to QK1. Let �. QK1/ D
f�1; : : : ; �n g, then �.H/ D f ˙p

�1; : : : ;˙p
�n g. Note that no information

about eigenvectors or invariant subspaces ofH is obtained.
The resulting method is strongly backward stable for K and preserves the

symmetry structures of �.K/ and �.H/. An implicit version of this algorithm is
also suggested in [87]; U from (4.39) is applied directly to the Hamiltonian matrix
such that QH WD UTHU is square-reduced, i.e., QH2 has the form given in (4.39).
The disadvantage of Van Loan’s method is that a loss of accuracy up to half the
number of significant digits of the computed eigenvalues ofH is possible. An error
analysis in [87] shows that for a computed simple eigenvalue Q� corresponding to
� 2 �.H/ we have

j�� Q�j 
 min

�
"kHk22
s.�/j�j ;

p
"kHk2
s.�/

�
D "

kHk2
s.�/

� min

� kHk2
j�j ;

1p
"

�
; (4.40)

where s.�/, the reciprocal condition number of �, is the cosine of the acute angle
between the left and right eigenvectors of H corresponding to �. Basically, this
error estimate indicates that eigenvalues computed by Van Loan’s method are as
accurate as those computed by a numerically backward stable method provided that
� 
 kHk2 while for � � kHk2, the error grows with the ratio kHk2=j�j.

Usually, eigenvalues computed by Van Loan’s method are satisfactory as shifts
for the multishift algorithm and in most other practical circumstances. On the other
hand, removing the possible 1=

p
" loss of accuracy provides the motivation of the

algorithm presented in the next section.

4.4.1.4 A Method Based on the Symplectic URV Decomposition

The method described in this subsection was the key to breaking Van Loan’s curse
as already described in Chap. 1. As we investigate it here in the context of solving
CAREs, we will also need some details and therefore repeat the essential steps.2

The central problem of Van Loan’s method is that squaring the Hamiltonian
matrix leads to a possible loss of half of the accuracy. For products of general
matrices, this possible loss of accuracy caused by forming the product can be
circumvented by employing the periodic or cyclic QR algorithm [37, 59, 60].

2A personal remark: We derived this method over several months in 1995/1996, regularly meeting
with Hongguo Xu, then a Humboldt fellow at TU Chemnitz-Zwickau in Volker’s group, on
Thursdays in Volker’s office. The quest was to avoid the loss of accuracy due to the explicit squaring
ofH in Van Loan’s method. When Hongguo wrote the key step, the symplectic URV decomposition,
on Volker’s blackboard one Thursday morning, this was one of the most beautiful and enlightening
moments in my career as a mathematician.
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If A D A1 � A2 � � �Ap , where Aj 2 R
n�n, j D 1; : : : ; p, then this algorithm

computes the real Schur form of A without forming A explicitly. This is achieved
by cyclically reducing the factors Aj to (quasi-)upper triangular form:

UTAU D .U T
1 A1U2/.U

T
2 A2U3/ � � � .U T

p ApU1/ D
�
�

�
�
�
�

�
� � �
�
�

�
:

(4.41)

Here, UT
1 A1U2 is in real Schur form while UT

j AjU.jC1/ mod p , j D 2; : : : ; p, are
upper triangular such that the product is in real Schur form. The eigenvalues are
then obtained from computing the eigenvalues of the 1 � 1 and 2 � 2 blocks on
the diagonal of the product in (4.41). This method is numerically backward stable
and avoids the loss of accuracy in the eigenvalues as the product A is never formed
explicitly.

The idea is now to employ this approach toH2 by replacing the reduction ofH2

to PVL form by UTH2U D .U T HV/.V T HU/, where U; V 2 US 2n. This can be
achieved by the symplectic URV-like decomposition given in [28].

Proposition 3 For H 2 R
2n�2n there exist U; V 2 US 2n such that

V THU D
�
H1 H3

0 �HT
2

�
D

2
64�
0 ��

3
75 ; (4.42)

i.e., H1 is upper triangular and H2 is upper Hessenberg. If, in addition, H is
Hamiltonian, then

UTH2U D
�
H2H1 H2H3 � .H2H3/

T

0 .H2H1/
T

�
D

2
64��

0 ��

3
75 (4.43)

and the eigenvalues of H are the positive and negative square roots of the
eigenvalues of the upper Hessenberg matrix H2H1.

That is, using the decomposition given in (4.42) we obtain the PVL form of H2

without explicitly squaring H . In order to obtain the eigenvalues of H we then
apply the periodic QR algorithm to H2H1.

In [28] an algorithm for computing the decomposition given in (4.42) is
presented. It requires a finite number of transformations. The combined cost of
computing the decomposition (4.42) and applying the periodic QR algorithm to
H2H1 is about 48n3 flops – this is 1.5 � the computational cost of Van Loan’s
method and about 60 % of the cost of the QR algorithm applied to a non-symmetric
2n � 2n matrix. The method is numerically backward stable as only orthogonal
transformations are used. The symmetry property of �.H/ is preserved and in this
sense the method can be considered to be strongly backward stable.
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A detailed error analysis of the above method yields the following result [28].
Essentially (under mild assumptions), for a nonzero and simple eigenvalue � of
a Hamiltonian matrix H 2 R

2n�2n, the algorithm based on the symplectic URV-
like decomposition followed by applying the periodic QR algorithm to H2H1 from
(4.42) yields a computed eigenvalue Q� satisfying

j Q� � �j � 2kHk"
s.�/

C O."2/:

This is the accuracy to be expected from any backward stable method like the QR
algorithm and shows that by avoiding to squareH , we get the full possible accuracy.

Nevertheless, as Van Loan’s method, the approach presented above does not
provide the H -invariant subspaces. But based on (4.42) it is possible to derive an
algorithm that can be used to compute the stable H -invariant subspace and the
solution of the CARE (4.23) [27]. The basis for this algorithm is the following
theorem.

Theorem 6 ([27]) Let A 2 R
n�n and define B D

h
0 A
A 0

i
. Then the spectra of A

and B are related via �.B/ D �.A/ [ .��.A//. Further, let �.A/ \ {R D ;.
If the columns of

�
UT
1 ; U

T
2

�T 2 R
2n�n span an orthogonal basis for a B-invariant

subspace such that

B

�
U1
U2

�
D
�
U1
U2

�
R; �.R/ � C

C \�.B/;

then range .U1 C U2/ is the A-invariant subspace corresponding to�.A/\C
C and

range .U1 � U2/ is the stable A-invariant subspace.

An orthogonal basis for the subspace defined by range .U1 � U2/ can be obtained,
e.g., from a rank-revealing QR decomposition of U1 � U2; see, e.g., [56].

In general it is of course not advisable to use the above result in order to obtain the
stable invariant subspace of a matrix A as one would have to double the dimension
and thereby increase the computational cost and required workspace significantly as
compared to applying the QR algorithm to A. But we will see that for Hamiltonian
matrices, the given structure makes this approach very attractive.

Let H 2 R
2n�2n be Hamiltonian with �.H/ \ {R D ;. Define a permutation

matrix P 2 R
4n�4n by

P D

2
664
In 0 0 0

0 0 In 0

0 In 0 0

0 0 0 In

3
775 :

Then PT
�
0 H
H 0

�
P is a Hamiltonian matrix in R

4n�4n. The basic idea is now to
employ the decomposition (4.42) in order to make PT HP block-upper triangular.
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Therefor, let OU ; OV 2 US 2n be as in Proposition 3 such that OV TH OU has the form
given in (4.42). Then we apply the periodic QR algorithm to H2H1. From this we
obtain orthogonal matrices V1; V2 2 R

n�n such that both, the product

.V T
1 H2V2/.V

T
2 H1V1/ DW OH2

OH1

and OH2, are in upper real Schur form while OH1 is upper triangular. Define

U1 WD OU
�
V1 0

0 V1

�
; U2 WD OV

�
V2 0

0 V2

�
; and U WD

�
U1 0

0 U2

�
:

Then

B WD PT U T

�
0 H

H 0

�
UP D

2
664
0 OH2 0 OHT

3OH1 0 OH3 0

0 0 0 � OHT
1

0 0 � OHT
2 0

3
775

is Hamiltonian and block upper triangular with OH1 upper triangular, OH2 in real Schur
form, and OH3 D V T

2 .H2H3 �HT
3 H

T
2 /V1.

Now let U3 be orthogonal such that

UT
3

�
0 OH2

OH1 0

�
U3 D

�
T1 T3
0 �T2

�
(4.44)

is in upper real Schur form with Tj 2 R
n�n, j D 1; 2; 3, and �.T1/ D �.T2/ �

C
C. Note that this is possible as the eigenvalues of

h
0 OH2OH1 0

i
are exactly those ofH2

and�.H/ \ {R D ;. Hence,

QB WD
�
UT
3 0

0 U T
3

�
B

�
U3 0

0 U3

�
D

2
664
T1 T3 R1 R2
0 �T2 RT2 R3

0 0 �T T1 0

0 0 �T T3 T T2

3
775

is in Hamiltonian Schur form. In order to apply Theorem 6, we need to reorder the
eigenvalues in the Hamiltonian Schur form such that all eigenvalues in the upper
left 2n � 2n block are in the open right half plane. This can be achieved, e.g., by
the symplectic re-ordering algorithm due to Byers [43, 44]. With this algorithm it is
possible to determine QU 2 US 2n such that

QUT QB QU D

2
664
T1 QT3 R1 QR2
0 QT2 QRT2 R3
0 0 �T T1 0

0 0 � QT T3 � QT T2

3
775 ; �. QT2/ D �.T2/:
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Now define

S WD PT

�
U1 0

0 U2

�
P

�
U3 0

0 U3

�
QU : (4.45)

Then S 2 US 4n and

T WD STP T

�
0 H

H 0

�
PS DW

�
T11 T12
0 �T T11

�
(4.46)

is in Hamiltonian Schur form with �.T11/ � C
C. Now we can apply Theorem 6

with A replaced by H and R WD T11.

Corollary 1 Let H 2 R
2n�2n be Hamiltonian with �.H/ \ {R D ; and let S be

as in (4.45) such that (4.46) holds. If PS WD �
S11 S12
S21 S22

�
, with Sij 2 R

2n�2n, then the
n-dimensional, stable H -invariant subspace is given by range .S11 � S21/.
The above transformations yielding S are described in more detail in [27]. The
solution of the CARE can be obtained from an orthogonal basis of range .S11 � S21/

computed by a rank-revealing QR decomposition or directly from S11 � S21; for
details see [27]. The latter approach saves a significant amount of work such that
the cost of the algorithm described above for computing the stabilizing solution of
the CARE (4.23) is approximately 60 % of the cost of the Schur vector method.

Remark 3 The transformation of
h
0 OH2
OH1 0

i
to real Schur form and the computation

of the matrix U3 in (4.44) can be efficiently implemented employing the available
structure. An algorithm for this is given in [27].

It is shown in [27] that the algorithm presented above is strongly backward stable
in R

4n�4n. That is, if QS is the analogue to S from (4.45) computed in finite precision
arithmetic, then

QSTP T

�
0 H

H 0

�
P QS D T C E;

with T as in (4.46), kEk2 � c"kHk2 for a small constant c and E 2 R
4n�4n is

Hamiltonian. Moreover it is shown in [27] that the computed invariant subspace is
as accurate as the maximum of its condition number and the condition number of
its complimentary (antistable) H -invariant subspace permit. This is to be expected
from the fact that at the same time we compute the stable H -invariant subspace, by
Theorem 6 we also compute the antistable H -invariant subspace. In that sense the
algorithm is not optimal as we would like the accuracy of the computed subspace to
be limited only by its own condition number.

The algorithms described in this section are implemented in Fortran 77, see [19],
while an implementation of Van Loan’s method with scaling is provided in [12]. All
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these methods are also integrated in SLICOT,3 the Subroutine LIbrary in COntrol
Theory [26]. This subroutine library is based on a joint initiative of European
researchers, in which Volker also was a driving force.

The invariant subspace computation as described above turned out to be not
completely satisfactory. For some examples with eigenvalues close to the imaginary
axis, unexpectedly large errors are encountered in the computed CARE solutions.
Almost 10 years later, Volker and co-workers came up with the observation that the
orthogonal and symplectic matrix U that puts H2 into skew-Hamiltonian Schur
form contains information that can be used to construct the stable H -invariant
subspace in a recursive fashion [49]. This matrix U is obtained from the symplectic
URV decomposition (4.42) with the additional step of accumulating the matrices
obtained from the periodic QR algorithm applied toH2H1 into U; V . This approach
is described in some detail in Sect. 1.4, we therefore refrain from recapitulating it
here. An intuitive explanation of the method was given by Watkins in [89], and a
block version of the algorithm that can better deal with clusters of eigenvalues is
described in [79]. It can be concluded that Volker and co-workers have eventually
found a method to solve CAREs via the approach based on invariant subspaces
of the Hamiltonian eigenproblem that satisfies all desired properties regarding
numerical stability, structure-preservation, and efficiency.

Analogous procedures for solving the DARE via the symplectic pencil approach
have not yet been derived. On the other hand, by employing the generalized
Cayley transformation approach described in the previous section, one may use
the generalizations of this approach to skew-Hamiltonain/Hamiltonian or even/odd
matrix pencils described by Volker and co-workers in [15, 24]. Nevertheless, there
is still room for further improvement: the methods discussed in [15, 24] extend
the approach from [27] rather than the more robust methods from [49, 79]. Also,
the available software for structured matrix pencils [33, 34] is still based on
the skew-Hamiltonian/Hamiltonian pencil structure rather than the more general
structure of even or alternating matrix pencils.

4.4.2 Defect Correction

In this subsection, we re-visit a topic that is very important for obtaining solutions
to CAREs and DAREs at highest possible accuracy. If a numerical solution QX of the
CARE (4.23) is computed, this process is prone to roundoff errors, thus QX can only
be an approximation to the solutionX of (4.23). In particular for algorithms that are
not numerically backward stable, like the SR algorithm discussed in Chap. 1 and the
previous subsection, methods based on sign and disk functions, but also symplectic
QR algorithms in case the final step of obtainingX viaX D �U2U�1

1 as in (4.25) is
ill-conditioned, these roundoff errors may lead to deteriorating accuracy. Improving

3Available at www.slicot.org

www.slicot.org
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this approximation may be achieved using Newton’s method, but alternatively also
by defect correction. The necessary theory was derived in [80] and [76, Chapter 10].
We will provide this here in some detail, as the defect correction principle has,
despite its importance for practice, received little attention since, and in particular
new computing platforms including hardware accelerators may use this principle for
obtaining fast and reliable algorithms, as has been already suggested for Lyapunov
equation in [18].

The defect correction principle is most easily explained for linear systems of
equations. Given an approximate solution Qx of the underlying problem

Ax D b;

given A 2 R
n�n nonsingular, b 2 R

n, we determine the residual r D b � A Qx, then
compute a solution ı of the linear system

Aı D r;

and set

xC D Qx C ı:

This process can be iterated until a given stopping criterion is satisfied. Defect
correction is successful as long as the residual can be computed accurately enough,
i.e., with higher precision than Qx. Such higher precision may be obtained, e.g., using
double precision in case Qx was computed in single precision. There is no need to
compute Qx and ı by the same algorithm, providing great flexibility to the defect
correction principle.

The basis for applying defect correction to CAREs is provided by the following
theorem due to Mehrmann/Tan [80]

Theorem 7 Let X D XT be a solution of (4.23), and QX a symmetric approxima-
tion to this solution. Define P D X � QX; QA D A �G QX , and let

QF D F C AT QX C QXA� QXG QX

be the residual of (4.23) with respect to QX . Then P satisfies the CARE

0 D QF C P QAC QATP � PGP: (4.47)

The theorem is proved by simple algebraic manipulations after insertingX D QXCP
in (4.23).
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Due to the non-uniqueness of CARE solutions, it is important to guarantee that
the updated approximate solution QX C P is still the one of interest, usually the
stabilizing solution in control applications. In order to show that this is indeed the
case, first it is necessary to check whether the stabilizability property related to
(4.23) carries over to (4.47).

Lemma 4 Given (4.23) with .A;G/ stabilizable, i.e.,

rankŒ�I �A; G� D n 8 � 2 C W <.�/ � 0:

Then QA D A �G QX is stabilizable as well.

Proof

rankŒ�In � QA;G� D rankŒ�In �ACG QX;G�

D rank

�
Œ�In �A;G�

�
In 0
QX In

��
D rankŒ�In �A;G�: ut

As we have seen before, the positive semidefinite solution of the CARE (4.23)
can be obtained from the invariant subspace of the Hamiltonian matrix

H D
�
A G

F �AT
�

corresponding to the eigenvalues in C
�. Forming the Hamiltonian matrix corre-

sponding to the defect CARE (4.47),

QH D
� QA G

QF � QAT
�
;

we see that QH D Q�1HQ using

Q D
�
I 0

� QX I

�
:

This immediately implies that �.H/ D �. QH/, so that also QH has exactly
n eigenvalues with negative real parts. Now assume the QH–invariant subspace

corresponding to these eigenvalues is spanned by

�
Z1
Z2

�
2 R

2n�n, that is,

� QA G
QF � QAT

� �
Z1
Z2

�
D
�
Z1
Z2

�
Z; (4.48)

where all eigenvalues of Z 2 R
n�n have negative real parts.
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By Lemma 4, . QA;G/ is stabilizable. Using standard arguments of control theory
[52], it can be shown then thatZ1 is invertible and thatZ2Z�1

1 is symmetric negative
semidefinite. Inserting P WD �Z2Z�1

1 in (4.48), we obtain

� QA G
QF � QAT

� �
I

�P
�

D
�
I

�P
�

QZ; (4.49)

where QZ D Z1ZZ
�1
1 has only eigenvalues with negative real parts, too.

Expanding terms in (4.49), the first row yields

QA � GP D QZ; (4.50)

implying that P is stabilizing, and from the second row,

QF C QAT P D �P QZ D �P QAC PGP;

we see that P is a solution of (4.47). In summary, P must be the unique symmetric
positive semidefinite solution of (4.47).

Now with QA D A �G QX it follows from (4.50), that

A�G. QX C P/ D QZ

is stable, so that in summary we obtain the following result:

Theorem 8 Suppose the invariant subspace of the Hamiltonian matrix

QH D
� QA G

QF � QAT
�

corresponding to (4.47) is spanned by the columns of
�
Z1
Z2

� 2 R
2n�n, and

P D �Z2Z�1
1 , then QX C P is the unique symmetric positive semidefinite solution

of (4.47).

Based on Theorems 7 and 8, we may now formulate a defect correction algorithm
for CAREs.

As there are no specifications given for the methods employed in Steps 1 and
3 of Algorithm 2, one could use any numerical method to solve the CAREs, and
possibly different ones in Steps 1 and 3. For instance, one could simply use a fast,
but potentially unstable, method as the SR algorithm, as there is no need to have
an QX of high accuracy. As kP k will be very small in general, the quadratic term
in the defect CARE is basically negligible, Newton’s method is a natural choice in
Step 3. Another option is to employ an algorithm like the orthogonal symplectic
multishift algorithm in which part of the computations from Step 1 can be re-used
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Algorithm 2 Defect correction for the CARE (4.23)
Algorithm DC_CARE
Input. A;G; F 2 R

n�n as in (4.23); tolerance " > 0 for the stopping criterion.

Output. Approximation QX to the unique stabilizing solution of (4.23) and an error estimator P 2
R
n�n with kPk � ".

Step 1. Compute stabilizing approximate solution QX of (4.23) with the favorite CARE solver.

Step 2. Set P WD QX; QX WD 0.

Step 3.
while kPk > " do

Set

QX WD QX C P

QF WD F C AT QX C QXA� QXG QX
QA WD A�G QX

Compute a stabilizing solution of the defect CARE

0 D QF C QAT P C P QA� PGP

end

in Step 3, so that the cost in Step 3 can be reduced. Such a variant is discussed in
[2, 8].

The Algorithm DC_CARE is numerically backward stable in the sense that QX is
the exact solution of the following CARE with perturbed data:

0 D F � QF C ATX C XA � XGX;

where QF is the residual from Theorem 7. If the leading significant digits of the defect
P in Step 3 are computed correctly, the approximate solution QX converges to the
exact stabilizing solutionX of (4.23). In practice, this will lead to reduced accuracy
of the residual QF due to cancelation which leads to a limitation of the obtainable
accuracy. Nevertheless, the accuracy of the CARE is often greatly improved by 1–2
steps of defect correction, as several examples in [8] indicate.

A defect correction procedure for the DARE (4.24) can be derived in a com-
pletely analogous fashion; see [80] and [76, Chapter 10]. An interesting aspect
of further research would be to derive a mixed precision CPU-GPU variant of
Algorithm DC_CARE in the fashion of [18]. Also, in case of large-scale sparse
solvers for CAREs as recently reviewed in [32], where low-rank approximations to
the stabilizing solution are computed, it would be necessary to be able to represent
QF in low-rank format to use this concept. Whether this is possible or not is an open

problem.
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4.4.3 Other Contributions to the Numerical Solution of AREs

Volker’s many contributions to the numerical solution of AREs go well beyond the
described methods based on structured eigenproblems. A classical solution method
of AREs is Newton’s method, given their nature as nonlinear systems of equations.
Volker has contributed to the convergence theory of Newton’s method applied to
the generalized CAREs (4.7) and DAREs (4.8), see [76, § 11]. He attributes these
contributions mainly to Ludwig Elsner, but they had not been published before.

A notable contribution to understanding why and when the sign function method
for CAREs [45] can be expected to yield accurate solutions was the perturbation
analysis derived in [46].

Recently, Volker together with Federico Poloni has explored the use of permuted
graph matrices to represent invariant and deflating subspaces of Hamiltonian
matrices and pencils. This has often a tremendously positive effect on the numerical
accuracy of iterative methods based on the inverse-free iteration/disk function
method [5, 11, 31] and doubling-like algorithms [50, 51]. See the Chap. 5 for further
details and references.

An important aspect in deriving numerical methods for AREs is to test them on
challenging examples and to compare the performance to existing methods using
well-defined benchmarks. Volker was the driving force in establishing benchmark
collections for CAREs [20] and DAREs [21], see [22] for an overview. This had a
very positive effect on the publication attitudes of new numerical methods for AREs
as non competitive methods can be identified easily since these benchmark collec-
tions became available. Later on, he also inspired a number of other benchmark
collections for computational control problems that became part of the SLICOT
project, see also [25].

Together with Petko Petkov and Mihail Konstantinov, Volker also contributed
and tested mathematical software for solving CAREs [84, 85].

Although Volker had not published on solving large-scale AREs until recently
[78], he inspired much of the work in this area by putting his Ph.D. student Thilo
Penzl on this track. His thesis [83] is now considered the starting point for many of
the currently used methods for large-scale matrix equations, see also the later paper
[23] that was published only 8 years after Thilo’s unfortunate passing in 1999 due to
a tragic accident. A survey on the developments of this prospering field was recently
given in [32].

4.5 Avoiding AREs

Already in his early work related to his habilitation thesis and the book [76], Volker
often made the point that in solving LQR problems, it may not be necessary to solve
AREs explicitly. The basic idea of this can be presented using the continuous-time
LQR problem. Borrowing the most recent representation, we can associate an even
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matrix pencil to the LQR problem (4.1) for the descriptor or LTI system (4.2):

�K �L WD �

2
4 0 E 0

�ET 0 0

0 0 0

3
5 �

2
4 0 A B

AT CTQC �CT S

BT ST C R

3
5 : (4.51)

This matrix pencil considered as a matrix polynomial has the leading
coefficient skew-symmetric, the constant term is symmetric, and therefore is
skew-symmetric/symmetric, or more general, an alternating matrix polynomial, see
the Chaps. 2, 6, and 12 for more on these structures. Assuming for simplicity E;R
nonsingular, the key observation now is that if the feedback solution u.t/ D Fcx.t/

is sought, and an n-dimensional stable deflating subspace of the even pencil �K�L
from (4.51) exists, spanned by the columns of

�
V T ; U T ; W T

�T
with U 2 R

n�n
invertible and V;W of size according to (4.51), then, following [76, § 6], we get

Fc D �R�1.BT XcE C ST C / D WU�1:

Hence, the optimal feedback control law can be determined without computing the
CARE solution! The latter is determined via XcE D VU�1 in this setting. Working
with the even matrix pencil in (4.1) has the additional advantage that no linear
systems with R need to be solved in forming the coefficients and thus, rounding
errors in forming these coefficients are avoided [14]. This principle also carries over
to the discrete-time case, see again [76, § 6] for the unstructured setting.

Avoiding the solution of AREs is even more desirable in H1 control. We will
not go into the details of this problem, that has become a paradigm in robust control.
It suffices to understand that the H1-optimal controller is usually determined
using the so called � -iteration and subsequent controller formulas based on the
output of this iteration. The � -iteration is classically formulated in such a way
that (in the continuous-time case) two CAREs need to be solved in each iteration
step, and a spectral condition of their product is checked, see, e.g., [57, 90]. The
crux is that these CAREs usually have indefinite quadratic terms which does not
allow to solve them with Newton’s method, and the eigenvalues of the associated
Hamiltonian matrices are often close to the imaginary axis (in particular close to the
“optimal” � ) which makes them difficult to solve by methods based on invariant or
deflating subspaces of the associated Hamiltonian matrices. Moreover, often their
norms tend to infinity which yields poorly scaled problems, implying additional
numerical difficulties. For all these reasons, it was desirable to avoid the CAREs in
the process. Volker and co-workers were able to derive a numerically robust method
that achieves this, see [16, 17] for the LTI case and [73] for the descriptor case. Later,
also controller formula based on this approach were presented in [13]. For details,
we refer to [24], where also other applications of using extended pencil formulations
in even or alternating form are discussed.
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4.6 Concluding Remarks

Over the last 20 years, Volker and I have collaborated on methods for algebraic
Riccati equations, and on how to avoid them. We often had differing opinions on
whether or not the ARE is the right concept to use for solving certain control
problems. These were always inspiring and fruitful discussions, and they certainly
have been driving both of us to improve methods and ideas more and more. Today,
we basically agree on which problems should be solved using AREs, and where one
should avoid them by using structured matrix pencil methods as discussed, e.g., in
Chaps. 1–3, and 5. Therefore, I foresee interesting research tasks in both directions
for certainly another decade and more, as with increasing computer power, model
complexity in control engineering problems is increasing, and will require new ideas
and further development of the methods for DREs, AREs, and the related pencil
problems at hand. I truly hope Volker and I will also be part of this development.
In writing this chapter, a number of open problems and ideas already evolved,
and I hope some of these can lead to improved methods and further inside in the
theoretical and numerical treatment of DREs and AREs.

References

1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and
Systems Theory. Birkhäuser, Basel (2003)

2. Ammar, G.S., Benner, P., Mehrmann, V.: A multishift algorithm for the numerical solution of
algebraic Riccati equations. Electron. Trans. Numer. Anal. 1, 33–48 (1993)

3. Ammar, G.S., Mehrmann, V.: On Hamiltonian and symplectic Hessenberg forms. Linear
Algebra Appl. 149, 55–72 (1991)

4. Arnold, W.F., Laub, A.J.: Generalized eigenproblem algorithms and software for algebraic
Riccati equations. Proc. IEEE 72, 1746–1754 (1984)

5. Bai, Z., Demmel, J., Gu, M.: An inverse free parallel spectral divide and conquer algorithm for
nonsymmetric eigenproblems. Numer. Math. 76(3), 279–308 (1997)

6. Bender, D.J., Laub, A.J.: The linear-quadratic optimal regulator for descriptor systems. IEEE
Trans. Automat. Control 32, 672–688 (1987)

7. Bender, D.J., Laub, A.J.: The linear-quadratic optimal regulator for descriptor systems:
discrete-time case. Automatica 23, 71–85 (1987)

8. Benner, P.: Ein orthogonal symplektischer Multishift Algorithmus zur Lösung der algebrais-
chen Riccatigleichung. Diplomarbeit, RWTH Aachen, Institut für Geometrie und Praktische
Mathematik, Aachen (1993) (in German)

9. Benner, P.: Contributions to the Numerical Solution of Algebraic Riccati Equations and
Related Eigenvalue Problems. Logos–Verlag, Berlin (1997). Also: Dissertation, Fakultät für
Mathematik, TU Chemnitz–Zwickau (1997)

10. Benner, P.: Computational methods for linear-quadratic optimization. Supplemento ai Rendi-
conti del Circolo Matematico di Palermo, Serie II 58, 21–56 (1999)

11. Benner, P., Byers, R.: Disk functions and their relationship to the matrix sign function. In:
Proceedings of the European Control Conference (ECC 97), Brussels, Paper 936. BELWARE
Information Technology, Waterloo (1997). CD-ROM



102 P. Benner

12. Benner, P., Byers, R., Barth, E.: Algorithm 800. fortran 77 subroutines for computing the
eigenvalues of Hamiltonian matrices I: the square-reduced method. ACM Trans. Math. Softw.
26(1), 49–77 (2000)

13. Benner, P., Byers, R., Losse, P., Mehrmann, V., Xu, H.: Robust formulas for H1 optimal
controllers. Automatica 47(12), 2639–2646 (2011)

14. Benner, P., Byers, R., Mehrmann, V., Xu, H.: Numerical methods for linear-quadratic andH1

control problems. In: Picci, G., Gilliam, D.S. (eds.) Dynamical Systems, Control, Coding,
Computer Vision: New Trends, Interfaces, and Interplay. Progress in Systems and Control
Theory, vol. 25, pp. 203–222. Birkhäuser, Basel (1999)

15. Benner, P., Byers, R., Mehrmann, V., Xu, H.: Numerical computation of deflating subspaces of
skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl. 24(1), 165–190 (2002)

16. Benner, P., Byers, R., Mehrmann, V., Xu, H.: Robust numerical methods for robust control.
Preprint 2004–06, Institut für Mathematik, TU Berlin, D-10623 Berlin (2004). http://www.
math.tu-berlin.de/preprints

17. Benner, P., Byers, R., Mehrmann, V., Xu, H.: A robust numerical method for the �-iteration in
H1 control. Linear Algebra Appl. 425(2–3), 548–570 (2007)

18. Benner, P., Ezzatti, P., Kressner, D., Quintana-Ortí, E.S., Remón, A.: A mixed-precision
algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms. Parallel
Comput. 37(8), 439–450 (2011). doi:10.1016/j.parco.2010.12.002

19. Benner, P., Kressner, D.: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian
matrices II. ACM Trans. Math. Softw. 32(2), 352–373 (2006)

20. Benner, P., Laub, A.J., Mehrmann, V.: A collection of benchmark examples for the numerical
solution of algebraic Riccati equations I: continuous-time case. Technical report SPC 95_22,
Fakultät für Mathematik, TU Chemnitz–Zwickau, 09107 Chemnitz (1995). Available from
http://www.tu-chemnitz.de/sfb393/spc95pr.html

21. Benner, P., Laub, A.J., Mehrmann, V.: A collection of benchmark examples for the numerical
solution of algebraic Riccati equations II: discrete-time case. Technical report SPC 95_23,
Fakultät für Mathematik, TU Chemnitz–Zwickau, 09107 Chemnitz (1995). Available from
http://www.tu-chemnitz.de/sfb393/spc95pr.html

22. Benner, P., Laub, A.J., Mehrmann, V.: Benchmarks for the numerical solution of algebraic
Riccati equations. IEEE Control Syst. Mag. 7(5), 18–28 (1997)

23. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati
equations, and linear-quadratic control problems. Numer. Linear Algebra Appl. 15(9), 755–
777 (2008)

24. Benner, P., Losse, P., Mehrmann, V., Voigt, M.: Numerical solution of eigenvalue problems
for alternating matrix polynomials and their application in control problems for descriptor
systems. Preprint MPIMD/13-24, Max Planck Institute Magdeburg (2013). http://www2.mpi-
magdeburg.mpg.de/preprints/2013/MPIMD13-24.pdf

25. Benner, P., Mehrmann, V.: Collections of benchmark examples in control. WGS Newsl. 10,
7–8 (1996)

26. Benner, P., Mehrmann, V., Sima, V., Huffel, S.V., Varga, A.: SLICOT – a subroutine library in
systems and control theory. In: Datta, B.N. (ed.) Applied and Computational Control, Signals,
and Circuits, vol. 1, chap. 10, pp. 499–539. Birkhäuser, Boston (1999)

27. Benner, P., Mehrmann, V., Xu, H.: A new method for computing the stable invariant subspace
of a real Hamiltonian matrix. J. Comput. Appl. Math. 86, 17–43 (1997)

28. Benner, P., Mehrmann, V., Xu, H.: A numerically stable, structure preserving method for
computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math. 78(3),
329–358 (1998)

29. Benner, P., Mena, H.: BDF methods for large-scale differential Riccati equations. In: De Moor,
B., Motmans, B., Willems, J., Van Dooren, P., Blondel, V. (eds.) Proceedings of 16th
International Symposium on Mathematical Theory of Network and Systems (MTNS 2004),
Leuven, 12p. (2004)

30. Benner, P., Mena, H.: Rosenbrock methods for solving Riccati differential equations. IEEE
Trans. Autom. Control 58(11), 2950–2957 (2013)

http://www.math.tu-berlin.de/preprints
http://www.math.tu-berlin.de/preprints
10.1016/j.parco.2010.12.002
http://www.tu-chemnitz.de/sfb393/spc95pr.html
http://www.tu-chemnitz.de/sfb393/spc95pr.html
http://www2.mpi-magdeburg.mpg.de/preprints/2013/MPIMD13-24.pdf
http://www2.mpi-magdeburg.mpg.de/preprints/2013/MPIMD13-24.pdf


4 Theory and Numerical Solution of Differential and Algebraic Riccati Equations 103

31. Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G.: Solving linear-quadratic optimal control
problems on parallel computers. Optim. Methods Softw. 23(6), 879–909 (2008). doi:10.1080/
10556780802058721

32. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix
Riccati and Lyapunov equations: a state of the art survey. GAMM Mitt. 36(1), 32–52 (2013).
doi:10.1002/gamm.201310003

33. Benner, P., Sima, V., Voigt, M.: FORTRAN 77 subroutines for the solution of skew-
Hamiltonian/Hamiltonian eigenproblems – part I: algorithms and applications. Preprint
MPIMD/13-11, Max Planck Institute Magdeburg (2013). Available from http://www.mpi-
magdeburg.mpg.de/preprints/2013/11/

34. Benner, P., Sima, V., Voigt, M.: FORTRAN 77 subroutines for the solution of skew-
Hamiltonian/Hamiltonian eigenproblems – part II: implementation and numerical results.
Preprint MPIMD/13-12, Max Planck Institute Magdeburg (2013). Available from http://www.
mpi-magdeburg.mpg.de/preprints/2013/12/

35. Benner, P., Stykel, T.: Numerical solution of projected algebraic Riccati equations. SIAM J.
Numer. Anal 52(2), 581–600 (2014). doi:10.1137/130923993

36. Bini, D.A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. No. 9
in Fundamentals of Algorithms. SIAM, Philadelphia (2012)

37. Bojanczyk, A., Golub, G.H., Van Dooren, P.: The periodic Schur decomposition. Algorithms
and applications. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architectures,
and Implementations III, San Diego. Proceeding SPIE, vol. 1770, pp. 31–42 (1992)

38. Bunch, J.R.: The weak and strong stability of algorithms in numerical algebra. Linear Algebra
Appl. 88, 49–66 (1987)

39. Bunse-Gerstner, A.: Matrix factorization for symplectic QR-like methods. Linear Algebra
Appl. 83, 49–77 (1986)

40. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for algebraic Riccati
equations. In: Bittanti, S. (ed.) Proceeding Workshop on the Riccati Equation in Control,
Systems, and Signals, Como, pp. 107–116 (1989)

41. Bunse-Gerstner, A., Mehrmann, V.: A symplectic QR-like algorithm for the solution of the real
algebraic Riccati equation. IEEE Trans. Autom. Control 31, 1104–1113 (1986)

42. Bunse-Gerstner, A., Mehrmann, V., Watkins, D.: An SR algorithm for Hamiltonian matrices
based on Gaussian elimination. Methods Oper. Res. 58, 339–358 (1989)

43. Byers, R.: Hamiltonian and symplectic algorithms for the algebraic Riccati equation. Ph.D.
thesis, Cornell University, Department of Computer Science, Ithaca (1983)

44. Byers, R.: A Hamiltonian QR-algorithm. SIAM J. Sci. Stat. Comput. 7, 212–229 (1986)
45. Byers, R.: Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra

Appl. 85, 267–279 (1987)
46. Byers, R., He, C., Mehrmann, V.: The matrix sign function method and the computation of

invariant subspaces. SIAM J. Matrix Anal. Appl. 18(3), 615–632 (1997)
47. Byers, R., Mehrmann, V.: Symmetric updating of the solution of the algebraic Riccati equation.

Methods Oper. Res. 54, 117–125 (1985)
48. Choi, C., Laub, A.J.: Efficient matrix-valued algorithms for solving stiff Riccati differential

equations. IEEE Trans. Autom. Control 35, 770–776 (1990)
49. Chu, D., Liu, X., Mehrmann, V.: A numerical method for computing the Hamiltonian Schur

form. Numer. Math. 105(3), 375–412 (2006)
50. Chu, E.K.W., Fan, H.Y., Lin, W.W.: A structure-preserving doubling algorithm for continuous-

time algebraic Riccati equations. Linear Algebra Appl. 396, 55–80 (2005)
51. Chu, E.K.W., Fan, H.Y., Lin, W.W., Wang, C.S.: Structure-preserving algorithms for periodic

discrete-time algebraic Riccati equations. Int. J. Control 77(8), 767–788 (2004)
52. Datta, B.N.: Numerical Methods for Linear Control Systems. Elsevier Academic, Amster-

dam/Boston (2004)
53. Dieci, L.: Numerical integration of the differential Riccati equation and some related issues.

SIAM J. Numer. Anal. 29(3), 781–815 (1992)
54. Dorf, R.C.: Modern Control Systems, 2nd edn. Addison Wesley, Reading (1974)

10.1080/10556780802058721
10.1080/10556780802058721
10.1002/gamm.201310003
http://www.mpi-magdeburg.mpg.de/preprints/2013/11/
http://www.mpi-magdeburg.mpg.de/preprints/2013/11/
http://www.mpi-magdeburg.mpg.de/preprints/2013/12/
http://www.mpi-magdeburg.mpg.de/preprints/2013/12/
10.1137/130923993


104 P. Benner

55. Flaschka, U., Mehrmann, V., Zywietz, D.: An analysis of structure preserving methods for
symplectic eigenvalue problems. RAIRO Autom. Prod. Inform. Ind. 25, 165–190 (1991)

56. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press,
Baltimore (1996)

57. Green, M., Limebeer, D.J.N.: Linear Robust Control. Prentice-Hall, Englewood Cliffs (1995)
58. Heiland, J.: Decoupling and optimization of differential-algebraic equations with application

in flow control. Ph.D. thesis, Fakultät II – Mathematik und Naturwissenschaften, TU Berlin
(2014)

59. Hench, J.J., Laub, A.J.: An extension of the QR algorithm for a sequence of matrices. Technical
report CCEC-92-0829, ECE Department, University of California, Santa Barbara (1992)

60. Hench, J.J., Laub, A.J.: Numerical solution of the discrete-time periodic Riccati equation. IEEE
Trans. Autom. Control 39, 1197–1210 (1994)

61. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge
(1991)

62. Kunkel, P., Mehrmann, V.: Numerical solution of Riccati differential algebraic equations.
Linear Algebra Appl. 137/138, 39–66 (1990)

63. Kunkel, P., Mehrmann, V.: The linear quadratic control problem for linear descriptor systems
with variable coefficients. Math. Control Signals Syst. 10, 247–264 (1997)

64. Kunkel, P., Mehrmann, V.: Analysis of over- and underdetermined nonlinear differential-
algebraic systems with application to nonlinear control problems. Math. Control Signals Syst.
14, 233–256 (2001)

65. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution.
Textbooks in Mathematics. EMS Publishing House, Zürich (2006)

66. Kunkel, P., Mehrmann, V.: Optimal control for unstructured nonlinear differential-algebraic
equations of arbitrary index. Math. Control Signals Syst. 20(3), 227–269 (2008)

67. Kunkel, P., Mehrmann, V., Rath, W.: Analysis and numerical solution of control problems in
descriptor form. Math. Control Signals Syst. 14, 29–61 (2001)

68. Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford University Press, Oxford
(1995)

69. Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic, Orlando (1985)
70. Lang, N., Mena, H., Saak, J.: On the benefits of the LDLT factorization for large-scale

differential matrix equation solvers. Preprint MPIMD/14-14, Max Planck Institute Magdeburg
(2014). Available from http://www.mpi-magdeburg.mpg.de/preprints/

71. Laub, A.J.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom.
Control 24, 913–921 (1979)

72. Lin, W.W., Mehrmann, V., Xu, H.: Canonical forms for Hamiltonian and symplectic matrices
and pencils. Linear Algebra Appl. 301–303, 469–533 (1999)

73. Losse, P., Mehrmann, V., Poppe, L.K., Reis, T.: The modified optimalH1 control problem for
descriptor systems. SIAM J. Control Optim. 47(6), 2795–2811 (2008)

74. Mehrmann, V.: The linear quadratic control problem: theory and numerical algorithms.
Habilitationsschrift, Universität Bielefeld, Bielefeld (1987)

75. Mehrmann, V.: A symplectic orthogonal method for single input or single output discrete time
optimal linear quadratic control problems. SIAM J. Matrix Anal. Appl. 9, 221–248 (1988)

76. Mehrmann, V.: The Autonomous Linear Quadratic Control Problem, Theory and Numerical
Solution. Lecture Notes in Control and Information Sciences, vol. 163. Springer, Heidelberg
(1991)

77. Mehrmann, V.: A step toward a unified treatment of continuous and discrete time control
problems. Linear Algebra Appl. 241–243, 749–779 (1996)

78. Mehrmann, V., Poloni, F.: An inverse-free ADI algorithm for computing Lagrangian invariant
subspaces. Preprint 14-2014, Institut für Mathematik, TU Berlin (2014)

79. Mehrmann, V., Schröder, C., Watkins, D.: A new block method for computing the Hamiltonian
Schur form. Linear Algebra Appl. 431(3–4), 350–368 (2009)

80. Mehrmann, V., Tan, E.: Defect correction methods for the solution of algebraic Riccati
equations. IEEE Trans. Autom. Control 33, 695–698 (1988)

http://www.mpi-magdeburg.mpg.de/preprints/


4 Theory and Numerical Solution of Differential and Algebraic Riccati Equations 105

81. Mehrmann, V., Xu, H.: Explicit solutions for a Riccati equation from transport theory. SIAM
J. Matrix Anal. Appl. 30(4), 1339–1357 (2008)

82. Paige, C.C., Van Loan, C.F.: A Schur decomposition for Hamiltonian matrices. Linear Algebra
Appl. 41, 11–32 (1981)

83. Penzl, T.: Numerische Lösung großer Lyapunov-Gleichungen. Logos–Verlag, Berlin, Germany
(1998). Dissertation, Fakultät für Mathematik, TU Chemnitz (1998)

84. Petkov, P.H., Konstantinov, M.M., Gu, D.W., Mehrmann, V.: Numerical solution of matrix
Riccati equations: a comparison of six solvers. SLICOT Working Note SLWN1999–10, (1999).
Available from www.slicot.org

85. Petkov, P.H., Konstantinov, M.M., Mehrmann, V.: DGRSVX and DMSRIC: Fortran 77
subroutines for solving continuous-time matrix algebraic Riccati equations with condition and
accuracy estimates. Technical report SFB393/98-16, Fakultät für Mathematik, TU Chemnitz,
09107 Chemnitz (1998)

86. Reid, W.T.: Riccati Differential Equations. Academic, New York (1972)
87. Van Loan, C.F.: A symplectic method for approximating all the eigenvalues of a Hamiltonian

matrix. Linear Algebra Appl. 61, 233–251 (1984)
88. Voigt, M.: On linear-quadratic optimal control and robustness of differential-algebraic systems.

Ph.D. thesis, Faculty for Mathematics, Otto-von-Guericke University, Magdeburg (2015)
89. Watkins, D.S.: On the reduction of a Hamiltonian matrix to Hamiltonian Schur form. Electron.

Trans. Numer. Anal. 23, 141–157 (2006)
90. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Upper Saddle

River (1996)

www.slicot.org


Chapter 5
Permuted Graph Matrices and Their
Applications

Federico Poloni

Abstract A permuted graph matrix is a matrix V 2 C
.mCn/�m such that every row

of them�m identity matrix Im appears at least once as a row of V . Permuted graph
matrices can be used in some contexts in place of orthogonal matrices, for instance
when giving a basis for a subspace U  C

mCn, or to normalize matrix pencils
in a suitable sense. In these applications the permuted graph matrix can be chosen
with bounded entries, which is useful for stability reasons; several algorithms can be
formulated with numerical advantage with permuted graph matrices. We present the
basic theory and review some applications from optimization or in control theory.

5.1 Introduction

A graph matrix is a matrix of the form

G .X/ WD
�
Im
X

�
; X 2 C

n�m;

where Im is the m � m identity matrix. The name comes from the set-theoretical
definition of graph of a function f as the set of pairs .x; f .x//. The image imG .X/
of a graph matrix is sometimes called graph subspace; however, this is improper,
since “graph-ness” is a property of the basis matrix G .X/, not of the subspace.
Indeed, almost every subspace is a graph subspace: let

U D
�
E

A

�
; E 2 C

m�m; A 2 C
n�m (5.1)

be any matrix with full column rank; whenever E is invertible, we have
U D G .AE�1/E , and hence imU D imG .AE�1/, because post-multiplying
by E�1 does not change the column space.
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It will be useful to introduce a notation that avoids the dependence on the change
of basis matrixE . Given U; V 2 C

.mCn/�m with full column rank, we write U � V

to mean that there exists an invertible S 2 C
m�m such that U D VS. In other words,

this is the equivalence relation “U has the same column space as V ”.
Note that, in the above setting, given a generic matrix U , computingX D AE�1

is not a good idea numerically, since its topm�m blockE could be ill-conditioned
or even singular. A modification of this approach is the following: instead of
requiring an identity submatrix in the top block, we can ask for a subset of the
rows that, when taken in some order, forms an identity matrix. More formally, we
call a matrix V 2 C

.mCn/�m a permuted graph matrix if there exist X 2 C
n�m and

a permutation matrix P 2 R
.mCn/�.mCn/ such that V D PG .X/. This is equivalent

to requiring that every row of Im occurs at least once as a row of V .
It is easy to prove that every subspace is spanned by the columns of a permuted

graph matrix. Indeed, let the columns of U 2 C
.mCn/�m form a basis for a

given subspace; U must then have full column rank, that is, it must contain an
invertible submatrix E 2 C

m�m. We can choose a permutation matrix P such that
U D P

�
E
A

�
, with A 2 C

n�m. Then, U � PG .X/ with X D AE�1. We call
PG .X/ a permuted graph representation of U , or of its column space.

A more interesting result is the following, which shows that we can always find
a basis matrix in the form PG .X/ with the additional property that X is bounded in
a suitable sense.

Theorem 1 ([22, 31]) Let U 2 C
.mCn/�m be a matrix with full column rank. Then,

there exist X 2 C
n�m and a permutation matrix P 2 R

.mCn/�.mCn/ such that
U � PG .X/ and kXkmax � 1.

We have used the notation kXkmax WD maxi;j jxijj, where xij are the entries of the
matrix X ; essentially, the theorem states that all the entries of X are bounded in
modulus by 1.

In this chapter, we focus on Theorem 1, its extension to Lagrangian subspaces,
and the applications of these two results. There are several contexts in numerical
linear algebra and in control theory in which it is useful to work with the pair .P;X/
as a representation of the subspace imU ; we review briefly these applications and
the underlying theory.

The chapter is organized as follows. We describe an efficient algorithm for the
computation of a permuted graph matrix PG .X/ � U in Sect. 5.2; in Sect. 5.3, we
present a result regarding their conditioning and introduce two different applications
of these matrices in optimization. Another application, skeleton approximation of
large-scale matrices, is discussed in Sect. 5.4. A structured version of this technique
is presented in Sect. 5.5; in Sect. 5.6 we show how permuted graph representations
can be used to work with matrix pencils. In Sect. 5.7 we introduce briefly numerical
methods for a standard problem in control theory, constant-coefficient linear-
quadratic control, and in Sects. 5.8 and 5.9 we show how two of these algorithms can
be improved with the use of permuted graph matrices. Lastly, Sect. 5.10 discusses
open issues and research problems.
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5.2 Computing Permuted Graph Bases

We start our review by discussing the computation of permuted graph bases in
practice. The idea of the proof of Theorem 1 is the following. Choose as E the
m�m submatrix of U that maximizes jdetEj (maximum-volume submatrix). Using
Cramer’s rule on the linear system XE D A, one can write jxijj D jdetE0j

jdetEj , for a
suitable m �m submatrix E 0 of U (depending on i; j ), hence the result follows.

Unfortunately, finding an E with this maximizing property is an NP-hard
problem [13], so this construction is not useful computationally. We can use
instead an iterative algorithm that resembles a lot the so-called “canonical tableaux”
implementation of the simplex algorithm [14], in that we update at each step an
active set of rows containing an identity submatrix. This procedure is described in
[22, 31, 35]; we present it as Algorithm 1. The method produces a permuted graph
representation in which each entry of X is bounded in magnitude by a parameter � .
It is advised to choose � > 1 (for instance � D 2), to avoid numerical troubles with
entries that are exactly 1 and to get faster convergence.

Algorithm 1: Obtaining a permuted graph representation with kXkmax � �

[22, 31, 35]
Input: U 2 C

.mCn/�m with full column rank; a threshold value � � 1; an initial
permutation P0 such that the top m rows of PT

0 U form an invertible matrix
Output: A permutation matrix P 2 C

.mCn/�.mCn/ and X 2 C
n�m such that U � PG .X/

and kXkmax � �

Let P D P0,
�
E
A

� D PT U , and X D AE�1;
while kXkmax > � do

take a pair .i; j / such that jxij j > � ;
let P 0 D P˘ , where ˘ 2 C

.mCn/�.mCn/ is the permutation that exchanges j and
mC i ;
find X 0 2 C

n�m such that PG .X/ � P 0G .X 0/;
replace .X; P / with .X 0; P 0/ and continue;

end

In practice, the permutationP can be stored as a sequence ofmCn integers, and
all the needed operations on it can be performed on a computer in O.m C n/ time
and space.

The computation ofX 0 in Algorithm 1 can be performed efficiently as well. Here
and in the following we use the notationXIJ to denote the submatrix of X 2 C

n�m
containing the rows with indices I and columns with indices J , where I (resp. J ) is
a tuple of distinct indices in f1; 2; : : : ; ng (resp. f1; 2; : : : ; mg). Moreover, we denote
by Ic a tuple composed of all the row (or column) indices that do not belong to I,
and with a colon ‘W’ (as in many computer languages) the whole set of admissible
row/column indices.
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Lemma 1 ([35, Lemma 4.1]) Let a permutation matrix P 2 C
.mCn/�.mCn/ and

X 2 C
n�m be given. Let I D .i1; i2; : : : ; i`/ be distinct elements of f1; 2; : : : ; ng and

J D .j1; j2; : : : ; j`/ be distinct elements of f1; 2; : : : ; mg. Let P 0 D P˘ , where ˘
is the permutation that swaps jk with mC ik , for each k D 1; 2; : : : ; `, and leaves
everything else unchanged. A matrix X 0 2 C

n�m such that PG .X/ � P 0G .X 0/
exists if and only if XIJ is invertible, and in that case it is given by

X 0 D
�
X 0

IJ X 0
IJ c

X 0
IcJ X 0

IcJ c

�
D
�

.XIJ /�1 �.XIJ /�1XIJ c

XIcJ .XIJ /�1 XIcJ c �XIcJ .XIJ /�1XIJ c

�
:

Lemma 1 shows how to update a permuted graph representation PG .X/ when we
change the set of rows where the identity submatrix is located. The operation needed
in Algorithm 1 corresponds to the case in which I D fig and J D fj g have one
element.

The mapX 7! X 0 appears in other applications as well and is known as principal
pivot transform [47].

As an initial permutation, in absence of better guesses, one can take the
permutation P produced by a rank-revealing QR factorization UH D QRP [21,
Section 5.4.1]. With this choice, one can prove (when � > 1) that the algorithm
terminates in O.n log� n/ steps, with a total cost of O.n3 log� n/ floating point
operations, and converges to a local maximizer of jdetEj (that is, a submatrix E
such that jdetEj � jdetE 0j for each other submatrix E 0 differing from E only
by a single row). Moreover, the determinant of the top m � m submatrix of PT U

increases by a factor greater than � at each step. In practice, the number of steps is
often much lower than the bound, and in many small-scale cases the P coming
from rank-revealing QR already gives an X with kXkmax � 1. Indeed, finding
the submatrix E with maximum volume jdetEj is a problem that can be explicitly
related to the computation of rank-revealing factorizations [42].

Another area of mathematics where these submatrix determinants appear is
algebraic geometry: given U 2 C

.mCn/�n with full column rank, the determinants
of all possible

�
mCn
m

�
subset of rows (each subset ordered, for instance, in increasing

order) are called Plücker (projective) coordinates of the subspace imU . Indeed,
if we have two matrices spanning the same subspace, U and V D UE � U , their
Plücker coordinates differ only by a common factor detE , and one can show that the
converse holds, that is, matrices with the same Plücker coordinates up to a common
multiple are equivalent according to � and span the same subspace.

5.3 Conditioning of Subspaces and Applications
in Optimization

Given a matrix U , its condition number �.U / WD �max.U /

�min.U /
(where �min.U / and

�max.U / are its minimum and maximum singular value, respectively) measures the
sensitivity of its column space imU with respect to perturbations [46, Page 154].
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Hence, if we wish to perform computations involving a subspace, a natural way to
operate on it is through an orthogonal basis UO , for which �.UO/ D 1. Suppose
that we decide instead to use a basis UG D PG .X/ which is a permuted graph
matrix. How well does it fare with respect to this measure? The answer is given by
the following result.

Theorem 2 ([35]) Let UG D PG .X/ 2 C
.mCn/�m, where the elements xij of X

satisfy the inequality jxijj � � for a certain � � 1. Then, �.UG/ � p
1C mn�2.

Proof Because of the identity submatrix, kUGvk2 � kvk2 for each v 2 C
m, hence

�min.UG/ � 1. On the other hand,

�max.PG .X// D kPG .X/k2 D kG .X/k2 �
q

kImk22 C kXk22 �
p
1C mn�2: ut

(5.2)

The condition number �.UG/ is not as small as the perfect �.UO/ D 1 of an
orthogonal basis, but still it can be explicitly bounded by a linear function of the
dimensions and of the chosen threshold � . A permuted graph basis can hence be
used to represent a subspace in a stable way and to operate on it.

Are there contexts in which there is an advantage in using a permuted graph basis
UG rather than an orthogonal one UO? We sketch two applications here, taken from
[48] and [3], respectively. More examples will appear in the next sections.

A problem encountered in optimization is the maximization (or minimization)
of functions on the Grassmann manifold [1, 48], i.e., the set of m-dimensional
subspaces of C

mCn. In practice, this means maximizing a given function f W
C
.mCn/�m 7! R such that f .U / D f .V / whenever U � V . Working with

orthogonal bases may lead to some difficulties. First, the parametrization of the
Grassmann manifold via orthogonal matrices is ambiguous, since the relation
between an orthogonal matrix U 2 C

.mCn/�m and its spanned subspace is not one-
to-one. As a consequence, the gradient rf is always zero in some directions, and
the optimization problem in this formulation is never strictly convex. Moreover, in
most iterative algorithms, it is difficult to enforce orthogonality of the next iterate
explicitly, so a typical algorithm will make an update in a general direction in
C
.mCn/�m and then restore orthogonality at a later time via projection.
Neither of these problems is unsolvable, and there are now mature algorithms

for optimization on matrix manifolds [1]. Nevertheless, using permuted graph bases
rather than orthogonal bases allows for a simplification of the problem. The maps
gP .X/ WD X 7! PG .X/ are one-to-one local charts and together constitute
an atlas of the Grassmann manifold, so they can be used to reduce the problem
to a standard multivariate optimization problem on the space C

nm. In practice,
one defines for each permutation matrix the auxiliary map fP W C

n�m ! R as
fP .X/ WD f .PG .X//, and uses a traditional multivariate optimization algorithm
on it. We sketch a method, originally from [48], in Algorithm 2: at each step, we
check if the entries of the current iterate X have magnitude greater than � , and if
so, we update the permutation. Changing the permutation P with Algorithm 1 is
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needed in few iterations only, and the previous value of P is a good initial guess, so
its cost is typically much less than the generic O.n3 log� n/.

Algorithm 2: Optimization on the Grassmann manifold [48]

Input: A function f W C.mCn/�m ! R such that f .U / D f .V / whenever U � V ; an
initial value U 2 C

.mCn/�m; a threshold � > 1
Output: A (possibly local) minimum of f
Find a permuted graph representation U � PG .X/ (with threshold � );
while X is not a local minimum of fP do

apply one step of a multivariate optimization algorithm (gradient descent, Newton,
BFGS. . . ) to fP , starting from X , obtaining a new point X 0;
if kX 0kmax > � then

Use Algorithm 1 to find a permuted graph representation P 00G .X 00/ of PG .X 0/,
with threshold � ;
replace .X; P / with .X 00; P 00/ and continue;

else
replace X with X 0 and continue;

end
end

A different context in optimization in which suitable permutations and graph
forms have appeared recently is the preconditioning and solution of large-scale
saddle-point problems [3, 15, 16]. We present here the preconditioner for least-
squares problems appearing in [3]. A least-squares problem minx2CmkUx � bk, for
U 2 C

.mCn/�m, can be reformulated as the augmented system

�
ImCn U
UH 0

� �
r

x

�
D
�
b

0

�
:

Let us take a permuted graph basis U D P
�
E
A

� � PG .X/, with X D AE�1;
permuting the first m C n entries and partitioning Pr D

h
rE
rA

i
and Pb D

h
bE
bA

i
conformably with

�
E
A

�
, we get the equivalent system

2
4 Im 0 E

0 In A

EH AH 0

3
5
2
4rErA
x

3
5 D

2
4bEbA
0

3
5 :

Finally, eliminating the variables rE from this system and multiplying by Q Dh
In 0

0 E�H

i
andQH on the two sides, one gets the equivalent reduced system

�
In X

XH �Im
� �

rA
Ex

�
D
�
bA

�bE
�
:
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The condition number of this linear system equals �.PG .X// (see [3, p. 4]), and
thus it can be bounded using Theorem 2. In practice, the matrix Q above is applied
as a preconditioner; hence, to get faster convergence of preconditioned iterative
methods, it is useful to choose a permuted graph basis with a small �.PG .X//. The
authors in [3] suggest useful heuristic methods to find one for a large and sparse U .

5.4 Skeleton Approximation

In this section, we consider the problem of finding or approximating kM kmax for a
large-scale matrixM , not necessarily sparse.

Let M 2 C
n�m, and I;J be two tuples of ` pairwise distinct row and column

indices respectively. If MIJ is invertible, the matrix

MS D MWJM�1
IJMIW (5.3)

is called skeleton approximation ofM along .I;J / [23], and has the same entries as
M on the rows belonging to I and the columns belonging to J . Moreover, whenever
rankM � ` we have MS D M . If I and J are chosen so that jdetMIJ j is the
maximum over all ` � ` submatrices, then one can prove specific approximation
properties for the extremal values of M .

Theorem 3 ([22, 23]) Let M 2 C
n�m and ` � min.m; n/ be given; let I;J be

`-tuples of pairwise distinct indices chosen so that jdetMIJ j is maximal and MS

be the skeleton approximation (5.3). Then,

1. kM �MSkmax � .`C 1/�`C1, where �`C1 is the .`C 1/st singular value of M ;
2. kMIJ kmax � kM kmax=.2`

2 C `/.

As stated above, finding a maximum-volume submatrix is an NP-complete problem
already in the case ` D m, so in practice one must resort to heuristics and
approximations. A possible implementation, using alternating optimization on I and
J , is given in Algorithm 3. As in Algorithm 1, termination is ensured by the fact

Algorithm 3: Alternating optimization algorithm for skeleton approximation.
Input: A matrix M 2 C

n�m, possibly sparse or given implicitly as a procedure that returns
single entries, rows of columns; an initial guess J ; a threshold � � 1

Output: `-tuples of row and column indices I;J such that kM
WJ .MIJ /�1kmax � � and

k.MIJ /�1MIW
kmax � �

repeat
apply Algorithm 1 to MWJ , producing a new index set I that maximizes jdetMIJ j;
apply Algorithm 1 to MH

IW
, producing a new index set J 0 that maximizes jdetMIJ 0 j;

replace J with J 0 and continue;
until I and J stop changing;
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that jdetMIJ j increases monotonically by a factor larger than � . As initial guess,
one can take for instance a random J , or start with a permuted graph representation
of MV for a suitably chosen random full-rank V 2 C

m�`.
Note that the procedure works on few rows and columns of M at a time,

and in fact typically it will not even access many of its entries. Nevertheless,
in practice kMIJ kmax is a good approximation of kM kmax in many real-world
cases where the singular values of M decay sufficiently fast [22]. This method
has been used in cases in which the entries of M can be efficiently generated
one-by-one, or one row/column at a time; for instance, they might be the values
of a bivariate function f .x; y/ on a huge grid. Generalizations to problems in
more than two variables and tensor approximations can be devised using the same
ideas; see, e.g., [41, 45]. This method, in combination with efficient tensor storage
techniques, allows for the treatment of massively large maximization/minimization
problems, with applications to many computationally challenging problems in
quantum physics, computational chemistry and biology.

5.5 Permuted Graph Bases for Lagrangian Subspaces

An n-dimensional subspace U of C
2n is called Lagrangian if uHJ2nv D 0 for

every u; v 2 U , where J2n WD �
0 In�In 0

�
. Lagrangian subspaces appear naturally in

systems and control theory, as we discuss later in Sect. 5.7.
Given U 2 C

2n�n of full column rank, imU is Lagrangian if and only if
UHJ2nU D 0. When U D G .X/ is a graph basis, this expands to X D XH ,
that is, imG .X/ is Lagrangian if and only if X is Hermitian. The same property
does not hold for permuted graph bases, though; to recover it, we have to alter the
definition to adapt it to this structured case. For i D 1; 2; : : : ; n, let

Si D

2
66666664

Ii�1 0i�1
0 �1
In�i 0n�i

0i�1 Ii�1
1 0

0n�i In�i

3
77777775
;

where 0k denotes the zero matrix of size k � k; that is, Si is the 2n � 2n matrix
that acts as �J2 on the i -th and nC i -th component of a vector (swapping them and
changing sign to one of them) and as the identity matrix on all other components.
Clearly the Si all commute. Let us consider the set of all 2n possible products that
we can build by taking a (possibly empty) subset of them,

S2n WD fSi1Si2 � � �Si` j 1 � i1 < i2 < : : : < i` � ng; ` 2 f0; 1; : : : ; ng:
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The identity matrix I2n and �J2n are contained in the set, corresponding to the trivial
subsets. All the matrices in S2n are orthogonal and symplectic (i.e., they satisfy
SHJ2nS D J2n), and they are up to sign changes a subgroup of the permutation
matrices (the one generated by the transpositions .i; nC i/). We call these matrices
symplectic swaps.

A symplectic swap can be stored as the subset fi1; i2; : : : ; i`g, memorized for
instance as a length-n binary vector; all the operations that we need can be easily
performed on a computer in O.n/ space and time.

Using these matrices in place of the permutations, we can build an analogue of
the theory of permuted graph bases for symplectic subspaces. Given U 2 C

2n�n and
a symplectic swap S 2 S2n, whenever the top n�n submatrixE of STU D �

E
A

�
is

nonsingular, we can form X D AE�1 so that U � SG .X/. Using the symplecticity
of S , it is easy to check that imU is Lagrangian if and only if X D XH ; hence, if
X D XH for some choice of S 2 S2n, then the same property holds for all possible
choices.

Since there are only 2n symplectic swaps, less than the number of essentially
differentn�n submatrices ofU , it is already nontrivial to see that for anyU 2 C

2n�n
with full column rank there exists at least one choice of S that gives an invertible
E , let alone one with boundedX . Nevertheless, the following result holds.

Theorem 4 ([17, 35]) Let U 2 C
2n�n have full column rank and satisfy

UHJ2nU D 0 (i.e., imU is Lagrangian). Then,

1. There exists S 2 S2n so that the top n � n submatrix E of STU D �
E
A

�
is

nonsingular, and hence U � SG .X/ with X D XH D AE�1.
2. There exists S 2 S2n so that the above property holds, and kXkmax � p

2.

Item 1 appeared in [17], and Item 2 in [35]; indeed, one can find X with jxijj � 1

when i D j and jxijj � p
2 otherwise, which is a slightly stronger condition.

The proof of Item 2 is similar to the one for unstructured case: one looks for
the symplectic swap S that maximizes jdetEj, where STU D �

E
A

�
. Similarly,

for each � � p
2 there is an iterative optimization algorithm with complexity

O.n3 log.�2�1/1=2 n/ flops which produces a permuted Lagrangian graph represen-
tation U � SG .X/ with kXkmax D � . As a starting permutation, one can take
the S originating from a variant of the rank-revealing QR factorization in which
the third term is a symplectic swap rather than a permutation. The proof and the
algorithm use ideas similar to the ones in the unstructured case; we refer the reader
to [35] for more detail. Here we report only the analogue of Lemma 1, which gives
an interesting symmetric variant of the principal pivot transform.

Lemma 2 Let S 2 S2n be a symplectic swap and X D XH 2 C
n�n. Let I D

.i1; i2; : : : ; i`/ be given, where the ik are distinct elements of f1; 2; : : : ; ng. Define
S 0 D SSi1Si2 � � �Si` . Then there exists a matrix X 0 D .X 0/H 2 C

n�n such that
SG .X/ � S 0G .X 0/ if and only if XII is invertible, and in that case it is given by

X 0 D
�
X 0

II X 0
IIc

X 0
IcI X

0
IcIc

�
D
� �.XII/�1 .XII/�1XIIc
XIcI.XII/�1 XIcIc �XIcI.XII/�1XIIc

�
:
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Some additional sign book-keeping is needed in addition to the above formula if
we wish to get a representation with a symplectic swap as in Theorem 4: indeed, if
for a k 2 f1; 2; : : : ; `g the symplectic swap S already contains the factor Sik , then
the product S 0 includes S2ik , which acts as �I2 on the ikth and .n C ik/th entry of
a vector. Hence S 0 … S2n; to get back a symplectic swap we need to correct some
signs in S 0 andX 0. This is just a technical issue; a MATLAB function that deals with
it and produces S 0 2 S2n is in [43, file private/updateSymBasis.m].

The statement and proof of Theorem 2 hold for permuted Lagrangian graph bases
as well, by simply changing P to S . Hence, permuted Lagrangian graph bases
U � SG .X/ provide a reasonably well-conditioned way to represent a Lagrangian
subspace on a computer and perform computational work with it. This time, we have
a distinct advantage with respect to orthogonal bases: the fact that the subspace is
Lagrangian is equivalent to X D XH , a property which is easy to enforce and
deal with computationally. On the other hand, when working with orthogonal bases,
it is well possible that a subspace “drifts away” from the manifold of Lagrangian
subspaces due to the accumulation of numerical errors. Structure preservation in
permuted Lagrangian graph bases will be crucial in Sect. 5.9.

5.6 Representation of Pencils

A matrix pencil is a degree-1 matrix polynomial, i.e., an expression of the form
L.z/ D L1z C L0, with L0;L1 2 C

n�m and z an indeterminate. We call a pencil
row-reduced if

�
L1 L0

�
has full row rank, i.e., if there exists no nonzero v 2 C

n

such that vH .L1� C L0/ D 0 for all � 2 C. We call a pencil regular if m D n

and detL.z/ is not the zero polynomial. For a regular L.z/, the roots of detL.z/
are called eigenvalues, and a vector v ¤ 0 such that L.�/v D 0 is called (right)
eigenvector relative to the eigenvalue �. We say that 1 is an eigenvalue of L.z/
(with eigenvector v) whenever 0 is an eigenvalue of L0z CL1 (with eigenvector v).
A full theory of eigenvalues and eigenvectors of (non necessarily regular) matrix
pencils, including an extension of the Jordan canonical form, can be found in the
classical book [19].

In this section and the next ones, we focus on eigenvalue and eigenvector
problems for pencils; therefore, we are free to replace a pencil with another one
having the same eigenvalues and eigenvectors. We say that two matrix pencils
L.z/;M.z/ 2 CŒz�n�n are left equivalent (and we write L.z/ � M.z/) if there is
an invertible matrix N 2 C

n�n (not depending on z) such that L.z/ D NM.z/.
When this property holds and L.z/ andM.z/ are regular, clearly they have the same
eigenvalues and right eigenvectors. The symbol � is the same that we have used for
matrices spanning the same subspace, and indeed these two equivalence relations
are intimately connected: given L.z/ D L1z CL0 andM.z/ D M1z CM0, we have

L.z/ � M.z/ if and only if
�
L1 L0

�H � �
M1 M0

�H
.
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In the previous sections, we have focused our efforts on findingP and a bounded
X so that U � PG .X/, for a given matrix U . In view of the above connection, this
translates immediately to a result on pencils.

Theorem 5 ([35]) LetL.z/ D L1zCL0 2 CŒz�n�n be a row-reduced matrix pencil.
Then, there exists another matrix pencil M.z/ D M1z C M0 2 CŒz�n�n such that

L.z/ � M.z/ and
�
M1 M0

�H D PG .X/, for a suitable permutation matrix P 2
R
2n�2n and X 2 C

n�n with kXkmax � 1.

In other words, each column of In appears at least once among the columns of M1

andM0, and all the entries of these two matrices are bounded by 1.
Similarly, the results of Sect. 5.5 can be used to obtain pencils that are left

equivalent to some with special structures. A row-reduced pencilL.z/ D L1zCL0 2
C
2n�2n is called Hamiltonian if L1J2nLH0 C L0J2nL

H
1 D 0; see [32, 40]. Simple

manipulations show that this holds if and only if U D �
L1 J2nL0

�H 2 C
4n�2n

satisfies UHJ2nU D 0, i.e., imU is Lagrangian. Hence we can reduce to the setting
of Theorem 4, obtaining the following result.

Theorem 6 ([35]) Let L.z/ D L1z C L0 2 CŒz�2n�2n be a row-reduced Hamilto-
nian pencil. Then, there exist S 2 S4n and X D XH 2 C

2n�2n with kXkmax � p
2

so that L.z/ � M.z/, with M.z/ defined by
�
M1 M0J2n

�H D SG .X/.

Notice the structure of M.z/: for each i D 1; 2; : : : ; 2n, either the i th column of
M1 or the n ˙ i th column of M0 is (modulo signs) equal to the i th column of the
identity matrix I2n.

It is common in the literature to represent a Hamiltonian pencil with no infinite
eigenvalues as L.z/ � I2nz � H , where H is a Hamiltonian matrix, i.e., a matrix
such that HJ2n is Hermitian: this corresponds to the case S D I4n of Theorem 6.
Introducing column swaps in the picture allows us to find a representation that has
bounded entries and works without constraints on the eigenvalues.

Another structure that we can deal with is the following. A row-reduced pencil
L.z/ D L1zCL0 2 CŒz�2n�2n is called symplectic ifL1J2nLH1 �L0J2nLH0 D 0; see
[32, 40]. If one partitionsL1 D �

L10 L11
�
, L0 D �

L00 L01
�
, with all blocks 2n�n,

this is equivalent to U D �
L10 L01 L11 L00

�H
spanning a Lagrangian subspace.

Note that symplectic swaps act separately on the two blocks composing L1 and on
the two composing L0. Keeping track of this, one can decompose S 2 S4n into
two smaller symplectic swaps, and obtain a simpler statement for the analogue of
Theorem 6 for symplectic pencils.

Theorem 7 ([35]) Let L.z/ D L1z C L0 2 CŒz�2n�2n be a row-reduced symplectic
pencil. Then, there exist two symplectic swaps S1; S2 2 S2n andX D XH 2 C

2n�2n
with kXkmax � p

2 so that L.z/ � M.z/, with M.z/ defined by

M.z/ D
�
In X11

0 XH
12

�
S1z �

�
X12 0

X22 In

�
S2; X D

�
X11 X12

XH
12 X22

�
:

Again, the representation with S1 D S2 D I2n is widely used [11, 18, 34].
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The main advantage of these forms is that we can represent on a computer pencils
that are symplectic or Lagrangian, not up to numerical errors but exactly, and at the
same time we do not have to deal with the numerical troubles of unduly large entries.

Lemma 1 bounds the quantity �.
�
M1 M0

�H
/ for these “permuted graph pencils”.

Using standard properties of the singular values, one can see that the inverse of this
quantity is the relative distance (in the Euclidean norm) to the closest non-row-
reduced pencil, i.e.,

�.
�
M1 M0

�
/�1 D min QM1; QM0

��� QM1
QM0

� � �
M1 M0

���
2���M1 M0

���
2

;

where the minimum is taken over all the pencils QM1zC QM0 that are not row-reduced.
While having a small �.

�
M1 M0

�
/ seems desirable, because it means that M.z/

is far away from a variety of ill-posed problems, it is not clear what exactly this
quantity represents in terms of perturbation theory. It is not a condition number for
the eigenvalues, nor the distance from the closest singular (i.e., non-regular) pencil.
Indeed, all non-row-reduced pencils are singular, but the converse does not hold (see
for instance (5.7) in the following for a counterexample).

Hence, from the point of view of perturbation theory and numerical stability,
the effectiveness of these special forms can currently only be justified by heuristic
reasons.

5.7 Numerical Methods for Linear-Quadratic Optimal
Control

Systems and control theory is a branch of engineering and mathematics that leads
to an abundance of linear algebra applications. Here we focus on a simple version
of the linear-quadratic optimal control problem [34]. The reader will find several
chapters in this book dedicated to control theory, but we give a quick introduction
to the numerical methods directly here to keep this chapter self-contained and
introduce a notation consistent with our exposition.

Given matrices A 2 R
n�n, B; S 2 R

n�m, Q D QT 2 R
n�n, R D RT 2 R

m�m,
one looks for vector-valued functions x; � W RC ! R

n, u W RC ! R
m such that

2
4 0 In 0

�In 0 0
0 0 0

3
5 d

dt

2
4�.t/x.t/

u.t/

3
5 D

2
4 0 A B

AT Q S

BT ST R

3
5
2
4�.t/x.t/

u.t/

3
5 ; x.0/ D x0; lim

t!1

2
4�.t/x.t/

u.t/

3
5 D 0:

(5.4)
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The textbook solution to this problem goes as follows. First, assuming R > 0, one
eliminates u.t/ and swaps the two remaining equations, obtaining

d

dt

�
x.t/

�.t/

�
D H

�
x.t/

�.t/

�
; H D �J2nM; M D

�
Q AT

A 0

�
�
�
S

B

�
R�1 �ST BT

�
:

(5.5)

One can prove under mild assumptions that H has n eigenvalues with negative real
part and n with positive real part (counted with multiplicities); hence there exists a
unique n-dimensional subspace U such that HU  U , and the restriction of H
to U has only eigenvalues with negative real part. A stable solution to the system

of ordinary differential equations (5.5) is obtained if and only if
h
x.0/
�.0/

i
2 U , and

if this happens then
h
x.t/
�.t/

i
2 U for all t > 0. How does one determine U ? The

traditional approach is looking for a graph basis U D G .X/, withX 2 R
n�n, which

exists under additional assumptions on the problem (typically satisfied). Then the
condition HU  U becomes HU D UT , for some matrix T 2 C

n�n with all its
eigenvalues in the left half-plane; expanding out the products gives

(
M11 CM12X CXM21 CXM22X D 0;

T D M21 CM22X;
with M D

�
M11 M12

M21 M22

�
: (5.6)

The first equation in X alone is called algebraic Riccati equation; several solution
methods exist. Once X is determined, thanks to the previous observation, we have
�.t/ D Xx.t/ for each t , and hence some manipulations give u.t/ D Kx.t/ with
K D �R�1.BTX C ST /, and x.t/ D exp..AC BK/t/x0.

Although one can prove that U admits a graph basis, this does not mean that
it is a good idea to compute it numerically. The corresponding X might have very
large elements. An alternative strategy is computing an orthogonal basis instead.
Given any basis U D �

E
A

�
for U , we can reduce the problem to solving an initial-

value ODE problem for w.t/ W RC ! R
n such that

h
x.t/
�.t/

i
D Uw.t/. A necessary

step is computing w.0/ D w0, which might still be troublesome numerically if E is
ill-conditioned, but all the other steps, notably the eigenvalue computation, benefit
from the additional stability associated with working with orthogonal matrices. If
needed, the solution X of the Riccati equation can be obtained as well as AE�1.

One can apply this approach of computing an invariant subspace directly to (5.4)
as well. Let us call E and A the two block-3 � 3 matrices appearing in the left-
and right-hand side of the leftmost equation in (5.4), respectively. This time, E is
singular, but one can generalize the concept of invariant subspaces to matrix pencils.
Given a regular pencil Ez �A 2 CŒz�k�k , we say that the image of a U 2 C

k�` with
full column rank is a deflating subspace if there are V 2 C

k�`, E;A 2 C
`�` such

that .Ez � A/U D V.Ez � A/. The eigenvalues of Ez � A are a subset of those
of Ez � A, and are called associated with the deflating subspace imU . Under the
same assumptions that we have made above, Ez � A has m eigenvalues equal to
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1, n with positive real part and n with negative real part; the finite eigenvalues
coincide with those of H . One can solve a generalized eigenvalue problem [21,
Section 7.7] to determine the invariant subspace associated with the last ones, and
proceed similarly.

Several more general settings exist, most notably finite-horizon problems in
which the boundary condition at 1 in (5.4) is replaced by one at a time tf > 0,
or problems in which R is not invertible and the assumptions that we made on
the location of eigenvalues are not respected. Large-scale problems with pencils
exhibiting the same structure appear for instance in model reduction.

In the numerical solution of linear-quadratic control problems, matrix structures
play a crucial role. The pencil J2nz � M is Hamiltonian, as well as the matrix H ,
and the pencil Ez � A is even, i.e., E D �EH and A D AH . These pencils and
matrices have a distinguishing pairing of eigenvalues; namely, for each eigenvalue
�, one has that �N� is an eigenvalue as well. For Hamiltonian problems, moreover,
U is Lagrangian, and hence X D XT . For even problems in general this latter
property does not hold (although a similar property does hold for the pencil Ez � A
defined in (5.4)).

Numerical methods that exploit these structures are preferable, not only for
speed, but especially for accuracy: in an ill-conditioned problem, for instance, an
unstructured eigensolver might detect numerically nC 1 eigenvalues with negative
real part and n � 1 with positive real part, a situation which is impossible under the
structural constraints, and hence fail to identify correctly the unique n-dimensional
invariant subspace. Even when this does not happen, it is a sounder theoretical
guarantee to have a low structured backward error, that is, to be able to guarantee
that the computed solution is the exact solution of a nearby problem respecting the
same structure.

There has been extensive numerical research on how to accurately solve Hamilto-
nian and even eigenvalue problems; countless methods have been suggested [9, 34]:
for instance, focusing only on the small-case dense case, there are the Newton
method for algebraic Riccati equations [5, 24, 30], QR-type algorithms based on
reduction to Hamiltonian or symplectic and Schur forms [10, 18], and structure-
preserving versions of matrix iterations [2, 11, 20]. In the next sections, we describe
two improvements that can be obtained by using permuted graph bases.

5.8 Permuted Graph Bases for the Deflation of Control
Problems

A first area where we can see an improvement by judiciously using permuted
graph bases is transforming (5.4) into the form (5.5). Indeed, consider the following
formulation of this deflation process. We premultiply Ez � A by a suitable matrix
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to obtain an identity submatrix I2nCm in the first 2n columns of E and the last m
columns of A, that is,

Ez � A �
2
4 0 In B

�In 0 S

0 0 R

3
5

�1

.Ez � A/ D
2
4In 0 00 In 0

0 0 0

3
5 z �

2
4 H22 H21 0

H11 H12 0

R�1BT R�1ST I

3
5 ;

where one can see that the Hii are exactly the blocks of H defined in (5.5), albeit
swapped. The rightmost pencil is block-triangular with a leading diagonal block of
size 2n� 2n and a trailing one of sizem�m; its eigenvalues are given by the union
of the eigenvalues of these two diagonal blocks. The trailing m �m block contains
the m infinite eigenvalues, and the leading 2n � 2n block contains the 2n finite
eigenvalues that coincide with the eigenvalues ofH . The eigenvectors and deflating
subspaces can be related as well; we do not go through the details. This construction
shows that the process of reducing (5.4) to (5.5) can be interpreted as performing an
equivalence transformation of Ez � A that enforces an identity submatrix and then
deflating the resulting block-triangular pencil. In view of our previous discussion, it
looks natural to try to enforce an identity submatrix in a different choice of columns.
A special choice of swap matrices is needed to ensure that the deflated pencil is
Hamiltonian. The following result can be obtained extending the previous theory to
this particular problem.

Theorem 8 ([36]) Let Ez � A be a row-reduced pencil with E , A the two matrices
in (5.4). There exist matrices Mij such that

Ez � A �
2
4M11 M12 0

M12 M22 0

M31 M32 0

3
5 z C

2
4M13 M14 0

M23 M24 0

M33 M34 Im

3
5 ;

where

2
4 0 In A 0

�In 0 Q �AT
0 0 ST �BT

3
5
H

�
2
4M11 M12 �M14 M13

M21 M22 �M24 M23

M31 M32 �M34 M33

3
5
H

D S

2
4In 0 X11 X120 In X21 X22
0 0 X31 X32

3
5
H

;

for some S 2 S2n, and X D �
X11 X12
X21 X22

�
symmetric and such that kXkmax � 1.

An explicit algorithm to obtain X with kXkmax � � for each � � 1 and an initial
permutation heuristic inspired by the rank-revealing QRP factorization are provided
in [36].

If one performs deflation in this form,
�
M11 M12
M21 M22

�
z � �

M13 M14
M23 M24

�
is a Hamiltonian

pencil left equivalent to I2nz �H , already in the format given by Theorem 6.
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We report an example with a pencil that is particularly troublesome for most
numerical methods. Let m D n D 1, and

Ez � A D
2
4 0 1 0

�1 0 0
0 0 0

3
5 z �

2
40 0 10 0 0

1 0 "

3
5 : (5.7)

Then,

Ez � A �
2
4 0 0 �1

�1 0 0

0 �1 �"

3
5

�1

.Ez � A/ D
2
41 0 0

0 " 0

0 �1 0

3
5 z C

2
40 0 01 0 0

0 0 1

3
5 :

The deflated pencil is
�
1 0
0 "

�
zC� 0 01 0 �, which is in the form of Theorem 6 with S D S2

andX D �
0 0
0 �"

�
. Note that the procedure can be performed without trouble even if "

is very small or zero. Several methods for the deflation of an even problem (5.4) to a
Hamiltonian one have appeared in literature [27, 28, 34, 44, 49]; in most of them, it
is required either that R is nonsingular, or that the kernel of R (and possibly further
kernels) are determined accurately. Rank decisions onR have often been considered
a crucial part of the deflation procedure; the method outlined here shows instead that
it is not the case, and that a Hamiltonian problem can be produced in a stable way
without worrying about its singularity (or closeness to singularity).

If " D 0, then the pencil (5.7) is singular, although both Ez �A and its transpose
are row-reduced; correspondingly, the deflated Hamiltonian pencil is singular, too.
So, from a computational point of view, we did not eliminate the problem of
singularity, but simply push it to a later stage. Numerical methods for Hamiltonian
eigenproblems that do not break down for singular (and close-to-singular) pencils
are then required; as far as we know they have not yet appeared in the literature.

5.9 Hamiltonian Pencils and the Doubling Algorithm

A second application of permuted graph bases comes from solving Hamiltonian
invariant subspace problems. The starting point for our algorithm is the following
result.

Theorem 9 ([6]) Let L.z/ D L1z C L0 2 CŒz�n�n be a regular pencil,
and let M0;M1 2 C

n�n be such that
��M0 M1

�
has full row rank and

��M0 M1

� �L1
L0

�
D 0. If v 2 C

n is an eigenvector of L.z/ with eigenvalue �,

then it is also an eigenvector of the pencil

N.z/ D N1z CN0 D M0L1z C 1

2
.M1L1 CM0L0/ (5.8)

with eigenvalue f .�/, where f .z/ D 1
2
.z C z�1/.
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If we denote by f .k/ the composition of f with itself k times and by <z the real
part of z, we have

lim
k!1f .k/.z/ D

(
1 if <z > 0,

�1 if <z < 0

(the iteration in this form breaks down if <z D 0, but as we see in the following this
will not be a concern). Hence, if we start from a pencil L.z/ with no eigenvalues on
the imaginary axis, repeating the transformation L.z/ 7! N.z/, we converge (in a
suitable sense) to a pencil L1.z/ with eigenvalues 1 and �1 only, from which one
can recover the invariant subspace associated with the eigenvalues having negative
real part. This iteration is essentially a pencil version of the matrix sign iteration [26,
Chapter 5].

Note that one can replace M.z/ D M1z C M0 with any pencil M 0.z/ � M.z/,
obtaining then a different N 0.z/ � N.z/; so there is some arbitrariness in how to
perform the iteration. Some form of normalization needs to be enforced, otherwise
N1 and N0 could both converge to zero, or diverge, or (even worse) converge to
matrices with the same left kernel, giving a non-row-reduced L1.z/. Hence one
can see a role for permuted graph representations in this setting. A second point
in which this technique helps is in computing the kernel

��M0 M1

�
. Indeed, the

following result is easy to verify.

Lemma 3 Let U � PG .X/ be the permuted graph representation of a matrix

U 2 C
.mCn/�m with full column rank. Then, W D P

h
�XH
In

i
2 C

.mCn/�n is such

thatW HU D 0. Moreover, the matrix W has full column rank and spans the kernel
of UH .

Hence, given a permuted graph basis for a subspace, we can determine a permuted
graph basis for its left kernel with basically no computational effort.

Another important observation is that in Theorem 9 whenever L.z/ is Hamilto-
nian, then N.z/ is Hamiltonian, too, so we can compute at each step a permuted
Lagrangian graph representation as normalization. Putting everything together, we
get Algorithm 4.

The bulk of the computational cost consists in computing permuted graph bases

for
�
L1
L0

�
and permuted Lagrangian graph bases for

�
N1 N0J2n

�H
, alternately,

together with the matrix products that appear in (5.8). At each step after the first, P
and S from the previous steps typically work well as initial guesses; recomputing
X and Y from the permutation at the end of Algorithm 1 might be needed for better
accuracy.

The algorithm converges quadratically; one can relax the assumptions, allowing
for eigenvalues on the imaginary axis; in this case, the algorithm can be proved to
converge in every problem for which there exists a Lagrangian deflating subspace
[35, 36], but the convergence rate turns to linear. (Actually, Theorem 9 and our
analysis above are slightly incomplete even in the case with no eigenvalues on the
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Algorithm 4: Inverse-free sign algorithm with permuted graph bases [36]

Input: A Hamiltonian pencil L.z/ D L1z CL0 2 CŒz�2n�2n without eigenvalues on the
imaginary axis; a threshold � >

p
2

Output: A basis for the invariant subspace U of L.z/ associated with the eigenvalues in the
left half-plane

repeat
compute a permutation matrix P 2 C

4n�4n and X 2 C
2n�2n such that PG .X/ � �

L1
L0

�
and kXkmax � � , using Algorithm 1;

let
��M0 M1

� D ��X I
�
PH ;

compute N.z/ as in (5.8);

compute S 2 S4n; Y D Y H 2 C
2n�2n such that

�
N1 N0J2n

�H � SG .Y / and
kY kmax � � , using the symplectic analogue of Algorithm 1 (see Theorem 6 and
Sect. 5.5);
replace L.z/ with N.z/ and continue;

until Y converges;
Find the kernel of L1 C L0, which is U ;

imaginary axis, because we do not consider what happens to multiple eigenvalues;
we refer the reader to [35, 36] for full detail.)

There are essentially two versions of this algorithm; one is as described above;
the other one works by first converting L1z C L0 to a symplectic pencil via the
transformationL.z/ 7! .L1 CL0/z C .L0 �L1/ (known as Cayley transform), and
then applying a transformation analogous to (5.8), that is,

N.z/ D M1L1z �M0L0; (5.9)

which transforms the eigenvalues according to g.z/ D z2, and for which

lim
k!1g.k/.z/ D

(
1 if jzj > 1,

0 if jzj < 1.

In this second case, the last line of Algorithm 4 changes to computing the kernel
of L0. The work [6] contains a general theory of operations with matrix pencils
that describes how to produce “matrix pencil versions” of rational functions, such
as (5.8) and (5.9) for f .z/ and g.z/.

This modified version is called doubling algorithm; it was introduced (with a
different derivation) for unstructured invariant subspace problems without the use of
permuted graph bases in [4, 33], and for symplectic problems with the special choice
S D I (graph basis without permutation) in [2, 11, 12, 29], and then generalized
to make full use of permuted graph bases in [35]. The algorithm that we described
first is known as inverse-free sign method; it appeared without the use of permuted
graph bases in [6], then with S D I in [20], and with permuted graph bases in [36].
Permuted graph bases are important here because they ensure that the iterative
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procedure produces an exactly Hamiltonian (or symplectic) pencil at each step and
steers clear of numerically singular pencils.

A basic implementation in the MATLAB language of Algorithm 4 and its
doubling variant is available on [43]; the library also includes Algorithm 1 and
several functions to compute permuted graph representations of subspaces and
pencils, both in the unstructured and the Lagrangian case.

How well do these algorithms fare in practice, compared to their many competi-
tors and variants that do not make use of permuted graph bases? The work [35]
reports computational results on a set of 33 small-scale problems (the same test
problems used in [10]) obtained from the benchmark set [7]. This is a benchmark set
containing examples of linear-quadratic control problems; it contains both examples
from real-life applications and challenging problems created ad-hoc to be difficult
to solve. As far as we know, the algorithm in [35] (Algorithm 4 in the variant with
transformation (5.9)) is the first numerical algorithm to obtain completely satisfying
results in all 33 problems on both these grounds:

• Small subspace residual, that is, k.I�UUT /HUk
kHk of the order of machine precision

for the computed subspace U ;
• Exact preservation of the Lagrangian structure, that is, UT J2nU either zero or of

the order of machine precision.

Algorithm 4 in the variant presented here was tested on another challenging
application (H1 control, an optimization procedure which requires solving one
after another a set of close-to-unsolvable Riccati equations) in [36]; the results
suggest that the variant (5.8) is more stable than (5.9), because it avoids the initial
Cayley transform. This is why we chose to highlight (5.8) in this presentation.

Explicit theoretical results proving stability of the algorithm are still an open
issue, though. For methods based on orthogonal transformations and reduction to
Schur form, the standard technique is a Wilkinson-style backward stability proof
([50, Chapter 3] and [25, Section 19.3]); however, a counterexample in [35, p. 798]
shows that the simplest version of a backward stability proof using this technique
would not work for doubling-type algorithms. As far as we know, the only stability
proof for an algorithm of this family is given in [4], for a doubling algorithm for
unstructured pencils based on orthogonal bases. It can be adapted to the other
variants; however, it is not completely satisfying as the error growth coefficient is
bounded by 1=d2, where d is the distance to the closest ill-posed problem, instead of
the more natural 1=d which constitutes the condition number of the problem. We are
not aware of an example in which this larger factor shows up in practice. Another
related result is the work in [38, 39], which shows that for Hermitian matrices a
carefully chosen variant of doubling achieves a mixed variant of backward and
forward stability. Nevertheless, for nonsymmetric problems, proving the stability
of doubling-type algorithms is still an open problem, both in the structured and non-
structured case.
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5.10 Research Directions

There are many possible improvements and open problems related to these topics;
some of them have already been presented in our exposition, and we collect here a
few more.

An interesting issue is the significance of �.
�
L1
L0

�
/ for a pencil L1z C L0: what

is its role in the stability and perturbation theory of the stable invariant subspace
problem?

Another research direction is extending the methods presented in Sects. 5.8
and 5.9 to deal with so-called descriptor systems, a common variant of the control
theory setting described above. The matrix pencils appearing in such problems
are similar to the one in (5.4), but the leading submatrix J2n of E is replaced by�

0 E
�ET 0

�
, for a matrix E 2 C

n�n that may be singular. With this modification,
only part of the structure is preserved: the resulting pencil Ez � A is still even, but
the deflated problem is not Hamiltonian and its stable deflating subspace U is not
Lagrangian. The algorithms that we have presented rely in an essential way on these
structures, so modifying them to work with descriptor systems will probably require
major changes.

A first attempt to use permuted graph bases in large-scale control problems is
in the recent preprint [37]; the underlying algorithm is not a doubling algorithm
but low-rank ADI [8], and inverse-free techniques and permuted graph bases are
used to adapt it to an invariant subspace formulation. One of the most interesting
observations in that work is that Lemma 3, which we have used here only in the
case m D n, is noteworthy also when m � n, since it allows one to compute an
explicit basis for a large n-dimensional subspace of CmCn defined as a kernel with
basically no effort.

Overall, in control theory there are many possibilities for further applications;
many problems can be reduced to the computation of some Lagrangian invariant
subspace, and permuted graph bases are a natural choice for this task.

5.11 Conclusions

In this chapter we have presented the basic theory of permuted graph matrices
and bases, and shown how techniques based on them are useful in a variety
of applications. We believe that they are an interesting alternative, in selected
problems, to the ubiquitous orthogonal matrices. They have led to the construction
of several efficient algorithms for various tasks, and, as always in research, there is
plenty of open problems and possibilities for improvement.

Acknowledgements The author is grateful to C. Mehl, B. Meini and N. Strabič for their useful
comments on an early version of this chapter.
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Chapter 6
Canonical Forms of Structured Matrices
and Pencils

Christian Mehl and Hongguo Xu�

Abstract This chapter provides a survey on the development of canonical forms
for matrices and matrix pencils with symmetry structures and on their impact in the
investigation of application problems. The survey mainly focuses on the results from
three topics that have been developed during the past 15 years: structured canonical
forms for Hamiltonian and related matrices, structured canonical forms for doubly
structured matrices and pencils, and singular value-like decompositions for matrices
associated with two sesquilinear forms.

6.1 Introduction

Eigenvalue problems frequently arise in several applications from natural sciences
and industry and therefore the corresponding theory is a fundamental topic in
Linear Algebra, Matrix Theory, and Numerical Analysis. The practical applications
typically lead to matrices, matrix pencils, or matrix polynomials with additional
symmetry structures that reflect symmetries in the underlying physics. As a
consequence also the eigenstructures (i.e., eigenvalues, eigenvectors, root vectors,
Jordan blocks, singular blocks and other invariants as, e.g., algebraic, geometric,
and partial multiplicities) of such matrices, matrix pencils, and matrix polynomials
inherit certain symmetries or patterns. As these reflect the nature and characteristics
of the original application problems, they play critical roles both in theory and
practice.
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Typically, the solution of structured eigenvalue problems is a challenge, because
there is demand for the design of new algorithms that are structure-preserving in
each step, so that the corresponding symmetry in the spectrum is maintained in finite
precision arithmetic and the obtained results are physically meaningful [48]. Simple
variations of the QR algorithm or methods based on standard Krylov subspaces
may not be sufficient to achieve this goal so that new ideas and concepts need to be
developed. This requires a deeper understanding of the corresponding eigenstruc-
tures and therefore the derivation of structured canonical forms is essential. It is the
aim of this chapter to review such forms for some particular classes of structured
matrices or matrix pencils.

The most important and well-known matrices with symmetry structures are
probably real or complex Hermitian, skew-Hermitian, and unitary matrices. Still,
there are many other kinds of important structured matrices like complex symmetric,
skew-symmetric, and orthogonal matrices as well as nonnegative matrices all of
which are discussed in the classical books [13, 14]. In this chapter, we focus
on structured matrices that are self-adjoint, skew-adjoint, or unitary with respect
to an inner product associated with a possibly indefinite Hermitian or skew-
Hermitian matrix and give a brief review on their theory, also including the
corresponding matrix pencils that generalize those structures. We do not consider
the corresponding structured matrix polynomials in this chapter, but refer the reader
to Chap. 12of this book instead.

Let F be either the real field R or the complex field C. Suppose M 2 F
m�m

is an invertible Hermitian or skew-Hermitain matrix, and define the bilinear or
sesquilinear form

Œx; y�M D x�My DW Œx; y�; x; y 2 F
m; (6.1)

where � is the conjugate transpose, which reduces to just T , the transpose, if F D R.
Then three sets of structured matrices can be defined:

1. The set of M -Hermitian matrices or M -selfadjoint matrices:
HM D ˚

A
ˇ̌
A�M D MA

� D ˚
A
ˇ̌
ŒAx; y�M D Œx;Ay�M for all x; y 2 F

m
�
.

2. The set of M -skew-Hermitian matrices or M -skew-adjoint matrices:
SM D ˚

K
ˇ̌
K�M D �MK

� D ˚
K
ˇ̌
ŒKx; y�M D �Œx;Ky�M for all x; y 2 F

m
�
.

3. The set of M -unitary matrices:
UM D ˚

U
ˇ̌
U �MU D M

� D ˚
U
ˇ̌
ŒUx;Uy�M D Œx; y�M for all x; y 2 F

m
�
:

The concept of M -Hermitian and M -skew-Hermitian matrices can be general-
ized to matrix pencils via

�M � BI with M D ˙M �; B D ˙B�: (6.2)

In fact, if M is invertible, the generalized eigenvalue problem with underlying
matrix pencil as in (6.2) is equivalent to the eigenvalue problem for the matrix
A D M�1B , which is M -Hermitian or M -skew-Hermitian, depending on whether
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M and B are Hermitian or skew-Hermitian. M -unitary matrices may be related to
structured pencils indirectly by using a Cayley-transformation [24, 28, 38].

Another structured matrix pencil of the form

�A� � A;

which is called palindromic [22, 29, 43, 44], can also be transformed to a
Hermitian/skew-Hermitian pencil with a Cayley-transformation and can therefore
be considered a generalization of M -unitary matrices as well.

The study of matrices and matrix pencils with the symmetry structures outlined
above started about one and a half centuries ago (we refer to the review article [25]
and the references therein for more details) and continues to be of strong interest as
there are many important applications in several areas of science and engineering,
see, e.g., [16, 24, 38, 41, 45, 48, 49, 55].

A particular example is given by Hamiltonian matrices that arise, e.g., in systems
and control theory [27, 38, 45, 55] and in the theory of dynamical and Hamiltonian
systems [19–21]. These matrices are J-skew-Hermitian, where the skew-symmetric
matrix J is given by

J WD Jn WD
�
0 In

�In 0
�

2 R
2n�2n: (6.3)

(We drop the subscript n whenever it is clear from the context.) Due to their many
applications, in particular those in system and control theory, the investigation of
Hamiltonian matrices has been an important part of Volker Mehrmann’s research
interest and he and his coauthors have contributed many results to their theory,
like discovering the reason for the difficulty in computing Hamiltonian Hessenberg
forms [1], finding necessary and sufficient conditions for the existence of the
Hamiltonian Schur form [28], and developing several algorithms for the Hamil-
tonian eigenvalue problem [4, 8, 38, 39]. For the understanding of the underlying
theory, it was crucial to be aware of the presence of additional invariants besides
the eigenvalues, eigenvectors, and root vectors of Hamiltonian matrices, the so
called signs in the sign characteristic of purely imaginary eigenvalues. The classical
Jordan canonical form cannot display these additional invariants, because it is
obtained under general similarity transformations that ignore the special structure
of Hamiltonian matrices. Therefore, it was important to develop a canonical
form that is obtained under structure-preserving transformations, so that additional
information like the sign characteristic is preserved and can be read off.

The phenomenon of presence of a sign characteristic not only occurs for the
special case of Hamiltonian matrices, but for all three types of matrices structured
with respect to the inner product (6.1) induced by M . To be more precise, it occurs
for real eigenvalues of M -Hermitian, purely imaginary eigenvalues of M -skew-
Hermitian, and unimodular eigenvalues of M -unitary matrices, as well as for the
classes of related matrix pencils as in (6.2). In all cases, the sign characteristic has
proven to play a fundamental role in theory and applications, like in the analysis of
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structured dynamic systems [19–21], in perturbation analysis of structured matrices
[31–33, 40], and in the investigation of solutions of Riccati equations [12, 24, 28],
to name a few examples.

After introducing the well-known canonical forms for Hermitian pencils andM -
Hermitian matrices in the next section, we will give a survey on three related topics
in the following sections:

(a) Structured canonical forms for Hamiltonian and related matrices.
(b) Canonical forms for doubly structured matrices.
(c) Singular value-like decompositions for matrices associated with two sesquilin-

ear forms.

Throughout the chapter, we will use the following notation. A1 ˚ � � � ˚Am is the
block diagonal matrix diag.A1; : : : ; Am/. The n�n identity matrix is denoted by In
and 0m�n (0n) stand for the m � n (n � n) zero matrix. If the size is clear from the
context, we may use I and 0 instead for convenience. We denote by ej the j th unit
vector, i.e., the j th column of I .

The n�n reverse identity will be denoted byRn while Jn.˛/ stands for the upper
triangular n � n Jordan block with eigenvalue ˛, that is

Rn D

2
664

1

. . .

. . .

1

3
775 2 F

n�n; Jn.˛/ D

2
6664
˛ 1
: : :

: : :
: : : 1

˛

3
7775 2 F

n�n

Finally, the m � .mC 1/ singular block in the Kronecker canonical form of matrix
pencils is denoted by

Lm.�/ D

2
64
� 1
: : :

: : :

� 1

3
75 :

6.2 Canonical Forms for Hermitian Pencils
andM -Hermitian Matrices

For all the structured pencils of one of the forms in (6.2), the theory of structured
Kronecker canonical forms is well-established, see, e.g., [9, 25, 26, 46, 47], follow-
ing the work from the second half of the nineteenth century [23, 51, 52]. These forms
are obtained under congruence transformations .�M �B/ 7! X�.�M �B/X with
X invertible, because those preserve both the Hermitian and the skew-Hermitian
structure of matrices and thus the structure of pencils �M �B of the forms in (6.2).
For instance, a Hermitian pencil �M � B , i.e., a pencil such that both M and
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B are Hermitian, has the following structured Kronecker canonical form under
congruence.

Theorem 1 Let �M � B be a complex n � n Hermitian pencil. Then there exists
an invertible matrix X such that

X�.�M � B/X D JC .�/˚ JR.�/˚ J1.�/˚ L .�/; (6.4)

where

JC .�/ D
	
�

�
0 Rm1
Rm1 0

�
�
�

0 Rm1Jm1.�1/

Rm1Jm1.
N�1/ 0

�

˚ � � �

˚
	
�

�
0 Rmp
Rmp 0

�
�
�

0 RmpJmp .�p/

RmpJmp.
N�p/ 0

�

;

JR.�/ D s1Rn1
�
�In1 � Jn1.˛1/

�˚ � � � ˚ sqRnq
�
�Inq � Jnq .˛q/

�
;

J1.�/ D sqC1Rk1
�
�Jk1.0/� Ik1

�˚ � � � ˚ sqCrRkr
�
�Jkr .0/� Ikr

�
;

L .�/ D
�

0 L`1.�/

L`1.�/
T 0

�
˚ � � � ˚

�
0 L`t .�/

L`t .�/
T 0

�
˚ 0���;

with Im�j > 0; j D 1; : : : ; pI ˛j 2 R; j D 1; : : : ; qI sj D ˙1; j D 1; : : : ; qCr
and p; q; r; t 2 N.

If two pencils C.�/ and D.�/ are equivalent, i.e., X1C.�/X2 D D.�/ for some
invertible matricesX1;X2 independent of �, we use the notation C.�/ � D.�/. It is
easy to show that the blocks in (6.4) satisfy

JC .�/ � �
�Im1 � Jm1.�1/

�˚ �
�Im1 � Jm1. N�1/

�˚
� � � ˚ �

�Imp � Jmp .�p/
�˚ �

�Imp � Jmp . N�p/
�

JR.�/ � �
�In1 � Jn1.˛1/

�˚ �
�Inq � Jnq .˛q/

�
J1.�/ � �

�Jk1.0/� Ik1
�˚ � � � ˚ �

�Jkr .0/� Ikr
�

L .�/ � L`1.�/˚ L`1.�/
T ˚ � � � ˚L`t .�/˚ L`t .�/

T ˚ 0���:

Therefore, the classical Kronecker canonical form of the pencil �M �B can easily
be read off from the structured version (6.4). In particular, the pairing of blocks
elegantly displays the corresponding symmetry in the spectrum: the block JC .�/

contains the nonreal eigenvalues that occur in complex conjugate pairs �j ; N�j , both
having exactly the same Jordan structures. If the pencil is singular, then the singular
blocks – contained in L .�/ – are also paired: each right singular block L`j .�/ has
a corresponding left singular block L`j .�/

T .
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However, the structured canonical form (6.4) has an important advantage over
the classical Kronecker canonical form of a Hermitian pencil. It displays additional
invariants that are present under congruence transformations, the signs s1; : : : ; sqCr
attached to each Jordan block of a real eigenvalue and each Jordan block of
the eigenvalue infinity. The collection of these signs is referred to as the sign
characteristic of the Hermitian pencil [25], see also [15].

As a corollary of Theorem 1, one obtains a canonical form for M -Hermitian
matrices, also known as M -selfadjoint matrices, see [15, 25].

Corollary 1 Let M 2 C
n�n be Hermitian and invertible and let A 2 C

n�n be
M -Hermitian. Then there exists an invertible matrix X 2 C

n�n such that

X�1AX D JR ˚ JC ; X�MX D MR ˚ MC ;

where

JR D Jn1.˛1/˚ � � � ˚ Jnq .˛q/; MR D s1Rn1 ˚ � � � ˚ sqRnq

JC D
�
Jm1.�1/ 0

0 Jm1.
N�1/

�
˚ � � � ˚

�
Jmp .�p/ 0

0 Jmp.
N�p/

�
; MC DR2m1˚ � � � ˚R2mp ;

where ˛j 2 R, sj D ˙1, j D 1; : : : ; q, Im�j > 0, j D 1; : : : ; p, and p; q 2 N.

Indeed, the form is easily obtained by recalling that a matrix A is M -Hermitian
if and only if the pencil �M � MA is a Hermitian pencil and applying Theorem 1
to this pencil. By convention, we will call sj in Corollary 1 the sign of the Jordan
block Jnj .˛j /.

For the other three types of matrix pencils in (6.2), structured canonical forms
can be derived directly from (6.4). If �M � B is Hermitian/skew-Hermitian, skew-
Hermitian/Hermitian, or skew-Hermitian/skew-Hermitian, then Theorem 1 can be
applied to the Hermitian pencils �M � .�iB/, �.�iM /� B or �.�iM /� .�iB/,
respectively, to obtain (6.4). As a consequence, these pencils also have a sign
characteristic. In the case of pencils of “mixed” structure, i.e., one matrix being
Hermitian and the other skew-Hermitian, now the purely imaginary eigenvalues
(including the eigenvalue infinity) have signs.

For the case of real pencils of the form (6.2), also real structured Kronecker
canonical forms under real congruence transformations are known. We refer the
reader to [26, 47] for details.

6.3 Structured Canonical Forms for Hamiltonian Matrices

When the matrix defining the inner product (6.1) is the skew-symmetric matrix
J from (6.3), then a J-Hermitian matrix is called skew-Hamiltonian, a J-skew-
Hermitian is called Hamiltonian, and a J-unitary matrix is called symplectic.
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In many applications, in particular in systems and control, invariant Lagrangian
subspaces are of interest. A Lagrangian subspace is an n-dimensional subspace
L  F

2n that is J-neutral, i.e., Œx; y�J D 0 for all x; y 2 L : Suppose the columns of
the matrix W1 2 F

2n�n span an invariant Lagrangian subspace L of a Hamiltonian
matrixH 2 F

n�n. Then there exists a 2n � n matrix W2 such that W D ŒW1;W2� is
symplectic. Indeed, one may chooseW2 D JTW1.W

�
1 W1/

�1. Then

W �JW D
�
W �
1 JW1 W

�
1 JW2

W �
2 JW1 W

�
2 JW2

�
D
�
0 In

�In 0
�

D J;

because W �
1 JW1 D 0 D .W �

1 W1/
�1W �

1 JJJT W1.W
�
1 W1/

�1 D W �
2 JW2 as L is

J-neutral. Since L is also an invariant subspace of H , we obtain

W �1HW D
�
T D

0 �T �
�
; D D D�: (6.5)

From the decomposition (6.5), we can easily see that a necessary condition for the
existence of an invariant Lagrangian subspace is that the algebraic multiplicities
of all purely imaginary eigenvalues must be even, because any purely imaginary
eigenvalue i˛ of T is also an eigenvalue of �T �. This condition, however, is not
sufficient as the following example shows.

Example 1 Consider the Hamiltonian matrices

H1 D

2
664
0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3
775 D J2; H2 D

2
664
0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

3
775 D

�
J1 0

0 �JT1

�

Then the matrix H1 does not have a decomposition (6.5) since for any symplectic
matrix W , by definition, W �H1W D W �J2W D J2. The matrix H2 on the other
hand already is of the form (6.5). Surprisingly, the matrices H1 and H2 are similar.
It is easy to check that they both have the semi-simple eigenvalues i and �i , which
both have the algebraic multiplicity two.

To explain this surprising behavior, a closer look at a structured canonical form of
Hamiltonian matrices is necessary. One way is to consider instead of a Hamiltonian
matrix H the iJ -Hermitian matrix iH and to apply Corollary 1. This yields the
existence of an invertible matrix X such that

X�1HX D HI ˚ HC ; X�JX D MI ˚ MC
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where

HI D iJn1.˛1/˚ � � � ˚ iJnq.˛q/; MI D s1iRn1 ˚ � � � ˚ sqiRnq

HC D i

�
Jm1.�1/ 0

0 Jm1.
N�1/

�
˚ � � � ˚ i

�
Jmp.�p/ 0

0 Jmp .
N�p/

�
;

MC D iR2m1 ˚ � � � ˚ iR2mp :

Here, sj is the sign of the Jordan block Jnj .i˛j / of H , for j D 1; : : : ; q, i.e.,
the purely imaginary eigenvalues come with a sign characteristic. Although this
canonical form reveals these additional invariants, one cannot tell immediately
whether a decomposition as (6.5) exists. One possible way to proceed is to apply
further transformations to transform X�JX back to J, say by constructing an
invertible matrix Y such that

H WD .XY/�1H.XY/; .XY/�J.XY/ D J

Then, the matrix XY is symplectic, because .XY/�J.XY/ D J . Clearly, there
are many such transformations and then the task is to choose among all these
transformations a particular one so that H is as close to a block upper triangular
form (6.5) as possible. In [28] such an optimal canonical form is presented in the
sense that the (2,1) block of H has the lowest possible rank. The result is given in
the following theorem.

Theorem 2 ([28]) Let H 2 C
2n�2n be a Hamiltonian matrix. Then there exists a

symplectic matrix W 2 C
2n�2n such that

W �1HW D

2
666666666664

Tc 0

Tie Die

Tio Dio

Tior Dior

�T �
c

�T �
ie

�T �
io

Mior �T �
ior

3
777777777775

;

where the blocks have the following properties:

(i)

Tc D Jm1.�1/˚ Jm2.�2/˚ � � � ˚ Jmp .�p/;

where �1; : : : ; �p 2 C with Re �1; : : : ;Re�p > 0.
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(ii)

Tie D Jn1.i˛1/˚ � � � ˚ Jnq .i˛q/; Die D s1en1e
�
n1

˚ � � � ˚ sqenq e
�
nq
;

where ˛1; : : : ; ˛q 2 R and s1; : : : ; sq D ˙1. Each sub-matrix

"
Jnj .i˛j / sj enj e

�
nj

0 �.Jnj .i˛j //�
#

corresponds to an even-sized Jordan block J2nj .i˛j / of H with sign sj .
(iii)

Tio D T
.1/
io ˚ � � � ˚ T

.r/
io ; Dio D D

.1/
io ˚ � � � ˚D

.r/
io ;

and

T
.j /
io D

2
64
J`j .iˇj / 0 �

p
2
2
e`j

0 Jkj .iˇj / �
p
2
2
ekj

0 0 iˇj

3
75 ; D.j /

io D
p
2i

2
�j

2
64

0 0 e`j
0 0 �ekj

�e�̀
j
e�
kj

0

3
75 ;

where ˇ1; : : : ; ˇr 2 R and �1; : : : ; �r D ˙1. For each j D 1; : : : ; r , the
sub-matrix

"
T
.j /
io D

.j /
io

0 �.T .j /io /
�

#

corresponds to two odd-sized Jordan blocks of H associated with the same
purely imaginary eigenvalue iˇj . The first is J2`j C1.iˇj / with sign �j and the
second is J2kjC1.iˇj / with sign ��j .

(iv)

Tior D T
.1/
ior ˚� � �˚T

.t/
ior ; Mior DM

.1/
ior ˚� � �˚M

.t/
ior; Dior DD

.1/
ior ˚� � �˚D

.t/
ior;

where

T
.j /
ior D

2
64
J�j .i�j / 0 �

p
2
2
e�j

0 J�j .iıj / �
p
2
2
e�j

0 0 i
2
.�j C ıj /

3
75; M .j /

ior D �rCj

2
4 0 0 0

0 0 0

0 0 � 1
2
.�j � ıj /

3
5;

D
.j /
ior D

p
2i

2
�rCj

2
64

0 0 e�j
0 0 �e�j

�e�
�j
e�
�j

�
p
2i
2
.�j � ıj /

3
75
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and �j ; ıj 2 R, �j ¤ ıj , �rCj D ˙1 for j D 1; : : : ; t . The submatrix

"
T
.j /
ior D

.j /
ior

M
.j /
ior �.T .j /ior /

�

#

corresponds to two odd-sized Jordan blocks of H associated with two distinct
purely imaginary eigenvalues i�j and iıj . The first one is J2�jC1.i�j / with
sign �rCj and the second one is J2�jC1.iıj / with sign ��rCj .

Thus, the spectrum of H can be read off from the Hamiltonian submatrices

Hc WD
�
Tc 0

0 �T �
c

�
; Hie WD

�
Tie Die

0 �T �
ie

�
;

Hio WD
�
Tio Dio

0 �T �
io

�
; Hior WD

�
Tior Dior

Mior �T �
ior

�

The submatrix Hc contains all Jordan blocks associated with eigenvalues that are
not purely imaginary. To be more precise, Tc contains all the Jordan blocks of
eigenvalues of H with positive real parts, and �T �

c contains all the Jordan blocks
of eigenvalues of H with negative real parts. The submatrix Hie contains all even-
sized Jordan blocks associated with purely imaginary eigenvalues of H , whereas
Hio andHior contain all Jordan blocks associated with purely imaginary eigenvalues
of H that have odd sizes. Here, Hio consists of pairs of Jordan blocks of (possibly
different) odd sizes that are associated with the same purely imaginary eigenvalue,
but have opposite signs. On the other hand, Hior consists of the remaining Jordan
blocks that do not allow such a pairing. In particular, if Hior contains more than one
Jordan block associated to a particular purely imaginary eigenvalue, then all such
blocks must have the same sign in the sign characteristic.

While the canonical form in Theorem 2 looks quite complicated at first sight,
its advantage is that the conditions for the existence of a decomposition of the
form (6.5) can now be trivially derived by requesting the submatrix Hior being
void. Thus, with the interpretation of Hior in terms of the sign characteristic, we
immediately obtain the following result that is in accordance with a corresponding
result in [42] in terms of M -selfadjoint matrices.

Theorem 3 ([28]) A Hamiltonian matrix H has a decomposition (6.5) if and only
if for each purely imaginary eigenvalue of H , it has an even number of odd-sized
Jordan blocks half of which have sign C1 and half of which have sign �1.

The theorem also gives necessary and sufficient conditions for the existence of
the Hamiltonian Schur form. A Hamiltonian matrix H is said to have a Hamilton-
ian Schur form, if it allows a decomposition of the form (6.5) with T being upper
triangular andW being both symplectic and unitary, i.e., satisfyingW �JW D J and
W �W D I . Under the same conditions as in Theorem 3, we obtain the existence of
a symplectic matrix W such that W �1HW is in the Hamiltonian canonical form of
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Theorem 2 without the blocks fromHior. Since the blocks Tc , Tie, and Tio are upper
triangular, we find that W �1HW has the form (6.5) with T being upper triangular.
A Hamiltonian Schur form can then be derived by performing a symplectic QR-like
decomposition to the symplectic matrixW , see [7, 28].

Corollary 2 ([28]) LetH be a Hamiltonian matrix. Then there exists a unitary and
symplectic matrix W such that W �1HW has the form (6.5) with T being upper
triangular if and only if for each purely imaginary eigenvalue, H has an even
number of odd-sized Jordan blocks half of which have sign C1 and half of which
have sign �1.

The following example, borrowed from [30], shows that the two Jordan blocks
that are paired in one of the particular submatrices ofHio in Theorem 2 may indeed
have different sizes.

Example 2 Consider the two matrices

H D

2
664
i 1 1 0

0 i 0 0

0 0 i 0

0 0 �1 i

3
775 and X D 1p

2

2
664
2i 0 i 2i

0 1 �i �i
0 0 1 0

0 �i 1 1

3
775 :

Then H is a Hamiltonian matrix in Hamiltonian Schur form and X is the transfor-
mation matrix that brings the pair .iH; iJ/ into the canonical form of Corollary 1:

X�1.iH/X D

2
664

�1 1 0 0

0 �1 1 0

0 0 �1 0

0 0 0 �1

3
775 ; X�.iJ/X D

2
664
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 �1

3
775 ;

Thus,H has the eigenvalue i and two corresponding Jordan blocks with sizes 3 and
1. The Jordan block of size 3 has the sign C1 and the Jordan block of size 1 has the
sign �1 thus satisfying the condition of Theorem 3.

Example 3 Revisiting the matrices H1 and H2 from Example 1, one can easily
check that the eigenvalues i and �i of H2 have one Jordan block with sign C1
and one Jordan block with sign �1 each. In fact, H2 is a matrix of the form Hio

as in Theorem 2. On the other hand, for the matrix H1 the signs corresponding to
i are both C1 and the signs corresponding to �i are both �1. In fact, H1 is in the
canonical form of Theorem 2 corresponding exactly to a matrix in the formHior.

However, for the matrix X D Œe1; e3; e2; e4�, which is not symplectic, we
obtain that X�1H1X D H2 is in the form (6.5). Although the transformation
with X maps the Hamiltonian matrix H1 to the Hamiltonian matrix H2, it is
not a structure-preserving transformation in the sense that for small Hamiltonian
perturbations H1 C �H the transformed matrix H2 C X�1�HX is in general not
Hamiltonian. This fact in a sense allows the similarity transformation with X to
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take a bypass by ignoring the sign constraints shown in Theorem 3. It was shown in
[28] that the existence of the decomposition (6.5) with a non-symplectic similarity
transformation only requires the algebraic multiplicities of all purely imaginary
eigenvalues of H to be even.

In the case that the Hamiltonian matrix under consideration is real, there is
also a canonical form under real symplectic similarity, see [28, Theorem 22].
In this case, the eigenvalues of a Hamiltonian matrix are not only symmetric
with respect to the imaginary axis, but also with respect to the real axis. Thus,
in particular the Jordan blocks associated with purely imaginary eigenvalues i˛,
˛ > 0 occur in complex conjugate pairs and it turns out that their signs in the
sign characteristic are related. It can be shown that if Jm1.i˛/; : : : ; Jmp.i˛/ are
the Jordan blocks of a Hamiltonian matrix H associated with the eigenvalue i˛
and having the signs s1; : : : ; sp , then the signs of the corresponding Jordan blocks
Jm1.�i˛/; : : : ; Jmp.�i˛/ are �s1; : : : ;�sp , respectively. Another key difference
between the real and the complex case is the behavior of the eigenvalue 0 when
H is singular. While in the complex case this eigenvalue can be treated as any
other purely imaginary eigenvalue, it has a special Jordan structure in the real case:
each odd-sized Jordan block associated with zero must have an even number of
copies and in the corresponding sign characteristic, half of the signs must be C1
and half of the signs must be �1. In contrast, there is no such pairing for Jordan
blocks associated with zero that have even sizes. This extraordinary behavior of the
eigenvalue zero leads to a real version of Theorem 3 that yields slightly different
conditions in comparison with the complex case.

Theorem 4 ([28]) A real Hamiltonian matrix H has a decomposition (6.5) with
a real symplectic transformation matrix W if and only if for each nonzero purely
imaginary eigenvalue, H has an even number of odd-sized Jordan blocks half of
which have sign C1 and half of which have sign �1.

For most of the problems arising from systems and control, one actually is
interested in special invariant Lagrangian subspaces of Hamiltonian matrices. For
instance, for the existence of solutions of algebraic Riccati equations [24, 38, 55]
one is interested in the invariant Lagrangian subspaces of a Hamiltonian matrix
corresponding to the eigenvalues in the closed or open left half complex plane. A
more general question is the following: if H is a 2n � 2n Hamiltonian matrix and
a list � of n of its eigenvalues (counted with multiplicities) is prescribed, does
there exists an invariant Lagrangian subspace associated with the eigenvalues in �,
and if so, is this subspace unique? This question can be answered with the help of
Theorem 3 or its corresponding real version. As we already know, the existence of
an invariant Lagrangian subspace for a Hamiltonian matrix H is equivalent to the
existence of a decomposition of the form (6.5). From (6.5), the spectrum ofH is the
union of the spectra of both T and �T �. So one may assume that H has pairwise
distinct non purely imaginary eigenvalues

�1;�N�1; : : : ; �p;�N�p; with algebraic multiplicities �1; �1; : : : ; �p; �p
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and pairwise distinct purely imaginary eigenvalues

i˛1; : : : ; i˛q with algebraic multiplicities 2�1; : : : ; 2�q:

In order to have an invariant Lagrangian subspace, or, equivalently, a decomposi-
tion (6.5), it is necessary that the spectrum of T contains �j and �N�j with algebraic
multiplicities kj and �j � kj , respectively, for each j D 1; : : : ; p, and �j copies
of i˛j for each j D 1; : : : ; q. Let ˝.H/ denote the set of all possible spectra for
T in a decomposition of the form (6.5) of H . Then this set contains

Qp
jD1.�j C 1/

different selections, because kj can be any number from 0 to �j for each j . Among
them there are 2p selections that contain either �j or �N�j , but not both, for all j .
This subset of ˝.H/ is denoted by Q̋ .H/.

The answer to the question of existence of invariant Lagrangian subspaces with
a prescribed spectrum is then given in the following theorem.

Theorem 5 ([12]) A Hamiltonian matrix H has an invariant Lagrangian sub-
space corresponding to every ! 2 ˝.H/ if and only if the conditions Theorem 3
(or Theorem 4 in real case) hold. Concerning uniqueness, we have the following
conditions.

(i) For every ! 2 ˝.H/, H has a unique corresponding invariant Lagrangian
subspace if and only if for every non purely imaginary eigenvalue �j (and �N�j )
H has only a single Jordan block, and for every purely imaginary eigenvalue
i˛j , H only has even-sized Jordan blocks all of them having the same sign.

(ii) For every ! 2 Q̋ .H/, H has a unique corresponding invariant Lagrangian
subspace if and only if for every purely imaginary eigenvalue i˛j , H has only
even-sized Jordan blocks all of them having the same sign.

When the Lagrangian invariant subspaces corresponding to the eigenvalues in
˝.H/ or Q̋ .H/ are not unique, then it is possible to parameterize their bases.
Moreover, the results in Theorem 5 can be used to study Hermitian solutions to
algebraic Riccati equations, see [12].

We will now turn to skew-Hamiltonian matrices. Analogously to the case
of Hamiltonian matrices, it can be shown that if the columns of W1 span an
invariant Lagrangian subspace of a skew-Hamiltonian matrix K , then there exists
a symplectic matrixW D ŒW1;W2� such that

W �1KW D
�
T D

0 T �
�
; D D �D�: (6.6)

Structured canonical forms for complex skew-Hamiltonian matrices can be con-
structed in the same way as for complex Hamiltonian matrices, using the fact thatK
is skew-Hamiltonian if and only if iK is Hamiltonian. Thus, the conditions for the
existence of invariant Lagrangian subspaces are the same as in Theorem 3 replacing
“purely imaginary eigenvalues” with “real eigenvalues”.
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Interestingly, for any real skew-Hamiltonian matrix the real version of the
decomposition (6.6) always exists, see [50]. Also, it is proved in [10] that for a
real skew-Hamiltonian matrix K , there always exists a real symplectic matrix W
such that

W �1KW D N ˚NT ;

whereN is in real Jordan canonical form. The result shows clearly that every Jordan
block of K has an even number of copies.

Finally, if S 2 F
n�n is a symplectic matrix and if the columns of W1 span an

invariant Lagrangian invariant subspace of S , then similar to the Hamiltonian case
one can show that there exists a symplectic matrix W D ŒW1;W2� such that

W �1SW D
�
T D

0 T ��
�
; DT� D .DT�/�: (6.7)

The case of symplectic matrices can be reduced to the case of Hamiltonian matrices
with the help of the Cayley transformation, see Chap. 2 in this book for details on the
Cayley transformation. Therefore, structured Jordan canonical forms for symplectic
matrices can be derived using the structured canonical forms for Hamiltonian
matrices in Theorem 2 and its real version. Then, conditions for the existence of
a decomposition of the form (6.7) can be obtained which are essentially the same
as in Theorems 3 and 4, with purely imaginary eigenvalues replaced by unimodular
eigenvalues in the symplectic case, see [28].

6.4 Doubly Structured Matrices and Pencils

In this section we discuss canonical forms of doubly structured matrices and pencils.
This research was mainly motivated by applications from quantum chemistry [2, 3,
16, 41, 49]. In linear response theory, one has to solve a generalized eigenvalue
problem with a pencil of the form

�

�
C Z

�Z �C
�

�
�
E F

F E

�
; (6.8)

where C;E; F are n�n Hermitian matrices andZ is skew-Hermitian. The simplest
response function model is the time-dependent Hartree-Fock model (also called
random phase approximation) in which the pencil (6.8) takes the simpler structure
C D I and Z D 0 so that the corresponding eigenvalue problem can be reduced to
a standard eigenvalue problem with a matrix of the form

A D
�
E F

�F �E
�
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with E and F being Hermitian. It is straightforward to check that A is Hamiltonian
(or J-skew-Hermitian) andM -Hermitian, where

M D
�
In 0

0 �In
�
:

In the general setting, we consider matrices that are structured with respect
to two invertible Hermitian or skew-Hermitian matrices K and M . Because any
skew-Hermitian matrix K can be transformed to the Hermitian matrix iK and any
K-skew-Hermitian matrix A can be transformed to the K-Hermitian matrix iA, we
may assume that bothK andM are invertible and Hermitian and consider two cases
only:

(a) A is K-Hermitian and M -Hermitian, i.e., KA D A�K; MA D A�M ,
(b) A is K-Hermitian and M -skew-Hermitian, i.e., KA D A�K; MA D �A�M .

The task is now to find an invertible matrix X to perform a transformation

A D X�1AX; K D X�KX; M D X�MX

so that the canonical form of Corollary 1 (or the corresponding version for M -
skew-Hermitian matrices) for both pairs .A;K/ and .A;M/ can simultaneously be
recovered. As shown in [34], this is not always possible, because the situation is
too general. So it is reasonable to restrict oneself to the situation where the pencil
�K � M is nondefective, meaning that all the eigenvalues of the Hermitian pencil
�K � M are semisimple. (This assumption is satisfied in the case K D i Jn and
M D diag.In;�In/ which is relevant for the applications in quantum chemistry.)
Then by (6.4), there exists an invertible matrix Q such that

Q�.�K �M/Q D .�K1 �M1/˚ � � � ˚ .�Kp �Mp/; (6.9)

where, for each j D 1; : : : ; p, either

�Kj �Mj D �

�
0 1

1 0

�
�
�
0 �jN�j 0

�

containing a pair of nonreal eigenvalues �j ; N�j , or

�Kj �Mj D sj
�
�
�
1
� � �

˛j
� �
; sj D ˙1;

containing a single real eigenvalue ˛j with a sign sj . (We highlight that the same
eigenvalues �j ; N�j or ˛j , respectively, may appear multiple times among the blocks
�K1 �M1; : : : ; �Kp �Mp.)

Under this assumption, the following structured canonical form can be obtained
for a matrix that is doubly structured in the sense of case (a) above.
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Theorem 6 ([34]) SupposeK;M are Hermitian and invertible, such that the pencil
�K �M is nondefective. Suppose A is both K-Hermitian andM -Hermitian. Then
there exists an invertible matrix X such that

A WD X�1AX D A1 ˚ A2 ˚ � � � ˚ Ap

K WD X�KX D K1 ˚K2 ˚ � � � ˚Kp

M WD X�MX D M1 ˚M2 ˚ � � � ˚Mp;

where for each j D 1; 2; : : : ; p the blocks Aj ;Kj ;Mj are in one of the following
forms.

(i) Blocks associated with a pair of conjugate complex eigenvalues of A:

Aj D
�
Jmj .�j / 0

0 Jmj .
N�j /

�
; Kj D

�
0 Rmj
Rmj 0

�
; Mj D

�
0 �jRmj

N�jRmj 0

�
;

where �j 2 C n R, �j D cj C idj ¤ 0 with cj ; dj 2 R and dj � 0.
(ii) Blocks associated with real eigenvalues of A and real eigenvalues of �K�M :

Aj D Jnj .˛j /; Kj D sjRnj ; Mj D sj �jRnj ;

where sj D ˙1, 0 ¤ �j 2 R, and ˛j 2 R. The sign of the block Aj with
respect to K is sj and the sign with respect to M is sign.sj �j /.

(iii) Blocks associated with real eigenvalues of A and a pair of conjugate complex
eigenvalues of �K �M :

Aj D
�
Jnj .˛j / 0

0 Jnj .˛j /

�
; Kj D

�
0 Rnj
Rnj 0

�
; Mj D

�
0 �jRnj

N�jRnj 0

�
;

where ˛j 2 R and �j D cj C idj with cj ; dj 2 R and dj > 0. Thus Aj
contains a pair of two nj � nj Jordan blocks of A associated with the same
real eigenvalue ˛j . The pairs of corresponding signs are .C1;�1/ with respect
to both K andM .

It is easily seen that the structured canonical forms for A with respect to K and M ,
respectively, can immediately be read off from the canonical form in Theorem 6. In
addition, the structured canonical form of �K �M as in (6.9) can easily be derived
from �K �M . Therefore, Theorem 6 combines three different structured canonical
forms into one.

On the other hand, Theorem 6 shows that the presence of two structures in
A leads to additional restrictions in the Jordan structure of A which can be seen
from the blocks of type (iii) of Theorem 6. This block is indecomposable in a
sense that there does not exist any transformation of the form .Aj ;Kj ;Mj / 7!
.Y �1AjY; Y �KjY; Y

�MjY / that simultaneously block-diagonalizes all three
matrices. As a consequence, the Jordan structure of a matrix A that is both
K-Hermitian andM -Hermitian is rather restricted if the pencil �K�M (is defective
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and) has only nonreal eigenvalues. In that case, each Jordan block associated
with a real eigenvalue of A must occur an even number of times in the Jordan
canonical form ofA. In particular, all real eigenvalues ofAmust have even algebraic
multiplicity.

In case (b), i.e., when A is K-Hermitian and M -skew-Hermitian, then the
eigenstructure of A has even richer symmetry than in case (a), because now
the spectrum has to be symmetric to both the real and the imaginary axes. Also,
the Jordan blocks associated with real eigenvalues of A will have signs with respect
to K while the ones associated with purely imaginary eigenvalues will have signs
with respect toM . Thus, the eigenvalue zero will play a special role, because it will
have signs both with respect to K and to M . A structured canonical form for this
case will be given in the next theorem, for which we need extra notation. By˙n, we
denote the n � n anti-diagonal matrix alternating sign matrix, i.e.,

˙n D

2
664

.�1/0
.�1/1

. . .

.�1/n�1

3
775 :

Theorem 7 ([34]) Suppose K;M are Hermitian and invertible, and �K � M is
nondefective. Suppose A is both K-Hermitian and M -skew-Hermitian. Then there
exists an invertible matrix X such that

A WD X�1AX D A1 ˚ A2 ˚ � � � ˚ Ap
K WD X�KX D K1 ˚K2 ˚ � � � ˚Kp

M WD X�MX D M1 ˚M2 ˚ � � � ˚Mp;

where for jD 1; 2; : : : ; p the blocksAj ;Kj ;Mj are in one of the following forms.

(i) Blocks associated with nonreal, non purely imaginary eigenvalues of A:

Aj D

2
664
Jmj .�j / 0 0 0

0 �Jmj .�j / 0 0

0 0 Jmj .
N�j / 0

0 0 0 �Jmj . N�j /

3
775 ;

Kj D

2
664

0 0 Rmj 0

0 0 0 Rmj
Rmj 0 0 0

0 Rmj 0 0

3
775 ; Mj D

2
664

0 0 0 �jRmj
0 0 �jRmj 0

0 N�jRmj 0 0

N�jRmj 0 0 0

3
775 ;

where �j D aj C ibj with aj ; bj 2 R and aj bj > 0, and the parameter �j
satisfies one of the following three mutually exclusive conditions: (a) �j D ˇj
with ˇj > 0, (b) �j D iˇj with ˇj > 0, or (c) �j D cj C idj with cj ; dj 2 R

and cj dj > 0.
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(ii) Blocks associated with a pair of real eigenvalues ˙˛j of A and nonreal non
purely imaginary eigenvalues of �K �M :

Aj D

2
664
Jnj .˛j / 0 0 0

0 �Jnj .˛j / 0 0

0 0 Jnj .˛j / 0

0 0 0 �Jnj .˛j /

3
775 ;

Kj D

2
664

0 0 Rnj 0

0 0 0 Rnj
Rnj 0 0 0

0 Rnj 0 0

3
775 ; Mj D

2
664

0 0 0 �jRnj
0 0 �jRnj 0

0 N�jRnj 0 0

N�jRnj 0 0 0

3
775 ;

where 0 < ˛j 2 R and �j D cj C idj with cj ; dj 2 R and cj dj > 0. The
two Jordan blocks associated with ˛j have the signs 1 and �1 with respect to
K and the two Jordan blocks associated with �˛j also have the signs 1 and
�1 with respect to K .

(iii) Blocks associated with a pair of real eigenvalues ˙˛j ofA and real or purely
imaginary eigenvalues of �K �M :

Aj D
�
Jnj .˛j / 0

0 �Jnj .˛j /
�
;

Kj D sj

"
Rnj 0

0
�
�j

j�j j
2
Rnj

#
; Mj D

�
0 �jRnj

N�jRnj 0

�
;

where 0 < ˛j 2 R, sj D ˙1, �j D ˇj or �j D iˇj with 0 < ˇj 2 R. The
Jordan block of A associated with ˛j has the sign sj with respect to K and
the one associated with �˛j has the sign .�1/njC1sj .�j =j�j j/2 with respect
to K .

(iv) Blocks associated with a pair of purely imaginary eigenvalues ˙i˛j ofA and
nonreal non purely imaginary eigenvalues of �K �M :

Aj D

2
664
iJnj .˛j / 0 0 0

0 �iJnj .˛j / 0 0

0 0 iJnj .˛j / 0

0 0 0 �iJnj .˛j /

3
775 ;

Kj D

2
664

0 0 0 Rnj
0 0 Rnj 0

0 Rnj 0 0

Rnj 0 0 0

3
775 ; Mj D

2
664

0 0 �jRnj 0

0 0 0 �jRnj
N�jRnj 0 0 0

0 N�jRnj 0 0

3
775 ;



6 Canonical Forms of Structured Matrices and Pencils 149

where 0 < ˛j 2 R and �j D cj C idj with cj ; dj 2 R and cj dj > 0. The
two Jordan blocks associated with i˛j have the signs 1 and �1 with respect
to M and the two Jordan blocks associated with �i˛j also have the signs 1
and �1 with respect to M .

(v) Blocks associated with a pair of purely imaginary eigenvalues ˙i˛j ofA and
real or purely imaginary eigenvalues of �K �M :

Aj D
�
iJnj .˛j / 0

0 �iJnj .˛j /
�
;

Kj D
�
0 Rnj
Rnj 0

�
; Mj D sj j�j j

"
Rnj 0

0
� j�j j
�j

2
Rnj

#
;

where 0<˛j inR, sj D ˙ 1, �j Dˇj or �j D iˇj with 0<ˇj 2R. The
Jordan block of A associated with i˛j has sign sj with respect to M and the
one associated with �˛j has sign .�1/njC1sj .�j =j�j j/2 with respect to M .

(vi) A pair of blocks associated with the eigenvalue zero of A and nonreal, non
purely imaginary eigenvalues of �K �M :

Aj D
�
Jnj .0/ 0

0 Jnj .0/

�
; Kj D

�
0 Rnj
Rnj 0

�
;

Mj D sj

�
0 �j˙nj

.�1/njC1 N�j˙nj 0

�
;

where sj D ˙1, �j D cj C idj with cj ; dj 2 R and cj dj > 0. The two
Jordan blocks of A associated with the eigenvalue 0 have the signs 1 and �1
with respect to both K andM .

(vii) A pair of blocks associated with the eigenvalue zero of A and real or purely
imaginary eigenvalues of �K �M :

Aj D
�
Jnj .0/ 0

0 Jnj .0/

�
; Kj D

�
0 Rnj
Rnj 0

�
; Mj D

�
0 �j˙nj

��j˙nj 0

�
;

where �j D ˇj if nj is even and �j D iˇj if nj is odd for some 0 < ˇj 2 R.
The two Jordan blocks of A associated with the eigenvalue zero of A have the
signs 1 and �1 with respect to bothK andM .

(viii) A single block associated with the eigenvalue zero of A and real or purely
imaginary eigenvalues of �K �M :

Aj D Jnj .0/; Kj D sjRnj ; Mj D �j �j˙nj ;

where sj ; �j D ˙1; and �j D ˇj if nj is odd and �j D iˇj if nj is even for
some 0 < ˇj 2 R. The Jordan block of A associated with the eigenvalue zero
has the sign sj with respect toK and the sign �j

j�j j�j i
nj�1 with respect to M .
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Theorem 7 shows the intertwined connection of the three different structures: the
double structure of A with respect to K and M and the structure of the Hermitian
pencil �K � M . The property of being K-Hermitian forces the spectrum of A
to be symmetric with respect to the real axis and the property of being M -skew-
Hermitian forces the spectrum to be symmetric with respect to the imaginary axis.
The particular structure of blocks, however, depends in addition on the eigenvalues
of the Hermitian pencil�K�M . Interestingly, there is not only a distinction between
real and nonreal eigenvalues of �K �M , but also the purely imaginary eigenvalues
of �K � M play a special role. This effect can in particular be seen in the blocks
associated with the eigenvalue zero, the only point in the complex plane that is both
real and purely imaginary. Depending on the type of the corresponding eigenvalues
of �K �M , we have the following cases:

(a) Real eigenvalues of �K � M : in this case, even-sized Jordan blocks of A
associated with zero must occur in pairs (vii), but odd-sized Jordan blocks need
not (viii);

(b) Purely imaginary eigenvalues of �K�M : in this case, odd-sized Jordan blocks
ofA associated with zero must occur in pairs (vii), but even-sized Jordan blocks
need not (viii);

(c) Nonreal, non purely imaginary eigenvalues of �K �M : in this case, all Jordan
blocks of A associated with the eigenvalue zero must occur in pairs (vi).

Structured canonical forms for A as a K-Hermitian matrix, for A as an M -
Hermitian matrix and for the Hermitian pencil �K � M can be easily derived
from the canonical form in Theorem 7, so again the result combines three different
canonical forms into one.

As the particular application from quantum chemistry shows, there is also interest
in doubly structured generalized eigenvalue problems. In general, we can consider
a matrix pencil �A � B with both A;B being doubly structured with respect to
two invertible Hermitian or skew-Hermitian matrices K and M . It turns out that
a structured Weierstraß canonical form for a regular doubly structured pencil can
easily be derived by using the results of the matrix case as in Theorems 6 and 7.

Theorem 8 ([34]) Suppose K;M are both invertible and each is either Hermitian
or skew-Hermitian, i.e.,

K� D �KK; M � D �MM; �K; �M D ˙1:

Let �A� B be a regular pencil (that is det.�A� B/ 6	 0) with A;B satisfying

A�K D "AKA; A�M D ıAMA; "A; ıA D ˙1
B�K D "BKB; B�M D ıBMB; "B; ıB D ˙1:
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Then there exist invertible matrices X; Y such that

Y �1.�A� B/X D �

�
I 0

0 E

�
�
�
H 0

0 I

�

X�KY D
�
K1 0

0 K2

�
; X�MY D

�
M1 0

0 M2

�
;

where E is nilpotent and all three matrices in .H;K1;M1/ and .E;K2;M2/,
respectively, have the same sizes. Furthermore, we have that

K�
1 D �K"AK1; M

�
1 D �M ıAM1I H�K1 D ."A"B/K1H; H

�M1 D .ıAıB/M1H;

K�
2 D �K"BK2; M

�
2 D �M ıBM2I E�K2 D ."A"B/K2E; E

�M2 D .ıAıB/M2E:

Clearly, H is a doubly structured matrix associated with the Hermitian or skew-
Hermitian matricesK1;M1, andE is a doubly structured matrix associated with the
Hermitian or skew Hermitian matricesK2;M2. Thus, the pencil �A�B is decoupled
and becomes .�I �H/˚ .�E � I /. Hence a structured Weierstraß canonical form
of �A � B can be derived by applying the results in Theorems 6 and 7 to H and E
separately.

Note that in Theorem 8 one does not require �K � M to be nondefective.
However, in order to apply Theorems 6 or 7 to obtain structured Jordan canonical
forms for the matrices H and E , the condition that both �K1 �M1 and �K2 �M2

are nondefective is necessary.
Finally, we point out that for the special type of doubly structured matrices and

matrix pencils from linear response theory [16, 41, 49], necessary and sufficient
conditions for the existence of structured Schur-like forms (obtained under unitary
transformations) were provided in [36].

6.5 Structured Singular Value Decompositions

The singular value decomposition (SVD) is an important tool in Matrix Theory
and Numerical Linear Algebra. For a given matrix A 2 C

m�n it computes unitary
matrices X; Y such that Y �AX is diagonal with nonnegative diagonal entries. The
condition thatX and Y are unitary can be interpreted in such a way that the standard
Euclidean inner product is preserved by the transformation with X and Y . Thus, to
be more precise, we have a transformation on the matrix triple .A; In; Im/ that yields
the canonical form

Y �AX D
�
� 0

0 0

�
; X�InX D In; Y �ImY D Im;

where � is diagonal with positive diagonal entries. But the singular value decom-
position even yields more information as the nonzero singular values are the square
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roots of the positive eigenvalues of the matrices AA� and A�A. Thus, in addition to
a canonical form forA under unitary equivalence, the SVD simultaneously provides
two spectral decompositions

Y �.AA�/Y D
�
�2 0

0 0

�
; X�.A�A/X D

�
�2 0

0 0

�
;

for the Hermitian (positive semi-definite) matrices AA� and A�A.
This concept can be generalized to the case of possibly indefinite inner products.

Suppose that the two spaces Cn and C
m are equipped with inner products given by

the Hermitian invertible matricesK 2 C
n�n andM 2 C

m�m, respectively. Then the
task is to find invertible matrices X and Y such that

A D Y �AX; K D X�KX; M D Y �MY; (6.10)

are in a canonical form, so that also the canonical forms of the K-Hermitian matrix
T and the M -Hermitian matrix Z can easily be derived, where

T D K�1A�M�1A; Z D M�1AK�1A�: (6.11)

Equivalently, we obtain structured canonical forms for the two Hermitian pencils
�K � A�M�1A and �M � AK�1A�

The transformation (6.10) has several mathematical applications. For instance,
the existence of a generalization of a polar decompositions for a matrix A in a
space equipped with an indefinite inner product as in (6.1) given by the invertible
Hermitian matrix fM 2 C

n�n is related to the matrices AAŒ�� and AŒ��A, where
AŒ�� WD fM�1A�fM . By definition, a matrix A 2 C

n�n is said to have an fM -polar
decomposition, if there exists an fM -Hermitian matrix H and an fM -unitary matrix
U , such that A D UH, see [5, 6]. In contrast to the classical polar decomposition in
the case of the Euclidean inner product, an fM -polar decomposition need not exist
for a given matrix A 2 C

n�n. In [37], it was proved that a matrix A 2 C
n�n allows

an fM -polar decomposition if and only if the two fM -Hermitian matrices AAŒ�� and
AŒ��A have the same canonical forms (as in Corollary 1) – a fact that was already
conjectured in [18]. If a canonical form under a transformation as in (6.10) is given
with the matrices T and Z as in (6.11), then we have that AAŒ�� D MZM�1 and
AŒ��A D T with K D fM and M D fM�1. Thus, structured canonical forms can
easily be derived from the canonical form under the transformation (6.10).

On the other hand, the simultaneous transformation (6.10) provides more flexibil-
ity in solving the eigenvalue problem of a structured matrix as B D A�M�1A from
a numerical point of view. That is, instead of performing similarity transformations
on B , one may use two-sided transformations on A. For example, when K D J and
M D I , a structured condensed form for a matrix A was proposed in [53] and a
numerical method was given in [54].

In the case when A is invertible (hence square), the following theorem provides
the desired canonical form for the transformation in (6.10). Here, we use the
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notation J 2m.˛/ for the square of a Jordan block Jm.˛/ of size m associated with
the eigenvalue ˛.

Theorem 9 ([35]) LetA2C
n�n be nonsingular and letK;M 2C

n�n be Hermitian
and invertible. Then there exist invertible matrices X; Y 2C

n�n such that

Y �AX D Ac ˚ Ar; X�KX D Kc ˚Kr; Y �MY D Mc ˚Mr: (6.12)

Consequently, for the K-Hermitian matrix T D K�1A�M�1A and the M -
Hermitian matrix Z D M�1AK�1A�, one has

X�1TX D Tc ˚ Tr; Y �1ZY D Zc ˚Zr: (6.13)

The diagonal blocks in (6.12) and (6.13) have the following forms.

(i)

Ac D
�
Jm1.�1/ 0

0 Jm1. N�1/
�

˚ � � � ˚
�
Jmp .�p/ 0

0 Jmp . N�p/
�
;

Kc D
�
0 Rm1
Rm1 0

�
˚ � � � ˚

�
0 Rmp
Rmp 0

�
;

Mc D
�
0 Rm1
Rm1 0

�
˚ � � � ˚

�
0 Rmp
Rmp 0

�
;

Tc D
�
J 2m1.�1/ 0

0 J 2m1. N�1/
�

˚ � � � ˚
"
J 2mp .�p/ 0

0 J 2mp . N�p/

#
;

Zc D
�
J 2m1.�1/ 0

0 J 2m1. N�1/
��

˚ � � � ˚
"
J 2mp .�p/ 0

0 J 2mp. N�p/

#�
;

where �j D aj C ibj with 0 < aj ; bj 2 R for j D 1; : : : ; p. For each j ,
both the diagonal block diag

�
J 2mj .�j /; J

2
mj
. N�j /

�
of Tc as well as the diagonal

block diag
�
J 2mj .�j /; J

2
mj
. N�j /

��
ofZc are similar to a matrix consisting of two

mj �mj Jordan blocks, one of them associated with the nonreal and non purely
imaginary eigenvalue �2j and the other one with N�2j .

(ii)

Ar D Jn1.ˇ1/ ˚ � � � ˚ Jnq .ˇq/;

Kr D s1Rn1 ˚ � � � ˚ sqRnq ;

Mr D �1Rn1 ˚ � � � ˚ �qRnq ;

Tr D s1�1J
2
n1
.ˇ1/ ˚ � � � ˚ sq�qJ

2
nq
.ˇq/;

Zr D s1�1
�
J 2n1.ˇ1/

��˚ � � � ˚ sq�q
�
J 2nq .ˇq/

��
;
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where ˇj > 0, and sj ; �j D ˙1 for j D 1; : : : ; q. For each j , the block
sj �j J

2
nj
.ˇj / of Tr is similar to an nj � nj Jordan block associated with a real

eigenvalue sj �j ˇ2j of T with the sign with respect to K being

�
sj if nj is odd, or if nj is even and sj �j D 1,
�j if nj is even and sj �j D �1,

and the block sj �j
�
J 2nj .ˇj /

��
of Zr is similar to an nj � nj Jordan block

associated with a real eigenvalue sj �j ˇ2j of Z with the sign with respect to M
being

�
�j if nj is odd, or if nj is even and sj �j D 1,
sj if nj is even and sj �j D �1.

For a general rectangular matrix A 2 C
m�n, the situation is more complicated

because of (a) the rectangular form of A and (b) the presence of the eigenvalue 0 in
T orZ. Indeed, note that these two matrices T andZ can be represented as products
of the same two factors, but with different order, i.e., T D BC and Z D CB, where
B D K�1A� andC D M�1A. By a well-known result [11], the Jordan structures of
the nonzero eigenvalues of the two matrix products BC and CB are identical, while
this is not the case for the eigenvalue zero. Despite this additional complexity in
the problem of finding a canonical form under the transformation (6.10), a complete
answer is still possible as shown in the next theorem.

Theorem 10 ([35]) Let A 2 C
m�n, and let K 2 C

n�n and M 2 C
m�m be

Hermitian and invertible. Then there exist invertible matrices Y 2 C
m�m and

X 2 C
n�n such that

Y �AX D Ac ˚ Ar ˚ A1 ˚ A2 ˚ A3 ˚ A4;

X�KX D Kc ˚Kr ˚K1 ˚K2 ˚K3 ˚K4; (6.14)

Y �MY D Mc ˚Mr ˚M1 ˚M2 ˚M3 ˚M4:

Moreover, for the K-Hermitian matrix T D K�1A�M�1A 2 C
n�n and for the

M -Hermitian matrix Z D M�1AK�1A� 2 C
m�m we have that

X�1TX D Tc ˚ Tr ˚ T1 ˚ T2 ˚ T3 ˚ T4;

Y �1ZY D Zc ˚Zr ˚Z1 ˚Z2 ˚Z3 ˚Z4:

The blocks Ac;Ar ;Kc;Kr ;Mc;Mr have the same forms as in (6.12). Therefore, the
blocks Tc; Tr and Zc;Zr have the same forms as in (6.13). The remaining blocks
are associated with the eigenvalue 0 of T and Z and have the following forms.
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(i)

A1 D 0`�k; K1 D diag.Ik1 ;�Ik2/; M1 D diag.I`1 ;�I`2/; T1 D 0k; Z1 D 0`;

where k1 C k2 D k and `1 C `2 D `. So there are k copies of 1 � 1 Jordan
blocks associated with the eigenvalue 0 of T such that k1 of them have the sign
C1 and k2 of them the sign �1 with respect to K , and there are ` copies of
1� 1 Jordan blocks associated with the eigenvalue 0 of Z such that `1 of them
have the sign C1 and `2 of them the sign �1.

(ii)

A2 D J2r1.0/ ˚ J2r2.0/ ˚ � � � ˚ J2ru.0/ ;

K2 D R2r1 ˚ R2r2 ˚ � � � ˚ R2ru ;

M2 D R2r1 ˚ R2r2 ˚ � � � ˚ R2ru ;

T2 D J 22r1.0/ ˚ J 22r2.0/ ˚ � � � ˚ J 22ru.0/ ;

Z2 D �
J 22r1.0/

�T˚ �
J 22r2.0/

�T˚ � � � ˚ �
J 22ru.0/

�T
:

For each j D 1; : : : ; u, the block J 22rj .0/ of T2 is similar to a matrix consisting
of two copies of the Jordan block Jrj .0/ of T with one of them having the
sign C1 and the other having the sign �1 with respect to K , and the block�
J 22rj .0/

�T
is similar to a matrix consisting of two copies of the Jordan block

Jrj .0/ of Z with one of them having the sign C1 and the other having the sign
�1 with respect to M .

(iii)

A3 D
�
Is1
0

�
.s1C1/�s1

˚
�
Is2
0

�
.s2C1/�s2

˚ � � � ˚
�
Isv
0

�
.svC1/�sv

;

K3 D �1Rs1 ˚ �2Rs2 ˚ � � � ˚ �vRsv ;

M3 D  1Rs1C1 ˚  2Rs2C1 ˚ � � � ˚  vRsvC1 ;

T3 D �1 1Js1 .0/ ˚ �2 2Js2 .0/ ˚ � � � ˚ �v vJsv .0/ ;

Z3 D �1 1J
T
s1C1.0/˚ �2 2J

T
s2C1.0/˚ � � �˚�v vJ

T
svC1.0/;

where for j D 1; : : : ; v, �j D 1 and  j D ˙1 if sj is even, and �j D ˙1
and  j D 1 if sj is odd. Hence, for each j , the block �j j Jsj .0/ of T3 is a
modified sj � sj Jordan block associated with the eigenvalue 0 of T with sign
�j if sj is odd and j if sj is even; the block �j j J Tsj C1.0/ ofZ3 is a modified
.sj C 1/ � .sj C 1/ Jordan block associated with the eigenvalue 0 of Z with
sign �j if sj is odd and  j if sj is even.
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(iv)

A4 D �
0It1

�
t1�.t1C1/˚

�
0It2

�
t2�.t2C1/˚ � � � ˚�0Itw�tw�.twC1/ ;

K4 D �1Rt1C1 ˚ �2Rt2C1 ˚ � � � ˚ �wRtwC1 ;

M4 D �1Rt1 ˚ �2Rt2 ˚ � � � ˚ �wRtw ;

T4 D �1�1Jt1C1.0/˚ �2�2Jt2C1.0/˚ � � �˚ �w�wJtwC1.0/;

Z4 D �1�1J
T
t1
.0/ ˚ �2�2J

T
t2
.0/ ˚ � � � ˚ �w�wJ

T
tw
.0/ ;

where for j D 1; : : : ;w, �j D 1 and �j D ˙1 if tj is odd, and �j D ˙1
and �j D 1 if tj is even. Hence, for each j , the block �j �j JtjC1.0/ of T4 is a
modified .tj C 1/ � .tj C 1/ Jordan block associated with the eigenvalue 0 of
T with sign �j if tj is odd and �j if tj is even; the block �j �j J Ttj .0/ of Z4 is a
modified tj � tj Jordan block associated with the eigenvalue 0 of Z with sign
�j if tj is odd and �j if tj is even.

Theorem 10 shows that the sizes of the Jordan blocks and signs associated with the
eigenvalue zero may be different for the matrices T and Z. Still, they are related
and the canonical form for A exactly explains in which way.

As mentioned earlier, the investigation of the canonical forms of the matrices
AAŒ�� and AŒ��A is crucial if one wants to check if A 2 C

n�n has an M -polar
decomposition with respect to the invertible Hermitian matrix M . Therefore, the
possible difference in the canonical forms of AAŒ�� and AŒ��A has been analyzed
in [17]. With the canonical form from Theorem 10 there is now a complete
classification of all possible canonical forms for the matrices AAŒ�� and AŒ��A for
a general matrix A.

A real version of (6.14) for real A, K , M can be derived essentially in the same
way. In the case that all A, K , andM are real and at least one ofK andM is skew-
symmetric, the real canonical forms of the simultaneous transformation (6.10) can
be derived too, but with some additional techniques. The details can be found in
[35].

6.6 Conclusion

Applications in different areas provide a variety of eigenvalue problems with differ-
ent symmetry structures that lead to symmetries in the spectra of the corresponding
matrices or matrix pencils. It is crucial to use structure-preserving algorithms
so that the symmetry in the spectra is not lost due to roundoff errors in the
numerical computation and that the computed results are physically meaningful.
For the understanding of the behavior of these algorithms and the effect in the
corresponding perturbation theory, structured canonical forms are an essential tool.
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In this survey, we have presented three particular structured canonical forms with
respect to matrices that carry one or two structures with respect to possible indefinite
inner products. Moreover, we have highlighted the important role that the sign
characteristic plays in the understanding of the behavior of Hamiltonian matrices
under structure-preserving transformations.
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Chapter 7
Perturbation Analysis of Matrix Equations
and Decompositions

Mihail M. Konstantinov and Petko H. Petkov

Abstract A matrix computational problem is a function which maps a set of data
(usually in the form of a collection of matrices) into a matrix space whose elements
are the desired solutions. If a particular data is perturbed then the corresponding
solution is also perturbed. The goal of the norm-wise perturbation analysis is to
estimate the norm of the perturbation in the solution as a function of the norms of
the perturbations in the data. In turn, in the component-wise perturbation analysis
the modules of the elements of the solution are estimated as functions of the modules
of the perturbations in the data.

The perturbation analysis can be local and nonlocal. In the local analysis it is
supposed that the perturbations in the data are asymptotically small and a local
bound for the perturbation in the solution is constructed which is valid for first order
(small) perturbations. A disadvantage of the local analysis is that normally it does
not have a priori measure on how ‘small’ the data perturbations must be in order to
guarantee the results from the local estimates being correct. A desirable property of
the local bounds is formulated as follows: a perturbation bound is asymptotically
exact when for some perturbations it is arbitrarily close to the actual perturbed
quantity.

On the other hand the nonlocal perturbation analysis produces perturbation
estimates which are rigorously valid in a certain set of data perturbations. The price
of this advantage is that the nonlocal perturbation bounds may be too pessimistic
in certain cases and/or the domain of validity of these bounds may be relatively
small. However, a desirable property of the nonlocal bounds is that within first order
perturbations they coincide with the improved local bounds.

In this chapter we consider the basic methods for perturbation analysis of matrix
algebraic equations and unitary (orthogonal in particular) matrix decompositions.

The nonlocal perturbation analysis of matrix equations includes several steps:
(a) reformulation of the perturbed problem as an equivalent operator equation with
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respect to the perturbation in the solution; (b) construction of a Lyapunov majorant
for the corresponding operator; (c) application of fixed point principles in order
to prove that the perturbed equation has a solution; (d) estimation of the solution
of the associated majorant equation. The latter estimate gives the desired nonlocal
perturbation bound.

The nonlocal perturbation analysis of unitary matrix decompositions is based
on a systematic use of the method of splitting operators and vector Lyapunov
majorants. In this way nonlocal perturbation bounds are derived for the basic
unitary decompositions of matrices (QR decomposition and Schur decomposition in
particular) and for important problems in the theory of linear time-invariant control
systems: transformation into unitary canonical form and synthesis of closed-loop
systems with desired equivalent form.

7.1 Introduction

When solving a matrix computational problem in finite machine arithmetic obeying
the IEEE Standard 754-2008 [29] there are three main factors determining the
accuracy of the computed solution: (a) the parameters of the machine arithmetic and
in particular the rounding unit, (b) the sensitivity of the problem and in particular its
condition number, and (c) the properties of the numerical algorithm and in particular
the parameters specifying its numerical stability. Only taking into account these
factors it is possible to derive an error estimate for the computed solution, see e.g.
[27, 28, 38, 75]. Without such an estimate a computational procedure cannot be
accepted as reliable.

The sensitivity of matrix computational problems can be revealed by the methods
and techniques of perturbation (or sensitivity) analysis. In turn, the perturbation
analysis may be norm-wise and componentwise [38, 87] (below we present results
on norm-wise analysis). But the necessity of such an analysis is motivated by at least
two other reasons. First, it enlightens the very nature of the problem independently
on its practical applicability. And second, the mathematical models of real systems
and processes are subject to parametric and measurement uncertainties [95]. Within
these uncertainties we actually have a family of models. Such a family can be
characterized by the methods of perturbation analysis.

In this chapter we consider three classes of matrix perturbation problems: matrix
equations, unitary decompositions of matrices and modal control of controllable
systems. Besides numerous articles, there are many dissertations and books devoted
to these and related problems, see e.g. [2, 4, 16–18, 31, 32, 86] and [38, 45–47].
Related matrix and control problems are considered in [5, 23, 60, 66, 75].

A considerable contribution to the perturbation theory of matrix equations and
decompositions as well as to the corresponding numerical methods is made by
Volker Mehrmann and many of his coauthors since 1991, see [1, 10, 12, 38–
41, 64, 68–70, 72] for theoretical considerations and [6–9, 25, 28, 65–67, 71, 76, 78]
for numerical methods, algorithms and software.
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7.2 Notation

In what follows we denote by R
p�q (resp. Cp�q) the space of p � q matrices over

R (resp. C); we write R
p for Rp�1 and A>, A and AH D A

>
for the transpose,

complex conjugate and complex conjugate transpose of the matrix A with elements
ak;l , respectively (we use bold for matrices and vectors). For block matrices we use

MATLAB1-like notation, e.g. A D
�

A1;1 A1;2

A2;1 A2;2

�
D ŒA1;1;A1;2I A2;1;A2;2�. In par-

ticular the vectorized column-wise form of the (p � q)-matrix A D Œa1; a2; : : : ; aq�
with columns ak is the column pq-vector vec.A/ D Œa1I a2I : : : I aq�.

The size of the involved matrices (in particular the size of the identity matrix
I) shall be clear from the context but we also use the notation In for the identity
(n � n)-matrix and 0p�q for the zero .p � q/-matrix.

The Frobenius and the 2-norm of a matrix A are denoted as kAk and kAk2.
We recall that kAk2 D P

k;l jak;l j2 and kAk2 is the square root of the maximum
eigenvalue of the matrix AHA (or the maximum singular value of A). The Kronecker
product of the matrices A D Œak;l � and B is A ˝ B D Œak;lB�.

The Frobenius norm is very useful in matrix perturbation problems. Indeed, if
Y D AXB then vec.Y/ D .B> ˝ A/vec.X/ and kYk � k.B> ˝ A/k2kXk, where
the equality kYk D k.B> ˝ A/k2kXk is reachable. In addition, if the matrix A is
perturbed to A C E then we usually have a bound kEk � ı on the perturbation
E in terms its Frobenius norm kEk rather than a bound kEk2 � ı in terms of its
2-norm kEk2.

Finally, the notation ‘WD’ means ‘equal by definition’.

7.3 Problem Statement

Explicit matrix problems may be written as

X D ˚.A/;

where the data A and the result X are nonzero real or complex matrices (or collection
of matrices), while implicit problems are defined via matrix equations

F.A;X/ D 0:

The function ˚ satisfies the Lipschitz condition

k˚.A C E/� ˚.A/k � LkEk;

1MATLAB R� is a trademark of MathWorks, Inc.
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where E is a certain perturbation in the data A. Here for some � > 0 the Lipschitz
constant L D L.A; �/ is the supremum of the quantity

k˚.A C E/� ˚.A/k
kEk

over all E satisfying 0 < kEk � �. Denoting by

Y D Y.A;E/ WD ˚.A C E/� ˚.A/

the perturbation in the solution we obtain

kYk
kXk � K

kEk
kAk ; X ¤ 0; A ¤ 0; (7.1)

where the quantity

K D K.A; �/ WD L.A; �/
kAk
kXk (7.2)

is the relative condition number of the problem. We stress that the esti-
mate (7.1), (7.2) is nonlocal since it holds true for all E with kEk � �.

Let the problem be solved by a numerically stable algorithm in floating-point
arithmetic with rounding unit u (in double precision mode u D 2�53 ' 1:1�10�16).
Then the computed solution QX may be represented as

QX D Q̊ .A/;

where Q̊ .A/ is close to ˚. QA/ for some data QA which in turn is close to A in the
sense that [28, 75]

k Q̊ .A/� ˚. QA/k � bujXk and k QA � Ak � aukAk (7.3)

for some positive constants a; b depending on the algorithm (and, eventually, on the
data).

It may be shown [28] that within first order terms in u we have the relative
accuracy estimate

k QX � Xk
kXk � u.aK C b/: (7.4)

For a D 0 the algorithm is forwardly numerically stable, while for b D 0 it
is backwardly numerically stable according to the definitions given in [94], see
also [28].

The inequality (7.4) in view of (7.3) is one of the most useful estimates in matrix
perturbation analysis. It reveals the influence of the three main factors determining
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the accuracy of the solution: the machine arithmetic (via u), the problem (viaK) and
the algorithm (via a and b). But there are some difficulties in applying this approach.

First, it is hard to estimate the constants a and b. That is why heuristically it
is often assumed that a D 1 and b D 0. This is the case when the algorithm is
backwardly stable (the computed solution is the exact solution of a close problem)
and the only errors in the computational process are introduced when rounding the
data A to some machine matrix fl.A/ with kfl.A/ � Ak � ukAk. This is a very
successful approach as the computational practice suggests. Under the heuristic
assumption the relative error in the computed solution is bounded by Ku,

k QX � Xk
kXk � Ku;

and for Ku � 1 (which is most often the case) we may expect about � log10.Ku/
true decimal digits in the solution.

Second, to estimate the conditioning of the problem may also be difficult. Various
aspects of the conditioning of computational problems are considered in [13, 21, 22,
34, 80]. It may be hard to compute L.A; �/ and, in addition, it is not clear how to
determine � a priori. That is why it is often assumed that

L 
 L.A; 0/ D k˚ 0.A/k;

where ˚ 0.A/ is the Fréchet derivative of ˚ computed at the data A. This results
in a local perturbation analysis when the norm of the perturbation in the solution
is assumed to be bounded by a linear function of the perturbation in the data.
Unfortunately this assumption may be severely violated as the next simple example
shows.

Consider the linear scalar equation

AX D 1:

For A D 1 the solution is X D 1. Let the data A D 1 be perturbed to 1C E , where
E > �1. Then the solution X D 1 is perturbed to 1C Y , where

Y D �E
1CE

:

For any � 2 .0; 1/ the Lipschitz constant is

L.1; �/ D 1

1 � �
and the correct perturbation bound (7.1) is

jY j � L.1; �/jEj; jEj � �:
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If we use L.1; 0/ D 1 instead of L.1; �/, then the local analysis gives the
approximate estimate jY j � jEj (with no restrictions on E) while at the same time
jY j ! 1 forE ! �1! Moreover, the local bound “works” even forE D �1 when
there is no solution at all. Of course, we know that E should be small but in a real
problem we do not know what “small” means.

The drawbacks of the local analysis may be overcome by the techniques of
nonlocal perturbation analysis. In this case a quantity r > 0 and a non-decreasing
function

f W Œ0; r� ! RC

are defined such that f .0/ D 0 and

kYk � f .kEk/; kEk � r:

This is the desired nonlocal (and in general nonlinear) perturbation estimate.
In many cases A is not a single matrix but a collection

A D .A1;A2; : : : ;Am/ 2 A

of m matrices Ak . If the data matrices are perturbed as Ak ! Ak C Ek with

kEkk � ık .k D 1; 2; : : : ; m/

the problem is to estimate (locally or nonlocally) the norm kYk of the perturbation
Y in the solution X as a function of the perturbation vector

ı D Œı1I ı2I : : : I ım� 2 R
mC:

7.4 Matrix Equations

7.4.1 Introductory Remarks

Consider the matrix equation

F.A;X/ D 0; (7.5)

where A is a collection of matrices as above, X 2 X is the solution and the function

F.A; �/ W X ! X
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is Fréchet differentiable (X is a certain space of matrices), while the function

F.�;X/ W A ! X

is at least Fréchet pseudo-differentiable [38]. The latter case occurs in complex
equations when the data includes both the matrix Ak and its complex conjugate
Ak for some k. The correct treatment of this case was firstly given in [43], see
also [38, 47] and [92].

Denoting by

E D .E1;E2; : : : ;Em/ 2 A

the collection of perturbations, the perturbed equation is written as

F.A C E;X C Y/ D 0: (7.6)

If the Fréchet derivativeFX.A;X/ is invertible we may rewrite (7.6) as an equivalent
operator equation

Y D ˘.A;X;E;Y/; (7.7)

where

˘.A;X;E;Y/ WD �F �1
X .A;X/.FA.A;X/.E/CG.A;X;E;Y//;

G.A;X;E;Y/ WD F.A C E;X C Y/ � F.A;X/ � FA.A;X/.E/ � FX.A;X/.Y/

(we must have in mind that F.A;X/ D 0 for the particular solution X).
If for example

F.A;X/ WD A1 C A2XA3 C A4XA5XA6 C A7XA8XA9XA10 C A11X�1A12

then

FX.A;X/.Y/ D A2YA3 C A4XA5YA6 C A4YA5XA6 C A7XA8XA9YA10

C A7XA8YA9XA10 C A7YA8XA9XA10 � A11X�1YX�1A12:

The perturbation analysis of algebraic matrix equation is subject to numerous
studies, e.g. [19, 20, 26, 33, 37, 49, 50, 79, 81] and [2, 3, 35, 38, 51, 92, 93],
see also the bibliography in the monograph [38]. A general framework for such
an analysis is given in [38, 41]. Perturbation analysis of general coupled matrix
quadratic equations is given in [36]. Such an analysis for theH1 problem involving
two Riccati equations and other relations is done in [59], while perturbation analysis
of differential matrix quadratic equations is presented in [33, 42].
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7.4.2 Local Estimates

Neglecting second order terms in ı in (7.7) it is possible to derive an expression

y 
 z WD
mX
kD1

Lkek;

where

y WD vec.Y/; ek WD vec.Ek/

and Lk are certain matrices. Since

kYk D kyk 
 kzk

the problem is to find a tight bound on kzk as a function of ı. Such an improved
norm-wise estimate is given in [38, 55]

kzk � est.LI ı/ WD min

�
kLk2kık;

q
ı>�.L/ı

�
; (7.8)

where L WD ŒL1;L2; : : : ;Lm� and � D �.L/ 2 R
m�mC is a matrix with elements

�k;l WD ��LH
k Ll

��
2
.k; l D 1; 2; : : : ; m/:

Note that est.LI �/ is a continuous first order non-differentiable function R
mC ! RC.

The estimate (7.8) is in general better than the linear estimate

kzk �
mX
kD1

kLkk2ık

based on the individual absolute condition numbers kLkk2.
Componentwise local estimates for various classes of matrix equations are also

known, see [38] and the bibliography therein.

7.4.3 Nonlocal Estimates

Nonlocal perturbation estimates for matrix equations may be derived by the
technique of Lyapunov majorants [24, 30, 38, 63] and using fixed point principles.
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The exact Lyapunov majorant for Eq. (7.7) is

l.ı; �/ WD max fk˘.A;X;E;Y/k W kEkk � ık; kYk � �g
(the dependence of l on A and X is not marked since the latter two quantities are
considered fixed in the framework of the perturbation problem).

The exact Lyapunov majorant for nonlinear algebraic matrix equations is non-
linear and strictly convex in �. However, with rare exceptions, exact Lyapunov
majorants cannot be constructed explicitly. That is why we use Lyapunov majorants

h.ı; �/ � l.ı; �/

which are not exact but can be constructed in an explicit form.
The technique of Lyapunov majorants uses the majorant equation

� D h.ı; �/ (7.9)

for determining of � as a function of ı. Complete analysis of different types of
majorant equations is presented in [38, 47].

Let � � R
mC be the set of all ı 2 R

mC such that Eq. (7.9) has a nonnegative solu-
tion. The following facts are established in [38] under certain general assumptions
(see also [24, 63]).

• The interior�o of � is nonempty.
• For a part of the boundary of � the majorant equation has double solution.
• For ı 2 �o the majorant equation has two positive solutions f .ı/, g.ı/ such that
f .ı/ < g.ı/.

Moreover, the function f is increasing in its arguments and f .0/ D 0. This function
is referred to as the small solution to the majorant equation.

Since the operator ˘.A;X;E; �/ transforms the central ball of radius f .ı/ into
itself, then according to the Schauder fixed point principle equation (7.7) has a
solution Y such that

kYk � f .ı/; ı 2 �: (7.10)

This is the desired nonlocal nonlinear perturbation estimate.
Explicit expressions for f .ı/ can be derived for polynomial and fractional-affine

matrix equations [38]. If for example the matrix equation is quadratic then

h.ı; �/ D a0.ı/C a1.ı/�C a2.ı/�
2; (7.11)

where a0.ı/; a1.ı/ are expressions of type est.L; ı/. In particular a0.0/ D a1.0/ D
0 and hence

kYk � f .ı/ WD 2a0.ı/

1 � a1.ı/Cp
.1 � a1.ı//2 � 4a0.ı/a2.ı/

(7.12)
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for

ı 2 � WD
n
ı W RmC W a1.ı/C 2

p
a0.ı/a2.ı/ � 1

o
:

Relations (7.11), (7.12) constitute the nonlocal estimate in this case.
We note finally that local, nonlocal, norm-wise and componentwise perturbation

estimates for linear, polynomial and fractional-affine algebraic matrix equations
are given in the monograph [38]. Such estimates are used in modern reliable
computational methods and algorithms [66, 71, 75].

7.4.4 Linear Equations

As a first example consider the Lyapunov matrix equation

F.A;X/ WD A1 C A2X C XAH
2 D 0; (7.13)

where A1;A2;X 2 C
n�n. Suppose that

�p.A2/C �q.A2/ ¤ 0 .p; q D 1; 2; : : : ; n/;

where �p.A2/ are the eigenvalues of the matrix A2 counted according to their
algebraic multiplicities. Under this assumption the matrix

A0 WD In ˝ A2 C A2 ˝ In 2 C
n2�n2

of the Lyapunov operator X 7! A2XCXAH
2 is invertible and Eq. (7.13) has a unique

solution X. Moreover, if AH
1 D A1 then XH D X as well.

The perturbed Lyapunov equation is

F.A C E;X C Y/ D A1 C E1 C .A2 C E2/.X C Y/C .X C Y/.A2 C E2/H D 0;
(7.14)

where the perturbations in the data are bounded as

kEkk � ık .k D 1; 2/:

The condition

ı2 < ı
0
2 WD 1

2l1
; l1 WD ��A�1

0

��
2

is sufficient for Eq. (7.14) to have a unique solution. At the same time when ı2 � ı02
this equation may have no solution or may have a variety of solutions.
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We have

y WD vec.Y/ D z C O.kık2/; ı ! 0;

where

z WD L1e1 C L2e2 C L3e2; ek D vec.Ek/

and

L1 WD �A�1
0 ; L2 WD L1.X> ˝ In/; L3 WD L1.In ˝ X/Vn:

Here Vn 2 R
n2�n2 is the vec-permutation matrix such that vec.Z>/ D Vnvec.Z/.

According to [38, 47] we have the local perturbation estimate

kzk � est.M1;M2I ı1; ı2/;

where

M1 WD
�

L10 �L11
L11 L10

�
; M2 WD

�
L20 C L30 L31 � L21
L21 C L31 L20 � L30

�

and Lk D Lk0 C {Lk1, {2 D �1.
To obtain a nonlocal estimate we rewrite the equivalent operator equation for Y

in a vector form for y D vec.Y/ as

y D �.A;E; y/ WD L1e1 C L2e2 C L3e2 C L1vec.E2Y C YEH
2 /:

Therefore the Lyapunov majorant h is defined by

k�.A;E; y/k � h.ı; �/ WD est.M1;M2I ı1; ı2/C 2l1ı2�; kyk � �:

Hence for ı2 < ı02 we have the nonlocal estimate

kYk D kyk � est.M1;M2I ı1; ı2/
1 � 2l1ı2

:

Similar norm-wise bounds as well as component-wise bounds for more general
linear matrix equations

B0 C
rX

kD1
BkXCk D 0 (7.15)
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with m D 2r C 1 matrix coefficients A D .B0;B1;C1; : : : ;Br ;Cr / are analyzed in
a similar way, see e.g. [38, 56]. Here the coefficients Bk;Ck may not be independent
and relations such as Bk D CH

k are possible for some indices k.

7.4.5 Quadratic Equations

Consider the matrix quadratic equation

F.A;X/ WD A1 C A2X C XA3 C XA4X D 0; (7.16)

where the coefficients Ak and the solution X are matrices of appropriate size (we
shall use the same notations Ak , Lk , ak , h etc. for different quantities in each
subsection of this paper). Important particular case of a quadratic equation is the
Riccati equation

A1 C A2X C XA>
2 � XA3X D 0I A>

1 D A1; A>
3 D A3;

arising in the theory of control and filtering of linear continuous time-invariant
systems.

Let the matrices Ak in (7.16) be perturbed as Ak C Ek with kEkk � ık (k D
1; 2; 3; 4) and let X C Y be the solution to the perturbed equation

F.A C E;X C Y/ D 0:

Suppose that the matrix

A0 WD I ˝ .A2 C XA4/C .A3 C A4X/> ˝ I

of the linear matrix operator Y 7! .A2 C XA4/Y C Y.A3 C A4X/ is invertible and
denote

L1 WD �A�1
0 ; L2 WD L1.X> ˝ I/; L3 WD L1.I ˝ X/; L4 WD L1.X> ˝ X/:

Then we have the local bound

kYk D a0.ı/C O.kık2/; ı ! 0;

and the nonlocal bound (7.12), where (see [47])

a0.ı/ WD est.L1;L2;L3;L4I ı1; ı2; ı3; ı4/;
a1.ı/ WD est.L1;L2;L3I ı2 C ı3; ı4; ı4/;

a2.ı/ WD l1.kA4k2 C ı4/; l1 WD kL1k2:



7 Perturbation Analysis of Matrix Equations and Decompositions 173

Matrix quadratic equations involving more general expressions of the form
BkXCkXDk with matrix coefficients Bk;Ck;Dk are analyzed similarly [50].

7.4.6 Polynomial Equations of Degree d > 2

Matrix polynomial equations of degree d > 2 in X and with m matrix coefficients
give rise to Lyapunov majorants

h.ı; �/ WD
dX
kD0

ak.ı/�
k; ı D Œı1I ı2I : : : I ım� 2 R

mC:

Here ak are continuous nonnegative non-decreasing functions in ı of type est or
polynomials in ı satisfying

a0.0/ D 0; a1.0/ < 1; ad .0/ > 0

(usually we even have a1.0/ D 0). An example of a simple third degree matrix
equation is

A1 C A2X C A3X2 C A4X3 D 0: (7.17)

For ı sufficiently small (in particular we must at least guarantee that a1.ı/ < 1)
the ME

� D h.ı; �/

in � has small positive solution � D f .ı/ vanishing together with ı and such that
the Frobenius norm kYk of the perturbation Y in the solution X satisfies

kYk � f .ı/; ı 2 � � R
mC:

Here� is the domain of all ı for which the majorant equation has nonnegative roots.
The boundary @� of � is defined by the pair of equations

� D h.ı; �/;
@h.ı; �/

@�
D 1 (7.18)

and the inequalities ık � 0 (k D 1; 2; : : : ; m). Hence for ı 2 @� either the
discriminant of the algebraic equation

a0.ı/ � .1 � a1.ı//� C
dX
kD2

ak.ı/�
k D 0

in � is zero or ık D 0 for some k.
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In general there is no convenient explicit expression for f .ı/ when d > 2.
Therefore the problem is to find a tight easily computable upper bound Of .ı/ for
f .ı/. For this purpose the d th degree Lyapunov majorant h.ı; �/ is replaced by a
second degree Lyapunov majorant

Oh.ı; �/ WD a0.ı/C a1.ı/�C Oa2.ı/�2 � h.ı; �/; � 2 Œ0; �.ı/�:

Here the positive quantity �.�/ satisfies h.ı; �.ı// � �.ı/.
Denoting by Of .ı/ the small solution of the new ME

� D Oh.ı; �/ (7.19)

we get the perturbation estimate

kYk � Of .ı/ WD 2a0.ı/

1 � a1.ı/Cp
.1 � a1.ı//2 � 4a0.ı/ Oa2.ı/

(7.20)

provided

a1.ı/C 2
p
a0.ı/ Oa2.ı/ � 1 and h.ı; �.ı// � �.ı/:

We note that both f .ı/ and Of .ı/ have asymptotic order

a0.ı/

1� a1.0/
C O.kık2/; ı ! 0:

To find Oh.ı; �/ and �.ı/ we proceed as follows. For any � > 0 and � � � we
have

h.ı; �/ � a0.ı/C a1.ı/�C ˇ.ı; �/�2;

where

ˇ.ı; �/ WD a2.ı/C
d�1X
kD2

akC1.ı/�k�1: (7.21)

Let now �.ı/ be a positive nondecreasing expression in ı and � � �.ı/. Then
we may find an upper bound Oa2.ı/ for ˇ.ı; �.ı// and use it in the estimate (7.20).
Choosing different expressions for �.ı/ we obtain different upper bounds Oa2.ı/ for
ˇ.ı; �.ı// and different Lyapunov majorants Oh.ı; �/. As a result we get different
estimates kYk � Of .ı/.
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It must be stressed that if the ME (7.19) has positive roots then its small root
Of .ı/ does not exceed the value of � for which the second equation

1 D !.ı; �/ WD
d�1X
kD0
.k C 1/akC1.ı/�k (7.22)

in (7.18) is fulfilled. For sufficiently small ı it is fulfilled

!.ı; 0/ D a1.ı/ < 1 and !.ı; r/ > 1; r WD .dad .ı//
1=.1�d/:

Hence there is a unique positive solution � D �.ı/ of Eq. (7.22). This solution
may exist even when the ME (7.19) has no positive solutions. But if Eq. (7.19) has
positive solutions Of .ı/ � Og.ı/ then

f .ı/ � �.ı/ � g.ı/ and h.ı; �.ı// � �.ı/

by necessity. Using this approach we distinguish two cases.
The case d D 3. Here �.ı/ may be computed directly from (7.22) which in this

case is a quadratic equation

3a3.ı/�
2 C 2a2.ı/� � .1 � a1.ı// D 0:

We have

�.ı/ D 1 � a1.ı/

a2.ı/C
q
a22.ı/C 3a3.ı/.1 � a1.ı//

: (7.23)

For � � �.ı/ we have

h.ı; �/ � Oh.ı; �/ WD a0.ı/C a1.ı/�C Oa2.ı/�2; Oa2.ı/ WD a2.ı/C a3.ı/�.ı/:

(7.24)

Hence Oh.ı; �/ is a new quadratic Lyapunov majorant. As a result we get the nonlocal
perturbation estimate (7.20) with Oa2.ı/ defined in (7.24).

Consider again the matrix cubic equation (7.17). Suppose that the matrix

A0 WD I ˝ .A2 C A3X C A4X2/C X> ˝ A3 C .X> ˝ A4/.I ˝ X C X> ˝ I/

of the linear operator

Y 7! .A2 C A3X C A4X2/Y C A3YX C A4.XY C YX/X
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is invertible. Denote

L1 WD �A�1
0 ; Lk WD L1

�
.Xk�1/> ˝ I

�
; lk WD kLkk2 .k D 1; 2; 3; 4/; x WD kXk2:

Then the Lyapunov majorant for Eq. (7.17) is

a0.ı/C a1.ı/�C a2.ı/�
2 C a3.ı/�

3;

where

a0.ı/ WD est.L1;L2;L3;L4I ı1; ı2; ı3; ı4/;
a1.ı/ WD l1ı2 C .l1x C l2/ı3 C .l1x

2 C l2x C l3/ı4;

a2.ı/ WD kL1.I ˝ A3/k2 C .1C x/
��L1

�
X> ˝ A4

���
2

C kL1.I ˝ .A4X//k2
C l1ı3 C .l2 C 2l1x/ı4;

a3.ı/ WD kL1.I ˝ A4/k2 C l1ı4:

Now we may apply the estimate (7.20) in view of (7.24).
The case d > 3. Here the estimation of the quantity �.ı/ is more subtle. We

shall work with certain easily computable quantities

�kC1.ı/ � akC1.ı/�k�1.ı/

in (7.21), see [38].
Consider again Eq. (7.22) in � for a given small ı which guarantees that (7.22)

has a (unique) root � D �.ı/. For k D 2; 3; : : : ; d � 1 we have

.k C 1/akC1.ı/�k.ı/ � 1 � a1.ı/

and

�.ı/ �
	

1 � a1.ı/
.k C 1/akC1.ı/


1=k
; akC1.ı/ > 0:

Hence

akC1.ı/�k�1.ı/ � �kC1.ı/ WD a
1=k

kC1.ı/
	
1 � a1.ı/
k C 1


1�1=k

and

ˇ.ı; �.ı// � Oa2.ı/ WD a2.ı/C
d�1X
kD2

�kC1.ı/: (7.25)
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Hence we get again the nonlocal perturbation estimate (7.20) with Oa2.ı/ defined
in (7.25).

7.4.7 Fractional-Affine Equations

Fractional-affine matrix equations (FAME) involve inversions of affine expressions
in X such as the left-hand side of Eq. (7.15). A famous example of a FAME is the
equation

A1 � X C AH
2 .I C A3X/�1A2 D 0

arising in linear-quadratic optimization and filtering of discrete-time dynamic
systems [66, 75]. Here the matrices A1 D AH

1 and A3 D AH
3 are nonnegative definite,

the pair ŒA2;A3/ is stabilizable and the pair .A1;A2� is detectable (we denote matrix
pairs so that the state matrix A2 is near the square bracket).

The Lyapunov majorant h.ı; �/ for such equations may be chosen as a rational
function of � with coefficients depending on the perturbation vector ı (see [47] for
more details)

h.ı; �/ WD b0.ı/C b1.ı/�C b2.ı/C b3.ı/� C b4.ı/�
2

b5.�/� b6.ı/�
: (7.26)

Here the following conditions are fulfilled (some of them for ı sufficiently small).

1. The functions b1; b2; : : : ; b6 are nonnegative and continuous in ı.
2. The functions bk are nondecreasing for k ¤ 5, while the function b5 is positive

and non-increasing in ı.
3. The relations

b0.0/ D b2.0/ D 0; b1.0/ < 1; b5.0/ > 0; b1.0/C b3.0/

b5.0/
< 1

take place.

Denote

c0.ı/ WD b2.ı/C b0.ı/b5.ı/;

c1.ı/ WD b5.ı/.1 � b1.ı//C b0.ı/b6.ı/� b3.ı/;
c2.ı/ WD b4.ı/C b6.ı/.1 � b1.ı//:

Then the majorant equation � D h.ı; �/ takes the form

c2.ı/�
2 � c1.ı/�C c0.ı/ D 0:
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On the other hand we have c0.0/ D 0 and c1.0/ > 0. Hence for small ı it is
fulfilled that c1.ı/ > 0 and c21.ı/ > 4c0.ı/c2.ı/. Set

� WD ˚
ı 2 R

mC W c1.ı/ > 0; c21.ı/ � 4c0.ı/c2.ı/
�
:

It may be shown that the set� has nonempty interior. Hence the perturbation bound
corresponding to the Lyapunov majorant (7.26) is

f .ı/ D 2c0.ı/

c1.ı/C
q
c21.ı/ � 4c0.ı/c2.ı/

; ı 2 �: (7.27)

As a particular example consider the FAME

F.A;X/ WD A1 C A2X C XA3 C A4X�1A5 D 0: (7.28)

The perturbation analysis of such equations uses the technique of Lyapunov
majorants combined with certain useful matrix identities.

The solution X of (7.28) is invertible and so is the matrix Z WD X C Y for small
matrix perturbations Y. If in particular kYk � � < � then Z is invertible and

kZ�1k2 � 1

� � � ;

where � D kX�1k�1 is the minimum singular value of X. We also have the identities

Z�1 D X�1 � X�1YZ�1 D X�1 � Z�1YX�1

D X�1 � X�1YX�1 C X�1YZ�1YX�1:

As a result we get the following matrix identity typical for the proper perturbation
analysis of FAME [47, 54]

F.A C E;X C Y/ D F.A;X/C FX.A;X/.Y/

C F0.A;X;E/C F1.A;X;E;Y/C F2.A;X;Y/;

where the Frćhet derivative FX.A;X/ is determined by

FX.A;X/.Y/ D A2Y C YA3 � A4X�1YX�1A5

and

F0.A;X;E/ WD E1 C E2X C XE3 C A4X�1E5 C E4X�1A5 C E4Z�1E5;

F1.A;X;E;Y/ WD E2Y C YE3 � A4X�1YZ�1E5 � E4Z�1YX�1A5;

F2.A;X;Y/ WD A4X�1YZ�1YX�1A5:
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Suppose that the matrix

A0 WD I ˝ A2 C A>
3 ˝ I � B

of the linear matrix operator FX.A;X/ is invertible, where

B WD �
X�1A5

�> ˝ �
A4X�1� ;

and denote

L1 WD �A�1
0 ; L2 WD L1.I ˝ X/; L3 WD L1.I ˝ X/;

L4 WD L1
��

X�1A5

�> ˝ I

; L5 WD L1

�
I ˝ �

A4X�1�� :
As it is shown in [47] the Lyapunov majorant of type (7.26) for Eq. (7.28) is

determined by the relations

b0.ı/ WD est.L1;L2;L3;L4I ı1; ı2; ı3; ı4/; b1.ı/ WD l1.ı2 C ı3/; b2.ı/ WD l1ı4ı5;

b3.ı/ WD est.L4;L5I ı4; ı5/; b4 WD kL1Bk2; b5 D �; b6 WD 1; l1 WD kL1k2: (7.29)

Therefore the perturbation bound for Eq. (7.28) is given by (7.27), where the
quantities b1; b2; : : : ; b6 are defined in (7.29).

7.5 Matrix Decompositions

7.5.1 Introductory Remarks

A complex or real square matrix U is said to be unitary if UHU D I, where I is
the identity matrix. The group of unitary (n� n)-matrices is denoted as U .n/. Real
unitary matrices satisfy U>U D I and are also called orthogonal – a term which is
not very suitable since orthogonality is a relation between two objects. The columns
uk of an unitary matrix U satisfy uH

k ul D ık;l (the Kronecker delta).
Unitary matrices and transformations play a major role in theoretical and

numerical matrix algebra [23, 27]. Moreover, a computational matrix algorithm for
implementation in finite machine arithmetic can hardly be recognized as reliable
unless it is based on unitary transformations (algorithms like Gaussian elimination
are among the rare exceptions from this rule).

It suffices to mention the QR decomposition and singular value decomposition
(SVD) of rectangular matrices, the Schur decomposition and anti-triangular Schur
decomposition of square matrices and the Hamiltonian-Schur and block-Schur
decomposition of Hamiltonian matrices [1, 62].
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Unitary .n � n/-matrices U have excellent numerical properties since they are
easily inverted (without rounding errors) and have small norm:

U�1 D UH and kUk2 D 1; kUk D p
n :

Perturbation bounds for these and other matrix decompositions are presented in
many articles and monographs [11, 14, 15, 40, 52, 57, 58, 84–90].

A unified effective approach to the perturbation analysis of matrix problems
involving unitary matrices was firstly proposed in [52, 74]. It is called the Method of
Splitting Operators and Lyapunov Majorants (MSOLM). This method and its main
applications are presented in [44, 45]. The main applications of MSOLM include the
unitary matrix decompositions mentioned above as well as certain control problems.
Among the latter we shall mention the synthesis of linear systems with desired
equivalent form (pole assignment synthesis in particular) and the transformation
into canonical or condensed unitary (orthogonal in particular) form.

7.5.2 Splitting Operators and Lyapunov Majorants

MSOLM is based on splitting of matrix operators P W C
m�n ! C

m�n and their
matrix arguments X into strictly lower, diagonal and strictly upper parts

X1 D Low.X/; X2 D Diag.X/ and X3 D Up.X/;

namely

X D X1 C X2 C X3 and P D P1 C P2 C P3;

where

P1 WD Low ı P; P2 WD Diag ı P and P3 WD Up ı P :

If for example X D Œxk;l � 2 C
3�3 then

X1 D
2
4 0 0 0

x2;1 0 0

x3;1 x3;2 0

3
5 ; X2 D

2
4x1;1 0 0

0 x2;2 0

0 0 x3;3

3
5 and X3 D

2
4 0 x1;2 x1;30 0 x2;3
0 0 0

3
5 :

The operators Low, Diag and Up are projectors of the matrix space C
m�n on

the subspaces of strictly lower triangular, diagonal and strictly upper triangular
matrices. The properties of splitting operators are studied in detail in [44, 45].

Let for simplicity m D n and denote by Tn � C
n�n the set of upper triangular

matrices. Then we have

Up.X/ D Low.X>/>; Tn D .Diag C Up/.Cn�n/:
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If ek 2 C
n is the unit vector with ek.l/ D ık;l (the Kronecker delta) then

Low.X/ D
n�1X
lD1

nX
kDlC1

eke>
k Xele>

l ; Diag.X/ D
nX

kD1
eke>

k Xeke>
k :

The vectorizations of the splitting operators contain many zeros. That is why we
prefer to work with the compressed vectorizations of the splitting operators Low
and Diag, namely

lvec W Cn�n ! C
�; dvec W Cn�n ! C

n;

where � WD n.n � 1/=2 and

lvec.X/ WD Œx2;1; x3;1; : : : ; xn;1; x3;2; x4;2; : : : ; xn;2; : : : ; xn�1;n�2; xn;n�2; xn;n�1�
>2C

� ;

dvec.X/ WD Œx1;1; x2;2; : : : ; xn;n�
> 2 C

n:

Thus the vector lvec.X/ contains the strictly lower part of the matrix Low.X/
spanned column-wise and dvec.X/ is the vector of the diagonal elements of the
matrix Diag.X/.

We have

lvec.X/ WD Mlvecvec.X/; dvec.X/ WD Mdvecvec.X/;

where the matrices Mlvec, Mdvec of the operators lvec, dvec are given by

Mlvec WD Œdiag.N1;N2; : : : ;Nn�1/; 0��n� 2 R
��n2 ;

Mdvec WD diag
�
e>
1 ; e

>
2 ; : : : ; e

>
n

� 2 R
n�n2 ;

where

Nk WD Œ0.n�k/�k; In�k� 2 R
.n�k/�n .k D 1; 2; : : : ; n � 1/:

Let

lvec� W C� ! C
n�n

be the right inverse of the operator lvec such that

lvec ı lvec� D I��� and lvec� ı lvec D Low:

Then the matrix of lvec� is

Mlvec� D M>
lvec:
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An important property of the above splittings is that if T 2 Tn and X 2 C
n�n

then the matrices Low.XT/ and Low.TX/ depend only on the strictly lower part
Low.X/ of X rather than on the whole matrix X.

In a more general setting we have the following result [44]. Let the matrix
operator L W Cn�n ! C

n�n be determined from

L .X/ D AXB;

where A;B 2 Tn are given matrices. Then

Low ı L D Low ı L ı Low:

The matrix problems considered in this and next sections may be formulated as
follows. We have a collection A D .A1;A2; : : : ;Am/ 2 A of data matrices Ak . The
resulting matrix (or the solution)

R D �.A;U/

is an upper triangular (or anti-triangular) matrix, where U D .U1;U2; : : : ;Uk/ is a
collection of matrices Up 2 U .n/. At the same time the matrix arguments A and
U of � are not independent. Moreover, in many problems the matrix collection U is
determined by the data A “almost uniquely” via the requirement

Low.�.A;U// D 0:

(we stress that the result R may also be a collection rather than a single matrix).
In certain problems with k D 1 the matrix U D U1 is uniquely determined

by the data. This may be the case when R is the canonical form of A for certain
multiplicative action of the group U .n/ on the set of data [45, 48]. Let for example
the matrix A 2 C

n�n be invertible and

A D UR

be its QR decomposition, where U 2 U .n/ and Low.R/ D 0 (for unity of notations
we denote this decomposition as A D UR instead of the widely used A D QR).
Under certain additional requirements we may consider

R D �.A;U/ WD UHA

as the canonical form of A under the left multiplicative action of the group U .n/.
Since the diagonal elements of R are nonzero we may force them to be real and
positive. In this case U is determined uniquely and R is the canonical form of A for
this action [45].

In other problems the transformation matrix U 2 U .n/ cannot be chosen
uniquely. For example, in the Schur decomposition A D URUH of A, the Schur
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form R (either canonical or only condensed) satisfies Low.R/ D 0. At the same
time any other matrix �U is also unitary and transforms A into R provided that
� D exp.{!/ and ! 2 R.

However, in practice condensed rather than canonical forms are used. In this
case, due to the non-uniqueness of the condensed forms and their perturbations, the
perturbation bounds are valid only for some (but not for all) of the solutions of the
perturbed problem.

Let E D .E1;E2; : : : ;Em/ be a perturbation in the collection A such that

kEkk � ık .k D 1; 2; : : : ; m/:

Suppose that the perturbed problem with data A C E has a solution

R C Z D �.A C E;U C V/ � Tn;

such that the perturbation Z in R satisfies Low.Z/ D 0 and let

U C V D U.I C X/ 2 U .n/; X WD UHV

be the perturbed transformation matrix.
The norm-wise perturbation problem is to estimate the norm of the perturbation

Z D Z.A;E;X/ D �.A C E;U.I C X//� �.A;U/

in the solution R as well as the norm of the perturbation V in the transformation
matrix U as functions of the perturbation vector

ı D Œı1I ı2I : : : I ım� 2 R
mC;

e.g.

kZk � fR.ı/; kVk D kXk � fU.ı/; (7.30)

where the nonnegative valued functions fR and fU are continuous and nondecreas-
ing in ı, and fR.0/ D fU.0/ D 0.

We stress again that the perturbed problem may have solutions in which V is not
small even when E is small or even zero (in the latter case the problem is actually not
perturbed). This may occur when we deal with condensed forms or with canonical
forms for which U is not uniquely determined.

To illustrate this phenomenon consider again the Schur decomposition A D
URUH of the matrix A and let E D 0. Choosing V D �2U we see that the
matrix U C V D �U 2 U .n/ also solves the problem, i.e. transforms A into R.
However, in this case the norm kVk D 2

p
n of the perturbation V is the maximum

possible and does not satisfy any estimate of type (7.30). Similar effects may arise
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in some perturbation problems in control theory for which the solution set is not
even bounded! So what is way out of this situation?

We can only assert that the perturbation estimates (7.30) are valid for some
perturbations Z and V. At the same time the perturbed problem may have other
solutions which are not small and for which the inequalities (7.30) does not hold
true. We may formalize these considerations as follows.

For a given fixed perturbation E let VE � C
n�n be the set of all V satisfying the

perturbed problem

Low.�.A C E;U C V/ � �.A;U// D 0; U C V 2 U .n/:

Since the set VE is defined by a system of polynomial equations it is compact and
the infimum

inffkVkW V 2 VEg D kV0k

is reached for some V0 2 VE. Now we may choose V D V0 and claim that the
estimates (7.30) will be valid for this particular value of V.

Since the matrix I C X is unitary we have .I C X/H.I C X/ D I and

XH C X C XHX D 0:

Hence

XH D �X C O.kXk2/; X ! 0:

Now the problem is to estimate the norm of X. Splitting X as X1 C X2 C X3

above, we rewrite the perturbed problem as an operator equation

X D ˘.A;E;X/;

or as a system of three operator equations

X1 D ˘1.A;E;X/;

X2 D ˘2.X/ WD �0:5Diag.XHX/; (7.31)

X3 D ˘3.X/ WD �Up.XH/� Up.XHX/:

The right-hand side ˘1.A;E;X/ of the first equation in (7.31) depends on the
particular problem, while the second and the third equalities are universal equations.
The only information that we need about the universal equations is that

k˘2.X/k � 0:5kXk2; k˘3.X/k � kX1k C �nkXk2;
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where

�n WD
r
n � 1

2n
: (7.32)

Further on we introduce a generalized norm j � j W Cn�n ! R
3C from

jXj WD ŒkX1kI kX2kI kX3k� 2 R
3C :

In certain problems the splitting of X and ˘ is done in p > 3 parts
X1;X2; : : : ;Xp and ˘1;˘2; : : : ;˘p . Here the generalized norm jXj of X is a
nonnegative p-vector (see [40]),

jXj WD ŒkX1kI kX2kI : : : I kXpk� 2 R
p
C :

Here the vector Lyapunov majorant

h D Œh1Ih2I : : : Ihp� W RmC � R
p
C ! R

p
C

is a continuous function which satisfies the following conditions.

1. For all perturbations E and matrices X 2 C
n�n, and for all vectors ı 2 R

mC,
� 2 R

p
C with

jEj � ı; jXj � �

it is fulfilled

j˘.E;X/j � h.ı; �/

where � is the component-wise partial order relation.
2. For each ı 2 R

mC the function h.ı; �/ W RpC ! R
p
C is differentiable in the domain

R
p
Cnf0g.

3. The elements hk of h are non-decreasing strictly convex functions of all their
arguments and h.0; 0/ D 0.

4. There is a continuous matrix function J W RmC � R
p
C ! R

p�p such that

@h.ı; �/
@�

� J.ı; �/I 0 � ı; 0 � �

and the spectral radius of J.0; 0/ is less than 1 (here 0 � � means that all
elements of � are positive).

Applying the Schauder fixed point principle it may be shown [38] that under
these conditions and for some ı0 � 0 the vector majorant equation

� D h.ı; �/; ı � ı0
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has a solution � D f.ı/ � 0 which tends to 0 together with ı. Finally the desired
perturbation estimate for X is

jXj � f.ı/

which also yields

kVk D kXk D
p

kX1k2 C kX2k2 C kX3k3 � kf.ı/k:

To construct the operator˘1.A;E; �/ in (7.31) we represent Z as

Z D Z.A;E;X/ D L .A/.X/�˝.A;E;X/;

where L .A/.X/ is the main part of Z.A;E;X/ with respect to X (in particular
L .A/ can be the Fréchet derivative of Z in X computed for E D 0, X D 0). In turn,
the expression

˝.A;E;X/ WD L .A/.X/ �Z.A;E;X/

contains first order terms in kEk and higher order terms in kEk C kXk.
Since Low.Z/ D 0 we have

Llow.A/.lvec.X// D lvec.˝.A;E;X//:

Here Llow.A/ W C� ! C
� is the lower compression of L .A/ with matrix

Llow.A/ WD MlvecL.A/M>
lvec; (7.33)

where L.A/ 2 C
��� is the matrix of the operator L .A/.

Under certain generic conditions the operator Llow.A/ is invertible although
L .A/ is not. Thus we have

X1 D ˘1.A;E;X/ WD lvec� ı L�1
low.A/ ı lvec.˝.A;E;X//:

The explicit expression for ˘1.A;E;X/ may not be constructed. Instead, to apply
the technique of vector Lyapunov majorants it suffices to use the estimate

k˘1.A;E;X/k � �k˝.A;E;X/k;

where

� WD ��L�1
low.A/

��
2
: (7.34)

Fortunately, a Lyapunov majorant for ˝.A;E;X/ is usually constructed relatively
easy.
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This is in brief the general scheme for perturbation analysis of matrix problems
involving unitary transformations. Applications of this scheme to particular prob-
lems are outlines in the next subsections.

7.5.3 QR Decomposition

Perturbation analysis of the QR decomposition

A D UR; Low.R/ D 0; U 2 U .n/

of the matrix A 2 C
n�n is done in [88]. Later on such an analysis has been

performed by the MSOLM [44] thus getting tighter perturbation bounds.
Here the matrix Llow.A/ from (7.33) is

Llow.A/ WD Mlvec.R> ˝ I/M>
lvec D Mlvec..A>U/˝ I/M>

lvec;

where

R D UHA D Œrk;l � .k; l D 1; 2; : : : ; n/:

The eigenvalues of the matrix Llow.A/ are r1;1 with multiplicity n � 1, r2;2 with
multiplicity n � 2,. . . , and rn�1;n�1 with multiplicity 1. Let either rank.A/ D n, or
rank.A/ D n� 1. In the latter case let us rearrange the columns of A so that the first
n� 1 columns of A are linearly independent. Then the matrix Llow.A/ is invertible.

The perturbed QR decomposition is

A C E D U.I C X/.R C Z/; I C X 2 U .n/; Low.Z/ D 0

and the problem is to estimate kZk and kXk as functions of ı WD kEk.
In this case the vector majorant equation is equivalent to a quadratic equation

which yields the estimates [44, 45]

kZk � fR.ı/ WD kAk2fU.ı/C ı; (7.35)

kXk � fU.ı/ WD 2�ıq
1 � 2��nı Cp

w.ı/

provided

ı � 1

�
�
2�n Cp

2C 8�2n

 :
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Here

w.ı/ WD .1 � 2��nı/
2 � 2�2.1C 4�2n/ı

2

and the quantities �n and � are given in (7.32) and (7.34) respectively.

7.5.4 Singular Value Decomposition

Consider the singular value decomposition (SVD)

A D U1RUH
2 ; U1;U2 2 U .n/; Low.R/ D Low.R>/ D 0;

of the invertible matrix A 2 C
n�n (the case of general matrices A is more subtle but

is treated similarly). We have R D diag.r1;1; r2;2; : : : ; rn;n/, where r1;1 � r2;2 �
� � � � rn;n > 0. The singular values �k D rk;k of A are the square roots of
the eigenvalues of the matrix AHA. Thus R is the canonical form of A for the
multiplicative action

A 7! UH
1 AU2

of the group U .n/ � U .n/ on the set of invertible matrices.
Using splittings we may introduce a condensed form OR for this action from

Low. OR/ D Low. OR>/ D 0

without ordering the elements of OR.
Let A be perturbed to A C E with " WD kEk2 < �n and let

A C E D U1.I C X1/.R C Z/.I C XH
2 /U

H
2 ;

where

I C Xk 2 U .n/; Low.Z/ D Low.Z>/ D 0;

be the SVD of the matrix A C E. Here

R C Z D diag.�1; �2; : : : ; �n/

and

0 < �k � " � �k � �k C " .k D 1; 2; : : : ; n/:
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Thus we have the perturbation estimates

kZk2 � " and kZk � "
p
n :

This reflects the well known fact that the SVD is well conditioned. In this case a
variant of MSOLM may be used to estimate the norms of the perturbations X1, X2

as well.

7.5.5 Schur Decomposition

The sensitivity of subspaces connected to certain eigenvalue problems are consid-
ered in [82, 83]. Nonlocal and local perturbation analysis of the Schur decomposi-
tion

A D URUH; U 2 U .n/; Low.R/ D 0;

of the matrix A 2 C
n�n is first done in [52]. Here the matrix Llow.A/ from (7.33) is

Llow.A/ WD Mlvec.I ˝ R � R> ˝ I/M>
lvec; R D Œrp;q � D UHAU:

The eigenvalues of the matrix Llow.A/ are

rp;p � rq;q D �p.A/� �q.A/ .q D 1; 2; : : : ; n � 1; p D q C 1; q C 2; : : : ; n/:

Hence it is invertible if and only if A has distinct eigenvalues �1.A/; �2.A/; : : : ;
�n.A/ (note that if A has multiple eigenvalues the Schur form of A C E may even
be discontinuous as a function of E!).

The perturbed Schur decomposition is

A C E D U.I C X/.R C Z/.I C XH/UH;

where

I C X 2 U .n/; Low.Z/ D 0:

The corresponding vector majorant equation is equivalent to a 6th degree algebraic
equation. After certain manipulations it is replaced by a quadratic equation which
yields explicit nonlocal perturbation estimates of type (7.35), see [47, 52].
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7.5.6 Anti-triangular Schur Decomposition

The anti-triangular Schur decomposition of the matrix A 2 C
n�n is described

in [65]

A D URUH; U 2 U .n/;

where the matrix R is anti-triangular,

R D

2
666664

0 0 : : : 0 r1;n
0 0 : : : r2;n�1 r2;n
:::

:::
: : :

:::
:::

0 rn�1;2 : : : rn�1;n�1 rn�1;n
rn;1 rn;2 : : : rn;n�1 rn;n

3
777775

This decomposition arises in solving palindromic eigenvalue problems [65].
Special matrix splittings are derived for the perturbation analysis of this decom-

position and a variant of MSOLM for this purpose is presented recently in [15].

7.5.7 Hamiltonian-Schur Decomposition

The Hamiltonian-Schur decomposition of a Hamiltonian matrix

A D
�

A1 A2

A3 �AH
1

�
2 C

2n�2n; AH
2 D A2; AH

3 D A3

is considered in [64]. When A has no imaginary eigenvalues there exist a matrix

U D
�

U1 U2

�U2 U1

�
2 U S .2n/;

where U S .2n/ � U .2n/ is the group of unitary symplectic matrices, such that

R WD UHAU D
�

R1 R2

0 �RH
1

�
; Low.R1/ D 0; RH

2 D R2:

Less condensed forms

OR D
" OR1;1

OR1;2

0 OR2;2

#
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(block Hamiltonian-Schur form relative to U S .2n/ and block Schur form relative
U .2n/) of Hamiltonian matrices are introduced in [40]. The (1,1) and (2,2)
blocks in OR are less structured in comparison with the corresponding blocks
of R.

Local and nonlocal perturbation analysis of the Hamiltonian-Schur and block-
Schur forms of Hamiltonian matrices using MSOLM is presented in [40, 45].
For Hamiltonian-Schur (resp. block-Shur) forms the vector Lyapunov majorant
h has 4 components and the vector majorant equation is equivalent to a 8th
degree (resp. 6th degree) algebraic equation. After certain manipulations it is
replaced by a bi-quadratic equation which yields explicit nonlocal perturbation
bounds.

7.6 Control Problems

Perturbation analysis of control problems is subject to many investigations [45, 58,
73, 90]. Here we briefly mention two such major problems.

7.6.1 Unitary Canonical Forms

Unitary canonical forms (UCF) of linear time-invariant control systems

x0.t/ D Ax.t/C Bu.t/;

where x.t/ 2 C
n is the state vector, u.t/ 2 C

m is the control vector and

A 2 C
n�n; B 2 C

n�m; rank.B/ D m < n;

have been introduced in [48, 61]. The rigorous definition of these forms is given
in [48]. The perturbation analysis of UCF is done in [57, 58, 74, 90] by MSOLM.
We stress that UCF now play a major role in the analysis and synthesis of linear
time-invariant systems.

The action of the group U .n/ on the set of controllable matrix pairs ŒA;B/ 2
C
n�n � C

n�m is given by

ŒA;B/ 7! ŒR;T/ WD ŒUHAU;UHB/; U 2 U .n/:

(we prefer to denote by B and A the system matrices instead of the more ‘consistent’
notation A1 and A2).

The canonical pair ŒR;T/ has a very involved structure depending on the
controllability indexes of ŒA;B/, see [48]. In particular the matrix ŒT;R� 2 C

n�.nCm/



192 M.M. Konstantinov and P.H. Petkov

is block upper triangular. Hence R is a block Hessenberg matrix as shown
below

ŒT;R� D

2
666666664

T1;0 R1;1 R1;2 : : : R1;p�2 R1;p�1 R1;p

0 R2;1 R2;2 : : : R2;p�2 R2;p�1 R2;p

0 0 R3;2 : : : R3;p�2 R3;p�1 R3;p

:::
:::

:::
: : :

:::
:::

:::

0 0 0 : : : Rp�1;p�2 Rp�1;p�1 Rp�1;p
0 0 0 : : : 0 Rp;p�1 Rp;p

3
777777775

D

where T1;0 2 R
m1�m0 , Rk;k�1 2 R

mk�mk�1 , m1 D m and

Low.T1;0/ D 0; Low.Rk;k�1/ D 0 .k D 1; 2; : : : ; p/:

Here p > 1 is the controllability index and m1 � m2 � � � � � mp � 1 are
the conjugate Kronecker indexes of the pair ŒA;B/. Note that in the generic case
m D m1 D m2 D � � � D mp�1.

The complete set of arithmetic and algebraic invariants relative to the action of
various unitary (orthogonal in particular) matrix groups is described in [45, 48].

Consider the perturbed pair ŒA C E2;B C E1/ with

kE1k � ı1; kE2k2 � ı2;

which is reduced to UCF ŒR C Z;T C Y/ by the transformation matrix U.I C X/ 2
U .n/. The perturbation problem here is to estimate the norms of X, Y and Z
as functions of the perturbation vector ı D Œı1I ı2� 2 R

2C. Local and nonlocal
perturbation estimates for this problem are presented in [45, 57, 58, 73, 90]. The
most general and tight results are those given in [58].

7.6.2 Modal Control

Consider the linear time-invariant system

x0.t/ D Ax.t/C Bu.t/; y.t/ D Cx.t/;

where .C;A;B/ 2 C
r�n � C

n�n � C
n�m and mr � n, r � n, m < n. We suppose

that the triple .C;A;B/ is complete, i.e. that the pair ŒA;B/ is controllable and the
pair .C;A� is observable.

The static feedback u.t/ D Ky.t/ results in the closed-loop system

x0.t/ D .A C BKC/x.t/:
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The purpose of the modal control is to find an output feedback matrix K 2 C
m�r

so as the closed-loop system matrix A C BKC to have certain desirable properties.
In particular it should have a prescribed set f�1; �2; : : : ; �ng of eigenvalues (pole
assignment synthesis), or, more generally, should be similar to a given matrix D 2
C
n�n, i.e.

U�1.A C BKC/U D D (7.36)

for some U 2 	 , where the matrix group 	 � C
n�n is either the unitary group

U .n/ or the group GL .n/ of invertible matrices. In particular we may choose a
desired form D with Low.D/ D 0 and with diagonal elements dk;k D �k .k D
1; 2; : : : ; n/. Suppose that 	 D U .n/ in order to achieve reliability of the numerical
procedure for feedback synthesis as proposed in [77].

Conditions for solvability of the problem of determining U and K from (7.36) are
given in [45, 77]. When the problem is solvable its solution for K is an .mr � n/-
parametric algebraic variety K .C;A;B;D/ � C

m�r .
If the data .C;A;B/ and D is perturbed to .C C E3;A C E2;B C E1/ and D C

E4 with kEkk � ık (k D 1; 2; 3; 4), then under certain conditions the perturbed
problem

.I C XH/UH.A C E2 C .B C E1/.K C Z/.C C E3//U.I C X/ D D C E4

has a solution Z;X with I C X 2 U .n/. The task now is to estimate the quantities
kZk and kXk as functions of the perturbation vector ı D Œı1I ı2I ı3I ı4� 2 R

4C.
Perturbation analysis for the pole assignment synthesis problem is presented

in [91] for the particular case when r D n and the desired poles �k are pairwise
distinct, using specific matrix techniques. However, this restriction on �k is not
necessary and more general and tighter perturbation bounds may be derived. This is
done in [53] using MSOLM.

An important feature of the feedback synthesis of linear systems is the possibility
to use the freedom in the solution K 2 K .C;A;B;D/ when mr > n for other
design purposes. A reliable algorithm for this purpose is proposed in [77].
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Chapter 8
Structured Eigenvalue Perturbation Theory

Shreemayee Bora and Michael Karow

Abstract We give an overview of Volker Mehrmann’s work on structured pertur-
bation theory of eigenvalues. In particular, we review his contributions on pertur-
bations of structured pencils arising in control theory and of Hamiltonian matrices.
We also give a brief outline of his work on structured rank one perturbations.

8.1 Introduction

The core research interests of Volker Mehrmann include mathematical modelling
of real world processes and the design of numerically stable solutions of associated
problems. He has almost four decades of research experience in these areas and
perturbation analysis of the associated challenging eigenvalue problems form an
integral part of his research. Often the challenges provided by these eigenvalue prob-
lems are due to the fact that the associated matrices have a special structure leading
to symmetries in the distribution of their eigenvalues. For example the solution of
continuous time linear quadratic optimal control problems and the vibration analysis
of machines, buildings and vehicles lead to generalized eigenvalue problems where
the coefficient matrices of the matrix pencil have a structure that alternates between
Hermitian and skew-Hermitian. Due to this, their eigenvalues occur in pairs .�;�N�/
when the matrices are complex and quadruples .�; N�;��;�N�/when they are real. In
either case, the eigenvalues are symmetrically placed with respect to the imaginary
axis. This is referred to as Hamiltonian spectral symmetry as it is also typically
displayed by eigenvalues of Hamiltonian matrices. Note that a matrix A of even

size, say 2n, is said to be Hamiltonian if .JA/� D JA where J D
�
0 In

�In 0
�
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On the other hand, discrete time linear quadratic optimal control problems lead to
generalized eigenvalue problems associated with matrix pencils of the formA�zA�
where A� denotes the complex conjugate transpose of the matrix A [15, 46, 51, 63].
For these pencils, the eigenvalues occur in pairs .�; 1= N�/ in the complex case and
in quadruples .�; 1=�; N�; 1= N�/ in the real case which imply that the eigenvalues are
symmetrically placed with respect to the unit circle. This symmetry is referred to
as symplectic spectral symmetry as it is typically possessed by symplectic matrices.
Note that a matrix S of size 2n � 2n is said to be symplectic if JS is a unitary
matrix.

It is now well established that solutions of structured eigenvalue problems by
algorithms that preserve the structure are more efficient because often they need
less storage space and time than other algorithms that do not do so. Moreover,
computed eigenvalues of stable structure preserving algorithms also reflect the
spectral symmetry associated with the structure which is important in applications.
For more on this, as well as Volker Mehrmann’s contributions to structure preserving
algorithms, we refer to the Chap. 1 by A. Bunse-Gerstner and H. Faßbender.

Perturbation analysis of eigenvalue problems involves finding the sensitivity
of eigenvalues and eigenvectors of matrices, matrix pencils and polynomials with
respect to perturbations and is essential for many applications, important among
which is the design of stable and accurate algorithms. Typically, this is measured
by the condition number which gives the rate of change of these quantities under
perturbations to the data. For example, the condition number of a simple eigenvalue
� of an n � n matrix A, is defined by

�.�/ WD lim sup
�!0

(
j Q� � �j
�

W Q� 2 �.AC�/; � 2 C
n�n; � > 0 and k�k < �kAk

)
;

where�.AC�/ denotes the spectrum ofAC�. Given any� 2 C and x 2 C
nnf0g,

perturbation analysis is also concerned with computing backward errors �.�/ and
�.�; x/. They measure minimal perturbations � 2 C

n�n (with respect to a chosen
norm) to A such that � is an eigenvalue of A C � in the first instance and an
eigenvalue of A C � with corresponding eigenvector x in the second instance. In
particular, if �.�; x/ is sufficiently small for eigenvalue-eigenvector pairs computed
by an algorithm, then the algorithm is (backward) stable. Moreover, �.�; x/� �.�/
is an approximate upper bound on the (forward) error in the computed pair .�; x/.

In the case of structured eigenvalue problems, the perturbation analysis of
eigenvalues and eigenvectors with respect to structure preserving perturbations is
important for the stability analysis of structure preserving algorithms and other
applications like understanding the behaviour of dynamical systems associated
with such problems. This involves finding the structured condition numbers of
eigenvalues and eigenvectors and structured backward errors of approximate eigen-
values and eigenvalue-eigenvector pairs. For instance, if A 2 S � C

n�n, then
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the structured condition number of any simple eigenvalue � of A with respect to
structure preserving perturbations is defined by

�S.�/ WD lim sup
�!0

(
j Q� � �j
�

W Q� 2 �.AC�/; AC� 2 S; � > 0 and k�k < �kAk
)
:

Similarly, the structured backward error �S.�/ (resp., �S.�; x/) is a measure of the
minimum structure preserving perturbation toA 2 S such that� 2 C (resp. .�; x/ 2
C � C

n) is an eigenvalue (resp. eigenvalue-eigenvector pair) for the perturbed
problem. Evidently, �S.�/ � �.�/ and �S.�/ � �.�/. Very often, the difference
between condition numbers with respect to arbitrary and structure preserving
perturbations is small for most eigenvalues of structured problems. In fact, they
are equal for purely imaginary eigenvalues of problems with Hamiltonian spectral
symmetry and eigenvalues on the unit circle of problems with symplectic spectral
symmetry [2, 14, 33, 36, 55]. Such eigenvalues are called critical eigenvalues as
they result in a breakdown in the eigenvalue pairing. The same also holds for
structured and conventional backward errors of approximate critical eigenvalues of
many structured eigenvalue problems [1, 14].

However the conventional perturbation analysis via condition numbers and back-
ward errors does not always capture the full effect of structure preserving perturba-
tions on the movement of the eigenvalues. This is particularly true of certain critical
eigenvalues whose structured condition numbers do not always indicate the signifi-
cant difference in their directions of motion under structure preserving and arbitrary
perturbations [5, 48]. It is important to understand these differences in many appli-
cations. For instance, appearance of critical eigenvalues may lead to a breakdown in
the spectral symmetry resulting in loss of uniqueness of deflating subspaces associ-
ated with the non-critical eigenvalues and leading to challenges in numerical com-
putation [24, 46, 52–54]. They also result in undesirable physical phenomena like
loss of passivity [5, 8, 27]. Therefore, given a structured eigenvalue problem without
any critical eigenvalues, it is important to find the distance to a nearest problem with
critical eigenvalues. Similarly, if the structured eigenvalue problem already has crit-
ical eigenvalues, then it is important to investigate the distance to a nearest problem
with the same structure which has no such eigenvalues. Finding these distances pose
significant challenges due to the fact that critical eigenvalues are often associated
with an additional attributes called sign characteristics which restrict there move-
ment under structure preserving perturbations. These specific ‘distance problems’
come within the purview of structured perturbation analysis and are highly relevant
to practical problems. Volker Mehrmann is one of the early researchers to realise
the significance of structured perturbation analysis to tackle these issues.

It is difficult to give a complete overview of Volker Mehrmann’s wide body of
work in eigenvalue perturbation theory [3–5, 10, 11, 13, 15, 31, 34, 35, 41–45, 48].
For instance one of his early papers in this area is [10] where along with co-
authors Benner and Xu, he extends some of the classical results of the perturbation
theory for eigenvalues, eigenvectors and deflating subspaces of matrices and matrix
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pencils to a formal productAs11 A
s2
2 �Aspp of p square matrices A1;A2; : : : ; Ap where

s1; s2; : : : ; sp 2 f�1; 1g. With co-authors Konstantinov and Petkov, he investigates
the effect of perturbations on defective matrices in [35]. In [13] he looks into
structure preserving algorithms for solving Hamiltonian and skew-Hamiltonian
eigenvalue problems and compares the conditioning of eigenvalues and invariant
subspaces with respect to structure preserving and arbitrary perturbations. In fact,
the structure preserving perturbation theory of the Hamiltonian and the skew-
Hamiltonian eigenvalue problem has been a recurrent theme of his research [5,
34, 48]. He has also been deeply interested in structure preserving perturbation
analysis of the structured eigenvalue problems that arise in control theory and their
role in the design of efficient, robust and accurate methods for solving problems
of computational control [11, 15, 31]. The computation of Lagrangian invariant
subspaces of symplectic matrices arises in many applications and this can be
difficult specially when the matrix has eigenvalues very close to the unit circle.
With co-authors, Mehl, Ran and Rodman, he investigates the perturbation theory of
such subspaces in [41]. With the same co-authors, he has also investigated the effect
of low rank structure preserving perturbations on different structured eigenvalue
problems in a series of papers [42–45]. Volker Mehrmann has also undertaken the
sensitivity and backward error analysis of several structured polynomial eigenvalue
problems with co-author Ahmad in [3, 4].

In this article we give a brief overview of Volker Mehrmann’s contributions in
three specific topics of structured perturbation theory. In Sect. 8.2, we describe his
work with co-author Bora on structure preserving linear perturbation of some struc-
tured matrix pencils that occur in several problems of control theory. In Sect. 8.3, we
describe his work with Xu, Alam, Bora, Karow and Moro on the effect of structure
preserving perturbations on purely imaginary eigenvalues of Hamiltonian and skew-
Hamiltonian matrices. Finally, in Sect. 8.4 we give a brief overview of Volker
Mehrmann’s research on structure preserving rank one perturbations of several
structured matrices and matrix pencils with co-authors Mehl, Ran and Rodman.

8.2 Structured Perturbation Analysis of Eigenvalue
Problems Arising in Control Theory

One of the early papers of Volker Mehrmann in the area of structured perturbation
analysis is [15] where he investigates the effect of structure preserving linear
perturbations on matrix pencils that typically arise in robust and optimal control
theory. Such control problems typically involve constant co-efficient dynamical
systems of the form

E Px D Ax C Bu; x.�0/ D x0; (8.1)
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where x.�/ 2 C
n is the state, x0 is an initial vector, u.�/ 2 C

m is the control input
of the system and the matrices E;A 2 C

n;n, B 2 C
n;m are constant. The objective

of linear quadratic optimal control is to find a control law u.�/ such that the closed
loop system is asymptotically stable and the performance criterion

S .x; u/ D
Z 1

�0

�
x.�/

u.�/

�T �
Q S

S� R

� �
x.�/

u.�/

�
d� (8.2)

is minimized, where Q D Q� 2 C
n;n, R D R� 2 C

m;m and S 2 C
n;m. Application

of the maximum principle [46, 51] leads to the problem of finding a stable solution
to the two-point boundary value problem of Euler-Lagrange equations

Nc

2
4 P�

Px
Pu

3
5 D Hc

2
4�x

u

3
5 ; x.�0/ D x0; lim

�!1�.�/ D 0; (8.3)

leading to the structured matrix pencil

Hc � �Nc WD
2
4 0 A B

A� Q S

B� S� R

3
5 � �

2
4 0 E 0

�E� 0 0

0 0 0

3
5 (8.4)

in the continuous time case. Note thatHc andNc are Hermitian and skew-Hermitian
respectively, due to which the eigenvalues of the pencil occur in pairs .�;�N�/ if the
matrices are complex and in quadruples .�; N�;��;�N�/ when the matrices are real.
In fact, for the given pencil it is well known that if E is invertible, then under the
usual control theoretic assumptions [46, 66, 67], it has exactly n eigenvalues on the
left half plane, n eigenvalues on the right half plane andm infinite eigenvalues. One
of the main concerns in the perturbation analysis of these pencils is to find structure
preserving perturbations that result in eigenvalues on the imaginary axis. In [15], the
authors considered the pencilsHc��Nc which had no purely imaginary eigenvalues
or infinite eigenvalues (i.e. the block E is invertible) and investigated the effect of
structure preserving linear perturbations of the formHc � �Nc C t.�Hc � ��Nc/
where

�Hc WD
2
4 0 �A �B

.�A/� �Q �S

.�B/� .�S/� �R

3
5 and �Nc WD

2
4 0 �E 0

�.�E/� 0 0

0 0 0

3
5 (8.5)

are fixed matrices such that �Q and �R are symmetric, E C�E is invertible and
t is a parameter that varies over R. The aim of the analysis was to find the smallest
value(s) of the parameter t such that the perturbed pencil has an eigenvalue on the
imaginary axis in which case their is loss of spectral symmetry and uniqueness of
the deflating subspace associated with the eigenvalues on the left half plane.
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The discrete-time analogue to the linear quadratic control problem leads to
slightly different matrix pencils of the form [46, 47]

Hd � �Nd D
2
4 0 A B

�E� Q S

0 S� R

3
5 � �

2
4 0 E 0

�A� 0 0

�B� 0 0

3
5 : (8.6)

The eigenvalues ofHd��Nd occur in pairs .�; 1= N�/when the pencil is complex and
in quadruples .�; 1= N�; N�; 1=�/ when the pencil is real. For such pencils, the critical
eigenvalues are the ones on the unit circle. With the assumption that Hd � �Nd has
no critical eigenvalues, [15] investigates the smallest value of the parameter t such
that the perturbed pencilsHd C t�Hd � �.Nd C t�Nd/ have an eigenvalue on the
unit circle, where

�Hd D
2
4 0 �A �B

�.�E/� �Q �S

0 .�S/� �R

3
5 and�Nd D

2
4 0 �E 0

�.�A/� 0 0

�.�B/� 0 0

3
5 (8.7)

are fixed matrices that preserve the structure ofHd andNd respectively. Note that in
this case, the loss of spectral symmetry can lead to non-uniqueness of the deflating
subspace associated with eigenvalues inside the unit circle.

Analogous investigations were also made in [15] for a slightly different set of
structured matrix pencils that were motivated by problems of H1 control. The
method of � -iteration suggested in [12] for robust control problems arising in
frequency domain [26, 68] results in pencils of the form

OHc.t/ � � ONc WD
2
4 0 A B

A� 0 S

B� S� R.t/

3
5 � �

2
4 0 E 0

�E� 0 0

0 0 0

3
5 (8.8)

in the continuous time case and in pencils of the form

OHd.t/ � � ONd D
2
4 0 A B

�E� 0 S

0 S� R.t/

3
5 � �

2
4 0 E 0

�A� 0 0

�B� 0 0

3
5 (8.9)

in the discrete time case where in each case,

R.t/ D
�
R11 � tI R12

R�
12 R22

�

is an indefinite Hermitian matrix. Each of the structured pencils vary with the
positive parameter t (playing the role of the parameter � in the � -iteration), while
the other coefficients are constant in t . Here too, the key question investigated was
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the smallest value(s) of the parameter t for which the pencils OHc.t/ � � ONc and
OHd.t/ � � ONd have critical eigenvalues.

The authors developed a general framework for dealing with the structured
perturbation problems under consideration in [15] and derived necessary and
sufficient conditions for the perturbed matrix pencils to have critical eigenvalues.
The following was one of the key results.

Theorem 1 Consider a matrix pencil Hc � �Nc as given in (8.4). Let the matrices
�Hc and�Nc be as in (8.5) and

P.t; �/ WD ŒA � i�E C t.�A� i��E/ B C t�B�;

Z.t/ WD
�
QC t�Q S C t�S

.S C t�S/� RC t�R

�
:

Let V.t; �/ be any orthonormal basis of the kernel of P.t; �/, and letW.t; �/ be the
range of P.t; �/�.

Then for given real numbers t ¤ 0 and � , the purely imaginary number i� is an
eigenvalue of the matrix pencil .Hc C t�Hc;Nc C t�Nc/ if and only if

Z.t/.V .t; �// \W.t; �/ ¤ ;:

In particular, it was observed that if the cost function is chosen in such a way that
the matrices Q, R and S are free of perturbation, then the pencil Hc C t�Hc �
�.Nc C t�Nc/ has a purely imaginary eigenvalue i� if and only if

�
Q S

S� R

�
V.t; �/ \W.t; �/ ¤ ;:

In particular, if the matrix

�
Q S

S� R

�
associated with the cost function is nonsingular

and the kernel of P.t; �/ is an invariant subspace of the matrix, then i� is not an
eigenvalue of Hc C t�Hc � �.Nc C t�Nc/. Similar results were also obtained for
the other structures.

8.3 Perturbation Theory for Hamiltonian Matrices

Eigenvalue problems associated with Hamiltonian matrices play a central role in
computing various important quantities that arise in diverse control theory problems
like robust control, gyroscopic systems and passivation of linear systems. For
example, optimal H1 control problems involve Hamiltonian matrices of the form

H .�/ D
�
F G1 � ��2G2
H �F T

�
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where F;G1;G2;H 2 R
n;n are such that G1;G2 and H are symmetric positive

semi-definite and � is a positive parameter [26, 38, 68]. In such cases, it is important
to identify the smallest value of � for which all the eigenvalues of H .�/ are purely
imaginary. The stabilization of linear second order gyroscopic systems [37, 63]
requires computing the smallest real value of ı such that all the eigenvalues of the
quadratic eigenvalue problem .�2IC�.2ıG/�K/x D 0 are purely imaginary. Here
G is a non-singular skew-Hermitian matrix and K is a Hermitian positive definite
matrix. This is equivalent to finding the smallest value of ı such that all the eigenval-

ues of the Hamiltonian matrix H .ı/ D
��ıG K C ı2G2

In �ıG
�

are purely imaginary.

Finally Hamiltonian matrices also arise in the context of passivation of non-passive
dynamical systems. Consider a linear time invariant control system described by

Px D Ax C Bu;

y D Cx C Du;

where A 2 F
n;n; B 2 F

n;m; C 2 F
m;n, and D 2 F

m;m are real or complex matrices
such that all the eigenvalues of A are on the open left half plane, i.e., the system is
asymptotically stable and D has full column rank. The system is said to be passive
if there exists a non-negative scalar valued function � such that the dissipation
inequality

�.x.t1//��.x.t0// �
Z t1

t0

u�y C y�u dt

holds for all t1 � t0, i.e., the system absorbs supply energy. This is equivalent to
checking whether the Hamiltonian matrix

H D
�
A � B.D CD�/�1C �B.D CD�/�1B�
C �.D CD�/C �.A� B.D CD�/�1C /�

�

has any purely imaginary eigenvalues. A non-passive system is converted to a
passive one by making small perturbations to the matrices A;B;C;D [19, 25, 27]
such that the eigenvalues of the corresponding perturbed Hamiltonian matrix move
off the imaginary axis.

Many linear quadratic optimal control problems require the computation of the
invariant subspace of a Hamiltonian matrix H 2 F

n;n associated with eigenvalues
on the left half plane. Structure preserving algorithms are required for the efficient
computation of such subspaces and the aim of such algorithms is to transform H

via eigenvalue and structure preserving transformations to the Hamiltonian Schur

form ˙ WD
�
T R

0 �T �
�

where R 2 F
n;n is Hermitian and T 2 F

n;n is upper

triangular if F D C and quasi-upper triangular if F D R. It is well known
that there exists a unitary symplectic matrix U (which is orthogonal if F D R)
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such that U �HU D ˙ if H has no purely imaginary eigenvalue [50] although
Mehrmann along with co-authors Lin and Xu have shown in [40] that Hamiltonian
matrices with purely imaginary eigenvalues also have a Hamiltonian Schur form
under special circumstances.

Due to these motivations, a significant part of Volker Mehrmann’s research in
structured perturbation theory focuses on Hamiltonian matrices and especially on
the effect of Hamiltonian perturbations on purely imaginary eigenvalues. One of his
early contributions in this area is [34] co-authored with Konstantinov and Petkov,
in which the importance of the Hamiltonian Schur form motivates the authors to
perform a perturbation analysis of the form under Hamiltonian perturbations. In this
work, the authors also introduce a Hamiltonian block Schur form which is seen to
be relatively less sensitive to perturbations.

Volker Mehrmann’s first significant contribution to the perturbation analysis of
purely imaginary eigenvalues of Hamiltonian matrices is a joint work [48] with
Hongguo Xu. Here Xu and Mehrmann describe the perturbation theory for purely
imaginary eigenvalues of Hamiltonian matrices with respect to Hamiltonian and
non-Hamiltonian perturbations. It was observed that when a Hamiltonian matrix H
is perturbed by a small Hamiltonian matrix, whether a purely imaginary eigenvalue
of H will stay on the imaginary axis or move away from it is determined by the
inertia of a Hermitian matrix associated with that eigenvalue.

More precisely, let i˛; ˛ 2 R, be a purely imaginary eigenvalue of H and let
X 2 C

2n;p be a full column rank matrix. Suppose that the columns of X span the
right invariant subspace ker.H � i˛I /2n associated with i˛ so that

H X D XR and �.R/ D fi˛g (8.10)

for some square matrix R. Here and in the sequel �.M/ denotes the spectrum of
the matrix M . Since H is Hamiltonian, relation (8.10) implies that

X�JH D �R�X�J: (8.11)

Since �.�R�/ D fi˛g, it follows that the columns of the full column rank matrix
J �X span the left invariant subspace associated with i˛. Hence, .J �X/�X D
X�JX is nonsingular and the matrix

Z˛ D iX�JX (8.12)

is Hermitian and nonsingular. The inertia of Z˛ plays the central role in the main
structured perturbation theory result of [48] for the spectral norm k � k2.
Theorem 2 ([48]) Consider a Hamiltonian matrix H 2 F

2n;2n with a purely
imaginary eigenvalue i˛ of algebraic multiplicity p. Suppose that X 2 F

2n;p

satisfies RankX D p and (8.10), and that Z˛ as defined in (8.12) is congruent

to

�
I� 0

0 �I�
�

(with � C � D p).
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If E is Hamiltonian and kE k2 is sufficiently small, then H CE has p eigenvalues
�1; : : : ; �p (counting multiplicity) in the neighborhood of i˛, among which at least
j� � �j eigenvalues are purely imaginary. In particular, we have the following
cases.

1. If Z˛ is definite, i.e. either � D 0 or � D 0, then all �1; : : : ; �p are purely
imaginary with equal algebraic and geometric multiplicity, and satisfy

�j D i.˛ C ıj /CO.kE k22/;

where ı1; : : : ; ıp are the real eigenvalues of the pencil �Z˛ �X�.JE /X .
2. If there exists a Jordan block associated with i˛ of size larger than 2, then

generically for a given E some eigenvalues among �1; : : : ; �p will no longer
be purely imaginary.

If there exists a Jordan block associated with i˛ of size 2, then for any � > 0,
there always exists a Hamiltonian perturbation matrix E with kE k2 D � such
that some eigenvalues among �1; : : : ; �p will have nonzero real part.

3. If i˛ has equal algebraic and geometric multiplicity and Z˛ is indefinite, then
for any � > 0, there always exists a Hamiltonian perturbation matrix E with
kE k2 D � such that some eigenvalues among �1; : : : ; �p have nonzero real part.

The above theorem has implications for the problem of passivation of dynamical
systems as mentioned before, where the goal is to find a smallest Hamiltonian
perturbation to a certain Hamiltonian matrix associated with the system such that
the perturbed matrix has no purely imaginary eigenvalues. Indeed, Theorem 2 states
that a purely imaginary eigenvalue i˛ can be (partly) removed from the imaginary
axis by an arbitrarily small Hamiltonian perturbation if and only if the associated
matrixZ˛ in (8.12) is indefinite. The latter implies that i˛ has algebraic multiplicity
at least 2. This results in the following Theorem in [48].

Theorem 3 ([48]) Suppose that H 2 C
2n;2n is Hamiltonian and all its eigenvalues

are purely imaginary. Let H2n be the set of all 2n � 2n Hamiltonian matrices and
let S be the set of Hamiltonian matrices defined by

S D
�

E 2 H2n j H C E has an imaginary eigenvalue with algebraic
multiplicity > 1 and the correspondingZ˛ in (8.12) is indefinite

�
:

Let

�0 WD min
E2S kE k2: (8.13)

If every eigenvalue of H has equal algebraic and geometric multiplicity and the
corresponding matrix Z˛ as in (8.12) is definite, then for any Hamiltonian matrix
E with kE k2 � �0, H C E has only purely imaginary eigenvalues. For any � > �0,
there always exists a Hamiltonian matrix E with kE k2 D � such that H C E has
an eigenvalue with non zero real part.
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Mehrmann and Xu also consider skew-Hamiltonian matrices in [48]. These are
2n � 2n matrices K such that JK is skew-Hermitian. Clearly, if K is skew-
Hamiltonian, then iK is Hamiltonian so that the critical eigenvalues of K are
its real eigenvalues. Therefore the effect of skew-Hamiltonian perturbations on the
real eigenvalues of a complex skew-Hamiltonian matrix is expected to be the same
as the effect of Hamiltonian perturbations on the purely imaginary eigenvalues
of a complex Hamiltonian matrix. However, the situation is different if the skew-
Hamiltonian matrix K is real. In such cases, the canonical form of K is given by
the following result.

Theorem 4 ([23, 62]) For any skew- Hamiltonian matrix K 2 R
2n;2n, there exists

a real symplectic matrix S such that

S �1K S D
�
K 0

0 KT

�

where K is in real Jordan canonical form.

The above result shows that each Jordan block associated with a real eigenvalue
of K occurs twice and consequently every real eigenvalue is of even algebraic mul-
tiplicity. The following result in [48] summarizes the effect of structure preserving
perturbations on the real eigenvalues of a real skew-Hamiltonian matrix.

Theorem 5 ([48]) Consider the skew-Hamiltonian matrix K 2 R
2n;2n with a real

eigenvalue ˛ of algebraic multiplicity 2p.

1. If p D 1, then for any skew-Hamiltonian matrix E 2 R
2n;2n with sufficiently

small kE k2, K C E has a real eigenvalue � close to ˛ with algebraic and
geometric multiplicity 2, which has the form

� D ˛ C �CO.kE k22/;

where � is the real double eigenvalue of the 2 � 2 matrix pencil �XT JX �
XT .JE /X , and X is a full column rank matrix so that the columns of X span
the right eigenspace ker.K � ˛I/ associated with ˛.

2. If ˛ is associated with a Jordan block of size larger than 2, then generically for
a given E some eigenvalues of K C E will no longer be real. If there exists a
Jordan block of size 2 associated with ˛, then for every � > 0, there always exists
E with kE k2 D � such that some eigenvalues of K C E are not real.

3. If the algebraic and geometric multiplicities of ˛ are equal and are greater than
2, then for any � > 0, there always exists E with kE k2 D � such that some
eigenvalues of K C E are not real.

Mehrmann and Xu use Theorems 2 and 4 in [48] to analyse the properties of the
symplectic URV algorithm that computes the eigenvalues of a Hamiltonian matrix
in a structure preserving way. One of the main conclusions of this analysis is that
if a Hamiltonian matrix H has a simple non-zero purely imaginary eigenvalue say
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i˛, then the URV algorithm computes a purely imaginary eigenvalue say, i Ǫ close
to i˛. In such a case, they also find a relationship between i˛ and i Ǫ that holds
asymptotically. However, they show that if i˛ is multiple or zero, then the computed
eigenvalue obtained from the URV algorithm may not be purely imaginary.

The structured perturbation analysis of purely imaginary eigenvalues of Hamil-
tonian matrices in [48] was further extended by Volker Mehrmann along with co-
authors Alam, Bora, Karow and Moro in [5]. This analysis was used to find explicit
Hamiltonian perturbations to Hamiltonian matrices that move eigenvalues away
from the imaginary axis. In the same work, the authors also provide a numerical
algorithm for finding an upper bound to the minimal Hamiltonian perturbation that
moves all eigenvalues of a Hamiltonian matrix outside a vertical strip containing
the imaginary axis. Alternative algorithms for this task have been given in [17, 27]
and [28]. These works were motivated by the problem of passivation of dynamical
systems mentioned previously.

One of the main aims of the analysis in [5] is to identify situations under which
arbitrarily small Hamiltonian perturbations to a Hamiltonian matrix move its purely
imaginary eigenvalues away from the imaginary axis with further restriction that the
perturbations are real if the original matrix is real. Motivated by the importance of
the Hermitian matrix Z˛ introduced via (8.12) in [48], the authors make certain
definitions in [5] to set the background for the analysis. Accordingly, any two
vectors x and y from F

2n are said to be J -orthogonal if x�Jy D 0. Subspaces
X ; Y  F

2n are said to be J -orthogonal if x�Jy D 0 for all x 2 X ; y 2 Y .
A subspace X  F

2n is said to be J -neutral if x�Jx D 0 for all x 2 X . The
subspace X is said to be J -nondegenerate if for any x 2 X n f0g there exists
y 2 X such that x�Jy 6D 0. The subspaces of F2n invariant with respect to H were
then investigated with respect to these properties and the following was one of the
major results in this respect.

Theorem 6 Let H 2 F
2n;2n be Hamiltonian. Let i˛1; : : : ; i˛p 2 iR be the purely

imaginary eigenvalues of H and let �1; : : : ; �q 2 C be the eigenvalues of H with
negative real part. Then the H -invariant subspaces ker.H �i˛k I /2n and ker.H �
�j I /

2n ˚ ker.H C�j I /
2n are pairwise J -orthogonal. All these subspaces are J -

nondegenerate. The subspaces

X�.H / WD
Mq

jD1ker.H � �j I /
2n;

XC.H / WD
Mq

jD1ker.H C �j I /
2n

are J -neutral.

An important result of [5] is the following.

Theorem 7 Suppose that H 2 F
2n;2n is Hamiltonian and � 2 C is an eigenvalue

of H such that ker.H � �I/2n contains a J -neutral invariant subspace of
dimension d . Let ı1; : : : ; ıd be arbitrary complex numbers such that maxk jıkj < �.
Then there exists a Hamiltonian perturbation E such that kE k2 D O.�/ andH CE
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has eigenvalues �C ık; k D 1; : : : ; d . The matrix E can be chosen to be real if H
is real.

This together with Theorem 6 implies that eigenvalues of H with non zero
real parts can be moved in any direction in the complex plane by an arbitrarily
small Hamiltonian perturbation. However such a result does not hold for the purely
imaginary eigenvalues as the following argument shows. Suppose that a purely
imaginary eigenvalue i˛ is perturbed to an eigenvalue i˛ C ı with Re ı 6D 0 by a
Hamiltonian perturbation Eı . Then the associated eigenvector vı of the Hamiltonian
matrixH CEı is J -neutral by Theorem 6. By continuity it follows that i˛must have
an associated J -neutral eigenvector v 2 ker.H �i˛ I /. This in turn implies that the
associated matrix Z˛ is indefinite and so in particular, the eigenvalue i˛ must have
multiplicity at least 2. In view of this, the following definition was introduced in [5].

Definition 1 Let H 2 F
2n;2n be Hamiltonian and i˛, ˛ 2 R (with the additional

assumption that ˛ ¤ 0 if H is real) be an eigenvalue of H . Then i˛ is of positive,
negative or mixed sign characteristic if the matrix Z˛ given by (8.12) is positive
definite, negative definite or indefinite respectively.

This definition clearly implies that only purely imaginary eigenvalues of H
that are of mixed sign characteristic possess J -neutral eigenvectors. So, the key
to removing purely imaginary eigenvalues of H away from the imaginary axis is
to initially generate an eigenvalue of mixed sign characteristic via a Hamiltonian
perturbation. It was established in [5] that this can be achieved only by merging
two imaginary eigenvalues of opposite sign characteristic and the analysis and
investigations involved in the process utilized the concepts of Hamiltonian backward
error and Hamiltonian pseudospectra.

The Hamiltonian backward error associated with a complex number � 2 C is
defined by

�Ham.�;H / WD inff kE k W E 2 F
2n;2n Hamiltonian; � 2 �.H C E /g: (8.14)

Note that in general �Ham.�;H / is different for F D C and for F D R. We use the
notation �Ham

F .�;H / and �Ham
2 .�;H /, when the norm in (8.14) is the Frobenius

norm and the spectral norm, respectively. The complex Hamiltonian backward error
for nonimaginary � is discussed in the theorem below, see [5, 32].

Theorem 8 Let H 2 C
2n;2n be a Hamiltonian matrix, and let � 2 C be such that

Re� ¤ 0. Then we have

�Ham
F .�;H / D min

kxk2D1

�q
2k.H � �I/xk22 � jx�JH xj2 W x 2 C

2n; x�Jx D 0
�
;

(8.15)

�Ham
2 .�;H / D min

kxk2D1
fk.H � �I/xk2 W x 2 C

2n; x�Jx D 0g: (8.16)

In particular, we have �Ham
2 .�;H / � �Ham

F .�;H / � p
2 �Ham

2 .�;H /.
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Suppose that the minima in (8.15), and (8.16) are attained for u 2 C
2n and

v 2 C
2n, respectively. Let

E1 WD .�I � H /uu� C Juu�.�I � H /�J
kuk22

C u�J.�I � H /uJuu�

kuk42
and

E2 WD k.H � � I/vk2 J
�

w v
� �w�v 1

1 v�w

��1 �
w�
v�
�
;

where w WD J.H � � I/v=k.H � � I/vk2. Then

kE1kF D �Ham
F .�;H / and .H C E1/u D �u;

kE2k2 D �Ham
2 .�;H / and .H C E2/v D �v:

A minimizer v of the right hand side of (8.16) can be found via the following
method. For t 2 R let F.t/ D .H � � I/�.H � � I/ C i t J . Let t0 D
arg maxt2R �min.F.t//. Then there exists a normalized eigenvector v to the mini-
mum eigenvalue of F.t0/ such that v�Jv D 0. Thus,

�Ham
2 .�;H / D k.H � � I/vk2 D max

t2R
p
�min.F.t//:

The proposition below from [5] deals with the Hamiltonian backward error for the
case that � D i! is purely imaginary. In this case an optimal perturbation can also
be constructed as a real matrix if H is real. In the sequel MC denotes the Moore-
Penrose generalized inverse of M .

Proposition 1 Let H 2 F
2n;2n be Hamiltonian and ! 2 R. Let v be a normalized

eigenvector of the Hermitian matrix J.H � i!I / corresponding to an eigenvalue
� 2 R. Then j�j is a singular value of the Hamiltonian matrix H � i!I and v is
an associated right singular vector.

Further, the matrices

E D �Jvv�; (8.17)

K D �J Œv Nv� Œv Nv�C (8.18)

are Hamiltonian, K is real and we have .H C E /v D .H C K /v D i!v.
Furthermore, kE kF D kE k2 D kK k2 D j�j and kK kF � p

2 j�j:
Moreover, suppose that � is an eigenvalue of J.H � i!I / of smallest absolute

value and let �min.H � i!I / be the smallest singular value of H � i!I . Then
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j�j D �min.H � i!I / and we have

�Ham
F .i!;H / D �Ham

2 .i!;H / D j�j D kE k2; when F D C;

�Ham
F .i!;H / D p

2 �Ham
2 .i!;H / D p

2j�j D kK kF ; when F D R and ! ¤ 0:

The above result shows that the real and complex Hamiltonian backward errors
for purely imaginary numbers i!; ! 2 R can be easily computed and in fact they
are equal with respect to the 2-norm. Moreover, they depend on the eigenvalue of
smallest magnitude of the Hermitian matrix J.H � i!I / and the corresponding
eigenvector v is such that v and Jv are respectively the right and left eigenvectors
corresponding to i! as an eigenvalue of the minimally perturbed Hamiltonian
matrix H C �H where �H D E if H is complex and �H D K when
H is real. The authors also introduce the eigenvalue curves �min.!/; ! 2 R in [5]
satisfying

j�min.!/j D minf j�j W � is an eigenvalue of J.H � i!I /g (8.19)

and show that the pair .�min.!/; v.!// where J.H � i!I /v.!/ D �min.!/v.!/ is
a piecewise analytic function of !. Moreover,

d

d!
�min.!/ D v.!/�Jv.!/

for all but finitely many points !1; !2; : : : ; !p 2 R at which there is loss of
analyticity. These facts are used to show that i! is an eigenvalue of H C�H with
a J -neutral eigenvector if and only if it is a local extremum of �min.!/. Hamiltonian
�-pseudospectra of H are then introduced into the analysis in [5] to show that the
local extrema of �min.!/ are the points of coalescence of certain components of the
Hamiltonian pseudospectra.

Given any A 2 C
n;n and � � 0, the �-pseudospectrum of A is defined as

��.AIF/ D
[

kEk2��
f�.AC E/ W E 2 F

n;n g:

It is well-known [64] that in the complex case when F D C, we have

��.AIC/ D f z 2 C W �min.A� z I / � � g;

where, �min.�/ denotes the minimum singular value. The Hamiltonian �-
pseudospectrum is defined by

�Ham
� .H IF/ D

[
kE k2��

f�.H C E / W E 2 F
2n;2n and .JE /� D JE g:
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It is obvious that

�Ham
� .H IC/ D f z 2 C W �Ham

2 .z;H / � � g;

where �Ham
2 .z;H / is the Hamiltonian backward error as defined in (8.14) with

respect to the spectral norm. The Hamiltonian pseudospectrum is in general
different for F D C and for F D R. However, the real and complex Hamiltonian
pseudospectra coincide on the imaginary axis due to Proposition 1.

Corollary 1 Let H 2 C
2n;2n be Hamiltonian. Consider the pseudospectra

��.H IF/ and �Ham
� .H IF/. Then,

�Ham
� .H IC/\ iR D �Ham

� .H IR/ \ iR D ��.H IC/\ iR D ��.H IR/\ iR

D fi! W ! 2 R; �min.H � i!I / � �g
D fi! W ! 2 R; j�min.J.H � i!I //j � �g:

Analogous results for other perturbation structures have been obtained in [55].
Definition 1 introduced in [5] for purely imaginary eigenvalues of a Hamiltonian

matrix is then extended to the components of the Hamiltonian pseudospectra
�Ham
� .H ;F/ as follows.

Definition 2 Let H 2 F
2n;2n. A connected component C�.H / of �Ham

� .H ;F/

is said to have positive (resp., negative) sign characteristic if for all Hamiltonian
perturbations E with kE k2 � � each eigenvalue of H C E that is contained in
C�.H / has positive (resp., negative) sign characteristic.

In view of the above definition, if a component C�.H / of �Ham
� .H ;F/ has

positive (resp., negative) sign characteristic then C�.H / � iR and all eigenvalues
ofH that are contained in C�.H / have positive (resp., negative) sign characteristic.
Consequently, such components are necessarily subsets of the imaginary axis. In
fact an important result in [5] is that sign characteristic of C�.H / is completely
determined by the sign characteristic of the eigenvalues of H that are contained in
C�.H /.

Theorem 9 Let H 2 F
2n;2n and let C�.H / be a connected component of

�Ham
� .H ;F/. For a Hamiltonian matrix E 2 F

2n;2n with kE k2 � �, let XE be a full
column rank matrix whose columns form a basis of the direct sum of the generalized
eigenspaces ker.H CE ��I/2n, � 2 C�.H /\�.H CE /. SetZE WD �iX�

E JXE .
Then the following conditions are equivalent.

(a) The component C�.H / has positive (resp., negative) sign characteristic.
(b) All eigenvalues of H that are contained in C�.H / have positive (resp.,

negative) sign characteristic.
(c) The matrix Z0 associated with E D 0 is positive (resp., negative) definite.
(d) The matrix ZE is positive (resp., negative) definite for all Hamiltonian matrix

E with kE k2 � �.
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Apart from characterising the sign characteristic of components of �Ham
� .H /

in terms of the sign characteristic of the eigenvalues of H contained in them,
Theorem 9 implies that the only way to produce minimal Hamiltonian perturbations
to H such that the perturbed matrices have purely imaginary eigenvalues with
J -neutral eigenvectors is to allow components of �Ham

� .H / of different sign
characteristic to coalesce. Also in view of the analysis of the eigenvalue curves
w ! �min.J.H � iwI//, it follows that the corresponding points of coalescence are
precisely the local extrema of these curves.

If all the eigenvalues of a Hamiltonian matrix H are purely imaginary and
of either positive or negative sign characteristic, [5] provides a procedure for
constructing a minimal 2-norm Hamiltonian perturbation�H based on Theorem 9,
that causes at least one component of the Hamiltonian �-pseudospectrum of H to
be of mixed sign characteristic. This component is formed from the coalescence
of components of positive and negative sign characteristic of the pseudospectrum
and the perturbation�H induces a point of coalescence of the components (which
is purely imaginary) as an eigenvalue of H C �H with a J -neutral eigenvector.
Therefore, any further arbitrarily small Hamiltonian perturbation E results in a non-
imaginary eigenvalue for the matrix H C�H C E . The details of this process are
given below. The following theorem from [5] is a refinement of Theorem 3.

Theorem 10 Let H 2 F
2n;2n be a Hamiltonian matrix whose eigenvalues are all

purely imaginary, and let f .!/ D �min.H � i!I /; ! 2 R. Define

�F.H / WD inff kE k2 W E 2 F
2n;2n; .JE /� D JE ;

H C E has a non-imaginary eigenvalue g;

RF.H / WD inff kE k2 W E 2 F
2n;2n; .JE /� D JE ;

H C E has a J -neutral eigenvector g

Furthermore, let �0 be defined as in (8.13). Then the following assertions hold.

(i) If at least one eigenvalue of H has mixed sign characteristic then �0 D
RF.H / D �F.H / D 0.

(ii) Suppose that each eigenvalue of H has either positive or negative sign
characteristic. Let

iI1; : : : ; iIq � iR

denote the closed intervals on the imaginary axis whose end points are
adjacent eigenvalues of H with opposite sign characteristics. Then we have

�0 D RF.H / D �F.H / D min
1�k�q max

!2Ik

f .!/:
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(iii) Consider an interval I 2 fI1; : : : ;Iqg satisfying

min
1�k�q max

!2Ik

f .!/ D max
!2I f .!/ D f .!0/; !0 2 I :

Suppose that iI is given by iI D Œi˛; iˇ�. Then the function f is strictly
increasing in Œ˛; !0� and strictly decreasing in Œ!0; ˇ�. For � < �0, we have
i!0 … �Ham

� .H ;F/, C�.H ; i˛/ \ C�.H ; iˇ/ D ; and i!0 2 C�0 .H ; i˛/ D
C�0 .H ; iˇ/ D C�0 .H ; i˛/[C�0 .H ; iˇ/ where C�0 .H ; i˛/ and C�0 .H ; iˇ/

are components of H containing i˛ and iˇ respectively. Moreover, if i˛ has
positive sign characteristic and iˇ has negative sign characteristic, then the
eigenvalue curves �min.w/ (satisfying (8.19)) are such that �min.!/ D f .!/

for all ! 2 Œ˛; ˇ�. On the other hand, if i˛ has negative sign characteristic and
iˇ has positive sign characteristic then�min.!/ D �f .!/ for all! 2 Œ˛; ˇ�. In
both cases there exists a J -neutral normalized eigenvector v0 of J.H � i!0I /
corresponding to the eigenvalue �min.!0/.

(iv) For the J -neutral normalized eigenvector vector v0 mentioned in part (iii),
consider the matrices

E 0 WD �min.!0/J v0v
�
0 ;

K 0 WD �min.!0/J Œv0 v0�Œv0; v0�
C;

E� WD �v0v
�
0 C N�Jv0v�

0 J;

K� WD Œ�v0; �v0�Œv0; v0�
C C J.Œv0; v0�

C/�Œ�v; �v0��J Œ�v0; �v0�
CJ Œv0; v0�Œv0; v0�CJ Œv0; v0�C; � 2 C:

Then E 0 is Hamiltonian, K 0 is real and Hamiltonian, .H C E 0/v0 D .H C
K 0/v0 D i!0v0 and kE 0k2 D kK 0k2 D f .!0/. For any � 2 C the matrix
E� is Hamiltonian, and .H C E 0 C E�/v0 D .i!0 C�/v0. If !0 D 0 and H
is real then v0 can be chosen as a real vector. Then E 0 C E� is a real matrix
for all � 2 R. If !0 6D 0 and H is real then for any � 2 C, K� is a real
Hamiltonian matrix satisfying .H C K 0 C K�/v0 D .i!0 C �/v0.

Theorem 10 is the basis for the construction an algorithm in [5] which produces
a Hamiltonian perturbation to any Hamiltonian matrix H such that either all
the eigenvalues of the perturbed Hamiltonian matrix lie outside an infinite strip
containing the imaginary axis or any further arbitrarily small Hamiltonian pertur-
bation results in a matrix with no purely imaginary eigenvalues. This is done by
repeated application of the perturbations specified by the Theorem 10 to the portion
of the Hamiltonian Schur form of H that corresponds to the purely imaginary
eigenvalues of positive and negative sign characteristic. Each application, brings
at least one pair of purely imaginary eigenvalues together on the imaginary axis
to form eigenvalue(s) of mixed sign characteristic of the perturbed Hamiltonian
matrix. Once this happens, the Hamiltonian Schur form of the perturbed matrix can
again be utilised to construct subsequent perturbations that affect only the portion of
the matrix corresponding to purely imaginary eigenvalues of positive and negative
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sign characteristic. When the sum of all such perturbations is considered, all the
purely imaginary eigenvalues of the resulting Hamiltonian matrix are of mixed sign
characteristic and there exist Hamiltonian perturbations of arbitrarily small norm
that can remove all of them from the imaginary axis. These final perturbations can
also be designed in a way that all the eigenvalues of the perturbed Hamiltonian
matrix are outside a pre-specified infinite strip containing the imaginary axis. The
procedure leads to an upper bound on the minimal Hamiltonian perturbations that
achieve the desired objective.

As mentioned earlier, critical eigenvalues of other structured matrices and matrix
pencils are also associated with sign characteristics and many applications require
the removal of such eigenvalues. For example, critical eigenvalues of Hermitian
pencils L.z/ D A � zB are the ones on the real line or at infinity. If such
pencils are also definite, then minimal Hermitian perturbations that result in at least
one eigenvalue with a non zero purely imaginary part with respect to the norm

jjjLjjj WD
q

kAk22 C kBk22, (where k � k2 denotes the spectral norm), is the Crawford
number of the pencil [30, 39, 58]. The Crawford number was first introduced in [20]
although the name was first coined only in [57]. However, it has been considered
as early as in the 1960s in the work of Olga Taussky [61] and its theory and
computation has generated a lot of interest since then [9, 18, 21, 22, 29, 30, 57–60,
65]. Recently, definite pencils have been characterised in terms of the distribution
of their real eigenvalues with respect to their sign characteristic [6, 7]. This has
allowed the extension of the techniques used in [5] to construct a minimal Hermitian
perturbation�L.z/ D �1 � z�2 (with respect to the norm jjj�jjj) to a definite pencil
L.z/ that results in a real or infinite eigenvalue of mixed sign characteristic for the
perturbed pencil .LC�L/.z/. The Crawford number ofL.z/ is equal to jjj�Ljjj as it
can be shown that there exists a further Hermitian perturbation QL.z/ D Q�1�z Q�2 that
can be chosen to be arbitrarily small such that the Hermitian pencil .LC�LC QL/.z/
has a pair of eigenvalues with non zero imaginary parts. The challenge in these cases
is to formulate suitable definitions of the sign characteristic of eigenvalues at infinity
that consider the effect of continuously changing Hermitian perturbations on these
very important attributes of real or infinite eigenvalues. This work has been done
in [56] and [16]. In fact, the work done in [56] also provides answers to analogous
problems for Hermitian matrix polynomials with real eigenvalues and also extend
to the case of matrix polynomials with co-efficient matrices are all skew-Hermitian
or alternately Hermitian and skew-Hermitian.

8.4 Structured Rank One Perturbations

Motivated by applications in control theory Volker Mehrmann along with co-authors
Mehl, Ran and Rodman investigated the effect of structured rank one perturbations
on the Jordan form of a matrix [42–45]. We mention here two of the main results.
In the following, a matrix A 2 C

n;n is said to be selfadjoint with respect to the
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Hermitian matrix H 2 C
n;n if A�H D HA. Also a subset of a vector space V over

R is said to be generic, if its complement is contained in a proper algebraic subset
of V . A Jordan block of size n to the eigenvalue� is denoted by Jn.�/. The symbol
˚ denotes the direct sum.

Theorem 11 Let H 2 C
n�n be Hermitian and invertible, let A 2 C

n�n be H -
selfadjoint, and let � 2 C. If A has the Jordan canonical form

�
Jn1.�/

˚ `1
�˚ � � � ˚ �

Jnm.�/
˚ `m

�˚ QA;

where n1 > � � � > nm and where �. QA/  C n f�g and if B 2 C
n�n is a rank

one perturbation of the form B D uu�H , then generically (with respect to 2n
independent real variables that represent the real and imaginary components of
u) the matrix AC B has the Jordan canonical form

�
Jn1.�/

˚ `1�1�˚ �
Jn2.�/

˚ `2
�˚ � � � ˚ �

Jnm.�/
˚ `m

�˚ QJ ;

where QJ contains all the Jordan blocks of A C B associated with eigenvalues
different from �.

The theorem states that under a generic H -selfadjoint rank one perturbation
precisely one of the largest Jordan blocks to each eigenvalue of the perturbed
H -selfadjoint matrixA splits into distinct eigenvalues while the other Jordan blocks
remain unchanged. An analogous result holds for unstructured perturbations. In
view of these facts the following result on Hamiltonian perturbations is surprising.

Theorem 12 Let J 2 C
n�n be skew-symmetric and invertible, let A 2 C

n�n be
J -Hamiltonian (with respect to transposition, i.e. AT J D �JA) with pairwise
distinct eigenvalues �1; �2; � � � ; �p; �pC1 D 0 and let B be a rank one perturbation
of the form B D uuT J 2 C

n�n.
For every �j , j D 1; 2; : : : ; p C 1, let n1;j > n2;j > : : : > nmj ;j be the sizes

of Jordan blocks in the Jordan form of A associated with the eigenvalue �j , and
let there be exactly `k;j Jordan blocks of size nk;j associated with �j in the Jordan
form of A, for k D 1; 2; : : : ; mj .

(i) If n1;pC1 is even (in particular, if A is invertible), then generically with respect
to the components of u, the matrix AC B has the Jordan canonical form

pC1M
jD1

� �
Jn1;j .�j /

˚ `1;j�1�˚ �
Jn2;j .�j /

˚ `2;j
�

˚ � � � ˚
�
Jnmj ;j

.�j /
˚ `mj ;j


˚ QJ ;

where QJ contains all the Jordan blocks of ACB associated with eigenvalues
different from any of �1; : : : ; �pC1.
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(ii) If n1;pC1 is odd (in this case `1;pC1 is even), then generically with respect to
the components of u, the matrix AC B has the Jordan canonical form

pM
jD1

��
Jn1;j .�j /

˚ `1;j�1�˚ �
Jn2;j .�j /

˚ `2;j
�˚ � � � ˚

�
Jnmj ;j

.�j /
˚ `mj ;j



˚ �
Jn1;pC1

.0/˚ `1;pC1�2�˚ �
Jn2;pC1

.0/˚ `2;pC1
�

˚ � � � ˚
�
JnmpC1;pC1

.0/
˚ `mpC1;pC1


˚ Jn1;pC1C1.0/˚ QJ ;

(iii) In either case (1) or (2), generically the part QJ has simple eigenvalues.

The surprising fact here is that concerning the change of Jordan structure, the
largest Jordan blocks of odd size, say n, corresponding to the eigenvalue 0 of
a J -Hamiltonian matrix are exceptional. Under a generic structured rank one
perturbation two of them are replaced by one block corresponding to the eigenvalue
0 of size nC 1 and some 1 � 1 Jordan blocks belonging to other eigenvalues.

In the paper series [42–45] the authors inspect changes of the Jordan canonical
form under structured rank one perturbations for various other classes of matrices
with symmetries also.

8.5 Concluding Remarks

In this article we have given a brief overview of Volker Mehrmann’s contributions on
eigenvalue perturbations for pencils occurring in control theory, Hamiltonian matri-
ces and for structured rank one matrix perturbations. We believe that Theorem 10
can be extended to cover perturbations of the pencil (8.4) or, more generally, to some
other structured matrix pencils and polynomials.
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Chapter 9
A Story on Adaptive Finite Element
Computations for Elliptic Eigenvalue Problems

Agnieszka Międlar

What we have done for ourselves alone dies with us; what we
have done for others and the world remains and is immortal

Albert Pike

Abstract We briefly survey the recent developments in adaptive finite element
approximations of eigenvalue problems arising from elliptic, second-order, selfad-
joint partial differential equations (PDEs). The main goal of this paper is to present
the variety of subjects and corresponding results contributing to this very complex
and broad area of research, and to provide a reader with a relevant sources of
information for further investigations.

9.1 Introduction

The PDE eigenvalue problems can be divided into several categories depending on
different criterion. This article intends to introduce the state-of-art results and new
advancements for elliptic, second-order, selfadjoint and compact partial differential
operators. A well-known example of this class is the Laplace eigenvalue problem:
Find � 2 R and u 2 H1

0 .˝/ such that

�u D �u in ˝
u D 0 on @˝;

(9.1)

where ˝ 2 R
d ; d D 1; 2; : : : is a bounded, polyhedral Lipschitz domain and @˝ is

its boundary. This simple but how important model problem can, however, illustrate
many interesting phenomena of eigenvalues and eigenfunctions of general elliptic
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selfadjoint partial differential equations. We refer the reader to a wonderful survey
article [71] on Laplace eigenvalue problem which contains many references to the
original papers.

Throughout this survey we are going to concentrate on selfadjoint problems,
however, we mention some results and further reading for the non-selfadjoint case
when relevant.

The paper is organized as follows. We present a variationally stated PDE
eigenvalue problem, discuss its properties and present its Galerkin approximation in
Sects. 9.1.1 and 9.1.2. In Sect. 9.1.3 we introduce the main ingredients of adaptive
FEM. The whole Sect. 9.2 is dedicated to error analysis of AFEM. We discuss
an a priori as well as an a posteriori error estimators in Sects. 9.2.1 and 9.2.2,
respectively. The state-of-art eigensolvers used in the context of adaptive FEM
are presented in Sect. 9.3, whereas issues like convergence and optimality are the
subject of Sect. 9.4. Last but not least, Sect. 9.5 sheds some light on the fundamental
role of linear algebra not only in eigenvalue, but in all adaptive FE computations.

9.1.1 An Eigenvalue Problem for Partial Differential Equation

Let V and U be real Hilbert spaces with V � U densely and continuously
embedded in H , e.g. V WD H1

0 .˝/ and U WD L2.˝/, and k � kV and k � kU the
associated norms, respectively. Let a.�; �/ W V �V ! R and .�; �/U W U �U ! R be
symmetric and continuous bilinear forms. We consider the following variationally
stated eigenvalue problem: Find � 2 R and u 2 V such that

a.u; v/ D �.u; v/U for all v 2 V: (9.2)

We assume that a.�; �/ is continuous, i.e., there exists ˇ WD kakV < 1 such that

ja.w; v/j � ˇkwkV kvkV ; (9.3)

and V -elliptic (coercive), i.e., there exists ˛ > 0 such that

a.v; v/ � ˛kvk2V for all v 2 V: (9.4)

Remark 1 The bilinear form a.�; �/ satisfies all properties of the scalar product on V .
The norm induced by a.�; �/ is the so-called energy norm

jjj�jjj WD a.�; �/1=2; (9.5)

which is equivalent to the standard norm k � kV in V . Namely

˛kvk2V � jjjvjjj2 � ˇkvk2V : (9.6)
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Due to conditions (9.3) and (9.4) the existence and uniqueness of a weak eigenpair
.�; u/ is a simple consequence of the classical Lax-Milgram Lemma [95], see,
e.g., [66, Theorem 2.12, p. 52], [77, Theorem 6.5.9, p. 140], [118, Theorem 5.5.1,
p. 133] or [122, §5.5, Theorem 13]. For the selfadjoint eigenvalue problem
the existence of a unique eigenpair .�; u/ can also be proved using the Riesz
Representation Theorem [122, §5.4, Theorem 11].

Let us consider, for any f 2 V , the following (variational) boundary value
problem

Find w 2 V such that a.w; v/ D .f; v/U for all v 2 V:

Following the results in classical spectral approximation theory [44, 83, 132, 133]
we introduce a linear, compact solution operator T W V ! V , such that for any
given f 2 V

a.Tf; v/ D .f; v/U for all v 2 V:
Now, using the definition of the operator T with f D u and Eq. (9.2) yields

a.Tu; v/ D .u; v/U D 1

�
a.u; v/ D a.

1

�
u; v/ for all v 2 V: (9.7)

Hence .�.i/; u.i// is a solution of the eigenvalue problem (9.2) if and only if
.�.i/; u.i//, �.i/ D 1

�.i/
, is an eigenpair of the operator T. The assumptions on a.�; �/

guarantees that the operator T has countably many real and positive eigenvalues
whose inverses are denoted by

0 < �.1/ � �.2/ � : : : � �.i/ � : : : ;

according to their multiplicity, and the corresponding (normalized) eigenfunctions
u.i/ form the orthogonal basis for the space U . Obviously, the eigenfunctions u.i/

are orthogonal with respect to a.�; �/ and .�; �/U , i.e.,

a.u.i/; u.j // D �.i/.u.i/; u.j //U D 0; for i ¤ j:

For further details see, e.g. [14, Chapter 2, pp. 692–714], [44, Chapter 4, pp. 203–
204] or [25, 90, 127].

9.1.2 The Galerkin Approximation and the Finite Element
Method (FEM)

In order to find an approximation .�h; uh/ to the exact solution of a variational
problem (9.2), we consider the idea of approximating the exact solution by an
element from a given finite dimensional subspace Vh, known as the Galerkin
method (also known as Bubnov-Galerkin or Ritz-Galerkin method in the selfadjoint
case) [48].
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For Vh  V the variationally stated eigenvalue problem (9.2) is approximated by
the discrete eigenvalue problem: Find �h 2 R and uh 2 Vh such that

a.uh; vh/ D �h.uh; vh/U for all vh 2 Vh: (9.8)

Remark 2 One should mention that there exist a number of other approximate
methods, i.e., the Petrov-Galerkin method, the generalized Galerkin method, the
method of weighted residuals, collocation methods etc., see [118, 122]. In general,
the trial space Uh where the solution uh lives and test space Vh are not related
to each other. Intuitively, the trial space is responsible for the approximability
of the solution, whereas the test space for stability (or quasi-optimality) of the
discretization method, see [9, 131]. The Galerkin method is simple to analyze, since
both spaces are taken to be the same, i.e., Uh D Vh, however, in many cases one
should consider them to be distinct [82].

Since Vh  V , the bilinear form a.�; �/ is also bounded and coercive on Vh.
Therefore, the existence of a unique Galerkin solution .�h; uh/ is inherited from the
well-posedness of the original problem [122]. Analogously, there exists a discrete
compact solution operator Th W V ! V such that for any given f 2 V

a.Thf; v/ D .f; v/U for all v 2 Vh;

and therefore the eigenpairs of Th can be identified with those of (9.8), accordingly.
At this point, let us discuss some of the possible choices for space Vh, namely,

basics of the Finite Element Method (FEM) [48]. For simplicity, we restrict ourself
to consider only polygonal domains in R

2.
Let Th be a partition (triangulation) of a domain ˝ into elements (triangles) T ,

such that

Th WD
[
T2Th

D ˝;

and any two distinct elements in Th share at most a common edge E or a common
vertex # . For each element T 2 Th by E .T / and N .T / we denote the set of
corresponding edges and vertices, respectively, where Eh and Nh denote all edges
and vertices in Th. Likewise, we define a diameter (the length of the longest edge)
of an element as hT . For each edgeE we denote its length by hE and the unit normal
vector by nE . The label h associated with the triangulation Th denotes its mesh size
and is given as h WD max

T2Th

hT . We say that the triangulation is regular in the sense

of Ciarlet [48] if there exist a positive constant � such that

hT

dT
< �;
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with dT being the diameter of the largest ball that may be inscribed in element T ,
i.e., the minimal angle of all triangles in Th is bounded away from zero. Of course
the choice of triangle elements is not a restriction of the finite element method and
is made only in order to clarify the notation.

Consider a regular triangulation Th of ˝ and the set of polynomials Pp of total
degree p � 1 on Th, which vanish on the boundary of ˝ , see, e.g., [29]. Then the
Galerkin discretization (9.8) with V p

h � V , dim V
p

h D nh, taken as

V
p

h .˝/ WD ˚
vh 2 C0.˝/ W vhjT 2 Pp for all T 2 Th and vh D 0 on @˝

�
;

is called a finite element discretization. The Finite Element Method (FEM) [48] is a
Galerkin method with a special choice of the approximating subspace, namely, the
subspace of piecewise polynomial functions, i.e., continuous in ˝ and polynomials
on each T 2 Th. For the sake of simplicity we consider only P1 finite elements, i.e.,
p D 1, and use Vh WD V 1

h . The last condition, which is crucial from the practical
point of view, states that the space Vh should have a canonical basis of functions
with small supports over Th. It is easily seen that the simplest set satisfying this

condition is the set
n
'
.1/

h ; : : : ; '
.nh/

h

o
of the Lagrange basis (also known as nodal or

hat functions) [48]. With this special choice of basis, the solution uh is determined
by its values at the nh grid points of Th and it can be written as

uh D
nhX
iD1

uh;i'
.i/

h :

Then the discretized problem (9.8) reduces to a generalized algebraic eigenvalue
problem of the form

Ahuh D �hBhuh; (9.9)

where the matrices

Ah WD Œa.'
.i/

h ; '
.j /

h /�1�i;j�nh; Bh WD Œ.'
.i/

h ; '
.j /

h /U �1�i;j�nh

are called stiffness and mass matrix, respectively. The representation vector uh is
defined as

uh WD Œuh;i �1�i�nh :

Since
n
'
.1/

h ; : : : ; '
.nh/

h

o
are chosen to have a small support over Th, the resulting

matricesAh;Bh are sparse. The symmetry of Ah;Bh and positive definiteness of Bh
are inherited from the properties of the bilinear forms a.�; �/ and .�; �/U , accordingly.
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For conforming approximations, i.e., Vh � V , the Courant-Fisher min-max
characterization, see, e.g. [14, Equation (8.42), p. 699], [130, Equation (23), p. 223]
or [49, 138], implies that exact eigenvalues are approximated from above, i.e.,

�.i/ � �
.i/

h ; i D 1; 2; : : : ; nh:

On the contrary, for the nonconforming discretizations, e.g., the Crouzeix-Raviart
method [29, 50] or [56, Sections 1.2.6, 3.2.3], the discrete eigenvalues provide
lower bounds [8, 25, 40] for the exact eigenvalues. The convergence of discrete
eigenvalues/eigenfunctions towards their continuous counterparts preserving the
multiplicities and preventing spurious solutions is discussed in details in [25, 26].

9.1.3 The Adaptive Finite Element Method (AFEM)

The standard finite element method would proceed from the selection of a mesh and
basis to the generation of a solution. However, it is well-known that the overall
accuracy of the numerical approximation in determined by several factors: the
regularity of the solution (smoothness of the eigenfunctions), the approximation
properties of the finite element spaces, i.e., the search and test space, the accuracy
of the eigenvalue solver and its influence on the total error. The most efficient
approximations of smooth functions can be obtained using large higher-order
finite elements (p-FEM), where the local singularities, arising from re-entrant
corners, interior or boundary layers, can be captured by small low-order elements
(h-FEM) [47]. Unfortunately, in real-world applications, none of those phenomena
are known a priori. Therefore, constructing an optimal finite dimensional space
to improve the accuracy of the solution requires refining the mesh and (or) basis
and performing the computations again. A more efficient procedure try to decrease
the mesh size (h-adaptivity) or (and) increase the polynomial degree of the basis
(p-refinement) automatically such that the accurate approximation can be obtained
at a lower computational cost, retaining the overall efficiency. This adaptation
is based on the local contributions of the global error estimates, the so-called
refinement indicators, extracted from the numerical approximation. This simple
algorithmic idea is called Adaptive Finite Element Method (AFEM) and can be
described as a following loop

SOLVE ESTIMATE MARK REFINE

The number of manuscripts addressing adaptive finite element methods is constantly
growing, and its importance can not be underestimated. In the following sections
we present a small fraction of material presented in [4, 14, 16, 17, 29, 32, 48, 55–
57, 66, 67, 73, 77, 82, 83, 93, 94, 113, 114, 117, 118, 121, 123, 128, 130, 136].
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The application of the adaptive FEM to the variationally stated eigenvalue
problem (9.2) yields to the following scheme: first the eigenvalue problem is solved
on some initial mesh T0 to provide a finite element approximation .�h; uh/ of the
continuous eigenpair .�; u/. Afterwards, the total error in the computed solution is
estimated by some error estimator �h. Unfortunately, even the most accurate global
error estimators itself do not guarantee the efficiency of the adaptive algorithm. If
the global error is sufficiently small, the adaptive algorithm terminates and returns
.�h; uh/ as a final approximation, otherwise, the local contributions of the error are
estimated on each element. A local error indicator (refinement indicator) for an
element T 2 Th is usually denoted by �T and related to a global error estimator �h
through

�h D � X
T2Th

�2T
�1=2

:

Based on those, the elements for refinement are selected and form the set M �
Th of marked elements. The final step involves the actual refinement of marked
elements and creating a new mesh. Since the resulting mesh may possess hanging
nodes, an additional closure procedure is applied is order to obtain a new regular
(conforming) mesh. As a consequence, the adaptive finite element method (AFEM)
generates a sequence of nested triangulations T0;T1; : : : with corresponding nested
spaces

V0  V1  : : :  Vnh � V:

In the upcoming chapters we will concentrate particularly on SOLVE and ESTI-
MATE steps, however, let us shortly discuss the marking and refinement procedures.

As we already know the set M of marked elements is determined based on
the sizes of refinement indicators �T . Now, a question arises: How do we decide
which elements T 2 Th should be added to the set M such that the newly obtained
adaptive mesh fulfil the regularity condition. The process of selecting the elements
of M is called the marking criterion or the marking strategy. Let us keep in mind
that by marking an element we actually mean marking all its edges. The simplest
marking strategy takes a fixed rate (e.g. 50 %) of elements of Th with the largest
values of �T or elements T for which the refinement indicators �T are larger than
some fixed threshold � 2 R; � > 0, i.e.,

M WD fT 2 Th W � � �T g:
Notice that the choice of a threshold � is essential for the efficiency of the adaptive
algorithm since it directly determines the size of the set M . A more sophisticated
strategy is the maximum criterion, where the elements selection is based on a fixed
fraction� of the maximal refinement indicator in Th, i.e.,

� WD � max
T2Th

�T ;
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with 0 � � � 1. The most interesting, especially in the context of optimality of a
standard adaptive finite element method, is a Dörfler marking strategy [53], where
the set of marked elements is defined as the subset M  Th of smallest cardinality
such that

.1 ��/2
X
T2Th

�2T �
X
T2M

�2T ; (9.10)

where 0 � � � 1. i.e., � D 0 corresponds to M D Th and � D 1 to M D ;. For
more details see [31].

The refinement of the finite element space can be performed using various
techniques like moving grid points (r-refinement), subdividing elements of a fixed
grid (h-refinement), applying locally higher-order basis functions (p-refinement) or
any combinations of those [47], see Fig. 9.1 for illustration.

For the sake of exposition, here, we consider only the h-refinement of the triangle
elements. The most common h-refinement subdivision rules (techniques) based on
edge marking are presented in Fig. 9.2.

a b c

Fig. 9.1 (a) Original mesh, (b) a uniform h-refinement and (c) a uniform p-refinement

Fig. 9.2 Bisec3, red, green and blue refinement. The edges marked by MARK step are colored.
The new reference edge is marked through a second line in parallel opposite the new vertices
new1, new2 or new3 [38]
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As we have mentioned before, applying these refinement procedures may lead
to nonconforming meshes with the so-called hanging nodes. Therefore, the closure
algorithm [38] is applied to overcome this drawback and get a regular triangulation.
Summarizing, if any edge E of the element T is marked for the refinement, the
reference edge (e.g. longest edge) of T should also be marked. Since each element
has k D 0; 1; 2; or 3 edges marked for the refinement, if k � 1, the reference edge
belongs to it. Moreover, the choice of a refinement method, see Fig. 9.2, depends on
k, for instance, if k D 1 the green refinement is used etc. For more details about
adaptive refinement strategies see, e.g., [4, 47, 135]. In the remainder of this survey
we will focus on the h-adaptivity, hence, we will denote the finite dimensional space
over the partition Th as Vh and the associated Galerkin approximation as .�h; uh/.

9.2 Error Estimates

Over the years, research in fundamental spectral approximation by [10–13, 59,
83, 91, 130] resulted in the unified spectral approximation framework, nowadays
referred to as a so-called Babuška-Osborn Theory [14, Theorem 7.1–7.4, 8.1–8.4].

Theorem 1 ([14, 25]) Let u.i/ be a unit eigenfunction associated with the eigen-
value �.i/ of multiplicity m and let u.i/h ; : : : ; u

.iCm�1/
h denote the eigenfunctions

associated with the m discrete eigenvalues converging to �.i/, then for each index i

�.i/ � �
.j /

h � �.i/ C C sup
u2E

�.i/kukD1

inf
v2Vh

ku � vk2V ; j D i; : : : ; i Cm � 1;

and there exists w.i/h 2 spanfu.i/h ; : : : ; u
.iCm�1/
h g such that

ku.i/ � w.i/h kV � C sup
u2E

�.i/kukD1

inf
v2Vh

ku � vkV ;

whereE�.i/ denotes the eigenspace associated with �.i/ andC is a generic constant.

Remark 3 For �.i/ being simple, we get the following estimates

j�.i/��.i/h j � C sup
u2E

�.i/kukD1

inf
v2Vh

ku�vk2V and ku.i/�u.i/h kV � C sup
u2E

�.i/kukD1

inf
v2Vh

ku�vkV :

Theorem 1 have some important consequences. First, it is easy to notice that
the convergence rate of the eigenvalue/eigenfunction of interest is directly related
to the approximability of the associated eigenfunctions (eigenspace). Namely, the
approximation rate for the eigenvalue is double with respect to the approximation
rate of the corresponding eigenfunctions, which is a well-known fact in the standard
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perturbation theory for the matrix eigenvalue problems and explains nicely why the
eigenvalues are usually much more accurate than the corresponding eigenfunctions.
On the other hand, the approximability of the eigenfunctions depends strongly on
their regularity and the approximability conditions of the discrete solution space Vh,
e.g. the finite element space. Hence, following [127, Theorem 3.6], we consider the
regularity result for the eigenvalue problem (9.2) as

kukH2.˝/ D C
p
�;

where C is a generic constant depending on the data, but not on � itself. The latter
condition, is a well-known phenomena, called the best approximation property of
the solution space. The choice of Vh being a space of piecewise polynomials of
degree p guarantees the best approximation property of the finite element space [25,
48], i.e.,

inf
v2Vh

ku � vkL2.˝/ � ChminfpC1;rgkukHr.˝/;

inf
v2Vh

ku � vkH1.˝/ � Chminfp;r�1gkukHr .˝/;

where r is the regularity of the eigenspace (in the case of a simple eigenvalue,
the regularity of the corresponding eigenfunction). These two facts immediately
explain the common fact of deteriorating rates of convergence in the presence of
singularities (singular eigenfunctions). Moreover, the eigenfunctions present more
oscillations when the associated eigenvalue increases and the largest eigenvalues are
much harder to approximate [38].

The Babuška-Osborn Theory provided important basis for further developments
in a priori and a posteriori estimates and designing efficient numerical algorithms.
In the remainder of this section we will focus in more details on estimating the
eigenvalue/eigenfunction errors.

9.2.1 A Priori Error Estimates

In general, a priori error estimators give information about the asymptotic behavior
of the error or the stability of the applied solver independent of the actually
computed approximation. Likewise, they require particular regularity conditions
of the solution, the stability properties of the discrete operator or the continuous
solution u itself [4, 135] and approximability conditions of the discrete solution
spaces. Except of some simple one-dimensional boundary value problems, where an
optimal finite element space can be constructed based on a priori estimates, see [112,
Lecture 1] or [113] for details. All these conditions make a priori error estimators not
computable and hardly applicable in practice. Of course, if some a priori information
about the solution is known it can be relevant for the construction of efficient
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numerical algorithms, e.g. a priori adaptivity technique [117], unfortunately, this
is often not the case.

One of the simplest a priori error results obtained in [121] gives estimates to
the piecewise linear eigenvalue/eigenfunction error in L2.˝/ and energy norm
depending on the regularity of the solution space, i.e.,

jjju�uhjjj � Chr ; ku�uhkL2.˝/ � Chr jjju�uhjjj; j���hj � C jjju�uhjjj2 � Ch2r ;

for u 2 H1Cr .˝/, where r 2 .0; 1� is a regularity constant and C > 0 is a
constant depending on the eigenvalue�, the eigenfunction u and on the triangulation
Th, see, e.g. [77, Corollary 11.2.21, p. 264]. Note that if r D 1 (convex domain),
the solution u has to fulfil a H2.˝/-regularity condition, which is very restrictive
and excludes a large class of problems, e.g., the Laplace eigenvalue problem on
the L-shape domain. More details can be found in [72] for nonconvex domains
and in [1, 2, 65] for higher order polynomials. As mentioned before, also here, the
eigenvalue approximation is much more accurate (double) than the corresponding
eigenfunction approximation, i.e., the eigenfunctions are first order convergent in
H1.˝/ and second order convergent in L2.˝/. In [14] this result was generalized
for multiple eigenvalues. Also, in this case, the error behaves like O.h/ for the
energy norm of the eigenfunction and O.h2/ for the eigenvalue. Several further
results include improved eigenvector estimates in [12, 13], refined estimates in
H1.˝/�norm together with the lower and upper bound for the eigenvalue error
in the case of multiple eigenvalues [43, 45], to mention just a few.

In [90, Theorems 3.1, 3.2 and 3.3] some new a priori FEM error estimates for
simple, multiple and clustered eigenvalues were proposed. The error estimate for a
simple eigenvalue [90, Theorem 2.7] depend on the continuous eigenfunction u.i/

and its approximability properties in space Vh, but do not involve any underdeter-
mined constants. Analogously, for the multiple or clustered eigenvalues [90, The-
orem 2.11], the a priori error estimates depend only on approximability properties
of eigenfunctions in the corresponding eigenspace (invariant subspace). Moreover
for clustered eigenvalues the presented estimates are cluster robust, i.e., they do
not depend on the width of the cluster. This work has improved several previous
results involving the approximability properties of all previous eigenvectors and
easily explained different convergence rates of Ritz values approximating a multiple
eigenvalue [12–14]. To conclude, we present an a priori eigenvalue error estimator
for the FEM approximation of a simple eigenvalue introduced in [90, Theorems 3.1
and 3.2], i.e.,

Theorem 2 Knyazev [90, Theorem 3.2] For a fixed index i such that 1 � i � nh
suppose that

di;Vh WD min
jD1;:::;i�1 j�.j /h � �.i/j ¤ 0;
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then

0 � �
.i/

h � �.i/

�
.i/

h

�
 
1C max

jD1;:::;i�1

�
�
.j /

h �
.i/
�2

j�.j /h � �.i/j2
jjj.I � Ph/TPh;1;:::;i�1jjj2

!

sin2 †jjj�jjj.ui ; Vh/;

where Ph W V ! Vh is an jjj�jjj-orthogonal projector on Vh, i.e., for all u 2 V ,
a.Phu � u; v/ D 0; for all v 2 Vh and Ph;1;:::;i�1 is the jjj�jjj-orthogonal projector

onto Eh;1;:::;i�1 D span
n
u.1/h ; : : : ; u

.i�1/
h

o
.

Remark 4 If i D j , Theorem 2 turns into [90, Theorem 3.1], namely

0 � �
.i/

h � �.i/
�
.i/

h

� jjj.I � Ph/P1;:::;i jjj2: (9.11)

Finally, we would like to mention an a priori error estimate obtained in [125,
Theorem 3], [85, Theorem 3.3], [127, Theorem 4.11], i.e.,

Theorem 3 (Saad [125, Theorem 3], [127, Theorem 4.11]) Let .�.i/; u.i//, 1 �
i � nh be the i -th eigenpair of the operator T defined in (9.7) with normalization
ku.i/kH1.˝/ D 1. Suppose that

bdi;Vh WD min
j¤i

j�.j /h � �.i/j ¤ 0;

then there exists u.i/h such that

ku.i/ � u.i/h kH1.˝/ �
	
1C

k.I � Ph/TPhk2H�1.˝/

bd2i;Vh

1=2

inf
v2Vh

ku.i/ � vkH1.˝/:

The aforementioned theorem is a special case of a more general result for
eigenspaces and invariant subspaces proposed in [85, Theorem 2.1, 3.1]. Obviously,
the a priori error estimators are not limited to those listed above and include work
presented in [75, 87, 92, 115] etc.

9.2.2 A Posteriori Error Estimates

Although a priori error estimates are usually not available for practical problems, we
would still like to determine the quality of the numerical approximation, i.e., obtain
a reliable estimate of the error eh D u � uh in a specified norm k � k or quantity
of interest (quality measure), e.g., energy norm jjj�jjj [4, 34, 135], or to terminate the
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algorithm as soon as a prescribed tolerance " is reached, e.g. kehk � ". Therefore,
we need some computable quantity �h (a posteriori error estimator) which can
estimate the actual error kehk, i.e.,

ku � uhk 
 �h:

The formal definition, see [34], states as follows:

Definition 1 (A posteriori error estimator) A computable quantity �h is called
a posteriori error estimator if it can be extracted from the computed numerical
solution uh and the given data of the problem, e.g. the known domain ˝ and its
boundary @˝ .

There are several important practical requirements on a posteriori error esti-
mators. First, as the definition states, they should be computable. Secondly, in
contrast to a priori error estimators, they depend on the stability properties of the
continuous operator which are known and use the approximate solution itself to
check its quality. Last but not least, calculating the estimator should be cheaper
than computing the new numerical approximation (e.g., assembling the matrices).
Besides, it is of great importance, especially in the context of the AFEM, to be
able to extract the local contribution of the error estimator, i.e., the refinement
indicators �T ,

�h D
� X
T2Th

�2T

1=2
:

As far as a global upper bound is sufficient to assure the accuracy of the solution, an
a posteriori error estimator should also provide local lower bound for the true error.
These properties of a posteriori error estimator �h are called reliability (guaranteed
upper bound)

jjjehjjj � Crel�h C h:o:trel

and local efficiency

�T � Ceff kehkbT C h:o:t:eff ;

with constants Crel; Ceff > 0 independent of the mesh size h or polynomial degree
p, bT the union of T and neighbouring elements and higher-order terms h:o:trel,
h:o:teff related to data oscillations. Both these bounds are crucial from the point of
convergence and optimality, respectively. Namely, it is well-known that a reliable
and efficient a posteriori error estimator, i.e.,

1

Ceff
�h � jjjehjjj � Crel�h:
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decays with the same rate as the actual computational error up to higher-order terms.
We discuss this issue in detail in Sect. 9.4. The aforementioned definition of the
reliability, where the constant Crel is present, is called a weak form of reliability. In
the ideal situation we would like the estimator to satisfy

jjjehjjj � �h;

which is very rarely the case.
In order to conclude, the main goal is to obtain an accurate solution with an

optimal use of resources and guarantee that the a posteriori error estimator captures
the behavior of the actual error as h ! 0. In practice, we are often interested in the
asymptotical exactness or efficiency of the a posteriori error estimator. Following
[4], we call the error estimator �h asymptotically exact if

lim
h!0

� D 1;

where � WD �h
kehk is called a global efficiency index. An error estimator is called

efficient if its efficiency index � and its inverse are bounded independent on the
mesh size [34].

The pioneering work of Babuška and Rheinboldt [15] initiated decades of
research devoted to a posteriori error estimates. We strongly encourage the reader
to further explore the vast literature on the a posteriori error estimates, see
e.g., [4, 16, 32, 135, 136]. Following [47, 135], the a posteriori error estimators can
be classified as residual error estimators (explicit error estimators), local problem-
based estimators (implicit error estimators), averaging estimators (recovery-based
estimators), hierarchical estimators (multilevel estimators) and goal-oriented error
estimators. For the sake of exposition, let us concentrate on the residual type
estimators and provide only some general information for the other classes.

9.2.2.1 The Residual Error Estimators (Explicit Error Estimators)

Whereas a priori error estimators relate the error ku � uhkV to the regularity of the
exact solution, residual a posteriori error estimators consider the connection of the
error to the residual of the computed finite element solution uh.
Let us consider the residual

Resh.�/ WD �h.uh; �/U � a.uh; �/U 2 V �

and the residual equation

Resh.v/ D a.u � uh; v/ � .�u � �huh; v/U for all v 2 V; (9.12)

where V � denotes the dual of the space V .
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First of all, notice that the Galerkin orthogonality property does not hold for
variationally stated eigenvalue problems, namely

a.u � uh; vh/ D .�u � �huh; vh/U ¤ 0 for some vh 2 Vh: (9.13)

Secondly, since eh 2 V , Eq. (9.12) combined with the higher-order term [54]

.�u � �huh; eh/U D �C �h

2
kehk2U (9.14)

imply

jjju � uhjjj2 D �C �h

2
ku � uhk2U C Resh.u � uh/; (9.15)

which provides the crucial relation in the residual type error analysis, namely, the
equivalence between the energy norm of the error and the residual, which, up to the
higher-order terms was proved for the selfadjoint eigenvalue problems in [38].

Theorem 4 Let eh D u�uh and Resh.�/ WD �h.uh; �/U �a.uh; �/. Then the following
holds

˛ku � uhkV . kReshkV � . ˇku � uhkV ; (9.16)

where 0 < ˛ � ˇ < 1 are the coercivity and continuity constants introduced
in (9.4) and (9.3), respectively.

Proof The coercivity (9.4), the residual equation (9.12) and (9.14) imply

˛ku � uhkV � a.eh; eh/

kehkV D Resh.eh/

kehkV C .�C �h/

2

kehk2U
kehkV

� sup
v2V

Resh.v/

kvkV C .�C �h/

2

kehk2U
kehkV

D kReshkV � C .�C �h/

2

kehk2U
kehkV :

Since �C�h
2

kehk2U was proved to be of higher order, see e.g. [54], it can be neglected
and the left inequality holds. Furthermore the continuity (9.3) implies

Resh.v/ D �h.uh; v/U � a.uh; v/
D �h.uh; v/U � a.uh; v/C a.u; v/� �.u; v/U

D a.u � uh; v/C .�uuh � �u; v/U
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D a.u � uh; v/C .�C �h/

2
kvk2U

� ˇku � uhkV kvkV C .�C �h/

2
kvk2U (9.17)

and therefore

kReshkV � D Resh.v/

kvkV � ˇku � uhkV C .�C �h/

2

kvk2U
kvkV ;

which completes the proof.

Theorem 4 proves that the dual norm of the residual, i.e., kReshkV � is equivalent to
the error ku � uhkV . Nevertheless, it is still a challenge to estimate the dual norm of
the residual Resh.v/ in the most reliable and efficient way.

Remark 5 Since the standard norm k � kV in V is equivalent to the energy norm
jjj�jjj, see Remark 1, the dual norm of the residual kReshkV � is also equivalent to the
energy norm of the error, i.e., jjju � uhjjj.
Now, exploiting the variational eigenvalue problem (9.2) and its Galerkin discretiza-
tion (9.8) it is easy to derive a simple residual type a posteriori estimator

�res;h 	
0
@X
T2Th

h2T k�uh C �huhk2L2.T / C
X
E2Eh

hEk Œruh � nE� k2L2.E/

1
A
1=2

;

hT WD diam.T / and hE WD length.E/, such that

jjju � uhjjj2 � C �res;hjjju � uhjjj C �C �h

2
ku � uhk2L2.˝/ ; (9.18)

see [27, Section 6.3], [54, Theorem 3.1], [137, Section 4], or the earlier work of
Larson [92]. Here, the constant C > 0 depends on the minimal angle allowed
in the mesh elements, on the Poincaré-Friedrichs inequality constant (which is a
function of the volume of ˝ and the area of the portion of @˝ corresponding to
the Dirichlet condition, see [135, p. 11]) and on the constants ˛, ˇ from the Lax-
Milgram conditions (9.3) and (9.4), see [95]. However, the possibly large value of
C can produce a significant overestimate of the error, see e.g. [36, 46].

In (9.18) the energy norm of the error is bounded by the sum of local contribu-
tions of the interior (volumetric) element residuals�uhC�huh, measuring how good
the finite element approximations �h; uh satisfy the original PDE in its strong form
on the interior of the domain, and of the edge residuals, the jumps of the gradient of
uh over the element edgesE , reflecting the accuracy of the approximation [31, 135].
Here hT , hE denote the mesh-depending weights and k�kL2.T /, k�kL2.E/ the problem
dependent, local norms.
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As it was shown in [54] that the L2-norm of the error is of higher order than the
energy norm of the error (9.18) represents an a posteriori estimate for the energy
norm of the error. This residual a posteriori error estimator is reliable in a weaker
form with the constant C in, e.g. [36, 37, 134], and it is locally efficient, see e.g. [4,
135]. The asymptotic exactness of the estimator usually does not hold in practical
computations. Many interesting results on residual type a posteriori error estimates
for eigenvalue/eigenvector approximations were proposed in the last two decades,
see e.g. [74, 92, 108, 115, 137], to mention only few.

The residual a posteriori estimators, though well-understood and well-
established in practice, may significantly overestimate the actual error due to
the possibly very large constant C present in the bound. Therefore, several other
techniques, which we now briefly review, were introduced over the last years, see,
e.g. [4, 16, 47, 69, 136].

9.2.2.2 Local Problem-Based Estimators (Implicit Estimators)

In the case of explicit error estimators all information about the total error is
obtained only from the computed approximation. The main idea behind implicit
estimators is to enrich these information by solving some supplementary problem,
e.g., local analogues of the residual equations. In order to capture the local behavior
of the solution and to get accurate information about the error, the local problems
usually involve only small subdomains of ˝ (subdomain or element residual
method) and more accurate finite element spaces, see [69] for more details. In terms
of complexity the solution of all local problems should cost less than assembling
the stiffness matrix of the original discrete problem. Implicit error estimators for
boundary value problems, e.g. partition of unity or equilibration estimators, are
discussed in [4, Chapter 3], [47, Section 6.3.2], [66, Section 15.3], [135, Section 1.3]
and [3, 31, 42]. A proof of the local efficiency for this type of estimator can be
found, e.g., in [4], whereas reliability and asymptotic exactness are usually satisfied
in practical computations. To the best of the author’s knowledge there are no local
problem-based error estimators designed specifically for eigenvalue problems.

9.2.2.3 Averaging Estimators (Recovery-Based Estimators)

These error estimators, also known as ZZ-estimators [145], exploit a local extrapo-
lation or averaging techniques. Due to the high accuracy, practical effectiveness and
robustness they are widely used in engineering applications. In general, the error
of the approximation is controlled by a difference of a low-order approximation
(e.g., a piecewise constant function) and a finite element solution obtained in
the space of higher-order elements (e.g., globally continuous piecewise linear
functions) satisfying more restrictive continuity conditions than the approximation
itself e.g. [4, Chapter 4], [47, Section 6.3.3] or [135, Section 1.5]. For example,
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if a quantity to be recovered is a gradient ruh, the main idea is to compare the
smoothed and unsmoothed gradients to estimate the actual error. Reference [34]
gives a nice overview of averaging techniques in a posteriori finite element error
analysis in general, whereas [16, 143, 144, 146, 147] discuss the gradient recovery-
based estimators in details. A local averaging technique for eigenvalue problems
was proposed in [97]. Here, we present an improved averaging a posteriori error
estimator neglecting the volumetric contributions introduced in [38].

Let Ah W L2.˝/ ! S 1.Th/, S 1.Th/ WD P1 \ H1
0 .˝/ be a local averaging

operator, i.e.,

Ah.v/ WD
X

z2Nh

1

j!zj
� Z
!z

v dx

'z;

with a nodal hat function 'z and a nodal patch !z associated with node z. Then the
averaging error estimator for problem (9.2) reads

�2avg;h WD
X
T2Th

kAh.ruh/ � ruhk2L2.T /: (9.19)

The reliability of the averaging error estimator (9.19) is proved in [38], whereas the
efficiency follows from the fact that the averaging estimator is locally equivalent to
the residual estimator [33, 34, 135]. The proof of the asymptotic exactness can be
found, e.g., in [4, 135]. More details on recovery-based a posteriori error estimators
for higher-order polynomials can be found in [35, Section 9.4]. Recovery type
a posteriori error estimates for the eigenvalues and eigenfunctions of selfadjoint
elliptic equations by the projection method are derived in [104, 139] and [96] for
conforming and nonconforming finite elements, respectively.

9.2.2.4 Hierarchical Estimators (Multilevel Estimators)

The main idea of a hierarchical error estimator is to evaluate the residual obtained
for the finite element solution uh 2 Vh with respect to another finite element space
Vh0 satisfying Vh � Vh0 � V . Then the error jjju � uhjjj can be bounded by

�hie;h WD jjjuh0 � uhjjj;
where uh0 2 Vh0 , see [20, 52, 58], [47, Chapter 6], or [135, Section 1.4] for details.
The finite element space Vh0 corresponds usually to a refinement Th0 of Th or
consists of higher-order finite elements. The idea behind goes back to a so-called
saturation assumption [21] stating that the error of a fine discrete solution uh0 is
supposed to be smaller than the error of the coarse solution uh in the sense of an
error reduction property, i.e.,

jjjuh0 � ujjj � � jjjuh � ujjj;
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where � 2 .0; 1/. Good general references concerning hierarchical estimators
are [20, 21, 52, 58]. Hierarchical error estimators for eigenvalue problems are
discussed in [98, 108].

9.2.2.5 Goal-Oriented Estimators

The objective in goal-oriented error estimation is to determine the accuracy of the
finite element solution uh with respect to some physically relevant scalar quantity
of interest given as a linear functional J.�/ W V ! R of the solution u, e.g. velocity,
flow rates, deformations, stresses or lifts and drags in the case of Navier-Stokes
problems etc. The error in the quantity of interest is then related to the residual, i.e.,

�h WD jJ.u/� J.uh/j 

X
T2Th

�T .uh/!T ;

where �T .uh/ denotes the so-called “cell residuals” of the approximate solution,
and !T a corresponding “cell weights”. The latter are obtained from the solution
u� of the so-called dual problem, which, in practice, is replaced by its locally
postprocessed discrete approximation u�

h . In order to make this abstract concept a
little more explicit, for a simple boundary value problem L u D f the cell residuals
read

kL uh � f kL2.T / C h
1=2
T kŒruh � nE�kL2.@T /;

with @T being the boundary of an element T 2 Th. Probably, one of the most well-
known techniques of goal-oriented error estimation is the Dual Weighted Residual
(DWR) method introduced in [119]. The reliability, efficiency and asymptotic
exactness of goal-oriented estimators are typically hard to prove, however, they
are very successful in many challenging practical applications. For eigenvalue
problems, the full potential of a goal-oriented a posteriori error estimation was
demonstrated in [81] as a successful application of the DWR method to non-
selfadjoint operators. For eigenvalues � and �h being simple, the DWR a posteriori
error estimator of the following form is proposed

j� � �hj � c
X
T2Th

h2T

�
�T .�h; uh/C ��

T .�
�
h ; u

�
h/

;

where �T .�h; uh/ and �T .�
�
h ; u

�
h/ denote cell residuals of the primal and dual

problem, respectively. See [18, Chapter 7], [81, 116] for more details.
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9.3 Adaptive Finite Element Eigenvalue Solver

The choice of a proper iterative eigenvalue solver is an integral part of the successful
adaptive finite element scheme. We present some well-established iterative methods
which admit the quasi-optimal computational complexity on uniform meshes.
However, since generated meshes are refined adaptively, there is an increasing
demand for designing efficient and reliable matrix-free eigensolvers with mesh size
independent convergence rates. We will discuss this issue, in more details, in the
following sections.
Let us consider the generalized algebraic eigenvalue problem

Ax D �Bx (9.20)

resulting from the finite element discretization of (9.8), namely,

A D Ah; B D Bh and x D uh;

defined as in (9.9).

9.3.1 PINVIT

The preconditioned inverse iteration (PINVIT), introduced and analyzed in series
of papers [89, 105, 106, 109], is an iterative method for solving the generalized
eigenvalue problem (9.20) written as a system of linear equations AxkC1 D
�.xk/Bxk , where the new iterate xkC1 is determined as

xkC1 D xk �M�1�Axk � �.xk/Bxk
�
;

with a symmetric and positive definite optimally scaled preconditioner (e.g.,
multigrid preconditioner)M�1 of the matrix A such that

kI �M�1AkA � �; � 2 Œ0; 1/:

The corresponding error propagation equation

xkC1 � �.xk/A
�1Bxk D .I �M�1A/

�
xk � �.xk/A

�1Bxk
�
;

not only illustrates the dependence between the initial error xk � �.xk/A�1Bxk , the
new iterate error xkC1 � �.xk/A

�1Bxk and the error propagation matrix (reducer)
I � M�1A, but presents a more general relation between preconditioned gradient
eigensolvers [68, 126] and preconditioned inverse iteration. PINVIT can be viewed
as a counterpart of multigrid algorithms for the solution of boundary value problems.
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As a simple mesh-free eigensolver, with convergence independent on the largest
eigenvalue and the mesh size, it is perfectly suitable for grid-dependent eigenvalue
problems. More details about the subspace version of the method can be found
in [30, 107]. A continuous counterpart of the preconditioned inverse iteration was
proposed and analyzed in [142].

9.3.2 LO(B)PCG

Let us assume that we are given the smallest eigenvalue �1 of our problem. Then
obtaining the corresponding eigenvector requires solving the homogeneous linear
system .A � �1B/x1 D 0. The method of choice in this case would be a (precon-
ditioned) conjugate gradient ((P)CG) method [28]. Though, in practice, the exact
eigenvalue is not known, the underlying idea is still useful and can be combined
with the standard preconditioned steepest descent (PSD) method [78, 126]. A sharp
convergence estimate and a subspace variant of PSD combined with AFEM are
discussed in [110, 111].

The Locally Optimal (Block) Preconditioned Conjugate Gradient (LO(B)
PSCG) [86] method combines a three-term recurrence method with the robust
and simple Rayleigh-Ritz minimization procedure which allows (allowing)
efficient solutions of large and sparse eigenvalue problems. The main idea
of the method is to determine a new eigenvalue/eigenvector approximation
as the smallest Ritz value/vector with respect to the three-dimensional space
spanfxk; M�1.Axk��.xk/Bxk/; xk�1g. The new iterate xkC1 is now determined as

xkC1 D xk � #kxk�1 � �kM�1.Axk � �.xk/Bxk/;

where

.#k; �k/ D arg min
.#;�/

�.xk � #xk�1 � �M�1.Axk � �.xk/Bxk//:

It is important to notice that the preconditioner is not used in inner iterations to
solve the linear system, but it is directly integrated into a Krylov-based iteration.
LO(B)PCG is broadly used eigensolver within the AFEM due to its low memory
requirements (only one additional vector has to be stored), reasonable complexity
(few additional inner products to determine the Rayleigh-Ritz projection) and its
convergence. On every step, the LO(B)PSCG is not slower than the preconditioned
steepest descent in terms of the maximizing the Rayleigh quotient [84], however, in
practice the convergence is much faster and robust than PSD or Jacobi-Davidson.
A commonly used implementation of the method, released by its developer under
GNU Lesser GPL, together with several benchmark model problems, is available as
Block Locally Optimal Preconditioned Eigenvalue Xolver (BLOPEX) [88].
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9.3.3 Two-Grid Discretization

Already in 1979, the idea of using the multigrid-method for solving mesh eigen-
problems was introduced in [76]. A simple one-stage method requires computations
of one eigenpair on the coarse grid and approximates further fine grid eigenpairs
in a recursive way. Its computational effort is proportional to the dimension of
the finite dimensional space and convergence is proved also for the approximate
eigenpairs. A well-known example of the class of multigrid approaches is the two-
grid discretization method introduced in [140, 141]. The idea of the method is
quite simple and uses the underlying expertise from the study of boundary value
problems. In particular, we consider to linear finite element spaces VH.˝/ �
Vh.˝/ � H1

0 .˝/, e.g., coarse and fine space, respectively. The solution of an
eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem
on a much coarser grid (mesh size H ) followed by the solution of a boundary value
problem on the fine grid (mesh size h), whereas the resulting solution maintains an
asymptotically optimal accuracy for H D O.

p
h/. We can summarize the method

within three steps:

Step 1 Find .�H ; uH/ 2 .R; VH/ s.t. a.uH ; vH / D �H.uH ; vH /U ; for all vH 2
VH .

Step 2 Find uh 2 Vh s.t. a.uh; vh/ D �H.uH ; vh/U ; for all vh 2 Vh.
Step 3 Compute �h as Rayleigh quotient of uh.

In other words the method can be reformulated as finding a correction eh in the fine
space, such that

a.eh; vh/ D �H.uH; vh/U � a.uH ; vh/ for all vh 2 Vh
and setting

uh D uH C eh:

9.4 Convergence and Optimality Results

In the classical sense the convergence of the FEM requires that for each value
h ! 0 the approximation error is of required order or accuracy. When dealing with
AFEM the goal is to show that the method is a contraction between two consecutive
loops. The algebraic convergence rates for adaptive FEM, under the assumption of
the exact solution of the algebraic eigenvalue problem, were first proved in [103]
and later on improved in [129]. A first convergence results for adaptive finite
element methods for eigenvalue problems have been obtained in [64]. Assuming
a sufficiently fine initial mesh, Dörfler’s strategy for marking separately error and
oscillation indicators, and enforcing the interior node property, the authors proved an
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error reduction result for consecutive iterates, which is essential for proving quasi-
optimality, but very hard to satisfy in practice. Uniform convergence and optimal
complexity, relaxing the assumptions of [64], was introduced in [51]. In order to
prove convergence, marking of oscillation terms is not required. Moreover, the
optimal complexity was shown without any additional assumptions on the data. At
the same time, an independent adaptive finite element eigenvalue solver (AFEMES)
enabling a contraction property up to higher-order terms (also known as Q-linear
convergence) and global strong convergence, was proposed in [38]. Also this result
requires no assumptions on the inner node property and small enough mesh size.
Furthermore, the same authors provided the first adaptive finite element method
combined with an iterative algebraic eigenvalue solver of asymptotic quasi-optimal
computational complexity [39]. Another important contribution to be mentioned is
the convergence result given in [62]. Here, despite less restrictive initial assumptions
(any initial triangulation and marking strategy is allowed) and only minimal
refinement of marked elements, the convergence was proved for simple as well as
for the multiple eigenvalues. A recent article [35] presents a general framework
on optimality of adaptive schemes covering linear as well as nonlinear problems,
which embeds the previous results of [38, 51]. The authors consider optimality and
convergence of the adaptive algorithm with an optimal convergence rate guaranteed
by the efficiency of the error estimator �h, see [35, Theorem 4.5]. In particular,
in the case of determining a simple eigenvalue, following [35, Lemma 3.4 and
Proposition 10.5], [39, Lemma 4.2] and the convergence of the conforming finite
element discretization [130], one can prove that the following four properties,

(A1) Stability on non-refined elements,
(A2) Reduction property on refined elements,
(A3) General quasi-orthogonality,
(A4) Discrete reliability of the error estimator;

together with sufficiently small initial mesh size h0, are sufficient for optimal
convergence of an adaptive scheme. Finally, in conclusion, we point the reader
to [39, 60, 61] for more results on clustered eigenvalues, nonconforming AFEM,
inexact solves and algorithms of optimal computational complexity.

9.5 The Role of Linear Algebra in AFEM for PDE
Eigenvalue Problems

In this section we would like to point the attention of the reader to a very important,
though commonly neglected, aspect of practical realization of adaptive FEM.
The majority of the AFEM publications consider exact solutions of the algebraic
problems (linear systems or eigenvalue problems). When the cost for solving these
problems is small and the problems itself are well conditioned independently of
the mesh refinement, see [19] and [32, Section 9.5], this assumption is acceptable.
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However, in real-world applications, adaptive finite element methods are used for
challenging, very large and often ill-conditioned problems, for which an exact (up
to machine precision) solution is not available. Notice that even a small algebraic
residual does not guarantee a good accuracy of the resulting solution, neither for
linear systems nor eigenvalue problems. We refer to [79], [5, Section 4] for more
details. Moreover, solving the linear algebraic problems to a (much) higher accuracy
than the order of the discretization error not only does not improve the overall
accuracy but also significantly increases the computational cost [66, Section 13.4.1].

Because of these reasons, in the following, we will advocate for considering
the algebraic error as an integral part of the adaptive FEM, especially, in practical
applications. Hence, when estimating the total error we will aim at estimates of the
form

ku � u.n/h k 
 �h;n; (9.21)

where �h;n is a function of the approximate solution u.n/h (or �.n/h and u.n/h ) of the
linear algebraic problem. Moreover, the fact that the algebraic problems are not
solved exactly (and the Galerkin orthogonality does not hold when uh is replaced
by u.n/h ) should be also taken into account in the derivation of all a posteriori error
estimators discussed in Sect. 9.2.2.

A pioneering work in this direction was published in 1995 by Becker, Johnson,
and Rannacher [22]. Although dedicated to boundary value problems, it proposes
a posteriori error estimates in the H1.˝/- and L2.˝/-norms that incorporate
algebraic errors and design of the adaptive algorithm, and they suggest stopping
criterion for the multigrid computations. Several aspects concerning the interplay
between discretization and algebraic computation in adaptive FEM are discussed in
a recent survey [6].

Now, at step SOLVE of the adaptive FEM applied to problem (9.2), the
generalized eigenvalue problem is solved inexactly and we obtain an eigenvector
approximation u.n/h and a corresponding eigenvalue approximation �.n/h , associated
with the following algebraic errors

uh � u.n/h 2 R
nh or uh � u.n/h 2 Vh; and �h � �

.n/

h :

The total errors are then given as a sum of the discretization and the algebraic error,
i.e.,

u � u.n/h D .u � uh/C .uh � u.n/h / and (9.22)

� � �.n/h D .� � �h/C .�h � �
.n/

h /: (9.23)
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For boundary value problems minimizing the total error can be achieved by applying
the CG method, which naturally minimizes the algebraic energy norm of the error.
However, the same task is much more complicated in the case of eigenvalue
problems which, by their nature, are nonlinear. Even the definition of an appropriate
(in the physical sense) norm to measure the error for the eigenvalue problem is not
trivial and still under intensive consideration, see [80].

In [98], exploiting backward error analysis and saturation assumption, the
authors introduce a residual a posteriori error estimators for total errors (9.22)
and (9.23) and develop an adaptive FEM, called AFEMLA (LA standing for linear
algebra), which incorporates the inexact iterative eigensolver, i.e., the Lanczos
method. In particular, this new approach allows for mesh-free adaptation, which
is of great interest in the context of the discrete finite element modeling [99], being
known in engineering practice for decades.

The concept of a functional backward error and condition number introduced
in [7] for boundary value problems is used again in [101] for selfadjoint eigenvalue
problems in order to analyze the continuous dependence of the inexact solution on
the data, in particular to analyze the approximation error and the backward stability
of the algebraic eigenvalue problem. This resulted in a combined residual a posteri-
ori error estimator and a balanced AFEM algorithm, where the stopping criteria are
based on the variant of the shift-invert Lanczos method introduced in [80]. A similar
direction was considered in [70] in the context of bound-constrained optimization;
the ideas introduced there can be applied to the minimization of the Rayleigh-
quotient in the case of eigenvalue computations.

When dealing with inexact AFEM, issues such as convergence and optimality are
of even greater interest. The convergence of the perturbed preconditioned inverse
iteration (PPINVIT), see Sect. 9.3.1, i.e., an algorithm in which the application
of the operator is performed approximately, was proved in [24] with bounds
for the convergence rate depending on the eigenvalue gap and the quality of
the preconditioner. Regarding the optimality of AFEM for eigenvalue problems,
in [124] the authors exploited the theory of best N-term approximation. Namely,
the number of degrees of freedom needed to obtain the AFEM solution of a given
accuracy should be proportional to the number of degrees of freedom needed to
approximate the exact solution up to the same accuracy. Under the assumption that
the iteration error jjjuh � u.n/h jjj2 C j�h � �

.n/

h j for two consecutive AFEM steps is
small in comparison with the size of the residual a posteriori error estimate quasi-
optimality of the inexact inverse iteration coupled with adaptive finite element
method (AFEM) for a class of elliptic eigenvalue problems was proved in [39].
Moreover, the proposed method admits also a quasi-optimal complexity. A similar
analysis of convergence and a quasi-optimality of the inexact inverse iteration
coupled with adaptive finite element methods was presented in [142] for operator
eigenvalue problem.

The aforementioned results have been derived in the context of selfadjoint
eigenvalue problems. To deal with non-selfadjoint problems, one can follow
results in [23, 100] and their DWR approach. Here duality techniques are used to
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estimate the error in the target quantities in terms of the weighted primal and dual
residuals, i.e.,

Resh.uh; �h/.v/ 	 �h.uh; v/U � a.uh; v/; (9.24)

Res�
h .u

�
h; �

�
h/.v/ 	 ��

h.v; u
�
h /U � a.v; u�

h /; (9.25)

respectively. The resulting estimates, based on a perturbation argument, can be
written as

� � �.n/h .
�
�h;n C ��

h;n C �
.it/
h;n


; (9.26)

with the primal and the dual eigenvalue residual estimators

�h;n 	 1

2
Resh.u

.n/

h ; �
.n/

h /.I
.2/

2h u�.nC1/
h � u�.n/

h /; (9.27)

��
h;n 	 1

2
Res�

h.u
�.n/
h ; �

�.n/
h /.I

.2/

2h u.nC1/
h � u.n/h /; (9.28)

the iteration error indicator

�
.it/
h;n D Resh.u

.n/

h ; �
.n/

h /.u
�.n/
h /; (9.29)

and the interpolation operator I .2/2h . For more details we refer to [120]. Another
approach, based on a homotopy method which allows adaptivity in space, in the
homotopy step-size as well as in the stopping criteria for the iterative algebraic
eigenvalue solvers has been derived in [41], see also [63, 102].

9.6 Concluding Remarks

This short survey gives a very brief introduction to the adaptive approximation of
PDE eigenvalue problems, but it is far away from being complete in any sense. At
this point, we excuse for any missing contributions about whose existence we were
not aware in the time of preparation of this manuscript. Due to the lack in space,
we mentioned only shortly some results on non-selfadjoint eigenvalue problems,
and did not consider at all a very important class of nonlinear eigenvalue problems.
As our study on adaptive FEM has no end, we will leave the reader with their own
thoughts, questions and ideas to contemplate. There are still many doors to be open
and we encourage researchers from many fields such as mathematical and numerical
PDE analysis and discretization, functional analysis and matrix computations to
write further chapters of this wonderful story.
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Ž. Vyčisl. Mat. i Mat. Fiz. 4, 405–425 (1964)

133. Vaı̆nikko, G.M.: On the rate of convergence of certain approximation methods of galerkin
type in eigenvalue problems. Izv. Vysš. Učebn. Zaved. Matematika 2, 37–45 (1966)
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Chapter 10
Algebraic Preconditioning Approaches
and Their Applications

Matthias Bollhöfer

Abstract We will review approaches to numerically treat large-scale systems
of equations including preconditioning, in particular those methods which are
suitable for solving linear systems in parallel. We will also demonstrate how
completion techniques can serve as a useful tool to prevent ill-conditioned systems.
Beside parallel aspects for preconditioning, multilevel factorization methods will be
investigated and finally we will demonstrate how these methods can be combined
for approximate matrix inversion methods.

10.1 Introduction

Solving linear systems of the form Ax D b, where A 2 R
n�n is nonsingular,

x; b 2 R
n efficiently is an ubiquitous problem in many scientific applications

such as solving partial differential equations, inverting matrices or parts of matrices
or computing eigenstates in computational physics and many other application
areas. For specific application problems, methods that are tailored to the underlying
problem often serve best as problem-dependent solver, e.g. multigrid methods
[36, 69, 71] are among the best methods for solving large classes of partial dif-
ferential equations efficiently. However, when the underlying application problems
do not posses enough problem-dependent structure information to allow for specific
solution methods, more general methods are needed. Often enough, sparse direct
solution methods (e.g. [22, 23, 64]) are very efficient and even if their efficiency with
respect to computation time and memory is not quite satisfactory, their robustness is
a strong argument to prefer these kind of methods, in particular, because only a small
number of parameters needs to be adapted, if any. In contrast to that, preconditioned
Krylov subspace solvers [33, 34, 61] are a frequently used alternative whenever an
efficient preconditioner is available to solve the system in a reasonable amount of
time. Nowadays as multicore and manycore architectures become standard even for
desktop computers, parallel approaches to raise efficiency have gained attraction
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and are not anymore restricted to supercomputers. Many parallelization strategies
are based on divide & conquer principles which decompose the whole problem
into a sequence of smaller problems to be treated independently plus an additional
coupling system to reveal the original problem [3, 11, 15, 35, 51, 64]. Among many
parallelization approaches to solve linear systems, general black-box approaches are
based on splitting the system or, partitioning the system appropriately into one part
that is easily treated in parallel and a remaining part. Due to the rapidly increasing
number of cores available for parallel solution techniques, direct solvers are often
replaced by hybrid solvers in order to solve some part of the system directly while
the additional coupling system is solved iteratively (see e.g. [32, 49]). With respect
to their core part, these methods are based on a similar parallelization principle. To
describe the breadth of parallel preconditioning approaches for efficiently solving
linear systems would be too much to be covered by this article. Here we will
focus on selected aspects which can also be used for efficient multilevel incomplete
factorization techniques and for inverting parts of a matrix.

We will start in Sect. 10.2 reviewing splitting and partitioning methods for
solving block-tridiagonal systems in parallel, in particular parallel direct and hybrid
methods are often based on this kind of approach. After that we will display in
Sect. 10.3, how similar methods can be set up even when the system is not block-
tridiagonal. Section 10.4 will state how splitting-type methods can be improved
to avoid ill-conditioned systems. Next we will demonstrate in Sect. 10.5 how
algebraic multilevel preconditioners can be easily analyzed and improved and
finally Sect. 10.6 demonstrates how multilevel methods on the one hand and parallel
partitioning methods on the other hand can be employed for approximate matrix
inversion.

10.2 Hybrid Solution Methods

With ever increasing size, large-scale systems are getting harder to be solved by
direct methods and often enough, out-of-core techniques are required in order to
solve systems, even in a parallel environment, since the memory consumption may
exceed the available main memory. As a compromise between direct methods and
preconditioned Krylov subspace methods, hybrid solvers that mix both ideas can be
used. We briefly describe the two most common approaches that allow for efficient
parallel treatment as well as for hybrid solution methods. Suppose that

A D C � EFT ; (10.1)

where C 2 R
n�n is nonsingular and E;F T 2 R

n�q are of lower rank q � n. The
Sherman-Morrison-Woodbury formula

A�1 D C�1 C C�1E.I � F TC�1E/�1F T C�1 (10.2)
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yields that solving Ax D b is equivalent to

solve Cy D b; set r WD F T y; solve Rz D r; set c D b C Ez; solve Cx D c:

Here one has to solve two systems Cy D b, Cx D c with C directly and a further
small system Rz D r with

R D I � F TC�1E 2 R
q�q: (10.3)

One can easily verify that R is nonsingular as well. The bottleneck of this splitting
approach consists of computing the small system R explicitly which is most time-
consuming. Usually having a small rank q, solving CU D E can be performed
efficiently using direct methods. The matrix U is sometimes [11] also called “spike
matrix”, since it refers to the non-trivial block columns of C�1A. If it pays off, one
could avoid solving the system Cx D c by using the relation x D Uz C y instead.
However, when the rank is increasing, significantly more time is consumed. Thus,
alternatively to solving Rz D r directly, iterative solution methods that only require
matrix-vector products are a favorable alternative and this finally yields a hybrid
solution method [11, 49, 51]. A natural way of obtaining a splitting (10.1) for large-
scale sparse matrices consists of partitioning the matrix A into two diagonal blocks
plus a few nonzero off-diagonal entries outside the block-diagonal pattern which are
then obviously of lower rank, i.e.,

A D
	
C1 0

0 C2



�
	

0 E1F
T
2

E2F
T
1 0




D
	
C1 0

0 C2



�
	
E1 0

0 E2


	
0 F1
F2 0


T
	 C � EFT : (10.4)

This procedure can be recursively applied to C1 and C2 to obtain a nested sequence
of splittings and solving the systems via the Sherman–Morrison–Woodbury for-
mula (10.2) can be performed recursively as well [67]. Although being elegant,
splitting (10.4) has the drawback that the recursive application of splittings may also
lead to higher complexity [50, 51]. More efficiently, an immediate parallelization
approach with p processors prefers to substitute (10.4) by

A D

0
BBB@
C1 0

C2
: : :

0 Cp

1
CCCA � EFT (10.5)
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for suitably chosen EFT . For block-tridiagonal systems having m > p or signifi-
cantly more diagonal blocks, EFT is easily constructed. Suppose for simplicity that
m D l � p for some l 2 f1; 2; 3; : : : ; g. Then we have

A D

0
BBBBB@

A11 A12 0

A21 A22 A23
: : :

: : :
: : :

Am�1;m�2 Am�1;m�1 Am�1;m
0 Am;m�1 Amm

1
CCCCCA
; Ci D .Ars/r;sD.i�1/lC1;:::;il

(10.6)

and

EFT D

0
BBBBBB@

0 E12F
T
12 0

E21F
T
21 0 E23F

T
23

: : :
: : :

: : :

Ep�1;p�2F T
p�1;p�2 0 Ep�1;pF T

p�1;p
0 Ep;p�1F T

p;p�1 0

1
CCCCCCA
;

where

Ei;iC1F T
i;iC1 D

	
0 0

�Ail;ilC1 0



; EiC1;iF T

iC1;i D
	
0 �AilC1;il
0 0




and one could even employ a low rank factorization of Ail;ilC1 and AilC1;il to
decrease the rank further. We can take advantage of instantaneously splitting the
initial system into p parts since we only obtain a single coupling system R, which is
usually small but hard to solve in parallel. Besides, computing R now only requires
solving CiUi D .Ei;i�1; Ei;iC1/, i D 1; : : : ; p � 1 simultaneously without further
recursion. Here E0;1 and Ep;pC1 are void. Because of its ease, this variant may be
preferred to the recursive approach.

Another approach for solving systems Ax D b in parallel consists of partitioning
the initial systemA into subsystems rather than splitting the matrixA. This approach
is favorable in particular in cases where the diagonal blocks of A can be assumed
to be safely nonsingular (i.e., the case of positive definite matrices or diagonal
dominant matrices). In this case we partition A as

A D

0
BBB@

C1 0 E1;pC1
: : :

:::

0 Cp Ep;pC1
F T
1;pC1 � � � F T

p;pC1 CpC1

1
CCCA 	

 
C E

F T CpC1

!
(10.7)
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and solving Ax D b is easily obtained from the block LU decomposition of the
system. I.e., partition

xT D
�
xT1 � � � xTp xTpC1


	
�

OxT xTpC1

;

bT D
�
bT1 � � � bTp bTpC1


	
� ObT bTpC1


:

Then x is obtained as follows.

solve Cy D Ob; set r WD bpC1 � F T y; solve SxpC1 D r;

set c D b � ExpC1; solve C Ox D c:

Here we set S WD CpC1 � F TC�1E as the Schur complement. Similar to the case
of splitting A as in (10.5) the major amount of work here is spent in computing S ,
i.e., computing CiUi D Ei;pC1, i D 1; : : : ; p. A natural alternative would also be
in this case to solve SxpC1 D r using iterative solution methods which again leads
to a hybrid solution method [1, 32, 51]. We like to point out that within the context
of solving partial differential equations, these kind of methods are usually called
domain decomposition methods, see e.g. [65, 74], which will definitely be beyond
the scope of this paper. Instead we will focus on several algebraic aspects.

Example 1 We demonstrate the difference of the splitting approach (10.5) and the
partitioning approach (10.7) as direct and hybrid solvers when the block diagonal
system is factored using LU decomposition. The alternatives are either generating
and solving the coupling systems R and S directly or to avoid explicit computation
and use an iterative solver instead. For simplicity we choose the problem ��u D f

in ˝ D Œ0; 1�2, with Dirichlet boundary conditions and 5-point-star discretization.
We display a simplified parallel model, where we measure only the maximum
amount of computation time over all blocks p whenever a system with Ci is treated.
In Fig. 10.1 we compare the direct method versus the hybrid method for (10.5)
and (10.7) based on the initial block-tridiagonal structure of the underlying system
with natural ordering. We use MATLAB for these experiments. As we can see
from Fig. 10.1, the direct approach is only feasible for small p, since otherwise
R and S become too big as confirmed by theoretical estimates in [51]. Moreover,
the computation of the “spike-matrix” U requires solving 2N systems with each
diagonal block Ci . We can also see that there is no great difference between the
splitting approach and the partitioning approach, although in the splitting approach
the system is roughly twice as big and nonsymmetric which is the reason for using
Bi-CGSTAB [25] as iterative solver. For the partitioning approach CG [38] can be
used. Both iterative solvers use a relative residual of 10�8 for termination.We also
remark at this point that the number of iteration steps significantly increases as the
number of blocks p increases (as expected by the domain decomposition theory).
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Fig. 10.1 Direct methods (left), hybrid methods (right), splitting approaches (top), partitioning
approaches (bottom)

Both approaches based on splittings as in (10.5) or based on partitionings (10.7)
are relatively similar with respect to parallelization and computational amount
of work. The splitting-based approach allows to modify the blocks if necessary,
the partitioning-based approach is simpler since it does not rely on especially
constructed splittings which is advantageous when the diagonal blocks are safely
nonsingular. In Sect. 10.3 we will compare both approaches and further generalize
them in particular for systems that are not necessarily block-tridiagonal.

10.3 Reordering and Partitioning the System

We will now generalize how to split A as in (10.1) or to partition A as in (10.7).
First of all we discuss the situation when the (block-)diagonal part of A is far away
from having large entries, e.g. in the sense of some diagonal dominance measure
[62] such as

ri D jaiijPn
jD1 jaijj 2 Œ0; 1�; i D 1; : : : ; n: (10.8)
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Note that a value of ri larger than 1
2

refers to a diagonal dominant row. The use of
maximum weight matchings [8, 26, 27] is often very helpful to improve the diagonal
dominance and to hopefully obtain diagonal blocks that are better conditioned.
Maximum weight matchings replace A by

A.1/ D DlADr˙ (10.9)

where Dl;Dr 2 R
n�n are nonsingular, nonnegative diagonal matrices and ˙ 2

R
n�n is a permutation matrix such that

ja.1/ij j 6 1; ja.1/ii j D 1; for all i; j D 1; : : : ; n:

Algorithms for computing maximum weight matchings for sparse matrices [26, 27]
are experimentally often very fast of complexity O.nC nz/, where nz refers to the
number of nonzero elements of A. Note that theoretical bounds are much worse
and also that maximum weight matchings are known to be strongly sequential. We
illustrate the effect of maximum weight matchings in the following example. For
details we refer to [26].

Example 2 We consider the sample matrix “west0479” (available from the Univer-
sity of Florida collection) of size n D 479 and number of nonzeros nz D 1887.
In Fig. 10.2 we illustrate the effect of maximum weight matching for this particular
matrix. The diagonal dominance measure ri from (10.8) changes on the average
from 1

n

P
i r

.old/
i 
 5:7 � 10�3 initially to 1

n

P
i r

.new/
i 
 0:49 after maximum weight

matching is applied.

Even if the system is well-suited with respect to its diagonal blocks, partitioning
the matrix into p blocks remains to be done prior to solving the system in a hybrid
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Fig. 10.2 Sample matrix before reordering and rescaling (left) and afterwards (right)



264 M. Bollhöfer

Fig. 10.3 Nested dissection by edges (left) and nested dissection by nodes (right)

fashion or to invert parts of the system. To do so, multilevel nested dissection [40,
41] can be used. Formally A.1/ is replaced by

A.2/ D ˘TA.1/˘

for some permutation matrix ˘ 2 R
n�n. When targeting a splitting of A such

as in (10.5), nested dissection by edges is the natural partitioning of the system
whereas reordering the system matrix A as in (10.7) requires nested dissection by
nodes. We illustrate the difference between both permutation strategies using the
following simple undirected graph of a matrix in Example 3. Note that G.A/ is
called (undirected) graph of A, if it consists of nodes V D f1; : : : ; ng and edges
E D ffi; j g W aij 6D 0 or aji 6D 0;8i 6D j g.

Example 3 We consider an example that frequently applies in solving partial
differential equations for a model problem. The graph we use is simply a grid (see
Fig. 10.3).

To reorder the system with respect to the nested dissection approach there exist
fast reordering tools, e.g., the MeTis software package [39].

Up to now rescaling and reordering the system matrix can be considered as
relatively cheap compared to solving Ax D b or inverting parts of A [8, 26, 27].

10.3.1 Reordering the System for a Splitting-Type Approach

Now we describe how the preprocessing step can in particular advance splitting
or partitioning the system compared with only using a block-tridiagonal structure
as in (10.6). Here we may assume that the underlying matrix is not just block-
tridiagonal but sparse. We will start with partitioning the graph with respect to the
edges.
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Definition 1 Suppose that A 2 R
n�n, V D f1; : : : ; ng. Let C1 P[ � � � P[Cp D V be

a disjoint union of V , partitioning V into p disjoint subsets. We define GM.A/ WD
.VM ;EM/, where VM D f1; : : : ; pg,

EM D ffr; sg � VM � VM W r 6D s; there exist i 2 Cr ; j 2 Cs; such that aij 6D 0g:

We call GM.A/ block or modified graph of A with respect to C1; : : : ;Cp .

GM.A/ can be regarded as block graph of A after reorderingA such that the entries
of C1; : : : ;Cp are taken in order of appearance and using the associated block matrix
shape, i.e., given a suitable permutation matrix˘ 2 R

n�n we obtain

˘TA˘ D

0
B@
A11 � � � A1p
:::

:::

Ap1 � � � App

1
CA

and many blocks Aij are expected to be zero or of low rank.
Let e1; : : : ; en be the standard unit vector basis of Rn. We denote by Ir the matrix

of column unit vectors from Cr , i.e.,

Ir D �
ej
�
j2Cr ; r D 1; : : : ; p:

Then after reordering A with respect to C1; : : : ;Cp we obtain

PT AP D C � EFT

where

C D

0
B@
A11 0

: : :

0 App

1
CA ; EFT D

X
fr;sg2EM

.Ir ; Is/

	
0 �Ars

�Asr 0



.Ir ; Is/

T :

If we compute some low rank factorization �Ars D ErsF
T

rs ;�Asr D EsrF
T
sr , then

we obtain E and F in a similar way compared with the block tridiagonal case.
Suppose that m D #EM and the edges fr; sg of EM are taken in a suitable order
fr1; s1g; : : : ; frm; smg. Then we define E;F via

E D .E1; : : : ; Em/ ; F D .F1; : : : ; Fm/ ; (10.10)

where

Ei D .Iri ; Isi / �
	
Eri ;si 0

0 Esi ;ri



; Fi D .Iri ; Isi / �

	
0 Fri ;si

Fsi ;ri 0



: (10.11)
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Fig. 10.4 Partitioning the grid into 4 sub-grids horizontally (left) and in checker board fashion
(right)

We note that if Ari ;si and Asi ;ri have rank qri ;si , qsi ;ri , then the total rank of E;F is

q D
X

fr;sg2EM
.qrs C qsr/ : (10.12)

For general sparse matrices this might lead to a significantly smaller q compared
with the case where A is reordered into a block-tridiagonal shape as in Sect. 10.2.
We will illustrate this effect in the following example.

Example 4 Consider a matrix A such that its graph is a grid with M � M grid
points, i.e., n D M2. Suppose further that the number of processors p can be written
p D P2 and that M is a multiple of P .

For p D 4 we illustrate in Fig. 10.4 two different canonical ways of partitioning
the underlying graph. A graph like in Fig. 10.4 may serve as a toy problem for some
class of partial differential equations. In the simplest case for the elliptic boundary
value problem ��u D f in Œ0; 1�2 with Dirichlet boundary conditions and 5-point-
star difference stencil a graph similar to Fig. 10.4 is obtained. The edges would refer
to numerical values �1, the cross points would refer to diagonal entries with value
4. In this case the left partitioning of the domain in Fig. 10.4 would lead to

E D

0
BBBBBBBBBBBBBBBB@

0

I 0

0 I

0 0

I 0

0 I

0 0

I 0

0 I

0

1
CCCCCCCCCCCCCCCCA

; F D

0
BBBBBBBBBBBBBBBB@

0

0 �I
�I 0

0 0

0 �I
�I 0

0 0

0 �I
�I 0

0

1
CCCCCCCCCCCCCCCCA

:
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Each of the identity matrices has size M . The generalization to p sub-blocks is
straightforward and would lead to E;F of size n � .2.p � 1/M/.

In contrast to this, the checker board partitioning in Fig. 10.4 would lead to E
and F which look almost as follows

E D

0
BBBBBBBBBBBBBBBBBBBB@

0 I

0 0

I 0

0 I

0 0

I 0

0 I

0 0

I 0

0 I

0 0

I 0

1
CCCCCCCCCCCCCCCCCCCCA

; F D

0
BBBBBBBBBBBBBBBBBBBB@

�I 0

0 0

0 �I
�I 0

0 0

0 �I
�I 0

0 0

0 �I
�I 0

0 0

0 �I

1
CCCCCCCCCCCCCCCCCCCCA

:

Here, the identity matrices are only of size M=2. Strictly speaking, the identity
matrices overlap at the center of the grid. We skip this detail for ease of description.
For the checker board partitioning the generalization to p D P2 blocks would lead
to a rank proportional to

p
pM which is significantly less compared with the first

case as it grows slower with respect to p.

10.3.2 Reordering the System for a Partitioning-Type
Approach

In contrast to splitting the initial system we now partition it, which means that rather
than using nested dissection by edges, we now require nested dissection by nodes
as illustrated in Example 3. In this case partitioning the system with respect to the
underlying graph can also be advantageous compared to the strategy where A is
simply permuted to block-tridiagonal form. We will illustrate this in Example 5.

Example 5 We consider again a graph of a matrix A that can be represented as a
grid in two spatial dimensions. Suppose that the number of processors p can be
written p D P2. We assume that the number n of grid points can be written as
n D .M C P � 1/2 and that M is a multiple of P . For p D 4 we illustrate in
Fig. 10.5 two obvious ways of partitioning the graph. If we again consider the 5-
point-star difference stencil for discretizing the problem ��u D f in Œ0; 1�2 we
still end up with a matrix partitioning

A D
 
C E

F T CpC1

!
:
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Fig. 10.5 Partitioning the grid into 4 sub-grids horizontally (left) and in checker board fashion
(right)

For the horizontal partitioning approach in general the identity matrices have size
M C p � 1. The size of the Schur-complement S D CpC1 � F T C�1E is identical
to the number of nodes we removed, i.e., its size is .p � 1/.M C p � 1/.

In the checker board partitioning case the Schur-complement will have size
2.P � 1/.M C P � 1/� .P � 1/2 which is roughly of order 2

p
pM for p � M .

Therefore the checker board partitioning leads to a significantly smaller Schur-
complement with respect to p compared with the horizontal approach.

10.3.3 Splitting-Type Approach Versus Partitioning-Type
Approach

After we have illustrated how to preprocess a system A ! A.2/ such that the
system is either suitable for a splitting-type approach (10.5) or a partitioning-
type approach (10.7), we will now highlight the common properties, the major
differences and which approach should be preferred depending on the situation.

First of all, with respect to parallelization, one has to distinguish whether
reordering the system is a suitable option. This is important since depending on the
application, the original system matrix A may not be available in total, but it could
be distributed over different machines. This is in particular the case for distributed
memory machines, where the problem is already generated in parallel. In this case
partitioning the system by permutation refers to re-distributing the system in order
to obtain a better load balance. This in turn can become quite expensive. When using
finite element application for partial differential equations, domain decomposition
methods partition the physical domain and the nodes on the interfaces between
the domains share the neighbouring subdomains. Algebraically this refers to the
partitioning-type approach (10.7). Otherwise, if there is no natural background why
a specific node should share two or more different parts of the system, a more natural
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distribution in practical applications would be the splitting-type approach (10.5). For
shared memory systems like modern multicore or upcoming manycore architectures
we would usually have the whole system matrix A available and we are free to
decide which approach should be our method of choice.

A major difference between the splitting-type method (10.5) and the partitio-
ning-type approach is the size of the systems R and S in similar circumstances
like Examples 4 and 5, where the size of R is approximately twice as big as that
of S for the block tridiagonal case and for the checker board case the difference
is even larger. This is because in the partitioning–type approach the size of S is
exactly the number of nodes to be taken out by nested dissection (by nodes), while
in the splitting case the size of R is bounded by twice the number of edges (or the
number of off-diagonal entries) taken out from graph using nested dissection by
edges. The number of edges is usually bigger than the number of nodes and one
even obtains a factor 2. On the other hand the rank qrs C qsr of the matrices Ars and
Asr that are taken out is the local contribution to the size ofR and certainly the rank
could be also less than the number of edges. However, there is one improvement
that can be obtained for free in the splitting case, which is referred to as minimum
rank decoupling [51, 68]. Suppose for simplicity that qrs D qsr. If these numbers
differ, we could enlarge the factorization ErsF

T
rs or EsrF

T
sr of smaller size by zeros.

Alternatively to (10.5) we could use the splitting

A D

0
BBB@
C1.X/ 0

C2.X/
: : :

0 Cp.X/

1
CCCA � E.X/X�1F.X/T ; (10.13)

where we replace locally for any r < s

	
0 ErsF

T
rs

EsrF
T
sr 0




by

	
ErsXrsF

T
sr ErsF

T
rs

EsrF
T

sr EsrX
�1
rs F

T
rs




for some nonsingular Xrs 2 R
qrs�qrs and modify the diagonal blocks C1; : : : ; Cp

appropriately to compensate the changes in the block diagonal position. The
advantage of this modification consists of reducing the local rank by a factor 2 since

	
ErsXrsF

T
sr ErsF

T
rs

EsrF
T
sr EsrX

�1
rs F

T
rs



D
	
ErsXrs

Esr



X�1

rs

�
XrsF

T
sr F T

rs

�
: (10.14)
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In the simplest case we could chooseXrs D I . The associated diagonal matrices Cr
are changed to

Cr.X/ WD Cr C
X
sWs>r

fr;sg2EM

ErsXrsF
T
rs C

X
sWs<r

fr;sg2EM

ErsX
�1
rs F

T
rs

adding only low-rank contributions to Cr . For sparse matrices these modifications
only change entries of Cr that are connected to neighbouring blocks. Thus, if p �
n, only a lower-rank part of small size is changed in Cr . For partial differential
equations one could read this modification as imposing some kind of inner boundary
condition and a natural question will be how to suitably choose

X D diag .Xrs/fr;sg2EM : (10.15)

This will be subject of the next section.
To end this section we will demonstrate the benefits of minimum rank decoupling

.X D I / and using graph partitioning rather than working with a block-tridiagonal
shape.

Example 6 We continue with the problem ��u D f on the unit square in two
spatial dimensions and N grid points in each spatial dimension. Here we obtain
that F D E and we also have that R is symmetric positive definite. This allows
to fully exploit symmetry not only for each Ci , but also R using the Cholesky
decomposition, resp. the conjugate gradient method. We use the same settings as
in Example 1, except that we perform the numerical experiments for the splitting-
type approach (10.5) only.

In contrast to Example 1, the size of the “spike-matrix” U now only requires
solving 4 �N=p systems in parallel rather than 2N systems. With increasing size of
processors this reduces the overhead for computing the “spike-matrix” significantly.
Moreover, as illustrated in Example 5, the size ofR also grows much slower than in
the block-tridiagonal case and the number of CG steps also increases more slowly. In
total this makes the direct approach much more competitive for largerp and explains
the remarkable improvement in Fig. 10.6 compared to Fig. 10.1 with respect to the
computation time and the scalability.

10.4 Minimum Rank Decoupling and Completion

We will now discuss the problem of choosing X in (10.15) in the minimum rank
decoupling case. This problem is connected to the problem of matrix completion
[28, 29]. For the problem of completion one is interested in determining a suitableX

such thatW.X/ D
	
W11 W12

W21 X



has certain desired properties, e.g. a small norm, an

inverse with small norm or a small condition number. For details we refer to [28, 29].
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Fig. 10.6 Splitting-based direct method (left), splitting-based hybrid method (right)

Here the completion problem comes along with the choice of X from (10.15). We
will follow the arguments in [28, 29]. Suppose that EM D ffr1; s1g; : : : ; frm; smgg
with the convention that we use ri < si . Given the splitting (10.13) depending on X
we set

E.1/ D
�
E
.1/
1 ; : : : ; E

.1/
m


; F .1/ D

�
F
.1/
1 ; : : : ; F .1/

m


;

E.2/ D
�
E
.2/
1 ; : : : ; E

.2/
m


; F .2/ D

�
F
.2/
1 ; : : : ; F .2/

m


;

where for any fri ; si g 2 EM such that ri < si we define

E
.1/
i D IriEri ;si ; E

.2/
i D Isi Esi ;ri ; F

.1/
i D Iri Fsi ;ri ; F

.2/
i D Isi Fri ;si :

Then the minimum rank decoupling (10.14) can be written as

E.X/X�1F.X/T D .E.1/X C E.2//„ ƒ‚ …
E.X/

X�1 .F .1/XT C F .2//T„ ƒ‚ …
F.X/T

and the block diagonal part C.X/ is analogously characterized by

C.X/ D C C E.1/X.F .1//T C E.2/X�1.F .2//T :

Here, as before, C refers to the unmodified block diagonal part and A D C.X/ �
E.X/X�1F.X/T . If our matrix A is block-tridiagonal, then E.1/; F .1/ refer to
modifications in the lower right block of a diagonal block Ci , whereas E.2/, F .2/

refer to the upper left corners. Using the Sherman-Morrison-Woodbury formula we
find that

A�1 D C.X/�1 C C.X/�1E.X/
�
X � F.X/T C.X/�1E.X/��1„ ƒ‚ …

	R.X/�1
F .X/T C.X/�1
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and a natural objective is to improve the properties of C.X/ or of the coupling
system

R.X/ D X � F.X/T C.X/�1E.X/:

Rewriting R.X/�1 (again using (10.2)) we can see that

R.X/�1 D X�1 �X�1.F .1/XT C F .2//T A�1.E.1/X C E.2//X�1:

Taking into account that usually we only have two factors EFT instead of
three factors E.X/X�1F.X/T , we would factorize X D XLXU and replace
E.X/X�1F.X/T by .E.1/XL C E.2/X�1

U / � .F .1/XT
U C F .2/X�T

L /T . This in turn
means that R.X/ should approximate X rather than I and similarly, R.X/�1 has
to approximateX�1. If we wish approximate a multiple ˛X�1 of X�1 we conclude
that using Y D X�1 we obtain in the optimal case

0 D ˛Y �R.X/�1 D .˛�1/Y �.F .1/CF .2/Y T /T A�1.E.1/CE.2/Y /: (10.16)

Note that (10.16) is called algebraic Riccati equation with respect to Y . For the
application of numerical methods for solving Riccati equations we refer to [4, 19,
20, 43, 44, 53]. Here we mention a simple criterion when this quadratic equation
simplifies. Since we will not follow this direction in detail we leave the proof to the
reader.

Proposition 1 Suppose that .F .1//T C�1E.2/ D 0 and .F .2//T C�1E.1/ D 0.
Then (10.16) is equivalent to

0 D ˛Y � .D C Y /� .D C Y /B.D C Y /; (10.17)

where B D .F .2//T A�1E.2/ and D D .F .1//T C�1E.1/.

Example 7 We continue Examples 3, 4 for the case of a block-tridiagonal parti-
tioning. Note that in the case of minimum rank decoupling we will obviously have
E D F and

E D

0
BBBBBBBBBBBBBBBB@

0

I

I

0 0

I

I

0 0

I

I

0

1
CCCCCCCCCCCCCCCCA

;



10 Algebraic Preconditioning Approaches and Their Applications 273

since the trivial choice X D I modifies the original off-diagonal blocks of type

	
0 I

I 0




in the minimum rank case to blocks of type

	
I I

I I



D
	
I

I


 �
I I

�
:

In this case we will have

E D F D E.1/ C E.2/ D F .1/ C F .2/ 	

0
BBBBBBBBBBBBBBBB@

0

I

0

0

I

0

0

I

0

1
CCCCCCCCCCCCCCCCA

C

0
BBBBBBBBBBBBBBBB@

0

I

0

0

I

0

0

I

0

1
CCCCCCCCCCCCCCCCA

:

For modifying C.X/ we aim to reduce kC.X/k or kC.X/�1k. Moreover, with
respect to the sparsity of C , we cannot afford much more than a diagonal matrix
X . As long as kXk; kX�1k 6 � for some constant � > 0, the norm of C.X/ is
suitably bounded. In contrast to that, kC.X/�1k might still be large. Completion
can be directly used to bound the norm of the inverse of

W.X/ D
0
@ C E.1/ E.2/

.F .1//T �X�1 0

.F .2//T 0 �X

1
A

since the associated Schur complement in the top left corner satisfies

C.X/ D C � �
E.1/ E.2/

� 	�X�1 0

0 �X

�1 �

F .1/ F .2/
�T
:

Since C.X/�1 is the leading top left block of W.X/�1, a bound for the norm of
W.X/ also leads to a bound for kC.X/�1k. Following [29] we define ˛0 via

˛0 D min
˚
�min

�
C;E.1/; E.2/

�
; �min

�
CT ; F .1/; F .2/

��
; (10.18)

where �min denotes the associated smallest singular value.
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Lemma 1 We define for any r D 1; : : : ; p,

CE;r WD CrC
T
r C

X
sWs 6Dr

ErsE
T
rs ; CF;r WD CT

r Cr C
X
sWs 6Dr

F T
rs Frs:

Then we have that

˛20 D min
r

f�min.CE;r /; �min.CF;r /g:

Proof It is clear that ˛20 can be obtained from the smallest eigenvalue of CCT C
E.1/.E.1//T C E.2/.E.2//T and CTC C .F .1//T F .1/ C .F .2//T F .2/.

By definition we have

CCT CE.1/.E.1//T C E.2/.E.2//T D CCT C
mX
iD1

E
.1/
i .E

.1/
i /

T

C
mX
iD1

E
.2/
i .E

.2/
i /

T ;

which is block-diagonal by construction and precisely reduces to the block-diagonal
matrix diag.CE;1; : : : ; CE;p/. Note that since we always assume that ri < si , the

local sum over all s W s 6D r covers both sums withE.1/
i andE.2/

i . Similar arguments
apply to CTC C .F .1//T F .1/ C .F .2//T F .2/.

As consequence of Lemma 1 we can compute ˛0 for each diagonal block
separately in parallel. This simplifies the overall complexity.

We note that given ˛ < ˛0, the general unconstrained solution X rather than	�X�1 0

0 �X



of kW.X/�1k2 6 1
˛

is is stated explicitly in [29]. In addition we

would like to point out that the singular values �1; : : : ; �n [33] of any matrix C can
be determined by

�l 	 �l.C / D max
dimUDl
dimVDl

min
u2Unf0g
v2V nf0g

vTCu

kvk2 kuk2 :

Furthermore since C and C.X/ are block-diagonal, we can compute the singular
values of each Cr.X/ independently. Having

Cr.X/ D Cr C
X
sWs>r

ErsXrsF
T
sr C

X
sWs<r

ErsX
�1
rs F

T
sr ;

for some neighbouring diagonal blocks s 2 fs1; : : : ; st g ofCr , we can locally choose
U �
r ? .Fs1;r ; : : : ; Fst ;r / and V �

r ? .Er;s1 ; : : : ; Er;st /. We define qr D P
sWs 6Dr qrs,
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where qrs refers to the number of columns (i.e., the rank) of Ers and Frs and define

��
nr�qr WD min

u2U�
r nf0g

v2V �

r nf0g

vT Cru

kvk2 kuk2 : (10.19)

Then we immediately obtain

�l .Cr/ > ��
nr�qr > �nr .Cr/; �l .Cr.X// > �

�
nr�qr > �nr .Cr.X// and ��

nr�qr > ˛0

for any l 6 nr �qr , r D 1; : : : ; p. This also shows that ��
nr�qr gives an upper bound

for ˛0 which cannot be improved. This is also reasonable since the remaining rows
and columns ofCr.X/ coincide with those ofA up to some zeros. Due to the sparsity
of the off-diagonal blocks Ars, Asr, our matrices U �

r and V �
r would cover many unit

vectors associated with unknowns that are not connected with neighbouring blocks
in the sense of the underlying graphGM.A/.

Example 8 We will discuss again the equation ��u D f on the unit square ˝ D
Œ0; 1�2 in two spatial dimensions. We give a simplified model of different boundary
conditions, namely Dirichlet boundary conditions u D g on 	D and some kind of
Neumann-type boundary conditions @u=@� D 0 on 	N .

To simplify the discussion we use the 5-point-star difference stencil which leads
to a matrix with 4 on the main diagonal and �1 in the off-diagonal positions as
described in Example 4. At the positions associated with 	N we reduce the diagonal
entry from 4 to 3 which refers to first order Neumann boundary conditions. We
divide the domain into a checker board of 9 subdomains which corresponds to a
block-diagonal splitting with 9 diagonal blocks. For each of the diagonal block we
sketch the associated relevant singular values. We will choose a grid size of total
size 150 � 150. This means if we have p D 9 D 3 � 3 diagonal blocks, then each
diagonal block is of size nr D 2500.The rank qr is between 100 and 200 depending
on the diagonal block. We will compare each local ��

nr�qr with

1. �nr�qr .Cr/ and �nr .Cr/ of the original block-diagonal matrix and with
2. �nr�qr .Cr.I // and �nr .Cr.I // for minimum-rank decoupling using X D I .
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��
nr�qr

2:5 � 10�3 8:1 � 10�3 2:5 � 10�3
5:1 � 10�3 8:2 � 10�3 5:1 � 10�3
2:5 � 10�3 5:1 � 10�3 2:5 � 10�3

�nr�qr .Cr/ �nr�qr .Cr.I //
�nr .Cr/ �nr .Cr.I //

4:9 � 10�1 7:4 � 10�1 4:9 � 10�1
2:4 � 10�3 7:6 � 10�3 2:4 � 10�3
7:2 � 10�1 9:6 � 10�1 7:2 � 10�1
4:8 � 10�3 7:6 � 10�3 4:8 � 10�3
4:9 � 10�1 7:2 � 10�1 4:9 � 10�1
2:4 � 10�3 4:8 � 10�3 2:4 � 10�3

5:0 � 10�1 7:6 � 10�1 5:0 � 10�1
2:5 � 10�3 7:8 � 10�3 2:5 � 10�3
7:4 � 10�1 1:0 � 100 7:4 � 10�1
4:9 � 10�3 7:9 � 10�3 4:9 � 10�3
5:0 � 10�1 7:4 � 10�1 5:0 � 10�1
2:5 � 10�3 4:9 � 10�3 2:5 � 10�3

We can see in this specific example that ��
nr�qr serves as a fairly well upper

bound for �nr .C / and �nr .C.I //. This is easily explained by the nature of the
partial differential equation, since ��

nr�qr refers to the smallest singular value of
the subsystem which leaves out the nodes at the interfaces. This system is in general
only slightly smaller but with similar properties as each Cr and Cr.I /, except that
one can read omitting the nodes near the interfaces as choosing Dirichlet boundary
conditions everywhere.

We can now easily apply the analytic solution of the completion problem from
[29] but we like to note that the constraint withX andX�1 is in general not satisfied.
We will focus on each local problem involving the blocks .r; r/; .r; s/; .s; r/; .s; s/.
This simplifies the completion problem dramatically and also allows to treat it for
each pair of neighbouring diagonal blocks separately.

Lemma 2 Let fr; sg 2 EM such that r < s. Let

˛0 D min

�
�min

	
Cr 0 Ers 0

0 Cs 0 Esr



; �min

	
CT
r 0 Frs 0

0 C T
s 0 Fsr


�
:

Given ˛ < ˛0 such that ˛ is not a singular value of Cr or Cs , then the general
solution X of

���������

0
BB@
Cr 0 Ers 0

0 Cs 0 Esr

F T
sr 0 Xrr Xrs

0 F T
rs Xsr Xss

1
CCA

�1���������
2

6 1

˛
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satisfies Xrs D 0 D XT
sr and

Xrr D F T
sr C

T
r

�
CrC

T
r � ˛2I

��1
Ers C ˛Yrr;

Xss D F T
rs C

T
s

�
CsC

T
s � ˛2I

��1
Esr C ˛Yss;

(10.20)

where Yrr, Yss may be any matrices such that

Yrr
�
I � ET

rs .CrC
T
r C ErsE

T
rs � ˛2I /�1Ers

�
Y Trr > I C F T

sr .C
T
r Cr � ˛2I /�1Fsr

Yss
�
I � ET

sr.CsC
T
s C EsrE

T
sr � ˛2I /�1Esr

�
Y Tss > I C F T

rs .C
T
s Cs � ˛2I /�1Frs

in the sense of quadratic forms.

Proof We set

OC D diag.Cr ; Cs/; OE D diag.Ers; Esr/; OF D diag.Fsr; Frs/:

Except for the block-diagonal structure of X this lemma exactly reveals Theo-
rem 3.1 from [29], which states that there exists X such that

X D OF T OCT
� OC OCT � ˛2I

�1 OE C ˛Y; where

Y
�
I � OET . OC OCH C OE OET � ˛2I /�1 OE


Y T > I C OF T . OCT OC � ˛2I /�1 OF :

The underlying block structure of OC , OE and OF obviously induce the block structure
of X .

We like to mention that often enough (say in applications arising from partial
differential equations), the diagonal part of a matrix is well-conditioned enough to
be used, i.e., rather than using the complete inverses in Lemma 2, we could work
with the diagonal parts before inverting the matrices. In this case, simplified versions
of Xrr; Xss from Lemma 2 could be used to define �X�1

rs ;�Xrs.
We like to mention that the Hermitian case can be treated more easily as stated in

Theorem 2.1 in [29]. Even if A and C are symmetric and positive definite, E D F

and if X is chosen positive definite as well, the constraint minimization problem

�������

0
@ C E.1/ E.2/

.E.1//T �X�1 0

.E.2//T 0 �X

1
A

�1�������
2

6 1

˛
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refers to a Hermitian but indefinite problem. In this case we always have

�l .Cr.X// 	 �l.Cr.X// > �l.Cr/

since in the sense of quadratic forms we have

Cr.X/ D Cr C
X
sWs>r

ErsXrsE
T
rs C

X
sWs<r

ErsX
�1
rs E

T
rs > Cr :

This can be observed in Example 8. Thus kCr.X/�1k can only become better than
kC�1

r k and the same applies to the condition number as long as kCr.X/k 
 kCrk.

Example 9 We will continue Example 8, except that the elliptic operator �uxx � uyy

is now replaced by �"uxx � "uyy with varying coefficient " as illustrated below.

24 4 24

4 1955 4

24 4 24

For simplicity we assume that the larger value is taken on the interfaces. We like
to stress that each local interface between two neighbouring diagonal blocks is
essentially of the following type for a suitable ˛ > ˇ (e.g. ˛ D 3 � 1955, ˇ D 4)

	
Arr Ars

Asr Ass



D

0
BBBBBBBBB@

˛ C ˇ �ˇ
�ˇ : : :

: : :

: : :
: : :

�ˇI

�ˇI
4ˇ �ˇ
�ˇ : : :

: : :

: : :
: : :

1
CCCCCCCCCA

Since minimum rank decoupling adds positive semidefinite matrices to the diagonal
blocks, we propose to move the interface nodes (which reflect the jumps of "), to
the diagonal blocks with larger ". In this case the diagonal entries of the blocks
with larger " have relatively small diagonal entries at the nodes connected to the
neighbouring blocks, e.g., for the .2; 2/ block, the diagonal entries are 4" D 7820

for the inner nodes, whereas the diagonal entries of the .2; 2/ system in the extremal
four corners are only half as big. Since we work with splittings rather than with
removing nodes to a remaining Schur complement system, this effect cannot be
avoided. We illustrate this effect by stating the largest and smallest singular value
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�max.Cr/, �min.Cr/ for each diagonal block Cr of the unmodified block diagonal
matrix C (we will use N D 40).

�1.Cr/

�nr .Cr/

1:9 � 102 3:2 � 101 1:9 � 102
5:7 � 10�2 4:7 � 10�2 5:7 � 10�2
3:2 � 101 1:6 � 104 3:2 � 101
2:9 � 10�2 3:9 � 10�1 2:9 � 10�2
1:9 � 102 3:2 � 101 1:9 � 102
5:7 � 10�2 2:9 � 10�2 5:7 � 10�2

Knowing that for large " the diagonal entries close to the interfaces are less than
in the interior of the diagonal block, one can use this information to increase the
diagonal entries, e.g., the .2; 2/ block. Choosing X D 40 � I for all Xrs in the .2; 2/
block and X�1

rs outside improves the condition number dramatically. Similarly, for
the four blocks in the corner of the domain we could increase the diagonal entries
further using X D 4 � I . This improves the condition number of several diagonal
blocks significantly while other diagonal blocks are hardly affected.

�1.Cr.X//

�nr .Cr.X//

1:9 � 102 3:2 � 101 1:9 � 102
7:4 � 10�2 4:7 � 10�2 7:4 � 10�2
3:2 � 101 1:6 � 104 3:2 � 101
3:0 � 10�2 2:4 � 101 3:0 � 10�2
1:9 � 102 3:2 � 101 1:9 � 102
7:4 � 10�2 3:0 � 10�2 7:4 � 10�2

Finally, with respect to ", the best condition is obtained in the order 1955/04/24. This
example demonstrates that completion is able to improve the condition number up
to two orders of magnitude in this example and leading to a lower rank between A
and C.X/ at the same time. We also reiterate that part of this success is moving the
interface nodes to the diagonal blocks with larger ".

10.5 Algebraic Multilevel Preconditioning

So far we have discussed how to improve the diagonal blocks in block-diagonal
splitting and for both approaches, the splitting-type approach and the partitioning-
type approach we have assumed that the systems are solved directly. Often enough,
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in practice we prefer to solve these systems iteratively using preconditioned Krylov
subspace solvers. Since many application problems arise from the discretization
of partial differential equations, preconditioning methods based on (algebraic)
multilevel methods are preferred. Therefore this section will discuss algebraic
multilevel methods and we will also give some ideas how splitting or partitioning
the original system as in Sect. 10.3 may be used to parallelize the approach.
Multilevel methods [36, 69] in general are popular for solving systems arising
from partial differential equations. However, when information about some kind
of grid hierarchy is not available, one often has to use algebraic approaches to
construct multilevel methods which mimic the behaviour of multigrid methods
using analogous terminology such as smoothing and coarse grid correction. As
long as the system arises from partial differential equations, say using finite element
discretization, one has additional information about the underlying physical problem
and in this case one may use agglomeration techniques in order to glue together
clusters of element matrices to successively build an algebraic coarsening hierarchy
(cf. e.g. [17, 21, 37, 70]). Somehow in the opposite direction of this development,
recent approaches to finite element aggregation are based on a relatively simple
aggregation approach but instead they are supplemented with flexible Krylov
subspace solvers at every level (also referred to as K-cycle), see e.g. [54, 56, 57].
In a similar direction, algebraic multilevel Krylov methods use K-cycles as well
but shift the coarse grid operator additionally [30, 31]. Further approaches such as
[5, 6, 60, 66] strongly focus on the underlying matrix and construct the multilevel
hierarchy algebraically. This eventually justifies to employ multilevel incomplete
factorization as basis of the coarsening process, either when there is a strong link to
an underlying partial differential equation [5, 6, 58, 72, 73] or using purely algebraic
methodology such as diagonal dominance, independent sets or related ideas, see
e.g., [14, 16, 24, 63]. We will link earlier work on algebraic multilevel methods
[12, 13] to illustrate the theoretical and practical performance of the multilevel
incomplete factorization method, therefore we will restrict the description to these
class of methods. Following [14], we rescale and reorder the initial system A 2 R

n;n

to obtain

OA D PT DADP;

where D 2 R
n;n is a nonsingular diagonal matrix and P 2 R

n;n is a permutation
matrix. Here D is chosen such that DAD has all diagonal entries equal to 1. Fill-
reducing algorithms such as (approximate) minimum degree [2] or multilevel nested
dissection [40, 41] can be used afterwards to prevent (incomplete) factorization
methods from producing too much fill. Then we perform a partial approximate
LDLT factorization of type

˘T OA˘ D
	
B ET

E C



D
	
LB 0

LE I


	
DB 0

0 SC


	
LTB E

T
F

0 I



C E (10.21)

where we allow further symmetric permutations ˘ 2 R
n;n for stability of the

factorization. Here DB refers to a nonsingular diagonal matrix, LB is lower
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triangular with unit diagonal part and E refers to some appropriate perturbation.
Furthermore we have B 
 LBDBL

T
B , LEDBL

T
B 
 E . Eventually we obtain a

remaining approximate Schur complement SC 
 C � EB�1F that consists of all
delayed pivots which were not suitable to serve as pivots during the approximate
factorization. Applying the whole procedure to SC then leads to a multilevel
incomplete factorization, where level-by-level, the size of the remaining Schur
complement is reduced until it reaches a size such that it can be easily factorized,
say, by a dense Cholesky factorization method. Multilevel incomplete factorization
methods as described here are well-established, see e.g. [5, 16, 24, 62, 63]. For ease
of notation we collect the permutation matrices ˘ and P in a single permutation
matrix and call it again P . Often enough, LB is not stored explicitly, but implicitly
defined via LE WD EL�T

B D�1
B saving some memory at the cost of solving an

additional system. We like to point out that in this case E from (10.21) has an empty
.1; 2/ block and .2; 1/ block. The same applies if SC WD C � LEDBL

T
E is chosen.

Having only one block EB different from zero does not necessarily mean that the
approximate factorization is more accurate, since this EB propagates through the
factorization and using the approximate factorization for preconditioning requires
to apply the inverses in Eq. (10.21) which may lift the influence of E .

Example 10 We illustrate for the model problem ��u D f in two spatial
dimensions and N D 100 grid points in each direction the skeleton of a multilevel
factorization.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz=143110

ILUPACK multilevel preconditioner (4 levels)

We like to emphasize that at least a single level factorization yields an approximate
inverse of type

OA�1 

	
I

0



.LBDBL

T
B/

�1
	
I

0


T
CQS�1

C QT whereQ D
	�L�T

B LTE
I



:

(10.22)

Approximate inverse preconditioners of this type are well-studied in literature and
we like to study how a preconditioner of type

M.1/ D LLT C QS�1
C Q

T (10.23)
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will approximate OA for some nonsingular L 2 R
n;n. In the limit, when LLT !	

I

0



.LBDBL

T
B/

�1
	
I

0


T
we will also obtain some information about the (multi-

level) incomplete factorization as preconditioner. Here we can imagine that for some
positive �; � , we could have, e.g.,

L D
 
�L�T

B D
�1=2
B 0

0 �I

!
:

We denote bym the remaining block size ofC 2 R
m;m. It was shown in [12], that the

optimal preconditioner for OA of type LLT C QZ�1QT , Q 2 R
n;m, Z 2 R

m;m, with
respect to the condition number of the preconditioned system is given by choosing
Q as the matrix of eigenvectors Qopt D Œq1; : : : ; qm� of LT OAL with respect to
its m smallest eigenvalues �1; : : : ; �m and Z D QTAQ is almost optimal. It is
obvious that for any nonsingular X , Qopt ! QoptX , Z ! .X�T ZX�1/ is optimal
as well, i.e.,Q has to approximate the invariant subspace of LT OAL associated with
its smallest eigenvalues. Taking into account the optimality of Qopt the natural
question arises for the preconditioner M.1/ from (10.23) how close the specific
choice Q matches the optimal Qopt. We like to mention that LT OAL must have
eigenvalues less than or equal to 1 which is satisfied for sufficiently small � and
� . Note also that since we have scaled the original system A initially and since
D

�1=2
B L�1

B BL�T
B D

�1=2
B 
 I , � and � need not be chosen too small. Indeed we may

expect that �; � D O.1/ is already sufficient. One can also verify easily that in the
limit case as � ! 0, we have

.LT OAL/�1 D O.1/C L�1
	�B�1ET

I



.C � EB�1ET /�1

	�B�1ET

I


T
L�T :

This illustrates that asymptotically as � ! 0 the largestm eigenvalues of .LT OAL/�1
and their associated invariant subspace is fairly well approximated by

L�1
	�B�1ET

I




which is therefore close to the optimal rankm choice. This in turn justifies choosing

Q D
	�L�T

B LTE
I




for the preconditioner M.1/ and SC 
 QTAQ as almost optimal choice. We will
next illustrate how Theorem 4 from [12] describes the quality of the preconditioner
M.1/ and we will further use this Theorem in order to improve the multilevel
incomplete factorization preconditioner (10.21).
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There are two key properties that need to be fulfilled. First of all, we need W
such that

W T OAQ D 0 and�W T OAW �W TL�T L�1W positive semidefinite (10.24)

for some � > 0. Second, the approximate Schur complement SC has to satisfy

�QT OAQ 6 SC 6 	QT OAQ

in the sense of quadratic forms for some 0 < � 6 	 . Then

cond.
�
M.1/

��1=2 OA �M.1/
��1=2

/ 6 �

.� C 1/maxf	;�g :

While � and 	 are quite natural bounds, the delicate question is the size of �. One
can easily verify that using E D LEDBL

T
B and Z D C � LEDBL

T
E we have

OAQ D
	�EB QB�1ET

Z



; where QB D LBDBL

T
B: (10.25)

This allows to define

W T WD �
I �EB QB�1ETZ�1 �

and to bound�. We will not follow this approach in detail and use a different way to
examine the multilevel ILU as preconditioner, but even here we can immediately see
that EB QB�1ET S�1

C plays a central role. Usually the multilevel factorization on each
level is set up such that B can be easily approximated by QB using some criterion
such as diagonal dominance or diagonal blocks of small size whereas SC is usually
more critical. This in turn means that even a small error EB may be amplified by
S�1
C significantly. This is in line with algebraic multigrid theory (see e.g. [55]),

that for approximate inverses (here QB�1) in multigrid methods it is not enough to
approximate the original matrix B�1 sufficiently.

We will now give a simple theorem to state the approximation quality of (10.21)
directly.

Theorem 1 Consider the approximate factorization from (10.21) and assume that
E D LEDBL

T
B . Furthermore, suppose that QB D LBDBL

T
B satisfies

�B 6 QB 6 �B

for some 0 < � 6 � and that there exist 0 < � 6 	 such that

� Z 6 SC 6 	 Z; where Z D C �E QB�1ET
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and we assume that Z is positive definite. Define the preconditioned system T by

T D
	
DB 0

0 SC


�1=2 	
LB 0

LE I


�1
OA
	
LB 0

LE I


�T 	
DB 0

0 SC


�1=2
:

Then

cond.T / 6
maxf�;	 g.�

�
C p

�kHk2/
minf�; �g.1� p

�kHk2/
;

where

H D D
�1=2
B L�1

B EB QB�1ETZ�1=2;

provided that
p
�kHk2 < 1.

Proof We have that

C � LEDBL
T
E D C � .EL�T

B D�1
B /DB.EL�T

B D�1
B /

T D C � E QB�1ET D Z:

From (10.25) we immediately obtain

OA
	�L�T

B LTE
I



D OAQ D

	�EB QB�1ET

Z



:

We define T� via

T� WD
	

1
�
DB 0

0 Z


�1=2 	
LB 0

LE I


�1
OA
	
LB 0

LE I


�T 	 1
�
DB 0

0 Z


�1=2
:

Since we know that Q is the second block column of

	
I 0

LEL
�1
B I


�T
it follows

that

T� D
 p

�D
�1=2
B L�1

B 0

0 Z�1=2

!	
B �EB QB�1ET

�EB QB�1ET Z




�
 p

�L�T
B D

�1=2
B 0

0 Z�1=2

!

D
 

�D
�1=2
B L�1

B BL
�T
B D

�1=2
B �p

�D
�1=2
B L�1

B EB QB�1ETZ�1=2
�p

�Z�1=2EB QB�1ETL�T
B D

�1=2
B I

!
:
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We can see that the .1; 2/ block exactly refers to �p
�H . Since QB 6 �B in

quadratic forms it follows that �D�1=2
B L�1

B BL�T
B D

�1=2
B > I . This in turn implies

that

T� �
	

I �p
�H

�p
�HT I



D
 
�D

�1=2
B L�1

B BL
�T
B D

�1=2
B � I 0

0 0

!

is positive semidefinite. Thus on one hand we have

�min.T�/ > 1 � p
�kHk2;

provided that �kHk2 < 1. On the other hand we have

�max.T�/ D kT�k2 6 k�D�1=2
B L�1

B BL
�T
B D

�1=2
B k2 C p

�kHk2
6 �

�
C p

�kHk2:

To conclude the proof, we point out that the preconditioned system refers to T 	 T1
and we obviously have that

minf 1
�
;
1

	
g
	
� QB�1 0

0 Z�1


6
	 QB�1 0

0 S�1
C



6 maxf 1

�
;
1

�
g
	
� QB�1 0

0 Z�1



which directly implies

�min.T / > minf 1
�
;
1

	
g.1� p

�kHk2/; �max.T / 6 maxf 1
�
;
1

�
g.�
�

Cp
�kHk2/:

We give an interpretation of the bound obtained by Theorem 1. In practice, � and
� are expected to be close to 1, so this effect can be ignored, i.e. we essentially have

cond.T / / 	 .1C kHk2/
�.1� kHk2/ :

Furthermore we note that

1. OA is diagonally scaled, thus kEk is moderately bounded,
2. kEBk is considerably small when B is well-suited (say diagonally dominant or

close to it).

Thus the main effects are how well SC approximates Z and how Z�1=2 amplifies
the remaining small terms in kHk2 which is not known in advance.
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There are some techniques to keep the influence ofZ�1=2 smaller and to improve
approximatingZ by SC , which we will discuss in the sequel. First of all, we like to
point out that similar influence of Z�1 or S�1

C is also illustrated by (10.24). We can
improve� (cf. [13]) by considering

�W T OA2W �W T OAW

instead. Besides, considering the preconditionerM.2/ from [12]

M.2/ D 2LLT � LLT OALLT C .I � LLT A/

	� QB�1ET

I



S�1
C

�
	� QB�1ET

I


T
.I � ALLT /

will yield improved bounds since in this case, essentially only

�W T .2 OA2 � OA3/W;W T OAW

are taken into account for the estimates (cf. Theorem 4 in [12]). We will not go into
the details of deriving bounds for this case. but mention that this preconditioner one
can read as replacing QB by more accurate approximations and thus reducing the
error EB . Indeed,M.2/ is obtained from the simple 2-level multilevel scheme

I �M.2/ OA
	 .I �

	 QB�1 0
0 0



OA/.I �

	� QB�1ET

I



S�1
C

	� QB�1ET

I


T
OA/.I �

	 QB�1 0
0 0



OA/

(10.26)

which demonstrates how a multilevel incomplete factorization can be easily
upgraded to serve as algebraic multigrid method, see e.g. [59]. In the sense of
multigrid methods, the first and the third factor are usually considered as smoothing
while the factor in the middle reveals the coarse grid correction. We will demonstrate
the difference between the simple multilevel incomplete factorization and its
induced algebraic multigrid.

Example 11 Again we will consider the well-known problem ��u D f on a unit
square in two spatial dimensions with Dirichlet boundary conditions and N grid
points in every direction. We compare

1. The multilevel incomplete factorization from [14] with its default options (in
particular a drop tolerance of 10�2 and preconditioned conjugate gradient method
that stops when the relative error in the energy norm drops below 10�6). This
gives a multilevel incomplete Cholesky factorization (MLIC)

2. The associated algebraic multigrid method associated with M.2/
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Both operators will serve as preconditioners for the conjugate gradient method.
Beside the computation time and the number of CG steps we will state the relative

fill nz.LDLT /
nz.A/ for the number of nonzero entries.

N MLIC computation MLIC-CG M.2/-CG
[sec] fill [sec] steps [sec] steps

100 6:6 � 10�2 2:7 5:1 � 10�2 26 9:1 � 10�2 23

200 2:5 � 10�1 2:8 3:4 � 10�1 43 6:7 � 10�1 38

400 1:3 � 100 2:8 3:3 � 100 77 6:7 � 100 66

800 5:8 � 100 2:8 3:0 � 101 135 6:6 � 101 119

1600 2:6 � 101 2:9 2:4 � 102 237 5:7 � 102 221

As we can see, although the number of iteration steps is slightly reduced the total
computational amount of work even increases. Besides, none of the methods scales
linearly.

We can see from Example 11, simply improving the quality of QB is not enough
which is well-known (see e.g. [55]). Here the source is two-fold. On the one hand
one has to ensure that the perturbation is sensitive with respect to H . On the other
hand SC needs to approximate Z sufficiently. Here we attempt to approach these
requirement by computing a modified multilevel incomplete factorization that is
exact for the vector e with all ones. Besides, when upgrading the multilevel ILU
to an algebraic multigrid method, more natural improvements can be achieved
borrowing the smoothing and coarse grid methodology from AMG. In the sense
of AMG, in (10.26) we replace

	 QB�1 0
0 0



�!

�
G�1

G�T

by more general approximations such as the inverse of the lower triangular part of
OA (Gauss-Seidel) or a damped inverse of the diagonal part (Jacobi). To preserve

symmetry, one uses G�T in the first factor of (10.26) and G�1 in the third
factor. Additionally, since the middle factor in (10.26) solves the coarse grid only
approximately in the multilevel case, one recursive call refers to the traditional
V -cycle while two recursive calls are referred to as W-cycle. We note that since
the factorization in (10.21) is exact for e, we have EBe D 0, Be D QBe and
SC e D Ze and e can be regarded as sample vector for the low frequencies. Several
algebraic multigrid methods and incomplete factorization methods make use of this
improvement, see e.g. [66, 72, 73].

Example 12 We will continue Example 11 and consider the following precon-
ditioners in two spatial dimensions, except that now the multilevel incomplete
factorization (10.21) is exact for e. We will compare the following precondition-
ers.
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1. Modified multilevel incomplete Cholesky (MLIC)
2. V-cycle AMG with one Gauss-Seidel forward and one Gauss-Seidel backward

smoothing step (AMGV)
3. W-cycle AMG with one Gauss-Seidel forward and one Gauss-Seidel backward

smoothing step (AMGW)

N MLIC comput. MLIC-CG AMGV-CG AMGW-CG
[sec] fill [sec] steps [sec] steps [sec] steps

100 6:5 � 10�2 2:9 3:2 � 10�2 15 6:9 � 10�2 14 8:7 � 10�2 8

200 3:1 � 10�1 3:0 1:5 � 10�1 18 3:9 � 10�1 16 4:4 � 10�1 8

400 1:6 � 100 3:1 9:5 � 10�1 20 2:6 � 100 19 2:6 � 100 8

800 7:4 � 100 3:1 5:4 � 100 23 1:6 � 101 21 1:5 � 101 8

1600 3:4 � 101 3:2 2:6 � 101 25 8:1 � 101 24 8:3 � 101 9

Although the number of CG steps, in particular for W-cycle, is better, the overall
complexity is best for the multilevel ILU, because the approach is simpler and the
intermediate coarse grid systems are not required. The latter are known to fill-up
during the coarsening process.

Example 13 We will conclude this section with another example AF_SHELL3
from sheet metal forming, available at the University of Florida sparse matrix collec-
tion, to demonstrate the flexibility of algebraic multilevel ILU preconditioning. The
symmetric positive definite system has a size of n D 504855 with approximately
35 nonzero entries per row. We will compare the methods without test vector e and
with e.

without test vector e
MLIC comput. MLIC-CG AMGV-CG AMGW-CG

[sec] fill [sec] steps [sec] steps [sec] steps

5:1 � 101 3:9 9:7 � 101 79 2:5 � 102 82 3:2 � 102 42

with test vector e
MLIC comput. MLIC-CG AMGV-CG AMGW-CG

[sec] fill [sec] steps [sec] steps [sec] steps

6:0 � 101 4:2 5:0 � 101 40 1:2 � 102 38 1:9 � 102 20

Similar to Example 12, the ILU performs best, although not in terms of iteration
steps. Again, using e to improve the method is beneficial.

We finally like to mention that the partitioning approach as indicated in Sect. 10.3
for nested dissection by nodes may also serve as parallelization approach prior to
the incomplete factorization.
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Fig. 10.7 Parallel multilevel incomplete factorization, p D 2 (left), p D 4 (right)

Example 14 We consider again the model problem ��u D f and sketch in
Fig. 10.7 the parallel multilevel incomplete factorization in the cases p D 2; 4 and
N D 100 grid points in each direction.

10.6 Approximate Inversion Using Multilevel Approximation

In this final section we will illustrate how most of the aspects discussed in
the previous sections can be usefully united for the approximate inversion of
matrices. Functions of entries of inverses of matrices like all diagonal entries
of a sparse matrix inverse or its trace arise in several important computational
applications such as density functional theory [42], covariance matrix analysis in
uncertainty quantification [7], simulation of quantum field theories [45], vehicle
acoustics optimization [52], or when evaluating Green’s functions in computational
nanolelectronics [48]. Often enough, modern computational methods for matrix
inversion are based on reordering or splitting the system into independent parts
[11, 51], since in this case the (approximate) inverse triangular factors tend to be
relatively sparse which simplifies their computation [46, 47, 67, 68]. Here we will
use the following ingredients.

1. We will use the partitioning approach (10.7) from Sect. 10.2 for partitioning
the systems. If some of the diagonal blocks were ill-conditioned, one could
alternatively fall back to the splitting approach (10.5) and use a completion
approach.

2. The multilevel incomplete factorization from Sect. 10.5 will be used as approxi-
mate factorization.
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Fig. 10.8 Triangular factor and its (approximate) inverse after nested dissection reordering

For the multilevel incomplete factorization we scale and reorder at each level the
system using nested dissection. In principle, an approximate factor

L D

0
BBB@
L11 0

: : : 0

0 Lp�1;p�1
Lp1 � � � Lp;p�1 Lpp

1
CCCA

is easily inverted. This structure keeps the inverse factor sparse and can be applied
recursively and is used in approximate inverse methods [18] and is part of several
methods for exact inversion [46, 47, 67].

Example 15 Consider the problem ��u D f on the unit square in two spatial
dimensions with 5-point-star-stencil. The system will be reordered with nested
dissection [40]. Figure 10.8 illustrates the incomplete Cholesky factor and its
(approximate) inverse. Although its approximate inverse uses about ten times more
memory it still approximately sparse.

Next we like to mention that multilevel incomplete factorizations can be rewritten
as a single-level factorization. Consider the incomplete factorization (10.21) and
suppose that PT

2 D2SCD2P2 D LCDCL
T
C C EC . One can easily verify that

substitution into (10.21) leads to a factorization of the form OPT OD OA OD OP D OL OLT C OE
with modified permutation matrix OP , new diagonal matrix OD, lower triangular
matrix OL and some perturbation OE . The triangular factors from Example 15 already
refer to a multilevel factorization that was formally rewritten as a single-level
factorization.
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When inverting the triangular factorization (10.21) we already know that

A�1 
 DP

�	
I

0



QB�1 �0 I �C

	�L�T
B LTE
I



S�1
C

��LEL�1
B I

��
PTD;

where equality holds if E D 0 and in particular selected entries such as the diagonal
entries of A�1 are dominated by S�1

C when k QB�1k is well-bounded. Here again, as
before, we have set QB D LBDBL

T
B . One can compute the diagonal entries of the

inverses separately from the sum [67]. Computing the diagonal entries D. QB�1/ of
QB�1 is easily achieved because of the nested dissection partition and the multilevel

approach. It is harder to compute the remaining Schur complement S�1
C in general.

But again in a multilevel setting, SC is substituted until eventually only a system of
small size is left over. If we construct the multilevel factorization such that LEL�1

B

is bounded [14], then the influence of the diagonal entries D.L�T
B LTES

�1
C LEL

�1
B /

in the inversion of OA remains on the same order as kS�1
C k. To construct QB that is

easy to invert and to keep kLEL�1
B k bounded justifies to use a multilevel approach

instead of a single level incomplete factorization.

Example 16 We consider the linear operator A that is obtained from ��u D f on
the unit square in two spatial dimensions using as before 5-point-difference stencil,
Dirichlet boundary conditions and N grid points in each spatial direction. Here
D.A�1/ is explicitly known which simplifies numerical comparisons. We will use
a multilevel incomplete factorization from [14] using different drop tolerances � .
Pivoting is introduced such that successively kL�1

B k, kLEL�1
B k are approximately

kept below a given threshold �; here we will choose � D 100. For details of this
strategy we refer to [14].

N �
k OA� OLD OLT k

k OAk

kD.A�1
� OP OD L�T D�1L�1 OD OPT /k

kD.A�1/k

k trace.A�1
� OP OD L�T D�1L�1 OD OPT /k

k trace.A�1/k

50 10�4 4:2 � 10�5 1:1 � 10�4 5:2 � 10�6

100 10�4 1:8 � 10�5 1:9 � 10�5 2:6 � 10�6

200 10�4 1:4 � 10�5 3:8 � 10�5 2:3 � 10�6

50 10�5 2:6 � 10�6 5:5 � 10�6 1:2 � 10�7

100 10�5 2:2 � 10�6 1:2 � 10�6 6:2 � 10�8

200 10�5 3:2 � 10�4 1:6 � 10�3 1:8 � 10�4

50 10�6 8:5 � 10�16 8:1 � 10�15 5:4 � 10�16

100 10�6 2:1 � 10�8 1:8 � 10�8 3:1 � 10�10

200 10�6 1:1 � 10�5 6:1 � 10�5 1:0 � 10�5

The displayed norm here is always k � k1. We point out that the multilevel
incomplete factorization is not yet fit for approximate inversion. For this reason
we do not display the computation time. We can see that the error with respect to
the inverse is of the same order as the drop tolerance or at most one order greater
which demonstrates the effectiveness of this approach.
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Finally we mention that to turn the multilevel approach into an efficient method
for approximate inversion, the approach would have to be modified to

	
WB 0

WE I



OA
	
W T
B W T

E

0 I



D
	
DB 0

0 SC



C E

which refers to a multilevel approximate inverse-type approach generalizing the
AINV method [9, 10]. This will be subject of future research and algorithms.

10.7 Conclusions

In this paper we have demonstrated that several Numerical Linear Algebra methods
can be efficiently used in many recent preconditioning techniques and matrix
inversion methods. They give deep information about the underlying approximation
and help to improve these methods.
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Chapter 11
Continuous Matrix Factorizations

Erik S. Van Vleck

Abstract Continuous matrix factorizations show great promise in a number of
contexts. In this chapter we survey results on continuous matrix factorizations
paying particular attention to smooth matrix factorizations of fundamental matrix
solutions of linear differential equations and differential-algebraic equations with
special emphasis on smooth QR and smooth SVD.

11.1 Introduction

Continuous matrix factorizations are useful in a number of contexts, notably in
determining stability spectra such as Lyapunov exponents and Sacker–Sell spec-
trum, continuation of invariant subspaces, control, etc. Their usefulness becomes
apparent when time independent factorizations are no longer applicable or do not
provide useful information. Among the continuous matrix factorizations that have
been much studied are the smooth singular value decomposition (SVD), smooth
QR decomposition, and smooth Schur factorization. Depending on the context these
can be decompositions of a given matrix function or of a matrix function such as a
fundamental matrix solution of a time dependent linear differential equation that is
known to exist but is difficult to obtain explicitly.

Our goal in this chapter is to survey developments in continuous matrix
factorizations from Lyapunov and Perron to present day. We discuss results on
continuous QR, Schur, and SVD of smooth matrix functions, but will emphasize
continuous matrix factorizations of (full rank) fundamental matrix solutions first for
time dependent linear differential equations and then for a class of time dependent
linear differential algebraic equations (DAEs). Two instructive examples are the
smooth QR factorization of general smooth matrix functions and the important case
in which the matrix function is a fundamental matrix solution of a linear (time
dependent) differential equation. One important difference between the general
case and the case of fundamental matrix solutions is that given a full rank initial
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condition, the fundamental matrix solution is full rank for all time. In addition, if
a fundamental matrix solution exists in a classical sense, then it must be at least
C1 smooth. Both general matrix functions and fundamental matrix solutions can
have smooth matrix factorizations that fail to exist. For example, in the case of
smooth SVD, the crossing of two time dependent singular values can lead to the
non-existence of the smooth SVD.

A motivating example in which continuous matrix factorizations are useful is
in the computation of stability spectra such as Lyapunov exponents and Sacker–Sell
spectrum. These stability spectra reduce in both cases to the real parts of eigenvalues
in the time independent setting. We next present background on these stability
spectra. Consider the n-dimensional linear system

Px D A.t/x ; (11.1)

where A is continuous and bounded: supt kA.t/k < 1 with, for simplicity, real
entries. We will focus throughout on A.t/ with real entries unless otherwise noted.

In [51], Sacker and Sell introduced a spectrum for (11.1) based upon exponential
dichotomy: The Sacker–Sell, or Exponential Dichotomy, spectrum (˙ED) is given
by those values � 2 R such that the shifted system Px D ŒA.t/� �I �x does not have
exponential dichotomy. Recall that the system (11.1) has exponential dichotomy
if for a fundamental matrix solution X there exists a projection P and constants
˛; ˇ > 0, and K;L � 1, such that

kX.t/PX�1.s/k � Ke�˛.t�s/; t � s;

kX.t/.I � P/X�1.s/k � Leˇ.t�s/; t � s:
(11.2)

It is shown in [51] that ˙ED is given by the union of at most n closed, disjoint,
intervals. Thus, it can be written, for some 1 � k � n, as

˙ED WD Œa1; b1� [ � � � [ Œak; bk�; (11.3)

where the intervals are disjoint. The complement of˙ED is called the resolvent: It is
given by all values � 2 R for which the shifted system has exponential dichotomy.

To define a spectrum in terms of Lyapunov exponents, let X be a fundamental
matrix solution of (11.1) and consider the quantities

�i D lim sup
t!1

1

t
ln jjX.t/ei jj ; i D 1; : : : ; n; (11.4)

where ei denotes the i -th standard unit vector. When
nP
iD1

�i is minimized with

respect to all possible fundamental matrix solutions, then the �i ’s are called
the upper Lyapunov exponents, or simply Lyapunov exponents or characteristic
numbers, of the system and the corresponding fundamental matrix solution is called
normal.
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The Lyapunov exponents satisfy

nX
iD1

�i � lim sup
t!1

1

t

Z t

0

Tr.A.s//ds (11.5)

where Tr.A.�// is the trace of A.�/. Linear systems for which the Lyapunov
exponents exist as limits were called regular by Lyapunov.

Definition 1 A system is regular (Lyapunov) if the time average of the trace has a
finite limit and equality holds in (11.5).

An important and instructive example of a continuous matrix factorizations is the
continuous QR factorization of a fundamental matrix solution of (11.1). If we write
the fundamental matrix solution X.t/ D Q.t/R.t/ where Q.t/ is orthogonal, R.t/
is upper triangular with positive diagonal entries,X.t0/ is invertible for some t D t0,
then upon differentiating we obtain

PQ.t/R.t/CQ.t/ PR.t/ D PX.t/ D A.t/X.t/ D A.t/Q.t/R.t/:

Upon differentiatingQT .t/Q.t/ D I , we note that QT .t/ PQ.t/ is skew-symmetric
and sinceR.t/ is upper triangular and invertible (sinceX.t/ andQ.t/ are invertible),
then

S.Q.t/; A.t// WD QT .t/ PQ.t/ D QT .t/A.t/Q.t/ � PR.t/R�1.t/

so that the strict lower triangular part of S.Q.t/; A.t// may be determined by the
corresponding part of QT .t/A.t/Q.t/ and the rest of S.Q.t/; A.t// is determined
by skew-symmetry. Thus, we have the following equations to determine Q.t/ and
the upper triangular coefficient matrix function B.t/ for R.t/,

PQ.t/ D Q.t/ � S.Q.t/; A.t//; B.t/ D QT .t/A.t/Q.t/ � S.Q.t/; A.t//:

This provides a means for obtaining fundamental matrix solutions for time
dependent linear differential equations since R.t/ (assuming an upper triangular
initial condition for R) may be obtained using backward substitution and solving
linear scalar differential equations. In general X.t/ D exp.

R t
0
A.s/ds/ is a funda-

mental matrix solution for (11.1) if and only if

A.t/ �
Z t

0

A.s/ds D
Z t

0

A.s/ds � A.t/; 8t;

i.e., A.t/ commutes with its integral for all t (see [30]).
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We note also the following example (see [11]) that shows that eigenvalues of
A.t/ do not generally provide stability information ConsiderA.t/ D U�1.t/A0U.t/
where

A0 D
	�1 �5
0 �1



and U.t/ D

	
cos.t/ sin.t/

� sin.t/ cos.t/



:

But the fundamental matrix solution is	
exp.t/.cos.t/C 1

2
sin.t// exp.�3t/.cos.t/ � 1

2
sin.t//

exp.t/.sin.t/ � 1
2

cos.t// exp.�3t/.sin.t/C 1
2

cos.t//




Note that this is an application of classical Floquet theory to transform a periodic
coefficient matrix to a constant coefficient matrix. It is also worth emphasizing that
whereas for a constant coefficient A.t/ 	 A, a similarity transformation of A is
a change of variables for (11.1), Q.t/ that transforms A.t/ to B.t/ is a change of
variables, but not a similarity transformation. However, if A.t/ is symmetric with
negative eigenvalues for all t , then a Lyapunov function argument shows that the
zero solution is stable. However, this result is far from sharp.

Consider a full rank matrix function C 2 Ck.R;Cm�n/, m � n, with A.0/ D
Q.0/R.0/ a given QR factorization where Q.0/ is unitary and R.0/ is upper
triangular with positive diagonal elements. Equations for Q.t/ and R.t/ can be
derived as follows (see [13]), write A.t/ D Q.t/R.t/, Q�.t/Q.t/ D I , and
differentiate to obtain

PA.t/ D PQ.t/R.t/CQ.t/ PR.t/; PQ�.t/Q.t/CQ�.t/ PQ.t/ D 0:

ThenH.t/ WD Q�.t/ PQ.t/ is skew-Hermitian and we obtain

( PR.t/ D Q�.t / PA.t/ �H.t/R.t/;
PQ.t/ D PA.t/R�1.t / �Q.t/ PR.t/R�1.t / D .I �Q.t/Q�.t // PA.t/R�1.t /CQ.t/H.t/:

A smooth skew-Hermitian H.t/ can then be defined based upon the requirement
that PR.t/ is upper triangular.

Next, we will provide some additional background and discuss the analytic
singular value decomposition and work of Kato, Reinboldt, Bunse-Gerstner, Byers,
Mehrmann, and Nichols, and Dieci and Eirola in Sect. 11.2. In Sect. 11.3 we discuss
the role of continuous matrix factorizations (QR and SVD) in determining Lyapunov
exponents and Sacker–Sell spectrum of time dependent linear differential equations.
This includes methods and justification for using such factorizations to extract both
Lyapunov exponents and the analogue of eigenvectors, Lyapunov vectors. We will
also discuss the perturbation theory for finding Lyapunov exponents and vectors
using the smooth QR factorization of a fundamental matrix solution. We turn our
attention to differential-algebraic equations in Sect. 11.4 and focus on the use of QR
and SVD to determine stability spectra in the case of strangeness-free DAEs.
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11.2 Smooth Decompositions of Matrices

A natural and important extension of matrix factorizations is to smooth decompo-
sitions of parameter dependent matrix functions. Orthogonal matrices (or unitary
matrices in the complex case) serve as an important building block for modern
matrix algorithms. They can be computed stably and hence are natural candidates
for extending such techniques to the time or parameter dependent case.

The book of Kato [31] provides solid theoretical foundations for decompositions
of parameter dependent matrices. In the case in which the matrix function is
real analytic and Hermitian there exists an analytic Schur decomposition. Another
important work on smooth decompositions is the work of Reinboldt [50] on the
smooth QR decomposition of a matrix function. In this work a smoothly varying
left null space of the matrix function is used to construct a smooth system of local
charts. The numerical method developed in [50] uses a reference decomposition
A.t0/ D Q.t0/R.t0/ with Q.t0/ orthogonal and R.t0/ upper triangular to determine
Q.t/ by minimizing kQ.t0/ � Q.t/kF . An explicit formula for the minimizer is
obtained and this is used to determineQ.t/ in a neighborhood of t D t0.

In [6] Bunse-Gerstner, Byers, Mehrmann, and Nichols extend the singular
value decomposition to a path of matrices A.t/. An analytic singular value
decomposition of a path of matrices A.t/ is an analytic path of factorizations
A.t/ D U.t/˙.t/V T .t/ where U.t/ and V.t/ are orthogonal of factorizations
A.t/ D U.t/˙.t/V T .t/ where U.t/ and V.t/ are orthogonal and ˙.t/ is diagonal.
To maintain differentiability the diagonal elements of S.t/ are not restricted to being
positive. Existence, uniqueness, and algorithms are obtained and in particular it is
shown that a real analytic A.t/ admits a real analytic SVD, and a full-rank, smooth
pathA.t/ with distinct singular values admits a smooth SVD. Differential equations
are derived for the left factor based upon minimizing the arc length

R b
a

kU 0.t/kdt.
In [13] smooth orthonormal decompositions of smooth time varying matrices are

considered. Emphasis is on the QR, Schur, SVD of matrix function as well as block
analogues. Sufficient conditions for the existence of such decompositions are given
and differential equations derived. In particular, for a smooth QR factorization of
A.t/ one needs A.t/ full rank, for the smooth Schur or SVD one requires simple
eigenvalues or singular values, respectively. Several approaches are considered to
weaken these conditions and the generic case is considered.

11.3 Factorization of Fundamental Matrix Solutions
and Approximation of Lyapunov Exponents

Techniques for numerical approximation of Lyapunov exponents are based upon
smooth matrix factorizations of fundamental matrix solutions X , to bring it into a
form from which it is easier to extract the Lyapunov exponents. In practice, two
techniques have been studied: based on the QR factorization of X and based on
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the SVD (singular value decomposition) of X . Although these techniques have
been adapted to the case of incomplete decompositions (useful when only a few
Lyapunov exponents are needed), or to problems with Hamiltonian structure, we
focus on the general case when the entire set of Lyapunov exponents is sought. For
extensions, see the references.

11.3.1 SVD Methods

Here one seeks to compute the SVD of X : X.t/ D U.t/˙.t/V T .t/, for all t , where
U and V are orthogonal and ˙ D diag.�i ; i D 1 : : : ; n/, with �1.t/ � �2.t/ �
� � � � �n.t/. If the singular values are distinct, the following differential equations
for U; V and ˙ hold. Letting G D UTAU, they are

PU D UH; PV T D �KVT ; Ṗ D D˙; (11.6)

whereD D diag.G/, HT D �H , KT D �K , and for i ¤ j ,

Hij D Gij�
2
j CGji�

2
i

�2j � �2i
; Kij D .Gij CGji/�i�j

�2j � �2i
: (11.7)

From the SVD of X the Lyapunov exponents may be obtained as

lim sup
t!1

1

t
ln �i .t/ : (11.8)

11.3.2 QR Methods

Triangular time dependent coefficient matrices were employed by Lyapunov [41]
to show the existence of so-called normal basis that defines Lyapunov exponents
and subsequently by Perron [49]. A time dependent version of the Gram-Schmidt
process was derived by Diliberto [29] although the use of matrix equations is
algorithmically superior. The use of matrix differential equations in general appears
to have several advantages over simply making continuous time versions of matrix
algorithms.

The idea of QR methods is to seek the factorization of a fundamental matrix
solution as X.t/ D Q.t/R.t/, for all t , where Q is an orthogonal matrix valued
function and R is an upper triangular matrix valued function with positive diagonal
entries. The validity of this factorization has been known since Perron [49] and
Diliberto [29], and numerical techniques based upon the QR factorization date back
at least to [3]. QR techniques come in two flavors, continuous and discrete, and
methods for quantifying the error in approximation of Lyapunov exponents have
been developed in both cases (see [18, 25, 26, 28, 53]).
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11.3.2.1 Continuous QR

Upon differentiating the relation X D QR and using (11.1), we have

AQR D Q PRC PQR or PQ D AQ � QB ; (11.9)

where PR D BR, hence B must be upper triangular. Now, let us formally set S D
QT PQ and note that since Q is orthogonal then S must be skew-symmetric. Now,
fromB D QTAQ�QT PQ it is easy to determine at once the strictly lower triangular
part of S (and from this, all of it), and the entries of B .

Given X.0/ D Q0R0, we have

PQ D QS.Q;A/ ; Q.0/ D Q0 ; (11.10)

PR D B.t/R ; R.0/ D R0 ; B WD QTAQ � S.Q;A/ ; (11.11)

The diagonal entries of R are used to retrieve the exponents:

lim sup
t!1

1

t

Z t

0

.QT .s/A.s/Q.s//iids ; i D 1; : : : ; n : (11.12)

since Bii D .QT .s/A.s/Q.s//ii the diagonal of the upper triangular coefficient
matrix function.

Some variations include the case in which some but not all Lyapunov exponents
are required so thatQ.t/ 2 R

m�n with m > n satisfies (see [22])

PQ.t/ D .I �Q.t/QT .t//A.t/CQ.t/S.Q.t/; A.t//

and the case of complex coefficient matrix function A.t/ in which Q.t/ 2 C
n�n is

unitary and (see [20])

PQ D QH.Q; t/;

with H.Q; t/ satisfying

.H/lm D

8̂
<̂
ˆ̂:
.Q�AQ/lm; if l > mI
i=.Q�AQ/ll; if l D mI
�.H/ml; otherwise:
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11.3.2.2 Discrete QR

Here one seeks the QR factorization of the fundamental matrix X at discrete points
0 D t0 < t1 < � � � < tk < � � � , where tk D tk�1 C hk , hk > 0. The method requires
the QR factorization of Y.tkC1/ 2 Rm�n, QR factorization of X.tkC1/, at a matrix
solution of (11.1) with linearly independent columns. LetX0 D Q0R0, and suppose
we seek the QR factorization of X.tkC1/. For j D 0; : : : ; k, progressively define
ZjC1.t/ D X.t; tj /Qj , where X.t; tj / solves (11.1) for t � tj , X.tj ; tj / D I , and
ZjC1 is the solution of

� PZjC1 D A.t/ZjC1 ; tj � t � tjC1
ZjC1.tj / D Qj :

(11.13)

Update the QR factorization as

ZjC1.tjC1/ D QjC1RjC1 ; (11.14)

and finally observe that

X.tkC1/ D QkC1 ŒRkC1Rk � � �R1R0� (11.15)

is the QR factorization of X.tkC1/.The Lyapunov exponents are obtained from the
relation

lim sup
k!1

1

tk

kX
jD0

log.Rj /ii ; i D 1; : : : ; n : (11.16)

11.3.2.3 Determining Lyapunov Exponents

The key to continuity of Lyapunov exponents with respect to perturbations (see [1])
is integral separation (in the case of distinct Lyapunov exponents) and upper and
lower central exponents (in the case of non-distinct Lyapunov exponents). These
concepts also play a central role in determining when Lyapunov exponents may be
obtained from the diagonal elements of the upper triangular coefficient matrix B.t/
as in (11.12). We next summarize the classical theory of continuity of Lyapunov
exponents and outline the justification for obtaining Lyapunov exponents from the
diagonal elements of the transformed upper triangular coefficient matrix.

Although a convenient and quite reasonable assumption in many practical
situations, see [45], regularity is not sufficient to guarantee stability of the Lyapunov
exponents, which is what we need to have in order to pursue computational proce-
dures for their approximation. Stability for the LEs means that small perturbations
in the function of coefficients, A, produce small changes in the LEs. Millionschikov
(see [42, 43]) and Bylov and Izobov (see [7]) gave conditions under which the
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LEs are stable, and further proved that these conditions are generic, see [46,
p. 21], in the class of linear systems with continuous bounded coefficients. The
key assumption needed is integral separation: “A fundamental matrix solution
(written columnwise) X.t/ D ŒX1.t/; : : : ; Xm.t/� is integrally separated if for
j D 1; : : : ; m � 1, there exist a > 0 and d > 0 such that

jjXj .t/jj
jjXj .s/jj � jjXjC1.s/jj

jjXjC1.t/jj � dea.t�s/ ; (11.17)

for all t; s W t � s”. In [7] (see also [1] Theorem 5.4.8), it is proved that “If
the system (11.1) has different characteristic exponents �1 > � � � > �m, then
they are stable if and only if there exists a fundamental matrix solution with
integrally separated columns”. For a good introduction to integral separation and
some of its consequences see [1] and the references therein, and the complementary
works of Palmer [47, 48]. The following theorem provides conditions (close to the
necessary and sufficient conditions for continuity of Lyapunov exponents) under
which Lyapunov exponents may be extracted from the diagonal elements of the
transformed coefficient matrix B obtained using QR methods.

Theorem 1 (Theorem 5.1 of [27]) For t � 0, consider Px D B.t/x with B.�/
bounded, continuous, and upper triangular. If either of the following conditions
hold

(i) The diagonal elements of B are integrally separated, i.e., there exist a; d > 0

such that

Z t

s

�
Bii.�/ � Bjj.�/

�
d� � a.t � s/ � d; t � s � 0 ; i < j ; (11.18)

or
(ii) The diagonal elements of B are not all integrally separated and for non-

integrally separated diagonal elements, Bii.t/ and Bjj.t/, within an upper
triangular block, for every � > 0 there exists Mij.�/ > 0 such that

j
Z t

s

.Bii.�/ � Bjj.�//d� j � Mij.�/C �.t � s/; t � s; (11.19)

then the Lyapunov spectrum ˙L is obtained as

˙L WD
n[

jD1
Œ�ij ; �

s
j � ; �ij D lim inf

t!1
1

t

Z t

0

Bjj.s/ds ; �sj D lim sup
t!1

1

t

Z t

0

Bjj.s/ds ;

(11.20)

and˙L is continuous with respect to perturbations.
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11.3.2.4 QR Error Analysis

In this section we review the error analysis that has been developed for the QR
method for determining stability spectra. This starts from the backward error analy-
sis in [25] where it is shown that uniformly bounded local errors for approximating
the orthogonal factorQ with the continuous QR method or uniformly bounded local
errors in approximating the fundamental matrix solutionX lead to a backward error
analysis in which the numerical solution solves a nearby problem (near to B or R).
If the problem is sufficiently well-conditioned as measured by the strength of the
integral separation in the problem, then the results in [26, 28] (for continuous QR)
and [2, 53] (for discrete QR) provide a forward error analysis. This forward error
analysis quantifies the error in the Lyapunov exponents (and other stability spectra)
for Lyapunov exponents that are continuous with respect to perturbations as well
as a long time global error analysis for the orthogonal factor Q in the integrally
separated case.

Suppose we want the QR factorization at X.tk/, for some sequence of points tk ,
k D 0; 1; 2; : : :, with t0 D 0. At any such point tk , we can write

X.tk/ D ˚.tk; tk�1/ : : : ˚.t2; t1/˚.t1; 0/X0 ; (11.21)

where

P̊ .t; tj�1/DA.t/˚.t; tj�1/ ; ˚.tj�1; tj�1/D I ; tj�1 � t � tj ; j D 1; 2; : : : ; k :

(11.22)

Now, let X0 D Q.t0/R.t0/, where Q.t0/ 2 R
n�n is orthogonal and R.t0/ 2 R

n�n
is upper triangular with positive diagonal entries. Then, for j D 1; 2; : : : ; k,
recursively consider

P�.t; tj�1/ D A.t/�.t; tj�1/ ; �.tj�1; tj�1/ D Q.tj�1/
and factor �.tj ; tj�1/ D Q.tj /R.tj ; tj�1/ ;

(11.23)

where Q.tj / are orthogonal and R.tj ; tj�1/ are upper triangular with positive
diagonal. Then, we have the QR factorization of X.tk/

X.tk/ D Q.tk/R.tk; tk�1/ : : : R.t2; t1/R.t1; t0/R.t0/ : (11.24)

In practice, we cannot solve for the transition matrices ˚ in (11.21) exactly, and
we will actually compute

Xk D X.tk; tk�1/ : : : X.t2; t1/X.t1; t0/X0 ; (11.25)
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where the matrices X.tj ; tj�1/ are approximations to ˚.tj ; tj�1/, j D 1; : : : ; k.
LettingQ.t0/ D Q0, and progressively setting

X.tj ; tj�1/Qj�1 D QjRj ; j D 1; : : : ; k ;

the numerical discrete QR method will read

Xk D QkRkRk�1 : : : R2R1R.t0/ : (11.26)

Theorem 2 (Theorem 3.1 [25]) For k D 1; 2; : : : , and j D 1; : : : ; k, let Q.tj /
andR.tj ; tj�1/ be the exact Q and R terms in (11.24), and letXk be given in (11.25).
We have

Xk D Q.tk/ŒR.tk; tk�1/CEk� : : : ŒR.t2; t1/CE2�ŒR.t1; t0/CE1�R.t0/ ; (11.27)

where

Ej D QT .tj /NjQ.tj�1/ ; j D 1; : : : ; k ; (11.28)

and Nj are the local errors obtained when approximating ˚.tj ; tj�1/ by
X.tj ; tj�1/: Nj D X.tj ; tj�1/ �˚.tj ; tj�1/, j D 1; : : : ; k.

As a consequence of the above, the numerical realization of the discrete QR
method as expressed by (11.26) finds the exact QR factorization of the sequence
on the right-hand-side of (11.27).

Using Theorem 2 together with several estimates, the following theorem estab-
lishes the backward error analysis in the case of the discrete QR method. In
particular, it is shown that under mild assumptions that the computed orthogonal and
upper triangular factors correspond to a perturbation of the exact upper triangular
coefficient matrixB . The following theorem provides componentwise bounds on the
perturbation. We first write the upper triangular R.tjC1; tj / D D.tjC1; tj /C UjC1
whereD.tjC1; tj / is diagonal and UjC1 is strictly upper triangular. Define ıj by

ıj WD min
1�p�n

1

min
�
1; exp.

R tjC1

tj
Bpp.t/dt/

� ; (11.29)

and �j WD kUjC1k as the departure from normality of the exact triangular transition
matrix R.tjC1; tj /. We note that in what follows it is not necessary that ıj �j < 1

for problems of finite dimension n.

Theorem 3 (Theorem 3.12 [25]) Consider the system (11.1). Let ftj g, j D
0; 1; : : : , t0 D 0 < t1 < t2 < : : : , be the sequence of points (converging to 1)
generated by the numerical realization of the discrete QR method.
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At each tj , j D 1; 2; : : : , the exact discrete QR method delivers the factoriza-
tion (11.24), where R.tjC1; tj / D ehj Bj , hj D tjC1 � tj , j D 0; 1; : : : , is the
solution of the upper triangular system:

PQR D Bj QR ; tj � t < tjC1 ; QR.0/ D R.t0/ ; j D 0; : : : ; k � 1 ; (11.30)

where the matrices Bj 2 R
n�n are upper triangular and satisfy

R.tjC1; tj / D ehj Bj ; hj WD tjC1 � tj ; j D 0 : : : ; k � 1 : (11.31)

The numerical discrete QR method, instead, gives the QR factorization of the
matrix in (11.25), that is in (11.27). Assume that kEjC1k D k˚.tjC1; tj / �
X.tjC1; tj /k � TOL, for all j D 0; 1; : : : . Finally, assume that

�j WD kEjC1k � Œ min
1�i�n

�
1;Dii.tjC1; tj /

�
��1 � � < 1 ; 8j D k; : : : ; 0; k D 1; 2; : : : :

(11.32)

Then, the numerical discrete QR method finds the (exact) QR factorization of the
system

POR D OBj OR ; tj � t < tjC1 ; OR.0/ D R0 ; j D 0; : : : ; k � 1 ; (11.33)

where the matrices OBj 2 R
n�n satisfy

OR.tjC1; tj / D ehj
OBj ; hj WD tjC1 � tj ; j D 0; : : : ; k � 1 ; (11.34)

hj OBj D hjBj C Lj CO.kEjC1k2/ ; (11.35)

and we have the bounds

jLj j �
�
1 � .ıj �j /

n

1 � ıj �j
�2

jFjC1j (11.36)

where the general (p,q)-entry of jFjC1j is bounded as

�jFjC1j
�
.p;q/

� TOL= min
iDp;q

�
exp.

Z tjC1

tj

Bii.t/dt/
�
:

�

The analogue of Theorem 3 for the continuous QR algorithm is Theorem 3.16
in [25].
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With the continuous QR algorithm, Theorem 3.16 in [25] together with the
nonlinear variation of constants formula and a fixed point argument applied to
PQ D Q � S.Q;B C E/ provides the basis for the error analysis for Lyapuonv

exponents and also global error bounds for the orthogonal factor (see [26] and
[28]). The analysis is based upon showing that if the error E.t/ is small enough as
compared to the integral separation in the system, thenQ.t/ 
 I for all t . Both the
case of robust, distinct Lyapunov exponents and robust but non-distinct Lyapunov
exponents have been investigated.

For the discrete QR algorithm one may use Theorem 2 (Theorem 3.1 in [25]) as
the starting point to analyze

QjC1Rj D ŒRj CEj �Qj :

Here the approach is based upon application of the Newton-Kantorovich Theo-
rem (see [2, 53]) to again show that with small enough error as compared to the
integral separation in the system, there exists a sequence of orthogonal Qn that
remain close to the identity.

11.3.3 Growth/Decay Directions

Whereas Lyapunov exponents and Sacker–Sell spectrum provide time dependent
stability information analogous to the real parts of eigenvalues of matrices, here
we seek the analogue of eigenvectors, i.e., those initial conditions for (11.1) for
which the asymptotic rate of growth/decay given by the Lyapunov exponents is
realized. Here we survey results from [24] on using the smooth QR and SVD
of fundamental matrix solutions to determine these directions and then turn our
attention to the rate (exponential!) at which these directions are approached. That
the rate of convergence is exponential means that these directions may be well
approximated in finite time.

11.3.3.1 SVD

In general we are only assured that the continuous SVD algorithm is well-posed
if the diagonal elements of coefficient matrix function D in (11.6) is integrally
separated:

Z t

0

.Gk;k.�/�GkC1;kC1.�//d� � at�d; a > 0; d 2 R; t � 0; k D 1; : : : ; n�1 :
(11.37)

It is then a fairly immediate consequence of the definition of the matrix functionK
in (11.6) that if (11.37) holds, thenK.t/ ! 0 as t ! 1 and the following holds.
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Lemma 1 (Lemma 7.1 [24]) Let (11.37) hold. Then, the orthogonal matrix func-
tion V.t/ ! V , as t ! 1, where V is a constant orthogonal matrix.

This provides an orthogonal representation for the growth directions (analogues of
eigenvectors) associated with the growth rates given by the Lyapunov exponents
may be determined under the assumption of integral separation by limt!1 V.t/

(see [14–16, 24]).

11.3.3.2 QR

The analogous result for the QR decomposition of a fundamental matrix solution
is obtained by writing X.t/ D Q.t/R.t/ D Q.t/diag.R.t//Z.t/ and we have the
following.

Lemma 2 (Lemma 7.3 [24]) Consider the upper triangular system PR D BR

whereB is bounded and continuous, and assume that the diagonal ofB is integrally
separated, as in (11.39). Then, R ! diag.R/Z as t ! 1, where Z is a constant
upper triangular matrix with 1’s on the diagonal.

Proof Write R D DZ, where Z D D�1R, and D D diag.R/. Then D satisfies
PD D diag.B/D and Z satisfies PZ D EZ where E D D�1.B � diag.B//D. Then,
Eij D Bij � Rjj

Rii
for i < j and Eij D 0 for i � j . Now,

Rjj

Rii
D Rjj

Rii
.0/ e

R t
0 .Bjj�Bii/d� :

Let j D i C k, for some k D 1; : : : . The diagonal of B is integrally separated
(see (11.39)), and so

Z t

0

.Bjj � Bii/d� � �k.at � d/ ;

from which Eij ! 0 exponentially fast as t ! 1 and the result follows.

This provides a unit upper triangular representation for the growth direc-
tions associated with the growth rates given by the Lyapunov exponents may be
determined under certain conditions by limt!1 diag.R�1.t//R.t/ may be further
determined by limt!1 diag.R�1.t//R.t/ (see [15, 16, 24]).

Next, we turn our attention to the rate of convergence to the growth/decay
directions. The results in [14, 15] show that the rate of convergence is exponential.
We next briefly state the result in the QR case. Consider the system

Px D B.t/x; (11.38)
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with B continuous, bounded and upper triangular. In what follows, we will assume
that the diagonal elements of B satisfy one of the following assumptions:

(i) Bii and Bjj are integrally separated, i.e. there exist a; d > 0 such that

Z t

s

�
Bii.�/ � Bjj.�/

�
d� � a.t � s/ � d; t � s � 0 ; i < j ; (11.39)

(ii) Bii and Bjj are not integrally separated, but 8� > 0 there existsMij.�/ > 0 such
that

ˇ̌
ˇ̌Z t

s

�
Bii.�/ � Bjj.�/

�
d�

ˇ̌
ˇ̌ � Mij.�/C �.t � s/; t � s � 0 ; i < j :

(11.40)

For Z.t/ D diag.R.t//�1R.t/ write the unique QR decomposition of ZT .t/ as
ZT .t/ D U.t/M.t/ where M.t/ has positive diagonal elements. For 0 � � < 1

define ˇij.t/ D kPi.tC�/Pj .t/k where Pi.t/ denote the orthogonal projection onto
the span of the first i columns of U.t/ which we denote by Ui.t/. Then if Ui.t/ !
U i then Pi.t/ ! P i . If we let ˛ij.t/ D kPi .t/P j k, then the following shows that
the rate of convergence is exponential with the rate of convergence roughly given as
the gap between consecutive Lyapunov exponents.

Theorem 4 (Theorem 20 [15]) Let the diagonal elements of B satisfy assump-
tion (11.39) or (11.40). Then for all i; j D 1; : : : ; p, i ¤ j ,

%s.˛ij/ � Aj�i � �j j; (11.41)

where A D maxk¤l .%.ˇkl /=j�k � �l j/ and %.ˇkl / D lim supt!1 1
t

log.jˇkl.t/j/,
the Lyapunov exponent of ˇkl .t/.

The proof is similar to the result for the SVD (in the integrally separated case),
i.e., see Theorem 5.4 in [14].

11.3.4 Computational Techniques

There has been interest recently in techniques for preserving the orthogonality of
approximate solutions to matrix differential equations with orthogonal solutions,
such as in the case of QR factorization of a fundamental matrix solution of (11.1)
and the U and V factors in the SVD. Preserving orthogonality is important
when finding Lyapunov exponents since an orthogonal transformation preserves
the sum of the Lyapunov exponents. Techniques based on a continuous version
of the Gram-Schmidt process are a natural idea, but they have not proven to
be reliable numerically due to the loss of orthogonality when the differential
equations that describe the continuous Gram-Schmidt process are approximated
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numerically. Still, a host of successful techniques have emerged. Some parallel
the algorithmic development of symplectic techniques for Hamiltonian systems,
and maintain automatically orthogonality of the computed solution: among these
are Gauss Runge-Kutta methods (see [8, 20]), as well as several others which
automatically maintain orthogonality, see [10, 21, 23]. However, extensive practical
experience with orthogonality-preserving methods has lead to the adoption of
so-called projection techniques, whereby a possibly non-orthogonal solution is
projected onto an orthogonal one, without loss of order of accuracy. Codes based
upon projected integrators for approximating Q.t/ and Lyapunov exponents are
described in [19]. The codes are designed for both a given time dependent linear
differential equation and for nonlinear differential equations using either an existing
code to solve the nonlinear equation and then employing the codes for linear
problems or in solving the nonlinear equations simultaneously with the linearized
equations.

11.4 Differential-Algebraic Equations

In [36, 38, 40] Lyapunov and Sacker–Sell spectral theory is extended from ordinary
differential equations (ODEs) to nonautonomous differential-algebraic equations
(DAEs). Using orthogonal changes of variables, the original DAE system is trans-
formed into appropriate condensed forms, for which concepts such as Lyapunov
exponents, Bohl exponents, exponential dichotomy and spectral intervals of var-
ious kinds can be analyzed via the resulting underlying ODE. The focus is on
strangeness-free, linear, time varying DAEs. This means that under weak conditions
the DAE and its derivatives may be transformed into a system that is strangeness-
free, i.e., the differential and algebraic parts of the equations are easily separated.

Consider the linear time-varying DAE

E.t/ Px D A.t/x C f .t/; (11.42)

on the half-line I D Œ0;1/, together with an initial condition x.0/ D x0. Stability
spectra is associated with the homogenous equation

E.t/ Px D A.t/x; (11.43)

which allows for the analysis of the asymptotic behavior or the growth rate of
solutions to initial value problems. Assume that E;A 2 C.I;Rn�n/ and f 2
C.I;Rn/ are sufficiently smooth functions where the notation C.I;Rn�n/ denotes
the space of continuous functions from I to R

n�n.
A complete theory as well a detailed analysis of the relationship between

different index concepts can be found in [34]. It is assumed that the homogeneous
equation is strangeness-free and has the form

E.t/ Px D A.t/x; t 2 I; (11.44)
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where

E.t/ D
�
E1.t/

0

�
; A.t/ D

�
A1.t/

A2.t/

�
;

E1 2 C.I;Rd�n/ and A2 2 C.I;R.n�d/�n/ are such that the matrix

NE.t/ WD
�
E1.t/

A2.t/

�
(11.45)

is invertible for all t . As a direct consequence, then E1 and A2 are of full row-rank.
We assume that the matrix functions are sufficiently smooth so that the strangeness-
free DAE (11.44) is in fact differentiation-index 1, see [34].

Definition 2 Suppose that U 2 C.I;Rn�n/ and V 2 C1.I;Rn�n/ are nonsingular
matrix functions such that V and V �1 are bounded. Then the transformed DAE
system

QE.t/ PQx D QA.t/ Qx; (11.46)

with QE D UEV , QA D UAV � UE PV and x D V Qx is called globally kinematically
equivalent to (11.44) and the transformation is called a global kinematic equivalence
transformation. If U 2 C1.I;Rn�n/ and, furthermore, also U and U�1 are bounded
then we call this a strong global kinematic equivalence transformation.

It is clear that the Lyapunov exponents of a DAE system as well as the normality of
a basis formed by the columns of a fundamental solution matrix are preserved under
global kinematic equivalence transformations. The following lemma is the key to
constructing and understandingQR methods and it is in fact a simplified version of
[36, Lemma 7].

Lemma 3 (Lemma 4 [40]) Consider a strangeness-free DAE system of the
form (11.44) with continuous coefficients and a minimal fundamental solution
matrix X . Then there exist matrix functions V 2 C.I;Rn�d / and U 2 C1.I;Rn�d /
with orthonormal columns such that in the fundamental matrix equationE PX D AX
associated with (11.44), the change of variables X D UR, with R 2 C1.I;Rd�d /
upper triangular with positive diagonal elements, and the multiplication of both
sides of the system from the left with V T leads to the system

E PR D AR; (11.47)

where E WD V T EU is nonsingular, A WD V TAU � V TE PU , and both of them are
upper triangular.

System (11.47) is an implicit ODE, since E is nonsingular. It is called essentially
underlying implicit ODE system (EUODE) of (11.44), and it can be turned into
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an ODE by multiplication with E �1 from the left. Lyapunov exponents may be
calculated using the same basic ideas as in the ODE case using a proper definition
of fundamental matrix solutions for DAEs. Sacker–Sell spectrum may be calculated
using the shifted DAE system

E.t/ Px D ŒA.t/ � �E.t/�x:

Among the issues that make extension to DAEs difficult is in computing the
transformation that brings the DAE to EUODE form and that the sensitivity of the
Lyapunov exponent and other stability spectrum relies not only on changes to A.t/
but also to changes to E.t/ that may be close to singular.

In [40] numerical methods based on QR factorization for computing all or
some Lyapunov or Sacker–Sell spectral intervals for linear differential-algebraic
equations. In addition, a perturbation and error analysis for these methods is
presented. We investigate how errors in the data and in the numerical integration
affect the accuracy of the approximate spectral intervals over long time intervals.
The paper [38] is concerned with the use of the SVD approach for the numerical
approximation of Lyapunov and Sacker–Sell spectrum for linear DAEs. This
includes approximation of the spectrum and the associated solution subspaces.
Numerical methods based on smooth singular value decompositions are introduced
for computing all or only some spectral intervals and their associated leading
directions.
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Chapter 12
Polynomial Eigenvalue Problems:
Theory, Computation, and Structure

D. Steven Mackey�, Niloufer Mackey, and Françoise Tisseur�

Abstract Matrix polynomial eigenproblems arise in many application areas, both
directly and as approximations for more general nonlinear eigenproblems. One
of the most common strategies for solving a polynomial eigenproblem is via a
linearization, which replaces the matrix polynomial by a matrix pencil with the same
spectrum, and then computes with the pencil. Many matrix polynomials arising
from applications have additional algebraic structure, leading to symmetries in the
spectrum that are important for any computational method to respect. Thus it is
useful to employ a structured linearization for a matrix polynomial with structure.
This essay surveys the progress over the last decade in our understanding of
linearizations and their construction, both with and without structure, and the impact
this has had on numerical practice.
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12.1 Introduction

Nonlinear eigenvalue problems of the form

P.�/x D 0 ; x 2 C
n; x ¤ 0 ;

where P.�/ is an m � n matrix-valued function of a scalar variable �, are
playing an increasingly important role in classical and contemporary applications.
The simplest, but still most important among these problems are the polynomial
eigenproblems, where P.�/ is an m � n matrix polynomial

P.�/ D
kX
iD0

�iAi ; Ai 2 C
m�n : (12.1)

Such problems arise directly from applications, from finite element discretizations
of continuous models, or as approximations to more general nonlinear eigen-
problems, as detailed in the survey articles [69, 79]. The trend towards extreme
designs, such as high speed trains, optoelectronic devices, micro-electromechanical
systems, and “superjumbo” jets such as the Airbus 380, presents a challenge for the
computation of the resonant frequencies of these structures as these extreme designs
often lead to eigenproblems with poor conditioning.

However, the physics that underlies problems arising from applications can lead
to algebraic structure in their mathematical formulation. Numerical methods that
preserve this structure keep key qualitative features such as eigenvalue symmetries
from being obscured by finite precision error.

A recurring theme running through much of the work of Volker Mehrmann
has been the preservation of structure – in the pursuit of condensed forms, and
in the development of numerical algorithms. To quote from the 2004 paper titled
Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods by
Mehrmann and Voss [69]:

The task of numerical linear algebra then is to design numerical methods that are accurate
and efficient for the given problem. The methods should exploit to a maximal extent the
sparsity and structure of the coefficient matrices. Furthermore, they should be as accurate
as the approximation of the underlying operator problem permits, and they should include
error and condition estimates.

One of the most common strategies for solving a polynomial eigenproblem is
via a linearization, which replaces the given matrix polynomial P.�/ by a matrix
pencil L.�/ D �X C Y with the same eigenvalues as P . The eigenproblem for
L.�/ is then solved with general pencil algorithms like the QZ algorithm, or with
methods designed to work effectively on the specific types of pencils produced by
the linearization process. If the matrix polynomial has some structure, then the
linearization should also have that structure, and the algorithm employed on the
linearization should preserve that structure.
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The most commonly used linearizations in numerical practice have been the
Frobenius companion forms. Although these pencils have many desirable prop-
erties, including the extreme ease with which they can be constructed, they have
one significant drawback. They do not preserve any of the most important and
commonly occurring matrix polynomial structures – Hermitian, alternating, or
palindromic. Thus in order to implement the structure preservation principle on
the linearization strategy, it is necessary to have more linearizations available, in
particular ones that preserve the structure of the original polynomial. It is also
useful to have a large palette of easily constructible linearizations, even in the
absence of any structure to be preserved. For example, it may be possible to improve
numerical accuracy by selecting an “optimal” linearization, but only if there are
many linearizations available to choose from.

This essay will illustrate the influence that the structure preservation principle has
had on the development of linearizations of matrix polynomials, on the impact our
improved understanding of linearizations in general has had on numerical practice,
and Mehrmann’s key contributions to that effort.

12.2 Basic Concepts

We use N to denote the set of nonnegative integers, F for an arbitrary field, FŒ�� for
the ring of polynomials in one variable with coefficients from the field F, and F.�/

for the field of rational functions over F.
A matrix polynomial of grade k has the form

P.�/ D
kX
iD0

�iAi ; with Ai 2 F
m�n: (12.2)

Here we allow any of the coefficient matrices, including Ak , to be the zero matrix.
The degree of a nonzero matrix polynomial retains its usual meaning as the largest
integer j such that the coefficient of �j in P.�/ is nonzero. The grade of a nonzero
matrix polynomial is a choice of integer k at least as large as its degree [22, 59, 61].
It signals that the polynomial is to be viewed as an element of a particular vector
space – the F-vector space of all matrix polynomials of degree less than or equal
to k. Choosing a grade, in effect, specifies the finite-dimensional vector space of
discourse.

Ifm D n and detP.�/ is not the identically zero polynomial, then P.�/ is said to
be regular; equivalently, P.�/ is regular if it is invertible when viewed as a matrix
with entries in the field of rational functions F.�/. Otherwise, P.�/ is said to be
singular (note that this includes all rectangular matrix polynomials with m ¤ n).
The rank ofP.�/ is its rank when viewed as a matrix with entries in the field F.�/, or
equivalently, the size of the largest nonzero minor of P.�/. For simplicity, in many
cases we may suppress the dependence on � when referring to a matrix polynomial.
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An m � m polynomial E.�/ is said to be unimodular if detE.�/ is a nonzero
constant, i.e., E.�/ has an inverse that is also a matrix polynomial [32]. The
canonical form of a matrix polynomialP.�/ under a transformationE.�/P.�/F.�/
by unimodular matrix polynomials E.�/ and F.�/ is referred to as the Smith form
of P.�/. This form was first developed for integer matrices by H.J.S. Smith [76]
in the context of solving linear systems of Diophantine equations [51]. It was then
extended by Frobenius in [30] to matrix polynomials.

Theorem 1 (Smith form (Frobenius, 1878)[30]) Let P.�/ be an m � n matrix
polynomial over an arbitrary field F. Then there exists r 2 N, and unimodular
matrix polynomials E.�/ and F.�/ over F of size m � m and n � n, respectively,
such that

E.�/P.�/F.�/ D diag.d1.�/; : : : ; dmin fm;ng.�// DW D.�/; (12.3)

where each di .�/ is in FŒ��, d1.�/; : : : ; dr .�/ are monic, drC1.�/; : : : ; dmin fm;ng.�/
are identically zero, and d1.�/; : : : ; dr.�/ form a divisibility chain, that is, dj .�/ is
a divisor of djC1.�/ for j D 1; : : : ; r � 1. Moreover, the m � n diagonal matrix
polynomialD.�/ is unique, and the number r is equal to the rank of P .

The nonzero diagonal elements dj .�/, j D 1; : : : ; r in the Smith formD.�/ are
called the invariant factors or invariant polynomials of P.�/.

The uniqueness of D.�/ in Theorem 1 implies that the Smith form is insensitive
to field extensions. In other words, the Smith forms of P.�/ over F and over any
extension field QF � F are identical. Consequently, the following notions of the
partial multiplicity sequences, eigenvalues, and elementary divisors of P.�/ are
well-defined.

Definition 1 (Partial Multiplicity Sequences and Jordan Characteristic) Let
P.�/ be an m � n matrix polynomial of rank r over a field F. For any �0 in the
algebraic closure F, the invariant polynomials di.�/ of P , for 1 � i � r , can each
be uniquely factored as

di.�/ D .� � �0/˛i pi .�/ with ˛i � 0 ; pi .�0/ ¤ 0 : (12.4)

The sequence of exponents .˛1; ˛2; : : : ; ˛r / for any given �0 2 F satisfies the
condition 0 � ˛1 � ˛2 � � � � � ˛r by the divisibility chain property of the
Smith form, and is called the partial multiplicity sequence of P at �0 2 F, denoted
J .P ; �0/. The collection of all the partial multiplicity sequences of P is called the
Jordan characteristic of P .

Note that we allow any, even all, of the exponents ˛i in a partial multiplicity
sequence J .P ; �0/ to be zero. Indeed, this occurs for all but a finite number of
�0 2 F. These exceptional �0 with at least one nonzero entry in J .P ; �0/ are of
course just the eigenvalues of P.�/.
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Definition 2 (Eigenvalues and Elementary Divisors) A scalar �0 2 F is a (finite)
eigenvalue of a matrix polynomial P whenever its partial multiplicity sequence
.˛1; ˛2; : : : ; ˛r / is not the zero sequence. The elementary divisors for an eigenvalue
�0 of P are the collection of factors .� � �0/

˛i with ˛i ¤ 0, including repetitions.
The algebraic multiplicity of an eigenvalue �0 is the sum ˛1 C ˛2 C � � � C ˛r
of the terms in its partial multiplicity sequence, while the geometric multiplicity
is the number of nonzero terms in this sequence. An eigenvalue �0 is said to be
simple if its algebraic multiplicity is one; �0 is semisimple if its algebraic and
geometric multiplicities are equal, equivalently, if all of the nonzero terms in its
partial multiplicity sequence are equal to one.

It is worth noting that defining the eigenvalues of a matrix polynomial via the
Smith form subsumes the more restrictive notion of the eigenvalues as the roots of
detP.�/, which is completely inadequate for singular matrix polynomials. We also
stress the importance of viewing the partial multiplicities of a fixed �0 as a sequence.
In a number of situations, especially for matrix polynomials with structure [58–60],
it is essential to consider certain subsequences of partial multiplicities, which can
be subtly constrained by the matrix polynomial structure. Indeed, even the zeroes in
the partial multiplicity sequences of structured matrix polynomials can sometimes
have nontrivial significance [58–60].

Matrix polynomials may also have infinite eigenvalues, with a corresponding
notion of elementary divisors at 1. In order to define the elementary divisors at 1
we need one more preliminary concept, that of the reversal of a matrix polynomial.

Definition 3 (j -reversal) Let P.�/ be a nonzero matrix polynomial of degree
d � 0. For j � d , the j-reversal of P is the matrix polynomial revj P given by

.revj P /.�/ WD �jP.1=�/: (12.5)

In the special case when j D d , the j -reversal of P is called the reversal of P and
is sometimes denoted by just revP .

Definition 4 (Elementary divisors at 1) Let P.�/ be a nonzero matrix polyno-
mial of grade k and rank r . We say that �0 D 1 is an eigenvalue of P if and only if
0 is an eigenvalue of revk P , and the partial multiplicity sequence of P at �0 D 1
is defined to be the same as that of the eigenvalue 0 for revk P , that is J .P ;1/ WD
J .revk P ; 0/. If this partial multiplicity sequence is .˛1; ˛2; : : : ; ˛r /, then for each
˛i ¤ 0we say there is an elementary divisor of degree˛i for the eigenvalue�0 D 1
of P .

If P.�/ D Pg
iD0 �iAi has grade k and rank r , then P has an eigenvalue at 1 if

and only if the rank of the leading coefficient matrix Ak is strictly less than r . For a
regular polynomialP this just means that Ak is singular. Observe that if k > degP ,
then Ak D 0 and P necessarily has r elementary divisors at 1.
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Definition 5 (Spectral Structure of a Matrix Polynomial) The collection of all
the eigenvalues of a matrix polynomialP.�/, both finite and infinite, is the spectrum
of P . The collection of all the elementary divisors of P , both finite and infinite,
including repetitions, constitutes the spectral structure of P .

The two most frequently used equivalence relations that preserve spectral
structure between matrix polynomials are unimodular equivalence and strict equiv-
alence. They can be used only between matrix polynomials of the same size.

Definition 6 A pair ofm�nmatrix polynomialsP andQ over a fixed but arbitrary
field F are said to be

(a) Unimodularly equivalent, denoted P � Q, if there exist unimodular matrix
polynomialsE.�/ and F.�/ over F such that E.�/P.�/F.�/ D Q.�/,

(b) Strictly equivalent, denoted P Š Q, if there exist invertible (constant) matrices
E and F over F such that E � P.�/ � F D Q.�/.

Of these two relations, unimodular equivalence is the more flexible, as it allows
the degrees of the two matrix polynomials to differ, while keeping the list of finite
elementary divisors invariant. On the other hand, strict equivalence preserves both
finite and infinite elementary divisors, but because the degrees of strictly equivalent
matrix polynomials have to be identical, this relation can be a bit restrictive.

Recently the relations of extended unimodular equivalence and spectral equiva-
lence have been introduced [22] to facilitate the comparison of matrix polynomials
that are of different sizes, including rectangular, and of different grades. The
underlying goal is to investigate the extent to which it is possible for such diverse
matrix polynomials to share the same spectral structure and and the same singular
structure. These extended equivalences now open up the possibility of choosing
linearizations that can take on any size that “works.” This is in accord with the notion
of “trimmed linearizations” studied by Byers, Mehrmann and Xu in [16]. Another
important consequence is that one can now easily generalize the notion of (strong)
linearization to (strong) quadratification, and indeed to (strong) `-ification [22]!

12.3 Linearizations

For square matrix polynomials, the notion of linearization plays a central role for
both theory and computation.

Definition 7 (Linearization) An nk � nk pencil L.�/ D �X C Y is said to be
a linearization for an n � n matrix polynomial P.�/ of grade k if there exist
unimodular nk � nk matrix polynomials E.�/; F.�/ such that

E.�/L.�/F.�/ D
"
P.�/ 0

0 I.k�1/n

#
nk�nk

:
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If in addition, rev1L.�/ WD �X C Y is a linearization of revk P .�/, then L is said
to be a strong linearization of P .

The key property of any linearization L of P is that L has the same finite
elementary divisors asP , while a strong linearization has the same finite and infinite
elementary divisors as P . Since there are well-known algorithms for solving the
linear eigenproblem this immediately suggests working on a matrix pencil L that is
a strong linearization for P .

The linearizations most used in practice are the first and second Frobenius
companion forms C1.�/ D �X1 C Y1, and C2.�/ D �X2 C Y2, where

X1 D X2 D diag.Ak; I.k�1/n/; (12.6a)

Y1 D

2
6664
Ak�1 Ak�2 � � � A0

�In 0 � � � 0
:::

: : :
: : :

:::

0 � � � �In 0

3
7775; and Y2 D

2
6664
Ak�1 �In � � � 0

Ak�2 0
: : :

:::
:::

:::
: : : �In

A0 0 � � � 0

3
7775:

(12.6b)

They have several attractive properties:

• there is a uniform template for constructing them directly from the data in P ,
using no matrix operations on the coefficients of P ,

• eigenvectors of P are easily recoverable from eigenvectors of the companion
forms,

• they are always strong linearizations for P , no matter whether P is regular or
singular.

However, they have one significant drawback – they usually do not reflect the
structure that may be present in the original polynomial P .

12.3.1 Ansatz Spaces

During an extended visit by the first two authors to Berlin in 2003, Mehrmann
proposed searching for alternatives to the companion linearizationsC1.�/ andC2.�/
– alternatives that would share the structure of the parent polynomial P.�/.

In joint work with Mehrmann and Mehl, two large vector spaces of pencils that
generalize the first and second Frobenius companion forms were introduced in [55].
Christened L1.P / and L2.P /, where P is a regular matrix polynomial, these spaces
were conceived as the collection of all pencils satisfying a certain ansatz, which we

now briefly describe. With � WD �
�k�1;�k�2; : : : ; �; 1

�T
, where k is the grade of

P , define L1.P / as the set of all kn � kn pencils L.�/ satisfying the right ansatz

L.�/ � .�˝ In/ D v ˝ P.�/; for some v 2 F
k; (12.7)
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and L2.P / as the set of all kn � kn pencils L.�/ satisfying the left ansatz

.�T ˝ In/ � L.�/ D wT ˝ P.�/; for some w 2 F
k: (12.8)

A direct calculation shows that C1.�/ 2 L1.P / with right ansatz vector v D e1,
and C2.�/ 2 L2.P / with left ansatz vector w D e1. The pencils in these ansatz
spaces were shown to have a number of nice properties:

• like C1.�/ and C2.�/, they are all easily constructible from the coefficients of P ,
• eigenvectors of P are easily recoverable; pencils in L1.P / reveal right eigenvec-

tors of P , while those in L2.P / reveal left eigenvectors,
• for regular P , almost all pencils in these spaces are strong linearizations for P .

Furthermore, each of these spaces is of dimension k.k � 1/n2 C k. Thus each
represents a relatively large subspace of the full pencil space (which has dimension
2k2n2), and hence is a large source of potential linearizations for P . In fact, these
spaces are so large, that for any choice of ansatz vector there are many degrees of
freedom available for choosing a potential linearization in L1.P / or L2.P /.

The aim of identifying smaller, but interesting subspaces of these ansatz spaces
brings the double ansatz subspace DL.P / WD L1.P / \ L2.P / into focus. One sees
right away that linearizations in DL.P / enjoy a two-sided eigenvector recovery
property. But a DL.P /-pencil also has an unexpected feature: its right and left ansatz
vectors are identical, with this common vector uniquely determining the pencil. An
isomorphism between DL.P / and F

k now follows, which in turn induces a natural
basis for DL.P /. Described in [38], a pencil �Xi C Yi in this basis has special
structure. Every Xi and Yi is block diagonal, with the diagonal blocks being block-
Hankel. In a surprising twist, a completely different construction of Lancaster [48]
dating back to the 1960s is proved to also generate this natural basis for DL.P /.

The unique vector v 2 F
k associated with L.�/ 2 DL.P / gives us a way to test

when L.�/ is a linearization for P , and show that almost all pencils in DL.P / are
linearizations for P .

Theorem 2 (Eigenvalue Exclusion Theorem [55]) Let P.�/ be a regular
matrix polynomial of grade k and let L.�/ 2 DL.P / with ansatz vector
v D Œv1; v2; : : : ; vk�

T 2 F
k . Then L.�/ is a linearization for P.�/ if and only

if no root of the grade k � 1 scalar polynomial

q.�/ D v1�
k�1 C v2�

k�2 C � � � C vk�1�C vk (12.9)

is an eigenvalue of P.�/. We include 1 as one of the possible roots of q.�/, or as
one of the possible eigenvalues of P.�/.

The systematizing of the construction of linearizations [55] has spurred exciting
new research in this area. The ansatz spaces L1.P / and L2.P / were recently
revisited from a new vantage point [80]. By regarding block matrices as a device
to record the matrix coefficients of a bivariate matrix polynomial, and by using the
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concepts of the Bézoutian function and associated Bézout matrix, shorter proofs of
the key results in [55] were obtained, while simultaneously generalizing them from
regular matrix polynomials expressed in the standard monomial basis to regular
polynomials expressed in any degree-graded basis.

What can be said about the pencils in L1.P / and L2.P / when the n � n matrix
polynomial P is singular? As was shown recently in [18], almost all of them are
still linearizations for P that now allow easy recovery of the left and right minimal
indices and minimal bases of P .

Are there linearizations for P that are not in L1.P / or L2.P /? Yes! Consider the
cubic matrix polynomial P.�/ D �3A3 C �2A2 C �A1 C A0. In [6], the pencil

L.�/ D �

2
4 0 A3 0I A2 0

0 0 I

3
5C

2
4�I 0 0

0 A1 A0
0 �I 0

3
5

was shown to be a linearization for P ; but L.�/ is neither in L1.P / nor L2.P /, as
observed in [55]. We turn next to the discussion of these pencils.

12.3.2 Fiedler Pencils

Another source of linearizations for matrix polynomials was inspired by a 2003
paper of Fiedler [29], in which he showed that the usual companion matrix C of a
scalar polynomial p.�/ D ˙k

iD1ai�i of degree k can be factored into a product of
n sparse matricesMi which differ only slightly from the n � n identity matrix:

C D

2
6666664

�ak�1 �ak�2 : : : �a1 �a0
1 0 : : : 0 0

0 1
: : :

:::
:::

: : :
: : : 0

0 : : : 0 1 0

3
7777775

D Mk�1Mk�2 � � �M0 ;

where

Mj WD

2
6664
Ik�j�1

�aj 1
1 0

Ij�1

3
7775 for j D 1; : : : ; k � 1 ; and M0 WD

"
Ik�1

�a0

#
:

Fiedler observed that any permutation of the factors Mi produces a matrix that
is similar to C , and hence also a companion matrix for p.�/. Furthermore,
certain permutations produce companion matrices that are of low bandwidth, i.e.,
pentadiagonal.



328 D.S. Mackey et al.

The first step in extending Fiedler’s results to matrix polynomials was taken by
Antoniou and Vologiannidis in [6]. The Fiedler factors are now block matrices:

Mj WD

2
6664
In.k�j�1/

�Aj In
In 0

In.j�1/

3
7775 for j D 1; : : : ; k� 1; M0 WD

"
Ik�1

�A0

#
;

and one extra block matrix, Mk WD diagŒAk; In.k�1/�, which is needed because
matrix polynomials cannot, without loss of generality, be assumed to be monic.
For any permutation � D .j0; j1; : : : ; jk�1/ of the indices .0; 1; 2; : : : ; k � 1/, one
can now define the associated Fiedler pencil

F�.�/ WD �Mk � Mj0Mj1 � � �Mjk�1
: (12.10)

Each member of this family of Fiedler pencils was shown in [6] to be a strong
linearization when P is a regular matrix polynomial over C, by demonstrating
strict equivalence to the Frobenius companion pencil. The regularity assumption
is essential for this proof strategy to work, so to prove that the Fiedler pencils
remain strong linearizations when P is singular requires different techniques. This
was done in [19], with the restriction on the field lifted. It was also shown that the
left and right minimal indices of a singular P are recoverable from any of its Fiedler
pencils. Additionally, eigenvectors can be recovered without added computational
cost.

Antoniou and Vologiannidis also introduced in [6] a kind of “generalized” Fiedler
pencil; exploiting the fact that every Mj for j D 1; : : : ; k � 1 is invertible, we can
“shift” some of the Mj factors to the �-term. For example, F�.�/ WD �Mk �
Mj0Mj1 � � �Mjk�1

is strictly equivalent to

QF�.�/ D �M�1
j1
M�1
j0
MkM

�1
jk�1

� Mj2 � � �Mjk�2
;

so QF�.�/ is also a strong linearization. These generalized Fiedler pencils can have
additional nice properties, as illustrated by the following example for a general
square polynomial P.�/ of degree k D 5.

S.�/ D �M5M
�1
3 M�1

1 �M4M2M0

D

2
666664

�A5 C A4 �In
�In 0 �In

�In �A3 C A2 �In
�In 0 �In

�In �A1 C A0

3
777775
:
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This pencil S.�/ is not only a strong linearization for P.�/, it is also block-
tridiagonal. The low bandwidth property of certain Fiedler (and generalized Fiedler)
pencils thus opens up the possibility of developing fast algorithms to compute the
eigenstructure of high degree matrix polynomials. The eigenvector and minimal
basis recovery properties of these generalized Fiedler pencils have been studied
in [13].

In more recent work [83], Vologiannidis and Antoniou have extended Fiedler
pencils even further, showing that repetitions of the Fiedler factors Mi can some-
times be allowed in the construction of F�.�/ in (12.10), and template-like strong
linearizations for P will still be produced. These pencils are sometimes referred to
as Fiedler pencils with repetition, and have been shown to be yet another source of
structured linearizations [14, 83].

Fiedler pencils have also been shown [21] to be adaptable to rectangular matrix
polynomials P . In this case, however, the product representation in (12.10) is no
longer tractable, and other techniques for constructing these pencils are required.
Each Fiedler pencil now has its own characteristic size as well as block pattern, but
each rectangular Fiedler pencil is still a strong linearization for P . This concretely
illustrates a distinctive feature of rectangular matrix polynomials, as contrasted
with regular (square) matrix polynomials; a rectangular m � n matrix polynomial
with m ¤ n always has strong linearizations of many different sizes, while a
regular matrix polynomial has strong linearizations of only one possible size. This
phenomenon is explored in more detail in [22]. For more on the impact of Fiedler’s
work on our understanding of linearizations, see [53].

12.4 Matrix Polynomial Structures

There are several kinds of algebraic structure commonly encountered in matrix
polynomials arising in the analysis and numerical solution of systems of ordinary,
partial, and delay differential equations. To concisely define these structures, we
define the ?-adjoint of matrix polynomials, where the symbol ? is used to denote
transpose T in the real case F D R, and either transpose T or conjugate transpose �
in the complex case F D C. Note that the structures under consideration apply only
to square matrix polynomials.

Definition 8 (Adjoint of Matrix Polynomials) Let P.�/ D Pk
iD0 �iAi where

Ai 2 F
n�n with F D R or C be a matrix polynomial of grade k. Then

P?.�/ WD
kX
iD0

�iA?i (12.11)

defines the ?-adjoint P?.�/.
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The three most important matrix polynomial structures in applications are

Hermitian/symmetric: P?.�/ D P.�/ ; (12.12)

?-alternating: P?.��/ D ˙P.�/ ; (12.13)

and ?-palindromic: revP?.�/ D ˙P.�/ : (12.14)

Also of interest are skew-symmetric matrix polynomials, defined by PT .�/ D
�P.�/, and the following alternative types of alternating and palindromic structure.
Letting R 2 R

n�n denote an arbitrary involution (i.e., R2 D I ), then P.�/ is
said to be RCR-palindromic if R revP .�/R D ˙P.�/, and RCR-alternating
if RP .��/R D ˙P.�/. Note that the C in RCR refers to the conjugation
operation in the definitions; the name ?-alternating was suggested by Mehrmann and
Watkins in [71], because the matrix coefficients of such polynomials strictly alter-
nate between symmetric and skew-symmetric (or Hermitian and skew-Hermitian)
matrices.

Matrix polynomials (especially quadratic polynomials) with Hermitian structure
are well known from the classical problem of vibration analysis, and have been
extensively studied for many years [31, 32, 48, 79]. The analysis of rail noise caused
by high speed trains also leads to a quadratic eigenproblem (QEP), but one with
a complex T -palindromic matrix polynomial. Real and complex T -palindromic
QEPs also arise in the numerical simulation of the behavior of periodic surface
acoustic wave (SAW) filters [43, 85]. Quadratic eigenproblems with T -alternating
polynomials arise in the study of corner singularities in anisotropic elastic materials
[7, 8, 70]. Gyroscopic systems [25, 48, 49] also lead to quadratic T -alternating
matrix polynomials. Higher degree �-alternating and �-palindromic polynomial
eigenproblems arise in the linear-quadratic optimal control problem; the continuous-
time case leads to �-alternating polynomials, while the discrete-time problem
produces �-palindromic ones [15]. The stability analysis of delay-differential
equations leads to an RCR-palindromic QEP [28], while a variant of RCR-
alternating structure (without conjugation) arises in linear response theory from
quantum chemistry [66]. Further details on these and other applications can be found
in [52, 69, 79], Chaps. 2 and 3 of this Festschrift, and the references therein.

An important feature of the structured matrix polynomials described above are
the special symmetry properties of their spectra, some of which are described in the
following result. The proof of this composite theorem may be found in [52] or [56],
together with [28].

Theorem 3 (Eigenvalue Pairings of Structured Matrix Polynomials) Let
P.�/ D Pk

iD0 �iAi , Ak ¤ 0 be a regular matrix polynomial that has one of
the palindromic or alternating structures described above. Then the spectrum of
P.�/ has the pairing depicted in Table 12.1. Moreover, the algebraic, geometric,
and partial multiplicities of the two eigenvalues in each such pair are equal. Note
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Table 12.1 Spectral
symmetries

Structure of P.�/ Eigenvalue pairing

T -palindromic .�; 1=�/

�-palindromic .�; 1= � /

RCR-palindromic .�; 1= � /

T -alternating .�;��/
�-alternating .�;�� /
RCR-alternating .�;�� /

that � D 0 is included here as a possible eigenvalue, with the reciprocal partner
1=� or 1=� to be interpreted as the eigenvalue 1.

The eigenvalue pairings seen in this theorem are sometimes referred to as sym-
plectic spectrum and Hamiltonian spectrum, because they parallel the eigenvalue
structure of symplectic and Hamiltonian matrices. Indeed, this is one of several
ways in which palindromic and alternating matrix polynomials may be viewed as
generalizations of symplectic and Hamiltonian matrices, respectively. For more on
this connection see [52].

Although Theorem 3 says quite a lot about the spectral structure of palindromic
and alternating matrix polynomials, there are several issues that are not addressed
by this result. For example, do these spectral symmetries still hold in the singular
case? And what happens when the spectral pairings degenerate, e.g., at �0 D ˙1
for T -palindromic polynomials, and at �0 D 0 or 1 for T -alternating polynomials?
Are there any additional constraints on the spectra at these degenerate points?

In joint work with Mehrmann [58, 59], these questions were resolved by charac-
terizing the Smith forms for these structure classes using a novel technique based
on the properties of compound matrices. This work showed that the eigenvalue
pairings found in Theorem 3 do indeed extend to singular polynomials in these
classes. Degenerate eigenvalues, however, have some nontrivial fine structure in
their admissible Jordan characteristics. The details are somewhat technical, but
the main message can be simply stated. For each of these structure classes, the
constraints on the admissible spectral structures of odd grade polynomials in a
class differ from the constraints on the even grade polynomials in that class. It is
interesting to note, though, that this dichotomy between odd and even grade appears
only in the fine structure of the partial multiplicities at the degenerate eigenvalues.

Next, the same compound matrix techniques were brought to bear on skew-
symmetric matrix polynomials [60]. A characterization of their Smith forms
revealed even multiplicity for all elementary divisors, with no odd/even grade
dichotomy in the admissible spectral structures.
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12.4.1 Möbius Transformations

A useful investigative tool developed by Mehrmann and his co-authors in the last
few years is the extension of linear fractional rational transformations (i.e., Möbius
transformations) to transformations that act on matrix polynomials [61]. One of the
main motivations for this work is understanding the relationships between different
classes of structured matrix polynomials. Clearly such a study can be greatly aided
by fashioning transformations that allow results about one structured class to be
translated into results about another structured class. This inquiry has its origin
in particular examples such as the classical Cayley transformation for converting
one matrix structure (e.g., skew-Hermitian or Hamiltonian) into another (unitary or
symplectic, respectively). This Cayley transformation was extended from matrices
to matrix pencils in [50], and in a 1996 paper by Mehrmann [67]. It was then
generalized to matrix polynomials in 2006 by Mehrmann and co-authors [56],
where it was shown how palindromic and alternating structures are related via a
Cayley transformation of matrix polynomials. The definition of general Möbius
transformations in [61] completes this development, providing an important and
flexible tool for working with matrix polynomials.

Definition 9 (Möbius Transformation) Let V be the vector space of all m � n

matrix polynomials of grade k over the field F, and let A 2 GL.2;F/. Then the
Möbius transformation on V induced by A is the map MA W V ! V defined by

MA

 
kX
iD0

Bi�
i

!
.�/ D

kX
iD0

Bi .a�C b/i .c�C d/k�i ; where A D
�
a b

c d

�
:

It is worth emphasizing that a Möbius transformation acts on graded polynomials,
returning polynomials of the same grade (although the degree may increase,
decrease, or stay the same, depending on the polynomial). In fact, MA is a linear
operator on V . Observe that the Möbius transformations induced by the matrices

AC1 D
�

1 1

�1 1
�

and A�1 D
�
1 �1
1 1

�

are exactly the Cayley transformations CC1.P / and C�1.P /, respectively, intro-
duced in [56]. Also note that the reversal operation described in Definition 3 is the
Möbius transformation MR corresponding to the matrix

R D
�
0 1

1 0

�
:

Some of the significant properties of general Möbius transformations proved in [61]
include the following:
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1. Möbius transformations affect the eigenvalues of P and their partial multiplicity
sequences in a simple and uniform way. In particular, if mA.�/ D a�Cb

c�Cd denotes

the scalar Möbius function on F[f1g corresponding to the matrixA D �
a b
c d

� 2
GL.2;F/, then we have that

J
�
MA.P /; �0

� 	 J
�
P ; mA.�0/

�
(12.15)

for any �0 2 F [ f1g.
2. Eigenvectors are preserved by Möbius transformations, but Jordan chains are

not. By (12.15), though, the lengths of Jordan chains are preserved.
3. Möbius transformations preserve minimal indices, and transform minimal bases

in a simple and uniform way.
4. Möbius transformations preserve the property of being a strong linearization;

that is, if L.�/ is a strong linearization for P.�/, then MA.L/ is a strong
linearization for MA.P /. More generally, Möbius transformations preserve the
spectral equivalence relation.

5. Möbius transformations preserve sparsity patterns; for example, if P is upper
triangular, then MA.P / is also upper triangular.

For the study of structured matrix polynomials, perhaps the most significant prop-
erty of all is that Möbius transformations provide a rich source of bijections between
classes of structured polynomials, that allow us to conveniently transfer intuition
and results about one class to another. Important examples include correspondences
between

T -palindromic and T -alternating polynomials,

as well as between the three classes of

Hermitian, �-palindromic, and �-alternating matrix polynomials.

These last correspondences provide an opportunity to transfer over to �-palindromic
and �-alternating polynomials much of the existing wealth of knowledge about
Hermitian matrix polynomials, including results about such special subclasses as
hyperbolic polynomials, definite polynomials [40], and other types of Hermitian
matrix polynomials with all-real spectrum [4].

Finally, it is worth noting that the idea of linear fractional transformations acting
on matrix polynomials has been extended even further to more general rational
transformations in [73].

12.5 Structured Linearizations

I’m pickin’ up good vibrations – The Beach Boys

When a matrix polynomial P.�/ has structure, the linearization strategy for solving
the associated polynomial eigenproblem has two parts: first find a suitable structured
linearization L.�/ for P.�/, and then compute the eigenvalues of L.�/ using a
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structure-preserving algorithm. Although our focus is on the first part of this strat-
egy, it is important to note that there has also been much work on the development
of structure-preserving algorithms for matrix pencils in the last decade. Examples
of some of this work can be found in the papers [28, 45, 47, 57, 65, 68, 70, 71, 75],
as well as in the Chaps. 2 and 3 of this Festschrift.

We now turn to developments of the last decade concerning structure-preserving
linearizations, focusing mainly on the “big three” types of structure – Hermitian,
palindromic and alternating.

12.5.1 In Ansatz Spaces

The pencil spaces L1.P / and L2.P / introduced by Mehrmann and co-authors [55]
were shown in a follow-up paper [56] to provide a rich arena in which to look
for linearizations with additional properties like structure preservation or improved
numerics, thus realizing the original purpose for their development. Subspaces of
pencils that inherit the ?-palindromic or ?-alternating structure ofP were identified,
a constructive method to generate these structured pencils described, and necessary
and sufficient conditions for them to be strong linearizations established.

There is a close connection between the structure of a pencil in L1.P / and the
structure of its ansatz vectors. Loosely put, if P is palindromic, then a palindromic
pencil in L1.P / will have a palindromic ansatz vector, while if P is alternating,
then an alternating pencil in L1.P / will have an alternating ansatz vector. When P
is structured, there is also a very close connection between the double ansatz space
DL.P / and pencils in L1.P / that reflect the structure of P . More precisely, let R
be the reverse identity matrix, and ˙ a diagonal matrix of alternating signs,

Rk WD
"

1
. .

.

1

#
k�k

and ˙k WD
"
.�1/k�1

: : :
.�1/0

#
k�k

(12.16)

and letL.�/ 2 L1.P /with ansatz vector v. IfP is a palindromic matrix polynomial,
e.g., if revPT .�/ D P.�/, then

revLT .�/DL.�/”
�
RvDv; and .R˝I /L.�/ 2 DL.P / with ansatz vector v


:

So to find a palindromic pencil in L1.P /, begin with a palindromic ansatz vector.
Now there is a unique pencil in DL.P / corresponding to that vector. This pencil
can be explicitly constructed using the natural basis for DL.P / mentioned in
Sect. 12.3.1, and described in detail in [56]. Then reversing the order of the block
rows of that DL.P /-pencil turns it into a palindromic pencil in L1.P /. Will this
pencil be a linearization for P ? The Eigenvalue Exclusion Theorem stated in
Sect. 12.3.1 and proved in [55], determines whether the answer is yea or nay. If
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the answer is yea, and P is regular, this linearization is automatically also a strong
linearization [55].

On the other hand, if P is alternating, say PT .��/ D P.�/, then for L.�/ 2
L1.P / we have

LT .��/DL.�/”
�
˙vDv; and .˙˝I /L.�/ 2 DL.P / with ansatz vector v


;

which, as in the palindromic case detailed before, can be used mutatis mutandis to
construct an alternating linearization forP . Similar results were proved for the other
flavors of palindromicity and alternation, and concrete examples given in [56].

An unexpected property of DL.P / itself was proved in [38]. Consider the block
transpose of a block matrix, defined as follows.

Definition 10 The block transpose of a block k � `matrix A withm�n blocksAij

is the block ` � k matrix AB with m � n blocks .AB/ij D Aji.

Now consider the subspace B.P / of all block symmetric (with respect to n � n
blocks) pencils in L1.P /, that is,

B.P / WD f�X C Y 2 L1.P / W XB D X; YB D Y g:

Then for any P , the subspaces B.P / and DL.P / are identical! Thus pencils in
DL.P / always have block symmetric coefficients, even when there is no structure
in the matrix coefficients of P . What happens when P is structured? As shown
in [38], when P is symmetric, the collection of all symmetric pencils in L1.P /

is exactly DL.P /, while for Hermitian P the Hermitian pencils in L1.P / form a
proper (but nontrivial) subspace H.P / � DL.P /.

Among Hermitian matrix polynomials, perhaps the most important are those
with all-real spectrum [4]. This includes the definite polynomials, a class of Her-
mitian polynomials introduced in [40] as a common generalization for hyperbolic
polynomials and definite pencils. In this setting, the natural structured linearization
question is whether every definite Hermitian polynomial has a linearization that is
a definite pencil. This is answered affirmatively in [40]; indeed, it is shown that a
Hermitian matrix polynomialP is definite if and only if it has a definite linearization
in H.P /, the set of Hermitian pencils in L1.P /. Thus we see that L1.P / is rich
enough to provide a structured-preserving (strong) linearization for any definite
Hermitian polynomial. It is also worth noting that the results in [40] had a significant
impact on the later characterization results of [4].

The double ansatz space has also appeared as the star player in other structured
settings. The stability analysis of time-delay systems leads to a palindromic
polynomial eigenproblem [28] with an involutory twist – the n � n complex matrix
polynomial P.�/ in this problem satisfies

R � revP.�/ � R D P.�/ ; (12.17)
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where R is a real involution (i.e., R2 D In), thus making P an RCR-palindromic
matrix polynomial in the sense described in Sect. 12.4. In order to find structured
linearizations in this context, the first issue is to specify an appropriate class of
structured pencils to search in; in other words, a suitable involution on the space of
nk�nk pencils must be chosen. In [28] it is shown that the block anti-diagonal matrixbR WD Rk ˝R, whereRk is the k�k backwards identity matrix as in (12.16), gives
a compatible choice of involution. With this choice of involution, it now follows
that the right ansatz vector v 2 C

k of any bRC bR-palindromic pencil in L1.P / must
satisfy Rv D v. For any such vector v, there are many bRC bR-palindromic pencils
in L1.P / with this right ansatz vector, exactly one of which will also be in DL.P /.
These results, along with a constructive procedure to build these structured DL.P /-
pencils, were presented in [28], where they were also extended to the other variants
of RCR-structure mentioned in Sect. 12.4 by using the linearization theory and
techniques developed in [55, 56].

The techniques developed in [56] had an impact on eigenvalue computations
occurring in the vibration analysis of rail tracks under excitation from high speed
trains [42, 46]; see also the Chap. 3 of this Festschrift. This eigenvalue problem has
the form

	
�A.!/C B.!/C 1

�
A.!/T



x D 0; (12.18)

where A;B are large, sparse, parameter-dependent, complex square matrices, with
B complex symmetric, and A highly singular. Clearly, for any fixed value of !,
multiplying (12.18) by � leads to a T -palindromic eigenvalue problem. Solving this
problem directly with the QZ-algorithm without respecting its structure resulted
in erroneous eigenvalues. However, the use of a T -palindromic linearization from
[56] allowed structured deflation of the zero and infinite eigenvalues. The computed
frequencies were now accurate to within the range of the discretization error. Thus
we see that the computation of “good vibrations” is aided by the use of “good
linearizations.”

12.5.1.1 Problematic Eigenvalues

For regular matrix polynomials P , the pencils in DL.P / have repeatedly shown
themselves to be prolific sources of structured linearizations.1 However, pencils
in DL.P / have one significant drawback. Because of the eigenvalue exclusion
property described in Theorem 2, for any L.�/ 2 DL.P / there is always at least
one “problematic eigenvalue” that may prevent L from being a linearization for P ;

1The story is quite different for singular polynomials P . In that case, none of the pencils in DL.P /

is ever a linearization for P , even when P has no structure [18].
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these problematic eigenvalues are just the roots of the scalar polynomial q.�/ in
(12.9), associated with the ansatz vector v for L.

In many situations, this obstruction to L.�/ 2 DL.P / being a linearization
can be easily side-stepped simply by shifting consideration to a different pencil
in DL.P /, since almost every pencil in DL.P / is a linearization. However, in
a structured setting, where the goal is to find a structured linearization, this
problematic eigenvalue obstruction sometimes cannot be avoided, no matter what
pencil in DL.P / is used.

Consider, for example, the case of a T -palindromic matrix polynomial P of any
even grade k � 2. As described in Sect. 12.5.1, any T -palindromic pencil in L1.P /

is strictly equivalent to a pencil in DL.P / possessing a palindromic ansatz vector
v, i.e., a v 2 F

k such that Rv D v. But the scalar polynomial q.�/ in (12.9)
corresponding to any such v is necessarily palindromic of odd grade, and thus must
always have �1 as a root. Consequently, any T -palindromic polynomial P of even
grade that has the eigenvalue �0 D �1 will never have any structured linearization
in L1.P /!

This phenomenon of having an unavoidable problematic eigenvalue obstruction
to the existence of any structured linearizations in L1.P / occurs for other structures
in addition to T -palindromic structure (see [56]). However, it is significant to note
that this is only known to occur for structured polynomials of even grade.

12.5.2 Among Fiedler Pencils

Modified versions of the generalized Fiedler pencils and Fiedler pencils with rep-
etition described in Sect. 12.3.2 have shown themselves to be particularly valuable
sources for not just structure-preserving linearizations, but for structured companion
forms. Here by the term “companion form” we mean a template for producing a
pencil associated to each matrix polynomial P of some fixed size and grade that

• is constructed directly from the matrix coefficients of P , without any matrix
operations on these coefficients, and

• produces a strong linearization for every polynomial P of the given size and
grade (both regular and singular if the polynomials are square).

Every Fiedler and generalized Fiedler pencil is a companion form in this sense;
by contrast, none of the pencils in DL.P / is ever a companion form because of
Theorem 2.

A companion form is said to be structured with respect to a class C of matrix
polynomials, if for every P 2 C , the associated companion pencil is also in C .
Thus we might have Hermitian companion forms, palindromic companion forms,
und so weiter. Structured companion forms derived from generalized Fiedler pencils
have appeared in a number of papers [6, 14, 20, 58–60, 83], for a variety of structure
classes, including Hermitian, T -palindromic, and T -alternating matrix polynomials.
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Here are some simple examples from those papers. Suppose

P.�/ D �5A5 C �4A4 C � � � C �A1 C A0

is a general n � n polynomial of grade 5. Then in [58] it is shown that the block-
tridiagonal pencil template

SP .�/ D

2
666664

�A1 C A0 �I

�I 0 I

I �A3 CA2 �I

�I 0 I

I �A5 C A4

3
777775
5n�5n

(12.19)

is a companion form for the set of all n � n matrix polynomials of grade 5. Note
that SP .�/ in (12.19) is a simplified version of an example that first appeared in
[6]. It is clear how SP .�/ can be extended to a companion form for any other odd
grade. Also noteworthy is that SP .�/ is not just a companion form, it is also both
a symmetric and a Hermitian companion form; i.e., if P is symmetric (Hermitian),
then SP will also be symmetric (Hermitian). Many more symmetric and Hermitian
companion forms can be constructed by the methods developed in [83].

Pre-multiplying SP by a certain diagonal ˙1 matrix (a strict equivalence) now
immediately produces a T -even companion form

EP .�/ D

2
666664

�A1 C A0 �I

��I 0 �I
�I ��A3 � A2 ��I

�I 0 I

I �A5 C A4

3
777775
5n�5n

;

as shown in [58]. Pre-multiplication of SP by Rk ˝ In (another strict equivalence)
reverses the order of the block rows, giving

PP .�/ D

2
666664

I �A5 C A4
�I 0 I

I �A3 CA2 �I

�I 0 I

�A1 C A0 �I

3
777775
5n�5n

;

which is a T -palindromic companion form [59]. Many more palindromic compan-
ion forms are constructed in [14] and [20], all for odd grade polynomials. Indeed,
all the known structured companion forms arising from Fiedler pencils are for odd
grade matrix polynomials.
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The lack of any Fiedler-based structured companion forms for even grade
polynomials is curious; is this just an oddity2 of Fiedler pencils, or is it a sign of
some intrinsic limitation on all pencils?

12.5.3 Existence: Leave It to Smith

“The first thing to do,” said Psmith, “is to ascertain that such a place as Clapham Common really
exists. One has heard of it, of course, but has its existence ever been proved? I think not.”

– P.G. Wodehouse, Psmith in the City [84]

Several phenomena now contribute to the suspicion that structured even grade
polynomials may be intrinsically “harder” to linearize (at least by a structured
companion form) than structured matrix polynomials of odd grade. Among these
are the plenitude of Fiedler-based structured companion forms for odd grade as
contrasted with the absence of any known for even grade; another is the presence of
“problematic eigenvalues” that block the existence of any structured linearization
in the ansatz spaces for certain even grade structured matrix polynomials. The
resolution of this issue was finally achieved by the detailed investigation of the
Smith forms of various types of structured matrix polynomials in the Smith form
trilogy [58–60], described at the end of Sect. 12.4.

A structured companion form for even grade would be able to simultaneously
provide a structured linearization for every structured polynomial of that even
grade. But the Smith form results of [58] and [59] show that the admissible
Jordan characteristics of even and odd grade polynomials in the palindromic (or
the alternating) structure class are not the same. Consequently, for each structure
class there are always structured polynomials of each even grade whose elementary
divisor structure is incompatible with that of every pencil in that structure class. This
elementary divisor incompatibility thus precludes the existence of any structured
companion form for any even grade, for either palindromic or alternating matrix
polynomials.

The existence or non-existence of Hermitian or symmetric companion forms for
even grades cannot be settled by a similar argument; for these structures there are
no comparable elementary divisor incompatibilities between even and odd grade.
Nonetheless, the impossibility of such structured companion forms for even grades
has recently been shown in [22]; the argument given there is based on minimal
index incompatibilities between even and odd grade structured polynomials that are
singular.

2Pun intended.3

3The previous footnote2 , and this footnote3 to that footnote2 , are here especially for Volker.
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The impossibility of any even grade structured companion form, for any of these
three most important structure classes, suggests that a reduction to a spectrally
equivalent quadratic matrix polynomial might be a more natural alternative to
linearization for even grade structured polynomials. This is one motivation to
investigate the possibility of structure-preserving quadratifications, as part of a
wider investigation of the properties of quadratic matrix polynomials [23, 54],
quadratifications more generally, and the development of algorithms that work
directly on a quadratic polynomial, without any intervening linearization. Some
initial work in this direction can be found in [44] for palindromic structure. From
a characterization of the possible elementary divisor and singular structures of
quadratic palindromic polynomials [24], it has been recently shown that every even
grade palindromic polynomial has a palindromic (strong) quadratification. Similar
results are also now known to hold for even grade alternating polynomials [24], and
for even grade Hermitian matrix polynomials [63].

12.6 Impact on Numerical Practice

In order to analyze the numerical properties of algorithms for the polynomial
eigenproblem, both left and right eigenvectors of a matrix polynomial P must be
considered. In this context, then, the polynomial eigenproblem is more properly
formulated as

P.�/x D 0; y�P.�/ D 0 ; (12.20)

where x ¤ 0 is a right eigenvector, and y ¤ 0 is a left eigenvector for P.�/. For
this analysis, it is also usually assumed that P is regular, which we do throughout
this section. The associated generalized eigenvalue problem

L.�/z D 0; w�L.�/ D 0 (12.21)

for a linearization L of P can now be solved using standard techniques and
readily available software. In particular, if the size of L is not very large, dense
transformation-based methods can be used to solve (12.21), such as the QZ algo-
rithm [72], or a structure-preserving algorithm when L is a structured linearization
[28, 47, 57, 65, 75, 79]. Krylov methods can be used for large sparse problems
[9, 64, 68, 70, 79]. Among the infinitely many linearizations L of P , we are
interested in those which preserve the structure, if any, and whose right and left
eigenvectors permit easy recovery of the corresponding eigenvectors of P . So all
the linearizations described in Sects. 12.3 and 12.5 are obvious candidates.

The introduction of these new structured and unstructured linearizations in the
last decade has led to not only the development of structure-preserving algorithms,
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but also the development of techniques to analyze the influence of the linearization
process on the accuracy and stability of the computed solution, so as to guide us in
our choice of linearization. To indicate the key idea we assume that P is expressed
in the monomial basis as in (12.1). Let x and y denote right and left eigenvectors
of P , and let z and w denote right and left eigenvectors of L, all corresponding to
a simple, nonzero, finite eigenvalue �. Eigenvalue condition numbers are given, in
the 2-norm, by the following expressions [78, Thm. 5]:

�P .�/ D
�Pk

iD0 j�ji kAik2
�kyk2kxk2

j�j jy�P 0.�/xj ; �L.�/ D
�j�jkXk2 C kY k2

�kwk2kzk2
j�j jw�L0.�/zj :

These condition numbers measure the sensitivity of the eigenvalue � of P and
L, respectively, to small perturbations of P and L measured in a normwise
relative fashion. Different linearizations of the same matrix polynomial can have
widely varying eigenvalue condition numbers. Unless the block structure of the
linearization is respected (and it is not by standard algorithms), the conditioning of
the larger linear problem can be worse than that of the original matrix polynomial,
since the class of admissible perturbations is larger. For example, eigenvalues that
are well-conditioned for P.�/ may be ill-conditioned forL.�/ [39, 41, 78]. Ideally,
when solving (12.20) via (12.21) we would like to have �P .�/ 
 �L.�/. Most
linearizations in Sects. 12.3 and 12.5 satisfy one-sided factorizations of the form

L.�/F.�/ D G.�/P.�/; E.�/L.�/ D P.�/H.�/; (12.22)

where G.�/;HT .�/; F.�/ and E.�/T are kn � n matrix functions. Assume that
F.�/ is of full rank in a neighborhood of a finite eigenvalue � of P and L, and
that y WD G.�/�w ¤ 0. Then it follows from (12.22) that z D F.�/x is a right
eigenvector of L, y is a left eigenvector of P , and w�L0.�/z D y�P 0.�/x (see [34,
Lemma 3.2]) so that

�L.�/

�P .�/
D j�jkXk2 C kY k2Pk

jD0 j�jj kAj k2
� kwk2kzk2

kyk2kxk2 : (12.23)

This expression can now be used to investigate the size of the ratio �L.�/=�P .�/ as
L varies, for fixed P , where the L-dependent terms are X , Y , w, and z. This is done
for example in [39] for pencils L 2 DL.P /, where minimization of the ratio overL
is considered.

Backward errors characterize the stability of a numerical method for solving a
problem by measuring how far the problem has to be perturbed for an approximate
solution to be an exact solution of the perturbed problem. Let .x; �/ be an
approximate right eigenpair for P.�/ obtained from an approximate right eigenpair
.z; �/ for L.�/ D �X C Y . The relative backward errors for .x; �/ and .z; �/ are
given in the 2-norm by
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�P .x; �/ D kP.�/xk2�Pk
iD0 j�i jkAik2


kxk2

; �L.z; �/ D kL.�/zk2
.j�jkXk2 C kY k2/ kzk2

:

(12.24)

There are analogous formulae for approximate left eigenpairs.
We would like the linearization L that we use to lead, after recovering an

approximate eigenpair of P from one of L, to a backward error for P of the same
order of magnitude as that for L. To relate backward errors for L and P we need to
assume that the pencil L satisfies a left-sided factorization as in the right hand-side
of (12.22), with E.�/ of full rank, and that x is recovered from z via x D H.�/z.
Then E.�/L.�/z D P.�/x so that

�P .x; �/

�L.z; �/
� j�jkXk2 C kY k2Pk

iD0 j�i jkAik2
� kE.�/k2kzk2

kxk2 : (12.25)

This bound, which largely separates the dependence on L, P , and � (in the first
term) from the dependence on E and z (in the second term), can then be analyzed
for a given linearization. This was done for Frobenius companion linearizations and
DL.P / linearizations in [37].

For Frobenius companion linearizations, a straightforward analysis of the ratio
(12.23) and the upper bound (12.25) shows that if kAik2 
 1 for i D 0; : : : ; k,
then �L.x/ 
 �P .�/ and the upper bound in (12.25) will be of order 1; this
suggests that scaling the polynomial eigenproblem to try to achieve this condition
before computing the eigenpairs via a Frobenius companion linearization could be
numerically advantageous. Fan, Lin, and Van Dooren [27] considered the following
scaling strategy for quadratics, which converts P.�/ D �2A2 C �A1 C A0 toeP.�/ D �2eA2 C �eA1 C eA0, where

� D ��; P.�/ı D �2.�2ıA2/C �.�ıA1/C ıA0 	 eP.�/;
and is dependent on two nonzero scalar parameters � and ı. They showed that when
A0 and A2 are nonzero, then taking � D pkA0k2=kA2k2 and ı D 2=.kA0k2 C
kA1k2�/ solves the problem of minimizing the maximum distance of the coefficient
matrix norms from 1:

min
�;ı

maxfkeA0k2 � 1; keA1k2 � 1; keA2k2 � 1g:

It is shown in [37] that with this choice of parameters and for not too heavily damped
quadratics, that is, kA1k22 <� kA0k2kA2k2, then �P 
 �L for all eigenvalues and
�P 
 �L for both left and right eigenpairs. Hence, with this scaling the linearization
process does not affect the eigenvalue condition numbers, and if the generalized
eigenvalue problem (12.21) is solved by a backward stable algorithm such as the
QZ algorithm, then the computed eigenpairs for P will have small backward errors.
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These ideas have been implemented in an algorithm for the complete solution of
quadratic eigenvalue problems by Hammarling, Munro, and Tisseur [36]. The case
of heavily damped quadratics has been addressed by Zeng and Su [86].

It is now well established that for structured polynomial eigenproblems, it
is important to use algorithms that preserve the structure of the problem when
computing its eigenvalues, so that the eigenvalue pairings are preserved. This
has lead to the development of a number of structure-preserving algorithms for
structured linearizations of structured eigenproblems [45, 47, 65, 68, 70, 75, 79],
as well as the derivation of structured backward errors and structured condition
numbers corresponding to structured perturbations [1–3, 11, 12].

12.7 Related Recent Developments

The linearization strategy for the polynomial eigenproblem continues to be actively
developed for more types of matrix polynomials; this strategy is even beginning to
be extended to other types of nonlinear eigenproblems.

In recent research on matrix polynomials, for example, a new theme has started
to attract increasing attention – finding simple, template-like ways to construct
linearizations when the polynomial

P.�/ D
kX
iD0

Ai�i .�/ (12.26)

is expressed in some non-standard basis f�i.�/g. Particularly important for numeri-
cal computation are the classical examples of such bases, e.g., those associated with
the names Chebyshev, Newton, Hermite, Lagrange, and Bernstein. It is tempting
to simply convert P.�/ in (12.26) to the standard basis, and then leverage the
existing body of knowledge about linearizations. However, it is important to avoid
reformulating P into the standard basis, since a change of basis has the potential
to introduce numerical errors not present in the original problem. Instead we
should look for templates that construct linearizations for P.�/ directly from the
coefficientsAi in (12.26), without any matrix additions, multiplications, or inverses.
This could be viewed as another kind of structure preservation, i.e., a preservation
of the polynomial basis.

Although there are precedents for doing this for scalar polynomials in [10],
and even earlier in [33], the first serious effort in this direction for matrix
polynomials was [5] and the earlier [17], where concrete templates for producing
strong linearizations were provided, one for each of several classical polynomial
bases, including Chebyshev, Newton, Lagrange, and Bernstein bases. This work
has been used in [26], as part of a Chebyshev interpolation method for solving
non-polynomial nonlinear eigenproblems. Additional examples for the Hermite and
Lagrange bases have been developed and used in [81, 82]. More systematic methods
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for constructing large families of template-like linearizations for matrix polynomials
expressed in non-standard bases can be found in the very recent papers [62, 74, 80].

The linearization strategy has been so effective for polynomial eigenproblems
that researchers have started to consider ways to extend this strategy to other
nonlinear eigenproblems, especially to rational eigenproblems P.�/x D 0, where
the scalar �i.�/ functions in P.�/ as in (12.26) are now rational functions of �
rather than just polynomials. Significant advances in this direction have been made
in [77], and more recently in [35].

12.8 Concluding Remarks

Wer wirklich Neues erdenken will, muss hin und wieder ein wenig spinnen.

– Quote on Room MA 466, TU Berlin.

We hope this review has shown how the discovery of new families of linearizations
in the last decade has propelled research on polynomial eigenproblems forward,
with significant advances made in the development of theory and algorithms for
structured problems. Volker has contributed much to this effort, as a researcher
and, equally importantly, as a stimulating mentor. There is still more waiting to
be discovered, and more fun to be had in uncovering it. As Volker taught us to say
to one another, “Es gibt viel zu tun, fangt schon mal an!”
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74. Perović, V., Mackey, D.S.: Linearizations of matrix polynomials in Newton basis. In

preparation (2014)
75. Schröder, C.: Palindromic and Even Eigenvalue Problems – Analysis and Numerical Methods.

PhD thesis, Technische Universität Berlin (2008)
76. Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans.

R. Soc. Lond. 151, 293–326 (1861)
77. Su, Y., Bai, Z.: Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal.

Appl. 32, 201–216 (2011)
78. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra

Appl. 309, 339–361 (2000)
79. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286

(2001)
80. Townsend, A., Noferini, V., Nakatsukasa, Y.: Vector spaces of linearizations of matrix

polynomials: a bivariate polynomial approach. Submitted for publication. Available as
MIMS EPrint 2012.118. Manchester Institute for Mathematical Sciences, The University of
Manchester (2012)

81. Van Beeumen, R., Meerbergen, K., Michiels, W.: A rational Krylov method based on Hermite
interpolation for nonlinear eigenvalue problems. SIAM. J. Sci. Comput. 35, 327–350 (2013)

82. Van Beeumen, R., Meerbergen, K., Michiels, W.: Linearization of Lagrange and Hermite
interpolating matrix polynomials. IMA J. Numer. Anal. (2014). doi: 10.1093/imanum/dru019
(First published online on 7 May 2014)

http://dx.doi.org/10.1016/j.laa.2014.05.013
http://dx.doi.org/10.1016/j.laa.2014.05.013


348 D.S. Mackey et al.

83. Vologiannidis, S., Antoniou, E.N.: A permuted factors approach for the linearization of
polynomial matrices. Math. Control Signals Syst. 22, 317–342 (2011)

84. Wodehouse, P.G.: Psmith in the City. Adam & Charles Black, London (1910)
85. Zaglmayr, S.: Eigenvalue problems in SAW-filter simulations. Diplomarbeit, Johannes Kepler

Universität Linz (2002)
86. Zeng, L., Su, Y.: A backward stable algorithm for quadratic eigenvalue problems. SIAM J.

Matrix Anal. Appl. 35(2), 499–516 (2014)



Chapter 13
Stability in Matrix Analysis Problems

André C. M. Ran and Leiba Rodman�

Abstract Let there be given a class of matrices A , and for each X 2 A , a
set G .X/. The following two broadly formulated problems are addressed: 1. An
element Y0 2 G .X0/ will be called stable with respect to A and the collection
fG .X/gX2A , if for every X 2 A which is sufficiently close to X0 there exists an
element Y 2 G .X/ that is as close to Y0 as we wish. Give criteria for existence of
a stable Y0, and describe all of them. 2. Fix ˛ � 1. An element Y0 2 G .X0/ will
be called ˛-stable with respect to A and the collection fG .X/gX2A , if for every
X 2 A which is sufficiently close to X0 there exists an element Y 2 G .X/ such
that the distance between Y and Y0 is bounded above by a constant times the distance
between X and X0 raised to the power 1=˛ where the constant does not depend on
X . Give criteria for existence of an ˛-stable Y0, and describe all of them. We present
an overview of several basic results and literature guide concerning various stability
notions, including the concept of conditional stability, as well as prove several new
results and state open problems of interest. Large part of the work leading to this
chapter was done while the second author visited Vrije Universiteit, Amsterdam,
whose hospitality is gratefully acknowledged.

13.1 Introduction

Many problems in applied mathematics, numerical analysis, engineering, and
science require for their solutions that certain quantities associated with given
matrices be computed. (All matrices in this chapter are assumed to be real, complex,
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or quaternion.) For example, these quantities may be solutions of a matrix equation
with specified additional properties, invariant subspaces, Cholesky factorizations
of positive semidefinite matrices, or the set of singular values. Matrix equations
and inequalities are of particular interest in this context. The literature on this
subject is voluminous, and we mention only the books [1, 10, 26, 33, 54] on matrix
equations and inequalities that arise in linear control systems and other applications.
In particular, there are many important contributions by V. Mehrmann and his co-
authors, see in particular [16, 28, 33].

From the point of view of computation or approximation of a solution of the prob-
lem at hand it is therefore important to know whether or not the required quantities
can in principle be computed more or less accurately; for example, is backward error
analysis applicable? This and related problems in matrix computations are addressed
by matrix perturbation theory of which there is a voluminous literature; we mention
only the books [21, 25, 56]; the book [25] by V. Mehrmann and co-authors has been
a source of inspiration for some of the lines of investigation reported on in this
chapter.

In 2006 the authors started a long term collaboration with V. Mehrmann on the
topic of perturbation analysis of structured matrices [28–32]. In this chapter, we will
not review the theory of rank one perturbations as this is expounded in Chap. 8 by
Bora and Karow. Instead we will focus on the theme investigated in the paper [28],
where several stability concepts for Lagrangian subspaces of symplectic matrices
were considered. This research was in line with many other earlier research papers
by the authors of this chapter, in particular, with the expository paper [41] and it is
the aim of this chapter to give an overview over these stability concepts in various
areas in matrix analysis.

We will not review here many well known and widely used results in matrix
perturbation theory, and concentrate instead on the less known and, perhaps, new
aspects of the theory. In particular, we focus on some developments that stem
from the following general problem. Can one represent the computed solution of
the problem as the exact solution of a nearby problem? If this is possible, this is
known as backward stability, and as strong backward stability (if the computation
involved is done in a structure preserving way). These are key concepts in Numerical
Analysis. Among much important work by V. Mehrmann and his co-authors in
that direction we mention design of structure-preserving algorithms for Hamiltonian
matrices [6, 7, 12].

Thus, studies of backward stability and strong backward stability involve approx-
imation of the required quantities of a matrix by the corresponding quantities of
matrices that are perturbations (often restricted to a certain class of matrices) of the
given matrix. To formalize this notion, the following metaproblem was formulated
in [41]:

Metaproblem 1 Let there be given a class of matrices A , and for each X 2 A ,
a set of mathematical quantities G .X/ is given. An element Y0 2 G .X0/ will be
called stable, or robust, with respect to A and the collection fG .X/gX2A , if for
every X 2 A which is sufficiently close to X0 there exists an element Y 2 G .X/
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that is as close to Y0 as we wish. Give criteria for existence of a stable Y0, and
describe all of them.

Note that we do not exclude the case when G .X/ is empty for some X 2 A .
The statement of Metaproblem 1 presumes a topology on A and on [X2A G .X/.

In all cases, these will be natural, or standard, topologies. For example, if A is a
subset of n�n matrices with complex entries, the topology induced by the operator
norm will be assumed on A . If [X2AF .X/ is a set of subspaces in the real or
complex finite dimensional vector space, then the topology induced by the gap
metric will be given on [X2AF .X/ (see [18, 24] and references given there for
more details, as well as Sect. 13.6).

If, under the notation of Metaproblem 1, G .X/ is empty for some X 2 A which
are arbitrarily close to X0, then Y0 is not stable. This simple observation allows us
to rule out stability in some situations.

The literature concerning various aspects of Metaproblem 1, and its applications
and connections, is extensive. The research in this direction continues to generate
interest among researchers. In particular, we mention the expository paper [41]
where many results in this direction, often with full proofs, are exposed.

Assuming that Y0 is stable, one might be interested in the degree of stability,
in other words, comparison of magnitudes between approximation of Y0 by Y and
approximation of X0 by X . This approach leads to a more refined scale of stability
properties, as follows.

Metaproblem 2 Let A , X 2 A , and G .X/ be as in Metaproblem 1. Fix ˛ � 1.
An element Y0 2 G .X0/ will be called ˛-stable with respect to A and the collection
fG .X/gX2A , if for every X 2 A which is sufficiently close to X0 there exists an
element Y 2 G .X/ such that the distance between Y and Y0 is bounded above by

M � .distance between X and X0/1=˛; (13.1)

where the positive constantM does not depend on X . Give criteria for existence of
an ˛-stable Y0, and describe all of them.

Again, Metaproblem 2 presumes that some metric is introduced in the sets A
and [X2A G .X/. These metrics will be the standard ones.

Clearly, if Y0 is ˛-stable, then Y0 is ˇ-stable for every ˇ � ˛. Also, if Y0 is
˛-stable for some ˛ � 1, then Y0 is stable.

The particular case of 1-stability is known as Lipschitz stability or well-posedness
(in the terminology of [25]).

A related, and somewhat more nuanced, notion of stability has to do with
conditional stability. Under the hypotheses and notation of Metaproblem 1, we say
that Y0 2 G .X0/ is conditionally stable, with respect to A and the collection
fG .X/gX2A , if for every X 2 A which is sufficiently close to X0 and such that
G .X/ ¤ ; there exists an element Y 2 G .X/ that is as close to Y0 as we wish. Thus,
a provision is made in the concept of conditional stability to the effect that only
those X with G .X/ ¤ ; are being considered. Analogously, we say Y0 2 G .X0/
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is conditionally ˛-stable, or conditionally Lipschitz stable if ˛ D 1, with respect to
A and the collection fG .X/gX2A , if for every X 2 A which is sufficiently close
to X0 and such that G .X/ ¤ ; there exists an element Y 2 G .X/ such that the
distance between Y and Y0 is bounded above by (13.1).

In this chapter we focus mostly on Metaproblem 2 as well as conditional ˛-
stability. We present an overview of several basic results and a literature guide
concerning various stability notions, as well as prove some new results and state
open problems.

Of particular interest are estimates of the constant M in Metaproblem 2, as
well as in the definition of conditional ˛-stability. We call M a constant of ˛-
stability, or a constant of conditional ˛-stability etc. as the case may be. For many
cases of Lipschitz stability, estimates of the constant of Lipschitz stability, are well
known (see, e.g., [8, 56]). For canonical bases of selfadjoint matrices with respect to
indefinite inner products and for Hamiltonian matrices Lipschitz stability, including
estimation of the constant of Lipschitz stability, was established in [47]. Note that
in the context of [47], see also [5], the consideration is restricted to those selfadjoint
(or Hamiltonian) matrices that have a fixed Jordan structure.

Other related notions of stability in matrix analysis problems have been studied
in the literature, such as strong stability and strong ˛-stability. We do not mention
these notions here, and refer the reader to the relevant papers, e.g., [45, 51].

Besides the introduction and conclusions, this chapter consists of seven sections.
In Sect. 13.2 linear equations Ax D b are considered, and stability, Lipschitz
stability and conditional stability of the solution x are discussed. In Sect. 13.3 roots
of matrices are considered. A characterization of stable pth roots for complex
matrices is given. Section 13.4 is concerned with generalized inverses. Among
other things it is shown that if a matrix is invertible at least from one side, then
every generalized inverse is Lipschitz stable, and otherwise none of its generalized
inverses is stable. In Sect. 13.5 matrix decompositions are considered, in particular
the Cholesky decomposition for positive semidefinite matrices, and the singular
value decomposition. Sections 13.6 and 13.7 discuss stability of invariant subspaces
of matrices. Section 13.6 treats the general case, while in Sect. 13.7 the matrices are
assumed to have special structure with respect to an indefinite inner product, and
the subspaces considered are either maximal nonnegative or maximal neutral in the
indefinite inner product. Applications to algebraic Riccati equations are discussed
in this section as well. Finally, in Sect. 13.8 certain classes of nonlinear matrix
equations are studied.

In the sequel, F stands for the real field R, the complex field C, or the skew field
of quaternions H.

13.2 Linear Equations

We start with linear equations. Basic linear algebra yields the following results.
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Theorem 1 The following statements are equivalent for a solution x 2 Fn of a
linear system

Ax D b; A 2 Fm�n; b 2 Fm: (13.2)

(1) x is stable;
(2) x is Lipschitz stable;
(3) The matrix A is right invertible.

To put Theorem 1 in the context of Metaproblem 2, let A be the set ofm�.nC1/
matrices partitioned as ŒA b�, where A is m � n and b is m � 1, and for every
X D ŒA b� 2 A , let G .X/ be the solution set (possibly empty) of Ax D b.

Proof The implication (2) ) (1) is trivial.
Proof of (3) ) (2): Using the rank decomposition forA, we may assume without

loss of generality that A D ŒIm 0�. Then the solutions of (13.2) have the form

x D
�

x1
x2

�
with x1 D b. Consider nearby equations

Qx D Qb; QA D ŒB C �; Qx D
� Qx1
Qx2
�
; (13.3)

where B and C are close to I and 0, respectively. Clearly,

Qx1 D B�1. Qb � C Qx2/; (13.4)

and taking Qx2 D x2, we see that for any solution x of (13.2), a solution Qx of (13.3)
exists such that

kQx � xk � M.k QA� Ak C k Qb � bk/;

where the constantM depends on A;b and x only. This proves (13.2).
It remains to prove (1) ) (3). Suppose A is not right invertible. We shall prove

that (13.2) has no stable solutions. We may assume without loss of generality that

A D
�
A1
0

�
, where 0 stands for the zero 1 � n row. If x is a solution of (13.2), then

necessarily the bottom component of b is zero. Replacing this bottom component
by � ¤ 0, we obtain a nearby linear system which is inconsistent, hence x is not
stable. ut
Theorem 2 The following statements are equivalent for a solution x 2 Fn of a
linear system (13.2):

(1) x is conditionally stable;
(2) x is conditionally Lipschitz stable;
(3) The matrix A is invertible at least from one side.
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Proof The part (2) ) (1) is trivial. To prove (3) ) (2), in view of Theorem 1 and

the proof of (3) ) (1) there, we may assume that A D
�
In
0

�
. Then the solutions of

every nearby consistent system

QAQx D Qb; QA D
�
B

C

�
; (13.5)

have the form

Qx D B�1 � fthe first n components of Qbg;

and the conditional stability of x follows.
Finally, we prove that if A is not invertible from either side, then no solution of

(13.2) is conditionally stable. We assume that

A D
�
Ip 0

0 0

�
; p < minfm; ng:

Let x be a solution of (13.2). For every � ¤ close to zero, consider the following
nearby equation:

2
4 Ip 0 0

0 � 0

0 0 0.m�p�1/�.n�p�1/

3
5 Qx D Qb; (13.6)

where Qb is obtained from b by adding q� to its .p C 1/th component; here q 2 F
is any fixed number different from the .p C 1/th component of x. Then (13.6) is
consistent, but the .p C 1/th component of any solution Qx is not close to the the
.p C 1/th component of x. ut

It is not difficult to estimate the constants of Lipschitz stability and conditional
Lipschitz stability in Theorems 1 and 2. Indeed, assuming A is one-sided invertible,
let U and V be invertible matrices such that UAV D QA, where QA D ŒI 0� or

QA D
�
I

0

�
. Clearly, x is a solution of (13.2) if and only if Qx WD V �1x is a solution of

QAQx D Qb; (13.7)

where Qb D Ub. Let QQ be a Lipschitz constant of (13.7), in other words,

kQx0 � Qxk � QQ.k QA0 � QAk C kQb0 � Qbk/
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for some solution Qx0 of any system QA0 Qx0 D Qb0
which is sufficiently close to (13.7).

Letting

A0 D U�1 QAV �1; b0 D U�1 Qb0
; x0 D V Qx0;

we have

kx � x0k � kV k � kQx � Qx0k � kV k � QQ.k QA0 � QAk C kQb0 � Qbk/
� kV k � QQ.kU k kV k kA �A0k C kU k kb � b0k/;

and so

Q WD kV k QQ maxfkU kkV k; kU kg

can be taken as a Lipschitz constant for (13.2). In turn, to estimate QQ, we consider

two cases: (1) A D ŒIm 0�; (2) A D
�
In

0

�
. In the second case, if x0 is the solution

of a system A0x0 D b0 which is sufficiently close to (13.2), then

kx � x0k D kbn � B�1b0
nk;

where B is the top n � n submatrix of A0 and yn stands for the vector formed by
the top n components of y, for y D b or y D b0. Now fix ˇ > 1; for A0 sufficiently
close to A so that kI � B�1k � ˇkA0 �Ak and kB�1k � ˇ, we have

kbn � B�1b0
nk � kbn � B�1bnk C kB�1k � kbn � b0

nk
� ˇkbnk � kA0 � Ak C kB�1k � kbn � b0

nk;

so we can take QQ D ˇ maxfkbk; 1g. In the case (13.1), using notation (13.3) and
formula (13.4), we have

kx � Qxk D kb � B�1. Qb � Cx2/k;

and arguing similarly to the case (13.2), we see that we can take

QQ D ˇ .maxfkbk; 1g C kxk/:

13.3 Matrix Roots

For a fixed integer p � 2, consider the equation Y p D X0, where X0 2 Fn�n is
a given n � n matrix over F, and Y 2 Fn�n is a matrix to be found. We say that a
solution Y0 of Y p D X0 is stable if for every � > 0 there is ı > 0 such that every
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equation Y p D X has a solution Y for which kY �Y0k < � provided kX�X0k < ı.
We say that a solution Y0 of Y p D X0 is ˛-stable if there is ı > 0 with the property
that every equation Y p D X has a solution Y such that

kY � Y0k � M kX �X0k1=˛;

provided kX � X0k < ı, where M > 0 is independent of X .
Recall that a pth root Y ofX 2 Fn�n is called a primary root if Y is a polynomial

ofX with coefficients in F (if F D C or F D R) or with real coefficients (if F D H).
Note (see, for example, [22, 23], or [27]) that in the case F D C, a pth root Y of an
invertible matrix X is a primary root if and only if

Y D 1

2�i

Z
	

z1=p.zI �X/�1d z; (13.8)

for a suitable simple contour 	 in the complex plane that surrounds the eigenvalues
of X , where z1=p is any branch of the pth root function which is analytic on and
inside 	 . (Note that 	 need not enclose a connected set.)

Conjecture 1 Assume X0 2 Fn�n is invertible. Then the following statements are
equivalent for a solution Y0 2 Fn�n of Y p D X0 2 Fn�n:

(1) Y0 is stable;
(2) Y0 is conditionally stable;
(3) Y0 is Lipschitz stable, i.e., 1-stable;
(4) Y0 is conditionally Lipschitz stable;
(5) Y0 is a primary pth root of X0.

Note that the implications (3) ) (1); (4) ) (2); (3) ) (4); and (1) , (2) are
trivial (since every invertible complex matrix has a p-th root, the stability is the same
as conditional stability in Conjecture 1). In the complex case, (5) ) (3) follows from
formula (13.8).

Conjecture 1 is false if the invertibility hypothesis is removed: The pth root of
0 2 C is p-stable but is not Lipschitz stable (if p > 1).

For the case where F D C Conjecture 1 holds.

Theorem 3 Assume X0 2 Cn�n is invertible. Then the five statements in Conjec-
ture 1 are equivalent for a solution Y0 2 Cn�n of Y p D X0 2 Cn�n.

Proof Because of the remarks above it remains to show that (1) ) (5). Assume a
nonprimary root is stable. Without loss of generality we may assume that X0 is in
Jordan normal form

X0 D
mM
jD1

kjM
iD1

Jnj;i .�j /;
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where Jp.�/ stands for the p � p Jordan block with eigenvalue �. Since X0 has
a nonprimary root, there are at least two Jordan blocks corresponding to some
eigenvalue, so there is at least one kj > 1. Assume that the eigenvalues and
Jordan blocks are ordered in such a way that k1; � � � ; kl are bigger than one, and
klC1; � � � ; km are one (when l < m).

Now consider a sequence of perturbations Xn that “glue together” the Jordan
blocks by putting small (going to zero) entries in the usual places that one needs to
make the matrix nonderogatory:

Xn D X0 C
mM
jD1

1

n
Zj

where for j D 1; � � � ; l , the matrix Zj has ones in the positions

.nj;1; nj;1 C 1/; � � � .nj;1 C � � � C nj;kj�1; nj;1 C � � � C nj;kj�1 C 1/;

and zeros elsewhere, and Zj is the one by one zero matrix for j D l C 1; � � � ; m.
Then Xn is nonderogatory and �.Xn/ D �.X/ for all n; here and elsewhere in the
chapter, we denote by �.A/ the set of eigenvalues of a square size matrix A.

For those perturbationsXn there are only primary roots. So, assuming stability of
a nonprimary root Y of X0 for each n there is a contour (a-priori also depending on
n) and one of the pth root branches, say fj.n/;n, where fj;n.z/ D jzj1=p exp.ij�=p/
for j D 1; 2; : : : ; p, so that the root Yn D 1

2�i

R
	n
fj.n/;n.zI � Xn/

�1d z converges
to Y . Now first observe that we may fix the contour independent of n (as the integral
is contour-independent and the spectra of all Xn’s are the same as the spectrum of
X ). Next, because there is only a finite number of choices for the branch of the
pth root, there is at least one branch that occurs infinitely often for the Yn. Taking
a subsequence if necessary, we may assume then that the branch fj.n/;n is actually
independent of n. But then Yn converges to a primary root of X , which contradicts
the assumption that Y is a nonprimary root. ut

Characterizations of stability and Lipschitz stability of selfadjoint square roots
in the context of indefinite inner products on Rn and on Cn are given in [57]. The
results there are motivated by a study of polar decompositions in indefinite inner
product spaces, see e.g., [58] and the references quoted there.

Let us call a matrixA 2 Fn�n almost invertible if it is either invertible or singular
with zero being a simple eigenvalue (algebraic multiplicity one). Clearly, every
almost invertible complex or quaternion matrix haspth roots for every integerp � 2

(for quaternion matrices this follows for example from the Jordan form which may
be chosen complex). Also, the set of almost invertible matrices is open. Thus, for
the cases F D C or F D H, a concept of stability of pth roots and the corresponding
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concept of conditional stability are the same for almost invertible matrices. On the
other hand, for other matrices we have the following result:

Proposition 1 Assume thatA 2 Fn�n is not almost invertible. Then for every � > 0
there exists B� 2 Fn�n such that B� has no pth roots for any integer p � 2 and
kA � B�k < �.
Proof We use the fact that a single Jordan block with eigenvalue zero has no pth
roots for p � 2. We may assume that A is in a Jordan form, and let

A D Jk1.0/˚ � � � ˚ Jks .0/˚A0;

where A0 is invertible and Jk.0/ is the k � k nilpotent Jordan block. Replacing the
zeros in the .k1; k1 C 1/; � � � ; .k1 C � � � C ks�1; k1 C � � � C ks�1 C 1/ positions by �,
we obtain B� with the desired properties. (If s D 1, then we take B� D A.) ut
Corollary 1 If A 2 Fn�n is not almost invertible, then none of its pth roots (if they
exist) are stable.

The next example considers nonprimary roots.

Example 1 Let X0 D I2, and let Y0 D
�
1 0

0 �1
�

. Then Y0 is a nonprimary square

root of X0. Consider the following perturbation of X0: X.�/ D
�
1C � �

� 1C �

�
,

where � ¤ 0 is close to zero. Then there are no quaternion square roots of X.�/
which are close to Y0. Indeed, the eigenvalues of X.�/ are 1 (with eigenvector�
1

�1
�

) and 1C 2� (with eigenvector

�
1

1

�
). Hence all four quaternion square roots

of X.�/ are primary and given by

ı1

�
1

�1
� �
1 �1 �C ı2

p
1C 2�

�
1

1

� �
1 1

�
; ı1; ı2 2 f1;�1g: (13.9)

This follows from a general statement: If A 2 Fn�n is positive semidefinite
with distinct eigenvalues �1; : : : ; �n and corresponding normalized eigenvectors
x1; : : : ; xn 2 Fn, then all square roots of A are hermitian and have the form

nX
jD1

ıj

q
�jxj x

�
j ; ıj 2 f1;�1g:

None of (13.9) is close to Y0.

For primary pth roots of invertible complex matrices, it is easy to estimate the
constants of Lipschitz stability. Indeed, if X 2 Cn�n is invertible and Y is a primary
pth root given by (13.8), then for any X 0 2 Cn�n sufficiently close to X , the pth
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primary root Y 0 of X 0 given by (13.8) (with X replaced by X 0) satisfies

kY 0 � Y k � 1

2�
� .max

z2	 jzj/1=p � .length of 	 / � ˇM2; (13.10)

where ˇ > 1 is any fixed number, and

M WD max
z2	 k.zI �X/�1k:

To obtain (13.10), use the formulas

.zI � Y 0/�1 � .zI � Y /�1 D .zI � Y 0/�1.Y 0 � Y /.zI � Y /�1;

max
z2	 k.zI � X 0/�1k � ˇmax

z2	 k.zI �X/�1k;

and the standard upper bound for integrals.

13.4 Generalized Inverses

We consider in this section stability of generalized inverses. Recall that Y 2 Fn�m
is said to be a generalized inverse of X 2 Fm�n if the equalities YXY D Y and
XYX D X hold true. Letting A D Fm�n (for a fixed m and n) and G .X/ the
set of all generalized inverses of X 2 A , we obtain various notions of stability of
generalized inverses as in Metaproblems 1 and 2. Note that since G .X/ is not empty
for everyX , the notion of conditional stability here is the same as the corresponding
notion of stability.

Theorem 4 Assume X 2 Fm�n is invertible at least from one side. Then every
generalized inverse (in this case, one-sided inverse) of X is Lipschitz stable.
Conversely, if X 2 Fm�n is not one-sided invertible from neither side, then none
of its generalized inverses is stable.

Proof The direct statement follows from the well known results on perturbation
analysis of one-sided inverses (see, e.g., [55]).

To prove the converse statement, we can assume without loss of generality that

X D
�
Ip 0

0 0

�
; p < minfm; ng: (13.11)

Say, m � p � n � p. Every generalized inverse Y of X has the form (partitioned
conformably with (13.11))

Y D
�
I B

C CB

�
; (13.12)
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where B 2 Fp�.m�p/ and C 2 F.n�p/�p are arbitrary matrices. Fix Y of the form
(13.12). We shall prove that Y is not a stable generalized inverse of X . Replacing
X and Y with

�
I B

0 I

�
X

�
I 0

C I

�
D X

and

�
I 0

�C I

�
Y

�
I �B
0 I

�
D
�
I 0

0 0

�

respectively, we may assume that B D 0 and C D 0, i.e., Y D X . Consider the
following matrix:

X.�/ D
�
Ip 0 0

0 �Im�p 0

�
;

where � ¤ 0 is close to zero. Then the right inverses of X.�/ tend to infinity as
� ! 0, hence the generalized inverse Y of X is not stable. ut

The Moore-Penrose inverse of X 2 Fm�n is the unique (for a given X ) matrix
Y 2 Fn�m that satisfies the following four conditions:

(a) XYX D X ;
(b) YXY D Y ;
(c) YX is an orthogonal projection;
(d) XY is an orthogonal projection.

Theorem 5 AssumeX 2 Fm�n is invertible at least from one side. Then the Moore-
Penrose inverse of X is Lipschitz stable. Conversely, if X 2 Fm�n is not one-sided
invertible from neither side, then none of its generalized inverses is stable.

Proof Using the singular value decomposition (valid for quaternion matrices as
well), we can assume that X is a diagonal matrix X D diag .d1; : : : ; dp/, where
p D minfm; ng and dj > 0 for j D 1; 2; : : : ; r and dj D 0 for j > r ; here
r D rankX . Then the converse statement follows by arguments analogous to those
in the proof of the converse part of Theorem 4. The direct statement follows (in
the real and complex cases) from a formula for the Moore-Penrose inverse which
is valid as long as the rank of the matrix X is constant [55]. The quaternion case
is easily reduced to the real or complex case by using the standard real or complex
matrix representations of quaternion matrices (see [53, Sections 3.3 and 3.4], for
example). ut

We show that, for the case of Lipschitz stability of the Moore-Penrose inverse of
X , a constant of Lipschitz stability can be chosen any number larger than

s�1
r C s1s

�4
r .2s1 C 1/ (13.13)
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where sr > 0 and s1 are the smallest and the largest singular values of X ,
respectively. (Compare also Theorem 3.3 in [55].) To verify this statement, in view
of Theorem 5, and using the singular value decomposition of X , without loss of
generality we may assume that

X D ŒD 0� or X D
�
D

0

�
; D D diag .s1; : : : ; sr /;

where s1 � s2 � � � � � sr > 0. Indeed, if X 0 is close to X , then the Moore-Penrose
inverse Y 0 of X 0 is given by the formula

Y 0 D .X 0/�.X 0.X 0/�/�1 or Y 0 D ..X 0/�X 0/�1.X 0/�; (13.14)

as the case may be (see [11], for example). Say, X D
�
D

0

�
(if X D ŒD 0�, the

proof is analogous, or else apply the result forX� rather thanX .) Then partitionX 0

accordingly: X 0 D
�
D0
E 0
�

, where D0 is close to D and E 0 is close to zero. Now,

(13.14) gives

Y 0 D ..D0/�D0 C .E 0/�E 0/�1Œ.D0/� .E 0/��:

So, for Y the Moore-Penrose inverse of X , we have

kY � Y 0k D k..D0/�D0 C .E 0/�E 0/�1.X 0/� � .D�D/�1X�k
� k..D0/�D0 C .E 0/�E 0/�1k k.X 0/� � X�k
C kXk k..D0/�D0 C .E 0/�E 0/�1 � .D�D/�1k: (13.15)

Using the formulas (for X 0 sufficiently close to X ) kXk D s1,

k..D0/�D0 C .E 0/�E 0/�1k � ˇk.D�D/�1k � ˇs�2
r ;

k..D0/�D0 C .E0/�E0/� .D�D/k � k.D0/�.D0 �D/C ..D0/� �D�/Dk C kE0k
� ˇkXk kX 0 �Xk C k.X 0/� � X�k kXk C kX 0 � Xk
� .ˇkXk C kXk C 1/kX 0 �Xk
D ..ˇ C 1/s1 C 1/ kX 0 � Xk;

and

k..D0/�D0 C .E 0/�E 0/�1 � .D�D/�1k � k..D0/�D0 C .E 0/�E 0/�1k
� k.D0/�D0 C .E 0/�E 0 �D�Dkk.D�D/�1k

� .ˇs�2
r � ..ˇ C 1/s1 C 1/ � s�2

r / � kX 0 �Xk;
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(13.15) yields

kY � Y 0k � .ˇs�1
r C s1ˇs

�4
r ..ˇ C 1/s1 C 1// � kX 0 �Xk;

and (13.13) follows.

Open problem 1 Characterize stability for other classes of generalized inverses,
for example those that satisfy some, but perhaps not all, conditions (a)–(d) above,
and find constants of Lipschitz stability for one-sided inverses which are not Moore-
Penrose.

13.5 Matrix Decompositions

Many matrix decompositions have stability properties, under suitable hypotheses.
We present in this section several results of this nature.

It is well-known that every positive semidefinite n�n matrix A with entries in F
admits a factorization

A D R�R; (13.16)

where R is an upper triangular n � n matrix with entries in F and such that the
diagonal entries of R are all real nonnegative. Such factorizations will be called
Cholesky decompositions. Note that a Cholesky decomposition of a given positive
semidefinite matrix is unique if A is positive definite, but in general it is not unique.

A criterion for uniqueness of Cholesky decompositions will be given. For a
positive semidefinite n � n matrix A let ˛j .A/ be the rank of the j � j upper
left block of A; j D 1; : : : ; n.

Theorems 6 and 7 below were proved in [41] for the real and complex cases.
In the quaternion case the proof is essentially the same.

Theorem 6 A Cholesky decomposition (13.16) of a positive semidefinite A is
unique if and only if either A is invertible or

˛j0.A/ D ˛j0C1.A/ D � � � D ˛n.A/;

where j0 is the smallest index such that ˛j0.A/ < j0.

A Cholesky decomposition (13.16) is called stable if for every " > 0 there
is a ı > 0 such that kA � Bk < ı and B positive semidefinite with entries
in F implies the existence of a Cholesky decomposition B D S�S such that
kS � Rk < "; (13.16) is called ˛-stable if there is a positive constant K such
that every positive semidefinite B (with entries in F) sufficiently close to A admits
a Cholesky decompositionB D S�S in which kS �Rk < KkB �Ak 1

˛ . In the case
of 1-stability, we simply say that the Cholesky decomposition is Lipschitz stable.
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Theorem 7 (i) A Cholesky decomposition of A 2 Fn�n is Lipschitz stable if and
only if A is positive definite.

(ii) A Cholesky decomposition of A is 2-stable if and only if it is unique, i.e., the
conditions of Theorem 6 are satisfied.

(iii) In all other cases, no Cholesky decomposition of A is stable.

Open problem 2 Provide estimates for Lipschitz constants in Theorem 7.

Next, we consider singular value decompositions. In what follows, we denote by
jAj 2 Fn�n the unique positive semidefinite square root of A�A, where A 2 Fm�n.
Recall that a decomposition A D UDV is called a singular value decomposition of
a matrix A 2 Fm�n if U 2 Fm�m and V 2 Fn�n are unitary (real orthogonal in
the real case) and D is a positive semidefinite diagonal matrix with the diagonal
entries ordered in nonincreasing order. Obviously, such a decomposition is not
unique: the columns of U and of V � form orthonormal bases of eigenvectors of
jA�j and jAj, respectively, which allows for considerable freedom. Note also that
the singular values s1.A/ � � � � � sminfm;ng.A/ of A, i.e., the leading minfm; ng
eigenvalues of jAj, or what is the same, of jA�j, are always well-behaved with
respect to perturbations:

max
˚jsj .A/� sj .B/j W 1 � j � minfm; ng� � kA � Bk; 8 A;B 2 Fm�n:

(13.17)

(This fact is well-known, see, e.g., p. 78 in [8], where a proof is given for the
complex case. The proof is essentially the same in the quaternion case.)

Lemma 1 Let A 2 Fm�n, where m � n. If jAj has n distinct eigenvalues, then
every orthonormal eigenbasis of jAj is Lipschitz stable with respect to A; in other
words, if f1; : : : ; fn is an orthonormal basis of F n�1 consisting of eigenvectors of
jAj, then there exists a constant K > 0 such that for every B 2 Fm�n sufficiently
close to A there exists an orthonormal basis g1; : : : ; gn of eigenvectors of jBj such
that kfj � gj k � KkA� Bk.

If jAj has fewer than n distinct eigenvalues, then no orthonormal eigenbasis of
jAj is stable with respect to A.

In the case m D n and F the real or complex field, Lemma 1 was proved in [41].

Proof The direct statement follows as in the proof of Lemma 4.7 of [41]: it is a direct
consequence of well-known results on the perturbation of eigenspaces of Hermitian
matrices combined with the inequality

kjAj � jBjk2 � p
2kA � Bk2:

Conversely, assume that jAj has fewer than n distinct eigenvalues. Then the
singular value decomposition of A is given by A D U diag.sj /njD1V with si D siC1
for some i . Assume first that all other singular values are different.
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First consider perturbations

A."/ D U diag.s1; � � � ; si�1; si C "; siC1; � � � ; sn/V:

Letting " ! 0 we see that the only orthonormal basis of eigenvectors of jAj that is
possibly stable is given by the columns of V . Next, consider perturbations

B."/ D U diag.si ; � � � ; si�1;
�
si "

" si

�
; siC2; � � � ; sn/V

D U.Ii�1 ˚
�p

2=2
p
2=2p

2=2 �p
2=2

�
˚ In�i�1/ �

� diag.s1; � � � ; si�1; si C "; si � "; siC2; � � � ; sn/

� .Ii�1 ˚
�p

2=2
p
2=2p

2=2 �p
2=2

�
˚ In�i�1/V:

Denote QV D .Ii�1 ˚
�p

2=2
p
2=2p

2=2 �p
2=2

�
˚ In�i�1/V . Letting " ! 0 we see that the

only orthonormal basis of eigenvectors of jAj that is possibly stable is given by the
columns of QV . Since these are not the columns of V , we conclude that there is no
stable orthonormal eigenbasis of jAj.

When there are more than two eigenvalues of jAj which are equal it is obvious
that doing similar perturbations will lead to the same conclusion. ut

As it was done in [41], the lemma above may be applied immediately to give
a result on Lipschitz stability of the singular value decomposition. As the proof is
verbatim the same, we only state the result.

Theorem 8 Let A 2 Fm�n, with m � n, and let A D UDV be its singular value
decomposition. IfA has n distinct singular values then there exists a constantK > 0

such that every matrix B has a singular value decomposition B D U 0D0V 0 for
which

kU � U 0k C kD �D0k C kV � V 0k � K � kA � Bk:

If A does not have n distinct singular values, then there is an " > 0 and a sequence
of matrices Bm such that for every singular value decomposition Bm D UmDmVm
of Bm and for every m

kU � Umk C kD �Dmk C kV � Vmk > ":

Stability and Lipschitz stability of polar decompositions, including polar decom-
positions in the context of indefinite inner products, have been studied in [57, 58]
for real and complex matrices; see also [41]. We will not reproduce these results
here.
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13.6 Invariant Subspaces

Let A 2 Fn�n, where F is R, C, or H. We consider A naturally as a linear
transformation on Fn�1 (understood as a right quaternion vector space if F D H).

For two subspaces N and M in Fn�1, the gap �.M ;N / is defined as follows:
�.M ;N / D kPM � PN k, where PM , respectively PN , denote the orthogonal
projection onto M , respectively, N . For convenience, here and elsewhere in the
chapter we use the operator norm kXk, i.e., the maximal singular value of the matrix
X , although the results presented here turn out to be independent of the choice of
the matrix norm. It is well known that �.M ;N / is a metric on the set of subspaces
in Fn�1 which makes this set a complete compact metric space (see, e.g., [18] for
more details in the real and complex cases).

Let A 2 Fn�n, and let M  Fn�1 be an invariant subspace of A. Then M is
called stable if for every " > 0 there is a ı > 0 such that kA � Bk < ı implies the
existence of a B-invariant subspace N such that �.M ;N / < ".

A characterization of stable invariant subspaces is well known (in the real and
complex cases). It involves root subspaces of A. To define the root subspaces in a
unified framework for R, C, or H, let p.t/ be the minimal polynomial of A, with
real coefficients (if F D R or F D H) or complex coefficients (if F D C). Factor

p.t/ D p1.t/ � : : : � ps.t/; (13.18)

where each pj .t/ is a power of an irreducible (over R if F D R or F D H, or over
C if F D C) polynomial qj .t/, and we assume that q1.t/; : : : ; qs.t/ are all distinct.
Then

Rj WD fx 2 Fn�1 W qj .A/x D 0g; j D 1; 2; : : : ; s;

are the root subspaces of A. It is well known that the root subspaces areA-invariant,
they form a direct sum decomposition of Fn�1, and every A-invariant subspace is a
direct sum of its intersection with the root subspaces.

Before stating the results, let us introduce the following notation. For two positive
integers k and n, with k < n, we introduce a number �.k; n/, as follows: �.k; n/ D
n, whenever there is no set of k distinct nth roots of unity that sum to zero, while
�.k; n/ D n � 1 if such a set of k distinct nth roots of unity does exist.

Theorem 9 (The complex and quaternion cases) Let A 2 Fn�n, where F D C
or F D H, and let M  Fn�1 be a nontrivial A-invariant subspace. In the case
F D H, assume in addition that the following hypothesis is satisfied:

(@) for every root subspace R of A corresponding to pj .t/ in (13.18) with a real
root, either

dim .M \ R/ � 1 or dim .M \ R/ � dimR � 1:

(The dimensions here are understood in the quaternion sense.)
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Then the following statements are equivalent:

(1) M is stable, equivalently conditionally stable;
(2) M is ˛-stable, equivalently conditionally ˛-stable for some positive ˛;
(3) If R is a root subspace of A such that

f0g 6D M \ R 6D R; (13.19)

then the geometric multiplicity of R is equal to one, i.e., there is only one (up
to scaling) eigenvector of A in R.

In the case (1)–(3) hold true, then M is ˛-stable if and only if

�.dim .M \ R/; dim R/ � ˛;

for every root subspace R of A such that (13.19) holds true. If there are no such
root subspaces, then M is 1-stable.

The equivalence of stability and of the corresponding notion of conditional
stability in Theorem 9 is trivial, because every matrix has invariant subspaces.

We do not know whether or not hypothesis (@) is essential in Theorem 9.
Theorem 9 can be found in [43], see also [41]. The quaternion case was proved
in [50].

The real analogue of Theorem 9 is somewhat more involved. We will not state or
prove the result here, and refer the reader to [41] and [40].

We remark that estimates for constants of ˛-stability in Theorem 9 (except for
Lipschitz stability) do not seem to be known. For Lipschitz stability, such estimates
are developed in e.g., [56].

Applications of stability of invariant subspaces, both in the complex and real
case, to stability and Lipschitz stability of factorizations of rational matrix functions
is treated in [3], Chaps. 13–15. An application to a nonsymmetric algebraic Riccati
equation is discussed there as well.

There is rather extensive literature on various notions of stability of generalized
invariant subspaces. Much of this literature is reviewed in [41]. Later works in
this area include [19, 20, 34]. We mention here also related research on Lipschitz
stability of canonical bases [5, 47, 49] and Lipschitz properties of matrix group
actions ([48] and references there).

13.7 Invariant Subspaces with Symmetries

Let A 2 Cn�n be H -selfadjoint, where H D H� 2 Cn�n is invertible. To avoid
trivialities we assume that H is indefinite. A subspace M  Cn�n is said to be H -
nonnegative if x�Hx � 0 for all x 2 M . A maximal A-invariant H -nonnegative
subspace M is called ˛-stable if there exists a positive constantK (depending only
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onA andH ) such that for everyH -selfadjointB there exists a maximalB-invariant
H -nonnegative subspace N such that

gap .N ;M / � KkB �Ak1=˛:

The index of stability of M is the minimal ˛ for which M is ˛-stable (if the set of
all such ˛ � 1 is not empty).

Theorem 10 Let M be a maximal A-invariantH -nonnegative subspace.

(a) M is ˛-stable for some ˛ � 1 if and only if M \ L D f0g or M � L
for every root subspace L of A corresponding to an eigenvalue of geometric
multiplicity � 2.

(b) If the condition in (a) holds true, then the index of stability of M is equal to the
maximal dimension � of the root subspace L of A such that f0g ¤ M \ L ¤
L , or to one if no such L exists.

Proof By the general theory of the index of strong stability (without symmetries)
[45] we know that the index of stability of M does not exceed � .

To prove that the index is equal to � we exhibit a perturbation of A in which no
˛-stability is possible with ˛ < � . It suffices to consider the case when A D Jn.0/,
the nilpotent Jordan block of size n, and H D ˙ŒıiCj;nC1�ni;jD1 (the sip matrix in
the terminology of [17]). We assume n � 2. Also, dim .M / D n=2 if n is even, and
dim .M / D .n˙ 1/=2 if n is odd.

Let B be obtained from A by adding � > 0 in the lower left corner entry.
The eigenvalues of B are the distinct nth roots �1j�j1=n; : : : ; �nj�j1=n of �, where
�1; : : : ; �n are the distinct nth roots of 1. Let a maximal B-invariantH -nonnegative
subspace M 0 (necessarily of the same dimension as M ) be spanned by the
eigenvectors corresponding to �i1 ; : : : ; �ip , p D dimM . A calculation ([18],
Section 15.5) shows that there exists k > 0 such that

gap .M ;M 0/ � k�1=n (13.20)

for all � 2 .0; 1�, unless

�i1 C � � � C �ip D 0: (13.21)

We show that equality (13.21) cannot happen, thereby proving (13.20) which in turn
implies that no ˛-stability is possible with ˛ < n.

Consider first the case when n is even; then p D n=2. Since the signature of
H is zero, the canonical form of .B;H/ implies that exactly one of the two root
subspaces of B corresponding to the eigenvalues ˙j�j1=n is H -nonnegative. Say, it
is the root subspace corresponding to j�j1=n which is H -nonnegative (actually H -
positive). Arguing by contradiction, assume (13.21) holds true. Among �i1 ; : : : ; �ip
there cannot be nonreal complex conjugate pairs, because the sum of root subspaces
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corresponding to such a pair is H -indefinite, which would contradict M 0 beingH -
nonnegative. Also, 1 2 f�i1 ; : : : ; �ipg and �1 62 f�i1; : : : ; �ipg, so let 1 D �i1 . We
have

1C
pX
jD2

�ij D 0; 1C
pX
jD2

�ij D 0; (13.22)

so

2C
pX
jD2

�ij C
pX
jD2

�ij D 0: (13.23)

But the list

f�i2 ; : : : ; �ip ; �i2 ; : : : ; �ip g (13.24)

comprises all distinct nth roots of unity except 1 and �1. Since all distinct roots of
unity sum up to zero, we must have

pX
jD2

�ij C
pX
jD2

�ij D 0;

a contradiction with (13.23).
Assume now n is odd. If p D .n C 1/=2, then 1 must be among f�i1; : : : ; �ipg

(otherwise, the set f�i1 ; : : : ; �ipg would contain a pair of nonreal complex conjugate
numbers, a contradiction with the H -nonnegativeness of M 0). Letting 1 D �i1 and
arguing by contradiction, we obtain equalities (13.22) and (13.23) as before. Now
the list (13.24) comprises all distinct roots of unity except 1, and we must have

pX
jD2

�ij C
pX
jD2

�ij D �1;

a contradiction with (13.23). If p D .n�1/=2, then either 1 is among f�i1 ; : : : ; �ipg,
or 1 62 f�i1; : : : ; �ip g. In the latter case arguing by contradiction we would have

pX
jD1

�ij C
pX
jD1

�ij D 0; (13.25)
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but on the other hand f�ij ; �ij W j D 1; : : : pg comprises all nth roots of unity
except 1, so

pX
jD2

�ij C
pX
jD2

�ij D �1;

and (13.25) is impossible.
Finally, suppose (still assuming n is odd and p D .n � 1/=2) that 1 D �i1 .

Arguing by contradiction, we assume (13.21) holds. Then (13.23) is obtained. On
the other hand, the list (13.24) comprises n � 3 distinct roots of unity, and 1 is not
on this list. Let 1; �; � be the three distinct nth roots of unity not on the list (13.24).
Then

1C �C �C
pX
jD2

�ij C
pX
jD2

�ij D 0;

and comparing with (13.23) we see that �C � D 1. Thus,

� D cos.�=3/˙ i sin.�=3/:

The condition �n D 1 gives that n�=3 is an integer multiple of 2� , a contradiction
with the assumption that n is odd. ut

A subspace M  Cn is said to be H -neutral if x�Hx D 0 for every x 2 M .
An analogous result holds (with essentially the same proof) for maximal invariant
neutral subspaces, i.e. those subspaces that are both invariant and neutral, and are
maximal with respect to this property. We need to consider conditional stability here,
and assume that n (as in the proof of Theorem 10) is odd:

Theorem 11 Let A be H -selfadjoint, and let M be a maximal A-invariant H -
neutral subspace.

(a) M is conditionally ˛-stable for some ˛ � 1 if and only if M \ L D f0g or
M � L for every root subspace L of A corresponding to an eigenvalue of
geometric multiplicity � 2.

(b) Assume the condition in (a) holds true, and suppose that the maximal dimension
� of the root subspace L of A such that f0g ¤ M \L ¤ L is either attained
at a root subspace corresponding to a nonreal eigenvalue of A, or it is not
attained at any root subspace corresponding to a nonreal eigenvalue of A, in
which case we assume that � is odd or equal to 2. Then the index of conditional
stability of M is equal � , or to one if no such L exists.

We note that Theorems 10 and 11 are valid also in the case when H is subject to
change.

Open problem 3 (a) Characterize ˛-stability of maximal A-invariant H -
nonnegative subspaces, and conditional ˛-stability of maximal A-invariant
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H -neutral subspaces, for real H -selfadjoint matrices, where H is assumed to
be real as well, with the perturbations of A are restricted to real H -selfadjoint
matrices. Analogous problems in the context of quaternion matrices.

(b) State and prove results analogous to Theorems 10 and 11 for other classes of
interest of invariant subspaces with symmetries. For example:

(1) Lagrangian invariant subspaces of real, complex, or quaternion Hamilto-
nian and symplectic matrices. In the real and complex cases, the structure
of such subspaces was studied in [16, 52], and their perturbation analysis
is given in [37, 38, 42]; see in particular [28] for perturbation analysis of
Lagrangian invariant subspaces in the context of symplectic matrices

(2) Invariant nonnegative subspaces for real, complex, and quaternion dissi-
pative and expansive matrices. See [13, 44, 46] for information about the
structure of such subspaces (in the complex case), their applications and
perturbation theory. For the real case see [14, 15].

Invariant Lagrangian subspaces play an important role in several problems. The
algebraic Riccati equations in continuous and discrete time, coming from optimal
control theory, can be solved by finding specific invariant Lagrangian subspaces.
For example, consider the matrix equation

XBR�1B�X � XA� A�X �Q D 0 (13.26)

where R and Q are Hermitian, R is positive definite. Under the assumptions that
.A;B/ is controllable and .Q;A/ is detectable there is a unique Hermitian solution
X such that A � BR�1B�X has all its eigenvalues in the open left half plane (see,
e.g., [26, 33] for the real and complex cases, [53] for the quaternion case).

Introduce the matrices

H D
�
A �BR�1B�

�Q �A�
�
; J D

�
0 I

�I 0
�
:

The Hermitian solutions of (13.26) are in one-one correspondence with J -
Lagrangian H -invariant subspaces as follows: if X is a Hermitian solution,

then M D im

�
I

X

�
is H -invariant and J -Lagrangian. Conversely, under the

assumptions stated above, any such subspace is of this form [26].
Equation (13.26) plays an important role in LQ-optimal control, in H1 control

and in factorization problems for rational matrix functions with symmetries, see e.g.,
[1, 4, 26, 33]. It is therefore of interest to study its behavior under perturbations of
the matrices A;B;R and Q. It turns out that under the conditions of controllability
of .A;B/ and detectability of .Q;A/ the Hermitian solution X for which �.A �
BR�1B�X/ is in the open left half plane is Lipschitz stable (see [39] for the real
case and [36] for the complex case).

Dropping the condition of detectability on the pair .Q;A/, there may be many
Hermitian solutions that are conditionally stable. See, e.g., [36].
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Open problem 4 Characterize ˛-stability for general Hermitian solutions of
(13.26).

13.8 Some Nonlinear Matrix Equations and Stability
of Their Solutions

Consider matrix equations of the formX D Q˙A�F.X/A, on the set of complex
Hermitian matrices. HereQ D Q� is an n�nmatrix, andA is anm�nmatrix, and
F W Cn�n ! Cm�m. One is interested in situations where there is a unique solution.
The solution is viewed as a fixed point of the map G W Cn�n ! Cn�n given by
G.X/ D Q ˙ A�F.X/A.

We start with a general theorem on contractions. Let .X; d/ be a complete
metric space, and let ˝ be a closed subset of X . For ˛ 2 .0; 1/ fixed, consider
the set M.˝; ˛/ of all maps ˚ W ˝ ! ˝ such that for all x; y 2 ˝ we have
d.˚.x/; ˚.y// � ˛d.x; y/. It is well-known (Banach’s fixed point theorem) that
each such function ˚ has a unique fixed point x�.˚/ in ˝ , and that for every
starting point x0 2 ˝ the sequence of iterates ˚m.x/ converges to x�.˚/, with the
additional property that the rate of convergence is given by d.˚m.x0/; x

�.˚// �
˛m

1�˛ d.˚.x0/; x0/.
The following theorem complements Theorem 2.2 in [35]. The proof is based on

the ideas in the proof of that theorem.

Theorem 12 Let ˚ 2 M.˝; ˛/. Then for all � 2 M.˝; ˛/ we have

d.x�.˚/; x�.�// � 1

1 � ˛ sup
x2˝

d.˚.x/; �.x//:

Proof Denote 
 D supx2˝ d.˚.x/; �.x//, and let x0 2 ˝ be arbitrary. Then for
every k D 1; 2; 3; � � � we have

d.˚k.x0/; x
�.˚// � ˛k

1�˛ d.˚.x0/; x0/;

d.�k.x0/; x
�.�// � ˛k

1�˛ d.�.x0/; x0/:

Denote cm D supx2˝ d.˚m.x/; �m.x//. Note that for all m D 2; 3; � � � and for all
x 2 ˝

d.˚m.x/; �m.x// � d.˚m�1.˚.x//; ˚m�1.�.x//Cd.˚m�1.�.x//; �m�1.�.x//

� ˛m�1d.˚.x/; �.x//C cm�1 � ˛m�1
 C cm�1:

Taking the supremum over all x 2 ˝ gives

cm � ˛m�1
 C cm�1; m D 2; 3; � � � ;
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and so

cm � .˛m�1 C � � � C ˛/
 C c1 D .˛m�1 C � � � C 1/
 D 1 � ˛m

1 � ˛ 
:

Next, consider

d.x�.˚/; x�.�// � d.˚k.x0/; x
�.˚//Cd.�k.x0/; x

�.�//Cd.˚k.x0/;�
k.x0//

� ˛k

1 � ˛d.˚.x0/; x0/C ˛k

1 � ˛
d.�.x0/; x0/C ck

� ˛k

1 � ˛ .d.˚.x0/; x0/C d.�.x0/; x0//C 1 � ˛k

1 � ˛

:

Taking the limit k ! 1, we obtain d.x�.˚/; x�.�// � 1
1�˛
 as desired. ut

As a sample result, let us consider the equation X D Q C A�XmA, where Q is
positive definite, on the set of positive definite n � n Hermitian matrices P.n/ with
the usual metric d.X; Y / D kX � Y k. We first assume m � 1. Denote ˚Q;A.X/ D
Q C A�XmA. Define ˝ D fX 2 P.n/ j X � Ing. Then combining results in [2]
and [9] (see also [35], Theorem 4.1 and the text following it) we have

d.˚Q;A.X/; ˚Q;A.Y // � kAk2 sup
Z2LX;Y

jmjkZm�1kd.X; Y /

where LX;Y is the line segment joining X and Y . Now, since we are considering X
and Y in ˝ the whole line segment joining them is in ˝ , and for matrices in ˝ we
have kZm�1k � 1 because m � 1. So, for any A with kAk � r we have

d.˚Q;A.X/; ˚Q;A.Y // � r2jmj d.X; Y /:

Put ˛ D r2jmj. Assume r is chosen smaller than 1=
pjmj, so that ˛ < 1. Then

the equation X D Q C A�XmA has a unique positive definite solution. Denote the
solution by XQ;A. Applying Theorem 12 to this case we see that for every QA with
k QAk < r and every positive definite QQ one has

kXQ;A �X QQ; QAk � 1

1 � ˛
sup
X�I

k QQ �Q C QA�Xm QA� A�XmAk:

Now restrict m to m < 0, then for X � I we have Xm � I , and then

kXQ;A �X QQ; QAk � 1
1�˛

�k QQ �Qk C supX�I k QA�Xm QA� A�XmAk�
� 1

1�˛
�k QQ �Qk C supX�I .k QA�Xm QA� QA�XmAk C k QA�XmA �A�XmAk/�

� 1
1�˛

�k QQ �Qk C supX�I .k QAk C kAk/kXmk � k QA � Ak�
� 1

1�˛
�k QQ �Qk C 2rk QA� Ak� :
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This result complements those in [35] and the references cited there. Thus, XQ;A
is Lipschitz stable with respect to perturbations of both Q and A (assuming r <
1=
pjmj).
Clearly the result of Theorem 12 can be applied to many other nonlinear matrix

equations in a similar way, including analogous equations with real and quaternion
matrices.

13.9 Conclusions

In this chapter, we review several notions of stability in a variety of problems in
matrix stability. These include linear equations, matrix roots, generalized inverses,
and two types of matrix decompositions: Cholesky decompositions of positive
semidefinite matrices and singular value decompositions. In different directions,
we also discuss stability results for invariant subspaces of matrices, with or
without additional special structures, and indicate applications to algebraic Riccati
equations. New results are presented with full proofs, and several known results
are reviewed. Finally, we address the problem of stability for certain classes of
nonlinear matrix equations. Open problems, hopefully of interest to researchers,
are formulated.

Acknowledgements We thank C. Mehl for very careful reading of the chapter and many useful
comments and suggestions.

References

1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and
Systems Theory. Birkhäuser Verlag, Basel (2003)

2. Ambrostetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced
Mathematics, vol. 34. Cambridge University Press, Cambridge/New York (1995)

3. Bart, H., Gohberg, I., Kaashoek, M.A., Ran, A.C.M.: Factorization of Matrix and Operator
Functions: The State Space Method. Operator Theory: Advances and Applications, vol. 178.
Birkhäuser, Basel/Boston (2008)

4. Bart, H., Gohberg, I., Kaashoek, M.A., Ran, A.C.M.: A State Space Approach to Canonical
Factorization with Applications. Operator Theory: Advances and Applications, vol. 200.
Birkhäuser, Basel (2010)

5. Bella, T., Olshevsky, V., Prasad, U.: Lipschitz stability of canonical Jordan bases of H-
selfadjoint matrices under structure-preserving perturbations. Linear Algebra Appl. 428,
2130–2176 (2008)

6. Benner, P., Mehrmann, V., Xu, H.: A new method for computing the stable invariant subspace
of a real Hamiltonian matrix. Special issue dedicated to William B. Gragg (Monterey, 1996).
J. Comput. Appl. Math. 86, 17–43 (1997)

7. Benner, P., Mehrmann, V., Xu, H.: A numerically stable, structure preserving method for
computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math. 78, 329–
358 (1998)



374 A.C.M. Ran and L. Rodman

8. Bhatia, R.: Matrix Analysis. Springer, New York (1997)
9. Bhatia, R., Sinha, K.B.: Variation of real powers of positive operators. Indiana Univ. Math. J.

43, 913–925 (1994)
10. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and

Control Theory. SIAM Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia (1994)
11. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. Pitman, London

(1979)
12. Chu, D., Liu, X., Mehrmann, V.: A numerical method for computing the Hamiltonian Schur

form. Numer. Math. 105, 375–412 (2007)
13. Fourie, J.H., Groenewald, G.J., Ran, A.C.M.: Positive real matrices in indefinite inner product

spaces and invariant maximal semi definite subspaces. Linear Algebra Appl. 424, 346–370
(2007)

14. Fourie, J.H., Groenewald, G.J., Janse van Rensburg, D.B., Ran, A.C.M.: Real and complex
invariant subspaces for matrices which are positive real in an indefinite inner product space.
Electron. Linear Algebra 27, 124–145 (2014)

15. Fourie, J.H., Groenewald, G.J., Janse van Rensburg, D.B., Ran, A.C.M.: Simple forms
and invariant subspaces of H -expansive matrices. Linear Algebra Appl. (to appear 2015),
doi:10.1016/j.laa.2014.11.022

16. Freiling, G., Mehrmann, V., Xu, H.: Existence, uniqueness, and parametrization of Lagrangian
invariant subspaces. SIAM J. Matrix Anal. Appl. 23, 1045–1069 (2002)

17. Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra. Birkhäuser, Basel (2005)
18. Gohberg, I., Lancaster, P., Rodman, L.: Invariant Subspaces of Matrices. Wiley, New York

(1986); republication SIAM, Philadelphia (2009)
19. Gracia, J.-M., Velasco, F.E.: Stability of controlled invariant subspaces. Linear Algebra Appl.

418, 416–434 (2006)
20. Gracia, J.-M., Velasco, F.E.: Lipschitz stability of controlled invariant subspaces. Linear

Algebra Appl. 434, 1137–1162 (2011)
21. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. 2nd edn. SIAM, Philadelphia

(2002)
22. Higham, N.J.: Functions of Matrices. Theory and Applications. SIAM, Philadelphia (2008)
23. Horn, R., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge

(1991)
24. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin/Heidelberg/New York

(1966)
25. Konstantinov, M., Gu, D.-W., Mehrmann, V., Petkov, P.: Perturbation Theory for Matrix

Equations. North-Holland, Amsterdam/London (2003)
26. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford University Press, New York

(1995)
27. Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic, Orlando (1988)
28. Mehl, C., Mehrmann, V., Ran, A.C.M., Rodman, L.: Perturbation analysis of Lagrangian

invariant subspaces of symplectic matrices. Linear Multilinear Algebra 57, 141–184 (2009)
29. Mehl, C., Mehrmann, V., Ran, A.C.M., Rodman, L.: Eigenvalue perturbation theory of classes

of structured matrices under generic structured rank one perturbations. Linear Algebra Appl.
435, 687–716 (2011)

30. Mehl, C., Mehrmann, V., Ran, A.C.M., Rodman, L.: Perturbation theory of selfadjoint matrices
and sign characteristics under generic structured rank one perturbations. Linear Algebra Appl.
436, 4027–4042 (2012)

31. Mehl, C., Mehrmann, V., Ran, A.C.M., Rodman, L.: Jordan forms of real and complex matrices
under rank one perturbations. Oper. Matrices 7, 381–398 (2013)

32. Mehl, C., Mehrmann, V., Ran, A.C.M., Rodman, L.: Eigenvalue perturbation theory of
symplectic, orthogonal, and unitary matrices under generic structured rank one perturbations.
BIT 54, 219–255 (2014)

33. Mehrmann, V.: The Autonomous Linear Quadratic Control Problem. Lecture Notes in Control
and Information Systems, vol. 163. Springer, Berlin (1991)

http://dx.doi.org/10.1016/j.laa.2014.11.022


13 Stability in Matrix Analysis Problems 375

34. Puerta, F., Puerta, X.: On the Lipschitz stability of (A,B)-invariant subspaces. Linear Algebra
Appl. 438, 182–190 (2013)

35. Ran, A.C.M., Reurings, M.C.B., Rodman, L.: A perturbation analysis for nonlinear selfadjoint
operator equations. SIAM J. Matrix Anal. Appl. 28, 89–104 (2006)

36. Ran, A.C.M., Rodman, L.: Stability of invariant maximal semidefinite subspaces II. Applica-
tions: self-adjoint rational matrix functions, algebraic Riccati equations. Linear Algebra Appl.
63, 133–173 (1984)

37. Ran, A.C.M., Rodman, L.: Stability of invariant Lagrangian subspaces I. In: Topics in Operator
Theory, Constantin Apostol Memorial Issue. Operator Theory Advances and Applications,
vol. 32, pp. 181–218. Birkhäuser, Basel (1988)

38. Ran, A.C.M., Rodman, L.: Stability of invariant Lagrangian subspaces II. In: Dym, H.,
Goldberg, S., Kaashoek, M.A., Lancaster, P. (eds.) The Gohberg Anniversary Collection.
Operator Theory Advances and Applications, vol. 40, pp. 391–425. Birkhäuser, Basel (1989)

39. Ran, A.C.M., Rodman, L.: Stable solutions of real algebraic Riccati equations. SIAM J. Control
Optim. 30, 63–81 (1992)

40. Ran, A.C.M., Rodman, L.: The rate of convergence of real invariant subspaces. Linear Algebra
Appl. 207, 194–224 (1994)

41. Ran, A.C.M., Rodman, L.: A class of robustness problems in matrix analysis. In: The Harry
Dym Anniversary Volume. Operator Theory Advances and Applications, vol. 134, pp. 337–
383. Birkhäuser, Basel (2002)

42. Ran, A.C.M., Rodman, L.: On the index of conditional stability of stable invariant Lagrangian
subspaces. SIAM J. Matrix Anal. 29, 1181–1190 (2007)

43. Ran, A.C.M., Rodman, L., Rubin, A.L.: Stability index of invariant subspaces of matrices.
Linear Multilinear Algebra 36, 27–39 (1993)

44. Ran, A.C.M., Rodman, L., Temme, D.: Stability of pseudospectral factorizations. In: Operator
Theory and Analysis, The M.A. Kaashoek Anniversary Volume. Operator Theory Advances
and Applications, vol. 122, pp. 359–383. Birkhäuser Verlag, Basel (2001)

45. Ran, A.C.M., Roozemond, L.: On strong ˛-stability of invariant subspaces of matrices. In: The
Gohberg Anniversary Volume. Operator Theory Advances and Applications, vol. 40, pp. 427–
435. Birkhäuser, Basel (1989)

46. Ran, A.C.M., Temme, D.: Invariant semidefinite subspaces of dissipative matrices in an
indefinite inner product space, existence, construction and uniqueness. Linear Algebra Appl.
212/213, 169–214 (1994)

47. Rodman, L.: Similarity vs unitary similarity and perturbation analysis of sign characteristics:
complex and real indefinite inner products. Linear Algebra Appl. 416, 945–1009 (2006)

48. Rodman, L.: Remarks on Lipschitz properties of matrix groups actions. Linear Algebra Appl.
434, 1513–1524 (2011)

49. Rodman, L.: Lipschitz properties of structure preserving matrix perturbations. Linear Algebra
Appl. 437, 1503–1537 (2012)

50. Rodman, L.: Stability of invariant subspaces of quaternion matrices. Complex Anal. Oper.
Theory 6, 1069–1119 (2012)

51. Rodman, L.: Strong stability of invariant subspaces of quaternion matrices. In: Advances in
Structure Operator Theory and Related Areas. Operator Theory, Advances and Applications,
vol. 237, pp. 221–239. Birkhäuser, Basel (2013)

52. Rodman, L.: Invariant neutral subspaces for Hamiltonian matrices. Electron. J. Linear Algebra
27, 55–99 (2014)

53. Rodman, L.: Topics in Quaternion Linear Algebra. Princeton University Press, Prince-
ton/Oxford (2014)

54. Saberi, A., Stoorvogel, A.A., Sannuti, P.: Filtering Theory. With Applications to Fault
Detection, Isolation, and Estimation. Birkhäuser, Boston (2007)

55. Stewart, G.W.: On the perturbation of pseudo-inverses, projections and linear least squares
problems. SIAM Rev. 19, 634–662 (1977)

56. Stewart, G.W., Sun, J.-g.: Matrix Perturbation Theory. Academic, Boston (1990)



376 A.C.M. Ran and L. Rodman

57. van der Mee, C.V.M., Ran, A.C.M., Rodman, L.: Stability of self-adjoint square roots and
polar decompositions in indefinite scalar product spaces. Linear Algebra Appl. 302/303, 77–
104 (1999)

58. van der Mee, C.V.M., Ran, A.C.M., Rodman, L.: Stability of polar decompositions. Dedicated
to the memory of Branko Najman. Glas. Mat. Ser. III. 35(55), 137–148 (2000)



Chapter 14
Low-Rank Approximation of Tensors

Shmuel Friedland� and Venu Tammali

Abstract In many applications such as data compression, imaging or genomic
data analysis, it is important to approximate a given tensor by a tensor that is
sparsely representable. For matrices, i.e. 2-tensors, such a representation can be
obtained via the singular value decomposition, which allows to compute best rank
k-approximations. For very big matrices a low rank approximation using SVD is
not computationally feasible. In this case different approximations are available.
It seems that variants of the CUR-decomposition are most suitable. For d -mode
tensors T 2 ˝d

iD1Rni , with d > 2, many generalizations of the singular value
decomposition have been proposed to obtain low tensor rank decompositions. The
most appropriate approximation seems to be best .r1; : : : ; rd /-approximation, which
maximizes the `2 norm of the projection of T on ˝d

iD1Ui , where Ui is an ri -
dimensional subspace R

ni . One of the most common methods is the alternating
maximization method (AMM). It is obtained by maximizing on one subspace
Ui , while keeping all other fixed, and alternating the procedure repeatedly for
i D 1; : : : ; d . Usually, AMM will converge to a local best approximation. This
approximation is a fixed point of a corresponding map on Grassmannians. We
suggest a Newton method for finding the corresponding fixed point. We also discuss
variants of CUR-approximation method for tensors. The first part of the paper is a
survey on low rank approximation of tensors. The second new part of this paper is a
new Newton method for best .r1; : : : ; rd /-approximation. We compare numerically
different approximation methods.
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14.1 Introduction

Let R be the field of real numbers. Denote by R
n D R

n1�:::�nd WD ˝d
iD1Rnj , where

n D .n1; : : : ; nd /, the tensor products of Rn1 ; : : : ;Rnd . T D Œti1;:::;id � 2 R
n is called

a d -mode tensor. Note that the number of coordinates of T is N D n1 : : : nd .
A tensor T is called a sparsely representable tensor if it can represented with a
number of coordinates that is much smaller than N .

Apart from sparse matrices, the best known example of a sparsely representable
2-tensor is a low rank approximation of a matrix A 2 R

n1�n2 . A rank k-
approximation of A is given by Aappr WD Pk

iD1 uiv>
i , which can be identified

with
Pk

iD1 ui ˝ vi . To store Aappr we need only the 2k vectors u1; : : : ;uk 2
R
n1; v1; : : : ; vk 2 R

n2 . A best rank k-approximation of A 2 R
n1�n2 can be

computed via the singular value decomposition, abbreviated here as SVD, [19].
Recall that if A is a real symmetric matrix, then the best rank k-approximation must
be symmetric, and is determined by the spectral decomposition of A.

The computation of the SVD requires O.n1n22/ operations and at least O.n1n2/
storage, assuming that n2 � n1. Thus, if the dimensions n1 and n2 are very large,
then the computation of the SVD is often infeasible. In this case other type of low
rank approximations are considered, see e.g. [1, 5, 7, 11, 13, 18, 21].

For d -tensors with d > 2 the situation is rather unsatisfactory. It is a major
theoretical and computational problem to formulate good generalizations of low
rank approximation for tensors and to give efficient algorithms to compute these
approximations, see e.g. [3, 4, 8, 13, 15, 29, 30, 33, 35, 36, 43].

We now discuss briefly the main ideas of the approximation methods for tensors
discussed in this paper. We need to introduce (mostly) standard notation for tensors.
Let Œn� WD f1; : : : ; ng for n 2 N. For xi WD .x1;i ; : : : ; xni ;i /

> 2 R
ni ; i 2 Œd �, the

tensor ˝i2Œd �xi D x1 ˝ � � � ˝ xd D X D Œxj1;:::;jd � 2 R
n is called a decomposable

tensor, or rank one tensor if xi ¤ 0 for i 2 Œd �. That is, xj1;:::;jd D xj1;1 � � �xjd ;d for
ji 2 Œni �; i 2 Œd �. Let hxi ; yi ii WD y>

i xi be the standard inner product on R
ni for

i 2 Œd �. Assume that S D Œsj1;:::;jd � and T D Œtj1;:::;jd � are two given tensors in R
n.

Then hS ;T i WD P
ji2Œni �;i2Œd � sj1;:::;jd tj1;:::;jd is the standard inner product on R

n.
Note that

h˝i2Œd �xi ;˝i2Œd �yi i D
Y
i2Œd �

hxi ; yi ii ;

hT ;˝i2Œd �xi i D
X

ji2Œni �;i2Œd �
tj1;:::;jd xj1;1 � � �xjd ;d :

The norm kT k WD phT ;T i is called the Hilbert-Schmidt norm. (For matrices,
i.e. d D 2, it is called the Frobenius norm.)
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Let I D f1 � i1 < � � � < il � d g � Œd �. Assume that X D Œxji1 ;��� ;jil � 2
˝k2Œl�Rnik . Then the contraction T � X on the set of indices I is given by:

T � X D
X

jik2Œnik �;k2Œl�
tj1;:::;jd xji1 ;:::;jil 2 ˝p2Œd �nIRnp :

Assume that Ui � R
ni is a subspace of dimension ri with an orthonormal basis

u1;i ; : : : ;uri ;i for i 2 Œd �. Let U WD ˝d
iD1Ui � R

n. Then ˝d
iD1uji ;i , where ji 2

Œni �; i 2 Œd �, is an orthonormal basis in U. We are approximatingT 2 R
n1�����nd by

a tensor

S D
X

ji2Œri �;i2Œd �
sj1;:::;jd uj1;1 ˝ � � � ˝ ujd ;d 2 R

n (14.1)

The tensor S 0 D Œsj1;:::;jd � 2 R
r1�����rd is the core tensor corresponding to S in the

terminology of [42].
There are two major problems: The first one is how to choose the subspaces

U1; : : : ;Ud . The second one is the choice of the core tensor S 0. Suppose we already
made the choice of U1; : : : ;Ud . Then S D PU.T / is the orthogonal projection of
T on U:

P˝i2Œd �Ui .T / D
X

ji2Œri �;i2Œd �
hT ;˝i2Œd �uji ;i i ˝i2Œd � uji ;i : (14.2)

If the dimensions of n1; : : : ; nd are not too big, then this projection can be explicitly
carried out. If the dimension n1; : : : ; nd are too big to compute the above projection,
then one needs to introduce other approximations. That is, one needs to compute the
core tensor S 0 appearing in (14.1) accordingly. The papers [1, 5, 7, 11, 13, 18, 21,
29, 33, 35, 36] essentially choose S 0 in a particular way.

We now assume that the computation of PU.T / is feasible. Recall that

kP˝i2Œd �Ui .T /k2 D
X

ji2Œri �;i2Œd �
jhT ;˝d

iD1uji ;i ij2: (14.3)

The best r-approximation of T , where r D .r1; : : : ; rd /, in Hilbert-Schmidt norm
is the solution of the minimal problem:

min
Ui ;dim UiDri ;i2Œd �

min
X 2˝d

i2Œd �Ui
kT � X k: (14.4)

This problem is equivalent to the following maximum

max
Ui ;dim UiDri ;i2Œd �

kP˝i2Œd �Ui .T /k2: (14.5)
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The standard alternating maximization method, denoted by AMM, for solving
(14.5) is to solve the maximum problem, where all but the subspace Ui is fixed.
Then this maximum problem is equivalent to finding an ri -dimensional subspace
of Ui containing the ri biggest eigenvalues of a corresponding nonnegative definite
matrixAi.U1; : : : ;Ui�1;UiC1; : : : ;Ud / 2 Sni . Alternating between U1;U2; : : : ;Ud

we obtain a nondecreasing sequence of norms of projections which converges to v.
Usually, v is a critical value of kP˝i2Œd �Ui .T /k. See [4] for details.

Assume that ri D 1 for i 2 Œd �. Then dim Ui D 1 for i 2 Œd �. In this case the
minimal problem (14.4) is called a best rank one approximation of T . For d D 2

a best rank one approximation of a matrix T D T 2 R
n1�n2 is accomplished

by the first left and right singular vectors and the corresponding maximal singular
value �1.T /. The complexity of this computation is O.n1n2/ [19]. Recall that the
maximum (14.5) is equal to �1.T /, which is also called the spectral norm kT k2. For
d > 2 the maximum (14.5) is called the spectral norm of T , and denoted by kT k� .
The fundamental result of Hillar-Lim [27] states that the computation of kT k� is
NP-hard in general. Hence the computation of best r-approximation is NP-hard in
general.

Denote by Gr.r;Rn/ the variety of all r-dimensional subspaces in R
n, which is

called Grassmannian or Grassmann manifold. Let

1d WD .1; : : : ; 1„ ƒ‚ …
d

/; Gr.r;n/ WD Gr.r1; n1/ � � � � � Gr.rd ; nd /:

Usually, the AMM for best r-approximation of T will converge to a fixed point
of a corresponding map FT W Gr.r;n/ ! Gr.r;n/. This observation enables us to
give a new Newton method for finding a best r-approximation to T . For best rank
one approximation the map FT and the corresponding Newton method was stated
in [14].

This paper consists of two parts. The first part surveys a number of common
methods for low rank approximation methods of matrices and tensors. We did not
cover all existing methods here. We were concerned mainly with the methods that
the first author and his collaborators were studying, and closely related methods.
The second part of this paper is a new contribution to Newton algorithms related
to best r-approximations. These algorithms are different from the ones given
in [8, 39, 43]. Our Newton algorithms are based on finding the fixed points
corresponding to the map induced by the AMM. In general its known that for
big size problem, where each ni is big for i 2 Œd � and d � 3, Newton methods
are not efficient. The computation associate the matrix of derivatives (Jacobian) is
too expensive in computation and time. In this case AMM or MAMM (modified
AMM) are much more cost effective. This well known fact is demonstrated in our
simulations.

We now briefly summarize the contents of this paper. In Sect. 14.2 we review
the well known facts of singular value decomposition (SVD) and its use for
best rank k-approximation of matrices. For large matrices approximation methods
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using SVD are computationally unfeasible. Section 14.3 discusses a number of
approximation methods of matrices which do not use SVD. The common feature
of these methods is sampling of rows, or columns, or both to find a low rank
approximation. The basic observation in Sect. 14.3.1 is that, with high probability,
a best k-rank approximation of a given matrix based on a subspace spanned by the
sampled row is with in a relative � error to the best k-rank approximation given by
SVD. We list a few methods that use this observation. However, the complexity of
finding a particular k-rank approximation to anm � n matrix is still O.kmn/, as the
complexity truncated SVD algorithms using Arnoldi or Lanczos methods [19, 31].
In Sect. 14.3.2 we recall the CUR-approximation introduced in [21]. The main idea
of CUR-approximation is to choose k columns and rows of A, viewed as matrices
C and R, and then to choose a square matrix U of order k in such a way that CUR
is an optimal approximation of A. The matrix U is chosen to be the inverse of the
corresponding k � k submatrix A0 of A. The quality of CUR-approximation can be
determined by the ratio of j detA0j to the maximum possible value of the absolute
value of all k � k minors of A. In practice one searches for this maximum using a
number of random choices of such minors. A modification of this search algorithm
is given in [13]. The complexity of storage of C;R;U is O.kmax.m; n//. The
complexity of finding the value of each entry of CUR is O.k2/. The complexity
of computation of CUR is O.k2mn/. In Sect. 14.4 we survey CUR-approximation
of tensors given in [13]. In Sect. 14.5 we discuss preliminary results on best r-
approximation of tensors. In Sect. 14.5.1 we show that the minimum problem (14.4)
is equivalent to the maximum problem (14.5). In Sect. 14.5.2 we discuss the notion
of singular tuples and singular values of a tensor introduced in [32]. In Sect. 14.5.3
we recall the well known solution of maximizing kP˝i2Œd �Ui .T /k2 with respect to
one subspace, while keeping other subspaces fixed. In Sect. 14.6 we discuss AMM
for best r-approximation and its variations. (In [4, 15] AMM is called alternating
least squares, abbreviated as ALS.) In Sect. 14.6.1 we discuss the AMM on a
product space. We mention a modified alternating maximization method and and 2-
alternating maximization method, abbreviated as MAMM and 2AMM respectively,
introduced in [15]. The MAMM method consists of choosing the one variable which
gives the steepest ascend of AMM. 2AMM consists of maximization with respect to
a pair of variables, while keeping all other variables fixed. In Sect. 14.6.2 we discuss
briefly AMM and MAMM for best r-approximations for tensors. In Sect. 14.6.3 we
give the complexity analysis of AMM for d D 3; r1 
 r2 
 r3 and n1 
 n2 
 n3.
In Sect. 14.7 we state a working assumption of this paper that AMM converges to
a fixed point of the induced map, which satisfies certain smoothness assumptions.
Under these assumptions we can apply the Newton method, which can be stated
in the standard form in R

L. Thus, we first do a number of AMM iterations and
then switch to the Newton method. In Sect. 14.7.1 we give a simple application
of these ideas to state a Newton method for best rank one approximation. This
Newton method was suggested in [14]. It is different from the Newton method in
[43]. The new contribution of this paper is the Newton method which is discussed in
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Sects. 14.8 and 14.9. The advantage of our Newton method is its simplicity, which
avoids the notions and tools of Riemannian geometry as for example in [8, 39].
In simulations that we ran, the Newton method in [8] was 20% faster than our
Newton method for best r-approximation of 3-mode tensors. However, the number
of iterations of our Newton method was 40% less than in [8]. In the last section
we give numerical results of our methods for best r-approximation of tensors. In
Sect. 14.11 we give numerical simulations of our different methods applied to a real
computer tomography (CT) data set (the so-called MELANIX data set of OsiriX).
The summary of these results are given in Sect. 14.12.

14.2 Singular Value Decomposition

Let A 2 R
m�n n f0g. We now recall well known facts on the SVD of A [19]. See

[40] for the early history of the SVD. Assume that r D rank A. Then there exist
r-orthonormal sets of vectors u1; : : : ;ur 2 R

m; v1; : : : ; vr 2 R
n such that we have:

Avi D �i .A/ui ; u>
i A D �i .A/v>

i ; i 2 Œr�; �1.A/ � � � � � �r .A/ > 0;

Ak D
X
i2Œk�

�i .A/uiv>
i ; k 2 Œr�; A D Ar: (14.6)

The quantities ui , vi and �i .A/ are called the left, right i -th singular vectors and
i -th singular value of A respectively, for i 2 Œr�. Note that uk and vk are uniquely
defined up to ˙1 if and only if �k�1.A/ > �k.A/ > �kC1.A/. Furthermore for
k 2 Œr � 1� the matrix Ak is uniquely defined if and only if �k.A/ > �kC1.A/.
Denote by R.m; n; k/ � R

m�n the variety of all matrices of rank at most k. Then
Ak is a best rank-k approximation of A:

min
B2R.m;n;k/

kA� Bk D kA �Akk:

Let U 2 Gr.p;Rm/;V 2 Gr.q;Rn/. We identify U ˝ V with

UV> WD spanfuv>; u 2 U; v 2 Vg � R
m�n: (14.7)

Then PU˝V.A/ is identified with the projection of A on UV> with respect to the
standard inner product on R

m�n given by hX; Y i D trXY >. Observe that

Range A D U?
r ; R

m D U?
r ˚ .U?

r /
?; Range A> D V?

r ; R
n D V?

r ˚ .V?
r /

?:

Hence

PU˝V.A/ D P.U\U?r /˝.V\V?r /.A/ ) rank PU˝V.A/ � min.dim U; dim V; r/:
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Thus

max
U2Gr.p;Rm/;V2Gr.q;Rn/

kPU˝V.A/k2 D kPU?l ˝V?l
.A/k2 D

X
j2Œl�

�j .A/
2;

min
U2Gr.p;Rm/;V2Gr.q;Rn/

kA � PU˝V.A/k2 D kA � PU?l ˝V?l
.A/k2 D

X
j2Œr�nŒl�

�j .A/
2;

l D min.p; q; r/: (14.8)

To compute U?
l ;V

?
l and �1.A/; : : : ; �l .A/ of a large scale matrix A one can

use Arnoldi or Lanczos methods [19, 31], which are implemented in the partial
singular value decomposition. This requires a substantial number of matrix-vector
multiplications with the matrix A and thus a complexity of at least O.lmn/.

14.3 Sampling in Low Rank Approximation of Matrices

Let A D Œai;j �
m;n
iDjD1 2 R

m�n be given. Assume that b1; : : : ;bm 2 R
n; c1; : : : ; cn 2

R
m are the columns of A> and A respectively. (b>

1 ; : : : b
>
m are the rows of A.) Most

of the known fast rank k-approximation are using sampling of rows or columns of
A, or both.

14.3.1 Low Rank Approximations Using Sampling of Rows

Suppose that we sample a set

I WD f1 � i1 < : : : < is � mg � Œm�; jI j D s; (14.9)

of rows b>
i1
; : : : ;b>

is
, where s � k. Let W.I / WD span.bi1 ; : : : ;bis /. Then with high

probability the projection of the first i -th right singular vectors vi on W.I / is very
close to vi for i 2 Œk�, provided that s � k. In particular, [5, Theorem 2] claims:

Theorem 1 (Deshpande-Vempala) Any A 2 R
m�n contains a subset I of s D

4k
�

C2k log.kC1/ rows such that there is a matrix QAk of rank at most k whose rows
lie in W.I / and

kA � QAkk2 � .1C �/kA � Akk2:

To find a rank-k approximation of A, one projects each row of A on W.I / to
obtain the matrix PRm˝W.I /.A/. Note that we can view PRm˝W.I /.A/ as an m �
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s0 matrix, where s0 D dim W.I / � s. Then find a best rank k-approximation to
PRm˝W.I /.A/, denoted as PRm˝W.I /.A/k . Theorem 1 and the results of [18] yield
that

kA � PRm˝W.I /.A/kk2 � .1C �/kA � Akk2 C �kA � PRm˝W.I /.A/k2:

Here � is proportional to k
s
, and can be decreased with more rounds of sampling.

Note that the complexity of computing PRm˝W.I /.A/k is O.ks0m/. The key weak-
ness of this method is that to computePRm˝W.I /.A/ one needs O.s0mn/ operations.
Indeed, after having computed an orthonormal basis of W.I /, to compute the
projection of each row of A on W.I / one needs s0n multiplications.

An approach for finding low rank approximations of A using random sampling
of rows or columns is given in Friedland-Kave-Niknejad-Zare [11]. Start with
a random choice of I rows of A, where jI j � k and dim W.I / � k. Find
PRm˝W.I /.A/ and B1 WD PRm˝W.I /.A/k as above. Let U1 2 Gr.k;Rm/ be the
subspace spanned by the first k left singular vectors of B1. Find B2 D PU1˝Rn.A/.
Let V2 2 Gr.k;Rn/ correspond to the first k right singular vectors ofB2. Continuing
in this manner we obtain a sequence of rank k-approximations B1;B2; : : :. It is
shown in [11] that kA � B1k � kA � B2k � : : : and kB1k � kB2k � : : :.
One stops the iterations when the relative improvement of the approximation falls
below the specified threshold. Assume that �k.A/ > �kC1.A/. Since best rank-k
approximation is a unique local minimum for the function kA�Bk; B 2 R.m; n; k/
[19], it follows that in general the sequence Bj ; j 2 N converges to Ak . It is
straightforward to show that this algorithm is the AMM for low rank approximations
given in Sect. 14.6.2. Again, the complexity of this method is O.kmn/.

Other suggested methods as [1, 7, 37, 38] seem to have the same complexity
O.kmn/, since they project each row of A on some k-dimensional subspace of Rn.

14.3.2 CUR-Approximations

Let

J WD f1 � j1 < : : : < jt � ng � Œn�; jJ j D t; (14.10)

and I � Œm� as in (14.9) be given. Denote by AŒI; J � WD Œaip;jq �
s;t
pDqD1 2 R

s�t .
CUR-approximation is based on sampling simultaneously the set of I rows and J
columns of A and the approximation matrix to A.I; J; U / given by

A.I; J; U / WD CUR; C WD AŒŒm�; J �; R WD AŒI; Œn��; U 2 R
t�s: (14.11)

Once the sets I and J are chosen the approximation A.I; J; U / depends on the
choice of U . Clearly the row and the column spaces of A.I; J; U / are contained
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in the row and column spaces of AŒI; Œn�� and AŒŒm�; J � respectively. Note that to
store the approximation A.I; J; U / we need to store the matrices C , R and U .
The number of these entries is tm C sn C st . So if n;m are of order 105 and s; t
are of order 102 the storages of C;R;U can be done in Random Access Memory
(RAM), while the entries of A are stored in external memory. To compute an entry
of A.I; J; U /, which is an approximation of the corresponding entry of A, we need
st flops.

Let U and V be subspaces spanned by the columns of AŒŒm�; J � and AŒI; Œn��>
respectively. Then A.I; J; U / 2 UV>, see (14.7).

Clearly, a best CUR approximation is chosen by the least squares principle:

A.I; J; U ?/ D A.Œm�; J /U ?A.I; Œn�/;

U ? D arg minfkA� A.Œm�; J /UA.I; Œn�/k; U 2 R
jJ j�jI jg: (14.12)

The results in [17] show that the least squares solution of (14.12) is given by:

U? D A.Œm�; J /�AA.I; Œn�/�: (14.13)

Here F � denotes the Moore-Penrose pseudoinverse of a matrix F . Note that U? is
unique if and only if

rank AŒŒm�; J � D jJ j; rank AŒI; Œn�� D jI j: (14.14)

The complexity of computation of A.Œm�; J /� and A.I; Œn�/� are O.t2m/ and
O.s2n/ respectively. Because of the multiplication formula for U?, the complexity
of computation of U? is O.stmn/.

One can significantly improve the computation of U , if one tries to best fit the
entries of the submatrix AŒI 0; J 0� for given subsets I 0 � Œm�; J 0 � Œn�. That is, let

U?.I 0; J 0/ WD arg minfkAŒI 0; J 0� � A.I 0; J /UA.I; J 0/k; U 2 R
jJ j�jI jg D

AŒI 0; J ��AŒI 0; J 0�A�ŒI; J 0�: (14.15)

(The last equality follows from (14.13).) The complexity of computation of
U?.I 0; J 0/ is O.st jI 0jjJ 0j/.

Suppose finally, that I 0 D I and J 0. Then (14.15) and the properties of the
Moore-Penrose inverse yield that

U?.I; J / D AŒI; J ��; A.I; J; U ?.I; J // D B.I; J / WD AŒŒm�; J �AŒI; J ��AŒI; Œn��:

(14.16)
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In particular B.I; J /ŒI; J � D AŒI; J �. Hence

AŒŒm�; J � D B.I; J /ŒŒm�; J �; AŒI; Œn�� D B.I; J /ŒI; Œn��;

B.I; J / D AŒŒm�; J �AŒI; J ��1AŒI; Œn�� if jI j D jJ j D k and detAŒI; J � ¤ 0:

(14.17)

The original CUR approximation of rank k has the form B.I; J / given by (14.17)
[21].

Assume that rank A � k. We want to choose an approximation B.I; J / of the
form (14.17) which gives a good approximation to A. It is possible to give an upper
estimate for the maximum of the absolute values of the entries of A � B.I; J / in
terms of �kC1.A/, provided that detAŒI; J � is relatively close to

�k WD max
I
Œm�;J
Œn�;jI jDjJ jD

j detAŒI; J �j > 0: (14.18)

Let

kF k1;e WD max
i2Œm�;j2Œn� jfi;j j; F D Œfi;j � 2 R

m�n: (14.19)

The results of [21, 22] yield:

kA � B.I; J /k1;e � .k C 1/�k

detAŒI; J �
�pC1.A/: (14.20)

(See also [10, Chapter 4, §13].)
To find �k is probably an NP-hard problem in general [9]. A standard way to find

�k is either a random search or greedy search [9, 20]. In the special case when A
is a symmetric positive definite matrix one can give the exact conditions when the
greedy search gives a relatively good result [9].

In the paper by Friedland-Mehrmann-Miedlar-Nkengla [13] a good approx-
imation B.I; J / of the form (14.17) is obtained by a random search on the
maximum value of the product of the significant singular values of AŒI; J �. The
approximations found in this way are experimentally better than the approximations
found by searching for �k .

14.4 Fast Approximation of Tensors

The fast approximation of tensors can be based on several decompositions of
tensors such as: Tucker decomposition [42]; matricizations of tensors, as unfolding
and applying SVD one time or several time recursively, (see below); higher order
singular value decomposition (HOSVD) [3], Tensor-Train decompositions [34, 35];
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hierarchical Tucker decomposition [23, 25]. A very recent survey [24] gives an
overview on this dynamic field. In this paper we will discuss only the CUR-
approximation.

14.4.1 CUR-Approximations of Tensors

Let T 2 R
n1�:::nd . In this subsection we denote the entries of T as T .i1; : : : ; id /

for ij 2 Œnj � and j 2 Œd �. CUR-approximation of tensors is based on matricizations
of tensors. The unfolding of T in the mode l 2 Œd � consists of rearranging the

entries of T as a matrix Tl.T / 2 R
nl�Nl , where Nl D

Q
i2Œd � ni

nl
. More general,

let K [ L D Œd � be a partition of Œd � into two disjoint nonempty sets. Denote
N.K/ D Q

i2K ni ; N.L/ D Q
j2L nj . Then unfoldingT into the two modesK and

L consists of rearranging the entires of T as a matrix T .K;L;T / 2 R
N.K/�N.L/.

We now describe briefly the CUR-approximation of 3 and 4-tensors as described
by Friedland-Mehrmann-Miedlar-Nkengla [13]. (See [33] for another approach to
CUR-approximations for tensors.) We start with the case d D 3. Let Ii be a
nonempty subset of Œni � for i 2 Œ3�. Assume that the following conditions hold:

jI1j D k2; jI2j D jI3j D k; J WD I2 � I3 � Œn2� � Œn3�:

We identify Œn2� � Œn3� with Œn2n3� using a lexicographical order. We now take the
CUR-approximation of T1.T / as given in (14.17):

B.I1; J / D T1.T /ŒŒn1�; J �T1.T /ŒI1; J �
�1T1.T /ŒI1; Œn2n3��:

We view T1.T /ŒŒn1�; J � as an n1 � k2 matrix. For each ˛1 2 I1 we view
T1.T /Œf˛1g; Œn2n3�� as an n2 � n3 matrix Q.˛1/ WD ŒT .˛1; i2; i3/�i22Œn2�;i32Œn3�. Let
R.˛1/ be the CUR-approximation of Q.˛1/ based on the sets I2; I3:

R.˛1/ WD Q.˛1/ŒŒn2�; I3�Q.˛1/ŒI2; I3�
�1Q.˛1/ŒI2; Œn3��:

Let F WD T1.T /ŒI1; J �
�1 2 R

k2�k2 . We view the entries of this matrix indexed
by the row .˛2; ˛3/ 2 I2 � I3 and column ˛1 2 I1. We write these entries as
F .˛1; ˛2; ˛3/; ˛j 2 Ij ; j 2 Œ3�, which represent a tensor F 2 R

I1�I2�I3 . The
entries of Q.˛1/ŒI2; I3��1 are indexed by the row ˛3 2 I3 and column ˛2 2 I2.
We write these entries as G .˛1; ˛2; ˛3/; ˛2 2 I2; ˛3 2 I3, which represent a tensor
G 2 R

I1�I2�I3 . Then the approximation tensor B D ŒB.j1; j2; j3/� 2 R
n1�n2�n3 is

given by:

B.i1; i2; i3/ D
X

˛12I1;˛j ;ˇj 2Ij ;jD2;3

T .i1; ˛2; ˛3/F .˛1; ˛2; ˛3/T .˛1; j2; ˇ3/G .˛1; ˇ2; ˇ3/T .˛1; ˇ2; j3/:
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We now discuss a CUR-approximation for 4-tensors, i.e. d D 4. Let T 2
R
n1�n2�n3�n4 and K D f1; 2g; L D f3; 4g. The rows and columns of X WD

T .K;L;T / 2 R
.n1n2/�.n3n4/ are indexed by pairs .i1; i2/ and .i3; i4/ respectively.

Let

Ij � Œnj �; jIj j D k; j 2 Œ4�; J1 WD I1 � I2; J2 WD I3 � I4:

First consider the CUR-approximation XŒŒn1n2�; J2�XŒJ1; J2�
�1XŒJ1; Œn3n4��

viewed as tensor C 2 R
n1�n2�n3�n4 . Denote by H .˛1; ˛2; ˛3; ˛4/ the

..˛3; ˛4/; .˛1; ˛2// entry of the matrix XŒJ1; J2��1. So H 2 R
I1�I2�I3�I4 . Then

C .i1; i2; i3; i4/ D
X

˛j2Ij ;j2Œ4�
T .i1; i2; ˛3; ˛4/H .˛1; ˛2; ˛3; ˛4/T .˛1; ˛2; i3; i4/:

For ˛j 2 Ij ; j 2 Œ4� view vectors XŒŒn1n2�; .˛3; ˛4/� and XŒ.˛1; ˛2/; Œn3n4�� as
matrices Y.˛3; ˛4/ 2 R

n1�n2 and Z.˛1; ˛2/ 2 R
n3�n4 respectively. Next we find the

CUR-approximations to these two matrices using the subsets .I1; I2/ and .I3; I4/
respectively:

Y.˛3; ˛4/ŒŒn1�; I2�Y.˛3; ˛4/ŒI1; I2�
�1Y.˛3; ˛4/ŒI1; Œn2��;

Z.˛1; ˛2/ŒŒn3�; I4�Z.˛1; ˛2/ŒI3; I4�
�1Z.˛1; ˛2/ŒI3; Œn4��:

We denote the entries of Y.˛3; ˛4/ŒI1; I2��1 and Z.˛1; ˛2/ŒI3; I4��1 by

F .˛1; ˛2; ˛3; ˛4/; ˛1 2 I1; ˛2 2 I2;
and G .˛1; ˛2; ˛3; ˛4/; ˛3 2 I3; ˛4 2 I4;

respectively. Then the CUR-approximation tensor B of T is given by:

B.i1; i2; i3; i4/ D
X

˛j ;ˇj2Ij ;j2Œ4�
T .i1; ˇ2; ˛3; ˛4/F .ˇ1; ˇ2; ˛3; ˛4/T .ˇ1; i2; ˛3; ˛4/

H .˛1; ˛2; ˛3; ˛4/T .˛1; ˛2; i3; ˇ4/G .˛1; ˛2; ˇ3; ˇ4/T .˛1; ˛2; ˇ3; i4/:

We now discuss briefly the complexity of the storage and computing an entry
of the CUR-approximation B. Assume first that d D 3. Then we need to store k2

columns of the matrices T1.T /, k3 columns of T2.T / and T3.T /, and k4 entries
of the tensors F and G . The total storage space is k2n1 C k3.n2 C n3/C 2k4. To
compute each entry of B we need to perform 4k6 multiplications and k6 additions.

Assume now that d D 4. Then we need to store k3 columns of Tl.T /; l 2 Œ4�

and k4 entries of F ;G ;H . Total storage needed is k3.n1 Cn2 Cn3 Cn4 C3k/. To
compute each entry of B we need to perform 6k8 multiplications and k8 additions.
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14.5 Preliminary Results on Best r-Approximation

14.5.1 The Maximization Problem

We first show that the best approximation problem (14.4) is equivalent to the
maximum problem (14.5), see [4] and [26, §10.3]. The Pythagoras theorem yields
that

kT k2 D kP˝d
iD1Ui

.T /k2 C kP.˝d
iD1Ui /?

.T /k2;
kT � P˝d

iD1Ui
.T /k2 D kP.˝d

iD1Ui /?
.T /k2:

(Here .˝d
iD1Ui /

? is the orthogonal complement of ˝d
iD1Ui in ˝d

iD1Rni .) Hence

min
Ui2Gr.ri ;Rni /;i2Œd �

kT �P˝d
iD1Ui

.T /k2 D kT k2 � max
Ui2Gr.ri ;Rni /;i2Œd �

kP˝iD1Ui .T /k2:
(14.21)

This shows the equivalence of (14.4) and (14.5).

14.5.2 Singular Values and Singular Tuples of Tensors

Let S.n/ D fx 2 R
n; kxk D 1g. Note that one dimensional subspace U 2 Gr.1;Rn/

is span.u/, where u 2 S.n/. Let S.n/ WD S.n1/ � � � � � S.nd /. Then best rank one
approximation problem for T 2 R

n is equivalent to finding

kT k� WD max
.x1;:::;xd /2S.n/

T � .˝i2Œd �xi /: (14.22)

Let fT W Rn ! R is given by fT .X / D hX ;T i. Denote by S0.n/ � R
n all rank

one tensors of the form ˝i2Œd �xi , where .x1; : : : ; xn/ 2 S.n/. Let fT .x1; : : : ; xd / WD
fT .˝i2Œd �xi /. Then the critical points of fT jS0.n/ are given by the Lagrange
multipliers formulas [32]:

T � .˝j2Œd �nfiguj / D �ui ; i 2 Œd �; .u1; : : : ;ud / 2 S.n/: (14.23)

One calls � and .u1; : : : ;ud / a singular value and singular tuple of T . For d D 2

these are the singular values and singular vectors of T . The number of complex
singular values of a generic T is given in [16]. This number increases exponentially
with d . For example for n1 D � � � D nd D 2 the number of distinct singular values
is dŠ. (The number of real singular values as given by (14.23) is bounded by the
numbers given in [16].)

Consider first the maximization problem of fT .x1; : : : ; xd / over S.n/ where we
vary xi 2 S.ni / and keep the other variables fixed. This problem is equivalent to
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the maximization of the linear form x>
i .T � .˝j2Œd �nfigxj //. Note that if T �

.˝j2Œd �nfigxj / ¤ 0 then this maximum is achieved for xi D 1
kT �.˝j2Œd �nfigxj /kT �

.˝j2Œd �nfigxj /.
Consider second the maximization problem of fT .x1; : : : ; xd / over S.n/ where

we vary .xi ; xj / 2 S.ni /�S.nj /; 1 � i < j � d and keep the other variables fixed.
This problem is equivalent to finding the first singular value and the corresponding
right and left singular vectors of the matrix T � .˝k2Œd �nfi;j gxk/. This can be done
by using use Arnoldi or Lanczos methods [19, 31]. The complexity of this method
is O.ninj /, given the matrix T � .˝k2Œd �nfi;j gxk/.

14.5.3 A Basic Maximization Problem for Best
r-Approximation

Denote by Sn � R
n�n the space of real symmetric matrices. For A 2 Sn denote

by �1.A/ � : : : � �n.A/ the eigenvalues of A arranged in a decreasing order and
repeated according to their multiplicities. Let O.n; k/ � R

n�k be the set of all n�k
matricesX with k orthonormal columns, i.e.X>X D Ik, where Ik is k�k identity
matrix. We view X 2 R

n�k as composed of k-columns Œx1 : : : xk�. The column
space of X 2 O.n; k/ corresponds to a k-dimensional subspace U � R

n. Note that
U 2 Gr.k;Rn/ is spanned by the orthonormal columns of a matrix Y 2 O.n; k/ if
and only if Y D XO , for some O 2 O.k; k/.

For A 2 Sn one has the Ky-Fan maximal characterization [28, Cor. 4.3.18]

max
Œx1:::xk �2O.n;k/

kX
iD1

x>
i Axi D

kX
iD1

�i .A/: (14.24)

Equality holds if and only if the column space of X D Œx1 : : : xk� is a subspace
spanned by k eigenvectors corresponding to k-largest eigenvalues of A.

We now reformulate the maximum problem (14.5) in terms of orthonormal bases
of Ui ; i 2 Œd �. Let u1;i ; : : : ;uni ;i be an orthonormal basis of Ui for i 2 Œd �. Then
˝d
iD1uji ;i ; ji 2 Œni �; i 2 Œd � is an orthonormal basis of ˝d

iD1Ui . Hence

kP˝d
iD1Ui

.T /k2 D
X

ji2Œni �;i2Œd �
hT ;˝d

iD1uji ;i i2:

Hence (14.5) is equivalent to

max
Œu1;i :::uri ;i �2O.ni ;ri /;i2Œd �

X
ji2Œni �;i2Œd �

hT ;˝d
iD1uji ;i i2 D (14.25)

max
Ui2Gr.ri ;Rni /;i2Œd �

kP˝d
iD1Ui

.T /k2:
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A simpler problem is to find

max
Œu1;i :::uri ;i �2O.ni ;ri /

X
ji2Œni �;i2Œd �

hT ;˝d
iD1uji ;i i2 D (14.26)

max
Ui2Gr.ri ;Rni /

kP˝d
iD1Ui

.T /k2;

for a fixed i 2 Œd �. Let

U WD .U1; : : : ;Ud / 2 Gr.r;n/;

Gri .r; n/ WD Gr.r1; n1/ � : : : � Gr.ri�1; ni�1/ � Gr.riC1; niC1/ � : : : � Gr.rd ; nd /;

U i WD .U1; : : : ;Ui�1;UiC1; : : : ;Ud / 2 Gri .r;n/;

Ai .U i / WD
X

jl2Œrl �;l2Œd �nfig
.T � ˝k2Œd �nfigujk;k/.T � ˝k2Œd �nfigujk;k/

>: (14.27)

The maximization problem (14.25) reduces to the maximum problem (14.24)
with A D Ai.U i /. Note that each Ai.U i/ is a positive semi-definite matrix. Hence
�j .Ai.U i // D �j .Ai .U i// for j 2 Œni �. Thus the complexity to find the first ri
eigenvectors of Ai.U i / is O.rin2i /. Denote by Ui .U i / 2 Gr.ri ;Rni / a subspace
spanned by the first ri eigenvectors of Ai.U i /. Note that this subspace is unique if
and only if

�ri .Ai .U i // > �riC1.Ai .U i //: (14.28)

Finally, if r D 1d then each Ai.U i / is a rank one matrix. Hence Ui .U i / D
span.T � ˝k2Œd �nfigu1;k/. For more details see [12].

14.6 Alternating Maximization Methods for Best
r-Approximation

14.6.1 General Definition and Properties

Let �i be a compact smooth manifold for i 2 Œd �. Define

� WD �1 � � � � � �d ; O�i D .�1 � � � � � �i�1 � �iC1 � � � � � �d/ for i 2 Œd �:

We denote by  i ,  D . 1; : : : ;  d / and O i D . 1; : : : ;  i�1;  iC1; : : : ;  d / the
points in �i , � and O�i respectively. Identify  with . i ; O i/ for each i 2 Œd �.
Assume that f W � ! R is a continuous function with continuous first and second
partial derivatives. (In our applications it may happen that f has discontinuities in



392 S. Friedland and V. Tammali

first and second partial derivatives.) We want to find the maximum value of f and a
corresponding maximum point  ?:

max
 2� f . / D f . ?/: (14.29)

Usually, this is a hard problem, where f has many critical points and a number
of these critical points are local maximum points. In some cases, as best r
approximation to a given tensor T 2 R

n, we can solve the maximization problem
with respect to one variable  i for any fixed O i :

max
 i2�i

f .. i ; O i// D f .. ?i .
O i/; O i //; (14.30)

for each i 2 Œd �.
Then the alternating maximization method, abbreviated as AMM, is as fol-

lows. Assume that we start with an initial point  .0/ D . 
.0/
1 ; : : : ;  

.0/

d / D
. 

.0/
1 ; O .0;1/1 /. Then we consider the maximal problem (14.30) for i D 1 and

O 1 WD O .0;1/1 . This maximum is achieved for  .1/1 WD  ?1 .
O .0;1/1 /. Assume that

the coordinates  .1/1 ; : : : ;  
.1/
j are already defined for j 2 Œd � 1�. Let O .0;jC1/

jC1 WD
. 

.1/
1 ; : : : ;  

.1/
j ;  

.0/
jC2; : : : ;  

.0/

d /. Then we consider the maximum problem (14.30)

for i D j C 1 and O jC1 WD O jC1j .0;jC1/. This maximum is achieved for  .1/jC1 WD
 ?jC1. O .0;jC1/

jC1 /. Executing these d iterations we obtain  .1/ WD . 
.1/
1 ; : : : ;  

.1/

d /.
Note that we have a sequence of inequalities:

f . .0// � f . 
.1/
1 ; O .0;1/1 / � f . 

.1/
2 ; O .0;2/2 / � � � � � f . 

.1/

d ; O .0;d/d / D f . .1//:

Replace  .0/ with  .1/ and continue these iterations to obtain a sequence  .l/ D
. 

.l/
1 ; : : : ;  

.l/

d / for l D 0; : : : ; N . Clearly,

f . .l�1// � f . .l// for l 2 N ) lim
l!1f . .l// D M: (14.31)

Usually, the sequence  .l/; l D 0; : : : ; will converge to 1-semi maximum point
� D .�1; : : : ; �d / 2 � . That is, f .�/ D max i2� f .. i ; O�i // for i 2 Œd �. Note
that if f is differentiable at � then � is a critical point of f . Assume that f is
twice differentiable at �. Then � does not have to be a local maximum point [15,
Appendix].

The modified alternating maximization method, abbreviated as MAMM, is as
follows. Assume that we start with an initial point  .0/ D . 

.0/
1 ; : : : ;  

.0/

d /. Let

 .0/ D . 
.0/
i ; O .0/i / for i 2 Œd �. Compute fi;0 D max i2�i f .. i ; O .0/i // for i 2 Œd �.

Let j1 2 arg maxi2Œd � fi;0. Then .1/ D . ?j .
O .0/j1 /; O .0/j1 / and f1 D f1;j1 D f . .1//.

Note that it takes d iterations to compute  .1/. Now replace  .0/ with  .1/ and
compute fi;1 D max i2�i f .. i ; O .1/i // for i 2 Œd �nfj1g. Continue as above to find
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 .l/ for l D 2; : : : ; N . Note that for l � 2 it takes d � 1 iterations to determine
 .l/. Clearly, (14.31) holds. It is shown in [15] that the limit � of each convergent
subsequence of the points  .j / is 1-semi maximum point of f .

In certain very special cases, as for best rank one approximation, we can solve
the maximization problem with respect to any pair of variables  i ;  j for 1 � i <

j � d , where d � 3 and all other variables are fixed. Let

O�i;j WD �1 � � � � � �i�1 � �iC1 � � � � � �j�1 � �jC1 � � � � � �d ;
O i;j D . 1; : : : ;  i�1;  iC1; : : : ;  j�1;  jC1; : : : ;  d / 2 O�i;j ;
 i;j D . i ;  j / 2 �i � �j :

View  D . 1; : : : ;  d / as . i;j ; O i;j / for each pair 1 � i < j � d . Then

max
 i;j2�i��j

f .. i;j ; O i;j // D f .. ?i;j .
O i;j /; O i;j //: (14.32)

A point  is called 2-semi maximum point if the above maximum equals to f . /
for each pair 1 � i < j � d .

The 2-alternating maximization method, abbreviated here as 2AMM, is as
follows. Assume that we start with an initial point .0/ D . 

.0/
1 ; : : : ;  

.0/

d /. Suppose
first that d D 3. Then we consider the maximization problem (14.32) for i D
2; j D 3 and O 2;3 D  

.0/
1 . Let . .0;1/2 ;  

.0;1/
3 / D  ?2;3. 

.0/
1 /. Next let i D 1; j D 3

and  1;3 D  
.0;1/
2 . Then . .0;2/1 ;  

.0;2/
3 / D  ?1;3. 

.0;1/
2 /. Next let i D 1; 2 and

O 1;2 D  
.0;2/
3 . Then .1/ D . O ?1;2. .0;2/3 /;  

.0;2/
3 /. Continue these iterations to obtain

 .l/ for l D 2; : : :. Again, (14.31) holds. Usually the sequence  .l/; l 2 N will
converge to a 2-semi maximum point �. For d � 4 the 2AMM can be defined
appropriately see [15].

A modified 2-alternating maximization method, abbreviated here as M2AMM, is
as follows. Start with an initial point .0/ D . 

.0/
1 ; : : : ;  

.0/

d / viewed as . .0/i;j ; O .0/i;j /,
for each pair 1 � i < j � d . Let fi;j;0 WD max i;j2�i��j f .. i;j ; O .0/i;j //.
Assume that .i1; j1/ 2 arg max1�i<j�d fi;j;0. Then  .1/ D . ?i1;j1.

O .0/i1;j1 /; O .0/i1;j1 /.
Let fi1;j1;1 WD f . .1//. Note that it takes

�
d
2

�
iterations to compute  .1/. Now

replace  .0/ with  .1/ and compute fi;j;1 D max i;j2�i��j f .. i;j ; O .1/i;j // for all

pairs 1 � i < j � d except the pair .i1; j1/. Continue as above to find  .l/

for l D 2; : : : ; N . Note that for l � 2 it takes
�
d
2

� � 1 iterations to determine
 .l/. Clearly, (14.31) holds. It is shown in [15] that the limit � of each convergent
subsequence of the points  .j / is 2-semi maximum point of f .
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14.6.2 AMM for Best r-Approximations of Tensors

Let T 2 R
n. For best rank one approximation one searches for the maximum of

the function fT D T � .˝i2Œd �xi / on S.n/, as in (14.22). For best r-approximation
one searches for the maximum of the function fT D kP˝i2Œd �Ui k2 on Gr.r;n/, as in
(14.26). A solution to the basic maximization problem with respect to one subspace
Ui is given in Sect. 14.5.3.

The AMM for best r-approximation were studied first by de Lathauwer-Moor-
Vandewalle [4]. The AMM is called in [4] alternating least squares, abbreviated
as ALS. A crucial problem is the starting point of AMM. A high order SVD,
abbreviated as HOSVD, for T , see [3], gives a good starting point for AMM. That
is, let Tl.T / 2 R

nl�Nl be the unfolded matrix of T in the mode l , as in Sect. 14.4.1.
Then Ul is the subspace spanned by the first l-left singular vectors of Tl.T /. The
complexity of computing Ul is O.rlN /, where N D Q

i2Œd � ni . Hence for large N
the complexity of computing partial HOSVD is high. Another approach is to choose
the starting subspaces at random, and repeat the AMM for several choices of random
starting points.

MAMM for best rank one approximation of tensors was introduced by Friedland-
Mehrmann-Pajarola-Suter in [15] by the name modified alternating least squares,
abbreviated as MALS. 2AMM for best rank one approximation was introduced
in [15] by the name alternating SVD, abbreviated as ASVD. It follows from the
observation thatA WD T �.˝l2Œd �nfi;j gxl / is an ni �nj matrix. Hence the maximum
of the bilinear form x>Ay on S..ni ; nj // is �1.A/. See Sect. 14.2. M2AMM was
introduced in [15] by the names MASVD.

We now introduce the following variant of 2AMM for best r-rank approximation,
called 2-alternating maximization method variant and abbreviated as 2AMMV.
Consider the maximization problem for a pair of variables as in (14.32). Since for
r ¤ 1d we do not have a closed solution to this problem, we apply the AMM for
two variables  i and  j , while keeping O i;j fixed. We then continue as in 2AMM
method.

14.6.3 Complexity Analysis of AMM for Best r-Approximation

Let U D .U1; : : : ;Ud /. Assume that

Ui D span.u1;i ; : : : ;uri ;ni /; U?
i D span.uriC1; : : : ;uni ;i /;

u>
j;iuk;i D ıj;k; j; k 2 Œni �; i 2 Œd �: (14.33)

For each i 2 Œd � compute the symmetric positive semi-definite matrixAi.U i / given
by (14.27). For simplicity of exposition we give the complexity analysis for d D 3.
To computeA1.U 1/ we need first to compute the vectors T �.uj2;2˝uj3;3/ for j2 2
Œr2� and j3 2 Œr3�. Each computation of such a vector has complexity O.N /, where
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N D n1n2n3. The number of such vectors is r2r3. To form the matrix Ai.U i / we
need O.r2r3n21/ flops. To find the first r1 eigenvectors of A1.U 1/ we need O.r1n21/
flops. Assuming that n1; n2; n3 
 n and r1; r2; r3 
 r we deduce that we need
O.r2n3/ flops to find the first r1 orthonormal eigenvectors of A1.U 1/ which span
U1.U 1/. Hence the complexity of finding orthonormal bases of U1.U 1/ is O.r2n3/,
which is the complexity of computing A1.U 1/. Hence the complexity of each step
of AMM for best r-approximation, i.e. computing  .l/, is O.r2n3/.

It is possible to reduce the complexity of AMM for best r-approximation is to
O.rn3/ if we compute and store the matrices T � uj1;1;T � uj2;2;T � uj3;3. See
Sect. 14.10.

We now analyze the complexity of AMM for rank one approximation. In this
case we need only to compute the vector of the form vi WD T � .˝j2Œd �nfiguj / for
each i 2 Œd �, where Uj D span.uj / for j 2 Œi �. The computation of each vi needs
O..d �2/N / flops, whereN D Q

j2Œd �. Hence each step of AMM for best rank one
approximation is O.d.d � 2/N /. So for d D 3 and n1 
 n2 
 n3 the complexity
is O.n3/, which is the same complexity as above with r D 1.

14.7 Fixed Points of AMM and Newton Method

Consider the AMM as described in Sect. 14.6.1. Assume that the sequence  .l/; l 2
N converges to a point � 2 � . Then � is a fixed point of the map:

QF W � ! �; QF D . QF1; : : : ; QFd /; QFi W � ! �i ; QFi. /D ?i .
O i /;  D . i ; O i/; i 2 Œd �:

(14.34)

In general, the map QF is a multivalued map, since the maximum given in (14.30)
may be achieved at a number of points denoted by  ?i . O i/. In what follows we
assume:

Assumption 1 The AMM converges to a fixed point � of QF i.e. QF.�/ D �, such that
the following conditions hold:

1. There is a connected open neighborhood O � � such that QF W O ! O is one
valued map.

2. QF is a contraction on O with respect to some norm on O .
3. QF 2 C2.O/, i.e. QF has two continuous partial derivatives in O .
4. O is diffeomorphic to an open subset in R

L. That is, there exists a smooth one-
to-one map H W O ! R

L such that the Jacobian D.H/ is invertible at each
point  2 O .

Assume that the conditions of Assumption 1 hold. Then the map QF W O ! O

can be represented as

F W O1 ! O1; F D H ı QF ıH�1; O1 D H.O/:
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Hence to find a fixed point of QF in O it is enough to find a fixed point of F in O1. A
fixed point of F is a zero point of the system

G.x/ D 0; G.x/ WD x � F.x/: (14.35)

To find a zero of G we use the standard Newton method.
In this paper we propose new Newton methods. We make a few iterations of

AMM and switch to a Newton method assuming that the conditions of Assumption 1
hold as explained above. A fixed point of the map QF for best rank one approximation
induces a fixed point of map F W Rn ! R

n [15, Lemma 2]. Then the corresponding
Newton method to find a zero of G is straightforward to state and implement,
as explained in the next subsection. This Newton method was given in [14,
§5]. See also Zhang-Golub [43] for a different Newton method for best .1; 1; 1/
approximation.

Let QF W Gr.r;n/ ! Gr.r;n/ be the induced map AMM. Each Gr.r;Rn/ can
be decomposed as a compact manifold to a finite number of charts as explained
in Sect. 14.8. These charts induce standard charts of Gr.r;n/. After a few AMM
iterations we assume that the neighborhoodO of the fixed point of QF lies in one the
charts of Gr.r;n/. We then construct the corresponding map F in this chart. Next we
apply the standard Newton method to G. The papers by Eldén-Savas [8] and Savas-
Lim [39] discuss Newton and quasi-Newton methods for .r1; r2; r3/ approximation
of 3-tensors using the concepts of differential geometry.

14.7.1 Newton Method for Best Rank One Approximation

Let T 2 R
n n f0g. Define:

�i D R
ni ; i 2 Œd �; � D R

n1 � � � � � R
nd ;  D .x1; : : : ; xd / 2 �;

fT W � ! R; fT . / D T � .˝j2Œd �xj /; (14.36)

F D .F1; : : : ; Fd / W � ! �; Fi . / D T � .˝j2Œd �nfigxj /; i 2 Œd �: (14.37)

Recall the results of Sect. 14.5.2: Any critical point of fT jS.n/ satisfies (14.23).
Suppose we start the AMM with  .0/ D .x.0/1 ; : : : ; x

.0/

d / 2 S.n/ such that
fT . 

.0// ¤ 0. Then it is straightforward to see that fT . .l// > 0 for l 2 N.
Assume that liml!1  .l/ D ! D .u1; : : : ;ud / 2 S.n/. Then ! is the singular tuple
of T satisfying (14.23). Clearly, � D fT .!/ > 0. Let

� D .y1; : : : ; yd / WD �� 1
d�2 ! D �� 1

d�2 .u1; : : : ;ud /: (14.38)

Then � is a fixed point of F.
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Our Newton algorithm for finding the fixed point � of F corresponding to a fixed
point ! of AMM is as follows. We do a number of iterations of AMM to obtain
 .m/. Then we renormalize  .m/ according to (14.38):

�0 WD .fT . 
.m///� 1

d�2  .m/: (14.39)

Let DF. / denote the Jacobian of F at  , i.e. the matrix of partial derivatives of F
at  . Then we perform Newton iterations of the form:

�.l/ D �.l�1/ � .I �DF.�.l�1///�1.�.l�1/ � F.�.l�1///; l 2 N: (14.40)

After performing a number of Newton iterations we obtain �.m
0/ D .z1; : : : ; zd /

which is an approximation of �. We then renormalize each zi to obtain !.m
0/ WD

. 1
kz1k z1; : : : ; 1

kzd kzd / which is an approximation to the fixed point !. We call this
Newton method Newton-1.

We now give the explicit formulas for 3-tensors, where n1 D m; n2 D n; n3 D l .
First

F.u; v;w/ WD .T �.v˝w/;T �.u˝w/;T �.u˝v//; G WD .u; v;w/�F.u; v;w/:
(14.41)

Then

DG.u; v;w/ D
2
4 Im �T � w �T � v

�.T � w/> In �T � u
�.T � v/> �.T � u/> Il

3
5 : (14.42)

Hence Newton-1 iteration is given by the formula

.uiC1; viC1;wiC1/ D .ui ; vi ;wi /� .DG.ui ; vi ;wi //
�1G.ui ; vi ;wi /;

for i D 0; 1; : : : ;. Here we abuse notation by viewing .u; v;w/ as a column vector
.u>; v>;w>/> 2 C

mCnCl .
Numerically, to find .DG.ui ; vi ;wi //

�1G.ui ; vi ;wi / one solves the linear sys-
tem

.DG.ui ; vi ;wi //.x; y; z/ D G.ui ; vi ;wi /:

The final vector .uj ; vj ;wj / of Newton-1 iterations is followed by a scaling to
vectors of unit length xj D 1

kuj kuj ; yj D 1
kvj k vj ; zj D 1

kwj k wj .

We now discuss the complexity of Newton-1 method for d D 3. Assuming that
m 
 n 
 l we deduce that the computation of the matrix DG is O.n3/. As the
dimension of DG is m C n C l it follows that the complexity of each iteration of
Newton-1 method is O.n3/.
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14.8 Newton Method for Best r-Approximation

Recall that an r-dimensional subspace U 2 Gr.r;Rn/ is given by a matrix U D
Œuij �

n;r
i;jD1 2 R

n�r of rank r . In particular there is a subset ˛ � Œn� of cardinality
r so that detU Œ˛; Œr�� ¤ 0. Here ˛ D .˛1; : : : ; ˛r /; 1 � ˛1 < : : : < ˛r � n.
So U Œ˛; Œr�� WD Œu˛i j �

r
i;jD1 2 GL.r;R/, (the group of invertible matrices). Clearly,

V WD UU Œ˛; Œr���1 represents another basis in U. Note that V Œ˛; Œr�� D Ir . Hence
the set of all V 2 R

n�r with the condition: V Œ˛; Œr�� D Ir represent an open cell
in Gr.r; n/ of dimension r.n � r/ denoted by Gr.r;Rn/.˛/. (The number of free
parameters in all such V ’s is .n � r/r .) Assume for simplicity of exposition that

˛ D Œr�. Note that V0 D
�
Ir

0

�
2 Gr.r;Rn/.Œr�/. Let ei D .ı1i ; : : : ; ıni /

> 2 R
n; i D

1; : : : ; n be the standard basis in R
n. So U0 D span.e1; : : : ; er / 2 Gr.r;Rn/.Œr�/,

and V0 is the unique representative of U0. Note that U?
0 , the orthogonal complement

of U0, is span.erC1; : : : ; en/. It is straightforward to see that V 2 Gr.r;Rn/.Œr�/ if
and only if V \ U?

0 D f0g.
The following definition is a geometric generalization of Gr.r;Rn/.˛/:

Gr.r;Rn/.U/ WD fV 2 Gr.r;Rn/; V \ U? D f0gg for U 2 Gr.r;Rn/: (14.43)

A basis for Gr.r;Rn/.U/, which can be identified the tangent hyperplane
TU Gr.r;Rn/, can be represented as ˚rU?: Let u1; : : : ;ur and urC1; : : : ;un be
orthonormal bases of U and U? respectively Then each subspace V 2 Gr.r;Rn/.U/
has a unique basis of the form u1 C x1; : : : ;ur C xr for unique x1; : : : ; xr 2 U?.
Equivalently, every matrix X 2 R

.n�r/�r induces a unique subspace V using the
equality

Œx1 : : : xr � D Œu1 : : : un�r �X for each X 2 R
.n�r/�r : (14.44)

Recall the results of Sect. 14.5.3. Let U D .U1; : : : ; Ud / 2 Gr.r;n/. Then

QF D . QF1; : : : ; QFd/ W Gr.r;n/ ! Gr.r;n/; QFi .U / D Ui .U i /; i 2 Œd �; (14.45)

where Ui .U i / a subspace spanned by the first ri eigenvectors of Ai.U i /. Assume
that QF is one valued at U , i.e. (14.28) holds. Then it is straightforward to show that
QF is smooth (real analytic) in neighborhood of U . Assume next that there exists a
neighborhoodO of U such that

O � Gr.r;n/.U / WD Gr.r1;R
n1/.U1/ � � � � � Gr.rd ;R

nd /.Ud /; U D .U1; : : : ;Ud /;
(14.46)
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such that the conditions 1–3 of Assumption 1 hold. Observe next that Gr.r;n/.U /
is diffeomorphic to

R
L WD R

.n1�r1/�r1 : : : � R
.nd�rd /�rd ; L D

X
i2Œd �

.ni � ri /ri

We say that QF is regular at U if in addition to the above condition the matrix I �
D QF.U / is invertible. We can viewX D ŒX1 : : : Xd � 2 R

.n1�r1/�r1 : : :�R
.nd�rd /�rd .

Then QF onO can be viewed as

F W O1 ! O1; O1 � R
L; F.X/ D ŒF1.X/; : : : ; Fd .X/�; X D ŒX1 : : : Xd � 2 R

L:

(14.47)

Note that Fi .X/ does not depend on Xi for each i 2 Œd �. In our numerical
simulations we first do a small number of AMM and then switch to Newton method
given by (14.40). Observe that U corresponds to X.U/ D ŒX1.U /; : : : ; Xd .U /�.
When referring to (14.40) we identify X D ŒX1; : : : ; Xd � with � D .�1; : : : ; �d /

and no ambiguity will arise.
Note that the case r D 1d corresponds to best rank one approximation. The above

Newton method in this case is different from Newton method given in Sect. 14.7.1.

14.9 A Closed Formula for DF.X.U //

Recall the definitions and results of Sect. 14.5.3. Given U we compute QFi .U / D
Ui .U i /, which is the subspace spanned by the first ri eigenvectors ofAi.U i /, which
is given by (14.27), for i 2 Œd �. Assume that (14.33) holds. Let

Ui .U i / D span.v1;i ; : : : ; vri ;ni /; Ui .U i /
? D span.vriC1;i ; : : : ; vni ;i /;

v>
j;ivk;i D ıjk; j; k 2 Œni �; i 2 Œd �: (14.48)

With each X D ŒX1; : : : ; Xd � 2 R
L we associate the following point

.W1; : : : ;Wd / 2 Gr.r;n/.U /. Suppose that Xi D Œxpq;i � 2 R
.ni�ri /�ri . Then

Wi has a basis of the form

uji ;i C
X

ki2Œni�ri �
xki ji ;iuriCki ;i ; ji 2 Œri �:

One can use the following notation for a basis w1;i ; : : : ;wri ;i , written as a vector
with vector coordinates Œw1;i � � � wri ;i �:

Œw1;i � � � wri ;i � D Œu1;i � � � uri ;i �C ŒuriC1;i � � � uni ;i �Xi ; i 2 Œd �: (14.49)
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Note that to the point U 2 Gr.r;n/.U / corresponds the point X D 0. Since
u1;i ; : : : ;uni ;i is a basis in R

ni it follows that

Œv1;i � � � vri ;i � D Œu1;i � � � uri ;i �Yi;0 C ŒuriC1;i ; : : : ;uni ;i �Xi;0 D Œu1;i � � � uni ;i �Zi;0;

Yi;0 2 R
ri�ri ; Xi;0 2 R

.ni�ri /�ri ; Zi;0 D
�
Yi;0
Xi;0

�
2 R

ni�ri ; for i 2 Œd �: (14.50)

View Œv1;i � � � vri ;i �; Œu1;i � � � uni ;i � as ni � ri and ni � ni matrices with orthonormal
columns. Then

Zi;0 D Œu1;i � � � uni ;i �
>Œv1;i � � � vri ;i �; i 2 Œd �: (14.51)

The assumption that QF W O ! O implies that Yi;0 is an invertible matrix. Hence
Œv1;i � � � vri ;i �Y

�1
i;0 is also a basis in Ui .U i /. Clearly,

Œv1;i � � � vri ;i �Y
�1
i;0 D Œu1;i � � � uri ;ni �C ŒuriC1;i ; : : : ;uni ;i �Xi;0Y �1

i;0 ; i 2 Œd �:

Hence QF.U / corresponds to F.0/ where

Fi .0/ D Xi;0Y
�1
i;0 ; i 2 Œd �; F.0/ D .F1.0/; : : : ; Fd .0//: (14.52)

We now find the matrix of derivatives. So DiFj 2 R
..ni�ri /ri�..nj�rj /rj // is the

partial derivative matrix of .nj � rj /rj coordinates of Fj with respect to .ni �
ri /ri the coordinates of Ui viewed as the matrix

�
Iri
Gi

�
. So Gi 2 R

.ni�ri /�ri are

the variables representing the subspace Ui . Observe first that DiFi D 0 just as in
Newton method for best rank one approximation in Sect. 14.7.1.

Let us now find DiFj .0/. Recall that DiFj .0/ is a matrix of size .ni � ri /ri �
.nj � rj /rj . The entries of DiFj .0/ are indexed by ..p; q/; .s; t// as follows: The
entries of Gi D Œgpq;i � 2 R

.ni�ri /�ri are viewed as .ni � ri /ri variables, and are
indexed by .p; q/, where p 2 Œni � ri �; q 2 Œri �. Fj is viewed as a matrix Gj 2
R
.nj�rj /�rj .The entries of Fj are indexed by .s; t/, where s 2 Œnj �rj � and t 2 Œrj �.

Since U 2 Gr.r;n/.U / corresponds to 0 2 R
L we denote by Aj .0/ the matrix

Aj .U j / for j 2 Œd �. We now give the formula for @Aj .0/

@gpq;i
. This is done by noting

that we vary Ui by changing the orthonormal basis u1;i ; : : : ;uri ;i up to the first
perturbation with respect to the real variable " to

Ou1;i D u1;i ; : : : ; Ouq�1;i D uq�1;i ; Ouq;i D uq;i C"uriCp;i ; OuqC1;i D uqC1;i ; : : : ; Ouri ;i D uri ;i

We denote the subspace spanned by these vectors as Ui ."; p; q/. That is, we change
only the q orthonormal vector of the standard basis in Ui , for q D 1; : : : ; ri . The
new basis is an orthogonal basis, and up order ", the vector uq;i C "uriCp;i is also
of length 1. Let U ."; i; p; q/ D .U1; : : : ;Ui�1;Ui ."; p; q/;UiC1; : : : ;Ud /. Then
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U ."; i; p; q/j is obtained by dropping the subspace Uj from U ."; i; p; q/. We will
show that

Aj .U ."; i; p; q/j / D Aj .U j /C "Bj;i;p;q CO."2/: (14.53)

We now give a formula to compute Bj;i;p;q . Assume that i; j 2 Œd � is a pair of
different integers. Let J be a set of d � 2 pairs [l2Œd �nfi;j gf.kl ; l/g, where kl 2 Œrl �.
Denote by Jij the set of all such J ’s. Note that Jij D Jj i . Furthermore, the
number of elements in Jij is Rij D Q

l2Œd �nfi;j g rl . We now introduce the following
matrices

Cij .J / WD T � .˝.k;l/2Juk;l / 2 R
ni�nj ; J 2 Jij : (14.54)

Note that Cij .J / D Cji.J /
>.

Lemma 1 Let i; j 2 Œd �; i ¤ j . Assume that p 2 Œni � ri �; q 2 Œri �. Then (14.53)
holds. Furthermore

Aj .U j / D
X

k2Œri �;J2Jj i

.Cj i.J /uk;i /.Cj i.J /uk;i />; (14.55)

Bj;i;p;q D
X

J2Jj i

.Cj i.J /ukiCp;i /.Cj i.J /uq;i /> C .Cj i.J /uq;i /.Cj i.J /ukiCp;i />

(14.56)

Proof The identity of (14.55) is just a restatement of (14.27). To compute
Aj .U ."; i; p;

q/j / use (14.54) by replacing uk;i with Ouk;i for k 2 Œni �. Deduce first (14.53)
and then (14.56). ut

Recall that v1;j ; : : : ; vrj ;j is an orthonormal basis of Uj .U j /, and these vec-
tors are the eigenvectors Aj .U j / corresponding its first rj eigenvalues. Let
vrjC1;j ; : : : ; vnj ;i be the last nj � rj orthonormal eigenvectors of Aj .U j /. We
now find the first perturbation of the first ri eigenvectors for the matrix Aj .U j /C
"Bj;i;p;q . Assume first, for simplicity of exposition, that each �k.Aj .U j // is simple
for k 2 Œrj �: Then it is known, e.g. [10, Chapter 4, §19, (4.19.2)]:

vk;j ."; i; p; q/ D vk;jC".�k.Aj .U j //Inj �Aj .U j //
�Bj;i;p;qvk;jCO."2/; k 2 Œrj �:

(14.57)

The assumption that �k.Aj .U j // is a simple eigenvalue for k 2 Œrj � yields

.�k.Aj .U i //Inj � Aj .U j //
�y D

X
l2Œnj �nfkg

1

�k.Aj .U j //� �l .Aj .U j //
.v>
l;j y/vl;j ;

for y 2 R
nj .
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Since we are interested in a basis of Uj .U ."; i; p; q/j / up to the order of " we
can assume that this basis is of the form

Qvk;j ."; i; p; q/ D vk;j C "wk;j .i; p; q/; wk;j .i; p; q/ 2 span.vrjC1;j : : : ; vnj ;j /:

Hence

wk;j .i; p; q/ D
X

l2Œnj �nŒrj �

1

�k.Aj .U j // � �l.Aj .U j //
.v>
l;j ck;j;i;p;q/vl;j ;

ck;j;i;p;q WD Bj;i;p;qvk;j : (14.58)

Note that the assumption (14.28) yields that wk;j is well defined for k 2 Œrj �. Let

Wj .i; p; q/ D Œw1;j .i; p; q/ � � �wrj ;j .i; p; q/� D
�
Vj .i; p; q/

Uj .i; p; q/

�
;

Vj .i; p; q/ 2 R
rj�rj ; Uj .i; p; q/ 2 R

.nj�rj /�rj :

Up to the order of " we have that a basis of Uj .U ."; i; p; q/j / is given by columns

of matrix Zj;0 C "Wj .i; p; q/ D
�
Yj;0 C "Vj .i; p; q/

Xj;0 C "Uj .i; p; q/

�
. Note that

.Zj;0 C "Wj .i; p; q//.Yj;0 C "Vj .i; p; q//
�1

D
�

Irj
.Xj;0 C "Uj .i; p; q//.Yj;0 C "Vj .i; p; q//

�1
�
:

Observe next

Yj;0 C "Vj .i; p; q/ D Yj;0.Irj C "Y �1
j;0 Vj .i; p; q//;

.Yj;0 C "Vj .i; p; q//
�1 D .Irj C "Y �1

j;0 Vj .i; p; q//
�1Y �1

j;0 D
Y �1
j;0 � "Y �1

j;0 Vj .i; p; q/Y
�1
j;0 CO."2/;

.Xj;0 C "Uj .i; p; q//.Yj;0 C "Vj .i; p; q//
�1 D

Xj;0Y
�1
j;0 C ".Uj .i; p; q/Y

�1
j;0 � Xj;0Y

�1
j;0 Vj .i; p; q/Y

�1
j;0 /CO."2/:

Hence

@Fj

@gpq;i
.0/ D Uj .i; p; q/Y

�1
j;0 � Xj;0Y

�1
j;0 Vj .i; p; q/Y

�1
j;0 : (14.59)
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Thus DF.0/ D ŒDiFJ �i;j2Œd � 2 R
L�L. We now make one iteration of Newton

method given by (14.40) for l D 1, where �.0/ D 0:

�.1/ D �.I �DF.0//�1F.0/; �.1/ D ŒX1;1; : : : ; Xd;1� 2 R
L: (14.60)

Let Ui;1 2 Gr.ri ;Rni / be the subspace represented by the matrix Xi;1:

Ui;1 D span. Qu1;i;1; : : : ; Quri ;i;1/; Œ Qu1;i;1; : : : ; Quni ;i;1� D Œu1;i ; : : : ;uni ;i �
�
Iri
Xj;1

�

(14.61)

for i 2 Œd �. Perform the Gram-Schmidt process on Qu1;i;1; : : : ; Quri ;i;1 to obtain an
orthonormal basis u1;i;1; : : : ;uri ;i;1 of Ui;1. Let U WD .U1;1; : : : ;Ud;1/ and repeat the
algorithm which is described above. We call this Newton method Newton-2.

14.10 Complexity of Newton-2

In this section we assume for simplicity that d D 3, r1 D r2 D r3 D r , ni 
 n

for i 2 Œ3�. We assume that executed a number of times the AMM for a given T 2
R

n. So we are given U D .U1; : : : ;Ud /, and an orthonormal basis u1;i ; : : : ;ur;i
of Ui for i 2 Œd �. First we complete each u1;i ; : : : ;ur;i to an orthonormal basis
u1;i ; : : : ;uni ;iof R

ni , which needs O.n3/ flops. Since d D 3 we still need only
O.n3/ to carry out this completion for each i 2 Œ3�.

Next we compute the matrices Cij .J /. Since d D 3, we need n flops to compute
each entry ofCij .J /. Since we have roughlyn2 entries, the complexity of computing
Cij .J / is O.n3/. As the cardinality of Jij is r we need O.rn3/ flops to compute all
Cij .J / for J 2 Jij . As the number of pairs in Œ3� is 3 it follows that the complexity
of computing all Cij .J / is O.rn3/.

The identity (14.55) yields that the complexity of computingAj .U j / is O.r2n2/.
Recall next that Aj .U j / is nj � nj symmetric positive semi-definite matrix. The
complexity of computations of the eigenvalues and the orthonormal eigenvectors of
Aj .U j / is O.n3/. Hence the complexity of computing U is O.rn3/, as we pointed
out at the end of Sect. 14.6.3.

The complexity of computing Bj;i;p:q using (14.56) is O.rn2/. The complexity
of computing wk;j .i; p; q/, given by (14.58) is O.n2/. Hence the complexity of
computing Wj .i; p; q/ is O.rn2/. Therefore the complexity of computing DiFj
is O.r2n3/. Since d D 3, the complexity of computing the matrix DF.0/ is also
O.r2n3/.

As DF.0/ 2 R
L�L, where L 
 3rn, the complexity of computing .I �

DF.0//�1 is O.r3n3/. In summary, the complexity of one step in Newton-2 is
O.r3n3/.
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14.11 Numerical Results

We have implemented a Matlab library tensor decomposition using Tensor Toolbox
given by [30]. The performance was measured via the actual CPU-time (seconds)
needed to compute. All performance tests have been carried out on a 2.8 GHz
Quad-Core Intel Xeon Macintosh computer with 16 GB RAM. The performance
results are discussed for real data sets of third-order tensors. We worked with a real
computer tomography (CT) data set (the so-called MELANIX data set of OsiriX)
[15].

Our simulation results are averaged over 10 different runs of the each algorithm.
In each run, we changed the initial guess, that is, we generated new random start
vectors. We always initialized the algorithms by random start vectors, because this
is cheaper than the initialization via HOSVD. We note here that for Newton methods
our initial guess is the subspaces returned by one iteration of AMM method.

All the alternating algorithms have the same stopping criterion where conver-
gence is achieved if one of the two following conditions are met: iterations >

10I fitchange < 0:0001 is met. All the Newton algorithms have the same stopping
criterion where convergence is achieved if one of the two following conditions are
met: iterations > 10I change < exp.�10/.

Our numerical simulations demonstrate the well known fact that for large size
tensors Newton methods are not efficient. Though the Newton methods converge
in fewer iterations than alternating methods, the computation associated with the
matrix of derivatives (Jacobian) in each iteration is too expensive making alternating
maximization methods much more cost effective. Our simulations also demonstrate
that our Newton-1 for best rank one approximation is as fast as AMM methods.
However our Newton-2 is much slower than alternating methods. We also give a
comparison between our Newton-2 and the Newton method based on Grassmannian
manifold by [8], abbreviated as Newton-ES.

We also observe that for large tensors and large rank approximation two alternat-
ing maximization methods, namely MAMM and 2AMMV, seem to outperform the
other alternating maximization methods. We would recommend Newton-1 for rank
one approximation in case of rank one approximation both for large and small sized
tensors. For higher rank approximation we recommend 2AMMV in case of large
size tensors and AMM or MAMM in case of small size tensors.

Our Newton-2 performs a bit slower than Newton-ES, however we would like
to point couple of advantages. Our method can be easily extendable to higher
dimensions (for d > 3 case) both analytically and numerically compared to
Newton-ES. Our method is also highly parallelizable which can bring down the
computation time drastically. Computation of DiFj matrices in each iteration
contributes to about 50% of the total time, which however can be parallelizable.
Finally the number of iterations in Newton-2 is at least 30% less than in Newton-
ES (Figs. 14.1–14.3).

It is not only important to check how fast the different algorithms perform but
also what quality they achieve. This was measured by checking the Hilbert-Schmidt
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Fig. 14.1 Rank (1, 1, 1) average CPU times taken over 10 initial random guesses

norm, abbreviated as HS norm, of the resulting decompositions, which serves as a
measure for the quality of the approximation. In general, we can say that the higher
the HS norm, the more likely it is that we find a global maximum. Accordingly,
we compared the HS norms to say whether the different algorithms converged to
the same stationary point. In Figs. 14.4 and 14.5, we show the average HS norms
achieved by different algorithms and compared them with the input norm. We
observe all the algorithms seem to attain the same local maximum.
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Fig. 14.2 Rank (2, 2, 2) average CPU times taken over 10 initial random guesses

14.11.1 Best (2,2,2) and Rank Two Approximations

Assume that T is a 3-tensor of rank three at least and let S be a best .2; 2; 2/-
approximation to T given by (14.1). It is easy to show that S has at least rank
2. Let S 0 D Œsj1;j2;j3 � 2 R

2�2�2 be the core tensor corresponding to S . Clearly
rank S D rank S 0 � 2. Recall that a real nonzero 2 � 2 � 2 tensor has rank one,
two or three [41]. So rank S 2 f2; 3g. Observe next that if rank S D rank S 0 D 2

then S is also a best rank two approximation of T . Recall that a best rank two
approximation of T may not always exist. In particular where rank T > 2 and
the border rank of T is 2 [6]. In all our numerical simulations for best .2; 2; 2/-
approximation we performed on random large tensors, the tensor S 0 had rank two.
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Fig. 14.3 Rank (3, 3, 3) average CPU times taken over 10 initial random guesses

Note that the probability of 2� 2� 2 tensors, with entries normally distributed with
mean 0 and variance 1, to have rank 2 is �

4
[2].

14.12 Conclusions

We have extended the alternating maximization method (AMM) and modified
alternating maximization method (MAMM) given in [15] for the computation of
best rank one approximation to best r-approximations. We have also presented new
algorithms such as 2-alternating maximization method variant (2AMMV) and New-
ton method for best r-approximation (Newton-2). We have provided closed form
solutions for computing the DF matrix in Newton-2. We implemented Newton-1
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for best rank one approximation [14] and Newton-2. From the simulations, we have
found out that for rank one approximation of both large and small sized tensors,
Newton-1 performed the best. For higher rank approximation, the best performers
were 2AMMV in case of large size tensors and AMM or MAMM in case of small
size tensors.

Acknowledgements We thank Daniel Kressner for his remarks.

References

1. Achlioptas, D., McSherry, F.: Fast computation of low rank approximations. In: Proceedings
of the 33rd Annual Symposium on Theory of Computing, Heraklion, pp. 1–18 (2001)

2. Bergqvist, G.: Exact probabilities for typical ranks of 2� 2 � 2 and 3� 3 � 2 tensors. Linear
Algebra Appl. 438, 663–667 (2013)

3. de Lathauwer, L., de Moor, B., Vandewalle, J.: A multilinear singular value decomposition.
SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)

4. de Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-.R1; R2; : : : ; RN /
approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

5. Deshpande, A., Vempala, S.: Adaptive sampling and fast low-rank matrix approximation,
Electronic Colloquium on Computational Complexity, Report No. 42 pp. 1–11 (2006)

6. de Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation
problem. SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008)

7. Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices I–III:
computing a compressed approximate matrix decomposition. SIAM J. Comput. 36, 132–206
(2006)

8. Eldén, L., Savas, B.: A Newton-Grassmann method for computing the best multilinear rank-
.r1; r2; r3/ approximation of a tensor. SIAM J. Matrix Anal. Appl. 31, 248–271 (2009)

9. Friedland, S.: Nonnegative definite hermitian matrices with increasing principal minors. Spec.
Matrices 1, 1–2 (2013)

10. Friedland, S.: MATRICES, a book draft in preparation. http://homepages.math.uic.edu/~
friedlan/bookm.pdf, to be published by World Scientific

11. Friedland, S., Kaveh, M., Niknejad, A., Zare, H.: Fast Monte-Carlo low rank approximations
for matrices. In: Proceedings of IEEE Conference SoSE, Los Angeles, pp. 218–223 (2006)

12. Friedland, S., Mehrmann, V.: Best subspace tensor approximations, arXiv:0805.4220v1
13. Friedland, S., Mehrmann, V., Miedlar, A., Nkengla, M.: Fast low rank approximations of

matrices and tensors. J. Electron. Linear Algebra 22, 1031–1048 (2011)
14. Friedland, S., Mehrmann, V., Pajarola, R., Suter, S.K.: On best rank one approximation of

tensors. http://arxiv.org/pdf/1112.5914v1.pdf
15. Friedland, S., Mehrmann, V., Pajarola, R., Suter, S.K.: On best rank one approximation of

tensors. Numer. Linear Algebra Appl. 20, 942–955 (2013)
16. Friedland, S., Ottaviani, G.: The number of singular vector tuples and uniqueness of best rank

one approximation of tensors. Found. Comput. Math. 14, 1209–1242 (2014)
17. Friedland, S., Torokhti, A.: Generalized rank-constrained matrix approximations. SIAM J.

Matrix Anal. Appl. 29, 656–659 (2007)
18. Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-rank

approximations. J. ACM 51, 1025–1041 (2004)
19. Golub, G.H., Van Loan, C.F.: Matrix Computation, 3rd edn. John Hopkins University Press,

Baltimore (1996)

http://homepages.math.uic.edu/~friedlan/bookm.pdf
http://homepages.math.uic.edu/~friedlan/bookm.pdf
http://arxiv.org/pdf/1112.5914v1.pdf


14 Low-Rank Approximation of Tensors 411

20. Goreinov, S.A., Oseledets, I.V., Savostyanov, D.V., Tyrtyshnikov, E.E., Zamarashkin, N.L.:
How to find a good submatrix. In: Matrix Methods: Theory, Algorithms and Applications,
pp. 247–256. World Scientific Publishing, Hackensack (2010)

21. Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudo-skeleton approxi-
mations of matrices. Linear Algebra Appl. 261, 1–21 (1997)

22. Goreinov, S.A., Tyrtyshnikov, E.E.: The maximum-volume concept in approximation by low-
rank matrices. Contemp. Math. 280, 47–51 (2001)

23. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal.
Appl. 31, 2029–2054 (2010)

24. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation
techniques. GAMM-Mitteilungen 36, 53–78 (2013)

25. Hackbusch, W.: Tensorisation of vectors and their efficient convolution. Numer. Math. 119,
465–488 (2011)

26. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Heilderberg (2012)
27. Hillar, C.J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60, Art. 45, 39 pp. (2013)
28. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge/New

York (1988)
29. Khoromskij, B.N.: Methods of Tensor Approximation for Multidimensional Operators and

Functions with Applications, Lecture at the workschop, Schnelle Löser für partielle Differ-
entialgleichungen, Oberwolfach, 18.-23.05 (2008)

30. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500
(2009)

31. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK User’s Guide: Solution of Large-Scale
Eigenvalue Problems With Implicitly Restarted Arnoldi Methods (Software, Environments,
Tools). SIAM, Philadelphia (1998)

32. Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings
of IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP ’05), Puerto Vallarta, vol. 1, pp. 129–132 (2005)

33. Mahoney, M.W., Maggioni, M., Drineas, P.: Tensor-CUR decompositions for tensor-based
data. In: Proceedings of the 12th Annual ACM SIGKDD Conference, Philadelphia, pp. 327–
336 (2006)

34. Oseledets, I.V.: On a new tensor decomposition. Dokl. Math. 80, 495–496 (2009)
35. Oseledets, I.V.: Tensor-Train decompositions. SIAM J. Sci. Comput. 33, 2295–2317 (2011)
36. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD

in many dimensions. SIAM J. Sci. Comput. 31, 3744–3759 (2009)
37. Rudelson, M., Vershynin, R.: Sampling from large matrices: an approach through geometric

functional analysis. J. ACM 54, Art. 21, 19 pp. (2007)
38. Sarlos, T.: Improved approximation algorithms for large matrices via random projections.

In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), Berkeley, pp. 143–152 (2006)

39. Savas, B., Lim, L.-H.: Quasi-Newton methods on Grassmannians and multilinear approxima-
tions of tensors. SIAM J. Sci. Comput. 32, 3352–3393 (2010)

40. Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35, 551–
566 (1993)

41. ten Berge, J.M.F., Kiers, H.A.L.: Simplicity of core arrays in three-way principal component
analysis and the typical rank of p � q � 2 arrays. Linear Algebra Appl. 294, 169–179 (1999)

42. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–
311 (1966)

43. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal.
Appl. 23, 534–550 (2001)



Part III
Differential-Algebraic Equations

and Control Theory



Chapter 15
Regularization of Descriptor Systems

Nancy K. Nichols and Delin Chu

Abstract Implicit dynamic-algebraic equations, known in control theory as
descriptor systems, arise naturally in many applications. Such systems may not
be regular (often referred to as singular). In that case the equations may not have
unique solutions for consistent initial conditions and arbitrary inputs and the system
may not be controllable or observable. Many control systems can be “regularized”
by proportional and/or derivative feedback. We present an overview of mathematical
theory and numerical techniques for regularizing descriptor systems using feedback
controls. The aim is to provide stable numerical techniques for analyzing and
constructing regular control and state estimation systems and for ensuring that these
systems are robust. State and output feedback designs for regularizing linear time-
invariant systems are described, including methods for disturbance decoupling and
mixed output problems. Extensions of these techniques to time-varying linear and
nonlinear systems are discussed in the final section.

15.1 Introduction

Singular systems of differential equations, known in control theory as descriptor
systems or generalized state-space systems, have fascinated Volker Mehrmann
throughout his career. His early research, starting with his habilitation [33, 35],
concerned autonomous linear-quadratic control problems constrained by descriptor
systems. Descriptor systems arise naturally in many applications, including aircraft
guidance, chemical processing, mechanical body motion, power generation, net-
work fluid flow and many others, and can be considered as continuous or discrete
implicit dynamic-algebraic systems [32, 41]. Such systems may not be regular (often
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referred to as singular). In that case unique solutions to initial value problems
consistent with the system may not exist and the system may not be controllable
or observable. An important aspect of control system design is therefore to ensure
regularity of the system.

In this chapter we review the work of Volker and his colleagues on mathematical
theory and numerical techniques for regularizing descriptor systems using feedback
controls. Two key elements contributed initially to the research: the establishment
of conditions for the regularizability of descriptor systems by feedback [25, 30]
and the development of stable numerical techniques for the reduction of descriptor
systems to condensed matrix forms [33, 34, 36]. Following a stimulating meeting
at the International Conference on Linear Algebra and Applications in Valencia in
1987, these two research threads were brought together in a report on feedback
design for descriptor systems [5] and later published in [6] and [7].

Since that time, Volker has contributed to a whole sequence of exciting results on
the regularization of descriptor systems [3, 8–12, 15, 20–22, 24, 31, 37]. The devel-
opment of sound numerical methods for system design, as well as techniques for
guaranteeing the robustness of the systems to model uncertainties and disturbances,
has formed the main emphasis throughout this research. We describe some of this
work in the next sections.

We start with preliminary definitions and properties of descriptor systems and
then discuss regularization by state feedback for linear time-invariant systems.
Disturbance decoupling by state feedback is also discussed. The problem of regu-
larization by output feedback is then considered. Further developments involving
mixed output feedback regularization are given next, and finally work on time-
varying and nonlinear systems is briefly described.

15.2 System Design for Descriptor Systems

We consider linear dynamical control systems of the form

E Px.t/ D Ax.t/C Bu.t/; x.t0/ D x0;

y.t/ D Cx.t/; (15.1)

or, in the discrete-time case,

Ex.k C 1/ D Ax.k/C Bu.k/; x.0/ D x0;

y.k/ D Cx.k/; (15.2)

whereE;A 2 R
n�n; B 2 R

n�m; C 2 R
p�n. Here x.�/ is the state, y.�/ is the output,

and u.�/ is the input or control of the system. It is assumed that m;p � n and that
the matrices B;C are of full rank. The matrix E may be singular. Such systems
are known as descriptor or generalized state-space systems. In the case E D I , the
identity matrix, we refer to (15.1) or (15.2) as a standard system.
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We assume initially that the system is time-invariant; that is, the system matrices
E;A;B;C are constant, independent of time. In this context, we are interested in
proportional and derivative feedback control of the form u.t/D Fy.t/�G Py.t/Cv.t/
or u.k/ D Fy.k/ � Gy.k C 1/C v.k/, where F;G 2 R

m�p are selected to give the
closed-loop system

.E C BGC/ Px.t/ D .AC BFC/x.t/C Bv.t/ (15.3)

or

.E C BGC/x.k C 1/ D .AC BFC/x.k/C Bv.k/ (15.4)

desired properties. Proportional output feedback control is achieved in the special
case G D 0. Derivative output feedback control corresponds to the special case
F D 0 and derivative and proportional state feedback control corresponds to the
special case C D I . The dual of the control system, an observer (or state-estimator),
is attained with an appropriate choice for v in the special case B D I . The aim of
the feedback designs is to alter the behaviour of the system response. Proportional
feedback acts to modify the system matrix A, whilst derivative feedback alters the
system matrix E . Different properties of the system can, therefore, be achieved
using different feedback combinations.

15.2.1 Structure of the System Response

The response of the descriptor system (15.1) or (15.2) can be described in terms of
the eigenstructure of the matrix pencil ˛E � ˇA, which we denote by .E;A/. The
system is regular if the pencil .E;A/ is regular, that is,

det.˛E � ˇA/ 6D 0 for some .˛; ˇ/ 2 C
2: (15.5)

The generalized eigenvalues of a regular pencil are defined by the pairs
.˛j ; ˇj / 2 C

2nf0; 0g such that

det.˛jE � ˇjA/ D 0; j D 1; 2; : : : ; n: (15.6)

If ˇj 6D 0, the eigenvalue pair is said to be finite with value given by �j D ˛j =ˇj
and otherwise, if ˇj D 0, then the pair is said to be an infinite eigenvalue. The
maximum number of finite eigenvalues that a pencil can have is less than or equal
to the rank of E .

If the system (15.1) or (15.2) is regular, then the existence and uniqueness of
classical smooth solutions to the dynamical equations is guaranteed for sufficiently
smooth inputs and consistent initial conditions [14, 43]. The solutions are character-
ized in terms of the Kronecker Canonical Form (KCF) [26]. Nonsingular matrices
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X and Y (representing right and left generalized eigenvectors and principal vectors
of the system pencil, respectively) then exist such that

XEY D
�
I 0

0 N

�
; XAY D

�
J 0

0 I

�
; (15.7)

where the eigenvalues of the Jordan matrix J coincide with the finite eigenvalues of
the pencil and N is a nilpotent Jordan matrix such that N i D 0, N i�1 6D 0, i > 0,
corresponding to the infinite eigenvalues. The index of a descriptor system, denoted
by ind.E;A/, is defined to be the degree i of nilpotency of the matrixN , that is, the
index of the system is the dimension of the largest Jordan block associated with an
infinite eigenvalue of the KCF (15.7). The index is a fundamental characteristic of a
descriptor system, determining the existence and smoothness of solutions.

By convention, a descriptor system is regular and of index 0 if and only if E
is nonsingular. In this case the system can be reformulated as a standard system.
However, the reduction to standard form can be numerically unreliable if E is ill-
conditioned with respect to inversion. Therefore it is desirable to work directly with
the generalized state-space form even where E is nonsingular.

A descriptor system is regular and has index at most one if and only if it has
exactly q D rank.E/ finite eigenvalues and n�q non-defective infinite eigenvalues.
Conditions for the system to be regular and of index � 1 are given by the following
important result.

Theorem 1 ([25, 30]) Let E;A 2 R
n�n and let S1.E/ and T1.E/ be full rank

matrices whose columns span the null spaces N .E/ and N .ET / respectively.
Then the following are equivalent:

(i) ˛E � ˇA is regular and of index � 1I
(ii) rank.ŒE;AS1.E/�/ D nI

(iii) rank.

�
E

T T1.E/A

�
/ D nI

(iv) rank.T T1.E/AS1.E// D n � rank.E/.

Systems that are regular and of index at most one can be separated into purely
dynamical and algebraic parts (fast and slow modes) [14, 23] and in theory the
algebraic part can be eliminated to give a reduced-order standard system. The
reduction process, however, may be ill-conditioned for numerical computation and
lead to large errors in the reduced order system [28]. If the system is not regular or
if ind.E;A/ > 1, then impulses can arise in the response of the system if the control
is not sufficiently smooth [27, 42]. Since the linear constant coefficient system is
usually only a model that approximates a nonlinear model, disturbances in the real
application will in general lead to impulsive solutions if the system is of index higher
than one.
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15.2.2 Controllability and Observability

If the descriptor system (15.1) or (15.2) is regular, then the following controllability
and observability conditions are sufficient for most classical design aims. To sim-
plify the notation, we hereafter denote a matrix with orthonormal columns spanning
the right nullspace of the matrix M by S1.M/ and a matrix with orthonormal
columns spanning the left nullspace ofM by T1.M/. The controllability conditions
are defined to be:

C0: rank.Œ˛E � ˇA;B�/ D n for all .˛; ˇ/ 2 C
2nf.0; 0/g.

C1: rank.Œ�E � A;B�/ D n for all � 2 C.
C2: rank.ŒE;AS1.E/; B�/ D n, where the columns of S1.E/ span

the null space of E .
(15.8)

The observability conditions are defined as the dual of the controllability conditions:

O0: rank.

�
˛E � ˇA

C

�
/ D n for all .˛; ˇ/ 2 C

2nf.0; 0/g.

O1: rank.

�
�E � A

C

�
/ D n for all � 2 C.

O2: rank.

2
4 E

T T1.E/A
C

3
5/ D n, where the columns of T1.E/ span

the right null space of E .
(15.9)

For systems that are regular, these conditions characterize the controllability of
the system. The condition C0 ensures that for any given initial and final states
of the system, x0, xf , there exists an admissible control that transfers the system
from x0 to xf in finite time [43]. Condition C1 ensures the same for any given
initial and final states x0, xf belonging to the solution space of the descriptor
system [5, 7]. A regular system that satisfies the conditions C0 and O0 is said to be
completely controllable (C–controllable) and completely observable (C–observable)
and has properties similar to those of standard control systems. A regular system is
strongly controllable (S–controllable) if C1 and C2 hold and strongly observable
(S–observable) if O1 and O2 hold. Regular systems that satisfy condition C2 are
controllable at infinity or impulse controllable [27, 42]. For these systems, impulsive
modes can be excluded. Condition C2 is closely related to the second condition
in Theorem 1, which characterizes regular systems of index at most one. By the
definition, a regular descriptor system of index at most one is controllable at infinity.

The controllability and observability conditions C0, C1, C2, and O0, O1, O2 are
all preserved under non-singular “equivalence” transformations of the pencil and
under proportional state and output feedback, but C2 is not necessarily preserved
under derivative feedback. Therefore, if derivative feedback is used to modify the
system dynamics, it is necessary to avoid losing controllability at infinity [5, 7].
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Whilst regularity is required for controllability and observability, it is not needed
in order to regularize the system by feedback. Many descriptor systems that are not
regular can be regularized by proportional and/or derivative feedback. Conversely,
systems that are regular can easily be transformed by feedback into closed-loop
systems that are not regular. It is important, therefore, to establish conditions that
ensure the regularity of systems under feedback and to develop numerically reliable
techniques for constructing regular feedback systems of index at most one.

Theorem 1 defines conditions that must be satisfied by a closed-loop system
pencil (15.3) or (15.4) for it to be regular and of index � 1. These conditions
are closely related to the properties C1, C2, O1, O2, but regularity is needed for
controllability and observability, whereas it is not required for regularization. In
[25, 30] it was first shown that these conditions can be used to determine a closed-
loop descriptor feedback system that is both regular and of index at most one, using
proportional feedback. The system itself does not need to be regular to achieve this
result.

In a standard system, derivative feedback does not alter the system behaviour
in any way that could not be achieved by proportional feedback alone. However,
for descriptor systems, it is possible that derivative feedback can decrease the
susceptibility to noise and change the dynamic order of the descriptor system.
One of the applications of derivative feedback is to shift infinite frequencies to
finite frequencies in order to regularize and control the system. These possibilities
together with the implications of Theorem 1, provided a challenge to Volker and
his colleagues and motivated their initial work on feedback design for descriptor
systems [5–7]. The work is based on numerically stable methods for reducing
descriptor systems to condensed forms using unitary transformations. In the next
section we summarize this research.

15.3 Regularization by Feedback for Time-Invariant Systems

The problem of regularizing a descriptor system of form (15.1) or (15.2) by feedback
is defined as:

Problem 1 Given real system matricesE;A;B;C , find real matricesF andG such
that the closed-loop pencil

.E C BGC; AC BFC/ (15.10)

is regular and ind.E C BGC; AC BFC/ � 1.

If C D I this is the state feedback regularization problem and otherwise it is the
output regularization feedback problem.

In the report [5], both the output and the state feedback regularization problems
are investigated initially, but the published version [7] treats only the state feedback
problem. A complete solution to the state feedback problem was achieved, but
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the output case proved to be more elusive, and a number of papers tackling this
problem followed later. The state feedback problem has its own importance in real
applications, so here we consider first the state feedback problem and then the output
feedback problem separately.

15.3.1 Regularization by State Feedback

In the papers [5–7], two major contributions are made. The first provides conditions
for the existence of solutions to the state feedback regularization problem. This is
achieved by numerically stable transformations to condensed forms that enable the
required feedback matrices to be constructed accurately in practice. The second
establishes ‘robust’ system design techniques for ensuring that the properties of the
closed-loop system pencil are insensitive to perturbations in the system matrices
E C BG; AC BF; B .

The following theorem gives the complete solution to the state feedback regular-
ization problem.

Theorem 2 ([7]) Given a system of the form (15.1) or (15.2), if rank.ŒE;AS1.E/;
B�/Dn, that is, if C2 holds, then there exist real feedback matrices F;G 2 R

m�n
such that the pencil .E C BG; AC BF/ is regular, ind.E C BG; AC BF/ � 1, and
rank.E C BG/ D r , where 0 � rank.ŒE;B�/ � rank.B/ � r � rank.ŒE;B�/.

To establish the theorem, we compute the QR factorization of B and the URV
factorization [28] of T T1.B/E to obtain orthogonal matrices P and Q such that

PEQ D
2
4E11 0 0

E21 E22 0

0 0 0

3
5 ; PB D

2
4 0

B2
0

3
5 ; PAQ D

2
4A11 A12 A13A21 A22 A23
A31 A32 A33

3
5 : (15.11)

Here E11 and B2 are nonsingular and E22 is full column rank. Both E11 and B2
can be further reduced by orthogonal transformations to full-rank positive diagonal
matrices. The theorem then follows by selecting feedback matrices to ensure that
the closed-loop pencil

.E C BG; AC BF/ (15.12)

satisfies condition (ii) of Theorem 1. If C1 holds as well as C2, the resulting closed-
loop system is then strongly controllable [7]. This system could be reduced further
to a standard system, but in this case the feedback matrices would have to be selected
with care to ensure that the reduction is numerically stable.

Additional results on state feedback regularization using only proportional
or derivative feedback are also given in [5–7]. The existence of regularizing
proportional state feedback designs is easily shown in the case where C2 holds
using the condensed form (15.11). For the derivative feedback case, the results are
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the same as in Theorem 2, with the exception that the potential rank of the matrix
.E C BG/ is now restricted from below. The maximum rank that can be obtained
remains equal to rank.ŒE;B�/.

In general the feedback designs that regularize the system (15.1) or (15.2) are not
uniquely determined by Theorem 2 and additional degrees of freedom in the design
can be exploited to obtain robustness and stability of the system as well as regularity.
For robustness we want the system to remain regular and of index at most one under
perturbations to the closed-loop system matrices. From Theorem 1 the closed-loop
pencil (15.12) is regular and of index � 1 if and only if

rank.

�
E C BG

T T1.E C BG/.AC BF/

�
/ D n: (15.13)

It is well-known that for a matrix with full rank, the distance to the nearest matrix of
lower rank is equal to its minimum singular value [28]. Hence for robustness of the
closed-loop pencil (15.12) we aim to select F andG such that the pencil is unitarily
equivalent to a pencil of the form ˛S1 � ˇS2 where

S1 D
�
˙R 0

0 0

�
; S2 D

�
A11 A12
A21 ˙L

�
; (15.14)

and the assigned singular values of ˙R;˙L are such that the condition numbers
of ˙R and ˙L are minimal. This choice ensures regularity of the system and
maximizes a lower bound on the minimum singular value of (15.13), whilst
retaining an upper bound on the magnitude of the gains F and G. Details of the
algorithm to achieve these results are given in [5, 7, 39]. This choice also ensures
that the reduction of the closed-loop descriptor system to a standard form is as
well-conditioned as possible. In practice such robust systems also have improved
performance characteristics (see [40]).

In addition to regularity, it is desirable to ensure that a system design has stability
and even that it has specified finite eigenvalues. The following result, shown in [5, 7],
holds for descriptor systems.

Theorem 3 ([5, 7]) Given a system of the form (15.1) or (15.2), if the conditions
C1 and C2 hold and r is an integer such that 0� rank.ŒE;B�/�rank.B/� r �
rank.ŒE;B�/, then for any arbitrary set S of r self-conjugate finite poles there
exist feedback matrices F;G 2 R

m�n such that the pencil .E C BG; A C BF/ is
regular, ind.E C BG; AC BF/ � 1; rank.E C BG/ D r and all pairs in S are the
finite generalized eigenvalues of the pencil .E C BG; AC BF/.

For robustness of the closed-loop system, we require the maximum number of
finite eigenvalues to be assigned and both the finite and infinite eigenvalues to be
insensitive to perturbations in the closed-loop system matrices. One strategy for
obtaining a robust solution to the eigenvalue assignment problem for a descriptor
system is to apply derivative feedback alone to obtain a robust, regular index-one



15 Regularization of Descriptor Systems 423

system with rank.E C BG/ D r D rank.ŒE;B�/ using singular value assignment,
and then to use robust proportional state feedback to assign r finite eigenvalues to
the system. The problem of eigenvalue assignment by proportional state feedback
in descriptor systems is treated in [17, 25, 30]. Techniques for robust eigenstructure
assignment ensuring that the assigned eigenvalues of the closed-loop system are
insensitive to perturbations in the system matrices are established in [29, 30, 38].

The problem of designing an observer, or state-estimator, is the dual of the state
feedback control problem. An observer is an auxiliary dynamical system designed to
provide estimates Ox of all the states x of the system (15.1) or (15.2) using measured
output data y and Py. The estimator is a closed-loop system that is driven by the
differences between the measured outputs and derivatives of the system and their
estimated values. The system pencil is given by

.E C GC; AC FC/; (15.15)

where the matrices F and G must be selected to ensure that the response Ox of the
observer converges to the system state x for any arbitrary starting condition; that
is, the system must be asymptotically stable. By duality with the state feedback
problem, it follows that if the condition O2 holds, then the matrices F and G can
be chosen such that the corresponding closed-loop pencil (15.15) is regular and of
index at most one. If condition O1 also holds, then the closed-loop system is S-
observable. Furthermore, the remaining freedom in the system can be selected to
ensure the stability and robustness of the system and the finite eigenvalues of the
system pencil can be assigned explicitly by the techniques described for the state
feedback control problem.

15.3.2 Disturbance Decoupling by State Feedback

In practice control systems are subject to disturbances that may include modelling
or measurement errors, higher order terms from linearization, or unknown inputs
to the system. For such systems it is important to design feedback controllers and
observers that suppress the disturbance so that it does not affect the input-output
of the system. In research strongly inspired by the earlier work of Volker and his
colleagues on state feedback regularization, the problem of disturbance decoupling
is treated in [20, 21].

In the case that disturbances are present, the linear time-invariant system takes
the form

E Px.t/ D Ax.t/C Bu.t/C Hq.t/; x.t0/ D x0;

y.t/ D Cx.t/; (15.16)



424 N.K. Nichols and D. Chu

or

Ex.k C 1/ D Ax.k/C Bu.k/C Hq.k/; x.0/ D x0;

y.k/ D Cx.k/; (15.17)

whereE;A 2 R
n�n; B 2 R

n�m; C 2 R
q�n;H 2 R

n�p; and q.�/ represents a vector
of disturbances.

To suppress the disturbances, a state feedback controller is used to modify the
input-output map, or transfer function, of the system. The disturbance decoupling
problem for the descriptor system (15.16) or (15.17) is then to find proportional and
derivative feedback matricesF;G such that the closed-loop pencil .ECBG; ACBF/
is regular and of index at most one and

T .s/ 	 C.s.E C BG/� .AC BF//�1H 	 0; (15.18)

where T .s/ defines the transfer function of the closed-loop system from the input
disturbance q.�/ to the output y.�/. This condition ensures that the disturbance does
not affect the input-output response of the closed-loop system for any choice of the
input control u.�/. Necessary and sufficient conditions for the existence of a solution
to this problem are established in [21]. In addition, conditions are derived under
which the feedback matrices can be chosen such that the closed-loop system is also
stable. The derivations are constructive and a numerically stable algorithm is given
for implementing the procedure.

In [20] the problem of designing a disturbance-decoupled observer system for
estimating (a subset of) the states of the system (15.16) or (15.17) is developed.
The aim is to select feedback matrices such that the closed-loop observer is regular
and of index at most one and such that the disturbances have no influence on the
error in the estimated states of the system. Necessary and sufficient conditions are
derived for the existence of disturbance-decoupled observers of this form and also
for the observer to be stable, ensuring that the estimated states converge over time
to the corresponding states of the original system. The main results are established
constructively and are again based on a condensed form that can be computed in a
numerically stable way using unitary matrix transformations.

15.3.3 Regularization by Output Feedback

The output feedback regularization problem is to find derivative and state output
feedback matrices F;G such that the closed-loop system pencil (15.10) is regular
and has index at most one.

Meeting at the Institute for Mathematics and Its Applications in Minnesota
in 1992 and following up the earlier research on regularization, Volker and his
colleagues tackled the difficult output feedback problem in earnest. The results of
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the research are published in an extensive report [8] and in later papers [9, 10].
In these papers, a condensed form of the descriptor system pencil is derived
that displays the conditions under which the system can be transformed into a
regular system of index at most one by output feedback using numerically stable
orthogonal transformations. For proportional output feedback the solution to the
design problem follows immediately from this condensed form. Necessary and
sufficient conditions for a feedback matrix F 2 R

m�p to exist such that the pencil
.E;A C BFC/ is regular and has index at most one are given by C2 and O2. The
closed-loop system is then S-controllable and S-observable if C1 and O1 also hold
[8, 10].

For combined derivative and proportional output feedback, it is also established
in [8, 10], using the condensed form, that if C2 and O2 hold, then there exist
matrices F;G 2 R

m�p such that the closed-loop pencil .E C BGC; A C BFC/ is
regular, has index at most one, and rank.ECBGC/ lies in a given range. Techniques
such as those used for the state feedback problem to ensure optimal conditioning, or
robustness of the closed-loop system to perturbations, are also described in [8, 39].

With proportional output feedback alone, if the system has index � 1, then the
number of finite eigenvalues of the closed-loop pencil .E;A C BFC/ is fixed at
r D rank.E/. With derivative and proportional feedback, the system pencil becomes
.E C BGC; A C BFC/ and the system properties that depend on the left and right
null spaces ofE , such as C2 and O2, may be altered and the rank ofEC BGC may
be increased or decreased from that of E . If the closed-loop system is regular with
index D 1, then the system may be separated into r D rank.E C BGC/ differential
or difference equations and n� r purely algebraic equations. In applications, it may
be useful to have more or fewer differential or difference equations. A complete
characterization of the achievable ranks r for systems that are regular and of index
at most one is, therefore, desirable.

Variations of the condensed form of [8, 10] that can be obtained by stable
orthogonal transformations have subsequently been derived in [11, 18, 19, 22]
and different approaches to the output feedback problem have been developed. A
comprehensive summary of the extended results, based on these condensed forms,
is given in [3]. The main result can be expressed as follows.

Theorem 4 ([3, 11, 18, 19, 22]) Let Ta D T1.ES1.C //; Sa D S1.T T1.B/E/,
and

Tb D T1.ŒE;AS1.
�
E

C

�
/; B�/; Sb D S1.

2
4 E

T T1.ŒE;B�/A/
C

3
5/:

Then the following statements are equivalent:

(i) There exist feedback matrices F;G 2 R
m�p such that the closed-loop pencil

.E C BGC; AC BFC/ is regular and of index at most one.
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(ii) T Ta ASb has full column rank, T Tb ASa has full row rank and

rank.T T1.ŒE;B�/AS1.
�
E

C

�
// � n � rank.

�
E B

C 0

�
/:

Moreover, if the closed-loop pencil .E C BGC; A C BFC/ is regular and of
index at most one with r D rank.E C BGC/ then

rank .ŒE;B�/C rank.

�
E

C

�
/� rank.

�
E B

C 0

�
/ � r �

� rank.ŒE;B�/ � rank.T Ta ASb/ 	 rank.

�
E

C

�
/� rank.T Tb ASa/:

The matrices in the theorem and their ranks are easily obtained from the
following condensed form [3, 18, 22], where U; V;2 R

n�n, P 2 R
m�m and

W 2 R
p�p are orthogonal matrices:

UEV D

2
66664

t1 t2 t3 s4 s5

t1 E11 0 0 0 0

t2 E21 E22 0 0 0

t3 E31 E32 E33 E34 0

t4 E41 E42 0 E44 0

t5 0 0 0 0 0

3
77775;

UBP D

2
66664

t3 t4

t1 0 0

t2 0 0

t3 B31 B32
t4 0 B42
t5 0 0

3
77775; (15.19)

WCV D
� t1 t2 t3 s4 s5

s4 C11 C12 0 C14 0

t1 C21 0 0 0 0

�
;

where the blocksE11, C21, E22, E33, B31, B42, and C14 are nonsingular.
Theorem 4 follows directly from the condensed form (15.19). The theorem

gives a complete characterization of the possible ranks of E C BGC for systems
that are regular and of index at most one. Additional results on output feedback
regularization using only proportional or derivative feedback are also presented
in the references. Corresponding results for observer designs can be determined
directly by duality.

In practice, it is desirable not only that the closed-loop descriptor system is
regular and has index at most one, but also that it is robust in the sense that it
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is insensitive to perturbations in the system matrices. As in the state feedback
case, the aim is to choose F and G such that the closed-loop pencil is unitarily
equivalent to a pencil of the form (15.14) where the matrices ˙R and ˙L are well-
conditioned for inversion. This choice ensures that the reduction of the closed-loop
system to a standard system is computationally reliable. Partial solutions to this
problem are provided in [8, 9], based on the results of [24], and an algorithm is
given for minimizing upper bounds on the conditioning of˙R and˙L using unitary
transforms to condensed forms. This procedure generally improves the conditioning
of the closed-loop system.

15.3.4 Regularization by Mixed Output Feedback

Systems where different states and derivatives can be output arise commonly in
mechanical multi-body motion. In such systems, velocities and accelerations can
often be measured more easily than states (e.g. by tachometers or accelerometers).
Time-invariant systems of this type can be written in the form:

E Px.t/ D Ax.t/C Bu.t/; x.t0/ D x0;

y1.t/ D Cx.t/; (15.20)

y2.t/ D 	 Px;

or, in the discrete time case

Ex.k C 1/ D Ax.k/C Bu.k/; x.0/ D x0;

y1.k/ D Cx.k/; (15.21)

y2.k C 1/ D 	 x.k C 1/;

where E;A 2 R
n�n; B 2 R

n�m; C 2 R
p�n; 	 2 R

q�n. In this case we are
interested in proportional and derivative control of the form u.t/ D Fy1.t/�G Py2.t/
or u.k/ D Fy1.k/� Gy2.kC 1/, where F and G are chosen to give the closed-loop
system pencil

.E C BG	;AC BFC/ (15.22)

desired properties. In particular the aim is to ensure that the closed-loop system is
regular and of index at most one. The mixed output feedback regularization problem
for this system is stated explicitly as follows.

Problem 2 For a system of the form (15.20) or (15.21), give necessary and suffi-
cient conditions to ensure the existence of feedback matrices F 2 R

m�p and G 2
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R
m�q such that the closed-loop system pencil .E C BG	;AC BFC/ is regular and

ind.E C BG	;AC BFC/ � 1.

The mixed feedback regularization problem and its variants, which are signif-
icantly more difficult than the state and output feedback regularization problems,
have been studied systematically by Volker and his colleagues in [22, 37]. These
have not been investigated elsewhere, although systems where different states and
derivatives are output arise commonly in practice.

Examples frequently take the second order form

M
::
z CK Pz C P z D B1 Pu C B2u (15.23)

and can be written in the generalized state space form

�
M 0

K I

� � Pz
Pv
�

D
�
0 I

�P 0

� �
z
v

�
C
�
B1
B2

�
u: (15.24)

If the velocities Pz of the states of the system can be measured, then the states
v D M Pz � B1u are also available and the outputs

y1 D Cx D �
0 I

� � z
v

�
; y2 D 	 Px D �

I 0
� � Pz

Pv
�

(15.25)

can be used separately to modify the system by either proportional or derivative
feedback, respectively. The corresponding closed-loop state-space system matrices
then take the form

E C BG	 D
�
M C B1G 0

K C B2G I

�
; AC BFC D

�
0 I C B1F

�P B2F

�
: (15.26)

Different effects can, therefore, be achieved by feeding back either the derivatives Pz
or the states v. In particular, in the case where M is singular, but rankŒM;B1� D n,
the feedbackG can be chosen such thatMCB1G is invertible and well-conditioned
[7], giving a robust closed-loop system that is regular and of index zero. The
feedback matrix F can be chosen separately to assign the eigenvalues of the system
[30], for example, or to achieve other objectives.

The complete solution to the mixed output feedback regularization problem is
given in [22]. The theorem and its proof are very technical. Solvability is established
using condensed forms derived in the paper. The solution to the output feedback
problem given in Theorem 4 is a special case of the complete result for the mixed
output case given in [22]. The required feedback matrices are constructed directly
from the condensed forms using numerically stable transformations.

Usually the design of the feedback matrices still contains freedom, however,
which can be resolved in many different ways. One choice is to select the feedbacks
such that the closed-loop system is robust, or insensitive to perturbations, and, in
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particular, such that it remains regular and of index at most one under perturbations
(due, for example, to disturbances or parameter variations). This choice can also
be shown to maximize a lower bound on the stability radius of the closed-loop
system [13]. Another natural choice would be to use minimum norm feedbacks,
which would be a least squares approach based on the theory in [24]. This approach
is also investigated in [22, 37]. The conclusion is that although minimum norm
feedbacks are important in other control problems, such as eigenvalue assignment
or stabilization because they remove ambiguity in the solution in a least squares
sense, for the problem of regularization they do not lead to a useful solution, unless
the rank of E is decreased. Heuristic procedures for obtaining a system by output
feedback that is robustly regular and of index at most one are discussed in [8, 9, 39].

15.4 Regularization of Time-Varying and Nonlinear
Descriptor Systems

Feedback regularization for time-varying and nonlinear descriptor systems provided
the next target for Volker’s research. Extending the previous work to the time-
varying case was enabled primarily by the seminal paper on the analytic singular
value decomposition (ASVD) published by Volker and colleagues in 1991 [4]. The
ASVD allows condensed forms to be derived for the time-varying problem, just
as the SVD does for the time-invariant case, and it provides numerically stable
techniques for determining feedback designs.

The continuous form of the time-varying descriptor system is given by the
implicit system

E.t/ Px.t/ D A.t/x.t/C B.t/u.t/; x.t0/ D x0;

y.t/ D C.t/x.t/; (15.27)

where E.t/; A.t/ 2 R
n�n; B.t/ 2 R

n�m; C.t/ 2 R
p�n are all continuous functions

of time and x.t/ is the state, y.t/ is the output, and u.t/ is the input or control
of the system. (Corresponding discrete-time systems with time-varying coefficients
can also be defined, but these are not considered here.)

In this general form, complex dynamical systems including constraints can be
modelled. Such systems arise, in particular, as linearizations of a general nonlinear
control system of the form

F .t; x; Px; u/ D 0; x.t0/ D x0;

y D G .t; x/; (15.28)

where the linearized system is such that E.t/; A.t/; B.t/ are given by the Jacobians
of F with respect to Px; x; u, respectively, and C.t/ is given by the Jacobian of G
with respect to x (see [31]).
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For the time-varying system (15.27) and the nonlinear system (15.28), the system
properties can be modified by time-varying state and output feedback as in the time-
invariant case, but the characterization of the system, in particular the solvability
and regularity of the system, is considerably more complicated to define than in the
time-invariant case and it is correspondingly more difficult to analyse the feedback
problem. The ultimate goal remains, however, to obtain stable numerical approaches
to the problem using time-varying orthogonal transformations to condensed forms.

If time-varying orthogonal transformations U.t/; V .t/;W.t/; Y.t/ are applied to
the system (15.27), and all variables are assumed to be time-dependent, then the
system becomes

UTEV Pz D .U TAV � UTEVS/z C UTBWw;

Qy D YCVz; (15.29)

where x.t/ D V.t/z.t/, u.t/ D W.t/w.t/, Qy.t/ D Y.t/y.t/ and S.t/ D V.t/T PV .t/
is a skew-symmetric matrix. We see that applying time-varying transformations
alters the system matrix A, and this must be taken into account where reducing
the system to equivalent condensed forms.

In [1, 2] it is shown that the ASVD can be used to produce a condensed form
for system (15.27), similar to the form derived in [10]. A time-varying system is
defined here to be regular and of index at most one if the conditions of Theorem 1
hold for all t and the system can be decoupled into purely dynamic and algebraic
parts. In order to establish regularizability of system (15.27), the strong assumption
is made that rank.E.t// is constant and that ranks in the condensed form are also
constant. Time-varying output feedback matrices are then constructed to produce a
closed-loop pointwise regular pencil of the form (15.10) with index at most one.
The rank assumptions ensure the solvability of the closed-loop system. The system
matrices E;A;B;C , are assumed to be analytic functions of t , but these conditions
can be relaxed provided the ASVD decompositions remain sufficiently smooth.

In the papers [12, 31], a much deeper analysis of the regularization problem
is developed. Detailed solvability conditions for the time-varying system (15.27)
are established and different condensed forms are derived, again using the ASVD.
Constant rank assumptions do not need to be applied, although the existence of
smooth ASVDs are required. The analysis covers a plethora of different possible
behaviours of the system. One of the tasks of the analysis is to determine redun-
dancies and inconsistencies in the system in order that these may be excluded from
the design process. The reduction to the condensed forms displays all the invariants
that determine the existence and uniqueness of the solution. The descriptor system
is then defined to be regularizable if there exist proportional or derivative feedback
matrices such that the closed-loop system is uniquely solvable for every consistent
initial state vector and any given (sufficiently smooth) control. Conditions for the
system to be regularizable then follow directly from the condensed forms.

In [31] a behaviour approach is taken to the linear time-varying problem where
state, input and output variables are all combined into one system vector and the
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combined system is studied. This approach allows inhomogeneous control problems
also to be analysed. Instead of forming a derivative array from which the system
invariants and the solutions of the original system can be determined, as in [14, 16],
the behaviour approach allows the invariants to be found without differentiating the
inputs and thus avoids restrictions on the set of admissible controls. Reduction of
the behaviour system to condensed form enables an underlying descriptor system
to be extracted and the conditions under which this system can be regularized
by proportional and derivative feedback are determined. The construction of the
feedback matrices is also described. The reduction and construction methods rely
on numerically stable equivalence transformations.

More recent work of Volker and his colleagues [15] extends the behaviour
approach to a general implicit nonlinear model of the form

F .t; x; Px; u; y/ D 0; x.t0/ D x0: (15.30)

The property of ‘strangeness-index’ is defined and used in the analysis. This
property corresponds to ‘index’, as defined for a linear time-invariant descriptor
system, and ‘strangeness-free’ corresponds to the condition that a time-invariant
system is of index at most one. Conditions are established under which a behaviour
system can be reduced to a differential-algebraic system, and after reinterpretation
of the variables, to a typical implicit nonlinear system consisting of differential
and algebraic parts. Locally linear state feedback can then be applied to ensure
that the system is regular and strangeness-free. Standard simulation, control, and
optimization techniques can be applied to the reformulated feedback system. Further
details of Volker’s work on nonlinear differential–algebraic systems can be found in
other chapters in this text.

15.5 Conclusions

We have given here a broad-brush survey of the work of Volker Mehrmann on
the problems of regularizing descriptor systems. The extent of this work alone
is formidable and forms only part of his research during his career. We have
concentrated specifically on results from Volker’s own approaches to the regularity
problem. The primary aim of his work has been to provide stable numerical
techniques for analyzing and constructing control and state estimation systems and
for ensuring that these systems are robust. The reduction of systems to condensed
forms using orthogonal equivalence transformations forms the major theme in this
work. Whilst some of the conclusions described here can also be obtained via other
canonical or condensed forms published in the literature, these cannot be derived
by sound numerical methods and the required feedbacks cannot be generated from
these by backward stable algorithms. Volker’s work has therefore had a real practical
impact on control system design in engineering as well as producing some beautiful
theory. It has been a pleasure for us to be involved in this work.
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Chapter 16
Differential-Algebraic Equations: Theory
and Simulation

Peter Kunkel

Abstract We give an overview of the theory of unstructured nonlinear DAEs
of arbitrary index. The approach is extended to overdetermined consistent DAEs
in order to be able to include known first integrals. We then discuss various
computational issues for the numerical solution of corresponding DAE problems.
These include the design of special Gauß-Newton techniques as well as the
treatment of parametrized nonlinear systems in the context of DAEs. Examples
demonstrate their applicability and performance.
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16.2 Introduction

Differential-algebraic equations (DAEs) arise if physical systems are modeled that
contain constraints restricting the possible states of the systems. Moreover, in
modern hierarchical modeling tools like [5], even if the submodels are ordinary
differential equations (ODEs), the equations describing how the submodels are
linked yield DAEs as overall models.

The general form of a DAE is given by

F.t; x; Px/ D 0; (16.1)

with F 2 C.I � Dx � D Px;Rm/ sufficiently smooth, I  R (compact) interval,
and Dx;D Px  R

n open. In this paper, we will not assume any further structure of
the equations. It should, however, be emphasized that additional structure should,
if possible, be utilized in the numerical treatment when efficiency is an issue. On
the other hand, a general approach is of advantage when it is desirable to have no
restrictions in the applicability of the numerical procedure.

It is the aim of the present paper to give an overview of the relevant theory of
general unstructured nonlinear DAEs with arbitrary index and its impact on the
design of numerical techniques for their approximate solution. We will concentrate
mainly on the quadratic case, i.e., on the case m D n, but also address the
overdetermined case m � n assuming consistency of the equations. The attractivity
of the latter case lies in the fact that we may add known properties of the solution
like first integrals to the system, thus enforcing that the generated numerical solution
will respect these properties as well. In the discussion of numerical techniques, we
focus on two families of Runge-Kutta type one-step methods and the development
of appropriate techniques for the solution of the arising nonlinear systems. Besides
the mentioned issues on DAE techniques for treating first integrals, we include a
discussion on numerical path following and turning point determination in the area
of parametrized nonlinear equations, which can also be treated in the context of
DAEs combined with root finding. Several examples demonstrate the performance
of the presented numerical approaches.

The paper is organized as follows. In Sect. 16.3, we give an overview of the
analysis of unstructured regular nonlinear DAEs of arbitrary index. In particular,
we present existence and uniqueness results. We discuss how these results can be
extended to overdetermined consistent DAEs, thus allowing for the treatment of
known first integrals. Section 16.4 is then dedicated to various computational issues.
We first present possible one-step methods, develop Gauß-Newton like processes
for the treatment of the arising nonlinear systems, which includes a modification to
stabilize the numerical solution. After some remarks on the use of automatic dif-
ferentiation, we show how problems with first integrals and parametrized nonlinear
equations can be treated in the context of DAEs. We close with some conclusions in
Sect. 16.5.
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16.3 Theory of Nonlinear DAEs

Dealing with nonlinear problems, the first step is to require a suitable kind of
regularity. In the special case of an ODE Px D f .t; x/, obviously no additional
properties besides smoothness must be required to obtain (local) existence and
uniqueness of solutions for the corresponding initial value problem. In the special
case of a pure algebraic (parametrized) system F.t; x/ D 0, the typical requirement
is given by assuming that Fx.t; x/, denoting the Jacobian of F with respect to x,
is nonsingular for all relevant arguments. The regularity then corresponds to the
applicability of the implicit function theorem allowing to (locally) solve for x
in terms of t . In the general case of DAEs, we of course want to include these
extreme cases into the definition of a regular problem. Moreover, we want to keep
the conditions as weak as possible. The following example gives an idea, how the
conditions for regularity should look like.

Example 1 The system

Px1 D x4; Px4 D 2x1x7;

Px2 D x5; Px5 D 2x2x7;

Px3 D x6; Px6 D �1 � x7;

0 D x3 � x21 � x22;

see [16], describes the movement of a mass point on a paraboloid under the influence
of gravity.

Differentiating the constraint twice and eliminating the arising derivatives of the
unknowns yields

0 D x6 � 2x1x4 � 2x2x5;

0 D �1 � x7 � 2x24 � 4x21x7 � 2x25 � 4x22x7:

In particular, the so collected three constraints can be solved for x3, x6, and x7 in
terms of the other unknowns, leaving, if eliminated, ODEs for these other unknowns.
Hence, we may replace the original problem by

Px1 D x4; Px4 D 2x1x7;

Px2 D x5; Px5 D 2x2x7;

0 D x3 � x21 � x22 ;
0 D x6 � 2x1x4 � 2x2x5;
0 D �1 � x7 � 2x24 � 4x21x7 � 2x25 � 4x22x7:

}
From this example, we deduce the following. The solution process may require

to differentiate part of the equations such that the solution may depend on the
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derivatives of the data. Without assuming structure, it is not known in advance
which equations should be differentiated. By the differentiation process, we obtain
additional constraints that must be satisfied by a solution.

16.3.1 A Hypothesis

In order to include differentiated data, we follow an idea of Campbell, see [1], and
define so-called derivative array equations

F`.t; x; Px; Rx; : : : ; x.`C1// D 0; (16.2)

where the functions F` 2 C.I � Dx � D Px � R
n � � � � � R

n;R.lC1/m/ are defined
by stacking the original function F together with its formal time derivatives up to
order `, i.e.,

F`.t; x; Px; Rx; : : : ; x.`C1// D

2
6664

F.t; x; Px/
d
dtF.t; x; Px/

:::

. ddt /
`F.t; x; Px/

3
7775 : (16.3)

Jacobians of Fl with respect to the selected variables x; y will be denoted by FlIx;y
in the following. A similar notation will be used for other functions.

The desired regularity condition should include that the original DAE implies a
certain number of constraints, that these constraints should be independent, and that
given an initial value satisfying these constraints can always be extended to a local
solution. In the case m D n, this leads to the following hypothesis.

Hypothesis 1 There exist (nonnegative) integers �, a, and d such that the set

L� D f.t; x; y/ 2 R
.�C2/nC1 j F�.t; x; y/ D 0g (16.4)

associated with F is nonempty and such that for every point .t0; x0; y0/ 2 L�,
there exists a (sufficiently small) neighborhood V in which the following properties
hold:

1. We have rankF�Iy D .� C 1/n � a on L� \ V such that there exists a smooth
matrix function Z2 of size ..�C 1/n; a/ and pointwise maximal rank, satisfying
ZT
2 F�Iy D 0 on L� \ V.

2. We have rankZT
2 F�Ix D a on V such that there exists a smooth matrix

function T2 of size .n; d/, d D n � a, and pointwise maximal rank, satisfying
ZT
2 F�IxT2 D 0.

3. We have rankF PxT2 D d on V such that there exists a smooth matrix functionZ1
of size .n; d/ and pointwise maximal rank, satisfying rankZT

1 F PxT2 D d .
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Note that the local existence of functions Z2; T2;Z1 is guaranteed by the
following theorem, see, e.g., [13, Theorem 4.3]. Moreover, it shows that we may
assume that they possess (pointwise) orthonormal columns.

Theorem 1 Let E 2 C`.D;Rm;n/, ` 2 N0 [ f1g, and assume that rankE.x/ D r

for all x 2 M  D, D  R
k open. For every Ox 2 M there exists a sufficiently

small neighborhood V  D of Ox and matrix functions T 2 C`.V;Rn;n�r /, Z 2
C`.V;Rm;m�r /, with pointwise orthonormal columns such that

ET D 0; ZT E D 0 (16.5)

on M.

The quantity � denotes how often we must differentiate the original DAE in
order to be able to make conclusions about existence and uniqueness of solutions.
Typically, such a quantity is called index. To distinguish it from other indices, the
quantity �, if chosen minimally, is called strangeness index of the given DAE.

For linear DAEs, the above hypothesis is equivalent (for sufficiently smooth data)
to the assumption of a well-defined differentiation index and thus to regularity of the
given linear DAE, see [13]. In the nonlinear case, the hypothesis, of course, should
imply some kind of regularity of the given problems.

In the following, we say that F satisfies Hypothesis 1 with .�; a; d/, if
Hypothesis 1 holds with the choice �, a, and d for the required integers.

16.3.2 Implications

In order to show that Hypothesis 1 implies a certain kind of regularity for the given
DAE, we revise the approach first given in [12], see also [13].

Let .t0; x0; y0/ 2 L� and

T2;0 D T2.t0; x0; y0/; Z1;0 D Z1.t0; x0; y0/; Z2;0 D Z2.t0; x0; y0/:

Furthermore, letZ0
2;0 be chosen such that ŒZ0

2;0Z2;0 � is orthogonal. By Hypothesis 1,
the matrices ZT

2;0F�Ix.t0; x0; y0/ and Z0T
2;0F�Iy.t0; x0; y0/ have full row rank. Thus,

we can split the variables x and y, without loss of generalization according to x D
.x1; x2/ and y D .y1; y2/, such that ZT

2;0F�Ix2 .t0; x0; y0/ and Z0T
2;0F�Iy2 .t0; x0; y0/

are nonsingular. Because of

rankF�Ix2;y2 D rank

"
Z0T
2;0F�Ix2 Z0T

2;0F�Iy2
ZT
2;0F�Ix2 ZT

2;0F�Iy2

#

and ZT
2;0F�Iy2 .t0; x0; y0/ D 0, this implies that F�Ix2;y2 .t0; x0; y0/ is nonsingular.

The implicit function theorem then yields that the equation F�.t; x1; x2; y1; y2/ D 0
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is locally solvable for x2 and y2. Hence, there are locally defined functionsG andH
with

F�.t; x1;G .t; x1; y1/; y1;H .t; x1; y1// 	 0; (16.6)

implying the following structure of L�.

Theorem 2 The set L� forms a manifold of dimension n C 1 that can be locally
parametrized by variables .t; x1; y1/, where x1 consists of d variables from x and y1
consists of a variables from y.

In order to examine the implicitly defined functions in more detail, we consider
the system of nonlinear equationsH.t; x; y; ˛/ D 0 with ˛ 2 R

a given by

H.t; x; y; ˛/ D
�
F�.t; x; y/ �Z2;0˛

T T1;0.y � y0/

�
; (16.7)

where the columns of T1;0 form an orthonormal basis of kernelF�Iy.t0; x0; y0/.
Obviously, we have that H.t0; x0; y0; 0/ D 0. Choosing T 0

1;0 such that Œ T 0
1;0 T1;0 � is

orthogonal, we get

rankHy;˛ D rank

�
F�Iy �Z2;0
T T1;0 0

�
D rank

2
4Z

0T
2;0F�IyT 0

1;0 Z
0T
2;0F�IyT1;0 �

ZT
2;0F�IyT 0

1;0 Z
T
2;0F�IyT1;0 �Ia

� Id 0

3
5 ;

where here and in the following Ik denotes the identity matrix in R
k;k and its

counterpart as constant matrix function. It follows that

rankHy;˛.t0; x0; y0; 0/ D rank

2
4Z

0T
2;0F�Iy.t0; x0; y0/T 0

1;0 0 0

0 0 �Ia
0 Id 0

3
5

and Hy;˛.t0; x0; y0; 0/ is nonsingular because Z0T
2;0F�Iy.t0; x0; y0/T 0

1;0, representing
the linear map obtained by the restriction of F�Iy.t0; x0; y0/ to the linear map from
its cokernel onto its range, is nonsingular. Thus, the nonlinear equation (16.7) is
locally solvable with respect to .y; ˛/, i.e., there are locally defined functions OF2
and Y such that

F�.t; x;Y .t; x// �Z2;0 OF2.t; x/ 	 0; T T1;0.Y .t; x/ � y0/ 	 0: (16.8)

If we then define OF1 by

OF1.t; x; Px/ D ZT
1;0F.t; x; Px/; (16.9)
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we obtain a DAE

OF1.t; x; Px/ D 0; (d differential equations)
OF2.t; x/ D 0; (a algebraic equations)

(16.10)

whose properties shall be investigated.
Differentiating (16.8) with respect to x gives

F�Ix C F�IyYx �Z2;0 OF2Ix D 0:

Multiplying with ZT
2;0 form the left and evaluating at .t0; x0/ then yields

OF2Ix.t0; x0/ D ZT
2;0F�Ix.t0; x0; y0/:

With the above splitting for x, we have that OF2.t0; x0/ D 0 due to the construction
of OF2 and OF2Ix2.t0; x0/ being nonsingular due to the choice of the splitting. Hence,
we can apply the implicit function theorem once more to obtain a locally defined
function R satisfying

OF2.t; x1;R.t; x1// 	 0: (16.11)

In particular, the set M D OF �1
2 .f0g/ forms a manifold of dimension d C 1.

Lemma 1 Let .t0; x0; y0/ 2 L�. Then there is a neighborhood of .t0; x0; y0/
such that

R.t; x1/ D G .t; x1; y1/ (16.12)

for all .t; x; y/ in this neighborhood.

Proof We choose the neighborhood of .t0; x0; y0/ to be a ball with center .t0; x0; y0/
and sufficiently small radius. In particular, we assume that all implicitly defined
functions can be evaluated for the stated arguments.

Differentiating (16.6) with respect to y1 gives

F�Ix2Gy1 C F�Iy1 C F�Iy2Hy1 D 0;

where we omitted the argument .t1; x1;G .t; x1; y1/; y1;H .t; x1; y1//. If we
multiply this with Z2.t1; x1;G .t; x1; y1/; y1;H .t; x1; y1//

T , defined according
to Hypothesis 1, we get ZT

2 F�Ix2Gy1 D 0. Since ZT
2 F�Ix2 is nonsingular for a

sufficiently small radius of the neighborhood, it follows that Gy1.t; x1; y1/ D 0.
Inserting x2 D R.t; x1/ into the first relation of (16.8) and splitting Y according

to y, we obtain

F�.t; x1;R.t; x1/;Y1.t; x1;R.t; x1//;Y2.t; x1;R.t; x1/// D 0:
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Comparing with (16.6), this yields

R.t; x1/ D G .t; x1;Y1.t; x1;R.t; x1///:

With this, we further obtain, setting Qy1 D Y1.t; x1;R.t; x1// for short, that

G .t; x1; y1/ � R.t; x1/ D G .t; x1; y1/ � G .t; x1; Qy1/
D G .t; x1; Qy1 C s.y1 � Qy1//j10
D R 1

0 Gy1 .t; x1; Qy1 C s.y1 � Qy1//.y1 � Qy1/ ds D 0:

ut
With the help of Lemma 1, we can simplify the relation (16.6) to

F�.t; x1;R.t; x1/; y1;H .t; x1; y1// 	 0: (16.13)

Theorem 3 Consider a sufficiently small neighborhood of .t0; x0; y0/ 2 L�. Let OF2
and R be well-defined according to the above construction and let .t; x/ with
x D .x1; x2/ be given such that .t; x/ is in the domain of OF2 and .t; x1/ is in the
domain of R. Then the following statements are equivalent:

(a) There exists y such that F�.t; x; y/ D 0.
(b) OF2.t; x/ D 0.
(c) x2 D R.t; x1/.

Proof The statements (b) and (c) are equivalent due to the implicit function theorem
defining R. Assuming (a), let there be y such that F�.t; x; y/ D 0. Then,
x2 D G .t; x1; y1/ D R.t; x1/ due to the implicit function theorem defining G
and Lemma 1. Assuming (c), we set y D Y .t; x/. With OF2.t; x/ D 0, the relation
(16.8) yields F�.t; x; y/ D 0. ut
Theorem 4 Let F from (16.1) satisfy Hypothesis 1 with .�; a; d/. Then, OF D
. OF1; OF2/ satisfies Hypothesis 1 with .0; a; d/.

Proof Let OL0 D OF�1.f0g/ and let OZ2; OT2; OZ1 denote the matrix functions belonging
to OF as addressed by Hypothesis 1.

For .t0; x0; y0/ 2 F�1
� .f0g/, the above construction yields OF2.t0; x0/ D 0. If Px0

denotes the first n components of y0, then F.t0; x0; Px0/ D 0 holds as first block of
F�.t0; x0; y0/ D 0 implying OF1.t0; x0; Px0/ D 0. Hence, .t0; x0; Px0/ 2 OL0 and OL0 is
not empty.

Since ZT
1;0F Px.t0; x0; Px0/ possesses full row rank due to Hypothesis 1, we may

choose OZT
2 D Œ 0 Ia �. Differentiating (16.8) with respect to x yields

F�Ix C F�IyYx �Z2;0 OF2Ix D 0:
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Multiplying with ZT
2 from the left, we get ZT

2 Z2;0
OF2Ix D ZT

2 F�Ix , where ZT
2 Z2;0

is nonsingular in a neighborhhood of .t0; x0; y0/. Hence, we have

kernel OF2Ix D kernelZT
2 F�Ix

such that we can choose OT2 D T2. The claim then follows since OF1I PxT2 D ZT
1;0F PxT2

possesses full column rank due to Hypothesis 1. ut
Since (16.10) has vanishing strangeness index, it is called a reduced DAE

belonging to the original possibly higher index DAE (16.1). Note that a reduced
DAE is defined in a neighborhood of every .t0; x0; y0/ 2 L�, but also that it is not
uniquely determined by the original DAE even for a fixed .t0; x0; y0/ 2 L�. What
is uniquely determined for a fixed .t0; x0; y0/ 2 L� is (at least when treating it as a
function germ) the function R.

Every continuously differentiable solution of (16.10) will satisfy x2 D R.t; x1/
pointwise. Thus, it will also satisfy Px2 D Rt .t; x1/CRx1.t; x1/ Px1 pointwise. Using
these two relations, we can reduce the relation OF1.t; x1; x2; Px1; Px2/ D 0 of (16.10)
to

OF1.t; x1;R.t; x1/; Px1;Rt .t; x1/C Rx1.t; x1/ Px1/ D 0: (16.14)

If we now insert x2 D R.t; x1/ into (16.8), we obtain

F�.t; x1;R.t; x1/;Y .t; x1;R.t; x1/// D 0: (16.15)

Differentiating this with respect to x1 yields

F�Ix1 C F�Ix2Rx1 C F�Iy.Yx1 C Yx2Rx1/ D 0:

Multiplying with ZT
2 from the left, we get

ZT
2 Œ F�Ix1 F�Ix2 �

�
Id
Rx1

�
D 0:

Comparing with Hypothesis 1, we see that we may choose

T2 D
�
Id

Rx1

�
: (16.16)

Differentiating now (16.14) with respect to Px1 and using the definition of OF1, we
find

ZT
1;0F Px1 CZT

1;0F Px2Rx1 D ZT
1;0F PxT2;

which is nonsingular due to Hypothesis 1. In order to apply the implicit function
theorem, we need to require that .t0; x10; Px10/ solves (16.14). Note that this is not
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a consequence of .t0; x0; y0/ 2 L�. Under this additional requirement, the implicit
function theorem implies the local existence of a function L satisfying

OF1.t; x1;R.t; x1/;L .t; x1/;Rt .t; x1/C Rx1.t; x1/L .t; x1// 	 0: (16.17)

With the help of the functionsL andR, we can formulate a further DAE of the form

Px1 D L .t; x1/; (d differential equations)

x2 D R.t; x1/: (a algebraic equations)
(16.18)

Note that this DAE consists of a decoupled ODE for x1, where we can freely impose
an initial condition as long as we remain in the domain of L . Having so fixed x1,
the part x2 follows directly from the second relation. In this sense, (16.18) can be
seen as a prototype for a regular DAE.

The further discussion is now dedicated to the relation between (16.18) and the
original DAE.

We start with the assumption that the original DAE (16.1) possesses a smooth
local solution x� in the sense that there is a continuous path .t; x�.t/;P.t// 2 L�

defined on a neighborhood of t0, where the first block of P coincides with Px�. Note
that if x� is .�C1/-times continuously differentiable we can just take the path given
by P D . Px�; Rx�; : : : ; .d=dt/�C1x�/. Setting .t0; x0; y0/ D .t0; x

�.t0/;P.t0//,
Theorem 3 yields that x�

2 .t/ D R.t; x�
1 .t//. Hence, Px�

2 .t/ D Rt .t; x
�
1 .t// C

Rx1.t; x
�
1 .t// Px�

1 .t/. In particular, Eq. (16.14) is solved by .t; x1; Px1/ D .t; x�
1 ; Px�

1 /.
Thus, it follows also that Px�

1 .t/ D L .t; x�
1 .t//. In this way, we have proven the

following theorem.

Theorem 5 Let F from (16.1) satisfy Hypothesis 1 with .�; a; d/. Then every
local solution x� of (16.1) in the sense that it extends to a continuous local path
.t; x�.t/;P.t// 2 L�, where the first block of P coincides with Px�, also solves the
reduced problems (16.10) and (16.18).

16.3.3 The Way Back

To show a converse result to Theorem 5, we need to require the solvability of
(16.14) for the local existence of the function L . For this, we assume that F not
only satisfies Hypothesis 1 with .�; a; d/, but also with .� C 1; a; d/. Let now
.t0; x0; y0; z0/ 2 L�C1. Due to the construction of F`, we have

F�C1 D
�

F�

. ddt /
�C1F

�
; F�C1Iy;z D

�
F�Iy 0

.. ddt /
�C1F /y .. ddt /

�C1F /z

�
; (16.19)
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where the independent variable z is a short-hand notation for x.�C2/. Since F�Iy and
F�C1Iy;z are assumed to have the same rank drop, we find that Z2 belonging to F�
satisfies

Œ ZT
2 0 �F�C1Iy;z D Œ ZT

2 0 �

�
F�Iy 0

.. ddt /
�C1F /y .. ddt /

�C1F /z

�
D Œ 0 0 �:

Consequently, in Hypothesis 1 considered for F�C1, we may choose Œ ZT
2 0 �

describing the left nullspace of F�C1Iy;z such that the same choices are possible
for T2 and Z1.

Observing that we may write the independent variables .t; x; y; z/ also as
.t; x; Px; Py/ by simply changing the partitioning of the blocks, and that the equation
F�C1 D 0 contains F� D 0 as well as d

dtF� D 0, which has the form

d
dtF� D F�It C F�Ix Px C F�Iy Py D 0;

we get

ZT
2 F�It CZT

2 F�Ix Px D 0:

Using the same splitting x D .x1; x2/ as above and Px D . Px1; Px2/ accordingly, we
obtain

ZT
2 F�It CZT

2 F�Ix1 Px1 CZT
2 F�Ix2 Px2 D 0;

which yields

Px2 D �.ZT
2 F�Ix2 /�1.ZT

2 F�It CZT
2 F�Ix1 Px1/: (16.20)

On the other hand, differentiation of (16.13) with respect to t yields

F�It CF�Ix1 Px1CF�Ix2 .Rt CRx1 Px1/CF�Iy1 Py1CF�Iy2 .Ht CHx1 Px1CHy1 Py1/ D 0

and thus

ZT
2 F�It CZT

2 F�Ix1 Px1 D �ZT
2 F�Ix2 .Rt C Rx1 Px1/:

Inserting this into (16.20) yields

Px2 D Rt C Rx1 Px1: (16.21)

Hence, the given point .t0; x0; Px0; Py0/ satisfies

Px20 D Rt .t0; x10/C Rx1.t0; x10/ Px10:
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It then follows that .t0; x10; Px10/ solves (16.14). In particular, this guarantees that the
implicit function theorem is applicable to (16.14) leading to a locally defined L .
Thus, the reduced system (16.18) is locally well-defined. Moreover, for every initial
value for x1 near x10, the initial value problem for x1 in (16.18) possesses a
solution x�

1 . The second equation in (16.18) then yields a locally defined x�
2 such

that x� D .x�
1 ; x

�
2 / forms a solution of (16.18).

For the same reasons as for L�, the set L�C1 can be locally parametrized by
nC 1 variables. Among these variables are again t and x1. But since x2, Px1, and Px2
are all functions of .t; x1/, the remaining variables, say p, are now from Py. In
particular, there is a locally defined function Z satisfying

F�C1.t; x1;R.t; x1/;L .t; x1/;Rt .t; x1/C Rx1.t; x1/L .t; x1/;Z .t; x1; p// 	 0:

Choosing now x�
1 .t/ for x1 and p�.t/ arbitrarily within the domain of Z , for

example p�.t/ D p0, where p0 is the matching part of Py0, yields

F�C1.t; x�
1 .t/; x

�
2 .t/; Px�

1 .t/; Px�
2 .t/;Z .t; x�

1 .t/; p
�.t/// 	 0;

which contains

F.t; x�
1 .t/; x

�
2 .t/; Px�

1 .t/; Px�
2 .t// 	 0 (16.22)

in the first block. But this means nothing else than that x� D .x�
1 ; x

�
2 / locally solves

the original problem. Moreover, locally there is a continuous function P such that
its first block coincides with Px� and .t; x�.t/;P.t// 2 L�. Summarizing, we have
proven the following statement.

Theorem 6 If F satisfies Hypothesis 1 with .�; a; d/ and .�C 1; a; d/ then every
local solution x� of the reduced DAE (16.18) is also a local solution of the original
DAE. Moreover, it extends to a continuous local path .t; x�.t/;P.t// 2 L�, where
the first block of P coincides with Px�.

The numerical treatment of DAEs is usually based on the assumption that there
is a solution to be computed. In view of Theorem 5 it is therefore sufficient to work
with the derivative array F�. However, we must assume in addition that the given
point .t0; x0; y0/ 2 L� provides suitable starting values for the nonlinear system
solvers being part of the numerical procedure. Note that this corresponds to the
assumption that we may apply the implicit function theorem for the definition of L .

16.3.4 Overdetermined Consistent DAEs

Hypothesis 1 can be generalized in various ways. For example, we may include
underdetermined problems which would cover control problems by treating states
and controls as indistinguishable parts of the unknown. We may also allow
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overdetermined problems or problems with redundant equations. The main problem
in the formulation of corresponding hypotheses is for which points to require
properties of the Jacobians of the derivative array equation. Note that the restriction
in Hypothesis 1 to points in the solution set of the derivative array equation leads
to better covariance properties of the hypothesis, see [13], but it excludes problems
where this set is empty, e.g., linear least-squares problems. In the following, we want
to present a generalization to overdetermined, but consistent (i.e., solvable) DAEs.
Such DAEs may arise by extending a given DAE by some or all hidden constraints,
i.e., relations contained in OF2.t; x/ D 0 that require the differentiation of the original
DAE, or by extending a given DAE or even an ODE by known first integrals.

Hypothesis 2 There exist (nonnegative) integers �, a, d , and v such that the set

L� D f.t; x; y/ 2 R
.�C2/nC1 j F�.t; x; y/ D 0g (16.23)

associated with F is nonempty and such that for every point .t0; x0; y0/ 2 L�,
there exists a (sufficiently small) neighborhood V in which the following properties
hold:

1. We have rankF�Iy D .� C 1/m � v on L� \ V such that there exists a smooth
matrix functionZ2 of size ..�C 1/m; v/ and pointwise maximal rank, satisfying
ZT
2 F�Iy D 0 on L� \ V.

2. We have rankZT
2 F�Ix D a on V such that there exists a smooth matrix

function T2 of size .n; d/, d D n � a, and pointwise maximal rank, satisfying
ZT
2 F�IxT2 D 0.

3. We have rankF PxT2 D d on V such that there exists a smooth matrix functionZ1
of size .m; d/ and pointwise maximal rank, satisfying rankZT

1 F PxT2 D d .

A corresponding construction as for Hypothesis 1 shows that Hypothesis 2
implies a reduced DAE of the form (16.10) with the same properties as stated there.
In particular, a result similar to Theorem 5 holds. Due to the assumed consistency,
the omitted relations (the reduced DAEs are m � n scalar relations short) do not
contradict these equations. Thus, the solutions fixed by the reduced DAE will be
solutions of the original overdetermined DAE under assumptions similar to those of
Theorem 6. Since the arguments are along the same lines as presented above, we
omit details here.

An example for a problem covered by Hypothesis 2 is given by Example 1
when we just add the two equations obtained by differentiation and elimination to
the original DAE leading to a problem consisting of 9 equations in 7 unknowns.
A second example, which we will also address in the numerical experiments,
consists of an ODE with known first integral.

Example 2 A simple predator/prey model is described by the so-called Lotka/Vol-
terra system

Px1 D x1.1 � x2/; Px2 D �c x2.1 � x1/;
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where c > 0 is some given constant, see, e.g., [14]. It is well-known that

H.x1; x2/ D c.x1 � logx1/C .x2 � logx2/

is a first integral of this system implying that the positive solutions are periodic. The
combined overdetermined system

Px1 D x1.1 � x2/;

Px2 D �c x2.1 � x1/;
c.x1 � logx1/C .x2 � logx2/ D H0;

where H0 D H.x10; x20/ for given initial values x1.t0/ D x10, x2.t0/ D x20, is
therefore consistent. Moreover, it can be shown to satisfy Hypothesis 2 with � D
0, a D 1, d D 1, and v D 1. In contrast to Example 1, we cannot decide in
advance which of the two differential equations should be used together with the
algebraic constraint. For stability reasons, we should rather use an appropriate linear
combination of the two differential equations. But this just describes the role of Z1
in Hypothesis 2. }

16.4 Integration of Nonlinear DAEs

In this section, we discuss several issues that play a role when one wants to integrate
DAE systems numerically in an efficient way.

16.4.1 Discretizations

The idea for developing methods for the numerical solution of unstructured DAEs
is to discretize not the original DAE (16.1) but the reduced DAE (16.10) because
of its property that it does not contain hidden constraints, i.e., that we do not need
to differentiate the functions in the reduced DAE. Of course, the functions in the
reduced DAE are themselves defined by relations that contain differentiations. But
these are differentiations of the original function F which may be obtained by hand
or by means of automatic differentiation.

A well-known discretization of DAEs are the BDF methods, see, e.g., [6]. We
want to concentrate here on two families of one-step methods that are suitable for the
integration of DAEs of the form (16.10). In the following, we denote the initial value
at t0 by x0 and the stepsize by h. The discretization should then fix an approximate
solution x1 at the point t1 D t0 C h.
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The first family of methods are the Radau IIa methods, which are collocation
methods based on the Radau nodes

0 < �1 < � � � < �s D 1; (16.24)

where s 2 N denotes the number of stages, see, e.g., [10]. The discretization of
(16.10) then reads

OF1.t0 C �j h;Xj ;
1
h
.vj 0x0 CPs

lD1 vjlXl// D 0;

OF2.t0 C �j h;Xj / D 0; j D 1; : : : ; s;
(16.25)

together with x1 D Xs , where Xj , j D 1; : : : ; s, denote the stage values of the
Runge-Kutta scheme. The coefficients vjl are determined by the nodes (16.24). For
details and the proof of the following convergence result, see, e.g., [13].

Theorem 7 The Radau IIa methods (16.25) applied to a reduced DAE (16.10) are
convergent of order p D 2s � 1.

Note that the Radau IIa methods exhibit the same convergence order as in the
special case of an ODE. The produced new value x1 satisfies all the constraints due
to the included relation OF2.t1; x1/ D 0.

The second family of methods consists of partitioned collocation methods, which
use Gauß nodes for the differential equations and Lobatto nodes for the algebraic
equations given by

0 < �1 < � � � < �k < 1; 0 D �0 < � � � < �k D 1; (16.26)

with k 2 N. Observe that we use one more Lobatto node equating thus the order of
the corresponding collocation methods for ODEs. The discretization of (16.10) then
reads

OF1.t0 C �j h; uj 0x0 CPk
lD1 ujlXl ;

1
h
.vj 0x0 CPk

lD1 vjlXl// D 0;

OF2.t0 C �j h;Xj / D 0; j D 1; : : : ; k;
(16.27)

together with x1 D Xk . The coefficients ujl and vjl are determined by the nodes
(16.26). For details and the proof of the following convergence result, see again [13].

Theorem 8 The Gauß-Lobatto methods (16.27) applied to a reduced DAE (16.10)
are convergent of order p D 2k.

Note that in contrast to the Radau IIa methods, the Gauß-Lobatto methods are
symmetric. Thus, they may be prefered when symmetry of the method is an issue,
e.g., in the solution of boundary value problems. In the case of an ODE, the Gauß-
Lobatto methods reduce to the corresponding Gauß collocation methods. As for the
Radau IIa methods, the produced new value x1 satisfies all the constraints due to the
included relation OF2.t1; x1/ D 0.
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For the actual computation, we lift the discretization from the reduced DAE
to the original DAE by using Theorem 3. In particular, we replace every relation
of the form OF2.t; x/ D 0 by F�.t; x; y/ D 0 with the help of an additional
unknown y. Note that by this process the system describing the discretization
becomes underdetermined. Nevertheless, the desired value x1 will still (at least
locally) be uniquely fixed. The Radau IIa methods then read

ZT
1;0F.t0 C �j h;Xj ;

1
h
.vj 0x0 CPs

lD1 vjlXl// D 0;

F�.t0 C �j h;Xj ; Yj / D 0; j D 1; : : : ; s;
(16.28)

and the Gauß-Lobatto methods then read

ZT
1;0F.t0 C �j h; uj 0x0 CPk

lD1 ujlXl ;
1
h
.vj 0x0 CPk

lD1 vjlXl// D 0;

F�.t0 C �j h;Xj ; Yj / D 0; j D 1; : : : ; k:
(16.29)

In the case of overdetermined DAEs governed by Hypothesis 2, the discretizations
look the same.

In order to perform a step with the above one-step methods given an initial value
.t0; x0; y0/ 2 L�, we can determine Z1;0 along the lines of the above hypotheses.
We then must provide starting values for a suitable nonlinear system solver for
the solution of the nonlinear systems describing the discretization, typically the
Gauß-Newton method or a variant of it. Upon convergence, we obtain a final value
.t1; x1; y1/ as part of the overall solution (which includes the internal stages), which
will then be the initial value for the next step. Note that for performing a Gauß-
Newton-like method for these problems, which we will write as F .z/ D 0 for short
in the following, we must be able to evaluate the function F and its Jacobian Fz

at given points. Thus, we must be able to evaluate F and F� and their Jacobians,
which can be done by using automatic differentiation, see below.

16.4.2 Gauß-Newton-Like Processes

The design of the Gauß-Newton-like method is crucial for the efficiency of the
approach. Note that we had to replace OF2 by F� thus increasing the number of
equations and unknowns significantly. However, there is some structure in the
equations that can be utilized in order to improve the efficiency. We will sketch
this approach in the following for the case of the Radau IIa discretization. Similar
techniques can be applied to the case of the Gauß-Lobatto discretization.

Linearizing the equation F .z/ D 0 around some given z yields the linear
problem F .z/ C Fz.z/�z D 0 for the correction �z. The ordinary Gauß-Newton
method is then characterized by solving for �z by means of the Moore-Penrose
pseudoinverse Fz.z/C of Fz.z/, i.e.,

�z D �Fz.z/
CF .z/: (16.30)
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Instead of the Moore-Penrose pseudoinverse, we are allowed to use any other
equation-solving generalized inverse of Fz.z/. Due to the consistency of the
nonlinear problem to be solved, we are also allowed to perturb the Jacobian as long
as the perturbation is sufficiently small or even tends to zero during the iteration.

In the case (16.28), linearization leads to

ZT
1;0F

j
x �Xj CZT

1;0F
j

Px
1
h

Ps
lD1 vjl�Xl D �ZT

1;0F
j ;

F
j
�Ix�Xj C F

j
�Iy�Yj D �F j

� ; j D 1; : : : ; s:
(16.31)

which is to be solved for .�Xj ;�Yj /, j D 1; : : : ; s. The superscript j indicates,
that the corresponding function is evaluated at the argument occurring in the j -
th equation, i.e., at .t0 C �j h;Xj ;

1
h
.vj 0x0 C Ps

lD1 vjlXl// in the case of F and

.t0 C �j h;Xj ; Yj / in the case of F�. Since (16.28) contains F j
� D 0, we will have

rankF j
�Iy D .� C 1/n � a at a solution of (16.28) due to Hypothesis 1. Near the

solution, the matrix F j
�Iy is thus a perturbation of a matrix with rank drop a. The

idea therefore is to perturb F j
�Iy to a matrix Mj with rankMj D .� C 1/n � a.

Such a perturbation can be obtained by rank revealing QR decomposition or by
singular value decomposition, see, e.g., [7]. The second part of (16.31) then consists
of equations of the form

F
j
�Ix�Xj CMj�Yj D �F j

� : (16.32)

With the help of an orthogonal matrix ŒZ0
2;j Z2;j �, where the columns ofZ2;j form

an orthonormal basis of the left nullspace of Mj , we can split (16.32) into

Z0T
2;j F

j
�Ix�Xj CZ0T

2;jMj�Yj D �Z0T
2;j F

j
� ; ZT

2;j F
j
�Ix�Xj D �ZT

2;j F
j
� :

(16.33)
The first part can be solved for�Yj via the Moore-Penrose pseudoinverse

�Yj D �.Z0T
2;jMj /

CZ0T
2;j .F

j
� C F

j
�Ix�Xj / (16.34)

in terms of �Xj , thus fixing a special equation-solving pseudoinverse of the
Jacobian under consideration. In order to determine the corrections �Xj , we take
an orthogonal matrix Œ T 0

2;j T2;j �, where the columns of T2;j form an orthonormal

basis of the right nullspace of Z0T
2;j F

j
�Ix , which is of full row rank near the solution

due to Hypothesis 1. Defining the transformed corrections

�V 0
j D T 0T

2;j�Xj ; �Vj D T T2;j�Xj ; (16.35)

we have �Xj D T 0
2;j�V

0
j C T2;j �Vj and the second part of (16.33) becomes

ZT
2;j F

j
�IxT 0

2;j�V
0
j D �ZT

2;j F
j
� : (16.36)
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Due to Hypothesis 1, the square matrix ZT
2;j F

j
�IxT 0

2;j is nonsingular near a solution
such that we can solve for �V 0

j to get

�V 0
j D �.ZT

2;j F
j
�IxT 0

2;j /
�1ZT

2;j F
j
� : (16.37)

Finally, transforming the equation in the first part of (16.31) to the variables
.�V 0

j ; �Vj / and eliminating the terms �V 0
j leaves a system in the unknowns�Vj ,

which is of the same size and form as if we would discretize an ODE of d equations
by means of the Radau IIa method. This means that we actually have reduced the
complexity to that of solving an ODE of the size of the differential part. Solving
this system for the quantities �Vj and combining these with the already obtained
values�V 0

j then yields the corrections�Xj .
The overall Gauß-Newton-like process, which can be written as

�z D �J .z/CF .z/ (16.38)

with J .z/ ! Fz.z/ when z converges to a solution, can be shown to be locally and
quadratically convergent, see again [13]. Using such a process is indispensable for
the efficient numerical solution of unstructured DAEs.

16.4.3 Minimal-Norm-Corrected Gauß-Newton Method

We have implemented the approach of the previous section both for the Radau IIa
methods and for the Gauß-Lobatto methods. Experiments show that one can
successfully solve nonlinear DAEs even for larger values of � without having to
assume a special structure. Applying it to the problem of Example 1, however,
reveals a drawback of the approach described so far. In particular, we observe the
following. Trying to solve the problem of Example 1 on a larger time interval
starting at t D 0, one realizes that the integration terminates at about t D 14:5

because the nonlinear system solver fails, cp. Fig. 16.1. A closer look shows that
the reason for this is that the undetermined components y, which are not relevant
for the solution one is interested in, run out of scale. Scaling techniques cannot
avoid the effect. They can only help to make use of the whole range provided by
the floating point arithmetic. Using diagonal scaling, the iteration terminates then at
about t D 71:4, cp. again Fig. 16.1.

Actually, proceeding from numerical approximations .xi ; yi / at ti to numerical
approximations .xiC1; yiC1/ at tiC1 consists of two mechanisms. First, we must
provide a starting value z for the nonlinear system solver. We call this predictor and
write

z D P.xi ; yi /: (16.39)
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Fig. 16.1 Decadic logarithm of the Euclidean norm of the generated numerical solution .xi ; yi /

Then, the nonlinear system solver, called corrector in this context, yields the new
approximation according to

.xiC1; yiC1/ D C.z/: (16.40)

Thus the numerical flow ˚ of our method effectively has the form

.xiC1; yiC1/ D ˚.xi ; yi /; ˚ D C ı P: (16.41)

The problem can then be described as follows. Even if the actual solution and the
numerical approximations xi are bounded, there is no guaranty that the overall
numerical solutions .xi ; yi / stay bounded.

In [3], it was examined how different predictors P, in particular extrapolation of
some order, influence the overall behavior of the process. The result was that linear
extrapolation should be prefered to higher order extrapolation. However, even linear
extrapolation cannot avoid the blow-up.

The idea here is to modify the corrector C, in particular to introduce damping into
the nonlinear system solver. Recall that the nonlinear system to be solved does in
general not have a unique solution but that the part one is interested in, namely xiC1,
is unique. Consider the iteration given by

�z D �˛z � Fz.z/
C.F .z/ � ˛Fz.z/z/ (16.42)
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with ˛ 2 Œ0; 1� replacing (16.30). For ˛ D 0, we rediscover (16.30). For ˛ D 1, we
have

z C�z D Fz.z/
C.Fz.z/z � F .z//;

which in the linear case F .z/ D Az � b leads to z C �z D ACb and thus to
the shortest solution with respect to the Euclidean norm. In this sense, the process
defined by (16.42) contains some damping. Moreover, if ˛ ! 0 quadratically during
the iteration, we maintain the quadratic convergence of the Gauß-Newton process.
The following result is due to [2].

Theorem 9 Consider the problem F .z/ D 0 and assume that the Jacobians Fz.z/
have full row rank. Furthermore, consider the iteration defined by (16.42) and
assume that ˛ ! 0 quadratically during the iteration. Then the so defined process
yields iterates that converge locally and quadratically to a solution of the given
problem.

Observe that replacing (16.30) by (16.42) only consists of a slight modification
of the original process. The main computational effort, namely the representation
of Fz.z/C, stays the same. Moreover, using a perturbed Jacobian J .z/ instead
of Fz.z/ is still possible and does not influence the convergence behavior. Fig-
ure 16.1 shows that with this modified nonlinear system solver we are now able
to produce bounded overall solutions in the case of Example 1.

16.4.4 Automatic Differentiation

In order to integrate (unstructured) DAEs, we must provide procedures for the
evaluation of F and F� together with their Jacobians. As already mentioned this
can be done by exploiting techniques from automatic differentiation, see, e.g., [9].

The simplest approach is to evaluate the functions on the fly, i.e., by using special
classes and overloaded operators, a call of a template function which implements F
can produce the needed evaluations just by changing the class of the variables. The
drawback in this approach is that there may be a lot of trivial computations when
the derivatives are actually zero. Moreover, no code optimization is possible.

An alternative approach consists of two phases. First, one uses automatic
differentiation to produce code for the evaluation of the needed functions. This code
can then be easily compiled using optimization. The drawback here is that one has
to adapt the automatic differentiation process or the produced code to the form one
needs for the following integration of the DAE. Nevertheless, one can expect this
approach to be more efficient for the actual integration of the DAE, especially for
larger values of �. Actually, one would prefer the first approach while a model is
developed. If the model is finalized, one would then prefer the second approach.

As an example, we have run the problem from Example 1 with both approaches
on the interval Œ0; 100� using the Gauß-Lobatto method for k D 3 and the
minimal-norm-corrected Gauß-Newton-like method starting with ˛ D 0:1 and
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using successive squaring. The computing time in the first case exploiting automatic
differentiation on the fly was 2.8 s. The computing time in the second case exploiting
optimized code produced by automatic differentiation was 0.6 s.

16.4.5 Exploiting First Integrals

If for a given ODE or DAE model first integrals are known, they should be included
into the model thus enforcing the produced numerical approximations to obey these
first integrals. The enlarged system is of course overdetermined but consistent. In
general, it is not clear how to deduce a square system from the overdetermined one
in order to apply standard integration procedures, cp. Example 2.

In Example 1, there are two hidden constraints which were found by differenti-
ation. As already mentioned there, it is in this case possible to reduce the problem
consisting of the original equations and the two additional constraints to a square
system by just omitting two equations of the original system. Sticking to automatic
differentiation and using the same setting as above, we can solve the overdetermined
system in 0.9 s and the reduced square system in 0.7 s.

For Example 2, such a beforehand reduction is not so obvious, but still possible
due to the simple structure of this specific problem. We solved the overdetermined
problem by means of the implicit Euler method (which is the Radau IIa method
for s D 1) as well as the original ODE by means of the explicit and implicit
Euler method performing 1,000 steps with stepsize h D 0:02. The results are
shown in Fig. 16.2. As one would expect, the numerical solution for the ODE
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Fig. 16.2 Numerical solutions for the Lotka/Volterra model
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produced by the explicit Euler method spirals outwards thus increasing the energy
while the numerical solution for the ODE produced by the implicit Euler method
spirals inwards thus decreasing energy. The numerical solution obtained from the
overdetermined system, of course, conserves the energy by construction.

16.4.6 Path Following by Arclength Parametrization

There are two extreme cases of DAEs, the case of ODEs Px D f .t; x/ on the
one hand and the case of nonlinear equations f .x/ D 0 on the other hand. For
F.t; x; Px/ D Px � f .t; x/, Hypothesis 1 is trivially satisfied with � D 0, a D 0,
and d D n. For F.t; x; Px/ D f .x/, Hypothesis 1 is satisfied with � D 0, a D n,
and d D 0, provided fx.x/ is nonsingular for all x 2 L0. Since t does neither occur
as an argument nor via differentiated variables, the solutions are constant in time
and thus, as solutions of a DAE, not so interesting. This changes if one considers
parameter dependent nonlinear equations f .x; �/ D 0, where � shall be a scalar
parameter. The problem is now underdetermined. Thus, it cannot satisfy one of the
above hypotheses. Under the assumption that Œ fx f� � has full row rank for all
.x; �/ 2 M D f �1.f0g/ ¤ ;, the solution set forms a one-dimensional manifold.
If one is interested in tracing this manifold, one can use path following techniques,
see, e.g., [4, 17]. However, it is also possible to treat such problems with solution
techniques for DAEs. A first choice would be to interpret the parameter � as time t
of the DAE. This would, however, imply that the parameter � is strictly monotone
along the one-dimensional manifold. But there are applications, where this is not
the case. It may even happen that the points where the parameter � is extremal are
of special interest. In order to treat such problems, we are in need of defining a
special type of time which is monotone in any case. Such a quantity is given as
the arclength of the one-dimensional manifold, measured say from the initial point
we start off. Since the arclength parametrization of a path is characterized by the
property that the derivative with respect to the parametrization has Euclidean length
one, we consider the DAE

f .x; �/ D 0; k Pxk22 C jP� j2 D 1 (16.43)

for the unknown .x; �/. If .x0; �0/ 2 M and Œ fx f� � is of full row rank on M,
the implicit function theorem yields that there is a local solution path . Ox.t/; O�.t//
passing through .x0; �0/. Moreover, k POx.t/k22CjPO�.t/j2 D 1, when we parametrize by
arclength. Hence, the DAE (16.43) possesses a solution. Moreover, writing (16.43)
as F.z; Pz/ D 0 with z D .x; �/, we have

L0 D f.z; Pz/ j z D . Ox.t/; O�.t//; Pz D . POx.t/; PO�.t//g
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in Hypothesis 1. Because of

F0;Pz D
�
0 0

2 PxT 2 P�
�
; F0Iz D

�
fx f�

0 0

�
;

we may choose

Z2 D
�
In
0

�
:

By assumption, ZT
2 F0Iz D Œ fx f� � has full row rank and we may choose T2 as

a normalized vector in kernelŒ fx f� �, which is one-dimensional. In particular, we
may choose

T2 D
" POx

PO�

#

on L0. Finally, we observe that

FPzT2 D
�
0 0

2 POxT 2 PO�
�" POx

PO�

#
D
�
0

2

�

has full column rank at the solution and thus in a neighborhood of it. Hence, the DAE
(16.43) satisfies Hypothesis 1 with � D 0, a D n, and d D 1, where n denotes the
size of x. We can then use DAE solution techniques to solve (16.43) thus tracing the
solution path of the original parametrized system of nonlinear equations.

In order to determine points along the path, where the parameter � is extremal,
we may combine the DAE (16.43) with a root finding procedure, e.g., along the
lines of [18] or the references therein. The points of interests are characterized by
the condition P� D 0. We therefore augment the DAE (16.43) according to

f .x; �/ D 0; k Pxk22 C jP� j2 D 1; w � P� D 0; (16.44)

and try to locate points along the solution satisfying w D 0. Writing the DAE (16.44)
again as F.z/ D 0, where now z D .x; �;w/, we have

L0 D f.z; Pz/ j z D . Ox.t/; O�.t/; PO�.t//; Pz D . POx.t/; PO�.t/; RO�.t//g

in Hypothesis 1. Because of

F0IPz D
2
4 0 0 0

2 PxT 2 P� 0
0 �1 0

3
5 ; F0Iz D

2
4fx f� 00 0 0

0 0 1

3
5 ;
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we may choose

Z2 D
2
4 In0
0

3
5 :

Along the same lines as above, we may now choose

T2 D
2
4

POx 0
PO� 0
0 1

3
5

on L0. We then observe that

FPzT2 D
2
4 0 0 0

2 POxT 2 PO� 0
0 �1 0

3
5
2
4

POx 0
PO� 0
0 1

3
5 D

2
4 0 0

2 0

�PO� 0

3
5

fails to have full column rank at the solution. Thus, Hypothesis 1 cannot hold with
� D 0. We therefore consider Hypothesis 1 for � D 1. Starting from

F1IPz;Rz D

2
66666664

0 0 0

2 PxT 2 P� 0
0 �1 0
fx f� 0 0 0 0

� � 0 2 PxT 2 P� 0
0 0 1 0 �1 0

3
77777775
; F1Iz D

2
66666664

fx f� 0

0 0 0

0 0 1

� � 0

0 0 0

0 0 0

3
77777775
;

we use the fact that 0 ¤ . PxT ; �/T 2 kernelŒ fx f� � at a solution and therefore

�
fx f�

PxT P�
�

nonsingular

near the solution to deduce that rankF1IPz;Rz D nC 3. Choosing

Z2 D

2
66666664

In 0

0 �
0 1

0 �
0 0

0 0

3
77777775
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gives

ZT
2 F1Iz D

�
fx f� 0

� � 1

�
;

which has full row rank by assumption. Choosing

T2 D
2
4

POx
PO�
�

3
5

at the solution then yields

FPzT2 D
2
4 0 0 0

2 POxT 2 PO� 0
0 �1 0

3
5
2
4

POx
PO�
�

3
5 D

2
4 0

2

�PO�

3
5 :

Hence, the DAE (16.44) satisfies Hypothesis 1 with � D 1, a D nC 1, and d D 1,
and we can treat (16.44) by the usual techniques. The location of points Ot with
P�.Ot/ D 0 can now be seen as a root finding problem along solutions of (16.44) for
the function g defined by

g.x; �;w/ D w (16.45)

In particualar, it can be treated by standard means of root finding techniques.
In order to be able to determine a root Ot of g, we need that this root is simple,

i.e., that

d
dtg. Ox.t/; O�.t/; Ow.t//jtDOt ¤ 0; Ow.t/ D PO�.t/: (16.46)

In the case of (16.45), this condition simply reads

RO�.Ot/ ¤ 0: (16.47)

In order to determine RO�.Ot /, we start with f . Ox.t/; O�.t// D 0 along the solution.
Differentiating twice yields (omitting arguments)

fx POx C f� PO� D 0 (16.48)

and

fxx. POx; POx/C fx� . POx/. PO�/C fx ROx C fx� . POx/. PO�/C f�� . PO�; PO�/C f� RO� D 0: (16.49)
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Since PO�.Ot / D 0, the relation (16.48) gives

fx.x
�; ��/v D 0; v D POx.Ot/ ¤ 0; (16.50)

with x� D Ox.Ot / and �� D O�.Ot/ for short. Thus, the square matrix fx.x�; ��/ is
rank-deficient such that there is a vector u ¤ 0 with

uT fx.x
�; ��/ D 0: (16.51)

Multiplying (16.49) with uT from the left and evaluating at Ot yields

uT fxx.x
�; ��/.v; v/C uT f� .x

�; ��/ RO�.Ot / D 0: (16.52)

Assuming now that

uT fxx.x
�; ��/.v; v/ ¤ 0; uT f� .x

�; ��/ ¤ 0 (16.53)

guarantees

RO�.Ot / D �.uT f� .x�; ��//�1.uT fxx.x�; ��/.v; v// ¤ 0: (16.54)

Note that the assumptions for .x�; ��/ we have required here are just those that
characterize a so-called simple turning point, see, e.g., [8, 15].

Example 3 Consider the example

�.1 � x3/ exp.10x1/=.1C 0:01x1/� x3 D 0;

22�.1� x3/ exp.10x1/=.1C 0:01x1/� 30x1 D 0;

x3 � x4 C �.1 � x3/ exp.10x2/=.1C 0:01x2/ D 0;

10x1 � 30x2 C 22�.1� x4/ exp.10x2/=.1C 0:01x2/ D 0;

from [11]. Starting from the trivial solution into the positive cone, the solution path
exhibits six turning points before the solution becomes nearly independent of � , see
Fig. 16.3, which has been produced by solving the corresponding DAE (16.44) by
the implicit Euler method combined with standard root finding techniques. }

16.5 Conclusions

We revised the theory of regular nonlinear DAEs of arbitrary index and gave
some extensions to overdetermined but consistent DAEs. We also discussed several
computational issues in the numerical treatment of such DAEs, namely suitable
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Fig. 16.3 Solution path for Example 3 projected into the .�; x2/-plane

discretizations, efficient nonlinear system solvers and their stabilization, as well as
automatic differentiation. We finally presented a DAE approach for numerical path
following for parametrized systems of nonlinear equations including the detection
and determination of (simple) turning points.
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Chapter 17
DAEs in Applications

Lena Scholz and Andreas Steinbrecher

Abstract Differential-algebraic equations (DAEs) arise naturally in many technical
and industrial applications. By incorporating the special structure of the DAE sys-
tems arising in certain physical domains, the general approach for the regularization
of DAEs can be efficiently adapted to the system structure. We will present the
analysis and regularization approaches for DAEs arising in mechanical multibody
systems, electrical circuit equations, and flow problems. In each of these cases
the DAEs exhibit a certain structure that can be used for an efficient analysis
and regularization. Moreover, we discuss the numerical treatment of hybrid DAE
systems, that also occur frequently in industrial applications. For such systems, the
framework of DAEs provides essential information for a robust numerical treatment.

17.1 Introduction

In the simulation and control of constrained dynamical systems differential-alge-
braic equations (DAEs) are widely used, since they naturally arise in the modeling
process. In particular, the automatic modeling using coupling of modularized
subcomponents is frequently used in industrial applications yielding large-scale
(but often sparse) DAE systems. An important aspect in the simulation of these
systems is that conservation laws (e.g. conservation of mass or momentum, mass
or population balances, etc.) included in the model equations should be preserved
during the numerical integration. These algebraic relations pose constraints on the
solution and may lead to so-called hidden constraints (for higher index DAEs). Also
path-following constraints can be considered as additional algebraic constraints. The
occurrence of hidden constraints leads to difficulties in the numerical solution as
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instabilities or order reduction can occur. Therefore, it is necessary to regularize or
remodel the model equations to ensure a robust numerical integration.

The theory of general nonlinear DAEs developed by P. Kunkel and V. Mehrmann
[28] (see also Chap. 16) provides a unified concept for modeling, simulation, control
and optimization. However, usually such a general approach for the regularization
of DAEs is not efficient enough for the usage in industrial applications. By
incorporating the special structure of the DAE systems arising in certain physical
domains, this general approach can be adapted efficiently to the system structure
to construct robust regularizations in an efficient manner. Also, the structure of a
system often comprises certain physical properties, that should be preserved as far
as possible during the regularization and simulation process.

Another aspect that arises in numerous industrial applications is switching or
hybrid behavior of the system model, e.g., mechanical systems with dry friction
[10] or impact phenomena, electrical circuits with switching elements like diodes
or switches [46], or control systems where the value of a control switches [59]. For
such systems, the framework of DAEs provides essential information for a robust
numerical treatment.

In the following, we present regularization approaches for some of the most
important physical structures that occur in industrial applications, that is, for
mechanical multibody systems, for electrical circuit equations and for flow prob-
lems. Moreover, we explain how hybrid DAE systems can be handled numerically
in a robust and efficient manner using the concept of DAEs.

17.2 Preliminaries

Notation 1 For a differentiable time depending function x, the i -th (total) deriva-
tive of x with respect to t is denoted by x.i/.t/ D dix.t/=dt i for i 2 N, using the
convention x.1/.t/ D Px.t/, and x.2/.t/ D Rx.t/. For a differentiable function f
depending on x, the (partial) derivative of f with respect to x is denoted by
f;x.x/ D @

@x
f .x/. The same notation is used for differentiable vector- and matrix-

valued functions. Partial derivatives of a function F .t; x; : : : ; x.iC1// with respect
to selected variables p from .t; x; : : : ; x.iC1// are denoted by F;p , e.g.,

F;Œ Px;:::;x.iC1/� D
h
@
@ PxF : : : @

@x.iC1/F
i
:
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Let F D ŒFi � 2 R
n and let I D fi1; i2; : : : ; ipg  f1; : : : ; ng be an index set. We use

the notation FI for the vector

FI D

2
6664
Fi1
Fi2
:::

Fip

3
7775 :

For a matrix A 2 R
m;n, im .A/ denotes the image of A, ker .A/ denotes the kernel

of A, and coker .A/ denotes the cokernel of A. Furthermore, rank.A/ denotes the
rank of the matrix A and corank.A/ denotes the corank of A that is defined as the
codimension of the image.

In this section, we shortly recapitulate the basic facts of the general theory for
nonlinear DAEs following the presentation in [28]. We consider a nonlinear DAE of
the form

F.t; x; Px/ D 0; (17.1)

with sufficiently smooth function F W I�Dx �D Px ! R
m, I � R (compact) interval,

and Dx;D Px � R
n open. Together with an initial condition

x.t0/ D x0; t0 2 I; x0 2 Dx; (17.2)

we obtain an initial value problem consisting of (17.1) and (17.2). The derivative
array Fi of level i stacks the original equations of the DAE and all its derivatives
up to level i into one large system

Fi .t; x; Px; : : : ; x.iC1// D

2
66664

F.t; x; Px/
d
dtF.t; x; Px/

:::
d i

dti
F .t; x; Px/

3
77775 D 0: (17.3)

Hypothesis 1 ([28]) Consider a nonlinear DAE (17.1). There exist integers
�; r; a; d and v such that the solution set

L� D ˚
.t; x; Px; : : : ; x.�C1// 2 I � R

.�C2/nj F�.t; x; Px; : : : ; x.�C1// D 0
�
(17.4)

of the derivative array F� is nonempty, and the following properties hold:

1. The set L� � R
.�C2/nC1 forms a manifold of dimension .�C 2/nC 1 � r;

2. rank.F�;Œx; Px;:::;x.�C1/�/ D r on L�;
3. corank.F�;Œx; Px;:::;x.�C1/�/ � corank.F��1;Œx; Px;:::;x.�/�/ D v on L� (We use the

convention that corank.F�1;x/ D 0.);
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4. rank.F�;Œ Px;:::;x.�C1/�/ D r � a on L� such that there are smooth full rank matrix-
valued functions Z2 and T2 defined on L� of size ..�C 1/m; a/ and .n; n � a/,
respectively, satisfying

ZT
2 F�;Œ Px;:::; Px.�C1/� D 0; rank.ZT

2 F�;x/ D a; ZT
2 F�;xT2 D 0

on L�;
5. rank.F; PxT2/ D d D m � a � v on L� such that there exists a smooth matrix-

valued functionZ1 defined on L� of size .m; d/ with ZT
1 F; PxT2 having full rank.

The smallest possible � in Hypothesis 1 is called the strangeness index (or s-
index) �s of the DAE (17.1) and a system with vanishing strangeness index is
called strangeness-free. Further, a DAE (17.1) that satisfies Hypothesis 1 with
n D m D d C a is called regular. The corresponding numbers d and a are the
numbers of differential and algebraic equations of the DAE. It has been shown in
[26], that Hypothesis 1 implies (locally) the existence of a reduced system (in the
original variables) of the form

OF1.t; x; Px/ D 0; (17.5a)

OF2.t; x/ D 0; (17.5b)

with OF1 D ZT
1 F and OF2 D ZT

2 F�. An initial value x0 2 R
n is consistent with

the DAE, if it satisfies the algebraic equation OF2.t0; x0/ D 0. From part 4 of

Hypothesis 1 we know that there exists a partitioning of x into
�
xT1 x

T
2 x

T
3

�T
, with

x1 of dimension d , x3 of dimension a, and x2 of dimension u D n � d � a, such
that (17.5b) is locally equivalent to a formulation of the form

x3 D R.t; x1; x2/: (17.6)

Eliminating x3 and Px3 in (17.5a) with the help of (17.6) and its derivative leads to a
system

OF1.t; x1; x2;R; Px1; Px2;R;t C R;x1 Px1 C R;x2 Px2/ D 0;

omitting the arguments of R. By part 5 of Hypothesis 1 we may assume w.l.o.g.
that this system can (locally) be solved for Px1 leading to a system of the form

Px1 D L .t; x1; x2; Px2/; (17.7a)

x3 D R.t; x1; x2/: (17.7b)

Remark 1 The matrix-valued function T2 obtained from Hypothesis 1 can be used
to extract the differential components of the DAE. Since ZT

1 F; PxT2 has full rank, the
matrix-valued function T2 of size .n; n � a/ can be partitioned into

�
T21 T22

�
with

T21 of size .n; d/ and T22 of size .n; u/, respectively, in such a way that ZT
1 F; PxT21
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is nonsingular. Thus, using the Implicit Function Theorem [3] equation(17.5a) can
locally be solved for the differential components Px1 leading to (17.7a).

Obviously, the component x2 in (17.7) can be chosen arbitrarily (at least when
staying in the domain of definition of R and L ), i.e., it plays the role of a control.
When x2 has been chosen and a consistent initial condition x.t0/ D x0 is given, then
the resulting system has a unique solution for x1 and x3, locally in a neighborhood
of .t0; x0/, provided that L is sufficiently smooth such that the Theorem of Picard-
Lindelöf can be applied to (17.7a). In particular, the equations(17.5b) and (17.7b)
contain all constraints that exist in the systems, i.e., all explicit constraints as well
as all (formerly) hidden constraints. We define the set

S D f.t; x/ 2 I � Dx j OF2.t; x/ D 0g (17.8)

as the set of consistency of the DAE (17.1). It has been shown in [26], that every
solution of (17.1) also solves the reduced problems (17.5) and (17.7).

Definition 1 We call the regularized equivalent system formulation (17.5) of the
DAE (17.1) the Kunkel-Mehrmann formulation or short KM-formulation of (17.1).
The regularization approach consisting of the application of Hypothesis 1 to the
DAE (17.1) is called Kunkel-Mehrmann regularization or short KM-regularization.

For the numerical solution, the regularized formulations (17.5) or (17.7) are to be
preferred, since it can be guaranteed that all constraints are satisfied using suitable
integration methods.

Remark 2 In the reduced systems (17.5) and (17.7) we have not used the quantity v.
This quantity measures the number of equations in the original system that give rise
to trivial equations 0 D 0, i.e., it counts the number of redundancies in the system.
Together with a and d it gives a complete classification of the m equations into
d differential equations, a algebraic equations and v trivial equations. Of course,
trivial equations can be simply removed without altering the solution set. G
For specially structured systems, it may be known in advance which equations are
responsible for hidden constraints. In this case, it is sufficient to consider only a
reduced derivative array, where only a subset of equations has been differentiated
and added to the system equations. A reduced derivative array of level i is given by

OFi .t; x; Px; : : : ; x.iC1// D

2
6664

F.t; x; Px/
d
dtFI1.t; x; Px/

:::
d i

dt i
FIi .t; x; Px/

3
7775 D 0 (17.9)

with certain index sets I1  f1; : : : ; mg, Ik  Ik�1 for k D 2; : : : ; i .
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Example 1 We consider the DAE given by

Pp D v;

Pv D f .p; v/ �HT �;

0 D Hv;

with p.t/; v.t/ 2 R
np , �.t/ 2 R

n� , f W R
np � R

np ! R
np with n� < np ,

and H 2 R
n� ;np of full row rank. Note that this is a special case of the system

considered in Sect. 17.3. There are hidden constraints in the system. Moreover, the
special structure allows us to work with a reduced derivative array instead of the
whole inflated system (17.3). Adding the first derivative of the third equation we
obtain the reduced derivative array (of level 1) as

OF1 D

2
664

� Pp C v

�Pv C f .p; v/ �HT �

Hv
H Pv

3
775 D 0: (17.10)

Now, it can be shown that Hypothesis 1 is satisfied with the vector xTD �
pT vT �T

�
,

m D n D 2np C n� and integers � D 1, a D 2n� , d D 2np � n� and v D 0 for the
derivative array F1, but also for the reduced derivative array OF1 given in (17.10). G
The possibility to work with a reduced derivative array for specially structured
systems enables us to use more efficient approaches for index reduction and
regularization. This idea is used in the index reduction by minimal extension [27]
that can be applied e.g. for mechanical systems (see Sect. 17.3), electrical circuit
equations (see Sect. 17.4), or flow problems (see Sect. 17.5).

For a general nonlinear DAE (17.1), the idea of regularization by minimal
extension can be described by the following iterative process (starting with i D 0

and F 0.t; x0; Px0/ D 0 given by the original system (17.1)).

1. For F i .t; xi ; Pxi / D 0 determine a full rank matrix-valued function Zi.t; xi ; Pxi /
such that the system transforms to

F i
1 .t; x

i ; Pxi / D 0;

F i
2 .t; x

i / D 0;

F i
3 .t; x

i / D 0;

with rank

 "
F i
1; Px
F i
3;x

#!
D rank .F i

1; Px/ and rank

 "
F i
1; Px
F i
2;x

#!
D rank .F i

1; Px/C rank .F i
2;x/.

This means that the equations F i
3 .t; x

i / D 0 are the “strange” equations of
level i , since their derivatives are redundant to parts of the first equations



17 DAEs in Applications 469

F i
1 .t; x

i ; Pxi / D 0, while the algebraic equations given by F i
2 .t; x

i / D 0 are not
“strange”.

2. Find a nonsingular constant matrix ˘ D �
˘1 ˘2

� 2 R
n;n such that F i

3;x˘2 is
regular. Let N̆ denote the inverse of ˘ .

3. Add the first time derivative of F i
3 .t; x

i / D 0 to the system equations leading to
the augmented system

F i
1 .t; x

i ; Pxi / D 0;

F i
2 .t; x

i / D 0;

F i
3 .t; x

i / D 0;

F i
3;t .t; x

i /C F i
3;x.t; x

i / Pxi D 0:

4. With the coordinate transformation xi D ˘ Qxi we obtain the splitting of
Qxi D N̆ xi into

� Qxi1
Qxi2

�
D
� N̆

1x
i

N̆
2x

i

�
:

Introducing the new algebraic variable wi for PQxi2, we get the new extended system

QF i
1 .t; Qxi1; Qxi2; PQxi1;wi / D 0;

QF i
2 .t; Qxi1; Qxi2/ D 0;

QF i
3 .t; Qxi1; Qxi2/ D 0;

QF i
3;t .t; Qxi1; Qxi2/C

h
QF i
3;x.t; Qxi1; Qxi2/˘1

QF i
3;x.t; Qxi1; Qxi2/˘2

i � PQx1
wi

�
D 0;

(17.11)

where

QF i
1 .t; Qxi1; Qxi2; PQxi1; PQxi2/ D F i

1 .t;˘ Qxi ;˘ PQxi /;
QF i
2 .t; Qxi1; Qxi2/ D F i

2 .t;˘ Qxi /;
QF i
3 .t; Qxi1; Qxi2/ D F i

3 .t;˘ Qxi /:

5. System (17.11) is defined to be the new extended DAE system
F iC1.t; xiC1; PxiC1/ D 0 with extended vector of unknown variables
.xiC1/T D �

. Qxi1/T . Qxi2/T .wi /T
�
.

The variables Qxi2 determined in the third step of the iterative process can be defined
as the “strange” variables corresponding to the “strange” equations F i

3 .
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From a numerical perspective the described approach can be applied very effi-
ciently for the computation of a regularization if the first step, i.e., the determination
of the transformation matrix Z, can be easily achieved from the structure of the
problem. In the ideal case, the matrix˘ can be determined as a simple permutation
matrix, see Sect. 17.4.2. Note, however, that the described iterative process may
hold only locally, since only coordinate transformations with constant matrix˘ are
used.

In the following, we will explain how this general theory can be applied and
efficiently adapted to DAE systems that exhibit a special structure of the system
equations. In particular, we will consider mechanical multibody systems, electrical
circuit equations, and flow problems.

17.3 Mechanical Systems

The dynamical behavior of mechanical systems or of multibody systems (MBS) is
of great importance in many fields of mechanical engineering, like robotics, road
and rail vehicle construction, air and space craft design, see [10, 24, 42–44]. Often,
mechanical systems are part of more complex dynamical systems, so-called multi-
physics systems. Nevertheless, in this section we are interested in purely mechanical
systems in form of multibody systems.

We mainly consider multibody systems from the dynamical point of view in
which a multibody system is regarded as a number of mass points and rigid or elastic
bodies, subject to possibly existing interconnections and constraints of various
kinds, e.g., joints, springs, dampers, and actuators.

In a large part of the literature, equations of motion in standard form including
the dynamical equations of motion subject to some holonomic constraints are
discussed in detail. However, in industrial applications, more complex equations
arise which include friction effects, contact force laws, dynamical force elements,
nonholonomic constraints, and in some cases the existing constraints are even
redundant. Therefore, we will focus our investigation on slightly more complex
model equations that includes holonomic as well as nonholonomic constraints, see
Sect. 17.3.1. Examples of multibody systems with nonholonomic constraints are the
sliding of blades, knives, or skates, or the rolling of balls, cylinders, or wheels
without sliding. For the investigation of even more general model equations used
in industrial applications, we refer to [49].

It is well known that the direct numerical integration of equations of motion is
a nontrivial problem. Thus, a numerical method should combine a discretization
method with a suitable regularization technique. First, we analyze the equations
of motion in Sect. 17.3.2 with respect to important quantities like existence and
uniqueness of a solution followed by the discussion of some important regulariza-
tion techniques in Sect. 17.3.3.
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17.3.1 Equations of Motion

The interest in the dynamical behavior, i.e., the movement, of mechanical systems
and, in particular, in model equations goes back far in history. Let us mention
only Newton [36] (Newtonian mechanics), Euler (Euler equations for rigid bodies
or free multibody systems), d’Alembert (d’Alembert’s principle of virtual dis-
placements), Lagrange [32] (Lagrangian mechanics and Euler-Lagrange equations
for constrained multibody systems), and Hamilton (Hamilton principle of least
action).

Following these historical approaches, e.g., Euler-Lagrange equations, and even
more modern approaches in modeling multibody system, one can formulate the
model equations in form of the equations of motion. The equations of motion
usually form a nonlinear system of DAEs with a very special structure that can and
should be exploited in the numerical treatment [10, 11, 21, 41, 42]. As mentioned
above, we will focus on slightly more general equations of motion given in the
form

Pp D v; (17.12a)

M.p/ Pv D f .p; v; t/ �GT .p; t/� �HT .p; t/�; (17.12b)

0 D g.p; t/; (17.12c)

0 D H.p; t/v C Mh.p; t/: (17.12d)

Here, the configuration of the multibody system is described by the position vari-
ablesp.t/ of dimension np , while the velocities or the change of the configuration of
the multibody system is described by the velocity variables v.t/ of dimension np .
The dynamical behavior is affected by n� holonomic constraints (17.12c) and n�
nonholonomic constraints (17.12d). Nonholonomic constraints (17.12d) are linear
in v, as discussed in [7, 23, 40]. Furthermore, the np equations (17.12a) are called
kinematical equations of motion. The np equations (17.12b) are called dynamical
equations of motion. They follow from the equilibrium of forces and momenta and
include the mass matrix M.p/, the vector f .p; v; t/ of the applied and gyroscopic
forces, the holonomic constraint matrix G.p; t/ D g;p.p; t/ of the holonomic con-
straints, the associated holonomic constraint forces GT .p; t/�, and the holonomic
Lagrange multipliers �, as well as the nonholonomic constraint matrix H.p; t/
of the nonholonomic constraints, the associated nonholonomic constraint forces
HT .p; t/�, and the nonholonomic Lagrange multipliers �. The mass matrixM.p/ is
positive semi-definite, since the kinetic energy is a positive semi-definite quadratic
form, and it includes the inertia properties of the multibody system. The columns
of the matrices GT .p; t/ and HT .p; t/ describe the inaccessible directions of the
motion.
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In connection with initial conditions

p.t0/ D p0; v.t0/ D v0; �.t0/ D �0; �.t0/ D �0 (17.13)

we have the initial value problem (17.12), (17.13) for the equations of motion on
the domain I D Œt0; tf �.

For reasons of readability and simplicity, we will often omit the dependency
on p, v, �, �, and t in the notation unless we want to focus on some of those
dependencies. Furthermore, we will anticipate the following assumption. In the
investigations below it will become clear why these assumptions are justified and
necessary.

Assumption 1 Consider the equations of motion (17.12). We assume that

M is nonsingular and (17.14a)2
4M GT HT

G 0 0

H 0 0

3
5 is nonsingular (17.14b)

and have bounded inverses for all consistent p and t . Furthermore, it is assumed
that all functions in (17.12) are smooth enough.

Remark 3 (a) From Assumption 1 it follows that

�
GM�1GT GM�1HT

HM�1GT HM�1HT

�
is nonsingular with a bounded inverse and

(17.15a)�
G

H

�
has full (row) rank (17.15b)

for all consistent p and t . In particular, (17.15b) guarantees that the constraints
are not redundant. In case of redundant constraints the investigations below can
be adapted and yield similar results as for non-redundant constraints apart from
the uniqueness of the solution.

(b) The non-singularity of the mass matrix M is not necessarily to assume.
But for reasons of simplicity, we will restrict our investigations to that case.
Nevertheless, the following results remain valid even for singular M as long as
(17.14b) holds.

G
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17.3.2 Analysis

In this section, we will analyze the equations of motion (17.12) using the
strangeness-index concept [28] revisited in Sect. 17.2. In particular, we will
investigate consistency conditions and the existence and uniqueness of a solution of
the equations of motion (17.12).

Theorem 1 The equations of motion (17.12) satisfying Assumption 1 satisfy
Hypothesis 1 with integers � D 2, r D 3.np C np C n� C n�/, a D 3n� C 2n� ,
dD2np�2n��n� , and vD0.

Proof For the equations of motion (17.12) we have m D n D np C np C n� C
n� . The derivative array of level 2 for the equations of motion (17.12) with
xT D �

pT vT �T �T
�

of size n is given by

F2.t; x; Px; Rx; x.3//

D

2
666666666666666666664

� Pp C v

�M.p/ Pv C f .p; v; t/ �GT .p; t/� �HT .p; t/�

g.p; t/

H.p; t/v C Mh.p; t/
� Rp C Pv

QdI .p; v; �; �; Pp; Pv; t/ �GT .p; t/ P� �HT .p; t/ P� �M.p/ Rv
G.p; t/ Pp C g;t .p; t/QhI .p; v; Pp; t/CH.p; t/ Pv

� p.3/ C Rv
QdII .p; v; �; �; Pp; Pv; P�; P�; Rp; Rv; t/ �GT .p; t/ R� �HT .p; t/ R� �M.p/v.3/

QgII .p; Pp; t/CG.p; t/ Rp
QhII .p; v; Pp; Pv; Rp; t/CH.p; t/ Rv

3
777777777777777777775

(17.16)

with

d.p; v; �; �; Pv; t/ D �M.p/ Pv C f .p; v; t/ �GT .p; t/� �HT .p; t/�;

h.p; v; t/ D H.p; t/v C Mh.p; t/;
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and

QdI.p;v;�;�; Pp; Pv;t/Dd;p.p;v;�;�; Pv;t/ Pp C f;v.p;v;t/ Pv C d;t .p;v;�;�; Pv;t/;
QhI.p;v; Pp;t/Dh;p.p; v; t/ Pp C h;t .p; v; t/;

QdII.p;v;�;�; Pp; Pv; P�; P�; Rp; Rv;t/D Œ QdI.p;v;�;�; Pp; Pv;t/�GT.p;t/ P��HT.p;t/ P��M.p/ Rv�;p Pp
C QdI;v.p;v;�;�; Pp; Pv;t/ Pv C QdI;�.p;v;�;�; Pp; Pv;t/ P�
C QdI;�.p;v;�;�; Pp; Pv;t/ P� C QdI; Pp.p;v;�;�; Pp; Pv;t/ Rp
C QdI;Pv.p;v;�;�; Pp; Pv;t/ Rv
CŒ QdI.p;v;�;�; Pp; Pv;t/�GT.p;t/ P��HT.p;t/ P��M.p/ Rv�;t ;

QhII.p;v; Pp; Pv; Rp;t/D Œ QhI.p;v; Pp;t/CH.p;t/ Pv�;p Pp C QhI;v.p;v; Pp;t/ Pv
C QhI; Pp.p;v; Pp;t/ Rp C Œ QhI .p;v; Pp;t/CH.p;t/ Pv�;t ;

QgII.p; Pp;t/D ŒG.p;t/ Pp C g;t .p;t/�;p Pp C ŒG.p;t/ Pp C g;t .p;t/�;t :

It follows that the solution set L2, see (17.4), is not empty and due to Assumption 1
L2 forms a manifold of dimension nC 1 such that we get r D 3n. We get

F2;Œx;Px;Rx;x.3/�

D

2
666666666666666666664

0 I 0 0 �I 0 0 0 0 0 0 0 0 0 0 0

d;p d;v �GT �HT 0 �M 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

h;p H 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 �I 0 0 0 0 0 0 0
Pd;p Pd;v Pd;� Pd;� Pd; Pp Pd;Pv �GT �HT 0 �M 0 0 0 0 0 0

Pg;p 0 0 0 G 0 0 0 0 0 0 0 0 0 0 0
Ph;p Ph;v 0 0 Ph; Pp H 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 I 0 0 �I 0 0 0
Rd;p Rd;v Rd;� Rd;� Rd; Pp Rd;Pv Rd;P� Rd;P� Rd; Rp Rd;Rv �GT �HT 0 �M 0 0

Rg;p 0 0 0 Rg; Pp 0 0 0 G 0 0 0 0 0 0 0
Rh;p Rh;v 0 0 Rh; Pp Rh;Pv 0 0 Rh; Rp H 0 0 0 0 0 0

3
777777777777777777775

:

From Assumption 1 we have M and

2
4M GT HT

H 0 0

G 0 0

3
5 are nonsingular and, there-

fore,

�
M GT HT

H 0 0

�
and

�
G 0 0

H 0 0

�
have full (row) rank. Therefore, we get

rank.F2;Œx; Px; Rx;x.3/�/ D 3n and, in particular, corank.F2;Œx; Px; Rx;x.3/�/ D 0. Furthermore,
it can be shown that rank.F1;Œx; Px; Rx�/ D 2n and, thus, corank.F1;Œx; Px; Rx�/ D 0.
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Consequently, corank.F2;Œx; Px; Rx;x.3/�/ � corank.F1;Œx; Px; Rx�/ D 0 D v. For proceeding
with the Hypothesis 1 we have

F2;Œ Px; Rx;x.3/� D

2
666666666666666666664

�I 0 0 0 0 0 0 0 0 0 0 0

0 �M 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 I 0 0 �I 0 0 0 0 0 0 0
Pd; Pp Pd; Pv �GT �HT 0 �M 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0
Ph; Pp H 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 �I 0 0 0
Rd; Pp Rd; Pv Rd

;P� Rd
;P� Rd; Rp Rd; Rv �GT �HT 0 �M 0 0

Rg; Pp 0 0 0 G 0 0 0 0 0 0 0
Rh; Pp Rh; Pv 0 0 Rh; Rp H 0 0 0 0 0 0

3
777777777777777777775

as a submatrix of F2;Œx; Px; Rx;x.3/�. Again, with M nonsingular and

�
M GT HT

H 0 0

�

of full (row) rank we get rank.F2;Œ Px; Rx;x.3/�/ D 6np C n� . Thus, there
exists a matrix-valued function Z2 with full rank and size .3n; a/ with
a D 3n� .6np C n�/ D 3n� C 2n� such that ZT

2 F2;Œ Px; Rx;x.3/� D 0. We can choose

ZT
2 D

2
666664

0 0 In� 0 0 0 0 0 0 0 0 0

0 0 0 In� 0 0 0 0 0 0 0 0

G 0 0 0 0 0 In� 0 0 0 0 0
Ph; Pp HM�1 0 0 0 0 0 In� 0 0 0 0

Rg; Pp GM�1 0 0 G 0 0 0 0 0 In� 0

3
777775
: (17.17)

With this choice of Z2 we get

ZT
2 F2;x D

2
666664

G 0 0 0

h;p H 0 0

Pg;p G 0 0

HM�1d;p C Ph;p Ph; Pp C HM�1d;v C Ph;v �HM�1GT �HM�1HT

GM�1d;p C Rg;p Rg; Pp C GM�1d;v �GM�1GT �GM�1HT

3
777775
;

which has rank 3n� C 2n� due to the full (row) rank ofH and G and even of

�
G

H

�
,

as well as the nonsingularity of

�
GM�1GT GM�1HT

HM�1GT HM�1HT

�
, compare with Remark 3.
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Thus, there exists a matrix-valued function T2 of size .n; d/with d D 2np�2n��n�
having full rank such that ZT

2 F2;xT2 D 0. We can choose

T2 D
2
4 KG 0

�BGHY
�1SKG KGH

X�1.DBGHY
�1S � C/KG �X�1DKGH

3
5

with matrix-valued functions

KG of size .np; np � n�/ with im.KG/ D ker.G/;

KGH of size .np; np � n� � n�/ with im.KGH/ D ker.

�
G

H

�
/;

BGH of size .np; n� � n�/ with im.BGH/ D coker.

�
G

H

�
/;

and

C D
�

HM�1d;p C Ph;p
GM�1d;p C Rg;p

�
; DD

� Ph; Pp C HM�1d;v C Ph;v
Rg; Pp C GM�1d;v

�
; SD

�
h;p
Pg;p
�
;

XD
��HM�1GT � HM�1HT

�GM�1GT � GM�1HT

�
; Y D

�
H

G

�
BGH :

In particular, it holds thatGKG D 0,

�
G

H

�
KGH D 0, and

�
G

H

�
BGH is nonsingular.

With this T2 we get

F; PxT2 D

2
664

�KG 0

MBGHY
�1SKG �MKGH

0 0

0 0

3
775

with rank.F; PxT2/D rank.KG/Crank.KGH/D.np�n�/C.np�n��n�/D2np�2n��n� .
Therefore, there exists a full rank matrix-valued functionZ1 of size .n; d/ such that
ZT
1 F; PxT2 has full rank d , i.e., ZT

1 F; PxT2 is nonsingular. We can choose

ZT
1 D

�
KT
G 0 0 0

0 KT
GHM

T 0 0

�
(17.18)

such that

ZT
1 F; PxT2 D

� �KT
GKG 0

KT
GHM

TMBGHY
�1SKG �KT

GHM
TMKGH

�

is nonsingular due to the full rank of KG and MKGH . ut
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Remark 4 (a) The matrix-valued function ZT
1 is not uniquely determined. For

instance, instead of KT
GHM

T in ZT
1 in the proof it is also possible to choose,

e.g.,KT
GHM

�1 or sinceM is assumed to be nonsingular and, therefore, positive
definite, KT

GH is also possible.
(b) The equations of motion (17.12) satisfying Assumption 1 form a DAE with

strangeness-index

�s D
8<
:
2 for n� > 0;
1 for n� D 0 and n� > 0;

0 for n� D 0 and n� D 0:

This means that, if there appear holonomic constraints (17.12d), i.e., n� > 0,
then the equations of motion (17.12) form a system of DAEs of s-index �s D 2.
This follows from the fact that the Hypothesis 1 is satisfied for � D 2 but
not for � D 1. In the case of purely nonholonomic systems, i.e., n� D 0 and
n� > 0, the equations of motion (17.12) form a system of DAEs (17.12a),
(17.12b), (17.12d) (without GT .p; t/�) which is of s-index �s D 1, since in
that case it can be shown that the Hypothesis 1 is satisfied for � D 1 but not
for � D 0. For an example, see Example 1. Furthermore, if neither holonomic
nor nonholonomic constraints exist, i.e., n� D 0 and n� D 0, the equations
of motion (17.12) appear as set of ordinary differential equations (17.12a),
(17.12b) (withoutGT .p; t/� and HT .p; t/�) which has s-index �s D 0.

(c) Due to the zero columns in the matrix-valued function ZT
1 (17.18) it would be

sufficient to use the reduced derivative array (17.9) in form

OF2.t; x; Px; Rx; x.3// D

2
666666666664

� Pp C v

�M.p/ Pv C f .p; v; t/ �GT .p; t/� �HT .p; t/�

g.p; t/

H.p; t/v C Mh.p; t/
� Rp C Pv

G.p; t/ Pp C g;t .p; t/QhI .p; v; Pp; t/CH.p; t/ Pv
QgII .p; Pp; t/CG.p; t/ Rp

3
777777777775

as basis to analyze the equations of motion (17.12) with use of the Hypothesis 1.
G

Lemma 1 Let the equations of motion (17.12) satisfy the Assumption 1. Then the
hidden constraints are given by

0 D gI .p; v; t/ D GvCg;t ; (17.19a)

0 D hI .p; v; �; �; t/ D .HvC Mh/;pvCHM�1.f �GT ��HT �/C.HvC Mh/;t ;
(17.19b)

0 D gII .p; v; �; �; t/D .GvCg;t /;pvCGM�1.f �GT ��HT �/C.GvCg;t /;t :
(17.19c)
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Proof Due to Theorem 1 we have the existence of a matrix-valued function Z2
(see (17.17)) which allows to extract the (hidden) constraints as in (17.5b) from the
derivative array (17.16) according to [28]. We get

ZT
2 F2D

2
666664

g

HvC Mh
G.� PpCv/C.G PpCg;t /Ph; Pp.� PpCv/CHM�1.�M PvCf �GT��HT �/C. QhICH Pv/

Rg; Pp.� PpCv/CGM�1.�M PvCf �GT��HT �/CG.� RpCPv/C. QgIICG Rp/

3
777775
:

This can be reformulated as

0DZT
2 F2D

2
666664

g

Hv C Mh
Gv C g;t

.Hv C Mh/;pv C HM�1.f �GT � �HT �/C .Hv C Mh/;t
.Gv C g;t /;pv C GM�1.f �GT � �HT �/C .Gv C g;t /;t

3
777775

(17.20)

using algebraic manipulations. While the first two block equations are already stated
explicitly as equations in (17.12) the last three block equations form the hidden
constraints. ut
Let the equations of motion (17.12) satisfy Assumption 1. Let the hidden constraints
be defined as in (17.19). Then, the initial valuesp0, v0, �0, and �0 are consistent with
(17.12), if and only if they fulfill the constraints (17.12c), (17.12d), and (17.19).
Furthermore, from Lemma 1 we get the set of consistency S as

S D f.p; v; �; �; t/ 2 R
nPCnpCn�Cn� � I W 0 D gI .p; v; t/;

0 D hI .p; v; �; �; t/; (17.21)

0 D gII .p; v; �; �; t/g:

The first two block constraints in (17.20) are extracted from the original equations
of motion, i.e., from the derivative array F0 D F of level 0. Therefore, these
constraints are called constraints on level 0. The third and fourth block constraints in
(17.20) are known as the holonomic constraints on velocity level and nonholonomic
constraints on acceleration level. They are extracted from the original equations
of motion (17.12) and the first time derivative, i.e., from the derivative array

F1 D �
F T d

dt F
T
�T

of level 1. Therefore, these constraints are also called hidden
constraints on level 1. The last block constraint in (17.20) is known as the holonomic
constraints on acceleration level. They are extracted from the original equations of
motion (17.12) and the first and second time derivatives, i.e., from the derivative
array F2 of level 2, see (17.16). Therefore, these constraints are called hidden
constraints on level 2 in accordance to the investigations in [49]. These hidden
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constraints (17.19) lead to the difficulties in the direct numerical treatment of
the equations of motion in form (17.12). Therefore, they have to be treated very
carefully. In the following theorem, we discuss the existence and uniqueness of the
solution of the equations of motion (17.12).

Theorem 2 Let the equations of motion (17.12) satisfy Assumption 1 and let the
initial values in (17.13) be consistent. Assume further that Qf given by

Qf .p; v; t/ D f � �
GT HT

� �GM�1GT GM�1HT

HM�1GT HM�1HT

�

�
"

GM�1f C .Gv C g;t /;pv C .Gv C g;t /;t

HM�1f C .Hv C Mh/;pv C .Hv C Mh/;t

#

as well as M�1 are continuous and bounded on S and Lipschitz continuous with
respect to p and v on S. Then in a neighborhood of .p0; v0; �0; �0; t0/ there exists
a unique solution for p, v, �, and � of the initial value problem (17.12), (17.13).

Proof In [49] it is shown that the solution of the initial value problem (17.12) with
(17.13) and the solution of the initial value problem consisting of (17.12a), (17.12b),
(17.19b), (17.19c) with (17.13) (for the same initial values) are identical. Therefore,
the proof reduces to show that the solution of the latter one exists and is unique.

Because of the assumption (17.15a) we get the unique solvability of (17.19b)
and (17.19c) with respect to � and � as functions of p, v, and t from the Implicit
Function Theorem [3]. Therefore, with assumption (17.15a) the equations (17.12a)
and (17.12b) correspond to the ODE

� Pp
Pv
�

D
�

v

M�1.p/ Qf .p; v; t/
�
:

Because of the assumed boundedness, continuity, and Lipschitz continuity of Qf and
M�1 the conditions of the Theorem of Picard-Lindelöf [25] are satisfied and the
existence of a unique solution for p and v then follows. From that also the Lagrange
multiplier � and � are uniquely defined by (17.19b) and (17.19c) with known p and
v. ut
Remark 5 In [33, 49] the influence of redundant constraints on the existence and
uniqueness of solutions for the equations of motion is discussed. It was shown that
redundant constraints only influence the uniqueness of the Lagrange multipliers.
The constraint forces as well as the solutions for p and v are unique. G

17.3.3 Regularization

In general, the numerical integration of the equations of motion (17.12) is sub-
stantially more difficult and prone to intensive numerical computation than that of
ODEs, see [8, 19, 21, 28, 37]. As mentioned above, the index of a DAE provides a
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measure of the difficulty to solve the DAE. A lower index is to be preferred for the
numerical simulation. However, simple differentiation of the constraints decreases
the index, but simultaneously the drift-off effects are increased as shown in [14, 47–
49].

Several approaches have been introduced in order to stabilize the integration
process. For an overview, see [8, 9, 21, 28, 47, 49]. Frequently used index reduc-
tion techniques or regularizations for equations of motion are the Baumgarte
stabilization [6], lowering the index by differentiation of the constraints [16], the
Gear-Gupta-Leimkuhler formulation [17], or overdetermined formulation [15, 49].

In the following, we will focus on regularization techniques based on the strange-
ness concept. In particular, these are the Kunkel-Mehrmann regularization, the
regularization by minimal extension, and the regularization using overdetermined
formulations.

Kunkel-Mehrmann Regularization In Sect. 17.2, we have seen that Hypothesis 1
implies (locally) the existence of a reduced system (in the original variables) of
the form (17.5). Applying Hypothesis 1 to the equations of motion (17.12), see
Sect. 17.3.2, we get the matrix-valued functionsZT

2 as, e.g., (17.17) andZT
1 as, e.g.,

(17.18). While ZT
2 extracts the algebraic part, i.e., the (hidden) constraints (17.20)

of the dynamical system, the matrix-valued function ZT
1 allows the extraction of

differential equations of minimal number describing the dynamics of the dynamical
system. With ZT

1 as in (17.18) we get the differential part as

ZT
1 F D

�
KT
G.� Pp C v/

KT
GHM

T .M Pv C f �GT � �HT �/

�
:

Then, the KM-regularization is defined as in (17.5), and we get it in the specific
form

KT
G Pp D KT

Gv; (17.22a)

�KT
GHM

TM Pv D KT
GHM

T .f �GT ��HT �/; (17.22b)

0 D g; (17.22c)

0 D Hv C Mh; (17.22d)

0 D Gv C g;t ; (17.22e)

0 D .Hv C Mh/;pv C HM�1.f �GT ��HT �/C .Hv C Mh/;t ;
(17.22f)

0 D .Gv C g;t /;pv C GM�1.f �GT ��HT �/C .Gv C g;t /;t :

(17.22g)

This formulation is strangeness-free with the same solution set as the original
equations of motion (17.12) regardless of any initial values. Therefore, this KM-
formulation (17.22) corresponds to a regularization of the equations of motion
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and, in particular, is suitable for the numerical treatment using implicit numerical
methods for stiff ordinary differential equations. For more details, we refer to [52].

Regularization by Minimal Extension In [27], a further regularization approach
is discussed, the so-called Regularization by Minimal Extension. The idea of the
minimal extension is illustrated in Sect. 17.2. Its application to the equations of
motion (17.12) yields the following.

Find a (locally constant and) nonsingular matrix

˘ D �
˘1 ˘2 ˘3

�
with ˘�1 D

2
4

N̆
1

N̆
2

N̆
3

3
5 ;

such that

�
G.p; t/

H.p; t/

�
˘ D

�
G.p; t/˘1 G.p; t/˘2 G.p; t/˘3

H.p; t/˘1 H.p; t/˘2 H.p; t/˘3

�
(17.23a)

where G.p; t/˘3 andH.p; t/˘2 are pointwise nonsingular (17.23b)

in a neighborhood of a set of consistent values Np, Nv, N�, N�, and Nt . Then from the
approach of regularization by minimal extension we get by adding the hidden
constraints (17.20) and introducing new algebraic variables wp3 , wv2 , and wv3 for N̆

3 Pp,
N̆
2 Pv, and N̆

3 Pv, respectively, the minimally extended formulation

˘

2
4

N̆
1 Pp

N̆
2 Pp

wp3

3
5 D v; (17.24a)

M˘

2
4

N̆
1 Pv

wv2
wv3

3
5 D f �GT ��HT �; (17.24b)

0 D g; (17.24c)

0 D Hv C Mh; (17.24d)

0 D Gv C g;t ; (17.24e)

0 D .Hv C Mh/;pv C HM�1.f �GT ��HT �/C .Hv C Mh/;t ;
(17.24f)

0 D .Gv C g;t /;pv C GM�1.f �GT ��HT �/C .Gv C g;t /;t :

(17.24g)

This formulation is again strangeness-free. In comparison to the KM-Regularization
above, it is not necessary to compute the matrix-valued functionsKG and KGH , but
the number of unknown variables is increased by 2n� C n� . We have the vector
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of unknowns
�
pT vT �T �T .wp3 /

T .wv2/
T .wv3/

T
�T

with p, v, �, and � as in the
original equations of motion (17.12). Therefore, every p, v, �, and � that solve the
formulation (17.24) together with wp3 , wv2 , and wv3 solves also the original equations
of motion (17.12). Conversely, every solution p, v, �, and � of the equations of
motion (17.12) solves also the formulation (17.24) together with wp3 D N̆

3 Pp, wv2 D
N̆
2 Pv, and wv3 D N̆

3 Pv, independently of any initial values. Therefore, this formulation
(17.24) corresponds to a regularization of the equations of motion and, in particular,
is suitable for the numerical treatment using implicit numerical methods for stiff
ordinary differential equations. For more details, we refer to [45].

Regularization by Overdetermined Formulations While the regularization tech-
niques that are discussed in the previous sections mostly lead to an equivalent
regularized form of the equations of motion of square size, i.e., with the same
number of unknowns and equations, in [10, 15, 49] an approach is proposed which
adds all hidden constraints to the equations of motion. This approach leads to an
overdetermined system consisting of the equations of motion (17.12) and all hidden
constraints (17.19), i.e., we get the overdetermined DAE

Pp D v; (17.25a)

M Pv D f �GT � �HT �; (17.25b)

0 D g; (17.25c)

0 D Hv C Mh; (17.25d)

0 D Gv C g;t ; (17.25e)

0 D .Hv C Mh/;pv C HM�1.f �GT ��HT �/C .Hv C Mh/;t ; (17.25f)

0 D .Gv C g;t /;pv C GM�1.f �GT ��HT �/C .Gv C g;t /;t : (17.25g)

From Hypothesis 1 it follows that the DAE (17.25) has s-index �s D 1. In particular,
this means that the overdetermined formulation (17.25) is not strangeness-free.
But, all necessary information is contained in the system in an explicit way.
Consequently, the overdetermined formulation (17.25) has the maximal constraint
level �c D 0, see [49]. This means no hidden constraints are obtained in formulation
(17.25).

In comparison to the KM-regularization and the regularization by minimal
extension, no effort for selecting a reduced differential part nor new variables have to
be introduced. Therefore, this regularization approach is very simple, the unknown
variables are unchanged, but this approach results in an overdetermined system.
Nevertheless, this overdetermined formulation (17.25) is suitable for the numerical
treatment by use of adapted implicit numerical methods for stiff ordinary differential
equations. A further advantage of the regularization by overdetermined formulations
is that solution invariants, like the invariance of the total energy, momentum, or
impulse, simply can be added to the overdetermined formulation (17.25). For more
details, see [49–51].
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Furthermore, note that the KM-formulation can be determined from the overde-
termined formulation (17.25) by selecting some differential equations with use of
the matrix-valued function Z1, see (17.18), determined in Sect. 17.3.2. Another
approach for selecting the differential equations for multibody systems, is developed
in [49]. Furthermore, the minimally extended formulation (17.24) can be determined
from the overdetermined formulation (17.25) by detecting strange variables and
replacing the derivative of these strange variables by newly introduced algebraic
variables.

17.4 Electrical Systems

Another important problem class are electrical circuits or electrical subcomponents
embedded in multi-physical systems. In this section, we consider connected elec-
trical circuits containing (possibly nonlinear) resistors, capacitors, and inductors as
well as (independent) voltage sources and (independent) current sources.

17.4.1 Model Equations and Analysis

A common way for the modeling of electrical circuits is the Modified Nodal Analysis
(MNA) [55]. Using Kirchhoff’s laws and the constitutive element relations for
inductors, capacitors, and resistors we get a DAE system of the form

AC
d

dt
q.ATC�/C AL{L C ARg.A

T
R�/C AV {V C AIIs.t/ D 0; (17.26a)

d

dt
�.{L/ �ATL� D 0; (17.26b)

ATV � � Vs.t/ D 0; (17.26c)

see also [20]. Equations (17.26) are also known as the MNA equations. Here,

A D �
AC AL AR AV AI

�
(17.27)

denotes the reduced incidence matrix of the directed graph describing the circuit
topology, assuming that the branches are ordered by the type of component, such
that AC 2 R

n�;nC , AL 2 R
n�;nL , AR 2 R

n�;nR , AV 2 R
n�;nV , and AI 2 R

n�;nI .
Furthermore, nV denotes the number of voltage sources, nI the number of current
sources, nC the number of capacitors, nL the number of inductors, and nR the number
of resistors in the circuit, respectively. Moreover, g W RnR ! R

nR is a vector-valued
function composed of the functions gi W R ! R, i D 1; : : : ; nR, describing the
conductance for each resistor, q W RnC ! R

nC composed of the functions qi W R !
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R, i D 1; : : : ; nC, describes the charges for each capacitor, and � W R
nL ! R

nL

composed of functions �i W R ! R, i D 1; : : : ; nL, describes the magnetic flux
for each inductor. The vectors {L.t/ 2 R

nL and {V .t/ 2 R
nV denote the currents of

all inductive branches, and branches corresponding to voltage sources, respectively,
and �.t/ 2 R

n� denotes the vector of all node potentials, where n� is the number
of nodes in the directed graph (excluding the ground node). In (17.26) we have
restricted to the case of independent current and voltage sources described by the
source functions Is.t/ and Vs.t/, respectively. In general, also controlled sources
are possible, see [4, 12]. For details on the constitutive element relations and on the
derivation of the MNA equations, see also Chap. 18 or [12, 20, 38].

Due to the special structure of the MNA equations (17.26), it is possible to
determine the index and those parts of the system that lead to hidden constraints by
graph theoretical considerations, see also [12]. We say that the DAE system (17.26)
is well-posed if it satisfies the following assumptions:

(A1) The circuit contains no V-loops, i.e., AV has full column rank.
(A2) The circuit contains no I-cutsets, i.e.,

�
AC AL AR AV

�
has full row rank.

(A3) The charge functions qi W R ! R, i D 1; : : : nC, are strictly monotonically
increasing and continuously differentiable.

(A4) The flux functions �i W R ! R, i D 1; : : : nL, are strictly monotonically
increasing and continuously differentiable.

(A5) The conductance functions gi W R ! R for i D 1; : : : nR are strictly
monotonically increasing and continuously differentiable.

Here, a V-loop is defined as a loop in the circuit graph consisting only of branches
corresponding to voltage sources. In the same way, a CV-loop means a loop in
the circuit graph consisting only of branches corresponding to capacitances and/or
voltage sources. Likewise, an I-cutset is a cutset in the circuit graph consisting
only of branches corresponding to current sources, and an LI-cutset is a cutset
in the circuit graph consisting only of branches corresponding to inductances
and/or current sources. Assumption (A1) implies that there are no short-circuits.
In a similar manner, the occurrence of I-cutsets may lead to contradictions in
the Kirchhoff laws (source functions may not sum up to zero), which is excluded
by assumption (A2). The assumptions (A3), (A4) and (A5) imply that all circuit
elements are passive, i.e., they do not generate energy. Furthermore, we introduce
matrices ZC 2 R

n�;pC , ZV�C 2 R
pC;pb , ZR�CV 2 R

pb ;pa , NZV�C 2 R
nV;pV�C each of

full column rank, such that

im .ZC/ D ker.ATC /; im .ZV�C/ D ker.ATVZC/;

im .ZR�CV/ D ker.ATRZCZV�C/; im . NZV�C/ D ker.ZT
CAV/;

and we defineZCRV WD ZCZV�CZR�CV 2 R
n�;pa . Note that in [12] projectors were

used, while here we use matrices whose columns span the corresponding subspaces.

Theorem 3 ([12, 38]) Consider an electrical circuit with circuit equations as
in (17.26). Assume that the assumptions (A1)–(A5) hold.
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1. If the circuit contains no voltage sources, i.e., nV D 0, and rank.AC/ D n�, i.e.,
there are no RLI-cutsets, then (17.26) is an ODE (in implicit form) with s-index
�s D 0.

2. If the circuit contains neither LI-cutsets nor CV-loops (except for C-loops), then
the DAE (17.26) has s-index �s D 0 and the algebraic constraints are given by

0 D ZT
C

�
ARg.A

T
R�/C AL{L C AV {V C AIIs.t/


; (17.28a)

0 D ATV � � Vs.t/: (17.28b)

3. If the circuit contains LI-cutsets or CV-loops which are no pure C-loops, then
the DAE (17.26) has s-index �s D 1. We distinguish the following three cases:

a. If the circuit contains CV-loops, but no LI-cutsets, then, in addition
to (17.28), there exist hidden constraints

0 D NZT
V�C

	
ATV

d

dt
�� d

dt
Vs.t/



: (17.29)

b. If the circuit contains LI-cutsets, but no CV-loops, then, in addition
to (17.28), there exist hidden constraints

0 D ZT
CRV

	
AL

d

dt
{L CAI

d

dt
Is.t/



: (17.30)

c. If the circuit contains both CV-loops and LI-cutsets, then all of the con-
straints (17.28)–(17.30) have to be fulfilled.

Note that the source functions that belong to CV-loops or LI-cutsets have to be
differentiable if the DAE has s-index �s D 1. In [4] it has been shown that the
multiplication with the matrices NZV�C andZCRV for the determination of the hidden
constraints can be interpreted in graph theoretical ways.

17.4.2 Regularization by Minimal Extension

If the electrical circuit contains CV-loops or LI-cutsets, a regularization of the
MNA equations (17.26) is required. The equations that are responsible for a higher
index are given by the projected equations (17.29) and (17.30). Thus, the reduced
derivative array (17.9) consists of the MNA equations (17.26) together with the
hidden constraints (17.29) and (17.30) resulting in

AC
d

dt
q.ATC�/C AL{L C ARg.A

T
R�/C AV {V C AIIs.t/ D 0; (17.31a)

d

dt
�.{L/ �ATL� D 0; (17.31b)
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ATV � � Vs.t/ D 0; (17.31c)

NZT
V�CA

T
V
d

dt
� � NZT

V�C
d

dt
Vs.t/ D 0; (17.31d)

ZT
CRVAL

d

dt
{L CZT

CRVAI
d

dt
Is.t/ D 0: (17.31e)

The concept of index reduction by minimal extension for electrical circuit equa-
tions (17.26) has been introduced in [4, 27]. In the MNA equations (17.26), the
vector of unknowns consists of the node potentials �, the currents through inductors
{L and the currents through voltage sources {V. Thus, the state vector has dimension
n D n� C nL C nV. On the other hand, the reduced derivative array consists of
n� C nL C nV CpV�C Cpa equations. In order to obtain a regular square system, we
have to introduce new variables. To determine this minimal extension of the original
system (17.26), we have to identify those differential variables that are “strange”
and, therefore, have to be replaced by new algebraic variables.

For hidden constraints due to CV-loops or LI-cutsets given by (17.31d)
and (17.31e), we have to find permutations˘� and ˘{L such that

NZT
V�CA

T
V˘

T
� D �

B1 B2
�
; ZT

CRVAL˘
T
{L

D ŒF1 F2�;

with B1 2 R
pV�C;pV�C and F1 2 R

pa;pa nonsingular. Then, we can partition the
vector � and {L as

˘�� D
� Q�1

Q�2
�

D Q�; ˘{L {L D
�Q{L1

Q{L2
�

D Q{L; (17.32)

accordingly, and introduce the new variables

O�1.t/ D d

dt
Q�1.t/; O{L1.t/ D d

dt
Q{L1.t/: (17.33)

Now, the extended system (17.31) with the newly introduced variables O�1 and O{1 can
be written as

QAC
d

d�C

q. QATC Q�/ QATC
� O�1
d
dt Q�2

�
C QALQ{L C QARg. QATR Q�/C QAV {V C QAIIs.t/ D 0;

(17.34a)

˘{L

d

d{L
�.˘T

{L
Q{L/˘T

{L

� O{L1
d
dt Q{L2

�
� QATL Q� D 0;

(17.34b)

QATV Q� � Vs.t/ D 0;

(17.34c)
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B1 O�1 C B2
d

dt
Q�2 � NZT

V�C
d

dt
Vs.t/ D 0;

(17.34d)

F1O{L1 C F2
d

dt
Q{L2 CZT

CRVAI
d

dt
Is.t/ D 0

(17.34e)

with �C D QATC Q� and QA� WD ˘�A� for � 2 fC; R; I; V g, QAL WD ˘�AL˘
T
{L

. In (17.34)
we have added exactly as many equations as needed, thus, the extension is minimal.
The minimally extended system (17.34) now consists of n� C nL C nV C pV�C C pa
equations in the unknowns

Q� D
� Q�1

Q�2
�

2 R
n�; Q{L D

�Q{L1
Q{L2
�

2 R
nL ; {V 2 R

nV ; O�1 2 R
pV�C ; O{L1 2 R

pa :

Since typically pV�C and pa are small, the minimally extended system is only
slightly larger than the original system. Note, that the computation of ˘� and ˘{L

is possible with very small computational effort and very accurately, since ZT
CRVAL

and AV NZV�C are incidence-like matrices, see [4, 12].

Theorem 4 Consider an electrical circuit described by the MNA equations (17.26)
that satisfies the Assumption (A1)–(A5). Assume that the DAE (17.26) is of s-index
�s D 1, i.e., there exists CV-loops and/or LI-cutsets. Then, the minimally extended
MNA system (17.34) is strangeness-free.

Proof See [27, 28]. ut
Remark 6 Another approach to obtain a regularization of (17.26) in case of CV-
loops or LI-cutsets has been proposed in [4, 5]. Here, the basic idea is that
once the critical configurations (CV-loops or LI-cutsets) are identified some
electrical components can be replaced by controlled sources that provide the same
characteristic voltage-current behavior. At the same time, critical configurations
in the circuit graphs are eliminated by the replacements. The advantage of this
approach is, that one can work directly on the netlist defining the circuit topology. G

17.5 Flow Problems

Navier-Stokes equations are commonly used to describe the motion of fluid
substances [53]. For an incompressible flow, the non-stationary Navier-Stokes
equations are given by the partial differential equations

@u

@t
C .u � r/u � 1

Re
�u C rp D f in ˝ � I; (17.35a)

r � u D 0 in ˝ � I (17.35b)
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on a domain ˝ � R
n; n 2 f2; 3g and a time interval I together with initial and

boundary conditions

u.x; t0/ D a for all x 2 ˝; u D 0 on @˝ � I:

Equations (17.35) describe the evolution of the velocity field u W ˝ � I ! R
n and

the pressure p W ˝ � I ! R, i.e., u.x; t/ is the flow velocity at position x 2 ˝ and
time t 2 I and p.x; t/ is the corresponding pressure of the fluid. Furthermore, the
Reynolds numberRe > 0 is a given parameter, a 2 R

n is the initial value at time t0
and the function f W ˝ � I ! R

n denotes a given volume force.
Using the method of lines, a spatial semi-discretization of the Navier-Stokes

equations (17.35) leads to a nonlinear DAE. It has been shown in [56] that if the
non-uniqueness of a free constant in the pressure is fixed by the discretization
method, then the s-index of the semi-discretized system is well-defined and for
most discretization methods, the s-index of the semi-discretized system is �s D
1. However, it has been shown in [1] that the semi-explicit structure of the
equations (17.35) allows for a variant of minimal extension, and that a specific
discretization of the spatial domain (in particular, a specific splitting of the ansatz
spaces in the spatial discretization by finite elements) can lead directly to a semi-
discretized strangeness-free system.

First, one considers an operator form of (17.35), i.e., we want to find u W I ! V
and p W I ! Q such that

Pu.t/C K u.t/ � B0p.t/ D F .t/ in V 0; (17.36a)

Bu.t/ D G .t/ in Q0; (17.36b)

u.t0/ D a in H ; (17.36c)

holds a.e. in I. Here, V and Q are suitable ansatz spaces, where V is densely
and continuously embedded in a Hilbert space H (for details, see [1]). Moreover,
V 0 and Q0 denote the dual spaces of V and Q, respectively. The operators
K W V ! V 0 and B W V ! Q0 are defined via

hK u; vi D
Z
˝

.u � r/u � v dx C 1

Re

Z
˝

ru � rv dx; u; v 2 V ;

hBu; qi D
Z
˝

.r � u/q dx; u 2 V ; q 2 Q;

and B0 W Q ! V 0 denotes the dual operator of B. Note that the equalities in
(17.36) should be understood pointwise in L1loc in the corresponding dual products.
Also the time derivative in (17.36) is to be considered in the generalized sense as
weak time derivative, i.e., an equality of the form Pv.t/ D F .t/ in V 0 holds if

�
Z T

0

hv.t/;wi P�.t/ dt D
Z T

0

hF .t/;wi�.t/ dt
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for all w 2 V and � 2 C1
0 .0; T /, see [60]. The inhomogeneity G .t/ in (17.36b)

is considered in order to cover also more general cases. G .t/ 6	 0 may appear in
discretization schemes or for more general boundary conditions.

Now, the second equation(17.36b) poses a constraint on the velocity field u.t/.
Since the operator B is independent of time t , we get

B Pu.t/ D PG .t/; (17.37)

assuming sufficient regularity of G .t/. A splitting of the ansatz space V into the
divergence-free space Vdf and its orthogonal complement V ?

df , i.e.,

Vdf WD ker.B/ D fu 2 V j r � u D 0g; V D Vdf ˚ V ?
df ;

allows for a unique decomposition of u 2 V into u D u1 C u2 with u1 2 Vdf and
u2 2 V ?

df . Following the idea of minimal extension, we can now add (17.37) to the
operator formulation (17.36). Using the splitting into u D u1 C u2 and introducing
a new variable Qu2 WD Pu2 yields the extended problem

Pu1.t/C Qu2.t/C K .u1.t/C u2.t// � B0p.t/ D F .t/ in V 0; (17.38a)

Bu2.t/ D G .t/ in Q0; (17.38b)

B Qu2.t/ D PG .t/ in Q0; (17.38c)

u1.t0/ D a1 in H : (17.38d)

Note that here we have used that Bu1.t/ D 0 and B Pu1.t/ D 0.
For the spatial discretization of (17.38) by finite elements, finite dimensional

subspaces Vh and Qh of V and Q have to be constructed based on a triangulation
of the domain ˝: Similar as before, the finite dimensional space Vh is decomposed
corresponding to the decomposition of V into Vdf ˚ V ?

df and we denote by V 1
h the

approximation space of Vdf and by V 2
h the approximation space of V ?

df assuming
that Vh D V 1

h ˚ V 2
h . Note that the considered spatial discretization need not to

be conform, i.e., we allow for V 1
h 6� Vdf and V 2

h 6� V ?
df , although Vh � V .

Let f�j g be a basis of Vh and f'ig be a basis of Qh. We assume that the basis
of Vh is ordered according to the decomposition into V 1

h and V 2
h . Now, the semi-

discretization of (17.38) leads to a DAE of the form

M

� Pq1.t/
Qq2.t/

�
CK

	�
q1.t/

q2.t/

�

� BTph.t/ D f .t/; q1.t0/ D a; (17.39a)

B

�
q1.t/

q2.t/

�
D g.t/; (17.39b)

B

� Pq1.t/
Qq2.t/

�
D Pg.t/: (17.39c)
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Here, q1.t/, q2.t/ and Qq2.t/ denote the semi-discretizations of u1, u2 and Qu2,
respectively, and ph.t/ 2 R

np denotes the semi-discrete representation of the
pressure p. Furthermore, M D Œmjk� 2 R

nq;nq denotes the positive definite mass
matrix obtained from the FEM discretization

mjk D
Z
˝

�j � �k dx;

andK is a nonlinear function describing the discrete version of operator K defined
by

Kj .q.t// D
Z
˝

.q.t/ � r/q.t/ � �j dx C 1

Re

Z
˝

rq.t/ � r�j dx:

The functions f and g denote the finite dimensional approximations of F .t/ and
G .t/, and B D Œbij � 2 R

np;nq is defined by

bij D
Z
˝

'i div .�j / dx: (17.40)

Note that for the discrete version of u1 the terms Bu1.t/ D 0 and B Pu1.t/ D 0 from
the operator formulation may not vanish for non-conforming finite elements.

It has been shown in [1] that a finite element discretization of (17.38) can be
constructed that directly leads to a DAE of s-index 0. Hereby, finite element spaces
V 1
h , V 2

h andQh are chosen in such a way that the matrix representationB as defined
in (17.40) has the block structure B D �

B1 B2
�

with nonsingular square matrix B2
containing the columns corresponding to V 2

h . Such a reordering of the basis of Vh
always exits under the standard stability conditions for the spatial discretization (see
[1]) and it basically consists of a permutation of the velocity variables. Examples
for finite element discretizations that directly satisfy these conditions are given
in [1].

One of the great advantage of this approach is that since B Pu.t/ D G .t/ is added
to the system, instabilities are reduced. During the splitting into the divergence-free
and non divergence-free part the variables are transformed via a simple permutation
and, thus, all variables keep their physical meaning. Thus, in particular, the pressure
p remains a physically valid part of the system, rather than being eliminated or
functioning as a velocity correction. Moreover, the sole application of permutations
preserves the sparsity structure of the system and ensures that the transformation
to the strangeness-free system (17.39) is well-conditioned. The increase of the
system size is compensated by the direct applicability of efficient time stepping
schemes. Unlike in penalization or in projection methods [18], this approach
does not require time step restrictions or artificial boundary conditions for the
pressure. Furthermore, consistency and stability of half-explicit methods [2] can be
ensured.
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17.6 Hybrid Systems

A particular feature of many complex dynamical systems is that they are so-called
switched systems or hybrid systems, i.e., the mathematical model changes with
time depending on certain indicators which leads to different operation modes. The
continuous dynamics in the different operation modes can be described by DAEs
and the change between different operation modes is usually modeled by discrete
transitions. As the discrete and continuous dynamics interact, they must be analyzed
simultaneously. One of the main difficulties in hybrid systems is that, after a mode
switch takes place, the structure of the system as well as its properties may change,
such as the model dimension, the index, or the number of algebraic or differential
equations or redundancies. Furthermore, special phenomena that can occur during
the simulation of hybrid systems, as, e.g., the problem of event detection and
reinitialization, or numerical chattering, have to be treated in an appropriate way
to ensure an efficient numerical integration.

17.6.1 Hybrid System Formulation

The general theory for DAEs as presented in [28] and revisited in Sect. 17.2 can be
applied for hybrid DAEs as shown in [22, 34, 57]. We assume that the discrete and
continuous dynamics only interact via instantaneous discrete transitions at distinct
points in time called events. Let I D Œt0; tf � � R be decomposed into subintervals
Ii D Œ�i ; �

0
i / with �i < � 0

i , �
0
i D �iC1 for i D 1; : : : ; NI � 1, NI 2 N, as well

as INI
D Œ�NI

; � 0
NI
�, �NI

< � 0
NI

, such that I D SNI

iD1 Ii , (i.e., �1 D t0, � 0
NI

D tf ).
Note that the number of subintervals NI and the event times �i are, in general, not
known a priori, but determined during the simulation. The event times can depend
on the state and, in particular, on the initial conditions, such that the partitioning
into the intervals Ii is not known in advance. However, we assume that the number
of subintervals is finite. Furthermore, let M WD f1; : : : ; NF g, NF 2 N be the set
of modes and for each ` 2 M, let D` be the union of certain intervals Ii such thatS
`2MD` D I and D` \Dk D ; for `; k 2 M, ` ¤ k.

Definition 2 A hybrid system of DAEs is defined as a collection of

• a set of nonlinear DAEs

F `.t; x`; Px`/ D 0; ` 2 M; (17.41)

with sufficiently smooth functions F ` W D` � R
n` � R

n` ! R
m` ;

• an index set of autonomous transitions J ` D f1; 2; : : : ; n`T g for each mode
` 2 M, where n`T 2 N is the number of possible transitions of mode `;

• switching functions g`j W D` � R
n` � R

n` ! R for all j 2 J `, with

g`j .t; x
`; Px`/ > 0 in mode `I
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• mode allocation functions S` W J ` ! M with S`.j / D k for all ` 2 M; and
• transition functions T k` W Rn` � R

n` ! R
nk � R

nk of the form

T k` .x
`.� 0

i /; Px`.� 0
i // D .xk.�iC1/; Pxk.�iC1//; � 0

i D �iC1 2 Dk; (17.42)

for all ` 2 M with successor mode k 2 M.

The hybrid system changes between different modes at the event times that are
defined as roots of the switching functions g`j .t; x

`; Px`/. If g`j .t; x
`; Px`/ > 0 for

all j 2 J `, then the system stays in the current mode `, but if g`j .t; x
`; Px`/ � 0 for

some j 2 J `, then the system switches to a new mode. For each switching function,
the associated switching surface is given by

	 `
j D

n
.t; x`; Px`/ 2 D` � R

n` � R
n` j g`j .t; x`; Px`/ D 0

o
; j 2 J `; ` 2 M:

(17.43)

The mode allocation functions S` are used to determine the successor mode k after
a mode change in mode ` 2 M. Finally, the transition functions T k` map the final
values and derivatives of the variables in mode ` 2 M to the corresponding initial
values in the successor mode k 2 M at the event time � 0

i D �iC1 2 Dk .

Remark 7 Here, we restrict to hybrid systems where mode switches occur whenever
a switching surfaces	 `

j is crossed by the solution trajectory. In general, one can also
define the mode switching strategy on the basis of transition conditions

L`j W D` � R
n` � R

n` ! fTRUE;FALSEg

for all transitions j 2 J ` and all modes ` 2 M. Then, the system switches to another
mode whenever there exists a j 2 J ` such that L`j .Ot ; x`.Ot /; Px`.Ot// D TRUE at Ot .
The transition conditions L`j can be composed of logical combinations of several

separate switching functions g`j;i , i D 1; : : : ; n`j . Thus, switching functions g`j;i can
be chosen as simple as possible, allowing an efficient and reliable event detection
by root finding methods. See also [34, 57]. G
For hybrid DAE systems certain problems arise concerning the existence and
uniqueness of solutions. The piecewise continuous functions x` W D` ! R

n`

describe the continuous state of the hybrid system in mode `. Let x`.� 0
i / be the

smooth extension of x` to the interval boundary � 0
i D �iC1 of Ii 2 D`. The state

transfer to the successor mode k defined by (17.42) may result in jumps in the state
vector of the hybrid system. In order to obtain a solution in the new mode, the initial
values obtained by the transition function have to be consistent with the DAE in
mode k. In general, it is a modeling task to design the transition functions correctly,
i.e., in such a way that continuity (if required) and consistency conditions of the
initial values after mode switching are fulfilled. However, if the number of equations
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or the number of free variables changes at a mode change, these conditions may be
difficult to realize. In particular, we may face the situation that the solution is not
unique after a mode change. For higher index DAEs correct initial values that satisfy
all hidden constraints may not be known in advance. Thus, detecting discontinuities
in the state variables of a hybrid system may also be used to verify the mathematical
model itself. Moreover, the solution of a hybrid system depends on the initial mode
and on the initial conditions that can also influence the mode switching behavior.
For details on solution concepts for hybrid DAEs, see [34, 57].

The theory of DAEs turns out to be very useful for the treatment of hybrid
systems. In the following, we consider a hybrid system as in Definition 2 with
n` D n for the DAEs (17.41) in each mode ` 2 M. We assume thatF ` is sufficiently
smooth in Œ�i ; � 0

i C �� for small � > 0 for each interval Ii D Œ�i ; �
0
i / 2 D` (such that

the Implicit Function Theorem can locally be applied), and that the strangeness
index �`s of (17.41) is well-defined for all modes ` 2 M. Thus, in each mode
` 2 M and each domainD`, the DAE (17.41) in mode ` satisfies Hypothesis 1 with
constant characteristic values �`; r`; a`; d `, and v`. If the characteristic values are
not constant for some mode ` 2 M, we can introduce new modes and further switch
points to satisfy Hypothesis 1 locally for each mode. Then, the maximal strangeness
index �max

s of a hybrid system is defined by

�maxs WD max
`2M f�`s g;

and a hybrid system is called strangeness-free if �max
s D 0. If the hybrid system is

not strangeness-free, then reduced systems as in (17.5) or (17.7) can be extracted
independently in each mode. Collecting all these reduced systems, we obtain an
equivalent reduced hybrid system which is strangeness-free.

Theorem 5 ([34]) Consider a hybrid system as in Definition 2 with sufficiently
smooth functions F ` in each mode ` 2 M that satisfy Hypothesis 1 locally for
each mode ` 2 M and each domain D`. Then, every sufficiently smooth solution
of the hybrid system is also a solution of the reduced hybrid system that consists
of reduced DAE systems of the form (17.5) corresponding to (17.41) in each mode
` 2 M.

17.6.2 Sliding Mode Regularization

Conceptually, the numerical integration of hybrid DAE systems can be realized
similar to the numerical integration of general DAEs, by generating, locally in each
integration step, an equivalent strangeness-free formulation for the DAE (17.41) in
the mode `. This integration is continued until a switching function crosses zero and
a mode switch occurs. Once the event time is determined as a root of a switching
function (within a certain error tolerance), the system is transferred to the next mode
via the transition function (17.42), and the numerical integration is continued in
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the new mode. Thus, for the simulation of a hybrid DAE system, besides the pure
integration process (that includes index reduction), we need a root finding procedure
to determine the event times, and a process to compute consistent initial values after
mode change. The time stepping procedure for the numerical integration in each
mode can be achieved via any method suitable for strangeness-free DAEs (e.g.,
BDF methods or Radau IIA methods).

Another special phenomena that can occur during the simulation of hybrid
systems is a fast changing between different modes, called chattering. Such
oscillations around different modes may be real properties of the physical model due
to hysteresis, delays and other dynamic non-idealities. On the other hand, numerical
errors may lead to numerical chattering, since switching conditions may be satisfied
due to local errors. The numerical treatment of a hybrid system exhibiting chattering
behavior requires high computational costs as small stepsizes are required to restart
the integration after each mode change. In the worst case, the numerical integration
breaks down, as it does not proceed in time, but chatters between modes. To prevent
chattering and to reduce the computational costs, a regularization of the system
dynamics along the switching surfaces has been derived in [34, 57]. Here, the basic
idea is to introduce an additional mode that describes the dynamic behavior in cases
where chattering occur.

In the following, for simplicity, we consider regular hybrid systems with the same
state dimension n D n` D m` for all ` 2 M. Furthermore, we restrict to switching
functions independent of the state derivative Px. Note that if we have transformed the
DAE in every mode to a reduced system of the form (17.7) we can always insert
the differential components into the corresponding switching function. Then, we
assume that the hybrid DAE system switches from mode ` to mode k along the
switching surface

	 `
j D f.t; x/ 2 D` � R

n j g`j .t; x/ D 0g;

for some j 2 J `. Furthermore, we assume that there exists a mode transition
Qj 2 J k , such that 	 `

j D 	 k
Qj D f.t; x/ 2 Dk � R

n j gkQj .t; x/ D 0g, i.e.,

g`j .t; x/ D �gkQj .t; x/. Now, chattering around the switching surface 	 `
j will occur,

if all solutions near the surface 	 `
j approach it from both sides, see Fig. 17.1. This

means that, if we consider the system at a fixed time point t and project the velocity

S

Fig. 17.1 Chattering behavior along a switching surface
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vectors of both systems onto the surface gradient, then these projections are of
opposite signs and directed towards the surface from both sides in a neighborhood
of the switching surface. Under the assumption of regularity and well-definedness
of the strangeness index in each mode, the DAEs in the adjacent modes ` and k can
be transformed to the corresponding reduced systems of the form (17.7). Assuming
that g`j;x.t; x/ ¤ 0 in a neighborhood of the switching surface 	 `

j , the conditions
for chattering can be formulated as

g`
j;x`1
.t; x`1; x

`
2/L

`.t; x`1/ < 0 and gkQj ;xk1 .t; x
k
1 ; x

k
2 /L

k.t; xk1 / < 0 (17.44)

for fixed t , where L ` and L k describe the dynamical parts of the reduced systems.
The conditions (17.44) are called the sliding conditions. In particular, the sliding
conditions describe the directional derivatives of g`j D �gkQj in direction of L `,

L k , respectively, which correspond to the projections of the vectors L `.t; x`1/ and
L k.t; xk1 / onto the gradient of the switching surface 	 `

j .
In the numerical simulation of a hybrid system, an immediate switch back to

mode ` after one or a few integration steps in mode k would result if the sliding
condition (17.44) is satisfied. To avoid this, we add an additional mode defining the
dynamics of the system during sliding, i.e., we define equivalent dynamics such that
the solution trajectory move along the sliding surface 	 `

S  	 `
j defined by

	 `
S WD f.t; x/ 2 	 `

j j g`
j;x`1
.t; x`1; x

`
2/L

`.t; x`1/ < 0; g
k
Qj ;xk1 .t; x

k
1 ; x

k
2 /L

k.t; xk1 / < 0g:

Here, 	 `
S corresponds to the part of the switching surface, where chattering will

occur. Thus, whenever the sliding condition (17.44) is satisfied at a point .t; x/ we
switch to the so-called sliding mode. The system should stay in this sliding mode as
long as the solution trajectory stays on the sliding surface, and resume in mode ` or
k, depending on the sign of the directional derivatives, if the solution leaves 	 `

S . To
define the system behavior during sliding, the dynamics are approximated in such a
way that the state trajectory moves along the switching surface.

Let d`; dk and a`; ak denote the number of differential and algebraic equations
in mode ` and mode k, i.e., the dimension of x`1; x

k
1 and x`2; x

k
2 in the corresponding

reduced systems (17.7). Further, let d` C a` D dk C ak D n and without loss of
generality assume that d` � dk and a` � ak . Then, x`1 and xk2 can be partitioned
into

x`1 D
"
x`1;1
x`1;2

#
; xk2 D

"
xk2;1
xk2;2

#
;
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with x`1;1 2 R
dk , x`1;2 2 R

d`�dk and xk2;1 2 R
a` ; xk2;2 2 R

ak�a` . The corresponding
reduced systems as in (17.7) can be partitioned accordingly into

"
Px`1;1
Px`1;2

#
D
"
L `
1 .t; x

`
1;1; x

`
1;2/

L `
2 .t; x

`
1;1; x

`
1;2/

#
;

x`2 D R`.t; x`1;1; x
`
1;2/;

Pxk1 D L k.t; xk1 /;"
xk2;1
xk2;2

#
D
�
Rk
1 .t; x

k
1 /

Rk
2 .t; x

k
1 /

�
:

(17.45)

Now, we can define the differential-algebraic system in sliding motion as

Px1 D ˛

�
L `
1 .t; x1/

L `
2 .t; x1/

�
C .1 � ˛/

�
L k.t; x1/

0

�
; (17.46a)

x2 D ˛

�
R`.t; x1/

0

�
C .1 � ˛/

�
Rk
1 .t; x1/

Rk
2 .t; x1/

�
; (17.46b)

0 D g`j .t; x1; x2/: (17.46c)

The velocity vector of the sliding motion is approximated as convex combination
of the velocity vectors on both side of the switching surface in such a way that it
lies on a plane tangential to the switching surface. Here, the additional algebraic
variable ˛ ensures that the solution stays on the manifold 	 `

j described by the

algebraic constraint g`j .t; x1; x2/ D 0. The differential equation (17.46a) describes
the equivalent dynamics of the system during sliding motion, and the algebraic
equations (17.46b) is defined as a transformation of the constraint manifolds in the
two modes such that R`.t; x1/ is turned into Rk.t; x1/ across the discontinuity
or vice versa depending on the direction of the discontinuity crossing. See also
Fig. 17.2. The DAE in sliding mode (17.46) consists of d` C ak C 1 equations
with unknowns x1 2 R

d` , x2 2 R
ak , and ˛ 2 R. The construction of the DAE in

Fig. 17.2 Sliding mode regularization
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sliding mode can be seen as a regularization, since a potentially unsolvable problem
is replaced by a solvable one. Sliding mode regularization is a generalization of the
Filippov regularization for ODEs, see e.g. [13, 54].

Theorem 6 Consider a reduced hybrid system with regular DAEs in mode ` and
k partitioned as in (17.45), that switches from mode ` to mode k along the smooth
switching surface 	 `

j D f.t; x/ 2 D` � R
n j g`j .t; x/ D 0g, j 2 J `. If

g`j;x2.t; x1; x2/

	�
R`.t; x1/� Rk

1 .t; x1/

�Rk
2 .t; x1/

�


is nonsingular for all .t; x1; x2/ 2 D` � R
n, then the DAE in sliding mode (17.46)

is regular and strangeness-free.

Proof Since the DAEs in mode ` and k are regular, also (17.46) is regular due to
construction. Inserting relation (17.46b) into (17.46c) yields

0 D g`j .t; x1; ˛.R1.t; x1/� R2.t; x1//C R2.t; x1//; (17.47)

where R1.t; x1/ WD
�
R`.t; x1/

0

�
and R2.t; x1/ WD

�
Rk
1 .t; x1/

Rk
2 .t; x1/

�
. Thus, if

g`j;x2.t; x1; x2/ .R1.t; x1/ � R2.t; x1//

is nonsingular for all relevant points .t; x1; x2/, equation(17.47) can be solved for ˛
using the Implicit Function Theorem. ut

17.7 Numerical Integration

As discussed in the previous sections, numerical methods have to combine appro-
priate discretization methods with suitable regularization methods. Furthermore, the
numerical integration methods should exploit the properties and the structure of
the model equations to avoid arising problematic effects. In this context, a large
number of numerical methods has been developed for the numerical integration of
general DAEs and DAEs arising in several applications. For an overview of suitable
numerical methods, we refer to [21, 28, 35, 39, 47, 49].

While most of the implemented codes have limitations to the index that they can
handle, which is typically a strangeness index of at most two, several codes that
are based on the strangeness-concept have been implemented that allow to handle
DAEs of arbitrary high index. Here, we will only focus on codes that are based on
the theory presented in the previous sections.
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For general nonlinear DAEs (17.1) with m D n of arbitrary s-index �s the
code GENDA1 has been developed by the authors of [30]. As model equations
the derivative array (17.3) at least of level �s has to be provided. GENDA uses an
adaption of the code DASSL, i.e., BDF methods, for the discretization. Based on
the provided derivative array GENDA determines (locally) the s-index and the KM-
regularization that is used for the numerical integration.

The code GELDA2 implemented by the authors of [29], is suited for linear DAEs
of the form E.t/ Px D A.t/x C f .t/ of arbitrary s-index �s and (possibly) of non-
square size, i.e., m and n arbitrary. As model equations the matrix-valued functions
E andA, their time-derivatives up to order (at least) �s as well as the inhomogeneity
f and its time-derivatives up to order (at least) �s have to be provided. Based on
the provided model equations GELDA determines the s-index as well as the KM-
regularization for the numerical integration. For the discretization an adaption of
both, RADAU5, i.e., Runge-Kutta method Radau IIa of order 5, and DASSL, i.e.,
BDF methods, can be used as integrator.

For both GELDA and GENDA the Matlab interface SolveDAE3 has been
implemented by the authors of [31], including symbolic generation of the derivative
array or the derivatives of E , A, and f .

For the numerical integration of the equations of motion (17.12) for multibody
systems, the code GEOMS4 has been developed by the author of [49–51]. This code
is based on the Runge-Kutta method Radau IIa of order 5 for the direct discretization
of the overdetermined formulation (17.25). This direct discretization of (17.25)
leads to an overdetermined set of nonlinear equations to be solved. Because of
truncation errors, the discretized equations become contradictory and can only be
solved in a generalized sense which is done in GEOMS using adapted solvers for the
overdetermined set of nonlinear equations.

For the numerical simulation of electrical circuit equations the code qPsim [4, 5]
has been implemented that is based on the regularization approach presented in
Sect. 17.4.2. The regularized system equations are solved by the use of RADAU5 or
DASPK3.1.

For the numerical simulation of switched systems, not only the numerical
integration but also the modeling has to be taken into account. Based on the
theory presented in Sect. 17.6 the hybrid mode controller GESDA5 [58] has been
implemented that enables the solution of general hybrid systems consisting of linear
or nonlinear DAEs of arbitrary high index in each mode. The numerical integration
routines of GESDA are based on the solvers GELDA and GENDA. A particular feature

1GENDA - http://www3.math.tu-berlin.de/multiphysics/Software/GENDA/

2GELDA - http://www3.math.tu-berlin.de/multiphysics/Software/GELDA/

3SolveDAE - http://www3.math.tu-berlin.de/multiphysics/Software/SolveDAE/

4GEOMS - http://page.math.tu-berlin.de/~anst/Software/GEOMS/

5GESDA - http://www3.math.tu-berlin.de/multiphysics/Software/GESDA/

http://www3.math.tu-berlin.de/multiphysics/Software/GENDA/
http://www3.math.tu-berlin.de/multiphysics/Software/GELDA/
http://www3.math.tu-berlin.de/multiphysics/Software/SolveDAE/
http://page.math.tu-berlin.de/~anst/Software/GEOMS/
http://www3.math.tu-berlin.de/multiphysics/Software/GESDA/
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of the solver GESDA is the use of sliding mode simulation that allows an efficient
treatment of chattering behavior during the numerical simulation.
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Chapter 18
A Condensed Form for Nonlinear
Differential-Algebraic Equations in Circuit
Theory

Timo Reis and Tatjana Stykel

Abstract We consider nonlinear differential-algebraic equations arising in model-
ling of electrical circuits using modified nodal analysis and modified loop analysis.
A condensed form for such equations under the action of a constant block diagonal
transformation will be derived. This form gives rise to an extraction of over- and
underdetermined parts and an index analysis by means of the circuit topology.
Furthermore, for linear circuits, we construct index-reduced models which preserve
the structure of the circuit equations.

18.1 Introduction

One of the most important structural quantities in the theory of differential-algebraic
equations (DAEs) is the index. Roughly speaking, the index measures the order
of derivatives of the inhomogeneity entering to the solution. Since (numerical)
differentiation is an ill-posed problem, the index can – inter alia – be regarded
as a quantity that expresses the difficulty in numerical solution of DAEs. In
the last three decades various index concepts have been developed in order to
characterize different properties of DAEs. These are the differentiation index [7], the
geometric index [26], the perturbation index [13], the strangeness index [22], and
the tractability index [24], to mention only a few. We refer to [25] for a recent survey
on all these index concepts and their role in the analysis and numerical treatment of
DAEs.
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In this paper, we present a structure-preserving condensed form for DAEs mo-
delling electrical circuits with possibly nonlinear components. This form is inspired
by the canonical forms for linear DAEs developed by KUNKEL and MEHRMANN

[17, 22]. The latter forms give rise to the so-called strangeness index concept which
has been successfully applied to the analysis and simulation of structural DAEs
from different application areas, see the doctoral theses [2, 6, 14, 27, 31–33, 36, 38]
supervised by VOLKER MEHRMANN. The great advantage of the strangeness index
is that it can be defined for over- and underdetermined DAEs. Our focus is on circuit
DAEs arising from modified nodal analysis [9, 15, 35] and modified loop analysis
[9, 29]. We show that such DAEs have a very special structure which is preserved
in the developed condensed form. In the linear case, we can, furthermore, construct
index-reduced models which also preserve the special structure of circuit equations.

Nomenclature

Throughout this paper, the identity matrix of size n � n is denoted by In, or simply
by I if it is clear from context. We writeM > N (M � N ) if the square real matrix
M � N is symmetric and positive (semi-)definite. The symbol kxk stands for the
Euclidean norm of x 2 R

n. For a subspace V � R
n, V? denotes the orthogonal

complement of V with respect to the Euclidean inner product. The image and the
kernel of a matrix A are denoted by imA and kerA, respectively, and rankA stands
for the rank of A.

18.2 Differential-Algebraic Equations

Consider a nonlinear DAE in general form

F. Px.t/; x.t/; t/ D 0; (18.1)

where F W D Px � Dx � I ! R
k is a continuous function, D Px;Dx  R

n are open,
I D Œt0; tf � � R, x W I ! Dx is a continuously differentiable unknown function,
and Px denotes the derivative of x with respect to t .

Definition 1 A function x W I ! Dx is said to be a solution of the DAE (18.1) if it is
continuously differentiable for all t 2 I and (18.1) is fulfilled pointwise for all t 2 I.
This function is called a solution of the initial value problem (18.1) and x.t0/ D x0
with x0 2 Dx if x is the solution of (18.1) and satisfies additionally x.t0/ D x0.
An initial value x0 2 Dx is called consistent, if the initial value problem (18.1) and
x.t0/ D x0 has a solution.
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If the function F has the form F. Px; x; t/ D Px � f .x; t/ with f W Dx � I ! R
n,

then (18.1) is an ordinary differential equation (ODE). In this case, the assumption
of continuity of f gives rise to the consistency of any initial value. If, moreover,f is
locally Lipschitz continuous with respect to x then any initial condition determines
the local solution uniquely [1, Section 7.3].

Let F. POx; Ox; Ot/ D 0 for some . POx; Ox; Ot/ 2 D Px�Dx�I. IfF is partially differentiable
with respect to Px and the derivative @

@ PxF. POx; Ox; Ot / is an invertible matrix, then by the
implicit function theorem [34, Section 17.8] equation (18.1) can locally be solved
for Px resulting in an ODE Px.t/ D f .x.t/; t/. For general DAEs, however, the
solvability theory is much more complex and still not as well understood as for
ODEs.

A powerful framework for analysis of DAEs is provided by the derivative array
approach introduced in [8]. For the DAE (18.1) with a sufficiently smooth func-
tion F , the derivative array of order l 2 N0 is defined by stacking equation (18.1)
and all its formal derivatives up to order l , that is,

Fl .x.lC1/.t/; x.l/.t/; : : : ; Px.t/; x.t/; t/ D

2
66664

F. Px.t/; x.t/; t/
d
dtF. Px.t/; x.t/; t/

:::
d l

dtl
F. Px.t/; x.t/; t/

3
77775 D 0: (18.2)

Loosely speaking, the DAE (18.1) is said to have the differentiation index �d 2
N0 if l D �d is the smallest number of differentiations required to determine Px
from (18.2) as a function of x and t . If the differentiation index is well-defined,
one can extract from the derivative array (18.2) a so-called underlying ODE Px.t/ D
�.x.t/; t/ with the property that every solution of the DAE (18.1) also solves the
underlying ODE.

Another index concept, called strangeness index, was first introduced by
KUNKEL and MEHRMANN for linear DAEs [17, 19, 23] and then extended to the
nonlinear case [20, 22]. The strangeness index is closely related to the differentiation
index and, unlike the latter, can also be defined for over- and underdetermined DAEs
[21]. For our later proposes, we restrict ourselves to a linear time-varying DAE

E.t/ Px.t/ D A.t/x.t/C f .t/; (18.3)

where E ;A W I ! R
k;n and f W I ! R

k are sufficiently smooth functions.
Such a system can be viewed as a linearization of the nonlinear DAE (18.1) along
a trajectory. Two pairs .E1.t/;A1.t// and .E2.t/;A2.t// of matrix-valued functions
are called globally equivalent if there exist a pointwise nonsingular continuous
matrix-valued function U W I ! R

k;k and a pointwise nonsingular continuously
differentiable matrix-valued function V W I ! R

n;n such that

E2.t/ D U.t/E1.t/V .t/; A2.t/ D U.t/A1.t/V .t/ � U.t/E1.t/ PV .t/:
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For .E.t/;A.t// at a fixed point t 2 I, the local characteristic values r , a and s are
defined as

r D rank.E/; a D rank.Z>AT /; s D rank.S>Z>AT 0/;

where the columns of Z, T , T 0, and S span ker E>, ker E , im E>, and
kerT >A>Z, respectively. Considering these values pointwise, we obtain functions
r; a; s W I ! N0. It was shown in [17] that under the constant rank conditions
r.t/ 	 r , a.t/ 	 a and s.t/ 	 s, the DAE (18.3) can be transformed into the
globally equivalent system

2
666664

Is 0 0 0 0

0 Id 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
777775

2
666664

Px1.t/
Px2.t/
Px3.t/
Px4.t/
Px5.t/

3
777775

D

2
666664

0 A12.t/ 0 A14.t/ A15.t/

0 0 0 A24.t/ A25.t/

0 0 Ia 0 0

Is 0 0 0 0

0 0 0 0 0

3
777775

2
666664

x1.t/

x2.t/

x3.t/

x4.t/

x5.t/

3
777775

C

2
666664

f1.t/

f2.t/

f3.t/

f4.t/

f5.t/

3
777775
:

(18.4)

Note that the component x1 satisfies the pure algebraic equation (the fourth equation
in (18.4)) and its derivative is also involved in (18.4). Adding the differentiated
fourth equation to the first one, we eliminate the derivative Px1 from the first equation.
The resulting system can again be transformed into the form (18.4) with new global
characteristic values r , a and s. This procedure is repeated until s becomes zero.
The minimal number �s of steps required to extract a DAE with s D 0 is called
the strangeness index of the DAE (18.3). By construction, the strangeness index
reduces by one for each elimination step described above. A DAE with vanishing
strangeness index is called strangeness-free. Since the characteristic values are
invariant under global equivalence transformations, �s is also invariant under
global equivalence transformations. One can also show that the strangeness index
�s is one below the differentiation index�d provided that both indices exist (except
for the case, where the differentiation index is zero, then the strangeness index
vanishes as well), see [17, 22].

This index reduction procedure has a rather theoretical character since the global
equivalence transformations are difficult to determine numerically. It was shown in
[19] that the solvability properties of the DAE (18.3) can also be established from
the associated derivative array given by

Ml .t/Pzl .t/ D Nl .t/zl .t/C gl.t/;

where

�
Ml

�
ij

D
	
i

j



E .i�j / �

	
i

j C 1



A.i�j�1/; i; j D 0; : : : ; l;

�
Nl

�
ij

D
�
A.i/ for i D 0; : : : ; l; j D 0;

0 else;�
zl
�
i

D x.i/;
�
gl
�
i

D f .i/; i D 0; : : : ; l;
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with the convention that
	
i

j



D 0 for i < j . If the strangeness index �s is well-

defined, then the DAE (18.3) satisfies the following hypothesis.

Hypothesis 1 There exist integers �, a, d and w such that the pair .M�;N�/

associated with .E ;A/ has the following properties:

1. For all t 2 I, we have rankM�.t/ D .�C1/k�a�w. This implies the existence
of a smooth full rank matrix-valued functionZ of size ..�C1/k; aCw/ satisfying
Z>M� D 0.

2. For all t 2 I, we have rank
�
Z.t/>N�.t/

�
In 0 : : : 0

�>� D a and without loss

of generality Z can be partitioned as
�
Z2 Z3

�
with Z2 of size ..� C 1/k; a/

and Z3 of size ..� C 1/k;w/ such that A2 D Z>
2 N�

�
In 0 : : : 0

�>
has full row

rank andZ>
3 N�

�
In 0 : : : 0

�> D 0. Furthermore, there exists a smooth full rank
matrix-valued function T2 of size .n; n � a/ satisfying A2T2 D 0.

3. For all t 2 I, we have rank
�
E.t/T2.t/

� D d , where d D k � a � w� and

w� D k � rank
�
M� N�

�C rank
�
M��1 N��1

�

with the convention that rank
�
M�1 N�1

� D 0. This implies the existence of
a smooth full rank matrix functionZ1 of size .k; d/ such that E1 D Z>

1 E has full
row rank.

The smallest possible � in Hypothesis 1 is the strangeness index of the
DAE (18.3) and u D n�d �a defines the number of underdetermined components.
Introducing A1 D Z>

1A, f1.t/ D Z>
1 f .t/, f2.t/ D Z>

2 g�.t/ and f3.t/ D
Z>
3 g�.t/, we obtain a strangeness-free DAE system

2
4E1.t/0

0

3
5 Px.t/ D

2
4A1.t/

A2.t/

0

3
5 x.t/C

2
4f1.t/f2.t/

f3.t/

3
5 (18.5)

which has the same solutions as (18.3). The DAE (18.3) is solvable if f3.t/ 	 0

in (18.5). Moreover, an initial condition x.t0/ D x0 is consistent if A2.t0/x0 C
f2.t0/ D 0. The initial value problem with consistent initial condition has a unique
solution if u D 0.

18.3 Modified Nodal and Modified Loop Analysis

In this section, we consider the modelling of electrical circuits by DAEs based
on the Kirchhoff laws and the constitutive relations for the electrical components.
Derivations of these relations from Maxwell’s equations can be found in [28].
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A general electrical circuit with voltage and current sources, resistors, capacitors
and inductors can be modelled as a directed graph whose nodes correspond to the
nodes of the circuit and whose branches correspond to the circuit elements [9–11,
28]. We refer to the aforementioned works for the graph theoretic preliminaries
related to circuit theory. Let nn, nb and nl be, respectively, the number of nodes,
branches and loops in this graph. Moreover, let i.t/ 2 R

nb be the vector of currents
and let v.t/ 2 R

nb be the vector of corresponding voltages. Then Kirchhoff’s current
law [11, 28] states that at any node, the sum of flowing-in currents is equal to the
sum of flowing-out currents, see Fig. 18.1. Equivalently, this law can be written as
A0i.t/ D 0, where A0 D Œakl� 2 R

nn�nb is an all-node incidence matrix with

akl D

8̂̂
<
ˆ̂:

1; if branch l leaves node k,

�1; if branch l enters node k;

0; otherwise.

Furthermore, Kirchhoff’s voltage law [11, 28] states that the sum of voltages along
the branches of any loop vanishes, see Fig. 18.2. This law can equivalently be written
as B0v.t/ D 0, where B0 D Œbkl� 2 R

nl�nb is an all-loop matrix with

bkl D

8̂̂
<
ˆ̂:

1; if branch l belongs to loop k and has the same orientation,

�1; if branch l belongs to loop k and has the contrary orientation,

0; otherwise.

The following proposition establishes a relation between the incidence and loop
matrices A0 and B0.

Fig. 18.1 Kirchhoff’s current
law

i1(t)
i2(t)

i3(t)

i4(t)

iN(t)

⇒ i1 (t )+ ::: + iN (t ) = 0

Fig. 18.2 Kirchhoff’s
voltage law

v1(t)
v2(t)

v3(t)

vN(t)

⇒ v1 (t ) + ::: + vN (t ) = 0
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Proposition 1 ([10, p. 213]) Let A0 2 R
nn�nb be an all-node incidence matrix and

let B0 2 R
nl�nb be an all-loop matrix of a connected graph. Then

kerB0 D imA>
0 ; rankA0 D nn � 1; rankB0 D nb � nn C 1:

We now consider the full rank matrices A 2 R
nn�1�nb and B 2 R

nb�nnC1�nb

obtained from A0 and B0, respectively, by removing linear dependent rows. The
matrices A and B are called the reduced incidence and reduced loop matrices,
respectively. Then the Kirchhoff laws are equivalent to

A i.t/ D 0; B v.t/ D 0: (18.6)

Due to the relation kerB D imA>, we can reformulate Kirchhoff’s laws as follows:
there exist vectors �.t/ 2 R

nn�1 and .t/ 2 R
nb�nnC1 such that

i.t/ D B>.t/; v.t/ D A>�.t/: (18.7)

The vectors �.t/ and .t/ are called the vectors of node potentials and loop currents,
respectively. We partition the voltage and current vectors

v.t/ D �
v>

C .t/ v
>
L .t/ v

>
R .t/ v

>
V .t/ v

>
I .t/

�>
;

i.t/ D �
i>C .t/ i>L .t/ i>R .t/ i>V .t/ i>I .t/

�>

into voltage and current vectors of capacitors, inductors, resistors, voltage and
current sources of dimensions nC, nL, nR, nV and nI, respectively. Furthermore,
partitioning the incidence and loop matrices

A D �
AC AL AR AV AI

�
; B D �

BC BL BR BV BI
�
; (18.8)

the Kirchhoff laws (18.6) and (18.7) can now be represented in two alternative ways,
namely, in the incidence-based formulation

AC iC.t/CAL iL.t/C AR iR.t/CAV iV.t/C AI iI.t/ D 0; (18.9)

vC.t/ D A>
C �.t/; vL.t/ D A>

L �.t/; vR.t/ D A>
R �.t/; (18.10)

vV.t/ D A>
V �.t/; vI.t/ D A>

I �.t/; (18.11)

or in the loop-based formulation

BR vR.t/C BC vC.t/C BL vL.t/C BV vV.t/C BI vI.t/ D 0; (18.12)

iC.t/ D B>
C .t/; iL.t/ D B>

L .t/; iR.t/ D B>
R .t/; (18.13)

iV.t/ D B>
V .t/; iI.t/ D B>

I .t/: (18.14)
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The dynamics of electrical circuits are not only relying on the Kirchhoff laws, but
their behaviour is also determined by the components being located at the branches.
The branch constitutive relations for capacitors, inductors and resistors are given by

iC.t/ D d

dt
q.vC.t//; (18.15)

vL.t/ D d

dt
 .iL.t//; (18.16)

iR.t/ D g.vR.t//; (18.17)

respectively, where q W R
nC ! R

nC is the charge function,  W R
nL ! R

nL is
the flux function, and g W R

nR ! R
nR is the conductance function. We now give

our general assumptions on the considered circuit elements. For an interpretation of
these assumptions in terms of total energy of the circuit, we refer to [28].

(A1) The charge, flux and conductance functions are continuously differentiable.
(A2) The Jacobian of the charge function

C .vC/ WD d

dvC
q.vC/

is symmetric and pointwise positive definite.
(A3) The Jacobian of the flux function

L .iL/ WD d

diL
 .iL/

is symmetric and pointwise positive definite.
(A4) The conductance function satisfies g.0/ D 0 and there exists a constant c > 0

such that

.vR;1 � vR;2/
>�g.vR;1/� g.vR;2/

� � ckvR;1 � vR;2k2 (18.18)

for all vR;1; vR;2 2 R
nR .

Using the chain rule, the relations (18.15) and (18.16) can equivalently be written
as

iC.t/ D C .vC.t//
d

dt
vC.t/; (18.19)

vL.t/ D L .iL.t//
d

dt
iL.t/: (18.20)
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Furthermore, the property (18.18) implies that the Jacobian of the conductance
function

G.vR/ WD d

dvR
g.vR/

fulfils

G.vR/C G>.vR/ � 2 c I > 0 for all vR 2 R
nR : (18.21)

Thus, the matrix G.vR/ is invertible for all vR 2 R
nR . Applying the Cauchy-Schwarz

inequality to (18.18) and taking into account that g.0/ D 0, we have

kg.vR/kkvRk � v>
R g.vR/ � ckvRk2 for all vR 2 R

nR

and, hence, kg.vR/k � ckvRk. Then it follows from [37, Corollary, p. 201] that g has
a global inverse function. This inverse is denoted by r D g�1 and referred to as the
resistance function. Consequently, the relation (18.17) is equivalent to

vR.t/ D r .iR.t//: (18.22)

Moreover, we obtain from (18.18) that

�
iR;1 � iR;2

�>�
r .iR;1/ � r .iR;2/

� D �
g.r .iR;1//� g.r .iR;2//

�>�
r .iR;1/ � r .iR;2/

�
D �

r .iR;1/� r .iR;2/
�>�

g .r.iR;1//� g .r.iR;2//
� � c kr .iR;1/ � r .iR;2/k2

holds for all iR;1; iR;2 2 R
nR . Then the inverse function theorem implies that the

Jacobian

R.iR/ WD d

diR
r .iR/

fulfils R.iR/ D .G.r .iR///�1. In particular, R.iR/ is invertible for all iR 2 R
nR , and

the relation (18.21) yields

R.iR/C R>.iR/ > 0 for all iR 2 R
nR :

Having collected all physical laws for an electrical circuit, we are now able
to set up a circuit model. This can be done in two different ways. The first
approach is based on the formulation of Kirchhoff’s laws via the incidence matrices
given in (18.9)–(18.11), whereas the second approach relies on the equivalent
representation of Kirchhoff’s laws with the loop matrices given in (18.12)–(18.14).
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(a) Modified nodal analysis (MNA)
Starting with Kirchhoff’s current law (18.9), we eliminate the resistive

and capacitive currents and voltages by using (18.17) and (18.19) as well as
Kirchhoff’s voltage law in (18.10) for resistors and capacitors. This results in

ACC.A>
C �.t//A

>
C
d
dt�.t/CARg.A>

R �.t//C ALiL.t/C AViV.t/C AIiI.t/ D 0:

Kirchhoff’s voltage law in (18.10) for the inductive voltages and the component
relation (18.20) for the inductors give

�A>
L �.t/C L.iL.t// ddt iL.t/ D 0:

Using Kirchhoff’s voltage law in (18.11) for voltage sources, we obtain finally
the MNA system

ACC.A>
C �.t//A

>
C
d
dt�.t/C ARg.A>

R �.t//C ALiL.t/C AViV.t/C AIiI.t/D 0;

�A>
L �.t/C L.iL.t// ddt iL.t/D 0;

�A>
V �.t/C vV.t/D 0:

(18.23)

In this formulation, voltages of voltage sources vV and currents of current
sources iI are assumed to be given, whereas node potentials �, inductive currents
iL and currents of voltage sources iV are unknown. The remaining physical
variables such as voltages of the resistive, capacitive and inductive elements
as well as resistive and capacitive currents can be algebraically reconstructed
from the solution of system (18.23).

(b) Modified loop analysis (MLA)
Using the loop matrix based formulation of Kirchhoff’s voltage law (18.12),

the constitutive relations (18.20) and (18.22) for inductors and resistors, and
the loop matrix based formulation of Kirchhoff’s current law in (18.13) for the
inductive and resistive currents, we obtain

BLL.B>
L .t//B

>
L
d
dt .t/CBRr .B>

R .t//C BCvC.t/C BIvI.t/CBVvV.t/ D 0:

Moreover, Kirchhoff’s voltage law in (18.13) for capacitors together with the
component relation (18.19) for capacitors gives

�B>
C .t/C C.vC.t//

d
dtvC.t/ D 0:
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Combining these two relations together with Kirchhoff’s voltage law in (18.14)
for voltage sources, we obtain the MLA system

BLL.B>
L .t//B

>
L
d
dt .t/CBRr.B>

R .t//C BCvC.t/C BIvI.t/C BVvV.t/ D 0;

�B>
C .t/C C.vC.t//

d
dtvC.t/ D 0;

�B>
I .t/C iI.t/ D 0:

Here, the unknown variables are loop currents , capacitive voltages vC and vol-
tages of current sources vI, and, as before, vV and iI are assumed to be known.

Thus, the overall circuit is described by the resistance law iR.t/ D g.vR.t// or
vR.t/ D r.iR.t//, the differential equations (18.19) and (18.20) for capacitors and
inductors, and the Kirchhoff laws either in the form (18.9)–(18.11) or (18.12)–
(18.14). By setting

x.t/ D
2
4�.t/iL.t/

iV.t/

3
5

0
@resp. x.t/ D

2
4 .t/vC.t/

vI.t/

3
5
1
A

in the MNA (resp. MLA) case, we obtain a nonlinear DAE of the form (18.1).
In the linear case, the capacitance matrix C.vC.t// 	 C and the inductance matrix

L.iL.t// 	 L are both constant, and the component relations (18.17) and (18.22) for
resistors read

iR.t/ D GvR.t/; vR.t/ D R iR.t/;

respectively, with R D G�1 2 R
nR�nR , GCG> > 0 and RCR> > 0. Then the circuit

equations can be written as a linear DAE system

E Px.t/ D A x.t/C B u.t/; (18.24)

where u.t/ D �
i>I .t/; v>

V.t/
�>

, and the system matrices have the form

E D

2
64
ACCA>

C 0 0

0 L 0

0 0 0

3
75; AD

2
64

�ARGA>
R �AL �AV

A>
L 0 0

A>
V 0 0

3
75; BD

2
64

�AI 0

0 0

0 �InV

3
75
(18.25)

in the MNA case and

E D

2
64
BLLB>

L 0 0

0 C 0

0 0 0

3
75; AD

2
64

�BRRB>
R �BC �BI

B>
C 0 0

B>
I 0 0

3
75; BD

2
64

0 �BV

0 0

�InI 0

3
75
(18.26)

in the MLA case.
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18.4 Differential-Algebraic Equations of Circuit Type

In this section, we study a special class of DAEs. First of all note that both the MNA
and MLA systems can be written in a general form as

0 D E˚
�
E>x1.t/

�
E> Px1.t/ C F�

�
F>x1.t/

�CG2x2.t/CG3x3.t/ C f1.t/;

0 D �
�
x2.t/

� Px2.t/ � G>
2 x1.t/ C f2.t/;

0 D � G>
3 x1.t/ C f3.t/;

(18.27)

with the matrices E 2 R
n1�m1 , F 2 R

n1�m2 , G2 2 R
n1�n2 , G3 2 R

n1�n3 and the
continuously differentiable functions ˚ W Rm1 ! R

m1�m1 , � W Rn2 ! R
n2�n2 and

� W Rm2 ! R
m2 satisfying

˚.z1/ > 0 for all z1 2 R
m1; (18.28)

�.z2/ > 0 for all z2 2 R
n2; (18.29)

d

dz
�.z/C

	
d

dz
�.z/


>
> 0 for all z 2 R

m2: (18.30)

We now investigate the differentiation index of the DAE (18.27). The following
result has been proven in [28] with the additional assumption f2.t/ D 0. However,
this assumption has not been required in the proof.

Theorem 1 ([28, Theorem 6.6]) Let a DAE (18.27) be given and assume that
the functions ˚ W R

m1 ! R
m1�m1 , � W R

n2 ! R
n2�n2 and � W R

m2 ! R
m2

satisfy (18.28)–(18.30). Further, assume that the matrices E 2 R
n1�m1 , F 2

R
n1�m2 , G2 2 R

n1�n2 and G3 2 R
n1�n3 fulfil

rank
�
E F G2 G3

� D n1; rankG3 D n3: (18.31)

Then the differentiation index �d of (18.27) is well-defined and it holds

(a) �d D 0, if and only if n3 D 0 and rankE D n1.
(b) �d D 1, if and only if it is not zero and

rank
�
E F G3

� D n1; ker
�
E G3

� D kerE � f0g: (18.32)

(c) �d D 2, if and only if �d … f0; 1g.

The additional assumptions (18.31) ensure that the DAE (18.27) is neither
over- nor underdetermined, i.e., a solution of (18.27) exists for sufficiently smooth
f1, f2 and f3, and it is unique for any consistent initial value. Note that the
assumptions (18.31) will not be made in the following. We will show that from
any DAE of the form (18.27) one can extract a DAE of differentiation index one
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which has the same structure as (18.27). This extraction will be done by a special
linear coordinate transformation.

To this end, we first introduce the matrices W1, W
0
1 , W11, W

0
11, W12, W

0
12, W2,

W 0
2 , W3, W

0
3 , W31, W

0
31, W32 and W 0

32 which have full column rank and satisfy the
following conditions:

.C1/ imW1 D kerE>; imW 0
1 D imE;

.C2/ imW11 D ker
�
F G3

�>
W1; imW 0

11 D imW >
1

�
F G3

�
;

.C3/ imW12 D kerG>
2 W1W11; imW 0

12 D imW >
11W

>
1 G2;

.C4/ imW2 D kerW >
11W

>
1 G2; imW 0

2 D imG>
2 W1W11;

.C5/ imW3 D kerW >
1 G3; imW 0

3 D imG>
3 W1;

.C6/ imW31 D kerG3W3; imW 0
31 D imW >

3 G
>
3 ;

.C7/ imW32 D kerW >
3 G

>
3 W

0
1 ; imW 0

32 D imW 0>
1 G3W3:

The following lemma provides some useful properties for these matrices.

Lemma 1 Let E 2 R
n1�m1 , F 2 R

n1�m2 , G2 2 R
n1�n2 and G3 2 R

n1�n3 be given,
and let Wj andW 0

j for j 2 J WD f1; 11; 12; 2; 3; 31; 32g be matrices of full column
rank satisfying the conditions (C1)–(C7). Then the following holds true:

(a) The relations .imWj /
? D imW 0

j are fulfilled for j 2 J .
(b) The matrix W1W11 has full column rank with

imW1W11 D ker
�
E F G3

�>
: (18.33)

(c) The matrix W1W11W12 has full column rank with

imW1W11W12 D ker
�
E F G2 G3

�>
: (18.34)

(d) The matrix W3W31 has full column rank with

imW3W31 D kerG3: (18.35)

(e) The matrix W 0>
31 W

>
3 G

>
3 W

0
1W

0
32 is square and invertible.

(f) The matrix W 0>
12 W

>
11W

>
1 G2W

0
2 is square and invertible.

Proof The proof mainly relies on the simple fact that kerM> D .imM/? holds for
any matrix M 2 R

m�n.

(a) The case j D 1 simply follows from

.imW1/
? D .kerE>/? D imE D imW 0

1 :

The remaining relations can be proved analogously.
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(b) The matrix W1W11 has full column rank as a product of matrices with full co-
lumn rank. Furthermore, the subset relation “” in (18.33) is a consequence

of
�
E F G3

�>
W1W11 D 0 which follows from (C1) and (C2). To prove the

reverse inclusion, assume that x 2 ker
�
E F G3

�>
. Then

x 2 kerE> D imW1 and x 2 ker
�
F G3

�>
:

Hence, there exists a vector y such that x D W1y. We have

�
F G3

�>
W1y D �

F G3
�>
x D 0:

The definition of W11 gives rise to the existence of a vector z satisfying
y D W11z. Thus, x D W1y D W1W11z 2 imW1W11.

(c) The matrix W1W11W12 has full column rank as a product of matrices with full
column rank. The inclusion “” in (18.34) follows from

�
E F G2 G3

�>
W1W11W12 D 0

which can be proved using (C1)–(C3). For the proof of the reverse inclusion,

assume that x 2 ker
�
E F G2 G3

�>
. Then x 2 ker

�
E F G3

�>
. Hence, due (b)

there exists a vector y such that x D W1W11y. Consequently,

G>
2 W1W11y D G>

2 x D 0:

The definition ofW12 gives rise to the existence of a vector z such hat y D W12z,
and, thus, x D W1W11y D W1W11W12z 2 imW1W11W12.

(d) The matrix W3W31 has full column rank as a product of matrices with full
column rank. The inclusion “” in (18.35) follows fromG3W3W31 D 0. For the
proof of the reverse inclusion, assume that x 2 kerG3. Then x 2 kerW >

1 G3,
whence, by definition of W3, there exists a vector y with x D W3y. Then
0 D G3x D G3W3y and, by definition of W31, there exists a vector z such
that y D W31z. This gives x D W3y D W3W31z 2 imW3W31.

(e) First, we show that

kerW 0>
31 W

>
3 G

>
3 W

0
1W

0
32 D f0g: (18.36)

Assume that x 2 kerW 0>
31 W

>
3 G

>
3 W

0
1W

0
32. Then

W >
3 G

>
3 W

0
1W

0
32x 2 kerW 0>

31 D .imW 0
31/

? D .imW >
3 G

>
3 /

?;
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and, hence, W >
3 G

>
3 W

0
1W

0
32x 2 imW >

3 G
>
3 \ .imW >

3 G
>
3 /

? D f0g. Thus, we
have

W 0
32x 2 kerW >

3 G
>
3 W

0
1 D .imW 0>

1 G3W3/
? D .imW 0

32/
?;

and, therefore,W 0
32x D 0. SinceW 0

32 has full column rank, we obtain that x D 0.
Next, we show that

kerW 0>
32 W

0>
1 G3W3W

0
31 D f0g: (18.37)

Assume that x 2 kerW 0>
32 W

0>
1 G3W3W

0
31. Then

W 0>
1 G3W3W

0
31x 2 kerW 0>

32 D .imW 0
32/

? D .imW 0>
1 G3W3/

?

and, therefore,W 0>
1 G3W3W

0
31x D 0. This gives

G3W3W
0
31x 2 kerW 0>

1 D .imW 0
1 /

? D imW1 D kerW >
3 G

>
3 D .imG3W3/

?;

whence G3W3W
0
31x D 0. From this we obtain

W 0
31x 2 kerG3W3 D .imW >

3 G
>
3 /

? D .imW 0
31/

?:

Thus, W 0
31x D 0. The property that W 0

31 has full column rank leads to
x D 0. Finally, (18.36) and (18.37) together imply that W 0>

31 W
>
3 G

>
3 W

0
1W

0
32

is nonsingular.
(f) First, we show that

kerW 0>
12 W

>
11W

>
1 G2W

0
2 D f0g: (18.38)

Assuming that x 2 kerW 0>
12 W

>
11W

>
1 G2W

0
2 , we have

W >
11W

>
1 G2W

0
2x 2 kerW 0>

12 D .imW 0
12/

? D .imW >
11W

>
1 G2/

?;

whenceW >
11W

>
1 G2W

0
2x D 0. This gives rise to

W 0
2x 2 kerW >

11W
>
1 G2 D .imG>

2 W1W11/
? D .imW 0

2 /
?;

and, therefore,W 0
2x D 0. The fact thatW 0

2 has full column rank leads to x D 0.
We now show that

kerW 0>
2 G>

2 W1W11W
0
12 D f0g: (18.39)
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Let x 2 kerW 0>
2 G>

2 W1W11W
0
12. Then

G>
2 W1W11W

0
12x 2 kerW 0>

2 D .imW 0
2 /

? D .imG>
2 W1W11/

?;

and, thus, G>
2 W1W11W

0
12x D 0. Then we have

W 0
12x 2 kerG>

2 W1W11 D .imW >
11W

>
1 G2/

? D .imW 0
12/

?;

whence W 0
12x D 0. Since W 0

12 has full column rank, we obtain that x D
0. Finally, it follows from (18.38) and (18.39) that W 0>

12 W
>
11W

>
1 G2W

0
2 is

nonsingular. ut
We use the previously introduced matrices and their properties to decompose the

vectors x1.t/, x2.t/ and x3.t/ in the DAE (18.27) as

x1.t/ D W 0
1W

0
32x11.t/CW 0

1W32x21.t/CW1W
0
11x31.t/

CW1W11W
0
12.W

0>
2 G>

2 W1W11W
0
12/

�1x41.t/CW1W11W12x51.t/;

x2.t/ D W 0
2x12.t/CW2x22.t/;

x3.t/ D W 0
3x13.t/CW3W

0
31.W

0>
32 W

0>
1 G3W3W

0
31/

�1x23.t/CW3W31x33.t/:
(18.40)

Introducing the vector-valued functions and matrices

Qx1.t/ D

2
6666664

x11.t/

x21.t/

x31.t/

x41.t/

x51.t/

3
7777775
; T1 D

2
666664

W 0>
32 W

0>
1

W >
32W

0>
1

W 0>
11 W

>
1

.W 0>
12 W

>
11W

>
1 G2W

0
2 /

�1W 0>
12 W

>
11W

>
1

W >
12W

>
11W

>
1

3
777775
; (18.41)

Qx2.t/ D
"
x12.t/

x22.t/

#
; T2 D

"
W 0>
2

W >
2

#
;

Qx3.t/ D

2
64
x13.t/

x23.t/

x33.t/

3
75 ; T3 D

2
64

W 0>
3

.W 0>
31 W

>
3 G

>
3 W

0
1W

0
32/

�1W 0>
31 W

>
3

W >
31W

>
3

3
75 ; (18.42)

equations (18.40) can be written as

x1.t/ D T >
1 Qx1.t/; x2.t/ D T >

2 Qx2.t/; x3.t/ D T >
3 Qx3.t/: (18.43)
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Note that, by construction of the matrices Wj and W 0
j , j 2 J , the matrices T1, T2

and T3 are nonsingular, and, hence, the vectors Qx1.t/, Qx2.t/ and Qx3.t/ are uniquely
determined by x1.t/, x2.t/ and x3.t/, respectively. Further, we define

Qf1.t/D

2
666664

f11.t/

f21.t/

f31.t/

f41.t/

f51.t/

3
777775

DT1f1.t/; Qf2.t/D
"
f12.t/

f22.t/

#
DT2f2.t/; Qf3.t/D

2
64
f13.t/

f23.t/

f33.t/

3
75DT3f3.t/:

Multiplying the DAE (18.27) from the left by diag.T1; T2; T3/ and substituting the
vectors x1.t/, x2.t/ and x3.t/ as in (18.43), we obtain an equivalent DAE

0 D QE˚� QE> Qx1.t/
� QE> PQx1.t/ C QF �� QF> Qx1.t/

�C QG2 Qx2.t/C QG3 Qx3.t/ C Qf1.t/;
0 D �

� Qx2.t/
� PQx2.t/ � QG>

2 Qx1.t/ C Qf2.t/;
0 D � QG>

3 Qx1.t/ C Qf3.t/;
(18.44)

with the matrices

QE D

2
666664

E1

E2
0

0

0

3
777775
; QF D

2
666664

F1

F2
F3
0

0

3
777775
; QG2 D

2
666664

G2;11 G2;12

G2;21 G2;22
G2;31 G2;32
I 0

0 0

3
777775
; QG3 D

2
666664

G3;11 I 0

G3;21 0 0

G3;31 0 0

0 0 0

0 0 0

3
777775
;

(18.45)

which are partitioned according to the partition of Qxi .t/ in (18.41) and (18.42). The
matrix blocks in (18.45) have the form

E1 D W 0>
32 W

0>
1 E; E2 D W >

32W
0>
1 E;

F1 D W 0>
32 W

0>
1 F; F2 D W >

32W
0>
1 F; F3 D W 0>

11 W
>
1 F;

G2;11 D W 0>
32 W

0>
1 G2W

0
2 ; G2;21 D W >

32W
0>
1 G2W

0
2 ; G2;31 D W 0>

11 W
>
1 G2W

0
2 ;

G2;12 D W 0>
32 W

0>
1 G2W2; G2;22 D W >

32W
0>
1 G2W2; G2;32 D W 0>

11 W
>
1 G2W2;

G3;11 D W 0>
32 W

0>
1 G3W

0
3 ; G3;21 D W >

32W
0>
1 G3W

0
3 ; G3;31 D W 0>

11 W
>
1 G3W

0
3 :

(18.46)

This leads to the following condensed form of the DAE (18.27):
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.t
/

C
W
2
x
2
2
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The following facts can be seen from this structure:

(a) The components x51.t/ and x33.t/ are actually not involved. As a consequence,
they can be chosen freely. It follows from (18.40) and Lemma 1(c) that the
vector x51.t/ is trivial, i.e., it evolves in the zero-dimensional space, if and only

if ker
�
E F G2 G3

�> D f0g. Furthermore, by Lemma 1(d) the vector x33.t/ is
trivial if and only if kerG3 D f0g.

(b) The components f51.t/ and f33.t/ have to vanish in order to guarantee solvabi-
lity. Due to Lemma 1(c), the equation f51.t/ D 0 does not appear if and only

if ker
�
E F G2 G3

�> D f0g. Moreover, Lemma 1(d) implies that the equation
f33.t/ D 0 does not appear if and only if kerG3 D f0g.

(c) We see from (a) and (b) that over- and underdetermined parts occur in pairs.
This is a consequence of the symmetric structure of the DAE (18.27).

(d) The remaining components fulfil the reduced DAE

0 D QEr˚
� QE>

r Qx1r.t/
� QE>

r
PQx1r .t/ C QFr�

� QF>
r Qx1r .t/

�C QG2r Qx2r .t/C QG3r Qx3r .t/ C Qf1r .t/;
0 D �

� Qx2r .t/
� PQx2r .t/ � QG>

2r Qx1r .t/ C Qf2r .t/;
0 D � QG>

3r Qx1r .t/ C Qf3r .t/;
(18.48)

with the matrices, functions and vectors

QEr D

2
664
E1
E2
0

0

3
775 ; QFr D

2
664
F1
F2
F3
0

3
775 ; QG2r D

2
664
G2;11 G2;12
G2;21 G2;22
G2;31 G2;32
I 0

3
775 ; QG3r D

2
664
G3;11 I

G3;21 0

G3;31 0

0 0

3
775 ;

(18.49)

Qx1r .t/ D

2
664
x11.t/

x21.t/

x31.t/

x41.t/

3
775 ; Qf1r .t/ D

2
664
f11.t/

f21.t/

f31.t/

f41.t/

3
775 ;

Qx2r .t/ D
�
x12.t/

x22.t/

�
D Qx2.t/; Qf2r .t/ D

�
f12.t/

f22.t/

�
D Qf2.t/;

Qx3r .t/ D
�
x13.t/

x23.t/

�
; Qf3r .t/ D

�
f13.t/

f23.t/

�
:

(18.50)

Note that this DAE has the same structure as (18.27) and (18.44). It is obtained
from (18.44) by cancelling the components x51.t/ and x33.t/ and the equations
f51.t/ D 0 and f33.t/ D 0.

We now analyze the reduced DAE (18.48). In particular, we show that it satisfies
the preliminaries of Theorem 1. For this purpose, we prove the following auxiliary
result.

Lemma 2 Let E 2 R
n1�m1 , F 2 R

n1�m2 , G2 2 R
n1�n2 and G3 2 R

n1�n3 be given.
Assume that the matricesWj andW 0

j , j 2 J , are of full column rank and satisfy the
conditions (C1)–(C7). Then for the matrices in (18.46), the following holds true:
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(a) ker
�
E>
1 E>

2

� D f0g;

(b) ker
�
F3 G3;31

�> D f0g;
(c) kerG3;31 D f0g.

Proof (a) First, we show that the matrix E>W 0
1 has full column rank. Assume that

there exists a vector x such that E>W 0
1x D 0. Then

W 0
1x 2 kerE> D imW1 D .imW 0

1 /
?;

and, hence, W 0
1x D 0. Since W 0

1 has full column rank, we obtain that x D 0.
Consider now an accordingly partitioned vector

�
x1
x2

�
2 ker

�
E>
1 E>

2

�
:

From the first two relations in (18.46) we have

�
W 0
32 W32

� �x1
x2

�
2 kerE>W 0

1 D f0g:

Then Lemma 1(a) yields x1 D 0 and x2 D 0.

(b) Let x 2 ker
�
F3 G3;31

�>
. Then, 0 D G>

3;31x D W 0>
3 G>

3 W1W
0
11x, which gives

G>
3 W1W

0
11x 2 kerW 0>

3 D .imW 0
3 /

? D .imG>
3 W1/

?:

Hence,G>
3 W1W

0
11xD 0. It follows fromF>

3 xD 0, that
�
F G3

�>
W1W

0
11x D 0,

and, therefore,

W 0
11x 2 ker

�
F G3

�>
W1 D .imW >

1

�
F G3

�
/? D .imW 0

11/
?:

This yieldsW 0
11x D 0. Since W 0

11 has full column rank, we obtain x D 0.
(c) Assume that x 2 kerG3;31. Then 0 D G3;31x D W 0>

11 W
>
1 G3W

0
3x, which gives

W >
1 G3W

0
3x 2 kerW 0>

11 D .imW 0
11/

? D .imW >
1

�
F G3

�
/? � .imW >

1 G3/
?:

Thus, we obtainW >
1 G3W

0
3x D 0, which is equivalent to

W 0
3x 2 kerW >

1 G3 D .imG>
3 W1/

? D .imW 0
3 /

?:

As a consequence, we have W 0
3x D 0, and the property of W 0

3 to be of full
column rank gives x D 0. ut

It follows from Lemma 2(a) and (b) that ker
� QEr QFr QG2r QG3r

�> D f0g, whereas

Lemma 2(c) implies that ker QG3r D f0g. In this case, the index of the DAE (18.48)
can be established using Theorem 1.
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Theorem 2 Let a reduced DAE (18.48) be given with matrices and functions as
in (18.49) and (18.50), respectively. Then the differentiation index Q�d of (18.48)
fulfils

(a) Q�d D 0 if and only if QEr D E2, QF D F2, QG2r D G2;22 and the matrix QG3r is
empty.

(b) Q�d D 1 if and only if it is not zero and

QEr D
�
E2

0

�
; QFr D

�
F2

F3

�
; QG2r D

�
G2;22

G2;32

�
; QG3r D

�
G3;21

G3;31

�
:

(18.51)

(c) Q�d D 2 if and only if Q�d … f0; 1g.

Proof (a) If QEr D E2 and the matrix QG3r is empty, then Lemma 2(a) implies that
QEr has full row rank. Then Theorem 1(a) implies Q�d D 0. On the other hand,

if Q�d D 0, then Theorem 1(a) yields that the lower two blocks of QEr in (18.49)
vanish. Hence, the identity matrix in QG2r has zero columns and rows meaning
that the first block column in QG2r vanishes. Furthermore, the absence of QG3r
implies that the first row in QEr , QFr and QG2r vanishes, which gives QEr D E2,QF D F2, and QG2r D G2;22.

(b) First assume that Q�d > 0 and (18.51) holds true. Then it follows from
Lemma 2(a) and (b) that

� QEr QFr QG3r
� D

�
E2 F2 G3;21

0 F3 G3;31

�

has full row rank. We can further conclude from Lemma 2(c) that

ker
� QEr QG3r

� D ker

�
E2 G3;21
0 G3;31

�
D kerE2 � f0g D ker QEr � f0g:

Theorem 1(b) implies Q�d D 1.
To prove the converse implication, assume that Q�d D 1. Seeking for

a contradiction, assume that the second block column of QG3r in (18.49) has
r columns for r > 0. Then there exists a vector x3 2 R

r n f0g. Lemma 2(a)
implies that there exists a vector x1 such that

�
E1
E2

�
x1 D

�
x3
0

�
:

Then using Theorem 1(b) we have

2
4�x1

0

x3

3
5 2 ker

� QEr QG3r
� D ker QEr � f0g:

This is a contradiction.
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It remains to prove that the forth block row of QEr , QFr , QG2r and QG3r vanishes.
Seeking for a contradiction, assume that the forth block row has r > 0 rows.
Then there exists some x3 2 R

r n f0g, and

2
4 00
x3

3
5 2 ker

� QEr QFr QG3r
�> D ker

2
4 E

>
2 0 0

F>
2 F>

3 0

G>
3;21 G

>
3;31 0

3
5 :

Hence,
� QEr QFr QG3r

�
does not have full row rank. Then Theorem 1(b) implies

that Q�d > 1, which is a contradiction. ut
It follows from Lemma 2, Theorem 2 and the construction of the matrices QEr ,QFr , QG2r and QG3r that Q�d D 0 if and only if

rank
�
E F G3

� D rank
�
E F G2 G3

�
and G3 D 0:

Furthermore, we have Q�d D 1 if and only if

rank
�
E F G3

� D rank
�
E F G2 G3

�
and ker

�
E G3

� D kerE � kerG3:

Remark 1 Theorem 2 essentially states that the blocks in (18.47) corresponding to
identity matrices are responsible for the index rising to Q�d D 2. The equations
in (18.47) corresponding to these blocks are algebraic constraints on variables
whose derivatives are also involved in the overall DAE. KUNKEL and MEHRMANN

call this phenomenon strangeness [17, 18, 22].

18.5 Index Reduction for Linear DAEs of Circuit Type

In this section, we consider index reduction of the DAE (18.27) based on the
representation (18.48) in which the over- and underdetermined parts are already
eliminated. We restrict ourselves to linear time-invariant systems. Roughly speak-
ing, index reduction is a manipulation of the DAE such that another DAE with
lower index is obtained whose solution set does not differ from the original one.
Our approach is strongly inspired by the index reduction approach by KUNKEL

and MEHRMANN for linear DAEs with time-varying coefficients [17, 22] briefly
described in Sect. 18.2.

Consider the DAE (18.27), where we assume that the functions ˚ W R
m1 !

R
m1�m1 and � W Rn2 ! R

n2�n2 are constant, that is,

˚.z1/ D ˚ for all z1 2 R
m1 and �.z2/ D � for all z2 2 R

n2

with symmetric, positive definite matrices ˚ 2 R
m1�m1 and � 2 R

n2�n2 . Further-
more, we assume that the function � W Rm2 ! R

m2 is linear, that is, �.z/ D Pz for
some P 2 R

m2�m2 with P C P> > 0. Then by Remark 1 we can apply the index
reduction technique proposed in [17]. To this end, we perform the following steps:
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(i) Multiply the ninth equation in (18.47) from the left by E1˚E>
1 , differentiate it

and add to the first equation;
(ii) Multiply the ninth equation in (18.47) from the left by E2˚E>

1 , differentiate it
and add to the second equation;

(iii) Replace x23.t/ by a new variable

Qx23.t/ D E1˚E
>
2 Px21.t/C E1˚E

>
1

Pf23.t/C x23.t/:

(iv) Multiply the fourth equation in (18.47) from the left byW 0>
2 �W 0

2 , differentiate
it and subtract from the sixth equation;

(v) Multiply the fourth equation in (18.47) from the left byW >
2 �W

0
2 , differentiate

it and subtract from the seventh equation;
(vi) Replace x41.t/ by a new variable

Qx41.t/ D �W 0>
2 �W2 Px22.t/CW 0>

2 �W 0
2

Pf41.t/C x41.t/:

Thereby, we obtain the DAE

2
666666666666666666664

0

0

0

0

0

0

0

0

0

0

3
777777777777777777775

D

2
66666666666666666664

0

E2˚E
>
2 Px21.t/
0

0

0

0

W >
2 �W2 Px22.t/

0

0

0

3
77777777777777777775

C

2
666666666666666666664

F1PF
>
1 x11.t/C F1PF

>
2 x21.t/C F1PF

>
3 x31.t/

F2PF
>
1 x11.t/C F2PF

>
2 x21.t/C F2PF

>
3 x31.t/

F3PF
>
1 x11.t/C F3PF

>
2 x21.t/C F3PF

>
3 x31.t/

0

0

0

0

0

0

0

3
777777777777777777775

C

2
666666666666666666664

0 0 0 0 0 G2;11 G2;12 G3;11 I 0

0 0 0 0 0 G2;21 G2;22 G3;21 0 0

0 0 0 0 0 G2;31 G2;32 G3;31 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0 0

�G>
2;11 �G>

2;21 �G>
2;31 �I 0 0 0 0 0 0

�G>
2;12 �G>

2;22 �G>
2;32 0 0 0 0 0 0 0

�G>
3;11 �G>

3;21 �G>
3;31 0 0 0 0 0 0 0

�I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

3
777777777777777777775

2
666666666666666666664

x11.t/

x21.t/

x31.t/

Qx41.t/
x51.t/

x12.t/

x22.t/

x13.t/

Qx23.t/
x33.t/

3
777777777777777777775

C

2
666666666666666666664

f11.t/

Qf21.t/
f31.t/

f41.t/

f51.t/

f12.t/

Qf22.t/
f13.t/

f23.t/

f33.t/

3
777777777777777777775

(18.52)
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with Qf21.t/ D f21.t/CE2˚E
>
1

Pf23.t/ and Qf22.t/ D f22.t/�W >
2 �W

0
2

Pf41.t/ which
is again of type (18.27). Furthermore, it follows from Theorem 1 and Lemma 2 that
the differentiation index of the resulting DAE obtained from (18.52) by removing
the redundant variables x51.t/ and x33.t/ as well as the constrained equations for
the inhomogeneity components f51.t/ D 0 and f33.t/ D 0 is at most one.

Remark 2 (a) We note that the previously introduced index reduction heavily uses
linearity. In the case where, for instance, ˚ depends on x11.t/ and x21.t/, the
transformation (ii) would be clearly dependent on these variables as well. This
causes that the unknown variables x11.t/ and x21.t/ enter the inhomogeneity
f21.t/.

(b) Structure-preserving index reduction for circuit equations has been considered
previously in [3–5]. An index reduction procedure presented there provides
a reduced model which can be interpreted as an electrical circuit containing
controlled sources. As a consequence, the index-reduced system is not a DAE
of type (18.27) anymore.

18.6 Consequences for Circuit Equations

In this section, we present a graph-theoretical interpretation of the previous results
for circuit equations. First, we collect some basic concepts from the graph theory,
which will be used in the subsequent discussion. For more details, we refer to [10].

Let G D .V ;B/ be a directed graph with a finite set V of vertices and a finite
set B of branches. For �k1; �k2 , an ordered pair bk1 D h�k1; �k2i denotes a branch
leaving �k1 and entering �k2 . A tuple .bk1 ; : : : ; bks�1 / of branches bkj D h�kj ; �kjC1

i
in G is called a path connecting �k1 and �ks if all vertices �k1 ; : : : ; �ks are different
except possibly �k1 and �ks . A path is closed if �k1 D �ks , and open, otherwise.
A closed path is called a loop. A graph G is called connected if for every two
different vertices there exists an open path connecting them.

A subgraph K D .V 0;B0/ of G D .V ;B/ is a graph with V 0  V and

B0  B jV 0D ˚
bk1 D h�k1; �k2i 2 B W �k1; �k2 2 V 0� :

A subgraph K D .V 0;B0/ is called spanning if V 0 D V . A spanning subgraph
K D .V ;B0/ is called a cutset of a connected graph G D .V ;B/ if a complemen-
tary subgraph G � K D .V ;B n B0/ is disconnected and K is minimal with this
property. For a spanning subgraph K of G, a subgraph L of G is called a K-cutset, if
L is a cutset of K. Furthermore, a path ` of G is called a K-loop, if ` is a loop of K.

For an electrical circuit, we consider an associated graph G whose vertices
correspond to the nodes of the circuit and whose branches correspond to the circuit
elements. Let A 2 R

nn�1�nb and B 2 R
nb�nnC1�nb be the reduced incidence and

loop matrices as defined in Sect. 18.3. For a spanning graph K of G, we denote
by AK (resp. AG�K) a submatrix of A formed by the columns corresponding to the
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branches in K (resp. the complementary graphG�K). Analogously, we construct the
loop matrices BK and BG�K. By a suitable reordering of the branches, the reduced
incidence and loop matrices can be partitioned as

A D �
AK AG�K

�
; B D �

BK BG�K
�
: (18.53)

The following lemma from [28] characterizes the absence of K-loops and
K-cutsets in terms of submatrices of the incidence and loop matrices. It is crucial
for our considerations. Note that this result has previously been proven for incidence
matrices in [30].

Lemma 3 (Subgraphs, incidence and loop matrices [28, Lemma 4.10]) Let G
be a connected graph with the reduced incidence and loop matrices A 2 R

nn�1�nb

and B 2 R
nb�nnC1�nb . Further, let K be a spanning subgraph of G. Assume that the

branches of G are sorted in a way that (18.53) is satisfied.

(a) The following three assertions are equivalent:

(i) G does not contain K-cutsets;
(ii) kerA>

G�K D f0g;
(iii) kerBK D f0g.

(b) The following three assertions are equivalent:

(i) G does not contain K-loops;
(ii) kerAK D f0g;

(iii) kerB>
G�K D f0g.

The next two auxiliary results are concerned with properties of subgraphs of
subgraphs and give some equivalent characterizations in terms of their incidence
and loop matrices. These statements have first been proven for incidence matrices
in [30, Propositions 4.4 and 4.5].

Lemma 4 (Loops in subgraphs [28, Lemma 4.11]) Let G be a connected graph
with the reduced incidence and loop matrices A 2 R

nn�1�nb and B 2 R
nb�nnC1�nb .

Further, let K be a spanning subgraph of G, and let L be a spanning subgraph of
K. Assume that the branches of G are sorted in a way that

A D �
AL AK�L AG�K

�
; B D �

BL BK�L BG�K
�
: (18.54)

Then the following three assertions are equivalent:

(i) G does not contain K-loops except for L-loops;
(ii) For some (and hence any) matrix ZL with imZL D kerA>

L holds

kerZ>
LAK�L D f0gI

(iii) For some (and hence any) matrix YK�L with im YK�L D kerB>
K�L holds

Y >
K�LBG�K D 0:
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Lemma 5 (Cutsets in subgraphs [28, Lemma 4.12]) Let G be a connected graph
with the reduced incidence and loop matrices A 2 R

nn�1�nb and B 2 R
nb�nnC1�nb .

Further, let K be a spanning subgraph of G, and let L be a spanning subgraph of K.
Assume that the branches of G are sorted in a way that (18.54) is satisfied. Then the
following three assertions are equivalent:

(i) G does not contain K-cutsets except for L-cutsets;
(ii) For some (and hence any) matrix YL with im YL D kerB>

L holds

kerY >
L BK�L D f0gI

(iii) For some (and hence any) matrix ZK�L with imZK�L D kerA>
K�L holds

Z>
K�LAG�K D 0:

We use these results to analyze the condensed form (18.47) for the MNA
equations (18.23). The MLA equations can be treated analogously. For a given
electrical circuit whose corresponding graph is connected and has no self-loops (see
[28]), we introduce the following matrices which take the role of the matrices Wi

and W 0
i defined in Sect. 18.4. Consider matrices of full column rank satisfying the

following conditions:

.C10/ imZC D kerA>
C ; imZ0

C D imAC;

.C20/ imZRV�C D ker
�
AR AV

�>
ZC; imZ0

RV�C D imZ>
C

�
AR AV

�
;

.C30/ imZL�CRV D kerA>
L ZCZRV�C; imZ0

L�CRV D imZ>
RV�CZ

>
C AL;

.C40/ im NZL�CRV D kerZ>
RV�CZ

>
C AL; im NZ0

L�CRV D imA>
L ZCZRV�C;

.C50/ im NZV�C D kerZ>
C AV; im NZ0

V�C D imA>
VZC;

.C60/ im QZV�C D kerAV NZV�C; im QZ0
V�C D im NZ>

V�CA
>
V ;

.C70/ im QZCVC D ker NZ>
V�CA

>
VZ

0
C; im QZ0

CVC D imZ0>
C AV NZV�C:

Note that the introduced matrices can be determined by computationally cheap
graph search algorithms [12, 16]. We have the following correspondences to the
matricesWi and W 0

i :

ZC ODW1; Z0
C ODW 0

1 ; ZRV�C ODW11; Z0
RV�C ODW 0

11;

ZL�CRV ODW12; Z0
L�CRV ODW 0

12;
NZL�CRV ODW2; NZ0

L�CRV ODW 0
2 ;

NZV�C ODW3; NZ0
V�C ODW 0

3 ;
QZV�C ODW31; QZ0

V�C ODW 0
31;

QZCVC ODW32; QZ0
CVC ODW 0

32:
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Using Lemmas 1 and 3–5, we can characterize the absence of certain blocks in
the condensed form (18.47) in terms of the graph structure of the circuit. Based on
the definition of K-loop and K-cutset, we arrange the following way of speaking.
An expression like “CV-loop” indicates a loop in the circuit graph whose branch
set consists only of branches corresponding to capacitors and/or voltage sources.
Likewise, an “LI-cutset” is a cutset in the circuit graph whose branch set consists
only of branches corresponding to inductors and/or current sources.

(a) The matrix ZC has zero columns if and only if the circuit does not contain any
RLVI-cutsets (Lemma 3(a)).

(b) The matrix Z0
C has zero columns if and only if the circuit does not contain any

capacitors.
(c) The matrix ZRV�C has zero columns if and only if the circuit does not contain

any LI-cutsets (Lemmas 1(b) and 3(a)).
(d) The matrix Z0

RV�C has zero columns if and only if the circuit does not contain
any CLI-cutsets except for LI-cutsets (Lemma 5).

(e) The matrix ZL�CRV has zero columns if and only if the circuit does not contain
any I-cutsets (Lemmas 1(c) and 3(a)).

(f) The matrix Z0
L�CRV (and by Lemma 1(f) also the matrix NZ0

L�CRV) has zero
columns if and only if the circuit does not contain any CRVI-cutsets except for
I-cutsets (Lemmas 1(b) and 5).

(g) The matrix NZL�CRV has zero columns if and only if the circuit does not contain
any RCVL-loops except for RCV-loops (Lemmas 1(b) and 4).

(h) The matrix NZV�C has zero columns if and only if the circuit does not contain
any CV-loops except for C-loops (Lemma 4).

(i) The matrix NZ0
V�C has zero columns if and only if the circuit does not contain

any RCLI-cutsets except for RLI-cutsets (Lemma 5).
(j) The matrix QZV�C has zero columns if and only if the circuit does not contain

any V-loops (Lemmas 1(d) and 3(b)).
(k) The matrix QZ0

CVC (and by Lemma 1(e) also the matrix QZ0
V�C) has zero columns

if and only if the circuit does not contain any CV-loops except for C-loops and
V-loops (this can be proven analogous to Lemma 4).

Exemplarily, we will show (a) only. Other assertions can be proved analogously.
For the MNA system (18.23), we have E D AC. Then by definition, the matrix ZC

has zero columns if and only if kerA>
C D f0g. By Lemma 3(a), this condition is

equivalent to the absence of RLVI-cutsets.
In particular, we obtain from the previous findings that the condensed

form (18.47) does not have any redundant variables and equations if and only if
the circuit neither contains I-cutsets nor V-loops. We can also infer some assertions
on the differentiation index of the reduced DAE (18.48) obtained from (18.47)
by removing the redundant variables and equations. The DAE (18.48) has the
differentiation index Q�d D 0 if and only if the circuit does not contain voltage
sources and RLI-cutsets except for I-cutsets. Furthermore, we have Q�d D 1 if and
only if and the circuit neither contains CV-loops except for C-loops and V-loops nor
LI-cutsets except for I-cutsets.
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18.7 Conclusion

In this paper, we have presented a structural analysis for the MNA and MLA
equations which are DAEs modelling electrical circuits with uncontrolled voltage
and current sources, resistors, capacitors and inductors. These DAEs are shown to
be of the same structure. A special condensed form under linear transformations
has been introduced which allows to determine the differentiation index. In the
linear case, we have presented an index reduction procedure which provides a DAE
system of the differentiation index one and preserves the structure of the circuit
DAE. Graph-theoretical characterizations of the condensed form have also been
given.
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Chapter 19
Spectrum-Based Robust Stability Analysis
of Linear Delay Differential-Algebraic
Equations

Vu Hoang Linh and Do Duc Thuan
Dedicated to Volker Mehrmann on the occasion of his 60th
birthday

Abstract This paper presents a survey of results on the spectrum-based robust
stability analysis of linear delay ordinary differential equations (DODEs) and
linear delay differential-algebraic equations (DDAEs). We focus on the formulation
of stability radii for continuous-time delay systems with coefficients subject to
structured perturbations. First, we briefly overview important results on the stability
radii for linear time-invariant DODEs and an extended result for linear time-varying
DODEs. Then, we survey some recent results on the spectrum-based stability and
robust stability analysis for general linear time-invariant DDAEs.

19.1 Introduction

This paper is concerned with the robust stability of homogeneous linear time-
invariant delay systems of the form

E Px.t/ D Ax.t/C Dx.t � �/; (19.1)

where E;A;D 2 K
n;n, K D R or K D C, and � > 0 represents a time-delay. We

study initial value problems with an initial function �, so that

x.t/ D �.t/; for � � � t � 0: (19.2)
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When E is invertible, by multiplying both sides of the equation by E�1, (19.1)
becomes a delay ordinary differential equation (DODE). The more difficult case
happens when E is singular. Then we have a delay differential-algebraic equations
(DDAE), which is a generalization of both DODEs and non-delay DAEs. Non-delay
differential-algebraic equations (DAEs) play an important role in many application
areas, such as multibody mechanics, electrical circuit simulation, control theory,
fluid dynamics, chemical engineering, see, e.g., [2, 5, 27, 37, 40, 51], the delay
version is typically needed to model effects that do not arise instantaneously, see,
e.g., [4, 24, 66].

One may also consider more general neutral delay DAEs

E Px.t/C F Px.t � �/ D Ax.t/C Dx.t � �/: (19.3)

However, by introducing a new variable, (19.3) can be rewritten into the form (19.1)
with double dimension, see [13]. For this reason here we only consider (19.1).

In this paper, we focus on the robust stability of DDAEs of the form (19.1),
i.e. we investigate whether the asymptotic/exponential stability of a given system
is preserved when the system coefficients are subject to structured perturbations. In
particular, we are interested in computing the distance (measured in an appropriate
metric) between the nominal stable system and the closest perturbed systems
that loses the stability. This quantity is called the stability radius of the system,
see [30–32].

The stability and robust stability analysis for DAEs is quite different from that of
ordinary differential equations (ODEs), see, e.g., [33], and has recently received a
lot of attention, see, e.g., [7, 8, 19, 38, 43, 46, 61, 62] and [17] for a recent survey.
At the same time, extension of the stability and robust stability analysis from ODEs
to DODEs is also well established, see, e.g., [28, 36, 54–58].

Up to our knowledge, the first work addressing the analysis of DDAEs was
due to S.L. Campbell [10]. DDAEs arise, for instance, in the context of feedback
control of DAE systems (where the feedback does not act instantaneously) or as
limiting case for singularly perturbed ordinary delay systems, see e.g. [2, 3, 9–
11, 13, 45, 53, 67]. Unlike the well-established theory of DODEs and DAEs, even
the existence and uniqueness theory of DDAEs is much less well understood, see
[25, 26] for a recent analysis and the discussion of many of the difficulties. Most
of the existing results are obtained only for linear time-invariant regular DDAEs
[20, 65] or DDAEs of special form [2, 44, 68]. Many of the results that are known
for DODEs cannot be extended to the DDAE case. Even the well-known spectral
analysis for the exponential stability or the asymptotic stability of linear time-
invariant DDAEs (19.1) is much more complex than that for DAEs and DDEs, see
[13, 63, 67] for some special cases.

For the illustration of difficulties that arise with DDAEs due to the simultaneous
effects of the time-delay and the singular nature of the systems, let us consider the
following simple examples.
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Example 1 ([13]) Consider the system

�
1 0

0 0

�
Px.t/ D

��1 0

0 �2
�
x.t/C

�
1 1

�1 �1
�
x.t � 1/; .t � 0/;

where x D Œx1 x2�
T , x1 and x2 are given by continuous functions on the initial

interval .�1; 0�. The dynamics of x1 is governed by a differential operator and
continuity of x1 is expected. The dynamics of x2 is determined by a difference
operator and unlike x1, this component is expected to be only piecewise continuous.

Example 2 ([12]) Consider the following inhomogenous system

�
1 0

0 0

�
Px.t/ D

�
0 0

�1 0
�
x.t/C

�
0 0

0 1

�
x.t � 1/C

�
f .t/

g.t/

�
; .t � 0/:

The solution is given by

x1.t/ D
Z t

0

f .s/dsCx1.0/; x2.t/ D �g.tC1/C
Z tC1

0

f .s/dsCx1.0/; .t � 0/:

The system dynamics is not causal. The solution component x2 depends on future
values of the input functions f and g. This interesting phenomenon should be noted
in addition to the well-known fact in the DAE theory that the solution may depend
on derivatives of the input.

Example 3 ([11]) Consider the DDAE

�
0 1

0 0

�
Px.t/ D

�
1 0

0 �1
�
x.t/C

�
0 0

1 0

�
x.t � 1/:

Obtaining x2 from the second equation and substituting the result into the first
equation, we have the delay ODE Px1.t � 1/ D x1.t/, which is of advanced type.
Thus, x1.t/ D x

.m/
1 .t �m/ for m � 1 � t < m, m 2 N. Therefore, the solution is

discontinuous in general and cannot be extended on Œ0;1/ unless the initial function
is infinitely often differentiable.

For the stability and robust stability analysis of linear systems in general, there
are two standard approaches: the spectrum-based approach, which relies upon the
roots of associated characteristic polynomials, and the Lyapunov function approach
which is also known as Lyapunov’s second method. For the purpose of deriving a
formula for the stability radius, the spectrum-based approach is more preferable.

The outline of the paper is as follows. In Sect. 19.2 we briefly summarize
important results on the robust stability and stability radii for linear delay ODEs.
In Sect. 19.3 we survey some very recent results on the stability and robust stability
of linear time-invariant delay DAEs. A discussion of some further related results
and topics for future research close the paper.
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Notation Throughout this paper, we denote by C
� the set of complex numbers

with negative real part, by iR the set of purely imaginary numbers, by In 2 C
n;n the

identity matrix, by 0 the zero matrix of appropriate size. We also denote by C.I;Kn/

the space of continuous functions, by AC.I;Kn/ the space of absolutely continuous
functions, and by Ck

pw.I;K
n/ the space of k-times piecewise continuously differen-

tiable functions from I � Œ0;1/ to K
n. Given a matrix W 2 C

n;n with elements
wij, jW j denotes the nonnegative matrix in R

n;n with element jwijj. For two real
matrices P D .pij/ and Q D .qij/ in R

m;n, we write A � B if pij � qij for all
i D 1; 2; : : : ; m, and j D 1; 2; : : : ; n.

19.2 Robust Stability for Delay ODEs

We consider the linear time-invariant differential equation with delay

Px.t/ D Ax.t/C Dx.t � �/; t � 0; (19.4)

where A; D 2 K
n;n and the initial condition x.t/ D �.t/ for all t 2 Œ��; 0�, where

�.t/ is a given continuous function. It is established, e.g. see [29], that this initial
value problem has the unique solution x.t; �/ defined on Œ0;1/.

Definition 1 The trivial solution of Eq. (19.4) is called

1. Stable if for every � > 0 there exist ı > 0 such that for all � with k�k1 < ı, the
solution x.t; �/ satisfies kx.t; �/k < � for all t � 0;

2. Asymptotically stable if it is stable and there exist ı > 0 such that k�k1 < ı

implies limt!1 kx.t; �/k D 0;
3. Exponentially stable if there exist ı > 0;L > 0 and � > 0 such that with

k�k1 < ı, the solution x.t; �/ satisfies the estimate kx.t; �/k < Le��t for all
t � 0.

If the trivial solution of (19.4) is (asymptotically, exponentially) stable, then we also
say that the equation is (asymptotically, exponentially) stable.

It is also known that for linear time-invariant systems, the asymptotic stability and
the exponential stability are equivalent. Furthermore, the local asymptotic stability
implies the global asymptotic stability. In general, these statements are not true for
time-varying or nonlinear systems.

19.2.1 Stability Radii

Define

H.s/ D sI � A� De��s; �.H/ D fs 2 C W det.H.s// D 0g:
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It is well known that equation (19.4) is exponentially stable if and only if �.H/ �
C

�, see [29]. Assume that (19.4) is subject to structured perturbations of the form

Px.t/ D QAx.t/C QDx.t � �/; (19.5)

with

A QA D AC B1�1C1; D QD D D C B2�2C2; (19.6)

where Bi 2 K
n;li , and Ci 2 K

qi ;n, i D 1; 2; are given structure matrices and
�i 2 K

li ;qi , i D 0; 1; are unknown disturbance matrices.
Using the abbreviation A D ŒA; D�, these perturbations can be described as a

block-diagonal perturbation

A QA D ACB�bC;

where B D ŒB1; B2�, C D
�
C1 0

0 C2

�
and �b D

�
�1 0

0 �2

�
: We endow the linear

space of block-diagonal perturbations with the norm

k�bk D k�1k C k�2k:

If Eq. (19.4) is exponentially stable, then we define

&K D f�b; W �i 2 K
li ;qi ; (19.5) is not exponentially stableg;

where K D R or K D C, and the structured stability radius of (19.4) with respect
to perturbations of the form (19.6) is defined as

rb
K
.A/ D inffk�bk j�b 2 &Kg:

Depending on K D R or K D C, we have the real/complex stability radius. Define
the transfer functions

Gij.s/ D CiH.s/
�1Bj ; 1 � i; j � 2:

The following result is established in [54].

Theorem 1 Suppose that Eq. (19.4) is exponentially stable and subject to struc-
tured perturbations of the form (19.6). Then

1

maxfsups2iR kGij.s/k j 1 � i; j � 2g � rb
C
.A/ � 1

maxfsups2iR kGii.s/k j 1 � i � 2g :
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In particular, if B1 D B2 (or C1 D C2) then

rb
C
.A/ D 1

maxfsups2iR kGii.s/k j 1 � i � 2g :

This result has also been extended for linear systems with multiple delays, and in a
more general case, for linear functional differential equations with distribution delay
of the form

Px.t/ D Ax.t/C
Z 0

��
d Œ�.�/�x.t C �/; (19.7)

where �.�/ is a matrix-valued function of locally bounded variation defined on
Œ��; 0�, see [54, 57, 58].

Now, we consider the perturbed equation (19.5) subject to structured perturba-
tions of the full-block form

QA D AC B�C; (19.8)

where B 2 K
n;l ; C 2 K

q;2n are given structure matrices and � 2 K
l;q is an

uncertain perturbation matrix. Introducing the set

�K D ˚
� 2 K

l;q W (19.5) is not exponentially stable
�
:

Then, the structured stability radius of (19.4) with respect to structured perturbations
of the form (19.8) is defined via

rB;C
K

.A/ D fk�k j� 2 �Kg ; (19.9)

where k � k is an operator norm induced by a vector norm. Define

L.s/ WD
�

In

e��sIn

�
; C.s/ WD CL.s/;

and the transfer function G.s/ D C.s/H.s/�1B . The following result is analogous
to that for linear time-invariant ODEs of [31].

Theorem 2 Suppose that Eq. (19.4) is exponentially stable and subject to struc-
tured perturbations of the form (19.8). Then, the complex stability radius of (19.4)
is given by

r
B;C
C

.A/ D 1

sups2iR kG.s/k :

We note that the proof can also be done by using the structured distance to non-
surjectivity in [59, 60] and the same techniques as in [19, 31].
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Unlike for the complex stability radius, a general formula for the real stability
radius measured by an arbitrary matrix norm is not available. However, if we
consider the Euclidean norm, then a computable formula for the real stability radius
can be established. For a matrix F 2 K

q;l , the real structured singular value of F is
defined by

�R.F / WD .inffk�k2 W � 2 R
l;q ; and det.Il C�F / D 0g/�1;

and it has been shown in [50] that the real structured singular value ofM is given by

�R.F / D inf
�2.0;1� �2

"
ReF �� ImF
1
�

ImF ReF

#
;

where �2.P / denotes the second largest singular value of the matrix P .
Using this result, we obtain a formula for the real stability radius, see also [36].

Theorem 3 Suppose that Eq. (19.4) is exponentially stable and subject to struc-
tured perturbations of the form (19.8). Then, the real stability radius of (19.4) (with
respect to the Euclidean norm) is given by the formula

r
B;C
R

.A/ D
 

sup
s2iR

inf
�2.0;1� �2

"
ReG.s/ �� ImG.s/
1
�

ImG.s/ ReG.s/

#!�1
: (19.10)

Remark 1 The formula of real stability radius has been extended in [36] to linear
systems of neutral type under structured perturbations of the form (19.6), as well.
However, one must be careful since the spectral condition �.H/ 2 C

� does not
necessarily imply the asymptotic stability of a neutral delay equation. A similar
formula of the real stability radius has also been proven for linear time-invariant
DAEs, see [17]. However, in the latter case, we must take the supremum on C n C

�
instead of iR due to the singular nature of the system.

19.2.2 Positive Delay Systems

In the previous section, we see that the formula of a real stability radius is more
sophisticated. Moreover, by the definition, it is easy to see that

rb
C
.A/ � rb

R
.A/ and rB;C

C
.A/ � rB;C

R
.A/:

Therefore, it is a natural question to study when the real and complex stability radius
are equal. The answer has been given in the case of positive systems, see [34, 35, 56,
58]. Now, we consider only systems with real coefficients and real initial functions.
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Definition 2 Equation (19.4) is called positive if for any nonnegative continuous
initial condition �, i.e., �.t/ � 0; �� � t � 0, then the corresponding solution
x.t; �/ satisfies x.t; �/ � 0 for all t � 0:

It is well known that Eq. (19.4) is positive if and only if A is a Metzler matrix and
D is a positive matrix, see e.g. [56, 58]. We recall that a Metzler matrix is a matrix
in which all the off-diagonal components are nonnegative. The following result is
obtained in [56].

Theorem 4 Assume that Eq. (19.4) is positive, exponentially stable and subject to
structured perturbations of the form (19.6) with Bi � 0; Ci � 0; i D 1; 2. Then

1

maxfkGij.0/k j 1 � i; j � 2g � rb
C
.A/ D rb

R
.A/ � 1

maxfkGii.0/k j 1 � i � 2g :

In particular, if D1 D D2 (or E1 D E2) then

rb
C
.A/ D rb

R
.A/ D 1

maxfkGii.0/k j 1 � i � 2g :

Remark 2 As a consequence, if Eq. (19.4) is positive and the structure matrices
Bi ; Ci are positive, then the real stability radius can be easily computed.

By extending this result, the authors of [58] have also showed that for the positive
equation (19.7), the real and complex stability radius are equal and easy to calculate.
By a similar proof as in [56], the following result is obtained.

Theorem 5 Assume that Eq. (19.4) is positive, exponentially stable and subject to
structured perturbations of the form (19.8) with B � 0; C � 0. Then, the complex
stability radius of (19.4) is given by

r
B;C
C

.A/ D r
B;C
R

.A/ D 1

kG.0/k : (19.11)

Example 4 Consider a positive linear delay equation in R
2 described by Px.t/ D

Ax.t/ C Dx.t � 1/; t � 0; where A D
��1 0

0 �1
�
; D D

�
0 1

0 0

�
: Then, the

characteristic equation of the system is

det.H.s// D det

��1 � s e�s
0 �1 � s

�
D .1C s/2 D 0;

and hence the equation is exponentially stable. Assume that the system is subject to
structured perturbations of the form

Œ QA; QD� D
��1C ı1 ı1 0 1C ı2

ı1 ı1 0 ı2

�
D ŒA;D�C B�C;
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with

B D
�
1

1

�
; C D

�
1 1 0 0

0 0 0 1

�
; � D Œı1 ı2�;

and disturbance parameters ı1; ı2 2 R or C. By simple algebraic manipulations we

imply G.0/ D C.0/H.0/�1B D
��3
�1
�
: Thus, if C2 is endowed with the 2-norm,

then by (19.11), we obtain

rB;C
C

.A/ D rB;C
R

.A/ D 1p
10
:

19.2.3 Extension to Linear Time-Varying Systems with Delay

Consider the linear time-varying systems with delay

Px.t/ D NA.t/x.t/C ND.t/x.t � �/; (19.12)

where NA.�/; ND.�/ 2 C.Œ0;1/;Kn;n/; and the initial condition x.t/ D �.t/ for all
t 2 Œ��; 0�: Suppose that

M. NA.t// � A; j ND.t/j � D; for all t � 0: (19.13)

Here M. NA.t// D �
mij.t/

�
denotes the Metzler matrix defined by

mij.t/ D
� j Naij.t/j; i ¤ j;

Naij.t/; i D j;
.1 � i; j � n/:

If Eq. (19.4) is exponentially stable then Eq. (19.12) is exponentially stable, see [47].
Assume that (19.12) is subject to structured perturbations of the form

Px.t/ D QA.t/x.t/C QD.t/x.t � �/; (19.14)

with

QA.t/ D A.t/C B1.t/�1.t/C1.t/; QD.t/ D D.t/C B2.t/�2.t/C1.t/;

(19.15)

where Bi.t/ 2 K
n;li ; Ci .t/ 2 K

qi ;n, i D 1; 2, are given structure matrices and
�i.t/ 2 K

li ;qi , i D 0; 1 are unknown disturbance matrices such that

jBi.t/j � Bi ; jCi.t/j � Ci ; j�i.t/j � �i for all t � 0; i D 1; 2: (19.16)

The following result is established recently in [48].
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Theorem 6 Assume that Eq. (19.4) is exponentially stable and Eq. (19.12) is
subject to structured perturbations of the form (19.15). Then, if

k�1k C k�2k < 1

maxfkGij.0/k j 1 � i; j � 2g
then the perturbed equation (19.14) is exponentially stable.

Remark 3 The conditions (19.13) and (19.16) are rather strict. This conditions
restrict us to consider the robust stability of only a special class of linear time-
varying delay differential equations under structured perturbations.

Recently, there have been also many other results for the robust stability of delay
differential equations which are based on the Lyapunov-Krasovskii functional
approach and the use of linear matrix inequalities (LMIs), see [1, 39, 52]. Unfor-
tunately, the Lyapunov-based approach does not allow us to calculate the stability
radii explicitly as the spectrum-based approach does.

19.3 Robust Stability of Linear Time-Invariant Delay DAEs

In this section we survey some new results on the stability and robust stability of
linear time-invariant DDAEs of the form (19.1).

19.3.1 Preliminary Notions and Transformations

First, we define solutions of the initial value problem (19.1)–(19.2).

Definition 3 A function x.�; �/ W Œ0;1/ ! C
n is called solution of the initial value

problem (19.1)–(19.2), if x 2 AC.Œ0;1/;Cn/ and x.�; �/ satisfies (19.1) almost
everywhere. An initial function � is called consistent with (19.1) if the associated
initial value problem (19.1) has at least one solution.

System (19.1) is called solvable if for every consistent initial function �, the
associated initial value problem (19.1)–(19.2) has a solution. It is called regular if it
is solvable and the solution is unique.

Note that instead of seeking solutions in AC.Œ0;1/;Cn/, alternatively we often
consider the space C1

pw.Œ0;1/;Cn/. In fact, Eq. (19.1) may not be satisfied at
(countably many) points, which usually arise at multiples of the delay time � .



19 Spectrum-Based Robust Stability Analysis of Linear Delay Differential-. . . 543

Definition 4 System (19.1)–(19.2) is called exponentially stable if there exist
constantsK > 0;! > 0 such that

kx.t; �/k � Ke�!tk�k1

for all t � 0 and all consistent initial functions �, where k�k1 D
sup���t�0 k�.t/k.

The following notions are well known in the theory of DAEs, see [5, 21, 23]. A
matrix pair .E;A/, E;A 2 C

n;n is called regular if there exists s 2 C such that
det.sE � A/ is different from zero. Otherwise, if det.sE � A/ D 0 for all s 2 C,
then we say that .E;A/ is singular. If .E;A/ is regular, then a complex number s is
called a (generalized finite) eigenvalue of .E;A/ if det.sE � A/ D 0. The set of all
(finite) eigenvalues of .E;A/ is called the (finite) spectrum of the pencil .E;A/ and
denoted by �.E;A/. If E is singular and the pair is regular, then we say that .E;A/
has the eigenvalue 1.

Regular pairs .E;A/ can be transformed to Weierstraß-Kronecker canonical
form, i.e., there exist nonsingular matricesW; T 2 C

n;n such that

E D W

�
Ir 0

0 N

�
T �1; A D W

�
J 0

0 In�r

�
T �1; (19.17)

where Ir ; In�r are identity matrices of indicated size, J 2 C
r;r , and N 2

C
.n�r/;.n�r/ are matrices in Jordan canonical form and N is nilpotent. If E is

invertible, then r D n, i.e., the second diagonal block does not occur. If r < n and
N has nilpotency index � 2 f1; 2; : : :g, i.e.,N� D 0; N i ¤ 0 for i D 1; 2; : : :; ��1,
then � is called the index of the pair .E;A/ and we write ind.E;A/ D �. If r D n

then the pair has index � D 0.
For system (19.1) with a regular pair .E;A/, the existence and uniqueness of

solutions has been studied in [10–12] and for the general case in [25]. It follows
from Corollary 4.12 in [25] that (19.1)–(19.2) has a unique solution if and only if
the initial condition � is consistent and det.sE � A� e�s�D/ 6	 0.

For a matrix triple .E;A;D/ 2 C
n;n � C

n;n � C
n;n, there always exists a

nonsingular matrixW 2 C
n;n such that

W �1E D
2
4E10
0

3
5 ; W �1A D

2
4A1A2
0

3
5 ; W �1D D

2
4D1

D2

D3

3
5 ; (19.18)

whereE1;A1;D1 2 C
d;n; A2;D2 2 C

a;n;D3 2 C
h;n with dCaCh D n, rankE1 D

rankE D d , and rankA2 D a. Then, system (19.1) can be scaled byW �1 to obtain

E1 Px.t/ D A1x.t/CD1x.t � �/;

0 D A2x.t/CD2x.t � �/; (19.19)

0 D D3x.t � �/:
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In practice, such a scaling matrix W and the corresponding transformed coefficient
matrices can be easily constructed by using the singular value decomposition (SVD)
of matrices, see the detailed procedure in [18].

Following the concept of strangeness-index in [37] we make the following
definition, see also [25].

Definition 5 Equation (19.1) is called strangeness-free if there exists a nonsingular
matrixW 2 C

n;n that transforms the triple .E;A;D/ to the form (19.18) and

rank

2
4E1A2
D3

3
5 D n:

It is easy to show that, although the transformed form (19.18) is not unique
(any nonsingular matrix that operates blocks-wise in the three block-rows can be
applied), the strangeness-free property is invariant with respect to the choice of
W . Furthermore, the class of strangeness-free DDAEs includes all equations with
regular pair .E; A/ of index at most 1, but excludes all equations all equations with
regular pair .E; A/ of higher index. So, strangeness-free DDAEs generalizes index-
1 regular DDAEs which have been discussed so far in the literature [13, 20, 45]. We
refer to [18] for more details.

19.3.2 Spectrum-Based Stability Analysis

The stability analysis is usually based on the eigenvalues of the nonlinear function

H.s/ D sE �A � e�s�D; (19.20)

associated with the Laplace transform of Eq. (19.1), i.e., the roots of the character-
istic function

pH.s/ WD detH.s/: (19.21)

Let us define the spectral set �.H/ D fs W pH.s/ D 0g and the spectral abscissa
˛.H/ D supfRe.s/ W pH.s/ D 0g. For linear time-invariant DODEs, i.e., if
E D In, the exponential stability is equivalent to ˛.H/ < 0, see [28] and the
spectral set �.H/ is bounded from the right. However, for linear time-invariant
DDAEs, the spectral set �.H/ may not be bounded on the right as Example 1.1 in
[18] shows. In some special cases, [45, 64], it has been shown that the exponential
stability of DDAEs is equivalent to the spectral condition that ˛.H/ < 0. In general,
however this spectral condition is necessary, but not sufficient for the exponential
stability, see Examples 1.2 and 3.6 in [18]. In other words, linear time-invariant
DDAEs may not be exponentially stable although all roots of the characteristic
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function are in the open left half complex plane. To characterize when the roots of
the characteristic function allow the classification of stability, certain extra structural
restrictions on (19.1) are to be taken into consideration. In the following we present
some necessary and sufficient conditions for exponential stability of (19.1), which
extend the results of [45, 64].

First, we obtain that for strangeness-free systems the spectral condition charac-
terizes exponential stability.

Theorem 7 ([18, Theorem 3.1]) Suppose that Eq. (19.1) is strangeness-free. Then
Eq. (19.1) is exponentially stable if and only if ˛.H/ < 0.

As an immediate consequence, the stability criterion for index-1 DDAEs proven in
[45] follows.

Corollary 1 Consider the DDAE (19.1)–(19.2) with a regular pair .E;A/,
ind.E;A/ � 1, and its associated spectral function H . Then Eq. (19.1) is
exponentially stable if and only if ˛.H/ < 0.

Now we consider the case when the pair .E;A/ in Eq. (19.1) is regular and it is
transformed into the Weierstraß-Kronecker canonical form (19.17). Setting

W �1DT D
�
D11 D12

D21 D22

�
; T �1x.t/ D

�
x1.t/

x2.t/

�
; T �1�.t/ D

�
�1.t/

�2.t/

�
; (19.22)

with D11 2 C
r;r ;D12 2 C

r;n�r ;D21 2 C
n�r;r ;D22 2 C

n�r;n�r , and x1; x2; �1; �2
partitioned correspondingly. Then Eq. (19.1) is equivalent to the system

Px1.t/ D A11x1.t/CD11x1.t � �/CD12x2.t � �/; (19.23)

N Px2.t/ D x2.t/CD21x1.t � �/CD22x2.t � �/;

with initial conditions

xi .t/ D �i .t/; for t 2 Œ��; 0�; i D 1; 2:

From the explicit solution formula for linear time-invariant DAEs, see [9, 37], the
second equation of (19.23) implies that

x2.t/ D �D21x1.t��/�D22x2.t��/�
��1X
iD1

�
N iD21x

.i/
1 .t � �/CN iD22x

.i/
2 .t � �/


;

(19.24)

and for t 2 Œ0; �/, we get

x2.t/ D �D21�1.t/ �D22�2.t/ �
��1X
iD1

�
N iD21�

.i/
1 .t � �/CN iD22�

.i/
2 .t � �/


:

(19.25)
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It follows that � needs to be differentiable at least � times if the coefficients
D21 and D22 do not satisfy further conditions. Extending this argument to t 2
Œ�; 2�/; Œ2�; 3�/; etc., the solution cannot be extended to the full real half-line unless
the initial function � is infinitely often differentiable or the coefficient associated
with the delay is highly structured.

Let us now consider exponential stability for the case that ind.E;A/ > 1. In
order to avoid an infinite number of differentiations of � induced by (19.25), it
is reasonable to assume that for a system in Weierstraß–Kronecker form (19.17)
with transformed matrices as in (19.22) the allowable delay conditions ND2i D 0,
i D 1; 2 hold. Note that this condition is obviously holds for the index-1 case since
then N D 0.

Choose any fixed Os 2 C such that det.OsE � A/ 6D 0 and set

OE D .OsE �A/�1E; OD D .OsE � A/�1D:

Proposition 3.4 in [18] shows that the allowable delay conditions ND21 D 0 and
ND22 D 0 are simultaneously satisfied if and only if

.I � OED OE/ OE OD D 0; (19.26)

where OED denotes the Drazin inverse of OE.
Using this characterization of the allowable delay condition, we have the

following characterization of exponential stability for DDAEs with regular pair
.E;A/ of arbitrary index.

Theorem 8 ([18, Theorem 3.5]) Consider the DDAE (19.1)–(19.2) with a regular
pair .E;A/ satisfying (19.26). Then Eq. (19.1) is exponentially stable if and only if
˛.H/ < 0.

We note that although the spectral criterion ˛.H/ < 0 was used for characterizing
the exponential stability of DDAEs with regular pair .E; A/ of arbitrary index in
[13, 63, 67], a rigorous proof had not been available prior to the appearance [18].

We have seen that the spectral criterion ˛.H/ < 0 is necessary for the
exponential stability of (19.1), but in general it is not sufficient. Introducing further
restrictions on the delay term, we get that exponential stability is equivalent to the
spectral criterion.

In general, the exponential stability of (19.1) depends on the delay parameter � . If
the exponential stability of (19.1) holds for all � � 0, we say that the DDAE (19.1)
is delay-independently exponentially stable. Otherwise, the exponential stability
of (19.1) is said to be delay-dependent. The following sufficient criterion was
established in [13], which improved the one earlier given in [67], and later it
was further developed in [63]. The following theorem for the delay-independent
exponential stability of (19.1) is a special case of Theorem 1 in [13].

Theorem 9 Suppose that .E; A/ is regular and that

�.E; A/ 2 C
� and sup

Re.s/�0
�
�j.sE �A/�1Dj� < 1: (19.27)
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Then the DDAE (19.1) is exponential stable for all values of the delay � , i.e., the
exponential stability of (19.1) is delay-independent.

By using the theory of nonnegativ matrices, practically checkable algebraic criteria
were also derived from (19.27) for the delay-independent exponential stability
of (19.1) in [13]. We note that Theorem 9 cannot apply directly to strangeness-
free DDAEs, since the pair .E; A/ of a strangeness-free DDAE may be singular.
However, by shifting the argument of the third equation of (19.19), the result
of Theorem 9 can be easily adapted to strangeness-free DDAEs. Finally, we
emphasize a numerical consequence of delay-independent exponential stability. In
[13, 63, 67], it is shown that for delay-independently exponentially stable DDAEs,
numerical solutions by certain classes of A-stable discretization methods preserve
the exponential stability.

19.3.3 Stability Radii

With the characterization of exponential stability at hand we also study the question
of robust stability for linear time-invariant DDAEs, i.e., we discuss the structured
stability radius of maximal perturbations that are allowed to the coefficients so
that the system keeps its exponential stability. These results, which are presented
in details in [18, Section 4], extend previous results on DODEs and DAEs in
[7, 8, 17, 19, 36, 55].

Suppose that system (19.1) is exponentially stable and consider a perturbed
system

.E C B1�1C / Px.t/ D .AC B2�2C /x.t/C .D C B3�3C /x.t � �/; (19.28)

where �i 2 C
pi ;q , i D 1; 2; 3 are perturbations and Bi 2 C

n;pi , i D 1; 2; 3,
C 2 C

q;n, are matrices that restrict the structure of the perturbations. We could
also consider different matrices Ci in each of the coefficients but for simplicity, see
Remark 6 below, we assume that the column structure in the perturbations is the
same for all coefficients. Set

� D
2
4�1

�2

�3

3
5 ; B D �

B1 B2 B3
�
; (19.29)

and p D p1 C p2 C p3 and consider the set of destabilizing perturbations

VC.E;A;DIB;C / D f� 2 C
p�q W (19.28) is not exponentially stableg:

Then we define the structured complex stability radius of (19.1) subject to structured
perturbations as in (19.28) as

rC.E;A;DIB;C / D inffk�k W � 2 VC.E;A;DIB;C /g;
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where k � k is a matrix norm induced by a vector norm. If only real perturbations
� are considered, then we use the term structured real stability radius but here we
focus on the complex stability radius.

With H as in (19.20), we introduce the transfer functions

G1.s/ D �sCH.s/�1B1; G2.s/ D CH.s/�1B2; G3.s/ D e�s�CH.s/�1B3;

and with

G.s/ D �
G1.s/ G2.s/ G3.s/

�
; (19.30)

we first obtain an upper bound for the structured complex stability radius.

Theorem 10 ([18, Theorem 4.1]) Suppose that system (19.1) is exponentially sta-
ble. Then the structured stability radius of (19.1) subject to structured perturbations
as in (19.28) satisfies the inequality

rC.E;A;DIB;C / �
 

sup
Res�0

kG.s/k
!�1

:

For every perturbation� as in (19.29) we define

H�.s/ D s.E C B1�1C /� .AC B2�2C /� e�s� .D C B3�3C /:

and have the following proposition.

Proposition 1 ([18, Proposition 4.2]) Consider system (19.1) and the perturbed
system (19.28). If the associated spectral abscissa satisfy ˛.H/ < 0 and ˛.H�/ �
0, then we have

k�k �
 

sup
Res�0

kG.s/k
!�1

:

It is already known for the case of perturbed non-delay DAEs [8], see also [17],
that it is necessary to restrict the perturbations in order to get a meaningful concept
of the structured stability radius, since a DAE system may lose its regularity and/or
stability under infinitesimal perturbations. We therefore introduce the following set
of allowable perturbations.

Definition 6 Consider a strangeness-free system (19.1) and let W 2 C
n;n be

such that (19.18) holds. A structured perturbation as in (19.28) is called allowable
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if (19.28) is still strangeness-free with the same triple .d; a; h/, i.e., there exists a
nonsingular QW 2 C

n;n such that

QW �1.E C B1�1C / D
2
4

QE1
0

0

3
5 ; QW �1.AC B2�2C / D

2
4

QA1
QA2
0

3
5 ;

QW �1.D C B3�3C / D
2
4

QD1

QD2

QD3

3
5 ; (19.31)

where QE1; QA1; QD1 2 C
d;n; QA2; QD2 2 C

a;n; QD3 2 C
h;n, such that

2
4

QE1
QA2
QD3

3
5

is invertible.

Assume that the matrices Bi , i D 1; 2; 3, that are restricting the structure have
the form

W �1B1 D
2
4B11B12
B13

3
5 ; W �1B2 D

2
4B21B22
B23

3
5 ; W �1B3 D

2
4B31B32
B33

3
5 ;

where Bj1 2 C
d;pj , B2j 2 C

a;pj , and B3;j 2 C
h;pj , j D 1; 2; 3. According

to [8, Lemma 3.3], if the structured perturbation is allowable then B12�1C D 0,
B13�1C D 0, and B23�2C D 0. Thus, without loss of generality, we assume that

B12 D 0; B13 D 0; and B23 D 0: (19.32)

Note that it can be shown that the condition (19.32) is invariant with respect to the
choice of the transformation matrix W . Furthermore, it is easy to see that with all
structured perturbations with Bi , i D 1; 2; 3, satisfying (19.32), if the perturbation
� is sufficiently small, then the strangeness-free property is preserved with the same
sizes of the blocks.

We denote the infimum of the norm of all perturbations � such that (19.28)
is no longer strangeness-free or the sizes of the blocks d; a; h change, by
ds
C
.E;A;DIB;C /, and immediately have the following proposition.
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Proposition 2 ([18, Proposition 4.4]) Suppose that Eq. (19.1) is strangeness-free
and subject to structured perturbations with Bi , i D 1; 2; 3 satisfying (19.32). Then

ds
C
.E;A;DIB;C / D

����C
2
4E1A2
D3

3
5

�12
4B11 0 0

0 B22 0

0 0 B33

3
5
����

�1
:

Remark 4 It is not difficult to show that in fact the formula in Proposition 2 is
independent of the choice of the transformation matrixW .

Proposition 3 ([18, Proposition 4.6]) Consider system (19.1) with ˛.H/ < 0. If
the system is strangeness-free and subject to structured perturbations as in (19.28)
with structure matrices B1;B2; B3 satisfying (19.32) and if the perturbation �
satisfies

k�k <
 

sup
Res�0

kG.s/k
!�1

;

then the structured perturbation is allowable, i.e., the perturbed equation (19.28) is
strangeness-free with the same block-sizes d; a, and h.

We combine Theorem 7 and Propositions 1–3 to formulate the complex stability
radius for strangeness-free DDAEs under suitable structured perturbations.

Theorem 11 ([18, Theorem 4.7]) Suppose that Eq. (19.1) is exponentially stable
and strangeness-free and subject to structured perturbations as in (19.28) with
structure matrices B1;B2; B3 satisfying (19.32). Then

rC.E;A;DIB;C / D
 

sup
Res�0

kG.s/k
!�1

:

Furthermore, if k�k < rC.E;A;DIB;C / then (19.28) is strangeness-free with the
same blocksizes d; a, and h as for (19.1).

Remark 5 By the maximum principle [41], the supremum of G.s/ over the right-
half plane is attained at a finite point on the imaginary axis or at infinity. For
strangeness-free DDAEs, it can be shown that it suffices to take the supremum of
kG.s/k over the imaginary axis instead of the whole right-half plane, i.e., we have

rC.E;A;DIB;C / D
	

sup
ResD0

kG.s/k

�1

;

see [18, Lemma A.1].



19 Spectrum-Based Robust Stability Analysis of Linear Delay Differential-. . . 551

Remark 6 Perturbed systems of the form (19.28) represent a subclass of the class
of systems with more general structured perturbations

.E CB1�1C1/ Px.t/ D .ACB2�2C2/x.t/C .D CB3�3C3/x.t � �/; (19.33)

where �i 2 C
pi ;qi , i D 1; 2; 3, are perturbations, Bi 2 C

n;pi and Ci 2 C
qi ;n,

i D 1; 2; 3, are allowed to be different matrices. One may formulate a structured
stability radius subject to (19.33), as well, but an exact formula for it could not
be expected as in the case of (19.28). For another special case that B1 D B2 D
B3 D B and Ci are different, an analogous formulation and similar results for
the structured stability radius can be obtained, cf. Theorem 1. However, due to the
special row-structure of the strangeness-free form and of allowable perturbations,
the consideration of perturbed systems of the form (19.28) is more reasonable. If
E D I and no perturbation is allowed in the leading term, then the formula of the
complex stability radius by Theorem 11 reduces to that of Theorem 1 by using an
appropriate matrix norm.

As a corollary we obtain the corresponding result for a special case
of strangeness-free systems where already the pair .E;A/ is regular with
ind.E;A/ � 1.

Corollary 2 Consider system (19.1) with a regular pair .E;A/ satisfying
ind.E;A/ � 1 and suppose that the system is exponentially stable and has
Weierstraß-Kronecker canonical form (19.17). If the system is subject to structured
perturbations as in (19.28), where the structure matrix B1 satisfies

W �1B1 D
�
B11
0

�
;

with B11 2 C
d�p1 , then the structured stability radius is given by

rC.E;A;DIB;C / D
	

sup
ResD0

kG.s/k

�1

:

For non-delayed DAEs it has been shown [17] that if the perturbation is such that
the nilpotent structure in the Weierstraß-Kronecker canonical form is preserved,
then one can also characterize the structured stability radius in the case that the pair
.E;A/ is regular and ind.E;A/ > 1.

We have seen that exponential stability is characterized by the spectrum of H if
we assume that the allowable delay conditions ND21 D 0 and ND22 D 0 hold. In
the following we assume that this property is preserved and that in the perturbed
equation (19.28), the structure matrices B1;B2; B3 satisfy

W �1B1 D
�
B11
0

�
; W �1B2 D

�
B21
0

�
; W �1B3 D

�
B31
B32

�
; NB32 D 0; (19.34)
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where Bj;1 2 C
d;pj , j D 1; 2; 3, B32 2 C

n�d;p3 , and W 2 C
n;n, N 2 C

n�d;n�d are
as in (19.17). In the following we consider structured perturbations that do not alter
the nilpotent structure of the Kronecker form (19.17) of .E;A/, i.e., the nilpotent
matrix N and the corresponding left invariant subspace associated with eigenvalue
1 is preserved, see [8] for the case that ind.E;A/ D 1 and D D 0.

Similar to the approach in [8], we now introduce the distance to the nearest pair
with a different nilpotent structure

dn
C
.E;A;DIB;C / D inffk�k W (19.28) does not preserve the nilpotent structureg:

Under assumption (19.34), we obtain the following result, see [17] for the case of
non-delay DAEs.

Proposition 4 ([18, Proposition 4.11]) Consider Eq. (19.1) with regular .E;A/
and ind.E;A/ > 1, subject to transformed perturbations satisfying (19.34). Let
us decompose CT D �

C11 C12
�

with C11 2 C
q;r ; C12 2 C

q;n�r . Then the distance to
the nearest system with a different nilpotent structure is given by

dn
C
.E;A;DIB;C / D kC11B11k�1:

Remark 7 By their definition, the blocks B11 and C11 depend on the transformation
matrices W �1 and T , respectively. It is known that the Weierstraß-Kronecker
canonical form (19.17) is not unique. However, [37, Lemma 2.10] implies that
neither the product C11B11 nor the condition (19.34) depends on the choice of pair
.W; T /. Thus, the distance formula for dn

C
.E;A;DIB;C / obtained in Proposition 4

is indeed independent of the choice of the transformations.

We obtain an analogous formula for the complex stability radius of Eq. (19.1) with
regular higher-index pair .E;A/.

Theorem 12 ([18, Theorem 4.13]) Consider an exponentially stable equa-
tion (19.1) with regular pair .E;A/ and ind.E;A/ > 1 and assume that Eq. (19.1)
is subject to transformed perturbations satisfying (19.34). Then the stability radius
is given by the formula

rC.E;A;DIB;C / D
	

sup
ResD0

kG.s/k

�1

:

Moreover, if k�k < rC.E;A;DIB;C /, then the perturbed equation (19.28) has a
regular pair .E C B1�1C;A C B2�2C / with the same nilpotent structure in the
Kronecker canonical form and it is exponentially stable.

For an illustration of the results, see [18, Example 4.14]. Finally, we note that a
similar robust stability problem can be formulated for linear time-invariant DAEs
with multiple delays subject to multiple/affine perturbations and a formula of the
complex stability radius can be obtained analogously. However, the problem of
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extending the formula of the real stability radius from delay ODEs and nondelay
DAEs to delay DAEs is not solved yet.

19.3.4 Related and Other Results

In this part we discuss a related and some other robust stability results for DDAEs.
The first result on the stability radius for DDAEs was given in [42], where the robust
stability of a special class of problems is investigated. The so-called singularly
perturbed system (SPS) of functional differential equations (FDEs)

Px.t/ D L11xt C L12yt
" Py.t/ D L21xt C L22yt

(19.35)

is considered, where x 2 C
n1; y 2 C

n2; " > 0 is a small parameter;

Lj1xt D
lP

iD0
Aij1x.t � �i /C

0R
��l

Dj1.�/x.t C �/d�

Lj2yt D
mP
kD0

Akj 2y.t � "�k/C
0R

��m
Dj2.�/y.t C "�/d�

(19.36)

j D 1; 2; Aijk are constant matrices of appropriate dimensions,Djk.:/ are integrable
matrix-valued functions, and 0 � �0 � �1 � : : : � �p; 0 � �0 � �1 � : : : � �m.

A number of problems arising in science and engineering can be modeled by
SPS-s of differential equations with delay, e.g., see [22] and the references cited
therein. Setting " D 0, the system (19.35)–(19.36) reduced to be a DAE with
multiple and distributional delays.

In [42] the system (19.35)–(19.36) with coefficients subject to structured pertur-
bations is investigated and the complex stability radius is defined in the standard
way. For a nonzero ", one may multiply both sides of the second equation in (19.35)
by "�1 and then obtains a DODE. Then, by using a stability criterion obtained in
[14] and applying [57, Theorem 3.3], a formula of the complex stability radius is
obtained without difficulty. However, in practice, this formulation is less useful
because the appearance of small " may make the computation of the stability
radius ill-posed. Therefore, the asymptotic behavior of the complex stability radius
of (19.35)–(19.36) as " tends to zero is of interest. By using a similar approach as
those in [15, 16], the main result of [42] is that the stability radius of the singularly
perturbed system converges to the minimum of the stability radii of the reduced
DAE system and of a fast boundary-layer subsystem, which is constructed by an
appropriate time-scaling.

The stability and the robust stability of DDAEs can be investigated by the
Lyapunov-based approach as well. By this approach, sufficient stability and robust
stability criteria are usually formulated in term of linear matrix inequalities (LMIs),
which can be solved numerically by computer software. In this direction, a number
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of results have been obtained, for example, see [20, 46, 49, 61, 65] and references
therein. An advantage of the Lyapunov-Krasovskii functional method is that it can
be extended to the robust stability analysis of linear systems with time-varying
delays, see [1, 39, 52]. However, explicit formulas of the stability radii cannot be
obtained by this approach. That is why a detailed discussion of the Lyapunov-based
approach to the robust stability of DDAEs is out of the scope of this survey paper.

Stability results for linear time-varying and nonlinear DDAEs are rather limited.
Asymptotic stability of Hessenberg DDAEs with index up to 3 was investigated via
the direct linearization in [68]. In [44], Floquet theory was used to check the local
stability of periodic solutions for semi-explicit DDAEs of index at most 2. Just very
recently, a careful and complete analysis of general linear time-varying DDAEs was
presented in [26]. Based on a regularization procedure, existence and uniqueness
of solutions and other structural properties of DDAEs such as consistency of initial
functions and smoothness requirements are analyzed. Combining with the recent
spectrum-based stability results for linear time-varying DODEs [6] and for linear
time-varying DAEs [43], the theory initiated in [26] would give a promisingly
efficient approach to the stability and the robust stability of linear time-varying and
nonlinear DDAEs.

19.4 Discussion

In this paper we have surveyed recent results on the robustness of exponential
stability for linear DODEs and DDAEs. We have seen that, while for linear DODEs,
most of the robustness and distance problems are well understood, many problems
for DDAEs such as a characterization of the real stability radius for linear time-
invariant DDAEs and for positive systems as well as the robust stability of linear
time-varying DDAEs are still open. These problems are challenging and interesting
research works in the future.

Acknowledgements This work is supported by Vietnam National Foundation for Science and
Technology Development (NAFOSTED). The authors thank Daniel Kressner for his useful
comments that led to the improved presentation of the paper.
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Chapter 20
Distance Problems for Linear Dynamical
Systems

Daniel Kressner and Matthias Voigt

Abstract This chapter is concerned with distance problems for linear time-
invariant differential and differential-algebraic equations. Such problems can be
formulated as distance problems for matrices and pencils. In the first part, we discuss
characterizations of the distance of a regular matrix pencil to the set of singular
matrix pencils. The second part focuses on the distance of a stable matrix or pencil to
the set of unstable matrices or pencils. We present a survey of numerical procedures
to compute or estimate these distances by taking into account some of the historical
developments as well as the state of the art.

20.1 Introduction

Consider a linear time-invariant differential-algebraic equation (DAE)

E Px.t/ D Ax.t/C f .t/; x.0/ D x0; (20.1)

with coefficient matrices E; A 2 R
n�n, a sufficiently smooth inhomogeneity

f W Œ0;1/ ! R
n, and an initial state vector x0 2 R

n. WhenE is nonsingular, (20.1)
is turned into a system of ordinary differential equations by simply multiplying with
E�1 on both sides. The more interesting case of singular E arises, for example,
when imposing algebraic constraints on the state vector x.t/ 2 R

n. Equations of
this type play an important role in a variety of applications, including electrical
circuits [54, 55] and multi-body systems [48]. The analysis and numerical solution
of more general DAEs (which also take into account time-variant coefficients,
nonlinearities and time delays) is a central part of Volker Mehrmann’s work, as
witnessed by the monograph [43] and by the several other chapters of this book
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concerned with DAEs/descriptor systems. A recurring theme in Volker’s work is the
notion of robustness, as prominently expressed in the papers [2, 33].

This survey is concerned with distance measures that provide robust ways of
assessing properties for (20.1). Before moving on with DAEs, let us illustrate the
basic idea in the simpler setting of numerically deciding whether a given matrix
A 2 R

n�n is singular. In the presence of roundoff errors and other uncertainties, this
problem is ill-posed: Square matrices are generically nonsingular and therefore the
slightest perturbation very likely turns a possibly singular matrix into a nonsingular
matrix. It is more sensible to ask whether A is close to a singular matrix. In the
absence of additional information on the uncertainty, this naturally leads to the
problem of finding the smallest perturbation �A 2 R

n�n such that A C �A is
singular:

ı.A/ WD minfk�Ak W AC�A is singularg:

It is well known that this distance to singularity coincides with �min.A/, the
smallest singular value of A, when choosing the matrix 2-norm k � k2 or the
Frobenius norm k � kF for k�Ak. Note that �min.A/ is the reciprocal of kA�1k2,
the (relative) 2-norm condition number of matrix inversion. This witnesses a more
general relation between the condition number of a problem and its distance to ill-
posedness [16]. The quantity ı.A/ is robust in the sense that it is only mildly affected
by perturbations ofA. To see this, consider a (slight) perturbationA 7! QA that arises,
e.g., due to roundoff errors. By the triangular inequality it holds

ı.A/� �� QA� A
�� � ı

� QA� � ı.A/C �� QA �A��:
Such a robustness property holds more generally for all the distance measures
discussed here.

In this survey, we will focus on distance measures for two of the most important
properties of a DAE (20.1). The matrix pencil sE � A associated with (20.1) is
called

• regular if its characteristic polynomial s 7! det.sE � A/ is not identically zero;
• stable if all finite eigenvalues of sE�A are contained inC�, the open left complex

half-plane .

Regularity guarantees the existence of a unique (classical) solution of the DAE
for all consistent initial values [59]. On the other hand, the stability of sE � A is
equivalent to asymptotic stability of the homogeneous DAE (20.1) with f .t/ 	
0 [18].

Numerically verifying the regularity and stability of a given pencil is a challenge;
none of the straightforward approaches is guaranteed to remain robust under
uncertainties in E and A. This motivates considering the distance of a given regular
or stable pencil to the set of singular or unstable pencils, respectively. Then one
needs to devise algorithms for computing these distances or, at least, reliable and
effective bounds. As we will see below, this is by no means trivial.



20 Distance Problems for Linear Dynamical Systems 561

20.2 The Distance to Singularity of a Matrix Pencil

In this section we will discuss the distance of a given regular matrix pencil to the
nearest singular matrix pencil, that is, a matrix pencil with vanishing characteristic
polynomial. To our knowledge, such a notion of distance was first introduced
and discussed by Byers, He, and Mehrmann [15]. Letting RŒs� denote the ring of
polynomials with coefficients in R, the distance to singularity of a matrix pencil
sE � A is given by

ı.E;A/ WD min
n����E �A

���
F
W s.E C�E/� .AC�A/ 2 RŒs�n�n is singular

o
:

As explained in [15], explicit formulas for ı.E;A/ can be obtained for special cases,
for example when n � 2 or E;A are scalar multiples of each other. Such explicit
formulas are not known for the general case and, even worse, devising a numerical
method for computing ı.E;A/ or bounds thereof turned out to be an extremely
difficult problem. Since the publication of [15], almost no progress has been made
in this direction.

In view of the definition, one might attempt to check (nearby) singularity by
inspecting the magnitudes of the coefficients of det.sE � A/. This attempt is futile
for most practical applications, because the polynomial coefficients exhibit a wildly
different scaling as n increases except for very particular situations, e.g., when all
eigenvalues are (almost) on the unit circle. To obtain more meaningful measures,
one therefore needs to consider other characterizations for the singularity of a pencil.
In the following, we will discuss several such characterizations and their relation to
ı.E;A/.

20.2.1 Distance to Singularity and Structured Low-Rank
Approximation

The Kronecker structure of sE �A is intimately related to the ranks of certain block
Toeplitz matrices constructed fromE;A; see [9] for an overview. Specifically, let us
consider

Wk D Wk.E;A/ WD

2
666664

A

E A
:: :

: : :

E A

E

3
777775

2 R
.kC1/n�kn: (20.2)
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It can be shown that sE � A is a regular pencil if and only if Wk.E;A/ has full
column rank for all k D 1; : : : ; n. Setting

�k WD min
n����E �A

���
F

W rankWk.E C�E;AC�A/ < nk
o
;

it therefore holds that

ı.E;A/ D min
1�k�n �k D �n; (20.3)

where the latter equality follows from the observation that the rank deficiency ofWk

implies the rank deficiency of W` for all ` � k.
By (20.3), computing ı.E;A/ is equivalent to finding a structured perturbation

that makes Wn rank deficient. Having wider applicability in signal processing, sys-
tems and control, such structured low-rank approximation problems have attracted
quite some attention recently; see [45] for an overview.

To proceed from (20.3), one needs to replace the rank constraint by a simpler
characterization. Clearly, the matrixWk.E C�E;AC�A/ is rank deficient if and
only if there exist vectors x1; : : : ; xk 2 R

n, not all equal to zero, such that

2
666664

AC�A

E C�E AC�A
:: :

: : :

E C�E AC�A

E C�E

3
777775

0
BBBBB@

x1

x2
x3
:::

xk

1
CCCCCA

D 0: (20.4)

Hence, we obtain the outer-inner optimization problem

�k D min
x2Rkn

x 6D0

fk.x/; fk.x/D min
n����E �A

���
F
W Wk.E C�E;AC�A/xD 0

o
:

(20.5)
Its particular structure implies that (20.4) is equivalent to

�
�E �A

�
Zk D � �E A

�
Zk with Zk D

�
0 x1 x2 : : : xk�1 xk
x1 x2 x3 : : : xk 0

�
: (20.6)

This shows that the inner optimization problem in (20.5) is a standard linear least-

squares problem, admitting the explicit solution fk.x/ D
����E A

�
ZkZ

�

k

���
F
, where

Z
�

k denotes the Moore-Penrose pseudoinverse of Zk . Thus,

�k D min
x2Rkn

x 6D0

�� �E A
�
ZkZ

�

k

��
F



20 Distance Problems for Linear Dynamical Systems 563

and, consequently,

ı.E;A/ D min
1�k�n min

x2Rkn

x 6D0

�� �E A
�
ZkZ

�

k

��
F D min

x2Rn
2

x 6D0

���E A
�
ZnZ

�
n

��
F
: (20.7)

This so called variable projection least-squares problem can, in principle, be
addressed by standard nonlinear optimization methods. Such an approach bears two
major obstacles: (a) There may be many local minima. (b) The sheer number of
variables (n2 for k D n) restricts the scope of existing optimization methods to
fairly small values of n.

Although the obstacles mentioned above have not been overcome yet, significant
progress has been made in the availability of software for structured low-rank
approximation problems. Specifically, the SLRA software package [46] covers
the block Toeplitz structure of the matrix Wk and can hence be used to compute
�k. We have applied this software to all examples from [15]. For the matrix
pencil

sE � A D s

�
0 1="

0 1

�
�
�
1 1="

0 1

�

and " D 10�1, the value �2 D 0:0992607 : : : returned by SLRA approximates
the true value of ı.E;A/ up to machine precision. This nice behavior is also
observed for smaller values of " until around 10�7, below which SLRA signals an
error.

For other examples from [15], SLRA seems to deliver local minima only or
exhibits very slow convergence. For the 8�8matrix pencil arising from the model of
a two-dimensional, three-link mobile manipulator [15, Example 14], SLRA returns:

�1 �2 �3 �4 �5 �6 �7 �8
0:0113 0:0169 0:0171 0:0277 0:0293 0:0998 0:0293 0:6171

These values do not reflect the fact that the exact value of �k decreases as k
increases. This clearly indicates a need to further explore the potential of SLRA
and related software for computing ı.E;A/.

20.2.2 Distance to Singularity and Block Schur Form

For orthogonal matrices Q;Z 2 R
n�n we consider the equivalence transformation

QT.sE � A/Z D s

�
E11 E12
E21 E22

�
�
�
A11 A12
A21 A22

�
;
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where we partitioned the transformed pencil such that sE11 � A11 2 RŒs�k�1�k and
sE22 � A22 2 RŒs�n�kC1�n�k for some 1 � k � n. The perturbation s�E � �A

defined by

QT.s�E ��A/Z WD s

�
0 0

�E21 0
�

�
�
0 0

�A21 0
�

yields

QT.s.E C�E/� .AC�A//Z D s

�
E11 E12

0 E22

�
�
�
A11 A12

0 A22

�
:

Since sE11�A11 and sE22�A22 are rectangular, and thus singular, the perturbed pen-
cil s.EC�E/�.AC�A/ is singular as well. PartitioningQ D �

Qk�1 Qn�kC1
� 2

R
n�n and Z D �

Zk Zn�k
� 2 R

n�n conformally, the de-regularizing perturbation
satisfies

����E �A
���

F
D ���QT

n�kC1EZk QT
n�kC1AZk

���
F
:

Minimizing over all perturbations constructed as described above leads to the
following minimax-like characterization [15, Sec. 4.2]:

ı.E;A/ D min
1�k�n

n ���QT
n�kC1EZk QT

n�kC1AZk
���

F
W

Qn�kC1 2 R
n�n�kC1; QT

n�kC1Qn�kC1 D In�kC1; and Zk 2 R
n�k; ZT

kZk D Ik

o
:

(20.8)

Computing ı.E;A/ via this characterization amounts to solving n optimization
problems over Stiefel manifolds. Again, the possible presence of many local minima
and the O.n2/ degrees of freedom limit the usefulness of this characterization.
A related idea was considered in [62] for computing the distance to the nearest
uncontrollable system.

20.2.3 Lower and Upper Bounds for the Distance to Singularity

As discussed above, the characterizations (20.3) and (20.8) are of limited applica-
bility for computing ı.E;A/. It is therefore of interest to develop inexpensive lower
and upper bounds, partially based on these characterizations.

Lower bound from singular values ofWk . A first lower bound proposed in [15]
uses the matrix Wk defined in (20.2). Let s�E � �A be a minimum norm de-
regularizing perturbation of sE �A. ThenWk.E C�E;AC�A/ is rank-deficient
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for some k � n, and the inequalities

�min.Wk.E;A// � kWk.�E;�A/kF D
p
kı.E;A/

hold for this particular value k. Consequently,

�min.Wn.E;A//p
n

D min
1�k�n

�min.Wk.E;A//p
k

� ı.E;A/: (20.9)

To obtain a reliable lower bound, one needs to evaluate �min.Wk.E;A// for k D n,
as its value can decrease by many orders of magnitude when increasing from k to
kC1, see [15, Subsec 5.1]. However, the computation of the smallest singular value
of the .k C 1/n � kn-matrix Wk.E;A/ gets increasingly expensive as k increases.
For example, inverse iteration applied to W T

k Wk requires O.k � n3/ operations and
O.k � n2/ storage for the factorization of W T

k Wk, assuming its block tridiagonal
structure is exploited.

Lower bound from one-parameter optimization. Another lower bound [15,
Subsec 5.2] is obtained from the observation that ˛0.E C �E/ � ˇ0.A C �A/ is
singular for all scalars ˛0; ˇ0 2 C if the pencil s.E C�E/� .AC�A/ is singular.
It follows that

�min.˛0E � ˇ0A/ � k˛0�E � ˇ0�AkF �
p

j˛0j2 C jˇ0j2
����E �A

���
F
:

Defining

SF WD ˚
.˛; ˇ/ 2 F � F W j˛j2 C jˇj2 D 1

�
;

we therefore obtain

max
.˛;ˇ/2SR

�min.˛E � ˇA/ � max
.˛;ˇ/2SC

�min.˛E � ˇA/ � ı.E;A/: (20.10)

The first inequality is particularly suitable when E;A are real and amounts to
minimizing

g.t/ WD ��min.sin.t/E � cos.t/A/; t 2 Œ0; ��:

Well-known properties of singular values imply that g is piecewise smooth and
Lipschitz-continuous. An efficient algorithm tailored to such a situation is described
in [49]. The lower bounds (20.10) have been observed to be rather tight [15].

Upper bound from common null space. A simple upper bound is

derived from the following observation. If rank

�
E C�E

AC�A

�
< n or if

rank
�
E C�E AC�A

�
< n, then the pencil s.EC�E/� .AC�A/ is singular.
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Thus,

ı.E;A/ � min

�
�min

	�
E

A

�

; �min

��
E A

���
; (20.11)

which becomes an equality for n D 1 or n D 2.
Upper bound from generalized Schur form. The (real) generalized Schur

form [23, Thm. 7.7.2] states that sE�A 2 RŒs�n�n can be reduced to quasi-triangular
form by an orthogonal equivalence transformation:

QT.sE � A/Z D

2
64

sE11 �A11 : : : sE1m � A1m
: : :

:::

sEmm � Amm

3
75 : (20.12)

The diagonal blocks sEii �Aii are either 1�1 (corresponding to a real eigenvalue, an
infinite eigenvalue or a singular block) or 2� 2 (corresponding to a pair of complex
conjugate eigenvalues).

Obviously, s QE � QA WD s.E C�E/� .AC�A/ becomes singular when any of
the diagonal blocks s QEii � QAii in its generalized Schur form becomes singular. This
directly gives the upper bound

ı.E;A/ � min
1�i�m ı.Eii; Aii/ D min

1�i�mmin

�
�min

	�
Eii

Aii

�

; �min

��
Eii Aii

���
;

where we used (20.11).
Upper bound from singular values and vectors ofWk . Let us come back to the

least-squares problem (20.7), which implies

ı.E;A/ �
����E A

�
ZkZ

�

k

���
F

� ���E A
�
Zk
��

F

���Z�

k

���
F

for any 2n� .kC 1/matrix Zk of the form (20.6), defined via vectors x1; : : : ; xk 2
R
n. We make a particular choice of Zk by considering the partitioning x D�
xT
1 : : : x

T
k

�T
of a (right) singular vector x 2 R

kn belonging to �min.Wk/. The

structure of Wk implies that Wkx is the vectorization of
�
E A

�
Zk , and therefore

���E A
�
Zk
��

F
D kWkxk2 D �min.Wk/:

This gives the upper bounds

ı.E;A/ � ���E A
�
Zk
��

F

���Z�

k

���
F

� �min.Wk/=�min.Zk/;
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which are valid for every k D 1; : : : ; n. In [15], it is noted that the choice of k is
critical for this bound, since it might only be relatively tight for one k. As discussed
above, the computation of the smallest singular value and the corresponding singular
vector gets expensive, if k and/or n are not small.

In [15], further upper bounds are presented which we do not summarize here.
Moreover, several examples show that none of the bounds presented above is tight
for all examples. A computationally attractive way to determine or estimate ı.E;A/
thus remains an open problem.

The presentation above focused on real matrices with real perturbations. Up to
minor modifications, all developments directly extend to complex matrices with
complex perturbations.

20.2.4 Semi-Explicit DAEs

The consideration of general unstructured perturbations �E;�A may become
inappropriate when more information on the uncertainty in the coefficients E;A
if a DAE (20.1) is available. For example, for the special case of linear semi-explicit
DAEs, the pencil sE � A takes the form

sE �A D s

�
Ir 0

0 0

�
�
�
A11 A12
A21 A22

�
:

Since there is little reason to admit perturbations in the fixed matrix E , it makes
sense to consider the modified distance to singularity given by

ı0.E;A/ WD min fk�AkF W sE � .AC�A/ 2 CŒs�n�n is singularg : (20.13)

At least in principle, it is straightforward to incorporate such linear constraints on
the perturbation structure into the structured low-rank approximation framework of
Sect. 20.2.1. However, it turns out that more can be said about (20.13).

By [61, Lem. 2.2.26], the matrix pencil sE�A is regular if and only if the .n�r/�
.n � r/ rational matrix G.s/ WD A21.sIr � A11/

�1A12 C A22 has full normal rank.
Trivially, sIr � A11 has full normal rank for all A11 2 R

r�r and, consequently, a
de-regularizing perturbation is characterized by one of the properties

rank

�
A12 C�A12
A22 C�A22

�
< n � r or rank

�
A21 C�A21 A22 C�A22

�
< n � r:

In other words we obtain

ı0.E;A/ D min

�
�min

	�
A12

A22

�

; �min

��
A21 A22

���
:
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This improves a result from [15], where such a statement has been shown only for
the case that r D 1 or r D n � 1.

20.2.5 Low-Rank Perturbations

A rather different way of imposing structure is to constrain the perturbations to be of
low rank. This leads to the concept of rank-.�E; �A/ distance to singularity proposed
in [47]:

ı�E;�A.E;A/ WD min
˚ ����E �A

���
F

W �E; �A 2 C
n�n;

rank�E � �E; rank�A � �A; s.E C�E/� .AC�A/ is singular
�
:

Here, �E; �A are supposed to be (much) smaller than n and we consider the complex
case because it is the more natural setting for the developments below.

Low-rank perturbations naturally arise in situations when only a few entries of
E and A are subject to uncertainties. Another motivation to consider ı�E;�A.E;A/
arises from the suspicion that the low dimensionality of the manifold of rank-
constrained matrices could help reduce the cost of nonlinear optimization methods
for computing this distance.

Following [47], we now focus on ı0;1.E;A/, that is, E is not perturbed at all and
A is subject to rank-1 perturbations:

sE � �
AC �uvH

�
(20.14)

with u; v 2 C
n n f0g and a nonzero scalar � 2 C determining the perturbation

level. It is assumed that sE �A itself is not singular, and therefore�.E;A/, the set
of (finite) eigenvalues of sE � A, does not coincide with C. We define the rational
functionQ W C n�.E;A/ ! C by

Q.s/ WD vHR.s/u; R.s/ D .sE �A/�1:

Because of

det
�
sE �A � �uvH

� D �
1 � �Q.s/� det

�
sE � A

� D �
�
��1 �Q.s/� det

�
sE �A�;

a scalar s 2 Cn�.E;A/ is an eigenvalue of (20.14) if and only if ��1 D Q.s/. Thus,
the perturbed pencil (20.14) becomes singular if and only if ��1 �Q.s/ vanishes on
C n�.E;A/. Since Q.s/ is a meromorphic function on C with at most n poles, the
latter condition is equivalent to

��1 D Q.s0/; 0 D @j

@sj
Q.s/

ˇ̌̌
ˇ
sDs0

; j D 1; 2; : : : ; n; (20.15)
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for an arbitrary fixed s0 2 C n�.E;A/. Note that @j

@sj
Q.s/ D vHCj .s/u with

Cj .s/ WD R.s/.ER.s//j :

The smallest � for which (20.15) holds gives the distance to singularity for fixed
choices of u; v. Optimizing with respect to these vectors finally yields

ı0;1.E;A/ D min
nˇ̌
vHR.s0/u

ˇ̌�1 W u; v 2 C
n; kuk2 D kvk2 D 1;

vHCj .s0/u D 0; j D 1; : : : ; n
o

(20.16)

for arbitrary fixed s0 2 Cn�.E;A/; see also [47, Thm. 7]. The constraints in (20.16)
can be expressed as

0 D tr
�
vHCj .s0/u

� D tr
�
uvHCj .s0/

� D ˝
Cj .s0/; vuH

˛
:

In other words, the matrix vuH is orthogonal to all matrices Cj .s0/ with respect to
the matrix inner product h�; �i. Equivalently, it holds that

vuH 2 D WD .span fC1.s0/; : : : ; Cn.s0/g/? � C
n�n:

It turns out that the space D does not depend on the particular choice of s0.
Summarizing these developments, we arrive at

ı0;1.E;A/ D min
n
jtr.GR.s0//j�1 W GH 2 D ; rankG D 1; kGkF D 1

o
I

(20.17)
see [47, Thm. 13] for more details.

A difficulty in the nonconvex optimization problem (20.17) is that the two
constraints GH 2 D and rankG � 1 need to be satisfied simultaneously. On the
other hand, each of the two constraints individually constitutes a matrix manifold
for which an orthogonal projection can be easily computed. This suggests the use of
an alternating projection method on manifolds [44]. Starting from G0 D R.s0/ (or
another suitable choice), the method proposed in [47] constructs the iteration

G2kC1 WD �
˘DG

H
2k

�H
; G2kC2 WD �.G2kC1/; k D 0; 1; : : : ; (20.18)

where˘D is the orthogonal projection on the linear space D and� is the orthogonal
projection on the manifold of matrices having rank at most 1 (which is simply
a rank-1 truncation). It is shown in [47, Prop. 38] that if the sequence (20.18)
converges to a matrix G ¤ 0 then G has rank one and the pencil sE ��
AC tr.GR.s0//�1G

�
is singular. General results on alternating projection methods

can be applied to study the local convergence behavior of (20.18).
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The paper [47] also extensively covers the distance to singularity of a Hermitian
matrix pencil under Hermitian rank-1 perturbations.

20.3 The Distance to Instability

In this section we turn to the problem of computing the distance to instability,
sometimes also referred to as the stability radius, and closely related problems.

20.3.1 The Distance to Instability and Hamiltonian Matrices

The problem of computing the distance to instability in its simplest form is
formulated for an ODE system

Px.t/ D Ax.t/ (20.19)

with A 2 R
n�n. The distance to instability is the smallest norm of a perturbation

� such that at least one eigenvalue of AC� does not have negative real part. If A
itself is not stable, this distance is clearly 0. Assuming that A is stable, this distance
satisfies

r
k�k
F
.A/ W D min

n
k�k W �.AC�/\ CC ¤ ; for� 2 F

n�n
o

D min fk�k W �.AC�/\ iR ¤ ; for� 2 F
n�ng :

The appropriate choice of the field F 2 fR; Cg for the entries of � depends on
the application. As pointed out in [58, Chapter 50], one should work with complex
perturbations, even for a real matrix A, when attempting to draw conclusions about
the transient behavior of (20.19). On the other hand, if one is interested in stability
robust to uncertainties in the entries of a real matrix A then clearly F D R is the
preferred choice. Since R � C it holds that

r
k�k
C
.A/ � r

k�k
R
.A/:

The norm for measuring the perturbations in the definition of rk�k
F
.A/ is usually cho-

sen as k�k D k�k2 or k�k D k�kF. The choice between these two norms has, at most, a
limited impact on the distance to instability. As we will see below, there are always
minimal perturbations that have rank 1 (for F D C) or rank 2 (for F D R). Thus,

r
k�k2
C
.A/ D r

k�kF
C

.A/; r
k�k2
R
.A/ � r

k�kF
R

.A/ � p
2 r

k�k2
R
.A/:

In the following, we will therefore simply write rC.A/.
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The papers [35, 60] were among the first to consider the distance to instability
and established

rC.A/ D min
!2R �min.i!In � A/: (20.20)

This result is constructive and gives rise to a minimal perturbation of rank 1, which
is obtained from the singular vectors belonging to �min.i!In � A/ for the optimal
value of !. The characterization (20.20) is intimately related to the eigenvalues of
the Hamiltonian matrix

H .˛/ WD
�
A �˛In
˛In �AT

�
2 R

2n�2n: (20.21)

In [14, 34], it is shown that ˛ � rC.A/ if and only if H.˛/ has at least one purely
imaginary eigenvalue. Based on this result, Byers [14] proposed a bisection method
that adapts the value of ˛ by checking whether any of the eigenvalues of H .˛/

are purely imaginary. This algorithm converges globally and is robust to roundoff
error, provided that a structure-preserving algorithm for the Hamiltonian matrix
H .˛/ is used. As summarized in the Chap. 1 by Bunse-Gerstner and Faßbender,
the development of such algorithms is another central theme of Volker Mehrmann’s
work. We also refer to [4] for an overview and [1, 3] for the corresponding software.

20.3.2 The H1 Norm and Even Matrix Pencils

The results discussed in Sect. 20.3.1 have been extended into several different
directions. One particularly important extension is concerned with the computation
of the H1 norm for linear time-invariant control systems of the form

E Px.t/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/C Du.t/;
(20.22)

where sE � A 2 RŒs�n�n is assumed to be regular, B 2 R
n�m, and C 2 R

p�n.
Moreover, u W Œ0;1/ ! R

m is an input control signal and y W Œ0;1/ ! R
p is a

measured output signal.
The transfer function of (20.22) is given by G.s/ D C.sE � A/�1B C D and

maps inputs to outputs in the frequency domain. We assume that G.s/ is analytic
and bounded in C

C, for which a sufficient condition is that �.E;A/ � C
� and all
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infinite eigenvalues are geometrically simple. For such transfer functions, the H1
norm is defined as

kGkH1

WD sup
s2CC

�max.G.s// D sup
!2R

�max.G.i!//; (20.23)

where �max denotes the largest singular value of a matrix.
Comparing (20.23) with (20.20), we obtain kGkH1

D 1=rC.A/ for the special
case that E D B D C D In and D D 0. To relate to the practically more relevant
case of general B; C , we have to extend the notion of distance to instability and
consider the structured complex stability radius [36, 37] given by

rC.A;B; C / W D min
n
k�k2 W �.ACB�C/ \ CC ¤ ; for � 2 C

m�po
(20.24)

D min fk�k2 W �.AC B�C/ \ iR ¤ ; for � 2 C
m�pg :

This generalization accounts for perturbations of the system that have a feedback
structure (that is, y.t/ D �u.t/) and thus assesses the robustness of stability with
respect to external disturbances.

Provided that A is stable, it holds [36] that

kGkH1

D
(
1=rC.A;B; C / if G.s/ 6	 0;

1 if G.s/ 	 0;
(20.25)

with G.s/ D C.sIn � A/�1B . In other words, a small H1 norm corresponds to a
large robustness of stability of the system. The definition of the structured complex
stability radius has been further generalized to cover D ¤ 0 [38, Sec. 5.2] or
E ¤ In [8, 17, 18]. However, in both cases the definition and interpretation of
the structured complex stability radius becomes more cumbersome. ForD ¤ 0, the
radius does not depend on the perturbations in an affine but in a linear fractional
way. The case E ¤ In requires to carefully treat infinite eigenvalues and to account
for perturbations that make the pencil sE �A singular.

The most reliable methods for computing the H1 norm are based on the follow-
ing extension of the connection between rC.A/ and the Hamiltonian matrix (20.21)
discussed above; see [10–12] for E D In and [5] for general E . Provided that
˛ > inf!2R �max.G.i!//, the inequality kGkH1

� ˛ holds if and only if the even
matrix pencil

sE � A .˛/ WD

2
664

0 �sET � AT �C T 0

sE �A 0 0 �B
�C 0 ˛Ip �D
0 �BT �DT ˛Im

3
775 2 RŒs�2nCmCp�2nCmCp

(20.26)
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has purely imaginary eigenvalues. Such pencils are closely related to skew-Hamilto-
nian/Hamiltonian pencils, for which structure-preserving algorithms are discussed
in the Chap. 1; see [6, 7] for recently released software. By additionally exploiting
eigenvalue and, optionally, eigenvector information, methods based on (20.26) can
be implemented such that they converge globally quadratically or even faster [22].

The structured real stability radius rk�k2
R
.A;B; C / with respect to the matrix

2-norm is defined as in (20.24), but with the perturbation restricted to stay real:
� 2 R

m�p. It turns out that the computation of rk�k2
R
.A;B; C / is more difficult

compared to rC.A;B; C /. Provided that G.s/ D C.sIn � A/�1B is analytic and
bounded in C

C, the celebrated expression

r
k�k2
R
.A;B; C / D

 
sup
!2R

inf
�2.0;1� �2

 "
Re.G.i!// �� Im.G.i!//
1
�

Im.G.i!// Re.G.i!//

#!!�1

(20.27)

holds [53], where �2 denotes the second largest singular value of a matrix. Again,
this characterization is constructive in the sense that a minimal rank-2 perturbation
can be constructed from singular vectors. The inner optimization problem in (20.27)
is unimodal [53], implying that every local minimum is a global minimum and
thus allowing for reliable and efficient numerical optimization. For the outer
optimization problem, a numerical method similar to the stability radius and H1
norm computation is devised in [56].

The definition and computation of robust stability measures for linear delay
DAEs is surveyed in the Chap. 19 by Linh and Thuan.

20.3.3 The Distance to Instability and Pseudospectra

The approaches discussed above have been designed for relatively small problems
and it is by no means clear that they can be well adapted to large-scale problems.
This is mainly because of the lack of an efficient large-scale algorithm for deciding
whether a Hamiltonian matrix or an even matrix pencil has purely imaginary
eigenvalues; see [41] for a more detailed discussion.

Recent work by Guglielmi and Overton [31] has initiated the development of
novel algorithms that are based on pseudospectra and appear to be more suitable for
large-scale problems. Moreover, as we will see in Sect. 20.3.6 below, the framework
offers much more flexibility for incorporating structure.

Given a matrix A 2 R
n�n and " > 0, we consider the "-pseudospectrum

�F;k�k
" .A/ WD f� 2 C W � 2 �.AC�/ for some � 2 F

n�n; k�k < "g



574 D. Kressner and M. Voigt

0 1 2 3

−3

−2

−1

0

1

2

3

−7

−6

−5

−4

−3

−2

−1

Fig. 20.1 Contour lines of the pseudospectrum �
C;k�k2
" .A/ for the so called Grcar matrix and

" D 10�1, 10�2; : : : ; 10�7. Black crosses denote eigenvalues and the black vertical line denotes
the pseudospectral abscissa for " D 10�4

for F 2 fR; Cg and a matrix norm k�k (usually k�k D k�k2 or k�k D k�kF). The
pseudospectrum grows as " increases; see Fig. 20.1 for an illustration.

Basic idea. By definition, the distance to instability for a stable matrix is the
smallest value of " for which the "-pseudospectrum touches the imaginary axis. In
terms of the "-pseudospectral abscissa

˛F;k�k."; A/ WD sup
˚

Re.�/ W � 2 �F;k�k
" .A/

�
;

this means that " D r
k�k
F
.A/ satisfies

˛F;k�k."; A/ D 0: (20.28)

Hence, once we have an efficient method for evaluating the quantity ˛F;k�k."; A/,
root finding algorithms can be used to determine rk�k

F
.A/.

Computation of the "-pseudospectral abscissa. In a large-scale setting, one
benefits from the fact that every element of�F;k�k

" .A/ can be realized by a low-rank
perturbation. In particular, for complex pseudospectra we have

�C

" .A/ W D �C;k�k2
" .A/ D �C;k�kF

" .A/

D f� 2 C W � 2 �.AC�/ for some � 2 C
n�n; rank� D 1; k�k < "g I

see [58] for this and many other properties of pseudospectra. The procedure
proposed in [31] attempts to construct a sequence of perturbation matrices �k WD
"ukvH

k with kukk2 D kvkk2 D 1 for k D 1; 2; : : :, such that one of the
eigenvalues of A C �k converges to the rightmost point of the "-pseudospectrum.
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The following standard eigenvalue perturbation result is instrumental in determining
these perturbations.

Lemma 1 ([57]) Let M0; M1 2 R
n�n, t 2 R, and consider the matrix family

M.t/ D M0 C tM1. Let �.t/ be an eigenvalue of M.t/ converging to a simple
eigenvalue �0 ofM0 with corresponding right and left eigenvectors x0; y0 2 C

n for
t ! 0. Then yH

0 x0 ¤ 0 and �.t/ is analytic near t D 0 with

d�.t/

dt

ˇ̌
ˇ̌
tD0

D yH
0 M1x0

yH
0 x0

:

For the initial perturbation �1 D "u1vH
1 one computes the rightmost eigenvalue

�0 of A (assuming that it is simple) with corresponding right and left eigenvectors
x0; y0 2 C

n. The eigenvectors are normalized such that yH
0 x0 > 0, a property that is

called RP-compatibility in [31]. Then for A1.t/ WD AC t "u1vH
1 with an eigenvalue

�1.t/ converging to �0 for t ! 0 we obtain

Re

	
d�1.t/

dt

ˇ̌
ˇ̌
tD0



D "

Re
�
yH
0 u1vH

1 x0
�

yH
0 x0

� "
ky0k2 kx0k2
yH
0 x0

: (20.29)

Equality in (20.29) holds for u1 D y0= ky0k2 and v1 D x0= kx0k2, i.e., this
choice yields the maximal local growth of the real part of �0. For all subsequent
perturbations, consider the matrix family

Ak.t/ WD AC "uk�1vH
k�1 C t "

�
ukv

H
k � uk�1vH

k�1
�
; k D 2; 3; : : : ;

which constitutes rank-1 perturbations of norm " for t D 0 and t D 1. Assume
that Ak.t/ has an eigenvalue �k.t/ converging to a (simple) rightmost eigenvalue
�k�1 of A C �k�1 D A C "uk�1vH

k�1 for t ! 0. Moreover, let xk�1; yk�1 2 C
n

with yH
k�1xk�1 > 0 be the corresponding right and left eigenvectors. Analogously

to (20.29) we obtain

Re

	
d�k.t/

dt

ˇ̌
ˇ̌
tD0



D "

Re
�
yH
k�1

�
ukvH

k � uk�1vH
k�1
�
xk�1

�
yH
k�1xk�1

� "
kyk�1k2 kxk�1k2 � Re

�
yH
k�1uk�1vH

k�1xk�1
�

yH
k�1xk�1

: (20.30)

Again, equality in (20.30) is achieved for the choice uk D yk�1= kyk�1k2 and
vk D xk�1= kxk�1k2. As a consequence, the whole process of computing the
pseudospectral abscissa consists of computing the rightmost eigenvalue of a matrix
with corresponding right and left eigenvectors, constructing an optimal rank-1
perturbation by using these eigenvectors and repeating this procedure for the
perturbed matrix until convergence. In [31] is shown that this procedure is a fixed
point iteration converging to a locally rightmost point of the "-pseudospectrum
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(under a weak regularity assumption). A major weakness is that we cannot ensure to
find a globally rightmost point and thus, at least in principle, only find a lower bound
for the "-pseudospectral abscissa. However, numerical examples reported in [31]
indicate that this bound often attains the exact value.

Connection to low-rank dynamics. The above procedure is an iterative scheme
on the manifold of rank-1 perturbations having norm ". This naturally leads to the
question whether there exists a continuous path of such matrices converging to the
desired optimal perturbation. Indeed, this question has a positive answer [27, 28].
Consider the differential equations

Pu.t/ D i

2
Im
�
u.t/Hx.t/y.t/Hv.t/

�C �
In � u.t/u.t/H

�
x.t/y.t/Hv.t/;

Pv.t/ D i

2
Im
�
v.t/Hx.t/y.t/Hu.t/

�C �
In � v.t/v.t/H

�
x.t/y.t/Hu.t/;

(20.31)

where x.t/ and y.t/ are the right and left eigenvectors of unit norm with
y.t/Hx.t/ > 0 corresponding to the rightmost eigenvalue �.t/ of the matrix
A C �.t/ WD A C "u.t/v.t/H. It has been shown in [27] that if �.t/ is simple
and smooth, it will tend to a locally rightmost point of the "-pseudospectrum for
t ! 1. In fact, the iteration discussed above corresponds to the explicit Euler
method applied to (20.31). Of course, other, potentially faster and adaptive methods
can be used to discretize (20.31), a major advantage of the continuous formulation
apart from its elegance.

Computation of the distance to instability. Now that we know how to
efficiently determine ˛C."; A/ for a fixed value of ", we apply a root-finding
algorithm to the nonlinear equation (20.28) in ", in order to determine "� D rC.A/.
In practice, Newton and Newton-bisection schemes turned out to be effective for this
purpose [8, 24]. Let �."/ be the rightmost point of �C

" .A/ with the corresponding
optimal perturbation matrix �."/ WD "u."/v."/H. Furthermore, let x."/ and y."/
be the corresponding right and left eigenvectors of A C �."/ with kx."/k2 D
kx."/k2 D 1 and y."/Hx."/ > 0. Suppose that the rightmost point of �C

O" .A/ is
unique for a given O". Then �.�/ is continuously differentiable at O" and

d�."/

d"

ˇ̌
ˇ̌
"DO"

D 1

y.O"/Hx.O"/ :

We thus have the ingredients for a Newton method to determine the root "�
of (20.28):

"kC1 D "k � y."k/
Hx."k/˛

C."k; A/:

Acceleration. The iterative procedures discussed above for computing ˛C."; A/
and rC.A/ can be accelerated. In [42], subspace acceleration techniques for both
quantities were proposed for which, under certain mild conditions, locally super-
linear convergence was proven. In practice, these subspace methods exhibit a quite
robust convergence behavior, their local convergence is observed to be even locally
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quadratic, and they can be much faster than the methods from [24, 31]. However,
it is currently not clear how these methods can be extended to the more general
situations discussed below. The vector extrapolation techniques from [51, 52], which
sometimes achieve similar speedups, do not have this drawback.

Real pseudospectra. One of the beauties of the presented framework is that
it seamlessly extends to real pseudospectra. In the real case, the corresponding
perturbations have rank 2 and, consequently, the dynamical system (20.31) needs
to be replaced by appropriate rank-2 dynamics. Such dynamics have been proposed
and analyzed in [29], both for the matrix 2-norm and the Frobenius norm, yielding
efficient algorithms for ˛R;k�k2 ."; A/ and ˛R;k�kF."; A/. These results are used in [30]
to design Newton-type algorithms for the computation of rk�k2

R
.A/ and rk�kF

R
.A/.

20.3.4 The H1 Norm and Spectral Value Sets

The basic ideas from Sect. 20.3.3 can be generalized in a direct manner to structured
complex stability radii rC.A;B; C / with B 2 R

n�m and C 2 R
p�n. Instead of

�C
" .A/, one has to consider structured complex pseudospectra of the form

�C

" .A;B; C / D f� 2 C W � 2 �.AC B�C/ for some � 2 C
m�p; k�k < "g :

By (20.25), this yields an approach for computing the H1 norm of a transfer
function G.s/ D C.sIn � A/�1B with a possibly large n. However, in order to
extend this to transfer functions G.s/ D C.sIn � A/�1B CD with nonzeroD one
has to consider much more complicated pseudospectral structures (called spectral
value sets in [38]), given by

�C

" .A;B; C;D/ D ˚
� 2 C W � 2 � �AC B�.Ip �D�/�1C �

for some � 2 C
m�p; k�k < "� :

As shown in [24], such spectral value sets can again be realized by rank-1
perturbations, allowing for an extension of the algorithms discussed above. A
further extension has been made in [8] for transfer functions of the form G.s/ D
C.sE�A/�1BCD. There, an embedding of the original control system into system
of larger dimension is used to eliminate D which drastically simplifies the analysis
of the algorithm. However, one has to consider structured pseudospectra of a matrix
pencil instead of a matrix. Special care must be taken of possible perturbations of
the infinite eigenvalues or perturbations that make the pencil singular. In [8] further
improvements have been made with regard to the choice of the eigenvalues to follow
during the computation of the pseudospectral abscissa. In particular, it is important
to not only consider the location of the eigenvalues but also their sensitivity with
respect to the perturbation structure. This is related to the concepts of controllability
and observability of the underlying control system (20.22).
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20.3.5 The Implicit Determinant Method

Another class of algorithms goes back to Freitag and Spence [19]. For the
determination of the complex stability radius rC.A/ of a stable matrixA 2 R

n�n this
approach again makes use of a spectral characterization involving the Hamiltonian
matrix H .˛/ defined in (20.21), however in a completely different way. Denote by
˛� the smallest value of ˛ such that H .˛/ has a purely imaginary eigenvalue i!�,
that is,

.H .˛�/ � i!�I2n/ x� D 0

for some eigenvector x� 2 C
2n. This value of ˛� coincides with rC.A/ and !� is an

optimal frequency according to (20.20). Due to the spectral symmetry of H .˛�/,
the eigenvalue i!� generically forms a Jordan block of dimension two, which will
be assumed throughout this section.

Motivated by related methods for determining bifurcation points in parameter-
dependent nonlinear systems, the basic idea of [19] consists of setting up a
(well-conditioned) system of two nonlinear equations for which .!�; ˛�/ is a regular
solution. For this purpose, a normalization vector c 2 C

2n is chosen such that
cHx� ¤ 0. Then the genericity assumption implies that the bordered matrix

M .!; ˛/ WD
�
H .˛/ � i!I2n J c

cH 0

�
with J D

�
0 In

�In 0
�

is nonsingular at .!�; ˛�/ and hence it is also nonsingular for all pairs .!; ˛/ in a
neighborhood of .!�; ˛�/. Thus, for all such pairs the linear system of equations

�
H .˛/ � i!I2n J c

cH 0

�	
x.!; ˛/

f .!; ˛/



D
	
0

1



(20.32)

has a unique solution. By Cramer’s rule it holds

f .!; ˛/ D det.H .˛/ � i!I2n/

det.M .!; ˛//
:

In particular, f .!; ˛/ D 0 is equivalent to det.H .˛/ � i!I2n/ D 0. From
the algebraic properties of the eigenvalue i!� it follows [19, Lem. 4(a)] that
@f .!�; ˛�/=@! D 0. In summary, .!�; ˛�/ is a solution of the nonlinear system

0 D g.!; ˛/ WD
	

f .!; ˛/

@f .!; ˛/=@!



: (20.33)

Moreover, it can be shown [19] that this solution is regular. Hence, Newton’s method
applied to 0 D g.!; ˛/ converges locally quadratically to .!�; ˛�/.
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To implement Newton’s method, we need to evaluate g.!; ˛/ and its Jacobian,
which amounts to evaluating first- and second-order derivatives of f .!; ˛/. By
differentiating the relation (20.32), it turns out that all these derivatives can be
computed by solving four linear systems with M .!; ˛/. Having these derivatives
computed at the kth iterate .!k; ˛k/, the next iterate of Newton’s method is
determined by first solving the 2 � 2 linear system

�
@f .!k; ˛k/=@! @f .!k; ˛k/=@˛

@2f .!k; ˛k/=@!
2 @2f .!k; ˛k/=@!@˛

�	
�!k
�˛k



D �g.!k; ˛k/;

and subsequently setting

	
!kC1
˛kC1



WD
	
!k
˛k



C
	
�!k
�˛k



:

Numerical examples in [19] show the effectivity of this method. Since only a few
linear systems have to be solved, it also has potential for large-scale systems.
Similarly as for the pseudospectral approach, the method is only guaranteed to
converge locally and it may converge to a solution of (20.33) that is different from
.!�; ˛�/. However, the situation is less bleak in practice; numerical results reveal
that the method often converges to the correct solution for the initial values proposed
in [19]. As discussed in [32], there is always the possibility to check whetherH .˛�/
has purely imaginary eigenvalues, but this global optimality certificate may become
too expensive for large-scale systems.

As discussed in [21], the described algorithm can be extended in a rather
straightforward manner to H1 norm computations, even for the general case of
descriptor systems. For this purpose, one only needs to replace the .1; 1/-block in
M .!; ˛/ by a Hamiltonian matrix QA .˛/ � i! QE that can be derived from the even
pencil sE � A .˛/ in (20.26); see also [61].

The extension to the real 2-norm stability radius proposed in [20] is more
involved. As a basis, the 4 � 4 Hamiltonian matrix constructed in [56] instead of
the 2n � 2n Hamiltonian matrix H .˛/ needs to be used. Moreover, the bordered
matrix M .!; ˛/ is needs to be replaced by a matrix in three variables M .!; ˛; �/

due to the fact that one has to optimize in (20.27) over two parameters ! and �
instead of ! only.

20.3.6 Structured Distances and Variations

In this section, we briefly discuss existing work on structured distances to instability
for structures beyond the real perturbations and fractional perturbations (related
to linear control systems) considered above. Dealing with such structures is by
no means simple, even the (usually simpler) problem of the structured distance
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to singularity, also called structured singular value, often poses great difficulties;
see [40] for summary. A notable exception are complex Hamiltonian perturbations,
for which an expression based on a unimodal optimization problem, not unlike the
one in (20.27), can be derived [39]. This is discussed in more detail in the Chap. 8
by Bora and Karow, which also covers Volker’s work on Hamiltonian perturbations.

The lack of simple characterizations for structured singular values complicates
the development of efficient algorithms that guarantee global optimality, like Byers’
bisection method, for structured distances to instability. In contrast, it is fairly
straightforward to incorporate structure in the pseudospectra-based algorithms from
Sect. 20.3.3. This is because finding a structured perturbation that is optimal in first
order is a much simpler than finding a globally optimal perturbation. Considering
Lemma 1, the former problem amounts to determining a structured perturbation
� with k�k � " such that the real part of yH

0 M1x0 becomes maximal. For the
Frobenius norm, this optimization problem has an explicit solution in terms of the
orthogonal projection of x0yH

0 onto the set of structured matrices, which becomes
particularly simple in the usual situation when this set is a subspace or a manifold.
To be able to address large-scale problems, one needs to restrict the obtained
iteration to low-rank matrices, that is, one needs to develop a structured extension
of the dynamical system (20.19). This part is significantly more challenging and
has been addressed for (complex and real) Hamiltonian matrices [25], Toeplitz
matrices [13], and symplectic matrices [26] so far.

Apart from structure preservation, the flexibility of pseudospectra-based algo-
rithms is also also witnessed by several recent extensions, for example, to nonlinear
eigenvalue problems [50] and to the regularization of solvent equations discussed in
the Chap. 3 by Lin and Schröder.

20.4 Summary and Conclusions

Distance measures are not only useful for quantifying the impact of uncertainty on
properties of dynamical systems, they also lead to mathematically very interesting
and challenging problems. They touch upon a diversity of current topics, including
structured low-rank approximation, eigenvalue optimization, and low-rank dynam-
ics. Despite the fact that distance measures are a classical topic in numerical linear
algebra and control, significant progress has been made in incorporating structure
and dealing with large-scale problems for robust stability calculations. On other
topics, less progress has been made; in particular, the reliable estimation of the
distance to the nearest singular matrix pencil remains a widely open problem.
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Chapter 21
Discrete Input/Output Maps and their Relation
to Proper Orthogonal Decomposition

Manuel Baumann, Jan Heiland, and Michael Schmidt

Abstract Current control design techniques require system models of moderate
size to be applicable. The generation of such models is challenging for complex
systems which are typically described by partial differential equations (PDEs),
and model-order reduction or low-order-modeling techniques have been developed
for this purpose. Many of them heavily rely on the state space models and their
discretizations. However, in control applications, a sufficient accuracy of the models
with respect to their input/output (I/O) behavior is typically more relevant than the
accurate representation of the system states. Therefore, a discretization framework
has been developed and is discussed here, which heavily focuses on the I/O map of
the original PDE system and its direct discretization in the form of an I/O matrix and
with error bounds measuring the relevant I/O error. We also discuss an SVD-based
dimension reduction for the matrix representation of an I/O map and how it can be
interpreted in terms of the Proper Orthogonal Decomposition (POD) method which
gives rise to a more general POD approach in time capturing. We present numerical
examples for both, reduced I/O map s and generalized POD.

21.1 Introduction

To come up with a real-time controller for a system of partial differential equations,
the synthesis of a surrogate model of moderate size that still inherits the important
system dynamics is a necessary step.
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Fig. 21.1 Scheme of the classical model reduction approach and the direct discretization of the
I/O map

A classical approach to obtain such surrogate models is to start with a finite but
very high-dimensional state space model stemming from a spatial discretization of
the system’s original PDE state space model. In a next step, this model is reduced
by so-called model-order reduction techniques (e.g. moment matching, balanced
truncation) to a state space model of moderate size, for which current control design
methods become feasible [2, 5, 15]. Often, a linearization step has to be carried out
at some stage in addition. Another approach is low-order modeling POD, where
the original state space model is analyzed to identify few and particularly relevant
state space trajectories and which allows an approximate description of the state
trajectory of the full system as a linear combination of the few ones [6, 14, 19, 20].

The classical methods mentioned above have in common that they heavily rely
and focus on a state space representation. However, for control applications, only the
I/O behavior of the system is of interest. Furthermore, state space representations of
control systems can have simple I/O behaviors. Control engineers frequently use this
insight when using black-box models from system identification methods applied to
measured input/output sequences.

The high relevance of the I/O behavior has motivated the development of an
alternative approach to generate surrogate models for control applications based on a
direct discretization of the I/O behavior of the original infinite-dimensional system.
A theoretical framework for the discretization of I/O map s of many important
classes of linear infinite-dimensional systems has been established over the last
years. Nonlinear systems can be treated in many cases after a linearization step [22,
Ch. 3]. The result is an approximate representation of the I/O behavior via a matrix,
and the approximation error is always considered with respect to the introduced
error in the I/O behavior, cf. Fig. 21.1.

Our article is organized as follows: In Sect. 21.2, we will recall the essentials of
the theoretical framework for the direct discretization of I/O map s established in
[22] including error estimates. In Sect. 21.3, we will discuss the interesting feature
of performing a special form of singular value decompositions on the I/O matrix
representation, allowing to further reduce the size of the representation, but also
to identify relevant locations for actuators and sensors. We will show that the
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well-known POD method can be interpreted as a special case of the direct I/O
map discretization and a subsequent reduction. This observation gives rise to a
generalized POD approach by extending the time discretization from snapshots to
a wider class of time discretizations. Finally, in Sect. 21.4, we present numerical
examples of applications of the direct discretization method, its application in
optimal control, and of the generalized POD approach.

21.2 Direct Discretizations of I/O Maps

21.2.1 I/O Maps of Linear Systems

We follow [22] in style and notation and consider linear time-invariant (LTI) systems
of first order:

@t z.t/ D Az.t/C Bu.t/; t 2 .0; T �; (21.1a)

z.0/ D z0 2 D.A/ � Z; (21.1b)

y.t/ D C z.t/; t 2 Œ0; T �: (21.1c)

Here, for time t 2 Œ0; T �, the state z.t/ takes values in a Hilbert spaceZ. We assume
that A is a densely defined unbounded operator AWZ � D.A/ ! Z generating a
C0-semigroup .S.t//t�0 on Z.

For Hilbert spaces U and Y , we assume the controls to be functions u 2 U WD
L2
�
0; T IU � and the observations y 2 Y � L2

�
0; T IY �.

If BWU ! Z and C WZ ! Y are bounded, then a bounded linear I/O map G 2
L .U ;Y/ can be associated with (21.1) by applying C to the unique mild solution
defined as

z.t/ D S.t/z0 C
Z t

0

S.t � s/Bu.s/ ds; t 2 Œ0; T �;

see, e.g., [21, Ch. 4].
For later reference, we note that we can represent G as a convolution with a

kernel functionK 2 L2.�T; T IL .U; Y // via

.Gu/.t/ D
Z T

0

K.t � s/u.s/ ds; t 2 Œ0; T �; (21.2)

with

K.t/ D
(

CS.t/B; t � 0

0; t < 0
:
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This framework is suited for various differential equations (21.1), for instance
heat equations, wave equations, transport equations, as well as linearizations of
Navier-Stokes equations, cf. [22].

21.2.2 Discretization of I/O Maps in Two Steps

For the discretization of the I/O map

GWU ! Y; u 7! y;

of the abstract system (21.1), we consider two steps:

1. Approximation of signals. For finite-dimensional subspaces NU � U and NY �
Y with orthogonal bases fu1; : : : ; u Npg � NU and fy1; : : : ; y Nqg � NY and
corresponding orthogonal projectionsP NU and P NY , we find that the approximation

GS D P NYGP NU

is a finite-dimensional linear map which can be expressed as a matrix G 2 R
Nq� Np

with elements Gij D .yi ;Guj /Y :
2. Approximation of system dynamics. The components Gij D .yi ;Guj /Y can

be obtained by computing the response of the model successively for inputs
u1; : : : ; u Np and by testing it against all y1; : : : ; y Nq . For time-invariant state space
systems and for bases with a space-time-like tensor structure

u.j;l/.t/ D �j .t/�l ; y.i;k/.t/ D  i.t/�k;

this task reduces to determining the observations .�k; C zl .t//Y from the states
zl .t/ D S.t/B�l , where �l , l D 1; : : : ; p and �k , k D 1; � � � ; q form bases
of finite-dimensional subspaces of U and Y , where �j , j D 1; � � � ; r and  i ,
i D 1; � � � ; s are bases of the time dimensions, and where S.t/ is the system’s
evolution semigroup.

Because the system’s response is typically evaluated numerically, one has to con-
sider an approximation GDS of GS . The resulting total error �DS can be decomposed
into the signal approximation error �S and the dynamical approximation error �D ,
i.e.

jjG � GDSjj„ ƒ‚ …
DW�DS

� jjG � GS jj„ ƒ‚ …
DW�S

C jjGS � GDSjj„ ƒ‚ …
DW�D

; (21.3)

in appropriate norms. In Theorem 1, it is shown that one can adjust NU and NY and the
accuracy of the numerical computations such that the errors are balanced.
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Table 21.1 The considered I/O maps, their discretization, and their numerical approximation.
The first row contains the operators for a general system and for a space-time like tensor structure
of the discrete signal spaces NU D Uh1;�1 D R�1 �Uh1 and NY D Yh2;�2 D S�2 � Yh2 . The second line
lists their matrix representations and the third line contains the low-dimensional approximation
of QG
1-dimensional system Discrete I/O spaces Numerical approximation

GWU ! Y GS W NU ! NY GDS W NU ! NY
GS WUh1;�1 ! Yh2;�2 GDS WUh1;�1 ! Yh2;�2
GWRpr ! R

qs QGWRpr ! R
qs

H D M NYGWRpr ! R
qs QHWRpr ! R

qs

OGWR OpOr ! R
OqOs

In what follows, we consider discrete I/O maps and their numerical approxima-
tion. We have summarized the symbols used for the definition of the I/O maps on
the different levels of approximation in Table 21.1.

21.2.3 Discretization of Signals

21.2.3.1 Space-Time Discretization and Matrix Representation

Following the notation used in [17, 22], we recall the definitions and notions for
direct discretization of I/O map s. In order to discretize the input signals u 2 U and
y 2 Y in space and time, we choose four families fUh1gh1>0, fYh2gh2>0, fR�1g�1>0,
and fS�2g�2>0 of subspacesUh1 � U , Yh2 � Y , R�1 � L2.0; T / and S�2 � L2.0; T /

of dimensions p.h1/ D dim.Uh1/, q.h2/ D dim.Yh2/, r.�1/ D dim.R�1 /, and
s.�2/ D dim.S�2/ and define

Uh1;�1 WD R�1 � Uh1 and Yh2;�2 D S�2 � Yh2 :

We denote the orthogonal projections onto these subspaces by PU ;h1;�1 2 L .U/ and
PY;h2;�2 2 L .Y/. To approximate G, we define

GS D GS.h1; �1; h2; �2/ D PY;h2;�2GPU ;h1;�1 2 L .U ;Y/:

In order to obtain a matrix representation of GS , we introduce families of bases
f�1; : : : ; �pg of Uh1 , f�1; : : : ; �qg of Yh2 , f�1; : : : ; �rg of R�1 and f 1; : : : ;  sg of
S�2 and corresponding mass matrices MU;h1 2 R

p�p , MY;h2 2 R
q�q , MR;�1 2 R

r�r
and MS;�2 2 R

s�s , for instance via

ŒMU;h1 �l1l2 D .�l1 ; �l2 /U ; l1; l2 D 1; : : : ; p:
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These mass matrices induce weighted scalar products and corresponding norms in
the respective spaces, which we indicate by a subscript w, like R

p
w with .�; �/pIw and

jj � jjpIw. We write signals u 2 Uh1;�1 and y 2 Yh2;�2 as

u.t/ D
pX
lD1

rX
jD1

ulj �j .t/�l ; y.t/ D
qX

kD1

sX
iD1

yki  i .t/�k; (21.4)

where ulj are the elements of a block-structured vector u 2 R
pr with p blocks

uk 2 R
r , and the vector y 2 R

qs is defined similarly.
We obtain a matrix representation G of GS by setting

G D G.h1; �1; h2; �2/ D �YPYGPU��1
U 2 R

qs�pr;

where some dependencies on h1; �1; h2; �2 have been omitted. With the norms jj�jjprIw
and jj � jjqsIw in the product spaces with the mass matrices

MU ;h1;�1 D MU;h1 ˝ MR;�1 2 R
pr�pr; MY;h2;�2 D MY;h2 ˝ MS;�2 2 R

qs�qs;

the isomorphisms �U ;h1;�1 2 L .Uh1;�1 ;Rpr
w / and �Y;h2;�2 2 L .Yh2;�2 ;Rqs

w / associat-
ing functions with coefficient vectors are unitary mappings and we can define the
discrete L .U ;Y/-norm as

jjG.h1; �1; h2; �2/jjqs�prIw WD sup
u2Rpr

jjGujjqsIw
jjujjprIw

D jjM1=2

Y;h2;�2GM�1=2
U ;h1;�1 jjqs�pr:

For later reference, we define H D H.h1; �1; h2; �2/ WD MY;h2;�2G 2 R
qs�pr;

which is a matrix of q � p blocks Hkl 2 R
s�r with block elements

Hkl
ij D ŒMY�YPYG.�l�j /�lj D .�k i ;G.�l�j //Y : (21.5)

We have the following convergence result:

Lemma 1 (Lem. 3.2, [22]) For all .h1; �1; h2; �2/ 2 R
4C, we have

jjG.h1; �1; h2; �2/jjqs�prIw D jjGS.h1; �1; h2; �2/jjL .U ;Y/ � jjGjjL .U ;Y/:

If the subspaces fUh1;�1gh1;�1>0 and fYh2;�2gh2;�2>0 are nested, i.e.

Uh1;�1 � Uh0

1;�
0

1
; Yh2;�2 � Yh0

2;�
0

2
; for .h0

1; �
0
1; h

0
2; �

0
2/ � .h1; �1; h2; �2/;

then jjG.h1; �1; h2; �2/jjqs�prIw is monotonically increasing and bounded, i.e. conver-
gent, for .h1; �1; h2; �2/ & 0.
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Fig. 21.2 Four levels of bases for nested L2.0; 1/-subspaces: Hierarchical basis for piecewise
linear functions (above) and Haar wavelets for piecewise constant functions (below)

21.2.3.2 An Example for Signal Discretizations

Let U D Y D L2.0; 1/ and let Uh1 and Yh2 be spanned by continuous piecewise
linear functions and let R�1 and S�2 be spanned by piecewise constant functions. For
equidistant grids one can easily construct nested bases as illustrated in Fig. 21.2.

If we denote the orthogonal projections onto Uh1 and R�1 by PU;h1 and PR;�1 ,
respectively, one can show that there exist cU D 1=2 and cR D 1=

p
2, independent

of h1, �1 and T , such that

jju � PUh1 ujjL2.0;1/ � cU h
2
1jj@2�ujjL2.0;1/ for u 2 H2.0; 1/;

jjv � PR�1
vjjL2.0;T / � cR�1jj@tvjjL2.0;T / for v 2 H1.0; T /;

see e.g. [7]. From Fubini’s theorem, one can infer that a similar estimate holds for
time space tensorized bases, i.e., the projection PU ;h1;�1 satisfies

jju � PU ;h1;�1ujjU � .cU h
2
1 C cR�1/jjujjUs for all u 2 Us D H1;2..0; T / � .0; 1//:

The same is true for the similarly defined projection PY;h2;�2 .
Similar estimates also hold for higher spatial dimensions as they are classical

results from the interpolation theory in Sobolev spaces, see e.g. [7]. For spaces
of higher regularity, using basis functions of higher polynomial degree, higher
approximation orders are also possible.
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21.2.3.3 Signal Approximation Error

As shown in [22, Lem. 3.3], the error in the signal approximation can be decom-
posed via �s WD jjG � GS jjL .U ;Y/ D �s;inp C �s;outp with

�s;inp WD sup
u2kerPU;h1;�1

jjGujjY
jjujjU ; �s;outp WD max

u2Uh1;�1
jj.I � PY;h2;�2 /GujjY

jjujjU :

As laid out in the following remarks, a good approximation in jj � jjL .U ;Y/ can
only be achieved, if the subspaces Uh1;�1 and Yh2;�2 are chosen specifically for G.
In short, the response of the chosen inputs needs to be well captured by the chosen
output discretization. On the other hand, the discretization of the input space has to
catch the major output modes of the system.

Remark 1 The usual requirement for families of approximating subspaces Uh1;�1
and Yh2;�2 that they become dense in their superspaces is sufficient for pointwise
convergence of jj.G � GS/ujjY ! 0 for every u 2 U , i.e. for convergence in the
strong operator topology, but not for uniform convergence jjG � GS jjL .U ;Y/ ! 0,
cf. [22, Rem. 3.11].

Remark 2 For compact G 2 L .U ;Y/, there exist orthonormal systems fOu1; Ou2 : : : g
of U and f Oy1; Oy2; : : : g of Y and nonnegative numbers �1 � �2 � : : : with �k ! 0

such that Gu D P1
kD1 �k.u; Ouk/U Oyk for all u 2 U , see e.g. [26]. Thus, if we choose

Uh1;�1 and Yh2;�2 as the span of Ou1; : : : ; Our and Oy1; : : : ; Oys , respectively, with s D r

and r 2 N, we obtain an efficient approximation GS of G with jjG � GS jjL .U ;Y/ �
�rC1. However, we must point out that the I/O map of a linear system is not compact
unless it is the zero map. This can be deducted from the common fact that the I/O
map of a causal linear system is a Toeplitz operator [23] which is compact only if it
is the zero operator [10, Rem. 7.15].

21.2.4 System Dynamics Approximation

We discuss the efficient computation of the discrete I/O map G D M�1
Y H of a

state space system, via the approximation of the associated convolution kernelK 2
L2.0; T IL .U; Y //.

21.2.4.1 Kernel Function Approximation

If we insert (21.2) in (21.5), after a change of variables, we obtain

Hkl
ij D

Z T

0

Z T

0

 i .t/�j .s/.�l ;K.t � s/�k/Y ds dt D
Z T

0

Wij.t/Kkl.t/ dt
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where WW Œ0; T � ! R
s�r and KW Œ0; T � ! R

q�p ,

Wij.t/ D
Z T�t

0

 i .t C s/�j .s/ ds; Kkl.t/ D .�k;K.t/�l /Y ;

so that

H D MYG D
Z T

0

K.t/˝ W.t/ dt:

Remark 3 For piecewise polynomial ansatz functions i .t/ and �j .t/, W.t/ can be
calculated exactly. For particular choices, W.t/ 2 R

r�r is a lower triangular Toeplitz
matrix for all t 2 Œ0; T �. Hence, the matrices Hij D R T

0
Wij.t/K.t/ dt 2 R

q�p satisfy
Hij D Hi�j for 1 � i; j � r and Hij D 0 for 1 � i < j � r . This implies that Hij

are Markov parameters of a discrete-time linear time-invariant causal MIMO system
[22, Ch. 3.4.3].

For state space systems (21.1), the matrix-valued function K reads

Kkl.t/ D .�k;CS.t/B�l /Y D .c�
k ; S.t/bl /Z;

where c�
k D C ��k 2 Z and bl D B�l for k D 1; : : : ; q and l D 1; : : : ; p.

Accordingly, one can obtain K by solving p homogeneous systems

Pzl .t/ D Azl .t/; t 2 .0; T �; (21.8a)

zl .0/ D bl ; (21.8b)

recalling that (21.8) has the mild solution zl .t/ D S.t/bl 2 C.Œ0; T �IL2.˝//.
Typically, zl .t/ is numerically approximated by zl;tol.t/, which gives only an
approximation QK of K and, thus, an approximation QH of H. Here, the subscript tol
refers to a parameter that controls the error zl � zl;tol as we will specify later. Then,
the approximation GDS of GS , depending on h1, h2, �1, �2 and tol, is given by

GDS D ��1
Y QG�UPU ; with QG D M�1

Y QH:

Note that it might be preferable to consider an adjoint system and approximate
the kernel functions via an adjoint system, cf. [22, Rem. 3.14].

21.2.4.2 System Dynamics Error

The approximation error in the system dynamics is related to the approximation
error of the states via (21.8) as follows:
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Proposition 1 (Thm. 3.6, [22]) The system dynamics error �D satisfies

jjGS � GDSjjL .U ;Y/ � p
T jjK � QKjjL2.0;T IRq�p

w /

� p
p
T

s
�max.MY;h2 /

�min.MU;h1 /
max
1�l�p jjKW;l � QKW;l jjL2.0;T IRq /:

Here KW;l and QKW;l denote the l’th column of K.t/ and QK.t/ that are defined via
the exact and the approximate solutions of (21.8), respectively, �max.MY;h2 / is the
largest eigenvalue of MY;h2 and �min.MU;h1 / the smallest eigenvalue of MU;h1 . R

q�p
w

denotes the space of real q � p-matrices equipped with the weighted matrix norm
jjMjjq�pIw D supu¤0 jjMujjqIw=jjujjpIw.

21.2.4.3 Error in the State Approximation

As laid out in Sect. 21.2.4.1, the approximation of the system dynamics is realized
via numerically solving homogeneous PDEs (21.8) for p different initial values.

In view of the error estimates, we will focus on the approximation properties of
the chosen discretization, i.e. whether

jjKW;l � QKW;l jjL2.0;T IRq / < tol (21.9)

is guaranteed for a given tol > 0 rather than on efficiency.
For the concrete system (21.8), the handling of the initial values bl is an issue, as

they in general only belong to Z but not necessarily toD.A/. For the heat equation,
this typically leads to large but quickly decaying gradients in the exact solution
zl 2 C1..0; T �;H2.˝/\H1

0 .˝//.
This is reflected in the analytical bound for the general case

jj@t z.t/jjL2.˝/ D jj4z.t/jjL2.˝/ � c

t
jjz0jjL2.˝/ for all t 2 .0; T �;

with some constant c > 0 independent of z0 and T , cf. [18, p. 148].
To capture large gradients in the simulation, adaptive space and time discretiza-

tions are the methods of choice [11]. As for the guaranteed accuracy of the state
approximation, the combination of discontinuous Galerkin time discretizations with
standard Galerkin space discretizations comes with (a priori and a posteriori) error
estimators, that also work for adapted meshes [12, 18, 24]. We distinguish two types
of error estimates.
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1. Global state error estimates that measure the global error .zl � zl;tol/, see [12]
for a priori and a posteriori estimates for parabolic problems that guarantee (21.9)
by ensuring that

jjKW;l � QKW;l jj2L2.0;T IRq/ � jjC jj2L .Z;Y /

qX
iD1

jj�i jj2Y jjz � z.l/toljj2
L2.0;T IZ/: (21.10)

2. Goal-oriented error estimates that measure the error jjKW;l � QKW;l jjL2.0;T IRq /
directly. This is advantageous when the error in the observations KW;l is small
although the error in the states is large, see, e.g., [1].

Thus, for typical applications, via a suitable choice of the approximation
schemes, we can fulfill the following assumption:

Assumption 1 For a given tolerance tol, the approximations zl;tol to the solu-
tions zl of (21.8) can be computed such that

jjKW;l � QKW;l jjL2.0;T IRq/ < tol; l D 1; : : : ; p:

21.2.5 Total Error Estimates

We show how the previously introduced error estimates sum up to an estimate of the
total error in the approximation of G.

Theorem 1 (Thm. 3.7, [22]) Consider the I/O map G 2 L .U ;Y/ of the infinite-
dimensional linear time-invariant system (21.2) and assume that GjUs 2 L .Us;Ys/
with spaces Us � U and Ys � Y such that for ˛1, ˇ1, ˛2, ˇ2 2 N, the families of
subspaces fUh1;�1gh1;�1 and fYh2;�2gh2;�2 satisfy

jju � PU ;h1;�1ujjU � .cR�
˛1
1 C cU h

ˇ1
1 /jjujjUs ; u 2 Us; (21.11a)

jjy � PY;h2;�2yjjY � .cS�
˛2
2 C cY h

ˇ2
2 /jjyjjYs ; y 2 Ys; (21.11b)

with positive constants cR, cS , cU and cY . And assume that the error in solving for
the state dynamics can be made arbitrarily small, i.e. Assumption 1 holds.

Let ı > 0 be given. Assume, the chosen subspaces Uh�

1 ;�
�

1
and Yh�

2 ;�
�

2
fulfill

��
1 <

	
ı

8cRjjGjjL .U ;Y/


1=˛1
; h�

1 <

	
ı

8cU jjGjjL .U ;Y/


1=ˇ1
; (21.12a)

��
2 <

	
ı

8cS jjGjjL .Us ;Ys /


1=˛2
; h�

2 <

	
ı

8cY jjGjjL .Us ;Ys /


1=ˇ2
; (21.12b)
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and that one can solve numerically the homogeneous systems (21.8) for k D
1; : : : ; p.h1/ such that

jjKW;l � QKW;l jjL2.0;T IRq / < cK;l WD ı

2
p
T p.h�

1 /

s
�min.MU;h�

1
/

�max.MY;h�

2
/
:

Then,

jjG � GDS jjL .Us ;Y/ < ı:

Moreover, the signal error �0
S WD jjG � GS jjL .Us ;Y/ and the system dynamics error

�D WD jjGS � GDS jjL .U ;Y/ are balanced in the sense that �0
S ; �D < ı=2.

Proof The proof of [22, Thm. 3.7] is readily extended to the considered situtation
noting that [22, Thm. 3.5] is valid for any Us and Ys for which GjUs 2 L .Us;Ys/
and (21.11) holds.

Remark 4 Considering subspaces Us and Ys allows for possibly better error esti-
mates and does not exclude the case that Us D U or Ys D Y . In particular, for
modelling distributed control and observation, one can choose Z D L2.˝/ for a
spatial domain˝ and defines U D L2.�/ and Y D L2.˙/ as function spaces over
domains of control� � ˝ and observation˙ � ˝ . Then Us and Ys can be chosen
as subspaces of higher regularity like

Us D H˛1;ˇ1..0; T / ��/; Ys D H˛2;ˇ2..0; T / �&/; ˛1; ˇ1; ˛2; ˇ2 2 N;

for which (21.11) is obtained using standard approximation schemes [7].

21.3 Higher Order SVD for I/O Maps and POD

21.3.1 Dimension Reduction of the I/O Map via SVDs

An accurate resolution of the signal spaces by general basis functions may lead to
large dimensions of the discrete I/O map QG. We show how to employ a Tucker
decomposition or higher order singular value decomposition (HOSVD) [8] to
reduce the degrees of freedom in input and output space while preserving accuracy
and the tensor structure.

We consider the discrete spaces as introduced in Sect. 21.2.3.1 with their
dimensions p, q, r , s and their indexing via j , i , l , k as in (21.4).

For QG 2 R
qs�pr considered as a fourth-order tensor QG 2 R

s�r�q�p with QGijkl D
QGkl

ij there exists a HOSVD

QG D S �1 U. / �2 U.�/ �3 U.�/ �4 U.�/; (21.13)
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with the core tensor S 2 R
s�r�q�p satisfying some orthogonality properties and

unitary matrices U. / 2 R
s�s , U.�/ 2 R

r�r and U.�/ 2 R
q�q , U.�/ 2 R

p�p .
Here, �1; : : : ;�4 denote tensor-matrix multiplications. We define a matrix unfolding
QG. / 2 R

s�rqp of the tensor QG via

QG. /
im D QGijkl; m D .k � 1/ps C .l � 1/s C i;

which is putting all elements belonging to  1; 2; : : : ;  s into one respective row.
Similarly, we define the unfoldings QG.�/ 2 R

r�qps, QG.�/ 2 R
q�psr and QG.�/ 2 R

p�srq.
Then we can calculate U. /, U.�/, U.�/ and U.�/ in (21.13) by means of four SVDs
like

QG. / D U. /˙. /.V. //T;

with ˙. / diagonal with entries �. /1 � �
. /
2 � : : : �

. /
s � 0 and V. / column-wise

orthonormal. The �. /i are the n-mode singular values of the tensor QG.
From (21.13), we derive an approximation OG 2 R

s�r�q�p of QG by dis-
carding the smallest n-mode singular values f�. /OsC1; : : : ; �

. /
s g, f�.�/OrC1; : : : ; �

. /
r g,

f�.�/OqC1; : : : ; �
.�/
q g and f�.�/OpC1; : : : ; �

.�/
p g, i.e. by setting the corresponding parts of S

to zero. Then we have

jj QG � OGjj2F �
sX

iDOsC1
�
. /
i C

rX
jDOrC1

�
.�/
j C

qX
kDOqC1

�
.�/

k C
pX

lD OpC1
�
.�/

l ;

see [8]. Unlike the matrix case, this approximation needs not be optimal in a least
square sense, see e.g. [9] for best norm approximations.

Finally, expressing the signals in terms of the corresponding leading singular
vectors contained in U. /, U.�/, U.�/, and U.�/, we obtain a low-dimensional
representation of OG in the smaller space R Oq Or� Op Os .

Apart from being used for defining a reduced model, the major HOSVD modes
can be interpreted as the most relevant input and output signals - an insight that can
be exploited for sensor and actuator design and placement.

21.3.2 I/O Maps and the Classical POD Method

To illustrate the relation of POD and HOSVD-reduced I/O map s, we consider the
finite-dimensional LTI system

Pv D Av C f

with the output y D v and the sole (one-dimensional) input Bu D f .
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Consider the grid T D ftigsiD1 of time instances

0 D t1 < t2 < � � � < ts D T

and let NY be the span of the nodal vectors of v.t/ taken at t 2 T . Then, the
corresponding QG for a single input dimension is a s � 1 � q � 1 tensor that can
be unfolded into the matrix

QG.�/ D X D

2
64
v1.t1/ : : : v1.ts/
:::

: : :
:::

vq.t1/ : : : vq.ts/

3
75 2 R

q�s : (21.14)

As laid out in the discussion of the truncated HOSVD in Sect. 21.3.1, a reduced
basis for the space dimension of the state space can be obtained via a truncated SVD
of QG.�/. We observe that this reduced basis would be the well-known reduced basis
used in POD, see [25] for an introduction.

21.3.3 A Generalized Approach in Time Capturing for POD

In POD, one uses samplings from the time evolution to compress the spatial state
dimension. Instead of considering the matrix of snapshots (21.14) from discrete time
instances, we propose considering the measurement matrix

Xgen D

2
64
.v1;  1/S : : : .v1;  s/S

:::
: : :

:::

.vq;  1/S : : : .vq;  s/S

3
75 2 R

q�s; (21.15)

of the same dimension that is obtained by testing the spatial components of the state
v against the basis functions of a discreteS�2 D spanf 1; � � � ;  sg � L2.0; T /. Note
that for smooth trajectories, the standard snapshot matrix is obtained from (21.15)
by testing against delta distributions located at t 2 T .

The L2 orthogonal projection of the state vector v onto the space spanned by the
measurements is given as

Ov.t/ D XgenM�1
S  .t/;

where  WD Œ 1; : : :;  s�
T and where MS is the mass matrix of S�2 , i.e. ŒMS �i1i2 D

. i1 ;  i2 /S . As for the classical POD, cf. [25, Thm. 1.12], where MS D I , one
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can show that the generalized POD modes are the eigenvalues corresponding to the
largest eigenvalues of the operator

R D
Z T

0

OvOvT dt D
Z T

0

XgenM�1
S  .t/ .t/

TM�1
S XT

gen dt

D XgenM�1
S

Z T

0

 .t/ .t/T dt
„ ƒ‚ …

DMS

M�1
S XT

gen D XgenMS�1XT
gen:

Therefore, in an implementation, the generalized POD modes can be obtained
via an SVD of

XgenM�1=2
S : (21.16)

21.4 Numerical Examples and Applications

By means of four numerical examples we present numerical convergence results, an
application of the discretized I/O map for the solution of optimization problems
including the use of SVD, as well as numerical tests comparing the I/O map s
motivated POD variant to the standard approach.

21.4.1 Convergence of the I/O Map for a Heat Equation

We consider a heat equation with homogeneous Dirichlet boundary conditions,
which for a domain ˝ with a C2-boundary and for Z D L2.˝/ becomes a system
of type (21.1) with the Laplace operator

A D 4 W D.A/ D H2.˝/\H1
0 .˝/ � Z ! Z: (21.17)

Since A is the infinitesimal generator of an analytic C0-semigroup of contractions
.S.t//t�0, the mild solution z of (21.1) exhibits the following stability and regularity
properties, see e.g. [21, Ch. 7] and [13].

(i) If z0 D 0 and u 2 U , then z 2 H1;2..0; T / �˝/ with

jjzjjH1;2..0;T /�˝/ � cjjujjU : (21.18)

(ii) Assume that u 	 0. For z0 2 D.A/ we have z 2 C1.Œ0; T �ID.A//, but for
z0 2 Z we only have z 2 C1..0; T �ID.A//.



600 M. Baumann et al.

For the numerical tests, we will consider domains ˝ � R
2 and define control

and observation operators as follows: For given points ac , bc , am, bm 2 N̋ , let˝c D
.ac;1; ac;2/� .bc;1; bc;2/ and˝m D .am;1; am;2/� .bm;1; bm;2/ be rectangular subsets
of ˝ where the control is active and the observation takes place, respectively. Let
U D Y D L2.0; 1/ and define C 2 L .L2.˝/; Y / and B 2 L .U;L2.˝// via

.C z/.�/ D
Z bm;1

am;1

z.x1; x2.�//

bm;1 � am;1
dx1; (21.19)

.Bu/.x1; x2/ D
(

u.�.x1//!c.x2/; .x1; x2/ 2 ˝c

0; .x1; x2/ … ˝c

; (21.20)

where !c 2 L2.ac;2; bc;2/ is a weight function and � W Œac;1; bc;1� ! Œ0; 1� and
x1 W Œ0; 1� ! Œam;1; bm;1� are affine-linear transformations.

Since CjH2.˝/ 2 L .H2.˝/;H2.0; 1//, we have G 2 L .U ;Ys/ as well as

GjUs 2 L .Us;Ys/; with Us D H1;2..0; T / ��/; Ys D H1;2..0; T / �&/:

Also, for u 2 Us , we have jjujjU � jjujjUs , and for u 2 U , we have jjGujjYs �
c0jjzjjH1;2..0;T /�˝/ � c c0jjujjU , where c is the constant used in the stability esti-
mate (21.18) and c0 D maxfjjC jjL .L2.˝/;L2.&//; jjC jjL .H2.˝/;H2.&//g.

For the concrete test case, we set T D 1 and ˝ D .0; 1/2 and choose ˝c D ˝ ,
˝m D .0:1; 0:2/� .0:1; 0:9/, and !c.x2/ D sin.�x2/, see Fig. 21.3. For this choice,
for inputs of the form u.t I �/ D sin.!T �t/ sin.m��/ with !T ;m 2 N, there is
an analytic expression for the outputs in terms of the eigenfunctions of the Laplace
operator (21.17).

For the finite-dimensional approximation of the I/O map G, we choose hierar-
chical linear finite elements in Uh1 and Yh2 and Haar wavelets in R�1 and S�2 and
compute GDS.h1; �1; h2; �2;tol/. The tolerance tol refers to the accuracy of the
numerical approximation of the system dynamics, cf. Assumption 1.

Fig. 21.3 Setup for the heat
equation with Dirichlet
boundary conditions and
known solutions

Ω
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1

1

y(
t, 
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C Ωm

θ

u(t, . )

ξ
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Fig. 21.4 The relative output errors for input u.t I �/ D sin.10�t/ sin.5��/ for varying h1 D h2
and fixed �1 D �2 D 1=64 (a) and for varying �1 D �2 and fixed h1 D h2 D 1=17 (b). The dashed
lines are the linear and the quadratic fit. (c): the norm of the discrete I/O map jjGDS .h/jjL .U ;Y/
versus approximation space dimensions p D q D r C 1 D s C 1 for a fixed tolerance tol D
4:0e � 5

Convergence of single outputs. For the present setup, with inputs u.t I �/ D
sin.!T �t/ sin.m��/, and known outputs y D Gu, we investigate the relative error
jjy � QyjjY=jjujjUs , with Qy D GDS.h1; �1; h2; �2;tol/u, for varying discretization
parameters h1, �1, h2, �2 and tol. For m D 5 and !T D 10, we observe a
quadratic convergence with respect to decreasing h1 D h2 (cf. Fig. 21.4a) and a
linear convergence for �1 D �2 (cf. Fig. 21.4b). It is notable, however, that due to the
system dynamics error, the error converges to a positive plateau value depending on
the tolerance tol.

Convergence of the norm jjGS.h1; �1; h2; �2/jjL .U ;Y/ for nested subspaces.
Successively improving the signal approximation by adding additional basis
functions, the norm jjGS.h1; �1; h2; �2/jjL .U ;Y/ converges, cf. Lemma 1. We
approximate jjGS jjL .U ;Y/ by jjGDSjjL .U ;Y/, where GDS has been calculated with
tol D 4:0e � 5. In Fig. 21.4c, the approximations jjGS.h1; �1; h2; �2/jjL .U ;Y/ D
jjGS.

1
p�1 ;

1
r
; 1
q�1 ;

1
s
/jjL .U ;Y/ are plotted for increasing subspace dimensions

p D q D r C 1 D s C 1 D 2; 3; : : : ; 65.

21.4.2 I/O Maps and Higher Order SVD for Optimal Control

We demonstrate the use of discrete I/O map s in optimization problems like

J.u; y/ D 1

2
jjy � yD jj2Y C ˛

2
jjujj2U ! min; s. t. y D Gu; u 2 Uad; (21.21)

where Uad � U is the subset of admissible controls, yD 2 Y is a target output
signal, and ˛ > 0 is a regularization parameter. With yD D �Y;h2;�2PY;h2;�2yD and
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Fig. 21.5 Setup of the test
case for the heat equation
with homogeneous Neumann
boundary conditions

y(t, . )

ξ
C

θ

u(t, . )

Ω

x1

x2

5

1

NUad D fu 2 R
pr W u D �U ;h1;�1PU ;h1;�1u; u 2 Uadg, we define the discrete approxi-

mation to (21.21) as,

NJh.u; y/ D 1

2
jjy � yDjj2qsIw C ˛jjujj2prIw ! min s. t. y D QGu; u 2 NUad (21.22)

For an optimization problem without control constraints, i.e. Uad D U and
NUad D R

pr , the solution Nu of (21.22) is readily defined by

. QGTMY QG C ˛MU / Nu D QGTMYyD: (21.23)

As the test case for optimal control, we consider a model for the heat conduction
in two infinitely long plates of width 5 and height 0:2 which are connected by two
rectangular bars and which are surrounded by an insulating material. That is, for t 2
.0; 1� we solve a heat equation with homogeneous Neumann boundary conditions
on a domain ˝ as in Fig. 21.5. We assume, that we can heat the bottom plate and
measure the temperature distribution in the upper plate, i.e. to model the control
and observation we set ˝c D .0:05; 4:95/ � .0:05; 0:15/, ˝m D .0:05; 4:95/ �
.0:85; 0:95/ and !c.x2/ D sin.�.x2 � 0:05/=0:1/ and define B and C similarly
to (21.19).

As the target output, we choose yD D Gu0, i.e. the output for the input u0 	 1.
Then, the solution of the optimal control problem (21.21) will give an optimized
input u� that leads to a similar output as u0 but at lower costs.

As the reference for a subsequent HOSVD based reduction, we solve (21.23)
with an approximated I/O map QG 2 R

17�64�65�64 and ˛ D 10�4 for an approximation
Nu to u�. This took 0:33 s on a desktop PC. The norm of the input was reduced
by 27:9% with a relative deviation of GNu from yD of 9:4%. Having employed a
HOSVD to reduce the I/O map to OG 2 R

3�5�3�5, i.e. having truncated all but the 3
most relevant spatial and the 5 most relevant temporal input and output modes, the
calculation of Nu took less than 0:0004 s. The optimal control on the base of OG came
with a norm reduction of 27:4% if compared to u0 while admitting a deviation from
the target of 9:5%. See Fig. 21.6 for an illustration of the optimization results.
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Fig. 21.7 Results of an HOSVD applied to the I/O map of the test case illustrated in Fig. 21.5. In
the first row the n-mode singular values in a semilogarithmic scale are plotted. In the 2nd and 3rd
row the respective most relevant modes are shown

The insights provided by an HOSVD are illustrated in Fig. 21.7, namely the
distribution of the n-mode singular values indicating how many degrees of freedom
are needed to capture the dynamics and the most relevant input and output modes,
cf. Sect. 21.3.1. From the modes one can draw conclusions on effective actuations.
In the given example, the locations of the connecting bars are clearly visible in the
spatial input modes �1 and �2.

21.4.3 Driven Cavity and Generalized POD

We consider a driven cavity flow at Reynolds number Re D 2;000 in the unit
square. For the spatial discretization we use Taylor-Hood elements on a uniform
triangulation of the domain by 502 triangles, see Fig. 21.8 for an illustration of the
flow and the discretization. We linearize the equations about the velocity solution ˛
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Fig. 21.8 Illustration of the
driven cavity at the steady
state for Re D 2;000 and the
triangulation of the domain
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of the associated steady state Stokes problem, and consider the time evolution of the
velocity v.t/ 2 R

Nv and the pressure p.t/ 2 R
Np , Nv , Np 2 N, modeled by

M Pv.t/ D �A.˛;Re/v.t/C J Tp.t/C f .t/; (21.24a)

0 D Jv.t/; (21.24b)

v.0/ D ˛; (21.24c)

in the time interval .0; 5�. Here, M 2 R
Nv;Nv is the velocity mass matrix, J 2

R
Np;Nv and its transpose J T are discretizations of the divergence and the gradient

operator, A 2 R
Nv;Nv models the diffusion and the linearized convection depending

on Re and v0, and f 2 R
Nv is a source terms that arises from the linearization and

the incorporation of the boundary conditions. See [16] for details of the modeling.
We compare the I/O map motivated variant of Sect. 21.3.3 of POD to the standard

approach that we refer to as POD. To the generalization we refer as gmPOD. To
the columns of the measurement matrices (21.14) or (21.15) we will refer to as
measurements which is more general than the standard term snapshot. By s, we
denote the number of measurements, i.e. the number of snapshots or the dimension
of the test space, respectively. By Ok, we denote the number of modes, i.e. leading
singular vectors of the measurement matrix, that are taken for the reduced order
model (often called POD-dimension).

Say U Ok is the matrix of the chosen Ok modes obtained via a truncated SVD
of (21.14) for POD or (21.16) for gmPOD. Then, a reduced model of (21.24) is
given as

OM POv.t/ D OA Ov.t/C Of .t; U Ok Ov.t//; (21.25a)

Ov.0/ D Ǫ ; (21.25b)

where OM WD U T
Ok MU Ok, OA WD U T

Ok AU Ok, and Of D U T
Ok f , with M , A, and f being

the mass matrix, coefficient matrix, and a nonlinearity or source term. The solution
Ov is related to the actual solution v via the ansatz v D U Ok Ov. Accordingly, the initial
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value is typically chosen as Ǫ D U T
Ok v.0/. We consider only the velocity component

for the measurements for (21.24a). Since the measurements fulfill JX D 0, we have
that U T

Ok J
T D 0.

As the basis for the (generalized) time capturing, we use the hierarchical basis of
piecewise linear functions illustrated in Fig. 21.2.

The time integration for the full order system was implemented using the implicit
trapezoidal rule on a uniform time grid. The corresponding reduced order systems
were numerically integrated using Scipy’s (for the current test case) and Matlab’s
(for the following test case) built-in ODE solvers integrate.odeint and
ODE45. The source code of the POD and gmPOD tests is available from the author’s
Github account [4].

We consider the error e
s; Ok 
 �R T

0 kv.t/ � U Ok Ov.t/k2
L2.˝/

dt
�1=2

where v is the
solution of the full order system and Ov solves the reduced order system constructed
by means of s measurements and Ok POD modes. Here, T is the endpoint of the
considered time interval and ˝ is the spatial domain of the considered test case.
The error is evaluated numerically using the piecewise trapezoidal rule in time and
the finite element space norm on the chosen discretization of the full order model.

The conducted tests were designed to evaluate the evolution of the error e
s; Ok with

respect to the number of measurements s and the dimension of the reduced model
Ok. Both parameters are limiting factors: the amount of needed memory increases
linearly with s and the computational complexity to compute the POD modes via
an SVD increases like Ok times the square of the spatial dimension. Also, the effort
for the numerical solution of the reduced systems scales with the number of POD
modes necessary for the required accuracy.

For the test case with the linearized flow equations (21.24), we find that
gmPOD significantly outperforms POD. Throughout the investigated range of
measurements and number of chosen POD modes, the approximation error after
the gmPOD reduction is much smaller than after a POD reduction of the same
dimension, see Fig. 21.10b.

21.4.4 Nonlinear Burgers’ Equation and Generalized POD

As the last test case, we consider a system stemming from a spatial discretization of
the nonlinear Burgers’ equation,

@t z.t; x/C @x
�1
2

z.t; x/2 � �@xz.t; x/
� D 0; (21.26)

with the spatial coordinate x 2 .0; 1/, the time variable t 2 .0; 1�, and the viscosity
parameter � D 0:01, completed by zero Dirichlet boundary conditions and a step
function as initial conditions as illustrated in Fig. 21.9a. See [3] and [4] for details
on the implementation.
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We compute the gmPOD-reduced model and compare it to the standard POD
reduction as explained in Sect. 21.4.3. Again, the generalized POD approach
gmPOD outperforms the classical variant in terms of accuracy versus number of
snapshots and POD modes, see Fig. 21.10a for the error plot and Fig. 21.9b–c for an
illustration of the approximation error.

21.5 Final Remarks and Outlook

The presented framework is suitable to provide direct discretizations of I/O map s
of linear infinite-dimensional control systems with spatially distributed inputs and
outputs. This allows for tailoring numerical approximations to the I/O behavior of
systems which is particularly important in control setups. The provided method-
ology, thus, comes with error estimates in the relevant L.U ;Y/ norm. We have
illustrated the approximation properties in a numerical example.
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The discrete I/O map can be expressed as a tensor and reduced by higher order
SVDs to the most relevant input and output modes. Apart from the reduction, a
HOSVD also gives insights for controller and sensor design.

We have shown that the idea of sampling trajectories in time to compress spatial
information is related to POD reduced order modeling. The freedom to choose
the test functions for the sampling can be used to define POD reduced models
on the basis of measurements that are more general than snapshots. The newly
introduced generalized POD variant has shown to significantly outperform classical
POD reduction for a linear and a nonlinear test case.

The proposed variant of POD seems promising in further aspects that are
subject to future work. Unlike in the standard approach, the sampling is done in a
subspace of the state space which can be exploited for improved error estimates.
Secondly, the nonlocalized measurements have smoothing properties that might
be of advantage for noisy measurements. Finally, the freedom in bases choice
allows for problem specific measurement functions which may reduce the number
of necessary snapshots.
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