Chapter 7
System Identification of an MDOF Experimental Structure
with a View Towards Validation and Verification

K. Worden, O.D. Tiboaca, I. Antoniadou, and R.]J. Barthorpe

Abstract Validation approaches can determine the degree of accuracy of simulated models representing real structures.
Therefore these approaches should deal with concepts concerning fidelity-to-data, the uncertainty quantification and the
comparative metrics i.e. measures that quantify the level of agreement between simulation and experimental outcomes.
In the context of nonlinear systems associated with nonlinear models additional care should be taken when attempting to
perform a validation scheme, in order to evaluate the examined models, due to bifurcations that may occur.

In this paper, experimental datasets from a laboratory based three-story building structure are used in order to calibrate the
parameters of a physics-based model using system identification methods. The structure described here is linear; however,
the work is a necessary precursor to the investigation of the behaviour of the structure when nonlinearity is introduced in the
form a cantilever beam impacting the highest story of the building for a specific range of excitations. In this study the linear
model is identified using experimental data and the sensitivity of model predictions is examined when the parameters of the
model are varied.
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7.1 Introduction

This study focuses on the application of methods of Verification and Validation (V&V) to nonlinear structural dynamics
models. V&V of numerical models is a pressing issue across science and engineering and one that is attracting increasing
interest from both the industrial and academic research communities. Reliance upon the predictions of complex simulations
has advanced to the point of dominating the test and analysis process in many applications. This is particularly the case
in applications where experimental testing is either prohibitively expensive or simply not feasible, the study of structural
response to extreme events being one such example. The aim of model validation is to provide a principled means of
assessing the credibility that may be ascribed to numerical model predictions. In recent years a number of application-specific
guidelines have been proposed for implementing this process. Among the first such frameworks to focus on physics-based
engineering models was that produced in 1999 by the AIAA for computational fluid dynamics (CFD) problems [1]. These
have been followed more recently by as series of standards introduced by the American Society of Mechanical Engineers
(ASME), currently comprising the ASME Guide for V&V in Computational Solid Mechanics in 2006 [2] and the Standard
for Verification and Validation in Computational Fluid Dynamics and Heat Transfer in 2009 [3]. These texts provide a solid
foundation for the study of validation methods and many of the more general aspects of these frameworks are transferable to
problems in structural dynamics. However, validation of nonlinear dynamical models presents additional challenges that are
yet to be fully addressed in the research literature. An issue of particular interest is how to account for potential bifurcations
in the frequency response of a non-linear system.

This paper presents some of the precursor analyses required as part of a broader framework for V&V of nonlinear systems.
The layout of the paper is as follows. The experimental rig adopted for the study is introduced in Sect. 7.2. Sections 7.3
and 7.4 introduce tools for system identification and analysis and present results of their application to the bookshelf structure.
Discussions of results and directions for future work are given in Sect. 7.5.
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7.2 The Experimental Rig and Data Capture

For the purposes of the present work, a small-scale simulated shear building model was constructed. This was chosen to
correspond closely with a structure previously designed and built at Los Alamos National Laboratories (LANL). Within
LANL, the experimental rig was referred to informally as the ‘bookshelf’ rig and this informal nomenclature is also adopted
here. The bookshelf structure, illustrated in Fig. 7.1 has four levels, floors or shelves, with the lower level being considered
the base. Each shelf/floor is composed of a substantial rectilinear aluminium block with a mass of 5.2 kg and dimensions
35x25.5x x 0.5cm (L x w x h). The shelves are joined by upright beams at each corner; each beam having a mass of 238 g
and dimensions 55.5 x 2.5 x 0.6 cm. The blocks used to connect the main plates and the upright beams have a mass of 18
g and dimensions 2.5 x 2.5 x 1.3 cm. For each block, four bolts were used, each of Viraj A2-70 grade and with a mass of
10 g. The structure was mounted on a rail system which was securely clamped onto a substantial testing table. In order to
introduce the excitation into the structure, an electrodynamic shaker with a force transducer was connected to the base. The
output response of the structure was recorded using four accelerometers positioned, as shown in the pictures, at the middle
of each main plate.

So far, the system is linear, and the intention of the first identification tests was that it remain so in order to simplify the
identification problem. However, as the longer term goal of this work was to consider nonlinear systems, provision was made
for nonlinearity. In the original LANL structure, nonlinearity was introduced via a comparatively complex series of bumpers
connected between shelves; in the current structure, nonlinearity is introduced in a much more basic fashion in order to
impose simpler equations of motion. The nonlinearity here will be introduced via a vertical cantilever beam which contacts
(via a bolt) the topmost shelf of the structure at negative displacements of that shelf.

The experimental data were acquired using an LMS CADA system connected to a SCADAS-3 interface. A total of 93,184
points per channel were recorded at a sampling frequency of 1024 Hz. Lateral accelerations were recorded for each shelf from
piezoelectric accelerometers fixed to the edges. ‘FRFs’ (transmissibilities) between the relative accelerations of the floor and
the base acceleration are given in Fig. 7.2; the structures shown indicate that a three-DOF model of the rig is likely to capture
the main dynamics.

Fig. 7.1 The ‘bookshelf’ experimental rig showing shaker attachment and guide rail system



7 System Identification of an MDOF Experimental Structure with a View Towards Validation and Verification 59

Fig. 7.2 ‘FRFs’ between the 2 l . . . . [ . . [
base acceleration of the rig and ;;1
the relative accelerations of the s 9r || -
upper floors g }Il fl'u"
= —
g ' 0 d_\"(\-ﬁ_“h»-’j I ™ 1 1 1 ! ] |
= 0 20 A0 B0 a0 100 120 140 180 1800 200

Frequency (Hz)

a1 ’ 4

L 1 1 1 1
0 20 40 60 a0 1m0 120 1400 1600 180 200
Frequency (Hz)

Magnitude Z2/%0

i
_&/’
_}!'
S

Magnitude 2350

/\_____d____»"

] Al 1 \-r—\,l/v 1 L 1 1 L
1] 20 40 &0 a0 100 120 140 180 180 200
Frequency (Hz)

7.3 System Identification Using Self-Adaptive Differential Evolution (SADE)

For the sake of completeness, a brief overview of the basic Differential Evolution (DE) and SADE algorithms will be given
here; for more detail, the reader is referred to the original papers [11, 12]. As in all evolutionary optimisation procedures, a
population of possible solutions (here, the vector of parameter estimates), is iterated in such a way that succeeding generations
of the population contain better solutions to the problem in accordance with the Darwinian principle of survival of the fittest.
The problem is framed here as a minimisation problem with the cost function defined as a normalised mean-square error
between the measured data and that predicted using a given parameter estimate. Having established by FRF analysis that the
base-excited system appears to correspond well to a three-DOF system, the model equations considered were,

mizZ1 + c1z1 + c2(z1 — 22) + k121 + ka(z1 — 22) = —mai
maZy + (2 — 21) + ¢3(22 — 23) + ka(z2 — 21) + k3(z2 — 23) = —mjio

m3Z3 + c3(23 — 23) + k3(z3 — 22) = —mJo (7.1

where the {z; = y; — yo : i = 1,...,3} are displacement coordinates relative to the base displacement. As discussed
above, the rig was operated in its linear condition in order to acquire data for the identification. As it is not clear what
the actual masses are prior to the identification, an estimate m is used for the RHS of the equations. The estimate is
based on the physical masses of the shelves and associated fixings, Including m, m, and mj3 in the parameter vector § =
(my,my, ms, ¢y, 2, ¢3, k1, ko, k3) allows the identification algorithm to correct for the contribution of the vertical beams etc.
Based on the design geometry and materials, m, was taken here as 5.475 kg.

The cost function referred to above was defined here in terms of the prediction errors associated with each DOF. A set of
Normalised Mean-Square-Errors (NMSEs) J; were defined by,

100 & .
vz 2 G = 5@ (7.2)

% i=1

Ji(0) =

where 0221_ is the variance of the measured sequence of relative accelerations and the caret denotes a predicted quantity; N
is the number of ‘training’ points used for identification. The total cost function J was then taken as the average of the J;.
Previous experience has shown that a cost value of less than 5.0 represents a good set of model predictions (or parameter
estimates). A

In order to generate the predictions Z;, the coupled Egs. (7.1) were integrated forward in time in Matlab [8] using a fixed-
step fourth-order Runge—Kutta scheme for initial value problems [10]. A better solution could potentially be found by using
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an adaptive solver like the (4, 5)th-order Runge—Kutta method for the solution of non-stiff problems encapsulated in the
Matlab function ode45; however, it was shown in [16] that the use of the adaptive scheme in the context of evolutionary
system identification can lead to strange results. The excitations for the predictions were established by the measured
base accelerations y, and the initial estimate m,. Although a great deal of data were measured in the experiments, the
SADE identification scheme is computationally expensive, with the main overhead associated with integrating trial equations
forward in time. For this reason, the training set or identification set used here was composed of only N = 700 points. To
avoid problems associated with transients, the cost function was only evaluated from the final 500 points of each predicted
record.

Once the data were generated, the SADE algorithm was applied to the identification problem using a parameter vector
6. The standard DE algorithm of reference [11] attempts to transform a randomly generated initial population of parameter
vectors into an optimal solution through repeated cycles of evolutionary operations, in this case: mutation, crossover and
selection. In order to assess the suitability of a certain solution, the cost function referred to above was used; this casts the
identification in the form of a minimisation problem.

Figure 7.3 shows a schematic for the procedure for evolving between populations. The following process is repeated
with each vector within the current population being taken as a farget vector; each of these vectors has an associated cost
J defined above. Each target vector is pitted against a trial vector in a selection process which results in the vector with
lowest cost advancing to the next generation. The process for constructing the trial vector involves variants of the standard
evolutionary operators: mutation and crossover.

Two Randomly Chosen Vectors Combined Third Randomly Chosen Vector Added
To Form A Scaled Difference Vector To Scaled Difference Vector

TARGET
VECTOR

CROSSOVER

SELECTION

POPULATION FOR
************************************ T NEXT GENERATION

s LT

Fig. 7.3 Schematic for the standard differential evolution algorithm
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The mutation procedure used in basic DE employs vector differentials. Two vectors A and B are randomly chosen from
the current population to form a vector differential A — B. A mutated vector is then obtained by adding this differential,
multiplied by a scaling factor, F, to a further randomly chosen vector C to give the overall expression for the mutated
vector: C + F(A — B). F is often found have an optimal value between 0.4 and 1.0.

The trial vector is the child of two vectors: the target vector and the mutated vector, and is obtained via a crossover
process; in this work uniform crossover is used. Uniform crossover decides which of the two parent vectors contributes to
each chromosome of the trial vector by a series of D — 1 binomial experiments, where D is the dimension of the problem
i.e. the number of parameters in the model. Each experiment is mediated by a crossover probability C,, (where 0 < C, < 1).
If a random number generated from the uniform distribution on [0,1] is greater than C,, the trial vector takes its parameter
from the target vector, otherwise the parameter comes from the mutated vector.

This process of evolving through the generations is repeated until the population becomes dominated by only a few
low cost solutions, any of which would be suitable. The core of the SADE algorithm is essentially that of DE, the only
real difference being that, in SADE, F and C, are adapted generation by generation in order to arrive at optimal values.
Furthermore, SADE can select between different mutation strategies in addition to the basic DE strategy described above in
order to optimise its performance; the specific additional strategies applied here are the same as those described in [15].

In this case, the SADE algorithm was initialised with a population of randomly selected parameter vectors or individuals.
The parameters were generated using uniform distributions on specified initial ranges. As in all iterative optimisation
schemes, the initial estimates can prove critical; here, estimates based on engineering judgement were used. The masses
in the model were not considered as a problem, as the inertia of the system was considered very likely to be dominated by the
shelves and fixings, it was expected that the true values would be close to the estimate m, given above. For this reason, a short
range [4.5, 6.0] was taken for the initial population. The situation with the stiffness parameters is a little more complicated as
it is not clear what the appropriate boundary conditions are the upright beams connecting the floors. An approximate value
of k« = 5.2 x 10° N/m can be obtained by assuming encastre conditions; however, the true value may vary substantially
from k. if the bolts do not impose a true fixed condition, for example. Because of the uncertainty in the initial physical
estimates of the stiffness, the initial ranges for SADE were taken on roughly an order of magnitude below and above k. i.e.
[5 x 10*,5 x 10°]. Taking into account the values of m, and k. and assuming damping ratios in the vicinity of 0.1 % for
aluminium, the initial ranges for the damping parameters were estimated at [0.1, 10.0], again an order or magnitude below
and above a nominal value of ¢x = 1.0Ns/m.

A population of 100 individuals was chosen for the SADE runs with a maximum number of generations of 200. In order
to sample different random initial conditions for the DE algorithm, ten independent runs were made. The other parameters
chosen used for SADE were a starting value for F of 0.9 and a starting value for C,, of 0.5 (these values proved to be effective
in a number of previous studies; this completes the specification of SADE for the problem of this paper.

Each of the ten runs of the DE algorithm converged to a good solution to the problem in the sense that cost function
values of around 2 % or below were obtained in all cases; the summary results are given in Table 7.1. The best solution gave
a cost function value of 1.591. A visual comparison of the ‘true’ experimental responses and predicted responses for the best
parameter set is given in Fig. 7.4. This comparison is based upon a set of testing data that was distinct from the training data
used to fit the parameters.

The results are interesting. Although there are only small variations in the prediction errors, the coefficients of variation
(standard deviation of estimate/mean of estimate) are quite high for a number of the parameters. This indicates that the
errors are rather insensitive to the parameters. One of the questions usually investigated in the validation of models is this

Table 7.1 Parameter estimates

3 Standard | Coefficient
from ten independent SADE runs

Parameter Best | Maximum | Minimum | Mean deviation | of variation
m 5.144 | 5.228 5.023 5.109 |0.054 0.011
my 5.587 | 5.813 5.558 5.656 |0.076 0.013
ms 5.264 | 5.456 5.264 5,348 0.068 0.013
c 6.681 |10.00 4.725 5.918 |3.290 0.556
c 0.476 | 0.973 0.100 0.312 | 0.304 0.975
c3 3411 | 4.045 0.100 1.423 | 1.493 1.049
ki (x107%) [ 1.156 | 1.219 0.500 0.856 |0.333 0.390
ky (x107°) |5.874 | 6.920 5.333 6.113 0.429 0.070
ki (x107°) [3.126 | 4.374 0.500 2.661 | 1.095 0.411

J 1.591 | 2.021 1.591 1.773 1 0.156 0.088
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question of sensitivity; how is the uncertainty in an outcome (prediction error) related to the uncertainty in the inputs (model
parameter estimates). This is considered in more detail in the following section, where a Bayesian sensitivity analysis is
applied. The insensitivity of the errors in this case is most likely related to the fact that only a small training set is used;
this would normally be a simple matter to deal with at the expense of a little more computational effort; however, this is
not addressed here as the objective of the paper is to look at issues associated with sensitivity and fidelity and the current
situation allows interesting discussion.

7.4 Bayesian Sensitivity Analysis

The Sensitivity Analysis (SA) technique used here is based on a non-parametric probabilistic approach as detailed in [9].
Each uncertain input parameter is represented as a probability distribution, and a Gaussian process emulator (fast running
model or surrogate model) is fitted using multiple runs of the model as dictated by a Design-of-Experiments (DOE). From this
emulator, statistical quantities relating to sensitivity and uncertainty can be inferred directly; for example, output uncertainty
distributions and main effects. Importantly, this requires no additional runs of the original model for each sensitivity measure,
unlike conventional SA methods detailed for example in [14]. Furthermore, the advantage of using Gaussian process
regression is that the uncertainty of the emulator fit is itself quantified, giving the analyst a very pragmatic quantification
of the uncertainty in the data. A very brief summary of the main points of the algorithm will be given, the reader is referred
to the original papers for more details.

7.4.1 Gaussian Process Regression

Any computer model can be regarded as a function of its inputs: f(x). Although this function is deterministic and governed
by known mathematical relationships, it is often of such complexity as to be considered mathematically intractable. From a
practical point of view, f(x) could be regarded as an unknown function, given that one does not know the output for a given
set of inputs until one has actually run the model. If, however, one samples the function (model) at a number of carefully
chosen input points, it is possible to fit a response surface that can predict the output of the model for any point in input
space without having to run the simulation itself. Although the idea of modelling a model (metamodelling) may seem a little
abstract, for simulations that are computationally expensive it is a useful tool, since any approach for uncertainty analysis
requires multiple runs of the model under investigation.

A particular approach to formulating the metamodel or emulator that has gathered interest in recent years is the use
of Gaussian process regression [6, 7, 15]. Gaussian processes are an extension of a multivariate Gaussian probability
distribution. Whereas most forms of regression return a crisp value f(x) for any given x, a Gaussian process returns a
Gaussian probability distribution. Thus for a function, the Gaussian process can be considered as a multivariate Gaussian
distribution, where the dimension of the multivariate distribution can be thought of as the resolution of the function, or the
number of predictive points. In the case detailed here, the resolution need not be specified, since one is not interested in
predicting particular output points, but rather quantities pertaining to the whole range of output space.

Gaussian processes adhere to the Bayesian paradigm, that is, a number of prior assumptions are made about the function
being modelled, and then training data (samples from the model) are used to update and evaluate a posterior distribution
over functions. A key assumption is that the model is a smooth function of its inputs; it is this that allows extra information
concerning the response to be gained at reduced computational cost. No mathematical details will be given here: the reader
is referred to [6, 7, 13]. The important point for the current context is that a model is formed which can estimate accurately
what the cost function J is corresponding to a given set of parameter estimates 6 without integrating the equations of motion
forward in time.

The dependence of the emulator on training data means that some model runs are always required. The advantage of the
Bayesian sensitivity approach is that, typically far fewer runs are needed to train the emulator than would be needed for a
full Monte Carlo sensitivity analysis. To deal with the sampling of training data in as principled manner as possible, ideas
of experimental design are applied and a maximin Latin hypercube design (maximin LHD) generated using the GEM-SA
software [5] is used here.
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7.4.2 Inference for Sensitivity Analysis

Several quantities can be inferred from the GP regression model described above, that are relevant to sensitivity analysis.
Fundamental quantities such as the mean and variance of the output distribution can be evaluated, as well as main effects,
interactions and sensitivity measures for input parameters based on their contribution to output variance [ref].

The results presented here will be for variance and sensitivity indices. Variance-based methods are widely used in
sensitivity analysis. This involves quantifying the proportion of output variance for which individual input parameters are
responsible. In particular, sensitivity can be measured by conditional variance,

Vi = Var{E(J|6;)} (7.3)

which is the expected value of the contribution of the input variable 6; to the output variance i.e. the uncertainty in J.
(Note that this is also commonly known as the main effect index (MEI)). This can be extended to measure conditional
variance of interactions of inputs, i.e. the output variance resulting from co-varying of two parameters 8; and 6;, and so on
for higher order interactions. Although this approach allows detailed insight into the effects of combinations of inputs on
output uncertainty, it can be time-consuming to examine all possible interaction permutations for models with many input
dimensions. An alternative sensitivity measure [4], describes the output variance that would remain if one were to learn the
true values of all inputs except 6;,

Vri = Var(J) — Var{E(J[0_,)} (7.4)

where the notation §_, means the vector of all parameters except ;. This measure, called the total sensitivity index (TSI),
measures the variance caused by an input 6; and any interaction of any order including 6;. It allows a more holistic view
of the uncertainty attributed to each input, but does not give any details as to how it is distributed between main effects and
interactions. Between the MEIs and TSIs, a detailed view of the sensitivities of inputs and their interactions can be gained.
The advantage of the GP regression emulator is that the functional form of the emulator allows the variance and sensitivity
measures to be evaluated as closed form integrals.

7.4.3 Results

As mentioned above the analysis carried out here used the code GEM-SA [5]. In total 200 design points for the Gaussian
process emulator were generated as a Latin Hypercube Maximin design. The input parameter distributions were taken as
uniform over the ranges assuming for the initial populations used for the SADE analysis. Following the regression stage, the
variances and TSIs were computed and the results are given in Table 7.2.

It appears that the main contributors to output variance are stiffnesses, note by far the biggest proportion of output
uncertainty comes from interactions; this makes sense because the things that determine the physics of the response i.e.
natural frequencies and damping ratios are actually combinations of the basic physical parameters: masses, dampings and
stiffnesses.

Table 7.2 Results of Bayesian

A . Parameter | Main effect index | Total sensitivity index
sensitivity analysis

m 1.66 14.49
s 1.59 25.34
s 0.11 0.11
e 0.14 0.15
e 0.80 20.49
e 0.46 6.80
K 15.32 52.04
ks 12.46 58.98
ks 2.59 35.78

Interactions | 69.83 -
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7.5 Discussion and Conclusions

The contribution of this study is to demonstrate two of the tools required for model development and validation in structural
dynamics. The focus of the SADE system identification exercise detailed in Sect. 7.3 is on improving fidelity-to-data through
test-analysis correlation. The method was applied here to the parameters of a linear model using data acquired from the
experimental structure, with the results indicating that it is possible to identify a physically feasible set of parameters with
a good level of consistency between independent executions of the algorithm. The prediction errors of the resulting model
were in this case evaluated using testing data distinct from the training data, although drawn from the same experiment. The
derived model was found to perform well in this case although—as expected—the error metric was observed to be higher for
the testing data than for the training data. The next step for this work is to evaluate the validity of the derived model form for
more challenging scenarios, discussed below.

The second part of the study focused on developing a better understanding the model through application of sensitivity
analysis. In this case a global method for sensitivity analysis was adopted based upon Bayesian inference. A particular
feature of the structure under study is that a major component of its dynamic behaviour is driven by the interaction between
it’s physical parameters (masses, dampings and stiffnesses), which is effectively revealed by the global sensitivity analysis
applied here. In one sense the application of SA methods allows an evaluation of the robustness-to-uncertainty of the model
as it establishes what the expected impact of variability on the model parameters would be on the model predictions. It could
be argued that such an analysis would be more usefully used as a precursor to a calibration study as it would allow those
parameters and interactions to which the predictions are most sensitive to be identified. However, this would be contingent
upon feasible ranges for the parameters having already been specified. In this study those ranges arose from the system
identification step.

Ultimately the study serves as a necessary step towards developing validation methods for nonlinear systems using the
introduced experimental testbed. The next stage for the work is to complete the specification of the validation exercise for the
structure in its linear state, then explicitly address the complications that arise once nonlinearity is introduced. Completing the
validation exercise will involve specifying a criteria for accepting the model as ‘valid’, then evaluating the model performance
against this criteria for a series of more demanding validation experiments, for example under structural modification. For the
nonlinear system, there is additional interest in investigating whether validating a model based upon its ability to accurately
predict time domain responses is a sufficient basis for ascribing credibility to its ability to predict responses in the frequency
domain.
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