
Chapter 15
A Fast Maximum Likelihood-Based Estimation of a Modal Model

Mahmoud El-kafafy, Giampiero Accardo, Bart Peeters, Karl Janssens, Tim De Troyer, and Patrick Guillaume

Abstract In this paper, the ML-MM estimator, a multivariable frequency-domain maximum likelihood estimator based
on a modal model formulation, will be represented and improved in terms of the computational speed and the memory
requirements. Basically, the design requirements to be met in the ML-MM estimator were to have accurate estimate for
both of the modal parameters and their confidence limits and, meanwhile, having a clear stabilization chart which enables
the user to easily select the physical modes within the selected frequency band. The ML-MM method estimates the modal
parameters by directly identifying the modal model instead of identifying a rational fraction polynomial model. In the ML-
MM estimator, the confidence bounds on the estimated modal parameters (i.e., frequency, damping ratios, mode shapes, etc.)
are derived directly by inverting the so-called Fisher information matrix and without using many linearization formulas that
are normally used when identifying rational fraction polynomial-based models. Another advantage of the ML-MM estimator
lies in its potential to overcome the difficulties that the classical modal parameter estimation methods face when fitting an
FRF matrix that consists of many (i.e., 4 or more) columns, i.e., in cases where many input excitation locations have to be
used in the modal testing. For instance, the high damping level in acoustic modal analysis requires many excitation locations
to get sufficient excitation of the modes. In this contribution, the improved ML-MM estimator will be validated and compared
with some other classical modal parameter estimation methods using simulated datasets and real industrial applications.
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15.1 Introduction

Over the last decades, a number of algorithms have been developed to estimate modal parameters from measured frequency
or impulse response function data. A very popular implementation of the frequency-domain linear least squares estimator
optimized for the modal parameter estimation is called Least Squares Complex Frequency-domain (LSCF) estimator [1]. The
LSCF estimator uses a discrete-time common denominator transfer function parameterization. In [2], the LSCF estimator is
extended to a poly-reference case (pLSCF). The pLSCF estimator uses a right matrix fraction description (RMFD) model.
LSCF and pLSCF estimators were optimized both for the memory requirements and for the computation speed. The main
advantages of those estimators are their speed and the very clear stabilization charts they yield even in the case of highly
noise-contaminated frequency response functions (FRFs). Regardless of their very clear stabilization charts, these estimators
have two main drawbacks. The first drawback is that the damping estimate is not always reliable where it decreases with
increasing the noise level, and this situation becomes worse for the highly damped and weakly excited modes [3]. A second
drawback is that the confidence bounds on the estimates are unavailable. Although these intervals can be constructed after
the estimation as shown in [4, 5], these estimates are always higher than the maximum likelihood estimator (MLE). LSCF
and pLSCF estimators are essentially deterministic curve fitting algorithms in which the estimation process is achieved
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without using information on the statistical distribution of the data. By taking knowledge about the noise on the measured
data into account, the modal parameters can be derived using the so-called frequency-domain maximum likelihood estimator
(MLE) with significant higher accuracy compared to the ones developed in the deterministic framework. MLE for linear time
invariant systems was introduced in [6]. A multivariable frequency-domain maximum likelihood estimator was proposed in
[1] to identify the modal parameters together with their confidence intervals where it was used to improve the estimates that
are initially estimated by LSCF estimator. In [7], the poly-reference implementation for MLE was introduced to improve
the starting values provided by pLSCF estimator. Both of the ML estimators introduced in [1] and [7] are based on a
rational fraction polynomial model, in which the coefficients are identified. The modal parameters are then estimated from
the identified coefficients in a second step. In these estimators, the uncertainties on the modal parameters are calculated from
the uncertainties on the estimated polynomial coefficients by using some linearization formulas. These linearization formulas
are straightforward when the relation between the modal parameter and the estimated coefficients is explicitly known but
can be quite involved for the implicit case. Moreover, they may fail when the signal-to-noise ratio is not sufficiently large
[8]. In [9, 10], a non-linear least squares (NLS) estimation method based on the modal model formulation is introduced. The
Gauss-Newton method is used to solve the NLS problem and the Multivariate Mode Indicator Function (MMIF) is used to
generate initial values for the modal parameters of the modal model.

Recently, a multivariable frequency-domain modal parameter estimator called ML-MM [11–13] has been introduced. The
key challenges behind introducing the ML-MM estimator were to keep the benefit of the well-known Polymax estimator
while giving other additional features. The benefit of the Polymax estimator that the ML-MM estimator keeps is the
construction of a very clear stabilization diagram in a very fast way. The other additional features that ML-MM estimator
adds are the highly accurate modal parameters it estimates together with their confidence bounds. This method belongs to
the class of maximum likelihood-based estimation techniques. Taking into account the uncertainty on the measurements,
the ML-MM estimator estimates the modal parameters together with their confidence bounds by directly identifying the
modal model in a maximum likelihood sense. In the ML-MM method, the Gauss-Newton method together with Levenberg-
Marquardt loop is used to solve a NLS problem. Using Levenberg-Marquardt loop during the iterations forces the ML-MM
cost function to converge. Identifying directly the modal model instead of a rational fractional polynomial model gives the
advantage of having the confidence bounds on the estimated modal parameters directly without using linearization formulas
which have to be used to extend the uncertainty from the estimated polynomial coefficients to the estimated modal parameters
in case of identifying a rational fractional polynomial model. Another advantage found of the ML-MM estimator lies in its
potential to overcome the difficulties that the classical modal parameter estimation methods face when fitting an FRF matrix
that consists of many (i.e., 4 or more) columns, i.e., in cases where many input excitation locations have to be used in the
modal testing. For instance, the high damping level in acoustic modal analysis requires many excitation locations to get
sufficient excitation of the modes [14]. In this contribution, the ML-MM method will be represented, including an algorithm
variant that significantly speeds up the execution of the method. The fast implementation will be validated and compared to
the basic implementation of the method using simulated examples and industrial applications cases.

15.2 Maximum Likelihood Estimation Based on the Modal Model (ML-MM)

15.2.1 The Basic Implementation of the ML-MM Estimator

In this section, the theoretical formulation of the ML-MM estimator will be introduced. Assuming the different frequency
response functions (FRFs) to be uncorrelated the (negative) log-likelihood function reduces to [15, 16]

KML�MM .�/ D
NoX

oD1

NfX

kD1
Eo .�; !k/E

H
o .�; !k/ (15.1)

with Nf the number of the frequency lines, No the number of the measured responses (outputs), ()H the complex conjugate
transpose of a matrix, !k the circular frequency, � the model parameters vector, and Eo(� ,!k) the error equation corresponds
to the oth output degree of freedom (DOF) as a row vector given as follows:
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with Ho .!k/ 2 C
1�Ni the measured FRFs, var .Ho .!k// 2 R

1�Ni the variance of the measured FRFs, and OHo .�; !k/ 2
C
1�Ni the FRFs represented by the displacement-over-force modal model formulation written as follows:
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with OH .�; !k/ 2 C
No�Ni is the FRFs matrix with No outputs and Ni inputs, Nm is the number of the identified modes,

 r 2 C
No�1 the rth mode shape, �r the rth pole, sk D j!k , ()* stands for the complex conjugate of a complex number,

Lr 2 C
1�Ni the rth participation factor, LR 2 C

No�Ni and UR 2 C
No�Ni the lower and upper residual terms. The model

parameters vector � D �
� o �LURo �L ��

�T
is a column vector containing all the parameters of the modal model represented

by Eq. 15.3. � o and �LURo are all the mode shapes elements, lower and upper residuals term elements correspond to output
o. � o , �LURo , �L, and �� are written as follows:

� o D Œ o1  o2 : : : :: oNm� ; �LURo D ŒLRo1 : : : LRoNi URo1 : : : :URoNi � ;

�L D ŒL1 L2 : : : :LNm� ; �� D Œ�1 �2 : : : :�Nm� (15.4)

The maximum likelihood estimates of � are given by minimizing the ML-MM cost function presented by Eq. 15.1 using
Gauss-Newton optimization algorithm together with Levenberg-Marquardt approach to ensure the convergence. The Gauss-
Newton iterations are given by

(a) solve
�
J Tm Jm

	
vec .ım/ D �J Tm Em for vec(ım)
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with vec(.) the column-stacking operator, Jm D @E.�m/

@�m
2 R

2NiNf No�2Nm.NoCNi /C4NiNo is the Jacobian matrix at iteration

m and vec .ım/ 2 R
2Nm.NoCNi /C4NiNo�1 are the perturbations on the parameters. To have a relatively fast and numerically

stable implementation, the Jacobian matrix Jm is written in the following (well-structured sparse form):
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with �o 2 R
2NiNf �2.NmC2Ni / the error derivatives with respect to the mode shapes and the residual terms for output o,

ˆLo 2 R
2NiNf �2Nm.Ni�1/ is the error derivative with respect to the participation factors for output o and ˆ�o 2 R

2NiNf �2Nm
is the error derivative with respect to the poles for output o. Taking into account the structure of that Jacobian matrix, the
normal equation,
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The sub-matrices in Eq. 15.7 are given as following:
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The major gain in the calculation time comes from the use of the structure of the normal equations. Using some elimination
and substitution procedures yields to
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Solving Eq. 15.10 leads to the update of the participation factors elements and the poles, while the update of the mode shapes
and residual terms elements are obtained by substitution of Eq. 15.10 into Eq. 15.9. In this way, the direct inversion of the full
matrix (JT

mJm) can be avoided leading to significant reduction in the calculation time. To derive the uncertainty (confidence)
bounds of the estimated modal parameters, the approximation given by [6] can be used as follows:

COV . ;LR;UR;L; �/ � �
J T J

��1
(15.13)

J is the Jacobian matrix evaluated in the last iteration step of the Gauss-Newton algorithm. Taking into account the structure
of the Jacobian matrix and by using the matrix inversion lemma [17], the uncertainties on the poles and the participation
factors, can be derived as follows:

COV .L; �/ D M�1 (15.14)

where M is given by Eq. 15.11. The uncertainty bounds of the estimated mode shapes and lower and upper residual terms
can be derived as follows:
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Since the presented ML-MM estimator is basically a non-linear optimization algorithm and thus iterative, it requires good
starting values for all the entire modal parameters of the modal model (see Eq. 15.3). These starting values of all the modal
parameters are obtained by applying the well-known Polymax estimator to the measured FRFs. The Polymax estimator is
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Fig. 15.1 Schematic
representation of the basic
ML-MM estimator
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selected since it provides a very clear stabilization chart in a fast way. This will help the user to select the really physical
vibration modes in the selected frequency band which in turns leads to obtain good staring values for all the modal parameters
to start the iterative ML-MM estimator. Figure 15.1 shows a schematic description of the basic ML-MM estimator.

15.2.2 A Fast Implementation of the ML-MM Estimator

In this section, an alternative implementation of the ML-MM estimator will be discussed. The aim of this alternative
implementation is to speed up the implementation of the algorithm. In Sect. 15.2.1, the basic implementation, in which
all the modal parameters (i.e., mode shapes, participation factors, poles, upper and lower residual terms) of the modal model
are simultaneously updated at each iteration of the Gauss-Newton optimization, is introduced. In Eq. 15.3, when the poles �r

and the participation factors Lr are given, it is clear that the mode shapes  r and the lower and upper residuals (LR, UR) can
be calculated easily in a linear least squares sense. This can be done by writing Eq. 15.3 for all the values of the frequency
axis of the FRF data, and basically the unknown parameters (i.e.,  , LR, UR) are then found as the least-squares solution
of these equations. This approach is basically what so-called the LSFD estimator [18, 19]. The size of the mode shapes
vector and the lower and upper residual matrices is mainly dependent on the number of outputs No, and in modal testing the
number of outputs (responses) No is normally much higher than the number of inputs (excitation points) Ni. So, one idea
to significantly decrease the computational time of the ML-MM estimator is to exclude the mode shapes and the lower and
upper residuals from the updated parameters vector � D �

� �LUR �L ��
�T

. This can be done as follows (see Fig. 15.2):

• At each iteration of the Gauss-Newton algorithm

1. Only the participation factors �L and the poles �� are updated
2. The mode shapes and the lower and the upper residuals are calculated in linear least-squares sense using the LSFD

estimator.

This will lead to huge reduction in the number of columns of the Jacobian matrix, hence the size of the normal equations
matrix. Now, the Jacobian matrix Jm D @E�.L;�/m=@�.L;�/m 2 R

2NiNf No�2Nm.NiC1/ is the derivative of the equation error
with respect to the participation factors and the poles. It can be seen that the number of the columns of the Jacobian matrix
has been reduced to 2Nm .Ni C 1/ columns compared to the previous one which has 2Nm .No � 1/C 4NiNo columns. The
new Jacobian matrix is given as:
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Fig. 15.2 Schematic
representation of the fast
ML-MM estimator
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with �Li 2 R
2NoNf �2Nm the equation error derivatives with respect to the participation factors of all the identified modes

for the input location i where i D 1; 2; ::Ni and ˆ�Li 2 R
2NoNf �2Nm is the equation error derivative with respect to the

poles of all the identified modes for input i. Taking into account the structure of that Jacobian matrix, the reduced normal
equations,
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the error vector corresponds to input i and all the outputs at all the frequency lines, �Li 2 R
2Nm�1 a vector contains all the

perturbations on the real and imaginary parts of the participation factors correspond to input i and all the identified modes,
and �� 2 R

2Nm�1 a vector contains the perturbations on the real and imaginary parts of the identified poles. Using some
elimination and substitution procedures yields the perturbations on the poles and the participation factors respectively as
follows:
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Once these perturbations are calculated, the poles and the participation factors are updated to be used for a new iteration.
Before moving to the new iteration, the updated poles and participation factors will be used to calculate the mode shapes and
the lower and upper residuals in a linear least-squares sense using the LSFD estimator. Since in this fast implementation of
the ML-MM estimator the mode shapes and the residual terms are assumed to be certain parameters (i.e., they are assumed to
have no errors hence they are not updated during the Gauss-Newton iterations), the uncertainty bounds on those parameters
cannot be retrieved. So, only the uncertainty bounds on the poles and the participation factors will be retrieved. These
uncertainty bounds on the poles and the participation factors can be calculated using Eq. 15.13 substituting the Jacobian
matrix with the one represented in Eq. 15.16. Taking into account the structure of the Jacobian matrix and by using the
matrix inversion lemma, the uncertainties (variances) on the poles and participation factors can be derived respectively as
follows:
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NiX
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T �Li � SL�i

H
.RLi /

�1SL�i

#�1
(15.20)
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�1 C .RLi /
�1 (15.21)

15.3 Validations and Discussion

In this section, both implementations of the ML-MM estimator (i.e., basic and fast ones) will be validated and compared
to some other estimators like the pLSCF (Polymax), polyreference Least-squares Complex Exponential (pLSCE) estimator,
and the Maximum Likelihood common denominator polynomial model –based (ML-CDM) estimator. Polymax [2, 20] is a
linear-least squares frequency domain estimator, which fits a right matrix fraction description (RMFD) polynomial model to
the measured FRFs. Then, the poles and the participation factors are derived from the optimized denominator coefficients,
while the mode shapes and the lower and upper residuals are estimated in a second step using the LSFD estimator [15.18].
The pLSCE estimator [21–23] is a linear least-squares time-domain estimator, which uses the impulse response function
to retrieve the poles and the participation factors and then the mode shapes and the residual terms can be estimated in a
second step by fitting the modal model equation (see Eq. 15.3) to the measured FRFs using the pre-estimated poles and the
participation factors. The ML-CDM estimator [1] is a frequency-domain estimator fits a common-denominator polynomial
model to the measured FRFs in a non-linear least squares sense using Gauss-Newton algorithm. The poles are retrieved
as the roots of the denominator coefficients, and the mode shapes together with the participation factors are obtained by
decomposing the residues matrices to rank-one matrices using singular value decomposition (SVD). These residues matrices
are estimated by fitting the pole-residue model to the measured FRFs in a linear least-squares sense. Both ML-CDM and
ML-MM estimator are maximum likelihood estimators. But the model which is being used to fit the measured FRFs is
different. ML-MM, as it is mentioned before, fits directly the modal model to the measured FRFs, while ML-CDM fits a
common-denominator polynomial model. Since both ML-MM and ML-CDM are maximum likelihood estimators, both of
them can deliver the uncertainty bounds on the estimated modal parameters as long as the equation error is weighted by the
variance of the measured FRFs. So, the comparison between the ML-MM and the ML-CDM will be extended to include also
the predicted uncertainty while for the Polymax and the pLSCE estimators the comparison will be done in terms of the bias
error and the root mean squares error (RMSE). So, in the following sections these estimators will be compared to each other
using simulated FRFs and some real industrial applications.

15.3.1 Seven DOF System with Mixed Noise [White and Relative Noise]

In this section, simulated FRFs of a 7-DOF system will be used to validate and compare the proposed ML-MM estimator
with the other estimators (i.e., Polymax, pLSCE, and ML-CDM). The first column of the FRF matrix will be used (i.e.,
No D 7; Ni D 1). The exact FRFs are contaminated with a combination of uncorrelated white and relative noise. At
each frequency line, the noise variance is taken as a summation of constant variance, which corresponds to the white noise
component, and a relative variance that corresponds to the relative noise component. Figure 15.3 shows the driving point
FRF together with the noise standard deviation. To perform Monte-Carlo simulations, 500 disturbed data sets have been
generated.
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Fig. 15.3 The noisy FRFs (gray
dots), the exact FRFs (thin-black
line), and the FRFs standard
deviation (thick-gray line) of the
7-DOF system
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Fig. 15.4 The absolute value of
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Figure 15.4 shows the absolute value of the bias error on the estimated frequency and damping estimates. The order of
the different methods in the figure legend corresponds to the order of the bars in the plot. From Fig. 15.4, it can be seen that
the ML-MM estimator improves the frequency and damping estimates that are initially estimated by the pLSCF (PolyMAX)
estimator. It can be seen that the ML-MM gives the lowest bias error for, almost, all the identified modes compared with the
other estimators, and this is for the frequency and the damping estimates.

In terms of the RMSE of the frequency and damping estimates, Fig. 15.5 (The order of the different methods in the
figure legend corresponds to the order of the bars in the plot.) shows that the performances of both ML-CDM and ML-MM
estimators are very comparable. However, one can note that the ML-MM estimator gives a lower RMSE of the frequency
and damping for the last two modes (i.e., 6th and 7th modes). These modes are not well excited compared to the other modes
(examine Fig. 15.3, there are two peaks above 35 Hz correspond to the 6th and 7th modes). From Figs. 15.4 and 15.5, we
can sum up that the ML-MM estimator gives estimates with lower bias error and lower variance in comparison with the other
estimators under test.

Concerning the predicted uncertainty bounds of the estimated modal parameters, Fig. 15.6 compares the predicted
standard deviation (std) (see Eq. 15.14 or 15.20 for the ML-MM estimator) to the sample standard deviation on the resonance
frequency and the damping ratio of the 1st mode. In this figure, the predicted std is presented by the dots while the sample std
is presented by the gray solid line. From this figure, one can see that the ML-CDM and the ML-MM estimators show a good
agreement between the predicted and the sample (true) standard deviation on both the frequency and damping estimate.
Although both ML-MM and ML-CDM show good agreement between the predicted and the sample std, the ML-MM
estimator predicts the uncertainty bounds with a lower variability in comparison with the ML-CDM estimator (i.e., the
black dots for the ML-MM are more clustered together in comparison with the ones for the ML-CDM).
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Fig. 15.5 The RMSE on the
estimated resonance frequencies
(top) and the estimated damping
ratios (bottom) (The order of the
different methods in the figure
legend corresponds to the order
of the bars in the plot.)
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Fig. 15.6 Monte-Carlo simulations results of the 7-DOF system: comparison between the predicted (black dots) and sample (gray solid line)
standard deviation on the frequency (left) and damping ratio (right) of the first mode: ML-CDM (top), and ML-MM (bottom)

In fact, this higher variability on the uncertainty prediction which the ML-CDM shows comes from the fact that it uses
some complex linearization formulas to propagate the uncertainty from the estimated polynomial coefficients to the modal
parameters (i.e., from the denominator coefficients to the frequency and damping estimates), which is not the case for the
ML-MM estimator. The ML-MM estimator estimates the uncertainty on the modal parameters directly without the need to
use these linearization formulas since it fits directly the modal model (not polynomial model) to the measured data. This
is an advantage of the ML-MM estimator where the uncertainty on all the model parameters can be estimated in a direct
and simple way compared with the polynomials-based estimators like the ML-CDM estimator. For the ML-MM estimator,
the results shown in Fig. 15.6-bottom confirm the correctness of Eq. 15.14 to predict the uncertainty bounds on the poles,
hence the frequency and damping estimates. Equation 15.15 shows that the ML-MM estimator can deliver the uncertainty
bounds on the estimated mode shapes as well. To check the validity of this prediction, the predicted std and the sample std
over the 500 Monte-Carlo runs are compared to each other for the estimated 7th mode shape elements, and these results
are shown in Fig. 15.7. The relative predicted standard deviation presented with black dots is not in full agreement with
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Fig. 15.7 Monte-Carlo
simulations results of the 7-DOF
system: comparison between the
relative predicted (black dots) and
relative sample (gray solid line)
standard deviation of the seventh
mode shape elements obtained by
the ML-MM estimator
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Fig. 15.8 Cost function
convergence and the
computational time: Basic
ML-MM (left) and Fast ML-MM
(right)
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the relative sample standard deviation presented by a gray solid line, but they are still quit close to each other. Although
it can be seen that the relative predicted standard deviation is slightly underestimated, by examining the relative bias error
on the mode shapes it was found that the relative bias error of the mode shape elements is within the predicted 68 % (˙� )
confidence bound, which can be considered as an indicator for the correctness of this predicted confidence bounds. All the
ML-MM’s results shown previously have been obtained using the basic (slow) implementation of the method. To validate
the fast implementation introduced in section 2.2, the fast ML-MM will be compared to the basic (slow) implementation in
terms of the computational speed, the bias error, and the predicted confidence bounds on the estimated resonance frequencies
and damping ratios.

Figure 15.8 shows the cost function convergence and the computational time taken to reach convergence for both of
the basic ML-MM and the fast ML-MM estimators. It can be seen that both implementations converge to the same value.
Although both of them converge to almost the same value, the fast ML-MM is indeed faster since it takes only 0.98 s while
the basic ML-MM takes 1.19 s. The small difference in the computational time is due to the fact that the system under test
is very simple (No D 7; Ni D 1;Nm D 7). Concerning the accuracy of the estimated parameters, Table 15.1 shows that
the fast implementation of the ML-MM estimator leads to almost the same estimates’ accuracy as the ones obtained by the
basic implementation where it can be seen that the bias error on the resonance frequency and damping ratios of the basic
ML-MM and the fast ML-MM are very comparable. Figure 15.9 shows that the fast implementation gives a good prediction
for the uncertainty on the resonance frequencies and the damping ratios. From this figure, one can see that there is a good
agreement between the predicted standard deviation (black dots) and the sample standard deviation (solid line) and this is
for the frequency and the damping estimate. Table 15.2 shows the mean value (over 500 Monte-Carlo runs) of the predicted
standard deviation on the frequency and the damping estimates for both implementations of the ML-MM estimators (i.e.,
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Table 15.1 Fast ML-MM versus
basic ML-MM in terms of bias
error

Bias error on resonance
frequency �1�3, Hz

Bias error on damping
ratio �1�3, %

Mode Basic ML-MM Fast ML-MM Basic ML-MM Fast ML-MM

1 �0.0095 �0.0095 �0.1278 �0.1277
2 0.0072 0.0073 �0.1455 �0.1455
3 0.0393 0.0393 0.1144 0.1141
4 0.1118 0.1131 0.1207 0.1206
5 0.0062 0.0066 0.1456 0.1478
6 �0.1389 �0.0624 �0.0344 0.5235
7 0.1028 0.0715 0.4576 0.7750

Fig. 15.9 Monte-Carlo
simulations results of the 7-DOF
system: comparison between the
predicted (black dots) and sample
(gray solid line) standard
deviation on the frequency (left)
and damping ratio (right) of the
first mode obtained from the fast
implementation of the ML-MM
estimator 0 100 200 300 400 500
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Table 15.2 Fast ML-MM versus
basic ML-MM in terms of
predicted uncertainty bounds

Mean value of the predicted std
on resonance frequency, Hz

Mean value of the predicted std
on damping ratio, %

Basic ML-MM Fast ML-MM Basic ML-MM Fast ML-MM

1 0.000211 0.000210 0.003298 0.003275
2 0.000541 0.000524 0.003604 0.003496
3 0.000683 0.000642 0.003666 0.003441
4 0.001433 0.001213 0.005112 0.004355
5 0.001237 0.001065 0.004194 0.003602
6 0.003924 0.002387 0.010730 0.006606
7 0.002647 0.001712 0.007255 0.004639

the basic and the fast implementations). In general, one can see that the fast ML-MM delivers estimates with a bit lower
uncertainty bounds compared to the basic ML-MM. This agrees with the fact that adding additional parameters to the model
increases the attainable uncertainty on the estimated model parameters [24]. In the basic ML-MM implementation, adding
the mode shapes and the lower and upper residuals as uncertain parameters increases the uncertainty bounds on all the modal
model’s parameters. This explains why the basic ML-MM leads to estimates with higher uncertainty bounds compared to
the fast ML-MM.

15.3.2 Flight Flutter Testing

In this section, the proposed ML-MM estimator will be validated and compared with some other estimators (i.e., the pLSCF
(Polymax), the pLSCE and the ML-CDM estimators) using experimentally measured FRFs that were measured during a
business jet in-flight testing. These types of FRFs are known to be highly contaminated by noise. During this test, both the
wing tips of the aircraft are excited during the flight with a sine sweep excitation through the frequency range of interest by
using rotating fans. The forces are measured by strain gauges. Next to these measurable forces, turbulences are also exciting
the plane resulting in rather noisy FRFs. Figure 15.10 shows some typical coherence functions and the corresponding FRFs,
which clearly show the noisy character of the data. During the flight, the accelerations were measured at nine locations while
both the wing tips were excited (two inputs).

The different estimators (i.e., Polymax, pLSCE, ML-CDM, basic ML-MM and fast ML-MM) are applied to the data
to extract the modal parameters of the modes lie within the selected band. Figure 15.11 shows the stabilization charts
constructed by the Polymax and the time-domain pLSCE estimators. It can be seen that Polymax gives extremely clear
stabilization chart in comparison to the pLSCE. The very clear stabilization char that Polymax yields was the main reason
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Fig. 15.11 The stabilization chart constructed for the business jet data set: Polymax (left) and pLSCE (right)

Fig. 15.12 The convergence of
the ML-MM cost function during
the iterations and the
computational time taken for 30
iterations: basic ML-MM (left)
and fast ML-MM (right)
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behind selecting Polymax as starting values generator for the ML-MM estimator (see Figs. 15.1 and 15.2). The cost function
convergence and the computational time for both the basic ML-MM and the fast ML-MM estimators are shown in Fig. 15.12.
One can see that both of them converge to almost the same value, while the computational time of the fast ML-MM is less
than the one of the basic ML-MM. A comparison between the different estimators was made on basis of the estimated
modal model. An easy but very popular way to check the quality of the estimated modal model is to look to the quality
of the fit between the measured FRFs and the modal model synthesized FRFs. Figure 15.13 shows a comparison between
all the estimators in terms of the quality of the fit between one of the measured FRFs and the corresponding synthesized
one. It can be seen that the ML-CDM estimator resulted in perfect fit of the pole-residues model (i.e., ML-CDM (Residue
matrices)). Nevertheless this common denominator based algorithm loses the fit quality by converting the pole-residue model
to the modal model to obtain the mode shapes and the participation factors by reducing the residues to a rank-one matrix
using singular value decomposition (SVD) (i.e., ML-CDM (SVD on residue matrices)). This degradation on the fit quality
is clear in Fig. 15.13. It can be seen from Fig. 15.13 that both ML-MM estimators (i.e., basic and fast) outperform the linear
least-squares estimators (pLSCF and pLSCE), and the ML-CDM (SVD on residue matrices) while keeping the residues
as rank-one matrices (i.e., multiplication of the mode shape column vector and the participation factors row vector, see
Eq. 15.3).

The MAC between the mode shapes of the basic and the fast ML-MM estimators is shown in Fig. 15.14. It shows that
there is a good agreement between the mode shapes estimated by each technique. Some of the mode shapes estimated by
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Fig. 15.13 A comparison
between the measured (thin-gray
line) and the synthesized
(thick-black line) FRF (the shown
FRF measured from a sensor at
the tail of the aircraft)
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Fig. 15.14 MAC between the
basic ML-MM and the fast
ML-MM

the fast ML-MM estimater are shown in Fig. 15.15. Since the variances of the measured FRFs were available in this data
set, this enabled us to get, from the ML-MM estimator, the uncertainty bounds on the estimated resonance frequencies and
damping ratios. The uncertainty bounds on the resonance frequencies and the damping ratios together with their uncertainty
bounds estimated by both the basic and the fast ML-MM are shown in Table 15.3. Figure 15.16 shows the sum of the
measured FRFs together with the location of the selected modes, and the sum of the synthesized FRFs. The first remark we
can draw from Table 15.3 is that the estimates of the fast ML-MM are estimated with lower uncertainty bounds compared
with the ones estimated by the basic ML-MM. As it was noticed and discussed in the simulation part (Sect. 15.3.1), having
lower uncertainty bounds using the fast ML-MM agrees with the fact that decreasing the number of the uncertain parameters
in the model decreases the uncertainty bounds on those parameters [24]. Secondly, it can be seen that modes 1,3 and 9,
which are very dominant and have large contribution to the FRFs sum compared to the other modes, are estimated with
lower uncertainty bounds either by the basic ML-MM or the fast ML-MM, and this is in particular for the frequency
estimates. However, the basic and the fast ML-MM give the damping estimate of the first mode with higher uncertainty
bounds compared to some other modes. The reason behind that could be at the first peak there are two very close modes
and normally the estimation of the very close modes is accompanied with high level of uncertainty. Moreover, this mode
is estimated with a relatively high level of damping. Also, it can be noticed that modes 2, 7, and 10 are estimated with a
relatively higher uncertainty bounds which agrees with the fact that those modes do not have a large contribution to the FRF
sum indicating that they are weakly excited/observed.
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Fig. 15.15 Some mode shapes estimated by the Fast ML-MM estimator (from 1 to 8: increasing the natural frequency)

Table 15.3 Estimated resonance
frequencies and damping ratios
together with their predicted
standard deviation

Predicted standard deviation on resonance
frequencies ˙ ¢ Hz (frequency values are
hidden for confidentiality reason)

Estimated damping ratios together with
their predicted standard deviation ˙ ¢ %

Basic ML-MM Fast ML-MM Basic ML-MM Fast ML-MM

1 ˙0.0061 ˙0.0038 8.0988 ˙0.1147 8.3960 ˙0.0662
2 ˙0.0207 ˙0.0049 8.0942 ˙0.2443 7.7829 ˙0.0615
3 ˙0.0085 ˙0.0033 3.2759 ˙0.0989 3.5581 ˙0.0386
4 ˙0.0169 ˙0.0044 3.7907 ˙0.1739 3.4158 ˙0.0423
5 ˙0.0182 ˙0.0059 6.1909 ˙0.1267 5.1761 ˙0.0554
6 ˙0.0192 ˙0.0070 4.7593 ˙0.1971 5.6421 ˙0.0650
7 ˙0.0180 ˙0.0078 2.6941 ˙0.1410 2.2237 ˙0.0609
8 ˙0.0142 ˙0.0047 6.1545 ˙0.0920 5.7802 ˙0.0331
9 ˙0.0050 ˙0.0025 3.4552 ˙0.0332 3.3909 ˙0.0159
10 ˙0.0171 ˙0.0076 5.7227 ˙0.0976 6.3655 ˙0.0423

Fig. 15.16 Sum of the FRFs
with the Fast ML-MM fit
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Fig. 15.17 Stabilization chart constructed by Polymax (top) and pLSCE (bottom) for measurements on a fully trimmed car

Table 15.4 Mean fitting error
and correlation between the
synthesized and measured FRFs
for the fully trimmed car

Mean fitting
error %

Mean fitting
correlation %

pLSCF (PolyMAX) 10.01 93.24
pLSCE 9.43 93.51
ML-CDM1 Using directly the residue matrices 1.72 99.11
ML-CDM2 Modal model (Applying SVD on residue

matrices to have the mode shapes and
participation factors)

34.40 78.90

Basic ML-MM 7.61 95.01
Fast ML-MM 7.49 95.09

15.3.3 Fully Trimmed Car

In automotive engineering, experimental modal analysis (EMA) is considered as a “commodity” tool and accurate models
are needed for modelling and finite element updating. A typical example of a challenging modal analysis application is the
structural analysis of a trimmed car body. In this example, data from a fully trimmed car was used. The accelerations of
the fully equipped car were measured at 154 locations, while four shakers were simultaneously exciting the structure. This
gives a total of 616 FRFs. More details about this test setup can be found in [25]. The different estimators under test are
applied to the measured FRFs to identify the modes within the frequency band [3.30 Hz]. In Fig. 15.17, the stabilization
charts constructed by the Polymax and the time-domain pLSCE estimators are shown. Indeed, as we saw before in the in-
flight data set Polymax outperforms the time-domain pLSCE in terms of the clarity of the stabilization chart. In Table 15.4,
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Fig. 15.18 Comparison between
the modal models obtained by
different estimators under test for
one FRF of the fully trimmed car
data set (Measured FRF: dotted
gray line Synthesized FRF: solid
black line)
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Figs. 15.18 and 15.19 a comparison between the different estimators is presented in terms of the quality of the fit between the
measured (dotted-gray line) and the synthesized (solid-black line) FRFs. The linear least-squares estimators (i.e., pLSCF and
pLSCE) give a comparable mean fitting error and correlation. For the common denominator polynomial –based maximum
likelihood estimator (ML-CDM), the quality of the fitting is dramatically degraded by reducing the residue matrices to a
rank-one matrix to get the mode shapes and the participation factors. Comparing the degradation of the fitting quality of the
ML-CDM in this case to the case of the previous example (i.e., inflight data set in Sect. 15.3.2), it seems that the degradation
of the fitting quality by transferring common denominator model into modal model tends to be more problematic for the
highly-damped case, e.g., fully trimmed car.

The basic ML-MM and the fast ML-MM give very comparable results, and they outperform the other estimators in terms
of the quality of the fit between the measured and the synthesized FRFs. Figure 15.20 shows the cost function convergence
and the computational time for both the basic and the fast ML-MM estimators. With this relatively huge data set (Ni D
4; No D 154), one can see clearly the difference in the time taken by each implementation. The time taken by the fast
ML-MM is almost 1/4 the time taken by the basic ML-MM. Figure 15.21 shows that there is a good agreement between the
mode shapes estimated by both the basic ML-MM and the fast ML-MM. The resonance frequencies and damping ratios of
the estimated modes are shown in Table 15.5 while some typical mode shapes estimated by the fast ML-MM estimator are
shown in Fig. 15.22.

15.3.4 Acoustic Modal Analysis of a Car Cavity

This experimental case concerns the cabin characterization of fully trimmed sedan car (see Fig. 15.23) using acoustic modal
analysis. The acoustic modal analysis of a car cavity (cabin) is, in general, accompanied by using many excitation sources
(up to 12 sources in some cases) and the presence of highly-damped complex modes [10, 14]. Due to the high level of the
modal damping in such application, the many excitation locations are required to get sufficient excitation of the modes across
the entire cavity. It has been observed that the classical modal parameter estimation methods have some difficulties in fitting
an FRF matrix that consists of many (i.e., 4 or more) columns, i.e., in cases where many input excitation locations have been
used in the experiment [10, 14].
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Fig. 15.19 Comparison between
the modal models obtained by
different estimators under test for
one FRF of the fully trimmed car
data set (Measured FRF: dotted
gray line Synthesized FRF: solid
black line)
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Fig. 15.20 Cost function
convergence and the
computational time for the basic
ML-MM (left) and the fast
ML-MM (right)
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mode shapes estimated by the
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Table 15.5 The basic ML-MM and the fast ML-MM modal results for the fully trimmed car

Frequency (Hz) Damping (%)
Basic ML-MM Fast ML-MM Basic ML-MM Fast ML-MM Mode description

1 3.9438 3.9384 5.5217 6.0005 Rigid body – lateral mode
2 4.2084 4.1986 8.5429 8.0733 Rigid body – longitudinal mode
3 4.8883 4.8597 17.9462 17.8124 Rigid body – vertical mode
4 5.9841 5.9862 4.3450 4.3345 Rigid body – pitch mode
5 8.5271 8.5240 6.6041 6.5893 Rigid body – roll (yaw) mode
6 14.4818 14.4779 5.9311 5.9037 Vertical front differential mode
7 17.0069 16.9638 7.2244 7.6584 Powertrain rolling coupled to body torsional
8 18.0902 18.1343 4.8237 5.1341 Powertrain vertical coupled to body bending
9 21.6577 21.6730 2.6857 2.5681 Body bending coupled to powertrain bending (in phase)
10 22.2000 22.3321 4.3209 4.5910 Body torsional coupled to powertrain bending
11 25.0733 25.2210 6.9513 6.4886 Body torsional coupled to powertrain torsional (out of phase)
12 26.8808 26.9057 5.7851 5.6318 Body bending coupled to powertrain bending (out of phase)

Fig. 15.22 Some typical mode
shapes estimated by the fast
ML-MM estimator applied to the
fully trimmed car data set

Fig. 15.23 Picture of Sedan car
under test (left) and its CAE
cavity model (right)
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Fig. 15.24 Excitation sources (loudspeakers) locations inside the car cavity (left), microphones roving array inside the cavity (middle), and
measurement points on boundary surface (right)

Fig. 15.25 Typical FRF of one point measured in the cavity due to all the 12 excitation sources

Multiple inputs multiple output (MIMO) test were carried out inside the cavity of the Sedan car where 34 microphones
located both on a roving array with spacing equal to around 20 cm and near to boundary surfaces captured the responses
simultaneously. A total of 18 runs were performed to measure the pressure distribution over the entire cavity (both cabin
and trunk) resulting in 612 response locations (No D 612). For each run, up to 12 loudspeakers (Ni D 12) switched on
sequentially were used for acoustic excitation. The excitation sources locations and some of the measurement points are
show in Fig. 15.24. Continuous random white noise was chosen as excitation signal and the FRFs were measured up to
800 Hz using H1 estimator with 150 averages. More details about the measurements procedure can be found in [26]. Some
typical measured FRFs are shown in Fig. 15.25.

For this case study, because of the time limitation the pLSCE and the ML-CDM estimators will be excluded from the
comparison. Since we have anyway to use the pLSCF (Polymax) to generate starting values for the ML-MM estimator,
the comparison will be done between the pLSCF (Polymax) and the ML-MM estimators. A frequency band between 30
and 200 Hz has been selected to perform the acoustic modal estimation. Due to a memory requirement issue, it was not
possible to apply the basic ML-MM to the full data set. Therefore, for the comparison between the basic ML-MM and
the fast ML-MM in terms of their cost functions convergence and their computational time only 10 columns of the FRF
matrix, i.e., all the measured responses due to 10 excitation sources are used. The Polymax has been applied to the FRFs
to generate starting values of all the modal parameters (i.e., poles, mode shapes, participation factors and lower and upper
residuals) to start both the basic ML-MM and the fast ML-MM estimators. In Fig. 15.26 – top, the cost function convergence
and the computational time for both estimators are shown. It can be seen that although both estimators converge to a
comparable value of the cost function the fast ML-MM is very fast compared to the basic ML-MM where it takes only
14 min whereas the basic implementation takes 81 min. Figure 15.26–bottom shows that both the basic ML-MM and the
fast ML-MM give the same fitting quality where it can be seen that the sum of the synthesized FRFs either from the basic
implementation or from the fast implementation of the ML-MM perfectly fits the measured one. Figure 15.26 clearly shows
that the proposed fast implementation of the ML-MM method yields the same improved modal model as the one obtained
from the basic implementation while outperforming the basic implementation in terms of the computational time and the
memory requirements.
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Fig. 15.26 Top: decreasing of the cost function of the basic ML-MM (left) and the fast ML-MM (right) with the computational time taken. Bottom:
the fit between the measured FRFs sum and the synthesized FRFs sum for the basic ML-MM (left) and the fast ML-MM (right)

Now, both the Polymax and the fast ML-MM will be applied to the full data set (i.e., taking into account all the excitation
sources). The stabilization chart has been constructed by Polymax as it is shown in Fig. 15.27 to generate starting values
for the modal parameters of the corresponding modes within the selected band. Then, the initial modal model estimated by
Polymax is iteratively optimized by the fast ML-MM method.

Figure 15.28 shows the decrease of the ML-MM cost function at each iteration. The analysis was stopped after 20
iterations. Figure 15.30 shows that the initially modal model estimated by Polymax is drastically improved during the
iterations of the ML-MM estimator. It can be seen from that figure that the ML-MM synthesis results are superior to the
Polymax synthesis results. Some typical mode shapes identified with Polymax and ML-MM estimators are shown and
compared with the numerical ones in Fig. 15.30. One can see that the estimated mode shapes by Polymax and the ML-MM
are comparable. However, the mode shapes estimated by the ML-MM method is more similar to the numerical mode shapes.
It can be seen that there are some differences between Polymax and the ML-MM method in terms of the frequencies and
damping estimates. Actually, these differences in the values of the frequency and the damping estimates are reflected as
an improvement in the goodness of the fit between the measured and the synthesized FRFs (see Fig. 15.29). Moreover, it
was found that the mode shapes estimated by the ML-MM method shows a good independency as compared to the ones
of Polymax. This can be evidenced by looking to the AutoMAC matrix for both Polymax and ML-MM that are shown
graphically in Fig. 15.31. It can be seen from this figure that the off diagonal elements of the ML-MM AutoMAC matrix
have lower values as compared to the ones of Polymax.

15.4 Conclusions

The basic implementation of the ML-MM (Maximum Likelihood estimator based on modal model) estimator is represented
and improved in terms of the memory requirements and the computational time. The proposed fast implementation of the
estimator, the fast ML-MM, has been validated and compared with the basic implementation (basic ML-MM) and with some



15 A Fast Maximum Likelihood-Based Estimation of a Modal Model 153

200.0030.00 Linear
Hz

216.27

176.27

dB

P
a/

m
3

v vs s o s s s s s v v vss vvvs v s vs s s ssv
ss s v s o s s v s vv vv svs v ssss vv s v s vs vvv

o vs s o ss v s v s s s vv v s vvvsv vsss v v v s v s s svv
v ss s v s s s s v s sv s v ss vvssv vsss v v v s v s vs vvv

vs s v ss v s v s vv s vv v s vssvv vvvss v v v sv s s v vvv
o ss s v vs v s v s sv s vsv v s vsssv vvsvs v v sv s s vs vvv
v vs s v v vs v s vv s v sv s vs vv s vssvv vvvvss v s v sv vv s sv vvvv
v ss s s v ss v v s v s v sv s ss vs s vvsssv s vvss s v s s ss sv s sv vvs

90
96
102
108
114
120
126
128

Fig. 15.27 Polymax stabilization chart when applied to the full data set of the FRFs measured inside the Sedan car cavity

Fig. 15.28 Decrease of the fast
ML-MM cost function at each
iteration cavity
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Fig. 15.29 Improved FRF curve fit when using fast ML-MM as compared to Polymax

other estimators (e.g., Polymax, pLSCE and ML-CDM) suing simulated example and three real industrial applications. From
the presented results, it is found that the fast implementation of the ML-MM estimator gives very comparable performance
as compared with the basic implementation in terms of the accuracy of the estimated modal parameters and the predicted
confidence bounds while outperforming the basic ML-MM in terms of the computational time and the memory requirements.
As compared with Polymax, pLSCE and ML-CDM, the fast ML-MM estimator results in better estimates for the modal
parameters, and it is capable to properly deal with high modal densities, highly damped systems and FRF matrices with
many references (excitation sources) and provides superior FRF synthesis results.
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Fig. 15.30 Some typical acoustic mode shapes of the Sedan interior cabin identified by Polymax and ML-MM as compared to the ones predicted
by the CAE model
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Fig. 15.31 Auto MAC: Polymax (right) and ML-MM (left)
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