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Preface

Model Validation and Uncertainty Quantification represents one of ten volumes of technical papers presented at the 33rd
IMAC, A Conference and Exposition on Balancing Simulation and Testing, 2015, organized by the Society for Experimental
Mechanics, and held in Orlando, Florida, February 2-5, 2015. The full proceedings also include volumes on Nonlinear
Dynamics; Dynamics of Civil Structures; Sensors and Instrumentation; Special Topics in Structural Dynamics; Structural
Health Monitoring & Damage Detection; Experimental Techniques, Rotating Machinery & Acoustics; Shock & Vibration
Aircraft/Aerospace, Energy Harvesting; and Topics in Modal Analysis.

Each collection presents early findings from experimental and computational investigations on an important area within
Structural Dynamics. Model Validation and Uncertainty Quantification (MVUQ) is one of these areas.

Modeling and simulation are routinely implemented to predict the behavior of complex dynamical systems. These tools
powerfully unite theoretical foundations, numerical models and experimental data which include associated uncertainties
and errors. The field of MVUQ research entails the development of methods, with associated metrics, for the rigorous test
of model prediction accuracy and robustness considering all relevant sources of uncertainties and errors through systematic
comparisons against experimental observations.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Clemson, SC, USA H. Sezer Atamturktur
Medford, MA, USA Babak Moaveni
Volos, Greece Costas Papadimitriou

Albuquerque, NM, USA Tyler Schoenherr
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Chapter 1
Experimental Validation of the Dual Kalman Filter for Online
and Real-Time State and Input Estimation

Saeed Eftekhar Azam, Eleni Chatzi, Costas Papadimitriou, and Andrew Smyth

Abstract In this study, a novel dual implementation of the Kalman filter is proposed for simultaneous estimation of the
states and input of structures via acceleration measurements. In practice, the uncertainties stemming from the absence of
information on the input force, model inaccuracy and measurement errors render the state estimation a challenging task
and the research to achieve a robust solution is still in progress. Via the use of numerical simulation, it was shown that
the proposed method outperforms the existing techniques in terms of robustness and accuracy of displacement and velocity
estimations [8]. The efficacy of the proposed method is validated using the data obtained from a shake table experiment on
a laboratory test structure. The measured accelerations of the floors of the structure are fed into the filter, and the estimated
time histories of the displacement estimates are cross-compared to the true time histories obtained from the displacement
Sensors.

Keywords Dual Kalman filter * Unknown input ¢ State estimation * Modal identification ¢ TSSID e Experimental
validation ¢ Laboratory test

1.1 Introduction

This paper contributes to the procedure of fatigue damage prediction in the entire body of large-scale structures via sparse
vibration measurements. An accurate prediction of the fatigue damage demands reliable estimations of the strain time
histories in points of interest and their vicinity. Accurate prediction of the strain time histories in turn requires accurate
estimates of the states at corresponding degrees-of-freedom of the system [1]. This may be casted as a problem of reliable
state estimation under the premise of unknown input measurements. When dealing with a stochastic linear time invariant
system, with a known input, state estimates can be calculated in a straightforward fashion. However, in the problem discussed
herein the input is unknown. In the last few decades, a number of methods and techniques have been developed to account for
the lack of information on the input. Bernal and Ussia present a comprehensive study of sequential deconvolution of inputs
from measured outputs [2]. They pose the problem in a deterministic setup, and prove that when there are less inputs than
measured outputs the input to the system can be accurately reconstructed. They have shown that the proposed procedure is
conditionally stable and the stability criteria is established. However, in practical cases the conditions that must be satisfied
to make the deconvolution work are highly likely to be violated.

One of the most recent methods for joint state and input estimation of linear time invariant systems, attempting to
incorporate uncertainties, has been developed by Gillijn and De Moore [3]. The method requires a state space model of
the system and the second order statistics of the state of the system to recursively furnish the estimates of the input and state.
However, when the number of the outputs exceed the order of the model the method suffers from rank deficiency. Lourens
et al. [4] have suggested an alteration of the method developed in [3] to alleviate the above-mentioned numerical instabilities.
The effectiveness of the proposed adjustment was studied via the joint input force and acceleration estimation of a simulated
steel beam, a laboratory test beam and a large-scale steel bridge. It was observed that, even though the method delivers a
reasonable estimate of the accelerations, the displacement estimates are affected by spurious low frequency components,
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which were filtered out by using band pass filters. It is noteworthy that in dealing with joint state and parameter estimation,
Chatzi and Fuggini [5] have proposed a method to resolve the issues related to the spurious low frequency components in the
displacement estimates by including artificial displacement measurements into the observation vector.

Lourens et al. [6] have for the first time applied an augmented Kalman filter (AKF) for unknown force identification in
structural systems. It was concluded that the AKF is prone to numerical instabilities due to un-observability issues of the
augmented system matrix. Naets et al. proposed an analytical investigation of the stability of the augmented Kalman filter
when applied to unknown input and state estimation and demonstrate that the exclusive use of acceleration measurements
can lead to unreliable results [7]. In order to alleviate this problem, dummy displacement measurements on a position level
are added. The proposed technique is ascertained through numerical investigation and experimental campaign; in both cases
it is observed that the AKF based on solely acceleration measurements can lead to unstable results.

To address the shortcomings of the existing methods for state estimation of the structural systems with unknown general
inputs, Eftekhar Azam et al. proposed a novel dual Kalman filter (DKF) for state and unknown input estimation via sparse
acceleration measurements [8]. It is demonstrated that the successive structure of DKF resolves numerical issues attributed
to un-observability and rank deficiency of the AKF. Furthermore, through numerical investigations it is shown that the expert
guess on the covariance of the unknown input provides a tool for filtering out the so-called drift effect in the estimated
input force and states by GDF. In this paper, an experimental validation of the DKF is pursued; the results of a laboratory
experiment are utilized in order to assess the performance of the DKF when real experimental data is used. Moreover, the
results obtained by GDF are confronted by those furnished by AKF and GDF.

The paper starts with a section devoted to a brief formulation of the state-space equations for linear time invariant
dynamical systems. The next section overviews the DKF, AKF and GDF algorithms and highlights the salient features
of each of these approaches in an effort to bring forth their similarities and distinctions. The following section describes the
model identification methods used in the current study, and finally the results of the experimental validation of the DKF and
its cross-comparison to other filters are recounted.

1.2 Formulation of the Dynamic State Space Equations

The methods and techniques used in this work require existence of an underlying mathematical model of the system which
serves as the open-loop estimator of the state of the system. To this end, the linear second order differential equation in
continuous time is introduced herein:

Mii(1) + Cu(r) + Ku(r) = £() = S,p(1) (1.1)

where u(t) € R” denotes the displacement vector and K, C and M € R"*" stand for the stiffness, damping and mass matrix,
respectively. f(¢) € R” is the excitation force, which herein is presented as a superposition of time histories p(z) € R™ that
are influencing some degrees-of-freedom of the structure as indicated via the influence matrix S, € R™"™.

Time discretization should be implemented on the aforementioned equations in order to facilitate their use with the
data coming from the sensors. In doing so, first the state space form of the equations are derived, where the state vector
encompasses displacement and velocity. The latter allows one to write Eq. (1.1) in the following form and to define the
so-called process equation:

x(t) = Acx(t) + B.p(t) (1.2)
where the system matrices are:
0 I
A. =
¢ [ -M~'K —M‘IC}
0
B. =
=L,

Regarding the measurement equation, the most general case for the observation process is considered where a combination
of the displacements, velocities and accelerations are supposed to form the measurement vector:
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Sa 0 07 [u()
doy=1| 08, 0 || u@ (1.3)
0 0S| Lii(r)

where Sq, Sy and S, denote the selection matrices of appropriate dimension for the displacements, velocities and
accelerations, respectively. By using equation of motion, Eq. (1.3) could be transformed so that it forms the observation
equation:

d(®) = Gex(t) + Jep (1) (1.4
where the output influence matrix and the direct transmission matrix are:

Sa 0
G, = 0 Sy
-S.M~'K -S;M"!C

0
Jc = 0
S.M~'S,

In this study, the main focus lies in the seismic excitations applied to the base of a structure, hence the excitation term
assumes the following form:

£(r) = —Miig () S,

In Eq. (1.1), it is noteworthy that the coordinate system is relative to the ground displacement, moreover, the subscript g
refers to the coordinate system, which moves according to seismic ground motions. The matrix S, in this case applies the
ground accelerations to all floors of the structure.

In practical situations we might use an identified modal model of the structure, hence the equivalent of Eq. (1.1) in modal
coordinates is introduced herein. To derive a modal model of the system, Eq. (1.1) is projected to the subspace spanned by
the undamped eigenmodes of the system. In this regard, consider the eigenvalue problem corresponding to Eq. (1.1):

K® = Mo Q? (1.5)
Transforming the coordinate system of Eq. (1.1) via the following mapping:
u(?) = ®z(r) (1.6)

where z(f) € R™, ® € R™, and then pre multiplying it by ®T and dividing the right hand side and left hand side by
®"™M®, considering ®TK®/® ™M@ = @2 and assuming the damping is proportional, the Eq. (1.6) can be rewritten:

i(t) + Ti(t) + R%2(t) = —Piig(t) (1.7)

where the components of jth entry of the diagonal damping matrix I' are of the form 2§;w;, in which §; stands for the relevant
modal damping ratio. Additionally, P denotes the modal participation factor P = <I>TMSp /®T™M®. Note that, a truncated
modal space could be substituted in Eq. (1.7)

The recombination of Egs. (1.3) and (1.4) through use of the relevant matrices, results into the full order state-space
equations that are required to implement the input and state estimation algorithm. To derive the modal state-space equations,
an eigenvector space must be substituted in Eq. (1.4) hence the following variable transformation would be necessary:

x0=] 0 g |50
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where §(¢) is the reduced modal state vector:

_|z@®
co-[;4]

The reduced modal state-space equation in continuous time will have the following form:

§(1) = AL (1) + By (1 (1.8)
d(t) = G (1) + Jlig (1) (1.9)
while the relevant system matrices read:
Sa® 0 0
Aczl:_s(l)z _;-:|7Bc=|:_(i):|aGc: 0 qu> »ch 0
—S, Q> -S,oT —S,P
To discretize Egs. (1.8) and (1.9), the sampling rate is denoted by 1/At and the discrete time instants are defined at t; = k At,
fork = 1,...,N. The discrete state-space equation can be expressed by the following notation:
Cir1 = ALy + Blgy (1.10)
di = G§, + Jiigx (1.11)

where A = eA2U B = [A —T]A;'B., G = G, and J = J..

1.3 Dual Kalman Filter for Joint Input and State Estimation

In this article, three methods and techniques for the purpose of input and state estimation are cross-compared. First, the main
features of each are outlined so that their similarities and distinctions can be summarized. The first algorithm assessed herein
is the filter developed by Gillijn and De Moor (GDF) for input and state estimation of linear time invariant systems [3]. The
method belongs to the family of recursive Bayesian filters, as such, Bayes’ theorem is incorporated into the filter to render
the extraction of information on the states from the latest observations possible. To initialize the procedure, the GDF requires
an expert guess on the expected value and the covariance of the state at the beginning, then, it recursively estimates the input
and state at discrete time instants. First, an estimate of the mean and covariance of the input force is obtained by updating the
guess on the input via the GDF input gain, which is similar, but not identical to the Kalman gain. Once the input is estimated,
the state vector is subsequently calculated by applying the GDF state gain to the observation novelty. Then, a time update
stage follows the procedure which boils down to a mere transition of the state and input through the state-space equations.

Another existing method to achieve recursive state and input estimation is the augmented Kalman filter (AKF). The notion
of the augmented state is extensively used in automatic control in order to concurrently estimate the parameters and state of
the system. To mitigate some issues attributed to the GDF, this paper also considers the application of the AKF. The AKF
turns out liable to numerical instabilities when pure acceleration measurements are fed into it.

Within the frame of state and parameter estimation, an alternative to the augmented formulation is the dual formulation
[9]. In dealing with state and parameter estimation of the laminated composites it was shown that the dual formulation
outperforms the augmented formulation at the cost of a more complicated implementation [10]. Dealing with the dual
estimation and reduced order modelling of linear time varying systems, the dual estimation concept is used to update the
reduced subspace constructed by proper orthogonal decomposition [11]. However, in dealing with joint input and state
estimation of linear time invariant systems neither the augmented nor the dual formulation lead to nonlinear state space
models. The latter motivates the application of the dual formulation of the input-state estimation with coupled use of the
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Table 1.1 The general scheme

! . Initialization at time ty:
of the DKF algorithm for input

and state estimation Pil =E [P()]A .
Pl =E [(Po — Do) (Po — Do) ]
X0 = E [xo]

Pyp=E [(Xo - ;Ko) (xo — PA(())T]

Attime t, fork =1,...,N¢
Prediction stage for the input:
1. Evolution of the input and prediction of covariance input:
Pi = Pi—1
PPl +QF
Update stage for the input:
2. Calculation of Kalman gain for input:
GE =P JTOP{ JT+R)"
3. Improve predictions of input using latest observation:
P = pi + G} (di — G %1 — Jpy)
Pl =P —GlJP™
Prediction stage for the state:
4. Evolution of state and prediction of covariance of state:
X = A X +Bpx
P, = AP AT + Q%
Update stage for the state:
5. Calculation of Kalman gain for state:
GY = P GT(GP{G" +R) ™'
6. Improve predictions of state using latest observation:
% = x; + G} (dx — Gxi. — Jpy)
Py = P, — G{GP,~

Kalman filter. Within the dual estimation scheme, similar to the augmented formulation, the concept of the fictitious transition
equation for unknown input is used. Hence, similar to the AKF, in dealing with the DKF the covariance of the fictitious noise
must be additionally adjusted to obtain accurate estimates of the state. However, unlike the AKF, the DKF estimates the input
and state in two different stages. After initialization, at a first stage the input and the covariance of the input are estimated by
applying the Kalman gain to the innovation. At a second stage, the estimated input is fed into a standard Kalman filter which
uses the dynamic state-space model to furnish the estimate of the state (Table 1.1).

1.4 Experimental Validation

To assess the performance of the DKF, AKF and GDF in the joint state-input estimation task, the data available from a
laboratory structure, shown in Fig. 1.1 has been used. The test is carried out on a three dimensional structure that is comprised
of four floors which are stacked onto each other via single span frames. The frame is laterally braced along its strong axis to
prevent rotational movements. The structure is subjected to seismic excitations by means of the hydraulic uniaxial shacking
table, of the Carleton lab facility in Columbia University, and the response of the structure in terms of the displacements and
accelerations is measured on all floor levels by means of laser and MEMS accelerometer sensors, respectively. The methods
and techniques that are described and introduced in the previous section require a physical description of the structure,
represented in state-space form. In order to obtain the aforementioned numerical model, in this study two approaches are
followed; first a modal model of the structure; the second model is established via a recently developed transformation
strategy applied on a numerical model obtained by a subspace identification method [12]. Next, a general scheme of each
model identification procedure is outlined. The motivation for utilizing both the TSSID and modal model of the structure lies
is the numerical divergence of GDF estimates for some sparse sensor setups when the TSSID is used. It is noteworthy that
the TSSID model does not make any restrictive assumption on the system matrices; however, the modal model presumes a
proportional damping. It is shown that inherent differences between two models can lead to different performances when the
state and input estimation is dealt with.
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Fig. 1.1 The four storey shear
frame setup on the Carleton
laboratory uniaxial shake table

In this paper, the modal characteristics of the structure are estimated using vibration data induced by a measured seismic
force applied to its base. The adopted method is based on a least squares minimization of the measure of fit between the
Frequency Response Function (FRF) matrix estimated from the measured output acceleration time histories and the FRF
matrix predicted by a modal model. In a procedure that can be divided in three main steps, the number of contributing modes
and the values of the modal properties are estimated through the FRF estimated from the measured input-output response time
histories. In a first step, conventional least squares complex frequency algorithms using the right matrix fraction polynomial
model [13, 14] are adopted to acquire estimates of the modal frequencies modal damping ratios and participation factors,
and stabilization diagrams furnish a tool to distinguish between the physical and the mathematical modes. In a second step,
given that the aforementioned error function is quadratic with respect to the complex mode shapes and the so-called upper
and lower residual terms [15], the mode shapes and damping ratios are obtained. These values in most cases are very close
to the optimal values. In a third step, the values obtained in the first and second stage are used to efficiently perform the
minimization of the objective function. Hence, the computational cost is significantly reduced, when considering that the
abovementioned objective function is quadratic with respect to the complex mode shapes.

As a second alternative, a transformed subspace identification technique is used to construct a state-space model for
its use with the recursive Bayesian filters. Specifically, the underlying SSI technique is the n4sid algorithm which fits in
the class of subspace identification methods [12]. This constitutes an input-output identification method, consisting of QR
decomposition of the past and future block Hankel matrices of input and output in order to calculate the main projection
matrices. Subsequently, a singular value decomposition (SVD) is executed for extracting the rank of the system and to cast
the problem in a standard least-square form. The solution of the latter least squares yields the numerical state space model
that fits the input-output data. The disadvantage of Stochastic Subspace Identification methods lies in that the derived state
space models are not in their canonical form, i.e. they are not formulated with a minimal parameterization. More importantly,
the identified models are not represented in physical coordinates. However, in this study it is necessary to be able to estimate
the physical states of the system in the form of displacement, since these are to be subsequently used for fatigue estimation.
In this regard, a transformation procedure for achieving such a transformation for structural systems developed by Chatzis
et al. [16], hereinafter referred to as the TSSID.

In what follows, the results of the state and input identification by using the DKF, AKF and GDF are presented. First the
identified modal properties of the structure are introduced to the filters for deriving the model of the structure.
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Fig. 1.2 Acceleration time histories estimated by DKF, AKF and GDF of the floors 1, 2, .., 4 from top to bottom, respectively

For the joint state and input estimation for systems with unknown input, the GDF does not require any a-priori assumption
on the statistics of the input to the system; on the contrary, the AKF and DKF need the initial value of the mean and
covariance of input force to deliver the estimates of the input and states of the system. The value of the covariance of the
input force, which plays the role of the regularization parameter, strongly influences the quality of the estimates furnished
by the Bayesian filters. In this work, we make use of the L-curve approach in order to adjust the values of the process noise
for the state and input estimation [6]. In this way, it turns out that Q° = 107 x I and QP = 1 x I should be selected for
the AKF and DKF respectively when only the measured acceleration time history of the last floor is regarded as observation
process. Henceforward I is an identity matrix of appropriate dimension. The diagonal values of the covariance matrix of
the observation noise for acceleration measurement are set to 107> m/s2. The process noise Q% and initial covariance of
the state of Py are both set to 1072° x I. Figures 1.2 and 1.3 show the acceleration and displacement estimation results
provided by the DKF, AKF and GDF for the case where only the acceleration time history of the last DOF is observed.
In Fig. 1.2, it is evident that the DKF and AKF provide a reasonable estimate of the observed acceleration time histories;
however, the GDF results are affected by numerical instabilities. By increasing the number of the observations the numerical
instability can be mitigated, however the emphasis of the current study is on cross-comparison of the three methods when
sparse measurements are dealt with. Figure 1.3 shows the results of the displacement estimates provided by the DKF, AKF
and GDF. The displacement time history estimated by the GDF is affected by the low frequency components and the same
instability trend as in the acceleration estimation. It is observed that the DKF and AKF both provide reasonable estimates of
the displacement time history of the test structure.

In what preceded, it was seen that the results of displacement time history estimate furnished by GDF have been affected
by low frequency components. In order to get insights on the performance of the GDF filter apart from the drift in the
estimates, the modal displacements estimated by GDF have been filtered by using a band pass filter. Figure 1.4 presents the
results of such analysis, and confronts the obtained result by DKF and AKF estimates. It is observed that, after implementing
the filtering procedure in the estimation results the GDF estimates become more accurate; and match the results furnished by
DKEF in terms of accuracy and agreement to the target values, nonetheless, the numerical instability caused by low density of
the observation sensors still persists.

Next, a model obtained by stochastic subspace identification procedures [5] is incorporated into the filters to investigate
the performance of the different schemes when a more realistic model is incorporated into the filters. In this regard, the
model obtained through TSSID method, which is described in previous section is introduced into the DKF, AKF and GDF.
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ig. 1.3 Displacement time histories estimated by DKF, AKF and GDF of the floors 1, 2, .., 4 from top to bottom, respectively
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Fig. 1.4 Displacement time histories estimated by DKF, AKF and band pass-filtered GDF for the floors 1, 2, .., 4 from top to bottom, respectively

It was observed that, the GDF fails to provide a solution to the problem when sparse measurements are made. Once again,
by increasing the number of the observation DOFs the GDF results can be improved.

Next the capability of the AKF and DKF when sparse acceleration measurements are available is investigated. It is
assumed that only the acceleration time history of the last floor is observed, thereafter the performances of the two filter
when using modal model and TSSID model are cross-compared. In Figures 1.5 and 1.6 the results of acceleration and
displacement estimation furnished by DKF are shown. In Fig. 1.5 it is observed that the acceleration estimations in non-
measured DOFs is less accurate than the observed one, additionally, moving from last floor to first floor as the noise to signal
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Fig. 1.5 Acceleration time histories estimated by DKF when modal model and TSSID model are used for the floors 1, 2, .., 4 from top to bottom,
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Fig. 1.6 Displacement time histories estimated by DKF when modal model and TSSID model are used for the floors 1, 2, .., 4 from top to bottom,
respectively
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Fig. 1.7 Acceleration time histories estimated by AKF when modal model and TSSID model are used for the floors 1, 2, .., 4 from top to bottom,
respectively

ration increases the accuracy of the estimations decrease. Concerning the displacement time histories, it is observed that use
of both models lead to the same level of accuracy of displacement estimates.

Dealing with the performance of the AKF when the TSSID model is used Figs. 1.7 and 1.8 present the relevant estimates
when the sensor configuration used in the last example is considered. It is observed that use of the TSSID model leads to
a more accurate acceleration estimation for un-observed DOFs. Similar to the acceleration estimates obtained by the DKF,
the lower the floor the less the accuracy becomes due to the higher signal to noise ratio. Regarding the displacement time
histories, both models deliver a similar accuracy.

Finally, the input estimation capability of the three methods is discussed. In Figures 1.9 and 1.10 show the time histories
of input and displacement, when DKF, AKD and a band-pass filtered GDF are used. In the latter case, the accelerations of
the floor #2 and #4 are assumed as the observation process, due to divergence of the GDF results in the case of a single
observation. Moreover, the low frequency drift in the displacement estimates is removed, in a post-processing phase, i.e., not
in an online manner, by applying a band pass filter on the modal coordinates. In doing so, first the displacement time histories
are projected onto the modal basis, thereafter a band pass filter is used to remove spurious frequencies, which for its lower
and upper bounds features the 0.1 w;, j = 1,2,...,4 and Nyquist frequency, respectively. Concerning the band pass filter
applied to the input, the lower bound is set 0.1 w;. In Figure 1.9, it is observed that the filtered GDF provides a close match
between estimated and true input; however, the DKF and AKF fail to provide a reasonable agreement between estimated
values and their target ones. However, it is noteworthy that the amplitude of the AKF input estimates is closer to the target
value than the DKF. In Figure 1.10 the displacement time histories associated with the inputs are shown. It is observed that
the AKF does not provide accurate estimates when tuned so that the amplitude of the identified input is close to target values.
Concerning the GDF, it is observed that once the spurious low frequency components are removed by the aforementioned
band pass filter (off-line), accurate estimates of the displacement time histories are indeed obtained. When dealing with the
DKE, it is observed that the accuracy of the displacement estimates is slightly lower than that of the filtered GDF, however
these are delivered on an online manner.. It is important to note that the DKF as well could be tuned, via calibration of the
fictitious process noise, to better approximate the unknown input, at the cost of reduced accuracy for the state estimates.
However in the fatigues estimation problem discussed herein, the main objective is the estimate of the displacement states in
particular and not of the unknown input itself. Therefore, the DKF is the preferred solution herein, given that is also operates
in an online manner.
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1.5 Conclusion

In this work the AKF, GDF and a novel dual Kalman filter are applied for calculating the input and displacement time histories
of a laboratory test structure tested on a uniaxial shake-table. Concerning the GDF, it is known that the accumulation of the
errors arising from integration of noisy accelerations leads to low frequency components in the displacement and input force
estimation which must be filtered out. Consequently, in this work the accuracy of the aforementioned estimates after low-
pass filtering have been evaluated, which for online purposes is not an optimal consideration. Next, the augmented Kalman
filter (AKF), which has been proposed by Lourens et al. [6] for solution of the input and state estimation is considered.
The AKF requires introducing the observation process vector into the state transition matrix; it has been shown through
theoretical studies that in case of pure accelerations measurements this method suffers from un-observability issues [7].
To address abovementioned issues, a dual formulation of the Kalman filter is considered herein. Numerical investigations
have shown that the DKF not only solves the issues stemming from un-observability of the system matrices in the AKF,
but also mitigates issues arising from the accumulation of the measurement errors including the drift in displacement and
input force estimates [8]. To evaluate the performance of the proposed method a laboratory test structure has served as
the examined test case. The measured accelerations of the floors of the structure are fed into the filter, and the estimated
time histories of the displacement are confronted by the true time histories obtained from the displacement sensors. In
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from top to bottom, respectively. The DKF and AKF are tuned for input estimation rather than the displacement, i.e. QP = 1073 x I

the latter experimental campaign it is witnessed that when dealing with noisy acceleration measurements the GDF always
features spurious low frequency components. Moreover, it is observed that limited DOF observations render the GDF prone
to numerical instability and divergence. Concerning the AKF, it is shown that when fed with limited DOF acceleration
measurements, the filter becomes sensitive to the tuning of the covariance of the fictitious noise process, in contrast to the
proposed DKF algorithm.
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Chapter 2
Comparison of Uncertainty in Passive and Active Vibration Isolation

Roland Platz and Georg C. Enss

Abstract In this contribution, the authors discuss a clear and comprehensive way to deepen the understanding about the
comparison of parametric uncertainty for early passive and active vibration isolation design in an adequate probabilistic way.
A simple mathematical one degree of freedom linear model of an automobile’s suspension leg, excited by harmonic base point
stroke and subject to passive and active vibration isolation purpose is used as an example study for uncertainty comparison.
The model’s parameters are chassis mass, suspensions leg’s damping and stiffness for passive vibration isolation, and an
additional gain factor for velocity feedback control when active vibration isolation is assumed. Assuming the parameters
to be normally distributed, they are non-deterministic input for MONTE CARLO-Simulations to investigate the dynamic
vibrational response due the deterministic excitation.

The model parameters are assumed to vary according plausible assumptions from literature and own works. Taking into
account three different damping levels for each passive and active vibration isolation approach, the authors investigate the
numerically simulated varying dynamical output from the model’s dynamic transfer function in six case studies in frequency
and time domain. The cases for the output in frequency domain are (i) varying maximum vibration amplitudes at damped
resonance frequencies for different passive and active damping levels, (ii) varying vibration amplitudes at the undamped
resonance frequency, (iii) varying isolation frequency, (iv) varying amplitudes at the excitation frequency beyond the passive
system’s fixed isolation frequency, and (v) vibration amplitudes for —15 dB isolation attenuation. In time domain, case (vi)
takes a closer look at the varying decaying time until steady state vibration is reached.

Keywords Vibration isolation  Velocity feedback control ¢ Parametric uncertainty « Monte Carlo-simulation * y>-Test

2.1 Introduction

The evaluation of uncertainty becomes predominant in early design phases when it comes to early decision making when
defining the product’s properties. If a decision has to be made between passive, active or semi-active designs today, the
authors observe that the active approach often wins because of its increasing manifoldness and popularity using smart
materials and systems that are used in active systems. However, increasing possibility and popularity may overlook
advantages of the more conventional, and often less expensive passive alternatives with similar good performance, for
example for vibration attenuation with energy absorbing material or compensators [1]. Systems become more complex, e.g.
additional electric energy for actuators, sensors, and control is needed, if active vibration reduction technology is selected, [2].
The active system’s functionality is versatile, however, it depends on these additional features with additionally functional
uncertainty compared to the, in most cases, more simple passive approach. Favoring active over passive solutions should
be built on solid ground, taking into account the evaluation and comparison of uncertainty for both approaches. It is the
general desire that uncertainty decreases when going active. However, the increasing call backs for complex active systems
for example in the automotive industry tell another story [3].

In [4], the authors showed analytically that active control may lead to a vibration isolation ability with less deviation in
amplitude and phase responses than with passive control. This was seen throughout the frequency range of interest when
sweeping through the undamped resonance frequency wy until angular excitation frequencies are way beyond the angular
isolation frequency wis, = +/2wo. However, this was only a first and rough analytical approach that did not go deeper into
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the comparison between passive and active vibration attenuation potential under parametric uncertainty at various significant
dynamic properties such as the damped angular eigenfrequency wp, at the angular isolation frequency wjs,, at an amplitude
attenuation of —15 dB or at the ability for fast decaying time to reach damped steady state vibrations after initial excitation.
What is more, the authors did not look closely to the quality of MONTE CARLO-Simulations in terms of confidence levels
when using assumed sample trails. In this current contribution, the authors use the y2-Test to validate normal distribution
assumptions of the model’s input parameters and evaluate the computational adequacy when using 100 samples and 10,000
sample trials.

In this contribution, first the model input parameters are randomly generated with 100 samples. Second, 10,000 samples
are taken into account. Using a random generator with different sampling rates to approximate normal distribution of the
input model parameters, the authors evaluate the MONTE CARLO-Simulation’s quality and validity based on the y>-test as
well as the simulation’s practicability with respect to computational cost in time. Variations of characteristic properties in
frequency and in time domain of vibration isolation caused by the varying model input parameters are studied for six different
cases that cover significant cornerstones for passive and active vibration isolation:

(i) varying maximum vibration amplitude |V .| for different passive and active damping levels

(ii) varying vibration amplitudes |V | at the undamped resonance frequency wy

(iii) varying isolation frequency wiso

(iv) varying amplitudes |V/,,,| at the excitation frequency beyond the passive system’s fixed isolation frequency, Q =
100 1/s > wiso

(v) varying excitation frequency w;5 for —15 dB isolation attenuation

(vi) varying decaying time #( ; until steady state vibration is reached or, respectively, initial transient vibrations are damped,
so only 1% is left.

This investigation is part of German Collaborative Research Center SFB 805 “Control of uncertainty in load-carrying
mechanical systems”, [5]. This present contribution gives an example to compare passive and active solutions in case of
vibration reduction with a basic mathematical dynamic model of a vehicle’s chassis with a suspension leg in an early step of
product development.

2.2 Numerical Example for Mathematical Evaluation of Uncertainty in Passive
and Active Vibration Reduction Design

2.2.1 Linear Mathematical Dynamic Model of a Simple Mass-Damper-Spring System
Jor Passive and Active Vibration Isolation

As introduced in [4], a suspension leg supporting a vehicle’s chassis, Fig.2.1a, is used as a simple example for a mass-
damper-spring system to generally compare passive and active vibration isolation capability with respect to uncertainty in
the system’s model parameters. In a linear mathematical model, Fig.2.1b, the chassis is represented by the mass m. The
mechanical properties of the suspension leg, which is assumed to be free of mass, result from the damping coefficient b,
stiffness k and the velocity feedback gain g. Passive damping is used when g = 0, active damping is present when g # 0.
The mass oscillates in z-direction with the angular excitation frequency 2 when excited by harmonic base point stroke

w(t) = wcos(Q2t + 6) 2.1

with the excitation amplitude w, time ¢ and phase shift §, with § = 0 in the following.
When linearity is assumed, the forces in Fig. 2.1b, are

Fy=b(GE—w(t)). Fo=—g% and Fp =k (z—w(t)) 2.2)

due to passive and active damping as well as due to stiffness, leading to the linear equation of motion for absolute vibration
in z-direction

mZi+b+g)z+kz=bw(t)+kw(). (2.3)
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Fig. 2.1 Mass-damper-spring system, (a) suspension leg (DAIMLERBENZ), (b) simple mechanical model (/eff) and cut free forces (right), [4]

For active damping, the feedback gain g is, different from [4], proportional to the mass vibration velocity z only. Practically,
z can be measured by inductive sensors for the active velocity feedback control, Fig. 2.1b, left. With

b
2Dwy = — and ) = —, (2.4)
m

referring to the damping ratio D and the angular eigenfrequency wy, Eq. (2.3) is transferred into complex form with the
particulate integral approach

z2,(t) =2, e and w(r) = we'®! (2.5)

to become

{—&ﬁ+¢9(2wa+§)+wﬂ;ﬂm’:{i920w0+wﬂﬁwmﬂ (2.6)
m

Using the frequency relation n = Q/w, and the factor { = Q/(m w?), the complex amplification function for the mass
displacement in z-direction in frequency domain is

5 1+i2Dp
vy 2.7
Yim =2 (I-P)+i2Dn+gt) -
with its amplitude
1+ (2Dn)?
) ) 2.8
V() \/(1_n2)2+(2Dr]+g§)2 .
and its phase
2Dy —
¥(n) = arctan L g =

1-n2+@2Dn)?+2Dngt’
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Table 2.1 Deterministic input parameter and modal parameter

Input parameter Modal parameter
Property | Variable| Value | Unit | Property Variable | Value| Unit| Property | Variable| Value | Unit
Mass m 1 kg Eigenfrequency | wg 31.62| 1/s |-
Stiffness | k 1,000 | N/m
Damping | 0.095| Ns/m | Damped wpl 31.62| 1/s | Damping| D, 0.15| %
Coefficient | p, 9.487 | Ns/m | Eigenfrequency | o, 31.27| 1/s | Ratio D, 15 %
b3 18.974| Ns/m wp3 30.17| 1/s D3 30 %
Gain g1 16 Ns/m| — -
9 25 Ns/m
g3 35 Ns/m

2.2.2 Deterministic Amplitude and Phase Progression of the Simple Mass-Damper-Spring
System for Passive and Active Vibration Isolation

Significant deterministic dynamic characteristics of passive and active vibration isolation are explained in the following
before non-deterministic parameters are taken into account. So, any uncertainty will be neglected in this section. Table 2.1
specifies the assumed deterministic model parameters mass m, stiffness k as well as three different damping coefficient
by < by < b3 and three different velocity feedback gains g1 < g2 < g3.

Figure 2.2 shows the typical amplitude |V (€2)| and phase v (£2) progression in a BODE-Diagram according to (2.8)
and (2.9) after transforming back Q2 = 7w, within the frequency range 10' < Q < 2. 10%1/s and according to the
model’s input parameters in Table 2.1. In case of passive vibration isolation, the three different and increasing damping
coefficients b = b; < by < b3 are taken into account. As usual, isolation |V (w;s)| = O begins at the isolation frequency
Q = wiso = /2wy for all passive damping levels with g = 0 for cases (a), (b) and (c) in Fig. 2.2. The higher the damping,
the less decrease of amplitudes beyond 2 > wjs, is expected. In case of active vibration isolation in cases (d)—(f), three
different and increasing gains g = g; < g» < g3 with b = b; for all gains are assumed. In case of active vibration isolation,
the isolation effect |V (2)| = O starts earlier at 2 < w;s With increasing gain.

For the two particular cases (c) and (d) in Fig. 2.2, damping and gain are selected to be » = b3 with g = 0 for passive
vibration isolation and » = b, with g = g for active vibration isolation, Table 2.1. As a result, similar amplitudes occur until
approximately the undamped angular eigenfrequency 2 = wy is reached. With further increasing €2, though, the amplitude
due to active vibration isolation in (d) decreases faster than in (c), isolation begins earlier at 2 < wij.

Typical for passive vibration isolation, normally the same phase shift ¥ (wy) = —/2 for different passive damping for
cases (a)—(c) at the undamped angular eigenfrequency wy does not exist, Fig. 2.2. For high angular excitation frequencies,
the phases tend towards ¥ (2 > wy) = —m/2 for all cases (a)—(f). For passive vibration isolation, the phase shift —m /2 is
reached much earlier for passive vibration isolation with b >> b and g = 0 in cases (b) and (c) than for active vibration
isolation with b = b; and g # 0 in cases (d)—(f). Additionally and in case of an active approach in cases (d)—(f), Fig.2.2
shows that for different damping at the undamped angular eigenfrequency w, same phase shift ¥ (wy) = —m/2 does occur.
Eventually, for high angular excitation frequencies, the phases also tend towards ¥ (2 > wy) = —n/2. As a result, cases
(c) and (d) lead to same amplitudes until resonance, however, no similarities in phase shift are seen.

2.2.3 Variation and Probability Measures of Mathematical Model’s Parameters

The analytical model of the complex amplification function V (n) in frequency domain (2.7) is mathematically exact and is
not uncertain. Therefore, model uncertainty does not exist in this example, even though the model simplifies real world
condition. The deterministic assumptions for the parameters mass m, damping coefficient b, stiffness k and gain g in
Table 2.1 are appropriate to clarify the adequate characteristic dynamic behavior of vibration isolation with respect to
harmonic base point stroke in Fig.2.2. In many cases, a simple linear mathematical model is used as first estimation of
a chassis’ dynamic behavior mounted on a suspension leg, [6]. The authors are aware of making errors due to the chassis and
suspension leg model’s simplicity. Although, they are acknowledged errors, referring to [7]. For example, further parameters
are missing that exist in real application, like parameters to describe connections and joints between damping, stiffness and
actuating devices, parameters that represent electrical contacts or fatigue processes that cause changes in geometric and
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Fig. 2.2 BODE-diagram, amplitude |V (€2)| and phase v (2) with m, k, b and g as shown in Table 2.1 according cases (a) b = by, g = 0,
(b) by, g = 0, (¢) b3, g = 0 for the PASSIVE system (_); and according cases (d) b = b, g = g1, (e) by, g2, (f) by, g3 for the ACTIVE
system ()

material properties as well as tolerances due to manufacturing variations. These errors are acknowledged and accepted by
the authors for simplification reasons. Yet, if these errors would have been taken into account in the mathematical model,
it is in most cases impractical to retrieve adequate information about the error’s real variation or, respectively, probabilistic
or possibilistic nature of the errors. For the most part, adequate data that covers all possible variations of either additional
parameters, non-linear behavior and other errors is not available in early design phases. There is hardly a representative
amount of similar products that can be compared with each other and that can be studied and evaluated in a reasonable time.
Even if there was a representative amount, there is uncertainty in the way to measure the parameter’s actual real world values
and the dynamic system’s non-linear behavior in a trustworthy way.

In this contribution and for the adequate comparison of passive and active vibration isolation, the authors assume a
variation of the predominant parameters mass m damping coefficient b, stiffness k and feedback gain g only. The variations
are assumed in such a way that they are legitimate by experience and literature [7]. What is more, only parametric and
stochastic uncertainty are considered when applying passive or active vibration isolation within small amplitudes in the
linear mathematical model (2.7). The variation of parameters is assumed to be normally distributed around an assumed
nominal value and within lower and upper ranges that are known by experience and literature, [8]. The lower and upper
ranges in % of each model parameter in Table 2.2 quantify the interval of variation of the model’s parameters shown in
Table 2.1.
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Table 2.2 Varying input

Input parameter
parameter assumptions

Property Variable | Nominal value | Unit | Variation
Mass m 1 kg +3%
Stiffness k 1,000 N/m |£10%
Damping | p, 0.095 Ns/m
Coefficient |, 9.487 Ns/m | £30 %
b3 18.974 Ns/m
Gain g1 16 Ns/m
o2 25 Ns/m | £15%
g3 35 Ns/m

According to the authors general experimental experience in [9], and according to the experimental affirmation in similar
structural dynamic works like in [8], the mass m may vary between +3 %, damping b varies between £30 % and the stiffness
k between +10 % around their nominal values, Table 2.2. Prior investigations by the authors in [9] show that according to
active approaches to enhance buckling stability in axially loaded beams, the gain to control actuators based on piezoelectric
material may vary between 15 % around its mean or nominal value.

The lower and upper ranges are expected to represent + 30 with 99.7 % probability, which is an accepted approach to
derive a standard deviation for assuming normal distribution, [8]. With this assumption, N samples of independently varying
mass m,, stiffness k,, damping b, ,, b2, and bz, as well as gain g1,, g2, and g3, withn = 1, ..., N are randomly
generated by a numerical random generator via MATLAB. The complex amplification function (2.7) is calculated N times
via MONTE CARLO-Simulation for each case (a)—(f) in Fig. 2.2 by independently varying the model’s parameters in Table 2.2
assuming normal distribution.

Figure 2.3 shows the histograms of the relative frequency M,;,(x)/n in the nyth bin or class, with varying amounts of
bins N}, and constant bin-width A per parameter quantity sample x,,, forn, =1, ..., Ny binsand forn =1, ..., N = 100
samples. The samples are randomly generated according to assumed normal distribution. As an example, the first row of
histograms presents the relative mass frequencies M,,(m)/n with up to N, = 13 bins and with equal bin-width A = 0.005 kg,
and sampled as quantities m, via MATLAB random generator for cases (a)—(f). For each varying damping and gain value
in cases (a)—(f), each sample quantity of mass m, is generated newly and randomly for N = 100 times. In Fig. 2.3, each
histogram also shows the empirical mean value X and the standard variation s,, calculated with

N N
1 1
X = N E x, and the variance sf( = E (x, — X)2 (2.10)
n=l1 n=1

for each randomly generated quantity x,, from N = 100 samples. In addition, the histograms displays the bin-width A and
amount of bins N, and the fitted continuous normal frequency distribution density function

1 (x‘*)z
Pox) = \;ﬁ e 2\ Sk @.11)

due to the empirical mean value x and the standard deviation s, according to (2.10). Each histogram in the first row in
Fig. 2.3 quantifies the empirical mean values 7 and standard deviation s, of mass m and the fitted continuous frequency
distribution density function pg(m) according to (2.11) for each case (a)—(f). In the same manner, the following rows 2—4
show histograms of the relative frequency, empirical mean values and standard deviation width and amount of bins, the fitted
continuous frequency distribution density function for the input model parameter stiffness k, damping b, b, and b3 as well
as g1, g» and g3 for cases (a)—(f). Finally, the y>-test of goodness of fit (g.0.f.) is conducted to evaluate the adequacy of
assuming normal distributed N = 100 model parameter samples and indicated in the histograms, [10]. The Null-hypothesis

Hy = p(x) = po(x) (2.12)
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Fig. 2.3 Histograms of the relative frequency M,,;(x)/n for constant bin-width A and varying amounts n, = 1, ..., N, of bins per input model
parameter x = m, k,b;—3, and g,—3 according to Table 2.2 for cases (a)—(f) in Fig. 2.2, assuming normal distribution, with the empirical mean
values X, standard deviation s,, curve progression of the hypothetical continuous frequency distribution density function po(x) (—) and y>-test
results for N = 100 samples

is accepted when equivalence occurs between an actual measured distribution function P(x) via sample trials and a
hypothetical assumed distribution function Py(x) or, respectively, their distribution density functions p(x) = dP(x)/dx
and po(x) = dPy(x)/dx. Practically, the g.o.f. is conducted to verify the equivalency via

Ny 2 Ny 2

2 (Mnb —n pnb) Mnb
£=3 -y - (2.13)

np=1 n Pnb np=1 n Pnb

with the absolute amount M,,;, of samples in the nth bin and the corresponding probability p,,, satisfying

Np Np
S pw=1 and Y My =N. 2.14)
np=1 np=1
As a result,
2 2

X~ =< xo = accept Hy

X~ > xy = refuse Hy,
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with the critical value y2 due to the level of significance @ = 0, 05, when satisfying the condition n p,, > 1 at bounding bins
and n p,, > 1 for the other bins, [10]. The very low damping values b; in cases (a) and (d)—(f) in Fig. 2.3 for passive and
active vibration isolation lead to small standard deviations s, with practically only one bin, yet fulfilling the requirements
in (2.14).

In Fig. 2.4, the amount of samples is increased from N = 100 to N = 10,000, the results for M,,;,(x)/n, po(x), X, sy, A,
Ny, and y? for cases (a)—(f) are shown again. Comparing Fig. 2.3 with Fig. 2.4, it is seen that using only N = 100 samples,
the g.o.f. becomes adequate in most cases, compared to the increased amount N = 10,000 of samples. Even for the less
absolute damping and gain values b and g in the third and forth row, the g.o.f. for N = 100 samples is adequate in most
cases. In this example, the Null-hypothesis is refused only for the first and third histogram in the first row, cases (a) and (c),
and in the sixth histogram in the third row, case (f). Using N = 10,000 samples, Null-hypothesis is accepted throughout all
rows which can be verified also by simply looking at the smooth histograms that comply with the continuous hypothetical
distribution density functions po(x).
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Fig. 2.4 Histograms of the relative frequency M,,,(x)/n for constant bin-width A and varying amounts n, = 1, ..., N, of bins per input model

parameter x = m, k, b;—3, and g1—3 according to Table 2.2 for cases (a) to (f) in Fig. 2.2, assuming normal distribution, with the empirical mean
values X, standard deviation s,, curve progression of the hypothetical continuous frequency distribution density function po(x) (—) and y2-test
results for N = 10,000 samples



2 Comparison of Uncertainty in Passive and Active Vibration Isolation 23

2.2.4 Comparison of Uncertainty in Passive and Active Vibration Isolation for Various
Characteristic Isolation Properties by MONTE CARLO-Simulation

The varying model parameters in Figs. 2.3 and 2.4 are the input model parameters to calculate the varying amplification of
the mass displacement’s amplitude |V (n)| in (2.8) via MONTE CARLO-Simulation, with respect to the cases (i)—(vi) from
Sect. 2.1 and according to the cases (a)—(f) in Fig. 2.2. The decaying time

o (Zd(t))
foor = ————2 (2.15)

2Dwy+ g/m

for case (vi) is derived from the homogeneous solution of (2.3) in time domain, with the decaying curve z;(¢) and the initial
amplitude Z. The authors assume steady state vibration when the decaying amplitude is down to 1 % of its initial amplitude,
z4(t)/z=0.01.

Figures 2.5 and 2.6 show the histograms of the relative frequency M, (x)/n for varying amounts of bins N}, and constant
bin-width A per varying dynamic output property X = Viax, Vo, ®iso» V100, @15, and #po; along with the empirical mean
values X, the standard deviation s,, the curve progression of the hypothetical continuous frequency distribution density
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Fig. 2.5 Histograms of the relative frequency M, (x)/n for constant bin-width A and varying amounts n, = 1, ..., N, of bins per dynamic
output property X = Vpax, Vo, ®isos Vioo, w15, and tpo; after calculating (2.8) with varying model input parameters from Fig.2.3 via MONTE
CARLO-Simulation, with the empirical mean values X, standard deviation s, curve progression of the hypothetical continuous frequency
distribution density function po(x) (—) and y-test results for N = 100 samples
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Fig. 2.6 Histograms of the relative frequency M,;(x)/n for constant bin-width A and varying amounts n, = 1, ..., N, of bins per dynamic

output property X = Viax, Vo, ®iso, Vioo, w15, and ty; after calculating (2.8) with varying model input parameters from Fig.2.3 via MONTE
CARLO-Simulation, with the empirical mean values X, standard deviation s, curve progression of the hypothetical continuous frequency
distribution density function po(x) (—) and y>-test results for N = 10,000 samples

function po(x) and the result of the y>-test due to N = 100 and N = 10,000 samples. The output properties are calculated
via (2.8) with varying model input parameters from Figs.2.3 and 2.4 running a MONTE CARLO-Simulation. Each row in
Figs. 2.5 and 2.6 shows the varying output properties according cases (i)—(vi), and cases (a)—(f).

It is seen that for

(i) the relative frequency M,;(Vinax)/n of the maximum amplitude Vp,,, is relatively narrow around the empirical mean
value Vi, with relatively small standard deviation sy, for passive and active vibration control, except for low passive
damping by, case (a). In this example, g.o.f. is not satisfied in case (a) for the increased sample size with N = 10,000.
However, the same high scatter tendency as for N = 100 samples is obvious.

(ii) the relative frequency M, (Vy)/n of the amplitude Vj at angular resonance frequency wy shows the same tendency as
for Vinax in scatter and g.o.f.

the relative frequency M,;,(wiso)/n of the angular isolation frequency wis, becomes relatively less narrow around the
empirical mean @i, with relatively high standard deviation s, due to higher gain g for active vibration isolation
approach, cases (e) and (f). This tendency is seen in both low and high sampling rates with N = 100 and N = 10,000
samples.

the relative frequency M,;,(Vigo)/n of the amplitude Vigy at the angular excitation frequency beyond the passive

system’s fixed angular isolation frequency = 100 1/s > w;s, becomes relatively less narrow around the empirical

mean Vg and with relatively small standard deviation sy 199 due to high damping b3 for the passive approach, case (c).

With high active damping g to g3 in cases (d)—(f), the relative frequency becomes narrow around the empirical mean

(iii)

(iv)
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again. As far as the passive and active approach with the same amplitudes in Fig. 2.2 until the maximum at Q & wy is
concerned, cases (c) and (d), also less scatter is observed for the active approach for 2 = 100 1/s > wjs. The same
trend is seen with low and high sampling rates.

(v) the relative frequency M,;(w;s)/n of the angular frequency w;s at —15 dB vibration attenuation becomes relatively less
narrow around the empirical mean @;s with relatively small standard deviation 5,5 at higher passive damping b3, case
(c). For gains g; to g3 in cases (d)—(f), scatter is always less in both low and high sampling rates. The same trend is seen
with low and high sampling rates.

(vi) the relative frequency M,;(2901)/n of the varying decaying time 7y, until steady state vibration is reached becomes
relatively more narrow around the empirical mean fyo; with relatively small standard deviation s,90; at high passive
damping b3 in case (c) and even more narrow with smaller standard deviation at higher gains g, and g3 by the active
approach, cases (d)—(f). The same trend is seen with low and high sampling rates.

The computing time for all results in Figs. 2.5 and 2.6 is 4.7s for N = 100 and 485.2s for N = 10,000. With respect to
the discussion above and for the comprehensive example in this contribution, less computing time for less sample rates is
sufficient for adequate evaluation of uncertainty in passive and active vibration isolation numerically for this study.

2.3 Conclusion

The observations described in this contribution show that, generally, the tendency of varying standard deviations for passive
and active vibration isolation approaches with respect to characteristic amplitudes and angular frequencies due to the damping
properties is not affected by using low and high sampling rates, leading to low and high cost in computation time, in numerical
simulation. What is more, high active damping results in high scatter at the angular isolation frequency, but results in less
scatter at angular frequencies beyond the isolation point compared to the passive approach. Also, the scatter of the amplitude
attenuation beyond the angular isolation frequency is less with the active approach. So for the comparison of uncertainty in
passive and active vibration isolation, the active approach is not necessarily accompanied with less uncertainty throughout
a wide angular frequency range even beyond the isolation starts. Especially right at the angular frequency where vibration
isolation starts, the active approach appears to be more uncertain with increasing active damping. Preparations are under way
to validate the numerical comparison of uncertainty in passive and active vibration isolation with an experimental example.

Acknowledgements The authors like to thank the German Research Foundation DFG for funding this research within the SFB 805.

References

1. VDI 2062 (2007) Vibration insulation — insulation elements, part 2, Verein Deutscher Ingenieure. Beuth Verlag, Berlin

2. VDI 2064 (2010) Aktive Schwingungsisolierung — active vibration isolation Verein Deutscher Ingenieure. Beuth Verlag, Berlin

3. Otterbach B (2012) Riickrufe auf Rekordniveau (engl.: Recalls on record level). Online edition Automobil Industrie. http://www.automobil-
industrie.vogel.de/mixed/articles/352299/, last cited 25 Oct 2013

4. Platz R, Ondoua S, Enss GC, Melz T (2014) Approach to evaluate uncertainty in passive and active vibration reduction. In: Atamturktur
HS et al (eds) Model validation and uncertainty quantification, volume 3: proceedings of the 32nd IMAC, a conference and exposition on
structural dynamics, 2014, conference proceedings of the society for experimental mechanics series. Springer International Publishing, Cham,
Switzerland, pp 345-352

5. Hanselka H, Platz R (2010) Ansétze und Maflnahmen zur Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus (engl.
Controlling uncertainties in load carrying systems). Konstruktion 11/12:55-62

6. Voth S (2006) Dynamik schwingungsfihiger Systeme (engl. Dynamics of vibrations systems). Vieweg & Sohn Verlag, Wiesbaden

7. Oberkampf WL, DeLand SM, Rutherford BM, Diegert KV, Alvin KF (2002) Error and uncertainty in modeling and simulation. Reliab Eng
Syst Saf 75:333-357

8. Schuéller GI (2007) On the treatment of uncertainties in structural mechanics and analysis. Comput Struct 85:235-243

9. Platz R, Enss GC, Ondoua S, Melz T (2014) Active stabilization of a slender beam-column under static axial loading and estimated uncertainty
in actuator properties. In: Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the sixth
International Symposium on Uncertainty Modeling and Analysis (ISUMA), July 13-16 2014, Liverpool, pp 235-245

10. Bronstein IN, Semendjajew KA (1991) Taschenbuch der Mathematik (engl. Handbook of mathematics), 25 edn. Verlag Harri Deutsch,

Frankfurt am Main


http://www.automobil-industrie.vogel.de/mixed/articles/352299/
http://www.automobil-industrie.vogel.de/mixed/articles/352299/

Chapter 3
Observation DOF’s Optimization for Structural Forces Identification

Silvia Milana, Annalisa Fregolent, and Antonio Culla

Abstract Frequently, in industrial application, the knowledge of the force distribution acting on complex structures is
required. Generally, the direct measurement of these force fields is impossible to perform, mainly due to the difficulties
associated with the transducers placement. Therefore, the development of force identification techniques is a very important
topic in applied mechanics. Unfortunately, this inverse problem is typically ill-conditioned. In recent decades, some force
identification procedures has been developed, but it is difficult to enforce these techniques in operating condition. In this
paper, a procedure to design the operative setup is proposed in order to determine the best configuration of sensors position.
To this aim, two indices are used and, through a Finite Element Model of the structure, they are calculated. The procedure
allows to reach the best configuration of the measurement points in order to minimize the ill-conditioning of the problem. To
validate the procedure, the results of an experimental test on a complex structure are compared with the numerical results.

Keywords Force identification ¢ Sensor placement ¢ Ill-conditioned problem ¢ Regularization technique * Finite element
model

3.1 Introduction

Identification of external forces acting on structural systems is fundamental in many structural dynamic problems. Since the
identification problems are ill-conditioned, regularization techniques are necessary to obtain meaningful results. In recent
decades, several techniques have been developed to solve this problem. Among these, two approaches are of particular
interest: Force Analysis Technique [1, 2] that use a finite difference scheme and wavenumber approach [3]. These techniques,
although effective, need the knowledge of the analytical model of the studied system. On the contrary, the techniques based
on modal expansion or on the use of frequency response function [4] can be used with more complex systems through
numerical techniques as finite elements method. The accuracy of the identification technique is strongly affected by the
position of the measurement points. In this paper a frequency domain technique is considered and an operative procedure to
design an optimal measurement setup for a complex structure is described. A wide set of points on the considered structure
is selected, the method allows to recognize a subset of them where the sensors can be positioned to reach the best results
in force identification. Two indices are defined allowing to minimize the error of the identification procedure. The first one
take into account the norm of the relative difference between the amplitude of the identified forces and of the real force, the
second one gives the relative difference between the identified force in the correct position and the mean of the identified
forces on the whole set of points. This technique is tested on a complex structure. A numerical simulation is performed using
a FE Model of the studied system in order to identify numerically the force acting on the structure. The identified forces
allow to calculate the indices and to select the best configuration of points. This result is validated by comparing the indices
obtained by a set of measurements performed on a experimental setup at the location identified by the numerical procedure
and those calculated by the numerical results.
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3.2 Theoretical Background

The forces identification problem in frequency domain is defined as follows:
f(w) = H (w)a(w) (3.1

where f(w) is a (n x 1) vector of unknown forces, a(w) is a (m x 1) of measured responses and H(w) is the (m x n) Frequency
Response Function (FRF) matrix. An accurate choice of the response measurement points is one of the key factors to obtain
the actual applied forces. Since in operational condition it is impossible to test a large number of measurement point sets
(setup), it is convenient to evaluate the best setup through a numerical procedure. The first step of the analysis is the choice of
a set of N, points where the measurements can be performed. This set of points are depending on the considered frequency
range [5]. The N, points that belong to the optimal setup are chosen by comparing N, configurations of N, points selected
among the N, points. In order to establish the best configuration, two indices are used. They require the identified forces in
each configuration calculated through a numerical model.

3.2.1 Numerical Model

The procedure needs the knowledge of the numerical frequency response function of the structure H, for the whole set of
N, points. These FRFs are computed through the following relationship:

Hyij) =Y o (xi)pn(x;) (32)

h=1 Mh(w/% —? + ]'771160;2,)

where the eigenvalues wjy, and the eigenvectors ¢, are obtained by a FE model. The acceleration of the selected points is
given by:

a(w) = H(w)f(w) 3.3)

The numerical force reconstruction is performed using the computed acceleration polluted adding a random error
proportional to the mean value of the signal for each frequency and for each point.

3.2.2 Reconstruction of the Force Field

The reconstruction of force field for each configuration needs the inversion of the matrix H. Due to the ill-conditioning
of the problem, errors in the data can highly perturb the solution. Therefore to reconstruct the force field the employ
of regularization techniques is required. In this work, two regularisation techniques both based on Singular Values
Decomposition (SVD) of the matrix H are considered: Truncated Singular Values Decomposition (TSVD) [6] and Tikhonov
regularisation [7]. Using SVD, the force can be expressed as:

f@) =Y “l*aé—‘“)v (3.4)
i=1 !

where u; are the left eigenvectors, v; are the right eigenvectors and o; are the singular values. Regularisation introduces a
filter £ in the sum of previous equation:

f) =) & @ (3.5)

i=1
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The form of the filter £ depends on the regularisation technique. In TSVD it assume the following discrete values

1 ifn<k
= 3.6)
J 0 ifn>k

where k is the index correspondent to the number of singular values considered in the sum of Eq.(3.5) The regularised
solution becomes:

£ u; a(w); v;
flw) = E P 3.7
i=1 !

In Tikhonov regularisation the values of £ is obtained through the minimisation of the following function:
Ry = |[Hf —x||3 + A%||Tf]]3 (3.8)

where the first term is the residual and the second term is the value of the solution. In this case using SVD the filter £ has the
following expression:

o
R M 39
él O_iz + AIZ ( )
and the regularised solution becomes:
" o uwa(wyv;
flw) = L ! 3.10
(@) =) A (3.10)

i=1

Note that, the solution f(w) depends on the value assumed by the parameter A. The optimal value of the regularization
parameter A is obtained through Generalised Cross Validation (GCV) [8].

3.2.3 Successful Indices

In order to analyze the large number of results obtained from numerical identification, two indices are used. The first index
I'norum takes into account the norm of the relative difference between the magnitude of the reconstructed force and the value
of the actual force

(3.11)

fuc ual | — fi entifie
]NORM=[1_||| wual | = |fidentiy d|||i|.100

”faz,'tual ”

The second index sy is the relative difference between the identified force in the correct position and the mean of the
identified forces on the whole set of points.

u |fidenti/ied,-|
|fidcntified,»| - Z n—1
i=1,%d
Lo = mLAd 100 (3.12)
factual

The proposed procedure is performed on N, configurations of N, points chosen among the N, points set. Therefore the two
indices have dimensions (N. x N, x Ny), where N are the number of considered frequencies.

The use of these indices allows to analyze the results obtained from numerical simulation performed considering each
point N, of each configuration N, as a drive point. Therefore, it is possible to obtain the values of these indices for each
frequency, each drive point, and each configuration considered.
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3.3 Test Structure

The proposed technique is tested on an aluminium structure (Fig.3.1). The structure consists of a cantilever column with
two staggered short arms and a horizontal beam. The horizontal beam is bolted at the top of the column, involving both
translational and rotational DoFs. The geometrical dimensions are reported in Table 3.1. The cross section is 40x8 mm for
all beams, with the short side along the z-direction.

The experimental frequency response function H, is obtained up to 600 Hz by exciting the structure and measuring the
accelerations along z-direction at seven locations.

3.3.1 Result

The Finite Element Model of the structure (Fig.3.1) is built using beam element and H,, is calculated by the procedure
described in Sect. 3.2.1.

The procedure described in Sect. 3.2 is performed for all considered points of the structure(N;). The points position is
shown in Fig. 3.1. The force identification is performed on N, configurations of N, points changing the drive point position
on each point of each configuration. The results are analyzed at the seven frequencies shown in Table 3.2.

The considered configurations are shown in Table 3.3.

A matrix of dimension (N. x N, x Ny) is obtained for each index. The choice of optimal setup corresponds to the
maximization of the two indices. This choice can be obtained by averaging the index matrices over all the N, points or
over all the N frequencies. The average is performed over the parameter chosen according to the operational condition. For
instance, if the force location is roughly known, it could be more interesting to average over the frequencies. On the contrary,
if the force location is completely unknown, but the force is band limited, it could be more interesting to average over the
N, points. Here, for seek of generality, the analysis is performed by averaging both over N, and over N.

In Fig. 3.2 the comparison between the indices averaged over all drive points for some of the considered configuration are
shown.

The indices corresponding to configuration number 1 assume the greatest value. In Table 3.4 are shown the indices
averaged all N, points or over all the Ny frequencies. These results show again that the first configuration is the best one.
Consequently, the points of the first configuration (shown in Fig. 3.3 together with their coordinates) are selected to perform
the experimental measurements.

13 14 1516 171819 20 2122
8¢ 910
1211 {7 {c
6
5 a

b 4
3
2
1

A)(i)

Fig. 3.1 Model of considered structure. (a) Finite element model. (b) Experimental setup

Table 3.1 Geometrical b c d e )
dimensions [mm] 540 420 |60 100 | 240 | 600

Table 3.2 Selected frequencies Frequency number |1 |2 |3 4 5 6 7

Value [Hz] 55 |79 | 105 | 350 437 486 |521
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Table 3.3 Displayed
configuration

a
80 T T T T T T T
70+ M ' .
60 - ]
50 g
x
Q
E 40 + g
Qa3o0f 1
3
20 + E
10 - g
0 I Il I
55 79 105 350 437 486 521
[Hz]
Il Confl B Conf3 O Conf5 [ Conf7 @@ Conf9 = Conf11
B Conf2 @ Conf4 [ Confé @ Conf8 M@ Conf10
Cc

80 T T T T T T

N

55 79 105 350 437 486 521
(Hz]

NORM Index

Il Confl B Conf3 [ Conf5 O Conf7 @@ Conf9

® Conf2 & Conf4 0 Conf6 0 Confs @ Confio ™ CON11

AVG Index

NORM Index

80
70
60
50
40
30
20
10

31

Configuration | Points
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Conf 2 S| 9 |11 |14 |17 |18 |20
Conf 3 15 10 [13 |17 |19 |21
Conf 4 1|5 7 9 |17 |19 |21
Conf 5 1|7 8 |11 |17 |19 |20
Conf 6 31 4 6 8 |12 |14 |20
Conf 7 415 7 9 |11 |13 |16
Conf 8 3 4 6 8 |17 120 |22
Conf 9 3.6 8 |12 |13 |16 |21
Conf 10 27 |10 |11 |14 |20 |21
Conf 11 5 /10 |11 |12 |14 |17 |20
79 105 350 437 486 5é1
[Hz]
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 Confl1

Fig. 3.2 Comparison between index obtained from numerical simulation with different configurations. (a) / 4y¢ Tikhonov regularisation. (b) /4y
TSVD regularisation. (¢) /yory Tikhonov regularisation. (d) /yory TSVD regularisation (Color figure online)

The same procedure, performed for the numerical results, is followed using the experimental data in order to obtained
Inorm and I4yg. Note that H, is obtained though experimental data. In Fig.3.4 H, and H, for the drive point 14 are
compared. It is possible to notice a good agreement between these frequency response functions, by considering that the
numerical model is not updated on the experimental results. However, the values of some resonances do not perfectly agree.
In particular, in correspondence of the 4t/ considered frequency (350 Hz), there is a difference of the 3.5 %, as highlighted in
Fig. 3.4. Note that this frequency corresponds to a resonance only in the experimental case. Figure 3.5 shows the comparison
between the average over all points N, of numerical and experimental indices in correspondence of the selected frequencies
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Ta.b'te 3-f4. (?V@rage over all drive Conf | Inory TSVD | Iyvg TSVD | InormTIKH | 14y TIKH
points of indices
1 45 52 42 46
2 33 42 34 36
3 27 41 34 34
4 27 37 33 32
5 33 42 38 38
6 34 43 36 37
7 38 43 39 40
8 30 41 37 36
9 36 46 39 40
10 39 48 44 44
11 34 45 40 40
Fig. 3.3 Configuration ! ' !
of experimental setup RERN] L e
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(see table in Fig. 3.3). As expected, the experimental results have a smaller value than the numerical results. However, the
trend is similar almost everywhere except for the 4t/ frequency where the gap between the simulated and experimental
resonance is reflected on the indices values.
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Fig. 3.5 Comparison between numerical simulation and experimental data in best configuration (numerical 0), (experimental 4). (a) /4y TSVD
regularisation. (b) Iyory TSVD regularisation

Figure 3.6 shows the comparison between the forces identified with numerical and experimental procedures in
correspondence of 4t/ frequency (350 Hz). In the experimental case the force is bad identified because 350 Hz corresponds
to a resonance of the experimental FRFs. The analysis of the full set of figures allows to establish that the obtained values of
the indices ensure the possibility of identify the forces field, although the values could seem small.
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Fig. 3.6 Force at 4th frequency 350 Hz. (a) Experimental. (b) Numerical

3.4 Conclusions

Force [N]
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In this paper a procedure to design the best operative setup to perform forces identification is presented. A FEM of a complex
structure is developed and a numerical force identification is performed. Two indices are employed that allow to select the
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best configuration of points. In order to validate the numerical procedure, experimental measurements of acceleration are
performed on the selected set of points. The results show that the selected configuration is the best in the set of considered
points.

Acknowledgements This research is supported by University of Rome La Sapienza. The authors thank Paolo Donello for his contribution to thisa
research during his master thesis.

References

1. Pézerat C, Guyader J-L (2000) Force analysis technique: reconstruction of force distribution on plates. Acta Acustica United Acustica
86(2):322-332
2. Leclere Q, Pézerat C (2012) Vibration source identification using corrected finite difference schemes. J Sound Vib, Acta Acustica United
Acustica 331(6):1366-1377
3. Fregolent A, Sestieri A (1996) Force identification from vibration measurements in the wavenumber domain. Proc ISMA 21:517-526
. Ibrahim SR, Fregolent A, Sestieri A (1996) Structural force identification at unmeasured locations. In: Proceedings-spie the international society
for optical engineering. Spie international society for optical, pp 927-933
. Fabumni JA (1968) Effects of structural modes on vibratory force determination by the pseudoinverse technique. ATAA J 24(3):504-509
. Hansen PC (1994) Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6(1):1-35
. Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. Winston/Wiley, Washington
. Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:
215-223

~

03N W



Chapter 4
Nonlinear Structural Finite Element Model Updating
Using Batch Bayesian Estimation

Hamed Ebrahimian, Rodrigo Astroza, and Joel P. Conte

Abstract This paper proposes framework for nonlinear finite element (FE) model updating, in which state-of-the-art
nonlinear structural FE modeling and analysis techniques are combined with the maximum likelihood estimation (MLE)
method to estimate time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE
model of the structure. Using the MLE as a parameter estimation tool results in a nonlinear optimization problem, which
can be efficiently solved using gradient-based optimization algorithms such as the interior-point method. Gradient-based
optimization algorithms require the FE response sensitivities with respect to the material parameters to be identified, which
are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are
evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using
the FE response sensitivities. A proof-of-concept example, consisting of a cantilever steel column representing a bridge
pier, is provided to validate the proposed nonlinear FE model updating framework. The simulated responses of this bridge
pier to an earthquake ground motion is polluted with artificial output measurement noise and used to estimate the unknown
parameters of the material constitutive model. The example illustrates the excellent performance of the proposed parameter
estimation framework even in the presence of high measurement noise.

Keywords Nonlinear finite element model ¢ Model updating ¢ Bayesian estimation ¢ Nonlinear system identification
* Damage identification

4.1 Introduction

Structural modal identification (MID) methods use the measured response of the structure under low-amplitude forced or
ambient vibrations to extract the modal properties of an equivalent linear elastic dynamic system [1]. When a structure
suffers damage or when its material and/or geometric properties change, the identified modal properties of the structure
deviate from its initial undamaged modal properties. The variations in the identified modal parameters or features extracted
from them can be used to detect the occurrence of damage in the structure. Finite element (FE) model updating [2] is another
approach that has been used for system and damage identification (DID) of structures. Various methods have been proposed
and employed for FE model updating and estimating the modeling parameters in the literature such as methods based on
least-square estimation (e.g., [3-5]) and methods based on stochastic filters (e.g., [6—-10] to name only a few). However, the
studies reported in the literature typically use simplistic structural models, which are unable to predict the response of a large
and complex structure in a real world application.

The structural engineering community has benefited from well-established, experimentally validated, mechanics-based
FE modeling and analysis techniques that play an increasingly important role in analysis and design of structures. Relying
on realistic and physical nonlinear material constitutive models, nonlinear structural FE modeling and analysis techniques
can be combined with nonlinear parameter estimation approaches to yield nonlinear FE model updating methods. Authors
have been recently pursued this objective by incorporating nonlinear Kalman filter as a recursive parameter estimation tool
to update nonlinear FE structural models [11, 12]. This paper presents a batch estimation method based on the maximum
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likelihood estimation (MLE) approach to estimate the unknown modeling parameters of a nonlinear structural FE model
using the measured dynamic input and output response of the structure during an earthquake event. Estimation of both the
expected values and the covariance matrix of the modeling parameters is the objective of the parameter estimation framework
presented here. In a real world application, the updated nonlinear FE model can be interrogated to reconstruct the nonlinear
response process experienced by the structure during the damaging event, thus providing detailed information about the
location, type, and extent of damage in the structure.

4.2 Nonlinear Finite Element Model Updating and Parameter Estimation

The time-discretized equation of motion of a nonlinear FE model at kth time step is expressed as
M) Gk (8) + C(8) qi (0) + rx (qx (8),0) =fi 4.1

where M = mass matrix, C = damping matrix, rx (qx (0),0) = history-dependent (or path-dependent) internal resisting
force vector, qi, qx, (x = nodal displacement, velocity, and acceleration vectors, 0 is the modeling parameter vector, f; =
dynamic load vector, and the subscripts indicate the time step. In the case of earthquake base excitation, fy = —MLiig 1,
where L is the base acceleration influence matrix and i, denotes the input ground acceleration vector. In the most general
case, the response of a nonlinear FE structural model at kth time step can be expressed as a (nonlinear) function of the nodal
displacement, velocity, and acceleration vectors at that time step, i.e.,

Y = & (k. Gk ) 4.2)

where ¥, = predicted response vector at kth time step, and g( . . .) is the (nonlinear) output function. By combining Eqs. (4.1)
and (4.2), the response of a nonlinear FE structural model to an earthquake ground motion at each time step is expressed as a
nonlinear function of the modeling parameters, the input ground acceleration time history from the beginning until that time
step, and initial conditions of the FE model, i.e.,

Vi = hi (0, 115154, qo. Go) (4.3)
.. .. .. .. T .. . . .
In Eq. (4.3), Ug i = [ug1 , ugz, el “;k where Ui, = vector of measured input ground acceleration at kth time step,

qo = initial nodal displacement vector, qo = initial nodal velocity vector, and h,(...) is the nonlinear response function of
the FE model at kth time step. The measured response vector of the structure, yy, is related to the model predicted response
vector, yi, through the prediction error framework [13].

Yk =¥i + Vi 4.4)

in which v, the prediction error vector, accounts for output measurement noise and modeling error. The prediction error is
modeled as a stationary zero-mean Gaussian white noise process [14],i.e., vy ~ N (0, R), where the covariance matrix R is
assumed to be time invariant and diagonal, i.e., R = [r;].j =1 — ny.

To estimate the unknown modeling parameters, they are modeled as random variables according to Bayesian approach
for parameters estimation. The Bayes’ rule is employed to infer the a posteriori probability density function (PDF) of the
modeling parameters from the time histories of noisy input and output measurements and the a priori PDF of the modeling
parameters. Assuming that the components of input ground acceleration are known and deterministic, the a posteriori PDF
of the modeling parameters can be written as:

1
P (O] yisk) = - P (Yi-«]0) p (0) 4.5)

in which yir = [yi7.y2". ..., v"] Tandc = /p (Yy1—x]9) p(8) d is a constant called evidence. p (y;—«|0) =

1 (0,y1-¢) is the likelihood function. Considering minimum prior knowledge about the modeling parameters, the a priori
PDF is modeled using uniform distribution. This means that when there is a little prior knowledge on 0 or the prior knowledge
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associates with high uncertainty, the a posteriori PDF will be maximized, in the limiting case, at value of 0 that minimizes
the negative log-likelihood function, which is called the maximum likelihood (ML) estimate of 6 [15]:

/Q\ML = arg mi(r)l— [AO,y1-1)] (4.6)

where A (0,y1x) = In(/ (0,y;-%)) is the log-likelihood function. According to Eq. (4.4), it is clear that [ (8,y,;) =
p (y1>k|0) = p(vi-r) and since v is assumed to be a Gaussian white noise process, it is independent and identically
distributed (i.i.d) in time; therefore [16],

~ k g ) T ) .
0y = arg rr})in (EIHURD + EZ (vi —h (9,ug1—>i,QO,CIo))TR "(yi —h (e»ugl—n'aquqO))) 4.7)
i=1

in which |R]| is the determinant of R matrix. Assuming equal variances for the prediction error at different measurement
channels results in identical diagonal entries for R (i.e., R = rIny >(,1y), where r is the prediction error. Therefore, the MLE
problem reduces to a least squares problem, as proposed and used by many researchers in the field of structural model
updating (e.g., [17-19]).

k
,0\ = arg H})ln (Z || Yy — hi (e’ ﬁgl%i’ qo, qO) ||2) (48)

i=1

Nevertheless, assuming equal variances for the prediction error at different measurement channels is a restrictive and often
invalid assumption. For example, the equal variance assumption is incorrect in the case of heterogeneous sensor array, where
the measured signals from different sensor types have different unit scale and amplitude. This invalid assumption makes
the least squares estimation procedure to give a relatively higher weight to the measurement data with higher amplitude. To
allow the use of heterogeneous sensor array in nonlinear FE model updating procedure and enhance the robustness of the
parameter estimation process, an extended estimation procedure is suggested in this paper, in which not only the modeling
parameters but also the variances of the prediction error, which are the diagonal entries of the covariance matrix R and are
shown by the vector r = [r ,] ( j=1—>n ) are estimated. Following Eq. (4.7), the extended estimation problem can be
formulated as a general optimization problem:

(55 e g
k& 1< r
J (6,0, Y15k, lig15k) = Ezln (rj) + EZ(yi —h; (8,iig1:)) R (i — by (8, iig1)) (4.10)

in which J(...) is the objective function of the optimization problem and the dependence of J on g and qo is dropped
for notational convenience. By defining a feasible range for the modeling parameters and the variance components (i.e.,
Omin < 0 < 04 and 7 min < ¥j < 7 max) the parameter estimation problem is transformed into a constrained nonlinear
optimization problem, which is solved using an interior-point method [20, 21] in this paper. The utilized numerical algorithm
is implemented and available as a part of MATLAB optimization toolbox [22]. The algorithm requires the computation of
the gradients of the objective function with respect to the modeling parameter vector, 0, and the variance vector, r, which
can be respectively computed as:

T
9 _ _Z (8h 9 u&l—)l)) R_l (Yi _hi (e,ﬁgl—n')) (411)

i=1

ar;  2r; 2

o _ k. li (i — hij (8.iig1-1))”

_ 4.12
= 4.12)

i=1
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. . . . . . oh; (0,0,1—;) . . e .
in which y;; is the jth component of the response vector at ith time step. The term % in Eq. (4.11) is the sensitivity

(or rate of variation) of the FE response at ith time step with respect to the modeling parameters, 0, and is referred to as the
FE response sensitivity matrix. FE response sensitivity analysis is a well-developed subject with a variety of applications
including structural optimization, probabilistic analysis, and reliability analysis of structural and geotechnical systems (e.g.,
[23-26]). The FE response sensitivities can be computed approximately using the finite difference method (FDM), which
requires at least ng + 1 evaluations of the nonlinear FE model, where ngy is the number of parameters with respect to which
the sensitivities are computed. Alternatively, the FE response sensitivities can be exactly evaluated using the computationally
more efficient direct differentiation method (DDM) [27]. The DDM is based on the exact (consistent) differentiation of the
FE numerical scheme with respect to the FE model parameters of interest. The use of DDM in the current nonlinear FE model
updating framework significantly improves the computational efficiency of the parameter estimation procedure especially for
large scale FE models. The fundamentals of DDM-based FE response sensitivity computation are briefly described in the
next section.

4.3 DDM Method for Finite Element Response Sensitivity Analysis

The time discretized equation of motion shown in Eq. (4.1) is solved using recursive numerical integration in time. Using an
implicit single-step time integration scheme, such as the Newmark-beta method [28], the acceleration and velocity at time
step (k + 1) are interpolated as

Gr = a1qx + a2qQk—1 + a3qr—1 + a4qr— (4.13)

Gk = b1 + baqie—1 + b3r—1 + bali— (4.14)
where a; to a4 and b; to by are constant integration coefficients. Substitution of these equations into Eq. (4.1) yields the
following nonlinear vector-valued algebraic equation, which can be solved using incremental iterative procedures such as
Newton-Raphson method [29].

aM(8) gk (8) + 51C (8) qx (8) + rx (qx (8).0) = f; (4.15)
in which

fi = £ —M(0) [a2qi—1 (0) + asde—1 (8) + asdix—1 (8)] — C () [baqi—1 (8) + b3ci—1 () + baiix—1 (0)] (4.16)

and 0 = [0, 06,,.. .]T is the vector of time-invariant material parameters. Now, Eq. (4.15) is separately differentiated with
respect to each material parameter, 6; (i = 1 — ng), to obtain the response sensitivity with respect to this parameter, i.e.,

4.17)

[alM ) + b1C(8) +

),

in which % = (K‘}”” ) « 18 the static (consistent) tangent stiffness matrix and is readily available from the FE solution if
k

ory ((lk,e)]a& _ e (q.9)
oq;

36, a0, )% T 30

M (0 aC (0 of
_ a ) v, 9) k
96; 96; q=qx

a Newton-Raphson iterative scheme is used (at least in the last iteration) to solve Eq. (4.15). Moreover, the matrix in the left
hand side of Eq. (4.17) is called the dynamic tangent stiffness matrix, (K‘;y")k, which is also available from the FE solution.
Using Eq. (4.16), the last term in the right hand side of Eq. (4.17) is obtained as

of  f  OM(8)
30, ~ 96 36;
dC (9) [ by Iqx—1

. . oq— 0q— 0y —
[axqi—1 (8) + asie_1 (0) + asiic_s ()] — M () [az ‘;gi‘ +a ‘;gi‘ +ay gléil}

oy — oy —
+ bs Qi 1+b4 Qi 1:|

— ——— [b2qi—1 (0) + b3qs—1 (0) + bsti— (8)] — C(0) 20, 20, 20,

00;

(4.18)
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Depending on the type of material parameter, %, 31?;[9( , and ac(e are usually easy to derive at the element level [25].
Furthermore, the vectors a%"a L, B%"a L and aigg L are available from the last time step sensitivity computation. Thus, agk can

be computed without any comphcatlon The first term in the right-hand-side of Eq. (4.17) represents the partial derivative
of the internal resisting force vector with respect to the material parameter, 6;, conditional on the displacement vector, qy,
remaining fixed. To compute this conditional partial derivative, the structure’s internal resisting force vector at time step k
needs to be explicitly derived. In a displacement-based FE model of frame-type structures, the structure’s internal resisting
force vector is derived by assembling the element nodal resisting force vectors as

#ele
re (ax 0),0) = A {r (g (6).6) (4.19)
#ele
in which A l{ .} denotes the direct stiffness assembly process including the transformation from the element local
ele=

coordinate system to the structure global coordinate system, re’ (q“l"’,ﬁ) = element nodal resisting force vector, and
q°’¢ = element nodal displacement vector in the element local coordinate system. The element nodal resisting force vector
is obtained, through the principle of virtual displacements, as the following weighted integral of the section stress vector,
gsec [30]

k °

ele( ele (e) 9) /BT vec( sec (e) e) (420)
Lete
where B = strain-displacement transformation matrix, o°°¢ (¢°°“, @) = section stress resultant vector, and £ = section

strain (or deformation) vector. Finally, the section stress vector is obtained by integrating the fiber stresses over the cross-
section as

o (61 ©).8) = [ao/" (s ®).0) da @an)
Asec

in which a = section kinematic (compatibility) vector, o/ (sf ib, (')) = fiber stress (uniaxial), and &/ = fiber strain
(uniaxial). Now, the conditional partial derivative of the structure’s internal resisting force vector with respect to the material
parameter, 6;, can be Computed as

8rk (qv 0)
a6;

#ele ao*kflb fib 0)
= / BT / dAdL (4.22)
0; ofib_glib

a=qc b=e]

Leie Asec

601'\,fib (2 f"b.e)

where ———— is the history-dependent variation of fiber stress with respect to the material parameter

ofib—g _I:ib
0; conditional on the fiber strain remaining fixed. This conditional partial derivative can be computed by analytically
differentiating the material constitutive law of the fiber with respect to 6; [24-27].

4.4 Uncertainty Quantification

A ML estimator has some general asymptotic properties that can be used to evaluate the estimation uncertainties. The
covariance of a ML estimator can be asymptotically evaluated using the Cramér-Rao lower bound (CRLB) [15]. In general,
CRLB provides a lower bound for the estimation covariance for any unbiased estimator. It can be shown that a ML estimator
is asymptotically unbiased and its estimation covariance asymptotically converges to the CRLB [15, 31, 32].



40 H. Ebrahimian et al.

4.4.1 Derivation of CRLB Based on the Exact Fisher Information Matrix

The Fisher Information matrix (FIM) for the MLE problem shown by Eq. (4.9) can be exactly computed as [33]:

_ (199)n xn (O)n Xny
. [ O <1rr),f,,xny} @29

Following the Cramér-Rao theorem [15, 31, 32]:

s[@-2() @-£@) ] [(0-£() ¢-£o)] | 0]
E[(’E—E(’f)) 6-£0)"| e[E-£@) ¢-£6)]| L O

(4.24)

in which E [X] = Eyje [X] = | X p (y1-«|0) dy and Y is the stochastic response of the structure to a specific earthquake

input motion. Therefore, the lower bound for the covariance matrix of the modeling parameter can be computed as:

k . T .
. oh; (8, 1g1;) dh; (8, ig1;)
—1 _ i \V, Ugl—i 1 I \YU, Ugl—i
cov (e) > Top~ !, Tgp = ; (ae—T RO (4.25)
= at9,r
where M is the response sensitivity matrix and Igg is evaluated for the true modeling parameter and noise variance

vectors, 0 and r respectively, which can be approximated by the ML estimates 9 and T. Based on the asymptotic properties
of MLE, 0 and T asymptotically merge  and r, respectively, and therefore, the estimation covariance asymptotically merges
the FIM computed at 6 and T.

4.5 Validation Study

The benchmark structure used for this validation study is a 6.0 m cantilever steel column representing a small bridge pier
[11]. The column has a built-up box section with dimension 550 x 550 x 20 mm (built from ASTM A36 steel) and carries
a lumped dead load of 981 kN as shown in Fig. 4.1. It is assumed that the section can attain its full plastic capacity without
any significant local buckling, strength degradation, or softening behavior. Using fiber-section displacement-based beam-
column elements, a 2D model of the structure is developed in OpenSees [34] as shown in Fig. 4.1. The steel fibers are
modeled using the modified Giuffré-Menegotto-Pinto material constitutive model [35], in which the stress-strain relation is
defined using smooth curved shaped hysteretic loading and unloading branches. In general, this material model is governed
by eight time-invariant parameters, five of which are empirical parameters controlling the curvature of the hysteretic loops

W =981kN
W =981kN
L4 T 9 7 y
|~— 550 —>|
(2]
! [ (N I — —
T 3 3
o o ™) ()]
S [Te] —H=—20 ~ z
3 v v L G
A A L - |
Fig. 4.1 Left: cantilever steel Section A-A § y 8 Section discretization
column with box section, Right: z =
details of the developed FE 7. Z
model (DBE: displacement-based v il
Seismic Input Seismic Input

element, length unit: mm)
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and the stress shift (to mimic the isotropic hardening). While these five parameters are assumed as known constants in this
problem, the other three material parameters are treated as unknown modeling parameters to be identified. These parameters
are 0, = initial yield strength, £ = elastic modulus, and b = strain hardening ratio. The true (exact) values of these material
parameters are taken as o;,”‘e =250 MPa, E'"* =200 GPa, and b'"* = 0.1.

One ground acceleration record from 1989 Loma Prieta earthquake is selected for the nonlinear time history analyses
(Fig. 4.2) [36]. The nonlinear analysis is started by first applying the gravity loads quasi-statically. Then, the nonlinear time
history analysis is performed using the Newmark average acceleration method [28] to integrate the equations of motion
using a time step of At = 0.02s. The Newton-Raphson method is employed to solve iteratively the nonlinear dynamic
equilibrium equations at each time step. Tangent stiffness-proportional Rayleigh damping [28] is used to model the damping
characteristics by defining a damping ratio of 2 % for the first elastic mode (77 = 0.76 s).

To simulate the response of the structure, the FE model is analyzed and the acceleration response time history of the
column top in the direction of the seismic input is obtained and artificially polluted by measurement noise, which is modeled
as a zero-mean Gaussian white noise, to provide the measured response of the structure. The measured response of the
structure is used in the proposed parameter estimation framework to evaluate the point estimate of the modeling parameters

~ ~ T
0 = [o v, E, b] ) and the error variance T (which is a one dimensional vector in this case). The uncertainties associated with

the estimated modeling parameters are evaluated by computing the CRLB based on the exact FIM. Although the estimation
of the prediction error variance would have no influence on the point estimate of the modeling parameters in the case of single
output measurement or multiple output measurements with similar signal amplitude and noise characteristics, the estimated
error variance is essential for computing the estimation uncertainties as shown in Eq. (4.25).

To investigate the robustness of the parameter estimation framework and its sensitivity to the output measurement noise
level, three different amplitudes for output measurement noise are considered, namely 0.5 %g, 2 %g, and 5 %g RMS. The
2 %g and 5 %g RMS noise levels are unrealistically high; nevertheless, they are considered to examine the performance
of the estimation framework using extreme noisy measurements. The true values of noise variance for the three considered
noise levels (0.5 %g, 2 %g, and 5 %g RMS) are r'"** = 0.24 x 1072, 3.85 x 1072, and 24.06 x 1072, respectively. These
true values are used later to evaluate the accuracy of the estimation results. The initial estimates for the modeling parameters

2
and noise variance are selected as 0, , = 0.750;,”“’, Ey = 1.30E!'" by = 1.35b'" and ry = 0.62 x 1072 [m/sz] . The

feasible search domain for the modeling parameters are set as 0.4 0y < 0 < 2.5 0, where 8¢ = vector of initial estimates of
the modeling parameters, and for noise variance are set as 0.025 ro < r < 40 ry. Figure 4.3 shows the convergence history
of the three modeling parameters and the noise variance for the three considered levels of measurement noise. Table 4.1
shows the estimated modeling parameters and noise variance, normalized with respect to the true parameter values, for

Og;

all the cases considered. The table also lists the coefficient of variation (COV = /’9\) of the modeling parameters

computed using the proposed method for evaluating the CRLB. Figure 4.3 and Table 4.1 conﬁrm the successful performance
of the proposed parameter estimation framework. As can be seen for the case of 5 %g RMS noise level in Table 4.1, the
excessive level of measurement noise results in biased estimation of the modelling parameters. The detrimental effects of
high amplitude measurement noise become more dominant in the estimation of strain hardening ratio, b. Listed in Table 4.1,
the estimated COVs have an excellent qualitative agreement with the estimation accuracy: the COVs are higher when the
estimations are more biased. For all the considered cases, the modulus of elasticity E has the smallest COV, followed by the
yield strength, o, and the strain hardening ratio, b, has the largest COV. Moreover, the COVs consistently increase as the
level of measurement noise increases.
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Fig. 4.3 Convergence history of the modeling parameters and noise variance for the three levels of measurement noise considered

Table 4.1 Estimation results for three measurement noise levels considered

Modeling parameters Noise variance | COV (%)
Motion name Noise level (%g RMS) crylai,r ue | EIE™e | p/b"ve | pfyue oy E b
Loma Prieta EQ., Eureka Canyon Road station | 0.5 1.00 1.00 1.00 1.02 0.14 1 0.03 | 1.05
2 1.01 1.00 0.98 1.01 0.55 |0.12 | 4.26
5 0.99 1.01 1.14 1.00 1.45 10.32 |19.49

4.6 Conclusions

This paper proposed a framework for nonlinear finite element (FE) model updating of civil structures using measured
dynamic input and output data. The proposed extended batch estimation method is based on the maximum likelihood
estimation (MLE) approach to estimate the unknown modeling parameters, the measurement noise amplitude, and the
covariance matrix of the modeling parameters. Using the MLE as a parameter estimation tool resulted in a nonlinear
optimization problem, which was efficiently solved using interior-point method, a gradient-based optimization procedure.
The FE response sensitivities were accurately and efficiently computed using the direct differentiation method (DDM). The
covariance matrix of the modeling parameters were evaluated based on the Cramer-Rao lower bound (CRLB) theorem by
computing the exact Fisher Information matrix (FIM). The computation of the FIM required the knowledge of measurement
noise variance, which was estimated through the extended estimation framework. A proof-of-concept example, consisting
of a cantilever steel column representing a bridge pier, was provided to validate the proposed framework. Different levels of
measurement noise were considered to evaluate the performance and robustness to output measurement noise of the proposed
framework. The results proved the excellent performance of the estimation framework even in presence of extremely high
measurement noise levels.
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Chapter 5
A Comparative Assessment of Nonlinear State Estimation Methods
for Structural Health Monitoring

Majdi Mansouri, Onur Avci, Hazem Nounou, and Mohamed Nounou

Abstract Researchers have been studying the uncertainties unique to civil infrastructure such as redundancy; nonlinearity;
interaction with surrounding; heterogeneity; boundaries and support conditions; structural continuity, stability, integrity;
life cycle performance expectations and so on. For incorporating such uncertainties, filtering techniques accounting for
stochasticity can be implemented employing collected data from the structures. In this paper, an Iterated Square Root
Unscented Kalman Filter ISRUKF) method is proposed for the estimation of the nonlinear state variables of nonlinear
structural systems, idealized herein for simplified spring-mass-dashpot. Various conventional and state-of-the-art state
estimation methods are compared for the estimation performance, namely the Unscented Kalman Filter (UKF), the Square-
Root Unscented Kalman Filter (SRUKF), the Iterated Unscented Kalman Filter JUKF) and the Iterated Square Root
Unscented Kalman Filter (ISRUKF) methods. The comparison reveals that the ISRUKF method provides a better estimation
accuracy than the [IUKF method; while both methods provide improved accuracy over the UKF and SRUKF methods. The
benefit of the ISRUKF method lies in its ability to provide accuracy related advantages over other estimation methods since
it re-linearizes the measurement equation by iterating an approximate maximum a posteriori (MAP) estimate around the
updated state, instead of relying on the predicted state.

Keywords Iterated square root * Unscented Kalman filter ¢ State estimation * Structural health monitoring

5.1 Introduction

It has been discussed in the SHM literature that the structural identification methods proven for manufactured (mechanical)
systems were unsuccessfully used for constructed (civil) systems over the years. Many characteristic attributes of the civil
structures were ignored in the process since the developed methods were more applicable to manufactured systems. Even
very refined three dimensional models of civil structures cannot mitigate the influences of bias sources of uncertainty.
Uncertainties unique to civil structures are; local and global redundancy; material, dynamic and geometric nonlinearity;
interaction with surrounding forces; heterogeneity of the members and materials; boundaries and support conditions;
structural continuity, stability and integrity; life cycle performance expectations. In accounting for these for the uncertainties,
there is a need for improvement of the model predictions using data collected from structures. In the widely established
approach of modal parameter estimation, the system can be ill-conditioned due to uncertainties in the measurements. The
potential errors in structural model updating combined with aleatory uncertainty in modal parameter estimation often results
in inconsistencies between the real structural behavior and the finite element model predictions. However, in most of the
published research in SHM, the ill-conditioned state and the presence of uncertainty are not considered. For nonlinear state
estimations, various state estimation techniques (the Extended Kalman filter (EKF) [1-3], Unscented Kalman Filter (UKF)
[4, 5], Central Difference Kalman Filter (CDKF) [6], and Square-Root Unscented Kalman Filter (SRUKF) [7]) have been
developed and used by researchers. In the extended Kalman filter method, in order to approximate the covariance matrix of
the state vector, the model describing the system is linearized at every time sample. However, for highly nonlinear or complex
models, the EKF results are not always successful. Instead of linearizing the model, the UKF method utilizes the unscented
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transformation to approximate the mean and the covariance matrix of the state vector. In the unscented transformation
process, a set of samples (sigma points) are selected and propagated through the nonlinear model, providing more accurate
approximations of the mean and covariance matrix of the state vector. One drawback of the UKF method is that the number of
sigma points is often not very large and may not adequately represent relatively complicated distributions. As an alternative
to these methods, the square-root unscented Kalman filter, and the central difference Kalman filter have been developed.
The advantage of these filters is that evaluating the quasi log-likelihood distribution only takes a fraction of a second.
The iterated square-root unscented Kalman filter has been recently suggested by Wu et al. [8] for target tracking using
TDOA measurements. The ISRUKF employs an iterative procedure within a single measurement update step by resampling
the sigma points till a termination criterion, based on the minimization of the maximum likelihood estimate, is satisfied.
Furthermore, the ISRUKF method propagates and updates the square root of the state covariance iteratively and directly
in Cholesky factored form. In addition to providing reduction in the computational complexity, ISURKF has as increased
numerical stability and better (or at least equal) performance when compared to the other algorithms.

The organization of the paper is as follows. In Sect. 5.2, the state estimation problem is presented. Then, in Sect.5.3,
the developed iterated square-root unscented Kalman filter is described. After that, in Sect. 5.4, the performance of various
state estimation methods are compared for the state variables of a three degree of freedom spring-mass-dashpot system.
Conclusions are presented in Sect. 5.5.

5.2 State Estimation Problem

The formulation of the state estimation problem is presented here in this section.

5.2.1 Problem Formulation

The state estimation problem is formulated for a general system model, in this section. Consider a nonlinear state space
model to be described as follows [9]:

x =g(x,u0,w),

8( ) (5.1)

y = Il(x,u,0,v),

where x € R" is a vector of the state variables, u € R? is a vector of the input variables, 8 € R? is a known parameter vector,

y € R™ is a vector of the measured variables, w € R" and v € R™ are process and measurement noise vectors, respectively,

and g and / are nonlinear differentiable functions. Discretizing the state space model (5.1), the discrete model can be written
as follows:

Xk = f k-1, Uk—1, Ok—1, Wk—1), 52)

Vi = h(xi, uk, Ok, vi),
which describes the state variables at some time step (k) in terms of their values at a previous time step (k—1). Let the process
and measurement noise vectors have the following properties: E[wi] = 0, E[wxw!] = Qx, E[vx] = 0 and E[vzv]] = Ry.
Let’s assume that the parameter vector is described by the following model:

Ok = Ot + V-1 (5.3)

which means that it corresponds to a stationary process, with an identity transition matrix, driven by white noise. In order to
include the parameter vector 6y into the state estimation problem, let’s define a new state vector z; that augments the state
vector x; and the parameter vector 6; as follows:

% = [xk] _ I:f(xk—lauk—l,wk_l,9;(_1)]7

54
O Ok—1 + Yk—1 G



5 A Comparative Assessment of Nonlinear State Estimation Methods for Structural Health Monitoring 47

where z; € R"14, Also, defining the augmented noise vector as:

Wi—1
€r—1 = , 5.5)
! [)/k—l ]
the model (5.2) can be written as,
%% = §(Zk—1, Uk—1, €5—1), (5.6)
Vi = Rzk, ug, vi), (5.7)

where § and R are differentiable nonlinear functions. In this work, the objective is to estimate the state variables vector zx
given the measurements vector y;, where the model parameter vector 6 is assumed to be known.

5.3 Description of State Estimation Methods

5.3.1 Unscented Kalman Filter Method

The EKF approximates the mean and covariance of the state vector by linearizing the nonlinear process and observation
equations, which may not provide a satisfactory approximation of these moments. For better estimates of these moments, the
unscented Kalman filter takes advantage of the unscented transformation. It must be noted that the unscented transformation
is a method for calculating the statistics of a random variable that undergoes a nonlinear mapping. Assume that a random
variable z € RY with mean Z and covariance P, is transformed by a nonlinear function, y = £(z). In order to find the
statistics of y, define 2L + 1 sigma vectors as follows:

Zy=12
Zi=Z+ (J(L+MP); i=1,....L (5.8)
Zi=7—(V(L+MP); i=L+1,...,2L

where A = e?(L + k) — L is a scaling parameter and (1/(L + A)P,); denotes the i column of the matrix square root. The
constant 107 < e < 1 determines the spread of the sigma points around 7. The constant k is a secondary scaling parameter
which is usually set to zero or 3 — L [3].

Then, these sigma points are propagated through the nonlinear function, i.e.,

Y, = f(Z;) i=0,...,2L (5.9)

and the mean and covariance matrix of y can be approximated as weighted sample mean and covariance of the transformed
sigma points of Y; as follows:

2L
DAL
i=0
2L
and P~ ) WO - -3, (5.10)
i=0
where the weights are given by:
! A+r’
W = -2 g
0 A+r '
. 1
and W"W=w9=_——— i=0,..2L. (5.11)

T 200+ )



48 M. Mansouri et al.

The parameter £ is used to incorporate prior knowledge about the distribution of z. It has been shown that for a Gaussian and
non-Gaussian variables, the unscented transformation results in approximations that are accurate up to the third and second
order, respectively.

The prediction update equations are as follows:

2/: = 3(2,:,1%1(—1),
— §
sz =P, + R,
8 —
Ry, = (ARLIS - 1) Py,

Zijiet = [2,: T VrrA P -Vt A,/PZ;],
Y=t = S (Zkjk—1. ux—1)
Pe= > WYt (5.12)
i=0
The prediction update equations are as follows:

2r

Py, WY kpemt = 9] [Yisleor — ﬁk]r + Ry,

=

(=}

2r
Py = Z W,'(C) [Z: k=1 = D] [Zi k=1 — ﬁk]T,
i=0

Ki = P,y Pyl
2k = 2 + Ki(yi — i),
. = P, — K Py K[ (5.13)

5.3.2 Square-Root Unscented Kalman Filter Method

In the EKEF, the covariance Py itself is recursively calculated, while, the UKF requires instead calculation of the matrix square-
root Sk S,Z = P, at each time step. In the SRUKEF, Sy will be propagated directly, avoiding the computational complexity to
refactorize at each time step [7]. The SRUKF is initialized with a state mean vector and the square root of a covariance.

20 = E|z0] (5.14)

and,
So = chol { E [(z0 — 20)(z0 — 20)']} (5.15)
Wi = [Zk—1 Zk—1 + hSk—1 Zk—1 — hSk—1] (5.16)

The Cholesky factorization decomposes a symmetric, positive-definite matrix into the product of a lower-triangular matrix
and its transpose. This matrix is used directly to obtain the sigma points:
The scaling constant £ is expressed as,

h =~ La? (5.17)

where « is a tunable parameter less than one. The sigma points are then passed through the nonlinear process system, which
predicts the current attitude based on each sigma point.

Wik—1 = f [Wk-1] (5.18)
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The estimated state mean and square root covariance are calculated from the transformed sigma points using,

2L

g= ) WO e (5.19)
i=0
Sc =ar { [\/ W (W11 kit — 2,:)¢Rw}} (5.20)
S = cholupdate { S Wox — 5. W'} (5.21)
where, I)[/()(C) =2(1—a?+ %,3), W()(m) =1-0a? Wi(m) = Wi(c) = 2Llot2 B), B is a tunable parameter used to incorporate prior

distribution. The transformed sigma points are then used to predict the measurements using the measurement model:
Yik—t = h [Wkp—i] (5.22)

The expected measurement y,~ and square root covariance of yx = y; — J (called the innovation) are given by the
unscented transform expressions just as for the process model:

2L
Se =Y Wik (5.23)

i =0
Sy, = qr { [\/ W Viar k-1 — o) R}i}} (5.24)
S;, = cholupdate {s;k, Yox — P WO(")} (5.25)

To determine how much to adjust the predicted state mean and covariance based on the actual measurement, the Kalman
gain matrix Ky is calculated as follows:

2L

Py = 3 W [Wikemr = 5] Yiawo = ¢ (5.26)
i=0

K; = szyk /Sz':k/sfk (5.27)

Finally, the state mean and covariance are updated using the actual measurement and the Kalman gain matrix:

o =7 + KOk —5r) (5.28)
U = KSj, (5.29)
Sk = cholupdate {S; , U, —1} (5.30)

where, R" is the process noise covariance, R" is the measurement noise covariance, chol—is Cholesky method of matrix
factorization, gr is QR matrix decomposition and cholupdate is a Cholesky factor updating.

5.3.3 lIterated Square-Root Unscented Kalman Filter Method

With the success of IUKF development [10] and the superiority of SRUKEF, an improved performance would be expected
if the iterates are implemented in SRUKF. Yet, with the potential problems experienced with the [IUKF method, precaution
should be taken for effective performance of the iterated filter [8]. The development of the ISRUKF method is due to the need
to overcome this problem, using a different iteration strategy. The pseudo-code for the ISRUKF method can be summarized
as follows.
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e Step 1:
For each instant k(k = 1), evaluate the state estimate Z; and corresponding square root covariance matrix Sy through
(5.13) to (5.29).

* Step 2:
Let Zxo = 2, Sko = S; and Zx1 = Zk. Sg1 = Sk Alsolet j =2
e Step3
Generate new sigma points in the same way as (5.17):
Wi = [Zkj—1 Zkj—1 + ASk =1 Zk—1.j—1 — ISk j—1] (5.31)
e Step4
Recalculate (5.17) to (5.29) as follows
W= f i) (5.32)
2L
g= Y W (5.33)
i=0
Si; = qr{ [\/ W (Wi —z;,)]} (5.34)
Si.; = cholupdate {Sp. ;. Wi ; - 7., W} (5.35)
Y, =h[¥,] (5.36)
2L
S =2 Wy, (5.37)
i=0
Ss., = ar {[ WYL — yAk,j)‘/Rg]} (5.38)
Sy, = cholupdate S5, . Y ; = .. Wy} (5.39)
2L -
PZkA/'yk.j = Z VVi((') [qjlﬁj - 2k_J] I:Y’/ - )?k_J:I (5.40)
i=0
Ki =P, /SL/S;, (5.41)
Zkj = + Kij e — Vi) (5.42)
U=K; S;k_j (5.43)
Si.; = cholupdate {s,;_ U, —1} (5.44)

5.4 Simulation Results

The results of state estimation methods (UKF, IUKF, SRUKF and ISRUKF) are compared in this section. They are compared
through their utilization to estimate the states variables of a three degree of freedom spring-mass-dashpot system.

5.4.1 State Estimations for Three Degree of Freedom Spring-Mass-Dashpot System

A three degree of freedom spring-mass-dashpot system is utilized for the performance evaluation of state estimation
techniques (shown in Fig. 5.1).
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fig.ds.l Three degref;lofh t F | (l) }“2(1) F‘,‘(t)
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The purpose of this section is to estimate the seven state variables given displacement measurements for m; and
accelerometer measurements for m, and m3. The state space equations representing the system can be written as follows:

[ak+1]  [alt)+Tstk)] |0
ok + 1) 22(k) + Tzs(k) 0
zk + 1) z3(k) + Tz (k) 0
uk+1) | =] zak)+ Tz +10
z5(k + 1) zs(k) + %25 T <U1 + %P)
zo(k + 1) 26(k) T (i, + v2)
Lzt + 1) ] [Lzi(k) b [ TGy +v3)

where,

24 = z5(k) — Blzs(k)||za (k)" ™" — yzs(k)|za(k)|".
Zs = —k1za(k) — kozi (k) 4 kazo(k) — (c1 + c2)z5(k) + caz6(k).

The observation vector in discrete form is given by,

)] A0 0 v
YR = | Em k) | = | 20 [+ 22|+ v (5.45)
Xy (k) Lz B V3

where,

22 = kazi (k) — (ka2 + k3) z2(k) + kazz (k) + cazs(k) — (c2 + c3(k))
+z6(k) + c3z7(k),
23 = k3za(k) — ka + kazz(k) + caze(k) — c327(k).

5.4.2 Generation of Dynamic Data

For dynamic data generation from the SHM system the model (5.46) [11] is used to simulate the responses of the state as
functions of time by solving the differential equations (5.46) using fourth order Runge Kutta Integration.
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Table 5.1 SHM parameters and
physical properties
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Fig. 5.2 Estimation of state variables using various state estimation techniques (UKF, IUKF, SRUKF and ISRUKF)

X1
X2
X3
il
X1
X2

X3

25
<6
27

Parameter | Value | Parameter | Value | Parameter | Value
m 1 my 1 ms 1
cy 025 | 025 |c3 0.25
ki 9 k> 9 k3 9
B 2 y 1 n 2
1.2 T
1 = Noise free A i
““““ ukf estimate | \r
0.8 | | === srukf estimate WA i
== jukf estimate miol ey )
0.6 } isrukf estimate I | I\ /N
] | > y / g,
| \ N\
04+t . b N \ oS )
P v/ )*‘ \/ \/
0.2 ‘\ [ / i
N L S -
) v i
02} ™\, | .
041 Y 1
0.6 L L L L L L L L L
2 4 6 8 10 12 14 16 18 20
Time
2
= Noise free
151 R CESTTN ukf estimate
. p, ) = = = srukf estimate
' == jukf estimate
il isrukf estimate i
4 \\‘ P
/N s
05 o ! Id \\ ! \
iy 3 ¢ S
1 Vi | N \\1/
0 Latoa ’/'wv\\ 1 !
.N’\‘ 5 / \ " \\ l/
\ i \
0.5 \,\“
o\
NG
1 L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20
Time
(5.46)

25 — 2|zs|zal* 2 — 1zs|zal?

—924 — 921 4+ 920 — 0.5z5 + 0.25z¢ + ﬁg

—9z1 — 1825 + 923 — 0.25z5 + 0.5z + 0.25z; — ¥y
| 920 — 923 + 0.25z6 — 0.25z7 — U,

where the state variables x|, x,, x3 are displacements and r; is the hysteretic Bouc Wen parameter.
It must be noted that these simulated states are assumed to be noise free. They are contaminated with zero mean Gaussian
errors. The SHM parameters as well as other physical properties are shown in Table 5.1. Figure 5.2a shows the changes in

the state variable (displacement x).

For all simulations, the following parameters are used. The sampling frequency of the 1994 Northridge earthquake
acceleration data that was used as ground excitation ¥, is 100Hz (T" = 0.01s). The Northridge earthquake signal was
filtered with a low frequency cutoff of 0.13 Hz and a high frequency cutoff of 30 Hz. A duration of 20s of the earthquake
record was adopted in this example. The number of sigma points is fixed to 33 for all the techniques (L = 16). The process
noise of 1 % RMS noise-to-signal ratio was added. The observation noise level was of 4-7 % root mean square (RMS) noise
to signal ratio. All the simulations performed in this paper are implemented using MATLAB version 7.1, using an Intel

Pentium CPU 3.4 GHz, 1.0 G of RAM PC.
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5.4.3 Estimation of State Variables from Noisy Measurements

53

The purpose of this study was to compare the estimation accuracy of UKF, IUKF, SRUKF and ISRUKF when they are
utilized to estimate the seven state variables of the three degree of freedom spring-mass-dashpot system model. Hence, we
consider the state vector that we wish to estimate, 7z = xx = [X] X2 X3 21 V1 V2 U3]T, and the model parameters, k1, k7, k3,
1, €2, ¢3, B, y, and n are assumed to be known.

The simulation results for state estimations of seven state variables x|, x», X3, 21, V1, vz and v3 using UKF, IUKF,
SRUKF and ISRUKEF are shown in Figs. 5.2a—d and 5.3a—d, respectively. Also, the performance comparison of the state
estimation techniques in terms of RMSE are presented in Table 5.2 (Mean RMSE (MRMSE) for UKF = 0.085, MRMSE
(SRUKF) = 0.059, MRMSE (IUKF) = 0.051, and MRMSE (ISRUKF) = 0.039 and execution times respectively. It is easily
observed from Figs. 5.2 and 5.3 as well as Table 5.2 that UKF is outperformed by the alternative techniques, albeit at the
expense of a larger computational time (see Table 5.2). The results also show that the ISRUKF achieves a better accuracy
than the IUKF. Both ISRUKF and IUKF can provide improved accuracy over the UKF and SRUKF approaches.
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Fig. 5.3 Estimation of state variables using various state estimation techniques (UKF, IUKF, SRUKF and ISRUKF)
T*‘J"e 5.2 tCo}:nparison of state Technique | x; X2 X3 2] vy vy V3 Execution time
CoHmation fechiiqres UKF 0.015 | 0.060 |0.106 |0.045 |0.125 |0.099 | 0.147 0.9
SRUKF 0.011 | 0.029 |0.065 |0.038 |0.088 |0.082 | 0.099 |1.12s
IUKF 0.010 | 0.028 |0.042 |0.043 |0.085 |0.073 | 0.076 | 1.445s
ISRUKF | 0.010 |0.020 | 0.023 |0.018 | 0.079 |0.060 | 0.067 |1.51s
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5.5 Conclusions

In this paper, the problem of nonlinear state estimations were addressed using the developed iterated square-root unscented
Kalman filter. The ISRUKF method is compared to the unscented Kalman filter, the square-root unscented Kalman filter
and the iterated unscented Kalman filter to estimate the state variables of the SHM. The comparative studies reveal that
ISRUKEF has better state accuracies than IUKF, and both of the methods can provide improved accuracy over UKF and
SRUKEF techniques. It must be emphasized that ISRUKF has a very good stability, and also a high state accuracy with low
mean square errors.
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Chapter 6
Hierarchical Bayesian Model Updating for Probabilistic Damage
Identification

Iman Behmanesh, Babak Moaveni, Geert Lombaert, and Costas Papadimitriou

Abstract This paper presents the newly developed Hierarchical Bayesian model updating method for identification of
civil structures. The proposed updating method is suitable for uncertainty quantification of model updating parameters, and
probabilistic damage identification of the structural systems under changing environmental conditions. The Bayesian model
updating frameworks in the literature have been successfully used for predicting the “parameter estimation uncertainty” of
model parameters with the assumption that there is no underlying inherent variability in the updating parameters. However,
different sources of uncertainty such as changing ambient temperature or wind speed, and loading conditions will introduce
variability in structural mass and stiffness of civil structures. The Hierarchical Bayesian model updating is capable of
predicting the underlying variability of updating parameters in addition to their estimation uncertainty. This approach is
applied for uncertainty quantification and damage identification of a three-story shear building model. The proposed updating
framework is finally implemented for uncertainty quantification of model updating results based on experimentally measured
data of a footbridge which is exposed to severe environmental conditions. In this application, the stiffness parameter of the
model is estimated as a function of measured temperature through the Hierarchical framework.

Keywords Hierarchical Bayesian model updating ¢ Uncertainty quantification ¢ Damage identification ¢ Effects of
changing ambient temperature on model updating

6.1 Introduction

The existence, location, and severity of damage can be potentially predicted from vibration measurements (e.g., modal data)
and using Finite Element (FE) model updating techniques [1]. Readers are referred to [2—4] for detailed reviews on vibration-
based model updating and damage identification of structural systems. The FE model updating methods can be divided
into two broad categories of deterministic and probabilistic approaches. The former is well established in the literature
[1,2, 5], with several successful applications to civil structures [6—11]. However, the quality of structural identification results
from the deterministic FE model updating methods can be significantly affected by first, the accuracy and informativeness
of measured vibration data and second, the accuracy of the initial FE model. Several studies in the past have revealed the
sensitivity of identified modal data to measurement noise, estimation errors, and most importantly changing environmental
conditions [12-16]. Also, the structural FE models are usually associated with many idealizations and simplifications due to
complexity and size of the civil structures. These modeling errors bring another source of uncertainty into the identification
process [4, 17, 18]. Therefore, probabilistic FE model updating methods such as Bayesian methods have become popular to
address the underlying structural uncertainties. However, although these Bayesian methods [19-21] can successfully predict
the parameter estimation uncertainties, they do not consider the inherent variability of structural parameters (e.g., structural
stiffness or mass) due to different sources of uncertainties such as ambient temperature, temperature gradient, rain, snow,
wind speed, and traffic load.
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In the past few years, the Bayesian FE model updating methods have been extended for structural identification and
reliability problems [21-30]. There are also a few studies that applied this method on full-scale civil structures [31-33]. Based
on the Bayes theorem the posterior (updated) probability distribution function (PDF) of the updating structural parameters
0, and the model error parameters o2, given a single data set D can be expressed as:

)4 ((‘),62‘1)) x p (D‘(‘),oz) p (('),62) 6.1)

where p (D’(-), 02> is the so-called likelihood function and p(0, ¢2) is the prior probability. In this study the measured data

D is composed of identified system eigenvalues (squares of circular natural frequencies) and mode shapes. By assuming
zero-mean, uncorrelated Gaussian distributions for eigenvalue and mode shape errors the likelihood function can be written
as the following if N; number of independent data sets is available:

Ni N
N, 9,0) = l_H_[ N (;\,m

t=1m=1

p(il...iN,,é,...é

Jon 0).07 ) N (@4

@, (0). %0, ) (6.2)

The identified eigenvalues and mode shapes are represented by X and @, respectively. Also A(9) and @(8) denote the model
calculated eigenvalues and unit length mode shapes. Note that the model calculated mode shapes ®(0) contain only the

measured DOFs. In this equation, N, is the total number of identified modes, N (/NX,,, ‘)Lm ), ofm> is the value of a Gaussian

®,,0), Z¢,n) is the vector of a

multidimensional Gaussian PDF with the mean ®,,(0) and the covariance matrix X ¢,, at <i>m. The sub-index tm indicates the
identified modal data of mode m from test 7. The standard deviations o and the covariance matrix X ¢ can be either updated
(as updating parameters) or directly calculated based of the identified N, data sets.

The posterior probability distributions of the updating parameters can be estimated either by generating Markov Chain
Monte Carlo MCMC) [22, 23, 26, 33, 34] or by approximating the posterior PDF through asymptotic approximations
[21, 24,25, 27, 31]. If the former is used, the distribution of the generated samples provides a measure of parameter estimation
uncertainties, and if the latter is used the covariance matrix of updating parameters can be estimated as the inverse Hessian of

m

PDF with the mean A,,(0) and the standard deviation o, at /NX,,,, and similarly N (@m

—Log ( p ((-), o’ ‘D)) at the optimum of the updating parameters. However, these estimated uncertainties will decrease with

increasing number of data sets [20, 33, 35], referred to as “noise mitigation” in [21]. This reduction will not be observed when
the uncertainties of the updating structural parameters are estimated by a frequentist approach; the estimated uncertainties
converge with increasing the number of data. In frequentist approach, the distributions of updating parameters are estimated
from the deterministically identified parameters corresponding to different test data [15, 36, 37]. This inconsistency is due to
the estimation of conceptually different uncertainties in the two approaches. In the Bayesian approach, all uncertainties are
assumed to be reducible (epistemic uncertainty [38]), but in the frequentist framework the variations of the modal data are
considered to be due to inherent variability of the structural properties (aleatory uncertainty [38]).

It is believed that the variability of the identified modal parameters is mainly due to changes in physical structural
properties such as mass, damping, stiffness, or boundary conditions [12—16]. These changes will result in different modal
parameters from test to test. Therefore, it is desired to predict both the inherent variability and the parameter estimation
uncertainties of the updating parameters. In this paper, we implement the concept of Hierarchical Bayesian modeling
[39, 40] to propose a new probabilistic model updating technique for model calibration, uncertainty quantification, and
damage identification of structural systems. In the proposed framework, both the parameter estimation uncertainties and the
inherent variability of updating structural parameters due to for example changing environmental conditions can be predicted.

6.2 Hierarchical Bayesian FE Model Updating

Hierarchical models are powerful and have been used in many disciplines [39, 41], but very few can be found in structural
engineering applications [42]. In the proposed Hierarchical Bayesian model updating process, first a probability distribution
is assumed for the structural parameters; a truncated Gaussian distribution (no negative stiffness) is assumed in this study,
ie., ® o« N (g, Xg). Based on the error functions in Eqgs. (6.3) and (6.4), the posterior probability distribution of updating
parameters, including 0,, jLg, X, and 6> = {oi, > q,} can be expressed as in Eq. (6.5) for a single data set from test z.
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Aim = Am (8,) = €3, ~ N (0,07 ) (6.3)
@y —an®y (0,) =ep, ~N(0.Zs,) (6.4)
~ ~ Nln ~ ~
P (o Z0.00.0% %08, ) o [ 2 (A 81 [0,.6%) 2 (81 |1o: o) p (o) £ (Z0) £ (0?) (6.5)
m=1

The sub-index ¢ for the structural parameters and the identified modal data in Egs. (6.3) and (6.4) specifies the values of
updating structural parameter during the collection of data set ¢. The prior probabilities are specified in two hierarchical

stages of p (9[ ‘ue, Ze) and hyper-prior probability distributions p(jLg)p(Z¢)p(c?). In the case of having N, independent
data sets, the posterior can be stated as:

N; Ny

%.8) o[ 2 (A ®um

t=1m=1

p(ue,Ee,G,oz

0,,62>p (9,

Ko Ze)p(ue)p(ze)p(uz) (6.6)

where @ = {0,..., 0,,...,0x,}.

In this approach ¢ reflects a measure of goodness of fit for the updated model, where zero values would indicate a perfect
match between the model and the data. Theoretically, all the components of 6% including N,, eigenvalue and N,, x Ny mode
shape errors can be considered as an updating parameter. However, for computational efficiency the following assumption is
used in this study:

or =Ano. m=12..... N, 6.7)

X5, = woll(Ny) (6.8)

where N; is number of mode shape components (number of sensors), I is the identity matrix, and w is a weight factor [25]. In
Eq. (6.8), no correlation between the mode shape components are considered; more information on the effects of mode shape
component correlations can be found in [43]. The graphical representation of the proposed Hierarchical Bayesian modeling
is shown in Fig. 6.1.

Depending on the selection of updating structural parameters, it is often reasonable to assume no correlation

between these parameters and therefore the covariance matrix can be represented as a diagonal matrix Xg =

Diag (092 ,092 R ,Gg ,...,03 ) with N, =number of updating structural parameters in 6. This method can also be
1 2 y Np

extended for correlated updating structural parameters. A Gamma probability distribution is assumed for the prior probability
of the o, %:
GP

p (09;2) = Gamma (o, B) (6.9)
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Fig. 6.1 Graphical
representation for the proposed
Hierarchical Bayesian modeling
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where « and B can be taken identically for all the updating structural parameters. By assuming uninformative priors for jLg
and o2, the joint posterior probability distribution of all the updating parameters can be stated as:

2|5 & —N; Ny (Ny+1) - -2 Fta-l
p(@,ue,ze,ae X,Q)moe s !_[:1(091)>
o N N, —2 N,
exp —UTZ {J (9[,x,, )} Z %Z Op — 19,)” +2/B (6.10)
=1 =1 —1
where
J (et, itv 6[) = % {1_ (Atm - A (e )) _l<<i>lm - alm<1>m (el))r (étm - atm«’m (0,))} (611)

m=1

In Eq. (6.11), a, is the mode shape scaling factor. The most common technique to solve Eq. (6.10) is the Gibbs Sampler
[39, 40].

In the Gibbs sampling techniques, samples are generated from the full conditional probability distribution of each
parameter until convergence is reached. Equations (6.12), (6.13), (6.14) and (6.15) present the full conditional posterior
probability distributions of all the updating parameters.

Np
» (e, o Zo. 02 X, <I>) x exp | —o727 (e,, o, <I>,) = 0326 —1s,) | - t=1,...,N, (6.12)
p=1
P (1e]©. 20,02 %, 8) ~ N (g 01, Zo/N,) (6.13)
N, -1
p (052’9’“9’ %o, X, @) ~ Gamma 06—2‘ (NN (Ns+ 1) /24 1), 2(21 (e,,i,,&t)) (6.14)
t=1
R -
p( o2\, <I>) ~ Gamma 09;2‘(N,/2+a), (1/,3—1—509;22 (9p[—ugp)2) (6.15)
t=1

According to Egs. (6.12), (6.13), (6.14) and (6.15), the full conditional probability distributions of all the updating parameters
except 0, are either Gaussian or Gamma distributions. By generating adequate number of samples, the posterior joint
probability distribution of updating parameters can be accurately estimated. Generating samples from Eqs. (6.13), (6.14)
and (6.15) is not challenging due to their known distribution functions; however, generating samples for the conditional
probability distributions of 8,, Eq. (6.12), requires using advanced sampling techniques such as adaptive Metropolis-Hastings
[22, 44], or Translational Markov Chain Monte Carlo algorithm [26, 34]. This step can become very time-consuming;
therefore parallel computing can be implemented as the 0, samples can be generated independently for each test data.
Alternatively, Laplace asymptotic approximation can be used to approximate the conditional probability distributions of 0,
in Eq. (6.12) as a Gaussian distribution to simplify the sampling process. The standard deviations of the generated samples
reflect the “parameter estimation uncertainties” which will be reduced by increasing the number of data sets used in the
updating process (except for 0, parameters).

The proposed Hierarchical Bayesian updating framework is extended to be used for probabilistic damage identification of
civil structures. In Eq. (6.16), Damage Factor (DF) is defined as the relative loss of stiffness in parameter p from the reference
state to the damaged state:

DF =1-06/6, (6.16)
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where superscript r refers to the reference state and superscript c refers to the current state of the structure. The probability
of damage exceedance from a given damage factor df can be expressed as:

ro_ e <0r)2+<6c)2
Mo, — Ko, 6, 0,

df x 07 —(u: — s
L (o ) 6.17)

S () )

where CDF is the cumulative Gaussian distribution function, and erf is Gauss Error Function.

P 0,05 = df x 6,

Df,D"] —1-CDF (df x 6!

6.3 Application to a Numerical Case Study

The performance of the proposed Hierarchical procedure is numerically evaluated by means of a three-story shear building
model. The mass of each story is set to 1.2 metric ton, and the stiffness of stories one to three are considered as random
variables with truncated Gaussian distributions of N (2,000 kN/m, 100?> kN?/m?), N (1,000 kN/m, 50> kN?/m?), and N
(1,000 kN/m, 20? kN?/m?), respectively. The natural frequencies of the building at the mean values of story stiffnesses
are 2.378, 6.498, and 8.876 Hz. In Sect. 6.3.1, the performance of the proposed framework is evaluated for parameter
estimation and uncertainty quantification, and the results are compared with those of the classical Bayesian model updating
framework. In Sect. 6.3.2, the proposed framework is applied for probabilistic damage identification where the estimated
variability/uncertainty of updating structural parameters is propagated in the damage identification results.

For comparison purposes, the posterior distributions of the updating structural parameters are also estimated based on the
Bayesian framework of [21, 23] and they are shown in Fig. 6.3. The Adaptive Metropolis-Hastings algorithm of [44] is used
to sample the posterior probability distributions of updating parameters. As it can be observed, although the estimated MAP
values are in good agreement with the true mean values and those estimated from Hierarchical framework, the estimated
uncertainties are significantly underestimated and always decrease with addition of data. Plus, unlike the Hierarchical
approach, there is no parameter in classical Bayesian framework to represent the goodness of fit. As discussed in Sect. 6.2, the
error standard deviations in classical framework are either directly calculated from the collected measured data or updated.
In the former case, this parameter represent the variability of the measured modal data, and in the latter case, the estimated
values contain both the modeling errors and the variability of structural parameters. This comparison highlights the benefits
of the proposed Hierarchical Bayesian model updating framework.

6.3.1 Performance Evaluation of the Hierarchical Bayesian FE Model Updating

400 sets of natural frequencies and mode shapes are simulated by sampling the story stiffness values from their considered
probability distributions. The coefficients of variation (standard deviation divided by the mean) for the generated natural
frequencies are 1.53%, 1.08%, and 1.52% for mode 1 to 3 respectively. These generated modal data will be used as the
measured data in the model updating processes.

Four different subsets of data with n, = {5, 20, 50, and 400} data set numbers are used for model updating. Table 6.1
provides the updating results which include the MAP estimates of the mean and standard deviation of the three updating

Table 6.1 MAP estimates from 9 9 9 I
the Hierarchical framework with L 2 3 %8 (0c)
no modeling errors Mean (jt;) | STD (G4) | Mean (11,) | STD (G4) | Mean (1i,) | STD (G4) | —
Exact 2,000 100 1,000 50 1,000 20
n=>5 2,008.6 86.3 1,021.0 44.9 992.0 8.0 —19.8
n,=20 |1,988.6 106.2 1,009.2 47.7 999.9 19.7 —19.8
n, =50 |2,000.0 99.0 1,000.0 49.5 1,000.0 19.8 —19.9

n; =400 | 1,999.7 100.1 1,004.1 49.3 999.2 19.5 —19.9
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structural parameters and the error standard deviation o, for all the four considered data subset numbers. The parameters
are accurately estimated except for the case with n, =5, where insufficient number of data sets is used in the updating
process. The statistics (means and standard deviations) of the structural parameters are also estimated based on frequentist
approach and they match perfectly to the results of Table 6.1. Therefore, in the absence of modeling errors the Hierarchical
and frequentist approaches provide identical estimations. In the presence of modeling errors however, the two approaches
provide similar, but not identical results (not shown here for brevity). As expected, the estimated standard deviations of
updating structural parameters are converged by increasing number of data sets. The standard deviation of error functions
is also provided in the last column of Table 6.1, which is very close to zero, indicating a good match between the data and
the model. Figure 6.2 shows the most probable posterior PDFs of the three stiffness updating parameters. The term most
probable is referring to the fact that the posterior PDFs of Fig. 6.2 are based on most probable (MAP estimates) means and

1. Behmanesh et al.

standard deviations of the updating parameters and their estimation uncertainties are ignored, i.e., N (ﬁep , 8§p).
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6.3.2 Hierarchical Bayesian FE Model Updating for Damage Identification

Three collections of measured data are generated with each collection representing a specific damage scenario and including
400 data sets. The first collection is considered as the reference data, the second collection of 400 data sets is generated from
the structure in the undamaged state to evaluate the performance of the proposed method in the presence of variability in the
modal data at the structural undamaged state. The third collection is generated in the damaged state. Damage is considered to
be 5% stiffness loss of the first story, so that the mean of the first story stiffness is reduced to 1,900 [kN/m] while its standard
deviation is kept the same as in the undamaged state. At the mean values of story stiffnesses, the natural frequencies of the
structure are 2.357, 6.439, and 8.809 Hz. The most reduction in the natural frequencies is observed for mode 1 and found
to be only 0.92%. This reduction is within the variation range of natural frequencies in the undamaged state, which makes
the damage identification challenging. This scenario is often observed in operational civil structures where the variations of
modal data due to damage might be within the variation ranges of the data due to changing ambient/environmental conditions
[12-16].

6.3.2.1 Damage Identification from Undamaged State Data (Collection 2)

As discussed previously, the parameter estimation uncertainties can be obtained from the Gibbs samples. As an example
case, the posterior probability distributions of the mean and standard deviation of the first story stiffness in shown in Fig. 6.4
for three different cases of n,. It can be observed that the estimation uncertainties will be reduced by increasing number of
data sets. These estimation uncertainties will propagate to the damage exceedance probabilities of Eq. (6.17). Therefore, the
probability of damage exceedance will be associated to estimation uncertainties as well. Damage exceedance probabilities are
estimated and shown in Fig. 6.5 for a range of given damage factors [—0.10 to 0.15] and based on 50 data sets. In this plot,
darker color shows higher probability density. Vertical lines correspond to probability distribution of damage exceedance
probability at a given damage factor, i.e., PDF of P [DF > df]. The horizontal lines correspond to probability distribution of
damage at a given confidence level. In Fig. 6.5, the PDF of damage exceeding 4%, P [DF > 0.04] and the PDF of damage at
a 50% confidence level are shown. As expected, the estimation uncertainties are reduced by increasing the number of data,
however, damage is still estimated probabilistically due to inherent variability of structural parameters [38].
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Fig. 6.4 Parameter estimation uncertainties for the mean and standard deviation of 6, in the undamaged state
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Fig. 6.5 PDF of damage
exceedance probabilities for
damage factor range of [—0.10
0.15] in the first story using 50
data sets
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6.3.2.2 Damage Identification from Damaged State Data (Collection 3)

damage factor (df) [%]

Damage identification is performed based on the damaged state data: the third collection. The PDF of damage exceedance
are shown in Fig. 6.6 for two cases of n, = {5 and 400}.

Unlike the results of Fig. 6.5, the most probable damage factor (MAP of p (DF | P = 50%)) is very close to the true damage
factor 5%. The predictions become more accurate by adding more data sets. These results highlight the fact the damage
can be identified even when the changes of the modal data due to damage are within the variation range of modal data
due to environmental/ambient conditions provided that adequate number of measured data sets is available. It should be
mentioned that damage identification still can be performed based on few number of data sets; however, the corresponding
large estimation uncertainties should be included for any decision making or detection analysis. The proposed framework is
well suited for damage assessment of operational civil structures where changing environmental conditions can significantly
affect the identified natural frequencies and mode shapes.
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6.4 Application to the Dowling Hall Footbridge Using Real Measured Data

The Dowling Hall Bridge is a pedestrian bridge located at Tufts University campus and is equipped with a continuous
monitoring system [11, 16, 33]. The monitoring system collects 5 min of ambient vibration data every hour, and the modal
data (natural frequencies, mode shapes, and damping ratios) are extracted from each collected data set. It has been observed
that the identified natural frequencies of the footbridge have a strong correlation with the measured ambient temperature.
Figure 6.7 shows the identified natural frequencies of five vibration modes, collected from January 2010 to March 2012,
versus the recorded ambient temperature during collection of each data set. The frequencies increase at lower temperatures
especially at temperature below freezing point. This can be due to an increase in the elastic Young’s modulus of bridge
deck after the moist inside concrete freezes. Other than ambient temperature, other factors can affect the identified natural
frequencies from test to test such as the live load (weight of the pedestrians on the bridge), rain, wind speed, and identification
errors. In this study, only the ambient temperature measurements will be used for model calibration of the Dowling Hall
footbridge through the proposed Hierarchical Bayesian updating process. The collected data from the Dowling Hall bridge
is a good example of Hierarchical data in structural systems as each data set was collected at a different environmental
condition and can correspond to different structural mass and stiffness properties.

The updating structural parameter 6 is defined as a modification factor for elastic Young’s modulus of concrete deck, i.e.,
E = 0E, where E, is the initial value considered as 26,752 [N/mm?]. The probability distribution of 6 is assumed to follow
a truncated Gaussian (no negative value) distribution with temperature dependent mean p9(7;), and an independent variance
05, ie.,0(T;) ~N (,bL@ (Ty), 03). The temperature model is defined as:

/Lg(Tz)=Q+SxT,+R><(1—erf<T’_T)) ©.18)

T

where T, is the recorded temperature during test #, erf denotes the value of Gaussian cumulative distribution function, and
0, R, ?’\ 7, S, 0(3, 03 are updating parameters to be estimated. The first two terms in Eq. (6.18) represent the linear
trend observed at high temperature ranges. The third term captures the trend at lower temperatures (close or below freezing
point) with transition temperatures T and 7 characterizing the transition range. This temperature model stems from the
observed trend of natural frequencies and ambient temperature shown in Fig. 6.7. The inherent uncertainty in the estimated
elastic Young’s modulus (Ug) will then be due to the mentioned sources of uncertainties except ambient temperature which
is explicitly considered in this framework. The error functions can be written as in Eqgs. (6.3) and (6.4) except that the
parameters 6, should be replaced by 6,(T;). Assumptions stated in Egs. (6.7) and (6.8) are also considered in this example.
The graphical representation of the probabilistic model is shown in Fig. 6.8.

5000 Gibbs samples are generated and Fig. 6.9 shows the samples for four selected parameters, including 64, R, Q,
and og. As it can be seen, the estimated uncertainties in the parameters are negligible since the modeling errors are
not significant (relatively low o,.) and large number of data sets is available (for this example 6,713 data sets are used;
N, = 6,713). Figure 6.10 shows the 6,(T;) values at the final Gibbs step along with the estimated ug(7;) from Eq. (6.18).
The calibrated finite element model that contains temperature dependent stiffness parameters can be used for more accurate
damage identification or reliability analysis in the presence of changing environmental conditions.
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Fig. 6.7 Effect of ambient temperature variations on the identified natural frequencies
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6.5 Summary and Conclusion

A new probabilistic updating process based on Hierarchical Bayesian modeling method is proposed for model calibration,
uncertainty quantification, and damage identification of structural systems. This framework can accurately predict the
overall uncertainty of updating parameters due to different uncertainty sources including estimation uncertainty and inherent
variability of structural properties (mass, stiffness) due to changing environmental effects. These changing environmental
effects may include ambient temperature, wind speed, rain, snow, and traffic load.
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The performance of the proposed technique is evaluated for model calibration, uncertainty quantification, and damage
identification of a three story shear building based on numerically simulated data. In the absence of modeling errors, the
estimated updating parameters are found to be identical to the estimation results from the frequentist approach and are very
close (with negligible error) to the true values. The proposed technique is also successfully applied for damage identification.
The results highlight the fact that damage can be identified even when the change of the modal data due to damage is within
the variation range of modal data due to environmental conditions provided that an adequate number of measured data sets
is available. The proposed framework is well suited for damage assessment of operational civil structures where changing
environmental conditions can significantly affect the identified natural frequencies and/or mode shapes.

Finally, the proposed Hierarchical framework is applied for model calibration of the Dowling Hall footbridge using
experimentally collected data over 27 months. The identified natural frequencies of the footbridge show strong correlation
with ambient temperature especially for temperatures below freezing point. A nonlinear relation is assumed to model the
variation of concrete Elastic Young’s modulus with ambient temperature. The parameters of the nonlinear relation and their
uncertainties are estimated through the proposed Hierarchical framework. The temperature model provides a very good fit
to the data. The temperature-dependent calibrated FE model can then be used for more accurate damage identification and
reliability analysis in the presence of changing environmental conditions.
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Chapter 7
Nonlinear Structural Finite Element Model Updating
Using Stochastic Filtering

Rodrigo Astroza, Hamed Ebrahimian, and Joel P. Conte

Abstract This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite
element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic
material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework
updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification
purposes. The unscented Kalman filter (UKF) is used as parameter estimation technique to identify the unknown time-
invariant parameters of the FE model. A two-dimensional, 3-bay, 3-story steel moment frame is used to verify the proposed
framework. The steel frame is modeled using fiber-section beam-column elements with distributed plasticity and is subjected
to a ground motion recorded during the 1989 Loma Prieta earthquake. The results show that the proposed methodology
provides accurate estimates of the unknown material parameters of the nonlinear FE model.

Keywords Damage identification * Nonlinear finite element model * Model updating * Stochastic filter  Structural
health monitoring

7.1 Introduction

The fields of system identification (SID) and damage identification (DID) are attracting significant attention from the
structural engineering community. With the aim of implementing accurate and robust DID methodologies, research on
structural health monitoring (SHM) for civil structures has increased considerably during the last years. Several researchers
have studied vibration-based DID methods for civil structures based on changes in identified modal properties (e.g., [1, 2]);
however, these methods have been applied to real structures or full-scale structural specimens subjected to damage induced
by realistic sources of dynamic excitation only in the last years (e.g., [3—5]). Because modal properties are related to global
properties of the structure and because actual response of structures is nonlinear from the onset of loading, some researchers
have objected the use of modal parameters for damage identification purposes. Considering the relevance of nonlinearities
in the dynamic response of civil structures, SID and DID for nonlinear structures have been the subject of intense research
(e.g., [6-9]). Nevertheless, these studies have used highly idealized structural models, localizing the modeling of nonlinear
behavior in a few prescribed elements defined by nonlinear hysteretic force-deformation laws not traditionally used in state-
of-the-art modeling of civil structures.

Finite element (FE) model updating, which can be defined as the process of calibrating a FE model to minimize the
discrepancy between the FE predicted and measured responses of a structure, has emerged as a powerful method [10, 11]
that enables the use of more realistic models for SID and DID purposes. Recently, Bayesian techniques have been used for FE
model updating of linear and nonlinear structures, for both static and dynamic loading (e.g., [12-15]). In the case of nonlinear
response, previous studies employed highly simplified nonlinear models (e.g., lumped plasticity, shear building, empirical-
based nonlinear material models) which are not able to properly characterize the behavior of real large and complex civil
structures.
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This paper presents a novel framework that combines advanced mechanics-based nonlinear FE models and a nonlinear
Bayesian filter, referred to as the unscented Kalman filter (UKF) [16, 17], to estimate unknown time-invariant parameters of
nonlinear inelastic material models used in the FE model. In the implementation of the framework, the software OpenSees is
used to model the structure and simulate its response to earthquake excitation.

7.2 Bayesian Approach for State and Parameter Estimation of Dynamic Systems

Consider a nonlinear state-space model with additive zero-mean Gaussian white noises:
Xp1 = fr (X, wg) + wie (7.12)

Vi1 = Mt (Xep1, Wege1) + Vi (7.1b)

where x; € R™, u; € R™, and y; € R are the state vector (defined as the smallest subset of variables needed to completely
characterize the system at time #, = kAt, where Ar = time step), input vector (deterministic and known), and measurement
vector at time #;, respectively. The components of the process and measurement noises, wy and v, respectively, are assumed
to be statistically independent processes. Noise processes wy and v, have covariance matrices Q; and Ry, respectively.
The terms f; and h;, are deterministic and known nonlinear vector-valued functions. The objective of a filtering technique
is to recursively estimate at least the first two statistical moments of the state vector using the measured input and noisy
measurement vectors up to the current time [18]. If modeling parameters are unknown, the state vector can be augmented
to contain both state variables and unknown parameters (0;). For the special case that all system dynamics are contained
in the measurement equation, a parameter-only estimation problem can be set up [19], i.e., only 8,4 is present in the state
equation [Eq. (7.1a)].

The UKF can be used to solve the nonlinear state-space model in Eq. (7.1a and b). It is based on the assumptions that
the posterior PDF of the state at time #, p(x; | y14) (Where yix=[yi7, y27, ..., yx'17), and the PDF p(X;+1 | Y14)
are approximated by Gaussian distributions. Then, the posterior PDF of the state at time fz+1, p(Xs+1 | Y1:k+1), can be
approximated as Gaussian with mean vector and covariance matrix estimates given by

Xt 1jk+1 = Xe1i + Kt (Vo1 = Yrt1x) (7.2a)

XX

P =P, — K Py K 7.2b
k+1lk+1 — Y k+1lk k1L 1)k D +1 (7.2b)

—~ XX . . . . A . .
where X k41 and Py | lk+1 denote estimates of the mean and covariance matrix of X;4| given yi.441, ¥x+1jx is the estimate
of the mean of y; 4 given y; and the Kalman gain matrix, Ky 4, is defined as

Sy =yy -1
Kiv1 =Prpp <Pk+1|k) (7.3)

. . =X Xy gy . . . . .
Covariance matrices Py, Py Py require the computation of multi-dimensional integrals that seldom can be

evaluated in closed-form; therefore, the unscented transformation (UT) can be alternatively used to approximate them. The
UT defines a set of deterministically selected sample points (referred as sigma points or SPs) to represents a random vector z
such that the sample mean and sample covariance matrix obtained from the SPs match exactly the true mean and covariance
matrix of the random vector z. When the SPs are propagated through a nonlinear function, they capture the true mean and
covariance matrix up to the second order of the Taylor series expansion of the nonlinear function. In this paper, the scaled
unscented transformation [17] with parameters a = 0.01, k =0, and § = 2 is adopted. More details about the UKF and scaled
UT can be found elsewhere [20].



7 Nonlinear Structural Finite Element Model Updating Using Stochastic Filtering 69

Structure level _— Element level —— >  Section level ——— > Fiber level

Spatial mesh
discretization

Uniaxial material model

Integration points
(Monitoring sections)

Finite element

Fig. 7.1 Distributed plasticity FE model of frame-type structures

7.3 Mechanics-Based Nonlinear Finite Element Models of Frame-Type Structures

Different approaches have been proposed over the years to model and simulate the nonlinear response of frame-type
structures subjected to earthquake loading. Global models, structural FE models, and continuum FE models have been
developed for this purpose. The simplest are global models, which concentrate material nonlinearities at global degrees
of freedom (DOF), however they lack accuracy and resolution in predicting the nonlinear response of real structures.
Structural FE models describe the structure by an assembly of interconnected frame elements. Lumped or concentrated
plasticity and distributed plasticity are two categories within structural FE models. Finally, continuum FE models are the
most sophisticated but computationally expensive, since they discretize the members of frame-type structures into 3D solid
FEs with 3D nonlinear material constitutive models.

Structural FE models with distributed plasticity have been proven to provide accurate results in matching experimental
results. In addition, their formulation is simple and computational cost is feasible. Therefore, these types of models have
been broadly employed in research and engineering practice. In this type of FE models, material nonlinearity can take place
at any numerically monitored cross section (integration point) along the element, and the element behavior is obtained by
numerical integration of the section response along the element. Element cross-sections are discretized in longitudinal fibers,
which permit to simulate the section nonlinear response using uniaxial material constitutive laws for the fibers (Fig. 7.1).
This formulation accounts for the interaction between bending and axial force at the section level, while the interaction with
the shear force occurs at the element level. It is noted that a uniaxial material model depends on a set of physical and/or
empirical set of parameters. More details about these type structural FE modeling techniques can be found in [21].

7.4 Proposed Methodology

The discrete-time equation of motion of a FE model of a structure can be expressed as
M (0) Gie+1 () + C(0) Qrr1 (8) + retr [dr+1(8) . 0] = fipy (71.4)

where 8 eR" vector of unknown time-invariant modeling parameters, q, q, { € R”= nodal displacement, velocity, and accel-
eration vectors, MER"" = mass matrix, CER"™" = damping matrix, r[q(0),0)]eR" = history-dependent internal resisting
force vector, feR"” = dynamic load vector, and the subscript indicates the time step. For the case of rigid base earthquake
excitation the dynamic load vector takes the form fry; =—M L 84, where LER™" =influence matrix and i8¢ €
R™! =input ground acceleration vector with r = number of base excitation components (in the general case r =6, i.e.,
three rotations and three translations base excitation components)

The structural response can be recorded using different types of sensors (e.g., accelerometers, GPS) and at time
ti+1 = (k+ 1)Az, with k=0,1,... and Ar = time step, can be expressed as

.. . .. 7 ~
Yi+1 = Ly[qg+1» qu—H’ qlf+1’ (“i+1) ] F Vit = Vg4 T Vit1 (7.5)
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where y € R™ = vector of recorded structural response quantities, § € R™ predicted response of the structure from the
FE model, L, € R™ *3n+r — output matrix (known), and v € R™ = output measurement noise vector assumed to be white
Gaussian with zero-mean and covariance matrix Ry, i.e., v, ~N(0,R).

From Egs. (7.4) and (7.5), the vector of recorded response quantities at time 41, yk_H, can be expressed as a nonlinear
function of the modeling parameters (0), input ground acceleration time histories (Uk +1) and initial conditions (qo, qo) of
the FE model, i.e.,

Yi+1 = hgy (O,ﬁiﬁaq()»(lo) + Vi+1 (7.6)

Here h;1 () is a nonlinear response function of the nonlinear FE model at time #4; and U,f 1 = [@E)T, (ii%)T, ...,
(ii84 )77 is the input ground acceleration time history from time 7, to fx ;. At rest initial conditions are assumed henceforth,
ie., qo = (]0 =0.

If the unknown time-invariant modeling parameter vector, 0, is modeled as a stationary process according to the Bayesian
approach, the evolution of which is characterized by a random walk process, the nonlinear parameter estimation problem at
time #;,4+1 (k=0, 1, 2, ...) can be formulated as

0r11 =0, + vy,

Yit+1 = hgqq <9k+1,Ui+1) + V41 7
where y; and v; are called process noise and measurement noise, respectively, and are assumed to be independent Gaussian
white noise processes with zero mean vectors and diagonal covariance matrices Qy and Ry, respectively, i.e., yi ~ N (0,Qx)
and v; ~ N'(0,R;). Equation (7.7) represents a nonlinear state-space model like Eq. (7.1), therefore it can be used to estimate
the modeling parameter vector, 0, using the UKF as summarized in Fig. 7.2. More information about the formulation of the
parameter estimation problem for frame-type distributed-plasticity FE models using the UKF is discussed elsewhere [20].
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Fig. 7.2 Distributed plasticity FE model of frame-type structures
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7.5 Application Example

A 2D steel building frame is considered as application example. The steel fibers are modeled using the modified Giuffre-
Menegotto-Pinto (G-M-P) material constitutive model [22]. One input earthquake motion is considered to simulate recorded
response data, which are then contaminated by measurement noise for the estimation phase. Gravity loads are applied quasi-
statically before running the dynamic analysis. The Newmark-f average acceleration method is used to integrate the equations
of motion in time using a time step At = 1/f;, where f; is the sampling rate of the input earthquake motion. The Newton
algorithm is used to solve the set of coupled nonlinear algebraic equations resulting from the equations of motion. The
framework presented above is used to identify the material parameters and update the nonlinear FE model. The same FE
model is used to simulate the response and to estimate the material parameters, i.e., effects of modeling uncertainty are not
considered. The ground motion recorded at the station Los Gatos during the 1989 Loma Prieta (Mw = 6.9) is selected as
input motion (Fig. 7.3). The peak ground acceleration is 0.45 g and the sampling rate is f; = 50 Hz.

The structure is a 3-story steel moment resisting frame structure studied under the SAC venture, known as the SAC-LA-3
story building [23] (Fig. 7.4a). The modeled 2D frame has 3 stories and 3 bays, with a story height of 3.96 m and a bay
width of 9.14 m. Exterior and interior columns are made of A572 steel with W14 x 257 and W14 x 311 cross-sections,
respectively. Second, third, and roof level beams are made of A36 steel with W33 x 118, W30 x 116, and W24 x 68
cross-sections, respectively. Beam-column joints are assumed to be fully restrained, and rigid end zones are modeled at the
ends of beams and columns (Fig. 7.4b). Beams and columns are modeled using one force-based element for each beam and
column. Numerical integration over the length of the elements is performed by using Gauss-Lobatto quadrature with 6 and
7 IPs for columns and beams, respectively. Column webs are discretized into 6 fibers along their length and one fiber across
their width, while a single fiber is used to represent each flange of the cross-section (Fig. 7.4c). The webs of the second,
third, and roof level beams are discretized into 16, 14, and 11 fibers along their length, respectively, and one fiber across
their width. A single fiber is used to represent each flange of the cross-section (Fig. 7.4c). A linear elastic section shear
force-deformation model is aggregated with the inelastic coupled flexure-axial behavior at the section level and along the
element. The flexure-axial behavior is uncoupled from the shear behavior at the section level.
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Fig. 7.3 Ground acceleration recorded at the Los Gatos station during the 1989 Loma Prieta earthquake
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The uniaxial G-M-P material model with primary parameters 07" = [Epc, oyc"l, bl Rycol, E,beam. aybe‘"”, pheam
RoP?"]T =200 GPa, 345 MPa, 0.08, 20, 200 GPa, 250 MPa, 0.05, 18] is used to model the axial behavior of the fibers
of the cross sections of beams and columns and to simulate the true dynamic response of the frame structure to earthquake
excitation. Nodal masses and distributed gravity loads on beams are computed from the design dead and live loads as
reported in FEMA-355C and are shown in Fig. 7.4a. The sources of energy dissipation beyond hysteretic energy dissipated
through nonlinear material behavior are modeled using mass and tangent stiffness-proportional Rayleigh damping assuming
a critical damping ratio of 2 % for the first two initial natural periods (after application of the gravity loads), T{ = 1.06 s and
T, =0.35s.

In the material parameter identification process, the UKF algorithm requires 17 SPs (=2 x 8 4+ 1) and it is assumed that
only one horizontal acceleration response is measured at each level (at the left column). The initial estimates of the material
parameters to be identified are taken as 140 % of their true values, 60 =1.40""¢ and the initial covariance matrix 1389 is
assumed diagonal with terms computed assuming a coefficient of variation of the initial parameter estimates (with f-)\o as
initial mean) of 15 % for Eo° and E;**™" and 25 % for 0,<°!, b<°!, Ry, o beam, pbeam and RyP*e™. An output measurement
noise with 5 % RMS noise-to-signal-ratio (NSR) is considered. It is assumed that the process noise y; and measurement noise
v, are zero-mean Gaussian white noise processes with time-invariant diagonal covariance matrices Q and R, respectively.
A coefficient of variation of 1 x 107* is assumed for the initial estimates of the material parameters (8) to construct the
process noise covariance matrix Q. A standard deviation (or RMS) of the measurement noise v, of 7 x 1072 of the RMS
of the corresponding simulated measurements (horizontal acceleration at the 2nd, 3rd, and roof levels) is assumed in the
measurement noise covariance matrix R.

Time histories of the mean (j1) and standard deviation (&) estimates of the material parameters for SAC-LA-3 building
frame subjected to Los Gatos earthquake motion are shown in Fig. 7.5. The eight parameters are accurately identified and
the standard deviation estimates of all these parameters decrease asymptotically to zero. The stiffness related parameters
Ey°®" and E,"*“" quickly converge to their true values after a few time steps, the strength or yield related parameters oybe‘”"
and OyCO] converge to their true values soon after the strong motion phase of the earthquake begins and some steel fibers
have yielded, and the post-yield related parameters b”*", b, Ry?*" and R, converge to their true values after the strain
ductility demand of enough steel fibers has increased sufficiently.

Figure 7.6 compares different global and local responses of the frame obtained using the true material parameter values
(87¢), the initial estimate of the parameters (60), and the final estimate of the parameters (6N). The following responses are
plotted: absolute horizontal acceleration response history at the roof level (A,,y), base shear (V) versus roof drift ratio (A),
moment (M;_;) versus curvature (k_;) hysteretic response at the base of the left column (section 1-1 in Fig. 7.4a), and stress
(03-3) versus strain (e3_3) hysteretic response at one of the extreme fibers at the base of the central-left column (section 3—3
in Fig. 7.4a). All the responses computed using the final estimates of the material parameters are in excellent agreement with
the simulated true responses and the correct updating of the nonlinear FE model is clear from the comparison of the true
responses with the responses obtained using the initial and final material parameter estimates.
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7 Nonlinear Structural Finite Element Model Updating Using Stochastic Filtering 73
a b . c d
True 1 6000 1000
Il Est. (initial) _ )
&h j'I || = = — st inay >, . [
% AT ' E = AR
£ Al ‘“L‘l"ﬂ Ay on o= P e 7 o
éB 0 ,,,va[\,“,!‘,,‘y\:“ "\"“\ﬁ;“‘,t,‘\;vl,\*,,‘v"\r 2o < W A %m 0
3 RRVATE A VR S T v/ L ‘
< Py V) = 1=== ¢’
| L
I J i
15 -1 -6000 —~1000
0 5 10 15 -5 0 5 -0.04 0 0.06 -0.008 0 0.012
Time (sec) A (%) K 1/m)

235

Fig. 7.6 Comparison of true and estimated responses of the frame building: (a) absolute horizontal acceleration at the roof, (b) base shear versus
roof drift ratio, (¢) moment versus curvature at the base of left column section, (d) stress versus strain in extreme fiber at the base of the left-central
column

7.6 Conclusions

This paper proposes and validates, using numerically simulated data, a novel methodology to estimate unknown time-
invariant parameters of nonlinear inelastic material models in frame-type structures subjected to earthquake excitation.
The method combines state-of-the-art nonlinear finite element (FE) models and the unscented Kalman filter (UKF) as
the estimation tool. The methodology formulates the nonlinear state-space model considering the unknown time-invariant
modeling parameters in the state equation and the responses of the nonlinear FE model corresponding to the measured
response quantities are used in the measurement equation. A 2D 3-story, 3-bay steel frame subjected to a ground acceleration
recorded at the Los Gatos station during the 1989 Loma Prieta earthquake is used to validate the proposed methodology.
The simulated responses of the building are contaminated by white noise to analyze the robustness of the identification
scheme. The proposed method is able to accurately estimate the unknown time-invariant material parameters of the nonlinear
FE model. True and estimated time histories of various global and local response quantities are compared to confirm the
effectiveness of the proposed nonlinear FE model updating approach. The proposed framework provides a powerful tool for
model updating of advanced mechanics-based nonlinear FE models, even when a limited number of measurement data are
available.
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Chapter 8
Dispersion—Corrected, Operationally Normalized Stabilization
Diagrams for Robust Structural Identification

Vasilis K. Dertimanis, Minas D. Spiridonakos, and Eleni N. Chatzi

Nomenclature

DA Dispersion analysis MDM  Modal dispersion metric

DOF Degrees—of—freedom nMDM Normalized modal dispersion metric
ERA FEigensystem realization algorithm PCE Polynomial chaos expansion

N/S  Noisetosignal PDF Probability density function

LHS Latin hypercube sampling SD(s) Stabilization diagram(s)

LTI Linear time—invariant

Abstract This study aims at incorporating a certain degree of formalization to stabilization diagrams by integrating two
additional features: the former introduces a new quantity, the modal dispersion metric, which expresses a certain part of
the total stochastic vibration energy, and it is attributed to each vibration mode. The latter implements a polynomial chaos
expansion framework for quantifying the effect of the operational conditions into the modal dispersion index. By combining
these two features, a vibration mode is deemed as a structural one when it appears stabilized, i.e., comes with a high modal
dispersion index and is operationally normalized. The proposed method is characterized by global applicability, thus also
serving as a common measure of effectiveness among diverse parametric identification methods.

Keywords Stabilization diagrams ¢ Parametric identification ¢ Dispersion analysis * Operational modal analysis ¢
Polynomial chaos

8.1 Introduction

A critical and open research issue in time—domain, model-based structural identification pertains to the estimation of the
number of vibration modes [1]. Thus far, among other tools, SDs have proven effective in diverse structural problems [2—4],
under the principle that physical eigenmodes tend to appear at a certain frequency, irrespectively of the order of the adopted
time—domain model. However, despite the fact that SDs have become a standard measure of model order assessment and
are very frequently used in practice, they are still amenable to a number of inconsistencies, including sensitivity to noise,
frequency splitting and stabilization of spurious modes.

While certain clearing tools [5, 6] may facilitate the decision process, especially when very large structures are considered,
the inherent discrepancies (e.g., the stabilization of spurious modes) may still be present. Furthermore, existing tools that
distinguish structural from extraneous modes are, in general, method specific. Among others, the use of modal amplitude
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coherence that is employed within the context of ERA [7] has been reported to be problematic [8], while conventional
DA [9] is limited to transfer function representations and it is based on a “sensitive”, residue—based calculation. To enhance
the effectiveness of the model order selection process in a more general framework, Reynders and De Roeck [10] propose
the modal transfer norm metric, based on the work of Goethals and De Moor [11], while Dertimanis [12] extends the
conventional DA scheme to cover state—space models as well [13]. It is noted that the latter two efforts are characterized by
global applicability, in the sense that they can be applied to both state—space and transfer function model representations.

The inherent discrepancies of SDs are becoming more severe when structural identification is examined under an
operational perspective. There, uncontrollable operational conditions, such as temperature gradients, humidity and others,
impose a wide range of uncertainties onto the actual structural performance and, consequently, to its proper identification.
As a result, the estimation of modal characteristics becomes a stochastic problem which may only be resolved via the
adoption of a probabilistic framework. Generally, two approaches are followed in relative studies, namely, (i) methods which
try to discard the influence of environmental factors [14], and (ii) methods which try to model the relationship between
the measured vibration data and/or the extracted structural properties with respect to measured environmental quantities
[15]. In contrast to the first, the second approach is capable of providing additional insight into the variation mechanisms
and may also provide a global structural model, valid for a wide range of operational conditions. The method introduced
herein follows the second approach and utilizes conventional modal analysis methods in order to identify the dispersion
characteristics of the healthy structure and a PCE model for the projection of these estimates on the probability space of the
measured environmental conditions.

The aim of this study is to incorporate a certain degree of sophistication to SDs and to transform them into a more valuable
and informative tool when operational identification is considered. This is accomplished by integrating two features in the
conventional diagram. The former introduces a new quantity, the MDM, which expresses a certain part of the total stochastic
vibration energy, and it is attributed to each vibration mode. The MDM is extracted by applying a novel DA framework [12],
which relies on the effective modal decomposition of the vibration output’s zero-lag covariance matrix, and provides further
information not only on the presence of a structural mode, but also about its estimated significance. In this respect, a vibration
mode is considered structural when it appears stabilized in both frequency and dispersion [16]. The second feature pertains
to the expansion of the identified MDMs onto an appropriately selected PC basis. In this way, it is possible to obtain a
quantitative description of the manner in which the energy of the structural modes are affected by the varying operational
conditions.

The performance of the proposed method is investigated through the structural identification problem of a simulated, three
DOF, lumped—mass system, which is considered to operate under varying conditions of mass and temperature. Identification
is carried out using excitation and noise—corrupted, structural acceleration response data, and employing the PO-MOESP
method [17] for the estimation of state—space models.

8.2 Time-Varying Structures

A linear, viscously damped structural system with #» DOF and parameters that vary with time can be represented by a
second—order vector differential equation as

M(#)d(t) + D(@)q(r) + K(t)q(r) =£(z),for t € [to,1/] 8.1

in which M(z), D(¢) and K(¢) are the real [n x n] mass, viscous damping and stiffness matrices, () is the [r x 1] vibration
displacement vector and f(¢) is the [n x 1] vector of excitations.

The variability of structural response may be usually attributed to a number of parameters related with either inherent
properties of the structure or exogenous random variables, e.g. environmental and loading conditions, geometry, mass
distribution, and so on. Gathering these L parameters in a single vector &(t) = [£,(¢),&,(¢),..., &, (¢)], Eq.(8.1) may
be re—written as

M(E())4(r) +D(E(1))q(r) + K(E@)q(r) = £(r). for 1 € 1. 1/] (8.2)

If only environmental conditions are considered, and assuming that they are characterized by slow (compared to the structural
dynamics) variation, the previous model may be rewritten as

M(§)d() +D()a@) + K(&)q(r) = £(t).for 1 € [ta.1] C [t0.2/] (8.3)
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The latter may be considered as a local LTI model, which represents the structure when monitored during a small time
interval. Within this interval the input parameter vector &, and as a consequence the mechanical properties of the structure,
may be considered to be “fixed” to constant values. Then, the input parameter vector £ may be considered as a realization of
the vector random process E with joint PDF fz (§). In this way the initial LTV model of Eq. (8.1) may be written as a LTI
model

M(Z)d(t) + D(E)q(t) + K(E)q(t) = £(r), withE € Q (8.4)

which is however characterized by parameters that are depending on the input variable vector E. In the equation above, 2
designates the event space of the random vector E.

Under this setting, by defining a [2n x 1] state vector as x(¢) = [q7 (1) q” (t)]7, a state—space representation of Eq. (8.4)
is given by

X(1) = A(8) - x(t) + B.(8) - f(1) (8.5a)
y(1) = C.(E) -x(t) + D.(E) - £(7) (8.5b)
with the involved matrices being defined as
AL(E) = [—M—'(g’;'K(E) _M_l(;")‘c(a)] [2n % 2n], B.(E) = [M_?(EJ 21 x n] (8.6)
for the state equation and
y(t) = q(t) (displacement) : C.(E) = [I, 0,] [nx2n], D.(E)=0 (8.7a)
y(t) = q(r) (velocity) : C.(E) =[0, I,] [nx2n], D.(E)=0 (8.7b)

y(t) = {(t) (acceleration) : C.(E) =[-M"'(E)-K(E) -M~'(E)-C(E)] [nx2n], D.,(E)=M'(E) (8.7c)
for the output equation.
By selecting an appropriate sampling period 7, and assuming constant intersample behavior of the excitation vector

signal [18, Sec. 7.6], the discrete—time equivalent of the system described by Eq. (8.5) is

x[t + 1] = Ay(E) -x[1] + B4(E) - f[1] (8.8a)
ylt] = C4(E) -x[t] + Dy (E) - f7] (8.8b)

with C4(E) = C.(E), Dy (E) = D.(E) and

Ag(B) =eMET By (E) = [Ad(E) —I] -A7'(E)-B.(E) (8.9)

8.3 Dispersion Analysis

Under the assumption that the structural excitation can be modeled as a zero-mean Gaussian white noise process with
covariance matrix

T (k] = X ;8[h] (8.10)

where §[h] denotes Kronecker’s Delta function and / the time lag, it can be proved [12] that a modal decomposition of the
state vector’s covariance matrix is

2n
. [h E] = E{x[t + h]xT[z]} = S P(E)(E) 8.11)
k=1
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where A (E) is the kth eigenvalue of A, (Z) (distinct eigenvalues have been assumed) and P (Z) is given by

2n

PE) = @)z Y OnE) (8.12)
2 T 24 (E)2n()
In Eq.(8.12), X = Bd(E)ZﬁBg(E) and Gy ’s are the projectors of the spectral decomposition of A, (E) [19],
2n
7 (8(®) = Y 6B £ () (8.13)
k=1

for which G,ZC(E) = Gr(E),Gi(E)G,;(E) =0, fori # jand ), Gx(E) = L In Eq.(8.18), f denotes a function that is
defined for every A, (E). Using Eq. (8.11) it is possible to derive a corresponding expression for the output vector y[t], by
just exploring the output equation of the state—space representation. It can be deduced that I'y,[/2, E] can be expressed as

2n
0= E{y[x —i—h]yT[t]} =S QEN(E) (8.14)
k=1

where the matrices Qi (E) are calculated in respect to the type of the vibration output: in the displacement/velocity
case Qr(E) = Cy( E)Pk(E)Cg(E), whereas in the acceleration case the expressions are more complicated. Refer to
Dertimanis [12] for further details.

Having established a modal decomposition for the covariance matrix of the output vector under broadband stochastic
excitation, it follows that at zero lag

2n n

T0.2]=) Qu(E) =) Qi(E)+ Q[ (%) (8.15)
k=1 k=1

with the asterisk denoting complex conjugate. Taking under consideration that I' [0, E] corresponds to the multivariate
equivalent of variance and it can, thus, be associated to the stochastic vibration energy of the output series, a modal dispersion
matrix can be defined as

E((E) = Qu(E) + Q¢ (E) (8.16)

in order to assess the contribution of the kth mode to the total vibration energy. Correspondingly, the normalized modal
dispersion matrix is defined as a matrix Ay (Z) with elements

Ve e L T P I C)) TR (8.17)
[ Z_:l Em(E)]ij [r”[o’ E]]ij

Essentially, the DA framework attributes a quantitative index to each vibration mode. To see that this is indeed the case, a
modal dispersion metric (MDM) can be defined from the modal dispersion matrices as

Sak2(E) = [[Akll2 (8.18)

using the L, norm, where k = 1,2, ..., n. Equation (8.18) implies that every vibration mode can now be characterized by
four quantities: the natural frequency, the damping ratio, the mode shape and the MDM. This feature can be used in both
forward (e.g., for model reduction) and inverse setting. In the latter case, the MDM can be very easily incorporated into
SDs. While several alternatives can be potentially examined, two implementations are currently discussed and assessed in
the following. The first implementation simply refers to modify the SD in a way that renders the estimated dispersion of each
mode. This can be done by either introducing a third dimension to the original two—dimensional format of the SDs, or by
attributing a certain color range to the modal dispersion band and, accordingly, coloring each identified mode. In this way,
mode stabilization can not only refer to the value of a specific frequency, but also to its attributed color.
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Since the MDM that accompanies a specific mode may be expanded over a wide range of numerical values, a second
implementation can be accomplished by introducing a normalized modal dispersion metric (nMDM) as

Sk 2

_ s 8.19)
max (32 (

Sx2(8) =

for B = E, A. This metric is always a number between 0 and 1, with the latter value corresponding to the mode of the
highest contribution to the stochastic vibration energy of the structure. The use of this normalization to the SDs enables
direct extraction of the most important vibration modes. In addition, a threshold can be further employed so as to prevent
modes with negligible nMDM, compared to the one of the most important mode, to appear to a SD. It is emphasized that,
while the process described herein stems from the original state—space representation, it can be extended to cover transfer
function representations as well [12].

8.4 Polynomial Chaos Expansion

PCE concerns the expansion of a random output variable on polynomial chaos basis functions which are orthonormal to
the probability space of the system’s random inputs. More specifically, let us consider the general system S described by
Eq. (8.4), with L random input parameters represented by independent random variables Z,..., £, e.g. temperatures
measured at different locations of the structure, gathered in a random vector E of prescribed joint PDF pgz (&) [20]. The
system output, in our case the MDM denoted by ¥ = 8 x2(E) will also be random. Provided that Y has finite variance, it

can be expressed as follows:

Y =S(E)= ) baga(E). (8.20)

deNL

where 6 4 are unknown deterministic coefficients of projection, d is the vector of multi-indices of the multivariate polynomial
basis, and ¢4 (E) are the polynomial basis (PC) functions orthonormal to pz (). These basis functions may be constructed
through tensor products of the corresponding univariate functions.

Each probability density function may be associated with a well-known family of orthogonal polynomials. For instance,
normal distribution is associated with Hermite polynomials while uniform distribution with Legendre. A list of the most
common probability density functions along with the corresponding orthogonal polynomials and the relations for their
construction may be found in [21].

For purposes of practicality the basis functions series must be truncated to a finite number of terms, with the usual
approach being the selection of the multivariate polynomial basis with total maximum degree |d ;| = qu:l dijm < P for
every j. In this case the dimensionality of the functional subspace is equal to

(L +P)

T1P1 (8.21)

where L is the number of random variables and P the maximum basis degree. Therefore, when truncating the infinite series
of expansion of Eq. (8.20) to the first p terms, the resulting PCE model is fully parametrized in terms of a finite number of
deterministic coefficients of projection 8 ,. Parameter vector #, may be estimated by solving Eq. (8.20) in a least squares
sense. Toward this end, the data of the output variables and the PDFs of the input variables have to be employed. The PDFs
of the input variables may be obtained by fitting known statistical distributions to the observed input variables values.

By expanding the identified MDMs onto an appropriately selected PC basis, a description of the way that the energy of
the structural modes is affected by the changing environmental and/or operational conditions.
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8.5 Case Study

The proposed framework is now applied to the structural identification problem of a single—input, three—output structural
system illustrated in Fig. 8.1a. The structure is assumed to operate under varying conditions of mass and temperature. In
specific, regarding the former, mass increments are added to i, m, and m3 (see Fig. 8.1a), in accordance to the log—normal
distribution with mean value equal to 1 and variance equal to 0.25, that is, 21 ~ [nN(1,0.25). For the latter, the stiffness
coefficients are considered to be linearly depended on the temperature according to k; = k,-[l —(T —T,, f)kT], where
k7 = 5 x 1073 is the thermal coefficient and T, r = 20°C is the reference temperature. The PDF of the temperature
corresponds to a normal distribution with mean value equal to 15 and variance equal to 25, i.e., E, ~ N(15,25).

For the identification experiments, 500 samples of the added mass and temperature variables are drawn, by means of the
Latin Hypercube Sampling (LHS) method, from their theoretical PDFs and the corresponding data are shown in Fig. 8.1b.
For each mass—temperature pair, the structure is brought into the state—space format for acceleration output. Accordingly,
discretization is performed using the zero order hold at 7y = 0.015625 s (corresponding to sampling frequency F; = 64 Hz)
and the discrete—time state—space model is excited by a u(t) ~ N(0, 10*). The resulting structural acceleration responses are
zero—mean subtracted and noise—corrupted at 5 % N/S ratio, forming a final single input-three output data set of N = 3,000
data per channel. Identification is performed by the PO-MOESP [17] method (Hankel matrix with 100 block rows is chosen),
for even state orders between 2 and 30.

Figure 8.2 shows the results of the identification process, where two instants of the SDs are presented. The modified SDs
covey significantly enriched in comparison to the conventional ones. Focusing on the left SD (Fig. 8.2a), one can distinguish
three areas that exhibit stabilization in both the frequency and the nMDM. As no threshold is activated, numerous frequencies
appear naturally, many of which tend to stabilize. These are however attributed by negligible nMDMs and can safely be
discarded as extraneous. This is clearly indicated in Fig. 8.2b, where a 5 % threshold has been applied to the SD.

One can distinguish three modes that appear stabilized in both the frequency and the MDM, while it seems that the third
mode can be considered as the most significant one, based on its relative contribution to the total stochastic vibration energy.
A fourth mode that appears around zero on Fig. 8.2b is accompanied by destabilized dispersion and can safely discarded.
Even if the ordering of the modes with respect to their dispersion seems invariant over the change of operational conditions,
the calculated dispersions are highly affected by these conditions. This dependency is identified by the dispersion expansion
onto PC bases described in the previous section.

The induced SDs promote a 6th order state—space model for the description of the structural system over the whole range
of environmental conditions. This implies the extraction of three structural vibration modes, the MDMs of which are reflected
to the corresponding entry of the SD of Fig. 8.2b, that is, the color bars along state order 6. In order to obtain a quantitative
description of their performance, a corresponding set of MDMs (100 x 3) are then expanded on the probability space of
the latent input variables through PCE. Toward this end, and after transforming the PDF of the mass load into a normal
distribution by using the natural logarithm, the Hermite polynomials may be selected for the construction of the multivariate
PC basis functions. The total polynomial degree of the PC basis is selected based on the R? criterion, that is:

=F ===

Added mass (kg)

(30) ameradwa ],

Data set

Fig. 8.1 The numerical case study considered. (a) Three DOF structural system with m; = 10> kg, m, = 10'° kg, m3 = 10kg, k; = 10° N/m,
ky = 10> N/m, k3 = 10° N/m, ¢; = 100N/m/s, ¢c; = 10N/m/s, c; = 1N/m/s and £(t) = (1,0,0)7 u(¢). (b) Mass and temperature values for
the 500 simulations
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100
Zk:l Yk2

by searching the maximum total degree within the range between 0 and 10, and the resulting R? values are plotted in Fig. 8.3.
Based on these results the total polynomial degree is selected equal to three P = 3 for all dispersions. Thus, using Eq. (8.21)
with P = 3 and L = 2 gives a total number of 10 candidate basis functions.

The estimated PC coefficients of projection may be used for calculating the PCE based estimates of the MDM values,
and thus for constructing a surface that shows the dependence of the dispersion of the 3-DOF system on the two input
random variables. The results are plotted against the theoretical curves in Fig. 8.4. It may be observed that there is a good
agreement between the theoretical and the estimated dispersions, with the highest errors occurring at extreme values of the
input variables.
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8.6 Conclusion

A novel framework for the application of SDs to structural systems subject to changing environmental and operational
conditions was presented through the integration of additional information to their conventional form. To this end, a newly
introduced index, the MDM, that quantifies the modal contribution to the stochastic structural response was attributed to each
vibration mode, under the assumption of broadband random excitation.

Accordingly, PCE was utilized for the expansion of the MDM on polynomial chaos basis functions that are orthonormal to
the probability space of the systems random inputs, which for the case study considered were limited to mass and temperature.
In this respect, it was made possible to track the stochastic vibration energy of each mode over a wide range of varying
conditions.

The promising results suggest further research towards this framework, especially with respect to output—only identifica-
tion and implementation on the operational modelling of real-world structures.
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Chapter 9
Online Damage Detection in Plates via Vibration Measurements

Giovanni Capellari, Saeed Eftekhar Azam, and Stefano Mariani

Abstract In this work, we propose a new framework for the online detection of damage in plates via vibration measurements.
To this end, a finite element model of the plate is handled by a recursive Bayesian filter for simultaneous state and parameter
estimation. To drastically reduce the computational costs and enhance the robustness of the filter, such model is projected
onto a (sub-) space spanned by a few vibration modes only, which are provided by a snapshot-based proper orthogonal
decomposition (POD) method. A challenge in using such approach for damaging structures stems from the fact that vibration
modes can be adjusted only during the training stage of the analysis; if damage occurs or grows when the reduced-order
model is at work, the training stage has to be re-started. Here, an alternate method is proposed to concurrently update the
sub-space spanned by the modes and to provide estimates of damage location and amplitude. The robustness and accuracy
of the proposed approach are ascertained through an ad-hoc pseudo-experimental campaign.

Keywords Structural health monitoring ¢ Damage detection ¢ Reduced-order modeling * Proper orthogonal decomposi-
tion ¢ Extended Kalman-particle filtering * Thin plates * Finite element

9.1 Introduction

The objective of this article is to propose a damage identification scheme for time-continuous structural health monitoring
schemes. In doing so, recursive Bayesian filters are coupled with a model order reduction method. The developed
methodology furnishes estimates of the local damage parameters associated to a set of purposely defined sub-structures;
the mentioned damage indexes are defined in standard fashion, as scalar variables linearly degrading the local virgin
stiffness. The effective order reduction technique used herein guarantees a limited computational cost, and a coupling of
the procedure with a commercial finite element (FE) code to permit the strategy to be applied to a large variety of problems.
The identification method obviously requires that measurements, such as rotations or accelerations at characteristic points
on the surface of the structure, are to be gathered during health monitoring.

One of the main disadvantages of any identification technique based on recursive Bayesian filters is the entailed high
computational burden. To render the objective of fast, robust and unbiased estimation of damage indexes associated with the
sub-structures, two remedies have been adopted: a model order reduction based on the POD, and a modified particle filter.
The model order reduction is achieved by adopting a Galerkin-based projection of the original full model into a sub-space
spanned by the so-called proper orthogonal modes (POMs), computed with the POD in its snapshot-based version [1-3].
The method is established such that it can be applied to structures independently of the FE model used to discretize them.
Henceforth, the damage indexes that define the degradation of the original stiffness of the structure need to be handled.

The reduced bases furnished by POD cannot depend on changes of the stiffness parameters of the system; hence, the
reduced-order models established by POMs cannot provide the same level of accuracy for different values of the damage
index. As the estimation of the damage indexes is pursued concurrently to the tracking of the state of the structure, an online
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update of the sub-space is proposed to maintain the accuracy of the reduced-order model in case damage gets incepted. The
dual estimation of state and damage indexes is based on a particle filter enhanced through the use of a further (extended)
Kalman filter, to move the particles before the resampling stage [3, 4]. This intricate formulation allows the tracking of both
the dynamic evolution of the partially observed or hidden state of the system, and of the possible growth of the damage
indexes.

In order to test the capability of the proposed damage identification technique, a thin plate case is considered. It is
demonstrated that the procedure successfully identifies and locates the damage, even when using a reduced-order model of
the system consisting in a few (two or three) degrees-of-freedom.

The recent developments in smart embedded data acquisition systems and MEMS (micro electro-mechanical systems)
type accelerometers, promise feasibility of the presented method via establishing a way to collect vibration data for
lightweight and small structures without varying their response to the external excitations [5].

A method for dual estimation and reduced-order modelling of damaging structures, similar to that adopted herein for dual
estimation and sub-space update, was recently developed and successfully applied to shear-type buildings in [1, 3]. In this
article, the approach is evolved in such a way that it is now able to locate and estimate (almost) in real-time a structural
damage through a few vibration measurements only.

9.2 Theory

Let us consider a space-discretized (e.g., through finite elements) structural system. Its time evolution in a dynamic frame is
provided by the equations of motion:

Mii+ Di+ Ku =F 0.1

where: M is the mass matrix; D is the viscous damping matrix; K is the stiffness matrix; F is the external force vector; @i, it
and u are the vectors of system (nodal) accelerations, velocities and displacements, respectively.

In Eq. (9.1) it has been assumed that the system behaves linearly, hence any inelastic response to the loading looks
prevented. By discretizing now the time interval of interest according to [ty ty] = UN-! [t; #;41], N being the number of
time steps of constant size At = f;4; — t;, within [¢; #;4] the time update of the structural configuration is given by the
Newmark algorithm [6] as:

e prediction stage:

’l\ii+1 =u; + At u,+At2(%—B)u,

Uiy =u; + At (1 —vy)ii; 62
» explicit integration stage:
i1 =M™ (Fip1 — DUy — K1) 9.3)
* correction stage:
Uipy = Uit1 + A12Bii; 4 9.4)

Wiy =iy + At Vil

where B and y are algorithmic parameters. Equation (9.3) shows that the structural stiffness comes into play only in the
integration stage and, once it is locally scaled proportionally to a damage (or integrity) scalar coefficient, it can be potentially
assumed as time-varying, and tuned by a filtering procedure. In other words, the stiffness matrix can be expressed as a linear
combination of N, reference stiffness matrices (N, being the number of regions, or sub-structures), each one scaled by the
corresponding damage index d;, with j = 1,..., N, so as:

K =K (d) 9.5)

Each damage index is here assumed to affect the local Young’s modulus of the structural material according to:
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Ej=(1—d;)E (9.6)

It thus follows that a step-wise constant assumption for the structural health is proposed, with the integrity possibly changing
in time due to the external actions. We do not provide here evolution laws for the local damage, as the filter itself can be
shown to be able to tune it through the collected measurements of the system responses.

For later use, Egs. (9.2) (9.3) and (9.4) are formally written as:

Zi+1 = f; (z:) 9.7

.. T
once the full state vector z; = {u,- u; u; } is defined.
Focusing on the displacement vector u (without explicitly mentioning now the time instant #;), in a linear regime we can
write:

u=o¢ 9.8)

where ® is a matrix gathering the m orthonormal bases of the space within which the vector evolves, and ¢ is the
relevant vector of time-varying coefficients combining the time-invariant bases. To reduce the computational burden of the
identification procedure, we define a reduced-order displacement vector u, as:

u =, 9.9)

where ®, is a matrix gathering only the most important £ bases (or POMs) for the specific problem at hand, and « is the
vector of combination coefficients relevant to such sub-space model. To reduce the norm ||u# — u, || as well as the dimension
£ of the sub-space, POD is here adopted in its snapshot version [7]. We refer the readers to, e.g., [2, 3], where a notation
consistent with the present one was adopted, to get insights into all the relevant details of such procedure. It suffices to
mention that, once a so-called snapshot matrix is assembled by joining the response of the structure to the considered loading
at a specified number of time instants, and after computing a singular value decomposition of this matrix, the resulting left
singular vectors represent the sought basis set ®,, and the singular values allow to define the (energetic) accuracy p € (0 1]
of the reduced-order model.

As the bases do not change in time, a reduced-order representation for the velocity and acceleration vectors can be
accordingly obtained as &z, = ®,a& and it, = ®,a&, respectively. Through a Galerkin projection, the reduced-order equations
of motion are obtained as:

M,a+D,a+K,a=F, (9.10)

where: M, = ®'M®,, D, = ®'D®, K, =®'K®, and F, = ®'F.

To allow also for model parameters and, specifically, for the aforementioned scalar damage indexes d; in all the regions of
the structure (possibly in each finite element), according to a standard procedure adopted for dual identification of partially
observed systems, we build an enhanced (or extended) state vector by joining the structural state z and the parameters ()
themselves [4]. At time ¢; this reads:

xi = { ;} ©.11)

Considering next an observation equation to link the measurable y to the full state of the system, in a stochastic frame where
noises are also accounted for we can write the reduced-order state estimation and damage identification problem as:

Xriv1 = [ (Xp0) +v;
<I)r,i
o, 9.12)
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Table 9.1 General scheme of
the proposed dual damage
identification procedure

Initialization at time #

Attimet;, fori =1,...,N

Prediction stage:

Draw particles

Push the particles toward the region of high probability through an EKF
Update stage:

Evolve weights

Resampling

Compute expected value and other required statistics
Predict subspace and associated covariance
Calculate KF gain for updating subspace

Update subspace and associated covariance

where: v; and w; are additive, zero mean, white Gaussian noises that respectively represent the uncertainties in the process
and measurement equations; H is a Boolean matrix that links the observation vector to the current state of the system.

To handle the possible evolution of the sub-space onto which the full system is projected, the matrix ®, has to be
continuously tuned during the analysis; we have therefore adopted in Eq. (9.12) the index i to state that it can evolve in
time, and it requires an estimation to be provided by the filtering procedure. To summarize, at each time instant the proposed
procedure has to: track the state z of the system; identify the location and magnitude of damage through vector 8 tune the
sub-space projector @, if damage grows and a deviation from linearity arises. The whole procedure is reported in Table 9.1.

To possibly allow for multivariate probability distributions of state vector components, in [1, 3] we started adopting a
particle filtering approach to the aforementioned dual estimation problem. As the relevant costs of identification can get
extremely increased in comparison to, e.g., unscented Kalman filtering [4], a Rao-Blackwellized version of the filter was
then considered: this explains the second action in the prediction stage of Table 9.1. To also permit the mentioned online
evolution of the sub-space projector, a further Kalman filter was shown to be effective in [3]: this is carried out as the fourth
and sixth actions in the update stage still mentioned in Table 9.1. All the algorithmic details are here dropped, and interested
readers are referred to [1].

9.3 Results

The performance of the proposed approach, in terms of state tracking and identification of the structural health (i.e., of the
damage indexes), is evaluated through a simple benchmark test. A square plate, whose side length is 200 mm and thickness
is 5 mm, is assumed to be simply supported at the four corners and subjected to a concentrated load applied at the central
point, see Fig. 9.1. The material is considered to be Aluminum 6061-T6, whose Young‘s modulus is £ = 68.9 MPa, and
density is p = 2.5 - 10° kg/m®. In Fig. 9.1, it is also shown that the plate has been subdivided into four sub-structures, each
one featuring its own damage index to be estimated.

Two different plate configurations have been considered:

1. afirst one characterized by damage indexes d, = 0.5 and d| = d3 = d4 = 0, constant throughout the whole time interval
of the analysis. The goal of this analysis is to show the capability of the reduced-order model to provide accurate estimates
of the damage indexes, given the measurements of rotations at the mid-span points along the edges of the plate.

2. asecond one characterized by the same damage indexes of the first case up to t = 0.25 s, then featuring a sudden stiffness
reduction in region 2 so as d = 0.5 — 0.7. With this analysis, we evaluate the ability of the method of tracking and
updating the estimation even in a time-varying environment. In this case, since we want the estimation error associated
with the order reduction to be negligible with respect to the error due to the POMs updating process, the number of
retained POMs is £ = 3.
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Fig. 9.1 Benchmark test: boundary and loading conditions, and region numbering

Results relevant to the first configuration, in terms of damage index estimations at varying number of POMs retained in
the reduced-order model, are reported in Fig. 9.2. Considering the 1-POM case, the filter is able to detect that there is a
damage in the right region, as the estimate of d, is higher than all the others, see Fig. 9.2a; nevertheless, the accuracy of the
reduced-order model is too low, and the estimated parameters are not close enough to the target. The estimation obtained
with the 2-POMs case gets better, but still the damage indexes of the undamaged regions are only fluctuating around the zero
value, see Fig. 9.2b. The 3-POMs case provides instead the damage parameters almost perfectly estimated after an initial
transient stage, see Fig. 9.2c.

Moving now to the time-varying health problem, results are collected in Fig. 9.3 once again in terms of damage estimates
provided by the filtering approach. Figure 9.3a shows what would happen if the POMs were not updated and kept instead
constant over time. As expected, a fast variation of damage parameters is provided, but the parameters are not well estimated
after the growth of d,. This is due to the fact that in the late stage of the analysis the wrong bases are projecting the matrices
on a sub-space that is not coherent with the original full-order one. As the bases are not the optimal ones, the error is not
optimally minimized and biases in the estimates show up. Despite the fact the filter cannot identify the right values of the
damage indexes, still the method can detect a variation of the structural health and can therefore be used as a sort of damage
alert, warning the user that something unexpected is occurring to the system. On the other hand, by plugging in the POMs
update stage, after an expected transient phase the damage parameters are correctly identified, see Fig. 9.3b.

9.4 Conclusions

A new online damage identification method based on recursive Bayesian filters has been presented, and adopted to track the
health state of a thin plate. The method is based on a Rao-Blackwellized particle filtering strategy, and on a proper orthogonal
decomposition-based order reduction of the numerical model used to track the structural behavior.

It has been shown that such hybrid approach can locate and accurately estimate the damage parameters associated to the
local reduction of the plate stiffness when only two or three degrees-of-freedom are retained in the reduced-order model, thus
speeding up the whole identification procedure and possibly allowing real-time structural health monitoring procedures.
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Fig. 9.2 Time-invariant damage
state: damage indexes d;
identified with (a) one POM, (b)
two POMs, and (c) three POMs
retained in the reduced-order
model
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a

Fig. 9.3 Time-evolving damage state: damage indexes d; identified (a) without, and (b) with POMs update
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Chapter 10
Advanced Modal Analysis of Geometry Consistent Experimental
Space-Time Databases in Nonlinear Structural Dynamics

Ioannis T. Georgiou

Abstract We present a study focusing on mining-processing of geometry consistent space-time databases of acceleration
fields developed in freely vibrating long aluminum alloy beams. Vibration data mining is conducted by single triad of
accelerometers: one fixed and the other two being relocated to cover the structure. The mined space-time databases are
evaluated by an advanced modal analysis technique based on proper orthogonal decomposition tools to determine whether
they qualify as a genuine measurement of the acceleration vector field resolved along space and time varying local coordinates
furnished naturally by the deforming surface of the beam structure. Despite the fact that the dynamics are coupled three-
dimensional and evolving in interacting slow-fast time scales, the shapes of the extracted proper orthogonal modes of
the transverse component of the acceleration vector field sampled by the single triad of accelerometers are found to
be qualitatively close to shapes of normal modes predicted by the Euler-Bernoulli linear beam model. The quantitative
differences stem from the influence on vibration dynamics that the static deformation infers to. The sensing-measuring of the
acceleration vector field with limited sensor resources exploits the geometric mechanics concepts of slow and fast invariant
manifolds thus contributing to low cost practical structural dynamics experimental data.

Keywords Vibrations * Modes ¢ Signal processing * Sensing ¢ Accelerations

10.1 Introduction

Test and evaluation methodologies targeted for model identification and structural health monitoring of physical one-
dimensional solid continua are interesting topics of basic research-both at the theoretical and experiment levels-with
measurable economic and societal impacts in cross disciplinary applications in engineering and biology. For example, some
core elementary structures in structural engineering and biology structures are essentially one-dimensional continua; and
their designed or assigned functions may depend on reliable monitoring of their response to stimuli form the environment
and with the system itself. Regarding structural health monitoring to sustain desired performance, one challenge is spatial
measurements of flexible rod dynamics with embedded sensors in such a way as to record the interactions of the slow bending
motions and fast torsion and extension motions. One-dimensional structures exhibit continuum level multi-scale dynamics
manifesting themselves as very slow and fast vibrations in free spatial motions. It would be useful for system identification
and damage detection to be able to extract the bending normal modes of vibration of a beam structure from experimental data
of arbitrary spatial motions. This depends on reliable distributed dynamics sensing and subsequent processing of space-time
distributed signals. Vibration-based damage detection is one of the very promising approaches to structural health monitoring
[1]. It can be enhanced further if one learns how to mine and process geometry consistent space-time matrix information on
dynamics. For example, a fiber optic sensor is motion conforming by design and function and thus it furnishes information
on dynamics variables with respect to local coordinates. This information is geometry consistent. It is mentioned in reference
[2] how rich is this information in natural time scales.

Here we shall deal with acceleration measurements furnished by surface accelerometers, being naturally geometry
consistent due to the local motion conforming feature. As the rod structure is the paradigm of the structure used to establish
the modern geometric mechanics framework, here it is used as a prototypical structural system to cultivate novel ideas for
distributed sensing of continuum system slow-fast dynamics in a geometrically exact manner. We exploit the geometric
concepts of the Slow Invariant Manifold (SIM) and the transversal fiber of Fast Invariant Manifolds (FIM) to conduct
geometry consistent measurements in space using limited resources of sensors: here a triad of light weight acceleration
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sensors. They follow the local geometry of the deforming beam and thus they sense naturally the acceleration with reference
to a local time varying coordinate system. The geometrically exact measurements of the acceleration vector field are
interpreted in physics terms by examining their proper orthogonal decomposition modes. The mathematical POD modal
structure of the measured geometrically exact acceleration vector field provides a sound basis to identify the modes of coupled
dynamics and detect local damage. This work brings in useful concepts of geometric mechanics to enhance experimental
nonlinear dynamics. These are the so called Slow Invariant Manifold and its transversal continuum of Fast manifolds. These
are well-established geometric concepts of nonlinear dynamical systems. These concepts have been used systematically for
broad scope qualitative analysis of structural and mechanical nonlinear dynamical systems [3-5].

10.2 Mining Geometry Consistent Structural Dynamics Databases

Distributed sensing-measurement of structural dynamics is essential in engineering applications and basic research
endeavors. One area where it is a necessity is the identification of normal modes of vibration as part of system identification
and another area, where it is becoming quite important, is damage detection for structural health monitoring. Depending on
the size of the system, distributed sensing may come across annoying problems. One such problem is the instrumentation
complexity stemming from installing a dense network of sensors. Here we avoid this problem by using a single triad of
accelerometers to mine a space-time sample of the acceleration vector field. In a recent work [6], we used a single pair of
accelerometers to mine a space-time matrix sample of the acceleration vectors field in physical aluminum alloy beams.
Here we shall use a triad of accelerometers to mine space-time matrix databases of acceleration vector fields developed
in physical relatively long beam structures. Figure 10.1 shows the experimental set-up for such a long aluminum alloy
beam of uniform square section. The beam crosses perpendicularly the gravitational force field. By using a single triad
of accelerometers we shall measure at N = 37 equally spaced points the transverse component of the surface acceleration
vector field. The beam is set into a free spatial vibration by releasing it form a well-defined static deformed configuration.
The experiment is repeated N/2 4 1 times. Two of the sensors are relocated and thus they span the whole beam and thus
furnishing N =37 measurements distributed in space. The relocated sensors are triggered by the fixed sensor and thus

Fig. 10.1 Aluminum alloy beam instrumented with three light piezoelectric accelerometers to measure the transverse convected component of the
acceleration vector field. Two of the sensors are relocated at the same time to cover the beam from the free tip to the fixed root. The sensors are
conforming to the local geometry of the deformed beam
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rendering the measurements simultaneous. We beam motion that the beam motion is not planar and that the initial conditions
have uncertainties.

So we have a geometry consistent space-time matrix sample of the major transverse acceleration components with does
not have a fixed direction but it follows the normal to the surface. Is this database close to the one obtained by N distributed
sensors? This is the question that we shall answer. Here the sensing direction of the sensor intersects with the direction of
the gravitational field. So the sensor in addition to the inertial force generated at its base is influenced by the gravitational
force vector field. In a recent work [6], we investigated a similar problem using a relocated sensor triggered by a fixed one.
The sensors were not interacting with the gravitational force field. We have found that the single-pair-of sensors measure
the acceleration vector field for a beam whose major bending axis is parallel to the direction of the gravitational field. Here
the sensing direction of the accelerometer intersects the gravitational force field. Thus the sensors feel both an inertial force
caused by the acceleration itself and a portion of the gravitational force field which becomes quite complicated due to the
motion of the sensor.

The typical database of time series mined by the two relocated sensors is represented mathematically by an MXN matrix:

A =laj,ay,--+ ,ap-1, 8,841, ,AN-1, AN] (10.1)

Column vector a, represents the M-points time history recorded at the location n by the relocated sensor. The question
that shall be addressed here is whether the matrix defined above represents a spatially distributed time history sample of the
projection of the acceleration vector field in the direction of the axis field formed by the local normal to the beam surface. This
is not obvious for several reasons, the most important one stemming from the fact that the accelerometer sensing direction
intersects the gravitational field direction.

The typical space-time database is structure geometry consistent due to the way excitation and measurement are
conducted. It is not at all certain that it is a genuine sample of the local component of the acceleration vector field. This
component is associated with the normal to the deformed beam. This normal is not a constant but it varies with time. The
sensing direction of the accelerometer coincides with this time varying direction. In addition, the accelerometer sensing
direction intersects the gravitational field direction.

10.3 Advanced Modal Analysis by the POD Transform

The space-time database A forms a geometric object in a linear space of configurations. The continuum can occupy several
configurations. The configuration is determined by the displacement vector field. The configuration of the acceleration vector
field is determined by differentiation. This brings in Differential Geometry concepts. Here we have experimental data for
the acceleration vector field. And the challenge is to turn them into useful information. The geometric object is formed by
the wandering in a finite portion of the space by the trajectory which itself is a curve parameterized by time. We have not
restricted the motions to be neither linear nor planar. So the other challenge is to turn this collected space-time data into
useful information by keeping in mind that we are not restricted to the classical areas of linear or weakly linear behavior and
decoupled dynamics. We allow for fully coupled dynamics and uncertainties.

We introduced the following way of data analysis. The initial database A is referred to as the global one. It traces a
global trajectory and thus forming a global data cloud with characteristic geometric features just as any physical material
object in the physical three-dimensional space [6]. An advanced modal analysis should result in the identification of these
features. Viewed as a geometric object, we approached it for analysis purposes by forming a sample of nested sub databases
as follows:

ADA DA DA =A (10.2)

Symbol D denotes the set inclusion operation. Table 10.1, column 2, presents the time interval of the sub databases in relation
to the time interval of the global database which is M = 192,500 time points long. We evaluate each database, or data cloud,
by subjecting it to an advanced decomposition analysis. This analysis is furnished by the discrete time POD transform. It
decomposes the raw space-time database into a set of space-time patterns. According to the time discrete POD Transform,
the database admits a unique additive modal-like expansion representation:
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Table 10.1 Time interval of the Nested database | Time interval | Normalized POD modal energy
nested databases and head of

POD normalized energy spectra A, (black) [1-17500] 0.614621332, 0.16777836, 0.08646576, 0.056671907
A, (red) [1-47500] 0.605747563, 0.24148926, 0.06996467, 0.034368394
Aj (blue) [1-97500] 0.553086419, 0.32528820, 0.05560197, 0.024151623

[

A, (green) global | [1-192500] | 0.489160832, 0.40784174, 0.04252305, 0.019629541

K*
POD transform  ~ -1 [n- 0. *
AR R = ML S QB KT <N <M
Z (10.3)

~ o~ ~T

T —~
Qan = 8, ‘I)mq)n =8m: Sm=Im=n, §,,=0m 75 n.

Symbol T denotes the matrix trace operation. Integer K* denotes the number of intrinsic proper orthogonal decomposition
(POD) modes. A POD mode in bi-orthogonal is space and time and is characterized by nodal energy content A, unit time
modulation (amplitude) Q,, € RM, and unit space modulation (shape) ®, € RN.

Set an is referred to as the Principal Coordinates. Set an} is referred to as the POD modal shapes. Set {\,} is referred

to as the POD energy spectrum. It is a descending sequence of strictly positive numbers.
From an energy point of view, the POD transform is characterized by the following energy spectrum property:

K*
M= AP = == x —tr (ATA). 10.4
2 = A = g < (A7) (104
The essence of the POD transform is the fact is that the energy of the database is distributed over the smallest possible
number of bi-orthogonal modes. These modes describe the linear geometry of the cloud formed by the database in the space

of configurations. The set of numbers {/):n = A/ ||A||2} forms the normalized POD modal energy spectrum. Its distribution

over the wave number of POD modes characterizes the database.

The POD analysis of the transverse component of the geometry consistent database of the acceleration vector field justifies
the term advanced modal analysis as this shall become evident in the analysis that will follow below. The POD transform has
been used in fluid mechanics [7, 8] and structural dynamics [3, 6, 9—11] and complex Machinery elements [12].

All four nested sub databases have been reduced to their intrinsic POD modes by means of the POD transform. Figure 10.2
presents the POD modal distribution of the normalized energy at unity of the database, the normalized POD energy spectrum.
The four nested segments of the database of the transverse component of the acceleration vector field are dominated by two
POD modes. Table 10.1, column 3, lists these energy fractions. On the average the modal distribution of the database energy
is very similar for all databases. The fact that a considerable amount of energy is contained in the first two-to-four modes is
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Fig. 10.2 The POD normalized energy spectra for a sample of nested sub databases of the space-time database mined by two relocated
accelerometers triggered by a fixed one
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Fig. 10.3 The unit shapes of the first three POD modes of the four nested databases (A, Az, A3z, A4): (a) 1st mode, (b) 2nd mode, (¢) 3rd mode

the feature that determines that the geometry consistent database mined by the single triad of relocated sensor is coherent.
From a physics and theoretical standpoints, it is expected that the acceleration vector is coherent. The smaller the number of
dominant modes the easier is to estimate the level of coherence. Here it is very clear that we have this case. It turns out that
the whole energy spectrum is described quite well by a power law.

Figures 10.3a, b reveal that the 1st and 2nd POD modes of the global database A, = A differ from those of the local
databases A, A, and A;. We see that this difference is reflected clearly in the companion time modulations, Fig. 10.4a vs
b. The result above justifies the nested POD analysis to contrast the POD modal structure of local segments of the trajectory
to that of the whole trajectory, forming the global geometry. In the literature, it is claimed that for beam structures the
POD modes coincide with the normal modes [13, 14]. As the experiment reveals this should hold only under appropriate
conditions.
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Fig. 10.4 The unit time modulations of the dominant POD modes of the global database A4 and the local database A3

10.4 Experiment Repeatability

We have used a very low cost sensing-measuring technique to conduct a spatially distributed measurement of the transverse
acceleration component not in space-fixed coordinate axes but in a geometry consistent space and time varying axis field. We
use two sensors to perform N = 37 spatial acceleration measurements. The measurement of acceleration is one part of the
advanced modal analysis technique presented here. Thus, we naturally addressed the issue of how reliable is the technique.
Is the experiment repeatable? To cope with issue, the typical experiment is repeated at least twice. From two samples one
can construct many samples by simple combinations. Figure 10.5 presents the dominant POD modes for the two space-
time samples, Test 1 and Test 2, of the same motion. These samples are generated by exciting the beam N/2 times from
nearly the same initial conditions. Despite the unavoidable small random errors in the initiation conditions, the databases are
quite close since the shapes of the three first POD modes are very close. Figure 10.5 shows this result for the database A3
which is M = 97500 time points long in the time dimension. We have small quantitative differences falling in the expected
experimental error zone.

Another indication of the high level of repeatability of the experiment is the fact that the POD structure of the ensemble of
signals mined by the fixed sensors is composed of a single dominant POD mode with uniform space modulation, see Fig. 10.6.
The spatial uniformity strongly indicates that the motions are emanating from closely neighboring initial conditions. And
the fact that the energy of the dominant mode is about 96 % of the database indicates that the signals collected by the fixed
sensors are underlined at the level of 96 % by the same signal. The remaining 4 % is due to the uncertainties. The ideal
case would be the 100 % level. But clearly we do need this level of accuracy. This is one of the novel points of this sensing
technique. We can operate in a cloud of uncertainty in a useful way.
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10.5 Normal Modes Relations

Regarding elastic structures, the main goal of the well-established and practiced notion of modal analysis is to determine
either by means of theoretical-computational of experimental techniques the normal modes of vibration. For test and
evaluation and structural health monitoring the challenge is whether it is possible to extract the normal modes of vibration
form distributed time series of acceleration. The challenge is elevated more if one adds the fact that the time series are mined
by a device whose sensing direction is not fixed, just as the accelerometers in our study here. Thus we address the issue of
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Fig. 10.6 The uniform unit shape of the dominant POD mode of the database mined by the fixed sensor

whether the shapes of the dominant POD modes represent the shapes of normal modes. This issue has been addressed by
several researchers by using either ideal reduced beam models or experiment with very small planar motions [13, 14]. Here
we do not restrict our motions. Thus we have data form full order dynamical systems allowed to perform spatial motions.
The motions that we have measured are not planar. We have measured the projection of the acceleration vector field into
a spatially distributed local transverse direction. We know that the elastic beam can vibrate into natural modes of bending.
So here we compare the shapes of the three dominant POD modes to the shapes of the linear bending modes. Figure 10.7
reveals that the dominant POD modes are qualitatively quite similar to the bending linear normal modes (LNM) predicted
by the classical Euler-Bernoulli beam model [15-17].

10.6 Natural Mitigation of Uncertainty

We have repeated the experiment N/2 4- 1 = 19 times. The nominal initial condition is pure initial deformation created quasi-
statically with a mechanism. The beam is released nearly instantly. The created initial conditions are not quite the same.
There are errors in the initial velocities. The errors contaminate the nominal initial conditions with fast oscillations of small
amplitude. However, the motion is attracted by a slow invariant manifold. The fast oscillations decay very fast and the motion
lands on the slow manifold and thus is very close to a motion initiated on the slow invariant manifold. The descent of the
motion into an attracting slow invariant manifold reduces the magnitude of uncertainty in the initial conditions. The fact that
POD mode 2 is qualitatively close to the fundamental bending mode predicted by the Euler-Bernoulli beam mode indicates
strongly that this POD mode is very close to the fundamental bending mode of the physical beam under study. Thus this
POD mode identifies the core slow vibrations of the long beam.

10.7 Detection of Anomalies

The aluminum beam structure is quite long and at the rest configuration is under considerable deformation by the action
of its own weight. The beam region around the cantilevered end is under deformation whereas the rest undergoes a large
displacement with small deformation. The POD modes characterize the motion from this deformed configuration. If the
beam were quite short the POD modes would be very close to the linear normal modes. We consider the stretched beam by
its own weight as “damaged” in the broad sense. We compare its POD modal shapes to those of the linear beam which can
be considered a reference for the healthy beam in a non gravitational field.

Figure 10.8 reveals that the dominant POD modes of the space-time database of the transverse convected component of
the acceleration differ from the normal modes of vibration in local regions and global regions. In particular, the POD modal
shapes 1&3 differ in local regions from the normal modes. These local differences, region A in Fig. 10.8a and regions B
and C in Fig. 10.8c, are stemming from the shift of the nodal points. The 2nd POD mode is qualitatively similar to the 1st
bending linear mode. But Fig. 10.8b reveals a distributed difference which becomes large at the cantilevered beam end. This
is due to the effect of the static deformation due to the beam weight.
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vector field with the normal modes of the classical Euler-Bernoulli beam mode
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Fig. 10.8 Detection of modal deviation index (MDI) anomalies in the POD modal shapes of the beam pictured in Fig. 10.1. The modes of the
linear beam are taken as a reference for the structural condition of the beam [6]

10.8 Conclusions and Discussion

The typical space-time matrix database-mined by a two relocated sensors monitored simultaneously by a fixed one-of
the transverse acceleration field along a long flexible beam is highly coherent since its norm-based energy is practically
concentrated at a small number of proper orthogonal decomposition (POD) modes. The POD analysis is done for a nested
set of segments of the mined space-time database. The first two POD modes of the global database are not the same as those
of the nested sub databases. This is an indication of nonlinear coupled vibrations. We find that the second POD mode is
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qualitatively close to the fundamental bending mode which forms the core of the slow dynamics of the beam. But there are
considerable quantitative differences which clearly indicate how the static deformation imposed by the gravitational field has
influenced the shape of the fundamental nonlinear normal mode of vibration. The POD modes are used to detect anomalies
in vibration behavior due to structural defects and deformation due to static forces. It is emphasized that this advanced modal
analysis was performed on databases of a fully coupled acceleration vector field projected onto a fixed-flexible body axis
filed. The data were mined by a motion conforming triad of fixed and relocated, motion conforming accelerometers. The
technique is model free and thus it can be used for test and evaluation of beam structures of arbitrary complex cross-sections.
The proper orthogonal decomposition transform forms the basis for an advanced modal analysis tool since it can be used to
evaluate the geometry consistent space-time databases of the acceleration vector field developed during the free motions of
a beam structure.
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Chapter 11
Comparison of Damage Classification Between Recursive Bayesian
Model Selection and Support Vector Machine

Zhu Mao and Michael Todd

Abstract All damage identification activities inevitably involve uncertainties, and the resulting classification ambiguity
in contaminated structural health monitoring (SHM) features can dramatically degrade the damage assessment capability.
Probabilistic uncertainty quantification (UQ) models characterize the distribution of SHM features as random variables, and
the UQ models facilitate making decisions on the occurrence, location, and type of the damages. A Bayesian framework will
be adopted and the damage classification is transformed into a model selection process, in which the most plausible structural
condition is determined by means of the recursively updated posterior confidence. In contrast to the probabilistic approach,
machine learning is another candidate approach, which employs training data and extracts features from the recorded
measurements. A support vector machine (SVM) is employed to classify the frequency response function data obtained
from rotary machine under different damaged conditions. With different size of feature and different kernel functions, the
classification of ball bearing damages are studied. Comparison between the Bayesian model selection approach and SVM is
concluded in this paper.

Keywords Bayesian decision-making ¢ Structural health monitoring ¢ Damage localization * Support vector machine ¢
Uncertainty quantification

11.1 Introduction

As the fundamental part of structural health monitoring (SHM), a comparison between two system statuses is deployed
through the feature domain, and such features are extracted from physical understanding and/or field data acquisition. In
reality, this type of decision-making, i.e., distinguishing one state from another, is always corrupted by uncertainties, such
as lack of physical intuition, noisy measurements, and environmental/operational variability. To maintain an acceptable
quality of SHM decision-making performance, numerous of realizations are often required, and two groups of evidence are
compared in a statistical sense naively. To deal with the burden of extensive data acquisition, quantifying the uncertainty
in the SHM feature evaluations is necessary. Thereby, the confidence of decision is described through the probabilistic
uncertainty quantification (UQ) model, and the overall performance of SHM is enhanced [1-4].

Transfer function, also known as frequency response function (FRF), is one of the most widely-used features for SHM, for
the clear physical interpretation and easy-accessibility. UQ models of different estimation algorithms regarding FRF features
are established in our previous research, in which probability density functions of the estimates are derived analytically [5, 6].
By adopting the probabilistic UQ models, the confidence interval of decision boundaries are pre-defined, and all the testing
samples falling outside of the boundaries are labeled as outliers. The percentage of outliers indicates if or not the testing
statistics deviates from the undamaged baseline, thus detects damage occurrence.

Moreover, when the statistics of damaged conditions are also known beforehand, a damage classification can be deployed
via selecting the most plausible probabilistic model. Specifically in this paper, a Bayesian framework is adopted, because the
algorithm fuses the collected evidence to update prior confidence and thereby select the optimal model to characterize the
data observation collected from unknown system condition.

As mentioned above, the uncertainty involved in SHM processes causes a lot of burden, especially when extracting
sensitive and specific features from large volume of data set. Oftentimes, the great fuzziness and redundancy in the raw
data encourage people to investigate powerful feature extraction methodologies. In the past decades, machine learning
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technologies have been widely applied to SHM, among which support vector machine (SVM) is particularly powerful for
solving classification problems. Compared to the Bayesian model selection approach for damage classification, this paper
adopts SVM to classify damage cases from the same test-bed.

A brief introduction of the SpectraQuest MFS vibration simulator system is given in Sect. 11.2, as well as a brief review
of the FRF and the UQ model of its estimations. Bayesian model selection approach for classifying damage types will be
given in Sect. 11.3, and SVM implementation, with a parametric study, is available in Sect. 11.4. In the end, a summary and
comparison of the two approaches is given in Sect. 11.5.

11.2 Test-Bed and Uncertainty Quantification of FRF Estimations

The SpectraQuest MFS vibration system is adopted as the test-bed to compare the damage classification approaches, as
Fig. 11.1 shows. In the simulator system, the bearing on right-hand side of the shaft is altered from undamaged bearing to
damaged bearing with defected balls and defected outer race. Acceleration data in direction y and z are recorded, as denoted
in Fig. 11.1, and the transfer function between the responses of those two directions are adopted as the damage index.

As the ratio between to power spectra, the definition of FRF is described in Eq. 11.1:

_V(w)
U (w)’

in which U and V are the Fourier transforms of theoretical input and output u(f) and v(f). When the measurements are
contaminated by noise (uncertainty), the realistic input and output are denoted as x(f) and y(¢), and the estimation of FRF
is often calculated via certainty algorithms, called estimators. Equation 11.2 is the H-1 estimator of FRF, which is the ratio
between cross- and auto-power density functions of (contaminated) input and output measurements:

H (o)

(11.1)

Ty _ 6xy (a))
e = @

(11.2)

where the ~ denotes the average of power spectra according to Welch’s algorithm [7].

Figure 11.2 illustrates the FRF feature estimations for various damage conditions, both the magnitude and phase. There
are undamaged baseline and other two types of damaged conditions included, as indicated by the three colors in Fig. 11.2.
Obviously, the realizations of FRF are very noisy and overlapped at most of the frequency bins. Without investigating the
randomness of estimations, it is hardly to make any valuable group classification judgments.

In the Welch’s algorithm, the power spectra are estimated in an averaged fashion. If the number of averages is sufficient,
the Gaussian distribution is hold asymptotically. The probability density functions of magnitude and phase estimations, as
random variables, are derived in [8]:

(Z—“;"j)z
— 20 ;
DPm (Z‘M,) = aﬁne i, (11.3)

Fig. 11.1 Rotary machine
test-bed
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Fig. 11.2 FRF magnitude and H magnitude
phase estimations for baseline
and two damaged conditions
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where in the context of group classification, M is the jth condition of the structure, and j,, and 6, are the mean and standard
deviation of magnitude estimation respectively.
The probability density function of phase estimation py is:

ot e o) .
Po (Z‘M ) =—e¢ " 4+ —L .. 27 1+ erf ! , (11.4)
/ 2w 24270y, ﬁa‘%‘

in which n; = ug; cos(z) + py; sin(z), and erf(*) is error function. In Eq. 11.4, jg; and pj; represent the mean of real and
imaginary parts of FRF estimation, while o; is the standard deviation of both parts.

11.3 Bayesian Model Selection for Damage Classification

Equation 11.5 demonstrates the Bayesian framework, which embeds prior knowledge into decision making, and updates the
decision confidence when new data are available. The posterior probability p (M j ‘D, M) of model (damage condition) M;
according to Bayes theorem:

1 (o) o o)
G

in which p (M j ‘M) is the prior. Likelihood function p (D‘M j) is actually the PDF in Eqgs. 11.3 and 11.4. Evaluating the
total probability theorem, the total evidence for dataset D on the denominator can be calculated as Eq. 11.6:

p(M,-)D,M) = (11.5)
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Fig. 11.3 Recursive posterior probability of model selection, at sample frequencies; top: baseline model; middle: damaged ball model; bottom:
damaged outer race model. (a) Using FRF magnitude feature, damaged ball data , (b) Using FRF phase feature, damaged ball data, (¢) Using FRF
magnitude feature, damaged race data, (d) Using FRF phase feature, damaged race data

p(D|M) =i1p(D‘Mj)-p(Mj‘M>, (11.6)

where n is the dimension of model class M. After running Eq. 11.6 in a recursive fashion for sufficient iterations, i.e., the
posterior probability serves as the prior in the next iteration, and posterior updates are produced as the dataset is increased,
the posterior p (M ;i ‘D, M) will tend towards 1 or 0, indicating acceptance or rejection of the jth model (damage condition).

In each class, the posterior probability of selecting among baseline (top), ball defect (middle), and race defect (bottom),
as a function of number of iterations is plotted, and each color indicates a different frequency line. It is clear that in all
cases, the posterior converges to the right number, i.e., converging to 1 if there is damage, and converging to O if not. The
horizontal lines in green highlight the arbitrarily-picked prior probability before any testing information. In Fig. 11.3c, d,
the convergence is not as decisive as Fig. 11.3a, b. That illustrates for damaged race, not all the sampled frequencies has the
same detection capability

11.4 Support Vector Machine for Damage Classification

11.4.1 SVM and Kernelization

Different from the probabilistic approach using Bayesian framework, support vector machine (SVM) employs training data
to form a hyperplane as the decision boundaries, in order to discriminate different sets of data. All the data points determining
the hyperplane are called support vectors. Equation 11.5 describes the decision maker h(*), which maps feature vector x into
a binary space:

0 ifg(x)>0

BOO=11 ifgx) <0 aLn

The function g(*) forms a hyperplane in the feature domain, which is described as:

g(x) =w/'x+b. (11.8)
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For the realistic data presented in last section, the data from the classification model are mostly non-separable, thus the slack
variables may be introduced to solve a soft margin problem. It is not always practical for highly overlapped/complicated
feature spaces. Kernel functions are employed if necessary, to introduce extra feature dimensions, and all clusters are being
better distinguished in a higher dimensional state, as Eq. 11.9 shows:

h (x) = sign |:Z yiof K(x;,X) +b*:| . (11.9)

i €SV

in which x; are all the support vectors, K(*,*) is the selected kernel function, «; is the Lagrange multiplier for constrained
optimization, and y; is the classification label of feature x;.

11.4.2 SVM Classification

Speaking of the cluster of features, a simplified condition is considered at the beginning for SVM analysis. Only a single
frequency line is considered and the feature vector is defined as:

x=[|H (0)] £H (0)] €R2. (11.10)

In Eq. 11.10, o is a sample frequency, and apparently the feature x is a 2-D vector. Figure 11.4 visualizes the feature vector,
and the overlap of clusters is obvious.

In the context of SHM, SVM provides the boundary to separate damaged data from undamaged baseline. Figures 11.5 and
11.6 demonstrate such damage detection implementation on a binary case, with only ball damage involved. With about 250
testing cases in total, the classification result and the true condition for each test is plotted on the right. For each class, the
percentage of correct labelling from SVM is calculated, for comparison with the random guess rate. In addition, the kernel
trick in SVM increases the decision space dimensionality, so that the decision boundaries plotted are actually the projection
of the real decision boundaries to the 2-D plane. Two different kernel realizations are adopted, namely linear kernel and
Gaussian kernel, which is a more flexible radial bases function.

Comparing the rate of correct classification marked in the figures, the Gaussian kernel does better than the linear
hyperplane separation. However, the performance of correct classification rate has to be compared considering all classes.
For instance, if the classification is totally flipped (wrong), the binary classification rate will be 0 %/0 %, and 50 %/50 %
will indicate an ideal random guess, and only 100 %/100 % means the perfect classification. The case of 0 %/100 % does
not suggest a good classification, because in this scenario, the algorithm just classifies all the test cases into one class.

For the trinary classification problem, two damaged conditions need to be discriminated from the baseline, and this multi-
class classification is implemented into three binary classifications. Each of the binary sub-problems is a “distinguishing one
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Fig. 11.7 SVM implementation for trinary classification, Gaussian kernel

from all the others” approach, which is essentially the same as damage detection. Specifically speaking, the one-versus-rest
idea partitions the trinary classification into (1 vs. 2, 3), (2 vs. 3, 1) and (3 vs. 1, 2), all three sub-problems.

Because the Gaussian kernel outperforms slightly according to Figs. 11.5 and 11.6, the multi-class discriminations
presented in Fig. 11.7 for each sub-problem employ Gaussian kernel. Just for a comparison, the result of “correct labeling”
is also available in Fig. 11.8. In each sub-problem, the class to be distinguished is highlighted and the other two classes are
grouped as “ELSE”.

The same as damage detection, the performance of SVM for trinary classification is evaluated via correct rate, plotted in
Fig. 11.8. The same conclusion can be made, that the Gaussian function outperforms linear function due to the flexibility
characteristics. Compared to the binary case, the SVM classifiers obtained from both kernel functions, in general, tag the
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data less accurate than the performance of binary case. This is mainly caused by the heavier complexity and ambiguity. The
average rate of correct classification for each case is about 57 % and 71 %, which is lower than the binary classification,
given the same feature dimension.

So far, all the damage detection/classification are implemented based upon the FRF feature at single frequency, and the
correct labeling rate for binary and trinary is 85 % and 71 % respectively, using Gaussian kernel. In fact, a lot of information
has not been utilized, because most of the spectral characteristics are thrown away when selecting the sample frequency.
Instead of eliminating most of the FRF information, Eq. 11.11 defines the state space feature by using more frequency lines:

x=[|H @)]. |H @)] -+ |H @) £H (@), £H (@) -+ £H (@0,)]" € R*". (11.11)

in which n frequencies are considered to build up the new feature vector x.

The new-established feature state has a lot more dimension. For example, if all the frequency lines are included in the
vector X, there will be around a thousand state space dimensions. Under this circumstance, the state space is not able to be
visualized, and Fig. 11.9 only plots the projection to three arbitrary dimensions, which is the limit on a 2-D plane.

Given feature space with ultra-high dimension, Gaussian kernelization becomes burdensome and could not return a
reliable classifier easily, especially due to the relative lack of training data. As a result, linear kernel function is adopted,
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Fig. 11.10 Rate of correct classification via SVM classifiers, linear kernel, left: binary classification; right: trinary classification

for both binary and trinary classification. By using the high-dimensional feature, the rates of correct classification for both
binary and trinary cases are 100 %, as shown in Fig. 11.10, which means all the test cases are correctly labeled.

11.5 Summary and Conclusion

This paper compares two strategies of damage detection and classification, namely a Bayesian model selection approach
and support vector machine classification. Bearing defects on rotary machine is selected as the test-bed to implement the
strategies. In the Bayesian approach, it takes tens of samples for the posterior probability of selecting/denying a model to
saturate to either 1 or 0, but for SVM, the training and testing will take longer time. In SVM approach, the performance for
binary classification is better than for trinary cases, because of the lower complexity, and higher-dimensional features will
lead to a more specific classification. On the other hand, higher-dimensional feature spaces will cause more computational
burden in the SVM training procedure, which is a major drawback compared to Bayesian approach. Among the two types of
kernel functions, SVM with linear kernel function separates data with a hyperplane and has the advantage of relatively
faster training, while Gaussian kernel has better flexibility to handle more complicated data sets. This gets verified by
high-dimensional features, where Gaussian kernel may not converge to a decision boundary with limited training sets.
Although the SVM is computational expensive, compared to the Bayesian approach, it is better at handling high-dimensional
features, because when the feature space expands, the joint probability density function will have an exponentially increasing
complexity, and the evaluation of likelihood functions will become troublesome.
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Chapter 12

A Comparative Study of Mode Decomposition to Relate Next-ERA,
PCA, and ICA Modes

Ayad Al-Rumaithi, Hae-Bum Yun, and Sami F. Masri

Abstract This paper discusses a comparative study to relate parametric and non-parametric mode decomposition algorithms
for response-only data. Three popular mode decomposition algorithms are included in this study: the Eigensystem
Realization Algorithm with the Natural Excitation Technique (NExT-ERA) for the parametric algorithm, as well as the
Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) for the non-parametric algorithms.
A comprehensive parametric study is provided for (i) different response types, (ii) excitation types, (iii) system damping, and
(iv) sensor spatial resolution to compare the mode shapes and modal coordinates of using a 10-DOF building model. The
mode decomposition results are also compared using a unique dynamic response data collected in a ship-bridge collision
accident for ambient excitation with traffic loading, ambient excitation without traffic loading, and impulse excitation.

Keywords Mode decomposition * Modal analysis ¢ Eigensystem realization analysis (ERA) ¢ Natural excitation tech-
nique (NExT) ¢ Principal component analysis (PCA) ¢ Independent component analysis (ICA) * Dhip-bridge collision

Nomenclatures

X (@), X(1), Xt)
\IJTRU

7,ERA \JERA \J,ERA
WERAWIRA

I/PCA \JPCA \jPCA
WECA, WIEA, WY

IICA \JICA JICA
WA, WA, WE

pTRU

~ERA AERA AERA
Py Py PX
APCA APCA APCA
PX ’ PX ’ pX
~AICA AICA AICA
Py Py s Px

The system acceleration, velocity and displacement, respectively.
The true mode shape determined by the modal superposition method.
The mode shapes estimated with the Eigensystem Realization Algorithm with Natural Excitation

Method (NEXT-ERA) for X (1), x (1), and X(2), respectively.

The mode shapes estimated with the Principal Component Analysis (PCA) method for X (¢), j (1),
and X(¢), respectively.

The mode shapes estimated with the Independent Component Analysis (ICA) method for X (1), ¥
(1), and X(?), respectively.

The true modal coordinate determined by the modal superposition method.

The modal coordinates estimated with the Eigensystem Realization Algorithm with Natural Excita-

tion Method (NEXT-ERA) for X (1), x (1), and X(2), respectively.

The modal coordinates estimated with the Principal Component Analysis (PCA) method for X(@),
X (9), and X(2), respectively.

The modal coordinates estimated with the Independent Component Analysis (ICA) method for X(@),
X (6), and X(2), respectively.
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12.1 Introduction

Mode decomposition techniques are popularly used in many identification applications of multi-degree-of-freedom (MDOF)
dynamic systems. These techniques are generally categorized into parametric and non-parametric approaches. The
experimental modal analysis is categorized into the parametric approach. The modal analysis can be further classified into
input-output modal identification and output-only modal identification methods, depending on the use of the excitation data in
its mode decomposition process. Since measuring the forces of MDOF systems is technically difficult and often expensive,
the output-only modal identification method is used in many monitoring applications when the force measurement is not
available, usually based on an assumption that the excitation input is a zero-mean Gaussian white noise. There are two main
groups of the output-only modal identification method: frequency-domain and time-domain methods (Maia et al. 2003). The
Eigensystem Realization Algorithm (ERA) combined with the Natural Excitation Technique (NExT) is a time-domain modal
analysis technique that has been studied in numerous structural dynamics applications [1-3].

On the other hand, the Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are categorized
into the non-parametric mode decomposition approach, which are in a family of the Blind Source Separation (BSS)
techniques. The mathematical models of these techniques are data-driven, rather than being based on physical assumptions
such as the equation of motion. The identification is relatively simple and straightforward since the vibration modes can be
identified from the columns of the transformation matrix that can be determined based on underlying statistics of the response
data. The PCA, known also as the Proper Orthogonal Decomposition (POD), Second-Order Blind Identification (SOBI), or
Karhunen-Loeve (K-L) Decomposition, decomposes multivariate response data into statistically uncorrelated data using the
second-order statistics, while the ICA decomposes the response data into statistically independent data using the fourth-order
statistics.

The objective of this paper is to compare the parametric and non-parametric mode decomposition methods of NExT-
ERA, PCA and ICA. Using response-only datasets collected in simulation and field tests, a parametric study was conducted
to evaluate the sensitivity of the mode decomposition techniques to (i) response types, (ii) excitation types, (iii) system
damping, and (iv) sensor spatial resolution. First, the simulation study is presented using 10-DOF building models subjected
to impulse and random excitations. Then, the experimental study is presented using a full-scale suspension bridge under
different excitation conditions in a ship-bridge collision accident, including ambient excitation with traffic loads, ambient
excitation without traffic loads, and impulse excitation during the collision. In the simulation study, the mode shapes (U) and
modal coordinates (p) identified using NEXT-ERA, PCA and ICA were compared with the true modes. In the experimental
study, ¥ and p identified using PCA and ICA were compared with those using NEXT-ERA. An overview of the proposed
comparative study is shown in Fig. 12.1.

Prior to this study, analytical and experimental studies have made by researchers to relate the non-parametric modes
to the parametric modes for vibrating structures. For PCA, Feeny and Kappagantu [4] related POD to free vibration and
compared mode shapes and modal coordinates using low-dimensional numerical models. Feeny and Liang [5] related the
proper orthogonal modes (POMs) to linear normal modes (LNMs) of lumped and continuous-mass systems. They found that
POD agreed with LNMs under random excitation conditions. Kerschen et al. [6] presented an overview of the POD method
for dynamic characterization and the order reduction of mechanical systems. They stated that POMs may be considered as
an alternative to the linear mode shapes although they do not have the theoretical foundations. POMs and proper orthogonal
values (POVs) provide a good characterization of the dynamics without requiring the knowledge of the structural matrices;
thus POD can determine an appropriate embedding space for a low-dimensional structure. Zhou and Chelidze [7] compared
the Algorithm for Multiple Unknown Signal Extraction (AMUSE), SOBI, and Ibrahim Time-Domain Modal Analysis (ITD)
methods using noise-free response data for damped and undamped systems. Smith and Saitta [8] employed PCA for analysis
and damage detection of complex structures, which was compared with multiple model-free data interpretation methods
including the Correlation Analysis, Continuous Wavelet Transform (CWT), Short-Term Fourier Transform (STFT), and
Instance-Based Method (IBM). Posenato et al. [9] applied PCA combined with the K-mean clustering for data mining to
interpret multiple-model predictions. Antoni and Chauhan [10]) compared SOBI with the Stochastic Subspace Identification
(SSI) for an analytical 15-DOF system by comparing their mode shapes and natural frequencies. They found that the validity
of is in principle limited to conservative systems, yet it is quite robust to this assumption.

For ICA, Roan et al. [11] applied ICA to detect and analyze gear tooth failure. Kerschen et al. (2006) related the
vibration modes of mechanical systems to ICA modes for their mode shapes and modal coordinates. They found that the
ICA modes agreed well with the vibrational modes for an undamped system subjected to impulse and uniform random
excitation while a damped system gave higher discrepancy. Poncelet et al. [12, 13] compared the mode shapes and modal
coordinates identified with ICA and SOBI to true ones. ICA gave a good agreement for weakly damped systems. SOBI gave
smaller discrepancy for strongly damped systems than ICA. McNeil and Zimmerman [14] discussed the relationship between
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independent component and free-vibration modal responses using the free-vibrational modal responses of a diagonally-
damped model through their simulation study. They deduced that undamped modal responses closely corresponded to
independent components, while damped modal responses did not. Yang and Nagarajaiah [15] found that the time-domain
ICA was limited to lightly damped structure, and SOBI lost robustness in nonstationary and unknown noisy environment.
They proposed STFT-ICA for both lightly and highly damped structures.

More recently, the Sparse Component Analysis (SCA), as a novel BSS method, has been studied to estimate modal
parameters for underdetermined problems: Yang and Nagarajaiah [15] applied SCA to the underdetermined problem where
sensors were highly limited compared to the number of active modes. Yu et al. [16] applied SCA to estimate both
time-invariant and time-varying modal parameters of a small-scale column in laboratory tests using a limited number of
accelerometers.

In addition to the above studies that were conducted using numerical or laboratory models, the BSS methods were applied
to some large-scale field structures. Oh et al. [17] applied Kernel PCA (KPCA) for the structural health monitoring of
the Yeongjong suspension bridge in South Korea to perform data normalization and incorporate with a novelty index and
generalized extreme value statistics for novelty detection. Kallinikidou and Yun [18] applied POD for long-term monitoring
of the Vincent Thomas suspension bridge in California, U.S.A. The statistics of acceleration covariance matrices (ACMs)
were evaluated, and the relation between POMs and vibrational mode shapes were studied. Yun et al. (2014) applied adaptive
PCA to a tunnel structure to evaluate proximity excavation effects on the tunnel deformation using POMs and POVs using
extensometers and tilt sensors.

Although the relationships between NExT-ERA, PCA, and ICA modes have been investigated in the above studies, they
were conducted for a limited number of parameters that affect the performance of mode decomposition. This paper presents a
comprehensive parametric study as shown in Fig. 12.1. Most of the previous studies were limited to using simulation models
or small-scale models in the laboratory, and the relationship of the parametric and non-parametric mode decomposition
has been rarely evaluated for full-scale field structures. The experimental evaluation in this study includes analysis for the
impulse vibration, ambient vibration with traffic loads, and ambient vibration without traffic loads, which are unique datasets
to investigate the performance of the mode decomposition for different excitation types.

This paper is organized as follows: the mathematical background of NEXT-ERA, PCA and ICA methods are described in
Sect. 12.2; the results of the simulation study using the 10-DOF building models are presented and discussed in Sect. 12.3;
the results of the experimental study using the ship-bridge collision data are presented and discussed in Sect. 12.4; and finally
the conclusions are given in Sect. 12.5.
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12.2 Mode Decomposition Techniques

12.2.1 Eigen Realization Algorithm with Natural Excitation Technique (NExT-ERA)

In general, a MDOF linear system subjected to the forced vibration of ambient excitation, for m sensors that is larger than
the degrees of freedom of the system and N data points over time, can be expressed as the following equation of motion:

MX (1) + CX (1) + KX(t) = F(1) (12.1)

where; M, C and K are the (m x m) mass, damping and stiffness matrices, respectively; X (¢), ¥ (), X(r), and F() are the
(m x N) matrices of the system displacement, velocity, acceleration, and ambient excitation, respectively.

The Eigen Realization Algorithm (ERA) is an output-only modal analysis technique for a MDOF linear dynamic system
with an assumption of impulse excitation [19]. Since ERA is designed for free vibration, the original ERA should be
modified to deal with ambient excitation. The Natural Excitation Technique (NExT) [20] is commonly used with ERA
for this modification as

MRX,-C[)? (T) + CRXre[X (T) + KRXrefX (7:) = RXrefF (T) (122)

where R( ) is the cross-correlation function; and X.¢(7) is the reference displacement with a time lag, . If the reference
channel displacement and input force are statistically uncorrelated, the RHS of Eq. 12.2 vanishes. Using the following
relationships

Ry 5 (1) =Ryx (1), -eveee Ry i (1) =Ry,x (1) (12.3)
Equation 12.3 becomes
MR, 5 (1) + CRy y (1) + KRy x (r) =0 (12.4)

Then, the original ERA technique can be applied to Eq. 12.4 for the system modal parameters. In ERA, due to the noise in
the data, the system order should be chosen to be higher than the real system order. Many studies, including Pappa et al. [2],
discussed the system order role on the realization.

The mode condensation algorithm gives practical solution to distinguish between physical and noisy modes and perform
the modal realization without the need to predefine the system order [2, 21]. Juang and Pappa [19] and Pappa et al. (1993)
suggested different mode indicators to measure the accuracy of mode identification. These mode indicators are incorporated
in the mode condensation algorithm in order to separate physical modes from the noisy modes. The consistent mode indicator
(CMI) used in this study is expressed as (Pappas et al. 1993)

CMI; = EMAC,;.MPC; (12.5)

where EMAC; is the extended mode amplitude coherence of mode i, which quantifies the temporal consistency of the
identified mode, and MPC; , the modal phase collinearity, quantifies the spatial consistency of the corresponding mode.
Therefore CMI; quantify both of the temporal and spatial consistency. CMI;, EMAC;, and MPC; have values from 0 to
100 %.

12.2.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) converts the response data that are correlated between sensor channels into
statistically uncorrelated data as follows:

X(1) = WA pECA @), X (1) = WA pRCA (1), X () = WA pEA () (12.6)
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where pl})?CA(t), p?CA(t), and p§CA

velocity and displacement, respectively, which are statistically uncorrelated between the coordinate components; ‘IJEZCA is

(t) are the (m x N) matrices of the modal coordinates for the system acceleration,

the transformation matrix of the acceleration to be determined for the linear transformation from X () to p;CA (t); and in the

same manner for X (t) and X(f). The columns of WECA represent the mode shapes of the response data.

The purpose of PCA is to find the orthonormal \P;CA, \IJECA, or WEA matrices that make the components of p';?CA (1),

p?CA(t), or p)P}CA(t) statistically uncorrelated by transforming the covariance matrix of the modal coordinates to a diagonal
matrix. The uncorrelated modal coordinates can be determined by using the second-order statistics from

Z;z —E I:pl;CAp;CA T] —E I:qji’?CA p;CAp;CA T qjl;CA T] _ \IJ;CAF)? \IJ;CA T (12.7)

where Zx is the covariance matrix of X (¢); I'; is the covariance matrix of p;(¢). Equation 12.7 can be applied in the

same manner for y (f) and X(¢). PCA is the optimal linear algorithm since it obtains the minimum expected squared distance
between the original signal and the dimension-reduced representation [6].

12.2.3 Independent Component Analysis (ICA)

The Independent Component Analysis (ICA) is another mode decomposition technique in the BSS family to convert the
response data into statistically independent data by the following linear transformation:

X(1) = WA pEA (), X (1) = WA A (), X(t) = WA pih () (12.8)

where pE.(.CA (1), p}CA (1), and p}CA(t) are the (m x N') matrices of the modal coordinates for the system acceleration, velocity

and displacement, which are statistically independent between the coordinate components; \IJ;CA is the transformation matrix

of the acceleration to be determined for the linear transformation from X () to p?A (t); and in the same manner for X (t)
and X(¢).

The objective of ICA is to find the mode shape matrices of \IJ}CA, ‘-I-’g.(CA, or WICA which satisfy the components of
p;:A (), pg.(CA(t), or piCA(#) to be statistically independent. Several methods are available to find the mode shape matrices.

One approach is to maximize the non-Gaussianity of p}(.CA(t), p}{CA(Z), or p&CA(t) based on the kurtosis (k) that is zero for
Gaussian data [22]. The data with k > 0 are called the super-Gaussian data, while the data with k¥ < 0 are called the
sub-Gaussian data. The major differences between PCA and ICA include

e PCA converts the system responses into statistically uncorrelated modal coordinates, while ICA converts the system
responses into statistically independent modal coordinates.

e The PCA mode shape matrix (or transformation matrix) is orthonormal, while the ICA mode shape matrix is not
necessarily orthonormal.

¢ The ICA modal coordinate (or transformed variable) has a unit variance, while the PCA modal coordinate does not
necessarily have a unit variance.

* PCA works with both Gaussian and non-Gaussian response data, while ICA does not work with Gaussian response data.

Figure 12.2 shows that the identified PCA and ICA mode components can be different for the same bivariate uniform
random variables since their mode decomposition criteria are different. In this paper, the PCA and ICA modes will be
compared with the NExT-ERA or true modes for different conditions of response types, excitation types, system damping,
and sensor spatial resolution using simulation models in Sect. 12.3 and a full-scale bridge in Sect. 12.4.

12.2.4 Mode Shapes and Modal Coordinates for Mode Decomposition Performance

In this study, the mode shapes and modal coordinates are used to evaluate the mode-decomposition performance of the
NEXT-ERA, PCA and ICA as
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(12.9)

where Y(7) is the system response of X (t), y (¢) or X(¢); Wy is the matrix of the mode shapes or the transform matrix of
NEXT-ERA, PCA or ICA; and py(#) is the modal coordinates of NEXT-ERA, PCA or ICA. The procedures of NExT-ERA,
PCA and ICA to obtain the mode shapes (V) and modal coordinates (p) are illustrated in Fig. 12.3.

12.3 Simulation Study

12.3.1 Model Description

A 10-DOF multistory building model was developed, which was fixed at the bottom and free at the top. The simulation
model can be expressed using the following linear equation of motion:

MX (1) + CX (1) + KX(t) = F(1)

(12.10)

where M, K, and C are the 10 x 10 matrices of the mass, damping, and stiffness, respectively; F(¢) is the (10 x N) matrix
of the external excitation; X(¢) are the (10 x N) matrix of the system displacement; and N is the number of data points. The
mass was set to be 1 kg, and the stiffness was set to be 500 N/m for all floors. The simulation models were developed for two
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Table 12.1 The modal Natural Natural
frequencies and damping ratios frequency frequency
of the lightly damped and Mode no. | (Hz) Damping ratio (%) | Mode no. | (Hz) Damping ratio (%)
undamped simulation models 1 053 026 | 0.00 6 520 232 1000
2 1.58 071 | 7 5.88 2.61
3 2.60 1.16 | 8 6.41 2.85
4 3.56 158 | 9 6.8 3.02
5 4.44 1.97 |10 7.04 3.13
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Fig. 12.4 Mode shapes of the 10-DOF simulation model
different damping cases to investigate the effects of the system damping. The first is a zero-damping case as C = 0, and the

other is the damping case of C = 0.001K + 0.001M. Equation 12.10 can be solved using the modal superposition method
by writing the response in term of the generalized response as

X(@)=¥p@) (12.11)

where W is the mode shape matrix; and p(¥) is the modal displacement. W can be evaluated by the eigenvalue decomposition
as follows

vQlw = MK (12.12)

where 2 is the frequency matrix of the system.
Equation 12.10 can be converted into uncoupled differential equations as

M, py(t) + Cupy (t) + K, px (1) = W' F(2) (12.13)

in which are the diagonal matrices of M,, = V™MW, C, = ¥~'C¥, and K, = W~ 'KW. The uncoupled differential
equations can be written as

Py (t) +20lpy(t) + @’ px(t) = ri(t) (12.14)

where r(t) is the modal force of M, ' W™ F(); px(#) is the modal displacement. @ and { are the system modal frequency and
the damping ratio vectors, respectively as

(12.15)

The modal frequencies and damping ratios of the lightly damped and undamped simulation models are summarized in
Table 12.1, and the mode shapes are shown in Fig. 12.4.
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Table 12.2 Parameters evaluated in the simulation study

Parameters Cases Description
Excitation type Gaussian Ten Gaussian random excitations with the unit variance of 02 = 1 N?
applied on all floors, which are statistically independent between the
sequences
Uniform Ten uniform random excitations with the amplitude between —0.5 and

0.5 N applied on all floors, which are statistically independent between
the sequences

Impulse Ten impulse excitations applied on all floors with the peak amplitude
of 1.ON
Response type Acceleration (ACC) Acceleration of the system response
Velocity (VEL) Velocity of the system response
Displacement (DSP) Displacement of the system response
System damping Undamped C=0
Damped C = 0.001K + 0.001M
Sensor spatial resolution | Full (ten sensors) All ten sensors measuring at all floors
Reduced (five sensors) | Five sensors measuring at every other floors for the reduced spatial
resolution
The modal displacement can be calculated as
t
px() = /r(t)hx (t—r1)dr (12.16)
0
in which
1 —Lwt o;
hy () = —e sin (wT) (12.17)
wp

where hy(7) is the impulse response function for the system displacement.

The numerical simulation was conducted for three excitation cases: Gaussian random, uniform random and impulse
excitations. For the Gaussian random excitation, F(f) was chosen to be the (10 x N) matrix that consists of ten Gaussian-
random sequences with the unit variance of 6> = 1 N2, which are mutually independent between the sequences. For the
uniform random excitation, F(¢) was chosen to be the (10 x N) matrix that consists of ten uniform random sequences with
the amplitude between —0.5 and 0.5 N, which are mutually independent. For the impulse excitation, F(f) was chosen to be
the (10 x N) matrix of impulse excitation with the peak amplitude of 1 N.

The system responses were calculated for each excitation case. First, the modal displacement, px(f), was calculated for
the sampling frequency of 100 Hz and the total duration of 900 s. The modal velocity, p; (¢), and the modal acceleration,
Py (t), were also computed in the same way using the first and second derivatives of the transfer function, 4;(z). Then, X(z),
% (1) and X (1) of each floor mass was found by multiplying the modal coordinates, px(7), p; ), and py(t), by the mode
shape vector, ¢.

12.3.2 Analysis Results of the Simulation Data

Once the necessary system response data were obtained, a parametric study was conducted by comparing the NExT-ERA,
PCA and ICA modes to the true modes. The comparison was conducted for different factors that could affect the mode-
decomposition performance of each method including (i) excitation type, (ii) response type, (iii) system damping, and (iv)
sensor spatial resolution. The parameters evaluated in the simulation study are summarized in Table 12.2.

In NEXT-ERA, several user-defined parameters have to be specified, including the system order and reference channels.
The mode condensation algorithm developed by Pappa and Zimmerman (1998) was used to evaluate the stabilization of the
mode realization for the system orders from 10 to 30, which are equivalent to the maximum number of modes from 5 to 15.
All channels were used as reference positions, but not simultaneously. Ten valid modes were selected based on the modes
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with ten highest CMI values. All other modes having the CMI value less than 95 % were excluded. In PCA and ICA, no
user-defined parameters are necessary since the analysis processes are solely data-driven, which does not require physical
assumptions of the system.

12.3.3 Discussion of the Simulation Analysis Results
12.3.3.1 Effects of the Response Types

In order to investigate the effects of the response types, the datasets of the acceleration (ACC), velocity (VEL), and
displacement (DSP) were analyzed using NEXT-ERA, PCA and ICA methods. The system was damped under the Gaussian
random excitation. The full sensor spatial resolution (10 sensors) was used (see Table 12.2). After the analyses, the mode
shapes (‘i’) and the modal coordinates (p) were obtained.

To measure the decomposition performance, the identified mode shapes and the modal coordinates were compared with
the true mode shapes (WT™8V) and modal coordinates (p™RV) using two indicators: the mode assurance criterion (MAC) for
the mode shapes, and the correlation coefficients for the modal coordinates (COR). MAC can be calculated as

‘\_ﬁ* WIRU |2

MAC =

| % 100 % (12.18)
(\p*\p> (WTRU*TRU)

where * represents transpose and conjugate; 0 is the identified mode shape vectors; and WTRY is the true mode shape vectors.
Therefore, MAC can be a real number between 0 and 100 %, indicating 100 % when the estimated mode shape vectors are
identical to the true mode shape vectors. COR can be computed as

(Z” ﬁpTRU>2
=15k k

LEPNEN " TRU , TRU
(Zk=1pkpk) (Zk=1p’< Py )

where py is the identified modal coordinate vectors; pZRU is the true modal coordinate vectors; n = 10 for the full sensor

spatial resolution, and n = 5 for the reduced sensor spatial resolution. COR can also be a real number between 0 % and
100 %, indicating 100 % when the estimated modal coordinate vectors are identical to the true modal coordinate vectors.

In Fig. 12.5, MAC and COR using NEXxT-ERA (), PCA (O ), and ICA (x) are shown for the first three modes. In the
plot, the x-axis shows MAC, and the y-axis shows COR. In addition, ACC, VEL and DSP indicate the response types, and
the number ten indicates the full sensor-spatial resolution. The results of the reduced spatial resolution data (*, O, \/) shown
with the number five in Fig. 12.5 will be discussed later in Sect. 3.3.4. For NEXT-ERA (), both MAC and COR were equal
to 100 % for all three modes and for all response types, which means that there is no error with NEXT-ERA in WERA and
ﬁERA. For PCA (0O ), the results were the same as NEXT-ERA (), except MAC = 82 % in \i';CA and COR = 82 % in

ﬁfFCA for mode 3 (Fig. 12.5g). For ICA (x), MAC and COR were equal to 100 % only in mode 1 for all response types
(Figs. 12.5a—c). Therefore, the performance of the mode decomposition was observed the best with NExT-ERA, then with
PCA, and the worst with ICA for these datasets.

The causes of the above errors in PCA and ICA were further investigated. Figure 12.6 shows the phase diagrams of the
acceleration, velocity and displacement at Floors 1 and 2. To demonstrate the effect of the response type, a simple 2-DOF
oscillator with the fixed-free boundaries was used to simulate the modal responses under the Gaussian random excitation.
The same mass, stiffness, damping, which was used for the 10-DOF model in Sect. 12.3.1, were also used in this simulation.
The correlation coefficients (p) of the Floors 1 and 2 responses were measured at p = 0.1 % for the acceleration, p = 50.2 %
for the velocity, and p = 90.2 % for the displacement. The correlation coefficients show that the acceleration sequences are
almost zero-correlated, and the displacement sequences are highly correlated. Two modes corresponded to the two responses
were also identified using NEXT-ERA, PCA and ICA. The directions of the two modes are shown as the two straight lines:
the major mode direction is shown as 1 and the minor mode direction is shown as 2. The angles of the mode components
were calculated, and the major component angle (6) and the minor component angle (8,) are shown in the figure. The angle
was measured in radian with respect to the horizontal line in the counter-clockwise direction.

COR = x 100 % (12.19)



122 A. Al-Rumaithi et al.

a b ~ C N
100 100 100 o
O Acci0 ERA B O VEL10 ERA v QO DsP10 ERA hd
90 | [0 ACC10 PCA 1 90 | [ VEL10 PCA 1 90 | [0 DsPi10 PCA
80 X ACC10 ICA | 80 X VEL10 ICA | X DSP10 ICA
ACC5 ERA VEL5 ERA 80 DSP5 ERA
£ 70| O Accs pca g 70|  VELs PoA £ 70| O DsPs Pca
z ACC5 ICA P VEL5 ICA o DSP5 ICA
8 6o g 6o g 60
50 50 1 50
40 1 40 1 40
30 ‘ Q : ‘ ‘ 30 : : : : 30
50 60 70 80 90 100 50 60 70 80 20 100 50 60 70 80 20 100
MAC (%) MAC (%) MAC (%)
Mode 1 for acceleration Mode 1 for velocity Mode 1 for displacement
d e f
100 100 100
O Acc10 ERA 0 O VEL10 ERA <>0 QO DsP10 ERA @
90 | [ ACC10 PCA 1 90 | [ VEL10 PCA f 90 | [0 DSP10 PCA
X ACC10 ICA go | X VEL10 ICA X X DSP10 ICA
80 ACC5 ERA | X ] VEL5 ERA ] 80 DSP5 ERA X
£ 70| © Accs peca & 70|  veELs PoA £ 70| & Dsps Pca
s ACC5 ICA s VEL5 ICA o DSP5 ICA
Q
g 60 g 6o g 60
50 y 50 1 50
40 O g 40 g 40
30 30 30
50 60 70 80 20 100 50 60 70 80 20 100 50 60 70 80 90 100
MAC (%) MAC (%) MAC (%)
Mode 2 for acceleration Mode 2 for velocity Mode 2 for displacement
g h i o
100 100 100
QO Acc10 ERA X 0 QO VEL10 ERA x? O DSP10 ERA X ra
90 { [0 ACC10 PCA 90§ [0 VEL10 PCA N 90 | [J DSP10 PCA
X ACC10 ICA o go| X VEL10 ICA \%4 X DSP10 ICA
80 ACC5 ERA VEL5 ERA 80 DSP5 ERA
g 70| © Accs pca g 70| O VELs PCA £ 70| O psps Pca
e ACC5 ICA o VEL5 ICA o DSP5 ICA
g 6o g 60 g 60
50 O 50 50
40 40 40
30 ‘ : ‘ : 30 ‘ ‘ ‘ : 30 ‘ ‘ ‘ ‘
50 60 70 80 90 100 50 60 70 80 20 100 50 60 70 80 90 100
MAC (%) MAC (%) MAC (%)
Mode 3 for acceleration Mode 3 for velocity Mode 3 for displacement

Fig. 12.5 Comparison of MAC and COR between the identified and true mode shapes and modal coordinates of the first three modes

The results show that the NExXT-ERA mode components are identical to the true mode components. For PCA, the mode
components for the velocity and displacement are identical to the true components in Figs. 12.6e, f, while the identified modes
for the acceleration has an error in Fig. 12.6d. For ICA, errors are observed for all response types in Fig. 12.6g—i. The above
results agree with the results in Fig. 12.5. It should be noted that the true, NExT-ERA, and PCA modes have |0, — 6,| = 7/2,
while the ICA modes do not necessarily have |60; — 6,] = /2. It is because the singular value decomposition of the
covariance matrix in PCA mathematically guarantees the orthogonality between the mode shapes, which is similar to the
orthogonality between the physical mode shapes in NExT-ERA. The discrepancy between the true and ICA modes is because
maximizing the non-Gaussianity of the resulting modal coordinates in ICA does not guarantee such orthogonality.

For the acceleration, the scattered data have a circular boundary due to the low statistical correlation although the data are
measured at two adjacent floors. Therefore, PCA and ICA have errors in the mode decomposition since it is difficult to find
the major directions of mode components in the circularly scattered data. For the velocity and displacement, the PCA modes
become accurate because the data have high statistical correlation with the prominent directions of mode components. ICA
still has the errors due to the non-orthogonal modes.
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Fig. 12.6 The mode components of the true, NEXT-ERA, PCA and ICA. The angles are shown in radian

12.3.3.2 Effects of the Excitation Types and System Damping

In Sect. 12.3.3.1, it was shown that ICA gave the highest error in the mode decomposition. The effects of the excitation
types on the ICA modes are discussed in this section. Hyvérinen and Oja [22] stated that the fundamental restriction in ICA
is that the independent components must be non-Gaussian since the distribution of any orthogonal transformation of the
Gaussian variables (xj,x;) has exactly the same distribution as (x;,x;), in which x; and x, are statistically independent.
Consequently, the matrix WA is not accurately identifiable for Gaussian independent components. When one of the
independent components is non-Gaussian, however, the ICA model can still be estimated. Kerschen et al. [23] evaluated
ICA for undamped vibrating structures with impulse and uniform random excitations. According to them, the application
of ICA is limited to a weakly damped system which typically has the damping ratios of less than 1 %. Another limitation
stated by them is that the number of sensors should always be chosen to greater than or equal to the number of active modes.
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Fig. 12.7 The joint probability density functions of the two acceleration sequences of the damped and undamped 2-DOF oscillator

Table 12.3 Averaged MAC and

COR of the ¢ # 1o th Uniform Gaussian Impulse

of the two modes using the

acceleration data Damped | Undamped | Damped | Undamped | Damped | Undamped
Avg. MAC (%) |90 35 57 67 92 100
Avg. COR (%) |90 42 59 83 88 100

Poncelet et al. [13] showed a similar result where the accuracy of ICA decreased as the system damping or mode number
increased. McNeil and Zimmerman [14] also discussed the effect of the system damping. They deduced that undamped
free-vibration modal responses closely corresponded to the independent components, while damped modal responses do not.

To demonstrate the effect of the excitation on ICA, the same 2-DOF oscillator in Sect. 12.3.3.1 was used with the
Gaussian random, uniform random and impulse excitations. The excitation properties used in this simulation are described
in Table 12.2. The joint probability density functions of the system responses are shown in Fig. 12.7. The kurtosis is used to
measure the sharpness (or Gaussianity) of the probability distribution.

4
k(x) = i]z —3 (12.20)
(E [x?])

where E[x] is the expected value of the random variable, x; k(x) = 3 when x is the Laplace double exponential random
variable; k(x) = 0 when x is the Gaussian random variable; and k(x) = —1.2 when x is the uniform random variable.
Thus, k(x) is a positive value for the super-Gaussian random variable with a sharp peak, while k(x) is a negative value for
the sub-Gaussian random variable with a flat peak. The kurtoses of the two accelerations are shown in the figure: k; is
for the acceleration with the fixed boundary, and k; is for the acceleration with the free boundary.

Figure 12.7 shows that the joint distributions of the damped responses are closer to the Gaussian distribution than the
undamped responses. Therefore, it can be seen that the system damping significantly increases the Gaussianity of the
acceleration data. To understand the effects of the system damping and the Gaussianity of the system response on the ICA
mode decomposition, the accuracy of the ICA modes is shown in Table 12.3 by averaging the MACs and CORs of the two
modes using the acceleration data. The table shows that no error is observed only for the undamped system under the impulse
excitation, which indicates that both system damping and non-impulse excitation reduces the accuracy of the ICA modes.
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Fig. 12.8 A comparison of true and ICA mode components for different excitation types using the acceleration data. The angles of the true modal
components are RV = 1.02, and 6;%Y = 2.59

Figure 12.8 compares the true modes (T1 and T2) and the ICA modes (I1 and 12) in the plots of the acceleration scattered
data, indicating the major components (T1 and I1) and the minor components (T2 and I2). The results shown that the
independent components had no errors only when the undamped system was subjected to the impulse excitation. The angle
between I1 and I2 are also measured in radians and shown in the figure. Similar to the results in Fig. 12.6, the angles of
the ICA modes are not necessarily perpendicular (i.e., |6 — 6| = 7/2), while the angles of the true modes are always
perpendicular. For the damped systems, the ICA angles are close to 7/2 although the directions of the mode components are
different from the true modes. This is a result of the response data being scattered in a circular boundary due to the strong
Gaussianity with the Gaussian and uniform excitations (Fig. 12.8a, b). For the undamped system, ICA still gave significant
errors although the data were correlated and the joint distributions were non-Gaussian (Fig. 12.8d, e). Only the case of the
undamped system under the impulse excitation gave no error in the mode decomposition. The above results show that the
accuracy of ICA is highly affected with the statistical distribution of the response data due to the system damping, and
excitation types.

12.3.3.3 Effects of the Sensor Spatial Resolution

To understand the effects of the sensor spatial resolution, the same datasets of the 10-DOF damped system in Sect. 12.3.3.1
were used, but with the reduced sensor spatial resolution by using the five responses at every other floor (see Table 12.2).
NEXT-ERA, PCA, and ICA were applied using the reduced-resolution data, and the mode shapes (U) and the modal
coordinates (p) were identified. Then, the MAC and COR were calculated for U and P, respectively.

The results of ERA (*), PCA (O), and ICA (V) for the first three modes are shown in Fig. 12.5. Here, the number five
indicates the reduced sensor-spatial resolution, and ACC, VEL and DSP indicate the response type. For the acceleration
(Fig. 12.5a, d, and g) significant errors were observed in all identification methods, while the errors were observed least with
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Fig. 12.9 A comparison of the true and identified mode shapes and modal coordinates of mode 1. The natural frequency of mode 1 is 0.53 Hz.
The modal coordinates are shown in frequency domain

the displacement (Fig. 12.5c, f, and 1) for all identification methods. Among all cases, only the mode shapes identified with
ERA gave no errors for all response types. This means that \IJE‘?RA, \IlgRA, and \IIE(RA are robust to the 50 % reduction of the

spatial resolution. In addition, both { and P were less affected with the reduced spatial resolution in a lower mode.

The ¥ and p identified with NEXT-ERA, PCA and ICA of mode 1 using the acceleration and displacement are compared
with WTRU and p™V in Fig. 12.9. Using the acceleration data, the @;}CA and \i-'i.(.CA were erroneously identified due to low
statistical correlation between the acceleration sequences shown in Fig. 12.9¢c, d, which is the similar results discussed earlier
in Fig. 12.6d, g. The p&RA, ﬁ;CA, and ﬁ;(.CA also gave erroneous frequency peaks as shown in Fig. 12.9f-h. With the

displacement data, the U and P become more accurate for all methods. Using the displacement data, the U and p were
accurately identified with NEXT-ERA and PCA, while ICA gave errors in the identification due to the combined effects of
the system damping and the Gaussianity of the displacement data that were discussed in Sect. 12.3.3.2.

In summary, the above simulation results show that the PCA modes can be used as alternative structural modes of a low
degree-of-freedom system. The accuracy of the PCA modes is best with the displacement, and worst with the acceleration.
The PCA modes can be used when the number of sensors is reasonably smaller than the system order. On the other hand, the
ICA modes are significantly different from the structural modes because the ICA mode shapes are not necessarily orthogonal.
The accuracy of the ICA modes is largely affected by the excitation types and system damping, which are not practical to
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be used as alternative structural modes. The identification of the modal coordinates is more sensitive to the sensor spatial
resolution for all methods than the identification of the mode shapes.

12.4 Field Study Using a Full-Scale Suspension Bridge

12.4.1 Measurements of Bridge Responses in Ship-Bridge Collision Accident

The Vincent Thomas Bridge (VTB) located in San Pedro, California in the U.S.A. was used in this experimental study
(Fig. 12.10). The bridge is an 1,850-m long cable-suspension bridge with a main span length of 457 m, two-suspended side
spans of 154 m each, and two 10-span cast-in-place concrete approaches of 545-m length on the both ends. In 2006, there
was a collision between the bridge and a cargo ship that was passing underneath it. The freight-loading crane on the cargo
ship struck the bridge main span from the side. About 30 min after the collision, the vehicular traffic on the bridge was
stopped by the bridge authority to investigate potential damage. As the result, moderate damage was found on the bridge
maintenance scaffold installed at the bridge main span. The investigation continued for about 2 h having no traffic on the
bridge, and then the vehicular traffic was reopened. A detailed description of the ship-bridge collision accident can be found
in Yun et al. [3].

With a web-based continuous bridge monitoring system installed on the bridge in 2005, the dynamic responses of the
bridge were measured in the ship-bridge collision accident. The bridge responses were measured at the sampling rate of
100 Hz using the 26 force-balance accelerometers installed on the bridge deck, piers and anchorage as shown in Fig. 12.11.
The accelerometers were connected to a data acquisition system with the 24-bit analog-digital converter via sensor wires.
A detailed description of the data acquisition system and the web-based bridge monitoring system can be also found in Yun
et al. [3].

The acceleration data of the normal traffic, ship collision, and no-traffic conditions were pre-processed to obtain the filtered
acceleration, velocity and displacement data that are necessary for the proposed comparative study. For each excitation type,
the acceleration data was first divided into 15-min time histories. Then, the DC and linear trend were removed from the time
histories. A 5 % cosine-tapered window was applied before the high pass filter of 0.1 Hz with filter order of two and the low
pass filter of 30 Hz with order of 4 were applied. Numerical integration was used to obtain the velocity. The same pre-process
method was applied before and after the numerical integration for the displacement. Channel 4 was excluded in the analysis
due to sensor malfunction. The above preprocessing procedures are shown in Fig. 12.12. Sample bridge responses during the
ship-bridge collision after the pre-processing are shown in Fig. 12.13.
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Fig. 12.13 Bridge response at channel 3 during the ship-bridge collision after the preprocessing

12.4.2 Analysis Results of the Experimental Data

The bridge response data for the traffic, no-traffic and collision excitation cases were analyzed using NExT-ERA, PCA and
ICA. Only 12 sensor channels on the bridge deck were used. For NExT-ERA, all channels were used as reference channels
but not simultaneously. The system order was set to be 100. The modes were then condensed by choosing the ones with
the CMI value higher than 70 %. A total of 15 modes were identified in each case. Among the 15 modes, the first 5 modes
were considered in the study. The modal frequencies and damping ratios identified with NEXT-ERA are summarized in
Tables 12.4 and 12.5. The mode shapes and modal coordinates were calculated using NEXT-ERA, PCA and ICA methods
for the different response types, and for the different excitation types. The sample mode shapes are shown in Fig. 12.14, and
the FFT of the modal coordinates are shown in Fig. 12.15. Mode 1 was not realized in NExT-ERA since the acceleration
data contained weak vibration components in the lateral direction of the bridge under the ambient excitation without traffic
loads. The modal parameters identified in this study agreed with those in previous studies [3, 24, 25].
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Table 12.'4 Identiﬁed modal Traffic No traffic Collision
frequencies (Hz) using

NExT-ERA Mode |ACC |VEL |DSP |ACC |VEL |DSP |ACC |VEL |DSP

1 0.175 | 0.170 |0.166 |- 0.174 1 0.181 |0.149 |0.151 |0.143
0.233 10.233 [0.232 |0.245 | 0.226 |0.246 |0.231 |0.233 | 0.228
0.55 10.539 [0.537 |0.529 |0.552 |0.540 |0.534 |0.534 | 0.535
1.393 | 1.401 |1.393 |1.400 |1.397 |1.397 |1.382 |1.391 |1.404
1.867 | 1.876 |1.860 |1.901 |1.887 |1.896 | 1.859 |1.864 |1.870
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Table 12.5 Identified damping

h . Traffic No traffic Collision
ratio (%) using NExT-ERA

Mode | ACC VEL | DSP |ACC |VEL |DSP |ACC |VEL |DSP

1 47.761 | 3.846 |2.250 |- 0.240 | 2.445 | 8.587 |3.526 |1.828
2.321 | 2.461 [2.599 |0.149 |5.509 |2.398 |2.640 | 6.897 |3.692
5.656 | 1.417 |0.651 |2.141 |0.916 |0.564 |1.414 |1.095 |1.403
1.480 | 0.591 |1.328 |0.437 |1.156 |1.324 |1.589 |1.050 |1.448
1.817 |1.667 |1.503 |1.401 |1.296 |1.175 |2.419 |1.763 |1.842
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Fig. 12.14 Mode shapes identified using NExT-ERA, PCA and ICA methods for the velocity data

12.4.3 Discussion on the Experiment Results

MAC was calculated to compare WPCA and WICA with WERA | and COR was calculated to compare pFCA and p'“A with
PERA . The results for the first five modes are shown for different excitation types in Fig. 12.16. For each ‘response type’—
‘identification method’ case shown in the legend, the average distance from the upper-right corner is calculated and ranked
in Table 12.6. Overall, the DSP-PCA modes ([J) were closest to the DSP-ERA modes for the excitation and response types.
There were more discrepancies in p than U for both PCA and ICA, which would be due to the relatively sparse sensor
network on the bridge. The above result is similar to the simulation results in Sect. 12.3.

In PCA, yPCA agreed most with WERA for the collision excitation, and least for the no-traffic excitation. This is because the
PCA modes could be decomposed more accurately with the collision excitation than ambient excitations as illustrated earlier
in Figs. 12.6 and 12.7. Figure 12.17 shows the statistical distributions of the bridge responses under different excitations.
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Table 12.6 The averaged errors of the PCA and ICA methods and their ranking in Fig. 12.14 for the first five modes

All Traffic No traffic Collision

Rank | Method Error | Rank | Method Error | Rank | Method Error | Rank | Method Error
Errors in the identified mode shapes

1 DSP-PCA |213 |1 VEL-PCA |16.1 |1 DSP-PCA |28.6 |1 DSP-PCA | 129
2 VEL-PCA [214 |2 DSP-PCA 227 |2 VEL-PCA 335 |2 VEL-PCA | 144
3 ACC-PCA |409 |3 ACC-PCA 542 |3 VEL-ICA [37.1 |3 ACC-PCA 249
4 VEL-ICA |455 |4 ACC-ICA 542 |4 ACC-PCA 444 |4 VEL-ICA |38.6
5 ACC-ICA |503 |5 DSP-ICA |59.7 |5 DSP-ICA 535 |5 ACC-ICA 344
6 DSP-ICA |535 |6 VEL-ICA 608 |6 ACC-ICA 653 |6 DSP-ICA 473
Errors in the identified modal coordinates

1 DSP-PCA |583 |1 DSP-PCA 553 |1 DSP-PCA 632 |1 DSP-PCA | 56.5
2 VEL-PCA |758 |2 VEL-PCA 838 |2 VEL-PCA 695 |2 VEL-PCA | 74.1
3 VEL-ICA |81.8 |3 DSP-ICA [86.7 |3 VEL-ICA 737 |3 VEL-ICA | 82.7
4 DSP-ICA |86.7 |4 VEL-ICA (889 |4 DSP-ICA 878 |4 DSP-ICA | 85.7
5 ACC-PCA (909 |5 ACC-PCA (919 |5 ACC-PCA 94.1 |5 ACC-PCA | 87.5
6 ACC-ICA (949 6 ACC-ICA (925 |6 ACC-ICA (976 |6 ACC-ICA 953

It shows that the distributions of the responses are closer to a Gaussian distribution under the ambient excitations with traffic
and no-traffic loads than the impulse excitation, which also explains why the PCA modes are closer to the NExT-ERA
modes under the collision excitation. The response type also affected the accuracy in
displacement and the lowest accuracy with the acceleration.

In ICA, there were large discrepancies between the ICA and NExT-ERA modes for all excitation and response types. It
indicates that the ICA modes are generally incompatible to the NExXT-ERA modes of the suspension bridge. The discrepancies
would be due to the non-orthogonal ICA modes as shown in the simulation results in Sect. 12.3.3.2.

li,PCA.

the highest accuracy with the
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Fig. 12.16 Comparison of MAC and COR between PCA and NExXT-ERA, and between ICA and NExT-ERA for different response types

12.5 Conclusions

In this study, the PCA and ICA modes were related to the NExT-ERA modes to investigate whether the non-parametric
modes could be used as alternative structural modes. A parametric study was conducted to understand the effects of the
response types, excitation types, system damping, and sensor spatial resolution through the simulation and experimental
tests. Major findings in the parametric study include:

e The PCA modes could be used as alternative structural modes when the system has a low degree-of-freedom system and
the displacement (or velocity) data are available. The ICA modes have significant errors when the system has damping or
is subjected to ambient excitations, which cannot be used as alternative structural modes for general purposes.

* In the simulation tests, a higher accuracy was found in the order of NEXT-ERA > PCA > ICA, compared to the true mode
shapes and modal coordinates. In the experimental tests, the PCA modes were closer to the NExXT-ERA modes than the
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Fig. 12.17 Statistical distributions of the bridge responses at channel 3 under different excitations

ICA modes. The PCA mode shapes are orthogonal due to the singular value decomposition of the covariance matrix of
the response data, while the ICA mode shapes are not necessarily orthogonal since maximizing the non-Gaussianity does
not mathematically guarantee the orthogonal modes.

e In both PCA and ICA, the accuracy of the mode decomposition is affected by the response types in the order of
displacement > velocity > acceleration. It is because the acceleration data are scattered without prominent directions
due to low correlation between the sensor measurements. The accuracy of the PCA (and ICA) modes increases with
the displacement and velocity since the statistical correlation is larger in these responses which contain dominant low-
frequency contents. Therefore, the PCA identification would be limited to low structural modes.

e The ICA modes are significantly affected by the system damping. It is because the system damping increases the
Gaussianity of the response data. ICA requires non-Gaussian multivariate responses [22], which are often violated under
ambient excitation. The simulation results showed that the ICA identification had no error when the system has no
damping and is subjected to impulse excitation.

e The PCA modes are more accurate with impulse excitation than ambient excitation. In the experimental study, the PCA
mode shapes agreed most with the LNMs under the collision excitation and worst under the ambient excitation without
traffic loads.

Acknowledgements This study was supported in parts by grants from the U.S. National Science Foundation (NSF), the Air Force Office of
Scientific Research (AFOSR), and the National Aeronautics and Space Administration (NASA). The assistance of A. Shakal of the California
Geology Service and L.-H. Sheng of the California Department of Transportation (Caltrans) is appreciated.



12

A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes 133

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

. Pappa RS, Elliott KB, Schenk A (1992) A consistent-mode indicator for the eigensystem realization algorithm. J Guid Control Dyn 16(5):852—

858. Retrieved from http://hdl.handle.net/2060/19920015464

. Pappa RS, James GH, Zimmerman DC (1998) Autonomous modal identification of the space shuttle tail rudder. J Spacecr Rockets 35(2):163—

169. doi:10.2514/2.3324

. Yun H, Nayeri R, Tasbihgoo F, Wahbeh M, Caffrey J, Wolfe R, Sheng L-H (2008) Monitoring the collision of a cargo ship with the Vincent

Thomas Bridge. Struct Control Health Monit 15(2):183-206. doi:10.1002/stc.213

. Feeny B, Kappagantu R (1998) On the physical interpretation of proper orthogonal modes in vibrations. J Sound Vib. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0022460X97913869

. Feeny BF, Liang Y (2003) Interpreting proper orthogonal modes of randomly excited vibration systems. J Sound Vib 265(5):953-966. doi:10.

1016/50022-460X(02)01265-8

. Kerschen G, Golinval J, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and

order reduction of mechanical systems: an overview. Nonlinear Dyn 41(1-3):147-169. doi:10.1007/s11071-005-2803-2

. Zhou W, Chelidze D (2007) Blind source separation based vibration mode identification. Mech Syst Signal Process 21(8):3072-3087. doi:10.

1016/j.ymssp.2007.05.007

. Smith IF, Saitta S (2008) Improving knowledge of structural system behavior through multiple models. J Struct Eng 134(4):553-561. doi:10.

1061/(ASCE)0733-9445(2008)134:4(553)

. Posenato D, Lanata F, Inaudi D, Smith IFC (2008) Model-free data interpretation for continuous monitoring of complex structures. Adv Eng

Inform 22(1):135-144. doi:10.1016/j.2ei.2007.02.002

Antoni J, Chauhan S (2013) A study and extension of second-order blind source separation to operational modal analysis. J Sound Vib
332(4):1079-1106. doi:10.1016/.jsv.2012.09.016

Roan MJ, Erling JG, Sibul LH (2002) A new, non-linear, adaptive, blind source separation approach to gear tooth failure detection and analysis.
Mech Syst Signal Process 16(5):719-740. doi:10.1006/mssp.2002.1504

Poncelet F, Kerschen G, Golinval J (2006) Experimental modal analysis using blind source separation techniques. International Conference
on ....Retrieved from http://orbi.ulg.ac.be/handle/2268/18770

Poncelet F, Kerschen G, Golinval J-C, Verhelst D (2007) Output-only modal analysis using blind source separation techniques. Mech Syst
Signal Process 21(6):2335-2358. doi:10.1016/j.ymssp.2006.12.005

McNeill S, Zimmerman D (2010) Relating independent components to free-vibration modal responses. Shock Vib 17:161-170. doi:10.3233/
SAV-2010-0504

Yang Y, Nagarajaiah S (2013) Output-only modal identification with limited sensors using sparse component analysis. J Sound Vib
332(19):4741-4765. doi:10.1016/j.jsv.2013.04.004

Yu K, Yang K, Bai Y (2014) Estimation of modal parameters using the sparse component analysis based underdetermined blind source
separation. Mech Syst Signal Process 45(2):302-316. doi:10.1016/j.ymssp.2013.11.018

Oh CK, Sohn H, Bae I-H (2009) Statistical novelty detection within the Yeongjong suspension bridge under environmental and operational
variations. Smart Mater Struct 18(12):125022. doi:10.1088/0964-1726/18/12/125022

Kallinikidou E, Yun H (2013) Application of orthogonal decomposition approaches to long-term monitoring of infrastructure systems. J Eng
Mech 139:678-690. doi:10.1061/(ASCE)EM.1943-7889.0000331

Juang JN, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn
8(5):620-627. Retrieved from http://doi.aiaa.org/10.2514/3.20031

James GH, Carne TG, Lauffer JP (1993) The Natural Excitation Technique (NExT) for modal parameter extraction from operating wind
turbines. System 1-46. Sandia National Laboratories. Retrieved from http://vibration.shef.ac.uk/doc/1212.pdf

Nayeri RD, Tasbihgoo F, Wahbeh M, Caffrey JP, Masri SF, Conte JP, Elgamal A (2009) Study of time-domain techniques for modal parameter
identification of a long suspension bridge with dense sensor arrays. J Eng Mech 135(7):669. doi:10.1061/(ASCE)0733-9399(2009)135:7(669)
Hyvirinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw: the official journal of the International
Neural Network Society 13(4-5):411-430. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10946390

Kerschen G, Poncelet F, Golinval J-C (2007) Physical interpretation of independent component analysis in structural dynamics. Mech Syst
Signal Process 21(4):1561-1575. doi: 10.1016/j.ymssp.2006.07.009

Lus H, Betti R, Longman R (1999) Identification of linear structural systems using earthquake-induced vibration data. Earthq Eng Struct Dyn
28:1449-1467

Smyth AW, Pei J-S, Masri S (2003) System identification of the Vincent Thomas Suspension Bridge using earthquake records. Earthq Eng
Struct Dyn 32:339-367

Maia NMM, Silba JMM (1997) Theoretical and experimental modal analysis. Research Studies Press LTD, England

Mariani R, Dessi D (2012) Analysis of the global bending modes of a floating structure using the proper orthogonal decomposition. J Fluids
Struct 28:115-134. doi:10.1016/j.jfluidstructs.2011.11.009

Yang Y, Nagarajaiah S (2012) Time-frequency blind source separation using independent component analysis for output-only modal
identification of highly damped structures. J Struct Eng 1780-1793. doi:10.1061/(ASCE)ST.1943-541X.0000621

Yun H-B, Park S-H, Mehdawi N, Mokhtari S Chopra M, Reddi LN, Park K-T (in press) Monitoring for close proximity tunneling effects on
an existing tunnel using principal component analysis technique with limited sensor data. Tunn Undergr Space Technol


http://hdl.handle.net/2060/19920015464
http://dx.doi.org/10.2514/2.3324
http://dx.doi.org/10.1002/stc.213
http://www.sciencedirect.com/science/article/pii/S0022460X97913869
http://www.sciencedirect.com/science/article/pii/S0022460X97913869
http://dx.doi.org/10.1016/S0022-460X(02)01265-8
http://dx.doi.org/10.1016/S0022-460X(02)01265-8
http://dx.doi.org/10.1007/s11071-005-2803-2
http://dx.doi.org/10.1016/j.ymssp.2007.05.007
http://dx.doi.org/10.1016/j.ymssp.2007.05.007
http://dx.doi.org/10.1061/(ASCE)0733-9445(2008)134:4(553)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2008)134:4(553)
http://dx.doi.org/10.1016/j.aei.2007.02.002
http://dx.doi.org/10.1016/j.jsv.2012.09.016
http://dx.doi.org/10.1006/mssp.2002.1504
http://orbi.ulg.ac.be/handle/2268/18770
http://dx.doi.org/10.1016/j.ymssp.2006.12.005
http://dx.doi.org/10.3233/SAV-2010-0504
http://dx.doi.org/10.3233/SAV-2010-0504
http://dx.doi.org/10.1016/j.jsv.2013.04.004
http://dx.doi.org/10.1016/j.ymssp.2013.11.018
http://dx.doi.org/10.1088/0964-1726/18/12/125022
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000331
http://doi.aiaa.org/10.2514/3.20031
http://vibration.shef.ac.uk/doc/1212.pdf
http://dx.doi.org/10.1061/(ASCE)0733-9399(2009)135:7(669)
http://www.ncbi.nlm.nih.gov/pubmed/10946390
http://dx.doi.org/10.1016/j.ymssp.2006.07.009
http://dx.doi.org/10.1016/j.jfluidstructs.2011.11.009
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000621

Chapter 13
Comparison of Different Approaches for the Model-Based Design
of Experiments

Ina Reichert, Peter Olney, Tom Lahmer, and Volkmar Zabel

Abstract Before starting an experiment it is wise to make close investigations on the structure to be examined and the
possible designs of the experiment. The optimal design of the measurement setups is acquired by using mathematical
optimization methods which are supported by numerical simulations of the structure and its behavior. The numerical model
can then be used to verify the resulting design of the experiment and both of them can be validated by monitoring an
existing structure. The aim of this paper is to undertake this first step to confirm the optimal design of experiments which is
gained by three different approaches and testing them on a numerical model. These methods are: the reduction of parameter
uncertainties by using the Fisher Information Matrix, the second approach is made by the minimization of the mean-squared
errors between the assumed true solution and the solution of the inverse problem and as third approach the so-called sigma-
point method is used where for the mean-squared error biased estimators for the parameter identification problem are used.

Keywords Design of experiments ¢ Fisher Information Matrix ¢ Mean-squared errors * Sigma-point method ¢ Sensor
placement

13.1 Introduction

It is truly helpful to conduct experiments in order to gain more information about a process or a structure, which is more
probable in the field civil engineering. In fact, there are different types of experiments; they can be divided into long-term
and short-term monitoring as well as those that take place in the field or in laboratories. Nevertheless, each type comes with
its own restrictions and difficulties. Therefore, it is useful and promising to do an optimal design of experiments, DoE, which
leads to effective, time and cost saving measurements.

Since most improvements in strategies for the design of experiments (DoE) were done in approximately the last 100 years
[8], a number of methods were developed dealing with optimal design. This paper is to be seen as the extension a former
conference paper [9] by adding a third method for comparison and discussion. Firstly, the classic approach with the Fisher
Information Matrix (FIM) [1, 11] is chosen. The main known disadvantage of the FIM is that systematic errors can not be
taken into account. Secondly, the optimal design is gained by the calculation of the mean-squared error (MSE) [2, 5, 7]
between the exact and estimated parameters of interest. Lastly, a relatively new approach, the sigma-point method (SP)
[6, 10], is considered. Finally these three methods are tested on a cantilever beam, which serves as the application example.
The three mentioned approaches are then compared based on the results of this example and conclusions are drawn in order
to also make further investigations.
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13.2 Methods for Model-Based Design of Experiments

For the optimal design of any experiment, a model of the process or structure is needed. This model is then used to find the
optimal design which leads to the least uncertainty in the measurement results corresponding to one specific method. It can
also be used to make a comparison between different DoE approaches. In this paper, the optimal design refers to the sensor
positions that should be optimized in order to estimate certain model parameters.

In the following the “exact” measurement data, y, which does not contain any noise, is corrupted by two different types of
noise. On the one hand, this is random noise, &;, with zero mean and given variance, 62, On the other hand, it is a systematic
error, f3;, which is considered as relative to the data value since its true structure is unknown. §; is added to the “exact”
measurement data y. The inclusion of both types of noise produces artificial measurement data u as follows:

u(®,x7 ;) = y(0,x7,1;) + 8 (13.1)

where @ is the vector of parameters, x/ and #; correspond to the discrete spatial and temporal domain as well as §; represents
the noise term and can as described in [3] either be a random noise g; or a systematic one §;.

13.2.1 Fisher Information Matrix

As described in Ucinski [11], the Fisher Information Matrix (FIM) can be derived using the Cramér-Rao inequality as a lower
bound estimate of the covariance matrix of parameters. This leads to a probabilistic definition of optimal sensor placement.
Most simulations of civil engineering structures use deterministic models and methods, therefore this original form of the
FIM cannot be used directly for the design of experiments, but has to be modified under certain assumptions. A basic one
is that the numerical model sufficiently represents the considered structure. The most common approach is to consider the
numerical model response as a measured response by the addition of noise. When this noise is taken as a random variable
with a probability distribution, then a relation between the probabilities and model responses can be made. Considering this
along with spatially uncorrelated errors [11], the FIM becomes

1 psens t 8y(9’xj,ti) T 8y(9,xj,[i)
o d 13.2
o2 JX:;/O ( a0 ) ( 90 ) B o

where y solves the forward problem, 6 are the parameters of interest, x is the spatial variable and ¢ is the temporal one. The
measurements are taken over a finite time interval, ¢ . The standard deviation of the measurement error is o, constant for all
measurement locations.

From this brief overview, it becomes immediately clear that only random errors can be considered directly with the FIM,
a potential disadvantage when systematic errors are large. Different criteria exist for evaluating and comparing FIMs, which
also may return different results as to which sensor configuration is optimal. As described in [11], optimal sensor positioning
should minimize some real-valued function, J. One example is the D-optimality criterion:

J(M) = det(M ™). (13.3)

While many other criteria exist and there is still some debate about which one is the best to use, an advantage of the D-
optimality condition is that it is independent of the scaling of the parameters (units) [4]. This criterion will be used in this
discussion for these and other reasons. This choice is immaterial as long as it is consistent when the comparison is made
between measurement setups.

13.2.2 Mean-Squared Errors

The second method uses the minimization of the difference between the “exact” solution for the parameters 6 and its
estimate . Therefore, first the form of the data has to be defined, assuming a linear relation between model input and
output. In this case the data u consists of the “exact” solution y and an error term §; which is described by Eq. (13.1), where
8 can describe a systematic error, 8, a random one, ¢, or both together as explained in Sect. 13.2. The experiment has to be set
up in such a way that it leads to the best approximation of the unknown vector of parameters 6. Firstly, a sufficient number
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of experiments has to be chosen. If the problem is well-posed, which is the case in this article, the number of experiments or
in this instance sensors n*°™ has to satisfy the inequality #n°" > n, where n represents the number of parameters 6 [5].
A cost function has to be set up. This leads to the usage of the mean-squared error (MSE) which is expressed by

MSE(H) = E|6 — 6] (13.4)
and which should be minimized by
minE[§ — 6] (13.5)

as written in [2] to find the optimal experimental design.

Once the number of sensors is defined, the optimal positions have to be found. The description of the noisy measurements
as given in Eq. (13.1) is used for the minimization of the difference between the “exact” measurement data and the ones
corrupted by any noise §;. The measurement data depends on the parameters 6, the sensor positions x/ and the time #;. The
corresponding cost function that depends on the parameters 6 and which should be minimized is expressed by

psens

: J ) —mi Jogy i 1))
ngnJ(@,x ) Itgn;(y(e,x L) —u(f, x ,t,)) . (13.6)

After a certain number of iteration steps of the optimization, the gained parameters serve as the estimated ones 6 and lead to
the mean-squared error given by

MSE®@, x/) = |6(x)) — 6(x7)]|>. (13.7)

The value of the MSE is then used as the selection criteria for finding the best sensor positions x/ where the corresponding
MSE(4, x/) is minimal.

13.2.3 Sigma-Point Method

Taking the ideas of [6] a new approach for optimal experimental design was formed in [10], the so-called Sigma-point
method, SP. First of all, noisy measurements, u, have to be produced. This is again done by adding 2mK noise terms §; to the
“exact” measurement data, y, as in Eq. (13.1) which lead to (2mK) noisy measurement data sets with m being the number of
parameters to be estimated and K being the number of temporal measurement points. From these samples (2mK) parameter
vectors, 0,, can be identified and the mean, 9 and covariance matrix, Cy sp, as written in [10] can be derived by

6=> wrég, and (13.8)

2mK R ~ R T
Cose =Y wi (0 —6)(6-6) . (13.9)

where w" and w{ represent weights, which are considered here as constant, such that the calculation of the mean, 0 , and the
covariance matrix, Cy sp, are defined by

and (13.10)

Cosp = (13.11)
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where the mean values, 6, of the parameters could be replaced by the “exact” ones, 6, as we are dealing with artificially
created data and the true solution is known.
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With this approach it is not only possible to consider random noise, but it can also handle constant systematic errors. The
estimation of the bias is then made by

Bias =0 — 6, , (13.12)

but only if 6 # bo.
There are now two ways that lead to the optimal sensor positions. One way is the calculation of the mean-squared error
between the “exact” solution, 8, and the estimated mean one, 6, similar to Eq. (13.7) by

MSE(, x/) = [|6(x’) — 0(x/)|* . (13.13)

and evaluating its minimum to take the corresponding sensor positions as optimal. The second way is to use an optimality
criterion like in Eq. (13.3) on the covariance matrix, Cy sp, but in this case for the sake of stability the T-optimality criterion

J(Cosp) = tr(Cysp) (13.14)

is used and again the optimal sensor setup is found where J is minimal.

13.3 Application on a Cantilever Beam

13.3.1 Numerical Model

In order to compare the results from applying the three different design of experiment strategies introduced, a tower-like
structure is considered as depicted in Fig. 13.1. The tower is separated into three equal length sections each corresponding
to a different material with Young’s modulus, E;. Although three materials are modeled, the density is kept constant at
2,550kg/m>. A finite element model using nine Bernoulli beam elements of equal length (3 per material) is used to model
the structure. There is no modal damping included in the discretized system. A dynamic simulation is computed using an
harmonic excitation with the seventh eigenfrequency applied on all nodes of the system, only considering the steady state
response. Design of the input loading for optimal experiments is outside the scope of this paper.

Acceleration time histories taken at specific locations x/ and corrupted by the afore mentioned two types of noise are
considered as the measurement data. The random error is hereby represented by a normal distribution &; = N'(0, %) with
zero mean and the standard deviation o = 0.005. For the systematic error a relative description is used, so the systematic
error is 5 % of the exact value of the acceleration time history. The initial guesses for the values of the Young’s modulus is
set to 90 % of the “exact” values and for the sigma-point method m = 3 as we are dealing with three parameters and in order
to reduce computing time K = 50, which leads to 300 samples per setup.

Since the model response is taken at discrete positions x/, the optimal sensor positions are found by evaluating all
combinations of three sensors n**" at nine possible positions 7#P°. This leads to 84 combinations which have to be calculated.

cantilever beam with discrete
sensor positions, cross section E,;
A-A and values of the material
properties [9] Y
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Their values of the D-optimality criterion for the FIM approach, the mean-squared error as well as the MSE and the
T-optimality criterion for the SP method are serving for sorting the sensor setups for each method in order to gain the

best one, respectively.

13.3.2 Results: Comparison Between FIM, MSE and SP

The comparisons of the results of the three methods for the two different types of noise are shown in the Tables 13.1 and 13.2.
The tables contain the best, second best and worst value for the D-optimality criterion of the Fisher Information Matrix (FIM)
on one side and the values of the mean-squared error for MSE and SP as well as the value of the T-optimality criterion for
the SP-method corresponding to this particular design of sensors on the other side. The rows below belong to the cases
respectively. In Table 13.1 the comparison for the random error and in Table 13.2 the one for the systematic one is given.
Additionally Fig. 13.2 shows the behavior of the different DoE approaches for the respective optimality criterion
depending on the rank of the setups. Where the slope is steep, neighboring (in rank) setups can lead to much better or
worse results in finding the “exact” parameters. This can be especially seen for the sigma-point method while using the
MSE as the evaluation criterion for the whole range, but also all other methods show an even steeper growth for the last
10-20 ranks. On the opposite side the slopes for the FIM, MSE and SP while using the T-optimality criterion for the first
60—70 ranks are rather flat. It can be concluded that in rank neighboring setups give equally good estimates of the unknown

parameters.

Table 13.1 Random error:
Overview of normalized values of
D-optimality criterion of FIM,
MSE as well as mean-squared
error and T-optimality criterion of
SP (Opt. Crit.) for the two best
and the worst design
corresponding to each method
and their values for the other
methods, respectively

Table 13.2 Systematic error:
Overview of normalized values of
D-optimality criterion of FIM,
MSE as well as mean-squared
error and T-optimality criterion of
SP (Opt. Crit.) for the two best
and the worst design
corresponding to each method
and their values for the other
methods, respectively

Design
[569]
[259]
[134]
[367]
[345]
[489]
[156]
[456]
[4738]
[267]
[236]
[168]

Design
[569]
[259]
[248]
[237]
[359]
[127]
[459]
[359]
[467]
[357]
[345]
[578]

FIM
Opt. Crit.
0.005
0.009
1.000
0.096
0.151
0.046
0.059
0.016
0.076
0.025
0.024
0.155

FIM
Opt. Crit.
0.000
0.000
1.000
0.019
0.011
0.005
0.023
0.011
0.038
0.005
0.010
0.001

Rank
1
2

84

54

65

33

42
9

47

14

11

67

Rank
1
2

84

59

49

41

62

49

66

37

47

13

MSE
Opt. Crit.
0.042
0.027
0.943
0.001
0.004
1.000
0.267
0.111
0.222
0.031
0.787
0.006

MSE
Opt. Crit.
0.017
0.092
0.115
0.007
0.010
1.000
0.055
0.010
0.363
0.379
0.440
0.167

Rank
17
11
83
1
2
84
63
31
57
14
81
4

Rank
5
27
37
1
2
84
16
2
71
72
74
48

SP with MSE
Opt. Crit. | Rank
0.134 8
0.248 25
0.477 49
0.284 28
0.120 6
0.871 83
0.044 1
0.048 2
1.000 84
0.329 36
0.581 65
0.327 35
SP with MSE
Opt. Crit. | Rank
0.373 78
0.011 15
0.321 76
0.002 5
0.001

0.038 32
0.003 1
0.005 2
1.000 84
0.018 6
0.051 12
0.025 8

SP with trace crit.
Opt. Crit. | Rank

0.108 41
0.132 53
0.176 63
0.012 7
0.128 52
0.151 57
0.218 69
0.047 22
0.229 70
0.002

0.002 2
1.000 84

SP with trace crit.
Opt. Crit. | Rank

0.108 41
0.132 53
0.086 36
0.004 4
0.104 39
0.140 55
0.026 26
0.001 4
0.028 28
0.000

0.001 2
1.000 84
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Fig. 13.2 Behavior of the optimality criterion (Opt. Crit.) of the three introduced methods (FIM, MSE and SP) for random and systematic noise
depending on the rank of the sensor setups

13.4 Discussion and Conclusion

Tables 13.1 and 13.2 show no sensor setup (design) is mentioned at least twice in each table. This leads to the conclusion
that the optimal designs differ between the different considered methods for one type of noise. Since no common measure
for all methods exists, the questions of how to compare the results and to decide which setup is the best one are open. In
future work, this drawback should be overcome by finding a compatible measure. Another remedy could be made by taking
real experiments in order to validate the aforementioned methods.

One could also go back to the theory behind the methods and see that the Fisher Information Matrix can only be used for
random noise. So, it is not recommended to use this method also for systematic errors. This effect can also be seen in the
results, since the best two designs for FIM do not depend on the noise type, only the worst one is different. The same case
holds for using the T-optimality criterion on the sigma-point method where all three (best, second best and worst) depicted
designs are the same for random and systematic noise. These findings lead to the necessity of a more careful consideration
of the noise occurring in any experiment. First of all, the type of noise is important to know. Further research will deal with
the influence of different noise levels and the corruption of measurements by both random and systematic noise at the same
time.

For practical use, it is also important to think about computational costs. The FIM is very fast, but as a big disadvantage
it can only deal with random noise. The MSE is computationally more intensive, but gives results for both error types in a
reasonable time. Whereas considering that 2mK samples per sensor design have to be calculated for the SP method it takes
a lot of computational time in order to get results.
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Concerning the application example, it was determined, that the loading has a large influence on the quality of the

estimated parameters. It is highly recommended to also take into account the type of loading for design of experiments
as it can improve the identification of the model parameters. Future work should also include more parameters of the
experiment, such as sampling rate, types of sensors and resolution. In addition, an extension to the continuous case for
the spatial domain, x, has to be done.
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Chapter 14
Sensitivity Analysis for Test Resource Allocation

Chenzhao Li and Sankaran Mahadevan

Abstract To predict the response of a system with unknown parameters, a common route is to quantify the parameters using
test data and propagate the results through a computational model of the system. Activities in this process may include model
calibration and/or model validation. Data uncertainty has a significant effect on model calibration and model validation,
and therefore affects the response prediction. Data uncertainty includes the uncertainty regarding the amount of data and
numerical values of data. Although its effect can be qualitatively observed by trying different data sets and visually comparing
the response predictions, a quantitative methodology assessing the contributions of these two types of data uncertainty to the
uncertainty in the response prediction is necessary in order to solve test resource allocation problems. In this paper, a novel
computational technique based on pseudo-random numbers is proposed to efficiently quantify the uncertainty in the data
value of each type of test. Then the method of auxiliary variable based on the probability integral transform theorem is
applied to build a deterministic function so that variance-based global sensitivity analysis can be conducted. The resultant
global sensitivity indices quantify the contribution of data value uncertainty of each type of test to the uncertainty in the
response prediction. Thus a methodology for robust test resource allocation is proposed, i.e., quantifying the number of each
type of tests so that the response predictions using different data set are consistent.

Keywords Resource allocation * Model calibration * Model validation ¢ Global sensitivity analysis

14.1 Introduction

System response prediction is one of the main objectives in engineering research. Basically, prediction is the activity to
estimate the system response at an untested configuration using available model and test information. Prediction under
uncertainty for a complicated system generally includes two steps: (1) build a computational model ¥ = F (X;80,,) to
represent the system, where Y is the system response, and X is a vector of model input, and 6, is a set of unknown model
parameters; (2) quantify and propagate the uncertainty in X and @, through the model Y = F (X 6,,) in order to quantify
the uncertainty in system response. In step one, ¥ = F (X;8,,) can be: (1) physics-based model, e.g., finite element
model; or (2) data-driven model, e.g., regression model with input—output data [1-3]. In step 2, model inputs X are generally
measurable in each test, and their uncertainty is aleatory (i.e., nature variability across tests). In contrast, model parameters 6,
are fixed but unknown values, and their uncertainty is epistemic (due to lack of information). While the variability in X can be
quantified by direct measurement and distribution fit, the uncertainty quantification of 4, relies on statistical inferences using
input—output measurements. Activities to quantify the uncertainty in 6,, may include: (1) model calibration to compute the
uncertainty in ,,; (2) model validation to assess the quality of model calibration; and (3) uncertainty integration to combine
the information in model calibration and validation. Both model calibration and validation require test data.

The problem of resource allocation arises from the fact that test data are uncertain. Data uncertainty includes the
uncertainty regarding the number of data and numerical values of data. Data uncertainty has a significant effect on
model calibration and model validation, and therefore affects the response prediction. In other words, another set of
calibration/validation test data may give a distinct system response prediction. Generally, test resource allocation is an activity
of optimization before conducting the actual tests. Calibration tests and validation tests are two different categories of tests.
Data obtained in calibration test reduce the uncertainty in model parameters thus reduce the uncertainty in prediction. In
case of considering model calibration only, generally the resource allocation optimization is to select test type and number
to minimize the uncertainty in the prediction [4, 5]. In contrast, data obtained in validation test may indicate that the model
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calibration is not exactly valid thus the uncertainty reduction obtained in model calibration should be discounted, which
indicates more uncertainty in the prediction. In the resource allocation considering both calibration test and validation test
[6], resource allocation optimization needs to select test type and number of tests of each type to obtain robust prediction,
i.e., how many tests of various types are necessary such that the prediction is consistent using different sets of test data. The
second optimization is discussed in this paper, using a comprehensive approach that includes both model calibration and
model validation.

The rest of this paper is organized as follows. Section 14.2 proposes a novel seed-based method to capture the uncertainty
in data value. Section 14.3 builds a framework of optimization for robust resource allocation. In Sect. 14.4, two numerical
examples of different configurations are given to illustrate the propose framework.

14.2 Seed-Based Method for Data Value Uncertainty

Since resource allocation is an optimization handling data uncertainty before actual tests are conducted, synthetic test data
are necessary in resource allocation. The generation of synthetic test data includes two cases:

1. Limited tests of each type have been conducted. Based on these test data, synthetic test data can be generated using
algorithms such as bootstrapping [7];

2. No test has been conducted. In this case, synthetic data can be generated based on the nominal values or the prior mean
values of model parameters; due to the discrepancy between the synthetic data and the real data caused by the difference
between the nominal values and the true values, repeated resource allocation optimizations trying different nominal values
may be required.

In any case above, at data size N;, the data value uncertainty is represented by the difference between multiple sets of
data. In robust test planning, it is desired that the contribution of data uncertainty to the uncertainty of the prediction be small
such that consistent response predictions can be obtained for every other data sets. Generally, the contribution of data value
uncertainty reduces as data number increases. One example is Bayesian inference, which is used as the model calibration
methodology in this paper. In Fig. 14.1, each sub-figure contains a family of posterior distributions obtained by same data
number but different data values. From left to right, the sub-figures use more and more data points. Figure 14.1 illustrates
the decreased variation of posterior distributions with increased data number. Across the family members, the decreased
variation of the posterior includes two aspects: (1) the decreased variation of the mean values, roughly meaning that the
centers of the family members are closer; (2) the decreased variation of the variance in each PDF, roughly meaning that the
lengths of intervals covered by the family members are closer. If the posterior distribution of 8 is propagated for prediction,
the response prediction is expected to more consistent as data number increases.

As robust resource allocation requires consistent prediction across different data sets, it is necessary to develop a
methodology quantifying the contribution of data uncertainty to the prediction variation. Contribution assessment of
uncertainty generally uses global sensitivity analysis (GSA). Consider a model ¥ = F (X) where X = {X' ..., X"}
is a vector of model inputs. GSA measures the contribution of each component of X to the uncertainty of Y [8]. Two
global sensitivity indices have been developed in the literature based on the law of total variance and Sobol’s variance
decomposition theorem [9]: first-order index and total effects index. For a particular model input X, the first-order index is
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Fig. 14.1 Posterior distribution of a model parameter as increased test data number
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defined as S! =V (E (Y’X’)) /V(Y); and the total effects index is defined as S&. = 1 — V (E (Y’X_i)) /V(Y) where

X~ means all the inputs other than X’. The first-order index measures the contribution of the variable X’ by itself; in contrast,
the total effects index contains not only the contribution of X', but also the interaction effect of X with other inputs. One
assumption in the GSA is that each model input X is represented by a continuous probabilistic distribution (normal, uniform,
etc.). However, as explained earlier, the data value uncertainty is only represented by the difference of multiple data sets
of the same size, and no probabilistic distribution is directly available to represent it. Therefore, an explicit variable with a
probability distribution to represent the data value uncertainty is pursued.

Recall the generation of synthetic data. It is basically a process of generating random numbers, usually accomplished
by programing languages. The random number generation in programing languages is pseudo-random, which means that
the resultant random numbers are not unpredictable at all, but are generated by deterministic algorithms such as Mersenne
Twister generator [10], combined multiplicative recursive generator [11] or Wichmann-Hill generator [12]. These generators
use a positive integer known as seed to generate a random number of various distribution types, and a new seed is
deterministically computed before generating the next random number, and different seed values leads to different random
numbers.

Therefore, if a code is used to generate synthetic data, the result is determined once the initial seed value is given. This
initial seed, denoted by K, is considered as the random variable controlling the generation of synthetic data. At give data
size, the initial seed K captures the data value uncertainty due to the one-to-one mapping between the value of K and the
generation of synthetic data. It is equally possible for any positive integer to be used as a seed, so theoretically K has a discrete
uniform distribution Uy(1, n.) where the upper bound . is a very large positive integer decided by the specific programing
language and computer. But in practice we can define the bounds of this discrete uniform distribution, depending on how
many different possible data sets are adequate to represent the data value uncertainty.

One more step is needed to apply this seed method to global sensitivity analysis. Although the initial seed K captures data
value uncertainty for a given data size, its distribution is discrete while the global sensitivity analysis requires continuous
random variables. Therefore another auxiliary variable Uk [13], which is the CDF value of K, is introduced to represent K.
The mapping between the value of Uk and the value of X is:

K=a+ |Ug(b—a+1)] (14.1)

where a and b are the lower and upper bound respectively, and |-] is the floor function. Now assuming that the uncertainty
in a model parameter 0,, is quantified by test data from different types of tests, a deterministic relationship from Uk to the
quantified distribution of 8,, is established as:

H(UK],...,UKq N1=n1,...,Nq=nq)—>f@m (14.2)

where N; is the data number of the i type of test (i = 1,...,q), and Uk is the corresponding auxiliary variable capturing
the data uncertainty in the i type of test, and fy is the quantified distribution of 6,,. Basically, Eq. (14.2) indicates that the
quantified distribution of 8,, is fixed as data number and data values of each type of test are fixed.

14.3 Framework of Optimization for Robust Resource Allocation

As shown in Eq. (14.2), at Ux, = ug, and N; = n; (i =1,...,q), the data of each type of test are deterministic so that
the calibrated joint distribution for all the model parameter 6,, is fixed. As this joint distribution is propagated into the
computational model Y = F (X @,,) along with the known distribution of X, the predicted distribution fy(y) for the system
response Y is also fixed, as shown in Eq. (14.3):

H(UKI,...,UKq N1=n1,...,Nq=nq)—>fy(y) (14.3)

As discussed in Sect. 14.2, the objective in resource allocation is to obtain consistent prediction of the system response under
different set of test data. As shown in Fig. 14.1, this consistency can be verified in two aspects: (1) small variation of the
mean value of prediction; and (2) small variation of the variance of the prediction. Equations for these two aspects derived
from Eq. (14.3) are:
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ny = Hy (UK],---,UKC,

N, =n1,...,Nq=nq) (14.4)

Vy = Hy (... U,

N, :nl,...,Nq:nq) (14.5)

Thus two deterministic functions for GSA are established, where jty and Vy are the mean value and variance of the prediction.

Application of Egs. (14.4) and (14.5) in GSA assesses the contribution of data value uncertainty in each type of test to the
uncertainty in the mean value and variance of the prediction. Generally it is expected that Uk, will cause smaller uncertainty
to uy and Vy as N; increases. However, this tendency cannot be revealed if we directly use the first-order or total effects
index. They are normalized indices revealing the comparative contribution. However, this means that the index of Uk, will
increase purely due to the decreased contribution of Uk, (i # j), even if its absolute contribution stays the same. Thus
a measurement of absolute contribution is pursued. This paper resolves this problem using the non-normalized first-order
index:

SM =y (E (Y‘UKI.)) (14.6)

where M can be uy or Vy.

In the optimization of resource allocation, a cost function is expected to be minimized while the contribution of each
Uk, is smaller than a threshold. If the expense of a type i test is C; and threshold is assumed for w1y and Vy separately, the
optimization can be expressed as:

q
Min E CiNl'
i=1
y K; Vy Ki
< <
s.t. SK; < )Lﬂfy, SK,- < AVY

(14.7)

where )\/’ffy and A{f; is the threshold for the i type of test with respect to 1y and Vy, correspondingly.

Eq. (14.7) is a complicated integer optimization problem, where model calibration and validation need to be repeated for
each generation of the test data to evaluate the constraint function. Integer optimization is sometimes solved using a relaxation
approach [14], where the integer constraint is first relaxed, and the integers nearest to the resulting optimal solution are used
in a further solution of the original (unrelaxed) problem. Unfortunately, this approach is not applicable to the solution of Eq.
(14.7), because the constraint functions are defined and computed only for integer-valued decision variables, i.e., number of
tests. It is not possible to generate test data for a non-integer number of tests.

In this paper, a greedy approach is used to solve the optimization in Eq. (14.7):

1. Set the initial values of N; (i = 1,...,q) at 1 and conduct the GSA using Eq. (14.4), (14.5), and (14.6).

2. Set the threshold of /\fly and )&1‘5; In the optimization, the types of tests with more contribution at N; = 1 deserve larger
number of tests. Thus in this paper, the threshold for py is set as a percentage of the maximum S Ilg at N; = 1; and
the threshold for Vy is set as a percentage of the maximum S 2’ at N; = 1. For uy or Vy, each type of test uses the
same threshold, so A 5; and )t{f; reduce to A, and Ay, . For example, the numerical examples in Sect. 14.4 chooses this

percentage as 15 %, so the thresholds are: A, = O.lSmax(S,’g N; =1),Ap, =0.15 max(S}giY N; =1).

3. Increase N; by 1if S 1‘;" > Ayy or S 1‘2’ > Ly, i.€., the data value uncertainty in the i’ type of test caused more uncertainty
than the threshold either to py or Vy;

4. Repeat Step 3 until S 1‘2’ > Ay, and S }gly > Ay, for (i =1,...,q), i.e., the contribution of data value uncertainty in any
type of test is less than the thresholds.

Thus a framework of robust resource allocation using the seed-method, the auxiliary variable method, and the GSA is
established. In Sect. 14.4, two numerical examples are used to illustrate the proposed framework.
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14.4 Numerical Examples

14.4.1 Mathematical Example

This subsection presents a simple illustrative example to demonstrate the proposed framework of robust resource allocation.
It is assumed that a system output is the sum of two sub-system outputs, and each sub-system has separate model inputs and
model parameters:

Y=Y+ Y Y1 = X161, V> = X206, (14.8)

The model inputs X; and X, are independent Gaussian variables. Model parameters 6, and 6, have unknown deterministic
values. Bayesian inference is used to calibrate model parameters using synthetic data and assigned prior distributions. It
is assumed that posterior distributions of §; are directly used to predict Y, thus in this example only model calibration is
required to quantify 6;. Two types of tests are available: test to measure Y; at input X; and test to measure Y, at input X5. It
is assumed that in each test the value of model input X; is measured accurately, but ¥; is measured with a measurement error
€; (j = 1,2). Synthetic data are generated using Eq. (14.8), the nominal value of 6;, and the measurement error. Numerical
details of this example are listed in Table 14.1.
The robust test planning is conducted following the four steps in Sect. 14.3:

1. The GSA is firstly conducted at N = N, = 1. The absolute contributions of data value uncertainty in two types of test
are: S' =458, Si7 = 1044, Sg¥ = 1.64 x 10*, S = 1.39 x 10°;

2. The threshold for puy and Vy are chosen as: A,, = 0.15max (SI%,Y
0.15max (S| N = 1,N, = 1) =2.08 x 10%

3. Increase N; by 1 until S I‘(/:/ > Auy and S 1‘2’ > Ay, ; the details for this iteration are shown in Table 14.2.

N1=1,N2=1) = 156, Ay, =

The optimization for the illustrative example terminates at Ny = 6, N, = 9, meaning that more tests to measure Y, are
needed to achieve a robust prediction of Y. Figure 14.2 also visually verifies this result. In Fig. 14.2, the family of PDFs at
each sub-figure shows the effect data value uncertainty at given data number. As more data number are applied, the family
members become more concentrated, meaning reduced contribution of data value uncertainty to the prediction.

14.4.2 Multi-Level Problem

A multi-level structural dynamics challenge problem provided by Sandia National Laboratories [15] is shown in Fig. 14.3.
Level 1 contains three mass-spring-damper dynamic components in series, and a sinusoidal force input is applied to m;.

Table 14.1 Numerical details of

) . Prior distributions of model parameters | 6, ~ N (5, 0.5),6, ~ N (10, 1)
the illustrative example

Distributions of model inputs X, ~ N (100, 5), X, ~ N (50,5)
Measurement errors €1 ~ N (0,50),e, ~ N (0,40)
Nominal values of model parameters N =50 =10

Table 14.2 Optimization details ( ) wr| quy Vy Vy

of the illustrative example N N2) Sk | Sk Ski Sk,

(1,1) 459 1,044 16,392 138,541
(2,2) 388 764 17,959 103,315
(3,3) 323|601 15,054 77,532
(4.4) 255 410 11,873 57,018
(5,5) 199 337 11,854 40,986
(6,6) 150 217 7,692 30,033
6,7) 150, 179 7,716 23,192
(6,8) 150 182 7,772 22,565
(6,9) 150, 140 7,707 18,977
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At Level 2, the dynamic system is mounted on a beam supported by a hinge at one end and a spring at the other end; another
sinusoidal force input is applied on the beam. The configuration of the system level is the same as Level 2, but the input is
a random process loading. Here Level 1 and Level 2 are defined as lower levels, and experimental data are only available at
lower levels. All levels share three model parameters of spring stiffnesses k; (i = 1,2, 3). The objective in this numerical
example is to predict the maximum acceleration at ms for the system level configuration.

In a multi-level problem, the lower levels and the system level constitute a hierarchy, sharing a set of model parameters
() to be calibrated. In order to predict the system level output when data are only available at lower levels, a reasonable
route is to quantify the model parameters using lower level data, and propagate the results through the computational model
at the system level. The procedure to predict the system level output can be found in Ref. [16], and a brief introduction is

given here:

1. Model calibration by Bayesian inference. Three calibrations are possible: (1) calibration using the data from Level 1
alone; (2) calibration using the data from Level 2 alone; (3) calibration using the data from both Level 1 and Level 2.

For a model parameter 6, the posterior distributions from the calibrations above are denoted as f (9 ’ch) (9 ‘ DZC ) , and

f (9 ‘ D€, ch), respectively.
2. Model validation using the model reliability metric at lower levels. The resultant model validity at Level 1 and Level 2
are denoted as P(G;) and P(G,), respectively.
3. Uncertainty integration by the roll-up method. The integrated distribution for a model parameter 6 is in Eq. (14.9), where

p (G;) —1-P(G)and P (G;) —1—-P(Gy).
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Table 14.3 Numerical details of the multi-level problem

Prior distributions of model parameters | K; ~ N (5000, 500) , K, ~ N (10000, 1000), K3 ~ N (9000, 900)
Measurement errors €1 ~ N (0,100), e, ~ N (0,400)
Nominal values of model parameters K = 5500, KY = 9500, Ky = 8800

Table 14.4. Optimization details (N1, N, N3, Ny) Sllg Sllg Sll/i Sllg S[‘g’ S,?Z Sll//; S{‘g

of the multi-level problem 3 2 3
(1,1,1,1) 401 23 147 13 831,223 324,801 | 56,590| 88,297
(2,2,2,2) 231 114 108 446 417,587 | 359,898 | 26,889 | 687, 488
(3,3,3,3) 166 23 162 29 455,399 426,526 | 25,324 | 47,175
(4,4,4.3) 102 21 147 11 324,321 365,224 | 22,686 55,704
(5,5.5.3) 61 20 144 13 283,4221322,376|21,332| 61,831
(6,6,6,3) 38 19 126 14 181,811/290,937 | 17,728 | 68,511
(7,7,1,3) 22 17 111 16 144,947 | 255,802 | 20,771 | 75,866
(8,8.8,3) 16 15 100 17 126,595 | 226,772 |21,952| 79,556
(9,9.9.3) 8 14 91 18 108,430 | 206,501 | 24,446 84,001
(9,10,10,3) 7 12 78 19 112,662 | 182,936 | 29,802 | 86,057
9,11,11,3) 7 11 67 19 119,376 | 162,681 | 35,286 | 86,797
9,12,12,3) 7 10 57 20 116,832 | 148,899 | 42,855| 86,486
(9,13,12,3) 7 8 57 20 119,997 | 124,831 | 40,493 | 85,393
(9,14,12,3) 8 8 57 20 119,913 | 122,778 | 40,345 | 84,689

4. System response prediction. The integrated distributions of # are propagated into the computational model at the system
level to predict the system response.

f (Q‘Df’V,DZC'V) —P (G P (Gs) f (9‘DC,D2C) +P (G;) PGy f (G(DZC)
+ P(G1)P(G,) /(81DF) + P(Gy) P(G,) £(6) (14.9)

Four types of tests are available in this multi-level problem: (1) test to provide calibration data at Level 1; (2) test to provide
validation data at Level 1; (3) test to provide calibration data at Level 2; and (4) test to provide validation data at Level 2. The
number of tests for each type is denoted as N, N», N3, and N4, respectively. The measurement error at Level 1 and Level 2
are denoted as €| and €;. Similar with the illustrative example, synthetic data are generated based on model input, nominal
values of the model parameters, and measurement error. In this problem, the model inputs at each level are fixed. Numerical
details of this problem are shown in Table 14.3.

The robust test planning is conducted following the four steps in Sect. 14.3:

1. The GSA is firstly conducted at Ny = N, = N3 = N4 = 1. For the mean value of the prediction, the absolute
contributions of data value uncertainty in four types of test are: S,’g = 401, S,’g = 23, S[’]LI’; = 147, Sl’é: = 13;

for the variance of the prediction, the absolute contributions of data value uncertainty in four types of test are S ,I(/’l’ =
8.31 x 10°, Si =3.25x 10°, 5y = 5.66 x 10%, S/ = 8.83 x 10%

2. The threshold for puy and Vy are chosen as: )LW = 0.15max (S,’g
0.15 max (S,ﬁj Ny=N,=N; =N, = 1) — 1.25 % 10°;

3. Increase N; by 1 until § ,I;Y > Auy and S,‘g’ > Ayy; the details for this iteration are shown in Table 14.4.

N|=N2=N3=N4=1) = 60, Ay, =

Some observations for this multi-level problem can be obtained from Table 14.4:

1. As N; increases but is still small, the contribution of data value uncertainty may increase. For example, as (N, N», N3, N4)
increases from (1,1,1,1)t0 (2,2,2,2), S I’g increases from 23 to 114 and S Ig increases from 88,297 to 687,488 dramatically.
The reason is that at small sizes data sets can be very different from each other.

2. As N; keeps increasing, the contribution of data value uncertainty globally shows a decreasing tendency; however local
increases are observed, caused by numerical errors in the GSA when the contribution itself is comparatively small.
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The optimization for the illustrative example terminates at (9, 14, 12, 3), meaning that only a small number of validation
tests at Level 2 are needed, compared to the other three steps of tests, in order to achieve a robust prediction of the maximum
acceleration of mass 3 at the system level.

14.5 Summary

A framework of robust test planning is established in this paper. Robust prediction is obtained for a given number of tests
at which the contribution of data value uncertainty is reduced below a threshold. First a novel seed-based computational
technique based on pseudo-random numbers is proposed to efficiently represent the uncertainty in the data values for a given
data size (i.e., number of tests). Then the contribution of data value uncertainty is quantified by the proposed seed-based
method and global sensitivity analysis. Then an optimization for robust test planning is proposed to reduce the contribution
of data value uncertainty to the overall prediction uncertainty. This optimization is solved by a greedy methodology.
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Chapter 15
Predictive Validation of Dispersion Models Using a Data
Partitioning Methodology

Gabriel Terejanu

Abstract Validation of models used in safety-critical applications requires an extensive validation protocol to build
confidence in their predictive capability. A recent predictive validation methodology, introduced by the author and
collaborators, is applied in this study to validate the predictions of a Gaussian puff dispersion model. The methodology
is based on cross-validation principles in the context of predicting unobserved or difficult to observe quantities of interest.
The challenge in this context is that predictions of quantities of interest have no associated observations that they can be
compared to. Thus, assessing how close predictions are from observations using validation metrics such as root-mean-square
error is not feasible. The study addresses the issue of partitioning the data into a calibration and a validation set, and defining
relevant validation metrics based on sensitivity analysis that can support the ultimate goal of predictive modeling. While the
framework is general and can be applied to a wide range of problems, in this paper it is used to find an optimal partition of
chemical concentration sensors to assess the validity of Gaussian puff predictions in a region of interest.

Keywords Data partitioning * Predictive validation * Bayesian inference * Cross-validation ¢ Gaussian plume models

Nomenclature

p() Probability density function (pdf)

pCl) Conditional pdf

F(t),G() Cumulative distribution function (cdf)
d(F(t),G(t)) Distance between two cdfs

0 Model parameters

D., D, Calibration and validation data

Mp, Mg Data and quantity of interest (Qol) metric

Mj. M 5 Data and Qol thresholds

Sk, 8™ kth partitioning of the data and optimal partition
N(,0?) Gaussian density function with mean p and variance o2

log N (i, 0%)  Log-normal density function with mean y and variance o

15.1 Introduction

Model validation is defined as the process of determining whether a mathematical model is a sufficient representation of
reality from the perspective of the intended uses of the model [1, 4, 5]. Generally, the validity of a computational model is
often determined by simply comparing the output of the model with experimental data [6, 8, 13—17]. However, many of these
procedures neglect the most common use case, where data is not available to directly assess predictions of the quantities of
interest (Qol). This paper examines this type of situations in which models are used to make predictions at scenarios where
experimental data is not available, referred here as prediction scenarios. Here, scenario is defined as the set of conditions
(inputs) of the physical system or experiment to be simulated by the model. Several issues make the problem of prediction
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a challenging one: experiments may be impractical or impossible due to various factors such as financial and regulatory
constraints or physical limitations. Furthermore, the only experimental data available may come from legacy experiments
and may be incomplete. Despite these difficulties, the assessment of Qol prediction quality is required to decide whether the
model can be reliably used from the perspective of its intended use.

In general, the standard validation procedure requires the data to be partitioned in two datasets: the calibration (or training)
set and the validation set. The calibration dataset is used to calibrate the model, and then the prediction outputs of the
calibrated model are compared with the data in the validation set. A reasonable discrepancy between predictions and data
increases the credibility of the model while a large discrepancy may invalidate the model. The initial step raises the question
of how to partition the data, but the answer is far from trivial. Cross-validation attempts to address this issue by using
multiple splits of the data and averaging the results of the model discrepancy from each split. However, existing cross-
validation techniques do not address validating the model with respect to the Qol, but only with respect to the data. On the
other hand, the more recently developed Qol-driven validation addresses the issue of prediction, but has not yet explored the
issue of partitioning the data in depth.

Babuska et al. [7] presented a systematic approach to assess predictions using Bayesian inference and what they call a
validation pyramid. Experimental scenarios of varying complexity are available that suggest an obvious hierarchy on which
to validate the model. In their calibration phase, Bayesian updating is used to condition the model on the observations
available at lower levels of the pyramid. The model’s predictive ability is then assessed by further conditioning using the
validation data at the higher levels. One advantage of their approach is that the prediction metric is directly related to the
Qol. This approach relies on a subjective partition of the data, which is argued that is made clear by the experimental set-up
and validation pyramid. However, in practice this is often not the case. The distinction between calibration and validation
scenarios depends on the sensitivity of uncertain parameters with respect to the observables, which is not so clear without a
more comprehensive analysis.

To avoid a subjective choice of the calibration set, the author and collaborators [12] have recently introduced a more
rigorous and quantitative process inspired by cross-validation to partition the data into calibration and validation sets. In
contrast to previous works, this approach does not require a single partitioning, nor does it uses averages of estimators over
multiple splits [2, 3, 20]. Instead, it considers all possible ways to split the data into disjoint calibration and validation sets
which satisfy a chosen set size. Then by analyzing several splits, the optimal partitioning is chosen by requiring that it
satisfies the following desiderata: (1) the model is sufficiently informed by the calibration set, and is thus able to reproduce
the data, and (2) the validation set challenges the model as much as possible with respect to the Qol. Once the optimal split
is found, the validity of the model is determined using the same procedure introduced by Babuska et al. [7].

In this paper, this cross-validation inspired data partitioning is used to find an optimal partition of chemical concentration
sensors to assess the validity of Gaussian plume predictions in a region of interest that lacks measurements. While intuition
prompts one to construct the validation set from data provided by sensors that are closest to the prediction scenario, the
analysis here reveals the contrary. Namely, it is shown that the best split in calibration and validation sets for this particular
application involves selecting the most distant sensors from the region of interest in the validation set and the closest in the
calibration set. This data partitioning methodology is introduced in the next section, followed by the numerical results on a
Gaussian puff model.

15.2 Data Partition Methodology for Validation of Predictive Models

The Qol-driven model validation framework introduced by Babuska et al. [7] is depicted in Fig. 15.1a. Compared with other
validation methods, the Qol-driven model validation tests the model with respect to the Qol which is not directly observable.
Given that no data is available to be compared with the Qol prediction, this methodology consists of judging the validity of
the model with respect to the discrepancy between two predictions of the same model. One prediction is given by a model
updated with calibration data and the other by a model updated with all the data (calibration and validation). Since this
Qol-driven validation is done in the presence of measurement and parametric uncertainty, Bayesian inference [10, 11] is
used to determine the posterior and predictive distributions. In this context, Bayesian updating is performed on a calibration
set, and then a prediction of the Qol is made using the updated model. A subsequent update is performed using a validation
set followed by an additional prediction with the newly updated model. Finally, the two predictions are compared to assess
the model’s predictive capabilities.

Given D, the calibration data, and 6 the uncertain model parameters, with prior probability density function (pdf) p(6),
Bayes’ rule states that the posterior pdf p(6|D.) is given by

p@|D.) o< p(D[0)p(6). (15.1)
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where p(D.|0) is the likelihood of observing data D, given parameter values. Similarly, a second posterior pdf p(8|D., D,)
can be obtained using all the available data. The degree of knowledge, or rather the uncertainty, about the parameter values
is completely accounted for by these posterior pdfs, which are then propagated through the model to obtain the predictive
pdfs of the Qol, which can then be compared to determine the validity of the model.

The Qol driven model assessment developed in [7] requires a metric to compare predictions of the Qol obtained from
the calibration and validation sets. Since predictions are probabilistic in nature, the metric used has to be compatible with
probabilistic inputs. Ideally this metric would measure in the units of the Qol, allowing for easy interpretation by decision-
makers on how consistent the predictions are. Ferson et al. [9] argue that Kantorovich metric can both accommodate
probabilistic inputs and be expressed in terms of Qol units. Kantorovich metric calculates the area between two cdfs F(¢)
and G(¢) and it is used to measure the disagreement between the two probabilistic predictions.

oo

d(F(t),G(t)) = / |[F(t)— G(t)|dt (15.2)

—00

The data partitioning methodology proposed by the author and collaborators [12], leverages this Qol-driven framework
but in addition instead of relying on a subjective data split, uses a quantitative process to determine an optimal split. Here,
optimality is given by the partitioning of the data that satisfies the following desiderata: (1) the model is sufficiently informed
by the calibration set, and is thus able to reproduce the observed data, and (2) the validation set challenges the model as much
as possible with respect to the quantity of interest. First, a model incapable of reproducing observations should not be used to
predict unobservable quantities of interest. Specifically in the case of Bayesian updating, the prior information and observed
data must be sufficient to produce a satisfactory posterior distribution for the model parameters. Second, the validation set
should be the most challenging possible to assess Qol predictions. In other words, the model is required to perform well on
even the most challenging of validation sets; otherwise, one cannot be confident in its predictive capability with respect to
the Qol.

Two metrics need to be defined to judge how well the model meets these two criteria. One metric to measure how well
the model is reproducing the data and the other to measure the predictive performance of the model. Let Mp and M}
denote the data reproduction metric and threshold respectively. Similarly, Mo and M 5 are used to measure the discrepancy
in the Qol prediction. While the data partitioning procedure can accommodate any suitable metrics, in this work both the
data and Qol metric are given by the Kantorovich metric defined in Eq.(15.2). In the case of the data reproducibility, the
area metric is defined between the empirical distribution of the data and the predictive distribution of the observable. For
Qol assessment, the area metric is defined between the predictive distribution of the Qol given the calibration data and the
predictive distribution of the Qol conditioned on all the data (calibration and validation).

Given N observations, we denote the size of the calibration set by N¢ and the size of the validation set by Ny,

N¢ + Ny = N. (15.3)
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Note that it could be the case that each of the N observations in fact represents a set of observations, if, for instance,
repeated experimental measurements are taken at the same conditions. As with many validation schemes, the selection of
the calibration, or training, set size is important. This set size can vary greatly [2, 3], and the particular choice could impact
the final conclusion and must be made with care. Of particular concern is providing enough data so that all parameters
of the model are sufficiently informed by the inverse problem. If the model were to fail with respect to the data metric,
the issue may not be the model itself but too small a calibration set size. In this case one should perform further analysis
to determine the source of this discrepancy and increase the calibration set size if necessary. Regardless, the partitioning
framework is generally applicable to whatever this size might be.

To determine the optimal split, all possible partitions of the data respecting (15.3) are considered. By considering
all admissible partitions, one can determine which observations are most influential with respect to the Qol. However,
the drawback of this approach is evident: consider the model performance for all partitions of the data. This yields a
combinatorially large number of partitions, whose exact number is given by the binomial formula:

N N!
p— _ N (15.4)
Nc |~ NcINy!

Here these partitions, or splits, are denoted by {sx }, where k = 1,2, ..., P. The computational impact of this becomes even
more significant while solving P Bayesian inverse problems using Eq.(15.1). This is an area for improvement and it is set as
subject of future work.

With the solutions obtained from the inverse problems one can evaluate the performance of the model by computing the
data and Qol metrics. These can be visualized on a Cartesian grid where the x and y axes correspond to the metrics Mg
and M p, respectively, and each point corresponds to a single partition of the data into a calibration and validation set, see
Fig. 15.1b. The optimal partition s* is given by the following optimization problem which requires the calibration data to
sufficiently inform the model to reproduce the data and the validation data to maximize the prediction metric.

s*=arg max  Mo(sk). (15.5)

:k.MD(sk)<M;

The optimal partition for the results shown above is highlighted in Fig. 15.1b. After identifying the optimal partition one
can compare model’s predictive performance against the threshold M 5 If s* fails to satisfy the threshold then it can be
concluded that the model is invalid given the observations available. In the case where s* does not violate the tolerance set by
the decision-maker, it can be concluded that the model is not invalidated given the observations. This does not guarantee that
the model is valid, only that one cannot demonstrate otherwise. This may prompt the acquisition of additional observations to
challenge the model. The process to obtain these additional experimental measurements may be supplemented by performing
optimal experimental design [19]. If, however, we cannot obtain more data, then the process is complete, and we conclude
that the model has not been invalidated. The general algorithm can be summarized in Algorithm 1.

Algorithm 1 Data partitioning algorithm

1: Define data metric and threshold, Mp and M Z)"
2: Define prediction metric and threshold, My and M 5
3: Given N, choose the calibration set size, N¢, such that

N¢ + Ny = N.
: Generate all possible partitions of the data {sy }/_,, where P = (/\]/VC) = NC’Y[i,V!

: Solve P inverse problems for partitions {s }/_,.

: For each partition s, compute Mp (si).

: Solve an additional inverse problem using all available data (calibration and validation)
: For each partition s;, compute Mg (s ).

: Find optimal partition s* = arg maxy, ary(s) < Mo (k)

10: Compare Mo (s*) with M.
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15.3 Data Partitioning for a Gaussian Puff Model

This section describes an application of determining the optimal partition for a Gaussian puff model. The model in Eq. (15.6)
is given by the steady-state Gaussian plume solution to the advection-diffusion equation under assumptions of isotropic
diffusion and constant wind velocity, # = 1, which is sufficiently large such that the longitudinal diffusion term can be
neglected [18]. Here c(x, y) is the ground concentration at an (x, y) location, Q is the release mass, H = 1 is the height of
the release and K = 1 is the eddy diffusivity.

u(y* + H?
c(x,y) = ZnQKx exp ( — ())Tx))emeas (15.6)

In this study, it is considered that a set of six noisy concentration readings are available corresponding to the six sensors
depicted in Fig. 15.2a. Both the release mass and the wind velocity are considered uncertain. Given these six measurements,
the goal is to divide them in a calibration and validation set, both containing three data points, in order to assess the
capability of the model to predict the concentration in the region of interest shown also in Fig. 15.2a. The distribution of
the measurement noise and the prior distribution for the release mass and the wind velocity are given as follows.

P(€meas) = log N'(0. 1), p(Q) =1ogN'(2,10), p(u) = N(2,0.5) (15.7)

The synthetic measurement data is generated from the true model where Q = 1 and u = 1. For a specific run, the
measurements obtained for various sensors as well as the distance of these sensors to the region of interest are given in
Table 15.1. Given the distances from the region of interest, see Table 15.1 and Fig. 15.2a, intuitively, one would expect that
the optimal split would be to have the validation set comprising readings of sensors (4, 5, 6) and calibration set comprising
readings of sensors (1,2, 3). For this split the data metric is found to be Mp = 1.03 and the Qol metric My = 0.27. The
data metric is well within the tolerance of the measurement noise M}, = 1.75, however the question is whether this split
challenges the model enough with respect to the Qol.

However, the data partitioning methodology introduced in the previous section, after computing the metrics for all possible
partitions of size three, gives the optimal split as the calibration set comprising of sensors (3,5, 6) and the validation set
comprising of sensors (1,2, 4). In this case the Mp = 1.09 and the Qol metric My = 0.61. Again, the data metric indicates
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Table 15.1 Measurements for a

. > Sensor 1 2 3 4 5 6
specific run and distance of M 016 1011 1019 l0.06 l0.10 002
various sensors to the region of casurement | 0. : : : : :

interest Distance 2.15 2.01 |1.52 | 1.39 [ 1.25 | 1.00
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that the model is well calibrated, and as compared with the previously intuitive split, the Qol metric for the optimal split is
almost three times as challenging. Also note that validation set contains sensors, which are farther away from the region of
interest instead of closer to it.

Obviously, the results are conditioned on the measurements available, and one may question the finding as being
particular to the instance of measurement noise. To address this issue, a number of 10,000 trials have been performed,
each corresponding to different measurement noise instances. For each trial the optimal split has been identified, and the
overall distribution of the optimal split has been plotted in Fig. 15.2b. Note that most of the time the validation sets chosen
contain sensors that are farther away from the region of interest instead of closer to it, which further motivates the uses this
quantitative process to identify the partitioning of the data. In addition, note that the intuitive split at the top of Fig. 15.2b has
produced very few optimal splits in the 10,000 trials, which prompts one to carefully consider the problem of partitioning
the data in calibration and validation sets.

15.4 Conclusion

A data partitioning methodology has been introduced to determine the optimal split in calibration and validation sets to assess
the predictive capability of a model. This cross-validation inspired methodology is applied in the context of unobserved Qols,
where the quality of the Qol prediction is determined via a sensitivity analysis approach. This procedure is used to determine
the optimal partition of chemical concentrations to assess the predictive capability of a Gaussian plume models. For the
example considered in this study, it is shown that the validation set should contain sensors farther away from the region of
interest rather than closer as it might be dictated by intuition.
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Chapter 16
SICODYN Research Project: Variability and Uncertainty
in Structural Dynamics

Sylvie Audebert

Abstract The idea underlying the SICODYN (SImulations credibility via test-analysis COrrelation and uncertainty
quantification in structural DYNamics) funded research project is to give easy tools, based on tested methodologies, to a
priori estimate the confidence associated to a dynamical simulation-based prediction. The project is based on a complex built-
up pump in industrial environment. Gathering 13 French academic and industrial partners, it is organized in 6 parts. In Part
1, an inventory of the benchmarks in structure dynamics and a review of methods leading to credible models are performed.
Experimental benchmarks based on in-situ measurements permit the quantification of experimental variability, related to
nominally-identical structures or due to operator and modal identification methodology (Part 2). Numerical benchmarks
(Part 3) lead to observe the corresponding total numerical variability. Part 4 is devoted to test-analysis correlation methods.
In Part 5, both parametric and non parametric methods are confronted in order to quantify the parametrical and model-form
uncertainties, either in a deterministic (method of intervals . . . ) or probabilistic context. The objective of Part 6 is to estimate
the capacity of uncertainty quantification methods to represent the observed numerical variability, and to select, or adapt,
some of them, to propose simple tools usable in industrial context.

Keywords Vibrating mechanics ¢ Numerical and experimental benchmarks ¢ Modal characteristics ¢ Uncertainty
quantification

16.1 Context and Objectives

A main objective of industrial companies is to quantify the confidence they have in numerical models used either in
design purpose or in expertise purpose. The systems of interest include proposed or existing systems that operate at
design conditions, at off-design conditions and at failure-mode conditions that apply in accident scenarios. In particular, the
dynamical behaviour of engineered systems that equip power plants must be confidently predicted. The numerical models
built to do so in a design purpose must be able to represent the characteristics of the structure itself, its coupling with its
environment, the usually unknown excitations and the corresponding error sources and uncertainties; in an expertise purpose,
when measurements can be carried out on the existing structure and used to improve the numerical-experimental correlation,
the numerical models are generally generic and must be able to reproduce the behaviour of the whole family of nominally-
identical structures.

16.2 Scientific Structuration of SICODYN Project

The funded FUI (Fonds Unique Interministériel) 2012-2016 project, untitled SICODYN, follows the international 2008—
2010 SICODYN benchmark [1, 2]. It is based on a complex built-up demonstrator in industrial environment. The project
gathers 13 French academic and industrial partners [3].

The idea underlying the project is to give easy tools, based on tested methodologies, to a priori estimate the confidence
associated to a dynamical simulation-based prediction [4-7]. The general organization of the six interconnecting parts of
the project is described in Fig. 16.1. The quantities of interest are the modal characteristics of the mechanical system
(eigenfrequency, modeshape and modal damping). In Part 1, an inventory of the benchmarks in structure dynamics and a
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Fig. 16.1 Organization of the six parts of the SICODYN project

review of methods leading to credible models are performed: test-analyses methods and ways to estimate the total uncertainty.
In Part 2, experimental benchmarks based on laboratory and in-situ measurement campaigns permits the quantification of
experimental variability, related to nominally-identical structures or due to operator and modal identification methodology.
In addition, two laboratory devices are designed and used in order to improve and validate the numerical representation of a
bolted assembly at macro-level. A numerical benchmark (Part 3) on the pump assembly considered in its work environment
(complex boundary conditions that are frame fixed in concrete and connections with suction and delivery pipes) leads
to observe the total numerical variability, which takes into account the parametric and model form uncertainty. Part 4 is
devoted to test-analysis correlation and model updating, using notably a collection of numerical results and a collection of
experimental measurements [8]. Methods to elaborate the best-estimate model, which both insures fidelity to measured data
and robustness relatively to uncertainties, are comparatively tested. In Part 5, both parametric and non parametric methods are
confronted in order to quantify the uncertainties, either in a deterministic (method of intervals. . .) or probabilistic context
[9-11]. In Part 6, the observed (via the benchmark) and simulated (in Part 5) numerical variabilities will be compared.
The most appropriate uncertainty quantification methods to a priori represent the observed numerical variability, from an
industrial point of view, will be selected and possibly derived in simple security coefficients and margins applied in classes
of dynamical problems to determine, or simple tools usable in industrial context.

16.3 Description of the Demonstrator

The chosen equipment is a pump used in EDF thermal units (Fig. 16.2). It is a one-stage booster pump, composed of a
diffuser and a volute, with axial suction and vertical delivery (body with volute called “snail”’), mounted on a metallic frame.
It was designed 40 years ago by Sulzer Pumps. The bolted built-up structure contains eight main components.
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Fig. 16.2 The pump assembly and its main components. (a) The pump assembly. (b) CAD models of the pump components

16.4 Innovative Characteristics and Technological Challenges

The main innovative characteristics of SICODYN project are following:

Organization of an experimental benchmark in situ, with independent teams, in view of observing the variability of modal
properties of a built-up structure (related to specimen, measurement means, identification methodology)

Organization of a numerical benchmark in condition of a study performed by a design office, in view of observing the
total numerical variability of a dynamic simulation

Application of methods tested on academic structures to complex industrial large number of degree of freedom structures
Improvement of the modeling at macro-level of bolted structure assemblies

Taking into account the environment, represented by complex boundary conditions

Model improvement by adaptation and comparison of numerical-experimental correlation methods

Numerical estimation of the model form uncertainty, and not only the parametrical uncertainty

Improvement of the model robustness relative to uncertainties

Confrontation of observed and numerical variabilities, and elaboration of recommendations for the use of numerical
methods to a priori estimate the confidence of simulation-based predictions

Establishment of empirical laws to a priori estimate the credibility related to a dynamic simulation result

16.5 Benchmarks Purpose (Parts 2 and 3)

The benchmark purpose is clearly to observe, from an industrial point of view, that is in the real conditions of an engineering
study, the variability of computational blind and experimental modal results. The general Verification and Validation (V&V)
comprehensive methodology based on benchmarks described in [4] can be kept in mind and successfully applied within the
purpose of the observation of the numerical or experimental variability: a step-by-step procedure from the free-free separate
components to the built-up system with complex boundary conditions is so here applied.

The dynamical systems of interest used for the benchmarking operations have been determined more and more the

complexity of both the system and the boundary conditions, following the hierarchical process presented in Fig. 16.3:

The eight free-free pump components;

A two-component sub-assembly (Fig. 16.4a);

The clamped pump assembly, not connected to pipes;

The clamped pump assembly, connected to pipes (Fig. 16.4b).
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For each dynamical system, the modal basis on the bandwidth [0 Hz; 300 Hz] must be determined.

The number of independent blind simulated predictions and measurements are given in Table 16.1. Complementary
simulations and corresponding experimental analyses have been performed by one partner only on a free-free pump sub-
assembly and on the free-free pump assembly.

Table 16.1 Number of Number of simulations | Number of measurements
independent benchmark — 8—10 01
simulated predictions and ree-free pump components -
measurements Free-free pair of components 3 3
Free-free sub-assembly 1 1
Free-free pump assembly 1 1
Non connected clamped pump assembly | 10 2
Connected pump assembly 7 5




16 SICODYN Research Project: Variability and Uncertainty in Structural Dynamics 161
16.5.1 Numerical Benchmarks

The numerical benchmarks have been organized in the framework of 2008-2010 international SICODYN benchmark [1, 2]
and Part 3 of 2012-2016 SICODYN project. The industrial point of view is taken into account by the fact that (1) here input
benchmark data are not equally determined for all the partners, in order to consider their inherent uncertainty (data provided
by EDF are but paper plans of the assembled pump and its parts, and CAD models of the eight main pump components)
(2) the chosen demonstrator is an industrial structure in use in EDF thermal units: it is well-representative of modeling and
boundary conditions complexity; (3) reference experimental data have been partially obtained in situ. Concerning benchmark
data, material characteristic values are chosen by partners. Representation of pump components, boundary conditions and
connections between components is let free choice.

This original benchmark approach, described in [1, 2, 12], is well adapted to the questions an industrial company must
answer and critical decisions it must take: what is the confidence level of the simulation-based predictions provided by design
offices? Are they sufficiently robust to uncertainties to authorize the cancellation or the decrease of experimental tests which
characterize the dynamical behavior?

16.5.2 Experimental Benchmarks

The experimental modal analysis campaigns have been performed in the framework of 2008-2010 international SICODYN
benchmark [1, 2] and Part 2 of 2012-2016 SICODYN project. The configurations of interest are the following:

» shaft and impeller system, bearing support and pump casing in free-free conditions;

* bearing support and bearing casing system in free-free conditions (three experimental modal bases);

» shaft, bearing support, cooling flange and bearing casing sub-assembly in free-free conditions (one experimental modal
basis);

* pump assembly in free-free conditions (one experimental modal basis);

* non rotating in situ non connected pump assembly, frame fixed in concrete (two experimental modal bases relative to two
specimens);

* non rotating in situ pump assembly, connected to delivery and suction pipes, frame fixed in concrete (two experimental
modal bases on one specimen, three experimental modal bases on another specimen).

As for numerical benchmarks, no precise instructions on the number of sensors, the excitation type or the identification
methods to be used are given to the partners. The observed experimental variability so attached to measurement “reference”
data is to be considered during test-analysis correlation.

16.6 Quantification of the Numerical Uncertainties (Part 5)

Besides the observation of variabilities thanks to benchmarking operations, a priori quantification of numerical uncertainties
is performed using methods able to represent the observed level of uncertainties. Methods to do so must be able to address
both parametrical and model-form uncertainties. Model-form uncertainty originates from assumptions or simplifications of
known, or unknown, phenomena that must be represented in the numerical simulation. Some of the modeling assumptions
that influence simulation results in structural dynamics include the use of 1D, 2D, or 3D representation to model a component
of the structure, the method through which contact and boundary conditions are represented. Thus, attempt to quantify the
effect of model-form uncertainty and, as a consequence, the total numerical uncertainty have been far less encountered [13].
The methods to quantify the total numerical uncertainty, applied on the pump assembly, are (1) the generalized probabilistic
approach, including both the model-parameter uncertainties and the model form uncertainties in a separate way [14], (2) the
lack of knowledge theory [15], which is based on intervals whose bounds are probabilistic, and (3) the combined use of the
component mode synthesis and the probabilistic uncertainty analysis [10]. The comprehensive approach, that is application
of these methods to a complex industrial dynamical system with large uncertainties, and confrontation of so estimated
uncertainties with the observed variability, is a main challenge of the SICODYN project.
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Chapter 17
Experimental Variability on Modal Characteristics of an In-Situ Pump

Sylvie Audebert, Anne Coulon, Marie-Ange Andrianoely, Stéphane Muller, and Emmanuel Foltéte

Abstract Considering that experimental data, usually considered as the reference in test-analysis correlation and model
updating purpose, must also be concerned with uncertainty quantification, the experimental variability on modal characteris-
tics of two nominally-identical pumps in industrial environment is observed, via a benchmark between 5 independent teams.
Free choice is let to determine the number and the type of sensors, the excitation means, the number of excitation points and
the modal identification method. Variabilities relative to the operator and pump specimen are addressed; moreover specific
variability relative to the modal identification phase can be quantified using the same experimental test runs.

Due to differences on experimental meshes, from 27 to 138 measurement points, a SEREP expansion on a finite element
mesh is first performed, allowing the comparison of experimental modal bases. Global variability observed, based on half
paired among identified eigenmodes (within 10 % frequency gap and 50 % MAC criteria), shows a 2 % mean frequency gap
and 32 % mean damping ratio gap. Unit-to-unit variability, essentially attributed to different actual bolted torque levels at
component connections and pipe-to-pump connections, and realization of the frame fixation on concrete, shows 10 % mean
frequency gap and 28 % mean damping gap. Specific variability due to modal identification operator, as a component of the
global variability, is still significant with a number of identified modes that varies by a factor of 2; the so paired modes show
1 % mean frequency gap and 24 % mean damping ratio gap.

Keywords Vibrating mechanics ¢ Experimental benchmark ¢ Modal characteristics * In situ measurement e
Experimental variability

17.1 Context and Objectives

Experimental modal data resulting from in situ measurements are used in industrial context to characterize the dynamical
behavior of a new-designed structure or to expertise a system with potentially vibrating problems; they are generally
collected simultaneously to the elaboration of a numerical model of the structure considered, which can then be tuned
using measurement data. Like numerical models, which intend to represent the dynamical behavior of nominally-identical
systems, complete information on experimental modal data must include the overall range of measurements, attached to a
given experimental data. Concerning the eigenfrequency variability, the overall range of measurements is [f{", f**], where

min and f* respectively denote lower and upper bounds within which the measured eigenfrequency f; is expected to be
observed for a similar structure. The control parameters that can explain the experimental variability are the sensor type and
location, the excitation type and location, the identification method used and its parameters, the system specimen considered.
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The first objective of the study is to characterize the overall range of measurements, as a result of benchmarking operation
applied on the Booster pump of the SICODYN funded French research project [1, 2]; the second objective is to quantify the
effect of some particular control parameters on the observed variability.

17.2 Description of the Dynamical System

The chosen equipment is a pump used in EDF thermal units (Fig. 17.1). It is a one-stage booster pump, composed of a
diffuser and a volute, with axial suction and vertical delivery (body with volute called “snail”’), mounted on a metallic frame.
This main bolted assembly was designed forty years ago by Sulzer Pumps.

The principal characteristics of the pump are:

— the power of the pump is 135 kW;

— the dimensions of the pump without support are approximately 1 m x 1 m;

— the mass of pump and support is approximately 2,800 kg;

— the material of the pump is cast iron and steel;

— the nominal rotational speed is 1,500 rpm and the flow rate in nominal conditions is 620 m?/h;

— the shaft is supported in radial direction by two plain bearings (unknown stiffness and damping linearised characteristics)
and in axial direction by a roller;

— the impeller and shaft are connected by keys.

In this study, the pump is not rotating and not coupled to the engine that permits to put it to operation. The boundary
conditions are: frame fixed in concrete, pump assembly connected to delivery and suction pipes.

Fig. 17.1 The pump, frame in
concrete, connected to pipes, in
thermical power plant
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17.3 Test Specifications and Settings

Five independent teams are invited to perform an experimental modal analysis of two specimen of the similar pump assembly
(Table 17.1) in the frequency bandwidth [0 Hz; 300 Hz]. Free choice is let to determine the number and the type of sensors,
the excitation means, the number of excitation points and the modal identification method.

As a consequence of the proposed method, actual settings of the experimental modal analyses performed can be different
from one partner to another. All partners excited the pump using a shock hammer. The frequency resolution varied from
0.078 to 0.25 Hz. Measurements were collected using an average of five replicates, excepted for one partner, who used an
average of 25 replicates. Linearity and reciprocity tests were carried out by four partners among five. The identification
methods applied were generally similar (Table 17.2).

Details on impact and measurement points are given in Table 17.3. The number of impact points varies from 3 to 9 ;
the number of measurement points, where tri-axial accelerometers are located, varies from 27 to 138. It can be noticed that
the pump itself can be lightly or heavily instrumented; instrumentation of the pipes, useful for the characterization of the
boundary condition to be included within modeling purpose, can be different too. The experimental mesh geometries are
directly measured by each team in situ, and no numerical model was supplied for the measurement.

Table 17.1 Number of

. Number of experimental modal analyses
experimental modal analyses per

pump specimen Pump 1 |3
Pump?2 |3
Table 17.2 Actual settings of experimental analyses
Frequency | Frequency Linearity,
bandwidth | sampling reciprocity
Partner | Pump | Excitation type | Impact points | (Hz) rate (Hz) Number of means | Identification method tests
1 Shock hammer | 3 [0—400] 0.25 5 LSCF OK

LMS Polymax

1

2
2 2 4 [0-320] 0.078
3 1 3 [0-300] 0.16 3 OK
4 1 9 [0-500] 0.122 5 OK
5 2 6 [0-512] 0.122 25 LSCEF, LCF, SAPP, LMS | OK

Table 17.3 Impact and measurement points (X: horizontal, Y: vertical, Z: horizontal along rotor axis)

Partner 1 | 2 | 3 | 4 | 5
Impact points
Number 3 4 3 9 6
Position | X: flange suction X, Y: flange X,Y,Z: casing X, Y: elbow XY.Z:
Directio | elbow suction elbow fixation fixation suction elbow
n Y: flange delivery | X, Y: flange X, Y: casing- flange
casing delivery casing frame fixation XY, Z:
Y': top casing X, Y : suction flange
elbow flange delivery

X, Y: delivery casing
casing flange
X : top casing

Measurement points

p-

Pump 60 109 43 17

Frame 16 20 20 8 6
Pipes 14 9 8 2 7

Total 90 138 91 27
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Fig. 17.2 Comparison of measured, synthetized and expanded FRF at two different point locations

17.4 SEREP Expansion and Its Validation

To allow comparison of experimental data relatively to measurement meshes presented in Table 17.3, too different to be
directly compared, a SEREP expansion [3] is preliminary performed from the heaviest experimental mesh (considered as
the reference) on a finite element mesh of the pump assembly. The system of interest being the pump itself, this operation
does not take into account vibrating information measured on the pipes; consequently the pipes are considered in the finite
element FE model using equivalent mass and stiffness representations. As a first element of expansion validation, Fig. 17.2
shows the frequency response functions FRF at two locations, that respectively are connections of the pump with suction
and delivery pipes, directly measured, synthetized from identified eigenmodes, and expanded on the FE element mesh via
SEREP method: satisfactory correlation can be obtained on main eigenmodes, depending on the point location considered.

Second element of expansion validation can be performed via the comparison of expanded/experimental MAC and
autoMAC matrices (Fig. 17.3). The overall modes are very well correlated with diagonal MAC numbers generally greater
than 0.9. The dispersion along diagonal line, that can be shown around modes 10-17, is already present in autoMAC, proving
that it is not caused by expansion operation.

17.5 Observed Global Experimental Variability

A first topic of significance is the observation of the global experimental variability, considering all sources of discrepancy.
Attempt is made to pair the identified modes by four partners, relatively to two pump specimens. Around four overall
eigenmodes can be paired among eight, based on a 50 % MAC number and 10 % maximum frequency gap criteria.
Considering these paired eigenmodes, the mean frequency gap shows a low 2 % value, whereas the damping ratio gap,
with a mean value of 32 %, can reach more than 60 % (Table 17.4).
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Fig. 17.3 Comparison of expanded/experimental MAC matrix and autoMAC matrix

Table 17.4 Global variability: compared modal bases
Partner 1
Pump 2
Mode | Freq. (Hz)

Pump 1
Mode | Freq. (Hz)

Pump 2

17.6 Observed Unit-to-Unit Variability

115 54.3 6 60.2 7 54.8
2117 63.6 8 71.1
318 69.7 9 74.5
421 83.8 10 82.5 8 69.5
5/22 88.2 7 67.9 10 82.4
6|32 161.1 16 161.6
7134 180.8 15 169.9 17 175.9
8|38 211.6 18 196.2
944 278.3 25 284.5

Mode | Freq. (Hz) | MAC

82.8

80.2
74.8
52.3
82.2
52.2

Pump 1

Mode | Freq. (Hz) | MAC

1

10

60.5

74.4

83.4

188.6

284.4

15 20 25 30 35

92.0

72.5

91.5

76.9

83.2
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Partner 2, ref: partner 1, pump 2 | Partner 3, ref: partner 1, pump 1 | Partner 4, ref: partner 1, pump 1

Pump 1

Mode | Freq. (Hz) | MAC
3 60.2 83.7
4 72.3 64.8

Unit-to-unit variability can be quantified by comparing identified modal bases relative to two nominally-identical pump
assemblies, obtained by the same operator and using the same identification method. Pairing criteria applied, minimum 50 %
MAC number and maximum 20 % frequency gap, allow to pair the main overall eigenmodes, as indicated in Table 17.5.
The ten so paired modes show a 0.77 mean MAC coefficient, 10 % mean frequency gap and 28 % mean damping gap, for
reduced damping values comprised between 0.2 % and 4.5 %. Unit-to-unit variability can essentially be attributed to different
actual bolted torque levels at component connections and pipe-to-pump connections, and realization of the frame fixation
on concrete. The latter boundary condition can effectively vary a lot from one specimen to another, in direct relation to the
aging process of the concrete.

17.7 Observed Identification Variability Due to Operator

In order to quantify variability due to operator during the modal identification procedure, two independent operators were
asked to perform it from the same test runs, using the same modal identification method and the same software, on the
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Table 17.5 Compared modal bases of two nominally-identical pump assemblies

S. Audebert et al.

Pump 1 Pump 2
Frequency gap
Mode number | Frequency (Hz) | Mode number | Frequency (Hz) | (%) MAC (%) | Damping ratio gap (%)
1 |6 60.2 15 54.3 11.0 93.4 27
2 |7 67.9 20 80.3 —15.4 64.8 43
3 |8 71.1 17 63.6 11.7 86.6 11
4 19 74.5 21 83.8 —11.1 87.5 34
5 |10 82.5 18 69.7 18.3 88.1 41
6 |11 98.6 24 110.1 —10.4 51 20
7 |15 169.9 34 180.8 —6.1 87.7 36
8 |16 186.7 38 211.6 —11.8 84.2 24
9 |17 191.3 37 202.6 —5.6 71.8 29
10 |25 284.5 44 278.3 2.2 53.1 11
Fig. 17.4 Identification
variability due to operator: 2,00%
frequency gap
1,50%
)
X 1,00%
&
%0,50% - I I I I
Qo
5 1
% 0,00% l !
o
o 456 7 9 10 121314!5 171819
&-0,50%
-1,00% -
-1,50%
’ Mode number
Fig. 17.5 Identification 80% -
variability due to operator:
damping ratio gap 70% -
3
=60%
&
w 50% -
.0
)
© 40%
[=T:]
£ 30%
Q.
£ 20%
(=]
o w111 11
0% B HNE. B | w 0 _

Mode number

frequency bandwidth [30 Hz; 400 Hz]. It must be first noted that the number of modes so identified varies from 22 to 51,
among which 21 could be paired. If frequencies of these 21 paired eignmodes are identified with satisfactory accuracy, with a
mean and a maximal frequency gaps of 1 % and 2 % respectively (Fig. 17.4), larger discrepancy can be observed on damping
ratios with a mean and a maximal gaps of 24 % and 76 % respectively (Fig. 17.5), with values varying from 0.4 % to 4 %.
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17.8 Conclusion

As a part of the SICODYN funded French research project, an experimental modal benchmark is performed on two
nominally-identical Booster pumps in industrial environment, between five independent teams, whose free choice is let
to determine the number and the type of sensors, the excitation means, the number of excitation points and the modal
identification method. The first objective is to characterize the overall range of measurements. The second objective is to
quantify the effect of some particular control parameters on the observed variability: unit-to-unit and operator variabilities
are so proposed to be addressed. Moreover specific variability relative to the modal identification phase can be quantified
using the same experimental test runs by two independent operators.

Due to differences on experimental meshes, from 27 to 138 measurement points, a SEREP expansion on a finite element
mesh is first performed, allowing the comparison of experimental modal bases. Global variability observed, based on half
paired among identified overall eigenmodes (within 10 % frequency gap and 50 % MAC criteria), shows a 2 % mean
frequency gap and 32 % mean damping ratio gap. Unit-to-unit variability, essentially attributed to different actual bolted
torque levels at component connections and pipe-to-pump connections, and realization of the frame fixation on concrete,
shows 10 % mean frequency gap and 28 % mean damping gap. Specific variability due to modal identification operator,
as a component of the global variability, is still significant with a number of identified modes that varies by a factor of 2;
the so paired modes show 1 % mean frequency gap and 24 % mean damping ratio gap. These quantitative results could be
considered comparatively to those obtained on a portal frame in laboratory conditions [4].

It should be remained that the observed ranges of damping ratio, quite high, are relative to low values; nevertheless this
result is an element that confirms the difficulty to precisely identify this modal characteristic.

Lesson to draw is that the mode pairing operation is quite difficult and generally allows only about half modes to be paired,
if experimentation and identification are performed by different operators. On the contrary, unit-to-unit variability study,
without the operator effect, allows a better pairing of overall eigenmodes. This must be kept in mind when quantification of
variability, in terms of frequency and damping ratio gaps and MAC values, evidently carried out but on the paired modes, is
used in test-analysis or uncertainty purpose.

All the experimental results and the corresponding range are used in Parts 4 and 5 of SICODYN project, respectively con-
cerned with test-analysis correlation and uncertainty quantification. An example is the model identification in computational
stochastic dynamics using experimental modal data [5].

Acknowledgements The support of the FUI (Fonds Unique Interministériel) is gratefully acknowledged. The 13 partners currently involved
in 2012-2015 SICODYN project are: AIRBUS Defence & Space, CETIM, EDF R&D, LMT ENS Cachan, Institut FEMTO-ST UMR CNRS
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Chapter 18

Variability of a Bolted Assembly Through an Experimental
Modal Analysis

Sami Daouk, Francois Louf, Christophe Cluzel, Olivier Dorival, and Laurent Champaney

Abstract Industrial structures are mainly assemblies with complex geometries and non-linear characteristics. Friction and
joint preload added to fabrication imperfections lead to a substantial gap between numerical models and real structures. In
order to develop accurate generic models, it is then necessary to quantify the behavior variability, especially the one related
to the joint conditions. The first part of this paper describes the iterative sizing procedure of an academic assembly which
characteristics may vary depending on several input variables (e.g. value of the bolt torque, number and position of preloaded
bolts, etc.). The properties of the bolted joint were optimized in order to satisfy a set of conditions in terms of tangential
slipping, normal displacement and maximum stress level. The second part concerns the experimental modal analysis of the
assembly. The main purpose is to characterize the relationship that exists between the input variables and the measured
eigenfrequencies and modal damping of the assembly.

Keywords Experimental variability * Bolted joints * Uncertainty quantification * Modal analysis * Modal damping

18.1 Introduction

Mechanical systems are commonly analyzed assuming that the mathematical models are deterministic and the input data
is precisely defined. Nevertheless, in most cases, parameters of the mathematical-mechanical model linked to geometry,
boundary conditions and material properties can neither be identified nor modeled accurately. The need to address data
uncertainties is now clearly recognized, and over the past decades there has been a growing interest in stochastic modeling
and application of probabilistic numerical methods [1, 2].

It is our will to have a better understanding of experimental variability, especially in case of bolted assemblies. In fact, even
though the sources of uncertainties can be well identified, the characterization of their influence on the dynamic behavior is
still not well known. The main objective of this study is then to quantify the influence of joint parameters on the dynamic
response of a bolted joint. Some relevant parameters to be considered are the value of the bolt preload, the number and
position of preloaded bolts and lubrification conditions. To achieve that, it is necessary to have a bolted joint with binding
conditions that can be easily varied. It is clear that a low level of effort in the joint, the variation of the parameters mentioned
earlier will not cause any significant change in the dynamic response of the connection. However, in case of heavy loads,
sliding in the joint may appear in different areas of contact, i.e. the contact between the parts and the contact between bolts
and parts. This sliding will be source of energy dissipation and thus contribute to a variation of eigenfrequencies and modal
damping. However the application of high stress levels in dynamic is not possible with an experimental material of reasonable
size. One interesting solution is to take advantage of the dynamic load amplification at resonance and build parts to store
elastic and kinetic energy and raise the stress levels in the joint. Eccentric masses (kinetic energy) were added and linked
to the bolted joint of interest by long beams (elastic energy). The conversion of kinetic energy into elastic energy from the
masses to the beams enables the transfer of the desired efforts to the central bolted joint.

S. Daouk (P<) ¢ F. Louf ¢ L. Champaney
LMT (ENS-Cachan, CNRS, Université Paris Saclay), 61 avenue du Président Wilson, 94235 Cachan, France
e-mail: sami.daouk @Imt.ens-cachan.fr

C. Cluzel
LMT (ENS-Cachan, CNRS, Université Paris Saclay), 61 avenue du Président Wilson, 94235 Cachan, France

IUT-SGM, rue du Pere Jarlan, 91025 Evry, France

O. Dorival
Université de Toulouse, Institut Clément Ader (ICA); INSA, UPS, Mines Albi, ISAE, 135 av. de Rangueil, 31077 Toulouse Cedex, France

© The Society for Experimental Mechanics, Inc. 2015 171
H.S. Atamturktur et al. (eds.), Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings
of the Society for Experimental Mechanics Series, DOI 10.1007/978-3-319-15224-0_18


mailto:sami.daouk@lmt.ens-cachan.fr

172 S. Daouk et al.

The first part of this paper describes the iterative sizing procedure of a bolted assembly which properties were optimized
in order to satisfy a set of conditions in terms of sliding and maximum stress level. The second part presents the experimental
procedure and the first results of an experimental modal analysis of the assembly. The purpose is to find the relationship that
exists between the input variables and the eigenfrequencies and modal damping of the assembly.

18.2 Sizing Procedure

18.2.1 Estimation of Eigenfrequencies and Frequency Responses

The first step in the sizing procedure of the bolted joint is to estimate the first eigenfrequencies of the assembly in free-free
vibrations, in particular the ones associated with bending modes. Considering a structure with cylindrical symmetry, there
will only be symmetric or anti-symmetric modes. The exact values of the eigenfrequencies can be found, but in order to
avoid time-consuming calculations, approximations were made. For this, the Rayleigh quotient method is used assuming a
simple polynomial form of the eigenmode that will lead to an overestimation of the exact desired eigenfrequency.

For instance, Fig. 18.1 shows the simplified model associated to the first eigenmode, i.e. a symmetric bending mode. The
experimental modal analysis will be carried out with free-free boundary conditions, so two rigid body modes are possible in
case of a planar study: a transverse translating movement and a rotation about the out-of-plane axis. If we study a symmetric
mode, there can not be any rotation, which explains the choice of the boundary conditions at x = 0. The remaining degree
of freedom is important: if eliminated, the center of gravity of the deformed configuration will not be the same as that of the
non-deformed configuration, which contradicts an important property of structures vibrating in free-free conditions.

Let V5 1(x) be a kinematically admissible displacement field describing the first symmetric bending mode of the structure.
Several forms of the field Vs 1(x) were considered, such as the sum of a rigid translating mode and a mode deforming the

2 3 . . .
structure such as V1 (x) = a + x2or Vi 1(x) = a + LT” — % - For each form, we write the Rayleigh quotient as:

L
/ EI(V/(x))%dx
0

R(Vs)) = (18.1)

L
/0 pS WVt (x4 3 (Vi (O 4 my (VL)) 4 I (V1 (L)

where E, p, L, S and I are respectively the Young’s modulus, the density, the length, the section and the second moment
of area of the beam; m; is the mass of the central bolted joint of interest; m1,, is the mass of an eccentric mass and I, its
moment of inertia about an axis passing through its center and orthogonal to the x-axis.

Then we search for the coefficient @ that minimises the Rayleigh quotient and then the corresponding eigenfrequency.
The latter is compared to the eigenfrequency of a numerical beam model that has the same geometry, masses, inertia and
material properties. That’s how we can find the best approximate displacement field V; ;(x) describing the first eigenmode.
The same procedure is followed for the other eigenmodes of interest.

Once the different eigenmodes of interest are known, it is possible to estimate the frequency response of the structure
at a given forced excitation which maximum is set at 1,000 N in our study case (maximum force level of the shaker used).

»'H,'f’: Mm im 1‘

Fig. 18.1 Model used to ®
estimate the first eigenmode L
(symmetric bending mode) - >
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In particular, we seek to estimate the oscillation amplitude at resonance, assuming a low modal damping, but obviously not
zero. When considering the forced vibrations problem in case of a viscoelastic material with low damping, the magnitude of
the amplitude ¢; (w;) associated to the mode i writes:

FU,
g1 ()] = £V (18.2)
w; C,‘

where w; is the angular eigenfrequency of mode i, F is the magnitude of a punctual harmonic load applied at the point
X = X at w;, U; (x) is the shape of the eigenmode i (that was approximated previously using the Rayleigh quotient method)
and C; is the viscous damping coefficient. This relationship is obviously independent of the type of problem (bending,
tension, torsion) so it will be possible to find the amplitude at resonance in all cases of interest.

For instance, in case of the first symmetric bending mode of the structure, we find the magnitude of ¢ (w; ) as:

4Fm; + 5FpSL

_ 18.3
|q(@s,1)] 8Im;E¢ + 16Im, EC + 16ILSEp (e

where the modal damping ratio ¢ has been introduced.
Then the bending moment in the beam around the z-axis at resonance is:

I(L — x)E(8Fm,, + 3FpSL)

M, = %4 =— 18.4
251 (X) = (w5 )| Vi (x) STmiEC + 161m, EC + 161LSEZp (13.4)
which leads to the shear force
IEQFmy, +3FpSL)

— DIV (x) = — m 18.5
Qur0) =l IV ) = =g e 16T mn EC + 161LSELp (18)

and the bending normal stress in the beam can be found as:

M, D D(L—-x)EQF 3FpSL

01 (x) = s, (X) v ( X)E@®Fmy, + 3FpSL) (18.6)

I 2 28ImEC+ 16ImuEt + 161 LSECp)

In our calculations, a modal damping ratio { = 0.2 % was considered for all studied modes. This value is relatively low and
leads to a higher estimation of the amplitudes and stress levels, but then the sizing procedure remains conservative.

18.2.2 Optimization of the Design of the Bolted Joint

After estimating the eigenfrequencies and calculating the stress levels in the model, we proceeded to the optimization of the
design of the bolted joint regarding the moments and stresses generated in the beams at resonance. The preload range that
was considered goes from 20 % to 80 % of the yield strength of the screws.

In particular, it is necessary that the joint resists but also works in a significant way at resonance:

* in the preload range considered, we wish to have local backlash in the contact zone between the parts, in the order of
0.05 mm for an average preload ;

* in the preload range considered, we wish to have local sliding between the parts, in the order of 0.005 mm for an average
preload.

The second step of the sizing procedure is then to perform nonlinear static simulations to visualize these effects, and
increase them, if necessary, by changing the geometry. These calculations are performed for a given geometry of the parts of
the bolted joint and for a precise eigenmode. The value of the load is given by the previous step of the sizing procedure. For
instance, in case of the first symmetric bending eigenmode, the load to apply is the bending moment and shear force given
by relations (18.4) and (18.5). A Coulomb friction model without kinetic effects was considered with a coefficient of friction
of 0.2 (steel-steel). In addition to the values of slipping and backlash in the contact zone, it is essential to check the stress
levels in both parts, which may not exceed 400 MPa in order to remain in the elastic range and avoid damaging the parts.
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Fig. 18.3 Final design of the assembly

As shown in Fig. 18.2, the last step is the adjustment of the characteristics of the parts in order to reach the desired sliding,
backlash and stress levels, mainly for the first symmetric and anti-symmetric bending eigenmodes. In fact, these modes will
have the most significant effect on the bolted joint. For that, the stiffness, mass and inertia of the parts of the joint are modified
while minimizing the dissipation in the other joints of the assembly, namely between beams and masses, and between parts
of the joint and beams. Figure 18.3 presents the final design of the assembly resulting from the sizing procedure, where 16
bolts can be loaded in the central joint of interest. The assembly has been designed so that the eigenfrequencies are separated
and the first ones associated to bending modes are less than 1 kHz.

The evaluation of the energy dissipated only in the bolted joint can be done by carrying out differential identifications.
That’s why a reference part shown in Fig. 18.4 was designed as a rigid part with a simple geometry of the same length as
the bolted joint under study. It is also mounted to the beams in a similar way and has equal bending and torsion moments of
inertia. Its mass may vary by filling the holes or not in order to be consider the case of eight, twelve or sixteen loaded bolts.

In order to evaluate the dissipation in the bolted joint of interest, the same experiments are carried out on the assembly
with the joint and the assembly with the reference part. When applying the same energy through the shaker, for a given mode,
the difference in the elastic energy of the beams between both assemblies leads to the energy dissipated in the central bolted
joint.
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Fig. 18.4 Reference part built to
evaluate the energy dissipated
only in the bolted joint

18.3 Evaluation of Modal Damping

When the structure is lightly damped, its distribution is almost always not well known, and it is usually necessary to make
an assumption about the distribution. A first method considers that damping is constant depending on the level of vibrations,
which makes it precise in case of a low loading level only. That is mainly due to the fact that experimental control is automatic
and vibrating at the natural frequency is too risky to inject a high load. This approach considers the frequencies f;; and f;
of the bandwidth at —3 dB of the maximum of the transfer function around the resonant frequency f;. The corresponding
damping ratio {; is the given by the relation:

_ Jia— fia
Ci _T

Another method is the Specific Damping Capacity v that intends to measure damping for a given deformed shape such as a
modal shape. It is expressed as a ratio of the energy dissipated per cycle and the elastic energy (or energy stored) per cycle:

(18.7)

Wy
= 18.8
12 W, (18.8)
where the dissipated energy W, can be calculated by summing the power injected in the assembly per cycle as:
T T
W, = / F.vdr = / F.du (18.9)
0 0

F being the effort applied through the shaker and v the velocity of vibrations, and the elastic energy W, can be calculated on
both beams as:

L opg,2
W,=2 / /4y in case of bending modes (18.10)
o 2EI

When using this energy ratio to evaluate damping, no assumption is made about the relationship between damping and the
level of vibrations. This measure leads then to a better characterization of modal damping for any loading level in the joint.
The Specific Damping Capacity can be related to the modal damping ratio via the relation:

—- b (18.11)

1=
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18.4 Experimental Procedure

Several experimental tools are needed in order to measure finely the quantities of interest. Single and triaxial accelerometers
were used to measure the natural frequencies of the assembly. The use of accelerometers is also necessary in order to measure
the energy applied through the shaker. Strain gages are another important tool that was used. To evaluate the magnitude of
the efforts in the bolted joint, twenty strain gages were glued on the beams as shown in Fig. 18.5. They were arranged in eight
half bridges (four in the horizontal plane and four in the vertical plane) to measure bending, and one full bridge to measure
torsion. The evaluation of the strain magnitude in the beams leads to the elastic energy of the assembly (mainly stored in the
beams).

The experimental procedure is structured into two parts. First, it is necessary to carry out a modal analysis of the reference
assembly. This will validate that all manipulations and tests that will be carried out are without risk on the joint. In fact, as the
vibration at a natural frequency will result in a dynamic amplification whose magnitude is unknown, an upper bound of the
amplitude of the loads in the joint is needed in order to keep the strain in the elastic range. A second objective of studying the
reference assembly is to have the reference information necessary for the differential identifications of the energy dissipated
in the bolted joint.

The analysis of the reference assembly includes three steps:

* the first step is to determine the eigenfrequencies and eigenmodes under 1 kHz. These quantities are measured for a low
loading level firstly by using a hammer and then through a white noise applied by the shaker,

Fig. 18.5 The reference assembly analyzed in free-free vibrations
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Fig. 18.6 The bolted joint under
study

 the second step is to evaluate modal damping, by using the methods presented in Sect. 18.3. The results of all methods
should be the same in case of light loads,
* the last step is the measurement of the variation of eigenfrequencies and modal damping depending on the applied load.

The second part of the experimental procedure is the study of the dynamic behavior of the bolted joint. At first, we carry
out the same tests performed on the reference assembly. This step is essential to the success of the differential analysis which
includes two aspects:

 the eigenfrequency variation: it could be either linked to the damping variation or to the stiffness variation resulting from
the deformation of the thin support plates of the joint (thickness of 6 mm), as shown in Fig. 18.6.

* the damping variation: it is evaluated by considering the energy variation between both assemblies (the one with the bolted
joint and the reference assembly).

Finally, the modification of joint conditions (e.g. value of the joint preload, number and position of preloaded bolts, .. .)
leads to the characterization of their influence on the dynamic behavior of the joint.

18.5 First Results

The first experimental results presented in Fig. 18.7 show the eigenfrequencies of the reference assembly under 2 kHz. The
values are smaller than the ones of the numerical model, but without a major gap.

The first work was focused on the first eigenfrequency, which is associated to a symmetric bending mode. We noticed
that the value of the eigenfrequency decreases when the load increases. It is hoped that, as the bolt torque and the number of
preloaded bolts increase, the contact becomes more rigid, which leads to an increase of the measured natural frequencies.

18.6 Conclusions and Future Work

The first part of the paper described the iterative sizing procedure of a bolted assembly where the joint conditions may
vary. The properties of the bolted joint were optimized in order to satisfy a set of conditions in terms of tangential
slipping, backlash and maximum stress level. The second part described the methods used to evaluate modal damping
experimentally and presented the experimental procedure. The frequency response function of the reference assembly shows
that the eigenfrequencies are coherent with the numerical model. The future work is firstly to analyze the variation of
eigenfrequencies and modal damping. Then, the modal analysis of assembly with the bolted joint will be performed. The
purpose is to characterize the relationship that exists between the different joint conditions and the measured eigenfrequencies
and modal damping of the assembly.
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Fig. 18.7 The frequency response function of the reference assembly showing the eigenfrequencies under 2 kHz

In the framework of the SICODYN Project [3, 4], initiated in 2012 and carried out till 2016, the experimental modal
analysis will be extended to the case of a booster pump studied within its industrial environment. That would lead to a
better understanding of experimental variability and then to an assessment of the ability of parametric and non-parametric
probabilistic numerical methods to consider and propagate uncertainties in bolted assemblies.
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Chapter 19
Bottom-Up Calibration of an Industrial Pump Model: Toward a Robust
Calibration Paradigm

A. Kuczkowiak, S. Huang, S. Cogan, and M. Ouisse

Abstract The calibration of complex industrial structures using vibration test data is an important step toward improving
the credibility of model-based decisions for a specified application. Meanwhile, the state-of-practice in industry is to use
computer-aided design software that produce very refined finite element meshes thus creating an impractical bottleneck
in the iterative calibration process. This paper illustrates a two level bottom-up approach that requires testing at both the
component and assembled levels. Initially, a global sensitivity analysis is performed on the complete model to rank the
model components in terms of their influence on the quantities of interest. Selected components are then calibrated using
dedicated tests before being integrated as a Craig-Bampton superelement into the global assembly. At the top level, model
calibration is restricted mainly to the component interface properties. Since test data is available only for a single pump, a
deterministic calibration paradigm is applied here. This two level procedure is illustrated on a detailed model of a pump that
is studied in the framework of the French nationally funded project SICODYN. A robust calibration methodology will also
be outlined for future work in order to account for lack of knowledge in the final operational boundary conditions of the

pump.

Keywords Test-analysis correlation ¢ Sensitivity analysis ® Craig-Bampton substructuring * Model calibration ¢ SICO-
DYN project

19.1 Introduction

The calibration of complex industrial structures using vibration test data is an important step toward improving the credibility
of model-based decisions for a specified application. This paper is a contribution within the SICODYN project [1], which
is briefly described. The research project SICODYN (SImulations credibility via test-analysis COrrelation and uncertainty
quantification in structural DY Namics) is based on an a complex built-up demonstrator (cf. Figs. 19.1 and 19.2) in industrial
environment : it gathers 13 French partners, both academic and industrial. The idea underlying this project is to provide tools,
based on tested methodologies, to estimate a priori the confidence associated with a dynamical simulation-based prediction.

More precisely, one objective of this project is to obtain credible finite element (FE) model able to predict identified
modal data with a given accuracy. This step is commonly referred to as model calibration [2, 3]. Various calibration strategies
exist:

* Reference basis methods [4, 5]. A class of nonparametric identification methods that solve a constrained optimization
problem to obtain perturbations of the stiffness and mass matrices for the nominal finite element model based on a set
of measured eigensolutions. This kind of method is useful for some limited applications but not within the framework of
Validation and Verification (V&V).

¢ Deterministic local methods [2, 6]. A class of parametric identification methods that solve a nonlinear constrained
optimization problem to obtain deterministic estimates of local stiffness and mass properties based on a set of measured
eigensolutions. Due to its simplicity, this kind of method is the most conventional approach in model calibration where
fidelity-to-data is optimized.

» Statistical local methods [7, 8]. A class of parametric identification methods that solve a nonlinear constrained
optimization problem to obtain statistical estimates of local stiffness and mass properties based on a set of measured
eigensolutions.

A. Kuczkowiak ¢ S. Huang ¢ S. Cogan (<) « M. Ouisse
Department of Applied Mechanics, FEMTO-ST Institute - 24, rue de 1’Epitaphe, 25000 Besangon, France
e-mail: antoine.kuczkowiak @ femto-st.fr; scott.cogan @univ-fcomte.fr

© The Society for Experimental Mechanics, Inc. 2015 179
H.S. Atamturktur et al. (eds.), Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings
of the Society for Experimental Mechanics Series, DOI 10.1007/978-3-319-15224-0_19


mailto:antoine.kuczkowiak@femto-st.fr
mailto:scott.cogan@univ-fcomte.fr

180 A. Kuczkowiak et al.

Fig. 19.1 Built-up demonstrator

Fig. 19.2 CAD demonstrator

* Robust local methods [9]. A class of parametric identification methods that solve a nonlinear constrained optimization
problem to obtain either deterministic or statistical estimates of local stiffness and mass properties based on a set of
measured eigensolutions. A robust satisficing! approach is adopted to find an adequate compromise between fidelity-to-
data and robustness to lack of knowledge in the system and its environment.

As indicated previously reference basis methods are not suitable for model calibration within the framework of V&V, which is
the preferred framework for demonstrating the credibility of models. Since only a single measurement is available, statistical
local methods can also not be performed. Hence, a deterministic local method is preferred here.2 Meanwhile, the state-of-
practice in industry—and especially here—is to use computer-aided design software that produce very refined finite element
meshes thus creating an impractical bottleneck in the iterative calibration process.

First of all, the present work aims to provide a two level bottom-up calibration approach suitable for dealing with industrial
FE models. At the end, a calibrated FE model capable of predicting the identified modal data—when the pump is not
connected—is found. However, when connected, the structural dynamic behavior will inevitably change. In such cases, can
we to quantify the predictability of calibrated model under untested conditions? Since the answer is not trivial, dedicated
approaches have to be performed. The second objective is to describe a robust calibration strategy in order to emphasize the
tradeoff between fidelity-to-data and robustness-to-uncertainty for further work.

IContraction between satisfy and suffice. More details can be found pp. 38-39 in [10].
2Robust local methods and theirs possible applications within the framework of the SICODYN project are however discussed at the end of the
paper.
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19.2 FE Model Calibration of an Industrial Pump

19.2.1 Introduction

The model calibration of an industrial pump is detailed in this section. The objective is to obtain a predictive FE model
which is one objective stated within the framework of the SICODYN project. As indicated previously, the SICODYN project
is composed of several partners, each of which have the freedom to propose and apply their preferred strategy. The description
below is the approach proposed by the Department of Applied Mechanics, FEMTO-ST Institute in Besangon, France.

The initial discrepancy between simulation predictions and test data is expressed in Table 19.1 and emphasizes that the
model does not provide an accurate representation of the reality. The model is actually capable of predicting only two
modes. Blank entries in Table 19.1 indicate that the MAC (Modal Assurance Criterion) between numerical and experimental
eigensolutions is below 60 %, rendering a comparison between eigenfrequencies impossible.

19.2.2 Reduced-Order Model (ROM) Construction

The full FE model available contains around 10 million nodes which is unmanageable within a standard calibration
framework. Although one possible solution is to design an efficient fast running model (e.g. a metamodel, see for instance
[11]), the preferred way here is to reduce the FE model: the fixed interface Craig-Bampton substructuring technique [12] is
used. The full FE model includes seven substructures (or superelements), namely: the bearing casing, the bearing support,
the cooling flange, the pump casing, the suction flange, the elbow, and the frame. For each substructure s with Ny dofs, the
basis T®) e RN*¢ is computed:

TO = [18) ;0] (19.1)

where T g) are the static responses to unit displacement at each degrees of freedom (dofs) of interface and lﬁ(“) the natural
modes when the dofs of each interface are assumed to be fixed. The ROM is depicted in Fig. 19.3.

Table 19.1 Discrepancy Mode | Test (Hz) | Mode |Model (Hz) | Error (%) | MAC (%)
1 76.8 3 98.4 16.4 93.3

2 134.4

3 162

4 2019 |7 189.7 —10.5 60.4

5

6

between model prediction and
test data before calibration

233.4
251.2

Fig. 19.3 Reduced-order model
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Table 19.2 Accuracy of the ROM

Mass Full 3D model (num- | Reduced order model | Eigenfrequency Error
Name (kg) ber of nodes) (number of nodes) (Hz) (%)
Bearing casing 19 337,410 111 1,016-1,581 0.5-11.7
Bearing support 123 1,702,818 228 244-883 0.54.5
Cooling flange 13 384,324 20 239-1,234 1.5-5.6
Pump casing 951 875,736 114 432-1,310 1.4-7.1
Suction flange 212 480,414 80 566-2,167 22-92
Elbow 208 1,792,350 47 294-857 0.54.1
Frame 788 4,113,240 27 43-210 0.2-1.5
Total 2,314 9,686,292 627
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Fig. 19.4 Relative strain energies for each superelement

The accuracy of the ROM is expressed by Table 19.2 where a modal analysis has been performed for each superelement as
well as the full FE model and the reduced one with free-free boundary conditions. Except for the bearing casing, prediction
errors with the ROM are below 10 % while the size of the FE model is drastically reduced, thus improving the feasibility of
the iterative calibration process.

19.2.3 Sensitivity Analysis and Calibration at the Component Level

A sensitivity analysis [13] is then performed in order to rank input variables with respect to their deterministic influence
on features of interest. The relative strain energy is an efficient indicator to assess the impact of modifications on structural
dynamics: the higher this energy for a given superelement, the more sensitive this superelement will be.

Figure 19.4 plots the relative strain energy for each superelement: only few of them seems to be influent. Dedicated test
at the component level are used in order to calibrate only the most influential substructures. For instance, Fig. 19.5 illustrates
the level of correlation between test and model at the component level, namely the bearing support.
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Fig. 19.5 Calibration at the component level

Fig. 19.6 Experimental mesh

19.2.4 Calibration of the ROM at the Assembled Level

Experimental modal data are available at the assembled level and the experimental mesh contains 55 nodes (three dofs/node)
and is depicted in Fig. 19.6. Since the ROM is already constructed, the calibration parameters are either the interface between
superelements or a weighting (non-physical) coefficient for each superelement. Though other cost functions are available for
model calibration (see for instance, the Extended Constitutive Relation Erro—ECRE [14]), here a simple and inexpensive
output-based cost function is used. Calibration parameters p* minimize the function

g=) o -0, + ) |¢, —mel™|,, (19.2)

where (w,, ¢,) and (0, ¢™") are respectively the calculated and the experimental eigensolutions (taken as the reference)
and & is the transformation matrix between the numerical mesh and the experimental one.

Before optimizing g, the active calibration parameters have to be defined. Toward this end, a Morris sensitivity analysis
[15] is performed in order to select the most sensitive variables. Such an approach is a global sensitivity analysis and has the
objective to compute the sensitivity of parameters by calculating several times the elementary effect of each parameter. The
sensitivity indicators are the mean and the standard deviation of the elementary effect. The mean gives information about the

overall influence and the standard deviation indicates if the parameters have a coupling effect with other(s) parameter(s) or
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Morris Design Sensitivity Indicator
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Fig. 19.7 Morris sensitivity analysis
Table 19.3 Discrepancy Mode | Test (Hz) | Mode | Model (Hz) | Error (%) | MAC
between model prediction and
test data after calibration ! 76.8 3 71.3 0.7 oLl
2 134.4 5 133.7 —0.5 75.5
3 162 6 154 —4.9 93.7
4 211.9 7 199.2 —6 92.2
5 233.4 9 2144 —8 88.8
6 251.2 10 224.8 —10.6 86.0

a non-linear effect. Figure 19.7 plots the mean and the standard deviation of each elementary effect. The selected calibration
parameters are encircled (see Fig. 19.7). One can see that some selected calibration parameters are not very sensitive and
vice versa. For instance, the variable SDESVAR 10 is the frame and its properties are well-known. Hence, a high sensitivity
is not a sufficient criterion to select variable as a calibration parameter. Based on engineering judgment, a variable must be
poorly known in order to be candidate as a calibration parameter. The selected calibration parameters are thus both sensitive
and uncertain.

At the end, this bottom-up calibration yields a predictive FE model. For example, Table 19.3 provides the eigenfrequencies
predicted by the calibrated model as well as theirs relatives errors (in %) when compared to experimental eigenfrequencies
and the corresponding MAC values. This table emphasizes also the good agreement between simulation prediction and test
data after the calibration process.

19.3 Toward a Robust Calibration Paradigm

The proposed calibration strategy was applied on the pump considered without a connection with the piping. More precisely,
the pump is connected to piping: it is the real operational boundary conditions. This real boundary condition are thus not
taken into account in the construction of the FE model and it is well known that this kind of boundary condition strongly
modifies the structural dynamic behavior. Furthermore, such types of connection are extremely difficult to model. One of the
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main reason is that piping can be considered to be flexible and thus contains vibration modes. Furthermore, these types of
connection are variables: pipes are unique in each power plant and thus boundary conditions are not the same in one location
or in another. That is why, these types of connection can reasonably be assumed to be uncertain.

In presence of lack of knowledge, deterministic calibration makes no sense since the calibrated design with the highest
fidelity-to-data (or fidelity-optimal design) strongly depends on (potential) wrong assumption. For instance, if the boundary
conditions of the pump are modeled in two different ways, it is clear that two different fidelity-optimal designs—i.e. both
designs can predict the data with the same fidelity-to-data—could be found. This is directly related by the fact that, during
the calibration process and in presence of uncertainty, calibration parameters are compensating each others [16]. Hence, the
conventional approach that selects the model with the highest fidelity-to-data is not sufficient to demonstrate the credibility of
models. It turns out that exploring robustness in addition to fidelity lends credibility to the model, ensuring model predictions
can be trusted even when lack-of-knowledge in the modeling assumption and/or input parameters result in unforeseen errors
and uncertainties.

Rooted in info-gap theory [10], robust calibration approaches [9] is the preferred way for exploring the robustness-to-
uncertainty. Nevertheless, it has been also demonstrated in [9] that improving both robustness-to-uncertainty and fidelity-to-
data are antagonistic. The inherent antagonistic nature of these components leads to fundamental trade-offs that forms the
basis of the new model calibration paradigm. Typical robust calibration approach is briefly described.

Model predictions can be denoted by

A (p,u) =y, (19.3)

where p are the calibration parameters (or model input parameters), u the uncertain parameters and y the response feature
of interest. For instance, here, calibration parameters could be the stiffness at the interface between two superelements and
uncertain parameters could be the boundary conditions. The FE model is used to predict eigensolutions, which are the
response features of interest.

The objective is to study the robustness of the model fidelity to experimental data in presence of lack of knowledge in
the boundary conditions. The discrepancy between the simulated eigensolutions and the experimental ones (seen here as the
reference) can be assessed with a metric Z(p, u) defined as the norm of the difference between test data y*** with the results
obtained from the model .Z (p, u):

test

(19.4)

Z(@.u) =y -y, .

where .4 is the norm dependent on the type of data that the model predicts. For instance, in the case of the pump, y is a
vector of eigenfrequencies, then the norm .4 would simply be the £>-norm. Finally, the smaller Z(p, u) is, the better the
model is. Nevertheless, the model is assumed to be predictable when

2(p,u) <d., (19.5)

where d. > 0 is the greatest level of discrepancy that can be tolerated.
Info-gap model of uncertainty % (o, u®) is used to represent the uncertainty in the system. Hence,

uec %(a,uo), (19.6)

with @ € R the unknown horizon of uncertainty which measures the distance—or the gap—between the estimate u® and
the whole possibilities in the set % («, u’). Many different info-gap models of uncertainty are available (see pp. 20-30 in
[10]): for instance, the info-gap relative error model is

0

U (o,u’) = {u: u-u

<al. (19.7)

The model of uncertainty % (a, u’) is actually an unbounded family of nested convex sets of realizable designs.

The info-gap theory is a decision theory and one of the main feature in this approach is the robustness function &.
Broadly speaking, the robustness of decision to choose p is the greatest horizon of uncertainty that can be tolerated without
exceeding the critical performance d.. Hence, the robustness function is expressed as a function of the design p and the
critical performance requirement d.. It is written by

a=a(p,d;) =max{a: max .Z(p,u) <d.}. (19.8)
)

ue (a,u’



186 A. Kuczkowiak et al.

The conventional approach in model calibration methods seeks to maximize solely the fidelity-to-data. Thus, the fidelity-
optimal parameters are obtain by

p* = argmin{.Z (p,u’)}. (19.9)
P

Nevertheless, this conventional approach does not take into account the uncertainty in u. On the contrary, robust calibration
approach aims to choose p—the robust parameters—in such a way to minimize the impact of u on the system performance.
For a given tolerable threshold d,, the robust parameters p® are the ones which maximize the robustness function. The
robust-optimal parameters are

p" = argmax{a(p, d.)}. (19.10)
P

Initially formulated in [9], the tradeoff between fidelity-to-data and robustness-to-uncertainties expresses that Robustness
improves as fidelity deteriorates. Because the info-gap models of uncertainty have the properties to be nested, the robustness
function is monotonically increasing. Hence, let d, and d/, two different level of fidelity, then:

d. <d] = a(p.d;) < (p.d)). (19.11)

Equation (19.11) asserts that, for any given model, specified by p, the robustness-to-uncertainties increases as the required
fidelity is relaxed. Typical tradeoffs between fidelity-to-data and robustness-to-uncertainties are emphasized by exploring the
robustness curve. The reader can refer to [17, 18] for various illustrations of robust calibration strategy.

To sum-up, the important steps toward a robust calibration are:

« Construct a metamodel with the objective to replace the functional ./
* Propose an adequate info-gap model of uncertainty capable of modeling the lack of knowledge in boundary conditions;
* Compute the robustness curves with the objective to study the tradeoffs.

These steps will be performed in order to tackle the robust calibration strategy on the pump, the structure of interest within
the SICODYN project framework.

19.4 Conclusions

The first objective was to provide a two-level bottom-up calibration approach suitable for dealing with industrial FE models.
This approach was illustrated on a pump, the structure of interest within the SICODYN project framework. At the end,
a calibrated FE model capable of predicting the identified modal data was found. Nevertheless, in presence of lack of
knowledge, maximizing solely the fidelity-to-data is not the best way to improve the credibility of the model [9]. The second
objective was to formulate a robust calibration methodology for future work in order to account for lack of knowledge in the
final operational boundary conditions of the pump.
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Chapter 20
Model Validation in Scientific Computing: Considering Robustness
to Non-probabilistic Uncertainty in the Input Parameters

Greg Roche, Saurabh Prabhu, Parker Shields, and Sez Atamturktur

Abstract The origin of the term validation traces to the Latin valere, meaning worth. In the context of scientific computing,
validation aims to determine the worthiness of a model in regard to its support of critical decision making. This determination
of worthiness must occur in the face of unavoidable idealizations in the mathematical representation of the phenomena the
model is intended to represent. These models are often parameterized further complicating the validation problem due to
the need to determine appropriate parameter values for the imperfect mathematical representations. The determination of
worthiness then becomes assessing whether an unavoidably imperfect mathematical model, subjected to poorly known input
parameters, can predict sufficiently well to serve its intended purpose. To achieve this, we herein evaluate the agreement
between a model’s predictions and associated experiments as well as the robustness of this agreement given imperfections
in both the model’s mathematical representation of reality as well as its input parameter values.

Keywords Robustness to uncertainty * Experiment-based validation ¢ Uncertainty quantification * Bounded uncertainty ¢
Parameter variability

20.1 Introduction

Despite their sophistication, computer models can only provide approximations of the reality they are built to represent. As
the famous declaration of statisticians George Box and Norman Draper reminds us, “all models are wrong, but some are
useful.” Thus, the raison d’etre of a model is not to be a correct representation of reality, but to include sufficient realism
to be useful in decision making. In this paper, we are concerned with assessing the usefulness of mechanistic models which
aid in our understanding of the underlying phenomena. We should therefore consider the three distinct components of the
development process for such models:

(a) the domain in which the problem will be evaluated, typically defined by the control parameters that dictate the
environmental or operational conditions of the system,

(b) the mathematical representation of the underlying processes, also referred to as model form, defined in accordance with
the identified domain,

(c) the input parameters that characterize the properties of the system of interest in accordance with the mathematical
representations.

Proper determination of the domain is one of the key aspects of predictive modeling. The domain of applicability must be
strictly determined based upon what is necessary for decision making as the model’s internal structure will be determined
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according to this domain. Herein, we will conveniently' assume that the model developer has identified the suitable domain
(item a) and focus our attention on the selection of a model form and its associated parameter values (items b and c).

Item b declares that no model form is a perfect representation of reality. Item b is closely associated with item ¢ and
their close association raises the following question: Should we use parameter values that suitably compensate for the model
form’s imperfectness or rather those that most accurately depict the real parameters? The former is typically what is achieved
by calibrating model parameters against experiments and of course, the latter is only possible if the parameter has a physical,
measurable meaning (i.e. density of a material, geometric dimension, etc.). How should we approach this problem then if a
model’s parameters have no physical meaning, or worse, if those with physical meaning are wrongly excluded during model
idealization?

As seen, a great many complications arise in the selection of input parameters for imperfect model forms while no
universally accepted approach exists to help in their determination. Hence, the only logical way of approaching this problem
is to ensure that the selected mathematical representation (i.e. model form) must not only provide sufficiently accurate
predictions of observable reality,® but that it must do so given uncertainty in its own parameter values. The capability of a
model form in accommodating parametric uncertainties is termed robustness. A model is said to be robust if a small change
in parameter values results in model predictions that are within acceptable fidelity bounds [1-4]. Models that afford higher
uncertainties while staying robust with respect to the predictions of interest would therefore be preferable.

Section 20.2 of this paper overlays the proposed approach to evaluating fidelity and robustness of model predictions. The
development of a case study application involving the proposed approach is presented in Sect. 20.3. Section 20.4 presents a
discussion of the implications of this approach using the case-study application along with generalizations to a wide range
of practical problems. Finally, Sect. 20.5 concludes the paper and discusses limitations of the proposed approach as well as
the future direction for improvement.

20.2 Methodology

Consider a model with parameters whose variability is represented by bounded uncertainty, defining the model’s parameter
space. If that model is a locally proper, continuous function, then within the bounds of its uncertain parameter space, a small
change in the input parameters around their nominal values will yield a small change in the model’s output. The implication
is that for a compact space of input parameters, the model’s output will be compact (i.e. closed and bounded) (see Fig. 20.1).
The compact input space can be defined for instance by a predefined window of uncertainty around the nominal values.
Within the compact output, we can identify the realizations, which satisfy a certain error tolerance when compared with
experimental observation. Here, we introduce the concept of a satisfying boundary® that encompasses all the model input
parameter sets which satisfy this prescribed error tolerance. From another perspective, this boundary marks the periphery
beyond which lie combinations of parameter values which yield unacceptable model predictions. This satisfying boundary
is expected to monotonically increase in size as the error tolerance becomes less and less stringent, as shown in Fig. 20.2.

Obviously, the satisfying boundary is strongly dependent upon the model form itself. Hence, among alternative model
forms with the same set of uncertain parameters, the model with a larger satisfying boundary should be preferred as it can
accommodate increased uncertainty in its parameters while meeting the error tolerance requirement. In our study, we build
upon this concept and closely integrate two independent pieces of information: a satisfying boundary that is intrinsic to the
model form and the bounded space that is intrinsic to the uncertain model parameters.

Here, we determine a model’s probability of satisfying a given error tolerance for a given level of uncertainty in its
parameters. Hence, for a given error tolerance and uncertain parameter space, a model’s performance can be quantified by
comparing the parameter values contained within the satisfying boundary to those contained within the uncertain parameter
space. The ratio of points within the satisfying boundary to the total number of values in the uncertain parameter space yields
the model’s probability of satisfying the error tolerance. Figure 20.3 demonstrates such a case for a two-parameter model.

Knowing the satisfying boundary can help determine the impact of parameter uncertainty on the output of a model. For
instance, if 100 % of the parameter value sets within the parameter space are effectively contained within the satisfying

"Note that we have also conveniently assumed that model yields converged solutions within the time and spatial domains and that numerical
uncertainties are of little importance.

20f course, the observables must be in sufficient quality and quantity to identify the model’s flaws.

3For a model with two parameters, the size of a satisfying boundary would be defined by its area, while for a model with multiple parameters, the
size would be defined by a hypervolume.
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Fig. 20.3 Probability of satisfying the error tolerance for a two-parameter model given three distinct parameter spaces are (a) 99 %; (b) 79 %;
and (c) 62 %

boundary, parameter uncertainty can be deemed inconsequential as the model predictions satisfy the error tolerance
requirement regardless of parameter uncertainty. Thus, the model form can be said to be robust and able to make reliable
predictions. However, if this is not the case, then we can resort to quantifying the probability that the model output will satisfy
the error tolerance given the uncertainty of its parameters. If the probability of satisfying is inordinately low, it may indicate
a problem with either (1) the model form or (2) the nominal parameter values suggesting that we must invest in developing
a better model form or in better defining our parameters. Figure 20.4 demonstrates such a case where the probability of
satisfying the error tolerance is 0 %. As the uncertain parameter space expands, some model instances may begin to satisfy
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Table 20.1 Input values for the Property description Beams and columns
portal frame -
All member lengths (in.) 120
Cross-sectional area (in.2) 4.44
Moment of inertia (in.*) 48.0

Young’s modulus (ksi) 29,000

the error threshold leading to a counterintuitive increase in probability of satisfying with increasing parameter uncertainty.
Such behavior can point to the imperfections in either the model form or the nominal parameter values.

While parametric uncertainties can be reduced by additional data collection and further analysis, we should first inquire
as to whether a reduction in parameter uncertainty will improve the usefulness of the model. It is logical that if the parameter
uncertainty has only a modest impact on a model’s probability of satisfying a prescribed error tolerance, the dedication
of resources towards reducing such uncertainty would seem frivolous and inefficient. Hence, in our evaluation, we do not
require that a single value be specified for the uncertainty in a model’s input parameters. Instead, an array of differing levels
of uncertainty can be studied to observe how a model’s probability of satisfying the fidelity tolerance changes with varying
levels of parametric uncertainty. Of course, a higher probability of satisfying relates to an increase in the worthiness of a
model for its intended use. Such trade-off analysis allows us to measure the impact of efforts aimed at reducing uncertainty.

20.3 Proof-of-Concept Demonstration: Steel Moment Resisting Frame

In steel frame structures, the connection stiffness values are typically highly uncertain due to the natural variability of material
properties and geometries as well as the construction practices used to erect them [5, 6]. Hence, these parameters are treated
as uncertain parameters to be calibrated within this study.

20.3.1 Description of Frame Structure

The 2-D frame shown in Fig. 20.4 is constructed with vertical columns that rest on fixed supports, while the beams are
rigidly connected to the columns at both levels. The connections at the top of the first story columns are assumed to be
imprecisely known and thus, modeled with uncertain stiffness. Here, the connections are represented with linear rotational
springs. All members of the portal frame have uniform dimensions with the geometric data and material properties provided
in Table 20.1. Static, horizontal loads are applied to the portal frame as shown and the members are oriented to bend about
their strong axes.
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Fig. 20.5 Single-bay, two-story Y
portal frame with rotational 1
springs at the top of the first story P > <+ =]|
columns

Y 2
==\
P K
\@x, @Px,
Table 20.2 Exact values and
i 1 t. f 1 t K 1 Kz
simulation ranges for inpu
parameters K, and K, Exact value 10 10
Lower bound 5 5

Upper bound | 15 15

20.3.2 Synthetic Experiments and Competing Model Forms

In the development of the mathematical representation, a number of simplifying assumptions may be established or
idealizations may take place leading to multiple competing model forms. In this section, we demonstrate how the probability
of satisfying the error tolerance can be used to compare three distinct model forms with varying levels of model imperfectness
(i.e. prediction bias).

Experimental data describing the frame’s translation and rotation response at each connection (while subjected to the
loading conditions shown in Fig. 20.5) is synthesized using the so-called exact model built using the Timoshenko beam
theory [7]. This exact model not only accurately accounts for the effects of axial, shear, and flexural deformations but also
uses the nominal values of K; and K, (Table 20.1).

Alongside the exact model, two inexact (biased) model forms are built: one that underestimates and one that overestimates
the shear area within the Timoshenko beam matrices. Hence, the two inexact models will inaccurately account for the shear
deformations, while all three models will contain uncertainty as to which values of K and K, are appropriate for the analysis.
These inaccurate and imprecise models will thus result in unavoidable disagreements between predictions and experiments
offering a decision maker three alternative options.

20.4 Assessment of Uncertainties Steel Moment Resisting Frame

20.4.1 Exact Model with Uncertain Input Parameters

The exact values for K; and K, as well as the bounds of the parameter space are provided in Table 20.2. For the various
combinations of K; and K, the model predictions are compared to the synthetic experimental data to calculate the prediction
error. Here, two outputs of the frame are selected namely the rotation at the first story and the translation at the top story
(marked as Y| and Y, respectively in Fig. 20.5). The corresponding prediction error R; and R, are the percentage difference
with respect to the exact model. Figure 20.6 illustrates the relationship between the error in the model output (i.e. lack of
fidelity) and the two parameter values.

Subsequently, satisfying boundaries are generated for varying error tolerances, R., shown in Fig. 20.7. R, is varied from
0 % to 5 % prediction error in steps of 0.5 %. In Fig. 20.7, each contour corresponds to an error tolerance level R, such
that all instances of K; and K, that lie within the contour satisfy the error tolerance. As expected of a continuous system,
the satisfying boundaries are nested with their size increasing as error tolerance increases. The model form used in the
development of this figure was “exact,” which is why the nominal parameter values are encompassed within the satisfying
boundaries.
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Fig. 20.7 Nested sets of satisfying boundaries for increasing levels of error tolerance for the exact frame model for (a) output Y; and (b) Y;. The
black dot represents the location of the nominal parameter values

20.4.2 Inexact Models with Uncertain Input Parameters

The two inaccurate finite element models studied herein underestimate and overestimate the shear area of the beam and
column elements by 25 % (i.e., 75 and 125 % shear area, respectively). This intentional error is meant to mimic a possible
modeling mistake as it results in biased model predictions. The satisfying boundaries for the two inexact models are shown
in Figs. 20.8 and 20.9.

As seen in Fig. 20.8, the underestimation of shear deformation causes the satisfying boundaries to shift downwards, which
is evident when compared to the corresponding satisfying boundaries obtained from the unbiased model shown in Fig. 20.7.
An important observation we can garner from Fig. 20.7 is that the nominal parameter values represented by the black dot
(K; =K, =10) in Fig. 20.8 are no longer encompassed by the initial (smallest) satisfying boundaries. This is the result of
the inherent bias in the predictions of these two inexact models. Figure 20.9 shows the satisfying boundaries for the frame
model with the shear area overestimated by 25 % and a bias in the opposite direction.
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Fig. 20.8 Nested sets of satisfying boundaries for increasing levels of error tolerance for the biased frame model (25 % lower shear area) for (a)
output Y| and (b) Y,. The black dot represents the location of the nominal parameter values
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Fig. 20.9 Nested sets of satisfying boundaries for increasing levels of error tolerance for the biased frame model (25 % higher shear area) for (a)
output Y; and (b) Y,. The black dot represents the location of the nominal parameter values

20.4.3 Utilizing the Satisfying Boundaries

The satisfying boundaries for the three competing models (one exact and two inexact) shown in the previous section
are used herein to evaluate the probability of satisfying predefined error tolerances considering the bounds of uncertain
parameter spaces. In this evaluation, multiple parameter spaces that are nested around the nominal values (K; =K, = 10)
are considered. These nesting parameter spaces increase in size from 5 to 50 % of their nominal values in steps of 5 % as
show in Fig. 20.10.

This evaluation is repeated for increasing levels of error tolerance throughout a range of 0-5 %, in steps of 0.5 %.
Figure 20.11 displays the relationship between the varying levels of error tolerance in model predictions, the parameter
uncertainty and the subsequent probability that the model satisfies this predefined error tolerance. Since two outputs, namely
the rotation at the first story and the translation at the top story of the steel frame, are considered, the joint probability of
satisfying the error tolerance in both outputs is calculated (see Fig. 20.11).
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Fig. 20.11 Three-dimensional plot showing trade-off between probability of satisfying, error tolerance and parametric uncertainty for the
(a) accurate model, (b) inaccurate model with 25 % underestimated shear area and (c) inaccurate model with 25 % overestimated shear area

It can be observed from Fig. 20.11 that as error tolerance increases so too does the probability of satisfying the error
tolerance. The rate of increase depends on the level of bounded uncertainty. When the uncertainty in the parameters is low,
the probability is observed to increase at a more rapid rate than when the uncertainty in the parameters is high. The light
region in Fig. 20.11 represents the situation where the model is not suitable for its intended use (as defined by the error
tolerance) given the available knowledge (as defined by the parametric uncertainty). On the other hand, the dark region
in Fig. 20.11 represents the situation where the model is a good fit for its intended use. This region is obtained when the
experimental uncertainty approaches lower values and when the error tolerance approaches higher values. The model with the
exact form (Fig. 20.11a) displays larger dark region compared to the two inexact models (Fig. 20.11b, c). Hence, Fig. 20.11
can be used as a diagnostic tool to identify the usefulness of a computer model.

Figure 20.12 depicts the relationship between the probability of satisfying the error tolerance and the error tolerance itself
for 30 % uncertainty in K; and K. As can be seen in Fig. 20.12, for an error tolerance of 0 %, the corresponding probability
of satisfying this tolerance is 0 %, meaning that no model form can accommodate the given level of uncertainty and satisfy
the required error tolerance. Only by increasing the error tolerance does the probability of satisfying this tolerance increases.
It can be observed in Fig. 20.12 that the exact model consistently yields a higher probability of satisfying the error tolerance
compared to the two inexact models. Furthermore, exact model’s probability of satisfying the error tolerance increases more
rapidly with error tolerance (higher slope) than the two imperfect models. Although Fig. 20.12 demonstrates this observation
for a constant level of uncertainty, this finding is noted to be valid throughout the entire parameter space evaluated herein.

Figure 20.13 plots probability of satisfying the error threshold of 3 % as a function of uncertainty in the input parameters.
This plot allows the model developer to observe a potential improvement that can be gained in the probability of satisfying
the desired error tolerance by reducing the uncertainty in the input parameters. For instance, if the developer of the exact
model wants to ensure at least 90 % probability of satisfying the 3 % error tolerance, then it is clear that resources must be
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allocated to ensure that the uncertainty in the input parameters is lower than 20 %. On the other hand, Fig. 20.13 also shows
that for uncertainty levels of 15 %, the exact model yields predictions that are 100 % within the error tolerance. Hence, from
this figure, a modeler can deduce that allocating resources for reducing uncertainty below 10 % is not justifiable.

Also note in this figure that, for small levels of parameter uncertainty, all three competing model forms yield the same
probability of satisfying the error threshold (i.e. 100 %). Hence, in this particular example, if uncertainty in the parameters
is less than 10 %, attempts to improve model fidelity to reduce model bias are not justifiable. Increased levels of parameter
uncertainty however lead to a reduction in this probability of satisfying the error tolerance and hence the role of bias once
again becomes important. For very high levels of parameter uncertainty, all three models converge to unacceptably low
probabilities of satisfying the error tolerance. Figure 20.13, like Fig. 20.12, can be used as a comparative tool and aid in model
selection. For instance, a decision maker may establish a minimum probability of satisfying requirement and subsequently
evaluate which model performs best given varying degrees of parameter uncertainty.

Alternatively, one can evaluate the relationship between the fidelity of model predictions and parameter uncertainty
for a given probability of satisfying (shown for 80 % in Fig. 20.14). The two inexact models are inadmissible when the
parameter uncertainty is less than 18 %. This can be explained by the fact that, for the biased models, the nominal parameters
lie outside of the satisfying boundary (recall Figs. 20.8 and 20.9) resulting in the parameter spaces corresponding to low
uncertainty falling entirely outside the satisfying boundary. This concept, demonstrated earlier in Fig. 20.4, supplies a means
for diagnosing fundamental flaws in either our model forms or the values associated with the parameters of these model
forms.
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20.5 Conclusion

In numerical modeling, uncertainties arise due to imprecisely-known input parameter values just as biases arise from our
imperfect understanding of the underlying physics. This manuscript has presented a method to evaluate the usefulness of
models for their intended use given the availability of information. This evaluation is completed considering three criteria.
The first criterion, which relates to a model’s intended use, involves the desired fidelity of model predictions to experimental
observation. The second criterion, which relates to the availability of information, concerns how well a model can maintain
these desired fidelity levels given uncertainty in its input parameters. The last criterion combines the first two criteria by
assessing a model’s probability of satisfying a predefined error tolerance requirement.

In this paper, we introduced the concept of a satisfying boundary, which maintains a compact form for proper continuous
functions. Deriving the satisfying boundary of a 2-dimensional model allows us to visually observe the trade-off between
the allowable error in the model predictions and the probability of achieving predictions that indeed satisfy this tolerance
for a given uncertainty in model parameters. This evaluation can be repeated for various levels of parameter uncertainty to
investigate the aforementioned qualities. This process allows us to observe how the model reacts to uncertainty in its input
parameters.

Here, the individual tasked with validating the model must establish certain adequacy criteria regarding the tolerable error
in model predictions or the desired probability of ensuring that the model satisfies this tolerable error. For a given level of
uncertainty, only one of these two criteria need be known or defined, from which the third can then be determined. In these
instances, knowledge of the trade-offs between these two criteria can afford a decision maker useful insight in selecting the
most useful or appropriate values based upon the model’s intended application.

The discussion in this paper is limited to proper continuous functions to ensure compactness of the satisfying boundary.
For our application, satisfying this requirement locally around the nominal values of uncertain parameters is sufficient.
However, relaxing this assumption may result in discontinuous or non-compact satisfying boundaries. Therefore, future
work is necessary to explore this occurrence in hopes of determining its implications and how model validation should occur
in these instances.
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Chapter 21
Robust-Optimal Design Using Multifidelity Models

Kendra Van Buren and Francois Hemez

Abstract Applications in engineering analysis and design have benefited from the use of numerical models to supplement
or replace the costly design-build-test paradigm. Previous work has acknowledged that design optimization should not only
consider the performance of the model, but also be as insensitive as possible, or robust, to sources of uncertainty that are used
to define the simulation. Clearly, evaluating robustness to sources of uncertainty can be computationally expensive, due to
the number of iterations required at every step of the optimization. Multifidelity techniques have been introduced to mitigate
this computational expense by taking advantage of fast-running lower-fidelity models or emulators. Herein, to achieve robust
design, we argue that it is more effective to reduce the total range of variation in model performance rather than to reduce the
standard deviation of model performances due to uncertainty in calibration variables of the model. We utilize a multifidelity
approach to apply this paradigm to a sub-problem of the NASA Uncertainty Quantification Challenge problem, which is a
high-dimensional and nonlinear MATLAB-based code used to simulate dynamics of remotely operated aircraft developed at
NASA Langley. This method demonstrates an alternative and computationally efficient approach to robust design.

Keywords Robust design * Multi-fidelity optimization * Metamodels ¢ Uncertainty ¢ Info-gap

21.1 Introduction

Numerical models have become accepted to study the behavior of complex phenomena that are difficult or costly to measure
experimentally. As such, numerical models can be used to replace the costly design, build, test cycle by being able to study
the behavior of candidate designs. For example, in wind energy applications, numerical models have been proposed to
study the placement of wind turbines within a wind farm, such that power output can be maximized and fatigue failure due
to wind-to-turbine and turbine-to-turbine interactions can be minimized [1]. Optimization techniques can be exploited to
efficiently search for the best-performing design, however, the added computational cost of performing an optimization often
necessitates the use of a fast-running emulator to expedite the analysis.

Herein, we assume that models are defined using calibration variables, 0, and design parameters, p. Calibration variables
are parameters of the model that are introduced due to modeling assumptions, for example parameters that describe material
strength, such as a linear young’s modulus. Calibration variables will carry some uncertainty because of inherent variability in
manufactured products, and because of our inability to perfectly represent physics in a numerical model. Design parameters
are those that are known, for example the dimensions of a building. It is emphasized that the “best” design is unknown,
however, once a design is chosen the design parameters are known exactly. Thus, the goal of robust design is to find the
design, as defined by the design parameters, p, whose predicted performance is as insensitive as possible to uncertainty
introduced by the calibration variables, 0.

In robust design, it is common for these uncertainties to be described using probability distributions; however, the
formulation of probability distributions can affect the conclusions of the robustness analysis [2]. A typical approach to
probabilistic-based robust design is to assume the form of probability definitions and then minimize the uncertainty, as
described by hyper-parameters of the probability distributions. Which probability distribution (uniform law, normal law,
beta law?) to assume might be a challenging proposition. In some applications it may be more appropriate to apply a
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non-probabilistic methodology if little is known about the actual behavior of the calibration variables, such that unwarranted
assumptions about probability functions are minimized. One such alternative to describe uncertainties is info-gap decision
theory, which does not require the formulation of probability laws if such information is not available [3]. Rather,
uncertainties are treated as a Knightian uncertainty, or info-gap, in which no assumption is made about the shape of the
uncertainty distribution.

There can also be a high computational cost to robust design. The computational expense often arises due to the fact
that the numerical model must be executed several times to explore the variability defined by the uncertain calibration
variables. Exploring the performance of competing designs by optimizing the design parameters, adds another “layer” of
numerical simulations. Often, the high-fidelity, physics-based numerical simulation can be replaced with a mathematical-
based surrogate model, also known as a metamodel (or emulator), that is computationally insignificant to evaluate. It is
emphasized that metamodels offer an additional source of uncertainty when pursuing robust design [4]. In some applications,
there can also exist physics models of varying levels of complexity that can be used to simulate the same phenomena of
interest. It is commonly desired to utilize the physics-based numerical model of highest fidelity, however, this option might
be infeasible due to the computational demands required by the simulation. For these reasons, multi-fidelity approaches
have been proposed, whereby the high-fidelity numerical model is supplemented by simulations from either a lower-fidelity
physics-based model or a mathematical-based surrogate model [5].

Herein, we describe our approach to robust design in which we incorporate our non-probabilistic definition of robustness,
as defined by info-gap decision theory, into a multi-fidelity optimization framework. The remainder of the paper is organized
as follows. In Sect. 21.2 we present our approach to robust design in the context of info-gap decision theory. This approach
is then implemented into the multi-fidelity paradigm, as described in Sect. 21.3. As a proof-of-concept, we demonstrate the
approach on a sub-model of the NASA Challenge Problem, as discussed in Sect. 21.4. The drawbacks of our approach,
avenues for future work, and overall conclusions are summarized in Sect. 21.5.

21.2 Info-Gap Approach to Robust Design

This section provides an overview of info-gap decision theory (IGDT) such that the reader has an understanding for how
robustness is defined in our analysis. Herein, robustness describes the worst-case performance predicted by the model
whereas opportuneness describes the best-case performance. Further details of IGDT and its implementation can be found
in [3] and [6, 7]. We emphasize that a model that is robust to uncertainties is one that can tolerate a high level of uncertainty
with the guarantee of delivering an expected performance. Hence we do not attempt to describe the probability law of
performance, for a given design, using statistical sampling. Instead we search for the worst-case and best-case performances
that meet user-defined performance requirements.

Implementation of IGDT necessitates the combination of three attributes: (i) the model, (ii) the performance criterion,
and (iii) the info-gap model used to represent what is unknown about the decision. As described previously, we assume that
a model is defined by its calibration variables, 0, and design parameters, p. The model represents the relationship between
these inputs and model outputs, y, as described in Eq. 21.1:

y=f(;p). (21.1)

Performance, denoted herein as R, is a scalar quantity used to determine the ability of the model to satisfy a critical
performance value, Rc. The performance quantifies the ability of the design to meet an expected performance criterion, for
example maximum deflection due to external loads, as suggested in Eq. 21.2:

R(p) =y < Re. (212)

The uncertainty that we wish to be robust to originates from the uncertain calibration variables. The info-gap model,
U(a; 6g), describes how the uncertain calibration variables, 0, vary with respect to their nominal values or settings.
The nominal values, 6y, denote the best-available knowledge that is used as the starting point of the analysis. The
“distance” between the current knowledge, 6y, and hypothetical settings, 6, which could be selected for decision-making, is
parameterized using a single scalar quantity, o, denoted as the horizon-of-uncertainty:

Ul(a:6p) =400 =6l =a}.a=0. (21.3)
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Fig. 21.1 Nominal info-gap plot
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When o = 0, the uncertain variables remain fixed at their nominal settings, 6 = 0. As the horizon-of-uncertainty increases,
the calibration variables, 0, are allowed to vary and more settings are taken into consideration. Each setting leads to a
different model that can be evaluated against the performance criterion, as defined in Eq. 21.2. Equation 21.3 shows that, at
a fixed horizon-of-uncertainty, o, the set U(a; 6p) defines a family of models that can be explored to search for variability in
performance, given the amount “o” of calibration variable uncertainty.

With these three attributes defined, robust design in the context of an info-gap analysis searches for the design that is
defined using calibration variables, 0, that can potentially deviate from the best-available knowledge 6y by the greatest
amount o, and simultaneously satisfy the performance criterion of Eq. 21.2. When searching for the worst-case performance,
robustness is achieved if the model can tolerate deviations from its nominal settings, as quantified in Eq. 21.3, while delivering
the expected level of performance, Rc, as quantified in Eq. 21.2. Conversely, opportuneness is achieved if the best-case
performance of the model, as it deviates from its nominal settings Eq. 21.3, improves the critical performance level, R¢, of
Eq. 21.2.

Conceptually, the robustness, @, of an info-gap analysis quantifies the degradation of performance as the horizon-of-
uncertainty o increases, while the opportuneness, B\, quantifies the potential improvement in performance. Mathematically,
these functions depend on the target critical performance, R, and are defined as:

arg max . max

o arg min . min
«az0 | peUlpsa)

R(p) < Rc¢ and B = a>0 a'pEU(po'oe)

R(p) = Rc - (21.4)

o=

Solving the robustness and opportuneness conditions defined in Eq. 21.4 involves two nested optimization problems.
This can be computationally expensive, especially if large numbers (for example, more than five or six each) of design
parameters, p, and calibration variables, 0, are considered. To bypass this difficulty, we focus on a multi-fidelity approach of
the inner optimization, as discussed further in Sect. 21.3 at a fixed horizon-of-uncertainty o. The worst-case and best-case
performances are searched for, given that the uncertain calibration variables are allowed to vary within their lower and upper
bounds. Strictly speaking, a critical level of performance, R¢, need not be defined when the robustness and opportuneness
functions are explored, as described previously.

A representative info-gap plot is provided in Fig. 21.1, where smaller performance values are more desirable than larger
performance values. As the horizon-of-uncertainty o increases, the best-case and worst-case performances start to deviate
from the nominal performance, as demonstrated by the notional shapes of the opportuneness and robustness functions. The
info-gap plot of Fig. 21.1 quantifies, first, by how much model predictions vary and, second, the range of predictions that are
obtained at any given horizon-of-uncertainty.

21.3 Optimization Using Multifidelity Approach

In this section, we discuss how the info-gap concept of Sect. 21.2 is incorporated into the multi-fidelity framework. The
goal is essentially to incorporate into the design optimization a criterion for reducing the range of predicted performance
values at a particular horizon-of-uncertainty, a. Herein, we place a particular emphasis on reducing the range of predictions,
however, it is easily amenable to incorporate other performance criteria into the optimization. One could elect, for example,
to optimize the mean (average) or worst-case performance given the uncertainty of calibration variables, 0.

The basic paradigm for how the multi-fidelity approach can be applied to a robust design optimization is illustrated in
Fig. 21.2. At any iteration within the robust design optimization, a candidate design, p, is chosen, as indicated by the box
at the top of the figure. To determine the range of performances, which is used to quantify the robustness of the design, an
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optimization routine is required that searches for the minimum and maximum performances of the candidate design. Clearly,
it is computationally expensive to repeat this optimization for all candidate designs that are evaluated in the optimization
routine. For computational efficiency, a relatively small number of samples of the high-fidelity model is supplemented with a
large number of samples taken using the low-fidelity model, as shown by the boxes in the lower left of Fig. 21.2. This multi-
fidelity step provides a real potential to significantly reduce computational demands, because fewer evaluations of the high-
fidelity model are required. It is emphasized, however, that the multi-fidelity framework can only provide an approximation
of the statistics that would have been obtained if only the high-fidelity model were utilized. The multi-fidelity sampling
provides the information necessary to evaluate the robustness. We then return to the outer optimization loop, where we
decide whether we have converged to the robust-optimal design and therefore terminate, or if a new candidate design is
chosen and the process repeated.

Herein, the multi-fidelity approach implemented in [5] is utilized to approximate the statistic, S5, used to define the
performance of a given design. This approximation combines predictions from the high-fidelity model (with a small number
of evaluations) and low-fidelity model (with a large number of evaluations), as shown in Eq. 21.5:

Si=a, +« b, —by), m>n. (21.5)

where a, indicates estimation of the statistic using n simulation runs from the high-fidelity model, b, and by, indicate
estimation of the statistic using n and m simulation runs from the low-fidelity model, and « is used to control how much
correction we are willing to accept from the low-fidelity model. Herein the statistic, S5 that we are evaluating is the range
of performance predictions. The high-fidelity model is sampled n times, indicated by the a, evaluations, and the low-fidelity
model is sampled at the same n settings as the high-fidelity model, indicated by the b, evaluations. Due to the computational
efficiency of the low-fidelity model, it is sampled an additional m times, indicated by the b, evaluations. Ideally, the number
of times that the low-fidelity model is sampled will be much larger than then the number of times the high-fidelity model
is sampled. It is emphasized however, that there is no guarantee for the global optima of the low-fidelity model to be at the
same location as the high-fidelity model.

21.4 Application to the NASA Uncertainty Quantification Challenge Problem

In this section, we utilize the NASA Uncertainty Quantification Challenge problem to demonstrate our approach to robust
design, as discussed in Sects. 21.2 and 21.3, in a multi-fidelity optimization framework. The NASA challenge problem is used
to describe dynamics of the Generic Transport Model, remotely operated aircraft developed by the NASA Langley Research
Center. The numerical model is provided to us as an executable Matlab™ code that we treat as a black-box problem [8, 9].
Five submodels are used to define the problem. Herein, we demonstrate the multi-fidelity optimization on one submodel of
the problem. The submodel is defined by a total of five variables, three of which we define as calibration variables and two
as design parameters, as indicated in Eq. 21.6:

y=f(01.0:,03,p1.p2). (21.6)
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In accordance with the discussion in Sects. 21.2 and 21.3, we wish to optimize the pair of design parameters (p;; p2) to search
for the design that meets the user-defined performance requirement, R¢, while being as robust as possible to the uncertainty
defined for the triplet of calibration variables (81; 0,; 63). Monte Carlo sampling of the model demonstrates that the model
output is highly nonlinear, as shown in Fig. 21.3. The vertical black lines indicate the mean and =+ one standard deviation
range of the output. The grey region indicates the model output that has entered the failure domain, as defined by the NASA
challenge problem moderators. The main takeaway message of Fig. 21.3 is that there is no guarantee that the model output
can be accurately described by its mean and standard deviation, or any other type of commonly used probability distribution
function. This observed nonlinearity further motivates the need to optimize the robustness of the model through use of the
overall range of predictions obtained in the model output.

A polynomial emulator of the model is developed to be utilized as the low-fidelity counterpart in the multi-fidelity
optimization. We use a third order polynomial model of the five variables (p;; p2; 01; 62; 03), trained using 243 runs of the
high-fidelity model from a five-level full factorial design. The goodness-of-fit of the emulator is shown in Fig. 21.4, whereby
the predictions of the polynomial emulator are plotted with respect to the x-axis, and the predictions of the submodel of
the NASA problem are plotted on the y-axis. The black, dashed line plotted on the 45-degree diagonal represents what the
comparison would look like if there were perfect agreement between the emulator and the NASA submodel. In this case
however, the emulator is only able to capture some of the global trends of the NASA submodel. While this may not be the
best-possible goodness-of-fit, it is representative of the fact that a low-fidelity model is not guaranteed to accurately capture
the behavior of a high-fidelity model. The goal here is not to find the best-fit emulator for the challenge problem, but rather
to see how well the multi-fidelity optimization works when an emulator that captures the overall trend of the model is used
to supplement the numerical model calculations.

We perform an unconstrained optimization, meaning that we attempt to find the design with the least amount of variability
regardless of the response. Constraints can be easily added to the procedure such that other design requirements, for
example minimum deflection or stresses, are also met. Because the NASA submodel is relatively cheap to execute, a
global optimization search using only the high-fidelity model is also performed to search for the robust-optimal design.
A comparison of the two designs, obtained either by direct optimization of the high-fidelity model or through the multifidelity
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Fig. 21.6 Monte carlo sampling of the uncertain calibration variables plotted against p; (left) and p2 (right)

optimization procedure, is given in Fig. 21.5. The figure shows the robustness functions of the two design optimization
strategies. Each robustness function maps the variability of design performance (horizontal axis) as the three calibration
variables deviate more-and-more from their nominal values (vertical axis). As expected, there is less variability in the model
output of the design obtained through direct optimization of the high-fidelity model than there is with the design provided by
the multi-fidelity framework. This is to be expected due to the fact that optimization utilizing only the high-fidelity model is
more likely to converge to the global optimum.

Monte Carlo sampling of the uncertain calibration variables is performed next to investigate the behavior of the model
and understand why the robust-optimal designs obtained using the multi-fidelity and high-fidelity optimizations behave
differently. The variation of predictions with respect to the two design parameters are plotted in Fig. 21.6, with the first
design parameter, p;, shown on the left and the second design parameter, p,, shown on the right. Each black dot represents
a performance predicted by the model of Eq. 21.6 for a given set of design parameters (p;; p2), and when the triplet of
calibration variables (6; 65; 03) is “sampled.” The vertical green dashed lines indicate the design parameter values obtained
through the multi-fidelity optimization, and the vertical blue solid lines indicate the design parameter values obtained through
the optimization that utilizes only the high-fidelity model. It is shown that the optimization using only the high-fidelity model
is able to converge to the global optimum, as evidenced by the reduced range of variability in the scatter. The multi-fidelity
approach, however, comes close but is unable to accurately identify the global optimum. This finding clearly shows the
difficulty of the multi-fidelity optimization to converge to the global optima. We believe that the explanation for this difficulty,
in addition to relying on the approximated statistic given in Eq. 21.5, is the fact that the low-fidelity surrogate model is not
an accurate representation of the high-fidelity model, as evidenced in Fig. 21.4.
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21.5 Conclusions

This manuscript discusses a multifidelity approach to robust design whereby we utilize a non-probabilistic robustness
criterion as defined by info-gap decision theory. In doing so, the uncertainty in design parameters is treated differently
from the uncertainty in the calibration variables. Whereas design parameters are uncertain because the “best” design is
unknown, calibration variables are uncertain because of inherent variability. Thus, the goal is to identify the robust-optimal
design whose predicted performance is as insensitive as possible to uncertainties in the calibration variables. We do not
seek a design that delivers the absolute “best” performance, rather, one that delivers a performance which meets the user-
defined requirement while being as insensitive, or robust, as possible to the calibration variable uncertainty. Herein, we define
our robustness criterion in the context of info-gap decision theory. In doing so, we remove the need for any unwarranted
assumption about the formulation of probability distribution functions used to describe uncertainty in the problem. The
robustness criterion is incorporated into a multifidelity approach to optimization, which has the potential to significantly
reduce the cost of a robust design optimization.

Our approach is demonstrated on a submodel of the NASA Uncertainty Quantification Challenge problem. It is shown
through Monte Carlo sampling that the model output is highly nonlinear, and that it would be potentially misleading to
describe its uncertainty by its mean and standard deviation. Utilized in the analysis is the original physics-based code to
represent our high-fidelity model, and a polynomial-based emulator used to represent the low-fidelity model. We demonstrate
that using an optimization procedure of the high-fidelity model only is able to converge to the global maximum of the
optimization, however, the multi-fidelity approach is unable to do so with a similar level of accuracy. This is likely due to
the fact that there is no guarantee that the global minimum of our low-fidelity model will match the global minimum of the
high-fidelity model. For applications where the low-fidelity model is a fast running mathematical surrogate, not necessarily
grounded in physics, it is obvious that the high-fidelity model is more trustworthy. However, in applications where the low-
fidelity model is based on physics principles, it may be unclear which model should be trusted more. How to efficiently
combine the predictions of low-fidelity and high-fidelity models based on their respective levels of trustworthiness, is a
direction of research that warrants more work in the future.

Future work includes extending the analysis to an application whereby the low-fidelity model is a physics-based model
rather than a mathematical surrogate. Further, we would like to extend the current analysis to cases where the calibration
space of the high-fidelity model is of a different nature than the calibration space of the low-fidelity model. Addressing
these topics should help demonstrate further the potential that a multifidelity simulation approach offers for uncertainty
quantification and robust design.
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Chapter 22
Robust Modal Test Design Under Epistemic Model Uncertainties

Fabien Maugan, Scott Cogan, Emmanuel Foltéte, and Aurélien Hot

Abstract A wide variety of model-based modal test design methodologies have been developed over the past two decades
using a non-validated baseline model of the structure of interest. Due to the presence of lack of knowledge, this process can
lead to less than optimal distributions of sensors and exciters due to the discrepancy between the model and the prototype
behaviors. More recent strategies take into account statistical variability in model parameters but the results depend strongly
on the hypothesized distributions.

This paper provides a decision making tool using a robust satisficing approach that provides a better understanding of the
trade-off between the performance of the test design and its robustness to model form errors and associated imprecisions. The
latter will be represented as an info-gap model and the proposed methodology seeks a sensor distribution that will satisfy
a given design performance while tolerating a specified degree of modeling error. The evolution of this performance for
increasing horizons of uncertainty is an important information for the test planner in choosing the total number of sensors.

Keywords Sensor placement * Robustness ¢ Info-gap ¢ Uncertainty * Lack of knowledge

22.1 Introduction

The increasing size and complexity of spacecraft structures make it necessary to plan base excitation tests in view of
performing a modal identification. This can be particularly important when the identified behaviors are to be used in test-
analysis correlation or model calibration procedures. The performance of a test design is generally measured in terms of its
ability to excite and observe the target modes of interest.

Therefore in the past three decades, a wide variety of deterministic model-based strategies have been developed to
define an optimal configuration of sensors and actuators. In most cases, an optimal design is one which provides the best
observability and distinguishability of the identified eigenmodes. For example, methodologies based on the Guyan reduction
[10, 11], the effective independence criteria [8], the constraint energy of the structure [7], the QR decomposition of the modal
matrix [13] or the Orthogonal Maximum Sequence (OMS) [3].

Improvements in computing resources and an increased awareness of the importance of uncertainties in engineering
decision-making has given arise to stochastic approaches such as presented in [1] based on residuals, in [12] using the
entropy, or in [5] where classical sensor location methodologies are employed to examine the influence of parametric
uncertainties. However, these methodologies are not necessarily well adapted to lack of knowledge in the finite element
model resulting, for example, from poorly understood behavior laws, neglected physics, or other commonly encountered
sources of ignorance. Indeed, model-based test design is generally based on non-validated finite element models. In the
space industry, the structural FEM is generally composed of different subsystems models provided by the subcontractors.
All of these models have different degrees of accuracy in modeling the true hardware behavior and this situation often leads
to significant errors in the predicted modal forms due to poorly estimated stiffness, mass and damping properties. The impact
of these errors on the modal properties of the structure are discussed in [9], and various solutions have been proposed to
propagate uncertainties through the finite element model in order to determine the corresponding uncertainties in the modal
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properties [2, 4]. A robust sensor placement methodology accounted for imprecise parameter estimations was proposed [15].
This paper takes a second look at this robust satisficing methodology and proposes a more efficient approach for selecting
sensor degrees of freedom.

22.2 Robust Test Design Methodology

It is widely recognized that random uncertainties in a system and its environment must be taken into account in most
engineering design processes [14] and an overview of robust design strategies in structural dynamics can be found in [16].
However, uncertainty can arise in many forms and modeling errors are not necessarily random in nature. For example,
errors in model form or imprecise parameter values often require non-probabilistic approaches to be accounted for correctly.
Moreover, the concept of robust design is not restricted exclusively to structural design, it is also a useful concept in the
development of algorithms. In the following, we seek to define a new strategy in order to maximize the robustness of a
model-based sensor placement design for vibration tests to errors in the finite element model.

A sensor distribution should be able to observe and distinguish the set of target structural eigenmodes. In a standard
deterministic approach, a single modal basis of the baseline model is used. In what follows, an approached based on a set
of model bases will be used all of which are realizations consistent with the assumed modeling errors. The first step is to
obtain these modal bases consists in establishing a model linking the unknown model inputs with the target eigenmodes of
the structure :

M(m;) = ®; (22.1)

In order to account for model uncertainties, the approach adopted here consists in sampling the uncertain model design
space to generate a set of modal bases ® such as & = [®y,---, Oy] by running N times the finite element model. Within
the framework of the info-gap theory, this sampling must be done following an uncertain model I/ (oe, m(o)) where m is the
vector of uncertain parameters, m? is the nominal parameter values, and « the horizon of uncertainty. This model must
represent the physics of the parameter uncertainty and define an interval in the uncertain design space where the unknown
parameters are allowed to vary. In the context of this paper, a simple envelope-bound model is used:

u (a,m“”) = {m : ‘mi —ml(o)) < awiml(-o), i=1,. ..,p} (22.2)

Once the sample is computed, the target behaviors of the uncertain system responses must be extracted. For this purpose,
a Singular Value Decomposition (SVD) [6] of the ® matrix is performed such as U ZVT = ®. The results are three matrices
which can be describe in a mechanical way by:

* U : orthogonal matrix containing the left singular vectors that are the singular directions, also called proper orthogonal
modes (POM)

e X : pseudo-diagonal matrix containing the singular values, also called proper orthogonal values (POV) and linked to the
POM energy

e V :orthogonal matrix containing the right singular vectors, temporal modulation of POMs

The singular values given by this decomposition allows to build a reduced but representative subspace to model the system
by only choosing the higher singular values and there corresponding singular vectors. If the modeling errors have only a
weak impact on the structural behavior, then this subspace will not doubt be reduced to the baseline eigenmodes. However,
as uncertainty increases the realizable modal space can become richer. If the discrepancy between the baseline modes and
the modified ones is large enough, the subspace will gain new vectors in order to take into account this new behaviors. The
dimension of this subspace conditions the number of points to instrument with sensors in order to observe all the linear
independent phenomena.
The reduced problem can be written as:

(U« KxU, —olU" « M xU,) ¢, =0 (22.3)

Where U, is composed of the selected singular vectors of U. Solving the above system yields an approximation to the
eigensolutions of the system (K — w, M) ¢, = 0.
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This new system produces a reduced modal basis ® which contains the main behaviors the structure can adopt for a
given horizon of uncertainty. The robust sensor distribution methodology must then find the locations that maximize the
identification and the distinguishability within this modal space. That is why ® will be decomposed by QR algorithm such as
OR = &7 E in order to find the optimal sensor distribution. This kind of decomposition has already been used to determine
test design [13] but is here directly applied on the selected subspace given by the SVD. The QR decomposition is performed
on ®7 and yields:

e Q : orthogonal matrix
* R :rectangular up matrix
e FE : permutation matrix

The question is now how to assess the robustness to lack of knowledge in the finite element model of the sensor distribution.
A useful figure of merit is based on the distinguishability of the eigenmodes corresponding to a given eigenbasis realization.
Qualitatively, a set of eigenmodes is considered to be distinguishable when no single eigenvector can be written as a linear
combination of the remaining eigenvectors in the basis. In [15] the distinguishability of an eigenbasis is quantified thanks
to the condition number of the sensor matrix ®;, which is the modal matrix reduced to the degrees of freedom attached to
a sensor. Indeed, distinguishability improves with decreasing condition number. The performance requirement can be then
define as the maximal condition number of the sensor matrix tested on all the sampled modal basis for a given horizon of
uncertainty must be below a limit ..

max (cond(®y)) < k. (22.4)

The robustness function determination can easily be deduced from the performance requirement by looping on the horizon
of uncertainty. These curves are a very useful decision making tool which allows to compare the evolution of the robustness
of different designs.

¢ =maxJa, max (cond(Dy)) <k, (22.5)
meU (a.mP)

22.3 Numerical Applications

The previously described methodology will now be illustrated on a fixed-free beam of steel with a 50 mm per 50 mm section
and a total length of 1 m. At the middle of this simple beam is added a 1 kg lumped mass which will modify the baseline
modes of the structure. Two test cases will be investigation: the first introduces uncertainty in the value of the lumped mass
while the second introduces uncertainty in its location.

In the first test case, the uncertainty will only concern the value of the mass (m = m) which is allowed to vary between
0.1 and 10 times its initial value in order to obtain at one extreme a classical fixed-free beam behavior without added mass
and at the other extreme, an approximately clamped condition at the mass point. The corresponding uncertainty model is
indicated in Eq. (22.6) with « between 0 end 9 and is based on a modified form of the envelope-bound model:

meU(a,mO)z{m: mo(l—la—o)fmfmo(1~l—a)} (22.6)
The advantages of this structure are the absence of local modes, the presence of both bending and longitudinal modes, and
the smoothness of the evolution in its behavior even for severe horizons of uncertainty.

In the second test case, the uncertainty will be applied to the location of the mass on the beam (m = m,) which is closer
to future industrial applications. In a practical way, the mass is here connected to the beam center thanks to a rigid link. The
maximal authorized uncertainty is 10 cm from the initial position, that can represent the uncertainty in an equipment position
in the very early phases of a structure design. The model of uncertainty is based on the envelope bound model available in
Eq. (22.7). This new configuration will create strongly altered modes for bending modes at high horizons of uncertainty, and
show the interest of a robust approach of a test design.

my €U (a.m}) ={m,: md(1—a)<m, <m(l+a)} (22.7)
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Fig. 22.1 Variation in deformed shapes

22.3.1 First Test Case

22.3.1.1 Modal Basis Sampling

In order to efficiently explore the uncertain design space in order to generate a set of realizations for the modal bases, the
sampling will be performed through a Monte-Carlo approach with a logarithmic repartition. In Fig. 22.1 the dispersion in the
deformed shapes due to the variation of the mass value is shown for the first ten modes of the structure and with the maximal
allowed horizon of uncertainty (¢ = 9). The first two longitudinal modes are retained in this study and correspond to modes

4 and 8. We confirm that the variations in mass have a more significant impact on the displacement fields when located near
a crest of the baseline modes.

22.3.1.2 Singular Value Decomposition

The SVD of this sample yields the distribution of singular values presented in Fig. 22.2. The reduction of the system must
be made by selecting the largest singular values. The chosen criteria is that the ratio between a given value and the largest
singular value must be above 107>, which is a common threshold in methodologies using SVD. In the present case, 15
singular values are retained while the sampling is performed on modal basis containing only ten modes. The corresponding
singular vectors will be used to define the reduced problem (see Eq. (22.3)).

This new system produces a reduced modal basis P synthesizing the response of the unknown system. In Fig. 22.3, the 15
eigenmodes of the reduced system are compared to the first 15 natural modes of the structure and we note that the reduced

model reproduces the first 13 structural modes. The remaining reduced modes are due to the discrepancies in the first 13
baseline modes.

22.3.1.3 QR Decomposition

The results from the SVD provide a subspace of realizable system behaviors for a given horizon of uncertainty. The QR
decomposition is then used to select the optimal sensor locations which corresponds to the subset of model degrees of
freedom yielding the most linearly independent modal submatrix. Figure 22.4 shows the result of this placement procedure
for the test structure, once again for the maximum horizon of uncertainty. In this case, the observation of the ten first modes
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over the uncertain design space requires fifteen sensors. Eleven of them are along the Y direction in order to observe the
bending modes while the remaining sensors are along the X direction.

22.3.1.4 Robustness Curves

Once the methodology to obtain the sensor distribution for a given horizon of uncertainty is established, the robustness curves
can be computed by looping over the horizon of uncertainty and determining the modal basis among the available samples
that maximizes the condition number of the sensor matrix.

The results are presented in Fig. 22.5. In (a), the robustness curves are obtained under various conditions. The two curves
without markers delimit the domain of robustness. The dashed one represents the robustness computed with a sensor placed
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Fig. 22.4 Sensor placement
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at each translational degree of freedom of the structure and is used here as a reference. The solid black curve is computed
only with ten sensors obtained using the deterministic algorithm with a horizon of uncertainty of 0. Intermediate behaviors
are shown with the curves with open circle and cross markers obtained for singular value thresholds of 10~ and a 10~
respectively. As expected, the design yielding the greatest number of sensors (cross markers) is the more robust. The last
thing to highlight in the graph is the fact that the three solid curves begin at the same point. This is due to the fact that at zero
horizon of uncertainty, the methodology yields exactly the same design as the deterministic design solution. In (b) the sensor
distributions given by the methodology for several horizon of uncertainty are shown, with the same color code than Fig. 22.4.
As previously explained, without lack of knowledge, ten sensors are enough to observe the beam oscillations. New sensors
are then added with increasing uncertainty up to a horizon of uncertainty equal to 3. Beyond this value, no improvement in
the design is obtained by adding additional sensors while maintaining the same threshold criteria.
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22.3.2 Second Test Case

The second test case studies the impact of uncertainty in the location of the lumped mass. As seen in Fig. 22.6 mode shapes
can change significantly for more severe horizons of uncertainty. For example, the modes six and seven (graph 10) and eight
and nine (graph 11) for severe uncertainty are drawn separately for the sake of readability. The methodology is applied here
only to the first nine bending modes of the structure.

The resulting robustness curves are shown in Fig. 22.7. The solid black curve corresponds to a deterministic sensor design
and the sudden change in slope at approximately 7 % uncertainty is due to the appearance of strongly modified mode shapes.
The dashed black curve corresponds to the robust sensor design for each horizon of uncertainty and it is seen that the sensor
distribution evolves efficiently with respect to the deterministic design to account for new behaviors.
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22.4 Conclusion

A global methodology for preparing a robust vibration test design with respect to epistemic model uncertainties has been
proposed where lack of knowledge has been represented in the framework of the info-gap decision theory. The proposed
robust satisficing approach can include a wide range of modeling errors since it is based on a set of modal bases representing
different horizons of uncertainty. These methodology combines the singular value and QR decompositions to yield an
efficient sensor placement technique applicable in an industrial context. Further work will aim at extending the approach
to implicitly include triaxial sensors.
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Chapter 23
Clustered Parameters of Calibrated Models When Considering
Both Fidelity and Robustness

Sez Atamturktur, Garrison Stevens, and Yuting Cheng

Abstract In computer modeling, errors and uncertainties inevitably arise due to the mathematical idealization of physical
processes stemming from insufficient knowledge regarding accurate model forms as well as the precise values of input
parameters. While these errors and uncertainties are quantifiable, compensations between them can lead to multiple model
forms and input parameter sets exhibiting a similar level of agreement with available experimental observations. Such non-
uniqueness makes the selection of a single, best computer model (i.e. model form and values for its associate parameters)
unjustifiable. Therefore, it becomes necessary to evaluate model performance based not only on the fidelity of the predictions
to available experiments but also on a model’s ability to sustain such fidelity given the incompleteness of knowledge
regarding the model itself, such an ability will herein be referred to as robustness. In this paper, the authors present a multi-
objective approach to model calibration that accounts for not only the model’s fidelity to experiments but also its robustness
to incomplete knowledge. With two conflicting objectives, the multi-objective model calibration results in a family of non-
dominated solutions exhibiting varying levels of fidelity and robustness effectively forming a Pareto front. The Pareto front
solutions can be grouped depending on their nature of compromise between the two objectives, which can in turn help
determine clusters in the parameter domain. The knowledge of these clusters can shed light on the nature of compensations
as well as aid in the inference of uncertain input parameters. To demonstrate the feasibility and application of this new
approach, we consider the computer model of a structural steel frame with uncertain connection stiffness parameters under
static loading conditions.

Keywords Model calibration ¢ Info-gap decision theory ¢ Non-dominated sorting genetic algorithm (NSGA-II) e
K-means clustering * Multi-objective optimization

23.1 Introduction

Regardless of sophistication and extent of detail included, computer models at best approximate the segment of reality they
are built to represent. Thus, the use of computer models for decision making mandates that the validity (i.e. worthiness)
of model predictions be assessed. Traditionally, this process has solely focused on the fidelity of model predictions to
experiments. However, when evaluated according to a fidelity metric alone, compensations between uncertainties and errors
that originate from various sources during the model development process can inflate the apparent capabilities of inferior
models. Such compensations can lead to multiple models yielding predictions of similar fidelity to the available experiments,
widely referred to as non-uniqueness [1].

Non-uniqueness occurs when an incorrectly assigned parameter value compensates for another incorrect parameter value
or acts to offset model bias. Compensations between parameters may occur when correlated parameters are calibrated
simultaneously (which can be prevented by calibrating each parameter using an independent observable) or when available
experimental observations are insufficient (which can be alleviated by further data collection). Compensations may also
result from the definitions of the test-analysis correlation metrics, for instance when errors in predictions of multiple outputs
are lumped together in one metric. In such situations, considering errors in each of the outputs separately might be useful
in determining what role compensations play during model calibration. Compensations might also be due to the inherent
imperfectness of model form in that the model parameters might be calibrated to values that counter the model bias. In such
situations, explicitly considering the model bias through the training of an independent error model can alleviate the problem.
Oftentimes, all of these factors take place in varying degrees making it difficult to come up with one overarching solution.
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These compensations during parameter calibration make it difficult (and in fact, unjustifiable) to select one set of calibrated
parameter values. This difficulty can be alleviated by ensuring the robustness of a model’s fidelity against uncertainty in the
calibrated input parameters. Robustness in model predictions, as defined by the info-gap decision theory, means that the
model predictions reproduce observables within a predefined fidelity threshold even when the inherent uncertainties are
considered. Hence, what might be a viable approach to address the difficulties model calibration faces due to compensations
is to seek parameter value sets that not only yield a satisfying level of agreement with observations but also do so while being
able to accommodate variability in their own imperfectness.

The above statement effectively converts model calibration into a multi-objective problem with two conflicting objectives
(see Ben-Haim and Hemez [2] for a discussion on the conflicting nature of fidelity and robustness), in which one objective
cannot be improved without compromising the other. Accordingly, in this study, model calibration is treated as a multi-
objective problem by considering both the model’s fidelity to measurements and robustness of this fidelity to parameter
uncertainty. Multi-objective optimization supplies a family of plausible solutions each with a different compromise between
the conflicting objectives, known as Pareto front, which visually displays the trade-off between these two conflicting
objectives.

The shape of the Pareto front depends on the nature of the optimization problem. Herein, the desired outcome for
the robustness objective (horizon of uncertainty) is the larger-the-better and the outcome for the fidelity objective (error
threshold) is the smaller-the-better, which leads to a monotonically increasing Pareto front. Such Pareto front shapes tend to
have distinct regions depending on the nature of the compromise between objectives: regions where gains and losses between
objectives are not balanced (gaining in one objective implies a significant loss in the other) and a region where gains and
losses between objectives are balanced. These distinct regions on the Pareto front tend to be associated with distinct clusters
in the input parameter space. Knowing the distribution of input parameters in the input space can allow (i) the modeler to
evaluate the extent of the compensation between model input parameters and (ii) aid in the decisions regarding the inferred
parameter values.

This paper is organized as follows. Section 23.2 provides a background review of earlier reported studies in which
clustering of Pareto optimal solutions is evaluated. Section 23.3 presents a discussion on the multi-objective model calibration
integrated with clustering algorithms as well as an overview of the algorithms implemented for both multi-objective
optimization and clustering. Section 23.4 illustrates its application by means of a case study of a two bay, two story steel
moment resisting frame with imprecisely known connection parameters. Section 23.5 concludes the study by overviewing
both the contributions and limitations of the proposed methodology.

23.2 Background Review

Cluster analysis divides a dataset into distinct groups, referred to as “clusters,” where data points within a cluster are similar
to one another and different from the data points of other clusters. Clustering is used to discover hidden “structures” within a
given set of data. Cluster analysis identifies patterns among data points to group similar data together, revealing relationships
in the data that were previously unknown. Analyzing the data in clusters helps to outline hidden correlations within the
system at hand. Furthermore, revealing relationships in the system informs decision makers who need extensive knowledge
of the system to implement it for its intended use. Cluster analysis is widely used in many fields, such as data mining [3],
exploratory data analysis [4] and vector quantization [5].

Cluster analysis has previously been used to cluster Pareto optimum solutions to aid in the selection of a single optimum
solution (especially when the Pareto front contains a larger number of solutions). For instance, Zio and Bazzo [6] proposed
a two-steps procedure to reduce the number of optimal solutions in the Pareto front. In their study, a subtractive clustering
algorithm is used to cluster the solutions into “families.” For each family, a “head of the family” is selected to effectively
reduce the number of possible solutions on the Pareto front aiding the decision making process. Finally, they represented
and analyzed the reduced Pareto front by Level diagrams. Veerappa and Letier [10] implemented a hierarchical clustering
method and clustered the Pareto optimal solutions based on the cost-weighted Jaccard distance function for cost-value based
requirements selection problem. Jaccard distance measures the similarity (or lack thereof) between clusters as the ratio of
their intersection over their union. The cost-weighted Jaccard distance function is a version of Jaccard distance that applies
weights based on the importance of each objective.
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23.3 Methodology

23.3.1 Fidelity in Model Calibration

Combined effects of incompleteness of model form and the imprecision in the input parameters yield deviations between
model predictions and observable reality. Such deviations can be quantified as shown in Eq. 23.1:

R(k) = |M(k) — E| (23.1)

where, k represents the imprecise parameters to be calibrated selected based on their sensitivity and uncertainty, R(k)
represents the fidelity metric (error) between model prediction, M(k), and experimental observation, E.

Given the inevitable uncertainties in experimental observations and numerical calculations, aiming to reach a perfect
agreement between model predictions and experimental observations would have little meaning. A more rational approach
instead is to aim to reach sufficient agreement between the two. Herein, sufficiency can be defined by a preset fidelity
threshold as shown in Eq. 23.2:

|M(k) — E| < Re (23.2)

where Rc indicates the error tolerance (which is related to desired level of fidelity) between model prediction and experiment.

23.3.2 Opverview of Info-Gap Decision Theory

Info-gap decision theory supplies a non-probabilistic approach to decision making under uncertainty. The Info-gap approach
uses convex, nested sets of uncertainty models to quantify the allowable range of uncertainty the system can tolerate before
it fails to meet the preset performance criteria [7].

U (o) =

Equation 23.3 shows the info-gap model with uncertain calibrated parameters. In this equation, k once again represents

< a} La>0 (23.3)

imprecise parameters and k represents the nominal values for these parameters, which herein will be obtained through
calibration. The nominal values are the vector of best estimate model parameters that result in the smallest error between
experiments and simulations [8]. The uncertainty in parameters, commonly referred to as horizon of uncertainty, is
represented by notation .

R (@) = maxkeu(a;) R(k) (23.4)

The function R(k) represents the fidelity of the model considering uncertain calibrated parameters. By increasing the
model’s horizon of uncertainty, ¢, the uncertain parameters are allowed to vary within a defined range. For each given value
of «, the uncertain parameters will result in a new worst-case fidelity as shown in the Fig. 23.1 (left). Therefore, R (v)isa
non-decreasing function of « as shown in Fig. 23.1 (right).

As shown in Fig. 23.1, as the horizon of uncertainty increases, R (o) eventually exceeds the predefined value of fidelity
threshold, Rc. The maximum horizon of uncertainty in which uncertain parameters are allowed to vary without failing to
satisfy the fidelity requirement is defined as @, as shown in Eq. 23.5. Thus, a larger @ is desired and representative of greater
robustness of the model.

o = max {oz ‘R() < Rc} (23.5)
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Fig. 23.1 Illustration of info-gap k2 — k2 LY
robustness with (left) worst case
predictions given varying
horizons of uncertainty and
(right) monotonically increasing
robustness curve

‘ > ﬁ((x)

23.3.3 Overview of Multi-objective Optimization

Multi-objective problems arise when multiple objectives influence the problem in a conflicting manner. Multi-objective opti-
mization supplies a means to obtain solutions for such problems in that conflicting objectives are optimized simultaneously
under given constraints. Multi-objective optimization can be expressed as shown in the following equation:

Minimize : Y(x) = [fi(x), f2(x),..., fir(x)]
Subject to : h(x) <0 (23.6)

where f represents the each objective function and % represents the constrain function.

Multi-objective optimization results in a set of compromising solutions, which represent the trade-off between conflicting
objectives. Referred to as Pareto front, these compromising solutions provide the optimal solutions in the solution space,
within which improving one objective is not possible without degrading the other(s). It must therefore be obvious to the
reader that when multiple objectives are not conflicting, obtaining a single optimal solution becomes possible and multi-
objective optimization would not be needed.

Once the Pareto front is determined, decision makers can select solution within this optimal solutions set taking the
trade-off between multiple objectives into account. The shape of Pareto front has important significance for this study as it
indicates the nature of the trade-off between the different objective functions. The shape of the Pareto front can be used to
infer the nature of the relationship between objectives. For instance, in Fig. 23.2, regions where the slope of the Pareto front
is steep (or shallow) indicate solutions where slight improvement in one objective requires a significant sacrifice in the other.
In Fig. 23.2, three distinct regions can be identified with distinctly different trade-off characteristics (indicated with gray
highlights).

23.3.4 Application of K-Means Clustering to Pareto Front

K-means clustering belongs to partitioning methods, one of the most commonly used clustering algorithms due to its
implementation simplicity and computational efficiency. K-means clustering algorithm is a centroid based clustering method
[9] that partitions data into a user-defined number of clusters, each of which is associated with a centroid.

The main procedure of K-means clustering algorithm can be broken down into four components (i) selecting a user defined
number of data points as the initial set of cluster centroids, (ii) assigning each point to the cluster with the nearest centroid,
(iii) recalculating the centroid of each cluster, and (iv) repeating assignment of each point to the cluster with the nearest
centroid.

The algorithm starts with randomly choosing the number the predefined number of solutions in the Pareto front as an
initial set of cluster centroids. Then, each solution in the Pareto front is assigned to the cluster with nearest centroid. The
“nearest centroid” is measured by the Euclidean distance between each solution in the Pareto front and the corresponding
closest centroid. To express the formulation of Euclidean distance, let us consider a N-dimensional Pareto front set which
contains n solutions, N, = (x;, X2, ... , X,), where these n solutions are partitioned into m sets, H = (hy, hy, ..., h,), where
m=<n.
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where m represents the number of centroids (i.e. number of clusters) and C; represents the centroid of each cluster.

According to the distances calculated in Eq. 23.7, each of the n data-points are assigned to the nearest one of the m
centroids and next, the centroid of each cluster is recalculated. This iterative procedure is repeated, until the convergence
condition is satisfied or when the iterative procedure reaches the predefined number of iterations. The convergence condition
is satisfied when the distribution of clusters do not change more than a predefined amount by recalculating the centroid of
each cluster.

K-means clustering algorithm assigns solutions in the Pareto front into non-overlapping clusters, where solutions within
a cluster have similar characters. For instance, within one cluster, we may observe that the value of objective 2 exhibits small
changes for varying values of objective 1. What is interesting to note that if the problem in hand is constituted of proper
continuous functions, then each of clusters in Pareto front would be associated with parameters that also have similar values.
Observing the clusters formed in the parameter space corresponding to the clusters in the solution space can help decision
makers evaluate the effect of compensations in model calibration and aid in the model parameter selection (note that we are
indicating an inverse analysis from the solution space to the parameter space).

23.4 Case Study

The proposed methodology is demonstrated on a case study of a two bay, two story steel moment resisting frame, shown
in Fig. 23.3. The frame is built with beams and columns that have uniform cross-sections. Two external horizontal, static
loads are applied to the top and the first story of this steel moment resisting frame (Fig. 23.3). It is assumed that the loads
applied do not cause deformations beyond the elastic range. Material properties and physical dimensions of the portal frame
members are provided in Table 23.1.

Connection stiffness between the substructures in steel moment resisting frames is typically highly uncertain. In the frame
system shown in Fig. 23.3, four linear rotational springs are assigned to represent beam to column connections located at
the top and bottom of the first story left and center columns. The stiffness of these rotational springs are represented by
parameters K/ and K2. All other beam to column connections are assumed rigid and columns are pin connected to the
foundation. The connection stiffness values, K/ and K2, are treated as the calibration parameters. The exact stiffness values
of those linear rotational springs are provided in Table 23.2 along with their plausible ranges (i.e. parameter space).
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Fig. 23.3 Steel moment resisting

S. Atamturktur et al.

. > N
frame with linear rotational P1=20kip [~
springs
3m
P2=7kip —» —® =<
K2 K2
3m
K1 K1
P
7 7 77 A
2 I 2
1 1 1
4m 4m
Ta;)lehZS..l lI:i/l.aten'a.l prolpc)eni}?s Beam Column
and physical dimensions for the
portal frame Length (m) 4 3
Cross section area (m?) | 0.05 0.05
Moment of inertia (m*) | 0.1 0.05
Young’s modulus (Pa) | 2,000 2,000
Shear area coefficient 0.95;1;1.05 |0.95;1; 1.05
Poisson’s ratio 0.3 0.3
Table 23.2 Calibrated K1 (N-m) K2 (N-m)

parameters and NSGA-II

simulation ranges Exact value 33,000 40,000

Upper bound | 132,000 160,000
Lower bound 3,300 4,000

23.4.1 Multi-objective Optimization: Robustness Versus Nominal Fidelity

In this case study, the error between model predictions and measured observables as well as the robustness of the model
predictions given uncertain parameters are implemented as objectives. A finite element model is developed and used to
predict the maximum lateral displacement at the first story of the portal frame under static lateral loading. Synthetic
experimental data are obtained by using sets of input parameters with exact values while model predictions are obtained in a
separate process using sets of parameters with imprecise values. Inaccurately calibrated parameters result in disagreements
between predictions and experiments for maximum lateral displacement at the first story, quantified by the fidelity metric
(refer back to Eq. 23.1). According to the proposed procedure explained in Sects. 23.3.1 and 23.3.2, the fidelity threshold,
Rc, is predefined to equal 0.5 and the horizon of uncertainty, «, is varied from 0.01 to 0.5 by a step size of 0.1. NSGA-II is
implemented to solve the multi-objective optimization problem with 100 generations with 200 individuals in each to obtain
the Pareto front.

The conflicting relationship between objectives develops as robustness to parameter uncertainty should decrease when the
fidelity threshold is increase [2]. Thus, the shape of the Pareto front reflects this monotonic trade-off relationship between the
two objectives. K-means clustering algorithm is implemented to cluster the solutions in the Pareto front using three clusters.
The number of clusters to evaluate is determined by considering the change in slope of the Pareto front (recall Fig. 23.2).

The result of a clustered multi-objective optimization is shown in Fig. 23.4, which provides a clear visualization of the
spread of solution groups along the Pareto Front. The distribution of calibrated parameters corresponding to each cluster
is shown in Fig. 23.5. It should be noted that this case study resulted in a partial Pareto front, which is possible with the
NSGA-II algorithm. Decision makers may use information gained from the clusters to select a parameter set with which
model outcomes balance both of the objectives. Decision makers may first select the cluster containing the most solutions
satisfying their requirements. Next, the parameter sets corresponding to this cluster may be determined.

In Fig. 23.5, the correlation between the two calibration parameters is evident, illustrated by the linear distribution of
parameter sets. There clearly exists a relationship where K1 increases K2 also increases.
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23.4.2 Multi-objective Optimization: Robustness Versus Fidelity Threshold

According to the methodology presented in Section 23.3.2, a larger robustness is desired meaning the model is capable
of higher uncertainty in parameters. The fidelity threshold quantifies the error between predictions and measurements.
Hence, minimizing the fidelity threshold corresponds to a low level of error allowed between predictions and experiments.
Maximizing the robustness causes the corresponding fidelity threshold to increase. This trade-off relationship between the
two objectives is revealed by the shape of the Pareto front. NSGA-II is implemented to solve the multi-objective optimization
problem with 100 generations and 200 individuals in each generation. K-means clustering algorithm is applied to the
solutions. Figure 23.6 presents a robustness function (recall Fig. 23.1 right) for a select number of Pareto optimal solutions.
Plotting robustness functions for the Pareto optimal solutions then effectively results in the Pareto front itself (notice the
similarity between Figs. 23.4 and 23.6).
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23.4.3 New Predictions for Portal Frame by Using Parameter Sets in Each of Clusters

In this section, a series of new predictions for the steel moment resisting frame is presented. Based on the parameter
sets shown in Fig. 23.5. Each of these parameter sets is used in the finite element model to predict the maximum lateral
displacement (drift), maximum moment and maximum shear force at the first story as well as the maximum lateral
displacement at the roof of the portal frame. The following results show that using parameter value sets in each cluster
results in a different prediction as well as solutions that are clustered (Figs. 23.7, 23.8, and 23.9).
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23.5 Conclusion

Model calibration considering both the model’s fidelity to measurements and robustness to parameter uncertainty results
in a multi-objective problem. Multi-objective optimization provides insight to the trade-off between objectives through a
Pareto front. However, understanding the compromise between parameters alone is not sufficient information for decision
makers, who are often required to select a best-performing data, which maintains each of their requirements. The selection
task becomes more burdensome when the set of non-dominated solutions is large. For this reason, the authors proposed
a methodology that implements the k-means clustering algorithm to cluster the solutions in the Pareto front making the
selection task more feasible. The main idea of this methodology is to categorize possible solutions into different groups
based on their spread on the Pareto front. Calibrated parameter values may then be selected from among these groups of
solutions.

Furthermore, this study can also help decision makers to select among the clusters obtained. This can be achieved by
evaluating the distribution of calibration parameters within each cluster. A key benefit of clustering Pareto front solutions
is the ability to evaluate the extent of the compensation between model input parameters. Clusters with large distributions
indicate severe compensations between parameters. Therefore, model developer may select a parameter set with the least
amount of compensations, or determine steps to reduce compensations if the compensations are too large.

The proposed methodology has been applied to case study with a steel moment resisting frame. The results show that this
methodology makes it more feasible to select the optimal group of solutions, which will narrow down the range to select
calibration parameters. A separate robustness analysis presents the trade-off between robustness to uncertainty parameters
and fidelity threshold. Hence, within a certain fidelity threshold, the model can tolerate the maximum allowable level of
uncertainty.
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Chapter 24
Uncertainty Propagation Combining Robust Condensation
and Generalized Polynomial Chaos Expansion

K. Chikhaoui, N. Kacem, N. Bouhaddi, and M. Guedri

Abstract Among probabilistic uncertainty propagation methods, the generalized Polynomial Chaos Expansion (gPCE) has
recently shown a growing emphasis. The numerical cost of the non-intrusive regression method used to compute the gPCE
coefficient depends on the successive Latin Hypercube Sampling (LHS) evaluations, especially for large size FE models,
large number of uncertain parameters, presence of nonlinearities and when using iterative techniques to compute the dynamic
responses. To overcome this issue, the regression technique is coupled with a robust condensation method adapted to the
Craig-Bampton component mode synthesis approach leading to computational cost reduction without significant loss of
accuracy. The performance of the proposed method and its comparison to the LHS simulation are illustrated by computing
the time response of a structure composed of several coupled-beams containing localized nonlinearities and stochastic design
parameters.

Keywords Robustness * Uncertainty * Generalized polynomial chaos expansion ¢ Component mode synthesis ¢ Meta-
model

24.1 Introduction

In structural mechanics and in practically all branches of industry, when parametric uncertainty is incorporated in the
mathematical model, its propagation is needed to evaluate how the randomness of input parameters affects the computed
outputs and to handle, consequently, more and more realistic behaviors. In a probabilistic framework, statistical approaches
such as the well-known Latin Hypercube Sampling (LHS) [1] use a great number of samples of random variables for
reasonable accuracy and therefore require a prohibitive computation time. On the other side, among other non statistical
approaches, the generalized polynomial chaos expansion (gPCE) [2] has shown a growing emphasis in recent years due to
its simple implementation and high performance. It combines polynomial basis vectors and deterministic coefficients, which
can be computed by means of intrusive or non-intrusive approaches [3]. In the context of the latter, more advantageous
than the former since it considers the original FE model as a black box, among other existing methods [4], regression
technique permits to estimate the gPCE coefficients by minimizing the difference between the referential LHS response and
the approximation, corresponding to a set of random variables chosen among combinations of Hermite polynomial roots.

Nevertheless, the most expensive part of its implementation lies in the successive LHS evaluations. To overcome this
issue, we focus, in this paper, on coupling the non-intrusive regression technique with a robust condensation method
adapted to the Craig-Bampton component mode synthesis (CBCMS). In fact, the prohibitive cost of prediction is due to:
the computational time of the full model using direct analysis, the computation of reduction basis for each random sample
while propagating uncertainties and the number of iterations necessary to obtain accurate approximations using iterative
techniques in presence of nonlinearities. Consequently, model condensation must be applied. Furthermore, the use of the
CBCMS [5, 6] allows considering some substructures, which are uncertain and/or containing localized nonlinearities, being
condensed independently of the others. Nevertheless, the main issue lies on forming a robust enriched condensed Craig-
Bampton Transformation (CBT) [6, 7] which takes into account uncertainties and localized nonlinearities.
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In the literature, some works focus on coupling uncertainty propagation methods and condensation techniques in order to
attain a robust design. In [8], the authors implemented the CMS taking into account stochastic aspect to compute frequency
linear structures responses using stochastic spectral FE method (SSFEM). In [9], a reduced-order model (ROM) is integrated
into SSFEM, using a basis spanned by displacements and derivatives of displacements, and implemented to optimize the
shape of a linear shell structure. Afonso et al. [10] implemented Monte Carlo (MC) method and Probabilistic Collocation
Method (PCM) based on reduced-order modeling (ROM) approach incorporated via proper orthogonal decomposition
method (POD).

The main originality of this paper lies on combining gPCE and robust CBCMS in order to obtain a metamodel, which
allows computing stationary temporal solution of large size stochastic periodic structures containing local nonlinearities,
with high accuracy and low computational cost.

24.2 Theoretical Backgrounds

24.2.1 Generalized Polynomial Chaos Expansion (gPCE)

Thanks to the generalization of the PC approach [2], several types of random variables and orthogonal polynomials are taken
into account to develop its expansion. In this section, a compact form of the gPCE formulation is presented [2—4]. The gPCE
of second order random variable is a decomposition, truncated by retaining only terms of the polynomials with degree up to
p, of the form

P
Y = 5Py () = y"® (). (24.1)

a=0
where y, are the unknown deterministic coefficients, @, the multivariate polynomials of d independent random variables

d
E=1{& (9)}?:1 and « the multidimensional index such as || = Zai.
i=1
The number of terms retained in Eq. 24.1 is defined as

P+1=(d+p)/dp. (24.2)

Solving the gPCE consists on computing the coefficients y,. Hence, the non-intrusive regression method is implemented, in
its standard form, minimizing the difference between the gPCE approximate solution and the exact one as follow

~ . 1 Al n n
y = ArgymlnNZ[{Y( )} - yT<I> (E( ))]2. (24.3)

n=lI

The solution considered as exact is a set of LHS responses {Y(") =y (S (”)) ,n=1,...,N } computed corresponding to a

set of random variables E = {E (”)}:’:1 called experimental design (ED).
The final obtained approximate solution of Eq. 24.3 is of the form

7= (27®) '@ {y} = &* {y} (24.4)

where ®,; = (®; (™)) n=1. N is called the data matrix.
Jj=0,...,P

A necessary condition for the numerical stability of the regression approximation is choosing an ED of size N > P + 1
which ensures the well-conditioning of the matrix (@7 ®) which will be inverted. The selection of the ED is carried out using
two different methods; according to the first one, the ED is chosen randomly with respect to the probability distribution of the
random variables, the second method consists on selecting the ED, in a deterministic way, among Hermite polynomial roots
[3]. In fact, the roots of the Hermite polynomial of degree p + 1 are at first computed, then all their possible combinations
(p+ 1)? are calculated and finally these roots combinations are classified such that the following variable
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oy (6) = 2 exp (5607 ) (24.5)

is maximized or £"? minimized. The roots combinations retained to create the ED are subject to another selection [4].
Indeed, to ensure that the invertible matrix (@7 ®) is well-conditioned, a condition number « defined as

k= (@"®) " " (24.6)

must be minimized, where . is the 1-norm of the matrix. To the smallest value of k corresponds a number N of roots
combinations which verify Eq. 24.5 and thus create the ED needed for gPCE coefficients.
Once obtained, the estimated coefficients give the final gPCE as a metamodel of the form

,
Y=MXE) =) FaPa(®), (24.7)

a=0
In uncertainty analysis, some statistical quantities have to be calculated. The mean and the variance are respectively given

P
by iy = Yo and 57 = Z}%
a=0
Note that the N successive deterministic FE evaluations needed for LHS method is the most expensive part of the gPCE

implementation especially for large size FE models, large number of uncertain parameters, presence of nonlinearities and
when using iterative techniques to compute dynamic structure responses. To overcome this issue, the regression technique is
coupled with a robust condensation method adapted to the CBCMS.

24.2.2 Model Condensation

In nonlinear dynamics, a mechanical system can generally be represented in the time domain by the following differential
equation

(M]3} + [BIAY} + {fine} = {fext} (24.8)
{¥} () ={y}o.{p} (to) = {y}, : initial conditions )

where [M] and [B] stand for the mass and damping matrices of the system, {f,.} the exciting force and {f;,;} =
(K] + {fvey Gy, {9)) {y} the internal force vector, [K] is the stiffness matrix.

Modeling complex structures requires large size FE models for satisfying accuracy. To overcome the high computational
cost of the analysis, a reduced order model has to be designed using only few normal modes with respect to the frequency
range of interest. Therefore, the projection of the time response on an adequate condensation basis, considering the variable
transformation {y ()} = [T']{g(¢)} to generalized coordinates, is needed. Hence, the equation of motion Eq. 24.8 becomes

[T1" [M][T14G ()} + [T1" [BUT1G0)} + [T fine}y = [T1 { fore} s (24.9)

where the index r denotes the term reduced, [T']7 [M][T] = [M 1rs [T1" [B][T] = [B],, in this case, the internal force vector
is expressed as

Uindr = [T (K] + {fae} (THg}  [THGD) [T g} (24.10)

The time solution of the Eq. 24.9 can be approximated by using the Newmark nonlinear time integration scheme, which
allows expressing the displacement and the velocity at the instant #,4 as a function of their expression at t,,.
The implementation of the Newmark method permits to write the equation of motion Eq. 24.9 in an incremental form

([Kerr),), Aab, = A({ fers},), 24.11)
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where ([Kz]-)n is the instantaneous (effective) stiffness matrix function of the tangent stiffness matrix ([Kr],), =
9({ fint},),/9[T]{q}, obtained by applying the Newton iterative scheme.

24.2.3 Robust Craig-Bampton Component Mode Synthesis Method (CBCMS)

Dividing the complete structure into several components (substructures) is interesting in the case of presence of uncertainties
and localized nonlinearities in large size complex structures. It permits to apply the adequate condensation technique to each
component independently of the others.

In deterministic linear case, the reduced model is obtained using standard CBCMS [5, 6] of the linear system in its blocked
interface configuration. In this case, the CBT is defined, for a substructure k, as

k

k k
o= =L 21 -t
i ij Wi c

where {y;}* are the interior coordinates transformed to the blocked junctions modal coordinates {g.}, {yj}" are the junction
coordinates denoted as constraint coordinates {q,-}k, [1//i j] = —K;'K, ; is the static subbasis which contains the constraint
modes, J; is the identity matrix, and [¢;] is the dynamic one containing the truncated normal modes basis at blocked interfaces
({ Vj } = 0) of the corresponding component. Nevertheless, using standard CBT requires computing more and even all normal
modes for accurate results, which leads to a prohibitive computation cost.

In stochastic case with localized nonlinearities, the standard CBT [T¢p] cannot satisfy the required accuracy and
robustness of the model. Therefore, adding a complementary basis [AT] is necessary in order to form an enriched CBT
(ECBT) [Tgcg]. The obtained basis, for each sub-structure, is thus of the form

k
[Tecpl* = [TCB : AT] . (24.13)

The complementary basis is a set of static residuals calculated according to the type of enrichment.

For each component k, to enrich the basis by taking into account stochastic aspect, the residual vectors are static responses
with correspondence to a set of residual forces [F] presenting the stochastic effects. These forces are generated depending
on the stochastic zones of the mass and stiffness matrices [8]. The first complementary subbasis [A Ts]* is thereafter obtained
and added to the standard Craig-Bampton one.

To take into account localized nonlinearity effects, another type of complementary subbasis [ATy;]* has to be created
[7] as a set of static responses corresponding to unit residual force vectors {F;}* with respect to each nonlinear degree of
freedom (dof) i for each component k.

The CBT can also be enriched if the external loading effect is considered [6]. Thus, an additional subbasis [ATE]F must
be computed using a set of unit static loadings {Fz}* imposed on internal excited substructure dofs.

Consequently, the final enriched basis has the following form

k

Ly 0. 0 0 0} (24.14)

k
Tecpf = [ ; ; : ] = : : :
(Tecsl” = | Tep  ATs  ATwy i AT [% o ATs ' ATy, & ATy

Note that a singular value decomposition (SVD) is needed to ensure linear independence of the vectors forming each
complementary subbasis and also carried out on [Tgcg]* to ensure the linear independence of the subbases and thus the
well-conditioning of the ECBT. The synthesis of the complete structure requires finally the assembly of the different CBT
matrices according to the hypothesis of continuity of displacements at junction dofs.

24.2.4 Robust Metamodel Combining CBCMS and gPCE

The CBCMS and the gPCE methods were previously independently presented. The main aim of this paper is to couple them
in order to replace large size dynamical structures with considerably condensed and sufficiently accurate metamodel. Indeed,
we propose to compute the succession of N deterministic responses of LHS simulations {Y ™ = y (§™), n =1,....N },
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i Component 1
1

Stochastic zone

Fig. 24.1 Coupled beams structure

needed for the gPCE regression method implementation (Eq. 24.4), using the ECBT Eq. 24.14. The notion of robustness
consists, in our study, on satisfying two different criterions; the accuracy of the responses and the gain in terms of
computational time. To verify the first criterion, a set of temporal statistic moments .#;, also called times indicators or
energy criterions, has to be calculated in order to quantify the response accuracy in terms of amplitude and periodicity errors.
These moments are expressed as [11]

+o00
M; = / (t — ) y(t)dt (24.15)

where y(7) is the temporal response, i the order of the moment and ¢, the temporal shift chosen in our case as #;, = 0.

The total energy of the response £ = M permits the verification of the accuracy in term of amplitude. M/ My =T
and M/ My — (M /Mg)* = D? are respectively the central time and the root mean square duration computed to verify
the accuracy of the response in term of periodicity.

A numerical application is presented in Sect. 24.3 in order to illustrate the main features of the proposed robust metamodel
designed to analyze the dynamic behavior in presence of uncertainties and localized nonlinearities.

24.3 Numerical Application

24.3.1 Proposed Structure and Validation Process

The proposed academic structure, Fig. (24.1), is composed of five identical beams loaded in pure flexion. The discretization
of each beam into 20 elements (two dofs per node: vy, 8) leads to a 200 dofs FE model. The beams are of rectangular
section with b = 3 x 102m and h = 1 x 10™%m, length L, = 5 x 10~'m, Young modulus E, = 2.1 x 10! Pa,
density py = 7800 kg.m™> and Poisson’s ratio v = 0.3 and are submitted each one to a localized excitation force (N)
Py = 10 x cos (2r fit), where f; = 82.96 rad.s™! is the first eigenfrequency, according to the vy dof (Y direction). The
five beams are coupled using five local dampers such as ¢ = 10°N.s.m ™!, five linear springs ko = 10°N.m~' and nonlinear
ones ky; = 10" N.m~'. Several observation points P,y (j =1,2,...) are considered to evaluate the efficiency of the
proposed metamodel.

The stationary temporal response evaluation is done in the time interval [0-0.5 s], divided into steps of 10™*s, in which
the stationary regime is already attained.

To apply the CBCMS method, the complete structure is divided into substructures. In fact, being in the case of periodic
structure, we propose to consider each set of coupling elements (localized damper, linear and nonlinear springs) and a beam
as a substructure (Fig. 24.1). The first and the third components are considered as two stochastic zones in which the Young
modulus of the beam and the linear coupling stiffness are supposed to be uncertain parameters such as
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Table 24.1 Model size and associated temporal moments

E T D2
Model - :
Methods (dofsy | Ex10* Error | Tx10% Error | D*x 10°  Error
(m?.s) (%) (s) (%) (s) (%)
LHS LHS-REF 200 15.93 0.00 4993 0.00 82.03 0.00
(A) LHS-ECBT 24 15.78 0.94 49.92 0.02 82.01 0.02
REG-2-REF 200 15.75 1.13 49 .84 0.18 82.26 0.28
REG REG-4-REF 200 15.88 0.31 49 86 0.14 82.19 0.19
(B) REG-2-ECBT 24 15.45 3.01 49.82 0.22 82.31 0.34
REG-4-ECBT 24 15.57 2.26 49.85 0.16 82.23 0.24
E=Ey(14+o0gég) andk = ko (1 + ox&) (24.16)

where £ and & are two random variables of respectively uniform and lognormal probability distributions and o = o} =
10% are the considered dispersions. The effect of the stochastic aspect of the uncertain parameters is shown using the MAC
(Modal Assurance Criterion) [6] matrix, which compares the normal modes of the deterministic model to the means of the
modes of the stochastic model computed with correspondence to each random variable.

The proposed metamodel results are discussed with respect to the responses considered as reference, computed using
LHS method using 1,000 samples of random variables. In