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Preface

Model Validation and Uncertainty Quantification represents one of ten volumes of technical papers presented at the 33rd
IMAC, A Conference and Exposition on Balancing Simulation and Testing, 2015, organized by the Society for Experimental
Mechanics, and held in Orlando, Florida, February 2–5, 2015. The full proceedings also include volumes on Nonlinear
Dynamics; Dynamics of Civil Structures; Sensors and Instrumentation; Special Topics in Structural Dynamics; Structural
Health Monitoring & Damage Detection; Experimental Techniques, Rotating Machinery & Acoustics; Shock & Vibration
Aircraft/Aerospace, Energy Harvesting; and Topics in Modal Analysis.

Each collection presents early findings from experimental and computational investigations on an important area within
Structural Dynamics. Model Validation and Uncertainty Quantification (MVUQ) is one of these areas.

Modeling and simulation are routinely implemented to predict the behavior of complex dynamical systems. These tools
powerfully unite theoretical foundations, numerical models and experimental data which include associated uncertainties
and errors. The field of MVUQ research entails the development of methods, with associated metrics, for the rigorous test
of model prediction accuracy and robustness considering all relevant sources of uncertainties and errors through systematic
comparisons against experimental observations.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Clemson, SC, USA H. Sezer Atamturktur
Medford, MA, USA Babak Moaveni
Volos, Greece Costas Papadimitriou
Albuquerque, NM, USA Tyler Schoenherr

v





Contents

1 Experimental Validation of the Dual Kalman Filter for Online and Real-Time State
and Input Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Saeed Eftekhar Azam, Eleni Chatzi, Costas Papadimitriou, and Andrew Smyth

2 Comparison of Uncertainty in Passive and Active Vibration Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Roland Platz and Georg C. Enss

3 Observation DOF’s Optimization for Structural Forces Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Silvia Milana, Annalisa Fregolent, and Antonio Culla

4 Nonlinear Structural Finite Element Model Updating Using Batch Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . 35
Hamed Ebrahimian, Rodrigo Astroza, and Joel P. Conte

5 A Comparative Assessment of Nonlinear State Estimation Methods for Structural Health Monitoring . . . . . . 45
Majdi Mansouri, Onur Avci, Hazem Nounou, and Mohamed Nounou

6 Hierarchical Bayesian Model Updating for Probabilistic Damage Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Iman Behmanesh, Babak Moaveni, Geert Lombaert, and Costas Papadimitriou

7 Nonlinear Structural Finite Element Model Updating Using Stochastic Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Rodrigo Astroza, Hamed Ebrahimian, and Joel P. Conte

8 Dispersion–Corrected, Operationally Normalized Stabilization Diagrams for Robust Structural
Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Vasilis K. Dertimanis, Minas D. Spiridonakos, and Eleni N. Chatzi

9 Online Damage Detection in Plates via Vibration Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Giovanni Capellari, Saeed Eftekhar Azam, and Stefano Mariani

10 Advanced Modal Analysis of Geometry Consistent Experimental Space-Time Databases
in Nonlinear Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Ioannis T. Georgiou

11 Comparison of Damage Classification Between Recursive Bayesian Model Selection and Support
Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Zhu Mao and Michael Todd

12 A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes . . . . . . . . . . . . . . . . . . . 113
Ayad Al-Rumaithi, Hae-Bum Yun, and Sami F. Masri

13 Comparison of Different Approaches for the Model-Based Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Ina Reichert, Peter Olney, Tom Lahmer, and Volkmar Zabel

14 Sensitivity Analysis for Test Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Chenzhao Li and Sankaran Mahadevan

15 Predictive Validation of Dispersion Models Using a Data Partitioning Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Gabriel Terejanu

vii



viii Contents

16 SICODYN Research Project: Variability and Uncertainty in Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Sylvie Audebert

17 Experimental Variability on Modal Characteristics of an In-Situ Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Sylvie Audebert, Anne Coulon, Marie-Ange Andrianoely, Stéphane Muller, and Emmanuel Foltête

18 Variability of a Bolted Assembly Through an Experimental Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Sami Daouk, François Louf, Christophe Cluzel, Olivier Dorival, and Laurent Champaney

19 Bottom-Up Calibration of an Industrial Pump Model: Toward a Robust Calibration Paradigm . . . . . . . . . . . . . . 179
A. Kuczkowiak, S. Huang, S. Cogan, and M. Ouisse

20 Model Validation in Scientific Computing: Considering Robustness to Non-probabilistic
Uncertainty in the Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Greg Roche, Saurabh Prabhu, Parker Shields, and Sez Atamturktur

21 Robust-Optimal Design Using Multifidelity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Kendra Van Buren and François Hemez

22 Robust Modal Test Design Under Epistemic Model Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Fabien Maugan, Scott Cogan, Emmanuel Foltête, and Aurélien Hot

23 Clustered Parameters of Calibrated Models When Considering Both Fidelity and Robustness . . . . . . . . . . . . . . . 215
Sez Atamturktur, Garrison Stevens, and Yuting Cheng

24 Uncertainty Propagation Combining Robust Condensation and Generalized
Polynomial Chaos Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
K. Chikhaoui, N. Kacem, N. Bouhaddi, and M. Guedri

25 Robust Updating of Operational Boundary Conditions for a Grinding Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Elvio Bonisoli and Marco Brino

26 Impact of Numerical Model Verification and Validation Within FAA Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
David M. Moorcroft and Joseph Pellettiere

27 The Role of Model V&V in the Defining of Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Todd Simmermacher, Greg Tipton, Jerry Cap, and Randy Mayes

28 A Perspective on the Integration of Verification and Validation into the Decision Making Process . . . . . . . . . . . 265
Kenneth T. Hu, Angel Urbina, and Joshua Mullins

29 A MCMC Method for Bayesian System Identification from Large Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
P.L. Green

30 Bayesian Inference for Damage Detection in Unsupervised Structural Health Monitoring . . . . . . . . . . . . . . . . . . . . 283
Reza Mohammadi-Ghazi and Oral Buyukozturk

31 Reducing MCMC Computational Cost with a Two Layered Bayesian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Ramin Madarshahian and Juan M. Caicedo

32 Comparison of FRF Correlation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Timothy Marinone and Adam Moya

33 Improved Estimation of Frequency Response Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Daniel C. Kammer and Matthew Bonney

34 Cross Orthogonality Check for Structures with Closely Spaced Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Anders Skafte, Manuel L. Aenlle, and Rune Brincker

35 Modeling of an Instrumented Building Subjected to Different Ground Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Amaia Martinez and Carlos E. Ventura

36 Calibration and Cross-Validation of a Car Component Model Using Repeated Testing . . . . . . . . . . . . . . . . . . . . . . . . 339
Karl-Johan Larsson, Snævar Leó Grétarsson, Majid K. Vakilzadeh, and Thomas Abrahamsson



Contents ix

37 Structural Dynamics Model Calibration and Validation of a Rectangular Steel Plate Structure . . . . . . . . . . . . . . 351
Hasan G. Pasha, Karan Kohli, Randall J. Allemang, Allyn W. Phillips, and David L. Brown

38 Human Activity Recognition Using Multinomial Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Ramin Madarshahian and Juan M. Caicedo



Chapter 1
Experimental Validation of the Dual Kalman Filter for Online
and Real-Time State and Input Estimation

Saeed Eftekhar Azam, Eleni Chatzi, Costas Papadimitriou, and Andrew Smyth

Abstract In this study, a novel dual implementation of the Kalman filter is proposed for simultaneous estimation of the
states and input of structures via acceleration measurements. In practice, the uncertainties stemming from the absence of
information on the input force, model inaccuracy and measurement errors render the state estimation a challenging task
and the research to achieve a robust solution is still in progress. Via the use of numerical simulation, it was shown that
the proposed method outperforms the existing techniques in terms of robustness and accuracy of displacement and velocity
estimations [8]. The efficacy of the proposed method is validated using the data obtained from a shake table experiment on
a laboratory test structure. The measured accelerations of the floors of the structure are fed into the filter, and the estimated
time histories of the displacement estimates are cross-compared to the true time histories obtained from the displacement
sensors.

Keywords Dual Kalman filter • Unknown input • State estimation • Modal identification • TSSID • Experimental
validation • Laboratory test

1.1 Introduction

This paper contributes to the procedure of fatigue damage prediction in the entire body of large-scale structures via sparse
vibration measurements. An accurate prediction of the fatigue damage demands reliable estimations of the strain time
histories in points of interest and their vicinity. Accurate prediction of the strain time histories in turn requires accurate
estimates of the states at corresponding degrees-of-freedom of the system [1]. This may be casted as a problem of reliable
state estimation under the premise of unknown input measurements. When dealing with a stochastic linear time invariant
system, with a known input, state estimates can be calculated in a straightforward fashion. However, in the problem discussed
herein the input is unknown. In the last few decades, a number of methods and techniques have been developed to account for
the lack of information on the input. Bernal and Ussia present a comprehensive study of sequential deconvolution of inputs
from measured outputs [2]. They pose the problem in a deterministic setup, and prove that when there are less inputs than
measured outputs the input to the system can be accurately reconstructed. They have shown that the proposed procedure is
conditionally stable and the stability criteria is established. However, in practical cases the conditions that must be satisfied
to make the deconvolution work are highly likely to be violated.

One of the most recent methods for joint state and input estimation of linear time invariant systems, attempting to
incorporate uncertainties, has been developed by Gillijn and De Moore [3]. The method requires a state space model of
the system and the second order statistics of the state of the system to recursively furnish the estimates of the input and state.
However, when the number of the outputs exceed the order of the model the method suffers from rank deficiency. Lourens
et al. [4] have suggested an alteration of the method developed in [3] to alleviate the above-mentioned numerical instabilities.
The effectiveness of the proposed adjustment was studied via the joint input force and acceleration estimation of a simulated
steel beam, a laboratory test beam and a large-scale steel bridge. It was observed that, even though the method delivers a
reasonable estimate of the accelerations, the displacement estimates are affected by spurious low frequency components,
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e-mail: eftekhar@uth.gr; costasp@uth.gr

E. Chatzi
Institute of Structural Engineering, ETH Zürich, Zürich, Switzerland

A. Smyth
School of Engineering and Applied Science, Columbia University, New York, NY, USA

© The Society for Experimental Mechanics, Inc. 2015
H.S. Atamturktur et al. (eds.), Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings
of the Society for Experimental Mechanics Series, DOI 10.1007/978-3-319-15224-0_1

1

mailto:eftekhar@uth.gr
mailto:costasp@uth.gr


2 S. Eftekhar Azam et al.

which were filtered out by using band pass filters. It is noteworthy that in dealing with joint state and parameter estimation,
Chatzi and Fuggini [5] have proposed a method to resolve the issues related to the spurious low frequency components in the
displacement estimates by including artificial displacement measurements into the observation vector.

Lourens et al. [6] have for the first time applied an augmented Kalman filter (AKF) for unknown force identification in
structural systems. It was concluded that the AKF is prone to numerical instabilities due to un-observability issues of the
augmented system matrix. Naets et al. proposed an analytical investigation of the stability of the augmented Kalman filter
when applied to unknown input and state estimation and demonstrate that the exclusive use of acceleration measurements
can lead to unreliable results [7]. In order to alleviate this problem, dummy displacement measurements on a position level
are added. The proposed technique is ascertained through numerical investigation and experimental campaign; in both cases
it is observed that the AKF based on solely acceleration measurements can lead to unstable results.

To address the shortcomings of the existing methods for state estimation of the structural systems with unknown general
inputs, Eftekhar Azam et al. proposed a novel dual Kalman filter (DKF) for state and unknown input estimation via sparse
acceleration measurements [8]. It is demonstrated that the successive structure of DKF resolves numerical issues attributed
to un-observability and rank deficiency of the AKF. Furthermore, through numerical investigations it is shown that the expert
guess on the covariance of the unknown input provides a tool for filtering out the so-called drift effect in the estimated
input force and states by GDF. In this paper, an experimental validation of the DKF is pursued; the results of a laboratory
experiment are utilized in order to assess the performance of the DKF when real experimental data is used. Moreover, the
results obtained by GDF are confronted by those furnished by AKF and GDF.

The paper starts with a section devoted to a brief formulation of the state-space equations for linear time invariant
dynamical systems. The next section overviews the DKF, AKF and GDF algorithms and highlights the salient features
of each of these approaches in an effort to bring forth their similarities and distinctions. The following section describes the
model identification methods used in the current study, and finally the results of the experimental validation of the DKF and
its cross-comparison to other filters are recounted.

1.2 Formulation of the Dynamic State Space Equations

The methods and techniques used in this work require existence of an underlying mathematical model of the system which
serves as the open-loop estimator of the state of the system. To this end, the linear second order differential equation in
continuous time is introduced herein:

M Ru.t/C C Pu.t/C Ku.t/ D f.t/ D Spp.t/ (1.1)

where u.t/ 2 R
n denotes the displacement vector and K, C and M 2 R

n�n stand for the stiffness, damping and mass matrix,
respectively. f.t/ 2 R

n is the excitation force, which herein is presented as a superposition of time histories p.t/ 2 R
m that

are influencing some degrees-of-freedom of the structure as indicated via the influence matrix Sp 2 R
n�m.

Time discretization should be implemented on the aforementioned equations in order to facilitate their use with the
data coming from the sensors. In doing so, first the state space form of the equations are derived, where the state vector
encompasses displacement and velocity. The latter allows one to write Eq. (1.1) in the following form and to define the
so-called process equation:

Px.t/ D Acx.t/C Bcp.t/ (1.2)

where the system matrices are:

Ac D
�

0 I
� M�1K �M�1C

�

Bc D
�

0

M�1Sp

�

Regarding the measurement equation, the most general case for the observation process is considered where a combination
of the displacements, velocities and accelerations are supposed to form the measurement vector:
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d.t/ D
2
4Sd 0 0

0 Sv 0

0 0 Sa

3
5
2
4u.t/

Pu.t/
Ru.t/

3
5 (1.3)

where Sd, Sv and Sa denote the selection matrices of appropriate dimension for the displacements, velocities and
accelerations, respectively. By using equation of motion, Eq. (1.3) could be transformed so that it forms the observation
equation:

d .t/ D Gcx .t/C Jcp .t/ (1.4)

where the output influence matrix and the direct transmission matrix are:

Gc D
2
4 Sd 0

0 Sv

� SaM�1K �SaM�1C

3
5

Jc D
2
4 0

0

SaM�1Sp

3
5

In this study, the main focus lies in the seismic excitations applied to the base of a structure, hence the excitation term
assumes the following form:

f.t/ D �MRug .t/Sp

In Eq. (1.1), it is noteworthy that the coordinate system is relative to the ground displacement, moreover, the subscript g
refers to the coordinate system, which moves according to seismic ground motions. The matrix Sp in this case applies the
ground accelerations to all floors of the structure.

In practical situations we might use an identified modal model of the structure, hence the equivalent of Eq. (1.1) in modal
coordinates is introduced herein. To derive a modal model of the system, Eq. (1.1) is projected to the subspace spanned by
the undamped eigenmodes of the system. In this regard, consider the eigenvalue problem corresponding to Eq. (1.1):

Kˆ D Mˆ�2 (1.5)

Transforming the coordinate system of Eq. (1.1) via the following mapping:

u.t/ D ˆz.t/ (1.6)

where z.t/ 2 R
m; ˆ 2 R

n�m, and then pre multiplying it by ˆT and dividing the right hand side and left hand side by
ˆTMˆ, considering ˆTKˆ=ˆTMˆ D �2 and assuming the damping is proportional, the Eq. (1.6) can be rewritten:

Rz.t/C � Pz.t/C�2z.t/ D �P Rug.t/ (1.7)

where the components of jth entry of the diagonal damping matrix � are of the form 2� j! j, in which � j stands for the relevant
modal damping ratio. Additionally, P denotes the modal participation factor P D ˆTMSp=ˆ

TMˆ. Note that, a truncated
modal space could be substituted in Eq. (1.7)

The recombination of Eqs. (1.3) and (1.4) through use of the relevant matrices, results into the full order state-space
equations that are required to implement the input and state estimation algorithm. To derive the modal state-space equations,
an eigenvector space must be substituted in Eq. (1.4) hence the following variable transformation would be necessary:

x .t/ D
�
ˆ 0

0 ˆ

�
—.t/
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where �(t) is the reduced modal state vector:

— .t/ D
�

z .t/
Pz .t/

�

The reduced modal state-space equation in continuous time will have the following form:

P— .t/ D Ac— .t/C Bc Rug .t/ (1.8)

d .t/ D Gc— .t/C Jc Rug .t/ (1.9)

while the relevant system matrices read:

Ac D
�

0 I
��2 ��

�
; Bc D

�
0

� P

�
; Gc D

2
4 Sdˆ 0

0 Svˆ

� Saˆ�
2 �Saˆ�

3
5 ; Jc D

2
4 0

0

� SaP

3
5

To discretize Eqs. (1.8) and (1.9), the sampling rate is denoted by 1/�t and the discrete time instants are defined at tk D k�t,
for k D 1; : : : ;N. The discrete state-space equation can be expressed by the following notation:

—kC1 D A—k C BRug;k (1.10)

dk D G—k C JRug;k (1.11)

where A D eAc�t, B D ŒA � I�A�1
c Bc, G D Gc and J D Jc.

1.3 Dual Kalman Filter for Joint Input and State Estimation

In this article, three methods and techniques for the purpose of input and state estimation are cross-compared. First, the main
features of each are outlined so that their similarities and distinctions can be summarized. The first algorithm assessed herein
is the filter developed by Gillijn and De Moor (GDF) for input and state estimation of linear time invariant systems [3]. The
method belongs to the family of recursive Bayesian filters, as such, Bayes’ theorem is incorporated into the filter to render
the extraction of information on the states from the latest observations possible. To initialize the procedure, the GDF requires
an expert guess on the expected value and the covariance of the state at the beginning, then, it recursively estimates the input
and state at discrete time instants. First, an estimate of the mean and covariance of the input force is obtained by updating the
guess on the input via the GDF input gain, which is similar, but not identical to the Kalman gain. Once the input is estimated,
the state vector is subsequently calculated by applying the GDF state gain to the observation novelty. Then, a time update
stage follows the procedure which boils down to a mere transition of the state and input through the state-space equations.

Another existing method to achieve recursive state and input estimation is the augmented Kalman filter (AKF). The notion
of the augmented state is extensively used in automatic control in order to concurrently estimate the parameters and state of
the system. To mitigate some issues attributed to the GDF, this paper also considers the application of the AKF. The AKF
turns out liable to numerical instabilities when pure acceleration measurements are fed into it.

Within the frame of state and parameter estimation, an alternative to the augmented formulation is the dual formulation
[9]. In dealing with state and parameter estimation of the laminated composites it was shown that the dual formulation
outperforms the augmented formulation at the cost of a more complicated implementation [10]. Dealing with the dual
estimation and reduced order modelling of linear time varying systems, the dual estimation concept is used to update the
reduced subspace constructed by proper orthogonal decomposition [11]. However, in dealing with joint input and state
estimation of linear time invariant systems neither the augmented nor the dual formulation lead to nonlinear state space
models. The latter motivates the application of the dual formulation of the input-state estimation with coupled use of the
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Table 1.1 The general scheme
of the DKF algorithm for input
and state estimation

Initialization at time t0:
Op0 D E Œp0�

Pp
0 D E

h
.p0 � Op0/ .p0 � Op0/T

i
Ox0 D E Œx0�

P0 D E

h
.x0 � Ox0/ .x0 � Ox0/T

i
At time tk, for k D 1; : : : ;Nt:
Prediction stage for the input:
1. Evolution of the input and prediction of covariance input:

p�

k D pk�1

Pp�

k D Ppk�1 C Qp

Update stage for the input:
2. Calculation of Kalman gain for input:

Gp
k D Pp�

k JT
�
JPp�

k JT C R
�

�1

3. Improve predictions of input using latest observation:

Opk D p�

k C Gp
k

�
dk � G Oxk�1 � Jp�

k

�
Pp

k D Pp�

k � Gp
kJPp�

k

Prediction stage for the state:
4. Evolution of state and prediction of covariance of state:

x�

k D A Oxk�1 C BOpk

P�

k D APk�1AT C Qx

Update stage for the state:
5. Calculation of Kalman gain for state:

Gx
k D P�

k GT
�
GP�

k GT C R
�

�1

6. Improve predictions of state using latest observation:

Oxk D x�

k C Gx
k

�
dk � Gx�

k � JOpk

�
Pk D P�

k � Gx
kGP�

k

Kalman filter. Within the dual estimation scheme, similar to the augmented formulation, the concept of the fictitious transition
equation for unknown input is used. Hence, similar to the AKF, in dealing with the DKF the covariance of the fictitious noise
must be additionally adjusted to obtain accurate estimates of the state. However, unlike the AKF, the DKF estimates the input
and state in two different stages. After initialization, at a first stage the input and the covariance of the input are estimated by
applying the Kalman gain to the innovation. At a second stage, the estimated input is fed into a standard Kalman filter which
uses the dynamic state-space model to furnish the estimate of the state (Table 1.1).

1.4 Experimental Validation

To assess the performance of the DKF, AKF and GDF in the joint state-input estimation task, the data available from a
laboratory structure, shown in Fig. 1.1 has been used. The test is carried out on a three dimensional structure that is comprised
of four floors which are stacked onto each other via single span frames. The frame is laterally braced along its strong axis to
prevent rotational movements. The structure is subjected to seismic excitations by means of the hydraulic uniaxial shacking
table, of the Carleton lab facility in Columbia University, and the response of the structure in terms of the displacements and
accelerations is measured on all floor levels by means of laser and MEMS accelerometer sensors, respectively. The methods
and techniques that are described and introduced in the previous section require a physical description of the structure,
represented in state-space form. In order to obtain the aforementioned numerical model, in this study two approaches are
followed; first a modal model of the structure; the second model is established via a recently developed transformation
strategy applied on a numerical model obtained by a subspace identification method [12]. Next, a general scheme of each
model identification procedure is outlined. The motivation for utilizing both the TSSID and modal model of the structure lies
is the numerical divergence of GDF estimates for some sparse sensor setups when the TSSID is used. It is noteworthy that
the TSSID model does not make any restrictive assumption on the system matrices; however, the modal model presumes a
proportional damping. It is shown that inherent differences between two models can lead to different performances when the
state and input estimation is dealt with.
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Fig. 1.1 The four storey shear
frame setup on the Carleton
laboratory uniaxial shake table

In this paper, the modal characteristics of the structure are estimated using vibration data induced by a measured seismic
force applied to its base. The adopted method is based on a least squares minimization of the measure of fit between the
Frequency Response Function (FRF) matrix estimated from the measured output acceleration time histories and the FRF
matrix predicted by a modal model. In a procedure that can be divided in three main steps, the number of contributing modes
and the values of the modal properties are estimated through the FRF estimated from the measured input-output response time
histories. In a first step, conventional least squares complex frequency algorithms using the right matrix fraction polynomial
model [13, 14] are adopted to acquire estimates of the modal frequencies modal damping ratios and participation factors,
and stabilization diagrams furnish a tool to distinguish between the physical and the mathematical modes. In a second step,
given that the aforementioned error function is quadratic with respect to the complex mode shapes and the so-called upper
and lower residual terms [15], the mode shapes and damping ratios are obtained. These values in most cases are very close
to the optimal values. In a third step, the values obtained in the first and second stage are used to efficiently perform the
minimization of the objective function. Hence, the computational cost is significantly reduced, when considering that the
abovementioned objective function is quadratic with respect to the complex mode shapes.

As a second alternative, a transformed subspace identification technique is used to construct a state-space model for
its use with the recursive Bayesian filters. Specifically, the underlying SSI technique is the n4sid algorithm which fits in
the class of subspace identification methods [12]. This constitutes an input-output identification method, consisting of QR
decomposition of the past and future block Hankel matrices of input and output in order to calculate the main projection
matrices. Subsequently, a singular value decomposition (SVD) is executed for extracting the rank of the system and to cast
the problem in a standard least-square form. The solution of the latter least squares yields the numerical state space model
that fits the input-output data. The disadvantage of Stochastic Subspace Identification methods lies in that the derived state
space models are not in their canonical form, i.e. they are not formulated with a minimal parameterization. More importantly,
the identified models are not represented in physical coordinates. However, in this study it is necessary to be able to estimate
the physical states of the system in the form of displacement, since these are to be subsequently used for fatigue estimation.
In this regard, a transformation procedure for achieving such a transformation for structural systems developed by Chatzis
et al. [16], hereinafter referred to as the TSSID.

In what follows, the results of the state and input identification by using the DKF, AKF and GDF are presented. First the
identified modal properties of the structure are introduced to the filters for deriving the model of the structure.
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Fig. 1.2 Acceleration time histories estimated by DKF, AKF and GDF of the floors 1, 2, .., 4 from top to bottom, respectively

For the joint state and input estimation for systems with unknown input, the GDF does not require any a-priori assumption
on the statistics of the input to the system; on the contrary, the AKF and DKF need the initial value of the mean and
covariance of input force to deliver the estimates of the input and states of the system. The value of the covariance of the
input force, which plays the role of the regularization parameter, strongly influences the quality of the estimates furnished
by the Bayesian filters. In this work, we make use of the L-curve approach in order to adjust the values of the process noise
for the state and input estimation [6]. In this way, it turns out that Qp D 10�6 � I and Qp D 1 � I should be selected for
the AKF and DKF respectively when only the measured acceleration time history of the last floor is regarded as observation
process. Henceforward I is an identity matrix of appropriate dimension. The diagonal values of the covariance matrix of
the observation noise for acceleration measurement are set to 10�3 m=s2. The process noise Q— and initial covariance of
the state of P0 are both set to 10�20 � I. Figures 1.2 and 1.3 show the acceleration and displacement estimation results
provided by the DKF, AKF and GDF for the case where only the acceleration time history of the last DOF is observed.
In Fig. 1.2, it is evident that the DKF and AKF provide a reasonable estimate of the observed acceleration time histories;
however, the GDF results are affected by numerical instabilities. By increasing the number of the observations the numerical
instability can be mitigated, however the emphasis of the current study is on cross-comparison of the three methods when
sparse measurements are dealt with. Figure 1.3 shows the results of the displacement estimates provided by the DKF, AKF
and GDF. The displacement time history estimated by the GDF is affected by the low frequency components and the same
instability trend as in the acceleration estimation. It is observed that the DKF and AKF both provide reasonable estimates of
the displacement time history of the test structure.

In what preceded, it was seen that the results of displacement time history estimate furnished by GDF have been affected
by low frequency components. In order to get insights on the performance of the GDF filter apart from the drift in the
estimates, the modal displacements estimated by GDF have been filtered by using a band pass filter. Figure 1.4 presents the
results of such analysis, and confronts the obtained result by DKF and AKF estimates. It is observed that, after implementing
the filtering procedure in the estimation results the GDF estimates become more accurate; and match the results furnished by
DKF in terms of accuracy and agreement to the target values, nonetheless, the numerical instability caused by low density of
the observation sensors still persists.

Next, a model obtained by stochastic subspace identification procedures [5] is incorporated into the filters to investigate
the performance of the different schemes when a more realistic model is incorporated into the filters. In this regard, the
model obtained through TSSID method, which is described in previous section is introduced into the DKF, AKF and GDF.
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Fig. 1.3 Displacement time histories estimated by DKF, AKF and GDF of the floors 1, 2, .., 4 from top to bottom, respectively
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Fig. 1.4 Displacement time histories estimated by DKF, AKF and band pass-filtered GDF for the floors 1, 2, .., 4 from top to bottom, respectively

It was observed that, the GDF fails to provide a solution to the problem when sparse measurements are made. Once again,
by increasing the number of the observation DOFs the GDF results can be improved.

Next the capability of the AKF and DKF when sparse acceleration measurements are available is investigated. It is
assumed that only the acceleration time history of the last floor is observed, thereafter the performances of the two filter
when using modal model and TSSID model are cross-compared. In Figures 1.5 and 1.6 the results of acceleration and
displacement estimation furnished by DKF are shown. In Fig. 1.5 it is observed that the acceleration estimations in non-
measured DOFs is less accurate than the observed one, additionally, moving from last floor to first floor as the noise to signal



1 Experimental Validation of the Dual Kalman Filter for Online and Real-Time State and Input Estimation 9

0 5 10 15 20 25 30

-5
0
5

 a
cc

el
er

at
io

n
 (
m

/s
2 )

9 9.2 9.4 9.6 9.8 10
-5

0

5

0 5 10 15 20 25 30

-10
0

10

 a
cc

el
er

at
io

n
 (
m

/s
2 )

9 9.2 9.4 9.6 9.8 10

-5
0
5

0 5 10 15 20 25 30
-20

0

20

 a
cc

el
er

at
io

n
 (
m

/s
2 )

9 9.2 9.4 9.6 9.8 10
-10

0

10

0 5 10 15 20 25 30

-20

0

20

 a
cc

el
er

at
io

n
 (
m

/s
2 )

 t (s)
9 9.2 9.4 9.6 9.8 10

-10

0

10

 t (s)

true value DKF-TSSID DKF

Fig. 1.5 Acceleration time histories estimated by DKF when modal model and TSSID model are used for the floors 1, 2, .., 4 from top to bottom,
respectively
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Fig. 1.6 Displacement time histories estimated by DKF when modal model and TSSID model are used for the floors 1, 2, .., 4 from top to bottom,
respectively
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Fig. 1.7 Acceleration time histories estimated by AKF when modal model and TSSID model are used for the floors 1, 2, .., 4 from top to bottom,
respectively

ration increases the accuracy of the estimations decrease. Concerning the displacement time histories, it is observed that use
of both models lead to the same level of accuracy of displacement estimates.

Dealing with the performance of the AKF when the TSSID model is used Figs. 1.7 and 1.8 present the relevant estimates
when the sensor configuration used in the last example is considered. It is observed that use of the TSSID model leads to
a more accurate acceleration estimation for un-observed DOFs. Similar to the acceleration estimates obtained by the DKF,
the lower the floor the less the accuracy becomes due to the higher signal to noise ratio. Regarding the displacement time
histories, both models deliver a similar accuracy.

Finally, the input estimation capability of the three methods is discussed. In Figures 1.9 and 1.10 show the time histories
of input and displacement, when DKF, AKD and a band-pass filtered GDF are used. In the latter case, the accelerations of
the floor # 2 and # 4 are assumed as the observation process, due to divergence of the GDF results in the case of a single
observation. Moreover, the low frequency drift in the displacement estimates is removed, in a post-processing phase, i.e., not
in an online manner, by applying a band pass filter on the modal coordinates. In doing so, first the displacement time histories
are projected onto the modal basis, thereafter a band pass filter is used to remove spurious frequencies, which for its lower
and upper bounds features the 0:1 !j ; j D 1; 2; : : : ; 4 and Nyquist frequency, respectively. Concerning the band pass filter
applied to the input, the lower bound is set 0.1 !1. In Figure 1.9, it is observed that the filtered GDF provides a close match
between estimated and true input; however, the DKF and AKF fail to provide a reasonable agreement between estimated
values and their target ones. However, it is noteworthy that the amplitude of the AKF input estimates is closer to the target
value than the DKF. In Figure 1.10 the displacement time histories associated with the inputs are shown. It is observed that
the AKF does not provide accurate estimates when tuned so that the amplitude of the identified input is close to target values.
Concerning the GDF, it is observed that once the spurious low frequency components are removed by the aforementioned
band pass filter (off-line), accurate estimates of the displacement time histories are indeed obtained. When dealing with the
DKF, it is observed that the accuracy of the displacement estimates is slightly lower than that of the filtered GDF, however
these are delivered on an online manner.. It is important to note that the DKF as well could be tuned, via calibration of the
fictitious process noise, to better approximate the unknown input, at the cost of reduced accuracy for the state estimates.
However in the fatigues estimation problem discussed herein, the main objective is the estimate of the displacement states in
particular and not of the unknown input itself. Therefore, the DKF is the preferred solution herein, given that is also operates
in an online manner.
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Fig. 1.8 Displacement time histories estimated by AKF when modal model and TSSID model are used for the floors 1, 2, .., 4 from top to bottom,
respectively

Fig. 1.9 Input time histories
estimated by DKF, AKF and band
pass filtered GDF when TSSID
model is used for floors 1, 2, .., 4
from top to bottom, respectively.
The DKF and AKF are tuned for
input estimation rather than the
displacement, i.e. Qp D 10�3 � I

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

 t (s)

 i
np

ut
 (
m

/s
2 )

true value
DKF
AKF
filtered GDF

1.5 Conclusion

In this work the AKF, GDF and a novel dual Kalman filter are applied for calculating the input and displacement time histories
of a laboratory test structure tested on a uniaxial shake-table. Concerning the GDF, it is known that the accumulation of the
errors arising from integration of noisy accelerations leads to low frequency components in the displacement and input force
estimation which must be filtered out. Consequently, in this work the accuracy of the aforementioned estimates after low-
pass filtering have been evaluated, which for online purposes is not an optimal consideration. Next, the augmented Kalman
filter (AKF), which has been proposed by Lourens et al. [6] for solution of the input and state estimation is considered.
The AKF requires introducing the observation process vector into the state transition matrix; it has been shown through
theoretical studies that in case of pure accelerations measurements this method suffers from un-observability issues [7].
To address abovementioned issues, a dual formulation of the Kalman filter is considered herein. Numerical investigations
have shown that the DKF not only solves the issues stemming from un-observability of the system matrices in the AKF,
but also mitigates issues arising from the accumulation of the measurement errors including the drift in displacement and
input force estimates [8]. To evaluate the performance of the proposed method a laboratory test structure has served as
the examined test case. The measured accelerations of the floors of the structure are fed into the filter, and the estimated
time histories of the displacement are confronted by the true time histories obtained from the displacement sensors. In
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Fig. 1.10 Displacement time histories estimated by DKF, AKF and band pass filtered GDF when TSSID model is used for the floors 1, 2, .., 4
from top to bottom, respectively. The DKF and AKF are tuned for input estimation rather than the displacement, i.e. Qp D 10�3 � I

the latter experimental campaign it is witnessed that when dealing with noisy acceleration measurements the GDF always
features spurious low frequency components. Moreover, it is observed that limited DOF observations render the GDF prone
to numerical instability and divergence. Concerning the AKF, it is shown that when fed with limited DOF acceleration
measurements, the filter becomes sensitive to the tuning of the covariance of the fictitious noise process, in contrast to the
proposed DKF algorithm.
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Chapter 2
Comparison of Uncertainty in Passive and Active Vibration Isolation

Roland Platz and Georg C. Enss

Abstract In this contribution, the authors discuss a clear and comprehensive way to deepen the understanding about the
comparison of parametric uncertainty for early passive and active vibration isolation design in an adequate probabilistic way.
A simple mathematical one degree of freedom linear model of an automobile’s suspension leg, excited by harmonic base point
stroke and subject to passive and active vibration isolation purpose is used as an example study for uncertainty comparison.
The model’s parameters are chassis mass, suspensions leg’s damping and stiffness for passive vibration isolation, and an
additional gain factor for velocity feedback control when active vibration isolation is assumed. Assuming the parameters
to be normally distributed, they are non-deterministic input for MONTE CARLO-Simulations to investigate the dynamic
vibrational response due the deterministic excitation.

The model parameters are assumed to vary according plausible assumptions from literature and own works. Taking into
account three different damping levels for each passive and active vibration isolation approach, the authors investigate the
numerically simulated varying dynamical output from the model’s dynamic transfer function in six case studies in frequency
and time domain. The cases for the output in frequency domain are (i) varying maximum vibration amplitudes at damped
resonance frequencies for different passive and active damping levels, (ii) varying vibration amplitudes at the undamped
resonance frequency, (iii) varying isolation frequency, (iv) varying amplitudes at the excitation frequency beyond the passive
system’s fixed isolation frequency, and (v) vibration amplitudes for �15 dB isolation attenuation. In time domain, case (vi)
takes a closer look at the varying decaying time until steady state vibration is reached.

Keywords Vibration isolation • Velocity feedback control • Parametric uncertainty • Monte Carlo-simulation • �2-Test

2.1 Introduction

The evaluation of uncertainty becomes predominant in early design phases when it comes to early decision making when
defining the product’s properties. If a decision has to be made between passive, active or semi-active designs today, the
authors observe that the active approach often wins because of its increasing manifoldness and popularity using smart
materials and systems that are used in active systems. However, increasing possibility and popularity may overlook
advantages of the more conventional, and often less expensive passive alternatives with similar good performance, for
example for vibration attenuation with energy absorbing material or compensators [1]. Systems become more complex, e.g.
additional electric energy for actuators, sensors, and control is needed, if active vibration reduction technology is selected, [2].
The active system’s functionality is versatile, however, it depends on these additional features with additionally functional
uncertainty compared to the, in most cases, more simple passive approach. Favoring active over passive solutions should
be built on solid ground, taking into account the evaluation and comparison of uncertainty for both approaches. It is the
general desire that uncertainty decreases when going active. However, the increasing call backs for complex active systems
for example in the automotive industry tell another story [3].

In [4], the authors showed analytically that active control may lead to a vibration isolation ability with less deviation in
amplitude and phase responses than with passive control. This was seen throughout the frequency range of interest when
sweeping through the undamped resonance frequency !0 until angular excitation frequencies are way beyond the angular
isolation frequency !iso D p

2!0. However, this was only a first and rough analytical approach that did not go deeper into
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the comparison between passive and active vibration attenuation potential under parametric uncertainty at various significant
dynamic properties such as the damped angular eigenfrequency !D, at the angular isolation frequency !iso, at an amplitude
attenuation of �15 dB or at the ability for fast decaying time to reach damped steady state vibrations after initial excitation.
What is more, the authors did not look closely to the quality of MONTE CARLO-Simulations in terms of confidence levels
when using assumed sample trails. In this current contribution, the authors use the �2-Test to validate normal distribution
assumptions of the model’s input parameters and evaluate the computational adequacy when using 100 samples and 10;000
sample trials.

In this contribution, first the model input parameters are randomly generated with 100 samples. Second, 10;000 samples
are taken into account. Using a random generator with different sampling rates to approximate normal distribution of the
input model parameters, the authors evaluate the MONTE CARLO-Simulation’s quality and validity based on the �2-test as
well as the simulation’s practicability with respect to computational cost in time. Variations of characteristic properties in
frequency and in time domain of vibration isolation caused by the varying model input parameters are studied for six different
cases that cover significant cornerstones for passive and active vibration isolation:

(i) varying maximum vibration amplitude jV maxj for different passive and active damping levels
(ii) varying vibration amplitudes jV 0j at the undamped resonance frequency !0

(iii) varying isolation frequency !iso

(iv) varying amplitudes jV 100j at the excitation frequency beyond the passive system’s fixed isolation frequency, � D
100 1=s > !iso

(v) varying excitation frequency !15 for �15 dB isolation attenuation
(vi) varying decaying time t0:01 until steady state vibration is reached or, respectively, initial transient vibrations are damped,

so only 1% is left.

This investigation is part of German Collaborative Research Center SFB 805 “Control of uncertainty in load-carrying
mechanical systems”, [5]. This present contribution gives an example to compare passive and active solutions in case of
vibration reduction with a basic mathematical dynamic model of a vehicle’s chassis with a suspension leg in an early step of
product development.

2.2 Numerical Example for Mathematical Evaluation of Uncertainty in Passive
and Active Vibration Reduction Design

2.2.1 Linear Mathematical Dynamic Model of a Simple Mass-Damper-Spring System
for Passive and Active Vibration Isolation

As introduced in [4], a suspension leg supporting a vehicle’s chassis, Fig. 2.1a, is used as a simple example for a mass-
damper-spring system to generally compare passive and active vibration isolation capability with respect to uncertainty in
the system’s model parameters. In a linear mathematical model, Fig. 2.1b, the chassis is represented by the mass m. The
mechanical properties of the suspension leg, which is assumed to be free of mass, result from the damping coefficient b,
stiffness k and the velocity feedback gain g. Passive damping is used when g D 0, active damping is present when g ¤ 0.
The mass oscillates in z-direction with the angular excitation frequency � when excited by harmonic base point stroke

w.t/ D Ow cos.�t C ı/ (2.1)

with the excitation amplitude Ow, time t and phase shift ı, with ı D 0 in the following.
When linearity is assumed, the forces in Fig. 2.1b, are

Fb D b .Pz � Pw.t//; Fa D �g Pz and Fk D k .z � w.t// (2.2)

due to passive and active damping as well as due to stiffness, leading to the linear equation of motion for absolute vibration
in z-direction

m Rz C .b C g/ Pz C k z D b Pw.t/C k w.t/: (2.3)
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Fig. 2.1 Mass-damper-spring system, (a) suspension leg (DAIMLERBENZ), (b) simple mechanical model (left) and cut free forces (right), [4]

For active damping, the feedback gain g is, different from [4], proportional to the mass vibration velocity Pz only. Practically,
Pz can be measured by inductive sensors for the active velocity feedback control, Fig. 2.1b, left. With

2D !0 D b

m
and !20 D k

m
; (2.4)

referring to the damping ratio D and the angular eigenfrequency !0, Eq. (2.3) is transferred into complex form with the
particulate integral approach

z
p
.t/ D Ozp ei� t and w.t/ D Ow ei� t (2.5)

to become
�

��2 C i�
�
2D !0 C g

m

�
C !20

	
Ozp ei� t D

�
i� 2D !0 C !20

	
Ow ei� t : (2.6)

Using the frequency relation � D �=!0 and the factor � D �=.m!20/, the complex amplification function for the mass
displacement in z-direction in frequency domain is

V .�/ D Ozp
Ow D 1C i 2D �

.1 � �2/C i.2D �C g �/
(2.7)

with its amplitude

jV .�/j D
s

1C .2D �/2

.1 � �2/2 C .2D �C g �/2
(2.8)

and its phase

 .�/ D arctan
�2D �3 � g �

1 � �2 C .2D �/2 C 2D �g �
: (2.9)
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Table 2.1 Deterministic input parameter and modal parameter

Input parameter Modal parameter

Property Variable Value Unit Property Variable Value Unit Property Variable Value Unit

Mass m 1 kg

Stiffness k 1,000 N/m

Eigenfrequency !0 31.62 1/s –

b1 0.095 Ns/m !D1 31.62 1/s D1 0.15 %Damping

b2 9.487 Ns/m

Damped

!D2 31.27 1/s

Damping

D2 15 %Coefficient

b3 18.974 Ns/m

Eigenfrequency

!D3 30.17 1/s

Ratio

D3 30 %

Gain g1 16 Ns/m – –

g2 25 Ns/m

g3 35 Ns/m

2.2.2 Deterministic Amplitude and Phase Progression of the Simple Mass-Damper-Spring
System for Passive and Active Vibration Isolation

Significant deterministic dynamic characteristics of passive and active vibration isolation are explained in the following
before non-deterministic parameters are taken into account. So, any uncertainty will be neglected in this section. Table 2.1
specifies the assumed deterministic model parameters mass m, stiffness k as well as three different damping coefficient
b1 < b2 < b3 and three different velocity feedback gains g1 < g2 < g3.

Figure 2.2 shows the typical amplitude jV .�/j and phase  .�/ progression in a BODE-Diagram according to (2.8)
and (2.9) after transforming back � D �!0 within the frequency range 101 � � � 2 � 102 1/s and according to the
model’s input parameters in Table 2.1. In case of passive vibration isolation, the three different and increasing damping
coefficients b D b1 < b2 < b3 are taken into account. As usual, isolation jV .!iso/j D 0 begins at the isolation frequency
� D !iso D p

2!0 for all passive damping levels with g D 0 for cases (a), (b) and (c) in Fig. 2.2. The higher the damping,
the less decrease of amplitudes beyond � > !iso is expected. In case of active vibration isolation in cases (d)–(f), three
different and increasing gains g D g1 < g2 < g3 with b D b1 for all gains are assumed. In case of active vibration isolation,
the isolation effect jV .�/j D 0 starts earlier at � < !iso with increasing gain.

For the two particular cases (c) and (d) in Fig. 2.2, damping and gain are selected to be b D b3 with g D 0 for passive
vibration isolation and b D b1 with g D g1 for active vibration isolation, Table 2.1. As a result, similar amplitudes occur until
approximately the undamped angular eigenfrequency � D !0 is reached. With further increasing �, though, the amplitude
due to active vibration isolation in (d) decreases faster than in (c), isolation begins earlier at � < !iso.

Typical for passive vibration isolation, normally the same phase shift  .!0/ D �	=2 for different passive damping for
cases (a)–(c) at the undamped angular eigenfrequency !0 does not exist, Fig. 2.2. For high angular excitation frequencies,
the phases tend towards  .� � !0/ D �	=2 for all cases (a)–(f). For passive vibration isolation, the phase shift �	=2 is
reached much earlier for passive vibration isolation with b � b1 and g D 0 in cases (b) and (c) than for active vibration
isolation with b D b1 and g ¤ 0 in cases (d)–(f). Additionally and in case of an active approach in cases (d)–(f), Fig. 2.2
shows that for different damping at the undamped angular eigenfrequency !0, same phase shift  .!0/ D �	=2 does occur.
Eventually, for high angular excitation frequencies, the phases also tend towards  .� � !0/ D �	=2. As a result, cases
(c) and (d) lead to same amplitudes until resonance, however, no similarities in phase shift are seen.

2.2.3 Variation and Probability Measures of Mathematical Model’s Parameters

The analytical model of the complex amplification function V .�/ in frequency domain (2.7) is mathematically exact and is
not uncertain. Therefore, model uncertainty does not exist in this example, even though the model simplifies real world
condition. The deterministic assumptions for the parameters mass m, damping coefficient b, stiffness k and gain g in
Table 2.1 are appropriate to clarify the adequate characteristic dynamic behavior of vibration isolation with respect to
harmonic base point stroke in Fig. 2.2. In many cases, a simple linear mathematical model is used as first estimation of
a chassis’ dynamic behavior mounted on a suspension leg, [6]. The authors are aware of making errors due to the chassis and
suspension leg model’s simplicity. Although, they are acknowledged errors, referring to [7]. For example, further parameters
are missing that exist in real application, like parameters to describe connections and joints between damping, stiffness and
actuating devices, parameters that represent electrical contacts or fatigue processes that cause changes in geometric and
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Fig. 2.2 BODE-diagram, amplitude jV .�/j and phase  .�/ with m, k, b and g as shown in Table 2.1 according cases (a) b D b1; g D 0,
(b) b2; g D 0, (c) b3; g D 0 for the PASSIVE system ( ); and according cases (d) b D b1; g D g1, (e) b1; g2, (f) b1; g3 for the ACTIVE
system ( )

material properties as well as tolerances due to manufacturing variations. These errors are acknowledged and accepted by
the authors for simplification reasons. Yet, if these errors would have been taken into account in the mathematical model,
it is in most cases impractical to retrieve adequate information about the error’s real variation or, respectively, probabilistic
or possibilistic nature of the errors. For the most part, adequate data that covers all possible variations of either additional
parameters, non-linear behavior and other errors is not available in early design phases. There is hardly a representative
amount of similar products that can be compared with each other and that can be studied and evaluated in a reasonable time.
Even if there was a representative amount, there is uncertainty in the way to measure the parameter’s actual real world values
and the dynamic system’s non-linear behavior in a trustworthy way.

In this contribution and for the adequate comparison of passive and active vibration isolation, the authors assume a
variation of the predominant parameters mass m damping coefficient b, stiffness k and feedback gain g only. The variations
are assumed in such a way that they are legitimate by experience and literature [7]. What is more, only parametric and
stochastic uncertainty are considered when applying passive or active vibration isolation within small amplitudes in the
linear mathematical model (2.7). The variation of parameters is assumed to be normally distributed around an assumed
nominal value and within lower and upper ranges that are known by experience and literature, [8]. The lower and upper
ranges in % of each model parameter in Table 2.2 quantify the interval of variation of the model’s parameters shown in
Table 2.1.
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Table 2.2 Varying input
parameter assumptions

Input parameter

Property Variable Nominal value Unit Variation

Mass m 1 kg ˙3%

Stiffness k 1,000 N/m ˙10%
Damping
Coefficient

b1 0.095 Ns/m

b2 9.487 Ns/m ˙30%

b3 18.974 Ns/m

Gain g1 16 Ns/m

g2 25 Ns/m ˙15%

g3 35 Ns/m

According to the authors general experimental experience in [9], and according to the experimental affirmation in similar
structural dynamic works like in [8], the massmmay vary between ˙3%, damping b varies between ˙30% and the stiffness
k between ˙10% around their nominal values, Table 2.2. Prior investigations by the authors in [9] show that according to
active approaches to enhance buckling stability in axially loaded beams, the gain to control actuators based on piezoelectric
material may vary between ˙15% around its mean or nominal value.

The lower and upper ranges are expected to represent ˙ 3
 with 99.7 % probability, which is an accepted approach to
derive a standard deviation for assuming normal distribution, [8]. With this assumption,N samples of independently varying
mass mn, stiffness kn, damping b1;n, b2;n and b3;n as well as gain g1;n, g2;n and g3;n with n D 1; : : : ; N are randomly
generated by a numerical random generator via MATLAB. The complex amplification function (2.7) is calculated N times
via MONTE CARLO-Simulation for each case (a)–(f) in Fig. 2.2 by independently varying the model’s parameters in Table 2.2
assuming normal distribution.

Figure 2.3 shows the histograms of the relative frequency Mnb.x/=n in the nbth bin or class, with varying amounts of
bins Nb and constant bin-width� per parameter quantity sample xn, for nb D 1; : : : ; Nb bins and for n D 1; : : : ; N D 100

samples. The samples are randomly generated according to assumed normal distribution. As an example, the first row of
histograms presents the relative mass frequenciesMn.m/=nwith up toNb D 13 bins and with equal bin-width�D 0:005 kg,
and sampled as quantities mn via MATLAB random generator for cases (a)–(f). For each varying damping and gain value
in cases (a)–(f), each sample quantity of mass mn is generated newly and randomly for N D 100 times. In Fig. 2.3, each
histogram also shows the empirical mean value Nx and the standard variation sx , calculated with

Nx D 1

N

NX
nD1

xn and the variance s2x D 1

n � 1
NX
nD1
.xn � Nx/2 (2.10)

for each randomly generated quantity xn from N D 100 samples. In addition, the histograms displays the bin-width � and
amount of bins Nb , and the fitted continuous normal frequency distribution density function

p0.x/ D 1

sx
p
2	

e
�
1

2



x � Nx
sx

�2
(2.11)

due to the empirical mean value Nx and the standard deviation sx according to (2.10). Each histogram in the first row in
Fig. 2.3 quantifies the empirical mean values Nm and standard deviation sm of mass m and the fitted continuous frequency
distribution density function p0.m/ according to (2.11) for each case (a)–(f). In the same manner, the following rows 2–4
show histograms of the relative frequency, empirical mean values and standard deviation width and amount of bins, the fitted
continuous frequency distribution density function for the input model parameter stiffness k, damping b1, b2 and b3 as well
as g1, g2 and g3 for cases (a)–(f). Finally, the �2-test of goodness of fit (g.o.f.) is conducted to evaluate the adequacy of
assuming normal distributed N D 100 model parameter samples and indicated in the histograms, [10]. The Null-hypothesis

H0 H) p.x/ � p0.x/ (2.12)
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Fig. 2.3 Histograms of the relative frequency Mnb.x/=n for constant bin-width � and varying amounts nb D 1; : : : ; Nb of bins per input model
parameter x D m; k; b1�3, and g1�3 according to Table 2.2 for cases (a)–(f) in Fig. 2.2, assuming normal distribution, with the empirical mean
values Nx, standard deviation sx , curve progression of the hypothetical continuous frequency distribution density function p0.x/ ( ) and �2-test
results for N D 100 samples

is accepted when equivalence occurs between an actual measured distribution function P.x/ via sample trials and a
hypothetical assumed distribution function P0.x/ or, respectively, their distribution density functions p.x/ D dP.x/=dx
and p0.x/ D dP0.x/=dx. Practically, the g.o.f. is conducted to verify the equivalency via

�2 D
NbX
nbD1

.Mnb � npnb/
2

n pnb
D

NbX
nbD1

M2
nb

npnb
� n; (2.13)

with the absolute amount Mnb of samples in the nbth bin and the corresponding probability pnb, satisfying

NbX
nbD1

pnb D 1 and
NbX
nbD1

Mnb D N: (2.14)

As a result,

�2 � �2˛ H) accept H0

�2 > �2˛ H) refuse H0;
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with the critical value �2˛ due to the level of significance ˛ D 0; 05, when satisfying the condition npnb > 1 at bounding bins
and npnb � 1 for the other bins, [10]. The very low damping values b1 in cases (a) and (d)–(f) in Fig. 2.3 for passive and
active vibration isolation lead to small standard deviations sb with practically only one bin, yet fulfilling the requirements
in (2.14).

In Fig. 2.4, the amount of samples is increased from N D 100 to N D 10;000, the results for Mnb.x/=n, p0.x/, Nx, sx , �,
Nb , and �2 for cases (a)–(f) are shown again. Comparing Fig. 2.3 with Fig. 2.4, it is seen that using only N D 100 samples,
the g.o.f. becomes adequate in most cases, compared to the increased amount N D 10;000 of samples. Even for the less
absolute damping and gain values b and g in the third and forth row, the g.o.f. for N D 100 samples is adequate in most
cases. In this example, the Null-hypothesis is refused only for the first and third histogram in the first row, cases (a) and (c),
and in the sixth histogram in the third row, case (f). Using N D 10;000 samples, Null-hypothesis is accepted throughout all
rows which can be verified also by simply looking at the smooth histograms that comply with the continuous hypothetical
distribution density functions p0.x/.
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2.2.4 Comparison of Uncertainty in Passive and Active Vibration Isolation for Various
Characteristic Isolation Properties by MONTE CARLO-Simulation

The varying model parameters in Figs. 2.3 and 2.4 are the input model parameters to calculate the varying amplification of
the mass displacement’s amplitude jV .�/j in (2.8) via MONTE CARLO-Simulation, with respect to the cases (i)–(vi) from
Sect. 2.1 and according to the cases (a)–(f) in Fig. 2.2. The decaying time

t0:01 D
�2 ln



zd .t/

Oz
�

2D !0 C g=m
(2.15)

for case (vi) is derived from the homogeneous solution of (2.3) in time domain, with the decaying curve zd .t/ and the initial
amplitude Oz. The authors assume steady state vibration when the decaying amplitude is down to 1 % of its initial amplitude,
zd .t/= Oz D 0:01.

Figures 2.5 and 2.6 show the histograms of the relative frequencyMnb.x/=n for varying amounts of bins Nb and constant
bin-width � per varying dynamic output property x D Vmax; V0; !iso; V100; !15, and t0:01 along with the empirical mean
values Nx, the standard deviation sx , the curve progression of the hypothetical continuous frequency distribution density
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Fig. 2.6 Histograms of the relative frequency Mnb.x/=n for constant bin-width � and varying amounts nb D 1; : : : ; Nb of bins per dynamic
output property x D Vmax; V0; !iso; V100; !15, and t0:01 after calculating (2.8) with varying model input parameters from Fig. 2.3 via MONTE

CARLO-Simulation, with the empirical mean values Nx, standard deviation sx , curve progression of the hypothetical continuous frequency
distribution density function p0.x/ ( ) and �2-test results for N D 10;000 samples

function p0.x/ and the result of the �2-test due to N D 100 and N D 10;000 samples. The output properties are calculated
via (2.8) with varying model input parameters from Figs. 2.3 and 2.4 running a MONTE CARLO-Simulation. Each row in
Figs. 2.5 and 2.6 shows the varying output properties according cases (i)–(vi), and cases (a)–(f).

It is seen that for

(i) the relative frequency Mnb.Vmax/=n of the maximum amplitude Vmax is relatively narrow around the empirical mean
value NVmax with relatively small standard deviation sVmax for passive and active vibration control, except for low passive
damping b1, case (a). In this example, g.o.f. is not satisfied in case (a) for the increased sample size with N D 10;000.
However, the same high scatter tendency as for N D 100 samples is obvious.

(ii) the relative frequency Mnb.V0/=n of the amplitude V0 at angular resonance frequency !0 shows the same tendency as
for Vmax in scatter and g.o.f.

(iii) the relative frequency Mnb.!iso/=n of the angular isolation frequency !iso becomes relatively less narrow around the
empirical mean N!iso with relatively high standard deviation s!iso due to higher gain g for active vibration isolation
approach, cases (e) and (f). This tendency is seen in both low and high sampling rates with N D 100 and N D 10;000

samples.
(iv) the relative frequency Mnb.V100/=n of the amplitude V100 at the angular excitation frequency beyond the passive

system’s fixed angular isolation frequency � D 100 1=s > !iso becomes relatively less narrow around the empirical
mean NV100 and with relatively small standard deviation sV 100 due to high damping b3 for the passive approach, case (c).
With high active damping g1 to g3 in cases (d)–(f), the relative frequency becomes narrow around the empirical mean
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again. As far as the passive and active approach with the same amplitudes in Fig. 2.2 until the maximum at � 	 !0 is
concerned, cases (c) and (d), also less scatter is observed for the active approach for � D 100 1=s > !iso. The same
trend is seen with low and high sampling rates.

(v) the relative frequencyMnb.!15/=n of the angular frequency !15 at �15 dB vibration attenuation becomes relatively less
narrow around the empirical mean N!15 with relatively small standard deviation s!15 at higher passive damping b3, case
(c). For gains g1 to g3 in cases (d)–(f), scatter is always less in both low and high sampling rates. The same trend is seen
with low and high sampling rates.

(vi) the relative frequency Mnb.t0:01/=n of the varying decaying time t0:01 until steady state vibration is reached becomes
relatively more narrow around the empirical mean Nt0:01 with relatively small standard deviation st0:01 at high passive
damping b3 in case (c) and even more narrow with smaller standard deviation at higher gains g2 and g3 by the active
approach, cases (d)–(f). The same trend is seen with low and high sampling rates.

The computing time for all results in Figs. 2.5 and 2.6 is 4.7 s for N D 100 and 485.2 s for N D 10;000. With respect to
the discussion above and for the comprehensive example in this contribution, less computing time for less sample rates is
sufficient for adequate evaluation of uncertainty in passive and active vibration isolation numerically for this study.

2.3 Conclusion

The observations described in this contribution show that, generally, the tendency of varying standard deviations for passive
and active vibration isolation approaches with respect to characteristic amplitudes and angular frequencies due to the damping
properties is not affected by using low and high sampling rates, leading to low and high cost in computation time, in numerical
simulation. What is more, high active damping results in high scatter at the angular isolation frequency, but results in less
scatter at angular frequencies beyond the isolation point compared to the passive approach. Also, the scatter of the amplitude
attenuation beyond the angular isolation frequency is less with the active approach. So for the comparison of uncertainty in
passive and active vibration isolation, the active approach is not necessarily accompanied with less uncertainty throughout
a wide angular frequency range even beyond the isolation starts. Especially right at the angular frequency where vibration
isolation starts, the active approach appears to be more uncertain with increasing active damping. Preparations are under way
to validate the numerical comparison of uncertainty in passive and active vibration isolation with an experimental example.
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Chapter 3
Observation DOF’s Optimization for Structural Forces Identification

Silvia Milana, Annalisa Fregolent, and Antonio Culla

Abstract Frequently, in industrial application, the knowledge of the force distribution acting on complex structures is
required. Generally, the direct measurement of these force fields is impossible to perform, mainly due to the difficulties
associated with the transducers placement. Therefore, the development of force identification techniques is a very important
topic in applied mechanics. Unfortunately, this inverse problem is typically ill-conditioned. In recent decades, some force
identification procedures has been developed, but it is difficult to enforce these techniques in operating condition. In this
paper, a procedure to design the operative setup is proposed in order to determine the best configuration of sensors position.
To this aim, two indices are used and, through a Finite Element Model of the structure, they are calculated. The procedure
allows to reach the best configuration of the measurement points in order to minimize the ill-conditioning of the problem. To
validate the procedure, the results of an experimental test on a complex structure are compared with the numerical results.

Keywords Force identification • Sensor placement • Ill-conditioned problem • Regularization technique • Finite element
model

3.1 Introduction

Identification of external forces acting on structural systems is fundamental in many structural dynamic problems. Since the
identification problems are ill-conditioned, regularization techniques are necessary to obtain meaningful results. In recent
decades, several techniques have been developed to solve this problem. Among these, two approaches are of particular
interest: Force Analysis Technique [1, 2] that use a finite difference scheme and wavenumber approach [3]. These techniques,
although effective, need the knowledge of the analytical model of the studied system. On the contrary, the techniques based
on modal expansion or on the use of frequency response function [4] can be used with more complex systems through
numerical techniques as finite elements method. The accuracy of the identification technique is strongly affected by the
position of the measurement points. In this paper a frequency domain technique is considered and an operative procedure to
design an optimal measurement setup for a complex structure is described. A wide set of points on the considered structure
is selected, the method allows to recognize a subset of them where the sensors can be positioned to reach the best results
in force identification. Two indices are defined allowing to minimize the error of the identification procedure. The first one
take into account the norm of the relative difference between the amplitude of the identified forces and of the real force, the
second one gives the relative difference between the identified force in the correct position and the mean of the identified
forces on the whole set of points. This technique is tested on a complex structure. A numerical simulation is performed using
a FE Model of the studied system in order to identify numerically the force acting on the structure. The identified forces
allow to calculate the indices and to select the best configuration of points. This result is validated by comparing the indices
obtained by a set of measurements performed on a experimental setup at the location identified by the numerical procedure
and those calculated by the numerical results.
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3.2 Theoretical Background

The forces identification problem in frequency domain is defined as follows:

f.!/ D HC.!/a.!/ (3.1)

where f.!/ is a (n�1) vector of unknown forces, a.!/ is a (m�1) of measured responses and H.!/ is the (m�n) Frequency
Response Function (FRF) matrix. An accurate choice of the response measurement points is one of the key factors to obtain
the actual applied forces. Since in operational condition it is impossible to test a large number of measurement point sets
(setup), it is convenient to evaluate the best setup through a numerical procedure. The first step of the analysis is the choice of
a set of Nt points where the measurements can be performed. This set of points are depending on the considered frequency
range [5]. The Np points that belong to the optimal setup are chosen by comparing Nc configurations of Np points selected
among the Nt points. In order to establish the best configuration, two indices are used. They require the identified forces in
each configuration calculated through a numerical model.

3.2.1 Numerical Model

The procedure needs the knowledge of the numerical frequency response function of the structure Hn for the whole set of
Nt points. These FRFs are computed through the following relationship:

Hn i;j .!/ D
nX
hD1

�h.xi /�h.xj /

Mh.!
2
h � !2 C j�h!

2
h/

(3.2)

where the eigenvalues !h and the eigenvectors �h are obtained by a FE model. The acceleration of the selected points is
given by:

a.!/ D H.!/f.!/ (3.3)

The numerical force reconstruction is performed using the computed acceleration polluted adding a random error
proportional to the mean value of the signal for each frequency and for each point.

3.2.2 Reconstruction of the Force Field

The reconstruction of force field for each configuration needs the inversion of the matrix H. Due to the ill-conditioning
of the problem, errors in the data can highly perturb the solution. Therefore to reconstruct the force field the employ
of regularization techniques is required. In this work, two regularisation techniques both based on Singular Values
Decomposition (SVD) of the matrix H are considered: Truncated Singular Values Decomposition (TSVD) [6] and Tikhonov
regularisation [7]. Using SVD, the force can be expressed as:

f.!/ D
nX
iD1

u�
i a.!/vi

i

(3.4)

where ui are the left eigenvectors, vi are the right eigenvectors and 
i are the singular values. Regularisation introduces a
filter � in the sum of previous equation:

f.!/ D
nX
iD1

�i
u�
i a.!/vi

i

(3.5)
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The form of the filter � depends on the regularisation technique. In TSVD it assume the following discrete values

�i D
(
1 if n < k

0 if n > k
(3.6)

where k is the index correspondent to the number of singular values considered in the sum of Eq. (3.5) The regularised
solution becomes:

f.!/ D
kX
iD1

u�
i a.!/i vi

i

(3.7)

In Tikhonov regularisation the values of � is obtained through the minimisation of the following function:

R� D kHf � xk22 C �2kI fk22 (3.8)

where the first term is the residual and the second term is the value of the solution. In this case using SVD the filter � has the
following expression:

�i D 
2i


2i C �2i
(3.9)

and the regularised solution becomes:

f.!/ D
nX
iD1


2i


2i C �2i

u�
i ai .!/ vi

i

(3.10)

Note that, the solution f.!/ depends on the value assumed by the parameter �. The optimal value of the regularization
parameter � is obtained through Generalised Cross Validation (GCV) [8].

3.2.3 Successful Indices

In order to analyze the large number of results obtained from numerical identification, two indices are used. The first index
INORM takes into account the norm of the relative difference between the magnitude of the reconstructed force and the value
of the actual force

INORM D
�
1 � kjfactual j � jfidentif ied jk

kfactualk
�

� 100 (3.11)

The second index IAVG is the relative difference between the identified force in the correct position and the mean of the
identified forces on the whole set of points.

IAVG D
jfidentif ied i j �

nP
iD1;¤dp

jfidentif ied i j
n�1

factual
� 100 (3.12)

The proposed procedure is performed on Nc configurations of Np points chosen among the Nt points set. Therefore the two
indices have dimensions .Nc x Np x Nf /, where Nf are the number of considered frequencies.

The use of these indices allows to analyze the results obtained from numerical simulation performed considering each
point Np of each configuration Nc as a drive point. Therefore, it is possible to obtain the values of these indices for each
frequency, each drive point, and each configuration considered.
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3.3 Test Structure

The proposed technique is tested on an aluminium structure (Fig. 3.1). The structure consists of a cantilever column with
two staggered short arms and a horizontal beam. The horizontal beam is bolted at the top of the column, involving both
translational and rotational DoFs. The geometrical dimensions are reported in Table 3.1. The cross section is 40�8 mm for
all beams, with the short side along the z-direction.

The experimental frequency response function He is obtained up to 600 Hz by exciting the structure and measuring the
accelerations along z-direction at seven locations.

3.3.1 Result

The Finite Element Model of the structure (Fig. 3.1) is built using beam element and Hn is calculated by the procedure
described in Sect. 3.2.1.

The procedure described in Sect. 3.2 is performed for all considered points of the structure(Nt ). The points position is
shown in Fig. 3.1. The force identification is performed on Nc configurations of Np points changing the drive point position
on each point of each configuration. The results are analyzed at the seven frequencies shown in Table 3.2.

The considered configurations are shown in Table 3.3.
A matrix of dimension .Nc x Np x Nf / is obtained for each index. The choice of optimal setup corresponds to the

maximization of the two indices. This choice can be obtained by averaging the index matrices over all the Np points or
over all the Nf frequencies. The average is performed over the parameter chosen according to the operational condition. For
instance, if the force location is roughly known, it could be more interesting to average over the frequencies. On the contrary,
if the force location is completely unknown, but the force is band limited, it could be more interesting to average over the
Np points. Here, for seek of generality, the analysis is performed by averaging both over Np and over Nf .

In Fig. 3.2 the comparison between the indices averaged over all drive points for some of the considered configuration are
shown.

The indices corresponding to configuration number 1 assume the greatest value. In Table 3.4 are shown the indices
averaged all Np points or over all the Nf frequencies. These results show again that the first configuration is the best one.
Consequently, the points of the first configuration (shown in Fig. 3.3 together with their coordinates) are selected to perform
the experimental measurements.

1
2
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8 9 10
1112

 13  14  15  16  17 18 19  20  21 22

e

d d

b
a

c

l
a b

Fig. 3.1 Model of considered structure. (a) Finite element model. (b) Experimental setup

Table 3.1 Geometrical
dimensions [mm]

a b c d e l

540 420 60 100 240 600

Table 3.2 Selected frequencies Frequency number 1 2 3 4 5 6 7

Value [Hz] 55 79 105 350 437 486 521
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Table 3.3 Displayed
configuration

Configuration Points

Conf 1 3 10 12 13 14 16 22

Conf 2 5 9 11 14 17 18 20

Conf 3 1 5 10 13 17 19 21

Conf 4 1 5 7 9 17 19 21

Conf 5 1 7 8 11 17 19 20

Conf 6 3 4 6 8 12 14 20

Conf 7 4 5 7 9 11 13 16

Conf 8 3 4 6 8 17 20 22

Conf 9 3 6 8 12 13 16 21

Conf 10 2 7 10 11 14 20 21

Conf 11 5 10 11 12 14 17 20
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Fig. 3.2 Comparison between index obtained from numerical simulation with different configurations. (a) IAVG Tikhonov regularisation. (b) IAVG
TSVD regularisation. (c) INORM Tikhonov regularisation. (d) INORM TSVD regularisation (Color figure online)

The same procedure, performed for the numerical results, is followed using the experimental data in order to obtained
INORM and IAVG . Note that He is obtained though experimental data. In Fig. 3.4 Hn and He for the drive point 14 are
compared. It is possible to notice a good agreement between these frequency response functions, by considering that the
numerical model is not updated on the experimental results. However, the values of some resonances do not perfectly agree.
In particular, in correspondence of the 4th considered frequency (350 Hz), there is a difference of the 3.5 %, as highlighted in
Fig. 3.4. Note that this frequency corresponds to a resonance only in the experimental case. Figure 3.5 shows the comparison
between the average over all points Np of numerical and experimental indices in correspondence of the selected frequencies
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Table 3.4 Average over all drive
points of indices

Conf INORM TSVD IAVG TSVD INORMTIKH IAVGTIKH

1 45 52 42 46
2 33 42 34 36

3 27 41 34 34

4 27 37 33 32

5 33 42 38 38

6 34 43 36 37

7 38 43 39 40

8 30 41 37 36

9 36 46 39 40

10 39 48 44 44

11 34 45 40 40

Fig. 3.3 Configuration
of experimental setup

Fig. 3.4 Comparison between
frequency response functions
H14;14: numerical (- - -),
experimental (- - -)

(see table in Fig. 3.3). As expected, the experimental results have a smaller value than the numerical results. However, the
trend is similar almost everywhere except for the 4th frequency where the gap between the simulated and experimental
resonance is reflected on the indices values.
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Fig. 3.5 Comparison between numerical simulation and experimental data in best configuration (numerical o), (experimental C). (a) IAVG TSVD
regularisation. (b) INORM TSVD regularisation

Figure 3.6 shows the comparison between the forces identified with numerical and experimental procedures in
correspondence of 4th frequency (350 Hz). In the experimental case the force is bad identified because 350 Hz corresponds
to a resonance of the experimental FRFs. The analysis of the full set of figures allows to establish that the obtained values of
the indices ensure the possibility of identify the forces field, although the values could seem small.

Fig. 3.6 Force at 4th frequency 350 Hz. (a) Experimental. (b) Numerical

3.4 Conclusions

In this paper a procedure to design the best operative setup to perform forces identification is presented. A FEM of a complex
structure is developed and a numerical force identification is performed. Two indices are employed that allow to select the
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best configuration of points. In order to validate the numerical procedure, experimental measurements of acceleration are
performed on the selected set of points. The results show that the selected configuration is the best in the set of considered
points.
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Chapter 4
Nonlinear Structural Finite Element Model Updating
Using Batch Bayesian Estimation

Hamed Ebrahimian, Rodrigo Astroza, and Joel P. Conte

Abstract This paper proposes framework for nonlinear finite element (FE) model updating, in which state-of-the-art
nonlinear structural FE modeling and analysis techniques are combined with the maximum likelihood estimation (MLE)
method to estimate time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE
model of the structure. Using the MLE as a parameter estimation tool results in a nonlinear optimization problem, which
can be efficiently solved using gradient-based optimization algorithms such as the interior-point method. Gradient-based
optimization algorithms require the FE response sensitivities with respect to the material parameters to be identified, which
are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are
evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using
the FE response sensitivities. A proof-of-concept example, consisting of a cantilever steel column representing a bridge
pier, is provided to validate the proposed nonlinear FE model updating framework. The simulated responses of this bridge
pier to an earthquake ground motion is polluted with artificial output measurement noise and used to estimate the unknown
parameters of the material constitutive model. The example illustrates the excellent performance of the proposed parameter
estimation framework even in the presence of high measurement noise.

Keywords Nonlinear finite element model • Model updating • Bayesian estimation • Nonlinear system identification
• Damage identification

4.1 Introduction

Structural modal identification (MID) methods use the measured response of the structure under low-amplitude forced or
ambient vibrations to extract the modal properties of an equivalent linear elastic dynamic system [1]. When a structure
suffers damage or when its material and/or geometric properties change, the identified modal properties of the structure
deviate from its initial undamaged modal properties. The variations in the identified modal parameters or features extracted
from them can be used to detect the occurrence of damage in the structure. Finite element (FE) model updating [2] is another
approach that has been used for system and damage identification (DID) of structures. Various methods have been proposed
and employed for FE model updating and estimating the modeling parameters in the literature such as methods based on
least-square estimation (e.g., [3–5]) and methods based on stochastic filters (e.g., [6–10] to name only a few). However, the
studies reported in the literature typically use simplistic structural models, which are unable to predict the response of a large
and complex structure in a real world application.

The structural engineering community has benefited from well-established, experimentally validated, mechanics-based
FE modeling and analysis techniques that play an increasingly important role in analysis and design of structures. Relying
on realistic and physical nonlinear material constitutive models, nonlinear structural FE modeling and analysis techniques
can be combined with nonlinear parameter estimation approaches to yield nonlinear FE model updating methods. Authors
have been recently pursued this objective by incorporating nonlinear Kalman filter as a recursive parameter estimation tool
to update nonlinear FE structural models [11, 12]. This paper presents a batch estimation method based on the maximum
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likelihood estimation (MLE) approach to estimate the unknown modeling parameters of a nonlinear structural FE model
using the measured dynamic input and output response of the structure during an earthquake event. Estimation of both the
expected values and the covariance matrix of the modeling parameters is the objective of the parameter estimation framework
presented here. In a real world application, the updated nonlinear FE model can be interrogated to reconstruct the nonlinear
response process experienced by the structure during the damaging event, thus providing detailed information about the
location, type, and extent of damage in the structure.

4.2 Nonlinear Finite Element Model Updating and Parameter Estimation

The time-discretized equation of motion of a nonlinear FE model at kth time step is expressed as

M .™/ Rqk .™/C C .™/ Pqk .™/C rk .qk .™/ ; ™/ D fk (4.1)

where M D mass matrix, C D damping matrix, rk .qk .™/ ; ™/ D history-dependent (or path-dependent) internal resisting
force vector, qk; Pqk; Rqk D nodal displacement, velocity, and acceleration vectors, ™ is the modeling parameter vector, fk D
dynamic load vector, and the subscripts indicate the time step. In the case of earthquake base excitation, fk D �MLRug k ,
where L is the base acceleration influence matrix and ügk denotes the input ground acceleration vector. In the most general
case, the response of a nonlinear FE structural model at kth time step can be expressed as a (nonlinear) function of the nodal
displacement, velocity, and acceleration vectors at that time step, i.e.,

byk D g .qk; Pqk; Rqk/ (4.2)

wherebyk D predicted response vector at kth time step, and g( : : : ) is the (nonlinear) output function. By combining Eqs. (4.1)
and (4.2), the response of a nonlinear FE structural model to an earthquake ground motion at each time step is expressed as a
nonlinear function of the modeling parameters, the input ground acceleration time history from the beginning until that time
step, and initial conditions of the FE model, i.e.,

byk D hk
�
™; Rug1!k;q0; Pq0

�
(4.3)

In Eq. (4.3), Rug1!k D
h

RuTg1 ; RuTg2 ; : : : ; RuTgk
i T

where Rugk D vector of measured input ground acceleration at kth time step,

q0 D initial nodal displacement vector, Pq0 D initial nodal velocity vector, and hk( : : : ) is the nonlinear response function of
the FE model at kth time step. The measured response vector of the structure, yk, is related to the model predicted response
vector,byk , through the prediction error framework [13].

yk Dbyk C vk (4.4)

in which vk, the prediction error vector, accounts for output measurement noise and modeling error. The prediction error is
modeled as a stationary zero-mean Gaussian white noise process [14], i.e., vk 
 N .0; R/, where the covariance matrix R is
assumed to be time invariant and diagonal, i.e., R D �

rj

; j D 1 ! ny.

To estimate the unknown modeling parameters, they are modeled as random variables according to Bayesian approach
for parameters estimation. The Bayes’ rule is employed to infer the a posteriori probability density function (PDF) of the
modeling parameters from the time histories of noisy input and output measurements and the a priori PDF of the modeling
parameters. Assuming that the components of input ground acceleration are known and deterministic, the a posteriori PDF
of the modeling parameters can be written as:

p .™j y1!k/ D 1

c
p .y1!k j ™/ p .™/ (4.5)

in which y1!k D �
y1T ; y2T ; : : : ; ykT

 T
and c D

Z
p .y1!kj ™/ p .™/ d™ is a constant called evidence. p .y1!kj ™/ D

l .™; y1!k/ is the likelihood function. Considering minimum prior knowledge about the modeling parameters, the a priori
PDF is modeled using uniform distribution. This means that when there is a little prior knowledge on ™ or the prior knowledge
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associates with high uncertainty, the a posteriori PDF will be maximized, in the limiting case, at value of ™ that minimizes
the negative log-likelihood function, which is called the maximum likelihood (ML) estimate of ™ [15]:

b™ML D arg min �
™

Œƒ .™; y1!k/� (4.6)

where ƒ.™; y1!k/ D ln .l .™; y1!k// is the log-likelihood function. According to Eq. (4.4), it is clear that l .™; y1!k/ D
p .y1!kj ™/ D p .v1!k/ and since v is assumed to be a Gaussian white noise process, it is independent and identically
distributed (i.i.d) in time; therefore [16],

b™ML D arg min
™

 
k

2
ln .jRj/C 1

2

kX
iD1

�
yi � hi

�
™; Rug1!i ;q0; Pq0

��T
R�1 �yi � hi

�
™; Rug1!i ;q0; Pq0

��!
(4.7)

in which jRj is the determinant of R matrix. Assuming equal variances for the prediction error at different measurement
channels results in identical diagonal entries for R (i.e., R D rIny�ny ), where r is the prediction error. Therefore, the MLE
problem reduces to a least squares problem, as proposed and used by many researchers in the field of structural model
updating (e.g., [17–19]).

b™ D arg min
™

 
kX
iD1

�� yi � hi
�
™; Rug1!i ;q0; Pq0

���2
!

(4.8)

Nevertheless, assuming equal variances for the prediction error at different measurement channels is a restrictive and often
invalid assumption. For example, the equal variance assumption is incorrect in the case of heterogeneous sensor array, where
the measured signals from different sensor types have different unit scale and amplitude. This invalid assumption makes
the least squares estimation procedure to give a relatively higher weight to the measurement data with higher amplitude. To
allow the use of heterogeneous sensor array in nonlinear FE model updating procedure and enhance the robustness of the
parameter estimation process, an extended estimation procedure is suggested in this paper, in which not only the modeling
parameters but also the variances of the prediction error, which are the diagonal entries of the covariance matrix R and are
shown by the vector r D �

rj
 �

j D 1 ! ny
�
, are estimated. Following Eq. (4.7), the extended estimation problem can be

formulated as a general optimization problem:

�b™;br�
ML

D arg min
.™;r/

J
�
r; ™; y1!k; Rug1!k

�
(4.9)

J
�
r; ™; y1!k; Rug1!k

� D
0
@k
2

nyX
jD1

ln
�
rj
�C 1

2

kX
iD1

�
yi � hi

�
™; Rug1!i

��T
R�1 �yi � hi

�
™; Rug1!i

��
1
A (4.10)

in which J( : : : ) is the objective function of the optimization problem and the dependence of J on q0 and Pq0 is dropped
for notational convenience. By defining a feasible range for the modeling parameters and the variance components (i.e.,
™min � ™ � ™max and rj;min � rj � rj;max) the parameter estimation problem is transformed into a constrained nonlinear
optimization problem, which is solved using an interior-point method [20, 21] in this paper. The utilized numerical algorithm
is implemented and available as a part of MATLAB optimization toolbox [22]. The algorithm requires the computation of
the gradients of the objective function with respect to the modeling parameter vector, ™, and the variance vector, r, which
can be respectively computed as:

@J

@™
D �

kX
iD1

 
@hi

�
™; Rug1!i

�
@™T

!T
R�1 �yi � hi

�
™; Rug1!i

��
(4.11)

@J

@rj
D k

2rj
� 1

2

kX
iD1

�
yij � hij

�
™; Rug1!i

��2
rj 2

(4.12)
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in which yij is the jth component of the response vector at ith time step. The term
@hi .™;Rug1!i /

@™T
in Eq. (4.11) is the sensitivity

(or rate of variation) of the FE response at ith time step with respect to the modeling parameters, ™, and is referred to as the
FE response sensitivity matrix. FE response sensitivity analysis is a well-developed subject with a variety of applications
including structural optimization, probabilistic analysis, and reliability analysis of structural and geotechnical systems (e.g.,
[23–26]). The FE response sensitivities can be computed approximately using the finite difference method (FDM), which
requires at least n™ C 1 evaluations of the nonlinear FE model, where n™ is the number of parameters with respect to which
the sensitivities are computed. Alternatively, the FE response sensitivities can be exactly evaluated using the computationally
more efficient direct differentiation method (DDM) [27]. The DDM is based on the exact (consistent) differentiation of the
FE numerical scheme with respect to the FE model parameters of interest. The use of DDM in the current nonlinear FE model
updating framework significantly improves the computational efficiency of the parameter estimation procedure especially for
large scale FE models. The fundamentals of DDM-based FE response sensitivity computation are briefly described in the
next section.

4.3 DDM Method for Finite Element Response Sensitivity Analysis

The time discretized equation of motion shown in Eq. (4.1) is solved using recursive numerical integration in time. Using an
implicit single-step time integration scheme, such as the Newmark-beta method [28], the acceleration and velocity at time
step (k C 1) are interpolated as

Rqk D a1qk C a2qk�1 C a3 Pqk�1 C a4 Rqk�1 (4. 13)

Pqk D b1qk C b2qk�1 C b3 Pqk�1 C b4 Rqk�1 (4.14)

where a1 to a4 and b1 to b4 are constant integration coefficients. Substitution of these equations into Eq. (4.1) yields the
following nonlinear vector-valued algebraic equation, which can be solved using incremental iterative procedures such as
Newton-Raphson method [29].

a1M .™/ qk .™/C b1C .™/qk .™/C rk .qk .™/ ; ™/ D Qfk (4.15)

in which

Qfk D fk � M .™/ Œa2qk�1 .™/C a3 Pqk�1 .™/C a4 Rqk�1 .™/� � C .™/ Œb2qk�1 .™/C b3 Pqk�1 .™/C b4 Rqk�1 .™/� (4.16)

and ™ D Œ1; 2; : : : �
T is the vector of time-invariant material parameters. Now, Eq. (4.15) is separately differentiated with

respect to each material parameter, i .i D 1 ! n™/, to obtain the response sensitivity with respect to this parameter, i.e.,

�
a1M .™/C b1C .™/C @rk .qk; ™/

@qTk

�
„ ƒ‚ …

D
�

Kdyn
T

�
k

@qk
@i

D � @rk .q; ™/
@i

ˇ̌
ˇ̌
qDqk

�


a1
@M .™/

@i
C b1

@C .™/
@i

�
qk C @Qfk

@i
(4.17)

in which @rk.qk ;™/
@qTk

D �
Kstat
T

�
k

is the static (consistent) tangent stiffness matrix and is readily available from the FE solution if

a Newton-Raphson iterative scheme is used (at least in the last iteration) to solve Eq. (4.15). Moreover, the matrix in the left
hand side of Eq. (4.17) is called the dynamic tangent stiffness matrix, (Kdyn

T )k, which is also available from the FE solution.
Using Eq. (4.16), the last term in the right hand side of Eq. (4.17) is obtained as

@Qfk
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D @fk
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� @M .™/
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Œa2qk�1 .™/C a3 Pqk�1 .™/C a4 Rqk�1 .™/� � M .™/

�
a2
@qk�1
@i

C a3
@ Pqk�1
@i

C a4
@ Rqk�1
@i

�

� @C .™/
@i

Œb2qk�1 .™/C b3 Pqk�1 .™/C b4 Rqk�1 .™/� � C .™/
�
b2
@qk�1
@i

C b3
@ Pqk�1
@i

C b4
@ Rqk�1
@i

�
(4.18)
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Depending on the type of material parameter, @fk
@i

, @M.™/

@i
, and @C.™/

@i
are usually easy to derive at the element level [25].

Furthermore, the vectors @qk�1

@i
, @Pqk�1

@i
, and @Rqk�1

@i
are available from the last time step sensitivity computation. Thus, @

Qfk
@i

can
be computed without any complication. The first term in the right-hand-side of Eq. (4.17) represents the partial derivative
of the internal resisting force vector with respect to the material parameter,  i, conditional on the displacement vector, qk,
remaining fixed. To compute this conditional partial derivative, the structure’s internal resisting force vector at time step k
needs to be explicitly derived. In a displacement-based FE model of frame-type structures, the structure’s internal resisting
force vector is derived by assembling the element nodal resisting force vectors as

rk .qk .™/ ; ™/ D # ele
A

eleD1
˚

relek
�
qelek .™/ ; ™

� �
(4.19)

in which
# ele
A

eleD1 f: : : g denotes the direct stiffness assembly process including the transformation from the element local

coordinate system to the structure global coordinate system, rele
�
qele; ™

� D element nodal resisting force vector, and
qele D element nodal displacement vector in the element local coordinate system. The element nodal resisting force vector
is obtained, through the principle of virtual displacements, as the following weighted integral of the section stress vector,
¢sec

k , [30]

relek
�
qelek .™/ ; ™

� D
Z
Lele

BT ¢seck
�
©seck .™/ ; ™

�
dL (4.20)

where B D strain-displacement transformation matrix, ¢sec .©sec; ™/ D section stress resultant vector, and ©sec D section
strain (or deformation) vector. Finally, the section stress vector is obtained by integrating the fiber stresses over the cross-
section as

¢seck
�
©seck .™/ ; ™

� D
Z
Asec

a 
f ibk

�
"
f ib

k .™/ ; ™
�
dA (4.21)

in which a D section kinematic (compatibility) vector, 
f ib
�
"f ib; ™

� D fiber stress (uniaxial), and "f ib D fiber strain
(uniaxial). Now, the conditional partial derivative of the structure’s internal resisting force vector with respect to the material
parameter,  i, can be computed as

@rk .q; ™/
@i

ˇ̌
ˇ̌
qDqk

D # ele
A

eleD1

8<
:
Z
Lele

BT
Z
Asec

a
@


f ib

k

�
"f ib; ™

�
@i

ˇ̌̌
ˇ̌
"f ibD"f ibk

dAdL

9=
; (4.22)

where
@


f ib

k ."f ib ;™/
@i

ˇ̌
ˇ̌
"f ibD"f ibk

is the history-dependent variation of fiber stress with respect to the material parameter

 i conditional on the fiber strain remaining fixed. This conditional partial derivative can be computed by analytically
differentiating the material constitutive law of the fiber with respect to  i [24–27].

4.4 Uncertainty Quantification

A ML estimator has some general asymptotic properties that can be used to evaluate the estimation uncertainties. The
covariance of a ML estimator can be asymptotically evaluated using the Cramér-Rao lower bound (CRLB) [15]. In general,
CRLB provides a lower bound for the estimation covariance for any unbiased estimator. It can be shown that a ML estimator
is asymptotically unbiased and its estimation covariance asymptotically converges to the CRLB [15, 31, 32].
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4.4.1 Derivation of CRLB Based on the Exact Fisher Information Matrix

The Fisher Information matrix (FIM) for the MLE problem shown by Eq. (4.9) can be exactly computed as [33]:

I .™; r/ D
"
.I™™/n™�n™ .0/n™�ny

.0/ny�n™ .Irr/ny�ny

#
(4.23)

Following the Cramér-Rao theorem [15, 31, 32]:

2
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in which E ŒX� D EYj™ ŒX� D
Z
X p .y1!kj™/ dy and Y is the stochastic response of the structure to a specific earthquake

input motion. Therefore, the lower bound for the covariance matrix of the modeling parameter can be computed as:

COV
�b™� � I™™�1; I™™ D

kX
iD1

2
4
 
@hi

�
™; Rug1!i

�
@™T

!T
R�1 @hi

�
™; Rug1!i

�
@™T

3
5
at ™;r

(4.25)

where
@hi .™;Rug1!i /

@™T
is the response sensitivity matrix and I™™ is evaluated for the true modeling parameter and noise variance

vectors, ™ and r respectively, which can be approximated by the ML estimatesb™ andbr. Based on the asymptotic properties
of MLE,b™ andbr asymptotically merge ™ and r, respectively, and therefore, the estimation covariance asymptotically merges
the FIM computed atb™ andbr.

4.5 Validation Study

The benchmark structure used for this validation study is a 6.0 m cantilever steel column representing a small bridge pier
[11]. The column has a built-up box section with dimension 550 � 550 � 20 mm (built from ASTM A36 steel) and carries
a lumped dead load of 981 kN as shown in Fig. 4.1. It is assumed that the section can attain its full plastic capacity without
any significant local buckling, strength degradation, or softening behavior. Using fiber-section displacement-based beam-
column elements, a 2D model of the structure is developed in OpenSees [34] as shown in Fig. 4.1. The steel fibers are
modeled using the modified Giuffré-Menegotto-Pinto material constitutive model [35], in which the stress-strain relation is
defined using smooth curved shaped hysteretic loading and unloading branches. In general, this material model is governed
by eight time-invariant parameters, five of which are empirical parameters controlling the curvature of the hysteretic loops

Fig. 4.1 Left: cantilever steel
column with box section, Right:
details of the developed FE
model (DBE: displacement-based
element, length unit: mm)
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Fig. 4.2 1989 Loma Prieta
earthquake, Corralitos – Eureka
Canyon Road station, 90ı

component

and the stress shift (to mimic the isotropic hardening). While these five parameters are assumed as known constants in this
problem, the other three material parameters are treated as unknown modeling parameters to be identified. These parameters
are 
y D initial yield strength,E D elastic modulus, and b D strain hardening ratio. The true (exact) values of these material
parameters are taken as 
true

y D 250 MPa, Etrue D 200 GPa, and btrue D 0:1.
One ground acceleration record from 1989 Loma Prieta earthquake is selected for the nonlinear time history analyses

(Fig. 4.2) [36]. The nonlinear analysis is started by first applying the gravity loads quasi-statically. Then, the nonlinear time
history analysis is performed using the Newmark average acceleration method [28] to integrate the equations of motion
using a time step of �t D 0:02 s. The Newton-Raphson method is employed to solve iteratively the nonlinear dynamic
equilibrium equations at each time step. Tangent stiffness-proportional Rayleigh damping [28] is used to model the damping
characteristics by defining a damping ratio of 2 % for the first elastic mode (T1 D 0:76 s).

To simulate the response of the structure, the FE model is analyzed and the acceleration response time history of the
column top in the direction of the seismic input is obtained and artificially polluted by measurement noise, which is modeled
as a zero-mean Gaussian white noise, to provide the measured response of the structure. The measured response of the
structure is used in the proposed parameter estimation framework to evaluate the point estimate of the modeling parameters

(b™ D
hb
y;bE;bb

iT
) and the error variancebr (which is a one dimensional vector in this case). The uncertainties associated with

the estimated modeling parameters are evaluated by computing the CRLB based on the exact FIM. Although the estimation
of the prediction error variance would have no influence on the point estimate of the modeling parameters in the case of single
output measurement or multiple output measurements with similar signal amplitude and noise characteristics, the estimated
error variance is essential for computing the estimation uncertainties as shown in Eq. (4.25).

To investigate the robustness of the parameter estimation framework and its sensitivity to the output measurement noise
level, three different amplitudes for output measurement noise are considered, namely 0.5 %g, 2 %g, and 5 %g RMS. The
2 %g and 5 %g RMS noise levels are unrealistically high; nevertheless, they are considered to examine the performance
of the estimation framework using extreme noisy measurements. The true values of noise variance for the three considered
noise levels (0.5 %g, 2 %g, and 5 %g RMS) are rtrue D 0:24 � 10�2; 3:85 � 10�2; and 24:06 � 10�2, respectively. These
true values are used later to evaluate the accuracy of the estimation results. The initial estimates for the modeling parameters

and noise variance are selected as 
y0 D 0:75
true
y , E0 D 1:30Etrue , b0 D 1:35btrue , and r0 D 0:62 � 10�2

h
m
.
s2

i2
. The

feasible search domain for the modeling parameters are set as 0:4 ™0 � ™ � 2:5 ™0, where ™0 D vector of initial estimates of
the modeling parameters, and for noise variance are set as 0:025 r0 � r � 40 r0. Figure 4.3 shows the convergence history
of the three modeling parameters and the noise variance for the three considered levels of measurement noise. Table 4.1
shows the estimated modeling parameters and noise variance, normalized with respect to the true parameter values, for

all the cases considered. The table also lists the coefficient of variation (COV D 
i
.
bi ) of the modeling parameters

computed using the proposed method for evaluating the CRLB. Figure 4.3 and Table 4.1 confirm the successful performance
of the proposed parameter estimation framework. As can be seen for the case of 5 %g RMS noise level in Table 4.1, the
excessive level of measurement noise results in biased estimation of the modelling parameters. The detrimental effects of
high amplitude measurement noise become more dominant in the estimation of strain hardening ratio, b. Listed in Table 4.1,
the estimated COVs have an excellent qualitative agreement with the estimation accuracy: the COVs are higher when the
estimations are more biased. For all the considered cases, the modulus of elasticity E has the smallest COV, followed by the
yield strength, 
 y, and the strain hardening ratio, b, has the largest COV. Moreover, the COVs consistently increase as the
level of measurement noise increases.
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Fig. 4.3 Convergence history of the modeling parameters and noise variance for the three levels of measurement noise considered

Table 4.1 Estimation results for three measurement noise levels considered

Modeling parameters Noise variance COV (%)
Motion name Noise level (%g RMS) 
 y/
 true

y E/Etrue b/btrue r/rtrue 
 y E b

Loma Prieta EQ., Eureka Canyon Road station 0.5 1.00 1.00 1.00 1.02 0.14 0.03 1.05

2 1.01 1.00 0.98 1.01 0.55 0.12 4.26
5 0.99 1.01 1.14 1.00 1.45 0.32 9.49

4.6 Conclusions

This paper proposed a framework for nonlinear finite element (FE) model updating of civil structures using measured
dynamic input and output data. The proposed extended batch estimation method is based on the maximum likelihood
estimation (MLE) approach to estimate the unknown modeling parameters, the measurement noise amplitude, and the
covariance matrix of the modeling parameters. Using the MLE as a parameter estimation tool resulted in a nonlinear
optimization problem, which was efficiently solved using interior-point method, a gradient-based optimization procedure.
The FE response sensitivities were accurately and efficiently computed using the direct differentiation method (DDM). The
covariance matrix of the modeling parameters were evaluated based on the Cramer-Rao lower bound (CRLB) theorem by
computing the exact Fisher Information matrix (FIM). The computation of the FIM required the knowledge of measurement
noise variance, which was estimated through the extended estimation framework. A proof-of-concept example, consisting
of a cantilever steel column representing a bridge pier, was provided to validate the proposed framework. Different levels of
measurement noise were considered to evaluate the performance and robustness to output measurement noise of the proposed
framework. The results proved the excellent performance of the estimation framework even in presence of extremely high
measurement noise levels.
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Chapter 5
A Comparative Assessment of Nonlinear State Estimation Methods
for Structural Health Monitoring

Majdi Mansouri, Onur Avci, Hazem Nounou, and Mohamed Nounou

Abstract Researchers have been studying the uncertainties unique to civil infrastructure such as redundancy; nonlinearity;
interaction with surrounding; heterogeneity; boundaries and support conditions; structural continuity, stability, integrity;
life cycle performance expectations and so on. For incorporating such uncertainties, filtering techniques accounting for
stochasticity can be implemented employing collected data from the structures. In this paper, an Iterated Square Root
Unscented Kalman Filter (ISRUKF) method is proposed for the estimation of the nonlinear state variables of nonlinear
structural systems, idealized herein for simplified spring-mass-dashpot. Various conventional and state-of-the-art state
estimation methods are compared for the estimation performance, namely the Unscented Kalman Filter (UKF), the Square-
Root Unscented Kalman Filter (SRUKF), the Iterated Unscented Kalman Filter (IUKF) and the Iterated Square Root
Unscented Kalman Filter (ISRUKF) methods. The comparison reveals that the ISRUKF method provides a better estimation
accuracy than the IUKF method; while both methods provide improved accuracy over the UKF and SRUKF methods. The
benefit of the ISRUKF method lies in its ability to provide accuracy related advantages over other estimation methods since
it re-linearizes the measurement equation by iterating an approximate maximum a posteriori (MAP) estimate around the
updated state, instead of relying on the predicted state.

Keywords Iterated square root • Unscented Kalman filter • State estimation • Structural health monitoring

5.1 Introduction

It has been discussed in the SHM literature that the structural identification methods proven for manufactured (mechanical)
systems were unsuccessfully used for constructed (civil) systems over the years. Many characteristic attributes of the civil
structures were ignored in the process since the developed methods were more applicable to manufactured systems. Even
very refined three dimensional models of civil structures cannot mitigate the influences of bias sources of uncertainty.
Uncertainties unique to civil structures are; local and global redundancy; material, dynamic and geometric nonlinearity;
interaction with surrounding forces; heterogeneity of the members and materials; boundaries and support conditions;
structural continuity, stability and integrity; life cycle performance expectations. In accounting for these for the uncertainties,
there is a need for improvement of the model predictions using data collected from structures. In the widely established
approach of modal parameter estimation, the system can be ill-conditioned due to uncertainties in the measurements. The
potential errors in structural model updating combined with aleatory uncertainty in modal parameter estimation often results
in inconsistencies between the real structural behavior and the finite element model predictions. However, in most of the
published research in SHM, the ill-conditioned state and the presence of uncertainty are not considered. For nonlinear state
estimations, various state estimation techniques (the Extended Kalman filter (EKF) [1–3], Unscented Kalman Filter (UKF)
[4, 5], Central Difference Kalman Filter (CDKF) [6], and Square-Root Unscented Kalman Filter (SRUKF) [7]) have been
developed and used by researchers. In the extended Kalman filter method, in order to approximate the covariance matrix of
the state vector, the model describing the system is linearized at every time sample. However, for highly nonlinear or complex
models, the EKF results are not always successful. Instead of linearizing the model, the UKF method utilizes the unscented
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transformation to approximate the mean and the covariance matrix of the state vector. In the unscented transformation
process, a set of samples (sigma points) are selected and propagated through the nonlinear model, providing more accurate
approximations of the mean and covariance matrix of the state vector. One drawback of the UKF method is that the number of
sigma points is often not very large and may not adequately represent relatively complicated distributions. As an alternative
to these methods, the square-root unscented Kalman filter, and the central difference Kalman filter have been developed.
The advantage of these filters is that evaluating the quasi log-likelihood distribution only takes a fraction of a second.
The iterated square-root unscented Kalman filter has been recently suggested by Wu et al. [8] for target tracking using
TDOA measurements. The ISRUKF employs an iterative procedure within a single measurement update step by resampling
the sigma points till a termination criterion, based on the minimization of the maximum likelihood estimate, is satisfied.
Furthermore, the ISRUKF method propagates and updates the square root of the state covariance iteratively and directly
in Cholesky factored form. In addition to providing reduction in the computational complexity, ISURKF has as increased
numerical stability and better (or at least equal) performance when compared to the other algorithms.

The organization of the paper is as follows. In Sect. 5.2, the state estimation problem is presented. Then, in Sect. 5.3,
the developed iterated square-root unscented Kalman filter is described. After that, in Sect. 5.4, the performance of various
state estimation methods are compared for the state variables of a three degree of freedom spring-mass-dashpot system.
Conclusions are presented in Sect. 5.5.

5.2 State Estimation Problem

The formulation of the state estimation problem is presented here in this section.

5.2.1 Problem Formulation

The state estimation problem is formulated for a general system model, in this section. Consider a nonlinear state space
model to be described as follows [9]:

Px D g.x; u; ;w/;
y D l.x; u; ; v/;

(5.1)

where x 2 R
n is a vector of the state variables, u 2 R

p is a vector of the input variables,  2 R
q is a known parameter vector,

y 2 R
m is a vector of the measured variables, w 2 R

n and v 2 R
m are process and measurement noise vectors, respectively,

and g and l are nonlinear differentiable functions. Discretizing the state space model (5.1), the discrete model can be written
as follows:

xk D f .xk�1; uk�1; k�1;wk�1/;
yk D h.xk; uk; k; vk/;

(5.2)

which describes the state variables at some time step .k/ in terms of their values at a previous time step .k�1/. Let the process
and measurement noise vectors have the following properties: EŒwk� D 0, EŒwkwTk � D Qk , EŒvk� D 0 and EŒvkvTk � D Rk .
Let’s assume that the parameter vector is described by the following model:

k D k�1 C �k�1: (5.3)

which means that it corresponds to a stationary process, with an identity transition matrix, driven by white noise. In order to
include the parameter vector k into the state estimation problem, let’s define a new state vector zk that augments the state
vector xk and the parameter vector k as follows:

zk D
h
xk
k

i
D
h
f .xk�1; uk�1;wk�1; k�1/

k�1 C �k�1

i
; (5.4)
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where zk 2 R
nCq . Also, defining the augmented noise vector as:

�k�1 D
hwk�1
�k�1

i
; (5.5)

the model (5.2) can be written as,

zk D F.zk�1; uk�1; �k�1/; (5.6)

yk D R.zk; uk; vk/; (5.7)

where F and R are differentiable nonlinear functions. In this work, the objective is to estimate the state variables vector zk
given the measurements vector yk , where the model parameter vector k is assumed to be known.

5.3 Description of State Estimation Methods

5.3.1 Unscented Kalman Filter Method

The EKF approximates the mean and covariance of the state vector by linearizing the nonlinear process and observation
equations, which may not provide a satisfactory approximation of these moments. For better estimates of these moments, the
unscented Kalman filter takes advantage of the unscented transformation. It must be noted that the unscented transformation
is a method for calculating the statistics of a random variable that undergoes a nonlinear mapping. Assume that a random
variable z 2 R

L with mean Nz and covariance Pz is transformed by a nonlinear function, y D f .z/. In order to find the
statistics of y, define 2LC 1 sigma vectors as follows:

Z0 D z

Zi D z C .
p
.LC �/Pz/i i D 1; : : : ; L (5.8)

Zi D z � .
p
.LC �/Pz/i i D LC 1; : : : ; 2L

where � D e2.LC k/ � L is a scaling parameter and .
p
.LC �/Pz/i denotes the ith column of the matrix square root. The

constant 10�4 < e < 1 determines the spread of the sigma points around z. The constant k is a secondary scaling parameter
which is usually set to zero or 3 � L [3].

Then, these sigma points are propagated through the nonlinear function, i.e.,

Yi D f .Zi / i D 0; : : : ; 2L (5.9)

and the mean and covariance matrix of y can be approximated as weighted sample mean and covariance of the transformed
sigma points of Yi as follows:

y 	
2LX
iD0

W
.m/
i Yi ;

and Pz 	
2LX
iD0

W
.c/
i .Yi � y/.Yi � y/T ; (5.10)

where the weights are given by:

W
.m/
i D �

�C r
;

W
.c/
0 D �

�C r
C .1 � e2 C �/;

and W
.m/
i D W

.c/
i D 1

2.�C r/
; i D 0; : : : ; 2L: (5.11)
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The parameter � is used to incorporate prior knowledge about the distribution of z. It has been shown that for a Gaussian and
non-Gaussian variables, the unscented transformation results in approximations that are accurate up to the third and second
order, respectively.

The prediction update equations are as follows:

Oz�
k D F.Oz�

k�1; uk�1/;

P�
zk

D Pzk�1
CRık�1;

Rık�1 D �
��1

RLS � 1�Pzk�1
;

Zkjk�1 D
h
Oz�
k Oz�

k C
p
r C �

q
P�

zk
Oz�
k �

p
r C �

q
P�

zk

i
;

Ykjk�1 D F
�
Zkjk�1; uk�1

�
;

Oyk D
2rX
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The prediction update equations are as follows:

Pyk D
2rX
iD0

W
.c/
i

�
Yi;kjk�1 � Oyk

 �
Yi;kjk�1 � Oyk

T CR�k;

Pzk ;yk D
2rX
iD0

W
.c/
i

�
Zi;kjk�1 � Oyk

 �
Zi;kjk�1 � Oyk

T
;

Kk D Pzk ;ykP
�1
yk
;

Ozk D Oz�
k CKk.yk � Oyk/;

Pzk D P�
zk

�KkPykK
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5.3.2 Square-Root Unscented Kalman Filter Method

In the EKF, the covariance Pk itself is recursively calculated, while, the UKF requires instead calculation of the matrix square-
root SkSTk D Pk , at each time step. In the SRUKF, Sk will be propagated directly, avoiding the computational complexity to
refactorize at each time step [7]. The SRUKF is initialized with a state mean vector and the square root of a covariance.

Oz0 D EŒz0� (5.14)

and,

S0 D chol
˚
E
�
.z0 � Oz0/.z0 � Oz0/0

�
(5.15)

‰k�1 D ŒOzk�1 Ozk�1 C hSk�1 Ozk�1 � hSk�1� (5.16)

The Cholesky factorization decomposes a symmetric, positive-definite matrix into the product of a lower-triangular matrix
and its transpose. This matrix is used directly to obtain the sigma points:

The scaling constant h is expressed as,

h D
p
L˛2 (5.17)

where ˛ is a tunable parameter less than one. The sigma points are then passed through the nonlinear process system, which
predicts the current attitude based on each sigma point.

‰kjk�1 D f Œ‰k�1� (5.18)
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The estimated state mean and square root covariance are calculated from the transformed sigma points using,

Oz�
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2LX
iD0

W
.m/
i ‰i;kjk�1 (5.19)
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S�
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0

o
(5.21)

where,W .c/
0 D 2.1�˛2 C 1

2
ˇ/,W .m/

0 D 1�˛2,W .m/
i D W

.c/
i D 1

2L˛2
ˇ/, ˇ is a tunable parameter used to incorporate prior

distribution. The transformed sigma points are then used to predict the measurements using the measurement model:

Ykjk�1 D h
�
‰kjk�1


(5.22)

The expected measurement Oy�
k and square root covariance of Qyk D yk � Oy�

k (called the innovation) are given by the
unscented transform expressions just as for the process model:
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W
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0

o
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To determine how much to adjust the predicted state mean and covariance based on the actual measurement, the Kalman
gain matrix Kk is calculated as follows:

Pzkyk D
2LX
iD0

W
.c/
i

�
‰i;kjk�1 � Oz�

k

 �
Yi;kjk�1 � Oy�

k

T
(5.26)

Kk D Pzkyk =STNyk =S Nyk (5.27)

Finally, the state mean and covariance are updated using the actual measurement and the Kalman gain matrix:

Ozk D Oz�
k C Kk.yk � Oy�

k / (5.28)

U D KkS Nyk (5.29)

Sk D cholupdate fS�
k ;U;�1g (5.30)

where, Rw is the process noise covariance, Rv is the measurement noise covariance, chol—is Cholesky method of matrix
factorization, qr is QR matrix decomposition and cholupdate is a Cholesky factor updating.

5.3.3 Iterated Square-Root Unscented Kalman Filter Method

With the success of IUKF development [10] and the superiority of SRUKF, an improved performance would be expected
if the iterates are implemented in SRUKF. Yet, with the potential problems experienced with the IUKF method, precaution
should be taken for effective performance of the iterated filter [8]. The development of the ISRUKF method is due to the need
to overcome this problem, using a different iteration strategy. The pseudo-code for the ISRUKF method can be summarized
as follows.
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• Step 1:
For each instant k.k > 1/, evaluate the state estimate Ozk and corresponding square root covariance matrix Sk through
(5.13) to (5.29).

• Step 2:
Let Ozk;0 D Oz�

k , Sk;0 D S�
k and Ozk;1 D Ozk . Sk;1 D Sk . Also let j D 2

• Step 3
Generate new sigma points in the same way as (5.17):

‰k;j D �Ozk;j�1 Ozk;j�1 C hSk;j�1 Ozk�1;j�1 � hSk;j�1


(5.31)

• Step 4
Recalculate (5.17) to (5.29) as follows
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Kk D Pzkyk =STNyk =S Nyk (5.41)

Ozk;j D Oz�
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k;j / (5.42)

U D Kk�jS Nyk;j (5.43)

Sk;j D cholupdate
n
S�
k�j ;U;�1

o
(5.44)

5.4 Simulation Results

The results of state estimation methods (UKF, IUKF, SRUKF and ISRUKF) are compared in this section. They are compared
through their utilization to estimate the states variables of a three degree of freedom spring-mass-dashpot system.

5.4.1 State Estimations for Three Degree of Freedom Spring-Mass-Dashpot System

A three degree of freedom spring-mass-dashpot system is utilized for the performance evaluation of state estimation
techniques (shown in Fig. 5.1).
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Fig. 5.1 Three degree of
freedom spring-mass-dashpot
system. Note that the first degree
of freedom is associated with a
non-linear hysteretic
component [11]

The purpose of this section is to estimate the seven state variables given displacement measurements for m1 and
accelerometer measurements for m2 and m3. The state space equations representing the system can be written as follows:
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where,
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The observation vector in discrete form is given by,
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where,

Qz2 D k2z1.k/ � .k2 C k3/ z2.k/C k3z3.k/C c2z5.k/ � .c2 C c3.k//

Cz6.k/C c3z7.k/;

Qz3 D k3z2.k/ � k2 C k3z3.k/C c3z6.k/ � c3z7.k/:

5.4.2 Generation of Dynamic Data

For dynamic data generation from the SHM system the model (5.46) [11] is used to simulate the responses of the state as
functions of time by solving the differential equations (5.46) using fourth order Runge Kutta Integration.
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Table 5.1 SHM parameters and
physical properties

Parameter Value Parameter Value Parameter Value

m1 1 m2 1 m3 1

c1 0.25 c2 0.25 c3 0.25

k1 9 k2 9 k3 9

ˇ 2 � 1 n 2
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Fig. 5.2 Estimation of state variables using various state estimation techniques (UKF, IUKF, SRUKF and ISRUKF)
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where the state variables x1, x2, x3 are displacements and r1 is the hysteretic Bouc Wen parameter.
It must be noted that these simulated states are assumed to be noise free. They are contaminated with zero mean Gaussian

errors. The SHM parameters as well as other physical properties are shown in Table 5.1. Figure 5.2a shows the changes in
the state variable (displacement x1).

For all simulations, the following parameters are used. The sampling frequency of the 1994 Northridge earthquake
acceleration data that was used as ground excitation Rvg , is 100 Hz (T D 0:01 s). The Northridge earthquake signal was
filtered with a low frequency cutoff of 0.13 Hz and a high frequency cutoff of 30 Hz. A duration of 20 s of the earthquake
record was adopted in this example. The number of sigma points is fixed to 33 for all the techniques (L D 16). The process
noise of 1 % RMS noise-to-signal ratio was added. The observation noise level was of 4–7 % root mean square (RMS) noise
to signal ratio. All the simulations performed in this paper are implemented using MATLAB version 7.1, using an Intel
Pentium CPU 3.4 GHz, 1.0 G of RAM PC.
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5.4.3 Estimation of State Variables from Noisy Measurements

The purpose of this study was to compare the estimation accuracy of UKF, IUKF, SRUKF and ISRUKF when they are
utilized to estimate the seven state variables of the three degree of freedom spring-mass-dashpot system model. Hence, we
consider the state vector that we wish to estimate, zk D xk D Œx1 x2 x3 z1 v1 v2 v3�

T , and the model parameters, k1, k2, k3,
c1, c2, c3, ˇ, � , and n are assumed to be known.

The simulation results for state estimations of seven state variables x1, x2, x3, z1, v1, v2 and v3 using UKF, IUKF,
SRUKF and ISRUKF are shown in Figs. 5.2a–d and 5.3a–d, respectively. Also, the performance comparison of the state
estimation techniques in terms of RMSE are presented in Table 5.2 (Mean RMSE (MRMSE) for UKF D 0.085, MRMSE
(SRUKF) D 0.059, MRMSE (IUKF) D 0.051, and MRMSE (ISRUKF) D 0.039 and execution times respectively. It is easily
observed from Figs. 5.2 and 5.3 as well as Table 5.2 that UKF is outperformed by the alternative techniques, albeit at the
expense of a larger computational time (see Table 5.2). The results also show that the ISRUKF achieves a better accuracy
than the IUKF. Both ISRUKF and IUKF can provide improved accuracy over the UKF and SRUKF approaches.
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Fig. 5.3 Estimation of state variables using various state estimation techniques (UKF, IUKF, SRUKF and ISRUKF)

Table 5.2 Comparison of state
estimation techniques

Technique x1 x2 x3 z1 v1 v2 v3 Execution time

UKF 0:015 0:060 0:106 0:045 0:125 0:099 0:147 0:96 s

SRUKF 0:011 0:029 0:065 0:038 0:088 0:082 0:099 1:12 s

IUKF 0:010 0:028 0:042 0:043 0:085 0:073 0:076 1:44 s

ISRUKF 0:010 0:020 0:023 0:018 0:079 0:060 0:067 1:51 s
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5.5 Conclusions

In this paper, the problem of nonlinear state estimations were addressed using the developed iterated square-root unscented
Kalman filter. The ISRUKF method is compared to the unscented Kalman filter, the square-root unscented Kalman filter
and the iterated unscented Kalman filter to estimate the state variables of the SHM. The comparative studies reveal that
ISRUKF has better state accuracies than IUKF, and both of the methods can provide improved accuracy over UKF and
SRUKF techniques. It must be emphasized that ISRUKF has a very good stability, and also a high state accuracy with low
mean square errors.
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Chapter 6
Hierarchical Bayesian Model Updating for Probabilistic Damage
Identification

Iman Behmanesh, Babak Moaveni, Geert Lombaert, and Costas Papadimitriou

Abstract This paper presents the newly developed Hierarchical Bayesian model updating method for identification of
civil structures. The proposed updating method is suitable for uncertainty quantification of model updating parameters, and
probabilistic damage identification of the structural systems under changing environmental conditions. The Bayesian model
updating frameworks in the literature have been successfully used for predicting the “parameter estimation uncertainty” of
model parameters with the assumption that there is no underlying inherent variability in the updating parameters. However,
different sources of uncertainty such as changing ambient temperature or wind speed, and loading conditions will introduce
variability in structural mass and stiffness of civil structures. The Hierarchical Bayesian model updating is capable of
predicting the underlying variability of updating parameters in addition to their estimation uncertainty. This approach is
applied for uncertainty quantification and damage identification of a three-story shear building model. The proposed updating
framework is finally implemented for uncertainty quantification of model updating results based on experimentally measured
data of a footbridge which is exposed to severe environmental conditions. In this application, the stiffness parameter of the
model is estimated as a function of measured temperature through the Hierarchical framework.

Keywords Hierarchical Bayesian model updating • Uncertainty quantification • Damage identification • Effects of
changing ambient temperature on model updating

6.1 Introduction

The existence, location, and severity of damage can be potentially predicted from vibration measurements (e.g., modal data)
and using Finite Element (FE) model updating techniques [1]. Readers are referred to [2–4] for detailed reviews on vibration-
based model updating and damage identification of structural systems. The FE model updating methods can be divided
into two broad categories of deterministic and probabilistic approaches. The former is well established in the literature
[1, 2, 5], with several successful applications to civil structures [6–11]. However, the quality of structural identification results
from the deterministic FE model updating methods can be significantly affected by first, the accuracy and informativeness
of measured vibration data and second, the accuracy of the initial FE model. Several studies in the past have revealed the
sensitivity of identified modal data to measurement noise, estimation errors, and most importantly changing environmental
conditions [12–16]. Also, the structural FE models are usually associated with many idealizations and simplifications due to
complexity and size of the civil structures. These modeling errors bring another source of uncertainty into the identification
process [4, 17, 18]. Therefore, probabilistic FE model updating methods such as Bayesian methods have become popular to
address the underlying structural uncertainties. However, although these Bayesian methods [19–21] can successfully predict
the parameter estimation uncertainties, they do not consider the inherent variability of structural parameters (e.g., structural
stiffness or mass) due to different sources of uncertainties such as ambient temperature, temperature gradient, rain, snow,
wind speed, and traffic load.
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In the past few years, the Bayesian FE model updating methods have been extended for structural identification and
reliability problems [21–30]. There are also a few studies that applied this method on full-scale civil structures [31–33]. Based
on the Bayes theorem the posterior (updated) probability distribution function (PDF) of the updating structural parameters
™, and the model error parameters ¢2, given a single data set D can be expressed as:

p
�
™;¢2

ˇ̌̌
D
�

/ p
�

D
ˇ̌̌
™;¢2

�
p
�
™;¢2

�
(6.1)

where p
�

D
ˇ̌̌
™;¢2

�
is the so-called likelihood function and p(™,¢2) is the prior probability. In this study the measured data

D is composed of identified system eigenvalues (squares of circular natural frequencies) and mode shapes. By assuming
zero-mean, uncorrelated Gaussian distributions for eigenvalue and mode shape errors the likelihood function can be written
as the following if Nt number of independent data sets is available:
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The identified eigenvalues and mode shapes are represented by Qœ and Q̂ , respectively. Also œ(™) andˆ(™) denote the model
calculated eigenvalues and unit length mode shapes. Note that the model calculated mode shapes ˆ(™) contain only the

measured DOFs. In this equation, Nm is the total number of identified modes,N
� Q�m

ˇ̌̌
�m .™/ ; 


2
�m

�
is the value of a Gaussian

PDF with the mean �m(™) and the standard deviation 
�m at Q�m, and similarly N
� Q̂

m

ˇ̌̌
ˆm .™/ ;†ˆm

�
is the vector of a

multidimensional Gaussian PDF with the meanˆm(™) and the covariance matrix†ˆm at Q̂
m. The sub-index tm indicates the

identified modal data of mode m from test t. The standard deviations ¢� and the covariance matrix†ˆ can be either updated
(as updating parameters) or directly calculated based of the identified Nt data sets.

The posterior probability distributions of the updating parameters can be estimated either by generating Markov Chain
Monte Carlo (MCMC) [22, 23, 26, 33, 34] or by approximating the posterior PDF through asymptotic approximations
[21, 24, 25, 27, 31]. If the former is used, the distribution of the generated samples provides a measure of parameter estimation
uncertainties, and if the latter is used the covariance matrix of updating parameters can be estimated as the inverse Hessian of

�Log
�
p
�
™;¢2

ˇ̌
ˇD�� at the optimum of the updating parameters. However, these estimated uncertainties will decrease with

increasing number of data sets [20, 33, 35], referred to as “noise mitigation” in [21]. This reduction will not be observed when
the uncertainties of the updating structural parameters are estimated by a frequentist approach; the estimated uncertainties
converge with increasing the number of data. In frequentist approach, the distributions of updating parameters are estimated
from the deterministically identified parameters corresponding to different test data [15, 36, 37]. This inconsistency is due to
the estimation of conceptually different uncertainties in the two approaches. In the Bayesian approach, all uncertainties are
assumed to be reducible (epistemic uncertainty [38]), but in the frequentist framework the variations of the modal data are
considered to be due to inherent variability of the structural properties (aleatory uncertainty [38]).

It is believed that the variability of the identified modal parameters is mainly due to changes in physical structural
properties such as mass, damping, stiffness, or boundary conditions [12–16]. These changes will result in different modal
parameters from test to test. Therefore, it is desired to predict both the inherent variability and the parameter estimation
uncertainties of the updating parameters. In this paper, we implement the concept of Hierarchical Bayesian modeling
[39, 40] to propose a new probabilistic model updating technique for model calibration, uncertainty quantification, and
damage identification of structural systems. In the proposed framework, both the parameter estimation uncertainties and the
inherent variability of updating structural parameters due to for example changing environmental conditions can be predicted.

6.2 Hierarchical Bayesian FE Model Updating

Hierarchical models are powerful and have been used in many disciplines [39, 41], but very few can be found in structural
engineering applications [42]. In the proposed Hierarchical Bayesian model updating process, first a probability distribution
is assumed for the structural parameters; a truncated Gaussian distribution (no negative stiffness) is assumed in this study,
i.e., ™ / N .�™;†™/. Based on the error functions in Eqs. (6.3) and (6.4), the posterior probability distribution of updating
parameters, including ™t, �™, †™, and ¢2 D ˚

¢2�;†ˆ

�
can be expressed as in Eq. (6.5) for a single data set from test t.
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The sub-index t for the structural parameters and the identified modal data in Eqs. (6.3) and (6.4) specifies the values of
updating structural parameter during the collection of data set t. The prior probabilities are specified in two hierarchical

stages of p
�
™t

ˇ̌
ˇ�™;†™

�
and hyper-prior probability distributions p(�™)p(†™)p(¢2). In the case of having Nt independent

data sets, the posterior can be stated as:
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where‚ D f™1; : : : ; ™t ; : : : ; ™Nt g.
In this approach ¢2 reflects a measure of goodness of fit for the updated model, where zero values would indicate a perfect

match between the model and the data. Theoretically, all the components of ¢2 including Nm eigenvalue and Nm � Ns mode
shape errors can be considered as an updating parameter. However, for computational efficiency the following assumption is
used in this study:


�m D Q�m
e m D 1; 2; : : : ; Nm (6.7)

†ˆm D w
2e I .Ns/ (6.8)

where Ns is number of mode shape components (number of sensors), I is the identity matrix, and w is a weight factor [25]. In
Eq. (6.8), no correlation between the mode shape components are considered; more information on the effects of mode shape
component correlations can be found in [43]. The graphical representation of the proposed Hierarchical Bayesian modeling
is shown in Fig. 6.1.

Depending on the selection of updating structural parameters, it is often reasonable to assume no correlation
between these parameters and therefore the covariance matrix can be represented as a diagonal matrix †™ D
Diag

�

21 ; 


2
2
; : : : ; 
2p ; : : : ; 


2
Np

�
with Np D number of updating structural parameters in ™. This method can also be

extended for correlated updating structural parameters. A Gamma probability distribution is assumed for the prior probability
of the 
�2

p
:

p
�

�2
p

�
D Gamma .˛; ˇ/ (6.9)

Fig. 6.1 Graphical
representation for the proposed
Hierarchical Bayesian modeling
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where ˛ and ˇ can be taken identically for all the updating structural parameters. By assuming uninformative priors for �™
and 
2

e , the joint posterior probability distribution of all the updating parameters can be stated as:
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In Eq. (6.11), atm is the mode shape scaling factor. The most common technique to solve Eq. (6.10) is the Gibbs Sampler
[39, 40].

In the Gibbs sampling techniques, samples are generated from the full conditional probability distribution of each
parameter until convergence is reached. Equations (6.12), (6.13), (6.14) and (6.15) present the full conditional posterior
probability distributions of all the updating parameters.
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According to Eqs. (6.12), (6.13), (6.14) and (6.15), the full conditional probability distributions of all the updating parameters
except ™t are either Gaussian or Gamma distributions. By generating adequate number of samples, the posterior joint
probability distribution of updating parameters can be accurately estimated. Generating samples from Eqs. (6.13), (6.14)
and (6.15) is not challenging due to their known distribution functions; however, generating samples for the conditional
probability distributions of ™t, Eq. (6.12), requires using advanced sampling techniques such as adaptive Metropolis-Hastings
[22, 44], or Translational Markov Chain Monte Carlo algorithm [26, 34]. This step can become very time-consuming;
therefore parallel computing can be implemented as the ™t samples can be generated independently for each test data.
Alternatively, Laplace asymptotic approximation can be used to approximate the conditional probability distributions of ™t

in Eq. (6.12) as a Gaussian distribution to simplify the sampling process. The standard deviations of the generated samples
reflect the “parameter estimation uncertainties” which will be reduced by increasing the number of data sets used in the
updating process (except for ™t parameters).

The proposed Hierarchical Bayesian updating framework is extended to be used for probabilistic damage identification of
civil structures. In Eq. (6.16), Damage Factor (DF) is defined as the relative loss of stiffness in parameter p from the reference
state to the damaged state:

DF D 1 � cp=rp (6.16)
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where superscript r refers to the reference state and superscript c refers to the current state of the structure. The probability
of damage exceedance from a given damage factor df can be expressed as:
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where CDF is the cumulative Gaussian distribution function, and erf is Gauss Error Function.

6.3 Application to a Numerical Case Study

The performance of the proposed Hierarchical procedure is numerically evaluated by means of a three-story shear building
model. The mass of each story is set to 1.2 metric ton, and the stiffness of stories one to three are considered as random
variables with truncated Gaussian distributions of N (2,000 kN/m, 1002 kN2/m2), N (1,000 kN/m, 502 kN2/m2), and N
(1,000 kN/m, 202 kN2/m2), respectively. The natural frequencies of the building at the mean values of story stiffnesses
are 2.378, 6.498, and 8.876 Hz. In Sect. 6.3.1, the performance of the proposed framework is evaluated for parameter
estimation and uncertainty quantification, and the results are compared with those of the classical Bayesian model updating
framework. In Sect. 6.3.2, the proposed framework is applied for probabilistic damage identification where the estimated
variability/uncertainty of updating structural parameters is propagated in the damage identification results.

For comparison purposes, the posterior distributions of the updating structural parameters are also estimated based on the
Bayesian framework of [21, 23] and they are shown in Fig. 6.3. The Adaptive Metropolis-Hastings algorithm of [44] is used
to sample the posterior probability distributions of updating parameters. As it can be observed, although the estimated MAP
values are in good agreement with the true mean values and those estimated from Hierarchical framework, the estimated
uncertainties are significantly underestimated and always decrease with addition of data. Plus, unlike the Hierarchical
approach, there is no parameter in classical Bayesian framework to represent the goodness of fit. As discussed in Sect. 6.2, the
error standard deviations in classical framework are either directly calculated from the collected measured data or updated.
In the former case, this parameter represent the variability of the measured modal data, and in the latter case, the estimated
values contain both the modeling errors and the variability of structural parameters. This comparison highlights the benefits
of the proposed Hierarchical Bayesian model updating framework.

6.3.1 Performance Evaluation of the Hierarchical Bayesian FE Model Updating

400 sets of natural frequencies and mode shapes are simulated by sampling the story stiffness values from their considered
probability distributions. The coefficients of variation (standard deviation divided by the mean) for the generated natural
frequencies are 1.53%, 1.08%, and 1.52% for mode 1 to 3 respectively. These generated modal data will be used as the
measured data in the model updating processes.

Four different subsets of data with nt D f5, 20, 50, and 400g data set numbers are used for model updating. Table 6.1
provides the updating results which include the MAP estimates of the mean and standard deviation of the three updating

Table 6.1 MAP estimates from
the Hierarchical framework with
no modeling errors

™1 ™2 ™3 Log (
 e)
Mean (b� ) STD (b
 ) Mean (b� ) STD (b
 ) Mean (b� ) STD (b
 ) –

Exact 2,000 100 1,000 50 1; 000 20 –
nt D 5 2,008.6 86:3 1,021.0 44:9 992:0 8:0 �19.8
nt D 20 1,988.6 106:2 1,009.2 47:7 999:9 19:7 �19.8
nt D 50 2,000.0 99:0 1,000.0 49:5 1; 000:0 19:8 �19.9
nt D 400 1,999.7 100:1 1,004.1 49:3 999:2 19:5 �19.9
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structural parameters and the error standard deviation 
 e for all the four considered data subset numbers. The parameters
are accurately estimated except for the case with nt D 5, where insufficient number of data sets is used in the updating
process. The statistics (means and standard deviations) of the structural parameters are also estimated based on frequentist
approach and they match perfectly to the results of Table 6.1. Therefore, in the absence of modeling errors the Hierarchical
and frequentist approaches provide identical estimations. In the presence of modeling errors however, the two approaches
provide similar, but not identical results (not shown here for brevity). As expected, the estimated standard deviations of
updating structural parameters are converged by increasing number of data sets. The standard deviation of error functions
is also provided in the last column of Table 6.1, which is very close to zero, indicating a good match between the data and
the model. Figure 6.2 shows the most probable posterior PDFs of the three stiffness updating parameters. The term most
probable is referring to the fact that the posterior PDFs of Fig. 6.2 are based on most probable (MAP estimates) means and

standard deviations of the updating parameters and their estimation uncertainties are ignored, i.e., N
�b�p ;b
2p

�
.

Fig. 6.2 Most probable posterior PDFs using Hierarchical Bayesian framework

Fig. 6.3 Posterior PDFs from the classical Bayesian framework
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6.3.2 Hierarchical Bayesian FE Model Updating for Damage Identification

Three collections of measured data are generated with each collection representing a specific damage scenario and including
400 data sets. The first collection is considered as the reference data, the second collection of 400 data sets is generated from
the structure in the undamaged state to evaluate the performance of the proposed method in the presence of variability in the
modal data at the structural undamaged state. The third collection is generated in the damaged state. Damage is considered to
be 5% stiffness loss of the first story, so that the mean of the first story stiffness is reduced to 1,900 [kN/m] while its standard
deviation is kept the same as in the undamaged state. At the mean values of story stiffnesses, the natural frequencies of the
structure are 2.357, 6.439, and 8.809 Hz. The most reduction in the natural frequencies is observed for mode 1 and found
to be only 0.92%. This reduction is within the variation range of natural frequencies in the undamaged state, which makes
the damage identification challenging. This scenario is often observed in operational civil structures where the variations of
modal data due to damage might be within the variation ranges of the data due to changing ambient/environmental conditions
[12–16].

6.3.2.1 Damage Identification from Undamaged State Data (Collection 2)

As discussed previously, the parameter estimation uncertainties can be obtained from the Gibbs samples. As an example
case, the posterior probability distributions of the mean and standard deviation of the first story stiffness in shown in Fig. 6.4
for three different cases of nt. It can be observed that the estimation uncertainties will be reduced by increasing number of
data sets. These estimation uncertainties will propagate to the damage exceedance probabilities of Eq. (6.17). Therefore, the
probability of damage exceedance will be associated to estimation uncertainties as well. Damage exceedance probabilities are
estimated and shown in Fig. 6.5 for a range of given damage factors [�0.10 to 0.15] and based on 50 data sets. In this plot,
darker color shows higher probability density. Vertical lines correspond to probability distribution of damage exceedance
probability at a given damage factor, i.e., PDF of P [DF> df ]. The horizontal lines correspond to probability distribution of
damage at a given confidence level. In Fig. 6.5, the PDF of damage exceeding 4%, P [DF> 0.04] and the PDF of damage at
a 50% confidence level are shown. As expected, the estimation uncertainties are reduced by increasing the number of data,
however, damage is still estimated probabilistically due to inherent variability of structural parameters [38].

Fig. 6.4 Parameter estimation uncertainties for the mean and standard deviation of 1 in the undamaged state
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Fig. 6.5 PDF of damage
exceedance probabilities for
damage factor range of [�0.10
0.15] in the first story using 50
data sets

Fig. 6.6 Probability of damage given the baseline data and the data in the damaged state

6.3.2.2 Damage Identification from Damaged State Data (Collection 3)

Damage identification is performed based on the damaged state data: the third collection. The PDF of damage exceedance
are shown in Fig. 6.6 for two cases of nt D f5 and 400g.

Unlike the results of Fig. 6.5, the most probable damage factor (MAP of p (DF j P D 50%)) is very close to the true damage
factor 5%. The predictions become more accurate by adding more data sets. These results highlight the fact the damage
can be identified even when the changes of the modal data due to damage are within the variation range of modal data
due to environmental/ambient conditions provided that adequate number of measured data sets is available. It should be
mentioned that damage identification still can be performed based on few number of data sets; however, the corresponding
large estimation uncertainties should be included for any decision making or detection analysis. The proposed framework is
well suited for damage assessment of operational civil structures where changing environmental conditions can significantly
affect the identified natural frequencies and mode shapes.
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6.4 Application to the Dowling Hall Footbridge Using Real Measured Data

The Dowling Hall Bridge is a pedestrian bridge located at Tufts University campus and is equipped with a continuous
monitoring system [11, 16, 33]. The monitoring system collects 5 min of ambient vibration data every hour, and the modal
data (natural frequencies, mode shapes, and damping ratios) are extracted from each collected data set. It has been observed
that the identified natural frequencies of the footbridge have a strong correlation with the measured ambient temperature.
Figure 6.7 shows the identified natural frequencies of five vibration modes, collected from January 2010 to March 2012,
versus the recorded ambient temperature during collection of each data set. The frequencies increase at lower temperatures
especially at temperature below freezing point. This can be due to an increase in the elastic Young’s modulus of bridge
deck after the moist inside concrete freezes. Other than ambient temperature, other factors can affect the identified natural
frequencies from test to test such as the live load (weight of the pedestrians on the bridge), rain, wind speed, and identification
errors. In this study, only the ambient temperature measurements will be used for model calibration of the Dowling Hall
footbridge through the proposed Hierarchical Bayesian updating process. The collected data from the Dowling Hall bridge
is a good example of Hierarchical data in structural systems as each data set was collected at a different environmental
condition and can correspond to different structural mass and stiffness properties.

The updating structural parameter  is defined as a modification factor for elastic Young’s modulus of concrete deck, i.e.,
E D E0 where E0 is the initial value considered as 26,752 [N/mm2]. The probability distribution of  is assumed to follow
a truncated Gaussian (no negative value) distribution with temperature dependent mean � (Tt), and an independent variance

2
 , i.e.,  .Tt / 
 N

�
� .Tt / ; 


2


�
. The temperature model is defined as:

� .Tt / D QC S � Tt CR �
 
1 � erf

 
Tt � bT
�

!!
(6.18)

where Tt is the recorded temperature during test t, erf denotes the value of Gaussian cumulative distribution function, and
Q; R; bT ; �; S; 
2 ; 
2e are updating parameters to be estimated. The first two terms in Eq. (6.18) represent the linear
trend observed at high temperature ranges. The third term captures the trend at lower temperatures (close or below freezing
point) with transition temperatures bT and � characterizing the transition range. This temperature model stems from the
observed trend of natural frequencies and ambient temperature shown in Fig. 6.7. The inherent uncertainty in the estimated
elastic Young’s modulus (
2

 ) will then be due to the mentioned sources of uncertainties except ambient temperature which
is explicitly considered in this framework. The error functions can be written as in Eqs. (6.3) and (6.4) except that the
parameters  t should be replaced by  t(Tt). Assumptions stated in Eqs. (6.7) and (6.8) are also considered in this example.
The graphical representation of the probabilistic model is shown in Fig. 6.8.

5000 Gibbs samples are generated and Fig. 6.9 shows the samples for four selected parameters, including 1, R, Q,
and 
 . As it can be seen, the estimated uncertainties in the parameters are negligible since the modeling errors are
not significant (relatively low 
 e) and large number of data sets is available (for this example 6,713 data sets are used;
Nt D 6,713). Figure 6.10 shows the  t(Tt) values at the final Gibbs step along with the estimated � (Tt) from Eq. (6.18).
The calibrated finite element model that contains temperature dependent stiffness parameters can be used for more accurate
damage identification or reliability analysis in the presence of changing environmental conditions.

Fig. 6.7 Effect of ambient temperature variations on the identified natural frequencies
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Fig. 6.8 Graphical
representation of the Hierarchical
Bayesian model calibration
including temperature
measurements

Fig. 6.9 The generated Gibbs samples for 1, Q, R, and 


Fig. 6.10 All the  t(Tt) values at
the final Gibbs samples (gray
dots) and the estimated � (Tt)
(solid line)

6.5 Summary and Conclusion

A new probabilistic updating process based on Hierarchical Bayesian modeling method is proposed for model calibration,
uncertainty quantification, and damage identification of structural systems. This framework can accurately predict the
overall uncertainty of updating parameters due to different uncertainty sources including estimation uncertainty and inherent
variability of structural properties (mass, stiffness) due to changing environmental effects. These changing environmental
effects may include ambient temperature, wind speed, rain, snow, and traffic load.
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The performance of the proposed technique is evaluated for model calibration, uncertainty quantification, and damage
identification of a three story shear building based on numerically simulated data. In the absence of modeling errors, the
estimated updating parameters are found to be identical to the estimation results from the frequentist approach and are very
close (with negligible error) to the true values. The proposed technique is also successfully applied for damage identification.
The results highlight the fact that damage can be identified even when the change of the modal data due to damage is within
the variation range of modal data due to environmental conditions provided that an adequate number of measured data sets
is available. The proposed framework is well suited for damage assessment of operational civil structures where changing
environmental conditions can significantly affect the identified natural frequencies and/or mode shapes.

Finally, the proposed Hierarchical framework is applied for model calibration of the Dowling Hall footbridge using
experimentally collected data over 27 months. The identified natural frequencies of the footbridge show strong correlation
with ambient temperature especially for temperatures below freezing point. A nonlinear relation is assumed to model the
variation of concrete Elastic Young’s modulus with ambient temperature. The parameters of the nonlinear relation and their
uncertainties are estimated through the proposed Hierarchical framework. The temperature model provides a very good fit
to the data. The temperature-dependent calibrated FE model can then be used for more accurate damage identification and
reliability analysis in the presence of changing environmental conditions.
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Chapter 7
Nonlinear Structural Finite Element Model Updating
Using Stochastic Filtering

Rodrigo Astroza, Hamed Ebrahimian, and Joel P. Conte

Abstract This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite
element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic
material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework
updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification
purposes. The unscented Kalman filter (UKF) is used as parameter estimation technique to identify the unknown time-
invariant parameters of the FE model. A two-dimensional, 3-bay, 3-story steel moment frame is used to verify the proposed
framework. The steel frame is modeled using fiber-section beam-column elements with distributed plasticity and is subjected
to a ground motion recorded during the 1989 Loma Prieta earthquake. The results show that the proposed methodology
provides accurate estimates of the unknown material parameters of the nonlinear FE model.

Keywords Damage identification • Nonlinear finite element model • Model updating • Stochastic filter • Structural
health monitoring

7.1 Introduction

The fields of system identification (SID) and damage identification (DID) are attracting significant attention from the
structural engineering community. With the aim of implementing accurate and robust DID methodologies, research on
structural health monitoring (SHM) for civil structures has increased considerably during the last years. Several researchers
have studied vibration-based DID methods for civil structures based on changes in identified modal properties (e.g., [1, 2]);
however, these methods have been applied to real structures or full-scale structural specimens subjected to damage induced
by realistic sources of dynamic excitation only in the last years (e.g., [3–5]). Because modal properties are related to global
properties of the structure and because actual response of structures is nonlinear from the onset of loading, some researchers
have objected the use of modal parameters for damage identification purposes. Considering the relevance of nonlinearities
in the dynamic response of civil structures, SID and DID for nonlinear structures have been the subject of intense research
(e.g., [6–9]). Nevertheless, these studies have used highly idealized structural models, localizing the modeling of nonlinear
behavior in a few prescribed elements defined by nonlinear hysteretic force-deformation laws not traditionally used in state-
of-the-art modeling of civil structures.

Finite element (FE) model updating, which can be defined as the process of calibrating a FE model to minimize the
discrepancy between the FE predicted and measured responses of a structure, has emerged as a powerful method [10, 11]
that enables the use of more realistic models for SID and DID purposes. Recently, Bayesian techniques have been used for FE
model updating of linear and nonlinear structures, for both static and dynamic loading (e.g., [12–15]). In the case of nonlinear
response, previous studies employed highly simplified nonlinear models (e.g., lumped plasticity, shear building, empirical-
based nonlinear material models) which are not able to properly characterize the behavior of real large and complex civil
structures.
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This paper presents a novel framework that combines advanced mechanics-based nonlinear FE models and a nonlinear
Bayesian filter, referred to as the unscented Kalman filter (UKF) [16, 17], to estimate unknown time-invariant parameters of
nonlinear inelastic material models used in the FE model. In the implementation of the framework, the software OpenSees is
used to model the structure and simulate its response to earthquake excitation.

7.2 Bayesian Approach for State and Parameter Estimation of Dynamic Systems

Consider a nonlinear state-space model with additive zero-mean Gaussian white noises:

xkC1 D fk .xk;uk/C wk (7.1a)

ykC1 D hkC1 .xkC1;ukC1/C vkC1 (7.1b)

where xk 2 Rnx, uk 2 Rnu, and yk 2 Rny are the state vector (defined as the smallest subset of variables needed to completely
characterize the system at time tk D k�t, where �t D time step), input vector (deterministic and known), and measurement
vector at time tk, respectively. The components of the process and measurement noises, wk and vkC1 respectively, are assumed
to be statistically independent processes. Noise processes wk and vkC1 have covariance matrices Qk and RkC1, respectively.
The terms fk and hkC1 are deterministic and known nonlinear vector-valued functions. The objective of a filtering technique
is to recursively estimate at least the first two statistical moments of the state vector using the measured input and noisy
measurement vectors up to the current time [18]. If modeling parameters are unknown, the state vector can be augmented
to contain both state variables and unknown parameters (™kC1). For the special case that all system dynamics are contained
in the measurement equation, a parameter-only estimation problem can be set up [19], i.e., only ™kC1 is present in the state
equation [Eq. (7.1a)].

The UKF can be used to solve the nonlinear state-space model in Eq. (7.1a and b). It is based on the assumptions that
the posterior PDF of the state at time tk, p(xk j y1:k) (where y1:k D [y1

T, y2
T, : : : , yk

T]T), and the PDF p(xkC1 j y1:k)
are approximated by Gaussian distributions. Then, the posterior PDF of the state at time tkC1, p(xkC1 j y1:kC1), can be
approximated as Gaussian with mean vector and covariance matrix estimates given by

bx kC1jkC1 Dbx kC1jk C KkC1
�
ykC1 �by kC1jk

�
(7.2a)

bPxx
kC1jkC1 DbPxx

kC1jk � KkC1bPyy
kC1jkKT

kC1 (7.2b)

wherebx kC1jkC1 andbPxx
kC1jkC1 denote estimates of the mean and covariance matrix of xkC1 given y1:kC1, ŷkC1jk is the estimate

of the mean of ykC1 given y1:k and the Kalman gain matrix, KkC1, is defined as

KkC1 DbPxy
kC1jk

�bPyy
kC1jk

��1
(7.3)

Covariance matrices bPxx
kC1jk;bPxy

kC1jk;bPyy
kC1jk require the computation of multi-dimensional integrals that seldom can be

evaluated in closed-form; therefore, the unscented transformation (UT) can be alternatively used to approximate them. The
UT defines a set of deterministically selected sample points (referred as sigma points or SPs) to represents a random vector z
such that the sample mean and sample covariance matrix obtained from the SPs match exactly the true mean and covariance
matrix of the random vector z. When the SPs are propagated through a nonlinear function, they capture the true mean and
covariance matrix up to the second order of the Taylor series expansion of the nonlinear function. In this paper, the scaled
unscented transformation [17] with parameters ’D 0.01, ›D 0, and “D 2 is adopted. More details about the UKF and scaled
UT can be found elsewhere [20].
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Fig. 7.1 Distributed plasticity FE model of frame-type structures

7.3 Mechanics-Based Nonlinear Finite Element Models of Frame-Type Structures

Different approaches have been proposed over the years to model and simulate the nonlinear response of frame-type
structures subjected to earthquake loading. Global models, structural FE models, and continuum FE models have been
developed for this purpose. The simplest are global models, which concentrate material nonlinearities at global degrees
of freedom (DOF), however they lack accuracy and resolution in predicting the nonlinear response of real structures.
Structural FE models describe the structure by an assembly of interconnected frame elements. Lumped or concentrated
plasticity and distributed plasticity are two categories within structural FE models. Finally, continuum FE models are the
most sophisticated but computationally expensive, since they discretize the members of frame-type structures into 3D solid
FEs with 3D nonlinear material constitutive models.

Structural FE models with distributed plasticity have been proven to provide accurate results in matching experimental
results. In addition, their formulation is simple and computational cost is feasible. Therefore, these types of models have
been broadly employed in research and engineering practice. In this type of FE models, material nonlinearity can take place
at any numerically monitored cross section (integration point) along the element, and the element behavior is obtained by
numerical integration of the section response along the element. Element cross-sections are discretized in longitudinal fibers,
which permit to simulate the section nonlinear response using uniaxial material constitutive laws for the fibers (Fig. 7.1).
This formulation accounts for the interaction between bending and axial force at the section level, while the interaction with
the shear force occurs at the element level. It is noted that a uniaxial material model depends on a set of physical and/or
empirical set of parameters. More details about these type structural FE modeling techniques can be found in [21].

7.4 Proposed Methodology

The discrete-time equation of motion of a FE model of a structure can be expressed as

M .™/ RqkC1 .™/C C .™/ PqkC1 .™/C rkC1 ŒqkC1 .™/ ; ™� D fkC1 (7.4)

where ™2Rn vector of unknown time-invariant modeling parameters, q; Pq; Rq 2 RnD nodal displacement, velocity, and accel-
eration vectors, M2Rn�n D mass matrix, C2Rn�n D damping matrix, r[q(™),™)]2Rn D history-dependent internal resisting
force vector, f2Rn D dynamic load vector, and the subscript indicates the time step. For the case of rigid base earthquake
excitation the dynamic load vector takes the form fkC1 D �M L üg

kC1, where L2Rn�r D influence matrix and üg 2
Rr�1 D input ground acceleration vector with r D number of base excitation components (in the general case r D 6, i.e.,
three rotations and three translations base excitation components)

The structural response can be recorded using different types of sensors (e.g., accelerometers, GPS) and at time
tkC1 D (k C 1)�t, with k D 0,1, : : : and �t D time step, can be expressed as

ykC1 D Ly
h

RqTkC1; PqTkC1; qTkC1;
� RugkC1

�T iT C vkC1 DbykC1 C vkC1 (7.5)
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where y 2 Rny D vector of recorded structural response quantities, ŷ 2 Rny predicted response of the structure from the
FE model, Ly 2 Rny�3nCr D output matrix (known), and v 2 Rny D output measurement noise vector assumed to be white
Gaussian with zero-mean and covariance matrix Rk, i.e., vk 
 N(0,Rk).

From Eqs. (7.4) and (7.5), the vector of recorded response quantities at time tkC1, ykC1, can be expressed as a nonlinear
function of the modeling parameters (™), input ground acceleration time histories ( RUg

kC1), and initial conditions (q0; Pq0) of
the FE model, i.e.,

ykC1 D hkC1
�
™; RUg

kC1;q0; Pq0
�

C vkC1 (7.6)

Here hkC1(•) is a nonlinear response function of the nonlinear FE model at time tkC1 and RUg

kC1 D [(üg
1)T, (üg

2)T, : : : ,
(üg

kC1)T]T is the input ground acceleration time history from time t1 to tkC1. At rest initial conditions are assumed henceforth,
i.e., q0 D Pq0 D 0.

If the unknown time-invariant modeling parameter vector, ™, is modeled as a stationary process according to the Bayesian
approach, the evolution of which is characterized by a random walk process, the nonlinear parameter estimation problem at
time tkC1 (k D 0, 1, 2, : : : ) can be formulated as

(
™kC1 D ™k C ”k

ykC1 D hkC1
�
™kC1; RUg

kC1
�

C vkC1
(7.7)

where ”k and vk are called process noise and measurement noise, respectively, and are assumed to be independent Gaussian
white noise processes with zero mean vectors and diagonal covariance matrices Qk and Rk, respectively, i.e., ”k 
N (0,Qk)
and vk 
N (0,Rk). Equation (7.7) represents a nonlinear state-space model like Eq. (7.1), therefore it can be used to estimate
the modeling parameter vector, ™, using the UKF as summarized in Fig. 7.2. More information about the formulation of the
parameter estimation problem for frame-type distributed-plasticity FE models using the UKF is discussed elsewhere [20].

Fig. 7.2 Distributed plasticity FE model of frame-type structures
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7.5 Application Example

A 2D steel building frame is considered as application example. The steel fibers are modeled using the modified Giuffre-
Menegotto-Pinto (G-M-P) material constitutive model [22]. One input earthquake motion is considered to simulate recorded
response data, which are then contaminated by measurement noise for the estimation phase. Gravity loads are applied quasi-
statically before running the dynamic analysis. The Newmark-“ average acceleration method is used to integrate the equations
of motion in time using a time step �t D 1/fs, where fs is the sampling rate of the input earthquake motion. The Newton
algorithm is used to solve the set of coupled nonlinear algebraic equations resulting from the equations of motion. The
framework presented above is used to identify the material parameters and update the nonlinear FE model. The same FE
model is used to simulate the response and to estimate the material parameters, i.e., effects of modeling uncertainty are not
considered. The ground motion recorded at the station Los Gatos during the 1989 Loma Prieta (Mw D 6.9) is selected as
input motion (Fig. 7.3). The peak ground acceleration is 0.45 g and the sampling rate is fs D 50 Hz.

The structure is a 3-story steel moment resisting frame structure studied under the SAC venture, known as the SAC-LA-3
story building [23] (Fig. 7.4a). The modeled 2D frame has 3 stories and 3 bays, with a story height of 3.96 m and a bay
width of 9.14 m. Exterior and interior columns are made of A572 steel with W14 � 257 and W14 � 311 cross-sections,
respectively. Second, third, and roof level beams are made of A36 steel with W33 � 118, W30 � 116, and W24 � 68
cross-sections, respectively. Beam-column joints are assumed to be fully restrained, and rigid end zones are modeled at the
ends of beams and columns (Fig. 7.4b). Beams and columns are modeled using one force-based element for each beam and
column. Numerical integration over the length of the elements is performed by using Gauss-Lobatto quadrature with 6 and
7 IPs for columns and beams, respectively. Column webs are discretized into 6 fibers along their length and one fiber across
their width, while a single fiber is used to represent each flange of the cross-section (Fig. 7.4c). The webs of the second,
third, and roof level beams are discretized into 16, 14, and 11 fibers along their length, respectively, and one fiber across
their width. A single fiber is used to represent each flange of the cross-section (Fig. 7.4c). A linear elastic section shear
force-deformation model is aggregated with the inelastic coupled flexure-axial behavior at the section level and along the
element. The flexure-axial behavior is uncoupled from the shear behavior at the section level.
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Fig. 7.3 Ground acceleration recorded at the Los Gatos station during the 1989 Loma Prieta earthquake
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Fig. 7.4 Properties of the 2D frame building model: (a) Geometry, masses, and loads; (b) rigid end zones; (c) cross section discretization
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The uniaxial G-M-P material model with primary parameters ™true D [E0
col, 
 y

col, bcol, R0
col, E0

beam, 
 y
beam, bbeam,

R0
beam]T D [200 GPa, 345 MPa, 0.08, 20, 200 GPa, 250 MPa, 0.05, 18]T is used to model the axial behavior of the fibers

of the cross sections of beams and columns and to simulate the true dynamic response of the frame structure to earthquake
excitation. Nodal masses and distributed gravity loads on beams are computed from the design dead and live loads as
reported in FEMA-355C and are shown in Fig. 7.4a. The sources of energy dissipation beyond hysteretic energy dissipated
through nonlinear material behavior are modeled using mass and tangent stiffness-proportional Rayleigh damping assuming
a critical damping ratio of 2 % for the first two initial natural periods (after application of the gravity loads), T1 D 1.06 s and
T2 D 0.35 s.

In the material parameter identification process, the UKF algorithm requires 17 SPs (D2 � 8 C 1) and it is assumed that
only one horizontal acceleration response is measured at each level (at the left column). The initial estimates of the material
parameters to be identified are taken as 140 % of their true values, b™0 D1.4™true, and the initial covariance matrix OP™™0 is
assumed diagonal with terms computed assuming a coefficient of variation of the initial parameter estimates (with b™0 as
initial mean) of 15 % for E0

col and E0
beam and 25 % for 
 y

col, bcol, R0
col, 
 y

beam, bbeam, and R0
beam. An output measurement

noise with 5 % RMS noise-to-signal-ratio (NSR) is considered. It is assumed that the process noise ”k and measurement noise
vk are zero-mean Gaussian white noise processes with time-invariant diagonal covariance matrices Q and R, respectively.
A coefficient of variation of 1 � 10�4 is assumed for the initial estimates of the material parameters (™0) to construct the
process noise covariance matrix Q. A standard deviation (or RMS) of the measurement noise vk of 7 � 10�2 of the RMS
of the corresponding simulated measurements (horizontal acceleration at the 2nd, 3rd, and roof levels) is assumed in the
measurement noise covariance matrix R.

Time histories of the mean (b�) and standard deviation (b
 ) estimates of the material parameters for SAC-LA-3 building
frame subjected to Los Gatos earthquake motion are shown in Fig. 7.5. The eight parameters are accurately identified and
the standard deviation estimates of all these parameters decrease asymptotically to zero. The stiffness related parameters
E0

col and E0
beam quickly converge to their true values after a few time steps, the strength or yield related parameters 
 y

beam

and 
 y
col converge to their true values soon after the strong motion phase of the earthquake begins and some steel fibers

have yielded, and the post-yield related parameters bbeam, bcol, R0
beam, and R0

col converge to their true values after the strain
ductility demand of enough steel fibers has increased sufficiently.

Figure 7.6 compares different global and local responses of the frame obtained using the true material parameter values
(™true), the initial estimate of the parameters (b™0), and the final estimate of the parameters (b™N). The following responses are
plotted: absolute horizontal acceleration response history at the roof level (Aroof ), base shear (V) versus roof drift ratio (�),
moment (M1–1) versus curvature (�1–1) hysteretic response at the base of the left column (section 1–1 in Fig. 7.4a), and stress
(
3–3) versus strain ("3–3) hysteretic response at one of the extreme fibers at the base of the central-left column (section 3–3
in Fig. 7.4a). All the responses computed using the final estimates of the material parameters are in excellent agreement with
the simulated true responses and the correct updating of the nonlinear FE model is clear from the comparison of the true
responses with the responses obtained using the initial and final material parameter estimates.
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Fig. 7.5 Estimation results for the material parameters of beams and columns of the frame building: (a) mean values; (b) standard deviations
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Fig. 7.6 Comparison of true and estimated responses of the frame building: (a) absolute horizontal acceleration at the roof, (b) base shear versus
roof drift ratio, (c) moment versus curvature at the base of left column section, (d) stress versus strain in extreme fiber at the base of the left-central
column

7.6 Conclusions

This paper proposes and validates, using numerically simulated data, a novel methodology to estimate unknown time-
invariant parameters of nonlinear inelastic material models in frame-type structures subjected to earthquake excitation.
The method combines state-of-the-art nonlinear finite element (FE) models and the unscented Kalman filter (UKF) as
the estimation tool. The methodology formulates the nonlinear state-space model considering the unknown time-invariant
modeling parameters in the state equation and the responses of the nonlinear FE model corresponding to the measured
response quantities are used in the measurement equation. A 2D 3-story, 3-bay steel frame subjected to a ground acceleration
recorded at the Los Gatos station during the 1989 Loma Prieta earthquake is used to validate the proposed methodology.
The simulated responses of the building are contaminated by white noise to analyze the robustness of the identification
scheme. The proposed method is able to accurately estimate the unknown time-invariant material parameters of the nonlinear
FE model. True and estimated time histories of various global and local response quantities are compared to confirm the
effectiveness of the proposed nonlinear FE model updating approach. The proposed framework provides a powerful tool for
model updating of advanced mechanics-based nonlinear FE models, even when a limited number of measurement data are
available.
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Chapter 8
Dispersion–Corrected, Operationally Normalized Stabilization
Diagrams for Robust Structural Identification

Vasilis K. Dertimanis, Minas D. Spiridonakos, and Eleni N. Chatzi

Nomenclature

DA Dispersion analysis
DOF Degrees–of–freedom
ERA Eigensystem realization algorithm
N/S Noisetosignal
LHS Latin hypercube sampling
LTI Linear time–invariant

MDM Modal dispersion metric
nMDM Normalized modal dispersion metric
PCE Polynomial chaos expansion
PDF Probability density function
SD(s) Stabilization diagram(s)

Abstract This study aims at incorporating a certain degree of formalization to stabilization diagrams by integrating two
additional features: the former introduces a new quantity, the modal dispersion metric, which expresses a certain part of
the total stochastic vibration energy, and it is attributed to each vibration mode. The latter implements a polynomial chaos
expansion framework for quantifying the effect of the operational conditions into the modal dispersion index. By combining
these two features, a vibration mode is deemed as a structural one when it appears stabilized, i.e., comes with a high modal
dispersion index and is operationally normalized. The proposed method is characterized by global applicability, thus also
serving as a common measure of effectiveness among diverse parametric identification methods.

Keywords Stabilization diagrams • Parametric identification • Dispersion analysis • Operational modal analysis •
Polynomial chaos

8.1 Introduction

A critical and open research issue in time–domain, model–based structural identification pertains to the estimation of the
number of vibration modes [1]. Thus far, among other tools, SDs have proven effective in diverse structural problems [2–4],
under the principle that physical eigenmodes tend to appear at a certain frequency, irrespectively of the order of the adopted
time–domain model. However, despite the fact that SDs have become a standard measure of model order assessment and
are very frequently used in practice, they are still amenable to a number of inconsistencies, including sensitivity to noise,
frequency splitting and stabilization of spurious modes.

While certain clearing tools [5, 6] may facilitate the decision process, especially when very large structures are considered,
the inherent discrepancies (e.g., the stabilization of spurious modes) may still be present. Furthermore, existing tools that
distinguish structural from extraneous modes are, in general, method specific. Among others, the use of modal amplitude
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coherence that is employed within the context of ERA [7] has been reported to be problematic [8], while conventional
DA [9] is limited to transfer function representations and it is based on a “sensitive”, residue–based calculation. To enhance
the effectiveness of the model order selection process in a more general framework, Reynders and De Roeck [10] propose
the modal transfer norm metric, based on the work of Goethals and De Moor [11], while Dertimanis [12] extends the
conventional DA scheme to cover state–space models as well [13]. It is noted that the latter two efforts are characterized by
global applicability, in the sense that they can be applied to both state–space and transfer function model representations.

The inherent discrepancies of SDs are becoming more severe when structural identification is examined under an
operational perspective. There, uncontrollable operational conditions, such as temperature gradients, humidity and others,
impose a wide range of uncertainties onto the actual structural performance and, consequently, to its proper identification.
As a result, the estimation of modal characteristics becomes a stochastic problem which may only be resolved via the
adoption of a probabilistic framework. Generally, two approaches are followed in relative studies, namely, (i) methods which
try to discard the influence of environmental factors [14], and (ii) methods which try to model the relationship between
the measured vibration data and/or the extracted structural properties with respect to measured environmental quantities
[15]. In contrast to the first, the second approach is capable of providing additional insight into the variation mechanisms
and may also provide a global structural model, valid for a wide range of operational conditions. The method introduced
herein follows the second approach and utilizes conventional modal analysis methods in order to identify the dispersion
characteristics of the healthy structure and a PCE model for the projection of these estimates on the probability space of the
measured environmental conditions.

The aim of this study is to incorporate a certain degree of sophistication to SDs and to transform them into a more valuable
and informative tool when operational identification is considered. This is accomplished by integrating two features in the
conventional diagram. The former introduces a new quantity, the MDM, which expresses a certain part of the total stochastic
vibration energy, and it is attributed to each vibration mode. The MDM is extracted by applying a novel DA framework [12],
which relies on the effective modal decomposition of the vibration output’s zero-lag covariance matrix, and provides further
information not only on the presence of a structural mode, but also about its estimated significance. In this respect, a vibration
mode is considered structural when it appears stabilized in both frequency and dispersion [16]. The second feature pertains
to the expansion of the identified MDMs onto an appropriately selected PC basis. In this way, it is possible to obtain a
quantitative description of the manner in which the energy of the structural modes are affected by the varying operational
conditions.

The performance of the proposed method is investigated through the structural identification problem of a simulated, three
DOF, lumped–mass system, which is considered to operate under varying conditions of mass and temperature. Identification
is carried out using excitation and noise–corrupted, structural acceleration response data, and employing the PO–MOESP
method [17] for the estimation of state–space models.

8.2 Time–Varying Structures

A linear, viscously damped structural system with n DOF and parameters that vary with time can be represented by a
second–order vector differential equation as

M.t/ Rq.t/C D.t/ Pq.t/C K.t/q.t/ D f.t/; for t 2 Œt0; tf � (8.1)

in which M.t/, D.t/ and K.t/ are the real Œn � n� mass, viscous damping and stiffness matrices, q.t/ is the Œn � 1� vibration
displacement vector and f.t/ is the Œn � 1� vector of excitations.

The variability of structural response may be usually attributed to a number of parameters related with either inherent
properties of the structure or exogenous random variables, e.g. environmental and loading conditions, geometry, mass
distribution, and so on. Gathering these L parameters in a single vector �.t/ D Œ�1.t/; �2.t/; : : : ; �L.t/�, Eq. (8.1) may
be re–written as

M.�.t// Rq.t/C D.�.t// Pq.t/C K.�.t//q.t/ D f.t/; for t 2 Œt0; tf � (8.2)

If only environmental conditions are considered, and assuming that they are characterized by slow (compared to the structural
dynamics) variation, the previous model may be rewritten as

M.�/ Rq.t/C D.�/ Pq.t/C K.�/q.t/ D f.t/; for t 2 Œta; tb� � Œt0; tf � (8.3)
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The latter may be considered as a local LTI model, which represents the structure when monitored during a small time
interval. Within this interval the input parameter vector �, and as a consequence the mechanical properties of the structure,
may be considered to be “fixed” to constant values. Then, the input parameter vector � may be considered as a realization of
the vector random process „ with joint PDF f„.�/. In this way the initial LTV model of Eq. (8.1) may be written as a LTI
model

M.„/ Rq.t/C D.„/ Pq.t/C K.„/q.t/ D f.t/; with „ 2 � (8.4)

which is however characterized by parameters that are depending on the input variable vector „. In the equation above, �
designates the event space of the random vector „.

Under this setting, by defining a Œ2n � 1� state vector as x.t/ D ŒqT .t/ PqT .t/�T , a state–space representation of Eq. (8.4)
is given by

Px.t/ D Ac.„/ � x.t/C Bc.„/ � f.t/ (8.5a)

y.t/ D Cc.„/ � x.t/C Dc.„/ � f.t/ (8.5b)

with the involved matrices being defined as

Ac.„/ D
�

On In
�M�1.„/ � K.„/ �M�1.„/ � C.„/

�
Œ2n � 2n�; Bc.„/ D

�
0

M�1.„/

�
Œ2n � n� (8.6)

for the state equation and

y.t/ D q.t/ .displacement/ W Cc.„/ D �
In On


Œn � 2n�; Dc.„/ D 0 (8.7a)

y.t/ D Pq.t/ .velocity/ W Cc.„/ D �
On In


Œn � 2n�; Dc.„/ D 0 (8.7b)

y.t/ D Rq.t/ .acceleration/ W Cc.„/ D ��M�1.„/ � K.„/ �M�1.„/ � C.„/

Œn � 2n�; Dc.„/ D M�1.„/ (8.7c)

for the output equation.
By selecting an appropriate sampling period Ts and assuming constant intersample behavior of the excitation vector

signal [18, Sec. 7.6], the discrete–time equivalent of the system described by Eq. (8.5) is

xŒt C 1� D Ad .„/ � xŒt �C Bd .„/ � fŒt � (8.8a)

yŒt � D Cd .„/ � xŒt �C Dd .„/ � fŒt � (8.8b)

with Cd .„/ D Cc.„/, Dd .„/ D Dc.„/ and

Ad .„/ D eAc .„/�Ts ; Bd .„/ D
h
Ad .„/ � I

i
� A�1

c .„/ � Bc.„/ (8.9)

8.3 Dispersion Analysis

Under the assumption that the structural excitation can be modeled as a zero–mean Gaussian white noise process with
covariance matrix

� ff Œh� D †ff ıŒh� (8.10)

where ıŒh� denotes Kronecker’s Delta function and h the time lag, it can be proved [12] that a modal decomposition of the
state vector’s covariance matrix is

�xxŒh;„� � E
n
xŒt C h�xT Œt �

o
D

2nX
kD1

Pk.„/�hk.„/ (8.11)
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where �k.„/ is the kth eigenvalue of Ad .„/ (distinct eigenvalues have been assumed) and Pk.„/ is given by

Pk.„/ D Gk.„/†

2nX
mD1

GT
m.„/

1 � �k.„/�m.„/ (8.12)

In Eq. (8.12), † D Bd .„/†ff BTd .„/ and Gk’s are the projectors of the spectral decomposition of Ad .„/ [19],

f
�

Ad .„/
�

D
2nX
kD1

Gk.„/f
�
�k.„/

�
(8.13)

for which G2
k.„/ D Gk.„/, Gi .„/Gj .„/ D O, for i ¤ j and

P
k Gk.„/ D I. In Eq. (8.18), f denotes a function that is

defined for every �k.„/. Using Eq. (8.11) it is possible to derive a corresponding expression for the output vector yŒt �, by
just exploring the output equation of the state–space representation. It can be deduced that � yyŒh;„� can be expressed as

�yyŒh;„� � E
n
yŒt C h�yT Œt �

o
D

2nX
kD1

Qk.„/�
h
k.„/ (8.14)

where the matrices Qk.„/ are calculated in respect to the type of the vibration output: in the displacement/velocity
case Qk.„/ D Cd .„/Pk.„/CT

d .„/, whereas in the acceleration case the expressions are more complicated. Refer to
Dertimanis [12] for further details.

Having established a modal decomposition for the covariance matrix of the output vector under broadband stochastic
excitation, it follows that at zero lag

�yyŒ0;„� D
2nX
kD1

Qk.„/ D
nX

kD1
Qk.„/C Q�

k .„/ (8.15)

with the asterisk denoting complex conjugate. Taking under consideration that �yyŒ0;„� corresponds to the multivariate
equivalent of variance and it can, thus, be associated to the stochastic vibration energy of the output series, a modal dispersion
matrix can be defined as

Ek.„/ D Qk.„/C Q�
k .„/ (8.16)

in order to assess the contribution of the kth mode to the total vibration energy. Correspondingly, the normalized modal
dispersion matrix is defined as a matrix�k.„/ with elements

Œ�k�ij .„/ D ŒEk.„/�ijh nP
mD1

Em.„/
i
ij

100% D ŒEk.„/�ijh
�yyŒ0;„�

i
ij

100% (8.17)

Essentially, the DA framework attributes a quantitative index to each vibration mode. To see that this is indeed the case, a
modal dispersion metric (MDM) can be defined from the modal dispersion matrices as

ı�;k;2.„/ D k�kk2 (8.18)

using the L2 norm, where k D 1; 2; : : : ; n. Equation (8.18) implies that every vibration mode can now be characterized by
four quantities: the natural frequency, the damping ratio, the mode shape and the MDM. This feature can be used in both
forward (e.g., for model reduction) and inverse setting. In the latter case, the MDM can be very easily incorporated into
SDs. While several alternatives can be potentially examined, two implementations are currently discussed and assessed in
the following. The first implementation simply refers to modify the SD in a way that renders the estimated dispersion of each
mode. This can be done by either introducing a third dimension to the original two–dimensional format of the SDs, or by
attributing a certain color range to the modal dispersion band and, accordingly, coloring each identified mode. In this way,
mode stabilization can not only refer to the value of a specific frequency, but also to its attributed color.
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Since the MDM that accompanies a specific mode may be expanded over a wide range of numerical values, a second
implementation can be accomplished by introducing a normalized modal dispersion metric (nMDM) as

Nı\;k;2.„/ D ı\;k;2

max
k
.ı\;k;2/

(8.19)

for \ D E;�. This metric is always a number between 0 and 1, with the latter value corresponding to the mode of the
highest contribution to the stochastic vibration energy of the structure. The use of this normalization to the SDs enables
direct extraction of the most important vibration modes. In addition, a threshold can be further employed so as to prevent
modes with negligible nMDM, compared to the one of the most important mode, to appear to a SD. It is emphasized that,
while the process described herein stems from the original state–space representation, it can be extended to cover transfer
function representations as well [12].

8.4 Polynomial Chaos Expansion

PCE concerns the expansion of a random output variable on polynomial chaos basis functions which are orthonormal to
the probability space of the system’s random inputs. More specifically, let us consider the general system S described by
Eq. (8.4), with L random input parameters represented by independent random variables „1; : : : ;„L, e.g. temperatures
measured at different locations of the structure, gathered in a random vector „ of prescribed joint PDF p„.�/ [20]. The
system output, in our case the MDM denoted by Y D ı�;k;2.„/ will also be random. Provided that Y has finite variance, it
can be expressed as follows:

Y D S.„/ D
X
d2NL

d�d .„/; (8.20)

where �d are unknown deterministic coefficients of projection, d is the vector of multi-indices of the multivariate polynomial
basis, and �d .„/ are the polynomial basis (PC) functions orthonormal to p„.�/. These basis functions may be constructed
through tensor products of the corresponding univariate functions.

Each probability density function may be associated with a well-known family of orthogonal polynomials. For instance,
normal distribution is associated with Hermite polynomials while uniform distribution with Legendre. A list of the most
common probability density functions along with the corresponding orthogonal polynomials and the relations for their
construction may be found in [21].

For purposes of practicality the basis functions series must be truncated to a finite number of terms, with the usual
approach being the selection of the multivariate polynomial basis with total maximum degree jdj j D PL

mD1 d.j;m/ � P for
every j . In this case the dimensionality of the functional subspace is equal to

p D .LC P /Š

LŠP Š
(8.21)

where L is the number of random variables and P the maximum basis degree. Therefore, when truncating the infinite series
of expansion of Eq. (8.20) to the first p terms, the resulting PCE model is fully parametrized in terms of a finite number of
deterministic coefficients of projection �d . Parameter vector �d may be estimated by solving Eq. (8.20) in a least squares
sense. Toward this end, the data of the output variables and the PDFs of the input variables have to be employed. The PDFs
of the input variables may be obtained by fitting known statistical distributions to the observed input variables values.

By expanding the identified MDMs onto an appropriately selected PC basis, a description of the way that the energy of
the structural modes is affected by the changing environmental and/or operational conditions.
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8.5 Case Study

The proposed framework is now applied to the structural identification problem of a single–input, three–output structural
system illustrated in Fig. 8.1a. The structure is assumed to operate under varying conditions of mass and temperature. In
specific, regarding the former, mass increments are added to m1, m2 and m3 (see Fig. 8.1a), in accordance to the log–normal
distribution with mean value equal to 1 and variance equal to 0.25, that is, „1 
 lnN.1; 0:25/. For the latter, the stiffness
coefficients are considered to be linearly depended on the temperature according to k

0

i D ki
�
1 � .T � Tref /kT


, where

kT D 5 � 10�3 is the thermal coefficient and Tref D 20ıC is the reference temperature. The PDF of the temperature
corresponds to a normal distribution with mean value equal to 15 and variance equal to 25, i.e., „2 
 N.15; 25/.

For the identification experiments, 500 samples of the added mass and temperature variables are drawn, by means of the
Latin Hypercube Sampling (LHS) method, from their theoretical PDFs and the corresponding data are shown in Fig. 8.1b.
For each mass–temperature pair, the structure is brought into the state–space format for acceleration output. Accordingly,
discretization is performed using the zero order hold at Ts D 0:015625 s (corresponding to sampling frequency Fs D 64Hz)
and the discrete–time state–space model is excited by a u.t/ 
 N.0; 104/. The resulting structural acceleration responses are
zero–mean subtracted and noise–corrupted at 5% N/S ratio, forming a final single input-three output data set of N D 3; 000

data per channel. Identification is performed by the PO–MOESP [17] method (Hankel matrix with 100 block rows is chosen),
for even state orders between 2 and 30.

Figure 8.2 shows the results of the identification process, where two instants of the SDs are presented. The modified SDs
covey significantly enriched in comparison to the conventional ones. Focusing on the left SD (Fig. 8.2a), one can distinguish
three areas that exhibit stabilization in both the frequency and the nMDM. As no threshold is activated, numerous frequencies
appear naturally, many of which tend to stabilize. These are however attributed by negligible nMDMs and can safely be
discarded as extraneous. This is clearly indicated in Fig. 8.2b, where a 5% threshold has been applied to the SD.

One can distinguish three modes that appear stabilized in both the frequency and the MDM, while it seems that the third
mode can be considered as the most significant one, based on its relative contribution to the total stochastic vibration energy.
A fourth mode that appears around zero on Fig. 8.2b is accompanied by destabilized dispersion and can safely discarded.
Even if the ordering of the modes with respect to their dispersion seems invariant over the change of operational conditions,
the calculated dispersions are highly affected by these conditions. This dependency is identified by the dispersion expansion
onto PC bases described in the previous section.

The induced SDs promote a 6th order state–space model for the description of the structural system over the whole range
of environmental conditions. This implies the extraction of three structural vibration modes, the MDMs of which are reflected
to the corresponding entry of the SD of Fig. 8.2b, that is, the color bars along state order 6. In order to obtain a quantitative
description of their performance, a corresponding set of MDMs (100 � 3) are then expanded on the probability space of
the latent input variables through PCE. Toward this end, and after transforming the PDF of the mass load into a normal
distribution by using the natural logarithm, the Hermite polynomials may be selected for the construction of the multivariate
PC basis functions. The total polynomial degree of the PC basis is selected based on the R2 criterion, that is:
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Fig. 8.1 The numerical case study considered. (a) Three DOF structural system with m1 D 102 kg, m2 D 101:5 kg, m3 D 10 kg, k1 D 106 N/m,
k2 D 105:5 N/m, k3 D 105 N/m, c1 D 100N/m/s, c2 D 10N/m/s, c3 D 1N/m/s and f.t/ D .1; 0; 0/T u.t/. (b) Mass and temperature values for
the 500 simulations
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Fig. 8.3 R2 criterion values for the expanded MDM estimated values for various total polynomial degrees P D 0; : : : ; 10

R2 D 1 �
P100

kD1.Yk � Y PCk /2P100
kD1 Y 2k

(8.22)

by searching the maximum total degree within the range between 0 and 10, and the resultingR2 values are plotted in Fig. 8.3.
Based on these results the total polynomial degree is selected equal to three P D 3 for all dispersions. Thus, using Eq. (8.21)
with P D 3 and L D 2 gives a total number of 10 candidate basis functions.

The estimated PC coefficients of projection may be used for calculating the PCE based estimates of the MDM values,
and thus for constructing a surface that shows the dependence of the dispersion of the 3-DOF system on the two input
random variables. The results are plotted against the theoretical curves in Fig. 8.4. It may be observed that there is a good
agreement between the theoretical and the estimated dispersions, with the highest errors occurring at extreme values of the
input variables.



82 V.K. Dertimanis et al.

180

160

140

120

100

80

60

0 9 6 3 0

0 10 10 20 30 12
9 6

3 0

20 30 12
9 6 3 0

0

350

400

450

500

550

600

10 20 30

310

320

330

340

350

360

370

380

12Temperature (°C)
Temperature (°C)

Temperature (°C)Added M
ass

 (k
g)

180

160

140

120

100

80

60

0 9 6 3 0

10 20 30 12Temperature (°C)

Temperature (°C)

Added M
ass

 (k
g)

9 6 3 3
0

12
Added M

ass
 (k

g)

Added M
ass

 (k
g)

Added M
ass

 (k
g)

0 10 20 30 12
9 6 3 0

310

320

330

340

350

360

370

380

Temperature (°C) Added M
ass

 (k
g)

Added M
ass

 (k
g)

10 20 30 12
9 6

3 0

0

350

400

450

500

550

600

Temperature (°C) Added M
ass

 (k
g)

20

20 30

15

10

10
Temperature (°C)

9 6
0

0
0

1

2

3

4

12

3

Added M
ass

 (k
g)

9 6
0

1220 3010
Temperature (°C)

20 3010

5

0
0 0

0

1

2

3

4

5

6

P
C

P
C

P
C

P
C

e
1 e
2

e
3

δ 1 P
C

δ 2 P
C

δ 3
δ 3δ 2δ 1

a

b

c

Fig. 8.4 (a) Actual dispersion values compared to (b) the PC based dispersion estimates and (c) the corresponding normalized errors. The
dispersion are plotted versus the input variables, that is added mass and temperature



8 Dispersion–Corrected, Operationally Normalized Stabilization Diagrams for Robust Structural Identification 83

8.6 Conclusion

A novel framework for the application of SDs to structural systems subject to changing environmental and operational
conditions was presented through the integration of additional information to their conventional form. To this end, a newly
introduced index, the MDM, that quantifies the modal contribution to the stochastic structural response was attributed to each
vibration mode, under the assumption of broadband random excitation.

Accordingly, PCE was utilized for the expansion of the MDM on polynomial chaos basis functions that are orthonormal to
the probability space of the systems random inputs, which for the case study considered were limited to mass and temperature.
In this respect, it was made possible to track the stochastic vibration energy of each mode over a wide range of varying
conditions.

The promising results suggest further research towards this framework, especially with respect to output–only identifica-
tion and implementation on the operational modelling of real-world structures.
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Chapter 9
Online Damage Detection in Plates via Vibration Measurements

Giovanni Capellari, Saeed Eftekhar Azam, and Stefano Mariani

Abstract In this work, we propose a new framework for the online detection of damage in plates via vibration measurements.
To this end, a finite element model of the plate is handled by a recursive Bayesian filter for simultaneous state and parameter
estimation. To drastically reduce the computational costs and enhance the robustness of the filter, such model is projected
onto a (sub-) space spanned by a few vibration modes only, which are provided by a snapshot-based proper orthogonal
decomposition (POD) method. A challenge in using such approach for damaging structures stems from the fact that vibration
modes can be adjusted only during the training stage of the analysis; if damage occurs or grows when the reduced-order
model is at work, the training stage has to be re-started. Here, an alternate method is proposed to concurrently update the
sub-space spanned by the modes and to provide estimates of damage location and amplitude. The robustness and accuracy
of the proposed approach are ascertained through an ad-hoc pseudo-experimental campaign.

Keywords Structural health monitoring • Damage detection • Reduced-order modeling • Proper orthogonal decomposi-
tion • Extended Kalman-particle filtering • Thin plates • Finite element

9.1 Introduction

The objective of this article is to propose a damage identification scheme for time-continuous structural health monitoring
schemes. In doing so, recursive Bayesian filters are coupled with a model order reduction method. The developed
methodology furnishes estimates of the local damage parameters associated to a set of purposely defined sub-structures;
the mentioned damage indexes are defined in standard fashion, as scalar variables linearly degrading the local virgin
stiffness. The effective order reduction technique used herein guarantees a limited computational cost, and a coupling of
the procedure with a commercial finite element (FE) code to permit the strategy to be applied to a large variety of problems.
The identification method obviously requires that measurements, such as rotations or accelerations at characteristic points
on the surface of the structure, are to be gathered during health monitoring.

One of the main disadvantages of any identification technique based on recursive Bayesian filters is the entailed high
computational burden. To render the objective of fast, robust and unbiased estimation of damage indexes associated with the
sub-structures, two remedies have been adopted: a model order reduction based on the POD, and a modified particle filter.
The model order reduction is achieved by adopting a Galerkin-based projection of the original full model into a sub-space
spanned by the so-called proper orthogonal modes (POMs), computed with the POD in its snapshot-based version [1–3].
The method is established such that it can be applied to structures independently of the FE model used to discretize them.
Henceforth, the damage indexes that define the degradation of the original stiffness of the structure need to be handled.

The reduced bases furnished by POD cannot depend on changes of the stiffness parameters of the system; hence, the
reduced-order models established by POMs cannot provide the same level of accuracy for different values of the damage
index. As the estimation of the damage indexes is pursued concurrently to the tracking of the state of the structure, an online
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update of the sub-space is proposed to maintain the accuracy of the reduced-order model in case damage gets incepted. The
dual estimation of state and damage indexes is based on a particle filter enhanced through the use of a further (extended)
Kalman filter, to move the particles before the resampling stage [3, 4]. This intricate formulation allows the tracking of both
the dynamic evolution of the partially observed or hidden state of the system, and of the possible growth of the damage
indexes.

In order to test the capability of the proposed damage identification technique, a thin plate case is considered. It is
demonstrated that the procedure successfully identifies and locates the damage, even when using a reduced-order model of
the system consisting in a few (two or three) degrees-of-freedom.

The recent developments in smart embedded data acquisition systems and MEMS (micro electro-mechanical systems)
type accelerometers, promise feasibility of the presented method via establishing a way to collect vibration data for
lightweight and small structures without varying their response to the external excitations [5].

A method for dual estimation and reduced-order modelling of damaging structures, similar to that adopted herein for dual
estimation and sub-space update, was recently developed and successfully applied to shear-type buildings in [1, 3]. In this
article, the approach is evolved in such a way that it is now able to locate and estimate (almost) in real-time a structural
damage through a few vibration measurements only.

9.2 Theory

Let us consider a space-discretized (e.g., through finite elements) structural system. Its time evolution in a dynamic frame is
provided by the equations of motion:

M Ru CD Pu CKu D F (9.1)

where: M is the mass matrix; D is the viscous damping matrix; K is the stiffness matrix; F is the external force vector; ü, Pu
and u are the vectors of system (nodal) accelerations, velocities and displacements, respectively.

In Eq. (9.1) it has been assumed that the system behaves linearly, hence any inelastic response to the loading looks
prevented. By discretizing now the time interval of interest according to Œt0 tN � D UN�1

iD0 Œti tiC1�, N being the number of
time steps of constant size �t D tiC1 � ti , within Œti tiC1� the time update of the structural configuration is given by the
Newmark algorithm [6] as:

• prediction stage:

euiC1 D ui C�t Pui C�t2
�
1
2

� “� Rui
PeuiC1 D Pui C�t .1 � ”/ Rui (9.2)

• explicit integration stage:

RuiC1 D M�1 �F iC1 �D PeuiC1 �KeuiC1� (9.3)

• correction stage:

uiC1 DeuiC1 C�t2“ RuiC1
PuiC1 D PeuiC1 C�t ” RuiC1 (9.4)

where “ and ” are algorithmic parameters. Equation (9.3) shows that the structural stiffness comes into play only in the
integration stage and, once it is locally scaled proportionally to a damage (or integrity) scalar coefficient, it can be potentially
assumed as time-varying, and tuned by a filtering procedure. In other words, the stiffness matrix can be expressed as a linear
combination of Np reference stiffness matrices (Np being the number of regions, or sub-structures), each one scaled by the
corresponding damage index dj, with j D 1; : : : ; Np , so as:

K D K
�
dj
�

(9.5)

Each damage index is here assumed to affect the local Young’s modulus of the structural material according to:
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Ej D �
1 � dj

�
E (9.6)

It thus follows that a step-wise constant assumption for the structural health is proposed, with the integrity possibly changing
in time due to the external actions. We do not provide here evolution laws for the local damage, as the filter itself can be
shown to be able to tune it through the collected measurements of the system responses.

For later use, Eqs. (9.2) (9.3) and (9.4) are formally written as:

ziC1 D f i .zi / (9.7)

once the full state vector zi D ˚
ui Pui Rui

�T
is defined.

Focusing on the displacement vector u (without explicitly mentioning now the time instant ti), in a linear regime we can
write:

u D ˆ� (9.8)

where ˆ is a matrix gathering the m orthonormal bases of the space within which the vector evolves, and � is the
relevant vector of time-varying coefficients combining the time-invariant bases. To reduce the computational burden of the
identification procedure, we define a reduced-order displacement vector ur as:

ur D ˆr˛ (9.9)

where ˆr is a matrix gathering only the most important ` bases (or POMs) for the specific problem at hand, and ˛ is the
vector of combination coefficients relevant to such sub-space model. To reduce the norm ku � urk as well as the dimension
` of the sub-space, POD is here adopted in its snapshot version [7]. We refer the readers to, e.g., [2, 3], where a notation
consistent with the present one was adopted, to get insights into all the relevant details of such procedure. It suffices to
mention that, once a so-called snapshot matrix is assembled by joining the response of the structure to the considered loading
at a specified number of time instants, and after computing a singular value decomposition of this matrix, the resulting left
singular vectors represent the sought basis setˆr, and the singular values allow to define the (energetic) accuracy p 2 .0 1�

of the reduced-order model.
As the bases do not change in time, a reduced-order representation for the velocity and acceleration vectors can be

accordingly obtained as Pur D ˆr P̨ and Rur D ˆr R̨ , respectively. Through a Galerkin projection, the reduced-order equations
of motion are obtained as:

M r R̨ CDr P̨ CK r˛ D F r (9.10)

where:M r D ˆT
rMˆr ,Dr D ˆT

rDˆr , K r D ˆT
rKˆr and F r D ˆT

rF .
To allow also for model parameters and, specifically, for the aforementioned scalar damage indexes dj in all the regions of

the structure (possibly in each finite element), according to a standard procedure adopted for dual identification of partially
observed systems, we build an enhanced (or extended) state vector by joining the structural state z and the parameters (�)
themselves [4]. At time ti this reads:

xi D
�

zi
� i

	
(9.11)

Considering next an observation equation to link the measurable y to the full state of the system, in a stochastic frame where
noises are also accounted for we can write the reduced-order state estimation and damage identification problem as:

xr;iC1 D f r;i .xr;i /C vi

y i D H

2
664
ˆr;i

ˆr;i

ˆr;i

0

3
775xr;i C wi

(9.12)
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Table 9.1 General scheme of
the proposed dual damage
identification procedure

Initialization at time t0
At time ti, for i D 1; : : : ; N

Prediction stage:
Draw particles
Push the particles toward the region of high probability through an EKF
Update stage:
Evolve weights
Resampling
Compute expected value and other required statistics
Predict subspace and associated covariance
Calculate KF gain for updating subspace
Update subspace and associated covariance

where: vi and wi are additive, zero mean, white Gaussian noises that respectively represent the uncertainties in the process
and measurement equations; H is a Boolean matrix that links the observation vector to the current state of the system.

To handle the possible evolution of the sub-space onto which the full system is projected, the matrix ˆr has to be
continuously tuned during the analysis; we have therefore adopted in Eq. (9.12) the index i to state that it can evolve in
time, and it requires an estimation to be provided by the filtering procedure. To summarize, at each time instant the proposed
procedure has to: track the state z of the system; identify the location and magnitude of damage through vector �; tune the
sub-space projector ˆr if damage grows and a deviation from linearity arises. The whole procedure is reported in Table 9.1.

To possibly allow for multivariate probability distributions of state vector components, in [1, 3] we started adopting a
particle filtering approach to the aforementioned dual estimation problem. As the relevant costs of identification can get
extremely increased in comparison to, e.g., unscented Kalman filtering [4], a Rao-Blackwellized version of the filter was
then considered: this explains the second action in the prediction stage of Table 9.1. To also permit the mentioned online
evolution of the sub-space projector, a further Kalman filter was shown to be effective in [3]: this is carried out as the fourth
and sixth actions in the update stage still mentioned in Table 9.1. All the algorithmic details are here dropped, and interested
readers are referred to [1].

9.3 Results

The performance of the proposed approach, in terms of state tracking and identification of the structural health (i.e., of the
damage indexes), is evaluated through a simple benchmark test. A square plate, whose side length is 200 mm and thickness
is 5 mm, is assumed to be simply supported at the four corners and subjected to a concentrated load applied at the central
point, see Fig. 9.1. The material is considered to be Aluminum 6061-T6, whose Young‘s modulus is E D 68:9 MPa, and
density is � D 2:5 � 103 kg/m3. In Fig. 9.1, it is also shown that the plate has been subdivided into four sub-structures, each
one featuring its own damage index to be estimated.

Two different plate configurations have been considered:

1. a first one characterized by damage indexes d2 D 0:5 and d1 D d3 D d4 D 0, constant throughout the whole time interval
of the analysis. The goal of this analysis is to show the capability of the reduced-order model to provide accurate estimates
of the damage indexes, given the measurements of rotations at the mid-span points along the edges of the plate.

2. a second one characterized by the same damage indexes of the first case up to t D 0:25 s, then featuring a sudden stiffness
reduction in region 2 so as d2 D 0:5 ! 0:7. With this analysis, we evaluate the ability of the method of tracking and
updating the estimation even in a time-varying environment. In this case, since we want the estimation error associated
with the order reduction to be negligible with respect to the error due to the POMs updating process, the number of
retained POMs is ` D 3.
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Fig. 9.1 Benchmark test: boundary and loading conditions, and region numbering

Results relevant to the first configuration, in terms of damage index estimations at varying number of POMs retained in
the reduced-order model, are reported in Fig. 9.2. Considering the 1-POM case, the filter is able to detect that there is a
damage in the right region, as the estimate of d2 is higher than all the others, see Fig. 9.2a; nevertheless, the accuracy of the
reduced-order model is too low, and the estimated parameters are not close enough to the target. The estimation obtained
with the 2-POMs case gets better, but still the damage indexes of the undamaged regions are only fluctuating around the zero
value, see Fig. 9.2b. The 3-POMs case provides instead the damage parameters almost perfectly estimated after an initial
transient stage, see Fig. 9.2c.

Moving now to the time-varying health problem, results are collected in Fig. 9.3 once again in terms of damage estimates
provided by the filtering approach. Figure 9.3a shows what would happen if the POMs were not updated and kept instead
constant over time. As expected, a fast variation of damage parameters is provided, but the parameters are not well estimated
after the growth of d2. This is due to the fact that in the late stage of the analysis the wrong bases are projecting the matrices
on a sub-space that is not coherent with the original full-order one. As the bases are not the optimal ones, the error is not
optimally minimized and biases in the estimates show up. Despite the fact the filter cannot identify the right values of the
damage indexes, still the method can detect a variation of the structural health and can therefore be used as a sort of damage
alert, warning the user that something unexpected is occurring to the system. On the other hand, by plugging in the POMs
update stage, after an expected transient phase the damage parameters are correctly identified, see Fig. 9.3b.

9.4 Conclusions

A new online damage identification method based on recursive Bayesian filters has been presented, and adopted to track the
health state of a thin plate. The method is based on a Rao-Blackwellized particle filtering strategy, and on a proper orthogonal
decomposition-based order reduction of the numerical model used to track the structural behavior.

It has been shown that such hybrid approach can locate and accurately estimate the damage parameters associated to the
local reduction of the plate stiffness when only two or three degrees-of-freedom are retained in the reduced-order model, thus
speeding up the whole identification procedure and possibly allowing real-time structural health monitoring procedures.
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Fig. 9.2 Time-invariant damage
state: damage indexes dj

identified with (a) one POM, (b)
two POMs, and (c) three POMs
retained in the reduced-order
model
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Fig. 9.3 Time-evolving damage state: damage indexes dj identified (a) without, and (b) with POMs update
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Chapter 10
Advanced Modal Analysis of Geometry Consistent Experimental
Space-Time Databases in Nonlinear Structural Dynamics

Ioannis T. Georgiou

Abstract We present a study focusing on mining-processing of geometry consistent space-time databases of acceleration
fields developed in freely vibrating long aluminum alloy beams. Vibration data mining is conducted by single triad of
accelerometers: one fixed and the other two being relocated to cover the structure. The mined space-time databases are
evaluated by an advanced modal analysis technique based on proper orthogonal decomposition tools to determine whether
they qualify as a genuine measurement of the acceleration vector field resolved along space and time varying local coordinates
furnished naturally by the deforming surface of the beam structure. Despite the fact that the dynamics are coupled three-
dimensional and evolving in interacting slow-fast time scales, the shapes of the extracted proper orthogonal modes of
the transverse component of the acceleration vector field sampled by the single triad of accelerometers are found to
be qualitatively close to shapes of normal modes predicted by the Euler-Bernoulli linear beam model. The quantitative
differences stem from the influence on vibration dynamics that the static deformation infers to. The sensing-measuring of the
acceleration vector field with limited sensor resources exploits the geometric mechanics concepts of slow and fast invariant
manifolds thus contributing to low cost practical structural dynamics experimental data.

Keywords Vibrations • Modes • Signal processing • Sensing • Accelerations

10.1 Introduction

Test and evaluation methodologies targeted for model identification and structural health monitoring of physical one-
dimensional solid continua are interesting topics of basic research-both at the theoretical and experiment levels-with
measurable economic and societal impacts in cross disciplinary applications in engineering and biology. For example, some
core elementary structures in structural engineering and biology structures are essentially one-dimensional continua; and
their designed or assigned functions may depend on reliable monitoring of their response to stimuli form the environment
and with the system itself. Regarding structural health monitoring to sustain desired performance, one challenge is spatial
measurements of flexible rod dynamics with embedded sensors in such a way as to record the interactions of the slow bending
motions and fast torsion and extension motions. One-dimensional structures exhibit continuum level multi-scale dynamics
manifesting themselves as very slow and fast vibrations in free spatial motions. It would be useful for system identification
and damage detection to be able to extract the bending normal modes of vibration of a beam structure from experimental data
of arbitrary spatial motions. This depends on reliable distributed dynamics sensing and subsequent processing of space-time
distributed signals. Vibration-based damage detection is one of the very promising approaches to structural health monitoring
[1]. It can be enhanced further if one learns how to mine and process geometry consistent space-time matrix information on
dynamics. For example, a fiber optic sensor is motion conforming by design and function and thus it furnishes information
on dynamics variables with respect to local coordinates. This information is geometry consistent. It is mentioned in reference
[2] how rich is this information in natural time scales.

Here we shall deal with acceleration measurements furnished by surface accelerometers, being naturally geometry
consistent due to the local motion conforming feature. As the rod structure is the paradigm of the structure used to establish
the modern geometric mechanics framework, here it is used as a prototypical structural system to cultivate novel ideas for
distributed sensing of continuum system slow-fast dynamics in a geometrically exact manner. We exploit the geometric
concepts of the Slow Invariant Manifold (SIM) and the transversal fiber of Fast Invariant Manifolds (FIM) to conduct
geometry consistent measurements in space using limited resources of sensors: here a triad of light weight acceleration
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sensors. They follow the local geometry of the deforming beam and thus they sense naturally the acceleration with reference
to a local time varying coordinate system. The geometrically exact measurements of the acceleration vector field are
interpreted in physics terms by examining their proper orthogonal decomposition modes. The mathematical POD modal
structure of the measured geometrically exact acceleration vector field provides a sound basis to identify the modes of coupled
dynamics and detect local damage. This work brings in useful concepts of geometric mechanics to enhance experimental
nonlinear dynamics. These are the so called Slow Invariant Manifold and its transversal continuum of Fast manifolds. These
are well-established geometric concepts of nonlinear dynamical systems. These concepts have been used systematically for
broad scope qualitative analysis of structural and mechanical nonlinear dynamical systems [3–5].

10.2 Mining Geometry Consistent Structural Dynamics Databases

Distributed sensing-measurement of structural dynamics is essential in engineering applications and basic research
endeavors. One area where it is a necessity is the identification of normal modes of vibration as part of system identification
and another area, where it is becoming quite important, is damage detection for structural health monitoring. Depending on
the size of the system, distributed sensing may come across annoying problems. One such problem is the instrumentation
complexity stemming from installing a dense network of sensors. Here we avoid this problem by using a single triad of
accelerometers to mine a space-time sample of the acceleration vector field. In a recent work [6], we used a single pair of
accelerometers to mine a space-time matrix sample of the acceleration vectors field in physical aluminum alloy beams.

Here we shall use a triad of accelerometers to mine space-time matrix databases of acceleration vector fields developed
in physical relatively long beam structures. Figure 10.1 shows the experimental set-up for such a long aluminum alloy
beam of uniform square section. The beam crosses perpendicularly the gravitational force field. By using a single triad
of accelerometers we shall measure at N D 37 equally spaced points the transverse component of the surface acceleration
vector field. The beam is set into a free spatial vibration by releasing it form a well-defined static deformed configuration.
The experiment is repeated N/2 C 1 times. Two of the sensors are relocated and thus they span the whole beam and thus
furnishing N D 37 measurements distributed in space. The relocated sensors are triggered by the fixed sensor and thus

Fig. 10.1 Aluminum alloy beam instrumented with three light piezoelectric accelerometers to measure the transverse convected component of the
acceleration vector field. Two of the sensors are relocated at the same time to cover the beam from the free tip to the fixed root. The sensors are
conforming to the local geometry of the deformed beam
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rendering the measurements simultaneous. We beam motion that the beam motion is not planar and that the initial conditions
have uncertainties.

So we have a geometry consistent space-time matrix sample of the major transverse acceleration components with does
not have a fixed direction but it follows the normal to the surface. Is this database close to the one obtained by N distributed
sensors? This is the question that we shall answer. Here the sensing direction of the sensor intersects with the direction of
the gravitational field. So the sensor in addition to the inertial force generated at its base is influenced by the gravitational
force vector field. In a recent work [6], we investigated a similar problem using a relocated sensor triggered by a fixed one.
The sensors were not interacting with the gravitational force field. We have found that the single-pair-of sensors measure
the acceleration vector field for a beam whose major bending axis is parallel to the direction of the gravitational field. Here
the sensing direction of the accelerometer intersects the gravitational force field. Thus the sensors feel both an inertial force
caused by the acceleration itself and a portion of the gravitational force field which becomes quite complicated due to the
motion of the sensor.

The typical database of time series mined by the two relocated sensors is represented mathematically by an MXN matrix:

A � Œa1; a2; � � � ; an-1; an; anC1; � � � ; aN-1; aN� (10.1)

Column vector an represents the M-points time history recorded at the location n by the relocated sensor. The question
that shall be addressed here is whether the matrix defined above represents a spatially distributed time history sample of the
projection of the acceleration vector field in the direction of the axis field formed by the local normal to the beam surface. This
is not obvious for several reasons, the most important one stemming from the fact that the accelerometer sensing direction
intersects the gravitational field direction.

The typical space-time database is structure geometry consistent due to the way excitation and measurement are
conducted. It is not at all certain that it is a genuine sample of the local component of the acceleration vector field. This
component is associated with the normal to the deformed beam. This normal is not a constant but it varies with time. The
sensing direction of the accelerometer coincides with this time varying direction. In addition, the accelerometer sensing
direction intersects the gravitational field direction.

10.3 Advanced Modal Analysis by the POD Transform

The space-time database A forms a geometric object in a linear space of configurations. The continuum can occupy several
configurations. The configuration is determined by the displacement vector field. The configuration of the acceleration vector
field is determined by differentiation. This brings in Differential Geometry concepts. Here we have experimental data for
the acceleration vector field. And the challenge is to turn them into useful information. The geometric object is formed by
the wandering in a finite portion of the space by the trajectory which itself is a curve parameterized by time. We have not
restricted the motions to be neither linear nor planar. So the other challenge is to turn this collected space-time data into
useful information by keeping in mind that we are not restricted to the classical areas of linear or weakly linear behavior and
decoupled dynamics. We allow for fully coupled dynamics and uncertainties.

We introduced the following way of data analysis. The initial database A is referred to as the global one. It traces a
global trajectory and thus forming a global data cloud with characteristic geometric features just as any physical material
object in the physical three-dimensional space [6]. An advanced modal analysis should result in the identification of these
features. Viewed as a geometric object, we approached it for analysis purposes by forming a sample of nested sub databases
as follows:

A1 � A2 � A3 � A4 � A (10.2)

Symbol � denotes the set inclusion operation. Table 10.1, column 2, presents the time interval of the sub databases in relation
to the time interval of the global database which is M D 192,500 time points long. We evaluate each database, or data cloud,
by subjecting it to an advanced decomposition analysis. This analysis is furnished by the discrete time POD transform. It
decomposes the raw space-time database into a set of space-time patterns. According to the time discrete POD Transform,
the database admits a unique additive modal-like expansion representation:
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Table 10.1 Time interval of the
nested databases and head of
POD normalized energy spectra

Nested database Time interval Normalized POD modal energy

A1 (black) [1–17500] 0.614621332, 0.16777836, 0.08646576, 0.056671907
A2 (red) [1–47500] 0.605747563, 0.24148926, 0.06996467, 0.034368394
A3 (blue) [1–97500] 0.553086419, 0.32528820, 0.05560197, 0.024151623
A4 (green) global [1–192500] 0.489160832, 0.40784174, 0.04252305, 0.019629541

A
POD transform�������! QA �

q
M-1
2

q
N-1
2

K�X
kD1

p
œkbQk

b̂T
k ; K� < N < MI

bQn
bQT

m D •mn; b̂mb̂T
n D •mn W •mn D 1;m D n; •mn D 0;m ¤ n:

(10.3)

Symbol T denotes the matrix trace operation. Integer K� denotes the number of intrinsic proper orthogonal decomposition
(POD) modes. A POD mode in bi-orthogonal is space and time and is characterized by nodal energy content œn, unit time
modulation (amplitude) bQn 2 RM, and unit space modulation (shape) b̂n 2 RN.

Set
nbQn

o
is referred to as the Principal Coordinates. Set

nb̂n

o
is referred to as the POD modal shapes. Set fœng is referred

to as the POD energy spectrum. It is a descending sequence of strictly positive numbers.
From an energy point of view, the POD transform is characterized by the following energy spectrum property:
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N-1
tr
�
A

T
A
�
: (10.4)

The essence of the POD transform is the fact is that the energy of the database is distributed over the smallest possible
number of bi-orthogonal modes. These modes describe the linear geometry of the cloud formed by the database in the space

of configurations. The set of numbers
nbœn � œn=kAk2

o
forms the normalized POD modal energy spectrum. Its distribution

over the wave number of POD modes characterizes the database.
The POD analysis of the transverse component of the geometry consistent database of the acceleration vector field justifies

the term advanced modal analysis as this shall become evident in the analysis that will follow below. The POD transform has
been used in fluid mechanics [7, 8] and structural dynamics [3, 6, 9–11] and complex Machinery elements [12].

All four nested sub databases have been reduced to their intrinsic POD modes by means of the POD transform. Figure 10.2
presents the POD modal distribution of the normalized energy at unity of the database, the normalized POD energy spectrum.
The four nested segments of the database of the transverse component of the acceleration vector field are dominated by two
POD modes. Table 10.1, column 3, lists these energy fractions. On the average the modal distribution of the database energy
is very similar for all databases. The fact that a considerable amount of energy is contained in the first two-to-four modes is

Fig. 10.2 The POD normalized energy spectra for a sample of nested sub databases of the space-time database mined by two relocated
accelerometers triggered by a fixed one
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Fig. 10.3 The unit shapes of the first three POD modes of the four nested databases (A1, A2, A3, A4): (a) 1st mode, (b) 2nd mode, (c) 3rd mode

the feature that determines that the geometry consistent database mined by the single triad of relocated sensor is coherent.
From a physics and theoretical standpoints, it is expected that the acceleration vector is coherent. The smaller the number of
dominant modes the easier is to estimate the level of coherence. Here it is very clear that we have this case. It turns out that
the whole energy spectrum is described quite well by a power law.

Figures 10.3a, b reveal that the 1st and 2nd POD modes of the global database A4 � A differ from those of the local
databases A1, A2, and A3. We see that this difference is reflected clearly in the companion time modulations, Fig. 10.4a vs
b. The result above justifies the nested POD analysis to contrast the POD modal structure of local segments of the trajectory
to that of the whole trajectory, forming the global geometry. In the literature, it is claimed that for beam structures the
POD modes coincide with the normal modes [13, 14]. As the experiment reveals this should hold only under appropriate
conditions.
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Fig. 10.4 The unit time modulations of the dominant POD modes of the global database A4 and the local database A3

10.4 Experiment Repeatability

We have used a very low cost sensing-measuring technique to conduct a spatially distributed measurement of the transverse
acceleration component not in space-fixed coordinate axes but in a geometry consistent space and time varying axis field. We
use two sensors to perform N D 37 spatial acceleration measurements. The measurement of acceleration is one part of the
advanced modal analysis technique presented here. Thus, we naturally addressed the issue of how reliable is the technique.
Is the experiment repeatable? To cope with issue, the typical experiment is repeated at least twice. From two samples one
can construct many samples by simple combinations. Figure 10.5 presents the dominant POD modes for the two space-
time samples, Test 1 and Test 2, of the same motion. These samples are generated by exciting the beam N/2 times from
nearly the same initial conditions. Despite the unavoidable small random errors in the initiation conditions, the databases are
quite close since the shapes of the three first POD modes are very close. Figure 10.5 shows this result for the database A3
which is M D 97500 time points long in the time dimension. We have small quantitative differences falling in the expected
experimental error zone.

Another indication of the high level of repeatability of the experiment is the fact that the POD structure of the ensemble of
signals mined by the fixed sensors is composed of a single dominant POD mode with uniform space modulation, see Fig. 10.6.
The spatial uniformity strongly indicates that the motions are emanating from closely neighboring initial conditions. And
the fact that the energy of the dominant mode is about 96 % of the database indicates that the signals collected by the fixed
sensors are underlined at the level of 96 % by the same signal. The remaining 4 % is due to the uncertainties. The ideal
case would be the 100 % level. But clearly we do need this level of accuracy. This is one of the novel points of this sensing
technique. We can operate in a cloud of uncertainty in a useful way.
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Fig. 10.5 The unit shapes of the dominant POD modes of two space-time samples, Test 1 (filled circle) and Test 2 (unfilled circle) of the resolution
of the acceleration vector field into the normal unit vector field defined by the normal to the beam surface. The database is mined by a relocated
pair of sensors triggered simultaneously by a fixed sensor. (a) 1st mode, (b) 2nd mode, (c) 3rd mode

10.5 Normal Modes Relations

Regarding elastic structures, the main goal of the well-established and practiced notion of modal analysis is to determine
either by means of theoretical-computational of experimental techniques the normal modes of vibration. For test and
evaluation and structural health monitoring the challenge is whether it is possible to extract the normal modes of vibration
form distributed time series of acceleration. The challenge is elevated more if one adds the fact that the time series are mined
by a device whose sensing direction is not fixed, just as the accelerometers in our study here. Thus we address the issue of
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Fig. 10.6 The uniform unit shape of the dominant POD mode of the database mined by the fixed sensor

whether the shapes of the dominant POD modes represent the shapes of normal modes. This issue has been addressed by
several researchers by using either ideal reduced beam models or experiment with very small planar motions [13, 14]. Here
we do not restrict our motions. Thus we have data form full order dynamical systems allowed to perform spatial motions.
The motions that we have measured are not planar. We have measured the projection of the acceleration vector field into
a spatially distributed local transverse direction. We know that the elastic beam can vibrate into natural modes of bending.
So here we compare the shapes of the three dominant POD modes to the shapes of the linear bending modes. Figure 10.7
reveals that the dominant POD modes are qualitatively quite similar to the bending linear normal modes (LNM) predicted
by the classical Euler-Bernoulli beam model [15–17].

10.6 Natural Mitigation of Uncertainty

We have repeated the experiment N/2 C 1 D 19 times. The nominal initial condition is pure initial deformation created quasi-
statically with a mechanism. The beam is released nearly instantly. The created initial conditions are not quite the same.
There are errors in the initial velocities. The errors contaminate the nominal initial conditions with fast oscillations of small
amplitude. However, the motion is attracted by a slow invariant manifold. The fast oscillations decay very fast and the motion
lands on the slow manifold and thus is very close to a motion initiated on the slow invariant manifold. The descent of the
motion into an attracting slow invariant manifold reduces the magnitude of uncertainty in the initial conditions. The fact that
POD mode 2 is qualitatively close to the fundamental bending mode predicted by the Euler-Bernoulli beam mode indicates
strongly that this POD mode is very close to the fundamental bending mode of the physical beam under study. Thus this
POD mode identifies the core slow vibrations of the long beam.

10.7 Detection of Anomalies

The aluminum beam structure is quite long and at the rest configuration is under considerable deformation by the action
of its own weight. The beam region around the cantilevered end is under deformation whereas the rest undergoes a large
displacement with small deformation. The POD modes characterize the motion from this deformed configuration. If the
beam were quite short the POD modes would be very close to the linear normal modes. We consider the stretched beam by
its own weight as “damaged” in the broad sense. We compare its POD modal shapes to those of the linear beam which can
be considered a reference for the healthy beam in a non gravitational field.

Figure 10.8 reveals that the dominant POD modes of the space-time database of the transverse convected component of
the acceleration differ from the normal modes of vibration in local regions and global regions. In particular, the POD modal
shapes 1&3 differ in local regions from the normal modes. These local differences, region A in Fig. 10.8a and regions B
and C in Fig. 10.8c, are stemming from the shift of the nodal points. The 2nd POD mode is qualitatively similar to the 1st
bending linear mode. But Fig. 10.8b reveals a distributed difference which becomes large at the cantilevered beam end. This
is due to the effect of the static deformation due to the beam weight.
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Fig. 10.7 Direct comparison of the dominant POD modal shapes of the geometry consistent space-time sample of the transverse acceleration
vector field with the normal modes of the classical Euler-Bernoulli beam mode
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Fig. 10.8 Detection of modal deviation index (MDI) anomalies in the POD modal shapes of the beam pictured in Fig. 10.1. The modes of the
linear beam are taken as a reference for the structural condition of the beam [6]

10.8 Conclusions and Discussion

The typical space-time matrix database-mined by a two relocated sensors monitored simultaneously by a fixed one-of
the transverse acceleration field along a long flexible beam is highly coherent since its norm-based energy is practically
concentrated at a small number of proper orthogonal decomposition (POD) modes. The POD analysis is done for a nested
set of segments of the mined space-time database. The first two POD modes of the global database are not the same as those
of the nested sub databases. This is an indication of nonlinear coupled vibrations. We find that the second POD mode is
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qualitatively close to the fundamental bending mode which forms the core of the slow dynamics of the beam. But there are
considerable quantitative differences which clearly indicate how the static deformation imposed by the gravitational field has
influenced the shape of the fundamental nonlinear normal mode of vibration. The POD modes are used to detect anomalies
in vibration behavior due to structural defects and deformation due to static forces. It is emphasized that this advanced modal
analysis was performed on databases of a fully coupled acceleration vector field projected onto a fixed-flexible body axis
filed. The data were mined by a motion conforming triad of fixed and relocated, motion conforming accelerometers. The
technique is model free and thus it can be used for test and evaluation of beam structures of arbitrary complex cross-sections.
The proper orthogonal decomposition transform forms the basis for an advanced modal analysis tool since it can be used to
evaluate the geometry consistent space-time databases of the acceleration vector field developed during the free motions of
a beam structure.
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Chapter 11
Comparison of Damage Classification Between Recursive Bayesian
Model Selection and Support Vector Machine

Zhu Mao and Michael Todd

Abstract All damage identification activities inevitably involve uncertainties, and the resulting classification ambiguity
in contaminated structural health monitoring (SHM) features can dramatically degrade the damage assessment capability.
Probabilistic uncertainty quantification (UQ) models characterize the distribution of SHM features as random variables, and
the UQ models facilitate making decisions on the occurrence, location, and type of the damages. A Bayesian framework will
be adopted and the damage classification is transformed into a model selection process, in which the most plausible structural
condition is determined by means of the recursively updated posterior confidence. In contrast to the probabilistic approach,
machine learning is another candidate approach, which employs training data and extracts features from the recorded
measurements. A support vector machine (SVM) is employed to classify the frequency response function data obtained
from rotary machine under different damaged conditions. With different size of feature and different kernel functions, the
classification of ball bearing damages are studied. Comparison between the Bayesian model selection approach and SVM is
concluded in this paper.

Keywords Bayesian decision-making • Structural health monitoring • Damage localization • Support vector machine •
Uncertainty quantification

11.1 Introduction

As the fundamental part of structural health monitoring (SHM), a comparison between two system statuses is deployed
through the feature domain, and such features are extracted from physical understanding and/or field data acquisition. In
reality, this type of decision-making, i.e., distinguishing one state from another, is always corrupted by uncertainties, such
as lack of physical intuition, noisy measurements, and environmental/operational variability. To maintain an acceptable
quality of SHM decision-making performance, numerous of realizations are often required, and two groups of evidence are
compared in a statistical sense naively. To deal with the burden of extensive data acquisition, quantifying the uncertainty
in the SHM feature evaluations is necessary. Thereby, the confidence of decision is described through the probabilistic
uncertainty quantification (UQ) model, and the overall performance of SHM is enhanced [1–4].

Transfer function, also known as frequency response function (FRF), is one of the most widely-used features for SHM, for
the clear physical interpretation and easy-accessibility. UQ models of different estimation algorithms regarding FRF features
are established in our previous research, in which probability density functions of the estimates are derived analytically [5, 6].
By adopting the probabilistic UQ models, the confidence interval of decision boundaries are pre-defined, and all the testing
samples falling outside of the boundaries are labeled as outliers. The percentage of outliers indicates if or not the testing
statistics deviates from the undamaged baseline, thus detects damage occurrence.

Moreover, when the statistics of damaged conditions are also known beforehand, a damage classification can be deployed
via selecting the most plausible probabilistic model. Specifically in this paper, a Bayesian framework is adopted, because the
algorithm fuses the collected evidence to update prior confidence and thereby select the optimal model to characterize the
data observation collected from unknown system condition.

As mentioned above, the uncertainty involved in SHM processes causes a lot of burden, especially when extracting
sensitive and specific features from large volume of data set. Oftentimes, the great fuzziness and redundancy in the raw
data encourage people to investigate powerful feature extraction methodologies. In the past decades, machine learning
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technologies have been widely applied to SHM, among which support vector machine (SVM) is particularly powerful for
solving classification problems. Compared to the Bayesian model selection approach for damage classification, this paper
adopts SVM to classify damage cases from the same test-bed.

A brief introduction of the SpectraQuest MFS vibration simulator system is given in Sect. 11.2, as well as a brief review
of the FRF and the UQ model of its estimations. Bayesian model selection approach for classifying damage types will be
given in Sect. 11.3, and SVM implementation, with a parametric study, is available in Sect. 11.4. In the end, a summary and
comparison of the two approaches is given in Sect. 11.5.

11.2 Test-Bed and Uncertainty Quantification of FRF Estimations

The SpectraQuest MFS vibration system is adopted as the test-bed to compare the damage classification approaches, as
Fig. 11.1 shows. In the simulator system, the bearing on right-hand side of the shaft is altered from undamaged bearing to
damaged bearing with defected balls and defected outer race. Acceleration data in direction y and z are recorded, as denoted
in Fig. 11.1, and the transfer function between the responses of those two directions are adopted as the damage index.

As the ratio between to power spectra, the definition of FRF is described in Eq. 11.1:

H .!/ D V .!/

U .!/
; (11.1)

in which U and V are the Fourier transforms of theoretical input and output u(t) and v(t). When the measurements are
contaminated by noise (uncertainty), the realistic input and output are denoted as x(t) and y(t), and the estimation of FRF
is often calculated via certainty algorithms, called estimators. Equation 11.2 is the H-1 estimator of FRF, which is the ratio
between cross- and auto-power density functions of (contaminated) input and output measurements:

bH .!/ D
bGxy .!/

bGxx .!/
; (11.2)

where the ˆ denotes the average of power spectra according to Welch’s algorithm [7].
Figure 11.2 illustrates the FRF feature estimations for various damage conditions, both the magnitude and phase. There

are undamaged baseline and other two types of damaged conditions included, as indicated by the three colors in Fig. 11.2.
Obviously, the realizations of FRF are very noisy and overlapped at most of the frequency bins. Without investigating the
randomness of estimations, it is hardly to make any valuable group classification judgments.

In the Welch’s algorithm, the power spectra are estimated in an averaged fashion. If the number of averages is sufficient,
the Gaussian distribution is hold asymptotically. The probability density functions of magnitude and phase estimations, as
random variables, are derived in [8]:
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Fig. 11.1 Rotary machine
test-bed
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Fig. 11.2 FRF magnitude and
phase estimations for baseline
and two damaged conditions
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where in the context of group classification, Mj is the jth condition of the structure, and �m and 
m are the mean and standard
deviation of magnitude estimation respectively.

The probability density function of phase estimation p is:
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in which �j D �Rj cos.z/C �Ij sin.z/, and erf(*) is error function. In Eq. 11.4, �Rj and �Ij represent the mean of real and
imaginary parts of FRF estimation, while ¢ j is the standard deviation of both parts.

11.3 Bayesian Model Selection for Damage Classification

Equation 11.5 demonstrates the Bayesian framework, which embeds prior knowledge into decision making, and updates the

decision confidence when new data are available. The posterior probability p
�
Mj

ˇ̌̌
D;M

�
of model (damage condition) Mj

according to Bayes theorem:
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in which p
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ˇ̌̌
M
�

is the prior. Likelihood function p
�
D
ˇ̌̌
Mj

�
is actually the PDF in Eqs. 11.3 and 11.4. Evaluating the

total probability theorem, the total evidence for dataset D on the denominator can be calculated as Eq. 11.6:
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Fig. 11.3 Recursive posterior probability of model selection, at sample frequencies; top: baseline model; middle: damaged ball model; bottom:
damaged outer race model. (a) Using FRF magnitude feature, damaged ball data , (b) Using FRF phase feature, damaged ball data, (c) Using FRF
magnitude feature, damaged race data, (d) Using FRF phase feature, damaged race data
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where n is the dimension of model class M. After running Eq. 11.6 in a recursive fashion for sufficient iterations, i.e., the
posterior probability serves as the prior in the next iteration, and posterior updates are produced as the dataset is increased,

the posterior p
�
Mj

ˇ̌̌
D;M

�
will tend towards 1 or 0, indicating acceptance or rejection of the jth model (damage condition).

In each class, the posterior probability of selecting among baseline (top), ball defect (middle), and race defect (bottom),
as a function of number of iterations is plotted, and each color indicates a different frequency line. It is clear that in all
cases, the posterior converges to the right number, i.e., converging to 1 if there is damage, and converging to 0 if not. The
horizontal lines in green highlight the arbitrarily-picked prior probability before any testing information. In Fig. 11.3c, d,
the convergence is not as decisive as Fig. 11.3a, b. That illustrates for damaged race, not all the sampled frequencies has the
same detection capability

11.4 Support Vector Machine for Damage Classification

11.4.1 SVM and Kernelization

Different from the probabilistic approach using Bayesian framework, support vector machine (SVM) employs training data
to form a hyperplane as the decision boundaries, in order to discriminate different sets of data. All the data points determining
the hyperplane are called support vectors. Equation 11.5 describes the decision maker h(*), which maps feature vector x into
a binary space:

h .x/ D
�
0 if g .x/ > 0
1 if g .x/ < 0

; (11.7)

The function g(*) forms a hyperplane in the feature domain, which is described as:

g .x/ D wT x C b: (11.8)
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Fig. 11.4 Feature state space at a
sample frequency line
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For the realistic data presented in last section, the data from the classification model are mostly non-separable, thus the slack
variables may be introduced to solve a soft margin problem. It is not always practical for highly overlapped/complicated
feature spaces. Kernel functions are employed if necessary, to introduce extra feature dimensions, and all clusters are being
better distinguished in a higher dimensional state, as Eq. 11.9 shows:

h .x/ D sign

"X
i2SV

yi’
�
i K .xi ; x/C b�

#
: (11.9)

in which xi are all the support vectors, K(*,*) is the selected kernel function, ’i is the Lagrange multiplier for constrained
optimization, and yi is the classification label of feature xi.

11.4.2 SVM Classification

Speaking of the cluster of features, a simplified condition is considered at the beginning for SVM analysis. Only a single
frequency line is considered and the feature vector is defined as:

x D � jH .!/j ]H .!/
T 2 R

2: (11.10)

In Eq. 11.10, ! is a sample frequency, and apparently the feature x is a 2-D vector. Figure 11.4 visualizes the feature vector,
and the overlap of clusters is obvious.

In the context of SHM, SVM provides the boundary to separate damaged data from undamaged baseline. Figures 11.5 and
11.6 demonstrate such damage detection implementation on a binary case, with only ball damage involved. With about 250
testing cases in total, the classification result and the true condition for each test is plotted on the right. For each class, the
percentage of correct labelling from SVM is calculated, for comparison with the random guess rate. In addition, the kernel
trick in SVM increases the decision space dimensionality, so that the decision boundaries plotted are actually the projection
of the real decision boundaries to the 2-D plane. Two different kernel realizations are adopted, namely linear kernel and
Gaussian kernel, which is a more flexible radial bases function.

Comparing the rate of correct classification marked in the figures, the Gaussian kernel does better than the linear
hyperplane separation. However, the performance of correct classification rate has to be compared considering all classes.
For instance, if the classification is totally flipped (wrong), the binary classification rate will be 0 %/0 %, and 50 %/50 %
will indicate an ideal random guess, and only 100 %/100 % means the perfect classification. The case of 0 %/100 % does
not suggest a good classification, because in this scenario, the algorithm just classifies all the test cases into one class.

For the trinary classification problem, two damaged conditions need to be discriminated from the baseline, and this multi-
class classification is implemented into three binary classifications. Each of the binary sub-problems is a “distinguishing one
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Fig. 11.5 SVM implementation for binary classification, linear kernel
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Fig. 11.6 SVM implementation for binary classification, Gaussian kernel
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Fig. 11.7 SVM implementation for trinary classification, Gaussian kernel

from all the others” approach, which is essentially the same as damage detection. Specifically speaking, the one-versus-rest
idea partitions the trinary classification into (1 vs. 2, 3), (2 vs. 3, 1) and (3 vs. 1, 2), all three sub-problems.

Because the Gaussian kernel outperforms slightly according to Figs. 11.5 and 11.6, the multi-class discriminations
presented in Fig. 11.7 for each sub-problem employ Gaussian kernel. Just for a comparison, the result of “correct labeling”
is also available in Fig. 11.8. In each sub-problem, the class to be distinguished is highlighted and the other two classes are
grouped as “ELSE”.

The same as damage detection, the performance of SVM for trinary classification is evaluated via correct rate, plotted in
Fig. 11.8. The same conclusion can be made, that the Gaussian function outperforms linear function due to the flexibility
characteristics. Compared to the binary case, the SVM classifiers obtained from both kernel functions, in general, tag the
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Fig. 11.8 Correct classification rate for SVM implementation for trinary classification, left: linear kernel; right: Gaussian kernel

Fig. 11.9 High-dimension
feature state space projected to
arbitrary three dimensions
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data less accurate than the performance of binary case. This is mainly caused by the heavier complexity and ambiguity. The
average rate of correct classification for each case is about 57 % and 71 %, which is lower than the binary classification,
given the same feature dimension.

So far, all the damage detection/classification are implemented based upon the FRF feature at single frequency, and the
correct labeling rate for binary and trinary is 85 % and 71 % respectively, using Gaussian kernel. In fact, a lot of information
has not been utilized, because most of the spectral characteristics are thrown away when selecting the sample frequency.
Instead of eliminating most of the FRF information, Eq. 11.11 defines the state space feature by using more frequency lines:

x D � jH .!1/j ; jH .!2/j � � � jH .!n/j ; ]H .!1/ ; ]H .!2/ � � � ]H .!n/
T 2 R

2n: (11.11)

in which n frequencies are considered to build up the new feature vector x.
The new-established feature state has a lot more dimension. For example, if all the frequency lines are included in the

vector x, there will be around a thousand state space dimensions. Under this circumstance, the state space is not able to be
visualized, and Fig. 11.9 only plots the projection to three arbitrary dimensions, which is the limit on a 2-D plane.

Given feature space with ultra-high dimension, Gaussian kernelization becomes burdensome and could not return a
reliable classifier easily, especially due to the relative lack of training data. As a result, linear kernel function is adopted,
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Fig. 11.10 Rate of correct classification via SVM classifiers, linear kernel, left: binary classification; right: trinary classification

for both binary and trinary classification. By using the high-dimensional feature, the rates of correct classification for both
binary and trinary cases are 100 %, as shown in Fig. 11.10, which means all the test cases are correctly labeled.

11.5 Summary and Conclusion

This paper compares two strategies of damage detection and classification, namely a Bayesian model selection approach
and support vector machine classification. Bearing defects on rotary machine is selected as the test-bed to implement the
strategies. In the Bayesian approach, it takes tens of samples for the posterior probability of selecting/denying a model to
saturate to either 1 or 0, but for SVM, the training and testing will take longer time. In SVM approach, the performance for
binary classification is better than for trinary cases, because of the lower complexity, and higher-dimensional features will
lead to a more specific classification. On the other hand, higher-dimensional feature spaces will cause more computational
burden in the SVM training procedure, which is a major drawback compared to Bayesian approach. Among the two types of
kernel functions, SVM with linear kernel function separates data with a hyperplane and has the advantage of relatively
faster training, while Gaussian kernel has better flexibility to handle more complicated data sets. This gets verified by
high-dimensional features, where Gaussian kernel may not converge to a decision boundary with limited training sets.
Although the SVM is computational expensive, compared to the Bayesian approach, it is better at handling high-dimensional
features, because when the feature space expands, the joint probability density function will have an exponentially increasing
complexity, and the evaluation of likelihood functions will become troublesome.
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Chapter 12
A Comparative Study of Mode Decomposition to Relate Next-ERA,
PCA, and ICA Modes

Ayad Al-Rumaithi, Hae-Bum Yun, and Sami F. Masri

Abstract This paper discusses a comparative study to relate parametric and non-parametric mode decomposition algorithms
for response-only data. Three popular mode decomposition algorithms are included in this study: the Eigensystem
Realization Algorithm with the Natural Excitation Technique (NExT-ERA) for the parametric algorithm, as well as the
Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) for the non-parametric algorithms.
A comprehensive parametric study is provided for (i) different response types, (ii) excitation types, (iii) system damping, and
(iv) sensor spatial resolution to compare the mode shapes and modal coordinates of using a 10-DOF building model. The
mode decomposition results are also compared using a unique dynamic response data collected in a ship-bridge collision
accident for ambient excitation with traffic loading, ambient excitation without traffic loading, and impulse excitation.

Keywords Mode decomposition • Modal analysis • Eigensystem realization analysis (ERA) • Natural excitation tech-
nique (NExT) • Principal component analysis (PCA) • Independent component analysis (ICA) • Dhip-bridge collision

Nomenclatures

RX.t/; PX.t/; X.t/ The system acceleration, velocity and displacement, respectively.
‰TRU The true mode shape determined by the modal superposition method.
O‰ERA

RX ; O‰ERA
PX ; O‰ERA

X The mode shapes estimated with the Eigensystem Realization Algorithm with Natural Excitation

Method (NExT-ERA) for RX.t/, P� (t), and X(t), respectively.
O‰PCA

RX ; O‰PCA
PX ; O‰PCA

X The mode shapes estimated with the Principal Component Analysis (PCA) method for RX.t/, P� (t),
and X(t), respectively.

O‰ICA
RX ; O‰ICA

PX ; O‰ICA
X The mode shapes estimated with the Independent Component Analysis (ICA) method for RX.t/, P�

(t), and X(t), respectively.
pTRU The true modal coordinate determined by the modal superposition method.
OpERA

RX ; OpERA
PX ; OpERA

X The modal coordinates estimated with the Eigensystem Realization Algorithm with Natural Excita-

tion Method (NExT-ERA) for RX.t/, P� (t), and X(t), respectively.
OpPCA

RX ; OpPCA
PX ; OpPCA

X The modal coordinates estimated with the Principal Component Analysis (PCA) method for RX.t/,
P� (t), and X(t), respectively.

OpICA
RX ; OpICA

PX ; OpICA
X The modal coordinates estimated with the Independent Component Analysis (ICA) method for RX.t/,

P� (t), and X(t), respectively.
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12.1 Introduction

Mode decomposition techniques are popularly used in many identification applications of multi-degree-of-freedom (MDOF)
dynamic systems. These techniques are generally categorized into parametric and non-parametric approaches. The
experimental modal analysis is categorized into the parametric approach. The modal analysis can be further classified into
input-output modal identification and output-only modal identification methods, depending on the use of the excitation data in
its mode decomposition process. Since measuring the forces of MDOF systems is technically difficult and often expensive,
the output-only modal identification method is used in many monitoring applications when the force measurement is not
available, usually based on an assumption that the excitation input is a zero-mean Gaussian white noise. There are two main
groups of the output-only modal identification method: frequency-domain and time-domain methods (Maia et al. 2003). The
Eigensystem Realization Algorithm (ERA) combined with the Natural Excitation Technique (NExT) is a time-domain modal
analysis technique that has been studied in numerous structural dynamics applications [1–3].

On the other hand, the Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are categorized
into the non-parametric mode decomposition approach, which are in a family of the Blind Source Separation (BSS)
techniques. The mathematical models of these techniques are data-driven, rather than being based on physical assumptions
such as the equation of motion. The identification is relatively simple and straightforward since the vibration modes can be
identified from the columns of the transformation matrix that can be determined based on underlying statistics of the response
data. The PCA, known also as the Proper Orthogonal Decomposition (POD), Second-Order Blind Identification (SOBI), or
Karhunen-Loève (K-L) Decomposition, decomposes multivariate response data into statistically uncorrelated data using the
second-order statistics, while the ICA decomposes the response data into statistically independent data using the fourth-order
statistics.

The objective of this paper is to compare the parametric and non-parametric mode decomposition methods of NExT-
ERA, PCA and ICA. Using response-only datasets collected in simulation and field tests, a parametric study was conducted
to evaluate the sensitivity of the mode decomposition techniques to (i) response types, (ii) excitation types, (iii) system
damping, and (iv) sensor spatial resolution. First, the simulation study is presented using 10-DOF building models subjected
to impulse and random excitations. Then, the experimental study is presented using a full-scale suspension bridge under
different excitation conditions in a ship-bridge collision accident, including ambient excitation with traffic loads, ambient
excitation without traffic loads, and impulse excitation during the collision. In the simulation study, the mode shapes ( O‰) and
modal coordinates ( Op) identified using NExT-ERA, PCA and ICA were compared with the true modes. In the experimental
study, O‰ and Op identified using PCA and ICA were compared with those using NExT-ERA. An overview of the proposed
comparative study is shown in Fig. 12.1.

Prior to this study, analytical and experimental studies have made by researchers to relate the non-parametric modes
to the parametric modes for vibrating structures. For PCA, Feeny and Kappagantu [4] related POD to free vibration and
compared mode shapes and modal coordinates using low-dimensional numerical models. Feeny and Liang [5] related the
proper orthogonal modes (POMs) to linear normal modes (LNMs) of lumped and continuous-mass systems. They found that
POD agreed with LNMs under random excitation conditions. Kerschen et al. [6] presented an overview of the POD method
for dynamic characterization and the order reduction of mechanical systems. They stated that POMs may be considered as
an alternative to the linear mode shapes although they do not have the theoretical foundations. POMs and proper orthogonal
values (POVs) provide a good characterization of the dynamics without requiring the knowledge of the structural matrices;
thus POD can determine an appropriate embedding space for a low-dimensional structure. Zhou and Chelidze [7] compared
the Algorithm for Multiple Unknown Signal Extraction (AMUSE), SOBI, and Ibrahim Time-Domain Modal Analysis (ITD)
methods using noise-free response data for damped and undamped systems. Smith and Saitta [8] employed PCA for analysis
and damage detection of complex structures, which was compared with multiple model-free data interpretation methods
including the Correlation Analysis, Continuous Wavelet Transform (CWT), Short-Term Fourier Transform (STFT), and
Instance-Based Method (IBM). Posenato et al. [9] applied PCA combined with the K-mean clustering for data mining to
interpret multiple-model predictions. Antoni and Chauhan [10]) compared SOBI with the Stochastic Subspace Identification
(SSI) for an analytical 15-DOF system by comparing their mode shapes and natural frequencies. They found that the validity
of is in principle limited to conservative systems, yet it is quite robust to this assumption.

For ICA, Roan et al. [11] applied ICA to detect and analyze gear tooth failure. Kerschen et al. (2006) related the
vibration modes of mechanical systems to ICA modes for their mode shapes and modal coordinates. They found that the
ICA modes agreed well with the vibrational modes for an undamped system subjected to impulse and uniform random
excitation while a damped system gave higher discrepancy. Poncelet et al. [12, 13] compared the mode shapes and modal
coordinates identified with ICA and SOBI to true ones. ICA gave a good agreement for weakly damped systems. SOBI gave
smaller discrepancy for strongly damped systems than ICA. McNeil and Zimmerman [14] discussed the relationship between



12 A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes 115

Fig. 12.1 Study overview for the
performance evaluation of the
mode decomposition using
NExT-ERA, PCA and ICA

independent component and free-vibration modal responses using the free-vibrational modal responses of a diagonally-
damped model through their simulation study. They deduced that undamped modal responses closely corresponded to
independent components, while damped modal responses did not. Yang and Nagarajaiah [15] found that the time-domain
ICA was limited to lightly damped structure, and SOBI lost robustness in nonstationary and unknown noisy environment.
They proposed STFT-ICA for both lightly and highly damped structures.

More recently, the Sparse Component Analysis (SCA), as a novel BSS method, has been studied to estimate modal
parameters for underdetermined problems: Yang and Nagarajaiah [15] applied SCA to the underdetermined problem where
sensors were highly limited compared to the number of active modes. Yu et al. [16] applied SCA to estimate both
time-invariant and time-varying modal parameters of a small-scale column in laboratory tests using a limited number of
accelerometers.

In addition to the above studies that were conducted using numerical or laboratory models, the BSS methods were applied
to some large-scale field structures. Oh et al. [17] applied Kernel PCA (KPCA) for the structural health monitoring of
the Yeongjong suspension bridge in South Korea to perform data normalization and incorporate with a novelty index and
generalized extreme value statistics for novelty detection. Kallinikidou and Yun [18] applied POD for long-term monitoring
of the Vincent Thomas suspension bridge in California, U.S.A. The statistics of acceleration covariance matrices (ACMs)
were evaluated, and the relation between POMs and vibrational mode shapes were studied. Yun et al. (2014) applied adaptive
PCA to a tunnel structure to evaluate proximity excavation effects on the tunnel deformation using POMs and POVs using
extensometers and tilt sensors.

Although the relationships between NExT-ERA, PCA, and ICA modes have been investigated in the above studies, they
were conducted for a limited number of parameters that affect the performance of mode decomposition. This paper presents a
comprehensive parametric study as shown in Fig. 12.1. Most of the previous studies were limited to using simulation models
or small-scale models in the laboratory, and the relationship of the parametric and non-parametric mode decomposition
has been rarely evaluated for full-scale field structures. The experimental evaluation in this study includes analysis for the
impulse vibration, ambient vibration with traffic loads, and ambient vibration without traffic loads, which are unique datasets
to investigate the performance of the mode decomposition for different excitation types.

This paper is organized as follows: the mathematical background of NExT-ERA, PCA and ICA methods are described in
Sect. 12.2; the results of the simulation study using the 10-DOF building models are presented and discussed in Sect. 12.3;
the results of the experimental study using the ship-bridge collision data are presented and discussed in Sect. 12.4; and finally
the conclusions are given in Sect. 12.5.
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12.2 Mode Decomposition Techniques

12.2.1 Eigen Realization Algorithm with Natural Excitation Technique (NExT-ERA)

In general, a MDOF linear system subjected to the forced vibration of ambient excitation, for m sensors that is larger than
the degrees of freedom of the system and N data points over time, can be expressed as the following equation of motion:

M RX.t/C C PX.t/C KX.t/ D F.t/ (12.1)

where; M, C and K are the .m �m/ mass, damping and stiffness matrices, respectively; RX.t/, P� (t), X(t), and F(t) are the
.m �N/ matrices of the system displacement, velocity, acceleration, and ambient excitation, respectively.

The Eigen Realization Algorithm (ERA) is an output-only modal analysis technique for a MDOF linear dynamic system
with an assumption of impulse excitation [19]. Since ERA is designed for free vibration, the original ERA should be
modified to deal with ambient excitation. The Natural Excitation Technique (NExT) [20] is commonly used with ERA
for this modification as

MRXref RX .�/C CRXref PX .�/C KRXrefX .�/ D RXrefF .�/ (12.2)

where R( ) is the cross-correlation function; and Xref(� ) is the reference displacement with a time lag, � . If the reference
channel displacement and input force are statistically uncorrelated, the RHS of Eq. 12.2 vanishes. Using the following
relationships

RXref PX .�/ D PRXrefX .�/ ; � � � � � � � � �RXref RX .�/ D RRXrefX .�/ (12.3)

Equation 12.3 becomes

M RRXref RX .�/C C PRXref PX .�/C KRXrefX .�/ D 0 (12.4)

Then, the original ERA technique can be applied to Eq. 12.4 for the system modal parameters. In ERA, due to the noise in
the data, the system order should be chosen to be higher than the real system order. Many studies, including Pappa et al. [2],
discussed the system order role on the realization.

The mode condensation algorithm gives practical solution to distinguish between physical and noisy modes and perform
the modal realization without the need to predefine the system order [2, 21]. Juang and Pappa [19] and Pappa et al. (1993)
suggested different mode indicators to measure the accuracy of mode identification. These mode indicators are incorporated
in the mode condensation algorithm in order to separate physical modes from the noisy modes. The consistent mode indicator
(CMI) used in this study is expressed as (Pappas et al. 1993)

CMIi D EMACi :MPCi (12.5)

where EMACi is the extended mode amplitude coherence of mode i, which quantifies the temporal consistency of the
identified mode, and MPCi , the modal phase collinearity, quantifies the spatial consistency of the corresponding mode.
Therefore CMIi quantify both of the temporal and spatial consistency. CMIi, EMACi, and MPCi have values from 0 to
100 %.

12.2.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) converts the response data that are correlated between sensor channels into
statistically uncorrelated data as follows:

RX.t/ D ‰PCA
RX pPCA

RX .t/; PX.t/ D ‰PCA
PX pPCA

PX .t/; X.t/ D ‰PCA
X pPCA

X .t/ (12.6)



12 A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes 117

where pPCA
RX .t/, pPCA

P� (t), and pPCA
X (t) are the .m �N/ matrices of the modal coordinates for the system acceleration,

velocity and displacement, respectively, which are statistically uncorrelated between the coordinate components; ‰PCA
RX is

the transformation matrix of the acceleration to be determined for the linear transformation from RX.t/ to pPCA
RX .t/; and in the

same manner for PX.t/ and X(t). The columns of ‰PCA
RX represent the mode shapes of the response data.

The purpose of PCA is to find the orthonormal ‰PCA
RX , ‰PCA

P� , or ‰PCA
X matrices that make the components of pPCA

RX .t/,

pPCA
P� (t), or pPCA

X (t) statistically uncorrelated by transforming the covariance matrix of the modal coordinates to a diagonal
matrix. The uncorrelated modal coordinates can be determined by using the second-order statistics from

X
RX D E

h
pPCA

RX pPCA T
RX

i
D E

h
‰PCA

RX pPCA
RX pPCA T

RX ‰PCA T
RX

i
D ‰PCA

RX � RX‰
PCA T
RX (12.7)

where
X

RX is the covariance matrix of RX.t/; � RX is the covariance matrix of p RX.t/. Equation 12.7 can be applied in the
same manner for P� (t) and X(t). PCA is the optimal linear algorithm since it obtains the minimum expected squared distance
between the original signal and the dimension-reduced representation [6].

12.2.3 Independent Component Analysis (ICA)

The Independent Component Analysis (ICA) is another mode decomposition technique in the BSS family to convert the
response data into statistically independent data by the following linear transformation:

RX.t/ D ‰ICA
RX pICA

RX .t/; PX.t/ D ‰ICA
PX pICA

PX .t/; X.t/ D ‰ICA
X pICA

X .t/ (12.8)

where pICA
RX .t/, pICA

P� (t), and pICA
X (t) are the .m �N/ matrices of the modal coordinates for the system acceleration, velocity

and displacement, which are statistically independent between the coordinate components;‰ICA
RX is the transformation matrix

of the acceleration to be determined for the linear transformation from RX.t/ to pICA
RX .t/; and in the same manner for PX.t/

and X(t).
The objective of ICA is to find the mode shape matrices of ‰ICA

RX , ‰ICA
P� , or ‰ICA

X , which satisfy the components of

pICA
RX .t/, pICA

P� (t), or pICA
X (t) to be statistically independent. Several methods are available to find the mode shape matrices.

One approach is to maximize the non-Gaussianity of pICA
RX .t/, pICA

P� (t), or pICA
X (t) based on the kurtosis (k) that is zero for

Gaussian data [22]. The data with k > 0 are called the super-Gaussian data, while the data with k < 0 are called the
sub-Gaussian data. The major differences between PCA and ICA include

• PCA converts the system responses into statistically uncorrelated modal coordinates, while ICA converts the system
responses into statistically independent modal coordinates.

• The PCA mode shape matrix (or transformation matrix) is orthonormal, while the ICA mode shape matrix is not
necessarily orthonormal.

• The ICA modal coordinate (or transformed variable) has a unit variance, while the PCA modal coordinate does not
necessarily have a unit variance.

• PCA works with both Gaussian and non-Gaussian response data, while ICA does not work with Gaussian response data.

Figure 12.2 shows that the identified PCA and ICA mode components can be different for the same bivariate uniform
random variables since their mode decomposition criteria are different. In this paper, the PCA and ICA modes will be
compared with the NExT-ERA or true modes for different conditions of response types, excitation types, system damping,
and sensor spatial resolution using simulation models in Sect. 12.3 and a full-scale bridge in Sect. 12.4.

12.2.4 Mode Shapes and Modal Coordinates for Mode Decomposition Performance

In this study, the mode shapes and modal coordinates are used to evaluate the mode-decomposition performance of the
NExT-ERA, PCA and ICA as
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Fig. 12.2 Comparison between
PCA and ICA components for the
bivariate uniform random
variables

a b c

Fig. 12.3 Procedures of NExT-ERA, PCA and ICA

pY .t/ D ‰Y
�1Y.t/ (12.9)

where Y(t) is the system response of RX.t/, P� (t) or X(t); ‰Y is the matrix of the mode shapes or the transform matrix of
NExT-ERA, PCA or ICA; and pY (t) is the modal coordinates of NExT-ERA, PCA or ICA. The procedures of NExT-ERA,
PCA and ICA to obtain the mode shapes (‰) and modal coordinates (p) are illustrated in Fig. 12.3.

12.3 Simulation Study

12.3.1 Model Description

A 10-DOF multistory building model was developed, which was fixed at the bottom and free at the top. The simulation
model can be expressed using the following linear equation of motion:

M RX.t/C C PX.t/C KX.t/ D F.t/ (12.10)

where M, K, and C are the 10 � 10 matrices of the mass, damping, and stiffness, respectively; F(t) is the (10 � N) matrix
of the external excitation; X(t) are the (10 � N) matrix of the system displacement; and N is the number of data points. The
mass was set to be 1 kg, and the stiffness was set to be 500 N/m for all floors. The simulation models were developed for two
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Table 12.1 The modal
frequencies and damping ratios
of the lightly damped and
undamped simulation models

Mode no.

Natural
frequency
(Hz) Damping ratio (%) Mode no.

Natural
frequency
(Hz) Damping ratio (%)

1 0.53 0.26 0:00 6 5.22 2.32 0.00
2 1.58 0.71 7 5.88 2.61

3 2.60 1.16 8 6.41 2.85

4 3.56 1.58 9 6.8 3.02

5 4.44 1.97 10 7.04 3.13

Fig. 12.4 Mode shapes of the 10-DOF simulation model

different damping cases to investigate the effects of the system damping. The first is a zero-damping case as C D 0, and the
other is the damping case of C D 0:001K C 0:001M. Equation 12.10 can be solved using the modal superposition method
by writing the response in term of the generalized response as

X.t/ D ‰p.t/ (12.11)

where ‰ is the mode shape matrix; and p(t) is the modal displacement. ‰ can be evaluated by the eigenvalue decomposition
as follows

‰�2‰�1 D M�1K (12.12)

where � is the frequency matrix of the system.
Equation 12.10 can be converted into uncoupled differential equations as

Mnp RX.t/C Cnp PX.t/C KnpX.t/ D ‰�1F.t/ (12.13)

in which are the diagonal matrices of Mn D ‰�1M‰, Cn D ‰�1C‰, and Kn D ‰�1K‰. The uncoupled differential
equations can be written as

p RX.t/C 2 !—p PX.t/C !2pX.t/ D ri .t/ (12.14)

where r(t) is the modal force of M�1
n ‰

�1F.t/; pX(t) is the modal displacement. ! and — are the system modal frequency and
the damping ratio vectors, respectively as

! D � � � � � � � � � � � � � � — D Cn
2!Mn

(12.15)

The modal frequencies and damping ratios of the lightly damped and undamped simulation models are summarized in
Table 12.1, and the mode shapes are shown in Fig. 12.4.
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Table 12.2 Parameters evaluated in the simulation study

Parameters Cases Description

Excitation type Gaussian Ten Gaussian random excitations with the unit variance of 
2 D 1 N2

applied on all floors, which are statistically independent between the
sequences

Uniform Ten uniform random excitations with the amplitude between �0.5 and
0.5 N applied on all floors, which are statistically independent between
the sequences

Impulse Ten impulse excitations applied on all floors with the peak amplitude
of 1.0 N

Response type Acceleration (ACC) Acceleration of the system response

Velocity (VEL) Velocity of the system response
Displacement (DSP) Displacement of the system response

System damping Undamped C D 0

Damped C D 0:001K C 0:001M
Sensor spatial resolution Full (ten sensors) All ten sensors measuring at all floors

Reduced (five sensors) Five sensors measuring at every other floors for the reduced spatial
resolution

The modal displacement can be calculated as

pX.t/ D
tZ
0

r.t/hX .t � �/ d� (12.16)

in which

hX .�/ D 1

!D
e�—!£ sin .!£/ (12.17)

where hX(� ) is the impulse response function for the system displacement.
The numerical simulation was conducted for three excitation cases: Gaussian random, uniform random and impulse

excitations. For the Gaussian random excitation, F(t) was chosen to be the (10 � N ) matrix that consists of ten Gaussian-
random sequences with the unit variance of 
2 D 1 N2, which are mutually independent between the sequences. For the
uniform random excitation, F(t) was chosen to be the (10 � N ) matrix that consists of ten uniform random sequences with
the amplitude between �0.5 and 0.5 N, which are mutually independent. For the impulse excitation, F(t) was chosen to be
the (10 �N ) matrix of impulse excitation with the peak amplitude of 1 N.

The system responses were calculated for each excitation case. First, the modal displacement, pX(t), was calculated for
the sampling frequency of 100 Hz and the total duration of 900 s. The modal velocity, p P� (t), and the modal acceleration,
p RX.t/; were also computed in the same way using the first and second derivatives of the transfer function, hi(� ). Then, X(t),
P� (t) and RX.t/ of each floor mass was found by multiplying the modal coordinates, pX(t), p P� (t), and p RX.t/, by the mode
shape vector, �.

12.3.2 Analysis Results of the Simulation Data

Once the necessary system response data were obtained, a parametric study was conducted by comparing the NExT-ERA,
PCA and ICA modes to the true modes. The comparison was conducted for different factors that could affect the mode-
decomposition performance of each method including (i) excitation type, (ii) response type, (iii) system damping, and (iv)
sensor spatial resolution. The parameters evaluated in the simulation study are summarized in Table 12.2.

In NExT-ERA, several user-defined parameters have to be specified, including the system order and reference channels.
The mode condensation algorithm developed by Pappa and Zimmerman (1998) was used to evaluate the stabilization of the
mode realization for the system orders from 10 to 30, which are equivalent to the maximum number of modes from 5 to 15.
All channels were used as reference positions, but not simultaneously. Ten valid modes were selected based on the modes
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with ten highest CMI values. All other modes having the CMI value less than 95 % were excluded. In PCA and ICA, no
user-defined parameters are necessary since the analysis processes are solely data-driven, which does not require physical
assumptions of the system.

12.3.3 Discussion of the Simulation Analysis Results

12.3.3.1 Effects of the Response Types

In order to investigate the effects of the response types, the datasets of the acceleration (ACC), velocity (VEL), and
displacement (DSP) were analyzed using NExT-ERA, PCA and ICA methods. The system was damped under the Gaussian
random excitation. The full sensor spatial resolution (10 sensors) was used (see Table 12.2). After the analyses, the mode
shapes ( O‰) and the modal coordinates ( Op/ were obtained.

To measure the decomposition performance, the identified mode shapes and the modal coordinates were compared with
the true mode shapes (‰TRU) and modal coordinates (pTRU) using two indicators: the mode assurance criterion (MAC) for
the mode shapes, and the correlation coefficients for the modal coordinates (COR). MAC can be calculated as

MAC D
ˇ̌̌

O‰�‰TRU
ˇ̌̌
2

� O‰� O‰
�
.‰TRU�‰TRU/

� 100 % (12.18)

where * represents transpose and conjugate; O‰ is the identified mode shape vectors; and‰TRU is the true mode shape vectors.
Therefore, MAC can be a real number between 0 and 100 %, indicating 100 % when the estimated mode shape vectors are
identical to the true mode shape vectors. COR can be computed as

COR D
�Xn

kD1 OpkpTRU
k

�2
�Xn

kD1 Opk Opk
� �Xn

kD1p
TRU
k pTRU

k

� � 100 % (12.19)

where Opk is the identified modal coordinate vectors; pTRU
k is the true modal coordinate vectors; n D 10 for the full sensor

spatial resolution, and n D 5 for the reduced sensor spatial resolution. COR can also be a real number between 0 % and
100 %, indicating 100 % when the estimated modal coordinate vectors are identical to the true modal coordinate vectors.

In Fig. 12.5, MAC and COR using NExT-ERA (), PCA (� ), and ICA (�) are shown for the first three modes. In the
plot, the x-axis shows MAC, and the y-axis shows COR. In addition, ACC, VEL and DSP indicate the response types, and
the number ten indicates the full sensor-spatial resolution. The results of the reduced spatial resolution data (*, �,

�
) shown

with the number five in Fig. 12.5 will be discussed later in Sect. 3.3.4. For NExT-ERA (), both MAC and COR were equal
to 100 % for all three modes and for all response types, which means that there is no error with NExT-ERA in O‰ERA and
OpERA. For PCA (� ), the results were the same as NExT-ERA (), except MAC D 82 % in O‰PCA

RX and COR D 82 % in

OpPCA
RX for mode 3 (Fig. 12.5g). For ICA (�), MAC and COR were equal to 100 % only in mode 1 for all response types

(Figs. 12.5a–c). Therefore, the performance of the mode decomposition was observed the best with NExT-ERA, then with
PCA, and the worst with ICA for these datasets.

The causes of the above errors in PCA and ICA were further investigated. Figure 12.6 shows the phase diagrams of the
acceleration, velocity and displacement at Floors 1 and 2. To demonstrate the effect of the response type, a simple 2-DOF
oscillator with the fixed-free boundaries was used to simulate the modal responses under the Gaussian random excitation.
The same mass, stiffness, damping, which was used for the 10-DOF model in Sect. 12.3.1, were also used in this simulation.
The correlation coefficients (�) of the Floors 1 and 2 responses were measured at � D 0:1% for the acceleration, � D 50:2%
for the velocity, and � D 90:2% for the displacement. The correlation coefficients show that the acceleration sequences are
almost zero-correlated, and the displacement sequences are highly correlated. Two modes corresponded to the two responses
were also identified using NExT-ERA, PCA and ICA. The directions of the two modes are shown as the two straight lines:
the major mode direction is shown as 1 and the minor mode direction is shown as 2. The angles of the mode components
were calculated, and the major component angle (1) and the minor component angle (2) are shown in the figure. The angle
was measured in radian with respect to the horizontal line in the counter-clockwise direction.
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Fig. 12.5 Comparison of MAC and COR between the identified and true mode shapes and modal coordinates of the first three modes

The results show that the NExT-ERA mode components are identical to the true mode components. For PCA, the mode
components for the velocity and displacement are identical to the true components in Figs. 12.6e, f, while the identified modes
for the acceleration has an error in Fig. 12.6d. For ICA, errors are observed for all response types in Fig. 12.6g–i. The above
results agree with the results in Fig. 12.5. It should be noted that the true, NExT-ERA, and PCA modes have j1 � 2j D 	=2,
while the ICA modes do not necessarily have j1 � 2j D 	=2. It is because the singular value decomposition of the
covariance matrix in PCA mathematically guarantees the orthogonality between the mode shapes, which is similar to the
orthogonality between the physical mode shapes in NExT-ERA. The discrepancy between the true and ICA modes is because
maximizing the non-Gaussianity of the resulting modal coordinates in ICA does not guarantee such orthogonality.

For the acceleration, the scattered data have a circular boundary due to the low statistical correlation although the data are
measured at two adjacent floors. Therefore, PCA and ICA have errors in the mode decomposition since it is difficult to find
the major directions of mode components in the circularly scattered data. For the velocity and displacement, the PCA modes
become accurate because the data have high statistical correlation with the prominent directions of mode components. ICA
still has the errors due to the non-orthogonal modes.
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Fig. 12.6 The mode components of the true, NExT-ERA, PCA and ICA. The angles are shown in radian

12.3.3.2 Effects of the Excitation Types and System Damping

In Sect. 12.3.3.1, it was shown that ICA gave the highest error in the mode decomposition. The effects of the excitation
types on the ICA modes are discussed in this section. Hyvärinen and Oja [22] stated that the fundamental restriction in ICA
is that the independent components must be non-Gaussian since the distribution of any orthogonal transformation of the
Gaussian variables (x1, x2) has exactly the same distribution as (x1, x2), in which x1 and x2 are statistically independent.
Consequently, the matrix ‰ICA is not accurately identifiable for Gaussian independent components. When one of the
independent components is non-Gaussian, however, the ICA model can still be estimated. Kerschen et al. [23] evaluated
ICA for undamped vibrating structures with impulse and uniform random excitations. According to them, the application
of ICA is limited to a weakly damped system which typically has the damping ratios of less than 1 %. Another limitation
stated by them is that the number of sensors should always be chosen to greater than or equal to the number of active modes.
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Fig. 12.7 The joint probability density functions of the two acceleration sequences of the damped and undamped 2-DOF oscillator

Table 12.3 Averaged MAC and
COR of the two modes using the
acceleration data

Uniform Gaussian Impulse
Damped Undamped Damped Undamped Damped Undamped

Avg. MAC (%) 90 35 57 67 92 100
Avg. COR (%) 90 42 59 83 88 100

Poncelet et al. [13] showed a similar result where the accuracy of ICA decreased as the system damping or mode number
increased. McNeil and Zimmerman [14] also discussed the effect of the system damping. They deduced that undamped
free-vibration modal responses closely corresponded to the independent components, while damped modal responses do not.

To demonstrate the effect of the excitation on ICA, the same 2-DOF oscillator in Sect. 12.3.3.1 was used with the
Gaussian random, uniform random and impulse excitations. The excitation properties used in this simulation are described
in Table 12.2. The joint probability density functions of the system responses are shown in Fig. 12.7. The kurtosis is used to
measure the sharpness (or Gaussianity) of the probability distribution.

k.x/ D E
�
x4


.E Œx2�/
2

� 3 (12.20)

where E[x] is the expected value of the random variable, x; k.x/ D 3 when x is the Laplace double exponential random
variable; k.x/ D 0 when x is the Gaussian random variable; and k.x/ D �1:2 when x is the uniform random variable.
Thus, k(x) is a positive value for the super-Gaussian random variable with a sharp peak, while k(x) is a negative value for
the sub-Gaussian random variable with a flat peak. The kurtoses of the two accelerations are shown in the figure: k1 is
for the acceleration with the fixed boundary, and k2 is for the acceleration with the free boundary.

Figure 12.7 shows that the joint distributions of the damped responses are closer to the Gaussian distribution than the
undamped responses. Therefore, it can be seen that the system damping significantly increases the Gaussianity of the
acceleration data. To understand the effects of the system damping and the Gaussianity of the system response on the ICA
mode decomposition, the accuracy of the ICA modes is shown in Table 12.3 by averaging the MACs and CORs of the two
modes using the acceleration data. The table shows that no error is observed only for the undamped system under the impulse
excitation, which indicates that both system damping and non-impulse excitation reduces the accuracy of the ICA modes.
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Fig. 12.8 A comparison of true and ICA mode components for different excitation types using the acceleration data. The angles of the true modal
components are TRU

1 D 1:02, and TRU
2 D 2:59

Figure 12.8 compares the true modes (T1 and T2) and the ICA modes (I1 and I2) in the plots of the acceleration scattered
data, indicating the major components (T1 and I1) and the minor components (T2 and I2). The results shown that the
independent components had no errors only when the undamped system was subjected to the impulse excitation. The angle
between I1 and I2 are also measured in radians and shown in the figure. Similar to the results in Fig. 12.6, the angles of
the ICA modes are not necessarily perpendicular (i.e., j1 � 2j D 	=2), while the angles of the true modes are always
perpendicular. For the damped systems, the ICA angles are close to 	 /2 although the directions of the mode components are
different from the true modes. This is a result of the response data being scattered in a circular boundary due to the strong
Gaussianity with the Gaussian and uniform excitations (Fig. 12.8a, b). For the undamped system, ICA still gave significant
errors although the data were correlated and the joint distributions were non-Gaussian (Fig. 12.8d, e). Only the case of the
undamped system under the impulse excitation gave no error in the mode decomposition. The above results show that the
accuracy of ICA is highly affected with the statistical distribution of the response data due to the system damping, and
excitation types.

12.3.3.3 Effects of the Sensor Spatial Resolution

To understand the effects of the sensor spatial resolution, the same datasets of the 10-DOF damped system in Sect. 12.3.3.1
were used, but with the reduced sensor spatial resolution by using the five responses at every other floor (see Table 12.2).
NExT-ERA, PCA, and ICA were applied using the reduced-resolution data, and the mode shapes ( O‰) and the modal
coordinates ( Op/ were identified. Then, the MAC and COR were calculated for O‰ and Op, respectively.

The results of ERA (*), PCA (�), and ICA (
�

) for the first three modes are shown in Fig. 12.5. Here, the number five
indicates the reduced sensor-spatial resolution, and ACC, VEL and DSP indicate the response type. For the acceleration
(Fig. 12.5a, d, and g) significant errors were observed in all identification methods, while the errors were observed least with
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Fig. 12.9 A comparison of the true and identified mode shapes and modal coordinates of mode 1. The natural frequency of mode 1 is 0.53 Hz.
The modal coordinates are shown in frequency domain

the displacement (Fig. 12.5c, f, and i) for all identification methods. Among all cases, only the mode shapes identified with
ERA gave no errors for all response types. This means that O‰ERA

RX , O‰ERA
PX , and O‰ERA

X are robust to the 50 % reduction of the

spatial resolution. In addition, both O‰ and Op were less affected with the reduced spatial resolution in a lower mode.
The O‰ and Op identified with NExT-ERA, PCA and ICA of mode 1 using the acceleration and displacement are compared

with ‰TRU and pTRU in Fig. 12.9. Using the acceleration data, the O‰PCA
RX and O‰ICA

RX were erroneously identified due to low
statistical correlation between the acceleration sequences shown in Fig. 12.9c, d, which is the similar results discussed earlier
in Fig. 12.6d, g. The OpERA

RX , OpPCA
RX , and OpICA

RX also gave erroneous frequency peaks as shown in Fig. 12.9f–h. With the

displacement data, the O‰ and Op become more accurate for all methods. Using the displacement data, the O‰ and Op were
accurately identified with NExT-ERA and PCA, while ICA gave errors in the identification due to the combined effects of
the system damping and the Gaussianity of the displacement data that were discussed in Sect. 12.3.3.2.

In summary, the above simulation results show that the PCA modes can be used as alternative structural modes of a low
degree-of-freedom system. The accuracy of the PCA modes is best with the displacement, and worst with the acceleration.
The PCA modes can be used when the number of sensors is reasonably smaller than the system order. On the other hand, the
ICA modes are significantly different from the structural modes because the ICA mode shapes are not necessarily orthogonal.
The accuracy of the ICA modes is largely affected by the excitation types and system damping, which are not practical to
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be used as alternative structural modes. The identification of the modal coordinates is more sensitive to the sensor spatial
resolution for all methods than the identification of the mode shapes.

12.4 Field Study Using a Full-Scale Suspension Bridge

12.4.1 Measurements of Bridge Responses in Ship-Bridge Collision Accident

The Vincent Thomas Bridge (VTB) located in San Pedro, California in the U.S.A. was used in this experimental study
(Fig. 12.10). The bridge is an 1,850-m long cable-suspension bridge with a main span length of 457 m, two-suspended side
spans of 154 m each, and two 10-span cast-in-place concrete approaches of 545-m length on the both ends. In 2006, there
was a collision between the bridge and a cargo ship that was passing underneath it. The freight-loading crane on the cargo
ship struck the bridge main span from the side. About 30 min after the collision, the vehicular traffic on the bridge was
stopped by the bridge authority to investigate potential damage. As the result, moderate damage was found on the bridge
maintenance scaffold installed at the bridge main span. The investigation continued for about 2 h having no traffic on the
bridge, and then the vehicular traffic was reopened. A detailed description of the ship-bridge collision accident can be found
in Yun et al. [3].

With a web-based continuous bridge monitoring system installed on the bridge in 2005, the dynamic responses of the
bridge were measured in the ship-bridge collision accident. The bridge responses were measured at the sampling rate of
100 Hz using the 26 force-balance accelerometers installed on the bridge deck, piers and anchorage as shown in Fig. 12.11.
The accelerometers were connected to a data acquisition system with the 24-bit analog-digital converter via sensor wires.
A detailed description of the data acquisition system and the web-based bridge monitoring system can be also found in Yun
et al. [3].

The acceleration data of the normal traffic, ship collision, and no-traffic conditions were pre-processed to obtain the filtered
acceleration, velocity and displacement data that are necessary for the proposed comparative study. For each excitation type,
the acceleration data was first divided into 15-min time histories. Then, the DC and linear trend were removed from the time
histories. A 5 % cosine-tapered window was applied before the high pass filter of 0.1 Hz with filter order of two and the low
pass filter of 30 Hz with order of 4 were applied. Numerical integration was used to obtain the velocity. The same pre-process
method was applied before and after the numerical integration for the displacement. Channel 4 was excluded in the analysis
due to sensor malfunction. The above preprocessing procedures are shown in Fig. 12.12. Sample bridge responses during the
ship-bridge collision after the pre-processing are shown in Fig. 12.13.

Fig. 12.10 The ship-bridge
collision by the onboard crane of
the cargo ship [3]
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Fig. 12.11 The sensor locations
and directions on the bridge [3]

Fig. 12.12 The preprocessing
procedures to obtain the
acceleration, velocity and
displacement data of the bridge
responses
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Fig. 12.13 Bridge response at channel 3 during the ship-bridge collision after the preprocessing

12.4.2 Analysis Results of the Experimental Data

The bridge response data for the traffic, no-traffic and collision excitation cases were analyzed using NExT-ERA, PCA and
ICA. Only 12 sensor channels on the bridge deck were used. For NExT-ERA, all channels were used as reference channels
but not simultaneously. The system order was set to be 100. The modes were then condensed by choosing the ones with
the CMI value higher than 70 %. A total of 15 modes were identified in each case. Among the 15 modes, the first 5 modes
were considered in the study. The modal frequencies and damping ratios identified with NExT-ERA are summarized in
Tables 12.4 and 12.5. The mode shapes and modal coordinates were calculated using NExT-ERA, PCA and ICA methods
for the different response types, and for the different excitation types. The sample mode shapes are shown in Fig. 12.14, and
the FFT of the modal coordinates are shown in Fig. 12.15. Mode 1 was not realized in NExT-ERA since the acceleration
data contained weak vibration components in the lateral direction of the bridge under the ambient excitation without traffic
loads. The modal parameters identified in this study agreed with those in previous studies [3, 24, 25].
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Table 12.4 Identified modal
frequencies (Hz) using
NExT-ERA

Traffic No traffic Collision
Mode ACC VEL DSP ACC VEL DSP ACC VEL DSP

1 0:175 0:170 0:166 – 0:174 0:181 0:149 0:151 0:143

2 0:233 0:233 0:232 0:245 0:226 0:246 0:231 0:233 0:228

3 0:55 0:539 0:537 0:529 0:552 0:540 0:534 0:534 0:535

4 1:393 1:401 1:393 1:400 1:397 1:397 1:382 1:391 1:404

5 1:867 1:876 1:860 1:901 1:887 1:896 1:859 1:864 1:870

Table 12.5 Identified damping
ratio (%) using NExT-ERA

Traffic No traffic Collision
Mode ACC VEL DSP ACC VEL DSP ACC VEL DSP

1 47:761 3:846 2:250 – 0:240 2:445 8:587 3:526 1:828

2 2:321 2:461 2:599 0:149 5:509 2:398 2:640 6:897 3:692

3 5:656 1:417 0:651 2:141 0:916 0:564 1:414 1:095 1:403

4 1:480 0:591 1:328 0:437 1:156 1:324 1:589 1:050 1:448

5 1:817 1:667 1:503 1:401 1:296 1:175 2:419 1:763 1:842

Fig. 12.14 Mode shapes identified using NExT-ERA, PCA and ICA methods for the velocity data

12.4.3 Discussion on the Experiment Results

MAC was calculated to compare O‰PCA and O‰ICA with O‰ERA, and COR was calculated to compare OpPCA and OpICA with
OpERA. The results for the first five modes are shown for different excitation types in Fig. 12.16. For each ‘response type’–

‘identification method’ case shown in the legend, the average distance from the upper-right corner is calculated and ranked
in Table 12.6. Overall, the DSP-PCA modes (�) were closest to the DSP-ERA modes for the excitation and response types.
There were more discrepancies in Op than O‰ for both PCA and ICA, which would be due to the relatively sparse sensor
network on the bridge. The above result is similar to the simulation results in Sect. 12.3.

In PCA, O‰PCA agreed most with O‰ERA for the collision excitation, and least for the no-traffic excitation. This is because the
PCA modes could be decomposed more accurately with the collision excitation than ambient excitations as illustrated earlier
in Figs. 12.6 and 12.7. Figure 12.17 shows the statistical distributions of the bridge responses under different excitations.
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Fig. 12.15 Modal coordinates identified using NExT-ERA, PCA and ICA methods for the velocity data. The natural frequencies identified by
NExT-ERA are 0.170 Hz for mode 1, and 0.233 Hz for mode 2

Table 12.6 The averaged errors of the PCA and ICA methods and their ranking in Fig. 12.14 for the first five modes

All Traffic No traffic Collision
Rank Method Error Rank Method Error Rank Method Error Rank Method Error

Errors in the identified mode shapes
1 DSP-PCA 21.3 1 VEL-PCA 16.1 1 DSP-PCA 28.6 1 DSP-PCA 12.9
2 VEL-PCA 21.4 2 DSP-PCA 22.7 2 VEL-PCA 33.5 2 VEL-PCA 14.4
3 ACC-PCA 40.9 3 ACC-PCA 54.2 3 VEL-ICA 37.1 3 ACC-PCA 24.9
4 VEL-ICA 45.5 4 ACC-ICA 54.2 4 ACC-PCA 44.4 4 VEL-ICA 38.6
5 ACC-ICA 50.3 5 DSP-ICA 59.7 5 DSP-ICA 53.5 5 ACC-ICA 34.4
6 DSP-ICA 53.5 6 VEL-ICA 60.8 6 ACC-ICA 65.3 6 DSP-ICA 47.3
Errors in the identified modal coordinates
1 DSP-PCA 58.3 1 DSP-PCA 55.3 1 DSP-PCA 63.2 1 DSP-PCA 56.5
2 VEL-PCA 75.8 2 VEL-PCA 83.8 2 VEL-PCA 69.5 2 VEL-PCA 74.1
3 VEL-ICA 81.8 3 DSP-ICA 86.7 3 VEL-ICA 73.7 3 VEL-ICA 82.7
4 DSP-ICA 86.7 4 VEL-ICA 88.9 4 DSP-ICA 87.8 4 DSP-ICA 85.7
5 ACC-PCA 90.9 5 ACC-PCA 91.9 5 ACC-PCA 94.1 5 ACC-PCA 87.5
6 ACC-ICA 94.9 6 ACC-ICA 92.5 6 ACC-ICA 97.6 6 ACC-ICA 95.3

It shows that the distributions of the responses are closer to a Gaussian distribution under the ambient excitations with traffic
and no-traffic loads than the impulse excitation, which also explains why the PCA modes are closer to the NExT-ERA
modes under the collision excitation. The response type also affected the accuracy in O‰PCA: the highest accuracy with the
displacement and the lowest accuracy with the acceleration.

In ICA, there were large discrepancies between the ICA and NExT-ERA modes for all excitation and response types. It
indicates that the ICA modes are generally incompatible to the NExT-ERA modes of the suspension bridge. The discrepancies
would be due to the non-orthogonal ICA modes as shown in the simulation results in Sect. 12.3.3.2.
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Fig. 12.16 Comparison of MAC and COR between PCA and NExT-ERA, and between ICA and NExT-ERA for different response types

12.5 Conclusions

In this study, the PCA and ICA modes were related to the NExT-ERA modes to investigate whether the non-parametric
modes could be used as alternative structural modes. A parametric study was conducted to understand the effects of the
response types, excitation types, system damping, and sensor spatial resolution through the simulation and experimental
tests. Major findings in the parametric study include:

• The PCA modes could be used as alternative structural modes when the system has a low degree-of-freedom system and
the displacement (or velocity) data are available. The ICA modes have significant errors when the system has damping or
is subjected to ambient excitations, which cannot be used as alternative structural modes for general purposes.

• In the simulation tests, a higher accuracy was found in the order of NExT-ERA> PCA> ICA, compared to the true mode
shapes and modal coordinates. In the experimental tests, the PCA modes were closer to the NExT-ERA modes than the
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Fig. 12.17 Statistical distributions of the bridge responses at channel 3 under different excitations

ICA modes. The PCA mode shapes are orthogonal due to the singular value decomposition of the covariance matrix of
the response data, while the ICA mode shapes are not necessarily orthogonal since maximizing the non-Gaussianity does
not mathematically guarantee the orthogonal modes.

• In both PCA and ICA, the accuracy of the mode decomposition is affected by the response types in the order of
displacement > velocity > acceleration. It is because the acceleration data are scattered without prominent directions
due to low correlation between the sensor measurements. The accuracy of the PCA (and ICA) modes increases with
the displacement and velocity since the statistical correlation is larger in these responses which contain dominant low-
frequency contents. Therefore, the PCA identification would be limited to low structural modes.

• The ICA modes are significantly affected by the system damping. It is because the system damping increases the
Gaussianity of the response data. ICA requires non-Gaussian multivariate responses [22], which are often violated under
ambient excitation. The simulation results showed that the ICA identification had no error when the system has no
damping and is subjected to impulse excitation.

• The PCA modes are more accurate with impulse excitation than ambient excitation. In the experimental study, the PCA
mode shapes agreed most with the LNMs under the collision excitation and worst under the ambient excitation without
traffic loads.
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Chapter 13
Comparison of Different Approaches for the Model-Based Design
of Experiments

Ina Reichert, Peter Olney, Tom Lahmer, and Volkmar Zabel

Abstract Before starting an experiment it is wise to make close investigations on the structure to be examined and the
possible designs of the experiment. The optimal design of the measurement setups is acquired by using mathematical
optimization methods which are supported by numerical simulations of the structure and its behavior. The numerical model
can then be used to verify the resulting design of the experiment and both of them can be validated by monitoring an
existing structure. The aim of this paper is to undertake this first step to confirm the optimal design of experiments which is
gained by three different approaches and testing them on a numerical model. These methods are: the reduction of parameter
uncertainties by using the Fisher Information Matrix, the second approach is made by the minimization of the mean-squared
errors between the assumed true solution and the solution of the inverse problem and as third approach the so-called sigma-
point method is used where for the mean-squared error biased estimators for the parameter identification problem are used.

Keywords Design of experiments • Fisher Information Matrix • Mean-squared errors • Sigma-point method • Sensor
placement

13.1 Introduction

It is truly helpful to conduct experiments in order to gain more information about a process or a structure, which is more
probable in the field civil engineering. In fact, there are different types of experiments; they can be divided into long-term
and short-term monitoring as well as those that take place in the field or in laboratories. Nevertheless, each type comes with
its own restrictions and difficulties. Therefore, it is useful and promising to do an optimal design of experiments, DoE, which
leads to effective, time and cost saving measurements.

Since most improvements in strategies for the design of experiments (DoE) were done in approximately the last 100 years
[8], a number of methods were developed dealing with optimal design. This paper is to be seen as the extension a former
conference paper [9] by adding a third method for comparison and discussion. Firstly, the classic approach with the Fisher
Information Matrix (FIM) [1, 11] is chosen. The main known disadvantage of the FIM is that systematic errors can not be
taken into account. Secondly, the optimal design is gained by the calculation of the mean-squared error (MSE) [2, 5, 7]
between the exact and estimated parameters of interest. Lastly, a relatively new approach, the sigma-point method (SP)
[6, 10], is considered. Finally these three methods are tested on a cantilever beam, which serves as the application example.
The three mentioned approaches are then compared based on the results of this example and conclusions are drawn in order
to also make further investigations.
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13.2 Methods for Model-Based Design of Experiments

For the optimal design of any experiment, a model of the process or structure is needed. This model is then used to find the
optimal design which leads to the least uncertainty in the measurement results corresponding to one specific method. It can
also be used to make a comparison between different DoE approaches. In this paper, the optimal design refers to the sensor
positions that should be optimized in order to estimate certain model parameters.

In the following the “exact” measurement data, y, which does not contain any noise, is corrupted by two different types of
noise. On the one hand, this is random noise, "i , with zero mean and given variance, 
2. On the other hand, it is a systematic
error, ˇi , which is considered as relative to the data value since its true structure is unknown. ˇi is added to the “exact”
measurement data y. The inclusion of both types of noise produces artificial measurement data u as follows:

u.; xj ; ti / D y.; xj ; ti /C ıi ; (13.1)

where  is the vector of parameters, xj and ti correspond to the discrete spatial and temporal domain as well as ıi represents
the noise term and can as described in [3] either be a random noise "i or a systematic one ˇi .

13.2.1 Fisher Information Matrix

As described in Uciński [11], the Fisher Information Matrix (FIM) can be derived using the Cramér-Rao inequality as a lower
bound estimate of the covariance matrix of parameters. This leads to a probabilistic definition of optimal sensor placement.
Most simulations of civil engineering structures use deterministic models and methods, therefore this original form of the
FIM cannot be used directly for the design of experiments, but has to be modified under certain assumptions. A basic one
is that the numerical model sufficiently represents the considered structure. The most common approach is to consider the
numerical model response as a measured response by the addition of noise. When this noise is taken as a random variable
with a probability distribution, then a relation between the probabilities and model responses can be made. Considering this
along with spatially uncorrelated errors [11], the FIM becomes

M D 1


2

nsensX
jD1

Z tf

0



@y.; xj ; ti /

@

�T 

@y.; xj ; ti /

@

�
dt ; (13.2)

where y solves the forward problem,  are the parameters of interest, x is the spatial variable and t is the temporal one. The
measurements are taken over a finite time interval, tf . The standard deviation of the measurement error is 
 , constant for all
measurement locations.

From this brief overview, it becomes immediately clear that only random errors can be considered directly with the FIM,
a potential disadvantage when systematic errors are large. Different criteria exist for evaluating and comparing FIMs, which
also may return different results as to which sensor configuration is optimal. As described in [11], optimal sensor positioning
should minimize some real-valued function, J . One example is the D-optimality criterion:

J.M/ D det.M�1/: (13.3)

While many other criteria exist and there is still some debate about which one is the best to use, an advantage of the D-
optimality condition is that it is independent of the scaling of the parameters (units) [4]. This criterion will be used in this
discussion for these and other reasons. This choice is immaterial as long as it is consistent when the comparison is made
between measurement setups.

13.2.2 Mean-Squared Errors

The second method uses the minimization of the difference between the “exact” solution for the parameters  and its
estimate O . Therefore, first the form of the data has to be defined, assuming a linear relation between model input and
output. In this case the data u consists of the “exact” solution y and an error term ıi which is described by Eq. (13.1), where
ı can describe a systematic error, ˇ, a random one, ", or both together as explained in Sect. 13.2. The experiment has to be set
up in such a way that it leads to the best approximation of the unknown vector of parameters  . Firstly, a sufficient number
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of experiments has to be chosen. If the problem is well-posed, which is the case in this article, the number of experiments or
in this instance sensors nsens has to satisfy the inequality nsens � n, where n represents the number of parameters  [5].

A cost function has to be set up. This leads to the usage of the mean-squared error (MSE) which is expressed by

MSE. O/ D Ek O � k2 (13.4)

and which should be minimized by

min Ek O � k2 (13.5)

as written in [2] to find the optimal experimental design.
Once the number of sensors is defined, the optimal positions have to be found. The description of the noisy measurements

as given in Eq. (13.1) is used for the minimization of the difference between the “exact” measurement data and the ones
corrupted by any noise ıi . The measurement data depends on the parameters  , the sensor positions xj and the time ti . The
corresponding cost function that depends on the parameters  and which should be minimized is expressed by

min

J.; xj ; ti / D min



nsensX
jD1

�
y.; xj ; ti / � u.; xj ; ti /

�2
: (13.6)

After a certain number of iteration steps of the optimization, the gained parameters serve as the estimated ones O and lead to
the mean-squared error given by

MSE. O; xj / D k O.xj / � .xj /k2 : (13.7)

The value of the MSE is then used as the selection criteria for finding the best sensor positions xj where the corresponding
MSE. O; xj / is minimal.

13.2.3 Sigma-Point Method

Taking the ideas of [6] a new approach for optimal experimental design was formed in [10], the so-called Sigma-point
method, SP. First of all, noisy measurements, u, have to be produced. This is again done by adding 2mK noise terms ıi to the
“exact” measurement data, y, as in Eq. (13.1) which lead to (2mK) noisy measurement data sets withm being the number of
parameters to be estimated and K being the number of temporal measurement points. From these samples (2mK) parameter
vectors, Oi , can be identified and the mean, N , and covariance matrix, C;SP, as written in [10] can be derived by

N D
2mKX
iD1

wmi Oi and (13.8)

C;SP D
2mKX
iD1

wci
� Oi � N

� � Oi � N
�T

; (13.9)

where wmi and wci represent weights, which are considered here as constant, such that the calculation of the mean, N , and the
covariance matrix, C;SP, are defined by

N D 1

2mK
�
2mKX
iD0

Oi and (13.10)

C;SP D 1

2mK � 1 �
2mKX
iD0

� Oi � 
� � Oi � 

�T
: (13.11)

where the mean values, N , of the parameters could be replaced by the “exact” ones,  , as we are dealing with artificially
created data and the true solution is known.
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With this approach it is not only possible to consider random noise, but it can also handle constant systematic errors. The
estimation of the bias is then made by

bBias D N � O0 ; (13.12)

but only if N ¤ O0.
There are now two ways that lead to the optimal sensor positions. One way is the calculation of the mean-squared error

between the “exact” solution,  , and the estimated mean one, N , similar to Eq. (13.7) by

MSE. N; xj / D k N.xj / � .xj /k2 : (13.13)

and evaluating its minimum to take the corresponding sensor positions as optimal. The second way is to use an optimality
criterion like in Eq. (13.3) on the covariance matrix, C;SP, but in this case for the sake of stability the T-optimality criterion

J.C;SP/ D tr.C;SP/ (13.14)

is used and again the optimal sensor setup is found where J is minimal.

13.3 Application on a Cantilever Beam

13.3.1 Numerical Model

In order to compare the results from applying the three different design of experiment strategies introduced, a tower-like
structure is considered as depicted in Fig. 13.1. The tower is separated into three equal length sections each corresponding
to a different material with Young’s modulus, Ei . Although three materials are modeled, the density is kept constant at
2,550 kg/m3. A finite element model using nine Bernoulli beam elements of equal length (3 per material) is used to model
the structure. There is no modal damping included in the discretized system. A dynamic simulation is computed using an
harmonic excitation with the seventh eigenfrequency applied on all nodes of the system, only considering the steady state
response. Design of the input loading for optimal experiments is outside the scope of this paper.

Acceleration time histories taken at specific locations xj and corrupted by the afore mentioned two types of noise are
considered as the measurement data. The random error is hereby represented by a normal distribution "i D N .0; 
2/ with
zero mean and the standard deviation 
 D 0:005. For the systematic error a relative description is used, so the systematic
error is 5% of the exact value of the acceleration time history. The initial guesses for the values of the Young’s modulus is
set to 90% of the “exact” values and for the sigma-point methodm D 3 as we are dealing with three parameters and in order
to reduce computing time K D 50, which leads to 300 samples per setup.

Since the model response is taken at discrete positions xj , the optimal sensor positions are found by evaluating all
combinations of three sensors nsens at nine possible positions npos. This leads to 84 combinations which have to be calculated.

Fig. 13.1 Sketch of the
cantilever beam with discrete
sensor positions, cross section
A-A and values of the material
properties [9]
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Their values of the D-optimality criterion for the FIM approach, the mean-squared error as well as the MSE and the
T-optimality criterion for the SP method are serving for sorting the sensor setups for each method in order to gain the
best one, respectively.

13.3.2 Results: Comparison Between FIM, MSE and SP

The comparisons of the results of the three methods for the two different types of noise are shown in the Tables 13.1 and 13.2.
The tables contain the best, second best and worst value for the D-optimality criterion of the Fisher Information Matrix (FIM)
on one side and the values of the mean-squared error for MSE and SP as well as the value of the T-optimality criterion for
the SP-method corresponding to this particular design of sensors on the other side. The rows below belong to the cases
respectively. In Table 13.1 the comparison for the random error and in Table 13.2 the one for the systematic one is given.

Additionally Fig. 13.2 shows the behavior of the different DoE approaches for the respective optimality criterion
depending on the rank of the setups. Where the slope is steep, neighboring (in rank) setups can lead to much better or
worse results in finding the “exact” parameters. This can be especially seen for the sigma-point method while using the
MSE as the evaluation criterion for the whole range, but also all other methods show an even steeper growth for the last
10–20 ranks. On the opposite side the slopes for the FIM, MSE and SP while using the T-optimality criterion for the first
60–70 ranks are rather flat. It can be concluded that in rank neighboring setups give equally good estimates of the unknown
parameters.

Table 13.1 Random error:
Overview of normalized values of
D-optimality criterion of FIM,
MSE as well as mean-squared
error and T-optimality criterion of
SP (Opt. Crit.) for the two best
and the worst design
corresponding to each method
and their values for the other
methods, respectively

FIM MSE SP with MSE SP with trace crit.

Design Opt. Crit. Rank Opt. Crit. Rank Opt. Crit. Rank Opt. Crit. Rank

Œ 5 6 9 � 0.005 1 0.042 17 0.134 8 0.108 41

Œ 2 5 9 � 0.009 2 0.027 11 0.248 25 0.132 53

Œ 1 3 4 � 1.000 84 0.943 83 0.477 49 0.176 63

Œ 3 6 7 � 0.096 54 0.001 1 0.284 28 0.012 7

Œ 3 4 5 � 0.151 65 0.004 2 0.120 6 0.128 52

Œ 4 8 9 � 0.046 33 1.000 84 0.871 83 0.151 57

Œ 1 5 6 � 0.059 42 0.267 63 0.044 1 0.218 69

Œ 4 5 6 � 0.016 9 0.111 31 0.048 2 0.047 22

Œ 4 7 8 � 0.076 47 0.222 57 1.000 84 0.229 70

Œ 2 6 7 � 0.025 14 0.031 14 0.329 36 0.002 1

Œ 2 3 6 � 0.024 11 0.787 81 0.581 65 0.002 2

Œ 1 6 8 � 0.155 67 0.006 4 0.327 35 1.000 84

Table 13.2 Systematic error:
Overview of normalized values of
D-optimality criterion of FIM,
MSE as well as mean-squared
error and T-optimality criterion of
SP (Opt. Crit.) for the two best
and the worst design
corresponding to each method
and their values for the other
methods, respectively

FIM MSE SP with MSE SP with trace crit.

Design Opt. Crit. Rank Opt. Crit. Rank Opt. Crit. Rank Opt. Crit. Rank

Œ 5 6 9 � 0.000 1 0.017 5 0.373 78 0.108 41

Œ 2 5 9 � 0.000 2 0.092 27 0.011 15 0.132 53

Œ 2 4 8 � 1.000 84 0.115 37 0.321 76 0.086 36

Œ 2 3 7 � 0.019 59 0.007 1 0.002 5 0.004 4

Œ 3 5 9 � 0.011 49 0.010 2 0.001 4 0.104 39

Œ 1 2 7 � 0.005 41 1.000 84 0.038 32 0.140 55

Œ 4 5 9 � 0.023 62 0.055 16 0.003 1 0.026 26

Œ 3 5 9 � 0.011 49 0.010 2 0.005 2 0.001 4

Œ 4 6 7 � 0.038 66 0.363 71 1.000 84 0.028 28

Œ 3 5 7 � 0.005 37 0.379 72 0.018 6 0.000 1

Œ 3 4 5 � 0.010 47 0.440 74 0.051 12 0.001 2

Œ 5 7 8 � 0.001 13 0.167 48 0.025 8 1.000 84
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Fig. 13.2 Behavior of the optimality criterion (Opt. Crit.) of the three introduced methods (FIM, MSE and SP) for random and systematic noise
depending on the rank of the sensor setups

13.4 Discussion and Conclusion

Tables 13.1 and 13.2 show no sensor setup (design) is mentioned at least twice in each table. This leads to the conclusion
that the optimal designs differ between the different considered methods for one type of noise. Since no common measure
for all methods exists, the questions of how to compare the results and to decide which setup is the best one are open. In
future work, this drawback should be overcome by finding a compatible measure. Another remedy could be made by taking
real experiments in order to validate the aforementioned methods.

One could also go back to the theory behind the methods and see that the Fisher Information Matrix can only be used for
random noise. So, it is not recommended to use this method also for systematic errors. This effect can also be seen in the
results, since the best two designs for FIM do not depend on the noise type, only the worst one is different. The same case
holds for using the T-optimality criterion on the sigma-point method where all three (best, second best and worst) depicted
designs are the same for random and systematic noise. These findings lead to the necessity of a more careful consideration
of the noise occurring in any experiment. First of all, the type of noise is important to know. Further research will deal with
the influence of different noise levels and the corruption of measurements by both random and systematic noise at the same
time.

For practical use, it is also important to think about computational costs. The FIM is very fast, but as a big disadvantage
it can only deal with random noise. The MSE is computationally more intensive, but gives results for both error types in a
reasonable time. Whereas considering that 2mK samples per sensor design have to be calculated for the SP method it takes
a lot of computational time in order to get results.
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Concerning the application example, it was determined, that the loading has a large influence on the quality of the
estimated parameters. It is highly recommended to also take into account the type of loading for design of experiments
as it can improve the identification of the model parameters. Future work should also include more parameters of the
experiment, such as sampling rate, types of sensors and resolution. In addition, an extension to the continuous case for
the spatial domain, x, has to be done.
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Chapter 14
Sensitivity Analysis for Test Resource Allocation

Chenzhao Li and Sankaran Mahadevan

Abstract To predict the response of a system with unknown parameters, a common route is to quantify the parameters using
test data and propagate the results through a computational model of the system. Activities in this process may include model
calibration and/or model validation. Data uncertainty has a significant effect on model calibration and model validation,
and therefore affects the response prediction. Data uncertainty includes the uncertainty regarding the amount of data and
numerical values of data. Although its effect can be qualitatively observed by trying different data sets and visually comparing
the response predictions, a quantitative methodology assessing the contributions of these two types of data uncertainty to the
uncertainty in the response prediction is necessary in order to solve test resource allocation problems. In this paper, a novel
computational technique based on pseudo-random numbers is proposed to efficiently quantify the uncertainty in the data
value of each type of test. Then the method of auxiliary variable based on the probability integral transform theorem is
applied to build a deterministic function so that variance-based global sensitivity analysis can be conducted. The resultant
global sensitivity indices quantify the contribution of data value uncertainty of each type of test to the uncertainty in the
response prediction. Thus a methodology for robust test resource allocation is proposed, i.e., quantifying the number of each
type of tests so that the response predictions using different data set are consistent.

Keywords Resource allocation • Model calibration • Model validation • Global sensitivity analysis

14.1 Introduction

System response prediction is one of the main objectives in engineering research. Basically, prediction is the activity to
estimate the system response at an untested configuration using available model and test information. Prediction under
uncertainty for a complicated system generally includes two steps: (1) build a computational model Y D F .X I�m/ to
represent the system, where Y is the system response, and X is a vector of model input, and �m is a set of unknown model
parameters; (2) quantify and propagate the uncertainty in X and �m through the model Y D F .X I�m/ in order to quantify
the uncertainty in system response. In step one, Y D F .X I�m/ can be: (1) physics-based model, e.g., finite element
model; or (2) data-driven model, e.g., regression model with input–output data [1–3]. In step 2, model inputs X are generally
measurable in each test, and their uncertainty is aleatory (i.e., nature variability across tests). In contrast, model parameters �m

are fixed but unknown values, and their uncertainty is epistemic (due to lack of information). While the variability in X can be
quantified by direct measurement and distribution fit, the uncertainty quantification of �m relies on statistical inferences using
input–output measurements. Activities to quantify the uncertainty in �m may include: (1) model calibration to compute the
uncertainty in �m; (2) model validation to assess the quality of model calibration; and (3) uncertainty integration to combine
the information in model calibration and validation. Both model calibration and validation require test data.

The problem of resource allocation arises from the fact that test data are uncertain. Data uncertainty includes the
uncertainty regarding the number of data and numerical values of data. Data uncertainty has a significant effect on
model calibration and model validation, and therefore affects the response prediction. In other words, another set of
calibration/validation test data may give a distinct system response prediction. Generally, test resource allocation is an activity
of optimization before conducting the actual tests. Calibration tests and validation tests are two different categories of tests.
Data obtained in calibration test reduce the uncertainty in model parameters thus reduce the uncertainty in prediction. In
case of considering model calibration only, generally the resource allocation optimization is to select test type and number
to minimize the uncertainty in the prediction [4, 5]. In contrast, data obtained in validation test may indicate that the model
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calibration is not exactly valid thus the uncertainty reduction obtained in model calibration should be discounted, which
indicates more uncertainty in the prediction. In the resource allocation considering both calibration test and validation test
[6], resource allocation optimization needs to select test type and number of tests of each type to obtain robust prediction,
i.e., how many tests of various types are necessary such that the prediction is consistent using different sets of test data. The
second optimization is discussed in this paper, using a comprehensive approach that includes both model calibration and
model validation.

The rest of this paper is organized as follows. Section 14.2 proposes a novel seed-based method to capture the uncertainty
in data value. Section 14.3 builds a framework of optimization for robust resource allocation. In Sect. 14.4, two numerical
examples of different configurations are given to illustrate the propose framework.

14.2 Seed-Based Method for Data Value Uncertainty

Since resource allocation is an optimization handling data uncertainty before actual tests are conducted, synthetic test data
are necessary in resource allocation. The generation of synthetic test data includes two cases:

1. Limited tests of each type have been conducted. Based on these test data, synthetic test data can be generated using
algorithms such as bootstrapping [7];

2. No test has been conducted. In this case, synthetic data can be generated based on the nominal values or the prior mean
values of model parameters; due to the discrepancy between the synthetic data and the real data caused by the difference
between the nominal values and the true values, repeated resource allocation optimizations trying different nominal values
may be required.

In any case above, at data size Ni, the data value uncertainty is represented by the difference between multiple sets of
data. In robust test planning, it is desired that the contribution of data uncertainty to the uncertainty of the prediction be small
such that consistent response predictions can be obtained for every other data sets. Generally, the contribution of data value
uncertainty reduces as data number increases. One example is Bayesian inference, which is used as the model calibration
methodology in this paper. In Fig. 14.1, each sub-figure contains a family of posterior distributions obtained by same data
number but different data values. From left to right, the sub-figures use more and more data points. Figure 14.1 illustrates
the decreased variation of posterior distributions with increased data number. Across the family members, the decreased
variation of the posterior includes two aspects: (1) the decreased variation of the mean values, roughly meaning that the
centers of the family members are closer; (2) the decreased variation of the variance in each PDF, roughly meaning that the
lengths of intervals covered by the family members are closer. If the posterior distribution of  is propagated for prediction,
the response prediction is expected to more consistent as data number increases.

As robust resource allocation requires consistent prediction across different data sets, it is necessary to develop a
methodology quantifying the contribution of data uncertainty to the prediction variation. Contribution assessment of
uncertainty generally uses global sensitivity analysis (GSA). Consider a model Y D F .X/ where X D ˚

X1; : : : ; XN
�

is a vector of model inputs. GSA measures the contribution of each component of X to the uncertainty of Y [8]. Two
global sensitivity indices have been developed in the literature based on the law of total variance and Sobol’s variance
decomposition theorem [9]: first-order index and total effects index. For a particular model input Xi, the first-order index is

Fig. 14.1 Posterior distribution of a model parameter as increased test data number
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defined as Si1 D V
�
E
�
Y
ˇ̌̌
Xi
��
=V.Y /; and the total effects index is defined as SiT D 1 � V

�
E
�
Y
ˇ̌̌
X�i

��
=V.Y / where

X�i means all the inputs other than Xi. The first-order index measures the contribution of the variable Xi by itself; in contrast,
the total effects index contains not only the contribution of Xi, but also the interaction effect of Xi with other inputs. One
assumption in the GSA is that each model input X is represented by a continuous probabilistic distribution (normal, uniform,
etc.). However, as explained earlier, the data value uncertainty is only represented by the difference of multiple data sets
of the same size, and no probabilistic distribution is directly available to represent it. Therefore, an explicit variable with a
probability distribution to represent the data value uncertainty is pursued.

Recall the generation of synthetic data. It is basically a process of generating random numbers, usually accomplished
by programing languages. The random number generation in programing languages is pseudo-random, which means that
the resultant random numbers are not unpredictable at all, but are generated by deterministic algorithms such as Mersenne
Twister generator [10], combined multiplicative recursive generator [11] or Wichmann-Hill generator [12]. These generators
use a positive integer known as seed to generate a random number of various distribution types, and a new seed is
deterministically computed before generating the next random number, and different seed values leads to different random
numbers.

Therefore, if a code is used to generate synthetic data, the result is determined once the initial seed value is given. This
initial seed, denoted by K, is considered as the random variable controlling the generation of synthetic data. At give data
size, the initial seed K captures the data value uncertainty due to the one-to-one mapping between the value of K and the
generation of synthetic data. It is equally possible for any positive integer to be used as a seed, so theoretically K has a discrete
uniform distribution Ud(1, nc) where the upper bound nc is a very large positive integer decided by the specific programing
language and computer. But in practice we can define the bounds of this discrete uniform distribution, depending on how
many different possible data sets are adequate to represent the data value uncertainty.

One more step is needed to apply this seed method to global sensitivity analysis. Although the initial seed K captures data
value uncertainty for a given data size, its distribution is discrete while the global sensitivity analysis requires continuous
random variables. Therefore another auxiliary variable UK [13], which is the CDF value of K, is introduced to represent K.
The mapping between the value of UK and the value of K is:

K D aC bUK .b � aC 1/c (14.1)

where a and b are the lower and upper bound respectively, and b�c is the floor function. Now assuming that the uncertainty
in a model parameter m is quantified by test data from different types of tests, a deterministic relationship from UK to the
quantified distribution of m is established as:

H
�
UK1; : : : ; UKq

ˇ̌
ˇN1 D n1; : : : ; Nq D nq

�
! fm (14.2)

where Ni is the data number of the ith type of test .i D 1; : : : ; q/, and UKi is the corresponding auxiliary variable capturing
the data uncertainty in the ith type of test, and f is the quantified distribution of m. Basically, Eq. (14.2) indicates that the
quantified distribution of m is fixed as data number and data values of each type of test are fixed.

14.3 Framework of Optimization for Robust Resource Allocation

As shown in Eq. (14.2), at UKi D uKi and Ni D ni .i D 1; : : : ; q/, the data of each type of test are deterministic so that
the calibrated joint distribution for all the model parameter �m is fixed. As this joint distribution is propagated into the
computational model Y D F .X I�m/ along with the known distribution of X, the predicted distribution fY (y) for the system
response Y is also fixed, as shown in Eq. (14.3):

H
�
UK1; : : : ; UKq

ˇ̌̌
N1 D n1; : : : ; Nq D nq

�
! fY .y/ (14.3)

As discussed in Sect. 14.2, the objective in resource allocation is to obtain consistent prediction of the system response under
different set of test data. As shown in Fig. 14.1, this consistency can be verified in two aspects: (1) small variation of the
mean value of prediction; and (2) small variation of the variance of the prediction. Equations for these two aspects derived
from Eq. (14.3) are:
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�Y D H1

�
UK1; : : : ; UKq

ˇ̌̌
N1 D n1; : : : ; Nq D nq

�
(14.4)

VY D H2

�
UK1; : : : ; UKq

ˇ̌
ˇN1 D n1; : : : ; Nq D nq

�
(14.5)

Thus two deterministic functions for GSA are established, where�Y and VY are the mean value and variance of the prediction.
Application of Eqs. (14.4) and (14.5) in GSA assesses the contribution of data value uncertainty in each type of test to the

uncertainty in the mean value and variance of the prediction. Generally it is expected that UKi will cause smaller uncertainty
to �Y and VY as Ni increases. However, this tendency cannot be revealed if we directly use the first-order or total effects
index. They are normalized indices revealing the comparative contribution. However, this means that the index of UKi will
increase purely due to the decreased contribution of UKj .i ¤ j /, even if its absolute contribution stays the same. Thus
a measurement of absolute contribution is pursued. This paper resolves this problem using the non-normalized first-order
index:

SMKi D V
�
E
�
Y
ˇ̌̌
UKi

��
(14.6)

where M can be �Y or VY .
In the optimization of resource allocation, a cost function is expected to be minimized while the contribution of each

UKi is smaller than a threshold. If the expense of a type i test is Ci and threshold is assumed for �Y and VY separately, the
optimization can be expressed as:

Min
qX
iD1
CiNi

s:t: S�YKi � �Ki�Y ; S
VY
Ki

� �
Ki
VY

(14.7)

where �Ki�Y and �KiVY is the threshold for the ith type of test with respect to �Y and VY , correspondingly.

Eq. (14.7) is a complicated integer optimization problem, where model calibration and validation need to be repeated for
each generation of the test data to evaluate the constraint function. Integer optimization is sometimes solved using a relaxation
approach [14], where the integer constraint is first relaxed, and the integers nearest to the resulting optimal solution are used
in a further solution of the original (unrelaxed) problem. Unfortunately, this approach is not applicable to the solution of Eq.
(14.7), because the constraint functions are defined and computed only for integer-valued decision variables, i.e., number of
tests. It is not possible to generate test data for a non-integer number of tests.

In this paper, a greedy approach is used to solve the optimization in Eq. (14.7):

1. Set the initial values of Ni .i D 1; : : : ; q/ at 1 and conduct the GSA using Eq. (14.4), (14.5), and (14.6).
2. Set the threshold of �Ki�Y and �KiVY . In the optimization, the types of tests with more contribution at Ni D 1 deserve larger

number of tests. Thus in this paper, the threshold for �Y is set as a percentage of the maximum S
�Y
Ki

at Ni D 1; and

the threshold for VY is set as a percentage of the maximum S
VY
Ki

at Ni D 1. For �Y or VY , each type of test uses the

same threshold, so �Ki�Y and �KiVY reduce to ��Y and �VY . For example, the numerical examples in Sect. 14.4 chooses this

percentage as 15 %, so the thresholds are: ��Y D 0:15max.S�YKi

ˇ̌̌
Ni D 1/, �VY D 0:15max.SVYKi

ˇ̌̌
Ni D 1/.

3. Increase Ni by 1 if SVYKi > ��Y or SVYKi > �VY , i.e., the data value uncertainty in the ith type of test caused more uncertainty
than the threshold either to �Y or VY ;

4. Repeat Step 3 until SVYKi > ��Y and SVYKi > �VY for .i D 1; : : : ; q/, i.e., the contribution of data value uncertainty in any
type of test is less than the thresholds.

Thus a framework of robust resource allocation using the seed-method, the auxiliary variable method, and the GSA is
established. In Sect. 14.4, two numerical examples are used to illustrate the proposed framework.
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14.4 Numerical Examples

14.4.1 Mathematical Example

This subsection presents a simple illustrative example to demonstrate the proposed framework of robust resource allocation.
It is assumed that a system output is the sum of two sub-system outputs, and each sub-system has separate model inputs and
model parameters:

Y D Y1 C Y2; Y1 D X11; Y2 D X22 (14.8)

The model inputs X1 and X2 are independent Gaussian variables. Model parameters 1 and 2 have unknown deterministic
values. Bayesian inference is used to calibrate model parameters using synthetic data and assigned prior distributions. It
is assumed that posterior distributions of  j are directly used to predict Y, thus in this example only model calibration is
required to quantify  j. Two types of tests are available: test to measure Y1 at input X1 and test to measure Y2 at input X2. It
is assumed that in each test the value of model input Xj is measured accurately, but Yj is measured with a measurement error
�j .j D 1; 2/. Synthetic data are generated using Eq. (14.8), the nominal value of  j, and the measurement error. Numerical
details of this example are listed in Table 14.1.

The robust test planning is conducted following the four steps in Sect. 14.3:

1. The GSA is firstly conducted at N1 D N2 D 1. The absolute contributions of data value uncertainty in two types of test
are: S�YK1 D 458; S

�Y
K2

D 1044; S
VY
K1

D 1:64 � 104; SVYK2 D 1:39 � 105;
2. The threshold for �Y and VY are chosen as: ��Y D 0:15max

�
S
�Y
Ki

ˇ̌̌
N1 D 1;N2 D 1

�
D 156, �VY D

0:15max
�
S
VY
Ki

ˇ̌̌
N1 D 1;N2 D 1

�
D 2:08 � 104;

3. Increase Ni by 1 until SVYKi > ��Y and SVYKi > �VY ; the details for this iteration are shown in Table 14.2.

The optimization for the illustrative example terminates at N1 D 6; N2 D 9, meaning that more tests to measure Y2 are
needed to achieve a robust prediction of Y. Figure 14.2 also visually verifies this result. In Fig. 14.2, the family of PDFs at
each sub-figure shows the effect data value uncertainty at given data number. As more data number are applied, the family
members become more concentrated, meaning reduced contribution of data value uncertainty to the prediction.

14.4.2 Multi-Level Problem

A multi-level structural dynamics challenge problem provided by Sandia National Laboratories [15] is shown in Fig. 14.3.
Level 1 contains three mass-spring-damper dynamic components in series, and a sinusoidal force input is applied to m1.

Table 14.1 Numerical details of
the illustrative example

Prior distributions of model parameters 1 � N .5; 0:5/ ; 2 � N .10; 1/

Distributions of model inputs X1 � N .100; 5/ ; X2 � N .50; 5/

Measurement errors �1 � N .0; 50/ ; �2 � N .0; 40/

Nominal values of model parameters N1 D 5; N2 D 10

Table 14.2 Optimization details
of the illustrative example

�
N1;N2

�
S
�Y
K1

S
�Y
K2

S
VY
K1

S
VY
K2

(1,1) 459 1,044 16; 392 138,541
(2,2) 388 764 17,959 103,315
(3,3) 323 601 15,054 77,532
(4,4) 255 410 11,873 57,018
(5,5) 199 337 11,854 40,986
(6,6) 150 217 7,692 30,033
(6,7) 150 179 7,716 23,192
(6,8) 150 182 7,772 22,565
(6,9) 150 140 7,707 18,977



148 C. Li and S. Mahadevan

800 900 1000 1100 1200 1300
0

0.005

0.01

0.015

Z

P
D

F

n1=3, n 2=3

800 900 1000 1100 1200 1300
0

0.005

0.01

0.015

Z

P
D

F

n1=6, n 2=6

800 900 1000 1100 1200 1300
0

0.005

0.01

0.015

Z

P
D

F

n1=6, n 2=9

Fig. 14.2 Prediction as increased test data number

Fig. 14.3 Structural dynamics challenge problem. (a) Level 1, (b) Level 2, (c) Level 3

At Level 2, the dynamic system is mounted on a beam supported by a hinge at one end and a spring at the other end; another
sinusoidal force input is applied on the beam. The configuration of the system level is the same as Level 2, but the input is
a random process loading. Here Level 1 and Level 2 are defined as lower levels, and experimental data are only available at
lower levels. All levels share three model parameters of spring stiffnesses ki .i D 1; 2; 3/. The objective in this numerical
example is to predict the maximum acceleration at m3 for the system level configuration.

In a multi-level problem, the lower levels and the system level constitute a hierarchy, sharing a set of model parameters
(�) to be calibrated. In order to predict the system level output when data are only available at lower levels, a reasonable
route is to quantify the model parameters using lower level data, and propagate the results through the computational model
at the system level. The procedure to predict the system level output can be found in Ref. [16], and a brief introduction is
given here:

1. Model calibration by Bayesian inference. Three calibrations are possible: (1) calibration using the data from Level 1
alone; (2) calibration using the data from Level 2 alone; (3) calibration using the data from both Level 1 and Level 2.

For a model parameter  , the posterior distributions from the calibrations above are denoted as f
�

ˇ̌
ˇDC

1

�
,
�

ˇ̌
ˇDC

2

�
, and

f
�

ˇ̌̌
DC
1 ;D

C
2

�
, respectively.

2. Model validation using the model reliability metric at lower levels. The resultant model validity at Level 1 and Level 2
are denoted as P(G1) and P(G2), respectively.

3. Uncertainty integration by the roll-up method. The integrated distribution for a model parameter  is in Eq. (14.9), where

P
�
G’
1

�
D 1 � P .G1/ and P

�
G’
2

�
D 1 � P .G2/.
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Table 14.3 Numerical details of the multi-level problem

Prior distributions of model parameters K1 � N .5000; 500/ ;K2 � N .10000; 1000/ ; K3 � N .9000; 900/

Measurement errors �1 � N .0; 100/ ; �2 � N .0; 400/

Nominal values of model parameters KN
1 D 5500;KN

2 D 9500;KN
3 D 8800

Table 14.4 Optimization details
of the multi-level problem

(N1, N2, N3, N4) S
�Y
K1

S
�Y
K2

S
�Y
UK3

S
�Y
K4

S
VY
K1

S
VY
K2

S
VY
UK3

S
VY
K4

(1,1,1,1) 401 23 147 13 831,223 324,801 56,590 88; 297

(2,2,2,2) 231 114 108 446 417,587 359,898 26,889 687; 488

(3,3,3,3) 166 23 162 29 455,399 426,526 25,324 47; 175

(4,4,4,3) 102 21 147 11 324,321 365,224 22,686 55; 704

(5,5,5,3) 61 20 144 13 283,422 322,376 21,332 61; 831

(6,6,6,3) 38 19 126 14 181,811 290,937 17,728 68; 511

(7,7,7,3) 22 17 111 16 144,947 255,802 20,771 75; 866

(8,8,8,3) 16 15 100 17 126,595 226,772 21,952 79; 556

(9,9,9,3) 8 14 91 18 108,430 206,501 24,446 84; 001

(9,10,10,3) 7 12 78 19 112,662 182,936 29,802 86; 057

(9,11,11,3) 7 11 67 19 119,376 162,681 35,286 86; 797

(9,12,12,3) 7 10 57 20 116,832 148,899 42,855 86; 486

(9,13,12,3) 7 8 57 20 119,997 124,831 40,493 85; 393

(9,14,12,3) 8 8 57 20 119,913 122,778 40,345 84; 689

4. System response prediction. The integrated distributions of � are propagated into the computational model at the system
level to predict the system response.

f
�

ˇ̌
ˇDC;V

1 ;D
C;V
2

�
DP .G1/ P .G2/ f

�

ˇ̌
ˇDC

1 ;D
C
2

�
C P

�
G’
1

�
P .G2/ f

�

ˇ̌
ˇDC

2

�

C P.G1/P.G
’
2/f . jDC

1 /C P.G’
1/P.G

’
2/f ./ (14.9)

Four types of tests are available in this multi-level problem: (1) test to provide calibration data at Level 1; (2) test to provide
validation data at Level 1; (3) test to provide calibration data at Level 2; and (4) test to provide validation data at Level 2. The
number of tests for each type is denoted as N1, N2, N3, and N4, respectively. The measurement error at Level 1 and Level 2
are denoted as �1 and �2. Similar with the illustrative example, synthetic data are generated based on model input, nominal
values of the model parameters, and measurement error. In this problem, the model inputs at each level are fixed. Numerical
details of this problem are shown in Table 14.3.

The robust test planning is conducted following the four steps in Sect. 14.3:

1. The GSA is firstly conducted at N1 D N2 D N3 D N4 D 1. For the mean value of the prediction, the absolute
contributions of data value uncertainty in four types of test are: S�YK1 D 401; S

�Y
K2

D 23; S
�Y
UK3

D 147; S
�Y
K4

D 13;

for the variance of the prediction, the absolute contributions of data value uncertainty in four types of test are SVYK1 D
8:31 � 105; SVYK2 D 3:25 � 105; SVYUK3 D 5:66 � 104; SVYK4 D 8:83 � 104;

2. The threshold for �Y and VY are chosen as: ��Y D 0:15max
�
S
�Y
Ki

ˇ̌̌
N1 D N2 D N3 D N4 D 1

�
D 60, �VY D

0:15max
�
S
VY
Ki

ˇ̌
ˇN1 D N2 D N3 D N4 D 1

�
D 1:25 � 105;

3. Increase Ni by 1 until SVYKi > ��Y and SVYKi > �VY ; the details for this iteration are shown in Table 14.4.

Some observations for this multi-level problem can be obtained from Table 14.4:

1. As Ni increases but is still small, the contribution of data value uncertainty may increase. For example, as (N1, N2, N3, N4)
increases from (1,1,1,1) to (2,2,2,2), S�YK2 increases from 23 to 114 and SVYK4 increases from 88,297 to 687,488 dramatically.
The reason is that at small sizes data sets can be very different from each other.

2. As Ni keeps increasing, the contribution of data value uncertainty globally shows a decreasing tendency; however local
increases are observed, caused by numerical errors in the GSA when the contribution itself is comparatively small.
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The optimization for the illustrative example terminates at (9, 14, 12, 3), meaning that only a small number of validation
tests at Level 2 are needed, compared to the other three steps of tests, in order to achieve a robust prediction of the maximum
acceleration of mass 3 at the system level.

14.5 Summary

A framework of robust test planning is established in this paper. Robust prediction is obtained for a given number of tests
at which the contribution of data value uncertainty is reduced below a threshold. First a novel seed-based computational
technique based on pseudo-random numbers is proposed to efficiently represent the uncertainty in the data values for a given
data size (i.e., number of tests). Then the contribution of data value uncertainty is quantified by the proposed seed-based
method and global sensitivity analysis. Then an optimization for robust test planning is proposed to reduce the contribution
of data value uncertainty to the overall prediction uncertainty. This optimization is solved by a greedy methodology.
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Chapter 15
Predictive Validation of Dispersion Models Using a Data
Partitioning Methodology

Gabriel Terejanu

Abstract Validation of models used in safety-critical applications requires an extensive validation protocol to build
confidence in their predictive capability. A recent predictive validation methodology, introduced by the author and
collaborators, is applied in this study to validate the predictions of a Gaussian puff dispersion model. The methodology
is based on cross-validation principles in the context of predicting unobserved or difficult to observe quantities of interest.
The challenge in this context is that predictions of quantities of interest have no associated observations that they can be
compared to. Thus, assessing how close predictions are from observations using validation metrics such as root-mean-square
error is not feasible. The study addresses the issue of partitioning the data into a calibration and a validation set, and defining
relevant validation metrics based on sensitivity analysis that can support the ultimate goal of predictive modeling. While the
framework is general and can be applied to a wide range of problems, in this paper it is used to find an optimal partition of
chemical concentration sensors to assess the validity of Gaussian puff predictions in a region of interest.

Keywords Data partitioning • Predictive validation • Bayesian inference • Cross-validation • Gaussian plume models

Nomenclature

p.�/ Probability density function (pdf)
p.�j�/ Conditional pdf
F.t/; G.t/ Cumulative distribution function (cdf)
d.F.t/; G.t// Distance between two cdfs
 Model parameters
Dc;Dv Calibration and validation data
MD;MQ Data and quantity of interest (QoI) metric
M �
D;M

�
Q Data and QoI thresholds

sk; s
� kth partitioning of the data and optimal partition

N .�; 
2/ Gaussian density function with mean � and variance 
2

logN .�; 
2/ Log-normal density function with mean � and variance 
2

15.1 Introduction

Model validation is defined as the process of determining whether a mathematical model is a sufficient representation of
reality from the perspective of the intended uses of the model [1, 4, 5]. Generally, the validity of a computational model is
often determined by simply comparing the output of the model with experimental data [6, 8, 13–17]. However, many of these
procedures neglect the most common use case, where data is not available to directly assess predictions of the quantities of
interest (QoI). This paper examines this type of situations in which models are used to make predictions at scenarios where
experimental data is not available, referred here as prediction scenarios. Here, scenario is defined as the set of conditions
(inputs) of the physical system or experiment to be simulated by the model. Several issues make the problem of prediction
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a challenging one: experiments may be impractical or impossible due to various factors such as financial and regulatory
constraints or physical limitations. Furthermore, the only experimental data available may come from legacy experiments
and may be incomplete. Despite these difficulties, the assessment of QoI prediction quality is required to decide whether the
model can be reliably used from the perspective of its intended use.

In general, the standard validation procedure requires the data to be partitioned in two datasets: the calibration (or training)
set and the validation set. The calibration dataset is used to calibrate the model, and then the prediction outputs of the
calibrated model are compared with the data in the validation set. A reasonable discrepancy between predictions and data
increases the credibility of the model while a large discrepancy may invalidate the model. The initial step raises the question
of how to partition the data, but the answer is far from trivial. Cross-validation attempts to address this issue by using
multiple splits of the data and averaging the results of the model discrepancy from each split. However, existing cross-
validation techniques do not address validating the model with respect to the QoI, but only with respect to the data. On the
other hand, the more recently developed QoI-driven validation addresses the issue of prediction, but has not yet explored the
issue of partitioning the data in depth.

Babuška et al. [7] presented a systematic approach to assess predictions using Bayesian inference and what they call a
validation pyramid. Experimental scenarios of varying complexity are available that suggest an obvious hierarchy on which
to validate the model. In their calibration phase, Bayesian updating is used to condition the model on the observations
available at lower levels of the pyramid. The model’s predictive ability is then assessed by further conditioning using the
validation data at the higher levels. One advantage of their approach is that the prediction metric is directly related to the
QoI. This approach relies on a subjective partition of the data, which is argued that is made clear by the experimental set-up
and validation pyramid. However, in practice this is often not the case. The distinction between calibration and validation
scenarios depends on the sensitivity of uncertain parameters with respect to the observables, which is not so clear without a
more comprehensive analysis.

To avoid a subjective choice of the calibration set, the author and collaborators [12] have recently introduced a more
rigorous and quantitative process inspired by cross-validation to partition the data into calibration and validation sets. In
contrast to previous works, this approach does not require a single partitioning, nor does it uses averages of estimators over
multiple splits [2, 3, 20]. Instead, it considers all possible ways to split the data into disjoint calibration and validation sets
which satisfy a chosen set size. Then by analyzing several splits, the optimal partitioning is chosen by requiring that it
satisfies the following desiderata: (1) the model is sufficiently informed by the calibration set, and is thus able to reproduce
the data, and (2) the validation set challenges the model as much as possible with respect to the QoI. Once the optimal split
is found, the validity of the model is determined using the same procedure introduced by Babuška et al. [7].

In this paper, this cross-validation inspired data partitioning is used to find an optimal partition of chemical concentration
sensors to assess the validity of Gaussian plume predictions in a region of interest that lacks measurements. While intuition
prompts one to construct the validation set from data provided by sensors that are closest to the prediction scenario, the
analysis here reveals the contrary. Namely, it is shown that the best split in calibration and validation sets for this particular
application involves selecting the most distant sensors from the region of interest in the validation set and the closest in the
calibration set. This data partitioning methodology is introduced in the next section, followed by the numerical results on a
Gaussian puff model.

15.2 Data Partition Methodology for Validation of Predictive Models

The QoI-driven model validation framework introduced by Babuška et al. [7] is depicted in Fig. 15.1a. Compared with other
validation methods, the QoI-driven model validation tests the model with respect to the QoI which is not directly observable.
Given that no data is available to be compared with the QoI prediction, this methodology consists of judging the validity of
the model with respect to the discrepancy between two predictions of the same model. One prediction is given by a model
updated with calibration data and the other by a model updated with all the data (calibration and validation). Since this
QoI-driven validation is done in the presence of measurement and parametric uncertainty, Bayesian inference [10, 11] is
used to determine the posterior and predictive distributions. In this context, Bayesian updating is performed on a calibration
set, and then a prediction of the QoI is made using the updated model. A subsequent update is performed using a validation
set followed by an additional prediction with the newly updated model. Finally, the two predictions are compared to assess
the model’s predictive capabilities.

Given Dc the calibration data, and  the uncertain model parameters, with prior probability density function (pdf) p./,
Bayes’ rule states that the posterior pdf p. jDc/ is given by

p. jDc/ / p.Dc j/p./; (15.1)
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a b

Fig. 15.1 Validation of predictive models. (a) QoI-driven validation cycle. (b) Cross-validation inspired data partitioning

where p.Dc j/ is the likelihood of observing dataDc given parameter values. Similarly, a second posterior pdf p. jDc;Dv/

can be obtained using all the available data. The degree of knowledge, or rather the uncertainty, about the parameter values
is completely accounted for by these posterior pdfs, which are then propagated through the model to obtain the predictive
pdfs of the QoI, which can then be compared to determine the validity of the model.

The QoI driven model assessment developed in [7] requires a metric to compare predictions of the QoI obtained from
the calibration and validation sets. Since predictions are probabilistic in nature, the metric used has to be compatible with
probabilistic inputs. Ideally this metric would measure in the units of the QoI, allowing for easy interpretation by decision-
makers on how consistent the predictions are. Ferson et al. [9] argue that Kantorovich metric can both accommodate
probabilistic inputs and be expressed in terms of QoI units. Kantorovich metric calculates the area between two cdfs F.t/
and G.t/ and it is used to measure the disagreement between the two probabilistic predictions.

d.F.t/; G.t// D
Z 1

�1
jF.t/ �G.t/jdt (15.2)

The data partitioning methodology proposed by the author and collaborators [12], leverages this QoI-driven framework
but in addition instead of relying on a subjective data split, uses a quantitative process to determine an optimal split. Here,
optimality is given by the partitioning of the data that satisfies the following desiderata: (1) the model is sufficiently informed
by the calibration set, and is thus able to reproduce the observed data, and (2) the validation set challenges the model as much
as possible with respect to the quantity of interest. First, a model incapable of reproducing observations should not be used to
predict unobservable quantities of interest. Specifically in the case of Bayesian updating, the prior information and observed
data must be sufficient to produce a satisfactory posterior distribution for the model parameters. Second, the validation set
should be the most challenging possible to assess QoI predictions. In other words, the model is required to perform well on
even the most challenging of validation sets; otherwise, one cannot be confident in its predictive capability with respect to
the QoI.

Two metrics need to be defined to judge how well the model meets these two criteria. One metric to measure how well
the model is reproducing the data and the other to measure the predictive performance of the model. Let MD and M �

D

denote the data reproduction metric and threshold respectively. Similarly, MQ and M �
Q are used to measure the discrepancy

in the QoI prediction. While the data partitioning procedure can accommodate any suitable metrics, in this work both the
data and QoI metric are given by the Kantorovich metric defined in Eq.(15.2). In the case of the data reproducibility, the
area metric is defined between the empirical distribution of the data and the predictive distribution of the observable. For
QoI assessment, the area metric is defined between the predictive distribution of the QoI given the calibration data and the
predictive distribution of the QoI conditioned on all the data (calibration and validation).

Given N observations, we denote the size of the calibration set by NC and the size of the validation set by NV ,

NC CNV D N: (15.3)
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Note that it could be the case that each of the N observations in fact represents a set of observations, if, for instance,
repeated experimental measurements are taken at the same conditions. As with many validation schemes, the selection of
the calibration, or training, set size is important. This set size can vary greatly [2, 3], and the particular choice could impact
the final conclusion and must be made with care. Of particular concern is providing enough data so that all parameters
of the model are sufficiently informed by the inverse problem. If the model were to fail with respect to the data metric,
the issue may not be the model itself but too small a calibration set size. In this case one should perform further analysis
to determine the source of this discrepancy and increase the calibration set size if necessary. Regardless, the partitioning
framework is generally applicable to whatever this size might be.

To determine the optimal split, all possible partitions of the data respecting (15.3) are considered. By considering
all admissible partitions, one can determine which observations are most influential with respect to the QoI. However,
the drawback of this approach is evident: consider the model performance for all partitions of the data. This yields a
combinatorially large number of partitions, whose exact number is given by the binomial formula:

P D
 
N

NC

!
D NŠ

NC ŠNV Š
: (15.4)

Here these partitions, or splits, are denoted by fskg, where k D 1; 2; : : : ; P . The computational impact of this becomes even
more significant while solving P Bayesian inverse problems using Eq.(15.1). This is an area for improvement and it is set as
subject of future work.

With the solutions obtained from the inverse problems one can evaluate the performance of the model by computing the
data and QoI metrics. These can be visualized on a Cartesian grid where the x and y axes correspond to the metrics MQ

and MD , respectively, and each point corresponds to a single partition of the data into a calibration and validation set, see
Fig. 15.1b. The optimal partition s� is given by the following optimization problem which requires the calibration data to
sufficiently inform the model to reproduce the data and the validation data to maximize the prediction metric.

s� D arg max
sk ;MD.sk/<M

�

D

MQ.sk/: (15.5)

The optimal partition for the results shown above is highlighted in Fig. 15.1b. After identifying the optimal partition one
can compare model’s predictive performance against the threshold M �

Q. If s� fails to satisfy the threshold then it can be
concluded that the model is invalid given the observations available. In the case where s� does not violate the tolerance set by
the decision-maker, it can be concluded that the model is not invalidated given the observations. This does not guarantee that
the model is valid, only that one cannot demonstrate otherwise. This may prompt the acquisition of additional observations to
challenge the model. The process to obtain these additional experimental measurements may be supplemented by performing
optimal experimental design [19]. If, however, we cannot obtain more data, then the process is complete, and we conclude
that the model has not been invalidated. The general algorithm can be summarized in Algorithm 1.

Algorithm 1 Data partitioning algorithm
1: Define data metric and threshold, MD and M�

D

2: Define prediction metric and threshold, MQ and M�

Q

3: Given N; choose the calibration set size, NC , such that

NC CNV D N:

4: Generate all possible partitions of the data fskgPkD1, where P D �
N
NC

� D NŠ
NC ŠNV Š

5: Solve P inverse problems for partitions fskgPkD1.
6: For each partition sk , compute MD.sk/.
7: Solve an additional inverse problem using all available data (calibration and validation)
8: For each partition sk , compute MQ.sk/.
9: Find optimal partition s� D arg maxsk ;MD.sk /<M

�

D
MQ.sk/

10: Compare MQ.s
�/ with M�

Q .
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15.3 Data Partitioning for a Gaussian Puff Model

This section describes an application of determining the optimal partition for a Gaussian puff model. The model in Eq. (15.6)
is given by the steady-state Gaussian plume solution to the advection-diffusion equation under assumptions of isotropic
diffusion and constant wind velocity, u D 1, which is sufficiently large such that the longitudinal diffusion term can be
neglected [18]. Here c.x; y/ is the ground concentration at an .x; y/ location, Q is the release mass, H D 1 is the height of
the release and K D 1 is the eddy diffusivity.

c.x; y/ D Q

2	Kx
exp



� u.y2 CH2/

4Kx

�
�meas (15.6)

In this study, it is considered that a set of six noisy concentration readings are available corresponding to the six sensors
depicted in Fig. 15.2a. Both the release mass and the wind velocity are considered uncertain. Given these six measurements,
the goal is to divide them in a calibration and validation set, both containing three data points, in order to assess the
capability of the model to predict the concentration in the region of interest shown also in Fig. 15.2a. The distribution of
the measurement noise and the prior distribution for the release mass and the wind velocity are given as follows.

p.�meas/ D logN .0; 1/; p.Q/ D logN .2; 10/; p.u/ D N .2; 0:5/ (15.7)

The synthetic measurement data is generated from the true model where Q D 1 and u D 1. For a specific run, the
measurements obtained for various sensors as well as the distance of these sensors to the region of interest are given in
Table 15.1. Given the distances from the region of interest, see Table 15.1 and Fig. 15.2a, intuitively, one would expect that
the optimal split would be to have the validation set comprising readings of sensors .4; 5; 6/ and calibration set comprising
readings of sensors .1; 2; 3/. For this split the data metric is found to be MD D 1:03 and the QoI metric MQ D 0:27. The
data metric is well within the tolerance of the measurement noise M �

D D 1:75, however the question is whether this split
challenges the model enough with respect to the QoI.

However, the data partitioning methodology introduced in the previous section, after computing the metrics for all possible
partitions of size three, gives the optimal split as the calibration set comprising of sensors .3; 5; 6/ and the validation set
comprising of sensors .1; 2; 4/. In this case the MD D 1:09 and the QoI metric MQ D 0:61. Again, the data metric indicates

Fig. 15.2 Numerical results. (a) True concentration field, location sensors and region of interest. (b) Optimal split distribution given 10,000 trial

Table 15.1 Measurements for a
specific run and distance of
various sensors to the region of
interest

Sensor 1 2 3 4 5 6

Measurement 0:16 0:11 0:19 0:06 0:10 0:04

Distance 2:15 2:01 1:52 1:39 1:25 1:00
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that the model is well calibrated, and as compared with the previously intuitive split, the QoI metric for the optimal split is
almost three times as challenging. Also note that validation set contains sensors, which are farther away from the region of
interest instead of closer to it.

Obviously, the results are conditioned on the measurements available, and one may question the finding as being
particular to the instance of measurement noise. To address this issue, a number of 10,000 trials have been performed,
each corresponding to different measurement noise instances. For each trial the optimal split has been identified, and the
overall distribution of the optimal split has been plotted in Fig. 15.2b. Note that most of the time the validation sets chosen
contain sensors that are farther away from the region of interest instead of closer to it, which further motivates the uses this
quantitative process to identify the partitioning of the data. In addition, note that the intuitive split at the top of Fig. 15.2b has
produced very few optimal splits in the 10,000 trials, which prompts one to carefully consider the problem of partitioning
the data in calibration and validation sets.

15.4 Conclusion

A data partitioning methodology has been introduced to determine the optimal split in calibration and validation sets to assess
the predictive capability of a model. This cross-validation inspired methodology is applied in the context of unobserved QoIs,
where the quality of the QoI prediction is determined via a sensitivity analysis approach. This procedure is used to determine
the optimal partition of chemical concentrations to assess the predictive capability of a Gaussian plume models. For the
example considered in this study, it is shown that the validation set should contain sensors farther away from the region of
interest rather than closer as it might be dictated by intuition.
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Chapter 16
SICODYN Research Project: Variability and Uncertainty
in Structural Dynamics

Sylvie Audebert

Abstract The idea underlying the SICODYN (SImulations credibility via test-analysis COrrelation and uncertainty
quantification in structural DYNamics) funded research project is to give easy tools, based on tested methodologies, to a
priori estimate the confidence associated to a dynamical simulation-based prediction. The project is based on a complex built-
up pump in industrial environment. Gathering 13 French academic and industrial partners, it is organized in 6 parts. In Part
1, an inventory of the benchmarks in structure dynamics and a review of methods leading to credible models are performed.
Experimental benchmarks based on in-situ measurements permit the quantification of experimental variability, related to
nominally-identical structures or due to operator and modal identification methodology (Part 2). Numerical benchmarks
(Part 3) lead to observe the corresponding total numerical variability. Part 4 is devoted to test-analysis correlation methods.
In Part 5, both parametric and non parametric methods are confronted in order to quantify the parametrical and model-form
uncertainties, either in a deterministic (method of intervals : : : ) or probabilistic context. The objective of Part 6 is to estimate
the capacity of uncertainty quantification methods to represent the observed numerical variability, and to select, or adapt,
some of them, to propose simple tools usable in industrial context.

Keywords Vibrating mechanics • Numerical and experimental benchmarks • Modal characteristics • Uncertainty
quantification

16.1 Context and Objectives

A main objective of industrial companies is to quantify the confidence they have in numerical models used either in
design purpose or in expertise purpose. The systems of interest include proposed or existing systems that operate at
design conditions, at off-design conditions and at failure-mode conditions that apply in accident scenarios. In particular, the
dynamical behaviour of engineered systems that equip power plants must be confidently predicted. The numerical models
built to do so in a design purpose must be able to represent the characteristics of the structure itself, its coupling with its
environment, the usually unknown excitations and the corresponding error sources and uncertainties; in an expertise purpose,
when measurements can be carried out on the existing structure and used to improve the numerical-experimental correlation,
the numerical models are generally generic and must be able to reproduce the behaviour of the whole family of nominally-
identical structures.

16.2 Scientific Structuration of SICODYN Project

The funded FUI (Fonds Unique Interministériel) 2012–2016 project, untitled SICODYN, follows the international 2008–
2010 SICODYN benchmark [1, 2]. It is based on a complex built-up demonstrator in industrial environment. The project
gathers 13 French academic and industrial partners [3].

The idea underlying the project is to give easy tools, based on tested methodologies, to a priori estimate the confidence
associated to a dynamical simulation-based prediction [4–7]. The general organization of the six interconnecting parts of
the project is described in Fig. 16.1. The quantities of interest are the modal characteristics of the mechanical system
(eigenfrequency, modeshape and modal damping). In Part 1, an inventory of the benchmarks in structure dynamics and a
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Fig. 16.1 Organization of the six parts of the SICODYN project

review of methods leading to credible models are performed: test-analyses methods and ways to estimate the total uncertainty.
In Part 2, experimental benchmarks based on laboratory and in-situ measurement campaigns permits the quantification of
experimental variability, related to nominally-identical structures or due to operator and modal identification methodology.
In addition, two laboratory devices are designed and used in order to improve and validate the numerical representation of a
bolted assembly at macro-level. A numerical benchmark (Part 3) on the pump assembly considered in its work environment
(complex boundary conditions that are frame fixed in concrete and connections with suction and delivery pipes) leads
to observe the total numerical variability, which takes into account the parametric and model form uncertainty. Part 4 is
devoted to test-analysis correlation and model updating, using notably a collection of numerical results and a collection of
experimental measurements [8]. Methods to elaborate the best-estimate model, which both insures fidelity to measured data
and robustness relatively to uncertainties, are comparatively tested. In Part 5, both parametric and non parametric methods are
confronted in order to quantify the uncertainties, either in a deterministic (method of intervals : : : ) or probabilistic context
[9–11]. In Part 6, the observed (via the benchmark) and simulated (in Part 5) numerical variabilities will be compared.
The most appropriate uncertainty quantification methods to a priori represent the observed numerical variability, from an
industrial point of view, will be selected and possibly derived in simple security coefficients and margins applied in classes
of dynamical problems to determine, or simple tools usable in industrial context.

16.3 Description of the Demonstrator

The chosen equipment is a pump used in EDF thermal units (Fig. 16.2). It is a one-stage booster pump, composed of a
diffuser and a volute, with axial suction and vertical delivery (body with volute called “snail”), mounted on a metallic frame.
It was designed 40 years ago by Sulzer Pumps. The bolted built-up structure contains eight main components.
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Fig. 16.2 The pump assembly and its main components. (a) The pump assembly. (b) CAD models of the pump components

16.4 Innovative Characteristics and Technological Challenges

The main innovative characteristics of SICODYN project are following:

• Organization of an experimental benchmark in situ, with independent teams, in view of observing the variability of modal
properties of a built-up structure (related to specimen, measurement means, identification methodology)

• Organization of a numerical benchmark in condition of a study performed by a design office, in view of observing the
total numerical variability of a dynamic simulation

• Application of methods tested on academic structures to complex industrial large number of degree of freedom structures
• Improvement of the modeling at macro-level of bolted structure assemblies
• Taking into account the environment, represented by complex boundary conditions
• Model improvement by adaptation and comparison of numerical-experimental correlation methods
• Numerical estimation of the model form uncertainty, and not only the parametrical uncertainty
• Improvement of the model robustness relative to uncertainties
• Confrontation of observed and numerical variabilities, and elaboration of recommendations for the use of numerical

methods to a priori estimate the confidence of simulation-based predictions
• Establishment of empirical laws to a priori estimate the credibility related to a dynamic simulation result

16.5 Benchmarks Purpose (Parts 2 and 3)

The benchmark purpose is clearly to observe, from an industrial point of view, that is in the real conditions of an engineering
study, the variability of computational blind and experimental modal results. The general Verification and Validation (V&V)
comprehensive methodology based on benchmarks described in [4] can be kept in mind and successfully applied within the
purpose of the observation of the numerical or experimental variability: a step-by-step procedure from the free-free separate
components to the built-up system with complex boundary conditions is so here applied.

The dynamical systems of interest used for the benchmarking operations have been determined more and more the
complexity of both the system and the boundary conditions, following the hierarchical process presented in Fig. 16.3:

• The eight free-free pump components;
• A two-component sub-assembly (Fig. 16.4a);
• The clamped pump assembly, not connected to pipes;
• The clamped pump assembly, connected to pipes (Fig. 16.4b).
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Fig. 16.3 The hierarchical
procedure

Fig. 16.4 The two-component
assembly tested in laboratory and
the pump in its industrial
environment. (a) The
two-component sub-assembly.
(b) The pump, frame in concrete,
connected to pipes, in thermical
power plant

For each dynamical system, the modal basis on the bandwidth [0 Hz; 300 Hz] must be determined.
The number of independent blind simulated predictions and measurements are given in Table 16.1. Complementary

simulations and corresponding experimental analyses have been performed by one partner only on a free-free pump sub-
assembly and on the free-free pump assembly.

Table 16.1 Number of
independent benchmark
simulated predictions and
measurements

Number of simulations Number of measurements

Free-free pump components 8�10 0–1
Free-free pair of components 3 3
Free-free sub-assembly 1 1
Free-free pump assembly 1 1
Non connected clamped pump assembly 10 2
Connected pump assembly 7 5
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16.5.1 Numerical Benchmarks

The numerical benchmarks have been organized in the framework of 2008–2010 international SICODYN benchmark [1, 2]
and Part 3 of 2012–2016 SICODYN project. The industrial point of view is taken into account by the fact that (1) here input
benchmark data are not equally determined for all the partners, in order to consider their inherent uncertainty (data provided
by EDF are but paper plans of the assembled pump and its parts, and CAD models of the eight main pump components)
(2) the chosen demonstrator is an industrial structure in use in EDF thermal units: it is well-representative of modeling and
boundary conditions complexity; (3) reference experimental data have been partially obtained in situ. Concerning benchmark
data, material characteristic values are chosen by partners. Representation of pump components, boundary conditions and
connections between components is let free choice.

This original benchmark approach, described in [1, 2, 12], is well adapted to the questions an industrial company must
answer and critical decisions it must take: what is the confidence level of the simulation-based predictions provided by design
offices? Are they sufficiently robust to uncertainties to authorize the cancellation or the decrease of experimental tests which
characterize the dynamical behavior?

16.5.2 Experimental Benchmarks

The experimental modal analysis campaigns have been performed in the framework of 2008–2010 international SICODYN
benchmark [1, 2] and Part 2 of 2012–2016 SICODYN project. The configurations of interest are the following:

• shaft and impeller system, bearing support and pump casing in free-free conditions;
• bearing support and bearing casing system in free-free conditions (three experimental modal bases);
• shaft, bearing support, cooling flange and bearing casing sub-assembly in free-free conditions (one experimental modal

basis);
• pump assembly in free-free conditions (one experimental modal basis);
• non rotating in situ non connected pump assembly, frame fixed in concrete (two experimental modal bases relative to two

specimens);
• non rotating in situ pump assembly, connected to delivery and suction pipes, frame fixed in concrete (two experimental

modal bases on one specimen, three experimental modal bases on another specimen).

As for numerical benchmarks, no precise instructions on the number of sensors, the excitation type or the identification
methods to be used are given to the partners. The observed experimental variability so attached to measurement “reference”
data is to be considered during test-analysis correlation.

16.6 Quantification of the Numerical Uncertainties (Part 5)

Besides the observation of variabilities thanks to benchmarking operations, a priori quantification of numerical uncertainties
is performed using methods able to represent the observed level of uncertainties. Methods to do so must be able to address
both parametrical and model-form uncertainties. Model-form uncertainty originates from assumptions or simplifications of
known, or unknown, phenomena that must be represented in the numerical simulation. Some of the modeling assumptions
that influence simulation results in structural dynamics include the use of 1D, 2D, or 3D representation to model a component
of the structure, the method through which contact and boundary conditions are represented. Thus, attempt to quantify the
effect of model-form uncertainty and, as a consequence, the total numerical uncertainty have been far less encountered [13].
The methods to quantify the total numerical uncertainty, applied on the pump assembly, are (1) the generalized probabilistic
approach, including both the model-parameter uncertainties and the model form uncertainties in a separate way [14], (2) the
lack of knowledge theory [15], which is based on intervals whose bounds are probabilistic, and (3) the combined use of the
component mode synthesis and the probabilistic uncertainty analysis [10]. The comprehensive approach, that is application
of these methods to a complex industrial dynamical system with large uncertainties, and confrontation of so estimated
uncertainties with the observed variability, is a main challenge of the SICODYN project.
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Chapter 17
Experimental Variability on Modal Characteristics of an In-Situ Pump

Sylvie Audebert, Anne Coulon, Marie-Ange Andrianoely, Stéphane Muller, and Emmanuel Foltête

Abstract Considering that experimental data, usually considered as the reference in test-analysis correlation and model
updating purpose, must also be concerned with uncertainty quantification, the experimental variability on modal characteris-
tics of two nominally-identical pumps in industrial environment is observed, via a benchmark between 5 independent teams.
Free choice is let to determine the number and the type of sensors, the excitation means, the number of excitation points and
the modal identification method. Variabilities relative to the operator and pump specimen are addressed; moreover specific
variability relative to the modal identification phase can be quantified using the same experimental test runs.

Due to differences on experimental meshes, from 27 to 138 measurement points, a SEREP expansion on a finite element
mesh is first performed, allowing the comparison of experimental modal bases. Global variability observed, based on half
paired among identified eigenmodes (within 10 % frequency gap and 50 % MAC criteria), shows a 2 % mean frequency gap
and 32 % mean damping ratio gap. Unit-to-unit variability, essentially attributed to different actual bolted torque levels at
component connections and pipe-to-pump connections, and realization of the frame fixation on concrete, shows 10 % mean
frequency gap and 28 % mean damping gap. Specific variability due to modal identification operator, as a component of the
global variability, is still significant with a number of identified modes that varies by a factor of 2; the so paired modes show
1 % mean frequency gap and 24 % mean damping ratio gap.

Keywords Vibrating mechanics • Experimental benchmark • Modal characteristics • In situ measurement •
Experimental variability

17.1 Context and Objectives

Experimental modal data resulting from in situ measurements are used in industrial context to characterize the dynamical
behavior of a new-designed structure or to expertise a system with potentially vibrating problems; they are generally
collected simultaneously to the elaboration of a numerical model of the structure considered, which can then be tuned
using measurement data. Like numerical models, which intend to represent the dynamical behavior of nominally-identical
systems, complete information on experimental modal data must include the overall range of measurements, attached to a
given experimental data. Concerning the eigenfrequency variability, the overall range of measurements is [f min

k , f max
k ], where

f min
k and f max

k respectively denote lower and upper bounds within which the measured eigenfrequency fk is expected to be
observed for a similar structure. The control parameters that can explain the experimental variability are the sensor type and
location, the excitation type and location, the identification method used and its parameters, the system specimen considered.
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The first objective of the study is to characterize the overall range of measurements, as a result of benchmarking operation
applied on the Booster pump of the SICODYN funded French research project [1, 2]; the second objective is to quantify the
effect of some particular control parameters on the observed variability.

17.2 Description of the Dynamical System

The chosen equipment is a pump used in EDF thermal units (Fig. 17.1). It is a one-stage booster pump, composed of a
diffuser and a volute, with axial suction and vertical delivery (body with volute called “snail”), mounted on a metallic frame.
This main bolted assembly was designed forty years ago by Sulzer Pumps.

The principal characteristics of the pump are:

– the power of the pump is 135 kW;
– the dimensions of the pump without support are approximately 1 m � 1 m;
– the mass of pump and support is approximately 2,800 kg;
– the material of the pump is cast iron and steel;
– the nominal rotational speed is 1,500 rpm and the flow rate in nominal conditions is 620 m3/h;
– the shaft is supported in radial direction by two plain bearings (unknown stiffness and damping linearised characteristics)

and in axial direction by a roller;
– the impeller and shaft are connected by keys.

In this study, the pump is not rotating and not coupled to the engine that permits to put it to operation. The boundary
conditions are: frame fixed in concrete, pump assembly connected to delivery and suction pipes.

Fig. 17.1 The pump, frame in
concrete, connected to pipes, in
thermical power plant
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17.3 Test Specifications and Settings

Five independent teams are invited to perform an experimental modal analysis of two specimen of the similar pump assembly
(Table 17.1) in the frequency bandwidth [0 Hz; 300 Hz]. Free choice is let to determine the number and the type of sensors,
the excitation means, the number of excitation points and the modal identification method.

As a consequence of the proposed method, actual settings of the experimental modal analyses performed can be different
from one partner to another. All partners excited the pump using a shock hammer. The frequency resolution varied from
0.078 to 0.25 Hz. Measurements were collected using an average of five replicates, excepted for one partner, who used an
average of 25 replicates. Linearity and reciprocity tests were carried out by four partners among five. The identification
methods applied were generally similar (Table 17.2).

Details on impact and measurement points are given in Table 17.3. The number of impact points varies from 3 to 9 ;
the number of measurement points, where tri-axial accelerometers are located, varies from 27 to 138. It can be noticed that
the pump itself can be lightly or heavily instrumented; instrumentation of the pipes, useful for the characterization of the
boundary condition to be included within modeling purpose, can be different too. The experimental mesh geometries are
directly measured by each team in situ, and no numerical model was supplied for the measurement.

Table 17.1 Number of
experimental modal analyses per
pump specimen

Number of experimental modal analyses

Pump 1 3
Pump 2 3

Table 17.2 Actual settings of experimental analyses

Partner Pump Excitation type Impact points

Frequency
bandwidth
(Hz)

Frequency
sampling
rate (Hz) Number of means Identification method

Linearity,
reciprocity
tests

1 1 Shock hammer 3 [0–400] 0:25 5 LSCF OK

2 LMS Polymax

2 2 4 [0–320] 0:078 5

3 1 3 [0–300] 0:16 3 OK

4 1 9 [0–500] 0:122 5 OK

5 2 6 [0–512] 0:122 25 LSCF, LCF, SAPP, LMS OK

Table 17.3 Impact and measurement points (X: horizontal, Y: vertical, Z: horizontal along rotor axis)
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Fig. 17.2 Comparison of measured, synthetized and expanded FRF at two different point locations

17.4 SEREP Expansion and Its Validation

To allow comparison of experimental data relatively to measurement meshes presented in Table 17.3, too different to be
directly compared, a SEREP expansion [3] is preliminary performed from the heaviest experimental mesh (considered as
the reference) on a finite element mesh of the pump assembly. The system of interest being the pump itself, this operation
does not take into account vibrating information measured on the pipes; consequently the pipes are considered in the finite
element FE model using equivalent mass and stiffness representations. As a first element of expansion validation, Fig. 17.2
shows the frequency response functions FRF at two locations, that respectively are connections of the pump with suction
and delivery pipes, directly measured, synthetized from identified eigenmodes, and expanded on the FE element mesh via
SEREP method: satisfactory correlation can be obtained on main eigenmodes, depending on the point location considered.

Second element of expansion validation can be performed via the comparison of expanded/experimental MAC and
autoMAC matrices (Fig. 17.3). The overall modes are very well correlated with diagonal MAC numbers generally greater
than 0.9. The dispersion along diagonal line, that can be shown around modes 10–17, is already present in autoMAC, proving
that it is not caused by expansion operation.

17.5 Observed Global Experimental Variability

A first topic of significance is the observation of the global experimental variability, considering all sources of discrepancy.
Attempt is made to pair the identified modes by four partners, relatively to two pump specimens. Around four overall
eigenmodes can be paired among eight, based on a 50 % MAC number and 10 % maximum frequency gap criteria.
Considering these paired eigenmodes, the mean frequency gap shows a low 2 % value, whereas the damping ratio gap,
with a mean value of 32 %, can reach more than 60 % (Table 17.4).
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Fig. 17.3 Comparison of expanded/experimental MAC matrix and autoMAC matrix

Table 17.4 Global variability: compared modal bases

Partner 1 Partner 2, ref: partner 1, pump 2 Partner 3, ref: partner 1, pump 1 Partner 4, ref: partner 1, pump 1
Pump 2 Pump 1 Pump 2 Pump 1 Pump 1
Mode Freq. (Hz) Mode Freq. (Hz) Mode Freq. (Hz) MAC Mode Freq. (Hz) MAC Mode Freq. (Hz) MAC

1 15 54:3 6 60:2 7 54:8 82:8 1 60:5 92:0 3 60:2 83:7

2 17 63:6 8 71:1 4 72:3 64:8

3 18 69:7 9 74:5 2 74:4 72:5

4 21 83:8 10 82:5 8 69:5 80:2 3 83:4 91:5

5 22 88:2 7 67:9 10 82:4 74:8

6 32 161:1 16 161:6 52:3

7 34 180:8 15 169:9 17 175:9 82:2 7 188:6 76:9

8 38 211:6 18 196:2 52:2

9 44 278:3 25 284:5 10 284:4 83:2

17.6 Observed Unit-to-Unit Variability

Unit-to-unit variability can be quantified by comparing identified modal bases relative to two nominally-identical pump
assemblies, obtained by the same operator and using the same identification method. Pairing criteria applied, minimum 50 %
MAC number and maximum 20 % frequency gap, allow to pair the main overall eigenmodes, as indicated in Table 17.5.
The ten so paired modes show a 0.77 mean MAC coefficient, 10 % mean frequency gap and 28 % mean damping gap, for
reduced damping values comprised between 0.2 % and 4.5 %. Unit-to-unit variability can essentially be attributed to different
actual bolted torque levels at component connections and pipe-to-pump connections, and realization of the frame fixation
on concrete. The latter boundary condition can effectively vary a lot from one specimen to another, in direct relation to the
aging process of the concrete.

17.7 Observed Identification Variability Due to Operator

In order to quantify variability due to operator during the modal identification procedure, two independent operators were
asked to perform it from the same test runs, using the same modal identification method and the same software, on the
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Table 17.5 Compared modal bases of two nominally-identical pump assemblies

Pump 1 Pump 2

Mode number Frequency (Hz) Mode number Frequency (Hz)
Frequency gap
(%) MAC (%) Damping ratio gap (%)

1 6 60:2 15 54:3 11:0 93:4 27
2 7 67:9 20 80:3 �15:4 64:8 43
3 8 71:1 17 63:6 11:7 86:6 11
4 9 74:5 21 83:8 �11:1 87:5 34
5 10 82:5 18 69:7 18:3 88:1 41
6 11 98:6 24 110:1 �10:4 51 20
7 15 169:9 34 180:8 �6:1 87:7 36
8 16 186:7 38 211:6 �11:8 84:2 24
9 17 191:3 37 202:6 �5:6 71:8 29
10 25 284:5 44 278:3 2:2 53:1 11

Fig. 17.4 Identification
variability due to operator:
frequency gap

Fig. 17.5 Identification
variability due to operator:
damping ratio gap

frequency bandwidth [30 Hz; 400 Hz]. It must be first noted that the number of modes so identified varies from 22 to 51,
among which 21 could be paired. If frequencies of these 21 paired eignmodes are identified with satisfactory accuracy, with a
mean and a maximal frequency gaps of 1 % and 2 % respectively (Fig. 17.4), larger discrepancy can be observed on damping
ratios with a mean and a maximal gaps of 24 % and 76 % respectively (Fig. 17.5), with values varying from 0.4 % to 4 %.
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17.8 Conclusion

As a part of the SICODYN funded French research project, an experimental modal benchmark is performed on two
nominally-identical Booster pumps in industrial environment, between five independent teams, whose free choice is let
to determine the number and the type of sensors, the excitation means, the number of excitation points and the modal
identification method. The first objective is to characterize the overall range of measurements. The second objective is to
quantify the effect of some particular control parameters on the observed variability: unit-to-unit and operator variabilities
are so proposed to be addressed. Moreover specific variability relative to the modal identification phase can be quantified
using the same experimental test runs by two independent operators.

Due to differences on experimental meshes, from 27 to 138 measurement points, a SEREP expansion on a finite element
mesh is first performed, allowing the comparison of experimental modal bases. Global variability observed, based on half
paired among identified overall eigenmodes (within 10 % frequency gap and 50 % MAC criteria), shows a 2 % mean
frequency gap and 32 % mean damping ratio gap. Unit-to-unit variability, essentially attributed to different actual bolted
torque levels at component connections and pipe-to-pump connections, and realization of the frame fixation on concrete,
shows 10 % mean frequency gap and 28 % mean damping gap. Specific variability due to modal identification operator,
as a component of the global variability, is still significant with a number of identified modes that varies by a factor of 2;
the so paired modes show 1 % mean frequency gap and 24 % mean damping ratio gap. These quantitative results could be
considered comparatively to those obtained on a portal frame in laboratory conditions [4].

It should be remained that the observed ranges of damping ratio, quite high, are relative to low values; nevertheless this
result is an element that confirms the difficulty to precisely identify this modal characteristic.

Lesson to draw is that the mode pairing operation is quite difficult and generally allows only about half modes to be paired,
if experimentation and identification are performed by different operators. On the contrary, unit-to-unit variability study,
without the operator effect, allows a better pairing of overall eigenmodes. This must be kept in mind when quantification of
variability, in terms of frequency and damping ratio gaps and MAC values, evidently carried out but on the paired modes, is
used in test-analysis or uncertainty purpose.

All the experimental results and the corresponding range are used in Parts 4 and 5 of SICODYN project, respectively con-
cerned with test-analysis correlation and uncertainty quantification. An example is the model identification in computational
stochastic dynamics using experimental modal data [5].
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Chapter 18
Variability of a Bolted Assembly Through an Experimental
Modal Analysis

Sami Daouk, François Louf, Christophe Cluzel, Olivier Dorival, and Laurent Champaney

Abstract Industrial structures are mainly assemblies with complex geometries and non-linear characteristics. Friction and
joint preload added to fabrication imperfections lead to a substantial gap between numerical models and real structures. In
order to develop accurate generic models, it is then necessary to quantify the behavior variability, especially the one related
to the joint conditions. The first part of this paper describes the iterative sizing procedure of an academic assembly which
characteristics may vary depending on several input variables (e.g. value of the bolt torque, number and position of preloaded
bolts, etc.). The properties of the bolted joint were optimized in order to satisfy a set of conditions in terms of tangential
slipping, normal displacement and maximum stress level. The second part concerns the experimental modal analysis of the
assembly. The main purpose is to characterize the relationship that exists between the input variables and the measured
eigenfrequencies and modal damping of the assembly.

Keywords Experimental variability • Bolted joints • Uncertainty quantification • Modal analysis • Modal damping

18.1 Introduction

Mechanical systems are commonly analyzed assuming that the mathematical models are deterministic and the input data
is precisely defined. Nevertheless, in most cases, parameters of the mathematical-mechanical model linked to geometry,
boundary conditions and material properties can neither be identified nor modeled accurately. The need to address data
uncertainties is now clearly recognized, and over the past decades there has been a growing interest in stochastic modeling
and application of probabilistic numerical methods [1, 2].

It is our will to have a better understanding of experimental variability, especially in case of bolted assemblies. In fact, even
though the sources of uncertainties can be well identified, the characterization of their influence on the dynamic behavior is
still not well known. The main objective of this study is then to quantify the influence of joint parameters on the dynamic
response of a bolted joint. Some relevant parameters to be considered are the value of the bolt preload, the number and
position of preloaded bolts and lubrification conditions. To achieve that, it is necessary to have a bolted joint with binding
conditions that can be easily varied. It is clear that a low level of effort in the joint, the variation of the parameters mentioned
earlier will not cause any significant change in the dynamic response of the connection. However, in case of heavy loads,
sliding in the joint may appear in different areas of contact, i.e. the contact between the parts and the contact between bolts
and parts. This sliding will be source of energy dissipation and thus contribute to a variation of eigenfrequencies and modal
damping. However the application of high stress levels in dynamic is not possible with an experimental material of reasonable
size. One interesting solution is to take advantage of the dynamic load amplification at resonance and build parts to store
elastic and kinetic energy and raise the stress levels in the joint. Eccentric masses (kinetic energy) were added and linked
to the bolted joint of interest by long beams (elastic energy). The conversion of kinetic energy into elastic energy from the
masses to the beams enables the transfer of the desired efforts to the central bolted joint.
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The first part of this paper describes the iterative sizing procedure of a bolted assembly which properties were optimized
in order to satisfy a set of conditions in terms of sliding and maximum stress level. The second part presents the experimental
procedure and the first results of an experimental modal analysis of the assembly. The purpose is to find the relationship that
exists between the input variables and the eigenfrequencies and modal damping of the assembly.

18.2 Sizing Procedure

18.2.1 Estimation of Eigenfrequencies and Frequency Responses

The first step in the sizing procedure of the bolted joint is to estimate the first eigenfrequencies of the assembly in free-free
vibrations, in particular the ones associated with bending modes. Considering a structure with cylindrical symmetry, there
will only be symmetric or anti-symmetric modes. The exact values of the eigenfrequencies can be found, but in order to
avoid time-consuming calculations, approximations were made. For this, the Rayleigh quotient method is used assuming a
simple polynomial form of the eigenmode that will lead to an overestimation of the exact desired eigenfrequency.

For instance, Fig. 18.1 shows the simplified model associated to the first eigenmode, i.e. a symmetric bending mode. The
experimental modal analysis will be carried out with free-free boundary conditions, so two rigid body modes are possible in
case of a planar study: a transverse translating movement and a rotation about the out-of-plane axis. If we study a symmetric
mode, there can not be any rotation, which explains the choice of the boundary conditions at x D 0. The remaining degree
of freedom is important: if eliminated, the center of gravity of the deformed configuration will not be the same as that of the
non-deformed configuration, which contradicts an important property of structures vibrating in free-free conditions.

Let Vs;1.x/ be a kinematically admissible displacement field describing the first symmetric bending mode of the structure.
Several forms of the field Vs;1.x/ were considered, such as the sum of a rigid translating mode and a mode deforming the
structure such as Vs;1.x/ D aC x2 or Vs;1.x/ D aC Lx2

2
� x3

6
. For each form, we write the Rayleigh quotient as:

R.Vs;1/ D

Z L

0

EI.V 00
s;1.x//

2dx

Z L

0

�S.Vs;1.x//
2dx C 1

2
ml.Vs;1.0//

2 Cmm.Vs;1.L//
2 C Im.V

0
s;1.L//

2

(18.1)

where E, �, L, S and I are respectively the Young’s modulus, the density, the length, the section and the second moment
of area of the beam; ml is the mass of the central bolted joint of interest; mm is the mass of an eccentric mass and Im its
moment of inertia about an axis passing through its center and orthogonal to the x-axis.

Then we search for the coefficient a that minimises the Rayleigh quotient and then the corresponding eigenfrequency.
The latter is compared to the eigenfrequency of a numerical beam model that has the same geometry, masses, inertia and
material properties. That’s how we can find the best approximate displacement field Vs;1.x/ describing the first eigenmode.
The same procedure is followed for the other eigenmodes of interest.

Once the different eigenmodes of interest are known, it is possible to estimate the frequency response of the structure
at a given forced excitation which maximum is set at 1,000 N in our study case (maximum force level of the shaker used).

Fig. 18.1 Model used to
estimate the first eigenmode
(symmetric bending mode)
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In particular, we seek to estimate the oscillation amplitude at resonance, assuming a low modal damping, but obviously not
zero. When considering the forced vibrations problem in case of a viscoelastic material with low damping, the magnitude of
the amplitude qi .!i / associated to the mode i writes:

jqi .!i /j D F Ui.x0/

!iCi
(18.2)

where !i is the angular eigenfrequency of mode i , F is the magnitude of a punctual harmonic load applied at the point
x D x0 at !i , Ui.x/ is the shape of the eigenmode i (that was approximated previously using the Rayleigh quotient method)
and Ci is the viscous damping coefficient. This relationship is obviously independent of the type of problem (bending,
tension, torsion) so it will be possible to find the amplitude at resonance in all cases of interest.

For instance, in case of the first symmetric bending mode of the structure, we find the magnitude of q.!s;1/ as:

jq.!s;1/j D 4Fml C 5F�SL

8ImlE� C 16ImmE� C 16ILSE��
(18.3)

where the modal damping ratio � has been introduced.
Then the bending moment in the beam around the z-axis at resonance is:

Mz;s;1.x/ D jq.!s;1/jV 00
s;1.x/ D � I.L � x/E.8Fmm C 3F�SL/

8ImlE� C 16ImmE� C 16ILSE��
(18.4)

which leads to the shear force

Qs;1.x/ D jq.!s;1/jV 000
s;1.x/ D � IE.8Fmm C 3F�SL/

8ImlE� C 16ImmE� C 16ILSE��
(18.5)

and the bending normal stress in the beam can be found as:


s;1.x/ D Mz;s;1.x/

I

D

2
D � D.L � x/E.8Fmm C 3F�SL/

2.8ImlE� C 16ImmE� C 16ILSE��/
(18.6)

In our calculations, a modal damping ratio � D 0:2% was considered for all studied modes. This value is relatively low and
leads to a higher estimation of the amplitudes and stress levels, but then the sizing procedure remains conservative.

18.2.2 Optimization of the Design of the Bolted Joint

After estimating the eigenfrequencies and calculating the stress levels in the model, we proceeded to the optimization of the
design of the bolted joint regarding the moments and stresses generated in the beams at resonance. The preload range that
was considered goes from 20 % to 80 % of the yield strength of the screws.

In particular, it is necessary that the joint resists but also works in a significant way at resonance:

• in the preload range considered, we wish to have local backlash in the contact zone between the parts, in the order of
0.05 mm for an average preload ;

• in the preload range considered, we wish to have local sliding between the parts, in the order of 0.005 mm for an average
preload.

The second step of the sizing procedure is then to perform nonlinear static simulations to visualize these effects, and
increase them, if necessary, by changing the geometry. These calculations are performed for a given geometry of the parts of
the bolted joint and for a precise eigenmode. The value of the load is given by the previous step of the sizing procedure. For
instance, in case of the first symmetric bending eigenmode, the load to apply is the bending moment and shear force given
by relations (18.4) and (18.5). A Coulomb friction model without kinetic effects was considered with a coefficient of friction
of 0.2 (steel-steel). In addition to the values of slipping and backlash in the contact zone, it is essential to check the stress
levels in both parts, which may not exceed 400 MPa in order to remain in the elastic range and avoid damaging the parts.
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Fig. 18.2 Optimization
procedure of the design of the
bolted joint

Fig. 18.3 Final design of the assembly

As shown in Fig. 18.2, the last step is the adjustment of the characteristics of the parts in order to reach the desired sliding,
backlash and stress levels, mainly for the first symmetric and anti-symmetric bending eigenmodes. In fact, these modes will
have the most significant effect on the bolted joint. For that, the stiffness, mass and inertia of the parts of the joint are modified
while minimizing the dissipation in the other joints of the assembly, namely between beams and masses, and between parts
of the joint and beams. Figure 18.3 presents the final design of the assembly resulting from the sizing procedure, where 16
bolts can be loaded in the central joint of interest. The assembly has been designed so that the eigenfrequencies are separated
and the first ones associated to bending modes are less than 1 kHz.

The evaluation of the energy dissipated only in the bolted joint can be done by carrying out differential identifications.
That’s why a reference part shown in Fig. 18.4 was designed as a rigid part with a simple geometry of the same length as
the bolted joint under study. It is also mounted to the beams in a similar way and has equal bending and torsion moments of
inertia. Its mass may vary by filling the holes or not in order to be consider the case of eight, twelve or sixteen loaded bolts.

In order to evaluate the dissipation in the bolted joint of interest, the same experiments are carried out on the assembly
with the joint and the assembly with the reference part. When applying the same energy through the shaker, for a given mode,
the difference in the elastic energy of the beams between both assemblies leads to the energy dissipated in the central bolted
joint.
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Fig. 18.4 Reference part built to
evaluate the energy dissipated
only in the bolted joint

18.3 Evaluation of Modal Damping

When the structure is lightly damped, its distribution is almost always not well known, and it is usually necessary to make
an assumption about the distribution. A first method considers that damping is constant depending on the level of vibrations,
which makes it precise in case of a low loading level only. That is mainly due to the fact that experimental control is automatic
and vibrating at the natural frequency is too risky to inject a high load. This approach considers the frequencies fi;1 and fi;2
of the bandwidth at �3 dB of the maximum of the transfer function around the resonant frequency fi . The corresponding
damping ratio �i is the given by the relation:

�i D fi;2 � fi;1
2 fi

(18.7)

Another method is the Specific Damping Capacity  that intends to measure damping for a given deformed shape such as a
modal shape. It is expressed as a ratio of the energy dissipated per cycle and the elastic energy (or energy stored) per cycle:

 D Wd

We

(18.8)

where the dissipated energy Wd can be calculated by summing the power injected in the assembly per cycle as:

Wd D
Z T

0

F:v dt D
Z T

0

F:du (18.9)

F being the effort applied through the shaker and v the velocity of vibrations, and the elastic energy We can be calculated on
both beams as:

We D 2

Z L

0

Mf
2

2 EI
dx in case of bending modes (18.10)

When using this energy ratio to evaluate damping, no assumption is made about the relationship between damping and the
level of vibrations. This measure leads then to a better characterization of modal damping for any loading level in the joint.
The Specific Damping Capacity can be related to the modal damping ratio via the relation:

 i D 4	
�iq
1 � �2i

(18.11)
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18.4 Experimental Procedure

Several experimental tools are needed in order to measure finely the quantities of interest. Single and triaxial accelerometers
were used to measure the natural frequencies of the assembly. The use of accelerometers is also necessary in order to measure
the energy applied through the shaker. Strain gages are another important tool that was used. To evaluate the magnitude of
the efforts in the bolted joint, twenty strain gages were glued on the beams as shown in Fig. 18.5. They were arranged in eight
half bridges (four in the horizontal plane and four in the vertical plane) to measure bending, and one full bridge to measure
torsion. The evaluation of the strain magnitude in the beams leads to the elastic energy of the assembly (mainly stored in the
beams).

The experimental procedure is structured into two parts. First, it is necessary to carry out a modal analysis of the reference
assembly. This will validate that all manipulations and tests that will be carried out are without risk on the joint. In fact, as the
vibration at a natural frequency will result in a dynamic amplification whose magnitude is unknown, an upper bound of the
amplitude of the loads in the joint is needed in order to keep the strain in the elastic range. A second objective of studying the
reference assembly is to have the reference information necessary for the differential identifications of the energy dissipated
in the bolted joint.

The analysis of the reference assembly includes three steps:

• the first step is to determine the eigenfrequencies and eigenmodes under 1 kHz. These quantities are measured for a low
loading level firstly by using a hammer and then through a white noise applied by the shaker,

Fig. 18.5 The reference assembly analyzed in free-free vibrations
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Fig. 18.6 The bolted joint under
study

• the second step is to evaluate modal damping, by using the methods presented in Sect. 18.3. The results of all methods
should be the same in case of light loads,

• the last step is the measurement of the variation of eigenfrequencies and modal damping depending on the applied load.

The second part of the experimental procedure is the study of the dynamic behavior of the bolted joint. At first, we carry
out the same tests performed on the reference assembly. This step is essential to the success of the differential analysis which
includes two aspects:

• the eigenfrequency variation: it could be either linked to the damping variation or to the stiffness variation resulting from
the deformation of the thin support plates of the joint (thickness of 6 mm), as shown in Fig. 18.6.

• the damping variation: it is evaluated by considering the energy variation between both assemblies (the one with the bolted
joint and the reference assembly).

Finally, the modification of joint conditions (e.g. value of the joint preload, number and position of preloaded bolts, : : :)
leads to the characterization of their influence on the dynamic behavior of the joint.

18.5 First Results

The first experimental results presented in Fig. 18.7 show the eigenfrequencies of the reference assembly under 2 kHz. The
values are smaller than the ones of the numerical model, but without a major gap.

The first work was focused on the first eigenfrequency, which is associated to a symmetric bending mode. We noticed
that the value of the eigenfrequency decreases when the load increases. It is hoped that, as the bolt torque and the number of
preloaded bolts increase, the contact becomes more rigid, which leads to an increase of the measured natural frequencies.

18.6 Conclusions and Future Work

The first part of the paper described the iterative sizing procedure of a bolted assembly where the joint conditions may
vary. The properties of the bolted joint were optimized in order to satisfy a set of conditions in terms of tangential
slipping, backlash and maximum stress level. The second part described the methods used to evaluate modal damping
experimentally and presented the experimental procedure. The frequency response function of the reference assembly shows
that the eigenfrequencies are coherent with the numerical model. The future work is firstly to analyze the variation of
eigenfrequencies and modal damping. Then, the modal analysis of assembly with the bolted joint will be performed. The
purpose is to characterize the relationship that exists between the different joint conditions and the measured eigenfrequencies
and modal damping of the assembly.
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Fig. 18.7 The frequency response function of the reference assembly showing the eigenfrequencies under 2 kHz

In the framework of the SICODYN Project [3, 4], initiated in 2012 and carried out till 2016, the experimental modal
analysis will be extended to the case of a booster pump studied within its industrial environment. That would lead to a
better understanding of experimental variability and then to an assessment of the ability of parametric and non-parametric
probabilistic numerical methods to consider and propagate uncertainties in bolted assemblies.

Acknowledgements This work has been carried out in the context of the FUI 2012–2016 SICODYN Project (SImulations credibility via test-
analysis COrrelation and uncertainty quantification in structural DYNamics). The authors would like to gratefully acknowledge the support of the
FUI (Fonds Unique Interministériel).

References

1. Matthies HG, Brenner CE, Bucher CG, Guedes Soares C (1997) Uncertainties in probabilistic numerical analysis of structures and solids-
stochastic finite elements. Struct Saf 19:283–336

2. Schuëller G (2001) Computational stochastic mechanics – recent advances. Comput Struct 79:2225–2234
3. Audebert S (2010) SICODYN international benchmark on dynamic analysis of structure assemblies: variability and numerical-experimental

correlation on an industrial pump. Mech Ind 11(6):439–451
4. Audebert S, Mikchevitch A, Zentner I (2014) SICODYN international benchmark on dynamic analysis of structure assemblies: variability and

numerical-experimental correlation on an industrial pump (part 2). Mech Ind 15:1–17



Chapter 19
Bottom-Up Calibration of an Industrial Pump Model: Toward a Robust
Calibration Paradigm

A. Kuczkowiak, S. Huang, S. Cogan, and M. Ouisse

Abstract The calibration of complex industrial structures using vibration test data is an important step toward improving
the credibility of model-based decisions for a specified application. Meanwhile, the state-of-practice in industry is to use
computer-aided design software that produce very refined finite element meshes thus creating an impractical bottleneck
in the iterative calibration process. This paper illustrates a two level bottom-up approach that requires testing at both the
component and assembled levels. Initially, a global sensitivity analysis is performed on the complete model to rank the
model components in terms of their influence on the quantities of interest. Selected components are then calibrated using
dedicated tests before being integrated as a Craig-Bampton superelement into the global assembly. At the top level, model
calibration is restricted mainly to the component interface properties. Since test data is available only for a single pump, a
deterministic calibration paradigm is applied here. This two level procedure is illustrated on a detailed model of a pump that
is studied in the framework of the French nationally funded project SICODYN. A robust calibration methodology will also
be outlined for future work in order to account for lack of knowledge in the final operational boundary conditions of the
pump.

Keywords Test-analysis correlation • Sensitivity analysis • Craig-Bampton substructuring • Model calibration • SICO-
DYN project

19.1 Introduction

The calibration of complex industrial structures using vibration test data is an important step toward improving the credibility
of model-based decisions for a specified application. This paper is a contribution within the SICODYN project [1], which
is briefly described. The research project SICODYN (SImulations credibility via test-analysis COrrelation and uncertainty
quantification in structural DYNamics) is based on an a complex built-up demonstrator (cf. Figs. 19.1 and 19.2) in industrial
environment : it gathers 13 French partners, both academic and industrial. The idea underlying this project is to provide tools,
based on tested methodologies, to estimate a priori the confidence associated with a dynamical simulation-based prediction.

More precisely, one objective of this project is to obtain credible finite element (FE) model able to predict identified
modal data with a given accuracy. This step is commonly referred to as model calibration [2, 3]. Various calibration strategies
exist:

• Reference basis methods [4, 5]. A class of nonparametric identification methods that solve a constrained optimization
problem to obtain perturbations of the stiffness and mass matrices for the nominal finite element model based on a set
of measured eigensolutions. This kind of method is useful for some limited applications but not within the framework of
Validation and Verification (V&V).

• Deterministic local methods [2, 6]. A class of parametric identification methods that solve a nonlinear constrained
optimization problem to obtain deterministic estimates of local stiffness and mass properties based on a set of measured
eigensolutions. Due to its simplicity, this kind of method is the most conventional approach in model calibration where
fidelity-to-data is optimized.

• Statistical local methods [7, 8]. A class of parametric identification methods that solve a nonlinear constrained
optimization problem to obtain statistical estimates of local stiffness and mass properties based on a set of measured
eigensolutions.
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Fig. 19.1 Built-up demonstrator

Fig. 19.2 CAD demonstrator

• Robust local methods [9]. A class of parametric identification methods that solve a nonlinear constrained optimization
problem to obtain either deterministic or statistical estimates of local stiffness and mass properties based on a set of
measured eigensolutions. A robust satisficing1 approach is adopted to find an adequate compromise between fidelity-to-
data and robustness to lack of knowledge in the system and its environment.

As indicated previously reference basis methods are not suitable for model calibration within the framework of V&V, which is
the preferred framework for demonstrating the credibility of models. Since only a single measurement is available, statistical
local methods can also not be performed. Hence, a deterministic local method is preferred here.2 Meanwhile, the state-of-
practice in industry—and especially here—is to use computer-aided design software that produce very refined finite element
meshes thus creating an impractical bottleneck in the iterative calibration process.

First of all, the present work aims to provide a two level bottom-up calibration approach suitable for dealing with industrial
FE models. At the end, a calibrated FE model capable of predicting the identified modal data—when the pump is not
connected—is found. However, when connected, the structural dynamic behavior will inevitably change. In such cases, can
we to quantify the predictability of calibrated model under untested conditions? Since the answer is not trivial, dedicated
approaches have to be performed. The second objective is to describe a robust calibration strategy in order to emphasize the
tradeoff between fidelity-to-data and robustness-to-uncertainty for further work.

1Contraction between satisfy and suffice. More details can be found pp. 38–39 in [10].
2Robust local methods and theirs possible applications within the framework of the SICODYN project are however discussed at the end of the
paper.
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19.2 FE Model Calibration of an Industrial Pump

19.2.1 Introduction

The model calibration of an industrial pump is detailed in this section. The objective is to obtain a predictive FE model
which is one objective stated within the framework of the SICODYN project. As indicated previously, the SICODYN project
is composed of several partners, each of which have the freedom to propose and apply their preferred strategy. The description
below is the approach proposed by the Department of Applied Mechanics, FEMTO-ST Institute in Besançon, France.

The initial discrepancy between simulation predictions and test data is expressed in Table 19.1 and emphasizes that the
model does not provide an accurate representation of the reality. The model is actually capable of predicting only two
modes. Blank entries in Table 19.1 indicate that the MAC (Modal Assurance Criterion) between numerical and experimental
eigensolutions is below 60 %, rendering a comparison between eigenfrequencies impossible.

19.2.2 Reduced-Order Model (ROM) Construction

The full FE model available contains around 10 million nodes which is unmanageable within a standard calibration
framework. Although one possible solution is to design an efficient fast running model (e.g. a metamodel, see for instance
[11]), the preferred way here is to reduce the FE model: the fixed interface Craig-Bampton substructuring technique [12] is
used. The full FE model includes seven substructures (or superelements), namely: the bearing casing, the bearing support,
the cooling flange, the pump casing, the suction flange, the elbow, and the frame. For each substructure s with Ns dofs, the
basis T.s/ 2 R

Ns�cs is computed:

T.s/ D
h
T.s/G I  .s/

i
; (19.1)

where T.s/G are the static responses to unit displacement at each degrees of freedom (dofs) of interface and  .s/ the natural
modes when the dofs of each interface are assumed to be fixed. The ROM is depicted in Fig. 19.3.

Table 19.1 Discrepancy
between model prediction and
test data before calibration

Mode Test (Hz) Mode Model (Hz) Error (%) MAC (%)

1 76:8 3 98:4 16:4 93:3

2 134:4

3 162

4 211:9 7 189:7 �10:5 60:4

5 233:4

6 251:2

Fig. 19.3 Reduced-order model
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Table 19.2 Accuracy of the ROM

Name
Mass
(kg)

Full 3D model (num-
ber of nodes)

Reduced order model
(number of nodes)

Eigenfrequency
(Hz)

Error
(%)

Bearing casing 19 337;410 111 1,016–1,581 0.5–11.7

Bearing support 123 1;702;818 228 244–883 0.5–4.5

Cooling flange 13 384;324 20 239–1,234 1.5–5.6

Pump casing 951 875;736 114 432–1,310 1.4–7.1

Suction flange 212 480;414 80 566–2,167 2.2–9.2

Elbow 208 1;792;350 47 294–857 0.5–4.1

Frame 788 4;113;240 27 43–210 0.2–1.5

Total 2;314 9;686;292 627

Fig. 19.4 Relative strain energies for each superelement

The accuracy of the ROM is expressed by Table 19.2 where a modal analysis has been performed for each superelement as
well as the full FE model and the reduced one with free-free boundary conditions. Except for the bearing casing, prediction
errors with the ROM are below 10 % while the size of the FE model is drastically reduced, thus improving the feasibility of
the iterative calibration process.

19.2.3 Sensitivity Analysis and Calibration at the Component Level

A sensitivity analysis [13] is then performed in order to rank input variables with respect to their deterministic influence
on features of interest. The relative strain energy is an efficient indicator to assess the impact of modifications on structural
dynamics: the higher this energy for a given superelement, the more sensitive this superelement will be.

Figure 19.4 plots the relative strain energy for each superelement: only few of them seems to be influent. Dedicated test
at the component level are used in order to calibrate only the most influential substructures. For instance, Fig. 19.5 illustrates
the level of correlation between test and model at the component level, namely the bearing support.
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Fig. 19.5 Calibration at the component level

Fig. 19.6 Experimental mesh

19.2.4 Calibration of the ROM at the Assembled Level

Experimental modal data are available at the assembled level and the experimental mesh contains 55 nodes (three dofs/node)
and is depicted in Fig. 19.6. Since the ROM is already constructed, the calibration parameters are either the interface between
superelements or a weighting (non-physical) coefficient for each superelement. Though other cost functions are available for
model calibration (see for instance, the Extended Constitutive Relation Error—ECRE [14]), here a simple and inexpensive
output-based cost function is used. Calibration parameters p� minimize the function

g D
X
�

ˇ̌
!� � ! test

�

ˇ̌
2

C
X
�

ˇ̌
	� � 
	test

�

ˇ̌
2
; (19.2)

where .!�;	�/ and .! test
� ;	test

� / are respectively the calculated and the experimental eigensolutions (taken as the reference)
and 
 is the transformation matrix between the numerical mesh and the experimental one.

Before optimizing g, the active calibration parameters have to be defined. Toward this end, a Morris sensitivity analysis
[15] is performed in order to select the most sensitive variables. Such an approach is a global sensitivity analysis and has the
objective to compute the sensitivity of parameters by calculating several times the elementary effect of each parameter. The
sensitivity indicators are the mean and the standard deviation of the elementary effect. The mean gives information about the
overall influence and the standard deviation indicates if the parameters have a coupling effect with other(s) parameter(s) or
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Fig. 19.7 Morris sensitivity analysis

Table 19.3 Discrepancy
between model prediction and
test data after calibration

Mode Test (Hz) Mode Model (Hz) Error (%) MAC

1 76:8 3 77:3 0:7 91:1

2 134:4 5 133:7 �0:5 75:5

3 162 6 154 �4:9 93:7

4 211:9 7 199:2 �6 92:2

5 233:4 9 214:4 �8 88:8

6 251:2 10 224:8 �10:6 86:0

a non-linear effect. Figure 19.7 plots the mean and the standard deviation of each elementary effect. The selected calibration
parameters are encircled (see Fig. 19.7). One can see that some selected calibration parameters are not very sensitive and
vice versa. For instance, the variable SDESVAR 10 is the frame and its properties are well-known. Hence, a high sensitivity
is not a sufficient criterion to select variable as a calibration parameter. Based on engineering judgment, a variable must be
poorly known in order to be candidate as a calibration parameter. The selected calibration parameters are thus both sensitive
and uncertain.

At the end, this bottom-up calibration yields a predictive FE model. For example, Table 19.3 provides the eigenfrequencies
predicted by the calibrated model as well as theirs relatives errors (in %) when compared to experimental eigenfrequencies
and the corresponding MAC values. This table emphasizes also the good agreement between simulation prediction and test
data after the calibration process.

19.3 Toward a Robust Calibration Paradigm

The proposed calibration strategy was applied on the pump considered without a connection with the piping. More precisely,
the pump is connected to piping: it is the real operational boundary conditions. This real boundary condition are thus not
taken into account in the construction of the FE model and it is well known that this kind of boundary condition strongly
modifies the structural dynamic behavior. Furthermore, such types of connection are extremely difficult to model. One of the
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main reason is that piping can be considered to be flexible and thus contains vibration modes. Furthermore, these types of
connection are variables: pipes are unique in each power plant and thus boundary conditions are not the same in one location
or in another. That is why, these types of connection can reasonably be assumed to be uncertain.

In presence of lack of knowledge, deterministic calibration makes no sense since the calibrated design with the highest
fidelity-to-data (or fidelity-optimal design) strongly depends on (potential) wrong assumption. For instance, if the boundary
conditions of the pump are modeled in two different ways, it is clear that two different fidelity-optimal designs—i.e. both
designs can predict the data with the same fidelity-to-data—could be found. This is directly related by the fact that, during
the calibration process and in presence of uncertainty, calibration parameters are compensating each others [16]. Hence, the
conventional approach that selects the model with the highest fidelity-to-data is not sufficient to demonstrate the credibility of
models. It turns out that exploring robustness in addition to fidelity lends credibility to the model, ensuring model predictions
can be trusted even when lack-of-knowledge in the modeling assumption and/or input parameters result in unforeseen errors
and uncertainties.

Rooted in info-gap theory [10], robust calibration approaches [9] is the preferred way for exploring the robustness-to-
uncertainty. Nevertheless, it has been also demonstrated in [9] that improving both robustness-to-uncertainty and fidelity-to-
data are antagonistic. The inherent antagonistic nature of these components leads to fundamental trade-offs that forms the
basis of the new model calibration paradigm. Typical robust calibration approach is briefly described.

Model predictions can be denoted by

M .p;u/ D y; (19.3)

where p are the calibration parameters (or model input parameters), u the uncertain parameters and y the response feature
of interest. For instance, here, calibration parameters could be the stiffness at the interface between two superelements and
uncertain parameters could be the boundary conditions. The FE model is used to predict eigensolutions, which are the
response features of interest.

The objective is to study the robustness of the model fidelity to experimental data in presence of lack of knowledge in
the boundary conditions. The discrepancy between the simulated eigensolutions and the experimental ones (seen here as the
reference) can be assessed with a metric D.p;u/ defined as the norm of the difference between test data ytest with the results
obtained from the model M .p;u/:

D.p;u/ D ��y � ytest
��
N
; (19.4)

where N is the norm dependent on the type of data that the model predicts. For instance, in the case of the pump, y is a
vector of eigenfrequencies, then the norm N would simply be the `2-norm. Finally, the smaller D.p;u/ is, the better the
model is. Nevertheless, the model is assumed to be predictable when

D.p;u/ � dc; (19.5)

where dc � 0 is the greatest level of discrepancy that can be tolerated.
Info-gap model of uncertainty U .˛;u0/ is used to represent the uncertainty in the system. Hence,

u 2 U .˛;u0/; (19.6)

with ˛ 2 RC the unknown horizon of uncertainty which measures the distance—or the gap—between the estimate u0 and
the whole possibilities in the set U .˛;u0/. Many different info-gap models of uncertainty are available (see pp. 20–30 in
[10]): for instance, the info-gap relative error model is

U .˛;u0/ D fu W
ˇ̌̌
ˇu � u0

u0

ˇ̌̌
ˇ � ˛g: (19.7)

The model of uncertainty U .˛;u0/ is actually an unbounded family of nested convex sets of realizable designs.
The info-gap theory is a decision theory and one of the main feature in this approach is the robustness function Ǫ .

Broadly speaking, the robustness of decision to choose p is the greatest horizon of uncertainty that can be tolerated without
exceeding the critical performance dc . Hence, the robustness function is expressed as a function of the design p and the
critical performance requirement dc . It is written by

Ǫ D Ǫ .p; dc/ D maxf˛ W max
u2U .˛;u0/

M .p;u/ � dcg: (19.8)



186 A. Kuczkowiak et al.

The conventional approach in model calibration methods seeks to maximize solely the fidelity-to-data. Thus, the fidelity-
optimal parameters are obtain by

p� D arg min
p

fM .p;u0/g: (19.9)

Nevertheless, this conventional approach does not take into account the uncertainty in u. On the contrary, robust calibration
approach aims to choose p—the robust parameters—in such a way to minimize the impact of u on the system performance.
For a given tolerable threshold dc , the robust parameters pR are the ones which maximize the robustness function. The
robust-optimal parameters are

pR D arg max
p

f Ǫ .p; dc/g: (19.10)

Initially formulated in [9], the tradeoff between fidelity-to-data and robustness-to-uncertainties expresses that Robustness
improves as fidelity deteriorates. Because the info-gap models of uncertainty have the properties to be nested, the robustness
function is monotonically increasing. Hence, let dc and d 0

c , two different level of fidelity, then:

dc < d
0
c ) Ǫ .p; dc/ � .p; d 0

c/: (19.11)

Equation (19.11) asserts that, for any given model, specified by p, the robustness-to-uncertainties increases as the required
fidelity is relaxed. Typical tradeoffs between fidelity-to-data and robustness-to-uncertainties are emphasized by exploring the
robustness curve. The reader can refer to [17, 18] for various illustrations of robust calibration strategy.

To sum-up, the important steps toward a robust calibration are:

• Construct a metamodel with the objective to replace the functional M ;
• Propose an adequate info-gap model of uncertainty capable of modeling the lack of knowledge in boundary conditions;
• Compute the robustness curves with the objective to study the tradeoffs.

These steps will be performed in order to tackle the robust calibration strategy on the pump, the structure of interest within
the SICODYN project framework.

19.4 Conclusions

The first objective was to provide a two-level bottom-up calibration approach suitable for dealing with industrial FE models.
This approach was illustrated on a pump, the structure of interest within the SICODYN project framework. At the end,
a calibrated FE model capable of predicting the identified modal data was found. Nevertheless, in presence of lack of
knowledge, maximizing solely the fidelity-to-data is not the best way to improve the credibility of the model [9]. The second
objective was to formulate a robust calibration methodology for future work in order to account for lack of knowledge in the
final operational boundary conditions of the pump.
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Chapter 20
Model Validation in Scientific Computing: Considering Robustness
to Non-probabilistic Uncertainty in the Input Parameters

Greg Roche, Saurabh Prabhu, Parker Shields, and Sez Atamturktur

Abstract The origin of the term validation traces to the Latin valere, meaning worth. In the context of scientific computing,
validation aims to determine the worthiness of a model in regard to its support of critical decision making. This determination
of worthiness must occur in the face of unavoidable idealizations in the mathematical representation of the phenomena the
model is intended to represent. These models are often parameterized further complicating the validation problem due to
the need to determine appropriate parameter values for the imperfect mathematical representations. The determination of
worthiness then becomes assessing whether an unavoidably imperfect mathematical model, subjected to poorly known input
parameters, can predict sufficiently well to serve its intended purpose. To achieve this, we herein evaluate the agreement
between a model’s predictions and associated experiments as well as the robustness of this agreement given imperfections
in both the model’s mathematical representation of reality as well as its input parameter values.

Keywords Robustness to uncertainty • Experiment-based validation • Uncertainty quantification • Bounded uncertainty •
Parameter variability

20.1 Introduction

Despite their sophistication, computer models can only provide approximations of the reality they are built to represent. As
the famous declaration of statisticians George Box and Norman Draper reminds us, “all models are wrong, but some are
useful.” Thus, the raison d’etre of a model is not to be a correct representation of reality, but to include sufficient realism
to be useful in decision making. In this paper, we are concerned with assessing the usefulness of mechanistic models which
aid in our understanding of the underlying phenomena. We should therefore consider the three distinct components of the
development process for such models:

(a) the domain in which the problem will be evaluated, typically defined by the control parameters that dictate the
environmental or operational conditions of the system,

(b) the mathematical representation of the underlying processes, also referred to as model form, defined in accordance with
the identified domain,

(c) the input parameters that characterize the properties of the system of interest in accordance with the mathematical
representations.

Proper determination of the domain is one of the key aspects of predictive modeling. The domain of applicability must be
strictly determined based upon what is necessary for decision making as the model’s internal structure will be determined
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according to this domain. Herein, we will conveniently1 assume that the model developer has identified the suitable domain
(item a) and focus our attention on the selection of a model form and its associated parameter values (items b and c).

Item b declares that no model form is a perfect representation of reality. Item b is closely associated with item c and
their close association raises the following question: Should we use parameter values that suitably compensate for the model
form’s imperfectness or rather those that most accurately depict the real parameters? The former is typically what is achieved
by calibrating model parameters against experiments and of course, the latter is only possible if the parameter has a physical,
measurable meaning (i.e. density of a material, geometric dimension, etc.). How should we approach this problem then if a
model’s parameters have no physical meaning, or worse, if those with physical meaning are wrongly excluded during model
idealization?

As seen, a great many complications arise in the selection of input parameters for imperfect model forms while no
universally accepted approach exists to help in their determination. Hence, the only logical way of approaching this problem
is to ensure that the selected mathematical representation (i.e. model form) must not only provide sufficiently accurate
predictions of observable reality,2 but that it must do so given uncertainty in its own parameter values. The capability of a
model form in accommodating parametric uncertainties is termed robustness. A model is said to be robust if a small change
in parameter values results in model predictions that are within acceptable fidelity bounds [1–4]. Models that afford higher
uncertainties while staying robust with respect to the predictions of interest would therefore be preferable.

Section 20.2 of this paper overlays the proposed approach to evaluating fidelity and robustness of model predictions. The
development of a case study application involving the proposed approach is presented in Sect. 20.3. Section 20.4 presents a
discussion of the implications of this approach using the case-study application along with generalizations to a wide range
of practical problems. Finally, Sect. 20.5 concludes the paper and discusses limitations of the proposed approach as well as
the future direction for improvement.

20.2 Methodology

Consider a model with parameters whose variability is represented by bounded uncertainty, defining the model’s parameter
space. If that model is a locally proper, continuous function, then within the bounds of its uncertain parameter space, a small
change in the input parameters around their nominal values will yield a small change in the model’s output. The implication
is that for a compact space of input parameters, the model’s output will be compact (i.e. closed and bounded) (see Fig. 20.1).
The compact input space can be defined for instance by a predefined window of uncertainty around the nominal values.
Within the compact output, we can identify the realizations, which satisfy a certain error tolerance when compared with
experimental observation. Here, we introduce the concept of a satisfying boundary3 that encompasses all the model input
parameter sets which satisfy this prescribed error tolerance. From another perspective, this boundary marks the periphery
beyond which lie combinations of parameter values which yield unacceptable model predictions. This satisfying boundary
is expected to monotonically increase in size as the error tolerance becomes less and less stringent, as shown in Fig. 20.2.

Obviously, the satisfying boundary is strongly dependent upon the model form itself. Hence, among alternative model
forms with the same set of uncertain parameters, the model with a larger satisfying boundary should be preferred as it can
accommodate increased uncertainty in its parameters while meeting the error tolerance requirement. In our study, we build
upon this concept and closely integrate two independent pieces of information: a satisfying boundary that is intrinsic to the
model form and the bounded space that is intrinsic to the uncertain model parameters.

Here, we determine a model’s probability of satisfying a given error tolerance for a given level of uncertainty in its
parameters. Hence, for a given error tolerance and uncertain parameter space, a model’s performance can be quantified by
comparing the parameter values contained within the satisfying boundary to those contained within the uncertain parameter
space. The ratio of points within the satisfying boundary to the total number of values in the uncertain parameter space yields
the model’s probability of satisfying the error tolerance. Figure 20.3 demonstrates such a case for a two-parameter model.

Knowing the satisfying boundary can help determine the impact of parameter uncertainty on the output of a model. For
instance, if 100 % of the parameter value sets within the parameter space are effectively contained within the satisfying

1Note that we have also conveniently assumed that model yields converged solutions within the time and spatial domains and that numerical
uncertainties are of little importance.
2Of course, the observables must be in sufficient quality and quantity to identify the model’s flaws.
3For a model with two parameters, the size of a satisfying boundary would be defined by its area, while for a model with multiple parameters, the
size would be defined by a hypervolume.
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Fig. 20.1 Conceptual figure
showing the mapping from
uncertain parameter space to
output space and the compact
satisfying boundary

Fig. 20.2 A schematic
representation of the satisfying
boundary monotonically
increasing with increasing error
tolerance in the predictions (i.e.,
decreasing fidelity)

Fig. 20.3 Probability of satisfying the error tolerance for a two-parameter model given three distinct parameter spaces are (a) 99 %; (b) 79 %;
and (c) 62 %

boundary, parameter uncertainty can be deemed inconsequential as the model predictions satisfy the error tolerance
requirement regardless of parameter uncertainty. Thus, the model form can be said to be robust and able to make reliable
predictions. However, if this is not the case, then we can resort to quantifying the probability that the model output will satisfy
the error tolerance given the uncertainty of its parameters. If the probability of satisfying is inordinately low, it may indicate
a problem with either (1) the model form or (2) the nominal parameter values suggesting that we must invest in developing
a better model form or in better defining our parameters. Figure 20.4 demonstrates such a case where the probability of
satisfying the error tolerance is 0 %. As the uncertain parameter space expands, some model instances may begin to satisfy
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Fig. 20.4 Conceptual figure
showing the absence of a
satisfying boundary as output
errors fall outside the error
tolerance

Table 20.1 Input values for the
portal frame

Property description Beams and columns

All member lengths (in.) 120

Cross-sectional area (in.2) 4:44

Moment of inertia (in.4) 48:0

Young’s modulus (ksi) 29; 000

the error threshold leading to a counterintuitive increase in probability of satisfying with increasing parameter uncertainty.
Such behavior can point to the imperfections in either the model form or the nominal parameter values.

While parametric uncertainties can be reduced by additional data collection and further analysis, we should first inquire
as to whether a reduction in parameter uncertainty will improve the usefulness of the model. It is logical that if the parameter
uncertainty has only a modest impact on a model’s probability of satisfying a prescribed error tolerance, the dedication
of resources towards reducing such uncertainty would seem frivolous and inefficient. Hence, in our evaluation, we do not
require that a single value be specified for the uncertainty in a model’s input parameters. Instead, an array of differing levels
of uncertainty can be studied to observe how a model’s probability of satisfying the fidelity tolerance changes with varying
levels of parametric uncertainty. Of course, a higher probability of satisfying relates to an increase in the worthiness of a
model for its intended use. Such trade-off analysis allows us to measure the impact of efforts aimed at reducing uncertainty.

20.3 Proof-of-Concept Demonstration: Steel Moment Resisting Frame

In steel frame structures, the connection stiffness values are typically highly uncertain due to the natural variability of material
properties and geometries as well as the construction practices used to erect them [5, 6]. Hence, these parameters are treated
as uncertain parameters to be calibrated within this study.

20.3.1 Description of Frame Structure

The 2-D frame shown in Fig. 20.4 is constructed with vertical columns that rest on fixed supports, while the beams are
rigidly connected to the columns at both levels. The connections at the top of the first story columns are assumed to be
imprecisely known and thus, modeled with uncertain stiffness. Here, the connections are represented with linear rotational
springs. All members of the portal frame have uniform dimensions with the geometric data and material properties provided
in Table 20.1. Static, horizontal loads are applied to the portal frame as shown and the members are oriented to bend about
their strong axes.
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Fig. 20.5 Single-bay, two-story
portal frame with rotational
springs at the top of the first story
columns

Table 20.2 Exact values and
simulation ranges for input
parameters K1 and K2

K1 K2

Exact value 10 10

Lower bound 5 5

Upper bound 15 15

20.3.2 Synthetic Experiments and Competing Model Forms

In the development of the mathematical representation, a number of simplifying assumptions may be established or
idealizations may take place leading to multiple competing model forms. In this section, we demonstrate how the probability
of satisfying the error tolerance can be used to compare three distinct model forms with varying levels of model imperfectness
(i.e. prediction bias).

Experimental data describing the frame’s translation and rotation response at each connection (while subjected to the
loading conditions shown in Fig. 20.5) is synthesized using the so-called exact model built using the Timoshenko beam
theory [7]. This exact model not only accurately accounts for the effects of axial, shear, and flexural deformations but also
uses the nominal values of K1 and K2 (Table 20.1).

Alongside the exact model, two inexact (biased) model forms are built: one that underestimates and one that overestimates
the shear area within the Timoshenko beam matrices. Hence, the two inexact models will inaccurately account for the shear
deformations, while all three models will contain uncertainty as to which values of K1 and K2 are appropriate for the analysis.
These inaccurate and imprecise models will thus result in unavoidable disagreements between predictions and experiments
offering a decision maker three alternative options.

20.4 Assessment of Uncertainties Steel Moment Resisting Frame

20.4.1 Exact Model with Uncertain Input Parameters

The exact values for K1 and K2 as well as the bounds of the parameter space are provided in Table 20.2. For the various
combinations of K1 and K2, the model predictions are compared to the synthetic experimental data to calculate the prediction
error. Here, two outputs of the frame are selected namely the rotation at the first story and the translation at the top story
(marked as Y1 and Y2 respectively in Fig. 20.5). The corresponding prediction error R1 and R2 are the percentage difference
with respect to the exact model. Figure 20.6 illustrates the relationship between the error in the model output (i.e. lack of
fidelity) and the two parameter values.

Subsequently, satisfying boundaries are generated for varying error tolerances, Rc, shown in Fig. 20.7. Rc is varied from
0 % to 5 % prediction error in steps of 0.5 %. In Fig. 20.7, each contour corresponds to an error tolerance level Rc such
that all instances of K1 and K2 that lie within the contour satisfy the error tolerance. As expected of a continuous system,
the satisfying boundaries are nested with their size increasing as error tolerance increases. The model form used in the
development of this figure was “exact,” which is why the nominal parameter values are encompassed within the satisfying
boundaries.
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Fig. 20.6 Three-dimensional representation of prediction errors R1 and R2 in the exact model

Fig. 20.7 Nested sets of satisfying boundaries for increasing levels of error tolerance for the exact frame model for (a) output Y1 and (b) Y2. The
black dot represents the location of the nominal parameter values

20.4.2 Inexact Models with Uncertain Input Parameters

The two inaccurate finite element models studied herein underestimate and overestimate the shear area of the beam and
column elements by 25 % (i.e., 75 and 125 % shear area, respectively). This intentional error is meant to mimic a possible
modeling mistake as it results in biased model predictions. The satisfying boundaries for the two inexact models are shown
in Figs. 20.8 and 20.9.

As seen in Fig. 20.8, the underestimation of shear deformation causes the satisfying boundaries to shift downwards, which
is evident when compared to the corresponding satisfying boundaries obtained from the unbiased model shown in Fig. 20.7.
An important observation we can garner from Fig. 20.7 is that the nominal parameter values represented by the black dot
(K1 D K2 D 10) in Fig. 20.8 are no longer encompassed by the initial (smallest) satisfying boundaries. This is the result of
the inherent bias in the predictions of these two inexact models. Figure 20.9 shows the satisfying boundaries for the frame
model with the shear area overestimated by 25 % and a bias in the opposite direction.
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Fig. 20.8 Nested sets of satisfying boundaries for increasing levels of error tolerance for the biased frame model (25 % lower shear area) for (a)
output Y1 and (b) Y2. The black dot represents the location of the nominal parameter values

Fig. 20.9 Nested sets of satisfying boundaries for increasing levels of error tolerance for the biased frame model (25 % higher shear area) for (a)
output Y1 and (b) Y2. The black dot represents the location of the nominal parameter values

20.4.3 Utilizing the Satisfying Boundaries

The satisfying boundaries for the three competing models (one exact and two inexact) shown in the previous section
are used herein to evaluate the probability of satisfying predefined error tolerances considering the bounds of uncertain
parameter spaces. In this evaluation, multiple parameter spaces that are nested around the nominal values (K1 D K2 D 10)
are considered. These nesting parameter spaces increase in size from 5 to 50 % of their nominal values in steps of 5 % as
show in Fig. 20.10.

This evaluation is repeated for increasing levels of error tolerance throughout a range of 0–5 %, in steps of 0.5 %.
Figure 20.11 displays the relationship between the varying levels of error tolerance in model predictions, the parameter
uncertainty and the subsequent probability that the model satisfies this predefined error tolerance. Since two outputs, namely
the rotation at the first story and the translation at the top story of the steel frame, are considered, the joint probability of
satisfying the error tolerance in both outputs is calculated (see Fig. 20.11).
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Fig. 20.10 Nested parameter
spaces with increasing
uncertainty bounds

Fig. 20.11 Three-dimensional plot showing trade-off between probability of satisfying, error tolerance and parametric uncertainty for the
(a) accurate model, (b) inaccurate model with 25 % underestimated shear area and (c) inaccurate model with 25 % overestimated shear area

It can be observed from Fig. 20.11 that as error tolerance increases so too does the probability of satisfying the error
tolerance. The rate of increase depends on the level of bounded uncertainty. When the uncertainty in the parameters is low,
the probability is observed to increase at a more rapid rate than when the uncertainty in the parameters is high. The light
region in Fig. 20.11 represents the situation where the model is not suitable for its intended use (as defined by the error
tolerance) given the available knowledge (as defined by the parametric uncertainty). On the other hand, the dark region
in Fig. 20.11 represents the situation where the model is a good fit for its intended use. This region is obtained when the
experimental uncertainty approaches lower values and when the error tolerance approaches higher values. The model with the
exact form (Fig. 20.11a) displays larger dark region compared to the two inexact models (Fig. 20.11b, c). Hence, Fig. 20.11
can be used as a diagnostic tool to identify the usefulness of a computer model.

Figure 20.12 depicts the relationship between the probability of satisfying the error tolerance and the error tolerance itself
for 30 % uncertainty in K1 and K2. As can be seen in Fig. 20.12, for an error tolerance of 0 %, the corresponding probability
of satisfying this tolerance is 0 %, meaning that no model form can accommodate the given level of uncertainty and satisfy
the required error tolerance. Only by increasing the error tolerance does the probability of satisfying this tolerance increases.
It can be observed in Fig. 20.12 that the exact model consistently yields a higher probability of satisfying the error tolerance
compared to the two inexact models. Furthermore, exact model’s probability of satisfying the error tolerance increases more
rapidly with error tolerance (higher slope) than the two imperfect models. Although Fig. 20.12 demonstrates this observation
for a constant level of uncertainty, this finding is noted to be valid throughout the entire parameter space evaluated herein.

Figure 20.13 plots probability of satisfying the error threshold of 3 % as a function of uncertainty in the input parameters.
This plot allows the model developer to observe a potential improvement that can be gained in the probability of satisfying
the desired error tolerance by reducing the uncertainty in the input parameters. For instance, if the developer of the exact
model wants to ensure at least 90 % probability of satisfying the 3 % error tolerance, then it is clear that resources must be
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Fig. 20.12 Probability of
satisfying as a function of
prediction error for a 30 %
uncertainty in K1 and K2

Fig. 20.13 Probability of
satisfying as a function of
parameter uncertainty for a
constant error tolerance
(R D 3 %)

allocated to ensure that the uncertainty in the input parameters is lower than 20 %. On the other hand, Fig. 20.13 also shows
that for uncertainty levels of 15 %, the exact model yields predictions that are 100 % within the error tolerance. Hence, from
this figure, a modeler can deduce that allocating resources for reducing uncertainty below 10 % is not justifiable.

Also note in this figure that, for small levels of parameter uncertainty, all three competing model forms yield the same
probability of satisfying the error threshold (i.e. 100 %). Hence, in this particular example, if uncertainty in the parameters
is less than 10 %, attempts to improve model fidelity to reduce model bias are not justifiable. Increased levels of parameter
uncertainty however lead to a reduction in this probability of satisfying the error tolerance and hence the role of bias once
again becomes important. For very high levels of parameter uncertainty, all three models converge to unacceptably low
probabilities of satisfying the error tolerance. Figure 20.13, like Fig. 20.12, can be used as a comparative tool and aid in model
selection. For instance, a decision maker may establish a minimum probability of satisfying requirement and subsequently
evaluate which model performs best given varying degrees of parameter uncertainty.

Alternatively, one can evaluate the relationship between the fidelity of model predictions and parameter uncertainty
for a given probability of satisfying (shown for 80 % in Fig. 20.14). The two inexact models are inadmissible when the
parameter uncertainty is less than 18 %. This can be explained by the fact that, for the biased models, the nominal parameters
lie outside of the satisfying boundary (recall Figs. 20.8 and 20.9) resulting in the parameter spaces corresponding to low
uncertainty falling entirely outside the satisfying boundary. This concept, demonstrated earlier in Fig. 20.4, supplies a means
for diagnosing fundamental flaws in either our model forms or the values associated with the parameters of these model
forms.
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Fig. 20.14 Prediction error as a
function of parameter uncertainty
for a constant probability of
satisfying (Ps D 80 %)

20.5 Conclusion

In numerical modeling, uncertainties arise due to imprecisely-known input parameter values just as biases arise from our
imperfect understanding of the underlying physics. This manuscript has presented a method to evaluate the usefulness of
models for their intended use given the availability of information. This evaluation is completed considering three criteria.
The first criterion, which relates to a model’s intended use, involves the desired fidelity of model predictions to experimental
observation. The second criterion, which relates to the availability of information, concerns how well a model can maintain
these desired fidelity levels given uncertainty in its input parameters. The last criterion combines the first two criteria by
assessing a model’s probability of satisfying a predefined error tolerance requirement.

In this paper, we introduced the concept of a satisfying boundary, which maintains a compact form for proper continuous
functions. Deriving the satisfying boundary of a 2-dimensional model allows us to visually observe the trade-off between
the allowable error in the model predictions and the probability of achieving predictions that indeed satisfy this tolerance
for a given uncertainty in model parameters. This evaluation can be repeated for various levels of parameter uncertainty to
investigate the aforementioned qualities. This process allows us to observe how the model reacts to uncertainty in its input
parameters.

Here, the individual tasked with validating the model must establish certain adequacy criteria regarding the tolerable error
in model predictions or the desired probability of ensuring that the model satisfies this tolerable error. For a given level of
uncertainty, only one of these two criteria need be known or defined, from which the third can then be determined. In these
instances, knowledge of the trade-offs between these two criteria can afford a decision maker useful insight in selecting the
most useful or appropriate values based upon the model’s intended application.

The discussion in this paper is limited to proper continuous functions to ensure compactness of the satisfying boundary.
For our application, satisfying this requirement locally around the nominal values of uncertain parameters is sufficient.
However, relaxing this assumption may result in discontinuous or non-compact satisfying boundaries. Therefore, future
work is necessary to explore this occurrence in hopes of determining its implications and how model validation should occur
in these instances.
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Chapter 21
Robust-Optimal Design Using Multifidelity Models

Kendra Van Buren and François Hemez

Abstract Applications in engineering analysis and design have benefited from the use of numerical models to supplement
or replace the costly design-build-test paradigm. Previous work has acknowledged that design optimization should not only
consider the performance of the model, but also be as insensitive as possible, or robust, to sources of uncertainty that are used
to define the simulation. Clearly, evaluating robustness to sources of uncertainty can be computationally expensive, due to
the number of iterations required at every step of the optimization. Multifidelity techniques have been introduced to mitigate
this computational expense by taking advantage of fast-running lower-fidelity models or emulators. Herein, to achieve robust
design, we argue that it is more effective to reduce the total range of variation in model performance rather than to reduce the
standard deviation of model performances due to uncertainty in calibration variables of the model. We utilize a multifidelity
approach to apply this paradigm to a sub-problem of the NASA Uncertainty Quantification Challenge problem, which is a
high-dimensional and nonlinear MATLAB-based code used to simulate dynamics of remotely operated aircraft developed at
NASA Langley. This method demonstrates an alternative and computationally efficient approach to robust design.

Keywords Robust design • Multi-fidelity optimization • Metamodels • Uncertainty • Info-gap

21.1 Introduction

Numerical models have become accepted to study the behavior of complex phenomena that are difficult or costly to measure
experimentally. As such, numerical models can be used to replace the costly design, build, test cycle by being able to study
the behavior of candidate designs. For example, in wind energy applications, numerical models have been proposed to
study the placement of wind turbines within a wind farm, such that power output can be maximized and fatigue failure due
to wind-to-turbine and turbine-to-turbine interactions can be minimized [1]. Optimization techniques can be exploited to
efficiently search for the best-performing design, however, the added computational cost of performing an optimization often
necessitates the use of a fast-running emulator to expedite the analysis.

Herein, we assume that models are defined using calibration variables, ™, and design parameters, p. Calibration variables
are parameters of the model that are introduced due to modeling assumptions, for example parameters that describe material
strength, such as a linear young’s modulus. Calibration variables will carry some uncertainty because of inherent variability in
manufactured products, and because of our inability to perfectly represent physics in a numerical model. Design parameters
are those that are known, for example the dimensions of a building. It is emphasized that the “best” design is unknown,
however, once a design is chosen the design parameters are known exactly. Thus, the goal of robust design is to find the
design, as defined by the design parameters, p, whose predicted performance is as insensitive as possible to uncertainty
introduced by the calibration variables, ™.

In robust design, it is common for these uncertainties to be described using probability distributions; however, the
formulation of probability distributions can affect the conclusions of the robustness analysis [2]. A typical approach to
probabilistic-based robust design is to assume the form of probability definitions and then minimize the uncertainty, as
described by hyper-parameters of the probability distributions. Which probability distribution (uniform law, normal law,
beta law?) to assume might be a challenging proposition. In some applications it may be more appropriate to apply a
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non-probabilistic methodology if little is known about the actual behavior of the calibration variables, such that unwarranted
assumptions about probability functions are minimized. One such alternative to describe uncertainties is info-gap decision
theory, which does not require the formulation of probability laws if such information is not available [3]. Rather,
uncertainties are treated as a Knightian uncertainty, or info-gap, in which no assumption is made about the shape of the
uncertainty distribution.

There can also be a high computational cost to robust design. The computational expense often arises due to the fact
that the numerical model must be executed several times to explore the variability defined by the uncertain calibration
variables. Exploring the performance of competing designs by optimizing the design parameters, adds another “layer” of
numerical simulations. Often, the high-fidelity, physics-based numerical simulation can be replaced with a mathematical-
based surrogate model, also known as a metamodel (or emulator), that is computationally insignificant to evaluate. It is
emphasized that metamodels offer an additional source of uncertainty when pursuing robust design [4]. In some applications,
there can also exist physics models of varying levels of complexity that can be used to simulate the same phenomena of
interest. It is commonly desired to utilize the physics-based numerical model of highest fidelity, however, this option might
be infeasible due to the computational demands required by the simulation. For these reasons, multi-fidelity approaches
have been proposed, whereby the high-fidelity numerical model is supplemented by simulations from either a lower-fidelity
physics-based model or a mathematical-based surrogate model [5].

Herein, we describe our approach to robust design in which we incorporate our non-probabilistic definition of robustness,
as defined by info-gap decision theory, into a multi-fidelity optimization framework. The remainder of the paper is organized
as follows. In Sect. 21.2 we present our approach to robust design in the context of info-gap decision theory. This approach
is then implemented into the multi-fidelity paradigm, as described in Sect. 21.3. As a proof-of-concept, we demonstrate the
approach on a sub-model of the NASA Challenge Problem, as discussed in Sect. 21.4. The drawbacks of our approach,
avenues for future work, and overall conclusions are summarized in Sect. 21.5.

21.2 Info-Gap Approach to Robust Design

This section provides an overview of info-gap decision theory (IGDT) such that the reader has an understanding for how
robustness is defined in our analysis. Herein, robustness describes the worst-case performance predicted by the model
whereas opportuneness describes the best-case performance. Further details of IGDT and its implementation can be found
in [3] and [6, 7]. We emphasize that a model that is robust to uncertainties is one that can tolerate a high level of uncertainty
with the guarantee of delivering an expected performance. Hence we do not attempt to describe the probability law of
performance, for a given design, using statistical sampling. Instead we search for the worst-case and best-case performances
that meet user-defined performance requirements.

Implementation of IGDT necessitates the combination of three attributes: (i) the model, (ii) the performance criterion,
and (iii) the info-gap model used to represent what is unknown about the decision. As described previously, we assume that
a model is defined by its calibration variables, ™, and design parameters, p. The model represents the relationship between
these inputs and model outputs, y, as described in Eq. 21.1:

y D f . Ip/ : (21.1)

Performance, denoted herein as R, is a scalar quantity used to determine the ability of the model to satisfy a critical
performance value, RC. The performance quantifies the ability of the design to meet an expected performance criterion, for
example maximum deflection due to external loads, as suggested in Eq. 21.2:

R.p/ D y � RC : (21.2)

The uncertainty that we wish to be robust to originates from the uncertain calibration variables. The info-gap model,
U(’; ™0), describes how the uncertain calibration variables, ™, vary with respect to their nominal values or settings.
The nominal values, ™0, denote the best-available knowledge that is used as the starting point of the analysis. The
“distance” between the current knowledge, ™0, and hypothetical settings, ™, which could be selected for decision-making, is
parameterized using a single scalar quantity, ’, denoted as the horizon-of-uncertainty:

U .˛I 0/ D f W k � 0k � ˛g ; ˛ � 0: (21.3)
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Fig. 21.1 Nominal info-gap plot
with opportuneness and
robustness functions
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When ’D 0, the uncertain variables remain fixed at their nominal settings, ™D ™0. As the horizon-of-uncertainty increases,
the calibration variables, ™, are allowed to vary and more settings are taken into consideration. Each setting leads to a
different model that can be evaluated against the performance criterion, as defined in Eq. 21.2. Equation 21.3 shows that, at
a fixed horizon-of-uncertainty, ’, the set U(’; ™0) defines a family of models that can be explored to search for variability in
performance, given the amount “’” of calibration variable uncertainty.

With these three attributes defined, robust design in the context of an info-gap analysis searches for the design that is
defined using calibration variables, ™, that can potentially deviate from the best-available knowledge ™0 by the greatest
amount ’, and simultaneously satisfy the performance criterion of Eq. 21.2. When searching for the worst-case performance,
robustness is achieved if the model can tolerate deviations from its nominal settings, as quantified in Eq. 21.3, while delivering
the expected level of performance, RC, as quantified in Eq. 21.2. Conversely, opportuneness is achieved if the best-case
performance of the model, as it deviates from its nominal settings Eq. 21.3, improves the critical performance level, RC, of
Eq. 21.2.

Conceptually, the robustness, b’, of an info-gap analysis quantifies the degradation of performance as the horizon-of-
uncertainty ’ increases, while the opportuneness,b“, quantifies the potential improvement in performance. Mathematically,
these functions depend on the target critical performance, RC, and are defined as:

b̨D arg max
˛ � 0

�
˛ W max

p 2 U .p0I˛/R.p/ � RC

	
and b̌D arg min

˛ � 0

�
˛ W min

p 2 U .p0I˛/R.p/ � RC

	
: (21.4)

Solving the robustness and opportuneness conditions defined in Eq. 21.4 involves two nested optimization problems.
This can be computationally expensive, especially if large numbers (for example, more than five or six each) of design
parameters, p, and calibration variables, ™, are considered. To bypass this difficulty, we focus on a multi-fidelity approach of
the inner optimization, as discussed further in Sect. 21.3 at a fixed horizon-of-uncertainty ’. The worst-case and best-case
performances are searched for, given that the uncertain calibration variables are allowed to vary within their lower and upper
bounds. Strictly speaking, a critical level of performance, RC, need not be defined when the robustness and opportuneness
functions are explored, as described previously.

A representative info-gap plot is provided in Fig. 21.1, where smaller performance values are more desirable than larger
performance values. As the horizon-of-uncertainty ’ increases, the best-case and worst-case performances start to deviate
from the nominal performance, as demonstrated by the notional shapes of the opportuneness and robustness functions. The
info-gap plot of Fig. 21.1 quantifies, first, by how much model predictions vary and, second, the range of predictions that are
obtained at any given horizon-of-uncertainty.

21.3 Optimization Using Multifidelity Approach

In this section, we discuss how the info-gap concept of Sect. 21.2 is incorporated into the multi-fidelity framework. The
goal is essentially to incorporate into the design optimization a criterion for reducing the range of predicted performance
values at a particular horizon-of-uncertainty, ’. Herein, we place a particular emphasis on reducing the range of predictions,
however, it is easily amenable to incorporate other performance criteria into the optimization. One could elect, for example,
to optimize the mean (average) or worst-case performance given the uncertainty of calibration variables, ™.

The basic paradigm for how the multi-fidelity approach can be applied to a robust design optimization is illustrated in
Fig. 21.2. At any iteration within the robust design optimization, a candidate design, p, is chosen, as indicated by the box
at the top of the figure. To determine the range of performances, which is used to quantify the robustness of the design, an
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Fig. 21.2 Flowchart of the
multi-fidelity optimization
process
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optimization routine is required that searches for the minimum and maximum performances of the candidate design. Clearly,
it is computationally expensive to repeat this optimization for all candidate designs that are evaluated in the optimization
routine. For computational efficiency, a relatively small number of samples of the high-fidelity model is supplemented with a
large number of samples taken using the low-fidelity model, as shown by the boxes in the lower left of Fig. 21.2. This multi-
fidelity step provides a real potential to significantly reduce computational demands, because fewer evaluations of the high-
fidelity model are required. It is emphasized, however, that the multi-fidelity framework can only provide an approximation
of the statistics that would have been obtained if only the high-fidelity model were utilized. The multi-fidelity sampling
provides the information necessary to evaluate the robustness. We then return to the outer optimization loop, where we
decide whether we have converged to the robust-optimal design and therefore terminate, or if a new candidate design is
chosen and the process repeated.

Herein, the multi-fidelity approach implemented in [5] is utilized to approximate the statistic, ŝA, used to define the
performance of a given design. This approximation combines predictions from the high-fidelity model (with a small number
of evaluations) and low-fidelity model (with a large number of evaluations), as shown in Eq. 21.5:

bsA D an C � .bm � bn/ ; m > n: (21.5)

where an indicates estimation of the statistic using n simulation runs from the high-fidelity model, bn and bm indicate
estimation of the statistic using n and m simulation runs from the low-fidelity model, and › is used to control how much
correction we are willing to accept from the low-fidelity model. Herein the statistic, ŝA that we are evaluating is the range
of performance predictions. The high-fidelity model is sampled n times, indicated by the an evaluations, and the low-fidelity
model is sampled at the same n settings as the high-fidelity model, indicated by the bn evaluations. Due to the computational
efficiency of the low-fidelity model, it is sampled an additional m times, indicated by the bm evaluations. Ideally, the number
of times that the low-fidelity model is sampled will be much larger than then the number of times the high-fidelity model
is sampled. It is emphasized however, that there is no guarantee for the global optima of the low-fidelity model to be at the
same location as the high-fidelity model.

21.4 Application to the NASA Uncertainty Quantification Challenge Problem

In this section, we utilize the NASA Uncertainty Quantification Challenge problem to demonstrate our approach to robust
design, as discussed in Sects. 21.2 and 21.3, in a multi-fidelity optimization framework. The NASA challenge problem is used
to describe dynamics of the Generic Transport Model, remotely operated aircraft developed by the NASA Langley Research
Center. The numerical model is provided to us as an executable MatlabTM code that we treat as a black-box problem [8, 9].
Five submodels are used to define the problem. Herein, we demonstrate the multi-fidelity optimization on one submodel of
the problem. The submodel is defined by a total of five variables, three of which we define as calibration variables and two
as design parameters, as indicated in Eq. 21.6:

y D f .1; 2; 3; p1; p2/ : (21.6)
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Fig. 21.3 Monte carlo sampling
results of the submodel output

Fig. 21.4 Goodness of fit of the
polynomial emulator to the
NASA subproblem

In accordance with the discussion in Sects. 21.2 and 21.3, we wish to optimize the pair of design parameters (p1; p2) to search
for the design that meets the user-defined performance requirement, RC, while being as robust as possible to the uncertainty
defined for the triplet of calibration variables (™1; ™2; ™3). Monte Carlo sampling of the model demonstrates that the model
output is highly nonlinear, as shown in Fig. 21.3. The vertical black lines indicate the mean and ˙ one standard deviation
range of the output. The grey region indicates the model output that has entered the failure domain, as defined by the NASA
challenge problem moderators. The main takeaway message of Fig. 21.3 is that there is no guarantee that the model output
can be accurately described by its mean and standard deviation, or any other type of commonly used probability distribution
function. This observed nonlinearity further motivates the need to optimize the robustness of the model through use of the
overall range of predictions obtained in the model output.

A polynomial emulator of the model is developed to be utilized as the low-fidelity counterpart in the multi-fidelity
optimization. We use a third order polynomial model of the five variables (p1; p2; ™1; ™2; ™3), trained using 243 runs of the
high-fidelity model from a five-level full factorial design. The goodness-of-fit of the emulator is shown in Fig. 21.4, whereby
the predictions of the polynomial emulator are plotted with respect to the x-axis, and the predictions of the submodel of
the NASA problem are plotted on the y-axis. The black, dashed line plotted on the 45-degree diagonal represents what the
comparison would look like if there were perfect agreement between the emulator and the NASA submodel. In this case
however, the emulator is only able to capture some of the global trends of the NASA submodel. While this may not be the
best-possible goodness-of-fit, it is representative of the fact that a low-fidelity model is not guaranteed to accurately capture
the behavior of a high-fidelity model. The goal here is not to find the best-fit emulator for the challenge problem, but rather
to see how well the multi-fidelity optimization works when an emulator that captures the overall trend of the model is used
to supplement the numerical model calculations.

We perform an unconstrained optimization, meaning that we attempt to find the design with the least amount of variability
regardless of the response. Constraints can be easily added to the procedure such that other design requirements, for
example minimum deflection or stresses, are also met. Because the NASA submodel is relatively cheap to execute, a
global optimization search using only the high-fidelity model is also performed to search for the robust-optimal design.
A comparison of the two designs, obtained either by direct optimization of the high-fidelity model or through the multifidelity
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Fig. 21.5 Info-gap robustness of
the robust-optimal models
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Fig. 21.6 Monte carlo sampling of the uncertain calibration variables plotted against p1 (left) and p2 (right)

optimization procedure, is given in Fig. 21.5. The figure shows the robustness functions of the two design optimization
strategies. Each robustness function maps the variability of design performance (horizontal axis) as the three calibration
variables deviate more-and-more from their nominal values (vertical axis). As expected, there is less variability in the model
output of the design obtained through direct optimization of the high-fidelity model than there is with the design provided by
the multi-fidelity framework. This is to be expected due to the fact that optimization utilizing only the high-fidelity model is
more likely to converge to the global optimum.

Monte Carlo sampling of the uncertain calibration variables is performed next to investigate the behavior of the model
and understand why the robust-optimal designs obtained using the multi-fidelity and high-fidelity optimizations behave
differently. The variation of predictions with respect to the two design parameters are plotted in Fig. 21.6, with the first
design parameter, p1, shown on the left and the second design parameter, p2, shown on the right. Each black dot represents
a performance predicted by the model of Eq. 21.6 for a given set of design parameters (p1; p2), and when the triplet of
calibration variables (™1; ™2; ™3) is “sampled.” The vertical green dashed lines indicate the design parameter values obtained
through the multi-fidelity optimization, and the vertical blue solid lines indicate the design parameter values obtained through
the optimization that utilizes only the high-fidelity model. It is shown that the optimization using only the high-fidelity model
is able to converge to the global optimum, as evidenced by the reduced range of variability in the scatter. The multi-fidelity
approach, however, comes close but is unable to accurately identify the global optimum. This finding clearly shows the
difficulty of the multi-fidelity optimization to converge to the global optima. We believe that the explanation for this difficulty,
in addition to relying on the approximated statistic given in Eq. 21.5, is the fact that the low-fidelity surrogate model is not
an accurate representation of the high-fidelity model, as evidenced in Fig. 21.4.
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21.5 Conclusions

This manuscript discusses a multifidelity approach to robust design whereby we utilize a non-probabilistic robustness
criterion as defined by info-gap decision theory. In doing so, the uncertainty in design parameters is treated differently
from the uncertainty in the calibration variables. Whereas design parameters are uncertain because the “best” design is
unknown, calibration variables are uncertain because of inherent variability. Thus, the goal is to identify the robust-optimal
design whose predicted performance is as insensitive as possible to uncertainties in the calibration variables. We do not
seek a design that delivers the absolute “best” performance, rather, one that delivers a performance which meets the user-
defined requirement while being as insensitive, or robust, as possible to the calibration variable uncertainty. Herein, we define
our robustness criterion in the context of info-gap decision theory. In doing so, we remove the need for any unwarranted
assumption about the formulation of probability distribution functions used to describe uncertainty in the problem. The
robustness criterion is incorporated into a multifidelity approach to optimization, which has the potential to significantly
reduce the cost of a robust design optimization.

Our approach is demonstrated on a submodel of the NASA Uncertainty Quantification Challenge problem. It is shown
through Monte Carlo sampling that the model output is highly nonlinear, and that it would be potentially misleading to
describe its uncertainty by its mean and standard deviation. Utilized in the analysis is the original physics-based code to
represent our high-fidelity model, and a polynomial-based emulator used to represent the low-fidelity model. We demonstrate
that using an optimization procedure of the high-fidelity model only is able to converge to the global maximum of the
optimization, however, the multi-fidelity approach is unable to do so with a similar level of accuracy. This is likely due to
the fact that there is no guarantee that the global minimum of our low-fidelity model will match the global minimum of the
high-fidelity model. For applications where the low-fidelity model is a fast running mathematical surrogate, not necessarily
grounded in physics, it is obvious that the high-fidelity model is more trustworthy. However, in applications where the low-
fidelity model is based on physics principles, it may be unclear which model should be trusted more. How to efficiently
combine the predictions of low-fidelity and high-fidelity models based on their respective levels of trustworthiness, is a
direction of research that warrants more work in the future.

Future work includes extending the analysis to an application whereby the low-fidelity model is a physics-based model
rather than a mathematical surrogate. Further, we would like to extend the current analysis to cases where the calibration
space of the high-fidelity model is of a different nature than the calibration space of the low-fidelity model. Addressing
these topics should help demonstrate further the potential that a multifidelity simulation approach offers for uncertainty
quantification and robust design.
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Chapter 22
Robust Modal Test Design Under Epistemic Model Uncertainties

Fabien Maugan, Scott Cogan, Emmanuel Foltête, and Aurélien Hot

Abstract A wide variety of model-based modal test design methodologies have been developed over the past two decades
using a non-validated baseline model of the structure of interest. Due to the presence of lack of knowledge, this process can
lead to less than optimal distributions of sensors and exciters due to the discrepancy between the model and the prototype
behaviors. More recent strategies take into account statistical variability in model parameters but the results depend strongly
on the hypothesized distributions.

This paper provides a decision making tool using a robust satisficing approach that provides a better understanding of the
trade-off between the performance of the test design and its robustness to model form errors and associated imprecisions. The
latter will be represented as an info-gap model and the proposed methodology seeks a sensor distribution that will satisfy
a given design performance while tolerating a specified degree of modeling error. The evolution of this performance for
increasing horizons of uncertainty is an important information for the test planner in choosing the total number of sensors.

Keywords Sensor placement • Robustness • Info-gap • Uncertainty • Lack of knowledge

22.1 Introduction

The increasing size and complexity of spacecraft structures make it necessary to plan base excitation tests in view of
performing a modal identification. This can be particularly important when the identified behaviors are to be used in test-
analysis correlation or model calibration procedures. The performance of a test design is generally measured in terms of its
ability to excite and observe the target modes of interest.

Therefore in the past three decades, a wide variety of deterministic model-based strategies have been developed to
define an optimal configuration of sensors and actuators. In most cases, an optimal design is one which provides the best
observability and distinguishability of the identified eigenmodes. For example, methodologies based on the Guyan reduction
[10, 11], the effective independence criteria [8], the constraint energy of the structure [7], the QR decomposition of the modal
matrix [13] or the Orthogonal Maximum Sequence (OMS) [3].

Improvements in computing resources and an increased awareness of the importance of uncertainties in engineering
decision-making has given arise to stochastic approaches such as presented in [1] based on residuals, in [12] using the
entropy, or in [5] where classical sensor location methodologies are employed to examine the influence of parametric
uncertainties. However, these methodologies are not necessarily well adapted to lack of knowledge in the finite element
model resulting, for example, from poorly understood behavior laws, neglected physics, or other commonly encountered
sources of ignorance. Indeed, model-based test design is generally based on non-validated finite element models. In the
space industry, the structural FEM is generally composed of different subsystems models provided by the subcontractors.
All of these models have different degrees of accuracy in modeling the true hardware behavior and this situation often leads
to significant errors in the predicted modal forms due to poorly estimated stiffness, mass and damping properties. The impact
of these errors on the modal properties of the structure are discussed in [9], and various solutions have been proposed to
propagate uncertainties through the finite element model in order to determine the corresponding uncertainties in the modal
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properties [2, 4]. A robust sensor placement methodology accounted for imprecise parameter estimations was proposed [15].
This paper takes a second look at this robust satisficing methodology and proposes a more efficient approach for selecting
sensor degrees of freedom.

22.2 Robust Test Design Methodology

It is widely recognized that random uncertainties in a system and its environment must be taken into account in most
engineering design processes [14] and an overview of robust design strategies in structural dynamics can be found in [16].
However, uncertainty can arise in many forms and modeling errors are not necessarily random in nature. For example,
errors in model form or imprecise parameter values often require non-probabilistic approaches to be accounted for correctly.
Moreover, the concept of robust design is not restricted exclusively to structural design, it is also a useful concept in the
development of algorithms. In the following, we seek to define a new strategy in order to maximize the robustness of a
model-based sensor placement design for vibration tests to errors in the finite element model.

A sensor distribution should be able to observe and distinguish the set of target structural eigenmodes. In a standard
deterministic approach, a single modal basis of the baseline model is used. In what follows, an approached based on a set
of model bases will be used all of which are realizations consistent with the assumed modeling errors. The first step is to
obtain these modal bases consists in establishing a model linking the unknown model inputs with the target eigenmodes of
the structure :

M.mi / D ˆi (22.1)

In order to account for model uncertainties, the approach adopted here consists in sampling the uncertain model design
space to generate a set of modal bases ˆ such as ˆ D Œˆ1; � � � ; ˆN � by running N times the finite element model. Within
the framework of the info-gap theory, this sampling must be done following an uncertain model U �˛;m.0/

�
where m is the

vector of uncertain parameters, m.0/ is the nominal parameter values, and ˛ the horizon of uncertainty. This model must
represent the physics of the parameter uncertainty and define an interval in the uncertain design space where the unknown
parameters are allowed to vary. In the context of this paper, a simple envelope-bound model is used:

U
�
˛;m.0/

�
D
n
m W

ˇ̌
ˇmi � m.0/

i

ˇ̌
ˇ < ˛wim

.0/
i ; i D 1; : : : ; p

o
(22.2)

Once the sample is computed, the target behaviors of the uncertain system responses must be extracted. For this purpose,
a Singular Value Decomposition (SVD) [6] of theˆmatrix is performed such as U†V T D ˆ. The results are three matrices
which can be describe in a mechanical way by:

• U : orthogonal matrix containing the left singular vectors that are the singular directions, also called proper orthogonal
modes (POM)

• † : pseudo-diagonal matrix containing the singular values, also called proper orthogonal values (POV) and linked to the
POM energy

• V : orthogonal matrix containing the right singular vectors, temporal modulation of POMs

The singular values given by this decomposition allows to build a reduced but representative subspace to model the system
by only choosing the higher singular values and there corresponding singular vectors. If the modeling errors have only a
weak impact on the structural behavior, then this subspace will not doubt be reduced to the baseline eigenmodes. However,
as uncertainty increases the realizable modal space can become richer. If the discrepancy between the baseline modes and
the modified ones is large enough, the subspace will gain new vectors in order to take into account this new behaviors. The
dimension of this subspace conditions the number of points to instrument with sensors in order to observe all the linear
independent phenomena.

The reduced problem can be written as:

�
UT
r �K � Ur � !2�U T

r �M � Ur
� � c� D 0 (22.3)

Where Ur is composed of the selected singular vectors of U . Solving the above system yields an approximation to the
eigensolutions of the system .K � !�M/'� D 0.
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This new system produces a reduced modal basis Q̂ which contains the main behaviors the structure can adopt for a
given horizon of uncertainty. The robust sensor distribution methodology must then find the locations that maximize the
identification and the distinguishability within this modal space. That is why Q̂ will be decomposed by QR algorithm such as
QR D Q̂ T E in order to find the optimal sensor distribution. This kind of decomposition has already been used to determine
test design [13] but is here directly applied on the selected subspace given by the SVD. The QR decomposition is performed
on Q̂ T and yields:

• Q : orthogonal matrix
• R : rectangular up matrix
• E : permutation matrix

The question is now how to assess the robustness to lack of knowledge in the finite element model of the sensor distribution.
A useful figure of merit is based on the distinguishability of the eigenmodes corresponding to a given eigenbasis realization.
Qualitatively, a set of eigenmodes is considered to be distinguishable when no single eigenvector can be written as a linear
combination of the remaining eigenvectors in the basis. In [15] the distinguishability of an eigenbasis is quantified thanks
to the condition number of the sensor matrix ˆs , which is the modal matrix reduced to the degrees of freedom attached to
a sensor. Indeed, distinguishability improves with decreasing condition number. The performance requirement can be then
define as the maximal condition number of the sensor matrix tested on all the sampled modal basis for a given horizon of
uncertainty must be below a limit �c .

max .cond.ˆs// � �c (22.4)

The robustness function determination can easily be deduced from the performance requirement by looping on the horizon
of uncertainty. These curves are a very useful decision making tool which allows to compare the evolution of the robustness
of different designs.

Q̨ D max

(
˛ ; max

m2U.˛;m0/
.cond .ˆs// � �c

)
(22.5)

22.3 Numerical Applications

The previously described methodology will now be illustrated on a fixed-free beam of steel with a 50 mm per 50 mm section
and a total length of 1 m. At the middle of this simple beam is added a 1 kg lumped mass which will modify the baseline
modes of the structure. Two test cases will be investigation: the first introduces uncertainty in the value of the lumped mass
while the second introduces uncertainty in its location.

In the first test case, the uncertainty will only concern the value of the mass (m D m) which is allowed to vary between
0.1 and 10 times its initial value in order to obtain at one extreme a classical fixed-free beam behavior without added mass
and at the other extreme, an approximately clamped condition at the mass point. The corresponding uncertainty model is
indicated in Eq. (22.6) with ˛ between 0 end 9 and is based on a modified form of the envelope-bound model:

m 2 U �˛;m0
� D

n
m W m0

�
1 � ˛

10

�
� m � m0 .1C ˛/

o
(22.6)

The advantages of this structure are the absence of local modes, the presence of both bending and longitudinal modes, and
the smoothness of the evolution in its behavior even for severe horizons of uncertainty.

In the second test case, the uncertainty will be applied to the location of the mass on the beam (m D mx) which is closer
to future industrial applications. In a practical way, the mass is here connected to the beam center thanks to a rigid link. The
maximal authorized uncertainty is 10 cm from the initial position, that can represent the uncertainty in an equipment position
in the very early phases of a structure design. The model of uncertainty is based on the envelope bound model available in
Eq. (22.7). This new configuration will create strongly altered modes for bending modes at high horizons of uncertainty, and
show the interest of a robust approach of a test design.

mx 2 U �˛;m0
x

� D ˚
mx W m0

x .1 � ˛/ � mx � m0
x .1C ˛/

�
(22.7)
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Fig. 22.1 Variation in deformed shapes

22.3.1 First Test Case

22.3.1.1 Modal Basis Sampling

In order to efficiently explore the uncertain design space in order to generate a set of realizations for the modal bases, the
sampling will be performed through a Monte-Carlo approach with a logarithmic repartition. In Fig. 22.1 the dispersion in the
deformed shapes due to the variation of the mass value is shown for the first ten modes of the structure and with the maximal
allowed horizon of uncertainty (˛ D 9). The first two longitudinal modes are retained in this study and correspond to modes
4 and 8. We confirm that the variations in mass have a more significant impact on the displacement fields when located near
a crest of the baseline modes.

22.3.1.2 Singular Value Decomposition

The SVD of this sample yields the distribution of singular values presented in Fig. 22.2. The reduction of the system must
be made by selecting the largest singular values. The chosen criteria is that the ratio between a given value and the largest
singular value must be above 10�5, which is a common threshold in methodologies using SVD. In the present case, 15
singular values are retained while the sampling is performed on modal basis containing only ten modes. The corresponding
singular vectors will be used to define the reduced problem (see Eq. (22.3)).

This new system produces a reduced modal basis Q̂ synthesizing the response of the unknown system. In Fig. 22.3, the 15
eigenmodes of the reduced system are compared to the first 15 natural modes of the structure and we note that the reduced
model reproduces the first 13 structural modes. The remaining reduced modes are due to the discrepancies in the first 13
baseline modes.

22.3.1.3 QR Decomposition

The results from the SVD provide a subspace of realizable system behaviors for a given horizon of uncertainty. The QR
decomposition is then used to select the optimal sensor locations which corresponds to the subset of model degrees of
freedom yielding the most linearly independent modal submatrix. Figure 22.4 shows the result of this placement procedure
for the test structure, once again for the maximum horizon of uncertainty. In this case, the observation of the ten first modes
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Fig. 22.2 Singular values profile
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Fig. 22.3 Comparison between reduced modes (plus sign) and natural modes (open circle) eigenfrequencies (a) MAC between reduced modes
and natural modes (b)

over the uncertain design space requires fifteen sensors. Eleven of them are along the Y direction in order to observe the
bending modes while the remaining sensors are along the X direction.

22.3.1.4 Robustness Curves

Once the methodology to obtain the sensor distribution for a given horizon of uncertainty is established, the robustness curves
can be computed by looping over the horizon of uncertainty and determining the modal basis among the available samples
that maximizes the condition number of the sensor matrix.

The results are presented in Fig. 22.5. In (a), the robustness curves are obtained under various conditions. The two curves
without markers delimit the domain of robustness. The dashed one represents the robustness computed with a sensor placed
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Fig. 22.4 Sensor placement

0 50 100 150 200
Node number

0 50 100 150 200

0

1

2

3

4

5

6

7

8

9

Node number

H
or

iz
on

 o
f u

nc
er

ta
in

ty
a b

2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

Sensor condition number maximum

H
or

iz
on

 o
f u

nc
er

ta
in

ty
 in

di
ce

Fig. 22.5 Robustness curves (a) sensor locations (b)

at each translational degree of freedom of the structure and is used here as a reference. The solid black curve is computed
only with ten sensors obtained using the deterministic algorithm with a horizon of uncertainty of 0. Intermediate behaviors
are shown with the curves with open circle and cross markers obtained for singular value thresholds of 10�5 and a 10�7
respectively. As expected, the design yielding the greatest number of sensors (cross markers) is the more robust. The last
thing to highlight in the graph is the fact that the three solid curves begin at the same point. This is due to the fact that at zero
horizon of uncertainty, the methodology yields exactly the same design as the deterministic design solution. In (b) the sensor
distributions given by the methodology for several horizon of uncertainty are shown, with the same color code than Fig. 22.4.
As previously explained, without lack of knowledge, ten sensors are enough to observe the beam oscillations. New sensors
are then added with increasing uncertainty up to a horizon of uncertainty equal to 3. Beyond this value, no improvement in
the design is obtained by adding additional sensors while maintaining the same threshold criteria.
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22.3.2 Second Test Case

The second test case studies the impact of uncertainty in the location of the lumped mass. As seen in Fig. 22.6 mode shapes
can change significantly for more severe horizons of uncertainty. For example, the modes six and seven (graph 10) and eight
and nine (graph 11) for severe uncertainty are drawn separately for the sake of readability. The methodology is applied here
only to the first nine bending modes of the structure.

The resulting robustness curves are shown in Fig. 22.7. The solid black curve corresponds to a deterministic sensor design
and the sudden change in slope at approximately 7 % uncertainty is due to the appearance of strongly modified mode shapes.
The dashed black curve corresponds to the robust sensor design for each horizon of uncertainty and it is seen that the sensor
distribution evolves efficiently with respect to the deterministic design to account for new behaviors.
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Fig. 22.6 Dispersion due to mass location

Fig. 22.7 Robustness curves
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22.4 Conclusion

A global methodology for preparing a robust vibration test design with respect to epistemic model uncertainties has been
proposed where lack of knowledge has been represented in the framework of the info-gap decision theory. The proposed
robust satisficing approach can include a wide range of modeling errors since it is based on a set of modal bases representing
different horizons of uncertainty. These methodology combines the singular value and QR decompositions to yield an
efficient sensor placement technique applicable in an industrial context. Further work will aim at extending the approach
to implicitly include triaxial sensors.
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Chapter 23
Clustered Parameters of Calibrated Models When Considering
Both Fidelity and Robustness

Sez Atamturktur, Garrison Stevens, and Yuting Cheng

Abstract In computer modeling, errors and uncertainties inevitably arise due to the mathematical idealization of physical
processes stemming from insufficient knowledge regarding accurate model forms as well as the precise values of input
parameters. While these errors and uncertainties are quantifiable, compensations between them can lead to multiple model
forms and input parameter sets exhibiting a similar level of agreement with available experimental observations. Such non-
uniqueness makes the selection of a single, best computer model (i.e. model form and values for its associate parameters)
unjustifiable. Therefore, it becomes necessary to evaluate model performance based not only on the fidelity of the predictions
to available experiments but also on a model’s ability to sustain such fidelity given the incompleteness of knowledge
regarding the model itself, such an ability will herein be referred to as robustness. In this paper, the authors present a multi-
objective approach to model calibration that accounts for not only the model’s fidelity to experiments but also its robustness
to incomplete knowledge. With two conflicting objectives, the multi-objective model calibration results in a family of non-
dominated solutions exhibiting varying levels of fidelity and robustness effectively forming a Pareto front. The Pareto front
solutions can be grouped depending on their nature of compromise between the two objectives, which can in turn help
determine clusters in the parameter domain. The knowledge of these clusters can shed light on the nature of compensations
as well as aid in the inference of uncertain input parameters. To demonstrate the feasibility and application of this new
approach, we consider the computer model of a structural steel frame with uncertain connection stiffness parameters under
static loading conditions.

Keywords Model calibration • Info-gap decision theory • Non-dominated sorting genetic algorithm (NSGA-II) •
K-means clustering • Multi-objective optimization

23.1 Introduction

Regardless of sophistication and extent of detail included, computer models at best approximate the segment of reality they
are built to represent. Thus, the use of computer models for decision making mandates that the validity (i.e. worthiness)
of model predictions be assessed. Traditionally, this process has solely focused on the fidelity of model predictions to
experiments. However, when evaluated according to a fidelity metric alone, compensations between uncertainties and errors
that originate from various sources during the model development process can inflate the apparent capabilities of inferior
models. Such compensations can lead to multiple models yielding predictions of similar fidelity to the available experiments,
widely referred to as non-uniqueness [1].

Non-uniqueness occurs when an incorrectly assigned parameter value compensates for another incorrect parameter value
or acts to offset model bias. Compensations between parameters may occur when correlated parameters are calibrated
simultaneously (which can be prevented by calibrating each parameter using an independent observable) or when available
experimental observations are insufficient (which can be alleviated by further data collection). Compensations may also
result from the definitions of the test-analysis correlation metrics, for instance when errors in predictions of multiple outputs
are lumped together in one metric. In such situations, considering errors in each of the outputs separately might be useful
in determining what role compensations play during model calibration. Compensations might also be due to the inherent
imperfectness of model form in that the model parameters might be calibrated to values that counter the model bias. In such
situations, explicitly considering the model bias through the training of an independent error model can alleviate the problem.
Oftentimes, all of these factors take place in varying degrees making it difficult to come up with one overarching solution.
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These compensations during parameter calibration make it difficult (and in fact, unjustifiable) to select one set of calibrated
parameter values. This difficulty can be alleviated by ensuring the robustness of a model’s fidelity against uncertainty in the
calibrated input parameters. Robustness in model predictions, as defined by the info-gap decision theory, means that the
model predictions reproduce observables within a predefined fidelity threshold even when the inherent uncertainties are
considered. Hence, what might be a viable approach to address the difficulties model calibration faces due to compensations
is to seek parameter value sets that not only yield a satisfying level of agreement with observations but also do so while being
able to accommodate variability in their own imperfectness.

The above statement effectively converts model calibration into a multi-objective problem with two conflicting objectives
(see Ben-Haim and Hemez [2] for a discussion on the conflicting nature of fidelity and robustness), in which one objective
cannot be improved without compromising the other. Accordingly, in this study, model calibration is treated as a multi-
objective problem by considering both the model’s fidelity to measurements and robustness of this fidelity to parameter
uncertainty. Multi-objective optimization supplies a family of plausible solutions each with a different compromise between
the conflicting objectives, known as Pareto front, which visually displays the trade-off between these two conflicting
objectives.

The shape of the Pareto front depends on the nature of the optimization problem. Herein, the desired outcome for
the robustness objective (horizon of uncertainty) is the larger-the-better and the outcome for the fidelity objective (error
threshold) is the smaller-the-better, which leads to a monotonically increasing Pareto front. Such Pareto front shapes tend to
have distinct regions depending on the nature of the compromise between objectives: regions where gains and losses between
objectives are not balanced (gaining in one objective implies a significant loss in the other) and a region where gains and
losses between objectives are balanced. These distinct regions on the Pareto front tend to be associated with distinct clusters
in the input parameter space. Knowing the distribution of input parameters in the input space can allow (i) the modeler to
evaluate the extent of the compensation between model input parameters and (ii) aid in the decisions regarding the inferred
parameter values.

This paper is organized as follows. Section 23.2 provides a background review of earlier reported studies in which
clustering of Pareto optimal solutions is evaluated. Section 23.3 presents a discussion on the multi-objective model calibration
integrated with clustering algorithms as well as an overview of the algorithms implemented for both multi-objective
optimization and clustering. Section 23.4 illustrates its application by means of a case study of a two bay, two story steel
moment resisting frame with imprecisely known connection parameters. Section 23.5 concludes the study by overviewing
both the contributions and limitations of the proposed methodology.

23.2 Background Review

Cluster analysis divides a dataset into distinct groups, referred to as “clusters,” where data points within a cluster are similar
to one another and different from the data points of other clusters. Clustering is used to discover hidden “structures” within a
given set of data. Cluster analysis identifies patterns among data points to group similar data together, revealing relationships
in the data that were previously unknown. Analyzing the data in clusters helps to outline hidden correlations within the
system at hand. Furthermore, revealing relationships in the system informs decision makers who need extensive knowledge
of the system to implement it for its intended use. Cluster analysis is widely used in many fields, such as data mining [3],
exploratory data analysis [4] and vector quantization [5].

Cluster analysis has previously been used to cluster Pareto optimum solutions to aid in the selection of a single optimum
solution (especially when the Pareto front contains a larger number of solutions). For instance, Zio and Bazzo [6] proposed
a two-steps procedure to reduce the number of optimal solutions in the Pareto front. In their study, a subtractive clustering
algorithm is used to cluster the solutions into “families.” For each family, a “head of the family” is selected to effectively
reduce the number of possible solutions on the Pareto front aiding the decision making process. Finally, they represented
and analyzed the reduced Pareto front by Level diagrams. Veerappa and Letier [10] implemented a hierarchical clustering
method and clustered the Pareto optimal solutions based on the cost-weighted Jaccard distance function for cost-value based
requirements selection problem. Jaccard distance measures the similarity (or lack thereof) between clusters as the ratio of
their intersection over their union. The cost-weighted Jaccard distance function is a version of Jaccard distance that applies
weights based on the importance of each objective.
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23.3 Methodology

23.3.1 Fidelity in Model Calibration

Combined effects of incompleteness of model form and the imprecision in the input parameters yield deviations between
model predictions and observable reality. Such deviations can be quantified as shown in Eq. 23.1:

R.k/ D jM.k/ �Ej (23.1)

where, k represents the imprecise parameters to be calibrated selected based on their sensitivity and uncertainty, R(k)
represents the fidelity metric (error) between model prediction, M(k), and experimental observation, E.

Given the inevitable uncertainties in experimental observations and numerical calculations, aiming to reach a perfect
agreement between model predictions and experimental observations would have little meaning. A more rational approach
instead is to aim to reach sufficient agreement between the two. Herein, sufficiency can be defined by a preset fidelity
threshold as shown in Eq. 23.2:

jM.k/ �Ej < Rc (23.2)

where Rc indicates the error tolerance (which is related to desired level of fidelity) between model prediction and experiment.

23.3.2 Overview of Info-Gap Decision Theory

Info-gap decision theory supplies a non-probabilistic approach to decision making under uncertainty. The Info-gap approach
uses convex, nested sets of uncertainty models to quantify the allowable range of uncertainty the system can tolerate before
it fails to meet the preset performance criteria [7].
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Equation 23.3 shows the info-gap model with uncertain calibrated parameters. In this equation, k once again represents

imprecise parameters and
�
k represents the nominal values for these parameters, which herein will be obtained through

calibration. The nominal values are the vector of best estimate model parameters that result in the smallest error between
experiments and simulations [8]. The uncertainty in parameters, commonly referred to as horizon of uncertainty, is
represented by notation ˛.

_

R .˛/ D max
k2U



˛;

�

k

�R.k/ (23.4)

The function R(k) represents the fidelity of the model considering uncertain calibrated parameters. By increasing the
model’s horizon of uncertainty, ˛, the uncertain parameters are allowed to vary within a defined range. For each given value
of ˛, the uncertain parameters will result in a new worst-case fidelity as shown in the Fig. 23.1 (left). Therefore, bR .˛/ is a
non-decreasing function of ˛ as shown in Fig. 23.1 (right).

As shown in Fig. 23.1, as the horizon of uncertainty increases, bR .˛/ eventually exceeds the predefined value of fidelity
threshold, Rc. The maximum horizon of uncertainty in which uncertain parameters are allowed to vary without failing to
satisfy the fidelity requirement is defined as b̨, as shown in Eq. 23.5. Thus, a larger b̨ is desired and representative of greater
robustness of the model.

b̨D max
n
˛ W bR .˛/ � Rc

o
(23.5)
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Fig. 23.1 Illustration of info-gap
robustness with (left) worst case
predictions given varying
horizons of uncertainty and
(right) monotonically increasing
robustness curve

23.3.3 Overview of Multi-objective Optimization

Multi-objective problems arise when multiple objectives influence the problem in a conflicting manner. Multi-objective opti-
mization supplies a means to obtain solutions for such problems in that conflicting objectives are optimized simultaneously
under given constraints. Multi-objective optimization can be expressed as shown in the following equation:

Minimize W Y.x/ D Œf1.x/; f2.x/; : : : ; fk.x/�

Subject to W h.x/ � 0
(23.6)

where f represents the each objective function and h represents the constrain function.
Multi-objective optimization results in a set of compromising solutions, which represent the trade-off between conflicting

objectives. Referred to as Pareto front, these compromising solutions provide the optimal solutions in the solution space,
within which improving one objective is not possible without degrading the other(s). It must therefore be obvious to the
reader that when multiple objectives are not conflicting, obtaining a single optimal solution becomes possible and multi-
objective optimization would not be needed.

Once the Pareto front is determined, decision makers can select solution within this optimal solutions set taking the
trade-off between multiple objectives into account. The shape of Pareto front has important significance for this study as it
indicates the nature of the trade-off between the different objective functions. The shape of the Pareto front can be used to
infer the nature of the relationship between objectives. For instance, in Fig. 23.2, regions where the slope of the Pareto front
is steep (or shallow) indicate solutions where slight improvement in one objective requires a significant sacrifice in the other.
In Fig. 23.2, three distinct regions can be identified with distinctly different trade-off characteristics (indicated with gray
highlights).

23.3.4 Application of K-Means Clustering to Pareto Front

K-means clustering belongs to partitioning methods, one of the most commonly used clustering algorithms due to its
implementation simplicity and computational efficiency. K-means clustering algorithm is a centroid based clustering method
[9] that partitions data into a user-defined number of clusters, each of which is associated with a centroid.

The main procedure of K-means clustering algorithm can be broken down into four components (i) selecting a user defined
number of data points as the initial set of cluster centroids, (ii) assigning each point to the cluster with the nearest centroid,
(iii) recalculating the centroid of each cluster, and (iv) repeating assignment of each point to the cluster with the nearest
centroid.

The algorithm starts with randomly choosing the number the predefined number of solutions in the Pareto front as an
initial set of cluster centroids. Then, each solution in the Pareto front is assigned to the cluster with nearest centroid. The
“nearest centroid” is measured by the Euclidean distance between each solution in the Pareto front and the corresponding
closest centroid. To express the formulation of Euclidean distance, let us consider a N-dimensional Pareto front set which
contains n solutions, Nn D (x1, x2, : : : , xn), where these n solutions are partitioned into m sets, H D (h1, h2, : : : , hm), where
m � n.
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Fig. 23.2 Representative shape
of Pareto Front
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where m represents the number of centroids (i.e. number of clusters) and Ci represents the centroid of each cluster.
According to the distances calculated in Eq. 23.7, each of the n data-points are assigned to the nearest one of the m

centroids and next, the centroid of each cluster is recalculated. This iterative procedure is repeated, until the convergence
condition is satisfied or when the iterative procedure reaches the predefined number of iterations. The convergence condition
is satisfied when the distribution of clusters do not change more than a predefined amount by recalculating the centroid of
each cluster.

K-means clustering algorithm assigns solutions in the Pareto front into non-overlapping clusters, where solutions within
a cluster have similar characters. For instance, within one cluster, we may observe that the value of objective 2 exhibits small
changes for varying values of objective 1. What is interesting to note that if the problem in hand is constituted of proper
continuous functions, then each of clusters in Pareto front would be associated with parameters that also have similar values.
Observing the clusters formed in the parameter space corresponding to the clusters in the solution space can help decision
makers evaluate the effect of compensations in model calibration and aid in the model parameter selection (note that we are
indicating an inverse analysis from the solution space to the parameter space).

23.4 Case Study

The proposed methodology is demonstrated on a case study of a two bay, two story steel moment resisting frame, shown
in Fig. 23.3. The frame is built with beams and columns that have uniform cross-sections. Two external horizontal, static
loads are applied to the top and the first story of this steel moment resisting frame (Fig. 23.3). It is assumed that the loads
applied do not cause deformations beyond the elastic range. Material properties and physical dimensions of the portal frame
members are provided in Table 23.1.

Connection stiffness between the substructures in steel moment resisting frames is typically highly uncertain. In the frame
system shown in Fig. 23.3, four linear rotational springs are assigned to represent beam to column connections located at
the top and bottom of the first story left and center columns. The stiffness of these rotational springs are represented by
parameters K1 and K2. All other beam to column connections are assumed rigid and columns are pin connected to the
foundation. The connection stiffness values, K1 and K2, are treated as the calibration parameters. The exact stiffness values
of those linear rotational springs are provided in Table 23.2 along with their plausible ranges (i.e. parameter space).
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Fig. 23.3 Steel moment resisting
frame with linear rotational
springs
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Table 23.1 Material properties
and physical dimensions for the
portal frame

Beam Column

Length (m) 4 3
Cross section area (m2) 0.05 0.05
Moment of inertia (m4) 0.1 0.05
Young’s modulus (Pa) 2,000 2,000
Shear area coefficient 0.95; 1; 1.05 0.95; 1; 1.05
Poisson’s ratio 0.3 0.3

Table 23.2 Calibrated
parameters and NSGA-II
simulation ranges

K1 (N-m) K2 (N-m)

Exact value 33,000 40,000
Upper bound 132,000 160,000
Lower bound 3,300 4,000

23.4.1 Multi-objective Optimization: Robustness Versus Nominal Fidelity

In this case study, the error between model predictions and measured observables as well as the robustness of the model
predictions given uncertain parameters are implemented as objectives. A finite element model is developed and used to
predict the maximum lateral displacement at the first story of the portal frame under static lateral loading. Synthetic
experimental data are obtained by using sets of input parameters with exact values while model predictions are obtained in a
separate process using sets of parameters with imprecise values. Inaccurately calibrated parameters result in disagreements
between predictions and experiments for maximum lateral displacement at the first story, quantified by the fidelity metric
(refer back to Eq. 23.1). According to the proposed procedure explained in Sects. 23.3.1 and 23.3.2, the fidelity threshold,
Rc, is predefined to equal 0.5 and the horizon of uncertainty, ˛, is varied from 0.01 to 0.5 by a step size of 0.1. NSGA-II is
implemented to solve the multi-objective optimization problem with 100 generations with 200 individuals in each to obtain
the Pareto front.

The conflicting relationship between objectives develops as robustness to parameter uncertainty should decrease when the
fidelity threshold is increase [2]. Thus, the shape of the Pareto front reflects this monotonic trade-off relationship between the
two objectives. K-means clustering algorithm is implemented to cluster the solutions in the Pareto front using three clusters.
The number of clusters to evaluate is determined by considering the change in slope of the Pareto front (recall Fig. 23.2).

The result of a clustered multi-objective optimization is shown in Fig. 23.4, which provides a clear visualization of the
spread of solution groups along the Pareto Front. The distribution of calibrated parameters corresponding to each cluster
is shown in Fig. 23.5. It should be noted that this case study resulted in a partial Pareto front, which is possible with the
NSGA-II algorithm. Decision makers may use information gained from the clusters to select a parameter set with which
model outcomes balance both of the objectives. Decision makers may first select the cluster containing the most solutions
satisfying their requirements. Next, the parameter sets corresponding to this cluster may be determined.

In Fig. 23.5, the correlation between the two calibration parameters is evident, illustrated by the linear distribution of
parameter sets. There clearly exists a relationship where K1 increases K2 also increases.
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Fig. 23.4 Distribution of
robustness and error for the 100th
generation
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23.4.2 Multi-objective Optimization: Robustness Versus Fidelity Threshold

According to the methodology presented in Section 23.3.2, a larger robustness is desired meaning the model is capable
of higher uncertainty in parameters. The fidelity threshold quantifies the error between predictions and measurements.
Hence, minimizing the fidelity threshold corresponds to a low level of error allowed between predictions and experiments.
Maximizing the robustness causes the corresponding fidelity threshold to increase. This trade-off relationship between the
two objectives is revealed by the shape of the Pareto front. NSGA-II is implemented to solve the multi-objective optimization
problem with 100 generations and 200 individuals in each generation. K-means clustering algorithm is applied to the
solutions. Figure 23.6 presents a robustness function (recall Fig. 23.1 right) for a select number of Pareto optimal solutions.
Plotting robustness functions for the Pareto optimal solutions then effectively results in the Pareto front itself (notice the
similarity between Figs. 23.4 and 23.6).
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23.4.3 New Predictions for Portal Frame by Using Parameter Sets in Each of Clusters

In this section, a series of new predictions for the steel moment resisting frame is presented. Based on the parameter
sets shown in Fig. 23.5. Each of these parameter sets is used in the finite element model to predict the maximum lateral
displacement (drift), maximum moment and maximum shear force at the first story as well as the maximum lateral
displacement at the roof of the portal frame. The following results show that using parameter value sets in each cluster
results in a different prediction as well as solutions that are clustered (Figs. 23.7, 23.8, and 23.9).

Fig. 23.6 Distribution of
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Fig. 23.7 First story maximum
drift versus maximum moment

0.21 0.22 0.23 0.24 0.25
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Maximum drift at the first story columns

M
ax

im
um

 m
om

en
t 
at

 t
he

 f
ir
st

 s
to

ry
 c

ol
um

ns

Parameter value sets in Cluster 1
Parameter value sets in Cluster 2
Parameter value sets in Cluster 3



23 Clustered Parameters of Calibrated Models When Considering Both Fidelity and Robustness 223

Fig. 23.8 First story maximum
moment versus maximum shear
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Fig. 23.9 Roof maximum drift
versus first story maximum drift
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23.5 Conclusion

Model calibration considering both the model’s fidelity to measurements and robustness to parameter uncertainty results
in a multi-objective problem. Multi-objective optimization provides insight to the trade-off between objectives through a
Pareto front. However, understanding the compromise between parameters alone is not sufficient information for decision
makers, who are often required to select a best-performing data, which maintains each of their requirements. The selection
task becomes more burdensome when the set of non-dominated solutions is large. For this reason, the authors proposed
a methodology that implements the k-means clustering algorithm to cluster the solutions in the Pareto front making the
selection task more feasible. The main idea of this methodology is to categorize possible solutions into different groups
based on their spread on the Pareto front. Calibrated parameter values may then be selected from among these groups of
solutions.

Furthermore, this study can also help decision makers to select among the clusters obtained. This can be achieved by
evaluating the distribution of calibration parameters within each cluster. A key benefit of clustering Pareto front solutions
is the ability to evaluate the extent of the compensation between model input parameters. Clusters with large distributions
indicate severe compensations between parameters. Therefore, model developer may select a parameter set with the least
amount of compensations, or determine steps to reduce compensations if the compensations are too large.

The proposed methodology has been applied to case study with a steel moment resisting frame. The results show that this
methodology makes it more feasible to select the optimal group of solutions, which will narrow down the range to select
calibration parameters. A separate robustness analysis presents the trade-off between robustness to uncertainty parameters
and fidelity threshold. Hence, within a certain fidelity threshold, the model can tolerate the maximum allowable level of
uncertainty.
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Chapter 24
Uncertainty Propagation Combining Robust Condensation
and Generalized Polynomial Chaos Expansion

K. Chikhaoui, N. Kacem, N. Bouhaddi, and M. Guedri

Abstract Among probabilistic uncertainty propagation methods, the generalized Polynomial Chaos Expansion (gPCE) has
recently shown a growing emphasis. The numerical cost of the non-intrusive regression method used to compute the gPCE
coefficient depends on the successive Latin Hypercube Sampling (LHS) evaluations, especially for large size FE models,
large number of uncertain parameters, presence of nonlinearities and when using iterative techniques to compute the dynamic
responses. To overcome this issue, the regression technique is coupled with a robust condensation method adapted to the
Craig-Bampton component mode synthesis approach leading to computational cost reduction without significant loss of
accuracy. The performance of the proposed method and its comparison to the LHS simulation are illustrated by computing
the time response of a structure composed of several coupled-beams containing localized nonlinearities and stochastic design
parameters.

Keywords Robustness • Uncertainty • Generalized polynomial chaos expansion • Component mode synthesis • Meta-
model

24.1 Introduction

In structural mechanics and in practically all branches of industry, when parametric uncertainty is incorporated in the
mathematical model, its propagation is needed to evaluate how the randomness of input parameters affects the computed
outputs and to handle, consequently, more and more realistic behaviors. In a probabilistic framework, statistical approaches
such as the well-known Latin Hypercube Sampling (LHS) [1] use a great number of samples of random variables for
reasonable accuracy and therefore require a prohibitive computation time. On the other side, among other non statistical
approaches, the generalized polynomial chaos expansion (gPCE) [2] has shown a growing emphasis in recent years due to
its simple implementation and high performance. It combines polynomial basis vectors and deterministic coefficients, which
can be computed by means of intrusive or non-intrusive approaches [3]. In the context of the latter, more advantageous
than the former since it considers the original FE model as a black box, among other existing methods [4], regression
technique permits to estimate the gPCE coefficients by minimizing the difference between the referential LHS response and
the approximation, corresponding to a set of random variables chosen among combinations of Hermite polynomial roots.

Nevertheless, the most expensive part of its implementation lies in the successive LHS evaluations. To overcome this
issue, we focus, in this paper, on coupling the non-intrusive regression technique with a robust condensation method
adapted to the Craig-Bampton component mode synthesis (CBCMS). In fact, the prohibitive cost of prediction is due to:
the computational time of the full model using direct analysis, the computation of reduction basis for each random sample
while propagating uncertainties and the number of iterations necessary to obtain accurate approximations using iterative
techniques in presence of nonlinearities. Consequently, model condensation must be applied. Furthermore, the use of the
CBCMS [5, 6] allows considering some substructures, which are uncertain and/or containing localized nonlinearities, being
condensed independently of the others. Nevertheless, the main issue lies on forming a robust enriched condensed Craig-
Bampton Transformation (CBT) [6, 7] which takes into account uncertainties and localized nonlinearities.
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In the literature, some works focus on coupling uncertainty propagation methods and condensation techniques in order to
attain a robust design. In [8], the authors implemented the CMS taking into account stochastic aspect to compute frequency
linear structures responses using stochastic spectral FE method (SSFEM). In [9], a reduced-order model (ROM) is integrated
into SSFEM, using a basis spanned by displacements and derivatives of displacements, and implemented to optimize the
shape of a linear shell structure. Afonso et al. [10] implemented Monte Carlo (MC) method and Probabilistic Collocation
Method (PCM) based on reduced-order modeling (ROM) approach incorporated via proper orthogonal decomposition
method (POD).

The main originality of this paper lies on combining gPCE and robust CBCMS in order to obtain a metamodel, which
allows computing stationary temporal solution of large size stochastic periodic structures containing local nonlinearities,
with high accuracy and low computational cost.

24.2 Theoretical Backgrounds

24.2.1 Generalized Polynomial Chaos Expansion (gPCE)

Thanks to the generalization of the PC approach [2], several types of random variables and orthogonal polynomials are taken
into account to develop its expansion. In this section, a compact form of the gPCE formulation is presented [2–4]. The gPCE
of second order random variable is a decomposition, truncated by retaining only terms of the polynomials with degree up to
p, of the form

Y D
PX
˛D0

y˛ˆ˛ .�/ D yTˆ .�/ ; (24.1)

where y’ are the unknown deterministic coefficients, ˚˛ the multivariate polynomials of d independent random variables

� D f�i ./gdiD1 and ˛ the multidimensional index such as j˛j D
dX
iD1
˛i .

The number of terms retained in Eq. 24.1 is defined as

P C 1 D .d C p/Š =dŠpŠ: (24.2)

Solving the gPCE consists on computing the coefficients y’. Hence, the non-intrusive regression method is implemented, in
its standard form, minimizing the difference between the gPCE approximate solution and the exact one as follow

ey D Arg min
y

1

N

NX
nD1

�˚
Y .n/

� � yTˆ ��.n/�2: (24.3)

The solution considered as exact is a set of LHS responses
˚
Y .n/ D y

�
�.n/

�
; n D 1; : : : ; N

�
computed corresponding to a

set of random variables „ D ˚
�.n/

�N
nD1 called experimental design (ED).

The final obtained approximate solution of Eq. 24.3 is of the form

ey D �
ˆTˆ

��1
ˆT fyg D ˆC fyg (24.4)

where ˆnj � �
ˆj

�
�.n/

��
n D 1; : : : ; N

j D 0; : : : ; P

is called the data matrix.

A necessary condition for the numerical stability of the regression approximation is choosing an ED of size N � P C 1

which ensures the well-conditioning of the matrix (ˆTˆ) which will be inverted. The selection of the ED is carried out using
two different methods; according to the first one, the ED is chosen randomly with respect to the probability distribution of the
random variables, the second method consists on selecting the ED, in a deterministic way, among Hermite polynomial roots
[3]. In fact, the roots of the Hermite polynomial of degree p C 1 are at first computed, then all their possible combinations
.p C 1/d are calculated and finally these roots combinations are classified such that the following variable
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�N
�
�.n/

� D 2	�d=2exp



�1
2
�.n/

2
�

(24.5)

is maximized or � (n)2 minimized. The roots combinations retained to create the ED are subject to another selection [4].
Indeed, to ensure that the invertible matrix (ˆTˆ) is well-conditioned, a condition number � defined as

� D �
ˆTˆ

��1
:ˆTˆ (24.6)

must be minimized, where . is the 1-norm of the matrix. To the smallest value of � corresponds a number N of roots
combinations which verify Eq. 24.5 and thus create the ED needed for gPCE coefficients.

Once obtained, the estimated coefficients give the final gPCE as a metamodel of the form

eY D fM .X .�// D
PX
˛D0
ey˛ˆ˛ .�/ ; (24.7)

In uncertainty analysis, some statistical quantities have to be calculated. The mean and the variance are respectively given

by e�Y Dey0 ande
2Y D
PX
˛D0
ey2˛ .

Note that the N successive deterministic FE evaluations needed for LHS method is the most expensive part of the gPCE
implementation especially for large size FE models, large number of uncertain parameters, presence of nonlinearities and
when using iterative techniques to compute dynamic structure responses. To overcome this issue, the regression technique is
coupled with a robust condensation method adapted to the CBCMS.

24.2.2 Model Condensation

In nonlinear dynamics, a mechanical system can generally be represented in the time domain by the following differential
equation

�
ŒM � f Ryg C ŒB� f Pyg C ffintg D ffextg

fyg .t0/ D fyg0; f Pyg .t0/ D f Pyg0 W initial conditions
(24.8)

where [M] and [B] stand for the mass and damping matrices of the system, ffextg the exciting force and ffintg D
.ŒK�C ffNLg .fyg ; f Pyg// fyg the internal force vector, [K] is the stiffness matrix.

Modeling complex structures requires large size FE models for satisfying accuracy. To overcome the high computational
cost of the analysis, a reduced order model has to be designed using only few normal modes with respect to the frequency
range of interest. Therefore, the projection of the time response on an adequate condensation basis, considering the variable
transformation fy.t/g D ŒT � fq.t/g to generalized coordinates, is needed. Hence, the equation of motion Eq. 24.8 becomes

ŒT �T ŒM � ŒT � f Rq.t/g C ŒT �T ŒB� ŒT � f Pq.t/g C ŒT �T ffintgr D ŒT �T ffextg ; (24.9)

where the index r denotes the term reduced, ŒT �T ŒM � ŒT � D ŒM �r ; ŒT �
T ŒB� ŒT � D ŒB�r ; in this case, the internal force vector

is expressed as

ffintgr D ŒT�T .ŒK�C ffNLg .ŒT� fqg ; ŒT� f Pqg// ŒT� fqg : (24.10)

The time solution of the Eq. 24.9 can be approximated by using the Newmark nonlinear time integration scheme, which
allows expressing the displacement and the velocity at the instant tnC1 as a function of their expression at tn.

The implementation of the Newmark method permits to write the equation of motion Eq. 24.9 in an incremental form

��
Keff


r

�
n
�fqgn D �

�˚
feff

�
r

�
n

(24.11)
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where ([Keff ]r)n is the instantaneous (effective) stiffness matrix function of the tangent stiffness matrix .ŒKT �r /n D
@.ffintgr /n=@ ŒT� fqgn obtained by applying the Newton iterative scheme.

24.2.3 Robust Craig-Bampton Component Mode Synthesis Method (CBCMS)

Dividing the complete structure into several components (substructures) is interesting in the case of presence of uncertainties
and localized nonlinearities in large size complex structures. It permits to apply the adequate condensation technique to each
component independently of the others.

In deterministic linear case, the reduced model is obtained using standard CBCMS [5, 6] of the linear system in its blocked
interface configuration. In this case, the CBT is defined, for a substructure k, as

fygk D
�
yj
yi

	 k
D
�
Ijj 0

 ij 'i

�k�
qj
qc

	 k
D ŒTCB�

kfqgk (24.12)

where fyigk are the interior coordinates transformed to the blocked junctions modal coordinates fqcgk, fyjgk are the junction
coordinates denoted as constraint coordinates fqjgk,

�
 ij
 D �K�1

i i Kij is the static subbasis which contains the constraint
modes, Ijj is the identity matrix, and [®i] is the dynamic one containing the truncated normal modes basis at blocked interfaces
(
˚
yj
� D 0) of the corresponding component. Nevertheless, using standard CBT requires computing more and even all normal

modes for accurate results, which leads to a prohibitive computation cost.
In stochastic case with localized nonlinearities, the standard CBT [TCB] cannot satisfy the required accuracy and

robustness of the model. Therefore, adding a complementary basis [�T] is necessary in order to form an enriched CBT
(ECBT) [TECB]. The obtained basis, for each sub-structure, is thus of the form

ŒTECB�
k D

h
TCB

::: �T

ik
: (24.13)

The complementary basis is a set of static residuals calculated according to the type of enrichment.
For each component k, to enrich the basis by taking into account stochastic aspect, the residual vectors are static responses

with correspondence to a set of residual forces [FS] presenting the stochastic effects. These forces are generated depending
on the stochastic zones of the mass and stiffness matrices [8]. The first complementary subbasis [�TS]k is thereafter obtained
and added to the standard Craig-Bampton one.

To take into account localized nonlinearity effects, another type of complementary subbasis [�TNL]k has to be created
[7] as a set of static responses corresponding to unit residual force vectors fFigk with respect to each nonlinear degree of
freedom (dof) i for each component k.

The CBT can also be enriched if the external loading effect is considered [6]. Thus, an additional subbasis [�TE]k must
be computed using a set of unit static loadings fFEgk imposed on internal excited substructure dofs.

Consequently, the final enriched basis has the following form

ŒTECB�
k D

h
TCB

::: �TS
::: �TNL

::: �TE

ik
D
�
Ijj 0

 ij 'i

:::
0

�TS

:::
0

�TNL

:::
0

�TE

�k
(24.14)

Note that a singular value decomposition (SVD) is needed to ensure linear independence of the vectors forming each
complementary subbasis and also carried out on [TECB]k to ensure the linear independence of the subbases and thus the
well-conditioning of the ECBT. The synthesis of the complete structure requires finally the assembly of the different CBT
matrices according to the hypothesis of continuity of displacements at junction dofs.

24.2.4 Robust Metamodel Combining CBCMS and gPCE

The CBCMS and the gPCE methods were previously independently presented. The main aim of this paper is to couple them
in order to replace large size dynamical structures with considerably condensed and sufficiently accurate metamodel. Indeed,
we propose to compute the succession of N deterministic responses of LHS simulations

˚
Y .n/ D y

�
�.n/

�
; n D 1; : : : ; N

�
,
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Fig. 24.1 Coupled beams structure

needed for the gPCE regression method implementation (Eq. 24.4), using the ECBT Eq. 24.14. The notion of robustness
consists, in our study, on satisfying two different criterions; the accuracy of the responses and the gain in terms of
computational time. To verify the first criterion, a set of temporal statistic moments M i, also called times indicators or
energy criterions, has to be calculated in order to quantify the response accuracy in terms of amplitude and periodicity errors.
These moments are expressed as [11]

Mi D
C1Z
�1
.t � ts/iy.t/2dt (24.15)

where y(t) is the temporal response, i the order of the moment and ts the temporal shift chosen in our case as ts D 0.
The total energy of the response E D M0 permits the verification of the accuracy in term of amplitude. M1=M0 D T

and M2=M0 � .M1=M0/
2 D D2 are respectively the central time and the root mean square duration computed to verify

the accuracy of the response in term of periodicity.
A numerical application is presented in Sect. 24.3 in order to illustrate the main features of the proposed robust metamodel

designed to analyze the dynamic behavior in presence of uncertainties and localized nonlinearities.

24.3 Numerical Application

24.3.1 Proposed Structure and Validation Process

The proposed academic structure, Fig. (24.1), is composed of five identical beams loaded in pure flexion. The discretization
of each beam into 20 elements (two dofs per node: vy,  z) leads to a 200 dofs FE model. The beams are of rectangular
section with b D 3 � 10�2m and h D 1 � 10�2m, length Lb D 5 � 10�1m, Young modulus E0 D 2:1 � 1011Pa,
density �0 D 7800 kg:m�3 and Poisson’s ratio � D 0:3 and are submitted each one to a localized excitation force (N)
Pf D 10 � cos .2	f1t/, where f1 D 82:96 rad:s�1 is the first eigenfrequency, according to the vy dof (Y direction). The
five beams are coupled using five local dampers such as c D 102N:s:m�1, five linear springs k0 D 106N:m�1 and nonlinear
ones kNL D 1011N:m�1. Several observation points Poj .j D 1; 2; : : : / are considered to evaluate the efficiency of the
proposed metamodel.

The stationary temporal response evaluation is done in the time interval [0–0.5 s], divided into steps of 10�4s, in which
the stationary regime is already attained.

To apply the CBCMS method, the complete structure is divided into substructures. In fact, being in the case of periodic
structure, we propose to consider each set of coupling elements (localized damper, linear and nonlinear springs) and a beam
as a substructure (Fig. 24.1). The first and the third components are considered as two stochastic zones in which the Young
modulus of the beam and the linear coupling stiffness are supposed to be uncertain parameters such as
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Table 24.1 Model size and associated temporal moments

E D E0 .1C 
E�E/ and k D k0 .1C 
k�k/ (24.16)

where �E and �k are two random variables of respectively uniform and lognormal probability distributions and 
E D 
k D
10% are the considered dispersions. The effect of the stochastic aspect of the uncertain parameters is shown using the MAC
(Modal Assurance Criterion) [6] matrix, which compares the normal modes of the deterministic model to the means of the
modes of the stochastic model computed with correspondence to each random variable.

The proposed metamodel results are discussed with respect to the responses considered as reference, computed using
LHS method using 1,000 samples of random variables. In fact, the process of evaluation of the metamodel efficiency is as
follow

(A) Implementing the 1,000 samples LHS method on: 1- the complete model (projection on complete eigenvectors basis)
denoted LHS-REF, 2- the reduced model (projection on the ECBT matrix) denoted LHS-ECBT;

(B) Implementing the regression gPCE: 1- on the complete model for two gPCE orders (2 and 4) denoted respectively
REG-2-REF and REG-4-REF, 2- combined with the ECBT (proposed metamodel) also for two gPCE orders, denoted
respectively REG-2-ECBT and REG-4-ECBT.

24.4 Results and Discussion

The ECBT matrix contains nj D 8 junctions dofs, ni D 8 retained normal modes and ne D neSCneNLCneE D 2C5C1 D 8

enriching static residual vectors, where neS corresponds to the stochastic enrichment, neNL to the nonlinear one and neE to the
external force enrichment. Hence, the size of the ECBT transformation matrix is 200 � 24, which signify that the reduction
ratio of the full problem is of 88 % (200 dofs).

For a second order gPCE, the ED is of size 31 random variables combinations chosen with correspondence to the
conditions defined in Eqs. 24.5 and 24.6 among 81 Hermite polynomial roots combinations (.p C 1/d D 34 D 81) and
then transformed with respect to the probability distributions (Table 24.1). For the fourth order, 84 random variables are
needed among 625 possible combinations.

Figure 24.2 shows the stochastic effect on the model normal modes through the MAC matrix. Figures 24.3 and 24.4
illustrates the comparison between the means of stochastic velocities obtained by implementing the different methods with
correspondence to the above proposed process (A and B) at two chosen observation points Po1 and Po4.

The MAC matrix, presented in Fig. 24.2, illustrates the stochastic effect on the eight first modes retained for ECBT.
Indeed, the level of uncertainty is not high but sufficient to show the interest of the stochastic enrichment. Consequently, the
level of nonlinearities is chosen to be low in order to ensure the contribution of each type of enrichment in the ECBT. In fact,
high level of nonlinearities leads to a negligible stochastic enrichment contribution in the ECBT and thus enriching using
only nonlinear effect is sufficient.

The obtained results of different implemented models are compared in terms of accuracy and time consuming by means
of the CPU computation time and the temporal moments E, T and D2 (Tables 24.1 and 24.2). In fact, Table 24.1 recalls the
size of the problems to be solved and gives the values of the associated temporal moments and Table 24.2 contains different
computational time values.
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Fig. 24.2 MAC matrix
comparing the deterministic
normal modes and the means of
the stochastic ones
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Fig. 24.3 Mean of the stochastic velocity at the observation point Po1 computed on the reference (complete) model (REF) and the condensed one
(ECBT) using LHS and fourth order gPCE methods

The results displayed in Figs. 24.3 and 24.4 show that the proposed metamodel can replace the original one without a
significant loss of accuracy with respect to the reference results computed by LHS method on the full structure. Note that the
higher the order of the gPCE is, the more accurate the results are, the longer the required computational time is, as shown in
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(ECBT) using LHS and fourth order gPCE methods

Table 24.2 Computational CPU
time

Table 24.2. Only the fourth order gPCE approximations are presented, the second order gPCE results are discussed through
their temporal moments presented in Table 24.1. The ECBT efficiency can be at first evaluated comparing the two first curves
(Figs. 24.3 and 24.4) and the two first lines of Table 24.1, which show that the amplitude and periodicity errors between the
results of the LHS method on full and condensed model are very small.

Table 24.2 shows that the computation time can be reduced by 93.4 % when implementing the proposed metamodel, and
it increases when the gPCE order is higher. Note that despite the fact that the example is not sufficiently representative in size
and uncertain parameter number to show the efficiency of the CBCMS, the gain of nearly 30 % attained when implementing



24 Uncertainty Propagation Combining Robust Condensation and Generalized Polynomial Chaos Expansion 233

ECBT with LHS or gPCE reflects more than 30 h of time reduction (1 % of gain is 61 min). For larger size examples, and
also when using properly optimized algorithms, the robust CBCMS contribution should be more illustrated.

24.5 Concluding Remarks

In this paper, a robust metamodel is proposed in order to approximate structure behaviors in presence of uncertainties and
localized nonlinearities. This metamodel is obtained by the combination between the parametric uncertainty propagation
method and a robust CMS approach. The efficiency of the metamodel was successfully evaluated on the temporal response
approximations of the coupled beams structure with respect to the reference LHS method results, thanks to different verified
robustness criterions. The reduction in terms of time consuming and model size using the comparison of the computation
times and temporal moments prove the efficiency and the usefulness of the proposed metamodel for the robustness analysis
of large size nonlinear stochastic model.
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Chapter 25
Robust Updating of Operational Boundary Conditions
for a Grinding Machine

Elvio Bonisoli and Marco Brino

Abstract Operational boundary conditions of actual structures are often a crucial and difficult aspect in model updating of
CAD/CAE models based on dynamic tests and experimental modal identification.

In this work two grinding machines are experimentally tested through roving hammer impact tests. Due to the importance
of comparing two different solutions of grinding structures involving traditional cast-iron or a new polymeric concrete,
actual operational boundary conditions, consisting in industrial supports acting on a not-well-known pavement, are taken
into account.

Their effects affect the dynamic behaviour, in particular at low frequencies and they are the main updating parameters of
the CAD/CAE models.

Gradient-based optimization and genetic algorithms are implemented to reduce modal parameters errors in the
identification and updating phase of parametric models to demonstrate feasibility and improvements of robust numerical
models, in order to evaluate effective improvements of the material choice for the grinding machine.

Keywords Updating • Optimization • Elastic supports • Experimental modal analysis • Finite element model

25.1 Introduction

In this paper the study of the effect of the operational boundary conditions, compared with the result of an experimental
campaign, is presented, performing EMA (Experimental Modal Analysis) [1].

Even though in real world no kind of constraint (such as clamp, or simple support in particular) is ideal (which means that
the displacement in correspondence of the constraint is identically zero), in most cases the choice of considering this ideal
condition does not imply a significant error in the results.

But if this case does not apply, the error might be large and the results need to be carefully processed and criticised.
Model Updating techniques [2] might help in case of discrepancies between numerical and experimental data are due to

uncertainties that comes from the material properties.
To allow the boundary conditions to model non-ideal behaviour, springs connecting the structure to the pavement may be

used, but it is not trivial the choice of the values of the stiffness in the relative directions.
Here a step-by-step optimisation strategy is proposed to find reliable and stable parameters (the stiffness values) and then

to obtain a good correlation between experimental and numeric.

25.2 Test Structures and Experimental Modal Analysis

The structures, subject of the experimental campaign, are two bases for grinding machines. These structures differ one
another on the material they are made of: one is made of cast-iron, historically used since the conception of the bases, while
the other is made of stone-cast, recently adopted because of its lower cost and the simpler manufacturing process.

Figure 25.1 shows the two test structures.
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Fig. 25.1 Cast-iron (left) and stone-cast (right) structures pictures
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The total masses of the two structures are basically the same, but while the metallic one has cavities inside in order to
lower the mass involved without affecting the structural characteristics, the polymeric concrete, due to its lower density and
mechanical properties, needs more material to fit the structural requirements and then no cavities are necessary.

The experimental modal analysis was performed using roving hammer technique with accelerometer acquisitions to
identify possible natural frequencies that might be excited during the regular operation of the grinding process. Another
parameter that is important to compare the structures is the modal damping.

In a roving hammer acquisition the choice of the location of the accelerometers used as reference is crucial and may
affect a lot the quality and reliability of the consequent results. So, the sensor placement positions were chosen running the
MoGeSeC algorithm [3, 4], which basically evaluates, through all the translational degrees of freedom of the nodes in the
Finite Element Model and the related eigenvectors of the selected modes, the progressive optimal selection of experimental
areas where is maximal the larger modal displacements and the independency of the modal description. Thus, a related
property is that all the entire geometry is involved and, in particular, suitable candidates are zones on external surfaces,
available for EMA.

After this suggested pattern as locations for accelerometers, geometrically interesting regions are analysed and chosen to
set the final choice of locations. The locations suggested are shown in Fig. 25.2.

For both test cases natural frequencies, modal damping ratios and mode-shapes were identified, and their values are
summarised in Table 25.1 and graphically compared one another in Fig. 25.3.

Even though there is not a one-to-one relationship between the modes of the two structures, the charts in Fig. 25.3 show
that in general the cast-iron structure has lower frequencies with respect to the stone-cast one, and lower damping ratios.
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Table 25.1 Comparison of identified EMA parameters between cast-iron and stone-cast structures

Cast-iron structure Stone-cast structure
Mode Freq. [Hz] Damp [%] Mode-shape description Mode Freq. [Hz] Damp [%] Mode-shape description

1st 54,1 1,74 Rigid-body rotational z (global) 1st 32,4 6,69 Rigid-body rotational z (global)
2nd 80,1 3,91 1st bending yz of motors m.(global) 2nd 64,4 12,6 Rigid-body rotational x (global)
3rd 89,7 0,71 Symmetric bending xy of motor m –
4th 98,8 0,83 Bending xy of motor mounting x< 0 –
5th 113 3,12 Opposite bending yz of motor ms 3rd 165 2,43 Opposite bending yz of motor ms
6th 126,3 4,85 Bending yz of motor mounting x< 0 4th 180 0,69 Symmetric bending xy of motor ms
7th 150 1,1 Symmetric torsional y of motor ms –
8th 161 0,7 Parallel torsional y of motor mount –
9th 194 4,01 1st bending xz (global) 5th 221 4,55 1st bending xz (global)
– 6th 268 0,72 Symmetric bending xy of motor m
– 7th 283 2,83 1st bending yz (global)
– 8th 286 1,38 Symmetric bending yz of motor ms
10th 212 1,99 1st torsional x (global) 9th 349 2,53 1st torsional x (global)
– 10th 357 1,57 Opposite bending yz of motor ms
11th 263 0,32 1st bending xy (global) 11th 407 0,80 1st bending xy (global)
12th 289 1,97 torsional x of motor mount x> 0 12th 415 0,54 Symmetric torsional x of motor ms
13th 324 1,36 Torsional x of motor mount x< 0 13th 507 1,82
14th 353 3,26 14th 518 1,02
15th 370 1,01 15th 543 2,09
– 16th 546 1,05
16th 387 0,91 2nd bending xz (global) 17th 576 1,74 2nd bending xz (global)
17th 417 0,79 not well identified (global) 18th 595 0,84
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Fig. 25.3 Comparison of natural frequencies and damping ratios of Cast-iron EMA vs. Stone-cast EMA

In the cast-iron structure the two plates are clamped to the main body using two beams each, arranged in “I” position,
which are then the most compliant element of the structure: the lower frequencies then involve these components while the
global mode-shapes occur at higher values. In the stone-cast structure, instead, the plates are fixed on supports that are a
single part with the main body, the global modes occur already at lower frequencies.
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25.3 Finite Element Models

In an era where every designed structure is validated using virtual prototypes, the presence of experimental data raises the
need to use them as reference to a finite element model. The numerical simulations were performed using the geometry
supplied from the CAD models of the two structures, and using tetrahedral elements to mesh the relative bodies. A general
idea on the density of nodes is shown in Fig. 25.4, considering that the aim of the simulation were to compute about the first
20/25 modes, thus a coarse mesh is enough to reach a reasonably accuracy of the results for lower modes.

Both structures, which are certainly heavy (about 4 tons of weight) are lean on the floor with 8 tuneable mountings. The
tuning possibility allows the height of the mounting to be adapted in order of distributing the weight with uniform load
among them.

Three different boundary constraint types were chosen to model the connection with the floor (Fig. 25.5):

• all 8 mountings fixed (clamped) – Study 1;
• 2 mountings fixed, 6 mounting simply supported (sliders) – Study 2;
• all 8 mountings simply supported – Study 3.

For Study 3 the trivial consideration is that the first three modes will be the rigid body motions allowed by the simply
supported condition of the sliders, while for Study 1 is reasonable the doubt that even though the structures are very heavy, a
fixed condition is too stiff, also considering that the tuning of the mountings is not perfect and some of them are less loaded
and then more subject of sliding.

Fig. 25.4 CAD-CAE simplified
model

Fig. 25.5 Boundary conditions for mountings for cast-iron (upper) and stone-cast cases: Study 1 (left), Study 2 (middle) and Study 3 (right)
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Fig. 25.7 Comparison of the natural frequencies of the three FEA studies for stone-cast model

Study 2 seems to be a good compromise between the two extreme cases but anyway the choice of which of the mountings
is to be fixed is not straightforward.

Figures 25.6 and 25.7 confirm these hypotheses showing, in particular, that the frequencies of Study 1 are larger, the
frequencies of Study 3 are lower and, then, the frequencies of Study 2 are in between.

A comparison among the mode-shapes can be performed using the MAC index [5], introduced in Eq. 25.1, to evaluate
the relationship that each mode has with respect to the modes of the other two studies, with different boundary conditions.
These plots are shown in Figs. 25.8 and 25.9, and the most interesting is the comparison between Study 2 and Study 3,
where there are switches among the rigid body motions and all the other modes are fairly correspondent, for the structure
in cast-iron, while for the second structure this consideration is not of the same strength even though is the best among the
three combinations.

25.4 Elastic Supports and Optimization Process

A first consideration on the correlation between the experimentally identified parameters and the correspondent values
obtained from the relative numerical simulation shows that none of the studies actually fits. Even Study 2 is quite far from
the expectations.
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Fig. 25.8 MAC comparison of the mode-shapes of the three FEA studies for cast-iron model

The resulting consideration is then that the grounding supports are compliant and must be considered as elastic supports,
with two parameters each: one is the normal stiffness and the other is the transversal stiffness (in-plane).

The values of these stiffness are not known a priori, and this implies the use of an optimisation strategy to find the values
that best fit the experiments.

To perform a reliable and effective optimisation, the following strategy is described in steps:

• analysis of the model with reasonable values of stiffness (same values of each of the 8 supports) that are chosen as a
starting point (picture or frame of the system);

• first optimisation run (same values for each support) using the values of the previous step as first guess, and then comparing
the results of the optimal values with two different algorithms;

• second optimisation run with different values for first guess;
• third optimisation with increase of the number of design parameters; now each support has its own values of normal

stiffness and transversal stiffness.

For each of these steps the reliability and stability of the solution found is checked running a second attempt using the
optimal values of the previous run as first guess.

The two algorithm used in the optimisation are gradient-based and MATLAB tools fmincon [6, 7] and Pattern Search
[8]. An alternative approach used by authors for small FE model is the Genetic Algorithm technique. In these cases it
is not considered because it would not be effective with long and slow computation of the single analysis, and the total
computational cost spent only for getting the first iteration would be too large.
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Fig. 25.9 MAC comparison of the mode-shapes of the three FEA studies for stone-cast model

Fmincon compares the gradients for each direction of the objective function is evaluated and the maximum slope is
considered to compute the next iteration. This technique has the drawback of computing the partial derivatives for each
iteration, but the advantage of following the quickest path.

Pattern Search, instead, computes the partial derivatives on the first iteration only, and then that direction is followed for
all the subsequent iterations, unless the slope sign is changed: only in this case the partial derivatives are evaluated again. The
advantage is that the time between two iterations is drastically reduced, but the path followed to reach the optimum might be
longer, because it is not guaranteed to be the quickest.

The objective function chosen is a composition of the error in term of frequencies and the discrepancy in term of mode-
shapes, evaluated using MAC index, and is shown in Eq. 25.1:

ObjFnc D .1 � Err/ �MAC
Err D 1
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(25.1)

The function is to be maximised and weighted in the same way between eigenvalues and eigenvector errors, in order to reach
the optimal values.

Details and results are now shown for all the steps.
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Fig. 25.10 MAC comparison of
the mode-shapes between the
three FEA studies for the first
manual choice of stiffness

Table 25.2 Design parameters
for the optimisation with bounds,
first guess and optimal values

Symbol Lower bound [N/m] First guess [N/m] Upper bound [N/m]

kz 1 109 1012

kxy 1 103 1010

25.4.1 Starting Point

From a qualitative comparison of the three cases of operative boundary conditions, in particular regarding the similarities
with the rigid body motions and the experimental mode-shapes of the very first modes, it is chosen to set a normal stiffness
much larger than the transversal one. This would also fit the role of a simple support with transversal displacement reduced
by friction effects. The normal stiffness is set with a value comparable with the stiffness of steel material.

As first approximations, all the supports are considered to be equal to each other, and then a single value of normal
stiffness and a single value of transversal stiffness is applied, and the values are:

• Normal stiffness kz D 109 N/m;
• Transversal stiffness kxy D 103 N/m;

In Fig. 25.10 the MAC index of this starting point between EMA and FEA is proposed.

25.4.2 First Optimisation

The values set in the previous paragraph is chosen as first guess for the optimization and summarized in Table 25.2, with
their relative bounds.

In the following figures (Figs. 25.11 and 25.12) the results of the optimisation processes for both the algorithms are shown.

25.4.3 Optimisation with Different Starting Point

The reliability of the values obtained with the previous optimisation are checked running a second process with different
values of first guess, taking into account the order of magnitude of the values obtained before. The aim is to verify that the
maximisation of the objective function reached a global instead of a local point.

For this attempt, the first guess values are summarised in Table 25.3.
In the following figures (Figs. 25.13 and 25.14) the results of the optimisation processes for both the algorithms are shown.
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Fig. 25.11 Objective function (left) and parameters (right) trends with respect to the iterations for fmincon algorithm

Fig. 25.12 Objective function (left) and parameters (right) trends with respect to the iterations for patternsearch algorithm

Table 25.3 Design parameters
for the optimisation with bounds,
first guess and optimal values

Symbol Lower bound [N/m] First guess [N/m] Upper bound [N/m]

kz 1 4 � 109 1012

kxy 1 8 � 108 1010

25.4.4 Full Optimisation with Separate Values for Supports

The last step, after the reliability of the model is proved, the optimization is extended allowing the supports to be independent
and then assigning different values for the normal stiffness and different values for transversal stiffness.

The relative 16 design parameters with lower bounds, upper bounds, first guess and optimal values are summarised in
Table 25.4.

Then, in Figs. 25.15 and 25.16 the trends of objective function and parameters choice are shown
Then the final resulting MAC with the optimum values is shown in Fig. 25.17.
After the results of the optimal values, a visual comparison and a MAC plot of the mode-shapes between EMA and FEA

eigenvectors. In Figs. 25.18 and 25.19 the qualitative comparison of the 3D views of the deformed configuration of some
representative global modes are shown.
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Fig. 25.13 Objective function (left) and parameters (right) trends with respect to the iterations for fmincon algorithm

Fig. 25.14 Objective function (left) and parameters (right) trends with respect to the iterations for patternsearch algorithm

Table 25.4 Design parameters
for the optimisation with bounds,
first guess and optimal values

Support ID Symbol Lower bound [N/m] First guess [N/m] Upper bound [N/m]

1 k1,z 1 4 � 109 1012

k1,xy 1 8 � 108 1010

2
k2,z 1 4 � 109 1012

k2,xy 1 8 � 108 1010

3
k3,z 1 4 � 109 1012

k3,xy 1 8 � 108 1010

4
k4,z 1 4 � 109 1012

k4,xy 1 8 � 108 1010

5
k5,z 1 4 � 109 1012

k5,xy 1 8 � 108 1010

6
k6,z 1 4 � 109 1012

k6,xy 1 8 � 108 1010

7
k7,z 1 4 � 109 1012

k7,xy 1 8 � 108 1010

8
k8,z 1 4 � 109 1012

k8,xy 1 8 � 108 1010
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Fig. 25.15 Objective function (left) and parameters (right) trends with respect to the iterations for fmincon algorithm

Fig. 25.16 Objective function (left) and parameters (right) trends with respect to the iterations for patternsearch algorithm

Fig. 25.17 Resulting MAC with
the optimum values
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Fig. 25.18 Visual mode-shape comparison EMA-FEA of the cast-iron model

25.5 Conclusions

The two test structures subject of this work presented a case where the boundary constraint are not trivial to model and
choose.

If the two extreme studies (all mountings clamped or all mountings supported) might be intuitively not suggested, the
intermediate condition is difficult to set because of the non-trivial choice of which of the mountings are to be clamped.

The values of stiffness of elastic supports are obtained using an optimisation process and the comparison in terms of
frequencies and mode-shapes are presented.

Optimal values of stiffness are reported reaching an fair correlation with experimental results. The stone-cast structure
was proved to have better dynamic behaviour with respect to the cast-iron one, thus lower cost meets performances that are
more suitable for a grinding machine.
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Fig. 25.19 Visual mode-shape comparison EMA-FEA of the stone-cast model
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Chapter 26
Impact of Numerical Model Verification and Validation
Within FAA Certification

David M. Moorcroft and Joseph Pellettiere

Abstract The mission of the Federal Aviation Administration (FAA) is to provide the safest, most efficient aerospace system
in the world. The FAA Aircraft Certification Service is responsible for the design and production approval and airworthiness
certification of all U.S. civil aviation products. Historically, design approval has required physical tests, however the FAA
allows for the use of modeling and simulation (M&S) to demonstrate compliance with federal regulations. This allows an
applicant to reduce the number of tests required to certify a design by relying on the results of M&S. As with all M&S use,
verification and validation are fundamental in establishing the credibility of the computational models of aircraft components.
Through several government-industry workshops, there is an apparent need for better guidance and training for both parties
to understand how to communicate M&S and Verification and Validation (V&V) activities to support certification decisions.
Current efforts focus on the level of detail required to document the M&S and V&V activities by an applicant such that the
FAA can make an informed certification decision resulting in safe aircraft.

Keywords Verification • Validation • Regulatory • Decision making • Aircraft certification

26.1 Background

The Federal Aviation Administration (FAA) is one of the federal agencies that require a safety demonstration of commercial
equipment before it can be used. The FAA’s standards and regulations are designed to protect occupants in the event of an
aircraft crash. As part of these regulations, dynamic testing and occupant injury assessment have been required for seats in
newly certified aircraft since the adoption of Title 14 Code of Federal Regulations part 25.562 and similar regulations in
parts 23, 27, and 29 [1].

Part 25.562(b) states that “Each seat type design approved for crew or passenger occupancy during takeoff and landing
must successfully complete dynamics tests or be demonstrated by rational analysis based on dynamic tests of a similar type
seat : : : ” The inclusion of this statement in the regulatory language, “ : : : demonstration by rational analysis : : : ”, provided
the necessary basis to develop Advisory Circular (AC) 20-146 to incorporate the use of modeling and simulation (M&S) in
certification programs for the various categories of aircraft and rotorcraft [2]. The AC provides high-level guidance on the
validation of numerical seat models. AC 20-146 identifies three main groups to which the use of M&S may be applicable:
applicants including the seat as part of the aircraft type design, seat manufacturers, and seat installers. Two possible uses for
M&S in certification programs include establishing the critical seat installation or configuration that will be tested, potentially
reducing the number of required certification tests and demonstrating compliance of changes made to an existing certified
seat system.

In addition to AC 20-146, SAE International has published Aerospace Recommended Practice (ARP) 5765, Analytical
Methods for Aircraft Seat Design and Evaluation [3]. The document is the result of work done by the SAE SEAT committee,
which is an industry group that produces industry standards and recommended practices. ARP 5765 was created to define
specifications for virtual Anthropomorphic Test Devices (v-ATDs) suitable for aviation impact test simulations, to provide
procedures for validation of both lumped mass and detailed finite element seat models, and to convey the current best
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practices to assist engineering analysts in developing accurate models. Part of the purpose of this ARP is to provide additional
detail that was not contained in AC 20-146 and provide details on practices to develop a model that can be used in the
certification process.

26.1.1 Physical Testing

Data available from tests conducted to support certification of seat systems may not be sufficient to develop or validate
models. Seat certification has historically been accomplished through physical testing and has been treated as deterministic.
The results of a particular test are either a pass or fail of all of the requirements levied upon it. If a test is considered a failure,
then those results would not be forwarded to the regulating authority as part of the certification package. This approach limits
certification test data to only being usable as a point validation since it only represents a single possibility of what might
happen to a seating system and only under acceptable conditions. Another issue is the lack of repeated tests from which
confidence intervals can be derived. Industry typically considers every developmental test a potential certification test and
is not required to repeat a successful test. If a successful test was repeated and it subsequently resulted in a failure, then
the previous test results can be called into question, jeopardizing the certification of that configuration. This is a significant
disincentive to conducting repeats. Simply put, once a seat passes the test condition, from an industry standpoint, it is best
to let it be and move on to the next configuration. Yet another issue is the cost of conducting tests that generate sufficient
data to develop or validate models. Repeating tests solely to generate additional data for model validation adds significant
cost to a program. Other cost burdens include any additional instrumentation or data processing required to support model
validation. A certification test is normally conducted with only the instrumentation necessary to gather the data to make a pass
or fail determination in accordance with the regulations. Model validation, however, may levy additional data requirements
that will increase testing costs for the industry. Without clear benefits established and consistency across the industry, any
manufacturer would view this as an increased cost burden.

26.1.2 Regulatory Acceptance

AC 20-146 was developed as a response to the public Law HR 1000 under section 757, Streamlining Seat and Restraint
System Certification Process and Dynamic Testing Requirements [4]. The AC was part of the plan that promoted alternative
methods of compliance, which in this case includes using M&S in the certification process. The application of the AC and use
of M&S also has the potential to improve certification efficiency by providing a better understanding of the system behavior
which can reduce the number of test failures.

The use of M&S in certification has been either investigated or accepted by the FAA for cabin interiors, bird strike,
fuselage crashworthiness, and engine blade failure [5]. Other federal agencies have also explored the use of M&S in
certification, including the Federal Highway Administration for roadside safety structures [6] and the Food and Drug
Administration for medical devices [7].

26.2 Verification and Validation

Modeling and simulation used to support certification, so called certification by analysis (CBA), will require substantiation
in the form of verification and validation (V&V). AC 20-146 provides high-level guidance on the validation of seat models.
Note that the original version, published in 2003, does not contain the term verification. Several commercial codes were
identified as being acceptable and a brief description of time steps is included, but otherwise the topic of code and solution
verification is absent. The forthcoming revision will likely include more discussion on the topic and will include definitions
from the American Society of Mechanical Engineers Guide for Verification and Validation in Computational Solid Mechanics
(ASME V&V 10-2006) [8].

The AC does a better job of addressing validation, although the focus is on full system tests/models. General validation
criteria are listed, which require the validation conditions to be similar to the model use conditions. This agrees with the
ASME V&V 10-2006 specification that validation is done for an intended use. Application specific validation criteria are
thoroughly discussed while providing only rudimentary suggestions for the methods of comparison, i.e. validation metrics,
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and acceptance values. These criteria are focused almost exclusively on system level certification system response quantities
(SRQs), i.e. the data channels used to make a pass/fail decision. Support channels are mostly excluded.

One of the original purposes of the SAE ARP was to provide additional recommendations on the methods of V&V.
The first edition of the ARP, published in 2012, did not include a V&V section, but a forthcoming revision will. The
recommendations are not yet at the level of a step-by-step guide, but additional information is provided on expectations
for verification, component model validation, and system response quantities of interest, including support channels. This
document also provides more detailed recommendations for validation metrics and acceptance limits.

The forthcoming revisions for both AC 20-146 and ARP 5765 references ASME V&V 10-2006, specifically the
definitions and process map. The methods suggested for aviation seats are rudimentary by the standards of V&V 10-
2006, specifically as it relates to uncertainty quantification (UQ). As mentioned previously, aircraft seat testing is treated
as deterministic and limited information is available to attempt even basic UQ. The revised AC 20-146 will likely include
a recommendation to apply a factor of safety to some critical SRQs in an attempt to account for testing and modeling
uncertainties.

26.2.1 Code Developer Support

Multiple commercial code developers, along with the developers of the virtual ATDs, have supported the efforts of the
FAA and industry, through the SAE SEAT committee. Additionally Livermore Software Technology Corporation (LSTC)
has hosted the LS-DYNA® Aerospace Working Group for several years [http://awg.lstc.com/]. The Aerospace Working
Group (AWG) develops and publishes aerospace test cases and modeling guidelines for the non-linear analysis program LS-
DYNA®. The working group originally focused on engine blades, but has recently created a group to address cabin interiors.
The hope is that this group, and perhaps others like it, will provide the aviation industry with more information on code
verification and quality assurance.

26.3 Communicating Results

With the end goal of being able to incorporate certification by analysis (CBA), objective methods of determining model
acceptance must be explored. A certification engineer may not be an experienced analyst, but will still be required to evaluate
the analysis. To aid in CBA decisions, an applicant must communicate to the decision maker, i.e. the certification engineer, the
methods used to model the physical system, the validity of that model, and how the results relate to a regulatory submission.

26.3.1 Coordination and Planning

AC 20-146 emphasizes early and thorough communication between an applicant and the certifying authority. The FAA
coordination process presented in the AC is extracted from FAA Order 8110.4C [9]. FAA coordination is essential to ensure
the proper and timely execution of any certification program. When M&S is to be included in the certification plan, the
following applicant actions are recommended:

• Acquaint the FAA personnel with the project.
• Discuss and familiarize the FAA with details of the design.
• Identify, with the FAA, applicable certification compliance paragraphs.
• Negotiate with the FAA where the applicant will utilize computer modeling and specify the intent and purpose of the

analysis.
• Establish means of compliance either by test, by rationale analysis (i.e., computer modeling), or both, with respect to the

certification requirements.
• Establish the validation criteria for the computer model relative to its application for certification.
• Prepare & obtain FAA Aircraft Certification Office (ACO) approval of the certification plan.

http://awg.lstc.com/
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The certification plan document should contain:

• A description of the seat system to be modeled.
• A description of the software to be used in the analysis, including the operating assumptions and limitations of the

software.
• A description of how compliance will be shown.
• A description of material data sources.
• A list of validation methods, including a description and justification of the failure modes/theories.
• An interpretation of results.
• Substantiation documentation and data submittal package.

26.3.2 M&S Documentation

The applicant must create a document that provides the numerical results and comparisons to test data when computer
modeling is submitted as engineering data. This document is known as the Validation and Analysis Report (VAR). As
recommended in AC 20-146, this report should contain:

• Purpose of Computer Model
• Overview of Seating System
• Software and Hardware Overview
• Description of the Computer Model

• Engineering Assumptions
• Modeling of the Physical Structure
• Material Models
• Constraints
• Load Application
• Occupant Simulation
• General Analysis Control Parameters

• Results Interpretation
• Ultimate Margin of Safety

SAE ARP 5765 provides additional detail on the contents of this report. The structure is based on US Department of
Health and Human Services, Food and Drug Administration documentation guidance [7]. The ARP specifies the following
sections:

• Executive Summary
• Introduction
• Numerical Implementation (code details)

• v-ATD

• Seat System Geometry
• Material Models and Material Properties
• Mesh
• Boundary and Initial Conditions
• Post-Processing & Results
• Validation
• Model Use
• Limitations
• Conclusion

This document is essentially the combination of three documents. The first component is a detailed description of the
numerical model including how the model was constructed and the sources of material properties. This includes information
related to the physical system, such as dimensions, tolerances, and materials. The next component is a verification and



26 Impact of Numerical Model Verification and Validation Within FAA Certification 253

validation report, which includes the comparator test data and the results of quantitative comparisons. The third component
could be considered a test report for the model use simulations, i.e. details that are included in a test report when generating
certification data. This includes conformity of the test article, use of acceptable loading conditions, use of acceptable ATDs,
and data outputs that meet regulatory pass/fail criteria.

The final two sections of the report are of particular interest to the decision maker. The limitations section must address the
extrapolation limits of the model, the uncertainties related to modeling practice and material properties, and should include
sensitivity analyses. The culmination of the document is then a recommendation for a positive certification decision. As such,
this report must convince the decision maker, through the accumulation of evidence, that the model is capable of accurately
predicting the system response for the intended use.

26.4 Decision Making

Modeling and simulation has been used in the certification process for several different programs including seat systems,
certification of a novel design aircraft fuselage, and design of derivative engine fan blades. Currently these approvals have
been made on a case-by-case basis. As discussed above, there are numerous documents that recommend procedures for an
applicant to follow. As these documents mature, recommended practices can become standards and the FAA will be able to
define an equivalent level of safety for M&S data. Hence the use of M&S can follow general guidance in much the same way
that physical test data are used.

Verification and validation is fundamental in establishing the credibility of the computational models of aircraft
components. When M&S results are to be submitted as engineering data, it is only through V&V that the decision maker can
have confidence in the accuracy and applicability of the M&S. Due to the nature of certification approvals, documentation
is the key. This is the means for an applicant to communicate the assumptions and descriptions of the physical processes,
modeling techniques, verification methods, validation results, and limitations. For validation documentation, ASME 10-2006
suggests two questions be answered:

• Are the approximations and uncertainties inherent in the modeling approach appropriate for the intended application?
• Are the model and experiments adequate to predict the intended system responses for the reality of interest?

Perhaps most important for certification, the V&V documentation should address limits on the use of the model. The
intended use of the model is to generate certification data at an untested location in the design space. Knowledge of the
engineering assumptions, the region of applicability for material properties, and the similarity between model use and
validation conditions provides confidence in the extrapolation. Sensitivity analysis is recommended throughout the model
validation process to determine the sensitivity to model inputs that are difficult to measure, e.g. friction, or inputs that are
not known with high certainty. Sensitivity analyses can be used to document the sensitivity of the model under different
conditions. This includes checking the sensitivity of the model for future use and extrapolation and for the justification of
specific model inputs where the data were not explicitly known. If the conclusions of the analysis are significantly dependent
on the assumptions and/or simplifications in the model, the analyst should conduct a sensitivity analysis of the parameters
associated with those assumptions and/or simplifications.

26.4.1 Decision Makers

Certification decisions are made by Aircraft Certification Office (ACO) engineers. They are experts on the regulatory
aspects of aircraft components, federal regulations, FAA policies and orders, airworthiness directives, exemptions, and
industry standards. ACO cabin interior engineers typically have a structural qualification such as a mechanical engineering
background. They are not expected to be experts in every software code that could be used to generate certification data.
Because of this, it is important that an applicant use the certification plan document and the validation and analysis report to
provide sufficient information for the ACO to make an informed decision.

The ACO also has the ability to bring in FAA subject matter experts to assist in the decision making process. The subject
matter experts can provide knowledge of the specific software codes, general V&V best practices, and testing uncertainties.
Recognizing testing uncertainties, within the backdrop of deterministic certification testing, and definition of appropriate
accuracy requirements, also plays a key role in the success of certification by analysis.
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26.4.2 Level of Detail

Through several government-industry workshops, it has become apparent that there is a need for better guidance and
training for both parties to understand how to communicate M&S and V&V activities to support certification decisions.
Current efforts focus on the level of detail required to document these activities by an applicant so the FAA can make an
informed certification decision that ensures aviation safety. Potential applicants have suggested a streamlined approach to
documentation, expressing that much of the information is contained in other documents or is an analyst’s decision. We
hypothesize two underlying issues that explain this situation.

The first is a possible misunderstanding of the role of M&S/V&V documentation in the certification process. In a typical
physical certification test, a FAA witness can inspect the physical test article and observe the test. In certification by analysis,
the ACO must rely solely on the validation and analysis report to make a decision. In this regard, the documentation of the
modeling techniques, the verification and validation activities, and the extrapolation simulations must stand-in for the ability
to view a physical seat.

The second issue is that companies may not have allocated sufficient time for an analyst to thoroughly document the
M&S activities. Analysts have suggested that once a simulation shows positive results, company management believes that
that portion of the project is complete and the analyst should move on to the next project. At this point, it seems that it
is important for the regulatory authorities, to make it clear how important proper documentation is to the acceptance of
modeling and simulation for certification data.

26.4.3 Discrepancies

AC 20-146 states that failure to satisfy all validation criteria does not automatically preclude the model from being validated.
The applicant and the ACO engineer should evaluate whether the deviations impact the ability of the model to predict credible
results and determine if deviations from the validation criteria are acceptable. In addition, the applicant may present evidence
to show that the deviation is within the inherent reliability and statistical accuracy of the test measurements. The applicant
should quantify any discrepancies between the results obtained from analysis and the dynamic test data for those parameters
that are critical to the application of the analysis. Additional data from previous testing, data available from component tests,
and support from classical engineering methods can all be used to support a positive certification decision when discrepancies
occur.

26.4.4 Documentation of Validation

AC 20-146 states that the applicant is entitled to validation documentation, supplied by the FAA, indicating that the computer
model is capable of generating certification data. This will allow the applicant to avoid revalidating the same model each
time it produces certification data. It also avoids having to revalidate if business must be conducted at an ACO different from
the ACO that approved the original validation. Possible items to include in the validation documentation are:

• The FAA’s acceptance of the computer model to produce certification data.
• Identification of the software version and hardware platform used to build and run the computer model.
• A description of any limitations on the application of the computer model.
• The FAA’s expectations for how the applicant will maintain configuration control of the model.
• Other items as agreed to between the ACO and the applicant.

26.5 Conclusion

An important point to consider is that the application of verification and validation still relies heavily on testing. The V&V
activities are focused on the comparison of the M&S with the physical test data. Part of this is that current regulations which
may change as M&S and V&V mature. As they mature, the reliance on full scale testing may be reduced, but this may be
supplanted by the need to conduct smaller scale component tests following a building block approach. This way, the M&S
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can be validated in smaller portions with a smaller extrapolation to the full system response. The amount of testing and at
what level then becomes one of the future uncertainties.

The FAA has several guidance documents allowing the incorporation of M&S data into the certification process. In the
future, these documents will be expanded to provide additional details and clarity. New guidance material may be developed
to discuss the use of M&S to demonstrate the crashworthiness of full aircraft with performance based requirements. These
updates will incorporate the evolving material on verification, validation, and uncertainty quantification and how they might
affect any decisions. However, the use of M&S does not remove the need for high quality physical test data.

Currently V&V is an integral step in the decision making process for certification decisions when M&S is used. Without
V&V, the numerical data will not be accepted as certification data. Even with rigorous V&V, care must be taken to ensure
that a quality V&V process is followed that is relevant to the purpose of the certification project.

Disclaimer The findings and conclusions in this paper are the opinions of the author(s) and should not be construed to represent any agency
determination or policy. Certification approvals are based on federal regulations, official FAA policy, and certification engineers.
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Chapter 27
The Role of Model V&V in the Defining of Specifications

Todd Simmermacher, Greg Tipton, Jerry Cap, and Randy Mayes

Abstract Model validation plays an important role in estimating the confidence in a simulation. Many times, the simulation
is the only source of response that is available. When an expensive simulation is developed, the predictions from that
simulation will usually be used in an absolute sense, with more conservatism added if the model validation analysis indicates
low confidence. The results of the simulation could be scaled based upon the confidence of the model. This paper will describe
how the outcome of a model validation exercise determines the conservatism applied to the environmental specifications and
the estimation of margins derived from those simulations.

Keywords Validation • Specifications • Qualification • Uncertainty • Model

27.1 Introduction

Model validation and uncertainty quantification has, from necessity, become increasingly embedded into the design and
qualification process. Model results are not being used in a vacuum for high consequence decisions, but are compared and
formally evaluated against relevant experimental data. The degree and rigor to which the evaluation is performed varies
widely based upon programmatic constraints such as budget, schedule, and risk tolerance of the end user of the results.

Model validation and uncertainty quantification has a large body of literature that has advanced the field. The iconic
reference is [1]:

Verification: The process of determining that a model implementation accurately represents the developer’s conceptual
description of the model and the solution to the model.

Validation: The process of determining the degree to which a model is an accurate representation of the real world from the
perspective of the intended uses of the model.

The objective of verification is to confirm that the computational representation of the mathematics of the model is, in fact,
representing the intended mathematics to some quantified degree. There will be errors due to discretization and convergence
of solvers, but these errors should be quantified and included in the uncertainty estimates. The verification of a simulation
involves both the analysis code used to develop the simulation, as well as the specific model that is implemented in the
code. Verification involves comparison to known analytical solutions and other known solutions to the mathematics that is
implemented in the analysis code. The specific model that is developed in the analysis code also requires verification to
insure that the assumptions made by the analyst are being correctly represented such that the analysis code provides a valid
simulation.

The objective of validation, in contrast, is to evaluate the appropriateness of the assumed computational model of the
system of interest. Whereas verification is purely an evaluation of the mathematics of the model, validation is the tie to the
physical system and experimental data. Validation involves identifying quantities of interest such as peak velocity, maximum
temperature, gRMS (standard deviation of a time signal in the units of acceleration of gravity), or other scalar measures that
represent the end use of the model. The results of a model validation effort should also include an uncertainty analysis of the
experimental and analysis processes as well as the confidence in the comparison. This information is important to assess the
adequacy of the model and to inform the risk affiliated with using the simulation results.

This paper will demonstrate a few examples where the adequacy of the model influences how the model results are
utilized. Typically, regardless of the results of the validation, the model is still useful. A very poor model may only be good

T. Simmermacher (�) • G. Tipton • J. Cap • R. Mayes
Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87123, USA
e-mail: twsimme@sandia.gov

© The Society for Experimental Mechanics, Inc. 2015
H.S. Atamturktur et al. (eds.), Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings
of the Society for Experimental Mechanics Series, DOI 10.1007/978-3-319-15224-0_27

257

mailto:twsimme@sandia.gov


258 T. Simmermacher et al.

for relative comparisons between modeled configurations; however, it can still provide valuable insight. Many times, the
model is assessed to be fair to good, and can still be used for its intended application. How the model results are used can be
affected by the results of a validation. Results from a fair model may be modified by a safety or uncertainty factor whereas
results from a good model may be used with no modification.

The first two examples where the adequacy of the model influences how the model results are utilized is for component
test specifications. Specifically, this paper will focus on component mechanical shock test specification and component
random vibration test specification. These two examples show how simulation results and the adequacy of the results are
used for development of component test specifications. The final example in this paper demonstrates where the quality of
the model necessary for decision making is determined by the outcome of the analysis. The example is the calculation of
failure margins. It is shown that if the predicted margin is large, then a large effort into improving the model and doing model
validation may not be worth the expense.

27.2 Component Specification

An application that requires a high fidelity, validated model is the derivation of test environments to be used to qualify
components for use in a full system. A full system model is developed and simulations of the various environments that
have been defined as requirements for the system are used to define component level laboratory tests. These laboratory level
tests are designed to represent the in service excitation such that a component can be adequately tested without requiring the
hardware to represent the full system.

The environments at the component level can be derived from either a full system physical test or from a computational
simulation. Both the test and the computational simulations have limitations in the level of fidelity in replicating the
operational environment, however, typically the test results are assumed to be sufficiently representative to develop
component test specifications. Computational simulations, however, require model validation for the results to be considered
valid for further use. The reality is for many applications, the model will be used unless it is excessively wrong.

How the results from a simulation are used can be affected by the outcome of the model validation [2]. A model that is
shown to be highly predictive with little uncertainty will be used with confidence and with little modification. If the model
is shown to be a poor representation of reality or with a large degree of uncertainty, a large safety factor or scaling may be
applied to ensure conservatism in the final test specification. Declaring a priori how the results of a simulation are going to be
used, processed, and modified based upon the fidelity demonstrated by the validation is as important as declaring the model
validation metric and acceptance criteria. In this case, identifying the modifications to the data that will be performed on the
data for various levels of success is important so that the processing can be agreed upon prior to adjudicating the model. This
assures that the process can be developed in an objective manner.

27.3 Component Mechanical Shock Test Specification

High level mechanical shock test specifications are simulated on either a drop table or a resonant plate or beam test setup.
The shock specifications for either test are shown in Figs. 27.1 and 27.2. For a drop table, the test specification is in the form
of a haversine. The duration and amplitude of the haversine are the parameters to be specified. The duration is determined
by the bandwidth of the shock. Normally the specification is developed by enveloping the test or model data in the shock
response spectra (SRS) domain. The amplitude and duration of the haversine is adjusted until the SRS of the haversine is
higher in amplitude than the data being enveloped. An important feature of the SRS is that the high frequency asymptote has
amplitude equal to the peak acceleration of the corresponding time history. It is this characteristic that will be used in the
development that follows.

A shock can also be simulated on a resonant beam or plate fixture (Fig. 27.2). This shock is appropriate for a pyro
shock type application where there is ringing affiliated with the operational environment. The resonant test is performed by
fixing the test article to a flat plate or beam, then exciting the plate or beam by firing a projectile at the fixture. As with the
haversine, there are two parameters that are needed to define the resonant plate test, the amplitude and the “knee” frequency.
The amplitude is determined by the magnitude of the impact. The knee frequency is defined as the break point where the
slope changes in the SRS which is 200 Hz in Fig. 27.2. The knee frequency is controlled by the first natural frequency of the
beam or plate used as a fixture for the test. By adjusting the size or thickness of the beam or plate, the knee frequency can be
tuned.



27 The Role of Model V&V in the Defining of Specifications 259

Fig. 27.1 Representative
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For the application described in [2], the duration of the haversine is assumed to have been determined through a
combination of test data and model results. By reviewing data from both validation tests and simulation results, the frequency
content of the SRS was estimated and was assumed known. The model results were to be used to determine the amplitude of
the haversine for use in a component level test specification. The validation of the model was performed at the response level.
Each measurement location was judged individually against test data to determine the degree of conservatism present in the
model. The model was then used to simulate similar, untested environments and the results were used to derive a composite
shock specification for the various components in the system.

The model validation conditions and the resulting acceptance of the data are characterized by the quantities identified in
Fig. 27.3. The mean of the quantity of interest (QOI) from the model (M ) and the mean of the QOI from the experiment (Ē)
are defined relative to the probability distribution of the model and experimental QOI. The uncertainty is given as a standard
deviation of the respective distributions. The appropriate standard deviation for which to define UM and UE based upon the
PDF of the model and experimental uncertainty is negotiated with a team consisting of the customer, test engineers, analysts,
and environment engineers.

The criteria developed in [2] are shown in Figs. 27.4 and 27.5. The underlying model to be validated is linear, however
localized non-linearities exist in the physical system. At the locations where the response is predominately linear, the
criterion uses a combination of model and experimental uncertainty. At locations where the response is influenced by a
local nonlinearity, the linear model should be conservative. This definition favors a conservative model which is preferable
for component qualification. A component that passes an over-test is guaranteed to function in the operational environment



260 T. Simmermacher et al.

Fig. 27.3 Model and
experimental probability density
functions definitions

Fig. 27.4 Graphical
representation of validation
metric for a linear model in a
linear regime

Fig. 27.5 Graphical
representation of validation
metric for a linear model in a
nonlinear regime

while a significantly under-tested component may have an undetected failure prior to reaching the full environment. An overly
conservative specification, however, can add unnecessary cost to the design in an effort to overly ruggedize the component.
A factor of two in conservatism was negotiated to be acceptable for the application and is based on the rule of thumb for
enveloping SRS responses that the peak acceleration of the resulting specification should not be over a factor of two from
the underlying data.

For a location where the response is predominately linear, the model is considered valid if the model is within the root
mean square of the model and experimental uncertainty below the mean of the experiment or within sum of the mean of the
experiment plus the experimental uncertainty above the mean of the experiment (Fig. 27.4). The example in Fig. 27.4 shows
a valid model that is slightly non-conservative in predicting peak acceleration. This allowed for the possibility that the model
results could under-predict the test, but still be considered valid.

For a location where the response is primarily non-linear (Fig. 27.5), the expectation is that a linear model should predict
that location conservatively, and therefore the valid region for the model only spans between the experimental data and the
same upper bound as Fig. 27.4. This restriction only allows for the experimental uncertainty at the lower bound.

Once the simulation results have been determined to be valid, the amplitude of the haversine can be set. If the valid
prediction was higher than the experimental measurement, the peak acceleration was used directly from the model. However,
if the valid prediction was lower than the experimental measurement, the amplitude of the haversine was set to twice the
predicted level. This insured that the component specification was conservative.

A similar metric could be used to define a resonant plate test. The knee frequency, which is similar to the duration of the
haversine, would be determined a priori from legacy data or through analysis of relevant test and model data. The amplitude
of the resonant plate specification would be set exactly as described above for a haversine.
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27.4 Component Random Vibration Test Specification

For random vibration, the test specification is defined in terms of the power spectral density (PSD). The duration of the test
specification is determined by either the duration of the operational environment or a scaling based on maintaining the
fatiguing nature of the insult that is determined by a variation of Miners fatigue life model. This scaling will compress the
time necessary to perform the test by increasing the amplitude of the test specification. The test specification is derived
from either operational, laboratory, or simulation data. The specification is defined by simplifying the underlying data by
generating a straight line envelope of the data, with some conservatism added to account for variability and uncertainty.

Model validation for random vibration can be performed in a few different ways. A simple metric is a specification on
the natural frequencies of the system to be within a certain percentage of the experimental frequencies as determined by a
modal test. Typically 5 % is assumed to be a reasonable error. A more rigorous metric is based on the least favorable response
(LFR) and is developed by [3]. The LFR is attractive because it compares a weighted integral over multiple frequency ranges
to determine validity. The integration minimizes the sensitivity of the metric to small errors in natural frequency that can be
due to model errors or unit to unit variability.

Once the validity of the model has been established, the data is available to define specifications. Typically, due to
uncertainty in the loadings, errors and uncertainty in the model, and variability in the hardware, the simulation results
will differ from test data or legacy test specifications derived for a similar system. Since the model results may be the only
data available to specify component specifications, processing of the simulation results is needed to normalize the results
to a known basis. A method to normalize the data has been developed by [4]. This technique was developed to utilize the
model results at locations that were unmeasured during a laboratory or field test. This assumes that the model is compared at
measurement locations and the degree of similarity is defined at these equivalent locations. A frequency dependent scaling
factor is then defined that corrects the simulation results to the measured results. This frequency dependent scaling is then
applied to model results for unmeasured nearby locations. The assumption is that the bias error for nearby locations is similar
to the bias error observed at the measured locations.

The correction procedure is demonstrated in Fig. 27.6. The processing begins by either enveloping measured data or using
legacy test specifications that currently exists. This is depicted as the red line in Fig. 27.6. The raw model results are shown
in blue in Fig. 27.6. A frequency dependent function is defined as the ratio of the red curve and the blue curve evaluated at
the peaks. For the example in Fig. 27.6 this gives a value of the function at four frequencies. The ratios are then interpolated
to the remaining frequencies in the bandwidth of interest. Finally the model data is scaled using this frequency dependent
function with the result given as the black curve in Fig. 27.6. Note that the peaks in the modified simulation data match the
envelope of the measured data exactly as defined. The valleys are also corrected. This is critical for a properly defined test
specification to insure that the test does not attempt to overdrive these regions of low response.

Once the frequency dependent scaling has been defined for a location, this function is assumed to be valid at nearby
locations. The definition of nearby is based on engineering judgment and should be determined by a team including the
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Fig. 27.7 Localized bias
correction
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environments engineer, analyst, and customer. The scaling is then used to modify predictions at locations of interest where
no test data were collected. Figure 27.7 shows an example of nearby results scaled using the frequency dependent function
determined in Fig. 27.6. Note that the mid frequencies are amplified as a result of the scaling. The model under-predicted
this frequency range at the measurement location and this amplification is carried through to the other locations as desired.

27.5 Quantifying Margins and Uncertainties

The final example is an application where the model results are used to determine the margin in a system. Quantification of
margins and uncertainties has become increasing important in high consequence applications [5, 6]. An example application
is depicted in Fig. 27.8. The requirement is a hard limit based off of some measured operational data. The operational
environment is random and has some distribution. The requirement is derived by defining some level of conservatism with
some confidence factor. This then identifies the deterministic value of the requirement, in this case peak stress at some
location. The model will be used to evaluate the capability of the component by simulating environments much higher
than the requirement until a failure is predicted by the model. The probability of failure is then estimated by propagating
uncertainty in the parameters through the model and estimating the potential distributions of the peak stress.

The acceptance criteria of the model being deemed valid are determined in a large part by the amount of margin
demonstrated in the simulation. In Fig. 27.8, a system with a large degree of margin is shown. The model can have a
large amount of uncertainty and the margin would still be large. In this case, a very refined model with minimal uncertainty
may be as effective as a cruder model with large uncertainty. If the model is being used solely for margin assessment, an
extensive, time consuming model development and model validation effort might not be worth the expense.

Figure 27.9 demonstrates a system with a small degree of margin with respect to the requirement. In this case, the
margin is small and the required confidence in the model results is much higher than the situation in Fig. 27.8. Here, large
uncertainty in the model could indicate the possibility of negative margin which could imply that the system does not meet
its requirements. A large model validation and characterization effort would be demanded for this situation prior to any
assessment of the margin.

In the quantification of margin using modeling results, the required confidence in the model is dependent on the
demonstrated margin. The results of the simulation determine the acceptance criteria for the model validation. This
dependence on the simulation requires an initial estimate of the margin. A rough or initial model might be used to estimate the
degree of margin present in the design. Then the path for model development can be planned and executed to the appropriate
level.
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Fig. 27.8 Quantification of
margin and uncertainty

Fig. 27.9 Quantification of
margin and uncertainty

27.6 Conclusions

Three examples of where the outcome of a model validation exercise determines how the data from the simulation is used
have been presented. In two of these examples the end result of the model is not a yes/no decision, but the simulation results
are used to provide test specifications for designers to assess their components against. The third example shows where the
quality of the model necessary for decision making is driven by the outcome of the analysis. These examples again show that
the application that the model was developed for drives how the model validation is performed.
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Chapter 28
A Perspective on the Integration of Verification and Validation
into the Decision Making Process

Kenneth T. Hu, Angel Urbina, and Joshua Mullins

Abstract As more and more high-consequence applications such as aerospace systems leverage computational models to
support decisions, the importance of assessing the credibility of these models becomes a high priority. Two elements in
the credibility assessment are verification and validation. The former focuses on convergence of the solution (i.e. solution
verification) and the “pedigree” of the codes used to evaluate the model. The latter assess the agreement of the model
prediction to real data.

The outcome of these elements should map to a statement of credibility on the predictions. As such this credibility should
be integrated into the decision making process. In this paper, we present a perspective as to how to integrate these element
into a decision making process. The key challenge is to span the gap between physics-based codes, quantitative capability
assessments (V&V/UQ), and qualitative risk-mitigation concepts.

Keywords Verification • Validation • Credibility • Decision making • Risk

Nomenclature

V&V Verification and validation
UQ Uncertainty quantification
M&S Modeling and simulation

28.1 Introduction

Verification and validation (V&V) of physics based models has progressed quickly in the past few decades. Modeling and
simulation (M&S) is now an everyday activity, and is routinely used to influence decisions. Engineering decisions are made
based on both testing and M&S information. In our engineering context, the decision often relates to whether a system or
components meet a requirement. In addition to the best action (accept vs. reject), sometimes the decision itself must be
changed when there is not enough information (redesign/add margin, or gather additional information – i.e. renegotiate the
intended uses). Decision theory tells us that the best action must be selected based on the available information.

Engineering decisions are based on requirements, but there are many levels of requirements. “This system must provide
function A” is derived to “Component W must provide output X when input Y is above Z”, and this is finally translated to “a
validated simulation of Component W must show that output X is provided when input Y is above Z, with 99 % confidence.”
An M&S requirement like this needs a specification of validated, often based on adequacy criterion.

What is the appropriate level of abstraction to request M&S information or provide requirements? At some point these
derived and translated requirements and adequacy criteria are no longer representative or useful for answering the actual
question of interest. In addition, the M&S capabilities to meet those requirements are unlikely to exist, at least with any
degree of credibility. This is also a problem for experimental work.

The phrase ‘intended use’ of M&S is similarly vague. A common definition is the way M&S results will impact the
decision. We will define an intended use of a simulation to be the presentation of simulation results to satisfy – partially
or wholly – a specific requirement. It is not useful to set intended uses that exceed the predictive capability (the ability to
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make predictions with any confidence or credibility). It is equally unhelpful to request simulation results that are irrelevant
or lack traceability to the original requirements. Instead the intended uses must be negotiated so that they are both useful to
decision makers, and achievable by the M&S/V&V analysts. The main questions that arise here are: at what level should
requirements be provided to the M&S analysts, and how should intended uses be justified? We will focus on the second
question.

In the waterfall development concept [1], the decision maker derives and translates requirements down to specific M&S
predictions and adequacy criteria – answering the question “How good is good enough?”. This is an extremely difficult
process, since it is entirely subjective and is done without knowledge of the M&S capabilities. If the M&S analyst somehow
meets this requirement, then the model is valid or accredited, and its results can be used to cover higher level requirements.
If the requirement is not met, significant rework is required. For the reasons described above, this has never been a practical
approach. We argue that the “translation” of M&S requirements should actually be a negotiation of capability vs. intended
use. Building an argument for covering requirements must be done based on knowledge of M&S capabilities, and as those
capabilities evolve, or more information about capabilities is uncovered, the intended uses must change.

If we accept that M&S requirements will evolve as a negotiation between intended uses versus capabilities, we still need
a framework for comparing the two. We propose that decision theory is a suitable approach – the predictive capability must
be good enough for the customer to feel they can make a high quality AND risk-informed (see definition below) decision
about intended use. A high quality decision is one where you are confident that the action taken was the best available, based
on the available information. Too often, decisions are poor quality because we lack the proper information and a consistent
process to analyze the information. We maintain that high quality, risk-informed decisions are possible, but they require a
combination of predictions, uncertainty analysis, and credibility assessments. The ability to make such a decision is related
to the available information (predictions, tests, uncertainty analysis) and the quality of that information (credibility).

This paper will dig deeper into this argument with the goal of exposing a gap between the stated purpose of V&V and the
practical aspects of decision support. The authors’ aim for this paper is not to state a position as to how V&V should be done
but to start the conversation about our role in making engineering decisions.

We start with some crucial terminology, but we stress that these are working definitions that we apply to the contents of
this paper and are not assumed to be universally accepted.

• Verification – the process of confirming that a governing equation has been properly implemented into a mathematical
model and solved correctly

• Validation – the process of confirming that a governing equation and the associated model are indicative of reality for a
target application

• Uncertainty quantification – the process of mathematically characterizing unknown/random features and variables in a
target application and predicting their influence on a quantity of interest

• Value – the benefit achieved as a result of a particular event
• Risk – the expected loss associated with a particular event or set of events
• Risk management – the identification, assessment, and prioritization of risks followed by coordinated and economical

application of resources to minimize, monitor, and control the probability and/or impact of unfortunate events [2]
• Credibility – the believability of a message or conclusion, as determined by objective and subjective components including

the expertise of the source and the quality and completeness of the available information

As a starting point for this paper, we conducted a limited review of published work on this topic [3–7]. This is not an
exhaustive literature search but provides a means to identify established processes in other organizations, and understand
the concepts and principles and cultural issues to explain why they work. One formal framework to establish confidence
in an extrapolated system level model response within the context of nuclear weapons was proposed at Sandia National
Laboratories (referred to as Sandia hereafter) and it is referred to as Risk Informed Decision Analysis (RIDA). A central
statement of RIDA which provides the main motivation for this research states [8]:

“Whatever mathematical form an application of Risk Informed Decision Analysis (RIDA) to a stockpile lifecycle decision
might take, it requires that all uncertainties be identified and characterized. This includes the separate quantification of both
variability (i.e., aleatoric uncertainty) and lack-of-knowledge uncertainty (i.e., epistemic uncertainty), as well as definitions of
“other factors” and quantified characterizations of their individual contributions to uncertainty. RIDA also requires attention
to uncertainties in requirements and decision criteria, such as definitions of performance thresholds that are fundamental to
the decision making. In addition, RIDA requires complete transparency of all the information to make the decision process
understandable, traceable, and reproducible (documented).”

A key feature in the statement above is the last sentence which implies a formal process leading to the decision making
effort, in order to achieve the required level of transparency. Addressing this fact in a systematic way is what motivates this
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paper and thus, we organize this paper by posing questions and providing commentary – not answers. The “best” way to
support and influence engineering decisions, based on M&S, V&V, and UQ evidence, is very much open to debate. The
questions are posed at three levels.

First level:

1. What is the relationship between V&V, credibility, and uncertainty?
2. How does V&V/UQ evidence and communication impact risk perception?
3. What is and how to characterize risk?
4. What is the “decision rule” that takes into account all the available information to make an engineering decision? What

principles underlie this rule? Risk management? Value maximization?

Second level

1. In the presence of risk, how to allocate resources towards testing, M&S, V&V, UQ, etc.?
2. What is the best process to determine whether a model is valid?
3. What is the role of the Subject Matter Expert and peer review?

Third level:

1. What validation metric should I use?
2. How many Monte Carlo samples do I need?
3. How good is good enough? Is my model valid?

The questions at the third level are representative of much of the published work in the V&V and UQ fields. Indeed the
focus of V&V and UQ research at Sandia has been on developing methods, metrics, heuristics, etc. The second level is more
general, asking questions about the processes of an engineering organization. The first level is the most abstract – dealing
with the concepts and principles that govern how decisions are made. In this paper, we focus on first level – the most abstract.
The hope is that providing clarity on the principles will highlight the cultural and procedural changes that are required to
connect M&S, V&V, and UQ work to decision making. Then the detailed, practical questions of methods and metrics will
become more meaningful.

28.2 How Are M&S, V&V/UQ and Credibility Connected to Decision Making and Risk?

The answer to this question has everything to do with the engineering culture. A fundamental question is: what is the effect
of a certain activity – testing, M&S, V&V, UQ, etc. – in the total uncertainty vs. credibility space. For example, doing
UQ improves the understanding of uncertainty in predictions but the particular method used to quantify the uncertainty can
introduce epistemic uncertainty; in addition, the boundary conditions might not be well characterized, reducing the credibility
of the result (garbage in, garbage out). So in this case, perhaps the fidelity of our uncertainty calculations are increased, but
the credibility of our results could potentially go down. Credibility is a subjective thing, and institutional knowledge and
experience are key inputs. The second question is how uncertainty and credibility maps to decision making and risk.

To begin addressing the topic of this section, we have arbitrarily divided the problem into two broad categories: (1) where
V&V/UQ is not part of the process and (2) where V&V/UQ is integrated into the workflow. These categories are illustrated
below and some commentary on each one is made. To reiterate, the purpose of this paper is not to critique any particular
approach or to suggest one is superior to another but merely to contrast between them and highlight the positive aspects and
shortcomings of each one.

28.2.1 Case 1: A Deterministic Workflow

The first case, shown in Fig. 28.1, represents a workflow that is pervasive in many industries. It involves a deterministic
M&S single prediction with no formal understanding and treatment of uncertainty or credibility. This leads to a decision
which can be characterized as uninformed (i.e. sources of uncertainty not identified and/or incorporated into the analysis)
and thus yielding little understanding of value and risk. In this case, the decision maker relies on expert opinion and “tribal
knowledge” to prescribe a level of risk associated with the M&S predictions that are presented. In such a scenario, the concept
of “I trust this predictions because analyst XYZ made them and has years of experience in this field” are commonplace and
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Fig. 28.1 Deterministic, black
box M&S single prediction with
little to no understanding of
uncertainty

Fig. 28.2 M&S with elements of V&V and UQ incorporated into the process

serve as the basis for assigning credibility to an M&S body of work. One issue with the previous statements is that it is a
subjective and biased way of assigning credibility of M&S prediction. We are not discounting the value of experience in the
process of decision making but it is possible that a less experienced analyst could provide similar or even technically superior
predictions yet his/her results will be highly questioned and at worse, dismissed mainly based on perception. We feel this is
one of the biggest risks in not having a systematic approach to determining credibility in an M&S prediction. On the positive
side, this approach has been in place for many years and it is used by industry to inform and guide decisions on a regular
basis. Both analysts and decision makers are comfortable with this mainly due to familiarity with this.

28.2.2 Case 2: An M&S and V&V/UQ Integrated Workflow

In contrast to Case 1, the second case, shown schematically in Fig. 28.2, represents an attempt to integrate the elements of
V&V/UQ into the decision making process. It is noted from the figure that the process is not linear or serial but a recursive
process where feedback loops help to enhance various aspect of the process. M&S, when elements of V&V and UQ are
integrated into the process, will yield predictions plus an estimate of uncertainty and an assessment of credibility. This
provides the basis for formal risk analysis, given the activities that were and were not performed, which we believe will
lead to better informed decisions. This knowledge leads naturally to risk management/mitigation opportunities. Figure 28.2
includes the pieces that we believe are necessary, but not sufficient, for supporting decisions.

This figure leads to many different discussion topics, described over the next few paragraphs.

• Decisions must be made with some purpose or context beyond model predictions, which we define as the intended uses of
M&S. To reiterate, the intended use is an argument that the presented M&S evidence proves that a requirement is satisfied.
We will adopt the concept of “use risk” [5] to mean the risk that an intended use argument is flawed. This could occur for
many reasons, which we leave for future discussion. This concept of use risk should drive the development, verification,
validation, and eventual use of models.

• The depiction as a loop is an attempt to contrast this approach from a waterfall method. Each iteration should improve the
convergence of predictive capability and intended uses. The loop is completed when modeling results are communicated
to decision makers.
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• We believe that distinct concepts of uncertainty and credibility are useful in this setting. We also envision that this
identification of uncertainties and risks will naturally lead to a formulation in which the optimal allocation of resources,
to reduce risk and improve decisions, can be achieved. This is further explored later in this paper.

We note that a decision can be made in both cases presented above. However, the first case must rely entirely on
“intangibles” like assumptions, experience, credibility of the person(s) informing the process, etc., while the second provides
the necessary evidence to make a defensible, high-quality, informed decision. Since risk assessment is an intrinsic element in
this workflow, it is possible to introduce risk management and mitigation processes into the workflow. This is a fundamentally
different way of thinking; one that emphasizes a system’s engineering approach to the problem. In other words by looking
at the “big picture”, it can enable to make informed decisions at the analysis level.

To enable the upper left box in Fig. 28.2 (i.e. the integration of M&S and V&V/UQ), we have developed an integrated
M&S/V&V/UQ workflow and it is shown in Fig. 28.3. The value proposition of this integrated workflow is the identification
of an end-to-end path which includes elements of V&V/UQ leading to a customer driven deliverable.

In the context of Fig. 28.2 which includes elements of credibility and risk assessment, the integrated workflow is
envisioned to aid in the following ways. It clearly outlines the steps that are needed to comprehensibly perform an end-to-end
M&S activity with the proper context in mind. It provides an opportunity to adjust the scope of the effort by “pruning” those
elements (i.e. the boxes in the workflow) that are unattainable due to funding, schedule and/or technical impediments. It is this
“pruning” of elements that introduce risk in to the process. For example, if the Code Verification element, which addresses
how good is the software that is used to run an analysis, is “pruned”, the net effect is felt downstream of this element. Thus
there is a significant risk involved (and a corresponding reduction in credibility) due to this step being eliminated from the
workflow. At this point, there is no formal quantification of the amount of risk that is introduced into the process by “pruning”
any particular box or boxes in the workflow. This is a qualitative assessment. Future research will be needed to determine
if there is any practical way to quantify this. Also the amount of risk is highly dependent on the context (or intended use)
of the M&S activity. For example, if the analysis is mainly to understand a relative behavior of a quantity of interest, then
the risk is fairly low. Conversely, if the analysis is supporting a major decision say, certification of an airplane, then the risk
associated with the “pruning” of the Code Verification element is fairly high. It is thus imperative that both the context and
the workflow that leads from requirements to deliverables are well defined.

28.2.3 Communication of Credibility as a Function of M&S, V&V and UQ

The credibility of a computational simulation analysis has historically been based largely on the experience of the analyst
using a tool and judgment by that analyst on the suitability of the results produced for a particular application. At Sandia, we
developed the Predictive Capability Maturity Matrix (PCMM) [9] to provide more structure and formality in assessing the
credibility of an M&S analysis for a target application. This framework aims at reducing the ambiguity in such assessments,
and to provide specificity as to what should be assessed and communicated to the analyst’s customer. PCMM evaluations
have the potential to provide information for effective planning as well as for communication. The PCMM is based on six
evaluation dimensions, or elements, that are deemed fundamentally important to the quality of as M&S analysis. These
elements address (1) the fidelity in representing physics, including the material models; the (2) the geometric fidelity in
representing the system or subsystem element being modeled; (3) the completeness in addressing whether the computational
simulation code has been verified from a software assurance point of view and (4) verified from a solution convergence point
of view; (5) assessments against experimental data; and (6) the evaluation of uncertainty in the results due to uncertainties
such as the input information used to characterize the specific geometry, environment, and material properties for the
application. The current tool used at Sandia to perform the PCMM assessment is shown in Fig. 28.4.

28.3 Resource Allocation

When the result of the risk assessment is unacceptable, a mitigation strategy must be undertaken. Here we refer to this process
as risk management. When the M&S analysis is done deterministically as in Case 1, risk management decisions must be made
based largely on expert judgment. While domain experts frequently understand which aspects of their models are inadequate
(w.r.t. physics fidelity or numerical resolution), they are not likely to be able to gauge the relative contributions of these
aspects in the overall system prediction. By including UQ and credibility assessment in the analysis and decision process,
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Fig. 28.3 Integrated M&S/V&V/UQ workflow
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Fig. 28.4 PCMM tool’s main assessment sheet

the plans for future work can instead be made in a quantitative way that takes a comprehensive view of the system and the
contributions of error and uncertainty sources to the various aspects of the system prediction. Since this risk management
process is subject to budget constraints, an important issue is the proper allocation of resources to achieve the maximum
benefit.

We explore a quantitative risk reduction-based strategy for resource allocation [10, 11]. Classically, the risk of an event
(e.g. system failure) has two key components: (1) the probability of the event and (2) the consequences of the event. These
two components have a simple, logical relationship, in which the risk S is a product of the consequence of an event L and the
probability of the event P(L).

S D L �P .L/

Within this context, risk can be viewed as the expected value of the cost of a particular failure scenario. For some systems, a
relatively large failure probability does not pose a great risk because the failure event will not result in any particularly severe
consequences. Therefore, the events of greatest concern are those that have both high probability and extreme consequence
(e.g. human life loss and/or major property destruction). In many applications, there are many different potential risk events,
and the overall system risk ST is the summation of all of m discrete risk scenarios.

ST D
mX
iD1
LiP .Li /

Designers and decision-makers have little control over the consequences of an event, so risk minimization is achieved by
reducing the probability of the negative events. This reduction is significantly enabled by minimizing prediction uncertainty
while maintaining prediction accuracy (i.e. low bias).

From an economic perspective, it is not logical to spend large resources on UQ without also considering the total benefit of
the analysis. Since risk can be directly interpreted as a cost, it provides a convenient space to analyze design and management
decisions. The total cost of the UQ activities can then be viewed as a “risk” event with 100 % probability since the cost is
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always incurred once the spending decision is made. Then, a reasonable overall goal for the decision maker is to minimize
the total risk coming from these two components (the failure risk Sf and the UQ/model development cost Sd). This view
leads to the following formulation for determining how much UQ spending is enough:

Sd D 1 �Ld
Sf D pf �Lf
ST D Sd C Sf

Here, Ld is the total cost of UQ/development activities, pf is the system failure probability, and Lf is the consequence of
system failure. It is assumed that Lf is a constant that the decision maker cannot control, and Ld is the primary decision
variable during the resource allocation phase of the process. With the overall goal of minimizing ST the spending budget
Ld must now be selected based on its impact on pf , which is a dependent variable in the analysis that is affected by UQ
and credibility assessment. The primary challenge is that the functional relationship between spending activities and failure
probability reduction is never explicitly known. However, this framework emphasizes the importance of looking at these
decisions at the level of the system prediction rather than making refinement decisions locally without specific regard for
their overall impact.

Potential spending decisions that could be made include model selection, model improvement, and test selection. Since
these are topics unto themselves in the literature and the intent of this paper is to provide a high-level framework for decision-
making, we only mention them briefly here. Uncertainty propagation can be prohibitively expensive due to the large number
of model evaluations that are needed. As a result, models of lower fidelity/complexity including reduced-order, reduced-
physics, and mathematical surrogate models are often used for UQ activities. There is a tradeoff decision of accuracy vs.
efficiency when selecting among these candidate models. Any of them may potentially be improved/refined, or they may be
selected adaptively for different predictions. Additionally, these candidate models must be calibrated and validated, which
couples the modeling decisions with test selection decisions. The number and type of calibration and validation tests that are
performed impacts the quality of the models and therefore the quality of the prediction and associated UQ. For each of these
decisions, the important consideration is the impact on the overall prediction uncertainty since it is directly tied to the system
failure probability component of the total risk. This context for the decisions is critical to efficient resource allocation.

28.4 Summary

In this paper, we present a perspective of how elements of V&V/UQ and Credibility could be incorporated into the decision
process. We acknowledge that this spans many topics, including: modeling, V&V/UQ methods, credibility assessments, risk
management, and requirements management/systems engineering. We have developed an integrated workflow that is useful
in understanding sources of use risk in the end-to-end analysis. To properly establish the importance of these sources of risk,
it is imperative that both the context and the workflow that leads from requirements to M&S deliverables are well defined.
We argue that the commonly discussed waterfall approach is impractical, and instead propose negotiation of intended uses.
At present, risks arising from “pruning” elements in the workflow are mainly qualitatively defined. A quantitative solution is
a future research direction which once established, will enable a more formal and mathematical treatment of the larger issue
of resource allocation.
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Chapter 29
A MCMC Method for Bayesian System Identification
from Large Data Sets

P.L. Green

Abstract This paper addresses the situation where, with the aim of performing Bayesian system identification, one is
presented with a very large set of training data (such that, because of computational restraints, only a subset of this data
can be used). Presented here is a novel Markov chain Monte Carlo (MCMC) method which, by using concepts from the
well-known Simulated Annealing algorithm, can ‘absorb’ subsets of training data in a smooth and continuous manner. This
allows the user to track quantities of interest (such as the mean posterior parameter estimates) as a large set of training data is
absorbed, terminating the algorithm when these quantities are judged to have converged. Furthermore, the algorithm is able
to quickly absorb relatively uninformative data and concentrate instead on data sets which have a greater influence on the
posterior parameter distribution (thus reducing computational cost).

Keywords Bayesian inference • Markov chain Monte Carlo • Shannon entropy • Big data

29.1 Introduction

Defining M as one of a set of candidate models and � 2 R
N as the vector of parameters within that model then it is well

known that, to access the probability of M and � conditional on some training data D, one can simply apply Bayes’ theorem
in a sequential manner:

P.�jD;M/ D P.Dj�;M/P.�jM/

P.DjM/
; P.MjD/ D P.DjM/P.M/

P.D/ : (29.1)

P.�jM/ and P.M/ are priors—probability distributions which represent one’s knowledge of the system before the data
was known—while P.�jD;M/ and P.MjD/ are known as the posterior parameter and posterior model distributions
respectively. P.Dj�;M/—the probability of witnessing the data D given a model M with parameters �—is known as
the likelihood and requires the definition of a ‘prediction-error model’ whose parameters, conveniently, can be included in � .
P.DjM/ not only acts as a normalising constant for the posterior parameter distribution but also provides evidence for
the model M in the second application of Bayes’ theorem and, as such, is commonly referred to as the ‘model evidence’.
Bearing in mind its role as a normalising constant, the model evidence is defined as

P.DjM/ D
Z
P.Dj�;M/P.�jM/d�: (29.2)

A particularly useful aspect of adopting this approach is that, with regard to the posterior model distribution, models tend
to be ‘rewarded’ with high probabilities if they are able to replicate a set of training data without being overly complex.
In other words, the successful evaluation of P.MjD/ can be used to help one select a model which is not over-fitted (see [1]
for more details).

In situations where the response of M with parameters � is intractable, then a numerical simulation is required to evaluate
the posterior parameter distribution at a particular point � . In such a scenario one can choose to generate samples from
P.�jD;M/ using Markov chain Monte Carlo (MCMC) methods (which involve the generation of an ergodic Markov
chain whose stationary distribution is equal to some target which, in this case, is the posterior parameter distribution).
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MCMC is particularly useful as it provides a relatively cheap way of generating samples from a potentially high-dimensional
probability distribution. Early MCMC methods such as the Metropolis algorithm [2] can be used to sample from a distribution
proportional to P.�jD;M/, which avoids the need to evaluate the high-dimensional integral given by Eq. (29.2) (but, as a
result, prevents one from analysing the posterior model distribution). Since then an array of advanced algorithms [3–6] have
been developed which allow one to evaluate both the posterior parameter and posterior model distributions.

This brings one to the motivation behind the current paper: while MCMC methods are undoubtedly powerful they can
prove to be rather expensive if one is using a large set of training data. This is simply because, to evaluate the posterior
parameter distribution at a single point one has to, using numerical simulation techniques, analyse the ability of the model to
replicate the whole data set D. This issue is becoming increasingly common place as wireless sensors become cheaper and
more reliable—simply put, it is easy to install a large network of sensors but it is difficult to analyse the resulting large data
sets. This paper presents a MCMC algorithm which is designed to deal with this ‘big data’ phenomenon.

29.2 Background

The algorithm proposed here builds on two other pieces of work, which are briefly introduced in this section. The first is
the Data Annealing (DA) [7] algorithm—an MCMC method which was designed to deal with large data sets. Briefly stated,
DA involves using MCMC to target the distribution:

	.�/ / P.DN
1 j�/P.�/ (29.3)

where DN
1 D fD1;D2; : : : ;DN g is a small subset of the training data. One begins with a small value of N before allowing

it to increase as the Markov chain evolves. This has the effect of gradually increasing the effect of the data on the posterior
parameter distribution (in a similar manner to the well-known Simulated Annealing algorithm [8]). One then simply stops
the algorithm when it is judged that a sufficient amount of information has been inferred from the data. While DA provides a
faster way of dealing with large data sets it has a disadvantage: one doesn’t know before-hand how the addition of some new
data points will alter the target distribution. Not only can this slow the convergence of the MCMC method being employed
but can also lead to wasted time, where the algorithm is ‘absorbing’ data points which have very little influence over one’s
parameter estimates.

In the current paper the aim is the improve the performance of DA using the concept of ‘highly informative training
data’ [9], where one separates out smaller ‘information rich’ sets from a larger set of training data. Specifically, the aim is to
develop a variant of DA which will quickly ‘skip over’ uninformative data and, as a result, focus on the data which contains
a large amount of information about one’s parameter estimates.

29.3 Proposed Method

29.3.1 Basic Methodology

Consider beginning with a small subset DN
1 of a large set of training data. To introduce this data in a smooth and continuous

manner one can use MCMC to target

	ˇj .�jDN
1 / / P.DN

1 j�/ˇj P.�/ (29.4)

while ˇj is steadily increased from 0 to 1—at this point the proposed algorithm uses the same procedure as Simulated
Annealing (where the increasing sequence of ˇ values is the annealing schedule). Once ˇ D 1 and DN

1 has been fully
‘annealed in’ then one can introduce a further k data points by targeting:

	ˇj .�jDNCk
1 / / P.DN

1 j�/P.DNCk
NC1 j�/ˇj P.�/ (29.5)

(assuming mutual independence between P.DN
1 j�/ and P.DNCk

NC1 j�/) and, once again, use ˇ to gradually increase the
influence of this new data. The aim here is to ensure that relatively uninformative data is annealed in quickly thus allowing
the algorithm to focus on absorbing more informative data. To achieve this, one can aim to use an annealing schedule which
will ensure that the information in the data—measured using the Shannon entropy in this case—is introduced at a constant
rate. Expressions detailing how such an annealing schedule can be created are derived in the next section.
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29.3.2 Constant Entropy Variation

At this point it is convenient to write the target PDF as

	 D exp.�ˇ OJL � JL � JP /
Z

(29.6)

where

OJL D � lnP.DNCk
NC1 j�/; JL D � lnP.DN

1 j�/; JP D � lnP.�/: (29.7)

Furthermore, the notation 	 D 	�=Z will be used (where Z is the normalising constant of 	�). One begins by first proving
the following relations:

d	�

dˇ
D � OJL	�;

dZ

dˇ
D �Z EŒ OJL�; d	

dˇ
D 	.EŒ OJL� � OJL/: (29.8)

The Shannon entropy of the target distribution is

S D ˇ EŒ OJL�C EŒJL�C EŒJP �C ln.Z/ (29.9)

as so the aim here is to evaluate the derivative:

dS

dˇ
D d

dˇ

�
ˇ EŒ OJL�

�
C d

dˇ
.EŒJL�/C d

dˇ
.ln.Z//: (29.10)

Using the relations in Eq. (29.8), the first term of Eq. (29.10) is:

d

dˇ

�
ˇ EŒ OJL�

�
D EŒ OJL�C ˇ

d

dˇ

Z
OJL	d� (29.11)

D EŒ OJL�C ˇ
�

EŒ OJL�2 � EŒ OJ 2L�
�

D EŒ OJL� � ˇVar. OJL/; (29.12)

while the second term is:

d

dˇ
.EŒJL�/ D d

dˇ

Z
JL	d� (29.13)

D
Z
JL	.EŒ OJL� � OJL/d� (29.14)

D EŒJL�EŒ OJL� � EŒJL OJL� D � Cor.JL; OJL/ (29.15)

(where ‘Cor’ represents the unnormalised correlation coefficient) and, finally, the third term is:

d

dˇ
.lnZ/ D 1

Z
.�Z EŒ OJL�/ D � EŒ OJL�: (29.16)

From this it follows that:

dS

dˇ
D �ˇVar. OJL/ � Cor.JL; OJL/ (29.17)
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and so, to ensure that one’s annealing schedule guarantees that the change in Shannon entropy of the posterior parameter
distribution is equal to some predefined limit �S , one should select ˇ according to:

ˇjC1 D ˇj � �S

ˇj Var. OJL/C Cor.JL; OJL/
: (29.18)

29.3.3 Does Data Reduce Uncertainty?

A flaw in the algorithm presented thus far is that it is based on the assumption that new data will reduce one’s uncertainty
in the parameter estimates (and therefore reduce the Shannon entropy of the posterior parameter distribution). This is not
always the case—it is easy to envisage a scenario where some new data contradicts the old data. However, one can make use
of the classic result:

EŒVar.�jD/� D Var.�/ � Var.EŒ�jD�/ (29.19)

which states that, on average, new data must reduce the variance of the posterior parameter distribution. The upshot of this is
that the algorithm needs to be altered slightly to allow for the fact that new data will not always reduce the Shannon entropy
of the target distribution. To do so one simply needs to anneal according to:

ˇjC1 D ˇj � �S

ˇj Var. OJL/C Cor.JL; OJL/
(29.20)

subject to the constraints that

ˇj < ˇjC1 � 1; ��Slim < �S < �Slim: (29.21)

This ensures that the annealing schedule is still strictly increasing and that the absolute change in Shannon entropy is always
less than some predefined limit �Slim.

29.4 Example

Here the algorithm is used to identify the linear stiffness k, nonlinear stiffness k3 and damping c present in a forced Duffing
oscillator:

m Rx C c Px C kx C k3x
3 D F (29.22)

where F is zero-mean Gaussian white noise. These parameters were to be inferred using a set of time history data which
had been artificially corrupted with Gaussian ‘measurement noise’. This full set of data was delivered to the algorithm in
50 point segments, as shown in Fig. 29.1. A Gaussian prediction-error model with standard deviation 
 was used to form
the likelihood (where 
 was included in � as a parameter to be estimated). Furthermore, Gaussian prior distributions were
employed—the true parameter values as well as the moments of P.�jM/ are given in Table 29.1.

Setting �Slim D 1 the algorithm was run, and the sequence of annealing schedules shown in Fig. 29.2 were realised. It
is interesting to note that not all of the data led to a decrease in Shannon entropy (although most of it did) and that, after
annealing in the first 40 segments, the algorithm was able to quickly absorb the remaining data.

It was noted earlier that one can simply track properties of interest until, once they are judged to have converged, the
algorithm can be terminated. Figure 29.3 shows how the posterior parameter distribution converged to and narrowed around
the true parameter values as data was added. It is interesting to note that other properties can also be monitored—using
MCMC to estimate the covariance matrix of the posterior parameter distribution, Fig. 29.4 shows how the negative correlation
between the linear and nonlinear stiffness terms become increasingly obvious as more training data was used.
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Table 29.1 True parameter
values and moments of prior
distributions

Parameter True value Prior mean Prior standard deviation Units

k 100 150 30 N/m

c 0.05 0.02 0.02 Ns/m

k3 100,000 40,000 20,000 N/m3
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Fig. 29.4 Tracking the
(normalised) correlation between
k and k3 as training data is added

0 10 20 30 40 50 60 70
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Iteration

C
or

(k
,k

3)

29.5 Conclusions

In this paper a MCMC algorithm is presented which, via a Bayesian framework, can be used to infer probabilistic parameter
estimates from large data sets. Simply stated, the algorithm is able to divide a large data set into smaller subsets which can
then be ‘absorbed’ in a gradual and continuous manner. The algorithm is designed such that relatively uninformative data is
absorbed quickly, thus allowing it to focus on data which will have a greater influence over the uncertainty in one’s parameter
estimates. Furthermore it allows for the fact that, in some cases, new data can provide contradictory information which leads
to an increase in uncertainty. The performance of the algorithm is demonstrated using a simulated example.
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Chapter 30
Bayesian Inference for Damage Detection in Unsupervised
Structural Health Monitoring

Reza Mohammadi-Ghazi and Oral Buyukozturk

Abstract This paper presents a preliminary study on developing a new algorithm for making inference on the unsupervised
structural health monitoring problems in a Bayesian framework. The main constraint in such problems, besides their
unsupervised nature, is the small size of data set. Secondly, most often, there is no numerical model or enough empirical data
for computing an appropriate prior density for Bayesian data analysis. Gaussian Mixture Model (GMM) and Kernel Density
Estimate (KDE) are the main tools which are used in this paper for density estimation under the constraint on the size of
data sets. To solve the second issue, an empirical Bayesian approach is employed for computing a prior density without
any model; therefore, this algorithm provides an approximation to the standard Bayesian inference technique. An important
aspect of the proposed algorithm is that it provides posterior probabilities for the intact or damaged states of the structure.
Such results can be directly used for cost analysis and decision making in such unsupervised problems. The efficacy of the
algorithm is experimentally verified by testing a three-story two-bay steel laboratory structure. The results show that the
algorithm can effectively detect and localize the damages.

Keywords Uncertainty quantification • Structural health monitoring • Bayesian inference • Empirical Bayes • Gaussian
mixture model • Kernel density estimate

30.1 Introduction

The goal of structural health monitoring (SHM) is to ensure safe operation and maintenance cost reduction of various
mechanical systems from civil to aerospace structures. Vibration-based SHM is one of the main and most applicable
methodologies for monitoring large scale complex structures. Basically, vibration-based SHM can be defined as detec-
tion/localization of damage by employing appropriate techniques for solving an inverse problem given only the vibrational
response of structure. Non-unique solutions for such ill-posed inverse problem, variability of system’s physical properties,
and measurement noise are the main sources of uncertainties in vibration-based SHM. From the practical point of view,
quantification of such uncertainties is essential for applicability of a damage detection algorithm; otherwise, its results cannot
be used for decision making process which is the last link in any monitoring system in real world.

The vibration-based damage detection algorithms can be categorized into two main subgroups: model-based and data-
based. Uncertainty quantification (UQ) for model-based methods is usually referred to statistical modeling techniques for
computing the distribution of some characteristics of interest [1–6]. Tuning a model with experimental data in a Bayesian
framework [7] and model updating for the case of incomplete data [8] are examples statistical modeling for the sake of
damage detection. The propagation of uncertainties through the estimation of the models’ characteristics is the modern
aspect of UQ for statistical modeling. In data-based approach, which is the topic of the current paper, the concept of UQ is
mostly referred to computing the confidence one may have on the final results of an algorithm. Finding the probability density
function (PDF) associated with the different states, intact/damaged, of the system can be regarded as the ultimate goal of
UQ in data-based approach. Note that such quantification takes care of the measurement uncertainties and their propagation
into the data analysis process. This task is too difficult to do if some information is available from all states of the structure;
nevertheless, this condition is not satisfied in most SHM problems. Empirical data from all damaged states of the system
is not available when it is being monitored and the problem of simulating all possible damage scenarios in the structure is
computationally intractable. Thus, such a problem is unsupervised, meaning that there is no information from some states
of the structure. A two-phase approach has been proposed for this problem in [9] which estimates the PDF of some modal
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properties of the structure as the initialization phase. Then, for the monitoring phase, the structure is tested periodically and
the same properties are estimated for each test. The structure is classified as damaged if the difference between the new data
and the baseline is greater than a pre-defined threshold. The main issue regarding this approach is defining an appropriate
threshold which can significantly affect the robustness of SHM algorithms and false positive/negative rates. This issue is
more critical for the algorithms that consider modal properties since they are also highly sensitive to environmental effects.

Another approach for UQ of such unsupervised problems is hypothesis testing. This method has been applied to some
damage detection problems and the results have been verified both numerically and experimentally in [6, 10]. In another
study, this technique has been employed and experimentally verified for the case of using multiple damage sensitive indices
while the size of data set is small [11]. Basically, one of the main strengths of hypothesis testing is its stability and low error
compared to other inference algorithms when the size of available data set is small even though the problem is unsupervised
[11–14]. Note that this method represents the uncertainties in terms of p-values which are the probability of accepting a
null hypothesis. The concept is completely different from the actual probability associated with a certain state of structure.
Therefore, the results of this statistical data analysis cannot be directly used for standard decision making which needs the
actual probabilities of events.

The objective of the current study is to propose an appropriate methodology for computing the true probability associated
with the intact/damaged state of structures without any information about their damaged states. The statistical data analysis
is performed in a Bayesian framework. The main challenge of Bayesian data analysis for data-based SHM, in addition to
other issues regarding the unsupervised problems, is to come up with appropriate prior distributions while there is no model
available for the structure. Bayesian inference with empirical prior [15–17] and generative statistical models for density
estimation are the two main techniques which are implemented in the proposed algorithm of this paper. The efficacy of the
methodology has been experimentally verified by testing a three-story two-bay steel laboratory structure with several damage
scenarios.

30.2 Available Data

The first determining factor for any inference problems is the type and characteristics of the available data. In vibration-based
SHM, infinite number of states can be assumed for the damaged structure depending on the location, type, and severity of
the defect. As it was mentioned before, providing empirical or simulated data for all of these states is impossible. Simulating
only few of damaged states also does not help since there is no way of verifying the simulation results before the occurrence
of damage. Therefore, there are only two sets of available data at each sensor location: (1) the data from the intact state of
the structure that could be empirical or simulated and denoted by XI ; (2) the data from the structure while being monitored
in an unknown state. The second set of available data is denoted by Xt and basically used for making inference about the
state of the system. Note that, simulation can help for generating data for the intact state of structure since the results are
verifiable. It is also noteworthy that in some special cases there may be some data available from the damaged states of the
structure which might have been occurred in the past. However, such data sets may not be significantly useful since they are
associated with very special states. Thus, we try to use the least amount of data one may have to ensure the generalization of
the algorithm.

The raw data in vibration-based SHM is the time series measured by sensors. Most often, such raw data is not an
appropriate input for the algorithms. Therefore, a pre-processing is usually conducted on the time series for extracting some
damage sensitive features to be used as the input to the damage detection algorithms. In this work, data is mostly referred
to the features extracted from the time series unless otherwise stated and the data analysis is conducted in the feature space.
The features are also extracted via an energy-based approach for capturing nonlinear effects of damage which is presented
in [11]. The size and dimensionality of the data in feature space are two significant factors for solving the problem. Curse
of dimensionality [14] is out of the scope of this paper; whereas, the techniques for dealing with small data size is briefly
addressed in the next sections.

30.3 Bayesian Inference Model Calibration

This section provides a brief review of Bayes theorem as it applies to vibration-based SHM problems for the sake of inference.
Then it point out the challenges due to unsupervised nature of the problem to be addressed in the next sections.
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By UQ in this paper we try to answer this question: Given XI and Xt at each sensor location, what is the probability
of damage being proximal to each sensor? More formally, we are interested in computing P(SD j Xt), where P stands for
probability and SD is the set containing all possible damaged state of the system. Denoting SI as the intact state of the system,
the probability of interest according to the Bayes rule is

P
�
SD

ˇ̌̌
Xt

�
D 1 � P

�
SI

ˇ̌̌
Xt

�
D 1 �

P
�

Xt

ˇ̌̌
SI

�
P .SI /

P .Xt /
(30.1)

where P(Xt j SI) is the likelihood which is a function of Xt with SI fixed; P(SI) is prior that indicates one’s previous estimate
of probability that the state is intact; P(Xt) is marginal likelihood. By considering SD as the set of all possible damaged
states it is clear that the type of damage is ignored. In other words, normal functionality of the structure is what matters in
this formulation. Since computing probability requires integration of the density functions over some interval, the problem
can be equivalently defined as to computing the posterior probability distribution of the intact state of the system given the
abovementioned data, p(SI j Xt). According to the Bayes’ theorem

p
�
SI

ˇ̌
ˇXt

�
D
p
�

Xt

ˇ̌̌
SI

�
p .SI /

p .Xt /
(30.2)

where p( . ) is the probability distribution; p(SI j Xt) is the posterior density of intact state given the new data from testing
the structure; p(Xt j SI) is the likelihood; p(SI) is the prior density of the intact state; and p(Xt) is the marginal likelihood
distribution of the test data.

The most difficult term of Eq. (30.2), p(Xt), is usually unnecessary to compute. Once the likelihood and prior distributions
are known it is sufficient to note that the posterior density is proportional to p(Xt j SI) p(SI), the product of likelihood and
prior density. To get around with computing the marginal likelihood, a Markov chain Monte Carlo (MCMC) algorithm can
be used to sample from the posterior density considering only the mentioned proportionality.

So far, we have not used the data from the intact state of the system, XI . Basically, this data, which may be empirical
or simulated, is hidden in the expression of likelihood. If a density is fitted to XI , it can be regarded as the probability
distribution associated with the likelihood since the state is fixed and known to be intact. The first question that may arise
is how to estimate the density given XI? To answer this question some generative density estimation techniques such as
Gaussian Mixture Model (GMM) and Kernel Density Estimation (KDE) are used. Choosing between these two techniques
depends on the size of data set. GMM can be employed in the case of large data set; otherwise, one may use KDE instead
if the data set is too small. The second question is what if there is no empirical baseline data, XI , available? In this case,
one may use numerical models for simulating the intact state of the system. In fact, it is impossible to make inference in
vibration-based SHM without any baseline. All of that so called baseline-free methods implicitly consider a baseline, either
empirical or numerical. For instance, when comparing the empirical modal properties of a beam with the closed form solution
of Euler-Bernoulli beam, the closed form solution is the baseline indeed. The last question is how to deal with the variation
of the characteristics of the intact state due to environmental effect? The detailed answer to this question is out of the scope
of this paper but, to briefly address this issue we propose the regression methods. If the data from the intact state in different
environmental conditions are available or can be simulated, the expected SI can be predicted via regression models to be
used for estimating the density of likelihood.

The last term to be determined in Eq. (30.2) is the prior density, p(SI). By definition, in the standard Bayesian inference the
prior is the uncertainty about the intact state before considering any evidence. For instance, a model that shows the evolution
of the system over time would be helpful for determining the prior. It is possible to obtain such models in special cases like
for some mechanical systems which are under mass production; nevertheless, these models are very difficult to obtain for a
system which has only a unique instance in real world. Two possible solutions for obtaining a valid prior in such problems
are: (1) using non-informative priors; (2) using empirical prior which leads to an approximation to the standard Bayesian
inference. Approaching the problem using non-informative priors distribution usually requires computationally expensive
iterative methods to obtain an appropriate such a density for high dimensional feature space [18]. Herein, the empirical
Bayes (EB) approach is taken mostly for the sake of computational efficiency. Note that EB provides an approximation to
the standard Bayesian inference since it uses the observed data for tuning the parameters of prior. In this paper we utilize the
two data sets XI and Xt in an estimator called James-Stein estimator [15] for approximating the parameters of prior density.
The James-Stein estimator has been used mainly for analyzing categorical data like the study by Morris [17]. What follows
is the adaptation of this method for the unsupervised problem of our interest.
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Assume that the unknown prior density has k parameters 1 � � � k . To start estimating the parameters, also assume that
there is independent unbiased estimates �1 � � � �k of the prior parameters such that E Œ�i � D i . This set can be regarded as
an appropriate approximation for the unknown parameters if the variance of this set is very small. Otherwise, if the variance
is large or unknown, which is true for most of the times, but there exists another set of such estimate for the parameters
denoted by Q1 � � � Qk , how can one obtain a set of the prior parameters,b1 � � �bk , which are preferred over the other sets? An
interesting approach, which is proposed in [15] and used in some studies such as in [17], is using shrinkage coefficients to
obtain the new estimator as

bi D .1 � bi / �i C bi Qi (30.3)

where bi is the shrinkage coefficient belongs to [0,1] interval. If bi D 0, there is no shrinkage and the parameters are
determined by �i and the converse is true if bi D 1. Intuitively, the choice of bi can be linked to a loss function that measures
how good is each of the estimates �i and Qi . One such measures is sum of squared error the variance of which is denoted by

2

e . Thus, the shrinkage coefficients are defined as [15, 17]

bi D 
2�


2� C Se
(30.4)

Once the shrinkage coefficients are known, the parameters for the prior distribution can be immediately computed from
Eq. (30.3).

To apply this approach to the SHM problem being discussed in this study, one should figure out the two sets of �1 � � � �i and
Q1 � � � Qk . Before choosing these two sets, let’s first discuss two extreme cases of our specific problem regarding the James-
Stein estimator. The first extreme case is when the measurement is taken in a short time after the measurement for XI such
that the evolution of the structure during the time is negligible. In addition, the system has not experienced any significant
extreme loading. For this case, the prior density would be very close to, or even the same as, the density of the data obtained
from the intact structure, XI . For the second extreme case, assume that a perfect model is available for the system is available
such that the model accounts for all possible events from extreme loading to variability of the structural properties during
the time. Such model would provide exactly the same information as the new measurement does at each sensor location.
Thus, the prior in this case would be the density of the new measurements Xt. However, a proper prior in reality is something
between these two extreme cases. It is immediate from Eq. (30.3) that the James-Stein model can takes into account both the
extreme cases as well as other cases in between by setting �1 � � � �i and Q1 � � � Qk equal to the parameters of the distributions
of XI and Xt, respectively. This is where the EB enters when the new measurements are used for approximating the prior.
The shrinkage coefficients are the last parameters to be defined for completing the model for empirical prior. Equation (30.4)
cannot be directly used is in our problem because this equation was proposed for categorical data for which the variance of the
parameters can be estimated; whereas, in our problem each of the data sets XI and Xt provides only one set of parameters.
However, the same concept can used when the variance of the parameters are not available. Basically, b is a measure of
confidence one may have about the second set of parameters Q1 � � � Qk . Similarly, a distance between the densities associated
with XI and Xt can be used instead of the variance of error in Eq. (30.4). For the moment assume that these densities are
Gaussian, an alternative definition for bi may be proposed as

bbi D ˇ2II
ˇ2II C ˇ2tI

(30.5)

where ˇ2
II is the maximum squared Mahalanobis distance of the points in the cluster formed by XI to the mean value of the

same cluster; ˇ2
tI is the squared Mahalanobis distance between the mean value of Xt from the distribution of XI . The choice

of Mahalanobis distance is due to some of its special properties such as it is scale invariant. For more information about the
superiority of this distance over Euclidian distance for comparing distributions the readers are referred to [11–13]. Note that
there is no lack of generality by making the assumption of normality for the two densities. The reason is that both densities
can be approximated by a weighted average of some Gaussian distributions via GMM or KDE depending on the size of the
data set. Once the densities for both data sets are determined the procedure described in Eqs. (30.3), (30.4) and (30.5) can
be applied for any pairs of the Gaussian components from the two clusters. Therefore, the number of Gaussian components
of the prior density is equal to the multiplication of the number of components in the densities of XI and Xt. In the case of
small data size, it is usually reasonable to assume that the density of Xt consists of only one Gaussian due to repeatability of
the test. This assumption, if verified by the tests of normality, can help for reducing the computational cost of the algorithm.
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30.4 Probability Estimation

For computing the posterior probability of intact/damaged state of the system, Eq. (30.1), both densities for the likelihood and
prior should be integrated over an interval or a specific zone. The determination of this zone depends on one’s definition of
the intact state of the system. For instance, the mentioned zone may be defined via a decision boundary around the data from
the intact state. The problem of obtaining the best decision boundary has been well studied for years; however, integration
inside of an irregular zone can be computationally expensive. To get around this issue we propose an alternative approach
using the concept of confidence intervals. In fact, the integration zone is proposed to be considered as the (1-˛)% confidence
interval of each component of the Gaussian mixtures. The parameter ˛ is basically the significance level of the statistical
analysis. There are efficient algorithms for computing the integrals over these zones which are defined by simple intervals in
one-dimensional feature space and ellipsoids in higher dimensions. The weighted average of the probabilities from all of the
intervals using ˛i yields the ultimate result.

30.5 Experimental Setup and Verification Results

The proposed algorithm has been verified by testing a three-story two-bay steel laboratory structure shown in Fig. 30.1. The
structure has been instrumented by 18 triaxial piezoelectric accelerometers attached close to the connections as shown in
Fig. 30.1b. The damage scenario in this study is bolt loosening at node #1. The excitation is white Gaussian noise which is
produced by a shaker located at the top corner close to the node #18 (Fig. 30.1). Only 10 tests has been done on the structure
in each state, intact or damaged, and only the z-direction of the acceleration data is used for feature extraction.

The parameter ˛ for computing the posterior probability of damage, Eq. (30.1), was set to 0.05, meaning that the 95 %
confidence intervals of mixture components of the intact density were considered as the safe regions. The probabilities
at different sensor locations for the mentioned damage scenario are shown in Fig. 30.2. Clearly, the posterior probability of
damage is higher at the location of damage or its proximity. Note that this algorithm, contrary to many other damage detection
algorithms, does not use any threshold; instead, it provides true probabilities which can be directly used for decision making.
The probabilities at and around the damage location is significantly higher than other locations although many other nodes
are affected by the damage. The reason for high probability at the other nodes is the small size of the prototype and its small
damping. This suggests the importance of consideration of size and damping of the system for sensor placements.

Fig. 30.1 The experimental
setup; (a) The three-story
two-bay laboratory steel
structure; the shaker is at the top
corner shown by an arrow close
to sensor #18; (b) one of the
connections with a sensors glued
next to that
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Fig. 30.2 Posterior probability
of damage given the new
measurements
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30.6 Conclusion

The preliminary study on an empirical Bayesian inference algorithm for uncertainty quantification in unsupervised structural
health monitoring problems with constraints on the size of the data set was presented. An important issue in such problems
is that there is usually no model available for the prior density of the intact or damaged states of the system. To solve this
problem, first, a model similar to the idea of James-Stein estimator is developed. This model uses the likelihood density,
which is obtained from the test data on the intact structure, and the density of the new measurements to approximate an
appropriate prior density for the structure. Therefore, the proposed algorithm provides an approximation to standard Bayesian
inference as it constructs the prior density using the data itself.

The constraint on the size of data set was considered on the density estimation techniques. GMM is used for density
estimation of reasonably large data set while KDE can be used in the case that the size of available data is small. Note
that the method is applicable even if just one test is available. Each pair of mixture components of the likelihood and new
measurement densities gives one component for the prior density. For computing the probability, a specific region should be
considered. Herein, the (1-˛)% confidence interval of each component of the Gaussian mixtures is considered as the safe
region.

Experimentally verified results show that the algorithm can effectively detect and localize the damage by assigning true
posterior probability of damage to each sensor location. Such results can be directly used in cost analysis and decision
making.
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Chapter 31
Reducing MCMC Computational Cost with a Two Layered
Bayesian Approach

Ramin Madarshahian and Juan M. Caicedo

Abstract One of the major challenges in the implementation sampling techniques in the Bayesian approaches is the
computational cost involved with the estimation of the likelihood and/or posterior, especially in problems where the models
being updated are computationally expensive. This paper proposes the use of surrogate models in a two-layer Bayesian
approach to reduce the computational cost of estimating these PDF. In the first layer, the posterior is written in a traditional
manner. The second layer attempts to estimate the PDF of the first layer with a surrogate model. Only a few runs of
the structural model are needed to create the required samples. Preliminary results are shown with a numerical example
to identify the stiffness of a structural system. Only ten simulations of the structural model are used to estimate the
posterior PDF.

Keywords Bayesian inference • MCMC • Metamodel • Model updating • Computational cost

31.1 Introduction

Modeling is an abstraction of reality that lets a designer or engineer perform simulations with a “real” object or structure
without testing it physically. However, the result of our simulations are as good as our models. More complex models could
translate into more accurate predictions, but also require more computational power. The time taken to run computational
models of structures can range from a few seconds to weeks or more, depending on the type of model, and the technology used
to run it. The computational time to run a model becomes one of the main challenges in model updating. These techniques
require the estimation of the model response with different values of parameters [1–3] in a fashion similar to optimization
problems [4]. The computational demands are even higher when model updating is done in a probabilistic fashion [5] and
algorithms such as Gibbs sampling [6] are used. Running a model many times is not feasible given the current computational
resources available for most researchers and engineers.

Model approximation techniques are very helpful in these computationally-expensive scenarios [7, 8]. These techniques
develop simplified models of the more complex and computationally expensive model. The first step in most approximation
methods is experimental design. Experimental design uses different methods, such as factorial, Latin hypercube, orthogonal
arrays, importance sampling, and sequential or adaptive methods to determine the places where the expensive computational
model is sampled [9–12]. One of the most popular sampling methods is Markov Chain Monte Carlo (MCMC). It is very
common in Bayesian problems, and the goal is getting samples from the posterior. Importance sampling is a kind of improved
MCMC, in which by selecting a better probability distribution function, the efficiency of the algorithm is improved without
sacrificing the accuracy [13]. The design space can be modified based on feedback information from sampling. Sampling
methods can help to identify a more attractive region in the design space and also detect more significant variables, including
their interaction [14]. The second step is selecting a new model to represent the computationally expensive model.

These approximated models are known as metamodels or surrogate models. The ideal metamodel should be accurate
enough to replace the original model within only a fraction of the computational time. Furthermore, the metamodel should
be easy to implement [7, 14, 15]. So far, many metamodels have been suggested in the literature. Among the most common
are Polynomial, Gaussian process, Support Vector Machine (SVM), Kriging, and Artificial Neural Network models [16–19].
The fitting process is the next step in the process after the selection of an appropriate metamodel. The fitting method may
be changed depending on the metamodel. The last step is model validation, which is an important task that should be done
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before using a metamodel as the surrogate model. Different metrics are suggested in the literature for validation. The study
of residuals, the difference of predicted values and actual values at sampled points, mean and root mean square error, or
cross-validation are some of the popular metrics for validation [8, 20].

Bayesian model updating is a powerful method to infer the probability of the parameters given some experimental
data. MCMC algorithms like Gibbs sampling and the Metropolis-Hasting algorithm are used intensively in these kinds
of problems [6]. However, when the model is computationally expensive, using MCMC methods is not feasible.
Computationally expensive models can be approximated by metamodels, reducing the computational time. This paper
proposes the implementation of a metamodel to the posterior PDF obtained, rather than on the model itself. A simple example
of a one degree of freedom (DOF) structure is used to illustrate the application of the technique. Even though the model is
not computationally expensive, conclusions about potential time savings can be drawn based on the number of times that the
SDOF model is run.

31.2 Methodology

31.2.1 Bayesian Modeling

The Bayes theorem can be described by considering two events, A, and B .

p.Bja/ D P.B/p.ajB/
p.a/

(31.1)

where p.a/ can be obtained by the law of total probability [21]. In the modeling field, Bayesian inference is one of the most
common, and arguably one of the most powerful probabilistic methods. Using Bayes it is possible to consider the parameters
of a model in a random fashion and infer unobserved probability distributions of parameters of interest based on the observed
data. Denoting the observed data by D, and the vector of model parameter(s) by  , Bayes theorem can be written as:

p. jD/ D p./p.Dj/
p.D/

(31.2)

where p. jD/ is called the posterior PDF and it describes the probability of the parameters given the data (D). p.Dj/ is
the likelihood PDF, and describes the probability of the sampled data given a specific value of  . Since the dominator of
Eq. (31.2) is not a function of  it is usually considered a normalization constant. Therefore, Eq. (31.2) can be written as
follows:

p. jD/ / p./p.Dj/ (31.3)

Solving Eq. (31.3) in a close form is not a trivial task. One numerical approximation consists of getting samples of 
that follow the posterior PDF by using MCMC algorithms. However, the number of samples needed to implement these
algorithms is usually large. If the model is computationally expensive, the time required to perform the updating might not
be feasible.

31.2.2 Two Layer Bayesian Method

Metamodeling can be used to reduce the computational time required to perform model updating. Traditionally, the
computationally expensive model is replaced with a suitable metamodel before updating. This paper proposes to implement
the updating process in two layers or steps. The computationally expensive model is used in the first layer of the analysis.
Only a few points of the posterior PDF are calculated in this layer. Then, a second analysis is done to approximate the PDF
using a metamodel. The parameters of the metamodel can be estimated with a new Bayesian inference process. This second
analysis is considered the second layer.

In this paper we assume that the summation of several normal distributions is a suitable model. The validity of this
assumption is not treated here given that the main focus of this paper is the proof of concept. The two layers of calculation
are defined as follows: For the first “layer” the posterior is defined by the equation:
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p. jD/ D ˛1p./p.Dj/ (31.4)

where ˛1 is the scaling factor, D is the experimental data, and  is the vector of parameter(s). Then, the posterior is
approximated by:

Mm.Mm/ D
X
i

ciN.�i ; 
i / (31.5)

where Mm is the metamodel, and ci , �i , and 
i are the ith scale factor, mean and standard deviation respectively. Now, the
task at hand is to estimate the values of ci , �i , and 
i , having the limited information from the original posterior PDF (DMm).
If Mm D Œci ; �i ; 
i �, then

p.MmjDMm/ D ˛2p.Mm/p.DMmjMm/ (31.6)

where ˛2 is the scale factor for the second layer. The likelihood for the second layer is assumed Gaussian and it is defined as:

p.DMmjMm/ D 1



p
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e

� .DMm�Mm.Mm//
2

2
2 (31.7)

31.3 Example

A single degree of freedom (SDOF) system is used here to illustrate the application of the technique. This is not a
computationally expensive model but allows us to test if the proposed technique produces valid results with a simple problem.
The stiffness (K) in this model is the parameter to be updated, while the mass (M ) is assumed known. The value of M is
set to 100 kg. The “true” distribution for the stiffness is assumed to be normal with a mean of 1,000 N/m and a standard
deviation of 10 N/m. Ten realizations of the frequencies are theoretically obtained and considered as experimental data.
These frequencies are shown in Table 31.1

First, the posterior PDF of K is estimated using a traditional Bayesian inference without the use of the metamodel. Then,
the proposed two layer technique is implemented. Since the metamodel introduces some errors, the differences between the
two methods are discussed. The python package PyMC is used [22] to sample the posterior PDFs.

31.3.1 Inference Without Using the Metamodel

The natural frequency of a SDOF with small damping ratios can be estimated using the equation

!t D
r
K

M
(31.8)

The likelihood is assumed to be Gaussian and it is calculated as follows

p.!ejK/ D
nY
iD1

1



p
2	
e

� .!t�!ei /
2

2
2 (31.9)

where n is the number of experimental frequencies (!e), and 
 is the standard deviation of the likelihood function. The value
of 
 is considered deterministic for simplicity, but it can be set as a free parameter in the updated process. Figure 31.1 shows
the likelihood function for the case when 
 D 1. The value of maximum probability density given the experimental data
shown in Table 31.1 is K D 1; 006 N/m.

Table 31.1 Simulated
experimental natural
frequencies !e

Test no. !e Test no. !e

#1 3:2058 #6 3:1673

#2 3:2184 #7 3:1759

#3 3:1677 #8 3:1264

#4 3:1554 #9 3:1911

#5 3:1415 #10 3:1708
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Fig. 31.1 Posterior of the SDOF

Fig. 31.2 Posterior of the SDOF

A MCMC sampling method is implemented to generate a chain to represent the distribution of K. As expected, the
histogram obtained from the samples has the same shape as the posterior function in the Fig. 31.1.

This analysis assumes a uniform distribution for K. Also since K cannot take negative values, a condition was added to
make the probability zero for any negative values. A total of 10,000 samples are generated and the first 2,000 are discarded.
Figure 31.2 shows the histogram of the obtained samples. A mean value of �K D 1; 034:84 N/m was obtained. Also the
interval with the 95 % Highest Posterior Density (HPD) was obtained as [642, 1; 428 ] N/m. The theoretical mean value of
K is 1,000 N/m and the value of highest likelihood is K D 1; 006 N/m. Both are located in the HPD interval. Finally the
standard deviation of the samples was calculated as 203N/m.

31.3.2 Inference Using the Two Layered Proposed Method

Since the likelihood is not a complex function, the metamodel is considered as follows:

Mm.K/ D c1N.�1; 
1/ (31.10)
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Table 31.2 Ten points of the
posterior

K Posterior K Posterior

100 5.797e�15 1;100 9.166e�5

300 3.198e�9 1;300 3.976e�5

500 1.274e�6 1;500 8.723e�6

700 2.547e�5 1;700 1.105e�6

900 8.776e�5 1;900 8.886e�8

a

c

b

Fig. 31.3 Inference about the metamodel parameters. (a) � of the metamodel. (b) 
 of the metamodel. (c) Scale factor of the metamodel

where c1, �1, and 
1 which are scale factor, mean and standard deviation of the metamodel respectively. A few points of the
posterior, as are shown in Table 31.2, are selected to use as the data for generating the metamodel.

Bayesian inference is used to estimate the probabilities of c1, �1, and 
1. The prior for c1 was selected as a uniform
distribution with the lower bound of 0.001 and the upper bound of 1.0. For �1, a normal distribution with � D 800N/m
and 
 D 80 was chosen as the prior. A normal distribution with � D 300N/m and 
 D 100 was selected for 
1. MCMC
was implemented to generate samples on the parameters of the metamodel. A total of 12,000 samples were obtained; 4,000
of them were considered burning samples and were discarded. The mean value for �1, 
1, and c1 are obtained as 1,021,
201 N/m, and 0.051 respectively. The 95 % HPD intervals for these parameters were obtained as [1,011, 1,031], [190, 210],
and [0.049, 0.053] respectively. Figure 31.3 shows the histograms of samples obtained for these parameters.
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Fig. 31.4 Comparison of the
posterior and the metamodel

31.3.3 Results

Figure 31.4 shows the results of the metamodel and the traditional methodology in the same figure. Results show that the
metamodel does a good job describing the posterior. The example shows how this technique can reduce the computational
cost in computationally expensive models. For the traditional method results shown in Fig. 31.2 the model had to be run 8000
times, but using the proposed technique the original model needs to be run only ten times. Then using the metamodel one
can generate samples for the parameter of interest. This can be considered a great advantage in the case of a computationally
expensive model. The 95 % HPD interval forK with the proposed approach is [627, 1,414] N/m which is similar to the 95 %
HPD interval obtained from the original method (i.e. [642, 1,428]) N/m.

31.4 Conclusions

In this paper a new methodology was proposed to reduce the computational effort of Bayesian inference using complex
models. The metamodel is used to approximate the posterior rather than the structural model itself. A SDOF problem was
used to explore the capabilities of the technique. However, further research is necessary to explore the advantages and
disadvantages of the method. The metamodel used in the paper was a combination of several normal distributions; however,
it is possible to use other surrogate models. The fitting process is done in the second layer or step of the proposed technique.
The results presented here show agreement between the traditional Bayesian inference technique and the method proposed
here.
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Chapter 32
Comparison of FRF Correlation Techniques

Timothy Marinone and Adam Moya

Abstract Mode shape correlation techniques have proven to be an excellent method for assessing the degree of similarity
between a finite element model and a set of test data. Because mode shapes inherently contain spatial information on the
mass and stiffness matrices of the model and are easily extracted from test data, this allows an overall similarity assessment
as well as providing indications of localized areas of discrepancy. Although frequency response function (FRF) correlation
contains the same information as used in mode shape correlation (both contain a collection of measurement points), FRF
correlation has been found to be more difficult to use successfully. This difficulty is primarily because of the high sensitivity
of frequency response functions to slight perturbations both in the boundary condition and in the excitation and response.
As a result, the globally extracted mode shapes minimize the contamination due to testing perturbations, while frequency
response functions maintain this sensitivity This sensitivity makes it possible to measure similarity, or lack thereof, in so-
called identical components or assemblies.

Sandia National Laboratories wishes to develop a quick testing process able to identify assembly errors in a complex
structure with many joints while minimizing the structure’s required downtime prior to its intended purpose. A frequency
response function similarity approach was used where the structure was mounted on a test fixture and a limited number
of responses were recorded with a single drive point. Because mode shape correlation techniques are widely used, the
corresponding frequency response function correlation techniques have not been studied as much. For this paper, several
different frequency response function correlation methods were assessed on a simplified structure to identify which
technique(s) are best able to detect any assembly errors while being insensitive to other errors.

Keywords Modal testing • Correlation • Frequency response functions • Similarity

Nomenclature

¨k,l Specific (kth) Frequency at Degree of Freedom L
H1, H2 Frequency Response Function (1) or (2)
AH Complex Conjugate Transpose (Hermitian) of A
FRF Frequency Response Function
CSF Cross Signature Scale Factor
FRFSF Frequency Response Function Scaling Factor
RMS Root Mean Square
CSAC Cross Signature Assurance Criterion
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32.1 Introduction

At Sandia National Laboratories, many of the structures tested are complex multibodies with many assembled joints. Sandia
wants to define a quick testing process able to identify assembly errors while minimizing the downtime required on the
unit. Similarity testing at Sandia has traditionally been performed on a vibration table where the unit is exposed to a low-
level random input in all three principal directions; however, this is very time consuming and costly due to the parties and
the hardware required. This testing is also less than ideal, as visual comparison of transfer functions leaves a lot of room
for interpretation, as the most common metric used visually is peak response or resonant frequency. There is also a large
variability in dynamic response introduced by the vibration table. For these reasons, Sandia chose modal testing as the test
method for developing a unit-to-unit similarity metric. Unfortunately, the physical footprint of the assemblies often tested
allows for only limited sets of internal instrumentation, making mode shape correlation difficult and time consuming. In
comparison, a single FRF taken at a strategic external location gives an indicator of the test article’s similarity to a previously
tested unit. As a result, the engineer can perform a simple modal test with limited instrumentation to obtain useful FRFs,
and these measurements can be used in the similarity metrics presented below instead of requiring a full experimental modal
model.

Because structural dynamic correlation is commonly done using mode shapes, there has been significantly less research
done on frequency response function correlation techniques. Allemang [1] provided a thorough overview of various
correlation techniques, although most of the paper’s focus is on the various mode shape correlation metrics. Pascual et al.
[2] used both the frequency domain assurance criterion (FDAC) and frequency response scale factor (FRSF) to perform
model updating. Heylen et al. [3] investigated multiple case studies using the frequency response assurance criterion (FRAC),
although the majority of the paper focused on modal correlation metrics. Fotsch et al. [4] also examined the FDAC and FRAC
while introducing a new tool called modal FRF assurance criterion (MFAC), which used a combination of mode shapes and
FRFs to assess the correlation. Finally, Dascotte et al. [5] employed the cross signature assurance criterion (CSAC) and cross
signature scale factor (CSF) to study sensitivity-based model updating.

Although there has been a lot of research done on the various FRF correlation techniques, very few case studies have
been written where the different techniques are compared. Many of these correlation methods were developed for comparing
experimental data to analytical or finite element analysis data for model correlation. The case study presented in this paper
compares seven different metrics for discerning unit-to-unit variability and incorrect assembly using experimental modal
data.

32.2 Theory

A summary of the different correlation techniques that were examined is provided below. Details of the mathematical
development can be found in the respective references where appropriate.

32.2.1 Technique 1: Frequency Peak Pick

The easiest way to compare frequency response functions is by simply picking the frequency of the peak(s) on an FRF.
This is traditionally how Sandia has compared the similarity of the two transfer functions; this technique is very visual and
easy to understand. Because natural frequencies are characteristic of the structure, the discrepancy between the frequencies
corresponding to the same peak on the FRFs of two different units can provide an initial assessment of the similarity. This
technique has proven imprecise to use in the past due to a large dependence on engineer interpretation, usually of vibration
data. While the boundary condition replicated in a free-free modal test is fairly repeatable, there are many unknowns in
comparing vibration data between units. Typically, the auto spectrum of each response is compared, but this can be rather
noisy due to the unknown force input. It has also been found that the more complicated the assembly, the more likely it is
that the resonant peaks will not align. While this would typically indicate a different structure, Sandia is using a less rigorous
definition of the word “similar” to include small shifts in modes that would lead to a large error using this metric while
exhibiting similar measured dynamic responses between units.
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32.2.2 Technique 2: RMS Percent Error

Rather than assessing the similarity at each frequency peak as described in technique 1, the overall similarity of the FRFs
can be assessed. Using the RMS value of the FRF and comparing it to the RMS value of another measurement assesses the
overall energy of the function. Although this allows slight perturbations between the functions to be minimized, the RMS
calculation can yield the same RMS value for two visually different functions.

32.2.3 Technique 3: R2 Coefficient of the Imaginary Response

Although transfer functions are normally viewed as an absolute magnitude, more information about the transfer function can
often be obtained by converting the function amplitude into a complex number. By plotting the imaginary component of the
response of the first FRF with respect to the imaginary component of the second FRF, a linear fit can be obtained. Based on
the R2 term of this linear fit, the similarity of the measurements can be evaluated.

32.2.4 Technique 4: Nyquist Comparison

Another common way to view the transfer function is by plotting the real component of the FRF with respect to the imaginary
part. Because damping heavily influences the real component of the FRF, the Nyquist comparison can indicate structural
changes in the assembly or part. By averaging the maximum discrepancies between the real and imaginary legs of the
Nyquist plots and the control assembly, this difference can be utilized for similarity quantification.

The next three techniques use a more rigorous calculation to obtain a correlation metric. All techniques use the assumed
orthogonality of the FRFs to compute a ratio from 1.0 (identical) to 0.0 (no similarity). They also evaluate each FRF on a
line-by-line basis in the frequency domain but are sensitive to different aspects of the FRF.

32.2.5 Technique 5: Cross Signature Scale Factor (CSF)

The CSF is used to evaluate discrepancies between amplitudes and is defined in Eq. 32.1. The CSAC (defined below) also
ranges from 0 to 1 and is sensitive to changes in damping. Often the CSF is used with the CSAC in model correlation efforts.

CSF .!k/ D 2
ˇ̌
HH
1 .!k/H2 .!k/

ˇ̌
�
HH
1 .!k/H1 .!k/

�C �
HH
2 .!k/H2 .!k/

� (32.1)

32.2.6 Technique 6: Cross Signature Assurance Criterion (CSAC)

The CSAC is used to evaluate discrepancies in the shape of the FRFs and is defined in Eq. 32.2. Similar to the traditional
modal assurance criterion (MAC), the CSAC is adapted for the frequency domain. Since the position and number of resonant
peaks mainly determine the shape of an FRF, the CSAC function is sensitive to changes in mass and stiffness.

CSAC .!k/ D
ˇ̌
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1 .!k/H2 .!k/

ˇ̌2
�
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� � �HH
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� (32.2)
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32.2.7 Technique 7: Frequency Response Function Scaling Factor (FRFSF)

The FRFSF is used to evaluate discrepancies between amplitudes of the opposing FRFs and is defined in Eq. 32.3.

FRFSF D

kX
jD1

LX
nD1

jH1 .!k;L/j

kX
jD1

LX
nD1

jH2 .!k;L/j
(32.3)

Because there are many different frequency response function correlation techniques, a case study was performed to evaluate
the different techniques and determine which were the most useful for this particular application. These techniques will be
narrowed down to the most useful and used on more complicated assemblies in the near future as more hardware becomes
available to test.

32.3 Case Study: Vibration Fixture Plates with Attached Assembly

To assess the similarity metrics listed above, a mass mock assembly consisting of multiple components connected with bolted
joints was used as a test article. The variability on which the similarity metrics were assessed was introduced by individually
attaching multiple vibration test fixtures to the test article. The mass mock assembly attaches to each fixture via four 1/4-28
steel alloy bolts around the perimeter of the base. In addition to the evaluation of similarity metrics, this data also serves
to check unit-to-unit variability on all of the vibration fixtures built by an outside entity, which are supposed to be identical
and should lead to a duplicate response during environmental testing. The vibration fixtures were square titanium plates with
special features cut to adapt to the mass mock test article. The mass mock was conical in nature and is represented as a
general shape henceforth to protect proprietary information, as shown in Fig. 32.1. The experimental setup consisted of four
assumed identical vibration fixtures with the mass mock assemblies sitting upon three foam pieces to represent a free-free
boundary condition. The vibration fixture was instrumented with three PCB 356A03 triaxial accelerometers with a sensitivity
of 10 mv/G and a PCB 288D01 impedance head with a sensitivity of 100 mv/lb and 100 mv/g attached to a 50 lb MB modal
shaker. The modal shaker was oriented to input a 45-degree-skewed burst random force input in all three perpendicular axes
between 20 and 2,000 Hz.

Fig. 32.1 Experimental test
setup



32 Comparison of FRF Correlation Techniques 303

Fig. 32.2 Compiled FRF comparison of four fixtures correctly assembled

Four fixtures were tested, each machined to the same drawing and assumed identical. These fixtures are referred to as
“RT1,” “AM1,” “AM2,” and “JG8” in the rest of the paper. The test setup was replicated for all cases so that the same
shaker input, sensors, and boundary condition were maintained. Measurement nodes were measured precisely, although
some instrumentation discrepancies are sure to exist due to user error.

For the purpose of evaluating the similarity of the fixtures, RT1 was used as the standard. Each fixture with its attached
mass mock assembly was tested and compared to the standard fixture assembly. For the majority of the metrics described
above, a compiled average FRF of all locations was used to filter out any unintended test assembly errors such as misaligned
sensor placement or skewed shakers. This test setup was designed to provide the highest-quality data utilizing minimum
instrumentation on the fixture and zero instrumentation on the unit, though ideally a larger number of accelerometers would
be placed throughout the unit to capture modes that may not be picked up at the fixture locations. During testing, the burst
random force input was averaged around 2.6 lbrms after a small nonlinearity test was run with varying force levels. At
the frequency range and force levels tested, no nonlinearities were detected; however, an improved fixture with improved
transmissibility could lead to different results.

The compiled FRFs in Fig. 32.2 compare the four fixtures correctly assembled to the mass mock assembly. While the
results from the fixtures are generally similar, there is a mode around 940 Hz that contains a noticeable discrepancy. Although
the fixtures are manufactured from the same drawing, they were made at different times and may have slightly different mass
properties due to tolerances.

After this testing was completed, two different assembly errors were studied. The first consisted of torquing the set of
four fasteners between the mass mock and fixture to an incorrect torque value (approximately one third of the specified
value). The second assembly error consisted of properly installing the fasteners but removing one fastener from the set of
four. These two assembly errors were conducted on all four fixtures, and the resulting data sets were then compared to the
corresponding correctly assembled system. A comparison of these compiled FRFs is seen in Fig. 32.3 below. These plots
highlight the discrepancy when the assembly is missing a bolt but does not obviously indicate when the bolt is incorrectly
torqued. However, the goal of this paper is to find a metric that is sensitive to small changes in the structures dynamics – even
as subtle as this incorrectly torqued bolt. Some of the metrics are presented in more detail below, and a detailed summary of
the results of all metrics is given at the end of the paper.

32.3.1 Nyquist Comparison

Examning the Nyquist plots for the drive-point response on the correct and incorrect assemblies reveals some interesting
discrepancies. As seen in Fig. 32.4 below, the diameter of the Nyquist plot at resonance (940 Hz mode) varies greatly
depending on the assembly tested. Across all four fixtures, we see an increase in damping in the 940 Hz mode (characterized
by a larger-diameter circle) when the bolt is incorrectly torqued and a decrease in damping (smaller-diameter circle) when the
bolt is left out altogether. This metric thus has a large sensitivity to changes in damping and can be quantified and normalized
for comparison as shown in the summary.
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Fig. 32.3 Compiled FRF comparison of all four fixtures and assemblies

Fig. 32.4 Nyquist plot comparison of correct vs. incorrect assemblies
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Fig. 32.5 Nyquist plot
comparison of all four correct
assemblies

In a similar fashion, the correct assemblies of the fixture/mass mock components were compared to get a baseline
measurement of the difference in the fixtures themselves. As seen in Fig. 32.5 below, this method shows a rather large
variation between the “AM2” fixture and the other three fixtures.

32.3.2 R2 Coefficient of the Imaginary Response

Another visual method of comparing similarity is by plotting the imaginary response of one assembly versus the other. For
identical assemblies, the relationship would be linear with a slope and R2 value of 1. Although the results are tabulated in
the following section, the plots shown below in Fig. 32.6 compare these linear relationships and explain this methodology
in a visual format. Similar to the results seen in the Nyquist plots, the discrepancy due to a missing bolt is more pronounced
than that from the incorrectly torqued fasteners.

While at first glance the linear relationship between the two assemblies appears to give a good representation of the unit’s
assembly, the linear regression tends to be biased toward the largest mode while the lower modes are condensed near the
origin. To ensure that the R2 value is a good representation of the comparison between correct and incorrect assemblies, the
residuals from the linear regression are plotted against frequency in Fig. 32.7. In this figure, we see a very small deviation in
the lower frequencies, giving confidence in the linear fit in the regime.

Figure 32.8 displays the imaginary responses for the correct assemblies and gives an insight into the differences in the
fixture. This metric demonstrates a large difference between the “RT1” fixture and the “JG8” fixture; this is not surprising,
as the “JG8” fixture is a few years old and has undergone wear and tear due to extensive vibration testing, while the other
three fixtures are new and have had no time on the vibration table. Looking at the residual plot, we again gain confidence in
the linear regression at lower frequencies. This also gives insight into the complexity of defining similarity, as the four units
tested were manufactured to the same drawing and should exhibit little to no unit-to-unit variability, yet the metrics explored
demonstrate a large unit-to-unit variability.

As seen in the plots, both the Nyquist and imaginary response comparison metrics were able to visually identify the
incorrectly assembled test data sets. Furthermore, the metrics were more sensitive to the missing bolt assembly error than
they were to the incorrect torque error. Any testing done in the future can use the results from these tests to help quickly
identify assembly errors such as a missing bolt, but more testing is still needed to determine how sensitive these metrics may
be to other anomalies such as bad welds, missing washers, or deformed material.
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Fig. 32.6 Linear fit plots for all correct vs. incorrect assemblies

32.4 Evaluation of Metrics

All seven metrics were computed for each fixture/assembly combination for both assembly errors, and these are compared
in Figs. 32.9 and 32.10 below with all metrics normalized to 1.0. Thus a metric of 1 would indicate that the two assemblies
are perfectly identical, while a metric of 0 would indicate no similarity. For metrics where a percent error was calculated,
the metric was normalized to 1 by taking 1 minus the error, thus a metric of 1 represents zero error. All metrics identified
assembly errors well, except the peak picking metric, which is most often used as a visual metric. Most of the metrics were
able to correctly indicate the missing bolt assembly error, but they did not perform as well in identifying the incorrectly
torqued bolts. Because assembly errors may be caused by an incorrect torque, an ideal similarity metric would be sensitive to
all assembly errors. For this case study, the Nyquist metric, RMS error, and R2 metric appear to be the metrics most sensitive
to the torque assembly error; however, the RMS error appears to be less sensitive to shifts in frequency and does not capture
unit-to-unit variability reliably.

Figure 32.10 displays the differences between all metrics when comparing the correct assemblies of the “AM1,” “AM2,”
and “JG8” fixtures versus the “RT1” fixture as a reference. As expected from looking at the composite FRFs, RT1 vs AM1
shows a high degree of correlation across all metrics. In addition, both AM2 and JG8 are visually different from RT1, but
not all of the metrics sufficiently capture this difference for both fixtures. Because only four fixtures were tested, additional
fixtures would help identify the appropriate metrics to use for unit-to-unit variability.

For similarity testing to be useful, a threshold must be defined to indicate whether the two transfer functions are similar.
This threshold value is difficult to define with the limited set of hardware, but averaging the similarity metric values gives
some insight into what value might be acceptable for a given metric and assembly error. These early results indicate the need
for various metrics to be used together to best identify any assembly errors or unit-to unit variability. From the values shown
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Fig. 32.7 Residuals vs. frequency for linear regression metric

Fig. 32.8 Linear fit plot for fixture comparison

in Table 32.1, the FRFSF and peak-picking methods are not adequate metrics to measure similarity due to their high values
for the incorrect assemblies. Considering the values for the three recommended metrics of Nyquist error, RMS error, and
R2 error, it appears that an average similarity value above 0.9 would indicate a correct assembly. However, when evaluating
unit-to-unit variability, this threshold may be much lower. More detailed testing will lead to an accurate threshold.
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Fig. 32.9 Similarity metric comparison for incorrect assemblies normalized to one (1 D identical to correct assembly)

Fig. 32.10 Similarity metric comparison of fixtures for correct assemblies (1 D identical to RT1)
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Table 32.1 Average similarity comparing incorrect assemblies for all seven similarity metrics

Nyquist error RMS error R2 error CSAC CSF FRFSF Peak pick error

Incorrectly torqued average similarity 0.81 0.88 0.72 0.83 0.89 0.92 0.99
Missing bolt average similarity 0.59 0.59 0.01 0.28 0.49 0.88 0.97

32.5 Conclusion

Sandia National Laboratories chose to use similarity testing to quickly identify any assembly errors encountered during
production of complex multibody assemblies. Because mode shapes could not be measured due to classification, radiological
contamination, or concern with damaging the hardware, a single drive-point FRF measurement was combined with limited
instrumentation on specialized test fixtures. In order to identify a metric that could be used to assess the similarity between
assemblies, a study of various FRF correlation techniques was performed on a simplified test article under three different
assembly configurations: correctly assembled, assembly-to-fixture bolts incorrectly torqued, and correctly torqued bolts with
one removed. The three techniques chosen, Nyquist error, RMS error, and R2 error, were found to provide the best assessment
of the FRF and were used on the actual unit to help identify the presence of assembly errors.

32.6 Future Work

Further studies on similarity are underway at Sandia National Laboratories as additional hardware becomes available. These
studies will provide some statistical confidence to verify that the metrics used are appropriate. This additional testing will
also help identify the acceptable threshold for determining whether the two units are dynamically similar. The vibration
test fixtures used in this work have contained unique and nonsymmetric geometry, creating some uncertainty in the results;
similarity testing in the future would benefit from designing test fixtures with simplified geometry. Sandia is also planning
to use these similarity tests on larger and more complicated structures for actual production use in the future.

Sandia also has interest in comparing environmental vibration data for similarity purposes. A large majority of the
hardware being developed at Sandia undergoes vibration testing, and the definition of a similarity metric for response-only
data could improve the ability to assess assembly on more units in production.

Sandia’s primary goal with this work is to define a test procedure, metric, and threshold for assessing similarity between
units being produced either on site or by an external contractor. This would allow similarity data to be acquired in a fast,
reliable, and nonintrusive manner. The results in this paper show promise in this methodology, and future work will further
refine this process, which can prove useful not only to Sandia Laboratories but to any industry where quality control is a
concern.

References

1. Allemang RJ (2003) The modal assurance criterion – twenty years of use and abuse. Sound Vib Mag August:14–20
2. Pascual R, Golinval J, Razeto M (1997) A frequency domain correlation technique for model correlation and updating. In: Proceedings of the

15th international modal analysis conference, pp 587–592
3. Heylen W, Avitabile P (1998) Correlation considerations – part 5 (degree of freedom correlation techniques). In: Proceedings of the 16th

international modal analysis conference, pp 207–214
4. Fotsch D, Ewins DJ (2000) Applications of MAC in the frequency domain. In: Proceedings of the 18th international modal analysis conference,

pp 1225–1231
5. Dascotte E, Strobbe J (1999) Updating finite element models using FRF correlation functions. In: Proceedings of the 17th international modal

analysis conference



Chapter 33
Improved Estimation of Frequency Response Covariance

Daniel C. Kammer and Matthew Bonney

Abstract In high-consequence systems, critical decisions are made based on analytically predicted system response. In
order to have confidence in the predictions, analytical models must be validated, and the effects of uncertainty on system
response must be well understood. In systems with high modal density, modal based model validation is often problematic.
It becomes more convenient to validate a model by directly using its response in the frequency domain. This then requires a
corresponding frequency response based uncertainty quantification and propagation analysis. Covariance propagation is often
used to propagate uncertainty and compute second order response statistics. However, linear covariance propagation applied
to frequency response is inaccurate at resonances due to nonlinearity. A method is proposed that provides an improved
estimate of the first two moments of frequency response uncertainty in the vicinity of resonances. It assumes that the
uncertainty is small enough relative to damping such that an impedance based matrix inverse can be approximated using
a finite number of terms. The method then propagates higher order moments of modal impedance uncertainty to approximate
this inverse. The proposed approach can fit directly into a straightforward covariance propagation approach, and is applicable
to substructured systems.

Keywords Uncertainty propagation • Covariance • Frequency response

33.1 Introduction

Critical decisions are made for high-consequence systems based on analytically predicted system response. For example,
in the case of spacecraft, there must be a test-validated finite element model (FEM) that can be used to predict structural
loads, response, performance, etc., prior to launch [1]. The model validation process includes tasks such as test/analysis
correlation, analytical model updating, uncertainty quantification, and determination of predictive accuracy [2–4]. In
spacecraft applications, finite element model validation has usually been performed in the modal domain. Test and analysis
modal frequencies are compared directly, while mode shapes are compared using orthogonality and cross-orthogonality
computations [5].

In order to have confidence in analytical predictions, the effects of uncertainty on system response must be well
understood. Recently, quantification of model uncertainty and its propagation through large numerical simulations has
been the focus of investigation [6–9]. While an engineer may design a single structure based on drawings, analysis,
and experimental results, the reality is that the item produced is just one in an ensemble of structures due to variations
and uncertainties in geometry, material parameters, construction, etc. The result is a random population of frequencies and
mode shapes. If an analyst does not examine test-analysis correlation relative to uncertainty, very erroneous and dangerous
decisions can be made regarding an analytical model’s ability to make accurate predictions within both tested and untested
regimes [10].

High-performance, precision space vehicles proposed by both the Air Force and NASA will require extremely low-level
on-orbit vibration environments. Therefore, these space systems will require analytical models that are valid to a much
higher than usual frequency range for accurate predictions. Within this higher frequency band, spacecraft become modally
dense, and the corresponding vibration patterns have a short wavelength. Uncertainty then has an even larger influence
on the structural response in modally dense systems. Vibrational modes become extremely sensitive to uncertainty, so the
accepted modal-based methods of model correlation, such as cross-orthogonality, modal frequency comparisons, etc., simply
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do not work. An alternative, and possibly more desirable, approach would be to validate a model by directly using its response
in the frequency domain. This would then require a corresponding frequency response based uncertainty quantification and
propagation analysis.

A large number of researchers have investigated the effects of structural uncertainty on system response. For example,
Mace and Shorter [11] and Hinke et al. [12] use linear perturbation methods to relate physical parameter uncertainties to
uncertainty in modal parameters. The corresponding uncertainty in frequency response is then computed and the statistics
determined through a Monte Carlo (MC) analysis. Hasselman and Chrostowski [13] use a covariance propagation approach
to propagate modeling uncertainty into frequency response. This method avoids a MC analysis, however, it only produces
the variance in the system response. In their applications, they also found that covariance propagation breaks down in the
vicinity of system resonances and anti-resonances. Small resonant frequency shifts due to modeling uncertainties caused
corresponding shifts in the peaks of the frequency response. In the case of isolated frequencies, small changes in frequencies
produce large changes in frequency response. Therefore, the linear perturbation results that covariance propagation is based
upon break down.

Kammer and Krattiger [14] expanded on the work done by Hasselman and Chrostowski by developing a systematic
approach for propagating uncertainty using covariance propagation in substructured models. The uncertainty in the
substructure is not restricted to any specific type, such as parameter uncertainty. It can be as general as uncertainty in the
frequency response as determined by a series of substructure vibration tests. The approach is efficient, however, it is still
inaccurate in predicting frequency response variance at resonances. This is due to the extreme nonlinear relation between
uncertainty in frequency response and uncertainty in impedance at resonance. The objective of the research presented here
is to improve upon the linear perturbation prediction for frequency response and its second order statistics in the vicinity of
resonances.

33.2 Theory

In this presentation, it is assumed that any uncertainty of interest has already been propagated into the system level modal
impedance matrix. For example, in the case of parameter uncertainty, the FEM physical impedance matrix at the ith frequency
! i can be expanded in a first order Taylor series about its nominal value in terms of the normalized design variables dr using

ZRi D Zi C
npX
rD1

Z0
ri�dr (33.1)

The nominal impedance is given by

Zi D �!2i M C i!iC CK (33.2)

in which M, C, and K are the corresponding nominal mass, damping, and stiffness matrices, respectively. The normalized
sensitivities, Z

0

ri, can be easily computed in a commercial finite element code. Details for propagation of uncertainty
at the substructure level into uncertainty at the system level can be found by Kammer and Krattiger [14]. In order to
maintain accuracy, reduce numerical instability, and reduce the size of the computational problem, uncertainty propagation
is performed in the modal space of the nominal FEM. A sufficient number of system modes, nm, is computed to accurately
represent the dynamics within the desired frequency band. This is usually 1.5–2.0 times the highest frequency of interest.
It is assumed that the nominal mode set is rich enough such that it spans the uncertain system within the frequency range
considered.

The expression in Eq. (33.1) can be transformed to modal coordinates, producing

zRi D zi C
npX
rD1

z0
ri�dr (33.3)

where zi D �TZi�, is the nominal modal impedance matrix, etc. Let hi be the nominal system modal displacement frequency
response matrix at frequency ! i, then hi D z�1

i or

hi zi D I (33.4)
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Assuming modal damping, the modal frequency response matrix hi is diagonal with the rth term given by

hirr D �
!2r � !2i C i2&r!r!i

�1
(33.5)

in which !r and −r are the natural frequency and damping coefficient for the rth system mode, respectively. If the nominal
system is perturbed, Eq. (33.4) becomes

hRi zRi D .hi C�hi/ .zi C�zi / D I (33.6)

which can be expanded and rearranged to give

�hi D �hRi�zi hi (33.7)

This is the exact expression for the uncertainty, or change, in the frequency response for a given change, or uncertainty, in the
impedance. Unfortunately, the corresponding perturbed modal frequency response hRi is not known. The usual covariance
propagation approach is based on the first order approximation of Eq. (33.7) given by

�hi D �hi�zi hi (33.8)

This approximation is accurate for small values of system uncertainty at frequencies that are removed from the resonances.
As a resonance is approached, the relationship between the change in modal frequency response and the change in modal
impedance becomes very nonlinear, and the linear approximation in Eq. (33.8) becomes poor.

As an alternative, Eq. (33.6) can be arranged to give the exact expression for uncertainty in frequency response in the
form

�hi D �hi�zi hi ŒI C�zi hi �
�1 (33.9)

The matrix inverse in Eq. (33.9) can be expanded in an infinite series to give

�hi D �hi�zi hi
h
I ��zi hi C � � � C .�1/k�1.�zi hi /

k�1 C � � �
i

(33.10)

If the spectral radius of matrix �zihi is less than 1.0, or equivalently, all the eigenvalues are within the unit circle, the series
in Eq. (33.7) can be approximated by a finite number of terms. For example, in the case of uncertainty due to stiffness alone,
the expression in Eq. (33.10) will converge for the rth isolated mode if the fractional uncertainty in the rth mode frequency
due to the change in stiffness is less than the corresponding modal damping coefficient

4!r
!r

< &r (33.11)

Defining the matrix

�ik D .�zi hi /
k�1�zi k D 1;1 (33.12)

the jth order approximation can be rewritten as

�hij D hi

"
jX
kD1

.�1/k�ik

#
hi (33.13)

Note that j D 1 corresponds to the first order, or linear approximation used in straightforward covariance propagation. In
terms of modal coordinates, the nominal physical frequency response matrix at the ith frequency is given by

Hi D �shi�
T
a (33.14)
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in which �s is the modal matrix row partitioned to ns sensor locations, and �a is the modal matrix row partitioned to na input
locations. The jth approximation for the uncertainty in the physical frequency response matrix is then given by

�Hij D �shi

"
jX
kD1

.�1/k�ik

#
hi�

T
a (33.15)

Uncertainty in velocity, or acceleration response can be determined by multiplying Eq. (33.15) by i! i and �!2i , respectively.
Equation (33.15) can be easily vectorized to give

pj D HX

"
jX
kD1

.�1/kqk
#

(33.16)

in which pj D vec
�
�Hij

�
, qj D vec

�
�ij

�
, and HX D .�ahi / ˝ .�shi / represents a Kronecker product. Note that the

subscript i has been dropped, recognizing the fact that computations are made at frequency each !i. Based on Eq. (33.16),
the jth approximation of the mean value of the frequency response uncertainty is then given by

E
�
pj
� D pj D HX

"
jX
kD1

.�1/kqk
#

(33.17)

The jth approximation for the frequency response correlation matrix can be computed using the expression

Rj D HX

"
jX
kD1

jX
lD1

.�1/kCl qkq�
l

#
H�
X (33.18)

in which * denotes a complex conjugate transpose. The associated covariance matrix is then given by

Cj D Rj � pjp�
j (33.19)

An analogous procedure can be used to derive the associated relation matrix

Sj D E
h�
pj � pj

� �
pj � pj

�T i
(33.20)

The covariance and relation matrices provide complete information regarding the second order statistics of the frequency
response. However, it is more convenient to recover frequency response uncertainty directly in terms of magnitude and
phase. It can be shown [15] that uncertainty in frequency response magnitude and phase for the lk input–output pair can be
related to uncertainty in the corresponding real and imaginary parts using

�
� jHlkj
�lk

	
D Jlk

�
�.Hlk/R
�.Hlk/I

	
(33.21)

where matrix Jlk, given by

Jlk D
�
.Hlk/R= jHlkj .Hlk/I = jHlkj

�.Hlk/I =jHlkj2 .Hlk/R=jHlkj2
�

is evaluated using the nominal system model at frequency !i, and subscripts R and I denote real and imaginary parts. Taking
the expectation of the outer product produces

Cp D
"
.� jHlkj/2 .� jHlkj/ .�lk/

: : : .�lk/
2

#
D Jlk

"
.�Hlk/

2
R .�Hlk/R.�Hlk/I

: : : .�Hlk/
2
I

#
J Tlk D JlkCrJ

T
lk (33.22)
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in which Cp and Cr are the covariance matrices for the polar and rectangular forms of the corresponding frequency response
pair, respectively. The terms in Cr can be recovered from the frequency response covariance Cj and relation matrix Sj using
the relationships

.�Hlk/
2
R D 1

2

h�
Cj
�
pp

C �
Sj
�
Rpp

i

.�Hlk/
2
I D 1

2

h�
Cj
�
pp

� �
Sj
�
Rpp

i

.�Hlk/R.�Hlk/I D 1
2

�
Sj
�
Ipp

(33.23)

where subscript pp indicates the pth diagonal term in the corresponding matrices. The row and column indices l and k can be
computed from p using l D p � f loor .p=ns/ � ns , and k D 1C f loor .p=ns/, in which floor(x) is a function that rounds
to the nearest integer towards minus infinity. Diagonal terms in Cp represent the mean-square values of the uncertainty in the
frequency response magnitude and phase.

The vectors qj first introduced in Eq. (33.16) contain products of j terms �zikl from the modal impedance uncertainty
matrix. In general, the mean values required in Eqs. (33.17, 33.18, 33.19, and 33.20) would have to be computed based upon
knowledge of the finite element model inputs, combined with MC analysis. While this requires additional computations, it is
considerably easier and less computationally intensive, to compute the statistics of the modal impedance matrix, than it is to
directly apply MC to the frequency response. In addition, if it can be assumed that the model inputs are zero mean and jointly
normally distributed, then many of the product mean values appearing in the previous equations are zero. For example

qk D 0 k is odd

and

Q�
lk D qlq

�
k D 0 Qlk D qlq

T
k D 0 l C k is odd

Therefore, in the case of a second order improvement, the mean value of the vectorized uncertainty in the frequency
response is

p2 D HX Œ�q1 C q2� D HXq2

The first order term, which corresponds to the usual covariance propagation, is zero. Using Eq. (33.18), the second order
approximation of the correlation matrix R2 is given by

R2 D HX

�
Q�
11 � �

Q�
12 CQ�

21

�CQ�
22


H�
X D HX

�
Q�
11 CQ�

22


H�
X

Applying Isserlis’ Gaussian moment theorem [16].

E .x1x2x3 � � � xk/ D
XY

E
�
xixj

�

the remaining product means can be expressed directly in terms of the quadratic entries within the covariance and relation
matrices for the modal impedance uncertainty Q�

11 D q1q
�
1 D Cz and Q11 D q1q

T
1 D Sz, respectively. These two matrices

are computed during the usual covariance propagation procedure, so no additional information is required for the proposed
refined approximation approach. The notation †… means summing over all distinct ways of partitioning x1x2x3 � � � xk into
pairs. For example, quartic expressions, such as q4 or Q22, will contain entries of the form x1x2x3x4, in which xk is a zero
mean, normally distributed term from within �zi. This quartic mean can then be written in terms of quadratic means in
the form.

x1x2x3x4 D x1x2 � x3x4 C x1x3 � x2x4 C x1x4 � x2x3
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33.3 Numerical Example

The simple example shown in Fig. 33.1 was examined using the proposed approach. It contains ten uncertain springs.
Table 33.1 lists the nominal system modal frequencies. A random representation of the system is generated by selecting
each individual spring value from a normal probability distribution. Initially, the standard deviations of the distributions were
restricted to 10 % of the nominal spring values. Three percent modal damping was used in the simulation, and the system
was forced at mass 1.

Figure 33.2 shows the true value, the linear approximation .j D 1/, and the first three additional iterations .j D 2 � 4/
using Eq. (33.16) for the magnitude of the change in the drive point displacement frequency response for mass 1. It can be
seen that the first additional iteration .j D 2/ provides a dramatic improvement over the linear approximation in regions
removed from the resonances, and subsequent iterations further improve the results as the driving frequency gets closer to
the resonances and anti-resonances. However, in the vicinity of the resonance at 7.39 Hz, the spectral radius of�zihi is close
to 1.0, so convergence is very slow. Therefore, the coefficient of variation of the uncertainty was reduced to 5 %, and the
modal damping was increased to 5 %.

The higher order approximation was then applied to compute the frequency response second order statistics for the new
case of 5 % uncertainty and modal damping. Figure 33.3 shows the variance for the drive point frequency response. The
usual covariance approximation is relatively accurate, however the sixth order approximation improves the prediction at
the resonances. Figure 33.4 shows the corresponding term from the frequency response relation matrix. The sixth order
approximation shows a significant improvement in predicting the mean square frequency response uncertainty. Figure 33.5

Fig. 33.1 Simple concentrated
mass and spring problem
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k3 k2
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k5k6

k7
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m5m4

m2

Table 33.1 Natural frequencies
of example system

Mode number Frequency [Hz]

1 3.62
2 6.54
3 7.10
4 7.39
5 13.72
6 17.25
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Fig. 33.2 Uncertainty in drive
point frequency response for
mass 1

Fig. 33.3 Drive point frequency
response variance
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Fig. 33.4 Drive point frequency
response mean square uncertainty
magnitude

Fig. 33.5 Drive point frequency
response mean square magnitude
uncertainty
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Fig. 33.6 Drive point mean
frequency response uncertainty
magnitude

illustrates the uncertainty in the magnitude of the drive point frequency response. This result was recovered from the
covariance and relation matrices using the linear perturbation approach outlined in the previous section. The sixth order
approximation gives results that are clearly superior to the usual covariance propagation in the vicinity of the resonances.
The results for phase uncertainty were just as accurate, and not shown here. The frequency response uncertainty mean can
also be recovered using the proposed approach. Figure 33.6 shows that the sixth order approximation produces accurate
results at the resonances. Note that the first order approximation should be nothing more than a computed zero.

33.4 Conclusion

It is well known that linear covariance propagation applied to frequency response is inaccurate at resonances due to
nonlinearity. A method has been proposed that provides an improved estimate of the first two moments of frequency response
uncertainty in the vicinity of a resonance. It assumes that the uncertainty is small enough relative to damping such that an
impedance based matrix inverse can be approximated using a finite number of terms. The approach then propagates higher
order moments of modal impedance uncertainty to approximate this inverse. If terms within the modal impedance uncertainty
matrix are zero mean and jointly Gaussian, then the higher-order impedance moments can be computed using the modal
impedance covariance and relation matrices that are produced by the usual linear covariance propagation formulation. The
proposed approach can fit directly into a straightforward covariance propagation approach, and is applicable to substructured
systems. The approach was applied to a simple example, and was shown to produce improved results. It is important to note
that the higher-order approximation is only required in the vicinity of resonances, and anti-resonances. The usual frequency
response covariance propagation approach works well at other frequencies. In cases where parameter uncertainty is large
relative to the modal damping, a simple series acceleration approach was shown to greatly improve series convergence
properties.

Acknowledgement This material is based on work supported by Sandia National Laboratories. Sandia is a multi-program laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration.
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Chapter 34
Cross Orthogonality Check for Structures with Closely Spaced Modes

Anders Skafte, Manuel L. Aenlle, and Rune Brincker

Abstract Structures with closely spaced modes can often be hard to correlate with numerical models due to the high
sensitivity of the eigenvectors. Even the smallest change in either mass or stiffness can have a large influence on the
eigenvectors, and makes it hard to fit a numerical model so its modal parameters matches those obtain from measurements.
This paper introduces a robust method for calculating the cross orthogonality check for structures with closely spaced modes.
The method utilizes the fact that a cluster of closely spaced eigenvectors from an experiment and from a well correlated
numerical model will span the same subspace, although the experimental mode is badly correlated with its corresponding
numerical mode. A new basis of numerical modes is created by redefining the closely spaced numerical modes as a linear
combination of one another, based on their projection upon the experimental mode. This will enable a more robust calculation
of the cross orthogonality check. The method is validated using simulation cases where the errors are evaluated using
simulated responses for the different sets of modal parameters.

Keywords Closely spaced mode • Correlation • Cross orthogonality check • Mode shape sensitivity • Simulation

34.1 Introduction

The cross orthogonality check (XOR) is a method for measuring the correlation between and analytical model and
experimental results, which basically consists of calculating the inner product of two sets of mode shapes over the mass
matrix. When the two sets of mode shapes are perfectly correlated this yields the identity matrix, whereas any off diagonal
elements can be seen as a coupling of modes. Thresholds for acceptable diagonal and off diagonal terms are often dictated
by large agencies as NASA and ESA [1, 2], but will often be in the region of

XORi;j � 0:9 for i D j

XORi;j � 0:1 for i ¤ j
(34.1)

With XOR indicating the cross orthogonality matrix and i and j being row and column number.
Problems can arise when the test structure holds natural frequencies which are closely spaced. Then even the smallest

discrepancy between the structure and the analytical model can result in large deviations of the mode shapes – which will
cause large off-diagonal terms when calculating the XOR.

To overcome this problem it is suggested that clusters of closely spaced modes in the FE model are “rotated” so they align
with the experimental mode shapes. This is done by individually projecting the FE mode shapes onto the cluster of closely
spaced experimental modes, using this projecting as a linear combination and thereby rotating the modes in the subspace.
When a structure has repeated poles the mode shapes will share the exact same subspace. For closely spaced modes this will
only be an approximation. The aim of this paper is to show that in the case of closely spaced modes, the cluster of mode
shapes can be rotated for a better correlation, without significantly changing the physics of the analytical model. The theory
is tested on a simulation case using a three plate shell structure.
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The topic of problems in correlation of models with closely spaced modes is well known. In [3] the author discusses the
problems of non orthogonality arising from repeated poles. In [4] the authors argue that the correlation should be measured
between clusters in the case of closely spaced modes and introduces the measure S2MAC. The sensitivities of mode shapes
are discussed in [5] where the authors differ between “closely spaced modes” and “nearly repeated eigenvalues”.

34.2 Theory

34.2.1 Repeated Poles

To better understand the concept of rotating a cluster of closely spaced modes, we will start by taking a look at a system with
repeated poles. Let the equations of motion for an undamped system be given by the eigenvalue problem

K a D !2M a (34.2)

With a being the experimental mode shape, M and K being the mass and stiffness matrices respectively, and !2 being the
eigenvalue of the system. Using the orthogonality conditions Eq. 34.2 can be rewritten as

�
!2i � !2r

�
aTi M ar D 0 (34.3)

With i and r representing mode numbers. When i D r , Eq. 34.3 is fulfilled for any linear combination of ai and ar [5]. This
is illustrated in Fig. 34.1.

Here the mode shapes are illustrated as vectors. What is important here is not the individual direction of each mode, but
rather that they always span the same subspace, and that any combination will fulfill Eq. 34.3. This also means that an FE
model which perfectly matches the properties of the structure still can result in poor MAC-values [6] for the repeated modes.
But the FE modes can be rotated to match those of the structure, without this having influence on the FE model.

34.2.2 Closely Spaced Modes

When a structure has two close modes, these will be highly sensitive to even small changes. This can be seen by observing
the mode shape sensitivity equations [7].

@bi
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2mi
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@u
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rD1;r¤i

1

!2i � !2r
1

mi
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��i @M
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C @K

@u

�
bibr (34.4)

Fig. 34.1 Graphical illustration of two experimental mode shapes with repeated poles
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Fig. 34.2 Graphical illustration of two closely spaced modes

Here with b being FE mode shapes, mi the i’th modal mass, Nm the total number of modes and u a parameter in which the
model is perturbed. Here it is easily seen that when the factor �! D !2i � !2r goes towards zero, the change in mode shape
will go towards infinity.

To illustrate the concept of closely spaced modes graphically, we will need to define two different domains:

– Domain A: Experimental mode shapes.
– Domain B: FE mode shapes.

The left of Fig. 34.2 illustrates the experimental mode shape in domain A, and the FE mode shapes in domain B. There
will almost always be a difference between the experimental modes and FE modes which is illustrated by the difference
between domain A and B (here plotted as two planes). Due to the high sensitivity the modes from A and B can be badly
correlated.

The right of Fig. 34.2 again illustrates the experimental mode shapes, but here the FE mode shapes have been rotated by
a linear transformation. The rotated mode shapes, c1 and c2, will still belong to domain B. The mode shapes, b1 and b2, will
fulfill the condition

�
!2i � !2r

�
bTi MFE br D 0 (34.5)

With MFE being the FE mass matrix.
But since we are dealing with closely spaced modes (and not repeated modes), c1 and c2, will only be an approximate

solution if substituted into Eq. 34.5. In other words we have to accept a small error in the analytical model in order to get a
good correlation of the modes. The magnitude of this error is investigated later in the paper.

The vector describing the linear combination that rotate b1, b2 onto c1, c2 is found by projecting the modes from A onto
B, here illustrated with the first and second mode shape

t1 D B
�
12 a1 (34.6)

With B12 being the FE mode shape matrix holding the two first modes, and � indicating the Moore-Penrose pseudo inverse.
Mode c1 can then be found by

c1 D B12 t1 (34.7)

34.2.3 Cross Orthogonality Check

The orthogonality conditions provide that the inner product of the mode shapes over the mass matrix gives the identity
matrix.

BT M B D I (34.8)

With I being the identity matrix.
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The XOR is found by switching the transposed FE mode shape matrices in Eq. 34.8 with the experimental mode shapes.

XOR D AT M B (34.9)

Where the level of correlation is measured by evaluating the diagonal and off-diagonal elements in the XOR matrix, in
comparison with certain threshold values, as for example given in Eq. 34.1. The FE model will almost always hold a much
larger amount of DOF’s than the experiment. This means that either the FE mass matrix has to be reduced or the experimental
mode shapes must be expanded using techniques as Guyan, IRS, SEREP or Local Correspondence [8–11].

34.3 Numerical Study

To verify the theory studies were made on two different FE model of a three plate steel structure, with pinned supports in
the corners of the button plate. For both models the two horizontal plates have a thickness of 3 mm but the vertical plate was
1.6 mm in one model (Case 1) and 1.8 mm in the other (Case 2). This was done to make a model where mode 4 and 5 were a
little separated and one where they were very close. Both models consist of a total of 377 nodes and 336 QUAD4 elements.
The first five modes were used in the analysis, and 15 DOF’s were chosen as active (Fig. 34.3).

Table 34.1 shows the first five natural frequencies of the reference case for both Case 1 and Case 2.
To create different sets of modal parameters small changes were made to 4 QUAD4 elements (Fig. 34.4). Here the density

was changed by multiplying it with a scaling factor. In Case 1 the scaling factor was going from 1 to 2.5, with steps of 0.1,
and in Case 2 from 1 to 1.3, with steps of 0.02. In both cases this gave 15 scenarios with density change (Model A), and 1
reference (Model B). For all of the 15 scenarios, the fourth and fifth mode shapes were rotated according to Eqs. 34.6 and
34.7 (Model C).

The XOR was calculated using Eq. 34.9 for all 15 scenarios. Comparisons were made on the difference between Model A
and B, and Model A and C. For each scenario the largest error on both the diagonal and off-diagonal elements were evaluated.
The results for Case 1 and 2 are presented in Figs. 34.5 and 34.6 respectively.

The left plot in Fig. 34.5 shows the diagonal value that has the largest distance to 1 as a function of the increased density
in the four elements illustrated in Fig. 34.4. Here it is clear to see that the error in correlation between Model A and B drops
considerably when the scale factor reaches 2. The error in correlation between Model A and C follows more a straight line.
In this case the correlation for the diagonal elements stays within the threshold given in Eq. 34.1, for both “non-rotated”
and “rotated” mode shapes. The effect of rotating the closely spaced modes becomes more significant when looking at the

Fig. 34.3 Illustration of the shell
structure. Arrows indicate the
“active” DOF’s  
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Table 34.1 First five natural
frequencies for the reference
cases

Mode # Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Frequencies, Case 1 [Hz] 3.368 7.570 11.846 16.476 16.967
Frequencies, Case 2 [Hz] 3.896 8.690 13.059 16.763 16.767
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Fig. 34.4 FE model of the
structure. The red area indicates
the elements where the density
has been changed
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Fig. 34.5 Result from Case 1. Left: Maximum error on the diagonal element as a function of the density scale factor. Right: Maximum error on
the off-diagonal element as a function of the density scale factor

off-diagonal terms, which are illustrated in the right plot of Fig. 34.5. When looking at the correlation between Model A
and B, the off-diagonal term will exceed the threshold when the scale factor reaches 1.5, where the off-diagonal term for
the XOR matrix with Model A and C stays below the threshold for all 15 scenarios. The results from Case 2 are illustrated
in Fig. 34.6, and show how extremely sensitive the modes become when the frequency distance gets really small. Here the
thresholds from Eq. 34.1 are exceeded with the first scenario of density change, corresponding to at total mass change of
0.024 %. The correlation for the rotated mode shapes, however, shows good results for all scenarios.

Figures 34.5 and 34.6 show that certain correlation criteria can be achieved by rotating the closely spaced modes. But
since mode 4 and 5 are not repeated modes, the physics of the FE model will change when going from Model B to Model C.
What is left to answer is how big the magnitude of this change is. To investigate this, sets of responses were calculated in all
15 active DOF’s using both the mode shapes from Model B and C. The simulated response for each channel was found as
the inverse Fourier transformation of Eq. 34.10.

Y .!/ D H .!/ X .!/ (34.10)
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Fig. 34.6 Result from Case 2. Left: Maximum error on the diagonal element as a function of the density scale factor. Right: Maximum error on
the off-diagonal element as a function of the density scale factor

Where Y is the Fourier transformation of the response, H is the frequency response matrix and X is the Fourier transformation
of the load. The damping was set to 0.2 % and the load was applied to the structure as Gaussian normal distributed.

The error between two coinciding channels from Model B and C, was calculated as

ei D

�
yB;i �yC;i

�


yB
100 % (34.11)

With 
 symbolizing the standard deviation, and 
yB being the mean value of the stand deviations of all the responses in
Model B.

Further the angle between the subspaces was plotted as a measure for the linear dependency of the two subspaces.

 D min

 
cos�1

 
bTi ci

kbik kcik

!!
(34.12)

With  being the angle, bi and ci being the individual vectors of the subspace with closely spaced modes in B and C
and symbolizing the length of the vector.

The results for Case 1 and 2 are presented in Figs. 34.7 and 34.8 respectively.
Figures 34.7 and 34.8 show the mean error of all the channels, for each of the 15 scenarios (left) and the angle between

the subspaces A and B (right). For Case 1 Fig. 34.5 shows that the threshold for the off-diagonal error is exceeded when the
scaling factor has a value of 1.5. This corresponds to a mean error of 1.8 % (Fig. 34.7, left) between the simulated responses
of the “non-rotated” and “rotated” mode shapes. For Case 2 the thresholds for both diagonal and off-diagonal errors are
exceeded as soon as the density is increased. But since the linear dependency between the subspaces is much stronger for
this case, the errors calculated from the responses will be much smaller than for Case 1 (Fig. 34.8, left).

The results from both cases show that the methodology of rotating closely spaced modes can be used to obtain a better
correlation – but only by accepting a small change in the properties of the FE model. How big a change that can be accepted
will always depend on an engineering judgment.
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Fig. 34.7 Case 1: Error between simulated responses as a function of the scale factor (left). Angle between subspace A and B (right)
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Fig. 34.8 Case 2: Error between simulated responses as a function of the scale factor (left). Angle between subspace A and B (right)

34.4 Conclusion

In this paper a methodology for overcoming problems in correlating two structures with closely spaced modes is presented.
The cross orthogonality check is used as correlation measure which often results in unreasonable diagonal and off-diagonal
terms when dealing with closely spaced modes. In the paper it is suggested that the closely spaced modes are rotated by doing
a linear combination, which is based on projecting the subset of finite element modes onto the given experimental modes.
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The theory is validated using a numerical model of a shell structure, with focus on describing the error that’s being introduced
by rotating the mode shapes. The results show that the method can prove a valuable tool in achieving a certain correlation
measure, but that the error introduced is highly dependent on the distance in frequency between the closely spaced modes.
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Chapter 35
Modeling of an Instrumented Building Subjected
to Different Ground Motions

Amaia Martinez and Carlos E. Ventura

Abstract The purpose of this paper is to compare the recorded response of an instrumented building in San Jose, California,
with the response obtained from a finite element model of the building. Three ground motions from past earthquakes, one
with significantly higher-amplitude than the other two, are used for the study. A detailed model of the building is created and
calibrated using one of the lower-amplitude motions. It was demonstrated that the model closely simulates the building
response under the other low-amplitude motion, while the results obtained using the larger motion did not match well
with the recorded motions. For the higher-amplitude shaking, the building was more flexible as its fundamental period
increased because of rocking effects. Hence, the model has to be updated by including soil-structure interaction effects using
more flexible translational springs and adding vertical springs; resulting in a good match between measured and computed
motions. As part of the study, the variation of the dynamic characteristics of the building obtained from a modal analysis
of the recorded motions was investigated too. It can be concluded that a calibrated model based on only low level recorded
motions may not be suitable to a higher level ground shaking.

Keywords Model updating • Soil-structure interaction • System identification • Instrumentation • Model calibration

35.1 Introduction

Recorded motions of instrumented buildings in seismic zones such a California help engineers understanding their true
behavior during earthquakes. The data recorded in several points of a building can be a useful source for calibrating its finite
element models.

The purpose of this study is to investigate the dynamic response of a permanently instrumented ten-story commercial
building in San Jose, California. The building was instrumented by the California Division of Mines and Geology – Strong
Motion Instrumentation Program (CSMIP) in order to obtain strong motion and building response data during several events
of significant ground motion episodes. On April 24th 1984, March 31st 1986 and 17th October 1989 the instruments installed
in several locations of the building recorded valuable data during 1984 Morgan Hill, 1986 Mount Lewis and 1989 Loma Prieta
earthquakes. The recorded motions have been used to calibrate and update a computer finite element model of the structure.

This study comprises the following parts: investigation of the building’s structural system, modal identification using the
strong motion data collected at the building, calibration and updating of a computer model of the building, and comparison
of the response of the building model subjected to the three different ground motions.

This paper summarizes the important results obtained from this study.

35.2 Description of the Building and Instrumentation

35.2.1 Description of the Building

The ten-story Great Western Saving building was built in 1964 and is located in San Jose, California. Its dimensions are 82 ft
by 190 ft for its rectangular base (equal to typical floor dimensions) and 102 ft for the elevation. Story heights are typically
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Fig. 35.1 Ten story instrumented
Great Western Saving building in
San Jose, California (Adapted
from CESMD)

Table 35.1 Sensor number,
location in the building and
recorded direction of each
accelerometer

Location
Sensor number Floor Position Measured direction

1 Basement South West Vertical
2 Basement South East Vertical
3 Roof South Center Transversal (EW)
4 Roof North Center Transversal (EW)
5 Roof South Center Longitudinal (SN)
6 Fifth Floor South Center Transversal (EW)
7 Fifth Floor In the middle Transversal (EW)
8 Fifth Floor North Center Transversal (EW)
9 Fifth Floor South Center Longitudinal (SN)
10 Second Floor South Center Longitudinal (SN)
11 Basement South Center Transversal (EW)
12 Basement North Center Longitudinal (SN)
13 Basement South Center Longitudinal (SN)

12 ft, except from the ground floor and underground floor, which are 16 ft and 17 ft high respectively. The building is settled
on a 900 � 1940 � 50 reinforced concrete spread footing. The geology of the site is mainly alluvium, but parameters of the soil
profile were not available for this study.

The lateral force resisting systems of the structure consists of moment frames in the longitudinal direction (NS-direction)
and two concrete shear walls in the transversal direction (EW-direction). The building includes two elevator cores in the
middle of the base plan, stairs joined to the shear-walls in both sides and two interior openings. An exterior view of the
building is presented in Fig. 35.1.

35.2.2 Instrumentation of the Building

The structure has 13 permanent force-balanced accelerometers which record accelerations at different locations of the
building in different directions (vertical, longitudinal (SN) and transversal (EW)). Table 35.1 and Fig. 35.2 show the location
of each sensor and the direction of the recorded data.
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Fig. 35.2 Schematic map of instrumentation of the building (Adapted from CESMD)

35.3 Modeling of the Building and Its Calibration

35.3.1 Finite Element Model Description

The design drawings of the building were used to develop a finite element model of the building using ETABS 2013 software.
A linear elastic model of the structure supported by a flexible base was created. The base was designed as a series of springs of
finite stiffness. The foundation springs were modeled using the soil and foundation information available using the parameters
obtained form [1,2]. The model includes structural, as well as, non-structural elements. Gravity frames, lateral load resisting
frames, shear walls, interior core walls, openings and stairs were modeled too. A three dimensional view of the ETABS
model is shown in Fig. 35.3.

35.3.2 Input Motions

The recorded motions for all the sensors during Morgan Hill, Mount Lewis and Loma Prieta earthquakes were obtained from
CESMD (Center for Engineering Strong-Motion Data). Free field data in the vicinity of the building for the same ground
motions was not available. Consequently, the mean of the channels of the basement for each direction is calculated and used
as input ground motion for the model. In case of a model with fix-based conditions the assumption of using the mean of these
recorded motions at the basement of the building as inputs is justifiable. Nonetheless, soil-structure interaction was included
in the model by adding translational springs to the foundation. The time history accelerations recorded at the basement are
applied to the bases of these springs. Hence, the accelerations recorded at the channels of the basement of the model are
different to the real recorded motions. The initial input error is computed for each of the earthquakes in longitudinal and
transversal directions by comparing the recorded data to the obtained analytical data at the basement channels. In Fig. 35.4
the orbital horizontal acceleration of the real recorded data at the top of the foundation is compared to the orbital horizontal
acceleration of the model at the same location for each of the earthquakes.

As it can be seen in this figure, the maximum input error recorded was 8 % for Mount Lewis earthquake in the longitudinal
direction. Although for most of the cases the error is not that high, a future analysis should be performed to ensure that these
initial errors are inside of the assumable error range.
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Fig. 35.3 3D view of the
ETABS model of the building

Fig. 35.4 Orbital plots of horizontal input acceleration for Morgan Hill, Mount Lewis and Loma Prieta earthquakes

Fig. 35.5 Spectral density in frequency domain for Morgan Hill, Mount Lewis and Loma Prieta earthquakes

35.3.3 Modal Identification

A modal analysis of the recorded motions for the three earthquakes was investigated using ARTeMIS® computer program.
Figure 35.5 shows the obtained spectral densities in frequency domain for each of the ground motions. The frequencies for
the first mode (longitudinal) and second mode (transversal) of the building were found (see Figs. 35.5 and 35.6).

The first natural frequency (longitudinal mode shape) for all the analyzed earthquakes was around 1 Hz. However, the
second natural frequency, which represents the first transversal mode, for Loma Prieta earthquake was lower than for Morgan
Hill and Mount Lewis. In other words, the natural period of the building is increased when higher intensity ground motion is
applied. The results of this modal analysis were showing that the dynamic characteristics of the building were changed for
the three ground motions, especially for Loma Prieta.
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Fig. 35.6 Transversal and Longitudinal mode shapes of the building using Artemis

35.3.4 Calibration of the Model

The first calibration of the model was performed using Morgan Hill record. Structural properties and masses were modified
manually until a “best match” between experimental and analytical results was obtained. The first and second natural
frequencies, 1.06 and 1.66 Hz, for this calibrated ETABS model were similar to the ones obtained with Artemis. In addition,
time history analysis results for acceleration, velocity and relative displacement were compared to the real recorded motions
in all of the channels for this earthquake. The calibration of the model was considered acceptable once a good correlation
coefficient between the experimental and analytical results was obtained (see time history results in Sect. 35.4.3, Fig. 35.9).

35.4 Model Validation and Discussion of the Results

35.4.1 Comparison Between the Ground Motions

A comparison between the three earthquakes used for this study is shown in order to see the differences among them. The
peak recorded accelerations at the basement of the building were 59.7 cm/sec2 for Morgan Hill, 33.7 cm/sec2 for Mount
Lewis and 97.32 cm/sec2 for Loma Prieta. The spectral acceleration with 5 % damping was also obtained and plotted for
the three ground motions. Figure 35.7 shows that the spectral acceleration for Loma Prieta in the period range of the first
modes of the building (around 0.74 and 1 s) is significantly higher than for the other two earthquakes. As an example, for the
transversal first modal period of the building (0.74 s), the spectral acceleration (Sa) for Loma Prieta is Sa D 360.22 cm/sec2,
followed by Morgan Hill Sa D 197.55 cm/s and finally by Mount Lewis Sa D 133.95 cm/s. Consequently, the demands in the
building are considerably higher for the higher intensity earthquake than for the lower ones.

35.4.2 Model Validation

In order to validate the model, time history analysis for Mount Lewis and Loma Prieta, which present a lower and higher
shaking than Morgan Hill respectively, were performed using the calibrated model. The same procedure used for Morgan
Hill earthquake was followed. Accelerations, velocities and relative displacements of all the channels were compared to the
recorded ones during Mount Lewis and Loma Prieta earthquake. Whereas the model was performing well for Mount Lewis
(see time history results in Sect. 35.4.3, Fig. 35.10), the response of the model was not as good as expected for Loma Prieta.
The results obtained for this last earthquake were not matching the experimental ones as desired.

The first and second natural frequencies, 1.06 and 1.66 Hz, for the first calibrated ETABS model were compared to the
ones obtained through ARTEMIS modal analysis as shown in Fig. 35.5 and Table 35.2. While the first natural frequency
completely matches for all the cases, the second natural frequency for Loma Prieta (1.22 Hz) is quite far from the one
obtained from the model (1.66 Hz). Therefore, a new calibrated model was designed to capture better the response of the
building under Loma Prieta earthquake.
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Fig. 35.7 Acceleration Spectra
with 5 % damping for Morgan
Hill, Mount Lewis and Loma
Prieta earthquakes

Table 35.2 Longitudinal and
transversal natural frequencies of
the building for the modal
analysis performed with
ARTEMIS and for the finite
element calibrated and updated
models

Natural frequencies
from Artemis

Natural frequencies from
ETABS – first model

Natural frequencies from
ETABS – updated model

Earthquake 1st long. fn 1st trans. fn 1st long. fn 1st trans. fn 1st long. fn 1st trans. fn

Morgan Hill 1.025 1.66 1.06 1.66 1.07 1.28
Mount Lewis 1.074 1.56
Loma Prieta 0.95 1.22

Fig. 35.8 Schematic model of a
simplified soil-structure
interaction system [7]

None of the structural properties were changed in this new model except of the stiffness of the area spring. The transversal
stiffness was reduced from 0.1 to 0.02 k/in/in. and vertical springs were added in order to allow the building to rock. These
updates made the model to perform more flexible increasing the natural period of the building in the transversal direction.
The modal analysis of this new model showed that the frequency for the first longitudinal mode shape was 1.07 Hz and for the
first transversal mode shape 1.28 Hz, matching quite well the natural frequencies obtained from Artemis modal analysis for
Loma Prieta. Table 35.2 compares the natural frequencies obtained with Artemis to the ones obtained for the finite element
calibrated models.

In addition, time history analysis for this last higher intensity ground motion was performed using the new updated
model, for which good match between the recorded motions and analytical results was obtained (see time history results in
Sect. 35.4.3, Fig. 35.11).

The following simplified SDOF example (Fig. 35.8) helps to understand the increase on the period of the building due to
soil-structure interaction. When lower stiffness are applied to the design of the spring foundation, the structure moves more
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horizontally and rocks. The natural period increases with following formulation; where eT is the natural period of the system,
k the stiffness of the structure, kx the translational stiffness, kyy the rotational stiffness and m the mass of the structure.

eT 2 D .2	/2m



1

k
C 1

kx
C h2

kyy

�
(35.1)

Consequently, the importance of the proper design of the soil structure interaction in the model is fundamental to characterize
the real response of the building. It also has to be noted that the intensity of shaking affects the soil-structure interaction,
becoming softer and more important for stronger shaking (Loma Prieta case) than for lower shaking (Mount Lewis and
Morgan Hill cases).

35.4.3 Time History Analysis Results

The first calibrated model was used to perform a time history analysis of the structure for Morgan Hill and Mount Lewis
earthquakes, while the second updated model was used for the Loma Prieta earthquake. The input motions were the mean of
the recorded accelerations at the base of the structure in each direction (as explained in Sect. 35.2). The comparison between
the absolute acceleration, velocity and relative displacement time histories for the recorded motions and the analytical
motions resulted in a good match for all the channels. The models captured the peaks, frequencies and values of the time
histories quite accurately. The correlation coefficient (C.C.) between the experimental and analytical data was also calculated.
The average of the C.C. values is 85 % with a minimum of 73 %, which indicates a good correlation for practical purpose.

The relative displacements were obtained by subtracting the displacement at the basement to the total displacement of
each channel. Therefore, the relative displacements account for the displacements due to the rocking and bending of the
structure.

Figures 35.9, 35.10 and 35.11 show the comparison of the time histories of acceleration, velocity and relative displacement
for two channels at the roof of the building, channel 5 (longitudinal) and 4 (transversal).

Fig. 35.9 Recorded and analytical acceleration, velocity and relative displacement time histories at Channels 5 and 4 for Morgan Hill earthquake
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Fig. 35.10 Recorded and analytical acceleration, velocity and relative displacement time histories at Channels 5 and 4 for Mount Lewis earthquake

Fig. 35.11 Recorded and analytical acceleration, velocity and relative displacement time histories at Channels 5 and 4 for Loma Prieta earthquake
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35.5 Conclusion

The strong-motion records of a ten story commercial building in San Jose, California, obtained during the 1984 Morgan Hill
earthquake were used to calibrate a computer model of the building. The recorded motions at the basement of the building
were used as input motions at the base of the springs. Suitability of this assumption will need to be analyzed in further
studies. The same model was subjected to 1986 Mount Lewis earthquake with a good match between the measured data and
analytical results. Nevertheless, the results did not match as good as expected for Loma Prieta earthquake, which presents a
significant stronger shaking than the other two.

The results from a modal identification were used to demonstrate the importance of soil-structure interaction in this
building. The fundamental period in the transversal direction of the structure increased for Loma Prieta earthquake due to
the rocking effects.

Softer translational stiffness and vertical springs were added to base area spring of the finite element model in order to
capture the transversal response of the building better. For the updated model, the time history results matched the recorded
measured during the Loma Prieta earthquake at different locations of the building. This study proves that the effects of
soil-structure interaction becomes more important when the building is subjected to the higher intensity ground motion.

In conclusion, a calibrated model based on low level recorded motions may not be suitable to predict the response of
certain types of buildings to a higher level of ground shaking. In some cases, soil-structure interaction effects become more
important and they cannot be neglected. Modeling a building without considering these effects may not be enough to capture
properly the behavior of the building under different ground motions.
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Chapter 36
Calibration and Cross-Validation of a Car Component Model
Using Repeated Testing

Karl-Johan Larsson, Snævar Leó Grétarsson, Majid K. Vakilzadeh, and Thomas Abrahamsson

Abstract Repeated testing has been made both in the sense of testing multiple test pieces of the same type and in the sense of
repeated tests on the same test piece by 13 testers at different occasions. Between the individual tests, the test subject has been
dismounted from the test stand and the sensors have been re-calibrated. Statistical evaluation of these tests gives information
about the spread that can be expected in modal tests. The SIMO test data and data statistics are used for traditional validation
and cross-validation of a finite element model of the car component under test. Planning of the sensor layout has been made
prior to testing with the use of the nominal finite element model. A model calibration is made prior to the model validation.
The finite element model size is over 20,000 degrees-of-freedom and involves two calibration parameters. The work has been
made as part of a structural dynamics model validation Master’s course. An open-source Matlab application has been used
for calibration, validation and cross-validation.

Keywords FEM calibration • FEM cross validation • Repeated testing • Monte Carlo cross validation • Vibration testing

36.1 Introduction

Finite Element (FE) modelling is commonly used in industry to simulate and evaluate component and product behaviour
with respect to different load cases. Compared to prototype testing, FE analysis and simulation quickly becomes an effective
tool when evaluating the effects of changes in material parameters, geometry and varying load cases. However, real world
products will always exhibit a spread in properties. This spread stems from a variety of sources, such as material variation,
production process variability and imperfections in the assembly of components. To create FE models that account for these
differences requires data of the about the spread, in terms of characteristic properties of the population. Modal analysis can
be used to quantify the spread in dynamical properties [1], which are the properties of interest in this paper. When data
about the spread has been gathered from experiments, a sufficiently detailed FE model can be calibrated to reproduce the
observed behaviour with acceptable accuracy. Here sufficiently detailed depends greatly on the physical properties affecting
the behaviour observed during experiment. Unfortunately, the process of gathering data from experiment might also be
subject to variability.

The background to this paper is a Masters course; Structural Dynamics Model Validation, given at the department of
Applied Mechanics, Chalmers, where 13 students have performed vibrational experiments, in order to gather data to be used
in the calibration of a FE model of the tested product; the windscreen of a popular car model that is being produced today.

36.2 The Windscreens and Nominal FE Model

Three windscreens for a common car model that is mass produced today (2014) was obtained from the car manufacturer,
together with a FE model with nominal values set for the parameters. The windscreen consists of one inner and one outer
glass layer with a thinner layer of PVB polymeric material between the glass layers, see Fig. 36.1a. The windscreens also
have plastic components for attaching a rear-view mirror and other equipment glued to the inner side. These components
are also present in the FE model. The FE model is a Nastran model with 23,136 degrees of freedom. The windscreens are
modelled with plate elements (QUAD4), with assigned isotropic laminate properties (PCOMP). The plastic components are
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Fig. 36.1 Laminate layup and FE-mode. (a) Section cut of the windscreen showing the thickness properties. (b) Isometric view of the provided
FE model. The black marks are FE nodes corresponding to sensor placements during testing

modelled with solid tetrahedral elements (CTETRA) and connected to the windscreen trough rigid elements. The rubber
seals are added as concentrated masses on grid points (CONM2). A pretest sensor placement planning was made, to a 20
sensor layout, using the method of effective independence for sensor placement [2], using the nominal FE model.

36.3 Vibration Testing Procedure

Test were performed on three seemingly identical windscreens numbered I, II and III. The vibration tests were performed
by the 13 students participating in the course. Between tests, the test subject was dismounted from the test stand and all
sensors were removed and re-calibrated. Since every student had to place their sensors at marked, predefined locations, a
small variation of the sensor positions between tests is expected. Each student hung their assigned windscreen in two thin and
very elastic light-weight cords, connected to clips glued to the windscreen (see insert in Fig. 36.2), which gave close to a free-
free boundary condition. Light-weight accelerometers of IEPE (Integrated Electronics Piezo Electric) type were used (PCB
352C55, 0.5 gramme) and placed at the 20 defined locations, see Fig. 36.2, using synthetic bees wax. The mass added by the
test equipments was neglected in the FE modelling. The shaker was located at the opposite side of an accelerometer at the
lower left corner of the windscreen, see Fig. 36.2. The shaker connects to the windscreen through a force transducer (Brüel
& Kjær type 8,203 with an Brüel & Kjær charge-to-IEPE unit). A force transducer/accelerometer pair with accelerometer 19
was used to obtain a close approximation to the direct accelerance. The input signal to the shaker was a constant amplitude
stepped sine ranging from 15 to 300 Hz. The data collected during the experiment are the 20 Frequency Response Functions
(FRFs) of the 20 accelerometers (accelerometer output/force input) in the single-input configuration.

36.3.1 Inspection of Test Data

The data gathered from all tests were inspected. In Fig. 36.3 typical results from measurements on windscreen I are shown,
where a total of six tests were performed. The data from test number three (I.T3) deviated from the others in the high
frequency range which is demonstrated by the peak response at around 280 Hz for accelerometers 1, 12 and 18. The data
from this test were considered as outliers and were omitted. For comparison between windscreens I, II and III, the FRF from
accelerometer 20 are also plotted for all tests in Figs. 36.3, 36.4, and 36.5. Two test were performed on windscreen II and
typical results are seen in Fig. 36.4. Since only two test were performed, a general behaviour is hard to determine. However,
the two data sets exhibit similar behaviour over the frequency range in the test and both were kept for comparison. For
windscreen III one test shows a dissimilar behaviour in the higher frequency range for multiple accelerometers, see Fig. 36.5
(III.T2) and the data from this were also considered as being outliers and were omitted from the study. All other test data
were used in the procedure presented.
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Fig. 36.2 The test setup. Locations of all 20 accelerometers are shown. Shaker location is seen at bottom left behind accelerometer 19. Insert of
top right show chord attachment

36.3.2 System Identification from Test Data

To obtain modal properties from test data, system identifications were performed in Matlab using the System Identification
toolbox to obtain state space models of the tested windscreens. A linear identification method, N4SID, based on a state space
subspace method, further explained by McKelvey et al. in [3] and Van Overschee and De Moor in [4], was used. The system
identifications were made using the same system identification parameter setting, resulting in state space models of the same
order for all windscreens in all tests.

36.4 Calibration and Validation Procedure

The 15 FRFs from every state space model that best approximates the measured FRFs from the test are used as reference
to represent the windscreen during the calibration procedure. One exception from this rule is that the direct accelerance is
always included in this set of the 15 of the reference. This leaves five measured FRFs outside the calibration procedure,
and they are used for a hold-out validation after the calibration. The calibration procedure makes use of FRF damping
Equalization and is described in detail in the paper by Abrahamsson and Kammer [5]. In short the Levenberg-Marquardt
method is used to minimize the deviation metric Q as

Q.p/ D ıH.p/ı.p/
N

(36.1)

in which the deviation vector ı.p/ that depend on the model parameter set p is defined as

ı.p/ D log10 vect.HA.p// � log10 vect.HX/ (36.2)
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Fig. 36.3 Typical measured FRFs from six measurements on windscreen I. u1 denotes force input, sXX denotes accelerometer number XX of the
SIMO test and Ti denotes the ith test

where superscripts A and X denote transfer functions, H, from analytical (FE) model and experimental (state space model
identified from test data) respectively. The vectorizing operation vect makes all FRF elements of the ny�nu transfer function,
at all nf discrete frequencies used for evaluation, into a nynunf � 1 column vector. The number of data points N is thus

N D nynunf (36.3)

A gradient based minimization procedure is applied to find the minimum of the deviation metric. Since it is no guarantee
that it will converge to the global minimum when starting from the nominal parameter set, the likelihood of reaching a
global minimum is increased by applying random starts for the minimizer. In this, a Latin Hypercube sampling is used to
generate 100 random realizations of the parameters to evaluate the metric. In the Latin Hyper cube sampling, the parameters
are assigned a uniform probability distribution ranging between ˙20 % of the nominal value. The random parameter sets
resulting in the five lowest values of the metric were also used as starting points for the minimizer. All calibration procedures
were performed in Matlab using an open-source Matlab app, FEMcali.1

1This app can be downloaded from: http://www.mathworks.se/matlabcentral/fileexchange/44317-femcali.

http://www.mathworks.se/matlabcentral/fileexchange/44317-femcali
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Fig. 36.4 Typical measured FRFs from two measurements on windscreen II
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Fig. 36.5 Typical measured FRFs from six measurements on windscreen III
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Fig. 36.6 The inverse of the Fisher Information Matrix calculated during pre calibration at nominal parameter settings. Upper diagonal is only
shown due to symmetry. (a) The inverse FIM calculated for the initial parameter set. (b) The inverse FIM after omitting P3 and P4. Note significant
drop of order

36.4.1 Parametrization of the FE Model

The parameter set used in the calibration is: p D fEglass; �glassg, with nominal valuesE0 D 7 [GPa] and �0 D 2; 500 [kg/m3].
A pre calibration investigation of an initial set including the Youngs modulus and density of the PVB polymer, EPVB D
1 [GPa], �PVB D 1; 100 [kg/m3] and nominal thicknesses of the different lamina layers, see Fig. 36.1a, was made. Both EPVB

and �PVB are small compared to the corresponding properties of the glass. This in combination with the small thickness of
the PVB layer (0.76 out of a total thickness of 5.46 mm) makes the identifiability of these parameters poor, as confirmed
by the inverse Fisher Information Matrix (FIM), see Fig. 36.6a (parameters P3 and P4). Omitting these and looking at
remaining parameters in the FIM, shows that the thickness parameters for the inner and outer layer of the glass also show
poor identifiability, see Fig. 36.6b (parameters P5 and P7). As a final stage the thickness of the PVB polymer layer (P5 in FIM
figures) was omitted from the parameter set. This was done because changes to the thickness of the PVB layer significantly
impacts the bending stiffness of the windscreen as do the Youngs modulus of the glass. The influence on mass caused by
this parameter can easily be compensated for by changing the density of the glass. Thus keeping the PVB thickness for the
calibration procedure causes an unwanted behaviour since it enables large variations of parameters for small changes of the
metric, Q.

36.4.2 Validation of Calibrated Model

Two types of validation is used. First, classic validation (sometimes called a hold-out validation) where the calibrated model
output is compared to the five FRFs from test data that were not used during calibration. This results in a percentage
representing the decrease (or increase if the calibration was unsuccessful) in the deviation metric for the calibrated model,
compared to the deviation of the model using the nominal parameters. Secondly, a Monte Carlo cross-validation (MCCV) is
used, with 20 starts from the calibrated parameter set and a validation fraction of 50 % of the total amount of data. During
MCCV, the validation fraction of test data is randomly removed during every start, and the calibration procedure starts
from the calibrated setting and calibrates against the remaining set of data. By this procedure the validity of the calibrated
parameters can be investigated. If the MCCV mean values of calibration parameters is close to the calibrated parameter
setting, confidence about the accuracy of the calibrated parameters can be gained. However, if the MCCV parameter statistics
does not point to the calibrated parameter set, it is likely that noise and uncertainties in the measurements have resulted in a
parameter setting that can not be trusted to be precise estimates.

36.5 Measured Eigenfrequencies

From the identified state space models the mean of measured eigenfrequencies have been calculated. The mean and
coefficient of variation (C.o.V.) of the tests for each windscreen, along with the overall mean and range between highest and
lowest measured eigenfrequency, are shown in Table 36.1. Table 36.1 shows that the spread in measured eigenfrequencies
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Table 36.1 Eigenfrequency
statistics of the first 20 modes, for
all tests on the three windscreens

Windscreen I Windscreen II Windscreen III All windscreens

Mode � [Hz] C.o.V�102 � [Hz] C.o.V�102 �[Hz] C.o.V�102 �All [Hz] Range[Hz]

1 16:61 0.30 16:62 0.13 16:53 0.18 16:58 0.14

2 17:77 0.09 17:70 0.07 17:84 0.03 17:78 0.16

3 39:44 0.06 39:51 0.03 39:86 0.19 39:60 0.56

4 45:33 0.10 45:35 0.03 45:28 0.13 45:32 0.15

5 72:54 0.11 73:09 0.10 73:08 0.20 72:84 0.85

6 74:78 0.09 74:57 0.10 75:46 0.22 74:99 1.18

7 93:24 0.11 93:96 0.14 94:34 0.28 93:77 1.61

8 109:74 0.09 110:51 0.11 109:62 0.18 109:84 1.12

9 133:38 0.12 132:76 0.10 134:95 0.26 133:84 2.79

10 145:64 0.10 145:94 0.09 145:58 0.18 145:67 0.65

11 173:23 0.12 173:90 0.13 173:78 0.25 173:55 1.44

12 184:88 0.12 186:40 0.11 184:86 0.21 185:15 2.00

13 200:25 0.02 203:94 0.06 199:55 0.06 200:67 4.65

14 212:06 0.05 214:32 0.03 209:25 0.05 211:45 5.22

15 215:64 0.12 214:60 0.09 217:96 0.25 216:29 4.26

16 221:66 0.01 223:50 0.03 221:73 0.03 222:02 1.91

17 231:31 0.13 233:18 0.00 231:02 0.10 231:55 2.31

18 248:33 0.08 249:71 0.04 246:91 0.12 248:06 3.10

19 263:76 0.07 265:51 0.05 263:56 0.09 264:00 2.33

20 264:13 0.06 267:77 0.03 264:25 0.08 264:84 3.93

Here � denotes the mean, C.o.V denotes coefficient of variance and Range is the total range of the
identified eigenfrequencies for all windscreens

is very small, in particular for the lowest five modes. Moving up in the frequency range we see that the range between the
highest and the lowest measured frequency becomes larger. The range is especially large for the last three modes. The C.o.V
is consistently low.

36.6 Calibration and Validation Results

Calibration results for all tests on all windscreens are shown in Table 36.2 along with the results of the Monte Carlo cross
validation. Looking at Table 36.2 we see a good agreement between most of the calibrated parameters and their mean values.
The calibrated stiffness and mass parameters from test 2 on windscreen I were significantly lower than the other results. In
fact it is the only one that results in a calibrated value for Eglass that is lower than the nominal value. This result is supported
by the cross validation results for the test as well. Although test 2 for windscreen I could not be considered as an significant
outlier before calibration, the calibrated parameters clearly are. A further inspection of the FRFs of test 2 on windscreen
I reveals an overall offset to larger response. The reason for this is yet unknown. Omitting the parameters of test 2 for
windscreen I gives the quotient to the calibrated to nominal parameters as

P
�
E D 1:0447; P

�
� D 1:0840

which, gives us the mean of calibrated parameters as

Ecalibrated D 7:3126 ŒGPa�; �calibrated D 2; 710 Œkg=m3�

Table 36.3 shows the validation results for the tests in Table 36.2. The calibration and validation metric reduction quantifies
the decrease of the deviation metric when evaluated before and after calibration. Monte Carlo metric is the mean and C.o.V
of the deviation criterion Q at the calibrated setting after the 20 Monte Carlo evaluations. The smaller values for both
Calibration and Validation metric reduction seen for windscreen III tests reveals that the FE model at nominal parameter
settings most closely resembles windscreen III. However, the MCCV mean value for the deviation metric shows that the FE
model becomes calibrated to better resemble the measurements of windscreens I and II as well.
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Table 36.2 Calibration results
for all tests on all windscreens

Cross validation Cross validation

Test P �

E �P�

E
C:o:V P�

E
� 102 P�� �P��

C:o:V P��

� 102

I.T1 1:0463 1:0316 0:7560 1:0932 1:0758 0:8190

I.T2 0:9799 0:9654 0:5330 1:0153 0:9962 0:5640

I.T3 1:0526 1:0386 0:5030 1:0968 1:0793 0:5460

I.T4 1:0550 1:0558 0:6660 1:1023 1:1014 0:7780

I.T5 1:0380 1:0175 0:4540 1:0862 1:0636 0:5010

II.T1 1:0437 1:0469 0:6060 1:0826 1:0840 0:6730

II.T2 1:0619 1:0711 0:7240 1:1050 1:1149 0:7900

III.T1 1:0380 1:0387 0:5150 1:0728 1:0739 0:5350

III.T2 1:0403 1:0483 1:0220 1:0744 1:0838 1:0600

III.T3 1:0329 1:0395 0:7360 1:0577 1:0649 0:8070

III.T4 1:0379 1:0420 0:5240 1:0691 1:0736 0:5690

Mean: 1:0388 1:0778

P �

E and P�� are the calibrated parameters divided by the nominal parameters,
P �

E D Ecalibrated=E0 and P �

� D �calibrated=�0

Table 36.3 Validation results for
all tests on all windscreens

Calibration metric Validation metric Monte Carlo metric

Test nominal reduction [%] reduction [%] Mean C.o.V�102
I.T1 0:4662 25:0846 8:9180 0:3729 1:3050

I.T2 0:4396 22:3054 7:1732 0:3715 2:0600

I.T3 0:4357 24:4811 10:0028 0:3594 1:6890

I.T4 0:4254 25:1620 11:3020 0:3494 1:7400

I.T5 0:4868 26:1638 11:3020 0:3860 1:5800

II.T1 0:4314 17:7980 5:9857 0:3671 1:3730

II.T2 0:4874 24:9819 9:6275 0:3943 2:1850

III.T1 0:3897 19:6693 2:2119 0:3254 1:6500

III.T2 0:3422 16:8200 �0:6030 0:2920 1:7950

III.T3 0:3715 15:3728 0:1368 0:3247 1:9750

III.T4 0:3603 19:1389 2:3348 0:3014 2:0940

36.7 Evaluation of Calibrated Model

The eigenfrequencies of the nominal and calibrated FE model in relation to the mean eigenfrequencies of all windscreens as
presented in Sect. 36.5, Table 36.1 is compared. Further, the correlation between mode shapes of the calibrated FE model and
the windscreens is quantified by the Modal Assurance Criterion (MAC), followed by a comparison of frequency response
functions of the nominal and calibrated FE model and the mean response of all tests.

36.7.1 Comparison of Eigenfrequencies

Table 36.4 shows the eigenfrequencies of the first 20 modes for the nominal FE model, the calibrated FE model and mean
values of the measure eigenfrequencies. It shows that all eigenfrequencies have been lowered for the calibrated model, and
14 eigenfrequencies out of the first 20 are more accurately predicted after the calibration.

36.7.2 MAC Correlation

From the test data, a single state space model for each windscreen was created by evaluating the average FRFs from
each windscreen and performing system identification. This enables calculating modal data from a mean model of each
windscreen. MAC correlation between the calibrated FE model and windscreens I, II and III can be seen in Fig. 36.7a, b,
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Table 36.4 Comparison
between the eigenfrequencies of
the FE model with the mean
calibration parameters and the
mean eigenfrequencies of the test
data, subscripts nom and cal
denote nominal and calibrated
parameters, [Hz]

Mode 1 2 3 4 5 6 7 8 9 10

FEnom 17:12 18:78 40:12 45:51 72:73 75:65 94:81 110:42 138:45 146:49

FEcal 16:86 17:90 39:54 44:92 71:66 74:49 93:39 108:78 136:36 144:33

Test,�All 16:58 17:78 39:60 45:32 72:84 74:99 93:77 109:84 133:84 145:67

Mode 11 12 13 14 15 16 17 18 19 20

FEnom 176:47 188:98 206:77 209:23 222:60 230:56 236:73 255:35 258:37 275:92

FEcal 173:89 186:12 203:78 206:08 219:20 227:14 233:21 251:65 254:39 271:85

Test,�All 173:55 185:15 200:67 211:45 216:29 222:02 231:55 248:06 264:00 264:84

c respectively. The MAC correlation between the different windscreens are shown in Fig. 36.7d–f. The mode shapes of the
calibrated FE- model match the test data very well for 15 modes for all three windscreens. However, only the first 12 of the 15
are found on the main diagonal of the frequency ordered MAC matrix. Figure 36.7e shows very strong correlation between
test data of windscreens I and III for all modes but the highest frequency mode. The MAC correlations between windscreens
I and II as well as II and III are also strong, although modes 19 and 20 seem to be shifted between the two windscreens.

36.7.3 Frequency Response Functions FE Model Before and After Calibration

State space models of the calibrated and nominal FE models were assigned the mean modal damping, calculated from the
modal damping of all test data. FRFs from accelerometer positions 1 and 12 represents typical results. The behaviour in the
frequency range 15–150 Hz can be seen in Fig. 36.8 and the responses in the range of 150–300 Hz in Fig. 36.8.

Figure 36.8 shows that the FRFs of the calibrated model is better aligned with the mean value for measured FRFs up to
100 Hz. Between 100 and 150 Hz no significant improvement have been obtained. In Fig. 36.9 the FRFs are shown for the
higher frequency range. Between 150 and 180 Hz, the calibrated model have moved towards the mean value. From 180 Hz
and upwards the range of measured eigenfrequencies in tests, as listed in Table 36.1, increases and the mean value gives no
clear trend. Thus, the fit improvement of the of the calibrated model in this area is not obviously significant.

36.8 Conclusions and Discussion

Tests were made on three car windscreens. A post-test screening was made on test data. Inspection of test data showed
two outliers that were omitted prior to calibration. The modal results, having omitted these outliers, showed little spread
in measured eigenfrequencies, both between different tests and different test pieces, although the variance increased in the
higher frequency spectrum.

The calibration process successfully reduced the deviation metric for all tests and statistics gave the mean for Q between
0.3 and 0.4 for all of them. All calibrations, except for one, converged to stiffness and mass parameter settings higher
than nominal. The exception was omitted when creating the mean calibrated parameters, and mean state space models of
windscreens. Comparison of eigenfrequencies before and after calibration with the mean test data showed improvement for
14 of the first 20 modes. The MAC calculated for the mean models show very good mode shape correlation between the three
windscreens, and all correlate very well with the first 12 modes of the calibrated FE model. It can be concluded that repeated
testing allowed for identification of outliers that would not have been detected in a single test. After calibration another set
of test data led to deviations in the calibrated parameters. This deviation was also supported by the statistics from the Monte
Carlo cross-validation, which shows that the test data has an overall deviation. The remainder of the parameter sets from
windscreen I clearly marks these parameters as outliers, and they could be excluded when establishing the mean calibrated
parameters for all windscreens.

The results show that the calibrated FE model predicts the behavior of the windscreens well, especially in the lower half
of the tested frequency range, i.e. up to 150 Hz.

Acknowledgements We acknowledge the Volvo Car Corporation for donating the windscreens needed for testing.



348 K.-J. Larsson et al.

Fig. 36.7 MAC plots showing the correlations between calibrated FE model and mean test data for all three windscreens as well as correlation
between test data of different windscreens. (a), (b) and (c) show correlation between calibrated FE model and mean test data from windscreens I,
II and III respectively, (d) shows correlation between mean test data of I and II, (e) between I and III and (f) between II and III
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Fig. 36.8 Representative FRFs of nominal and calibrated FE Models, and the mean of FRFs measured in tests, from 15 to 150 Hz
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Fig. 36.9 Representative FRFs of nominal and calibrated FE Models, and the mean of FRFs measured in tests, from 150 to 300 Hz
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Chapter 37
Structural Dynamics Model Calibration and Validation
of a Rectangular Steel Plate Structure

Hasan G. Pasha, Karan Kohli, Randall J. Allemang, Allyn W. Phillips, and David L. Brown

Abstract To characterize the dynamics of a structure accurately and to minimize uncertainties, it is important to perform
modal testing in various configurations. However, performing such rigorous testing of structures can be a resource intensive
process. In addition, simulating certain conditions may not be possible in the lab. Developing a calibrated and a validated
model that can predict the dynamic response of a structure accurately can be a key to address this issue. In this paper, a model
calibration and validation case study performed on a rectangular steel plate structure is presented. The geometric and material
properties used in the model were updated to calibrate the model. The accuracy of the calibrated model was confirmed by
performing a validation process involving perturbed mass and constrained boundary condition FE modal analysis and modal
testing. The validation criteria were achieved using the calibrated model and thus proved that the model could reliably predict
the dynamic response of the structure.

Keywords Model verification • Model calibration • Model validation • Modal correlation • Model updating • Perturbed
boundary conditions • Constrained boundary condition testing

Notation

Symbol Description
� Mass per unit area of a plate (kg=m2)

� Density of the material (kg=m3)

� Poisson ratio

b Width of the plate (m)

fij Modal frequency (Hz)

h Thickness of the plate (m)

i Mode index, number of half waves in mode shape along horizontal direction

j Mode index, number of half waves in mode shape along vertical direction

l Length of the plate (m)

D Flexural rigidity (N � m2)

E Young’s modulus (Pa)

CMIF Complex Mode Indicator Function

FEA Finite Element Analysis

MRIT Multi-reference Impact Testing

37.1 Introduction

Testing a structure to determine its dynamic characteristics is both time consuming and expensive. This situation has made it
necessary to develop analytical/mathematical models that can predict the response of system in real time without performing
actual tests. Such models need to undergo verification, calibration and validation with actual test data before they can be
relied upon to extrapolate results for future studies. In this context, verification and validation (V&V) are defined as below:
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Fig. 37.1 Verification,
calibration and validation
processes

Verification: refers to process of determining that a model implementation accurately represents the developer’s conceptual
description of the model and the solution to the model [1]. Frequently, the verification portion of the process answers the
question “Are the model equations correctly implemented?”

Validation: refers to the process of determining the degree to which a model is an accurate representation of the real world
system from the perspective of the intended uses of the model [1]. Frequently, the validation process answers the question
“Are the correct model equations implemented?”

In this paper, a FE model of the plate structure was developed to determine its dynamic characteristics (modal frequencies
and mode shapes). A step by step approach was taken to verify, calibrate and validate the results generated by the model in
different test configurations (Fig. 37.1).
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37.2 Verification

37.2.1 Analytical Modeling and Formulation

Ideally, a plate is considered a two-dimensional layer of elastic material made up of a sheet that lies in a plane. A plate
as a structure possesses bending rigidity due to its thickness and elasticity. As a result, when the plate vibrates, it deforms
primarily by flexing perpendicular to its own plane.

The following assumptions were made while performing the analytical formulation of the rectangular plate structure [9]:

• The plate is composed of homogeneous, linear, elastic, isotropic material
• The plate is flat and has constant thickness
• The plate is thin, with a thickness of less than 1=10 of the minimum lateral plate dimension
• The in-plane load on the plate is zero and it deforms through flexural deformation
• The deformation is small in comparison with the thickness of the plate. There is no deformation at normal to the mid

surface or nodal lines. In addition, the rotary and shear deformations are ignored.
• In the case of free vibration, total transverse deformation is defined as the sum of all modal deformations such that

z D
X

i

X
j

Aij Qzijsin
�
2	 fijtC�ij

�
(37.1)

where Qzij is the mode shape of the mode .i; j/, Aij is the modal amplitude and �ij is the phase. The modal frequency of the

plate is defined as fij D �2ij

2	 l2

q
Eh3

12�.1��2/ , where �ij is a dimensionless parameter, which is generally a function of the mode

indices .i; j/. Flexural rigidity of plate is defined as D D Eh3

12�.1��2/ .

37.2.2 Verification

Verification is the process of comparing different analytical models to be certain that the analysis results are correct [1, 2].
In this case, a FE model is compared to the analytical, closed form results for a rectangular plate. An analytical rectangular
plate model, with aspect ratio of 1:5 was developed, such that the first mode is a torsion mode roughly at 40Hz and the
second mode is a bending mode roughly at 44Hz. Closed form expressions [9] were used to develop an analytical model
(Figs. 37.2 and 37.3).

A comparable rectangular plate FE model was developed using the dimensions and material properties chosen for the
analytical closed form model of the plate. Analytical modal analysis was performed on the plate FE model. The modal
frequencies and mode shapes for the first six deformation modes were retrieved and compared with the analytical model
prediction.

The modes were in the expected sequence and the relative difference in modal frequencies was less than 2%. This verified
the FE model (Table 37.1).

37.3 Calibration

Calibration of a model involves comparing the analytical results to equivalent experimental results. Calibration in this case
involves correlating the modal parameters obtained from an analytical modal analysis of the rectangular plate FE model and
impact testing of the fabricated rectangular plate structure. The details of the various activities performed in the calibration
process are explained in the subsequent sections.
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Fig. 37.2 2-D drawing showing
plate dimensions

Plate Thickness-0.25in

22.50in
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4.f0.25in.(1/4-20)

2.f0.25(1/4-20)

Fig. 37.3 Rectangular plate model. (a) CAD model. (b) Mesh

Table 37.1 Preliminary
verification of the FE
model—modal frequency
comparison

Modal frequency (Hz)

Mode # Description Analytical FE Rel. diff. (%)

1 First torsion 41:55 41:34 0:51

2 First X bending 44:59 43:95 1:46

3 Second torsion 96:3 95:12 1:24

4 First Y bending 103:8 102:99 0:79

5 Second X bending 121 119:16 1:54

6 Anti symmetric X bending 139:3 137:39 1:39
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37.3.1 Analytical Modal Analysis

Analytical modal analysis was performed in ANSYSr Workbench 14:5. The default material model for steel in the ANSYSr

material library was chosen. The modal frequencies and mode shapes were extracted in the frequency range 0–250 Hz.

37.3.2 Experimental Modal Analysis

The plate structure was tested using the multi-reference impact testing (MRIT) technique with 21 accelerometers mounted on
the rectangular plate at locations identified in Fig. 37.4. For simulating the free-free boundary condition, the plate was initially
suspended using shock cords. However, the support system was dynamically coupled with the third mode of the rectangular
plate (second torsion mode) and it acted as a vibration absorber. Subsequently, the plate was supported on racquet balls,
as shown in Fig. 37.5. Though the racquet ball supports offered a lesser frequency separation ratio between the rigid body
modes and the first elastic mode (compared to the shock cords), they were well isolated from the test structure [11].

Fig. 37.4 Rectangular plate—reference locations

Fig. 37.5 Rectangular plate—support system
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Fig. 37.6 Complex mode indicator function

On processing the measured data, nine deformation modes in the 0–250 Hz frequency range were identified, as evident
from the CMIF plot shown in Fig. 37.6. The first torsion and the first bending mode were at 42:16Hz and 44:16Hz
respectively. The mode shapes are shown in Fig. 37.7.

37.3.3 Modal Correlation

The relative difference between the modal frequencies obtained from FE modal analysis and impact testing is >2�3%.
The sequence of the modes was established to be in the same order for both cases by viewing the mode shape animations.

37.3.4 Model Calibration

From the correlation of the modal parameters from the preliminary analytical modal analysis and impact testing, it was
identified that there were various sources of uncertainty. On the modeling side, the sources of uncertainty were geometric
and material properties of the steel plate. In addition, the soft supports had not been modeled. On the testing side, the support
system, location of supports, sensor calibration, impact hammer tip and signal processing parameters were considered to be
the sources of uncertainty. The relative difference in modal frequencies was desired to be less than 2% and was set as the
calibration criteria or calibration metric.
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Fig. 37.7 Experimental mode shapes

37.3.4.1 Model Updating

Geometric properties: It was established that the plate thickness, originally intended to be 0:25 in: was not constant. The
plate was weighed (52:5 lbm) and the thickness of the plate model was adjusted (0:243 in:) to match the measured weight
of the plate.

Material model: The relative difference for the third mode (second torsion mode) was reasonably high compared to other
modes. A parametric study, in which the effect of varying the Young’s modulus, mass density and Poisson ratio on the
modal frequencies, was studied. For the calibrated model, the material properties were established as: Young’s modulus
E D 2:05x1011 Pa .2:9734x107 psi/, mass density � D 7; 850 kg=m3 .0:2836 lb=in3/ and Poisson ratio � D 0:29.

Modeling support system: Four racquet balls were used to support the plate during impact testing. These racquet balls act
as springs and their stiffness value was estimated to be roughly 40 lbf=in. At locations corresponding to the supports,
linear springs were added in the FE model. This reduced the relative difference for the modal frequencies further.

37.3.4.2 Testing Related Changes

Support system: Free-free boundary conditions are relatively easier to achieve compared to other boundary conditions
such as a fixed boundary condition. Support systems add stiffness and can also interact with the test structure. Certain
precautions need to be followed while selecting support systems [11].

Initially, shock chords were used to support the structure. However, it was observed that the shock chord supports
dynamically interacted with the third deformation mode (second torsion mode), and acted as a vibration absorber. As a
result, a racquet ball support system, that was reasonably isolated from the test structure, was selected.

Sensor calibration: The sensors (accelerometers and impact hammer load cells) need to be calibrated before data is
acquired. Sensors generally tend to have variability in the sensitivity in the order of 2–5 %, which when not accounted for
could skew the measurement magnitudes (but would have no effect on the calibration metric involving modal frequencies).
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Impact hammer tip: The impact hammer tip should be selected such that the modes in the required frequency range are
adequately excited without exciting higher frequency modes. When the focus is to acquire data in lower frequency range,
using a harder tip would possibly cause overloads on the data acquisition channels associated with sensors near the impact
location. As a result, an appropriate hammer tip should be selected. A soft hammer tip was selected as the plate structure
was lightly damped.

Signal processing parameters: The rectangular plate is a very lightly damped structure. It was noted that after every impact,
it took over 16 s for the response to die out. After selecting the frequency bandwidth, the frequency resolution should
be chosen such that the response at all the reference locations is completely observed in the captured time segment.
If this condition is not met, it would result in leakage errors. If desired, the force-exponential windows can be applied to
condition the signal to avoid leakage and measurement noise. The number of ensembles acquired per average also affects
the ability to obtain good quality data and minimize measurement noise. In this test, data was acquired in the 0–100Hz
and 0–250Hz frequency ranges. The frequency resolution (�F) was chosen for each case such that each ensemble was
observed for 16 s. The force-exponential window was chosen, with a cutoff value of 10% for the force window and an
end value for exponential window as 20%.

37.3.4.3 Modal Correlation after Calibrating the FE Model

Modal correlation was performed after updating the FE model and incorporating the changes identified for the test setup.
The relative difference for modal frequencies reduced to a value less than 2%.

FRFs from the FE model were synthesized at a few locations corresponding to the driving-points in the impact test.
The measured FRFs were compared with the corresponding synthesized FRFs as a further calibration metric that involves
damping and sensor calibration issues. A plot comparing the measured FRF with the synthesized FRF for a driving-point
is shown in Fig. 37.8. It is apparent from the comparison that the peaks of the synthesized FRF are sharp as damping was
not prescribed in the FE model. However, the peaks of the measured FRF are damped. In reality the modes do not have the
amount of damping that is evident in the FRF comparison plot as the rectangular plate is a lightly damped structure. The
damped peaks in the measured FRF are a result of the artificial damping introduced by the force-exponential window that
was used to eliminate leakage while performing the impact testing.

Fig. 37.8 Comparison of a
driving-point FRF
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Table 37.2 Correlation of modal frequencies for free-free case with no perturbed mass and
updated FE models

h D 6:17mm .0:243”), E D 2:05x1011 Pa .2:9734x107 psi/
FE model I: � D 7; 810 kg=m3 .0:2821 lb=in3/, m D 23:8 kg .52:44 lb/
FE model II: � D 7; 850 kg=m3 .0:2836 lb=in3/, m D 23:9 kg .52:69 lb/

Modal frequency (Hz) Rel. diff. (%)

Mode Experimental FE model I FE model II FE model I FE model II

First torsion 42:16 41:33 41:34 2 1.98

First X bending 44:16 43:71 43:65 1.02 1.16

Second torsion 95:58 95:04 95:12 0.57 0.48

First Y bending 104:6 103:1 102:99 1.45 1.56

Second X bending 119:06 118:19 118:16 0.74 0.76

Anti sym. X bending 137:98 137:38 137:39 0.44 0.43

Third torsion 176:38 175:52 175:81 0.49 0.32

X and Y bending 203:72 202:86 203:25 0.42 0.23

Third X bending 244:98 243:65 244:1 0.54 0.36

The results of modal correlation are presented in Table 37.2. The calibration criteria, a relative difference for modal
frequencies less than 2% was met and a calibrated rectangular plate FE model was obtained.

37.4 Validation

Validation is the process of determining the correctness of a model in its description of the reference system under a set of
test conditions [1, 2]. For validating the calibrated rectangular plate FE model and thereby establishing the robustness of the
model, it was decided to analyze and to perform testing for the following two cases:

1. Perturbed mass analytical modal analysis and testing
2. Constrained boundary analytical modal analysis and testing

The relative difference in modal frequencies was chosen as the validation criteria or the validation metric. For the perturbed
mass case, the validation criteria was set to less than 2% relative difference in modal frequencies.

Constraining specific points is possible theoretically in a FE model; however, it is impractical to achieve while testing.
In addition, modeling real boundary conditions is involved. As a result it was decided to set the validation criteria less than
5% relative difference for modal frequencies for the constrained boundary condition case.

37.4.1 Perturbed Mass Modal Analysis

Two separate cases were studied by attaching two cylindrical masses, 1 lb 1:5oz and 2 lb 1:5oz each, to the calibrated plate
FE model. The perturbation masses were also attached to the fabricated plate structure and impact testing was conducted.
The results obtained from the modal analysis and impact testing were correlated. The correlated results for 1 lb 1:5oz and
2 lb 1:5oz perturbed mass cases are listed in Tables 37.3 and 37.4 respectively. It is evident that the validation criteria,
relative difference for modal frequencies less than 2%, was met.

37.4.2 Constrained Boundary Condition Modal Analysis

The plate was clamped to ground at two locations near one of the edges using steel spacers, which in turn were grounded to
a huge isolated mass. The test setup is shown in Fig. 37.9. Impact testing was performed on the clamped plate.
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Table 37.3 Correlation of modal frequencies for free-free case with perturbed mass of
0:496 kg (1 lb 1:5ozand updated FE models)

h D 6:17mm .0:243”), E D 2:05x1011 Pa .2:9734x107 psi/
FE model I: � D 7; 810 kg=m3 .0:2821 lb=in3/, m D 23:8 kg .52:44 lb/
FE model II: � D 7; 850 kg=m3 .0:2836 lb=in3/, m D 23:9 kg .52:69 lb/

Modal frequency (Hz) Rel. diff. (%)

Mode Experimental FE model I FE model II FE model I FE model II

First torsion 38:95 38:4 38 1.43 1.06

First X bending 42:42 42:15 41:84 0.63 0.76

Second torsion 89:53 89:73 88:86 0.23 0.98

First Y bending 99:96 98:93 97:79 1.04 1.17

Second X bending 117:39 117:09 116:11 0.26 0.84

Anti sym. X bending 128:95 128:94 127:56 0.31 1.08

Third torsion 167:56 168:34 166:33 0.46 1.21

X and Y bending 197:19 198:36 196:76 0.59 0.81

Third X bending 235:5 237:82 233:8 0.98 0.71

Table 37.4 Correlation of modal frequencies for free-free case with perturbed mass of
0:95 kg(2 lb 1:5oz) and updated FE models,

h D 6:17mm .0:243”), E D 2:05x1011 Pa .2:9734x107 psi/
FE model I: � D 7; 810 kg=m3 .0:2821 lb=in3/, m D 23:8 kg .52:44 lb/
FE model II: � D 7; 850 kg=m3 .0:2836 lb=in3/, m D 23:9 kg .52:69 lb/

Modal frequency (Hz) Rel. diff. (%)

Mode Experimental FE model I FE model II FE model I FE model II

First torsion 36:86 36:47 36:17 1.07 1:92

First X bending 41:22 41:09 40:82 0.33 0:97

Second torsion 86:62 86:92 86:28 0.34 0:39

First Y bending 96:26 95:49 94:5 0.8 1:86

Second X bending 115:98 115:85 114:99 0.11 0:86

Anti sym. X bending 125:37 125:29 124:39 0.26 0:79

Third torsion 163:3 164:29 162:74 0.6 0:34

X and Y bending 195:1 196:22 195:05 0.57 0:23

Third X bending 229:84 231:37 230:8 0.67 0:42

Subsequently, the FE model was analyzed after applying constraints in vertical direction at the location corresponding to
the clamping points. The modal frequencies for the constrained boundary analysis and modal testing are listed in Table 37.5.

The larger relative difference for this case was expected, and can be attributed to the uncertainties involved in modeling
the boundary constraints used in the test. While it is aimed to constrain only the vertical direction translation of the plate
at two points, it is practically not possible to achieve this boundary condition. The support system constrains the motion of
the plate at a small but finite patch near the clamping location. The boundary condition of the constrained plate test setup is
difficult to incorporate in a FE model. As the FE model is not a true representation of the test setup, the relative difference
for this case is higher. However, the validation criteria was met for the constrained boundary condition case as well.

37.5 Conclusions

• Testing is expensive and resource intensive. Therefore, it is necessary to develop a well calibrated and validated FE model
to assist in predicting system response.

• This paper presents an example of model calibration and validation of the FE model of a rectangular steel plate based on
correlation with experimental results.
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Fig. 37.9 Rectangular plate with
constraints. (a) Test setup;
(b) supports and clamping
location

Table 37.5 Comparison of modal frequencies for constrained boundary condition
case

Modal frequency (Hz)
Mode # Description FE Experimental Rel. diff. (%)

1 Psuedo-pitch 10:76 11:02 2:42

2 First X bending 33:34 34:1 2:28

3 Second torsion 53:99 52:71 2:37

4 First Y bending 82:14 83:56 1:75

5 Second X bending 94:92 91:75 3:34

6 Anti symmetric X bending 114:7 118:59 3:39

7 Third torsion 124:4 128:43 3:24

8 X and Y bending 151:9 154:53 1:73

9 Third X bending 205:4 208:28 1:4

• A plate structure was fabricated and tested to estimate its dynamic properties. A FE model of the plate was developed to
perform modal correlation and validation.

• The results obtained from both the model and the test showed some differences in modal frequencies due to uncertainties
in geometric parameters, the material model and boundary conditions.

• Once corrections to material model and geometric parameters were applied, the FE model was calibrated. An improved
support system was used for testing. Subsequently, a good agreement between FE and modal testing results was achieved.
The relative error was reduced to 1–2 %, which met the validation criteria.

• Both FE model and modal testing results had similar modal frequencies obtained in the frequency range of 0–250 Hz.
The first nine elastic modes showed good agreement in determining torsion, bending or combination of both torsion and
bending modes.

• The robustness of the validated model was checked by comparing the results predicted by the FE model with the results
of perturbed mass and constrained boundary testing.
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Chapter 38
Human Activity Recognition Using Multinomial Logistic Regression

Ramin Madarshahian and Juan M. Caicedo

Abstract Activity monitoring is one of the predominant concerns of the elderly living at home. For example, serious
complications or even death can be avoided if the elder is helped shortly after a serious fall. Several methods have been
proposed to recognize human activity. Most of them can be categorized in three general groups: (1) vision-based methods; (2)
wearable sensors; and (3) vibration-based methods. Despite the advantages of vision-based methods and wearable sensors,
privacy concerns in the first type, and compliance challenges in the second group motivate the health care industry to pay
attention to other types of environmental monitoring techniques such as vibration-based methods. Vibration-based methods
use accelerometers placed at the floor of the patient’s dwelling. These methods are appealing because accelerometers
are not expensive and installation is easy. The classification of events is critical in vibration-based methods. This paper
proposes a classification algorithm using Multinomial Logistic Regression (MLR). A data set of different human activities is
experimentally obtained. Some signals are used to train the classification algorithm while the remaining records are used to
test the proposed technique. The signal “peak” and a “proposed time index” are used for classification. Principal component
analysis is used to reduce the number of parameters considered for MLR given that each event was captured by four sensors.
The main advantage of this classification algorithm is its probabilistic nature. Results show that in most cases, the event was
correctly identified by the group having the highest probability. However, other signal characteristics should be explored to
improve the performance of the proposed technique.

Keywords Human activity monitoring • Floor vibration • Classification • Multinomial logistic regression (MLR) •
Fall detection

38.1 Introduction

Improvements in medical science and public health have had a considerable impact on life expectancy. Longer lifespans are
more common now in comparison to previous decades [1]. An increase in life expectancy has resulted in an increase in the
population of the age group defined as elderly. As the population ages, diseases that affect human activities like Alzheimer’s,
and Parkinson’s are more predominant [2]. Falls are considered to be one of the most important causes of serious injury in
the elderly, specially when the individual suffers from Alzheimer’s or Parkinson’s. Different studies show that “long lie”,
defined as remaining on the ground for more than one hour without conscious control, is the reason for a high mortality
rate followed by a fall. Since the medical outcome of a fall is largely correlated with the rescue time, eliminating the time
between fall occurrence and medical care becomes very important [3].

Telecare systems that automatically communicate with a medical center or a family member at the time of a fall have been
proposed and implemented in the last decade. Three general monitoring systems are commonly used for this goal: (1) vision-
based systems; (2) wearable sensors; and (3) vibration-based systems [4]. Vision-based and wearable systems have been
used for several years and many different algorithms have been proposed for the identification of a fall. However, vision
systems have privacy concerns and wearable sensors have compliance challenges, especially in patients with dementia. For
more information about pros and cons of these systems see [5–8].

Fall detection through floor vibration is considered to be a very new approach in comparison to aforementioned methods.
These methods do not require the elderly or patients to wear anything and therefore has no compliance issues. Also
people do not feel “watched”, which is an advantage when compared with vision based systems. From a cost perspective,
accelerometers are not very expensive in comparison to cameras or wearable sensors. Alwan et al. showed that vibrations
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induced by human activities have a specific pattern and this signature is different from those made by objects [9, 10]. In some
studies, sound has been used in addition to floor vibration to gain a better classification of the events [11, 12]. The project
“eHome”, with the objective of prolonging elders’ independent life, used floor mounted accelerometers to collect signals
when a fall happened [13]. The current body of research shows that acceleration signals of interest can be detected by setting
a trigger, however more research is needed to classify these signals and identify only those of interest [14]. Madarshahian
et al. [15] studied the use of Dynamic Time Warping (DTW) and demonstrated that type of excitation played an important
role in the methodology.

In this work, a probabilistic algorithm that takes signal characteristics as input is used for classification. The methodology
consists of two steps, (1) Principal Component Analysis (PCA), and (2) Multinomial Logistic Regression (MLR). A set of
experimental data was collected to study how to classify human induced and other type of floor vibrations, such as objects
being dropped. The dataset was created by dropping two different objects at two heights, and by having three individuals
jump. Signal characteristics such as amplitude and duration were calculated for each signal. Four sensors were used for data
collection, therefore signal parameter of data collected with one sensor could be highly correlated with those from other
sensors for a specific event. Therefore PCA, which is recommended for high correlated variables, is implemented to reduce
the number of signal characteristics to consider. Then, the variables obtained from PCA are used in the MLR to estimate the
probability of an occurred event belonging to a particular class.

The paper is organized as follows. First, the dataset is described, then the implementation of PCA and MLR is discussed.
Finally, the algorithm is tested and evaluated using the experimental dataset. A confusion matrix is used to determine the
capabilities of the classifier. Finally, the results are discussed.

38.2 Experimental Setup

The dataset used in this study contains seven classes of events as shown in Table 38.1. The first two classes contain signals
of a bag of K’nex of 0.45 kg of mass dropped on the floor from two different heights. The first class was dropped from a
height of 2.10 m while the second class was dropped from 1.42 m. Classes 3 and 4 are similar to the first two classes using
a 0.56 kg basketball. The last three classes are jumps of three different people at the same location that the ball and bag had
been dropped. The mass of each person was of 80, 85, and 55 kg for classes 5, 6 and 7 respectively.

The experiments took place at a second floor of a steel structure with concrete slabs. Each of the events was recorded by
four PCB 333B50 accelerometers at distances of 3.15, 3.80, 2.60 and 1.15 m respectively. The accelerometers were connected
to a NI CompactDAQ with a NI9234 module. Each record was collected at 1651.7 Hz for 2 s.

A total of 120 events were recorded for each class. Twenty records are used for training the algorithm and the remaining
100 are used for testing purposes. Figure 38.1 shows typical signals for each class and Fig. 38.2 shows a typical record for
class 4 (ball low) as collected by all four sensors.

38.3 Methodology

The signal parameters used for analysis are introduced in the first part of this section. The second part is a general overview
of Principal Component Analysis (PCA) and Multinomial Logistic Regression (MLR). Lastly, the classification algorithm is
discussed.

Table 38.1 Classes used in the
dataset

Events

Class Description Abbreviation

1 Bag of Knex dropped from a height of 2.10 m baghigh

2 Bag of Knex dropped from a height of 1.42 m baglow

3 Basketball dropped from a height of 2.10 m ballhigh

4 Basketball dropped from a height of 1.42 m balllow

5 Jump records of a person with mass of 80 kg djump

6 Jump records of a person with mass of 85 kg jjump

7 Jump records of a person with mass of 55 kg wjump
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Fig. 38.1 Typical signals for different classes

Fig. 38.2 Typical signals for class 4 (balllow) as recorded by all four sensors

38.3.1 Signal Characterization

An acceleration signal can be described by a set of parameters such as its peak, duration, statistical moments, rise and fall
time, range, energy, etc. [16, 17]. Any of these parameters can be used as input variables to classification algorithms. In this
particular paper we focus on the use of the Peak of the signal, and propose a new parameter called the Proposed Time Index
(PTI). The Peak of the signal is defined by the equation:

… D iDn
max
iD1 jsi j (38.1)

where … stands for the Peak, si is the i th sample, and n is total numbers of samples of the acceleration signal. The symbol
j j indicates absolute value.



366 R. Madarshahian and J.M. Caicedo

Fig. 38.3 Calculation of � based on ˛

PTI is a parameter that allows us to measure the shape of the acceleration signal. PTI is defined by the equation:

PTI D
Z ˛D1

˛D0
�.˛/d˛ (38.2)

where ˛ is a ratio between zero and one. �.˛/ is the fall time and it is defined as the time between the peak of the signal and
the time of the last sample that is above ˛ times of the peak, and ˛ is a number between zero and one [18]. Figure 38.3 has a
graphical representation of �.˛/

Figure 38.4 shows the fall time profiles of the signals in Fig. 38.1. PTI is the area under these profiles.

38.3.2 Principal Component Analysis (PCA)

The parameters used in this paper (Peak and PTI) are calculated for each of the four sensors. It is possible that some of these
parameters will be correlated because they are generated by a single event. The Principal Component Analysis (PCA) is a well
known eigenvector-based multivariate analysis tool to reduce the number of parameters to consider in the analysis. The main
goal of this orthogonal linear transformation is to describe the variability in a large set of correlated parameters by a fewer
uncorrelated variables. The new variables, or principal components, are a linear combination of the initial parameters. The
principal components are usually sorted based on their contribution to the original set of parameters. Principal components
with a small contribution can be omitted to reduce the computational cost involved with the data analysis. Although the
first component has the most contribution, the second or even higher components are important for pattern recognition and
classification problems [19]. For example, it has been shown that higher components are beneficial in classifying metals,
performing kinetic modeling of food quality, and study of the changes in gene expression [20–22]. The parameters used in
this paper (Peak and PTI) have different units. These parameters are scaled by their mean as recommended to improve the
performance of PCA [19].

38.3.3 Multinomial Logistic Regression (MLR)

Multinomial Logistic Regression is a probabilistic classification method used for categorical outcomes [23–26]. The method
estimates the probability to a discrete random variable by providing a mapping between the parameters of the acceleration



38 Human Activity Recognition Using Multinomial Logistic Regression 367

Fig. 38.4 Typical fall time profiles

signal (explanatory variables) and the probability of the event belonging to a specific class [27]. This is performed by
calculating the logarithmic of the odds ratio between classes, allowing to map an explanatory variable with domain
[�1,C1] to a probability (i.e. [0,1]). MLR does not require normality or linearity which makes its implementation
robust [28]. The general form of MLR is shown in Eq. (38.3):

P.Y D cjX D x/ D eˇ
.c/
0 Cx:ˇ.c/

†ce
ˇ
.c/
0 Cx:ˇ.c/

(38.3)

P.Y D cjX D x/ is the probability of the response variable Y belonging to class c given the observation x. ˇ.c/0 , and
ˇ.c/ are the logistic regression parameters for each class. These parameters are first estimated with the 20 records available
to train the algorithm.

38.3.4 Training the MLR Model

The training dataset used in this problem contains twenty events for each of the seven classes considered. Each event was
recorded by four sensors for a total of 560 signals. First, the signal characteristics (Peak and PTI) are calculated for each
signal. PCA is used to reduce the number of parameters to be considered by MLR and detect outliers. Outliers are identified
visually after plotting the first two principal components of each event. Principal components are re-calculated after outliers
are removed. The first two components were found to be the most significant in the analysis and are the only parameters used
to build the MLR model. The python scikit-learn python package is used for calculations [29].

38.3.5 Testing the Proposed Algorithm

One hundred events per class are available for testing for a total of 2,800 signals. The signal characteristics and principal
components are calculated for each event. The MLR model developed with the training data is used for classification.
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Fig. 38.5 First two components for case 1 with and without outliers

A confusion or error matrix is used to determine the performance of the algorithm [30]. Each column of the matrix shows
the classes as classified by the algorithm, while each row shows the actual class. A perfect classification corresponds to a
diagonal matrix with the number of events for each class in the appropriate locations.

38.4 Results

The proposed methodology is used in three different cases. In the first case only the signal Peak is used for the analysis. In
the second case only PTI, and the last case uses both Peak and PTI. The type of variable used for the analysis in cases 1
and 2 have the same units (Peak and PTI respectively). Therefore, scaling the parameters is not required to apply the PCA.
The third case requires scaling the parameters by the mean because the values of Peak and PTI have different units. The
parameters are scaled in all cases to provide consistency in the application of the technique. The mean for the Peaks and PTI
was calculated as 0:0338 g and 0:174 s respectively.

Four values for the Peak are calculated for each event in case 1. This is, one from the data collected by each sensor.
Figure 38.5 shows the first two principal components for the 140 signals considered for training. The top figure shows the
first and second components before removing outliers. Outliers are selected visually as events 3 and 12. The same outliers
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Table 38.2 MLR summary for
case 1

MLR summary

Class # ˇ0 ˇ1 ˇ2

Class 1 �3:177 �0:880 1:955

Class 2 �1:992 �0:294 0:930

Class 3 �7:020 5:004 9:022

Class 4 �10:937 8:782 10:771

Class 5 �5:111 1:530 �7:476
Class 6 �1:992 0:429 0:015

Class 7 �5:947 1:783 �8:857

were identified for case 3 and no outliers were found for case 2. The bottom figure shows the principal components after
the analysis is repeated without these events. The variances of the first two components in case 1 are calculated as 94.8%
and 4.2% of the total variance respectively. Similar percentages were found for case 2. However, for the case 3 share of the
first component from total variance was reduced to 74.2%, and share of the second component was increased to 19.4%. The
MLR model is obtained using these two components only. Table 38.2 shows the coefficient of the MLR model for case 1.

The methodology is tested with 100 additional events from each class. Signals are first scaled and transformed to the
principal components found during the training process. Then, the events were classified using the previously obtained
MLR model. Figure 38.6 shows the classes (areas) and testing data (circle) mapped in the domain of the first two principal
components. Circles that have a different darkness than the area where they are placed were not classified correctly.

The algorithm provides the probability of an event belonging to a particular class. This helps make an informed decision
on the classification process. It is possible to include in the analysis a minimum percentage of probability required to classify
an event. Events that have a probability smaller that this minimum for all classes can be considered as class unknown. In
addition, one could combine classes to get a better estimation on the type of object striking the floor. For example, the
basketball is used for events that belong to classes 3 and 4. The only difference between these classes is the amplitude of the
impact.

It is possible to make a better classification of the type of object (e.g. ball vs bag) than classifying the type of object and
amplitude of impact. The probability of the event being produced by the basketball can be calculated by adding the results of
classes 3 and 4. Table 38.3 shows the results of two events as an example. The actual class of both events is Class 1. Event 1
was correctly classified and Event 2 was incorrectly classified. Notice that the maximum probability of Event 2 is only 35%
and it could be considered as unclassified if a minimum probability is specified. However, we can say with a good degree of
certainty that both samples where produced by the basketball because the summation of the probabilities for class 1 and 2
(62.9%) are much higher than the probability of any other classes.

Confusion matrices can be used to explore the performance of classification algorithms. Table 38.4 shows the confusion
matrices for all cases. The top part of the table contains the results for case 1. Sixty nine out of the 100 events used in class
1 were classified correctly. Eleven of them are classified as class 2. Both classes 1 and 2 used the bag of K’nex. Therefore, a
total of 80% of the events identified the type of object correctly when the bag was used. Only 7 of the events were classified
as a jump. The worst performance for case 1 was for events in class 2. Only 27% of the events were classified correctly when
considering the type of object and the amplitude of the force. This percentage increases to 84% when only the type of object
is classified. In addition, only 3 of the 100 events were classified as a jump. The algorithm did a good job classifying jumps
of two out of the three people used in case 1. The third person (class 6) was not correctly identified as a jump 30% of the
time. It is possible that the Peak of this person jumping is similar to that created with a the basketball (class 4).

The results of case 2 are aruably better than the results of case 1 when considering the type of object striking the floor.
The classification of events belonging to class 6 is much improved, indicating that the shape of the signal, expressed in terms
of the PTI could have an effect on the classification of the signals. Similarly, the percentage of bag events (classes 1 and 2)
that are correctly classified improved.

In case 3 both the Peak and the PTI are considered. After removing the outliers, the two principal components represent
74 % and 19 % of the total variance. Considering both variables (Peak and PTI) increases the share of the second component.
Figure 38.6c shows that the distribution of the testing data on the principal components plane is different than with the
previous cases. The results on the confusion matrix for case 3 (Table 38.4) are good for bag and basketball events. However,
over 50 % of the events for class 6 are not classified as a jump. This is similar to the results of case 1.
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Fig. 38.6 Logistic regression results on principal components. (a) case 1; (b) case 2; (c) case 3

Table 38.3 Probabilities
correspond to two events of
testing data

Probability

Event # Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

1 (correctly classified) 0:602 0:356 0:001 0:000 0:000 0:040 0:000

2 (incorrectly classified) 0:274 0:355 0:186 0:005 0:000 0:179 0:000

38.5 Conclusion and Future Work

This paper proposes a methodology to classify floor vibration signals depending on the source of the excitation. The possible
applications of the technique are in human activity recognition such as identifying human falls. The methodology uses
Principal Component Analysis and a Multinomial Logistic Regression for classification. A large dataset of experimental data
was used to test the proposed method, including floor vibrations induced by a basketball, people jumping and a bag of plastic
pieces (K’nex). Two levels of excitation were studied for each source type.

Only two principal components were required to describe the multi-dimensional data set independent on the case
considered. When the Peak was the only variable used for the MLR (case 1) events created by the bag were more scattered
in the in the principal component plane. Jump events (classes 5 to 7) were more scattered in the principal component plane
for case 2 (PTI). Finally, the test events formed “v” shape in the principal component plane when both Peak and PTI are used
(case 3). The variance of the second component was higher when both Peak and PTI were used.
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Table 38.4 Confusion matrices
for all cases

Case 1

Classified

Actual # Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 69 11 13 0 0 0 7

Class 2 56 27 14 0 0 3 0

Class 3 0 0 53 36 0 11 0

Class 4 0 0 7 88 0 5 0

Class 5 0 0 0 0 43 2 55

Class 6 0 0 3 27 0 70 0

Class 7 0 1 0 5 21 0 73

Case 2

Classified

Actual # Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 78 18 4 0 0 0 0

Class 2 54 40 6 0 0 0 0

Class 3 0 5 58 31 0 6 0

Class 4 0 0 24 68 0 8 0

Class 5 0 3 1 10 44 8 34

Class 6 0 0 3 9 6 82 0

Class 7 0 0 0 0 18 24 58

Case 3

Classified

Actual # Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 75 21 4 0 0 0 0

Class 2 55 37 8 0 0 0 0

Class 3 0 2 63 17 0 18 0

Class 4 0 0 14 83 1 2 0

Class 5 0 0 0 8 39 3 50

Class 6 0 0 3 50 1 44 2

Class 7 0 1 1 8 21 9 60

Confusion matrices to classify the type of the source of the vibrations and the amplitude were developed. These matrices
show a slight advantage when only PTI was used. These results indicate that the shape of the acceleration record is an
important parameter to be considered. In general, the proposed algorithm had a modest performance when asked to classify
the type and amplitude of excitation. The methodology is more effective at identifying the type of object striking the floor
only.

Other signal characteristics such as energy, range and duration should be evaluated in the future. In addition, a “layered”
process should be studied where the type of object used to induce vibrations is identified first. Subsequent analysis can be
done to estimate the intensity of the impact.
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