
Chapter 28
Simplifying Transformations for Nonlinear Systems: Part I,
An Optimisation-Based Variant of Normal Form Analysis

N. Dervilis, K. Worden, D.J. Wagg, and S.A. Neild

Abstract This paper introduces the idea of a ‘simplifying transformation’ for nonlinear structural dynamic systems. The
idea simply stated; is to bring under one heading, those transformations which ‘simplify’ structural dynamic systems or
responses in some sense. The equations of motion may be cast in a simpler form or decoupled (and in this sense, nonlinear
modal analysis is encompassed) or the responses may be modified in order to isolate and remove certain components. It is the
latter sense of simplification which is considered in this paper. One can regard normal form analysis in a way as the removal
of superharmonic content from nonlinear system response. In the current paper, this problem is cast in an optimisation form
and the differential evolution algorithm is used.

Keywords Nonlinearity • Differential evolution • Optimisation • Simplifying transformation • Superharmonics

28.1 Introduction

The machine learning methods that are introduced in this paper via an optimisation algorithm that aims to address the problem
of validity relating to the modal analysis of nonlinear structures. Modal analysis is an important tool in structural dynamics
as it is used to understand the dynamical characteristics of the structure. Many methods have been proposed in recent years
regarding nonlinear analysis, such as nonlinear normal modes or the method of normal forms [1–10].

The motivation for this paper comes from the problem of how to transform second-order equations of motion into a
simpler form, as vibration problems are naturally expressed via such differential equations. The method of normal forms can
be used as an analytical tool when vibration problems are surrounded by nonlinearities in order to recast the equations of
motion in a simpler form.

One can regard normal form analysis in a way as the removal of some superharmonic content from nonlinear system
response. In the current work, this problem is cast in an optimisation form and the differential evolution algorithm is used.
The advantage of this data-based approach introduced here is that complicated algebraic analysis is not needed and the details
of the equations of motion are not required.

The layout of the paper is as follows. Section 28.2 covers the main features of the optimisation algorithm and the proposed
transformation, while Sect. 28.3 gives an example of nonlinear analysis based on the technique that is mentioned in Sect. 28.2.
The paper finishes with some overall conclusion and future work.

28.2 Simplifying Transformation Strategy and Differential Evolution

In vibration analysis, the relationship between system resonances and external forcing is particularly important especially
when nonlinearities are present. Using the approach that is proposed here, leads to a simpler form when simulating resonant
behaviour by removing the dominant superharmonic.
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Fig. 28.1 Schematic of a typical differential evolution algorithm [14]

The transformation is as simple as a polynomial expansion. Adopting a machine learning approach, one can learn the
undetermined coefficients from measured data, freeing the system from the dominant superharmonic.

A different approach to both analytic solutions and pattern recognition methods is to treat the removal of superharmonic
content from nonlinear system response in terms of an optimisation problem, where the aim is to choose parameters such
that the new signal is free from the first superharmonic that appears at three times the natural frequency (for a symmetric
nonlinearity). For this purpose, a nonlinear optimisation algorithm based on differential evolution will be used here. For
the purposes of this paper a brief description of differential evolution is given and readers are referred to [11–13] for more
details. A section will follow with results using the technique on data simulated to represent the theoretical situation that was
discussed.

Differential evolution, introduced by Storn and Price [12], is an evolutionary algorithm in the same sense as a genetic
algorithm that begins with an initial population of trial solutions to a problem and via successive cycles of mutation, crossover
and selection computes an optimal set of solutions. These trial solution are subject to a suitable objective function, in respect
to the given problem. In turn, for the current analysis the trial solutions are a vector of parameter guesses that satisfy the
condition that the new signal is a simplified transformation as described before.

The optimisation algorithm is summarised in Fig. 28.1. The routine, although seeming complicated, follows a smooth but
powerful procedure. An initial population of parameter vectors are randomly generated. Then to each parameter vector of
this initial population, the objective function specifies a cost value and a new generation of solutions is born from this initial
population. A target vector is chosen from the initial population and then a trial vector is created by ‘mutation’. Mutation
takes two random parameter vectors A and B according to Fig. 28.1 from the population and subtracts one from the other by
multiplying it by some constant or scaling factor and finally adds it to a third randomly chosen parameter vector (C) from
the initial population. The trial vector can be considered as the ‘child’ of the target vector and the mutated vector.

After this chain of actions a new parameter vector is born between mutated trial vector and the target vector and the
procedure is called ‘crossover’. A predefined hyperparameter determines if the trial vector takes a parameter value from the
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target vector or the mutated vector. This new vector will then be selected for the next generation if its cost value is lower than
that of the target vector. If not, the target vector is forwarded to the next generation population. This procedure is repeated
several times and as the process evolves through a chain of generations, parameter vectors with low cost values will be
constructed.

In this analysis a slight variation of DE was used called self-adaptive differential evolution (SADE) [11, 13]. This
algorithm evolves in a similar fashion to the DE procedure except that it also learns which values of scaling factor and
hyperparameter are most likely to result in a trial vector that will be forwarded to the next generation, giving faster
convergence compared to DE algorithm. The main advantage of using this evolutionary population based tool in respect
to the parameter estimation problem is that the algorithm will potentially converge on the global minimum cost value rather
than a local minimum.

For the purposes of the nonlinear simplifying transformation, a suitable objective function must be chosen on the basis of
isolating and remove certain components (superharmonics).

28.3 An Example

The system of interest will be a nonlinear one-DOF lumped parameter system (see Fig. 28.2). Data were simulated using a
fixed-step fourth-order Runge-Kutta algorithm with harmonic excitation and the associated displacement was extracted. The
model parameters adopted were: m D 1, c1 D 0:001, k1 D 50, knl D 103. The nonlinearity that is assumed is cubic.

Figure 28.3 shows the resulting power spectral density (PSD) for the simulated physical variable. The method that is
used in order to calculate the power spectral densities (PSDs) which follow is the Welch method based on time averaging
over short, modified periodograms which could decolour the effect of different random excitation inputs [15]. The signals
are split into sections and the periodograms of each section are averaged. Through the Welch method these data sections
are overlapped and a window, such as the Hanning window is applied in order to filter each section. The overlapping of the
signal sections is usually either 50 % (as in this paper) or 75 %.

For all the graphs the vertical axis is the PSD of displacement and the frequency is in Hz.
As can be seen, the third order superharmonic (which as expected appeared at three times the natural frequency) is the

dominant trend in the signal. Following this evidence a simplifying transformation of a polynomial expansion is adopted in
the form of:

z.i/ D a C by.i/ C cy.i/3 C dy.i/5 (28.1)

where fzg is the transformed signal, fyg is the initial signal and Œa; b; c; d � the undetermined parameters of the polynomial
expansion.

The task of the optimisation algorithm is to determine the polynomial coefficients and at the same time transform the new
signal by zeroing the first dominant superharmonic that appears at three times from the natural frequency.

As can be seen in Fig. 28.4 the method that is introduced successfully removes the superharmonic. However, as can be
noted in Fig. 28.5 if the frequency spectrum is widened then the second superharmonic (fifth order) is rising in magnitude to
counter balance the reduction of the third order superharmonic. This problem will be investigated in the second part of this
paper.

Fig. 28.2 Nonlinear one-DOF
lumped parameter system
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Fig. 28.3 PSD for physical variable
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Fig. 28.4 PSD for transformed variable

28.4 Conclusion

The purpose of this paper is to highlight the key utility of some machine learning methods, not only for dynamic analysis
of structure but as well as a method of simplification for nonlinear mechanical systems. The main benefit of the approach
taken here is that complicated algebraic analysis is not necessary. Furthermore, the physical equations of the system are
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Fig. 28.5 PSD for transformed variable including second superharmonic (fifth order)

not needed. As a result, this machine learning approach is suited to experimental investigation of nonlinear systems using
only the measured output responses. A further work in the second part of this paper investigates the appearance of higher
order superharmonics.
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