
Chapter 21
Experimental Modal Analysis of Nonlinear Structures
Using Broadband Data

J.P. Noël, L. Renson, C. Grappasonni, and G. Kerschen

Abstract The objective of the present paper is to develop a rigorous identification methodology of nonlinear normal modes
(NNMs) of engineering structures. This is achieved by processing experimental measurements collected under broadband
forcing. The use of such a type of forcing signal allows to excite multiple NNMs simultaneously and, in turn, to save testing
time. A two-step methodology integrating nonlinear system identification and numerical continuation of periodic solutions
is proposed for the extraction of the individual NNMs from broadband input and output data. It is demonstrated using a
numerical cantilever beam possessing a cubic nonlinearity at its free end. The proposed methodology can be viewed as
a nonlinear generalization of the phase separation techniques routinely utilized for experimental modal analysis of linear
structures. The paper ends with a comparison between this new nonlinear phase separation technique and a previously-
developed nonlinear phase resonance method.

Keywords Nonlinear normal modes • Experimental data • Broadband excitation • Nonlinear system identification
• Numerical continuation

21.1 Introduction

Experimental modal analysis of linear engineering structures is now well-established and mature [1]. It is routinely
practiced in industry, in particular during on-ground certification of aircraft and spacecraft structures [2–4], using two
specific approaches, namely phase resonance and phase separation methods. Phase resonance testing, also known as
force appropriation, consists in exciting the normal modes of interest one at a time using a multipoint sine forcing
at the corresponding natural frequency [5]. Conversely, in phase separation testing, several normal modes are excited
simultaneously using either broadband or swept-sine forcing, and are subsequently identified using appropriate linear system
identification techniques [6, 7].

The existence of nonlinear behavior in dynamic testing, at least in certain regimes of motion, is today a challenge the
structural engineer is more and more frequently confronted with. In this context, the development of a nonlinear counterpart
to experimental modal analysis would be extremely beneficial. An interesting approach is the so-called nonlinear resonant
decay method introduced by Wright and co-workers [8, 9]. In this approach, a burst of a sine wave is applied to the
structure at the undamped natural frequency of a normal mode, and enables small groups of modes coupled by nonlinear
forces to be excited. A nonlinear curve fitting in modal space is then carried out using the restoring force surface method.
The identification of modes from multimodal nonlinear responses has also been attempted in the past few years. For that
purpose, advanced signal processing techniques have been utilized, including the empirical mode decomposition [10–12],
time-frequency analysis tools [13] and machine learning algorithms [14]. Multimodal identification relying on the synthesis
of frequency response functions using individual mode contributions has been proposed in [15, 16]. The difficulty with these
approaches is the absence of superposition principle in nonlinear dynamics, preventing the response of a nonlinear system
from being decomposed into the sum of different modal responses.

In the present study, we adopt the framework offered by the theory of nonlinear normal modes (NNMs) to perform
experimental nonlinear modal analysis. The concept of normal modes was generalized to nonlinear systems by Rosenberg
in the 1960s [17, 18] and by Shaw and Pierre in the 1990s [19]. NNMs possess a clear conceptual relation with the
classical linear normal modes (LNMs) of vibration, while they provide a solid mathematical tool for interpreting a wide
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class of nonlinear dynamic phenomena, see, e.g., [20–23]. There now exist effective algorithms for their computation from
mathematical models [24–27]. For instance, the NNMs of full-scale aircraft and spacecraft structures and of a turbine bladed
disk were computed in [28–30], respectively.

A nonlinear phase resonance method exploiting the NNM concept was first proposed in [31], and was validated
experimentally in [32]. Following the philosophy of force appropriation and relying on a nonlinear generalization of the
phase lag quadrature criterion, this nonlinear phase resonance method excites the targeted NNMs one at a time using a
multipoint, multiharmonic sine forcing. The energy-dependent frequency and modal curve of each NNM are then extracted
directly from the experimental time series by virtue of the invariance principle of nonlinear oscillations. Applications of
nonlinear phase resonance testing to moderately complex experimental structures were recently reported in the technical
literature, in the case of a steel frame in [33] and of a circular perforated plate in [34].

The objective of the present paper is to develop a rigorous identification methodology of NNMs by processing
experimental measurements collected under broadband forcing. The use of such a type of forcing signal allows, in contrast
with a phase resonance approach, to excite multiple NNMs simultaneously and, in turn, to save testing time. A two-step
methodology integrating nonlinear system identification and numerical continuation of periodic solutions is proposed for
the extraction of the individual NNMs from broadband input and output data. More specifically, the frequency-domain
nonlinear subspace identification (FNSI) method, introduced in [35], is first applied to measured data to derive an undamped
experimental model of the nonlinear structure of interest, assuming an accurate characterization of the nonlinearities.
Secondly, a numerical algorithm implementing pseudo-arclength continuation [25] is exploited to compute the NNMs of
the structure based on the experimentally-derived model.

The paper is organized as follows. The fundamental properties of NNMs defined as periodic solutions of the underlying
undamped system are briefly reviewed in Sect. 21.2. The existing nonlinear phase resonance method introduced in [31] is also
described. In Sect. 21.3, the two building blocks of the proposed NNM identification methodology, namely the FNSI method
and the pseudo-arclength continuation algorithm, are presented in detail. The methodology is demonstrated in Sect. 21.4
using numerical experiments on a cantilever beam possessing a cubic nonlinearity at its free end. Since it can be viewed as
a nonlinear generalization of linear phase separation techniques, the proposed methodology is also compared in Sect. 21.5
with the previously-developed nonlinear phase resonance method. The conclusions of the study are finally summarized in
Sect. 21.6.

21.2 Brief Review of Nonlinear Normal Modes (NNMs) and Identification
Using Phase Resonance

In this work, an extension of Rosenberg’s definition of a NNM is considered [23]. Specifically, a NNM is defined as a
nonnecessarily synchronous, periodic motion of the undamped, unforced system

M Rq.t/ C K q.t/ C f.q.t// D 0 (21.1)

where M and K 2 R
np�np are the mass and linear stiffness matrices, respectively; q 2 R

np is the generalized displacement
vector; f.q.t// 2 R

np is the nonlinear restoring force vector encompassing elastic terms only; np is the number of degrees of
freedom (DOFs) of the system. This definition of a NNM may appear to be restrictive in the case of nonconservative systems.
However, as shown in [23], the topology of the underlying conservative NNMs of a system yields considerable insight into
its damped dynamics.

Because a salient feature of nonlinear systems is the frequency-energy dependence of their oscillations, the depiction
of NNMs is conveniently realized in a frequency-energy plot (FEP). A NNM motion in a FEP is represented by a point
associated with the fundamental frequency of the periodic motion, and with the total conserved energy accompanying the
motion. A branch in a FEP details the complete frequency-energy dependence of the considered mode. By way of illustration,
the FEP of the two-DOF system described by the equations

Rq1 C .2 q1 � q2/ C 0:5 q3
1 D 0

Rq2 C .2 q2 � q1/ D 0
(21.2)

is plotted in Fig. 21.1. The plot consists of two branches corresponding to the in-phase and out-of-phase synchronous NNMs
of the system. These fundamental NNMs are the direct nonlinear extension of the corresponding LNMs. The nonlinear modal
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Fig. 21.1 FEP of the two-DOF
system described by Eq. (21.2).
NNM motions depicted in
displacement space are inset. The
horizontal and vertical axes in
these plots are the displacements
of the first and second DOF of
the system, respectively
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parameters, i.e. the frequencies of oscillation and the modal curves, are found to depend markedly on the energy. In particular,
the frequency of the two fundamental NNMs increases with the energy level, revealing the hardening characteristic of the
cubic stiffness nonlinearity in the system.

The absence of superposition principle in nonlinear dynamics renders by no means straightforward the identification of
NNMs from broadband measurements (see Sect. 21.3). However, two essential properties of linear systems are preserved in
the presence of nonlinearity. First, forced resonances of nonlinear systems occur in the neighborhood of NNMs [20]. Second,
NNMs obey the invariance principle, which states that if the motion is initiated on one specific NNM, the remaining NNMs
are quiescent for all time [19].

These two properties were exploited in [31] to develop a rigorous nonlinear phase resonance method based on sine data.
The procedure comprises two steps, as illustrated in Fig. 21.2. During the first step, termed NNM force appropriation, the
system is excited to induce a single-NNM motion at a prescribed energy level. This step is facilitated by a generalized phase
lag quadrature criterion applicable to nonlinear systems [31]. This criterion asserts that a structure vibrates according to an
underlying conservative NNM if the measured responses possess, for all harmonics, a phase difference of 90ı with respect to
the excitation. The second step of the procedure, termed NNM free-decay identification, turns off the excitation to track the
energy dependence of the appropriated NNM. The associated modal parameters are extracted directly from the free damped
system response through time-frequency analysis. This nonlinear phase resonance method was found to be highly accurate
but, as linear phase resonance testing, very time-consuming. In addition, to reach the neighborhood of the resonance where a
specific NNM lives may require a cumbersome trial-and-error approach to deal with the shrinking basins of attraction along
forced resonance peaks. The methodology described in the next section precisely addresses these two issues.

21.3 Identification Methodology of Nonlinear Normal Modes (NNMs)
Under Broadband Forcing

The methodology proposed in this paper for the identification of NNMs using broadband measurements is presented in
Fig. 21.3. It comprises two major steps. The first step consists in processing acquired input and output data to construct an
experimental undamped model of the nonlinear structure of interest. In the present study, this model takes the form of a
set of first-order equations in the state space. In a second step, the energy-dependent frequencies and modal curves of the
excited NNMs are computed individually by applying a numerical continuation algorithm to the undamped model equations.
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Fig. 21.2 Experimental modal analysis of nonlinear systems using a nonlinear phase resonance method [31]. (a) NNM force appropriation;
(b) NNM free-decay identification
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Fig. 21.3 Proposed methodology for the identification of NNMs based on broadband measurements. It comprises two major steps, namely
nonlinear system identification and numerical continuation

Section 21.3.1 describes how the experimental state-space model can be derived in the frequency domain by employing
the FNSI method. Section 21.3.2 next outlines one existing algorithm, based on pseudo-arclength continuation, for the
computation of NNMs defined as periodic solutions.
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21.3.1 Experimental Identification of an Undamped Nonlinear State-Space Model

In the present section, the experimental extraction of a nonlinear undamped model of the structure under test is achieved by
means of a subspace identification technique, termed FNSI method [35]. The FNSI method is capable of deriving models of
nonlinear vibrating systems directly from measured data, and without resorting to a preexisting numerical model, e.g. a finite
element model. It is applicable to multi-input, multi-output structures with high damping and high modal density, and makes
no assumption as to the importance of nonlinearity in the measured dynamics [36, 37]. It will also be shown in this section
that the application of the FNSI method requires the measurement of the applied forces together with the dynamic responses
throughout the structure, including at the driving points and across the nonlinear components.

21.3.1.1 Nonlinear Model Equations in the Physical Space

The vibrations of damped nonlinear systems obey Newton’s second law of dynamics

M Rq.t/ C Cv Pq.t/ C K q.t/ C f.q.t/; Pq.t// D p.t/ (21.3)

where Cv 2 R
np�np is the linear viscous damping matrix; p.t/ 2 R

np is the generalized external force vector;
f.q.t/; Pq.t// 2 R

np is the nonlinear restoring force vector encompassing elastic and dissipative terms. Note that Eq. (21.3)
represents the damped and forced generalization of Eq. (21.1). The nonlinear restoring force term in Eq. (21.3) is expressed
by means of a linear combination of known basis functions ha.q.t/; Pq.t// as

f.q.t/; Pq.t// D
sX

aD1

ca ha.q.t/; Pq.t//: (21.4)

In this sum, the coefficients ca associated with the nonlinear basis functions ha.q.t/; Pq.t// play a role similar to the linear
stiffness and viscous damping coefficients contained in the matrices K and Cv in Eq. (21.3), respectively. Note that the total
number of basis functions s introduced in the model may be larger than the number of physical nonlinearity sources in the
system, as multiple model terms are generally required to capture the behavior of a single nonlinear component.

Given measurements of p.t/ and q.t/ or its derivatives, and an appropriate selection of the functionals ha.t/, the
application of the FNSI method in the present study aims at constructing a state-space model describing the undamped
dynamics associated with Eq. (21.3). Models in the state space are appealing because of their intrinsic capability to represent
systems with multiple inputs and outputs. They can also be effectively utilized to predict the response of the system under a
given forcing function by direct time integration (see Sect. 21.3.2).

21.3.1.2 Feedback Interpretation and State-Space Model Equations

The FNSI approach builds on a block-oriented interpretation of nonlinear structural dynamics, which sees nonlinearities as a
feedback into the linear system in the forward loop [38], as illustrated in Fig. 21.4. This interpretation boils down to moving
the nonlinear internal forces in Eq. (21.3) to the right-hand side, and viewing them as additional external forces applied to
the underlying linear structure, that is,

M Rq.t/ C Cv Pq.t/ C K q.t/ D p.t/ �
sX

aD1

ca ha.q.t/; Pq.t//: (21.5)

Without loss of generality, it is assumed in this section that the structural response is measured in terms of generalized
displacements. Defining the state vector x D �

qT PqT
�T 2 R

ns , where ns D 2 np is the dimension of the state space and T

the matrix transpose, Eq. (21.5) is recast into the set of first-order equations

� Px.t/ D A x.t/ C B e.t/

q.t/ D C x.t/ C D e.t/
(21.6)
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Fig. 21.4 Feedback
interpretation of nonlinear
structural dynamics [38]

Underlying linear
system: M, Cv, K

Nonlinear feedback:
ca, ha(q(t), q(t))˙

+
p(t) q(t), q(t), q(t)˙ ¨

where the vector e 2 R
.sC1/ np , termed extended input vector, concatenates the external forces p.t/ and the nonlinear basis

functions ha.t/. The matrices A 2 R
ns�ns , B 2 R

ns�.sC1/ np , C 2 R
np�ns and D 2 R

np�.sC1/ np are the state, extended
input, output and direct feedthrough matrices, respectively. State-space and physical-space matrices correspond through the
relations

A D
�

0 np�np I np�np

�M�1 K �M�1 Cv

�
I B D

�
0 np�np 0 np�np 0 np�np : : : 0 np�np

M�1 �c1 M�1 �c2 M�1 : : : �cs M�1

�

C D �
I np�np 0 np�np

� I D D 0 np�.sC1/ np (21.7)

where 0 and I are the zero and identity matrices, respectively. It should be remarked that no identifiability condition constrains
the number of measured displacements, provided that the nonlinear basis functions ha.q.t/; Pq.t// can be formed from the
recorded channels [35]. This implies that the nonlinear components in the structure must be instrumented on both sides
in order to measure the relative displacement and velocity required in the formulation of the nonlinear basis functions
ha.q.t/; Pq.t//, as illustrated in Fig. 21.3.

The FNSI estimation of the four system matrices A, B, C and D is achieved in the frequency domain using a classical
subspace resolution scheme. This resolution essentially involves the reformulation of Eq. (21.6) in matrix form, and the
computation of estimates of .A; B; C; D/ through geometrical manipulations of input and output data. The interested reader
is referred to [35] for a complete introduction to the theoretical and practical aspects of the FNSI method.

21.3.1.3 Conversion from State Space to Physical and Modal Space

The identified state-space model .A; B; C; D/ can be converted into estimates of (1) the nonlinear coefficients ca and (2) the
underlying linear modal properties of the system. Linear and nonlinear system properties will prove useful in the construction
of undamped state-space model equations in Sect. 21.3.1.4. They will also prove convenient to assess the quality of the
identification in Sects. 21.4.1.3 and 21.4.1.4. The complexity of the conversion addressed in this subsection stems from
an unknown similarity transformation of the state-space basis within which the FNSI model is derived [35]. Because the
nonlinear coefficients ca are elements of the matrix B, they vary according to the choice of the basis in which B is calculated.
Therefore, the estimates of ca cannot be obtained from a direct inspection of B.

To achieve the conversion to physical and modal space, the transfer function matrix Gs.!/ associated with the state-space
model is formed as

Gs.!/ D C
�
j! I ns�ns � A

��1
B C D (21.8)

where ! is the pulsation and j the imaginary unit. Matrix Gs.!/ is an invariant system property with respect to any similarity
transformation of the state-space basis [39]. It can be expressed in terms of the physical and modal properties of the system
by substituting Eq. (21.4) into Eq. (21.3) in the frequency domain, which leads to

G�1.!/Q.!/ C
sX

aD1

ca Ha.!/ D P.!/ (21.9)
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where G.!/ D ��!2 M C j ! Cv C K
��1

is the frequency response function (FRF) matrix of the underlying linear
system, and where Q.!/, Ha.!/ and P.!/ are the continuous Fourier transforms of q.t/, ha.t/ and p.t/, respectively.
The concatenation of P.!/ and Ha.!/ into the extended input spectrum E.!/ finally gives

Q.!/ D G.!/
�

I np�np �c1 I np�np : : : �cs I np�np
�

E.!/ D Gs.!/ E.!/: (21.10)

Matrix G.!/ is simply extracted using Eqs. (21.8) and (21.10) as the first np columns of matrix Gs.!/. Subsequently, the
nonlinear coefficients ca are computed from the other columns of Gs.!/ given the knowledge of G.!/.

Moreover, the system damped and undamped natural frequencies, denoted !i and !i;0, respectively, can be estimated
together with the unscaled mode shape vectors  .i/ 2 R

ns by solving the eigenvalue problem associated with the state
matrix A, that is,

A .i/ D �i  
.i/; i D 1; ::; ns: (21.11)

The imaginary part I.�i / and the absolute value j�i j of the complex eigenvalues �i provide the damped and undamped
natural frequencies, respectively. Moreover, the state-space mode shape vectors  .i/ are converted into the corresponding

physical-space modes Q�.i/
utilizing the output matrix C as

Q�.i/ D C .i/: (21.12)

Each mode shape vector Q�.i/
can be scaled using the residue R

.i/

kk of the driving point FRF Gkk.!/ of the underlying linear
system formulated as

Gkk.!/ D
npX

iD1

R
.i/

kk

j ! � �i

C R
.i/�

kk

j ! � ��
i

(21.13)

where k is the location of the excited DOF within the np DOFs of the structure, and where a star denotes the complex
conjugate operation. Equation (21.13) is an overdetermined algebraic system of equations with np unknowns and as many

equations as the number of processed frequency lines. The i th scaled mode shape vector at the driving point �
.i/

k is finally
obtained by enforcing a unit modal mass, i.e.

R
.i/

kk D �
.i/

k �
.i/

k

2 j !i;0

; (21.14)

while the other components of the mode shape vector Q�.i/
are scaled accordingly.

It should be noted that the mode scaling adopted in this section is rigorously valid if the linear damping mechanisms
in the tested structure are proportional to the mass and stiffness distributions [40]. This assumption is compatible with the
presence of weak damping. This implies that the mode shape vector at the driving point �

.i/

k is real-valued in Eq. (21.14).
In general, experimental mode shapes are however complex-valued. They can be enforced to be real by rotating each mode in
the complex plane by an angle equal to the mean of the phase angles of the mode components, and subsequently neglecting
the imaginary parts of the rotated components.

21.3.1.4 Removal of Damping Terms in the Identified State-Space Model

The removal of damping terms in the identified state-space model is necessary to allow the calculation of undamped NNMs
as defined in Sect. 21.2. This is achieved in this subsection by recasting Eq. (21.6) into modal space. For that purpose, the
vector of modal coordinates q.t/ 2 R

np is introduced as

q.t/ D ˆ q.t/ (21.15)

whereˆ 2 R
np�np is the matrix of the scaled mode shape vectors �.i/, and where a bar signals a vector or a matrix expressed

in modal space. It is known that the projection of Eq. (21.5) into modal space yields
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I np�np Rq.t/ C Cv
Pq.t/ C K q.t/ D ˆT p.t/ �

sX

aD1

ca ˆ
T ha.q.t/; Pq.t// (21.16)

where ˆT M ˆ D M D I np�np since the linear mode shapes were unit-mass-scaled in the previous subsection,
ˆT Cv ˆ D Cv and ˆT K ˆ D K. The projected stiffness matrix K is a diagonal matrix populated with the squared

values of the undamped frequencies !i;0, i.e. diag
	

K



D
	
!2

1;0 !2
2;0 : : : !2

np;0



.

Therefore, defining the modal state vector x D
	

qT PqT

T 2 R

ns , Eq. (21.16) can be reformulated in the form of the two

first-order relations

� Px.t/ D A x.t/ C B e.t/

q.t/ D C x.t/ C D e.t/
(21.17)

where the state, extended input, output and direct feedthrough matrices in modal space are given by

A D
�

0 np�np I np�np

�K �Cv

�
I B D

�
0 np�np 0 np�np 0 np�np : : : 0 np�np

ˆT �c1 ˆ
T �c2 ˆ

T : : : �cs ˆ
T

�

C D �
ˆ 0 np�np

� I D D 0 np�.sC1/ np : (21.18)

Undamped state-space model equations in modal space can finally be constructed by imposing zero damping in Eq. (21.18),
that is Cv D 0 np�np . The nonlinear coefficients ca, the undamped frequencies !i;0 and the scaled mode shape matrix ˆ in
Eq. (21.18) are obtained via Eqs. (21.10), (21.11) and (21.14), respectively.

Note that, in a real measurement setup, the structure of interest is tested over a limited frequency interval, typically
encompassing a few tens of modes depending on the input bandwidth and the sampling frequency. Assuming that m < np

linear modes are excited and identified given input and output data, this results into the truncation of the diagonal of K

such that diag
	

K



D �
!2

1;0 !2
2;0 : : : !2

m;0

�
. The dimension of the scaled mode shape matrix ˆ is similarly truncated to m

columns.

21.3.2 Computation of the Individual NNMS in the State Space Using Numerical Continuation

According to their definition given in Sect. 21.2 in the conservative case, NNMs can be sought numerically as periodic
solutions of the governing nonlinear equations of motion, i.e. Eq. (21.17) in the proposed identification methodology. To
this end, a two-step algorithm is exploited in the present study combining shooting and pseudo-arclength continuation. This
section provides a succinct description of the two techniques. The interested reader is referred to [25] for more in-depth
comments.

Shooting is a popular numerical technique for solving the two-point boundary-value problem associated with the
periodicity condition

S.T; xp0/ � xp.T; xp0/ � xp0 D 0 (21.19)

where S.T; xp0/ is called the shooting function. It expresses the difference between the final state at time T of the system
xp.T; xp0/ and the initial state of the system xp0. A solution xp.t; xp0/ is periodic if

xp.t; xp0/ D xp.t C T; xp0/ (21.20)

where T is the minimal period. In a shooting algorithm, the period T and the initial conditions xp0 realizing a periodic
motion are found iteratively. More specifically, direct numerical integration is carried out to obtain an initial guess of the
periodic solution, which is corrected by means of a Newton-Raphson procedure to converge to the actual solution. In this
work, time integration is performed using a fifth-order Runge-Kutta scheme with an automatic selection of the time step.
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Fig. 21.5 Computation of a
family of periodic solutions using
a pseudo-arclength continuation
scheme including prediction and
correction steps

Frequency

Energy

Current
solution

Tangential
prediction

Next
solution

Orthogonal
correction

One notes that the truncation of K and ˆ in Eq. (21.18) according to the m identified linear modes discards high-frequency
modes in the experimental model. This allows a reasonably large time step to be considered during time integration, which
may substantially reduce the computational burden.

Another important remark in the resolution of the boundary-value problem formulated in Eq. (21.19) is that the phase
of the periodic solutions is not unique. If xp.t/ is a solution of Eq. (21.17), then xp.t C �t/ is geometrically the same
solution in state space for any �t . Hence, an additional condition s.xp0/ D 0, termed phase condition, is specified to remove
the arbitrariness of the initial conditions. Following the approach in [25], the modal velocities Pq0 are set equal to zero. In
summary, an isolated NNM motion is computed by solving the augmented two-point boundary-value problem defined by the
two relations

S.T; xp0/ D 0

s.xp0/ D 0:
(21.21)

To obtain the family of periodic solutions that describe the considered NNM, shooting is combined with a pseudo-
arclength continuation technique. Starting from a known periodic solution, continuation proceeds in two steps, namely a
prediction and a correction, as illustrated in Fig. 21.5. In the prediction step, a guess of the next periodic solution along the
NNM branch is generated in the direction of the tangent vector to the branch at the current solution. Next, the prediction is
corrected using a shooting procedure, forcing the variations of the period and the initial conditions to be orthogonal to the
prediction direction. Note that this shooting-continuation algorithm was used to construct Fig. 21.1.

21.4 Numerical Demonstration Using a Cantilever Beam Possessing a Cubic Nonlinearity

In this section, the developed methodology for the identification of NNMs is demonstrated based on numerical experiments
carried out on the nonlinear beam structure proposed as a benchmark during the European COST Action F3 [41]. This
structure consists of a main cantilever beam whose free end is connected to a thin beam clamped on the other side. The thin
beam can exhibit geometrically nonlinear behavior for sufficiently large displacements. It should be noted that the same case
study was investigated to demonstrate the nonlinear phase resonance method developed in [31, 32].

The finite element model of the structure considered in this work is represented in Fig. 21.6 and is identical to the
experimentally-updated model in [32]. It comprises 14 two-dimensional beam elements for the main beam and three elements
for the thin beam. As shown in [35, 42], the nonlinear dynamics induced by the thin beam can be modeled through a grounded
cubic spring associated with a coefficient c1, and positioned at the connection between the two beams. The geometrical and
mechanical properties of the structure are listed in Tables 21.1 and 21.2, respectively.

Numerical experiments were conducted by direct time integration using a nonlinear Newmark scheme. To this end, a
linear damping matrix Cv was introduced in the model via a proportionality relation with the mass and stiffness matrices, i.e.

Cv D ˛K C ˇM; (21.22)
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Fig. 21.6 Finite element model
of the nonlinear beam

31 2 4 5 6 7 8 9 10 11 12 13 14

c1

Table 21.1 Geometrical
properties of the nonlinear beam

Length (m) Width (mm) Thickness (mm)

Main beam 0:7 14 14

Thin beam 0:04 14 0:5

Table 21.2 Mechanical
properties of the nonlinear beam

Young’s modulus (N/m2) Density (kg/m3) Nonlinear coefficient c1 (N/m3)

2:05 1011 7,800 8 109

Table 21.3 Linear natural
frequencies !0 and damping
ratios � of the first three bending
modes of the nonlinear beam

Mode Natural frequency !0 (Hz) Damping ratio " (%)

1 31:28 1:28

2 143:64 0:29

3 397:87 0:14

with ˛ D 3 10�7 and ˇ D 5. The resulting linear natural frequencies and damping ratios of the first three bending modes of
the beam structure are given in Table 21.3. The sampling frequency during time simulation was set to 60,000 Hz to ensure
the accuracy of the integration. Synthetic time series were then decimated down to 3,000 Hz for practical use, considering
low-pass filtering to avoid aliasing.

21.4.1 Identification Using the FNSI Method Under a Multisine Excitation

According to the scheme in Fig. 21.3, the proposed testing procedure starts with the application of a broadband excitation
signal to the nonlinear beam structure. Note that the FNSI method can address classical random excitations, including
Gaussian noise, periodic random, burst random and pseudo random signals. Stepped-sine and swept-sine excitations are
not applicable because of the inability of the FNSI method to handle nonstationary signals, i.e. signals with time-varying
frequency content [35]. One opts herein for pseudo random signals, also known as random phase multisine signals. A random
phase multisine is a periodic random signal with a user-controlled amplitude spectrum, and a random phase spectrum drawn
from a uniform distribution. If an integer number of periods is measured, the amplitude spectrum is perfectly realized,
unlike Gaussian noise. One of the other main advantages of a multisine is that its periodic nature can be utilized to separate
the transient and the steady-state responses of the system. This, in turn, eliminates the systematic errors due to leakage in
the identification.

A multisine excitation with a flat amplitude spectrum and a root-mean-squared (RMS) amplitude of 15 N was applied
vertically to node 4 of the structure. The excited band spans the 5–500 Hz interval to encompass the three linear modes of
interest. The response of the nonlinear beam was simulated over ten periods of 32,768 samples each, nine periods of which
were discarded to achieve steady-state conditions. Figure 21.7a, b shows the amplitude spectrum and the phase spectrum
of one period of the considered multisine input, respectively. The complete signal containing ten periods is depicted in
Fig. 21.7c, where one specific period is highlighted in gray. Finally, the decay of the transient response measured at the main
beam tip is illustrated in logarithmic scaling in Fig. 21.7d. The latter plot was obtained by subtracting from the entire signal
the last period of measurement, assumed to be in steady state.

21.4.1.1 Selection of the Nonlinear Basis Functions

The application of the FNSI method to measured data requires the selection of appropriate basis functions ha.q.t/; Pq.t//

to describe the nonlinearity in the system. This task, referred to as the characterization of nonlinearity, is in general
challenging because of the various sources of nonlinear behavior that may exist in engineering structures, and the plethora of
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Fig. 21.7 Random phase multisine excitation signal. (a, b) Amplitude and phase spectrum of a single period; (c) complete signal containing ten
periods with one specific period highlighted in gray; (d) decay of the transient response at the main beam tip in logarithmic scaling

dynamic phenomena they may cause [43]. One possible approach to discriminate between different candidate nonlinearity
models is the use of a subspace identification error criterion, as detailed in [36]. Characterization may also be partly
bypassed by resorting to mathematical functionals capable of representing a vast class of nonlinearities, such as high-order
polynomials [44], neural networks [45] or splines [37]. In this study, we assume the knowledge of nonlinear functional form
associated with the thin beam, namely a cubic restoring force in displacement.

21.4.1.2 Selection of the Model Order

The order of the state-space model derived using the FNSI method is equal to twice the number of linear modes activated in
the measured data [35]. This order is conveniently estimated using a stabilization diagram, similarly to the current practice in
linear system identification. Figure 21.8 charts the stabilization of the natural frequencies, damping ratios and mode shapes
of the structure computed at 15 N RMS for model orders up to 20. In this diagram, the modal assurance criterion (MAC) is
utilized to quantify the correspondence between mode shapes at different orders. Figure 21.8 shows full stabilization of the
first three modes of the structure at order 6. Note that full stabilization symbols only appear at order 8. However, since this is
tested between successive model orders taking as reference the lowest order, equal stabilization is also achieved at order 6,
which is therefore selected to avoid spurious poles.
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Fig. 21.8 Stabilization diagram.
Cross: stabilization in natural
frequency; circle: extra
stabilization in MAC; triangle:
full stabilization. Stabilization
thresholds in natural frequency,
damping ratio and MAC are 1 %,
5 % and 0.98, respectively. The
blue line indicates the selected
order (Color figure online)
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Table 21.4 Relative errors on the estimated natural
frequencies and damping ratios (in %) and diagonal
MAC values of the first three modes of the beam
computed at order 6

Mode Error on !0 (%) Error on " (%) MAC

1 0:0004 �0:0175 1:00

2 �0:0020 0:0180 1:00

3 �0:0144 �0:0461 1:00

21.4.1.3 Estimation of the Underlying Linear Properties

Table 21.4 lists the relative errors on the estimated natural frequencies and damping ratios together with the diagonal MAC
values. The results in this table demonstrate the ability of the FNSI method to recover accurately the modal properties of
the underlying linear structure from nonlinear data. The overall quality of the linear parameter estimates is confirmed in
Fig. 21.9a, b, where the exact FRF at the main beam tip is compared with the corresponding FRF synthesized using the
FNSI method at 15 N RMS for the first and second modes of the structure, respectively. The FRFs calculated at high level
using a linear estimator are also visible in the two plots, and highlight the importance of the nonlinear distortions affecting
the beam dynamics. Note that, since the considered nonlinearity is a function of the displacement at the main beam tip,
the distortions appearing around the first mode are more substantial. For the same reason, the third bending mode is only
marginally impacted at 15 N RMS, and is hence not depicted.

21.4.1.4 Estimation of the Nonlinear Coefficient

The nonlinear coefficient c1 is estimated using Eq. (21.10) and is consequently a spectral quantity, i.e. it is complex-valued
and frequency-dependent. This is an attractive property because the significance of its frequency variations and imaginary
part turns out to be particularly convenient to assess the quality of the identification. Figure 21.10a, b depicts the real and
imaginary parts of the coefficient, respectively. The real part shows almost no dependence upon frequency, and the imaginary
part is more than three orders of magnitude smaller (see Table 21.5). Table 21.5 gives the averaged value of the nonlinear
coefficient, the relative error and the ratio between its real and imaginary parts in logarithmic scaling. This table reveals the
excellent agreement between the identified and exact coefficients.
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Fig. 21.9 Comparison between
the exact linear FRF at the main
beam tip (in black) and the
corresponding curve synthesized
using the FNSI method at high
level (in orange), i.e. at 15 N
RMS. The FRF calculated using
a linear estimator at high level is
also superposed (in blue). (a)
First mode; (b) second mode
(Color figure online)

20 30 40 50 60
−115

−105

−95

−85

−75

−65

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

a

125 135 145 155 165
−105

−95

−85

−75

−65

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

b

21.4.1.5 Removal of Damping Terms

Damping terms are finally removed from the identified nonlinear state-space model .A; B; C; D/ following the constructive
procedure of Sect. 21.3.1.4. The resulting undamped model equations form the basis of the subsequent computation of NNMs
using numerical techniques.
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Fig. 21.10 Complex and frequency-dependent estimate of the nonlinear coefficient c1. (a) Real part; (b) imaginary part

Table 21.5 Estimate of the
nonlinear coefficient c1

Exact value (GN/m3) Real part (GN/m3) Error (%) Log10 (real/imag.)

8 8:0005 0:0062 3:72

Real part averaged over 5–500 Hz, relative error (in %) and ratio between the
real and imaginary parts (in logarithmic scaling)

21.4.2 Computation of the First Two NNMS Using Continuation

In this section, the algorithm of Sect. 21.3.2 is applied to the undamped model equations identified in Sect. 21.4.1 to compute
the first two NNMs of the beam structure. Note that the third mode is not analyzed herein as it involves virtually no nonlinear
distortions. Figure 21.11 shows the evolution of the frequency of the first bending mode of the structure as a function of
the amplitude of the motion evaluated at the main beam tip. The use of a displacement amplitude as horizontal axis in
this plot is justified by the absence of direct access to the total conserved energy associated with the considered mode in
experimental conditions [32]. The identified frequency-amplitude curve depicted in orange in Fig. 21.11 is seen to closely
match with the exact NNM presented in black, proving the accuracy of the proposed identification methodology. This is
confirmed through the comparison between the exact and identified modal shapes inserted in Fig. 21.11 at four specific
amplitude levels, namely 0.2, 0.4, 0.6 and 0.8 mm. Similar conclusions are drawn from the quality of the identification of the
second mode of the nonlinear beam plotted in Fig. 21.13.

It should be underlined that the results in Fig. 21.11 demonstrate the validity of the NNM identification methodology
for strongly nonlinear regimes of motion. Specifically, a hardening of almost 8 Hz of the natural frequency is found to be
accurately captured in this plot. This substantial frequency shift corresponds to an amplitude of motion of 1 mm at the
main beam tip, which is twice the thickness of the thin beam. The importance of nonlinearity in the beam dynamics is well
evidenced in Fig. 21.12a, b, where the first NNM of the structure is represented in the configuration space for amplitudes of
0.2 and 0.8 mm, respectively. The configuration space is spanned in this figure by the displacements measured at nodes 4 and
14, i.e. at the driving point and the main beam tip, respectively. One observes that, at low amplitude level in Fig. 21.12a, the
NNM is a straight line, whereas it corresponds to a curved line for high amplitudes in Fig. 21.12b, revealing the appearance
of harmonics in the time series. A similar analysis is achieved in Fig. 21.14a, b for the second NNM of the beam. These two
graphs show that, owing to the displacement nature of the involved nonlinearity, higher-frequency modes are less impacted
by harmonic distortions, and translate into straight lines in configuration space even for large amplitudes of motion.

One finally points out that the amplitude axes in Figs. 21.11 and 21.13 were arbitrarily limited to 1 mm. This choice
relates to the validity range of the amplitude-dependent periodic solutions calculated based on an experimental model derived
using broadband data. In this study, the amplitude interval over which the continuation was performed was merely selected
by observing that the maximum amplitude of displacement recorded in Sect. 21.4.1 at the main beam tip under multisine
forcing was of the order of 1 mm. Moreover, the frequency shifts noticed in Fig. 21.9a, b through the blue curves are seen to
be consistent with the extent of the frequency axes in Figs. 21.11 and 21.13. However, a rigorous evaluation of the validity
ranges of identified frequency-amplitude plots remains an open question and should deserve more investigation.
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Fig. 21.11 Comparison between the theoretical (in black) and identified (in orange) frequency-amplitude evolution of the first NNM of the
nonlinear beam. The NNM shapes (displacement amplitudes of the main beam) at four amplitude levels, namely 0.2, 0.4, 0.6 and 0.8 mm, are inset
(Color figure online)
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Fig. 21.12 First NNM of the nonlinear beam represented in configuration space at two amplitude levels. The configuration space is constructed
using the displacements measured at the driving point and the main beam tip. (a) 0.2 mm ; (b) 0.8 mm

21.5 Comparison with NNMs Identified Using Nonlinear Phase Resonance

This final section is dedicated to a comparison between the identification methodology proposed in this work, which can
be seen as a generalization of the classical linear phase separation testing techniques, and the nonlinear phase resonance
approach of [31]. As explained in Sect. 21.2 and depicted in Fig. 21.2, the first step of the nonlinear phase resonance testing
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Fig. 21.14 Second NNM of the nonlinear beam represented in configuration space at two amplitude levels. The configuration space is constructed
using the displacements measured at the driving point and the main beam tip. (a) 0.2 mm; (b) 0.8 mm

procedure is the appropriation of the NNM of interest. This is realized by tuning the frequency of a stepped-sine excitation
so as to induce of a single-NNM motion of the system. This step is facilitated by a generalized phase lag quadrature criterion,
which can be translated into a force appropriation indicator equal to 1 at resonance [32]. NNM appropriation is illustrated in
Fig. 21.15a, b in the case of the first mode of the nonlinear beam. The excitation is a 4 N sine signal applied to node 4 of the
structure. Figure 21.15a plots the evolution of the appropriation indicator with respect to the forcing frequency. It reaches a
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Fig. 21.15 Appropriation of the first NNM of the beam structure in the nonlinear phase resonance method. (a) NNM appropriation indicator;
(b) amplitude of the response at the main beam tip

value equal to 1 for a frequency close to 43.7 Hz. The corresponding amplitude of the forced response measured at the main
beam tip is depicted in Fig. 21.15b. This graph shows the distorted frequency response of the first mode and the sudden jump
occurring as soon as resonance is passed.

When the considered NNM is appropriated, the second step of the nonlinear phase resonance procedure is to turn off
the excitation in order to observe the free decay of the system along the NNM branch. A time-frequency analysis of the
decaying time response is then carried out to extract the frequency-energy dependence of the mode. This is achieved in
Fig. 21.16 where the wavelet transform of the displacement measured at beam tip during the free decay is represented. The
ridge of the wavelet, i.e. the locus of maximum amplitude with respect to frequency, is presented as a black line, and is seen
to closely coincide with the NNM identified in the previous section and plotted in orange. The comparable accuracy of the
phase separation and phase resonance approaches is confirmed by the modal shapes superposed at four amplitude levels in
Fig. 21.16. The results in this figure, together with the analysis of the second NNM appropriation reported in Figs. 21.17
and 21.18, clearly confirm the claimed accuracy of the NNM identification methodology developed in the present paper. In
summary, Table 21.6 lists the strengths and limitations of the two methodologies.

21.6 Conclusion

The present paper introduced a methodology capable of extracting experimentally the nonlinear normal modes (NNMs)
of vibrating systems from measurements collected under broadband forcing. This is the first methodology suffering from
no restriction regarding the strength of the nonlinearities and the modal coupling. It relies on the joint utilization of
nonlinear system identification and numerical continuation of periodic solutions. The methodology can be viewed as the
ideal complement to a previously-developed approach for the identification of NNMs from sine data. Together, they provide
rigorous generalizations of the testing procedures routinely exploited for experimental modal analysis of linear engineering
structures.

Further work will focus on the experimental demonstration of the methodology proposed herein. In this context, the use
of splines will be investigated in order to bypass the a priori assumption of a mathematical model for the nonlinearities.
Another research direction is the extension of the methodology to systems with damping nonlinearities through the direct
computation of damped NNMs based on the experimentally-derived state-space model.
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Fig. 21.17 Appropriation of the second NNM of the beam structure in the nonlinear phase resonance method. (a) NNM appropriation indicator;
(b) amplitude of the response at the main beam tip



238 J.P. Noël et al.

Amplitude (m)

F
re

qu
en

cy
 (

H
z)

0 0.25 0.5 0.75 1

x 10−3

130

140

150

160

−3

0

3
x 10

−4

−5

0

5

−7

0

7

−9

0

9
x 10

−4

x 10
−4

x 10
−4

Fig. 21.18 Decay along the second NNM branch calculated using time-frequency analysis (in black) and corresponding NNM obtained in
Sect. 21.4.2 using the proposed identification methodology (in orange). The NNM shapes (displacement amplitudes of the main beam) at four
amplitude levels, namely 0.2, 0.4, 0.6 and 0.8 mm, are inset (Color figure online)

Table 21.6 Comparison of the
strengths and limitations of the
two methodologies

Nonlinear phase Nonlinear phase

separation method resonance method

Fast Time-consuming

(multiple NNMs (one NNM at a time, and

simultaneously) difficulty to reach resonance)

Need of an Model-free

experimental model

Classical random excitation Multi-harmonic

can be utilized forcing is needed

Nonlinear components must be Multiple shakers are needed

instrumented on both sides and must be turned off

Nonlinearity characterization Limited information needed

is required about the nonlinearities

Damping in the experimental Undamped NNMs are

model must be removed directly obtained
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