
Chapter 18
Experimental Nonlinear Dynamics and Chaos of Post-buckled Plates

R. Wiebe and D. Ehrhardt

Abstract Panels and plates are an important structural element in many engineering applications, such as aircraft skin
panels, ship hulls, and civil shell structures. These structures, particularly when their boundaries are in some way constrained,
exhibit highly nonlinear behavior (e.g. spring hardening) even for relatively small deformations due to induced axial loading.
An extreme, but highly important, example is dynamic snap-through buckling of curved or post-buckled thin panels. This
phenomena is well represented in the literature, both for plates and for the simplified case of curved beams. The majority
of the experimental studies, especially for panels, have been carried out using either wind tunnels or acoustic drivers to
generate transverse loading. While this is directly applicable to real-world scenarios, say aircraft panel loading, it does not
permit direct control of the loads that are applied. In this work, we instead apply loads to a thermally buckled panel using an
electrodynamic shaker. This, along with the use of digital image correlation to capture the full field dynamic response allows
for a complete picture of the complex characteristics of dynamic snap-through.
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18.1 Introduction

Given their common use as structural elements, plates and curved panels have been studied extensively in the past. The work
that most closely matches what will be presented in this paper is [1], in which the nonlinear dynamics and snap-through of
a thermally buckled plate under acoustic excitation is investigated experimentally. It is shown that regions of snap-through
occur near linear resonance, and not surprising is more likely for larger loading magnitudes. Given the bistability of buckled
plates, it is perhaps not surprising that, at least qualitatively, this mirrors the response of, in decreasing spatial complexity,
buckled beams [2], and the double-well Duffing equation. In [3, 4] it is shown that the double-well Duffing equation yields
surprising sensitivity to forcing parameters, with certain parameters yielding multiple co-existing response types.

The response of the Duffing equation hints that a buckled plate (which may be represented by a double-well Duffing
type equation for first-mode response) may also present similar sensitivity in forcing parameter space, a characteristic
which would certainly be of interest to engineers designing shell and plate type structures. Figure 18.1 shows the initially
(nominally) flat, thermally-buckled aluminum plate with clamped boundary conditions all around that is used in this
investigation (mounting visible in photo). The plate dimensions were 0.5 � 165 � 216 mm. The plate was thermally buckled
using two heat lamps. All tests were performed after the plate had reached a steady-state temperature. The rise of the center of
the plate at the steady-state temperature was h � 1mm. Forcing was applied inertially by mounting the plate in its frame to an
MB Dynamics electrodynamic shaker (not visible in photo). The benefit of using a shaker, rather than standard wind-tunnel
or acoustic testing, is that the harmonic forcing frequency, and amplitude could be easily and independently controlled.
Random, or combined random and harmonic forcing could also be applied using this arrangement, however this paper is
limited to harmonic forcing results. The displacement was measured using dynamic digital image correlation DIC. The use
of DIC allowed for a vast improvement over more traditional vibrometers as this made it possible to obtain displacement
time series at any location of interest.
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Fig. 18.1 Aluminum plate
painted with speckle pattern for
DIC data acquisition. The
mounting frame provided
clamped boundary conditions on
all edges. The lissajous curves
were applied to allow for
scanning laser data acquisition
(not discussed herein)

Fig. 18.2 Response-type plot of
buckled plate under harmonic
loading. The forcing amplitude is
given in multiples of g
(acceleration due to gravity),
while the frequency is given in
Hz. Four response types were
observed, (white) non-snap,
(green) P1 snap-through, (red)
chaotic snap-through, (gray)
co-existing chaotic snap-through
and non-snap. The first nonlinear
normal mode (dashed black
curve) is also shown (Color
figure online)
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18.2 Experimental Results

The results of an experimental parametric study are presented as a response-type plot in Fig. 18.2. This figure divides the
forcing parameter space into four response types. In the white regions of parameter space, the response was entirely non-
snap-through, i.e. single-well. A typical time series of the plate measured at its center point (for parameters at point d) can
be seen in Fig. 18.3d. In an engineering design context, this would be a preferable structural response. At the other extreme,
the green region contains forcing parameters that resulted in period 1 snap-through. A time series of this response (for the
parameters at point a) is shown in Fig. 18.3a. This is effectively the highest rate of snap-through that one could expect,
and is thus likely to lead to the most rapid degradation through fatigue. The red shaded region instead resulted in chaotic
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Fig. 18.3 Sample plate center-displacement time series. Parts (a) through (d) correspond to the labels (a) through (d) in Figure 18.2. The vertical
dashed line in part (c) indicates an external perturbation

snap-through (also see point b and Fig. 18.3b), which yields a lower average snap-through rate than P1 snap-through. Finally,
the gray shaded region denotes forcing parameters that lead to co-existing snap-through and non-snap-through response. As
an example, the two response types that coexist for point c are shown in Fig. 18.3c. The gray region shows that this structure
also exhibits sensitivity to initial conditions in terms of final response type, along with sensitivity to parameters. In part (c) an
external perturbation (impacting the beam with a small hammer, vertical dashed line) was used to ‘kick’ the system between
the competing response types. While the green region produces the most violent, highest-energy, response, the gray region
is perhaps the most critical, as it could easily lull a designer into a false sense of security about the structural response.

Figure 18.2 was obtained using slow amplitude ramp-up and ramp-down tests at 15 different frequencies in 5 Hz
increments. The boundaries between different response-type regions of parameter space were obtained by visual observation
of the response, and are thus subject to some error. Tests were, however, repeated multiple times to ensure quality of the
results. The boundary of the gray region was particularly difficult to observe. These boundaries were initially approximated
by first ramping the amplitude up, then down at a given frequency. The amplitude at which chaotic (or periodic) snap-through
occurred on the ramp-up was assumed to be in the vicinity of the gray-red (or gray-green) boundary. Then on the down-
sweep, the amplitude at which snap-through ceased was assumed to be near the white-gray boundary. These approximate
parameter locations were then examined further using multiple random perturbations (hitting the plate with a small hammer)
to find at exactly which forcing amplitude the co-existing non-snap and snap-through behavior ceased to exist. The sliver of
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red-type response the divides the green and gray response types is suspect, as the transient behavior was quite long in this
region, making difficult to distinguish chaotic response from long transience leading to periodic behavior. This sliver does
not appear in the response-type plot of the double-well Duffing equation [3]. The seemingly ragged gray-white boundary is,
at least qualitatively, similar to what is observed in the double-well Duffing equation, which is almost certainly fractal. The
5 Hz grid used experimentally, however, is much to coarse to prove or disprove the existence of fractal boundaries in this
plot.

The first linear natural frequency of the plate about the buckled configuration was f0 � 108 Hz. When compared with the
lowest point of the red response type, which occurs at f � 100 Hz, it could be stated that this system presents a softening
type behavior. An interesting method of characterizing the transition form linear to increasingly nonlinear behavior is given
by the nonlinear normal modes (NNMs) of the response. These modes are extensions of the linear modes, in that they
exhibit ‘vibration in unison’ (although other definitions exist), and present a promising approach for characterizing nonlinear
vibrations, or as mode shapes in reduced order modeling [5]. The details of NNMs will not be discussed herein (see [6]
for further details), however, as a point of interest the first NNM of the buckled plate (dashed black curve in Fig. 18.2) can
be seen to approach the critical minimum snap-through point. If this is indeed the case, it would serve as another useful
application of NNMs in detecting snap-through. Note that the NNM connects to the linear natural frequency of f0 � 108 Hz,
however, the plot is cut off at a forcing amplitude of 1 g.

18.3 Conclusions

Thermally buckled plates are shown experimentally to exhibit extreme sensitivity to initial conditions (chaos and co-existing
solutions) and forcing parameters (sudden changes in the response-type plot) under harmonic loading. This has consequences
in the structural design of curved plates and shells, as designers must be careful to ensure that they have captured the worst
case, or limit state, of the system of interest.

Acknowledgements The authors wish to thank S.M. Spottswood for granting access to the Air Force Research Laboratory equipment, and for his
help in the laboratory.

References

1. Murphy KD, Virgin LN, Rizzi SA (1996) Experimental snap-through boundaries for acoustically excited thermally buckled plates. Exp Mech
36(4):312–317

2. Chandra Y, Wiebe R, Stanciulescu I, Virgin LN, Spottswood SM, Eason TG (2013) Characterizing dynamic transitions associated with snap-
through of clamped shallow arches. J Sound Vib 332(22):5837–5855

3. Wiebe R, Spottswood SM (2014) Co-existing responses and stochastic resonance in post-buckled structures: a combined numerical and
experimental study. J Sound Vib 333(19):4682–4694

4. Ueda Y (1991) Survey of regular and chaotic phenomena in the forced duffing oscillator. Chaos Solitons Fractals 1(3):199–231
5. Allen MS, Kuether RJ (2012) Substructuring with nonlinear subcomponents: a nonlinear normal mode perspective. In: Proceedings of the

Society for Experimental Mechanics, Jacksonville, FL, pp 109–121
6. Kerschen G, Peeters M, Golinval J-C, Vakakis AF (2009) Nonlinear normal modes, part i: a useful framework for the structural dynamicist.

Mech Syst Signal Process 23(1):170–194


	18 Experimental Nonlinear Dynamics and Chaos of Post-buckled Plates
	18.1 Introduction
	18.2 Experimental Results
	18.3 Conclusions
	References


