
Chapter 13
Theoretical and Experimental Analysis of Bifurcation Induced Passive
Bandgap Reconfiguration

Michael J. Mazzoleni, Brian P. Bernard, Nicolas Garraud, David P. Arnold, and Brian P. Mann

Abstract This paper presents a theoretical analysis and experimental validation of passively reconfigurable bandgaps in a 1D
chain of oscillators. Nonlinearities in the system result in a morphing of the bandgap structure when the excitation amplitude
passes a certain threshold. Specifically, an asymmetric bistability is used to achieve amplitude dependent filtering through
passive bandgap reconfiguration. The experimental system consists of a 1D chain of axially aligned pendulums arranged
in dimer unit cells with nearest neighbor coupling. Repulsive magnets are used to induce bistability in the pendulums.
Comparisons between experiments and theory show good agreement.
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13.1 Introduction

Wave propagation through periodic structures is a phenomenon of interest in mechanical, photonic, and electrical systems
[1–3]. The study of wave propagation behavior in periodic structures has led to significant advances in signal processing,
wave guiding, and vibration absorption technologies [4]. Periodic structures typically exhibit two fundamental modes:
propagation and attenuation [5, 6]. In recent years, there has been significant interest in the design and development of
metamaterials that have desirable wave propagation characteristics. One of the primary focuses of these studies is the
manipulation of bandgaps in periodic structures.

Bandgaps are attenuation zones that exist between two propagation zones, and it is often desirable to tune these bandgaps
for specific applications. Currently, there are two main approaches for tuning bandgap behavior. The first approach is based on
design methodologies and utilizes careful selection of material properties and geometries [7–10]. However, once designed,
the bandgap structures of these systems are fixed. The second approach is based on active control and tunes the bandgap
behavior through component replacements, variable adjustments, and manual switching [11–14]. This approach enables the
bandgap structure to reconfigure itself, but it requires human intervention and is not suitable for autonomous operation.

This paper builds upon previous studies conducted by the authors and presents a method for achieving passive bandgap
reconfiguration, which enables the bandgap structure to alter its wave propagation characteristics in response to its
environment [15, 16]. Therefore, this system is autonomous and adaptable. The system described in this paper achieves
amplitude dependent filtering, which allows waves of a given frequency to propagate below a certain amplitude threshold.
However, once the amplitude crosses that threshold, a bifurcation occurs and the waves are attenuated. A theoretical model
is presented to explain this phenomenon, and an experimental setup is used to validate the model.
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13.2 Math Model

This section presents a mathematical model that describes the wave propagation characteristics of a 1D array of axially
aligned pendulums. The pendulum array consists of repeating dimer unit cells consisting of two pendulums, and each
pendulum is torsionally coupled to its neighbors. A schematic of this pendulum system is shown in Fig. 13.1. The system’s
bandgap regions are calculated by applying periodic boundary conditions to the system, assuming a traveling wave solution,
and solving the resulting eigenvalue problem. Reconfigurable bandgaps are made possible by introducing bistability into the
system through a nonlinear restoring torque. If the bistability is asymmetric, then the system will have two distinct bandgap
profiles.

13.2.1 Equations of Motion

Consider a unit cell of the pendulum array which consists of two coupled pendulums with periodic boundary conditions
and with a nonlinear restoring torque f .�2/ applied to the second pendulum. The pendulums are assumed to be rods which
each have a lumped mass added to them. The system will only exhibit a bandgap region when these masses are different. A
homogeneous unit cell will result in a system with no bandgaps. The governing equations of motion for this system are

I R�1 C
�
�m1 C m

2

�
gL sin �1 C 2k .�1 � �2/ D 0; (13.1)

I R�2 C
�
�m2 C m

2

�
gL sin �2 C 2k .�2 � �1/ C f .�2/ D 0; (13.2)

where �j is the angular displacement of the j th pendulum, I is the mass moment of inertia of each pendulum, L is the length
of each pendulum, � is the ratio of the location of the added mass vs. the length of each pendulum rod, m is the mass of
each pendulum rod, k is the linear torsional coupling constant between any two adjacent pendulums, g is the acceleration
due to gravity, and mj is the mass added to the j th pendulum. If � D 1, then the masses mj are located at the tips of the
pendulum rods. For convenience, the dimensionless time variable � D t

p
g=L can be introduced and Eqs. (13.1) and (13.2)

can be rewritten in dimensionless form as

� 00
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�
mgL, ˛ D m1=m, ˇ D m2=m, and � D k=mgL.

Fig. 13.1 Schematic of a 1D array of axially aligned pendulums. The pendulums are assumed to be rods of length L which each have a lumped
mass added to them. Each unit cell consists of two pendulums, and the masses can differ between the two pendulums
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13.2.2 Bandgap Calculations

To determine the system’s bandgap structure, a traveling wave solution can be assumed in the form

�j D Aj ei.j �� Q!�/; (13.5)

where Aj is the amplitude of the j th pendulum’s oscillations, � is the wavenumber, and Q! is the dimensionless propagation
frequency. A standard eigenvalue problem can be formulated by substituting Eq. (13.5) into Eqs. (13.3) and (13.4) and then
linearizing the system about an equilibrium, resulting in

�
S .�/ � Q!2I

�
A D 0; (13.6)

where

S .�/ D
�

�1 C � ��1 cos �

��2 cos � �2 C � C 	

	
; (13.7)

and 	 is the linearized value of F.�2/ for a given equilibrium. Equation (13.6) can then be solved to construct the bandgap
structure of the system. For bandgap calculations, it is only necessary to consider values of � within the first Brillouin zone
[17]. Therefore, the reduced wavenumber �N should be varied from 0 to 
 , where N D 2 for this system since each unit
cell consists of two pendulums. Bandgaps are attenuation zones that exist between two propagation zones, and they can
only exist in nonhomogeneous periodic structures. If ˛ D ˇ, then no bandgaps will exist. An example of a system with no
bandgaps can be see in Fig. 13.2a, while Fig. 13.2b provides an example of a system with a bandgap. For frequencies in the
bandgap region, traveling waves will attenuate instead of propagate. For a bistable system, Eq. (13.6) must be solved for both
equilibria in order to determine both bandgap profiles. For practical applications it is necessary to convert the dimensionless
frequencies into dimensional frequencies using the following scaling convention: ! D Q!p

g=L.
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Fig. 13.2 For both of these plots, propagation zones are represented by the frequency ranges where solutions (lines) exist, and attenuation zones
are represented by the frequency ranges where solutions do not exist (blank space). Plot (a) shows the homogeneous case where ˛ D ˇ D 1 and
no bandgaps exist. Instead, a single propagation zone exists for 1:06 < Q! < 2:03. Plot (b) shows the existence of a bandgap region between the
two propagation zones at 1:04 < Q! < 1:39 and 1:62 < Q! < 1:86 when ˛ D 1 and ˇ D 2. For both plots, � D 1, � D 1, and 	 D 0. Bistability
has not yet been introduced to the system, so there is only one bandgap profile for a given set of parameters
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13.3 Experimental System

This section describes a set of experiments that were used to demonstrate the phenomenon of reconfigurable bandgaps. An
experimental system consisting of 14 axially aligned pendulums was built, and can be seen in Fig. 13.3. The pendulums were
torsionally coupled to each other using elastic bands, and magnetic interactions were used to generate the nonlinear restoring
torques necessary for creating a bistable system. The system parameters were selected so that the bistability was asymmetric,
resulting in two distinct bandgap profiles for the system. The first pendulum was connected to a vertical shaker that was used
to excite the system, and a coupling mechanism was used to convert the translational input into a rotational input. Frequency
sweeps were used to verify the two distinct bandgap profiles, and the experimental results closely matched the theoretically
predicted system behavior. An amplitude sweep was then used to demonstrate amplitude dependent filtering through passive
bandgap reconfiguration, and the system successfully transitioned from one bandgap configuration to the other during the
experiment after an amplitude threshold was passed.

13.3.1 Bandgap Predictions

Bistability was introduced to the system through magnetic interactions. For each unit cell, a cylindrical magnet was attached
to the rod of the second pendulum as the added mass (m2). No additional mass was added to the first pendulum (m1 D 0).
Additional magnets were placed on a platform below the second pendulum in each unit cell, and the magnets were oriented in
such a way so that they produced a repulsive magnetic force. The platforms were arranged so that they induced an asymmetric
bistability in the system. The nonlinear restoring torque f .�2/ that was created by the magnetic interactions was calculated
analytically using a magnetic dipole model and numerically verified using COMSOL [16]. A plot of the potential energy for a
unit cell can be seen in Fig. 13.4a. The potential energy function is the sum of the magnetic potential energy and gravitational
potential energy for the system, and the placement of the magnetic platforms was manipulated to ensure that the system was
asymmetrically bistable. The resulting bandgap profiles for the system can be seen in Fig. 13.4b. It can be clearly seen that
the shallow well has a propagation zone in the same frequency range that the deep well has an attenuation zone. This is an
important property of the system, as it enables amplitude dependent filtering.

Fig. 13.3 Photographs of the experimental setup. Photo (a) shows the coupling mechanism that converts the translational motion of the shaker
into a rotational input to the system. Photo (b) shows the pendulums in the shallow well configuration. The experimental system has the following
parameter values: m D 0:0347 kg, m1 D 0, m2 D 0:0807 kg, L D 0:4250 m, and � D 0:9412. In the shallow well, k D 0:4203 Nm/rad and
	 D 6:1219. In the deep well, k D 0:4033 Nm/rad and 	 D 0:9083. The stiffness values were obtained experimentally from the elastic bands
used to couple the pendulums, and the values are slightly different for the two cases due to a nonlinear relationship between coupling strength and
displacement. However, for inter-well behavior the coupling can be considered linear since the angular displacements are relatively small
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Fig. 13.4 Plot (a) shows the asymmetric potential energy function of a unit cell, where U is the potential energy of the system. Notice that there
is a deep well and a shallow well. Plot (b) shows the bandgap profiles for the two wells. The shallow well (solid blue lines) has a bandgap region
between the two propagation zones at 1:92 Hz < ! < 2:38 Hz and 3:33 Hz < ! < 3:61 Hz, while the deep well (dashed green line) has a bandgap
region between the two propagation zones at 1:07 Hz < ! < 1:60 Hz and 3:26 Hz < ! < 3:47 Hz. Note that the shallow well has a propagation
zone in the same frequency range that the deep well has an attenuation zone (Color figure online)

13.3.2 Frequency Sweeps

Frequency sweeps were conducted to verify the bandgap structures predicted in Fig. 13.4b. For each well, a forward and
reverse frequency sweep was performed. Video capture technology was used to determine the angular displacements of
the pendulums during the frequency sweeps [16]. The results of these frequency sweeps for all oscillators can be seen in
Fig. 13.5, which clearly shows that two distinct propagation zones exist in each well, with a bandgap region in between.
In Fig. 13.6, the response of the fifth oscillator is analyzed for each frequency sweep to verify that the system’s bandgap
structure matches the theoretically predicted propagation and attenuation zones. The fifth oscillator was arbitrarily selected
for this analysis, and it can be seen from Fig. 13.5 that its behavior matches the behavior of the other oscillators.

13.3.3 Amplitude Sweep

An amplitude sweep was used to demonstrate amplitude dependent filtering through passive bandgap reconfiguration. The
pendulums were placed in the shallow well configuration, and the excitation frequency was set to 2.1 Hz, which falls in
the propagation zone for the shallow well and the bandgap region of the deep well, as seen in Fig. 13.4b. The excitation
amplitude was then slowly ramped up. After approximately 160 s, a bifurcation occurred and the pendulums escaped from
the shallow well into the deep well, and the system reconfigured its bandgap properties. It took approximately 1 min for
transient effects to fade away, but then the amplitude of oscillations for the pendulums was almost zero, even though the
excitation amplitude was still increasing. This experiment successfully demonstrates amplitude dependent filtering through
passive bandgap reconfiguration, and the experimental results can be seen in Fig. 13.7. Plot (a) analyzes the response of
the fifth oscillator and clearly demonstrates that the system’s behavior switched from propagation to attenuation after the
bifurcation occurred and transient effects settled down. Plot (b) verifies that the excitation amplitude was steadily increasing
throughout the experiment. Plot (c) shows that all of the pendulums transitioned from the shallow well to the deep well
nearly simultaneously. Video capture technology was used to determine the angular displacements of the pendulums during
the amplitude sweep [16]. This experiment successfully demonstrated amplitude dependent filtering, as waves were allowed
to propagate through the system as long their amplitude was below the bifurcation threshold. After crossing the threshold,
passive bandgap reconfiguration occurred and waves were attenuated instead of propagated through the system.
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Fig. 13.5 These plots show the experimental results of various frequency sweeps in the pendulum assembly, and it can be seen that two distinct
propagation zones exist in each well, with a bandgap region in between. Plot (a) shows the forward frequency sweep for the deep well, plot (b)
shows the reverse frequency sweep for the deep well, plot (c) shows the forward frequency sweep for the shallow well, and plot (d) shows the
reverse frequency sweep for the shallow well. The first oscillator behaves differently from the rest because it is being directly driven by the vertical
shaker. The last oscillator also behaves slightly differently due to boundary effects

13.4 Conclusion

This paper presents a mathematical model that describes the bandgap structure for a 1D chain of bistable oscillators, and
shows that introducing an asymmetric bistability into the system will result in two distinct bandgap structures. Bandgaps
are attenuation zones that exist between two propagation zones, and it is often desirable to tune these bandgaps for specific
applications. This paper shows that the system can be tuned so that it can achieve amplitude dependent filtering through
passive bandgap reconfiguration. This enables waves to propagate through the system as long their amplitude is below a
critical threshold. After crossing the threshold, passive bandgap reconfiguration occurs and waves are attenuated instead of
propagated through the system. An experimental system was constructed to demonstrate this phenomenon, and comparisons
between experiments and theory show good agreement.
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Fig. 13.6 These plots analyze the experimental response of the fifth oscillator of the pendulum assembly during various frequency sweeps, and
it can be seen that the system’s behavior closely matches the theoretically predicted propagation and attenuation zones. The fifth oscillator was
arbitrarily selected for this analysis, and it can be seen from Fig. 13.5 that its behavior matches the behavior of the other oscillators. Plot (a)
shows the forward frequency sweep for the deep well, plot (b) shows the reverse frequency sweep for the deep well, plot (c) shows the forward
frequency sweep for the shallow well, and plot (d) shows the reverse frequency sweep for the shallow well. The propagation zones for the system
are identified by the vertical black lines at their borders. Oscillations sometimes appear outside the propagation zones, which can be attributed to
transient effects during the sweeps
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Fig. 13.7 These plots demonstrates amplitude dependent filtering through passive bandgap reconfiguration. Plot (a) analyzes the fifth oscillator
in the pendulum assembly during an amplitude sweep, and shows how the amplitude of oscillations increases until a bifurcation occurs and the
system transitions from the propagation zone in the shallow well to the attenuation zone in the deep well. After transient effects fade away, the
system’s oscillations are almost zero, even though the amplitude of excitation for the system is still increasing. Plot (b) verifies that the excitation
amplitude was steadily increasing throughout the experiment (Pz is the velocity of the vertical shaker input). Plot (c) shows that all of the pendulums
transitioned from the shallow well to the deep well nearly simultaneously. The first oscillator behaves differently from the rest because it is being
directly driven by the vertical shaker
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