
Chapter 6
Ignoring Rotational DoFs in Decoupling Structures Connected
Through Flexotorsional Joints
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Abstract Substructure decoupling consists in the identification of the dynamic behaviour of a structural subsystem, starting
from the dynamic behaviour of both the assembled system and the residual subsystem (the known portion of the assembled
system). The degrees of freedom (DoFs) of the coupled system can be partitioned into internal DoFs (not belonging to the
couplings) and coupling DoFs. In direct decoupling, a fictitious subsystem that is the negative of the residual subsystem
is added to the coupled system, and appropriate compatibility and equilibrium conditions are enforced at interface DoFs.
Compatibility and equilibrium can be required either at coupling DoFs only (standard interface), or at additional internal
DoFs of the residual subsystem (extended interface), or at some coupling DoFs and some internal DoFs of the residual
subsystem (mixed interface). In this paper, a test bench is considered made by a cantilever column with two staggered short
arms coupled to a horizontal beam. This involves both flexural and torsional DoFs, on which rotational FRFs are quite
difficult to measure. Using a mixed interface, rotational DoFs are neglected and substituted by internal translational DoFs.
Experimental results are presented and discussed.

Keywords Substructure decoupling • Rotational DoFs • Flexotorsional joints • Mixed interface • Experimental dynamic
substructuring

6.1 Introduction

Substructure decoupling consists in the identification of the dynamic behaviour of a structural subsystem, starting from
the dynamic behaviour of both the assembled system and the residual subsystem (the known portion of the assembled
system). Decoupling is a need for subsystems that cannot be measured separately, but only when coupled to their neighboring
substructure(s) (e.g. fixtures needed for testing or subsystems in operational conditions).

Substructure decoupling represents a special case of experimental dynamic substructuring, where experimental means
that the model of at least one subsystem derives from tests. In Frequency Based Substructuring, Frequency Response
Functions (FRFs) are used instead of modal parameters to avoid modal truncation problems. A general framework for
dynamic substructuring is provided in [1], where primal and dual assembly are introduced.

A well known issue in experimental dynamic substructuring is related to rotational DoFs. In substructure coupling,
whenever coupling DoFs include rotational DoFs, the related rotational FRFs must be obtained experimentally. This becomes
a quite complicated task when measuring only translational FRFs, as shown in [2]. Several techniques for measuring
rotational responses have been devised since then, see e.g. [3, 4]. However, when such rotational FRFs are used for
substructure coupling, results are still unsatisfactory.

Substructure decoupling techniques can be classified as reverse coupling techniques or direct decoupling techniques.
In reverse coupling, the equations written for the coupling problem are rearranged to isolate (as unknown) one of the
substructures instead of the assembled structure. Examples of reverse coupling are impedance and mobility approaches [5, 6].

In direct decoupling, a fictitious subsystem that is the negative of the residual subsystem is added to the coupled system,
and appropriate compatibility and equilibrium conditions are enforced at interface DoFs. To solve the decoupling problem,
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a dual assembly [7], a primal assembly [8] or an hybrid assembly [9, 10] can be used. Compatibility and equilibrium can be
required either at coupling DoFs only (standard interface), or at additional internal DoFs of the residual subsystem (extended
interface), or at subsets of coupling DoFs and internal DoFs of the residual subsystem (mixed interface). The choice of
interface DoFs determines a set of frequencies at which the decoupling problem is ill conditioned, as shown in [7].

For some time, it was believed that issues related to rotational DoFs also applied to substructure decoupling. However, in
this case the actions exchanged through the connecting DoFs, and specifically through rotational DoFs, are already embedded
in each FRF of the assembled system. In practice, a mixed interface [11] can in fact be considered that allows to substitute
undesired coupling DoFs with internal DoFs of the residual subsystem. This approach is introduced in [12] using simulated
test data.

In this paper, a test bed is considered made by a cantilever column with two staggered short arms coupled to a horizontal
beam. This involves both flexural and torsional DoFs, on which rotational FRFs are quite difficult to measure. Using a mixed
interface, rotational DoFs are neglected and substituted by internal translational DoFs. Experimental results are presented
and discussed.

6.2 Direct Decoupling Using Dual Assembly

The unknown substructure U (NU DoFs) is a portion of a larger structure RU (NRU DoFs). The known portion of the
assembled structure RU , defined as residual substructure R (NR DoFs), is joined to the unknown substructure through a
number of couplings (see Fig. 6.1). The degrees of freedom (DoFs) can be partitioned into internal DoFs (not belonging to
the couplings) of substructure U (u), internal DoFs of substructure R (r), and coupling DoFs (c).

The goal is to find the FRF of the unknown substructure U starting from the FRFs of the assembled structure RU

and of the residual substructure R. The dynamic behaviour of the unknown substructure U can be extracted from that
of the assembled structure RU by taking out the dynamic effect of the residual subsystem R. This can be accomplished
by considering a negative structure, i.e. by adding to the assembled structure RU a fictitious substructure with a dynamic
stiffness opposite to that of the residual substructure R and satisfying compatibility and equilibrium conditions. The dynamic
equilibrium of the assembled structure RU and of the negative substructure is expressed in block diagonal format as:

"
ZRU 0

0 �ZR

# (
uRU

uR

)
D

(
fRU

fR

)
C

(
gRU

gR

)
(6.1)

where:

• ZRU, �ZR are the dynamic stiffness matrices of the assembled structure RU and of the negative structure, respectively;
• uRU, uR are the vectors of degrees of freedom of the assembled structure RU and of the negative structure, respectively;
• fRU, fR are the external force vectors on the assembled structure RU and on the negative structure, respectively;
• gRU, gR are the vectors of disconnection forces exchanged between the assembled structure and the negative structure

(constraint forces associated with compatibility conditions).

Compatibility and equilibrium conditions must be considered at the interface between the assembled structure RU and
the negative structure: such interface includes not only all the coupling DoFs between substructures U and R, but includes
as well all the internal DoFs of substructure R (the bottom part of the structure in Fig. 6.1). However, it is not required to

Fig. 6.1 Scheme of the direct
decoupling problem
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consider all these interface DoFs, because it is sufficient that the number of interface DoFs be not less than the number of
coupling DoFs nc . Therefore, several options for interface DoFs can be considered:

• standard interface, including only the coupling DoFs (c) between substructures U and R;
• extended interface, including also a subset of internal DoFs (i � r) of the residual substructure R;
• mixed interface, including subsets of coupling DoFs (d � c) and/or internal DoFs (i � r) of substructure R.

The use of a mixed interface may allow to ignore rotational coupling DoFs by substituting them with translational internal
DoFs.

The compatibility condition at the (standard, extended, mixed) interface DoFs implies that any pair of matching DoFs
uRU

l and uR
m, i.e. DoF l on the coupled system RU and DoF m on subsystem R must have the same displacement, that is

uRU
l � uR

m D 0. Let the number of interface DoFs on which compatibility is enforced be denoted as NC .
The compatibility condition can be generally expressed as:

h
BRU

C BR
C

i (
uRU

uR

)
D 0 (6.2)

where each row of BC D �
BRU

C BR
C

�
corresponds to a pair of matching DoFs. Note that BC has size NC � .NRU C NR/ and

is, in most cases, a signed Boolean matrix.
It should be noted that the interface DoFs involved in the equilibrium condition need not to be the same used to enforce

the compatibility condition, as long as compatibility can be ensured by disconnection forces applied at a different set of
DoFs. If the compatibility and the equilibrium DoFs are not the same, the approach is called non-collocated [11]. Obviously,
the traditional approach, in which compatibility and equilibrium DoFs are the same, is called collocated.

Let NE denote the number of interface DoFs on which equilibrium is enforced. The equilibrium of disconnection forces
implies that their sum must be zero for any pair of matching DoFs belonging to the equilibrium interface, i.e. gRU

r CgR
s D 0.

Furthermore, for any DoF k on the coupled system RU (or on the residual subsystem R) not belonging to the equilibrium
interface, it must be gRU

k D 0 (gR
k D 0).

Overall, the above conditions can be expressed as:

"
LRU

E

LR
E

#T (
gRU

gR

)
D 0 (6.3)

where the matrix LE D �
LRU

E LR
E

�
is a Boolean localisation matrix. Note that the number of columns of LE is equal to the

number NE of equilibrium interface DoFs plus the number NNE of DoFs not belonging to the equilibrium interface. Note
that NNE D NRU C NR � 2NE : in fact, the number of DoFs belonging to the equilibrium interface must be subtracted once
from NRU and once from NR. Therefore, the size of LE is .NRU C NR/ � .NRU C NR � NE/.

Equations (6.1)–(6.3) can be gathered to obtain the so-called 3-field formulation. Starting from the 3-field formulation,
several assembly techniques can be devised:

• dual assembly [1, 7] where equilibrium is satisfied exactly by defining a unique set of disconnection force intensities;
• primal assembly [1, 8] where compatibility is satisfied exactly by defining a unique set of interface DoFs;
• hybrid assembly [9, 10] where both compatibility and equilibrium are satisfied exactly.

In the sequel, only the dual assembly is recalled. It can be shown [9] that whenever NC D NE , i.e. the number of
compatibility DoFs is the same as the number of equilibrium DoFs, all assembly techniques provide the same result.

6.2.1 Dual Assembly

In the dual assembly, the equilibrium condition gRU
r CgR

s D 0 at a pair of equilibrium interface DoFs is ensured by choosing
gRU

r D �� and gR
s D �. If a Boolean matrix BE related to interface equilibrium DoFs is defined similarly to BC, the overall

interface equilibrium can be ensured by writing the disconnection forces in the form:

(
gRU

gR

)
D �

2
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E
T
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E

T

3
5 � (6.4)
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where � are Lagrange multipliers corresponding to disconnection force intensities and BE is a NE � .NRU C NR/ matrix.
Since there is a unique set of disconnection force intensities �, the interface equilibrium condition is satisfied automatically
for any �, i.e.

"
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LR
E

#T (
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gR

)
D �

"
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E
T

BR
E

T

3
5 � D 0 (6.5)

In the dual assembly, the total set of DoFs is retained, i.e. each interface DoF appears twice. Since Eq. (6.5) is always
satisfied, the 3-field formulation reduces to:8̂̂

ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂:
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D 0

(6.1�)

(6.2)

or in more compact form:

8<
:

Zu C BE
T � D f

BCu D 0

(6.1�)

(6.2)

To eliminate �, Eq. (6.1�) can be written:

u D �Z�1BE
T � C Z�1f

which substituted in Eq. (6.2) gives:

BCZ�1BE
T � D BCZ�1f (6.6)

from which �, to be back-substituted in Eq. (6.1�), is found as:

� D �
BCZ�1BE

T
�C

BCZ�1f (6.7)

To obtain a determined or overdetermined matrix for the generalized inversion operation, the number of rows of BC must
be greater or equal than the number of rows of BE, i.e.

NC � NE � nc (6.8)

Note that, if NC > NE , Eq. (6.6) is not satisfied exactly by vector � given by Eq. (6.7), but only in the minimum square
sense. This implies that also Eq. (6.2) is not satisfied exactly, i.e. compatibility conditions at interface are approximately
satisfied. On the contrary, equilibrium is satisfied exactly due to the introduction of the disconnection force intensities � as
in Eq. (6.4).

By substituting � in Eq. (6.1�), it is obtained:

Zu C BE
T

�
BCZ�1BE

T
�C

BCZ�1f D f (6.9)

Finally, u can be written as u D Hf, which provides the FRF of the unknown subsystem U :

u D
�

Z�1 � Z�1BE
T

�
BCZ�1BE

T
�C

BCZ�1
�

f (6.10)
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i.e., by noting that the inverse of the block diagonal dynamic stiffness matrix can be expressed as:

"
ZRU 0

0 �ZR

#
D Z�1 D H D

"
HRU 0

0 �HR

#
(6.11)

where HRU and HR are the FRFs of the assembled structure and of the residual substructure, it is:

HU D H � HBE
T

�
BCHBE

T
�C

BCH (6.12)

With the dual assembly, the rows and the columns of HU corresponding to compatibility and equilibrium DoFs appear
twice. Furthermore, when using an extended or mixed interface, HU contains some meaningless rows and columns: those
corresponding to the internal DoFs of the residual substructure R. Obviously, only meaningful and independent entries are
retained.

6.2.2 Interface Flexibility Matrix

In Eq. (6.12), the product of the three matrices to be inverted can be defined as interface flexibility matrix. The interface
flexibility matrix can be rewritten in expanded form as:

h
BRU

C BR
C

i "
HRU 0

0 �HR

# 2
4BRU

E
T

BR
E

T

3
5 D BRU

C HRUBRU
E

T � BR
CHRBR

E
T

(6.13)

It can be noticed that

BRU
C HRUBRU

E
T D ĤRU

where ĤRU is a subset of the FRF matrix of the coupled structure: pre-multiplication by BRU
C extracts rows at compatibility

DoFs, and post-multiplication by BRU
E extracts columns at the equilibrium DoFs. Similarly,

BR
CHRBR

E
T D ĤR

where ĤR is the FRF of the residual structure at the same DoFs as above.
Therefore, the interface flexibility matrix becomes:

BRU
C HRUBRU

E
T � BR

CHRBR
E

T D ĤRU � ĤR (6.14)

The interface flexibility matrix (6.14) is strictly related to singularity. In [7, 8], it is shown that the interface flexibility matrix
is singular at the resonant frequencies of the residual substructure with coupling DoFs grounded, both for standard interface
and for non collocated extended interface when equilibrium condition is enforced on coupling DoFs only. In other cases, it
is not so easy to find the frequencies at which the interface flexibility matrix is singular.

6.3 Test Structure

The proposed decoupling technique is tested on an aluminium structure (Fig. 6.2). The residual substructure R consists of a
cantilever column with two staggered short arms. The unknown substructure U is a horizontal beam. The horizontal beam is
bolted to the top of the column, involving both translational and rotational DoFs.
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Fig. 6.2 Sketch of the test
structure

Table 6.1 Geometrical
dimensions (mm)

a b c d e l

540 420 60 100 240 600

The geometrical dimensions are reported in Table 6.1. The cross section is 40 � 8 mm for all beams, with the short side
along the z-direction.

The experimental FRFs of the assembled system RU up to 2,000 Hz are obtained by applying impact excitation and
measuring the resulting accelerations along z-direction at seven locations (3, 6, 9, 10, 11, 13, 20), as shown in Fig. 6.3. For
the residual subsystem R (column) the experimental FRFs are similarly measured at five locations (3, 6, 9, 10, 11), as shown
in Fig. 6.4. A detail of the bolted junction between the beam and the column is shown in Fig. 6.5. Finally, to check decoupling
results, FRFs are measured also at three locations (11, 13, 20) of the unknown subsystem U (beam), supported by an inflated
rubber tube, shown in Fig. 6.6, giving rigid body eigenfrequencies well separated from the first flexible mode of the beam.

Measurements are performed by placing the accelerometers at the underside of each (sub)structure. In order to obtain a
complete FRF matrix, as required by the decoupling technique, impact excitation is sequentially provided on all DoFs at the
topside of each (sub)structure.

A reciprocity check is performed on the experimental FRFs showing that reciprocity is acceptable for all FRF pairs
involving coupling DoFs and internal DoFs of the residual subsystem, i.e. the DoFs that can be used to enforce compatibility
and equilibrium conditions. Figures 6.7 and 6.8 show the reciprocity check on experimental FRFs of the assembled structure
RU and of the residual subsystem R. No indication about possible FRFs that should be discarded because of lack of
reciprocity is provided by this check.
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Fig. 6.3 Assembled system

Fig. 6.4 Residual subsystem
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Fig. 6.5 Detail of the bolted
junction

Fig. 6.6 Unknown subsystem

6.4 Decoupling

The FRFs of subsystem U can be determined through the procedure described previously and summarized in Eq. (6.12),
where compatibility and equilibrium DoFs are defined case by case. A collocated approach is adopted in which compatibility
and equilibrium DoFs are the same.

FRFs to be used in decoupling can be either the raw FRFs or can be obtained by a curve fitting procedure. In the latter
case, results are very bad and are not shown in the paper. This occurs although curve fitting is performed using a global
procedure that gives rise to a unique modal model plus low and high frequency residuals obtained for all FRFs. Therefore,
raw FRFs are used in the sequel.
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Fig. 6.7 Reciprocity check on
experimental FRFs of the
assembled structure RU among
DoFs 3, 6, 9, 10, 11 (Color figure
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Fig. 6.8 Reciprocity check on
experimental FRFs of the residual
structure RU among DoFs 3, 6,
9, 10, 11 (Color figure online)
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6.4.1 Results Using Raw FRFs

Since rotational DoFs at the junction between the residual subsystem and the unknown subsystem can not be measured,
neither the standard interface nor the extended interface can be used. Therefore, only mixed interfaces can be considered.
The number nc of coupling DoFs is 3 so that it must be NE � nc D 3. To deal with overdetermined problems, a set of
attempts using mixed interfaces with NC D NE D 4 is performed.

First, an interface including DoFs 3z, 6z, 9z and 11z is used. Therefore

BC D BE D

uRU
3z uRU

6z uRU
9y uRU

11z2
66664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ

BRU
C

uR
3z uR

6z uR
9z uR

11z

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3
77775

BR
C

(6.15)

The FRF of the unknown substructure U is shown in Fig. 6.9. It can be noticed that, although the FRF is not very scattered,
the peak around 1,000 Hz is not well described and some other peaks are shifted towards higher frequencies.

Another mixed interface including DoFs 3z, 6z, 10z and 11z is used. The signed Boolean matrices BC and BE are built
as in the previous case. The FRF of the unknown substructure U is shown in Fig. 6.10. It can be noticed that around 500 Hz
a spurious peak appear and another peak is considerably forward shifted. However, the peak around 1,000 Hz is better
described.

Fig. 6.9 H U
11z;11z: measured (blue

line), computed using mixed
interface with coupling DoF 11z,
and internal DoFs 3z, 6z, 9z (red
asterisks) (Color figure online)
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Fig. 6.10 H U
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 3z,
6z, 10z (red asterisks) (Color
figure online)
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Fig. 6.11 H U
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 3z,
9z, 10z (red asterisks) (Color
figure online)
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Fig. 6.12 H U
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 6z,
9z, 10z (red asterisks) (Color
figure online)
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Fig. 6.13 H U
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 3z, 9z
(red asterisks) (Color figure
online)
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Subsequently, a mixed interface including DoFs 3z, 9z, 10z and 11z is used. The signed Boolean matrices BC and BE are
built as in the first case. The FRF of the unknown substructure U is shown in Fig. 6.11. It can be noticed that around 600 Hz
the peak is shifted forward and around this peak the FRF is a bit scattered. However, the peak around 1,000 Hz is very well
described.

Finally, a mixed interface including DoFs 6z, 9z, 10z and 11z is used. The signed Boolean matrices BC and BE are built as
in the first case. The FRF of the unknown substructure U is shown in Fig. 6.12. At a first glance, the result looks very similar
to the previous one (interface DoFs 3z, 9z, 10z and 11z), but it is definitely worse because of several spikes and because the
FRF around 1,000 Hz is described less accurately than in the previous case.

A new set of attempts is performed using mixed interfaces including only 3 DoFs that give rise to determined problems.
Based on the previous results, a mixed interface that includes DoFs 3z, 9z and 11z is used. Such DoFs represent the set
intersection between DoFs 3z, 6z, 9z, 11z and 3z, 9z, 10z, 11z that provide the best results using 4 interface DoFs. The
signed Boolean matrices BC and BE are built similarly to the first case. The FRF of the unknown substructure U is shown in
Fig. 6.13. It can be noticed that the result is quite clean with no significant drawbacks.
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Fig. 6.14 H U
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 6z,
10z (red asterisks) (Color figure
online)

0 500 1000 1500 2000

10
−1

10
1

10
3

Frequency [Hz]

M
ag

ni
tu

de
 [m

 s
−

2 /
N

]
Fig. 6.15 H U

11z;11z: measured
(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 9z,
10z (red asterisks) (Color figure
online)
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To cross-check this result, a mixed interface that includes DoFs 6z, 10z and 11z is used. Such DoFs represent the set
intersection between DoFs 3z, 6z, 10z, 11z and 6z, 9z, 10z, 11z that provide the worst results using 4 interface DoFs. The
FRF of the unknown substructure U is shown in Fig. 6.14. It can be noticed that the result is quite bad with significant scatter
around the natural frequencies and several spurious peaks.

A further check is performed using a mixed interface that includes DoFs 9z, 10z and 11z. DoFs 9z, 10z are both able to
provide information about the rotational DoF �y (torsion of the column) but may miss the information about the rotational
DoF �x (bending of the column). The FRF of the unknown substructure U is shown in Fig. 6.15. It can be noticed that the
result is very bad because the two modes around 315 and 615 Hz are not clearly visible.

6.5 Concluding Remarks

In this paper, a procedure that ignores rotational DoFs in decoupling of substructures, connected to each other through
translational and rotational DoFs, is verified on an experimental test bed. The test bed is made by a cantilever column with
two staggered short arms coupled to a horizontal beam. This involves both flexural and torsional DoFs, on which rotational
FRFs are quite difficult to measure. Using a mixed interface, such FRFs are neglected and substituted by FRFs involving
internal translational DoFs.

Measured FRFs can be curve fitted to try to smooth out noise before using them in the decoupling procedure. However,
in this case, very bad results are obtained. Therefore, raw FRFs are used. Using a mixed interface including the single
translational coupling DoF and several combinations of 3 internal DoFs, the obtained results are not satisfactory in different
frequency bands: in two cases results are slightly better than in other cases. Further attempts are performed using a mixed
interface including the single translational coupling DoF and different combinations of 2 internal DoFs. In one case, the result
is almost satisfactory, whilst in the other cases results are worse than those obtained with 3 internal DoFs. (It can be noticed
that the minimum number of interface equilibrium DoFs is 3.) Therefore, increasing the number of interface DoFs to deal
with an overdetermined problem does not necessarily improve the results. Conversely, decreasing the number of interface
DoFs increases the variability of the results: this can lead to better results but care must be taken to avoid worse results.
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