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Preface

Dynamics of Coupled Structures represents one of ten volumes of technical papers presented at the 33rd IMAC, A Conference
and Exposition on Balancing Simulation and Testing, 2015, organized by the Society for Experimental Mechanics, and held
in Orlando, Florida, February 2–5, 2015. The full proceedings also include volumes on Nonlinear Dynamics; Dynamics of
Civil Structures; Model Validation and Uncertainty Quantification; Sensors and Instrumentation; Special Topics in Structural
Dynamics; Structural Health Monitoring & Damage Detection; Experimental Techniques, Rotating Machinery & Acoustics;
Shock & Vibration Aircraft/Aerospace, Energy Harvesting; and Topics in Modal Analysis.

Each collection presents early findings from experimental and computational investigations on an important area within
Structural Dynamics. Coupled structures or, substructuring, is one of these areas.

Substructuring is a general paradigm in engineering dynamics where a complicated system is analyzed by considering the
dynamic interactions between subcomponents. In numerical simulations, substructuring allows one to reduce the complexity
of parts of the system in order to construct a computationally efficient model of the assembled system. A subcomponent
model can also be derived experimentally, allowing one to predict the dynamic behavior of an assembly by combining
experimentally and/or analytically derived models. This can be advantageous for subcomponents that are expensive or
difficult to model analytically. Substructuring can also be used to couple numerical simulation with real-time testing of
components. Such approaches are known as hardware-in-the-loop or hybrid testing.

Whether experimental or numerical, all substructuring approaches have a common basis, namely the equilibrium of the
substructures under the action of the applied and interface forces and the compatibility of displacements at the interfaces
of the subcomponents. Experimental substructuring requires special care in the way the measurements are obtained and
processed in order to assure that measurement inaccuracies and noise do not invalidate the results. In numerical approaches,
the fundamental quest is the efficient computation of reduced order models describing the substructure’s dynamic motion.
For hardware-in-the-loop applications, difficulties include the fast computation of the numerical components and the proper
sensing and actuation of the hardware component. Recent advances in experimental techniques, sensor/actuator technologies,
novel numerical methods, and parallel computing have rekindled interest in substructuring in recent years leading to new
insights and improved experimental and analytical techniques.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.
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Chapter 1
Robust Stability and Performance Analysis for Multi-actuator
Real-Time Hybrid Substructuring

Rui M. Botelho and Richard E. Christenson

Abstract Real-time hybrid substructuring (RTHS) is a relatively new method of vibration testing for characterizing the
system-level performance of physical components or substructures. With RTHS, the coupled system is partitioned into
physical and numerical substructures and interfaced together in real-time as cyber-physical system similar to hardware-
in-the-loop testing. Control actuation and sensing is used to enforce the compatibility and equilibrium conditions between
the physical and numerical substructures. Since RTHS involves a feedback loop, the frequency-dependent magnitude and
inherent time delay of the actuator dynamics can introduce inaccuracy and instability. This paper presents a robust stability
and performance analysis method for multi-actuator RTHS based on robust stability theory for multiple-input-multiple-output
(MIMO) feedback control. This analysis method involves casting the actuator dynamics as a multiplicative uncertainty and
applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature
of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency
response functions for both the physical substructure and actuator dynamics.

Keywords Experimental structural dynamics • Real-time hybrid testing • Dynamic substructuring • Hardware-in-the-
loop testing • Robust stability • Feedback control systems

1.1 Introduction

Real-time hybrid substructuring (RTHS), also called real-time hybrid simulation or real-time dynamic substructuring, is
a relatively new method of vibration testing in experimental structural dynamics. RTHS allows a coupled system to be
partitioned into separate physical and numerical components or substructures. The substructures that are well understood
are simulated in real-time using analytical or numerical models, while those that are highly complex or of particular
interest are physically tested using physical specimens. The physical and numerical substructures are interfaced together
as cyber-physical system similar to hardware-in-the-loop (HWIL) testing. In a RTHS test, the numerical and experimental
substructures communicate together in real-time by transferring displacement and force signals through a feedback loop
using controlled actuation and sensing. The physical substructure is usually the experimental component of interest, while
the numerical substructure is typically an analytical or numerical model of the remaining system incorporating various
complexities that may be difficult to represent physically. RTHS has recently become more feasible due to advances in
numerical computing power, digital signal processing, and high-speed servo-hydraulic actuation.

Early developments of RTHS include Horiuchi et al. [1, 2], Nakashima and Masaoka [3], and Darby et al. [4]. RTHS is
also a major element of the Network for Earthquake Engineering Simulation (NEES). For example, Christenson and Lin
[5] describe a large-scale RTHS test setup at the University of Colorado Boulder NEES facility to examine the system-level
performance of multiple 200 kN MR fluid dampers in a three-story building structure. Jiang et al. [6] describe recent RTHS
testing at the Lehigh University NEES facility of full-scale MR dampers attached to a bridge structure, and Friedman et al.
[7] describe RTHS tests at the Lehigh University NEES facility using the same MR dampers installed in a seismically excited
steel moment resisting frame.

Figure 1.1 illustrates the block diagram of a typical RTHS test. At a given time-step, numerical loading is applied to the
numerical substructure to simulate the numerical displacements, xn, to be imposed on the physical substructure in real-time.
The numerical displacements are then fed into a controller to apply the command displacement, xc, to the actuator transfer
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Fig. 1.1 Block diagram of a typical RTHS test

system, which is usually a set of hydraulic actuators controlled by a proportional-integral-derivative (PID) servo-controller
using the measured displacement, xm, as the feedback signal. The measured restoring force, fr, of the physical substructure
is then fed back into the numerical substructure to compute the numerical displacements for the next time step. RTHS
also accommodates physical loading of the physical substructure from external shaker forcing of the physical specimen.
This closed-loop testing method makes RTHS very similar to HWIL testing, whereby a real-time virtual model is directly
interfaced with actual physical hardware forming a cyber-physical system.

Since RTHS involves a feedback loop, the inherent time delay of the actuator transfer system can lead to inaccuracy in the
actuator tracking and potential instability during closed-loop testing. The effect of time delay on RTHS testing was initially
considered by Horiuchi et al. [1], who showed that actuator delay can cause an increase in the total energy, which is equivalent
to introducing negative damping into the system. When the negative damping is larger than the total system damping, the
RTHS test will become unstable. Previous RTHS tests without actuator delay compensation had been performed for systems
with very low natural frequencies and high damping to ensure stability. There are also other sources of time delay in a RTHS
test, including communication delays of the various electrical signals and computational delays for solving the numerical
substructure. These time delays are generally much smaller than the inherent time delay of the actuator transfer system.

To improve the closed-loop stability and performance of RTHS, researchers have developed a variety of techniques for
compensating the time delay or more generally the frequency dependent dynamics of the actuator transfer system. The
techniques range from polynomial extrapolation in Horiuchi et al. [1] and inverse compensation in Chen and Ricles [8] to
reduce the actuator delay as well as adaptive techniques in Chen and Ricles [9] and Chae et al. [10]. Carrion and Spencer
[11] used a controls approach to develop model-based feedforward-feedback control to compensate the frequency-dependent
magnitude and phase of the actuator dynamics. Phillips and Spencer [12] extended this approach with a more accurate
feedforward inverse of the actuator dynamics and adding linear-quadratic Gaussian (LQG) feedback control. Christenson
and Lin [5] employed virtual coupling to balance closed-loop stability and performance in RTHS testing of large-scale
MR dampers. Gao et al. [13] recently developed an H-infinity robust loop-shaping controller to compensate the actuator
dynamics for RTHS testing of lightly damped steel frame structures. The ultimate goal of these compensation techniques is
to provide effective displacement tracking of the actuator transfer system over the desired frequency range of the RTHS test,
called the control band.

Stability and performance analysis is an important tool for understanding the effect of actuator time delay on the stability
behavior and accuracy of RTHS. This information is especially useful in guiding the compensation design of the actuator
transfer system to reduce its inherent time delay and provide closed-loop stability and performance. Wallace et al. [14] studied
the effect of actuator time delay using delay differential equation (DDE) modeling of a single degree of freedom (SDOF)
RTHS system comprised of a physical stiffness coupled to an analytically modeled mass-spring oscillator. This approach
yields a governing characteristic equation with an exponential delay term whose solution has an infinite number of roots.
The purely imaginary roots define the critical frequencies at which switches in the stability behavior of the system occur
and can be used to identify the critical time delays of the RTHS system. Kyrychko et al. [15] applied a similar approach to
identify the critical time delays for RTHS of a physical pendulum coupled to an analytical mass-spring oscillator, but using
neutral DDE’s.

Mercan and Ricles [16] applied a pseudodelay technique to solve the DDE for a SDOF RTHS system and identified the
critical time delays in terms of the mass, damping, stiffness parameters of the test structure. Mercan and Ricles [17] extended
the pseudodelay technique to evaluate multiple sources of time delay including those for multi-actuator RTHS. Fudong et al.
[18] employed a Padé rational fraction approach to approximate the exponential delay term and used a root locus technique to
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investigate the relationship between the closed-loop poles and substructure partitioning parameters on the stability conditions
of a SDOF RTHS system. Botelho et al. [19] presented an exact stability analysis technique for single-actuator RTHS of
1-DOF and 2-DOF mass-spring systems to quantify their critical time delays. Although these stability analysis techniques
provide insight into the stability behavior of RTHS, they assume pure time delay for the actuator dynamics and are limited
to lumped parameter descriptions of the numerical and physical substructures.

While progress has been made in the development of stability analysis techniques for RTHS, performance analysis has
received less attention. Maghareh et al. [20] recently proposed a predictive performance indicator for SDOF RTHS to assess
the effect of actuator time delay as well as computational and communication delays on the accuracy of RTHS. The predictive
performance indicator also provides insight on the effect of mass, stiffness, and damping partitioning of the physical and
numerical substructures. This performance indicator can be used in conjunction with a stability switch criterion based on the
exact solution for the critical time delays of the RTHS system to derive acceptance criteria for conducting successful RTHS
tests.

This paper presents a new robust stability and performance analysis method for multi-actuator RTHS based on the
concepts from robust stability theory for multiple-input-multiple-output (MIMO) feedback control systems. This method
involves casting the actuator dynamics of the RTHS feedback loop as a multiplicative uncertainty and then applying the
small gain theorem to derive sufficient conditions for robust stability and performance for RTHS. Gawthrop et al. [21] was
first to consider robust stability in RTHS, in which they used the robust stability criterion in Goodwin et al. [22] to study the
stability of single-actuator RTHS, but assumed a pure time delay for the actuator transfer system. Recognizing the versatility
of this approach, this paper presents an extension of robust stability analysis to consider robust performance and multi-
actuator RTHS. Unlike previous stability analysis techniques which assume pure time delay, this method accommodates the
linearized modeled or measured frequency-dependent magnitude and phase of the actuator dynamics as well as linearized
modeled or measured frequency response functions of the physical substructure.

1.2 Theory

Multi-actuator RTHS applied to a notional structural dynamic system partitioned into separate numerical and physical
substructures is illustrated in Fig. 1.2. The corresponding RTHS feedback loop, which is essentially a multi-input multi-
output (MIMO) feedback control system, is shown in Fig. 1.3. For the numerical substructure, the transfer function NXnFn(s)
relates input numerical forces, fn, to output displacement responses, xn, and the transfer function NXnFr(s) relates input
restoring forces, fr, to output displacement responses, xn. For the physical substructure, the transfer function PFrFe(s)
relates external physical forces, fe, to measured restoring forces, fr, and the transfer function PFrXa(s) relates input actuator
displacements, xa, to measured restoring forces, fr. Although this system illustrates a two interface degrees-of-freedom
(DOFs), the subsequent reformulation of dynamic substructuring as a feedback control problem is general and can be applied
to cases with many interface DOFs.

To enforce force equilibrium, the measured restoring forces from the physical substructure are fed back to the numerical
substructure and applied as equal and opposite input forces. To enforce displacement compatibility, the actuator transfer
system with compensation is used to impose the displacement response of the numerical substructure onto the physical
substructure. The dynamics of the actuator transfer system with compensation is represented by the actuator transfer function
Â(s). It should be noted that the above block diagram assumes that the sensor dynamics for the measured restoring force of
the physical substructure are negligible. With appropriate selection of force sensors with constant magnitude and little phase
distortion at low frequencies, this assumption is reasonable for the control band below 100 Hz of a typical RTHS test.

From the above block diagram, the closed-loop response for the numerical displacement is

fxn.s/g D
h
I CNXnF r.s/PF rXa.s/bA.s/

i�1
ŒNXnFn.s/� ffn.s/g

�
h
I CNXnF r.s/PF rXa.s/bA.s/

i�1
ŒNXnF r .s/� ŒPF rFe.s/� ffe.s/g (1.1)

The closed-loop response for the measured restoring force is

ffr.s/g D
h
I C PFrXa.s/bA.s/NXnF r .s/

i�1
ŒPF rXa.s/�

hbA.s/
i
ŒNXnFn.s/� ffn.s/g

C
h
I C PFrXa.s/bA.s/NXnF r .s/

i�1
ŒPF rFe.s/� ffe.s/g (1.2)
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Fig. 1.3 Feedback loop for multi-actuator RTHS

Note that the above expression has a common factor, which is the sensitivity matrix

ŒS.s/� D ŒI C L.s/��1 (1.3)

where, L.s/ D PFrXa.s/bA.s/NXnF r .s/ is the loop gain for RTHS.
The complimentary sensitivity matrix is then defined as

ŒT .s/� D ŒI C L.s/��1 ŒL.s/� (1.4)

Since the actuator dynamics is in the feedback path, the presence of time delay of the actuator transfer system will have
a destabilizing effect on the RTHS closed-loop response. Using concepts from robust stability theory for MIMO feedback
control, as in Goodwin et al. [22] and Skogestad and Postlethwaite [23], we cast the compensated actuator dynamics as a
multiplicative uncertainty as illustrated in Fig. 1.4.
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The compensated actuator dynamics matrix is related to the uncertainty matrix by

hbA.s/
i

D Œ�.s/�C ŒI � (1.5)

Substituting (1.5) into (1.4), the complimentary sensitivity matrix becomes

ŒT .s/� D ŒI C PFrXa.s/ .�.s/C I /NXnF r .s/�
�1 ŒPF rXa.s/� Œ�.s/C I � ŒNXnF r .s/� (1.6)

Expanding as

ŒT .s/� D ŒI C PFrXa.s/NXnF r .s/C PFrXa.s/�.s/NXnF r .s/�
�1 ŒPF rXa.s/� Œ�.s/C I � ŒNXnF r .s/� (1.7)

Factoring ŒI C PFrXa.s/NXnF r .s/�
�1 leads to

ŒT .s/� D ŒI C To.s/�.s/�
�1 ŒTo.s/� Œ�.s/C I � (1.8)

where the nominal complimentary sensitivity matrix is defined as

ŒTo.s/� D ŒI C PFrXa.s/NXnF r .s/�
�1 ŒPF rXa.s/� ŒNXnF r .s/� (1.9)

Note that the presence of actuator dynamics introduces the term To(s)�(s) in the denominator of (1.8). As this term
approaches �1, the RTHS system will go unstable. By employing the small gain theorem, the sufficient condition for robust
stability is

kŒTo.s/ � Œ �.s/�k1 < 1 (1.10)

Where, kk1 denotes the maximum singular value over the RTHS control band.
The above robust stability criterion provides a conservative measure for ensuring that the RTHS system has robust

stability in the presence of actuator dynamics. Since multi-actuator RTHS is a MIMO feedback control system, the robust
stability criterion involves a singular value decomposition of the nominal complimentary sensitivity matrix multiplied by
the uncertainty matrix. The nominal complimentary sensitivity matrix for RTHS is described by (1.9), while the uncertainty
matrix is obtained by rearranging (1.5) as

Œ�.s/� D
hbA.s/

i
� ŒI � (1.11)
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For single-actuator RTHS, the robust stability criterion simplifies to

jTo.s/�.s/j < 1 (1.12)

Where, denotes the maximum magnitude over the RTHS control band.
The robust stability criterion alone does not ensure robust performance of the RTHS system in the presence of actuator

dynamics. Goodwin et al. [22] suggests one approach for robust performance is to ensure that the actual sensitivities are
close to the nominal sensitivities by

kŒTo.s/ � Œ �.s/�k1 << 1 (1.13)

The above robust performance criterion is similar but more restrictive than the robust stability criterion.
The above sufficient conditions for robust stability and performance analysis assume that the dynamic system without

actuator dynamics has nominal stability. A dynamic system is said to have nominal stability if its closed-loop poles are on
the right-side of the complex plane. The closed loop response of the dynamic system without actuator dynamics can be found
by setting the uncertainty matrix to zero, which yields

fxo.s/g D ŒI CNXnF r.s/PF rXa.s/�
�1 ŒNXnFn.s/� ffn.s/g

� ŒI CNXnF r.s/PF rXa.s/�
�1 ŒNXnF r .s/� ŒPF rFe.s/� ffe.s/g (1.14)

The above response represents the case of perfect actuation with no time delay of the actuator transfer system. The nominal
stability of this system can be characterized by determining its closed-loop poles.

The sufficient conditions in (1.10) and (1.13) provide the basis for a new robust stability and performance analysis method
for both single and multi-actuator RTHS. The robust stability and performance criterion for RTHS are similar to those for
MIMO feedback control with plant uncertainty in Goodwin et al. [22] and Skogestad and Postlethwaite [23]. The differences
are in the expressions for the nominal complimentary sensitivity and uncertainty. In most cases, it is more practical to
perform the robust stability and performance analysis in the frequency domain instead of the Laplace domain in order to
directly utilize measured frequency response functions for the actuator dynamics and physical substructure. The proposed
robust stability and performance analysis involves a singular value decomposition of the nominal complimentary sensitivity
matrix multiplied by the uncertainty matrix at each frequency. Unlike previous stability analysis techniques which assume
pure time delay and lumped parameter descriptions, this method better captures the actual frequency dependence of the
magnitude and phase lag of the actuator dynamics as well as accommodates more complex representations of the numerical
and physical substructures.

1.3 Conclusions

This paper presents a new analysis method for evaluating the robust stability and performance of multi-actuator RTHS. This
MIMO analysis method requires a singular value decomposition of the nominal complimentary sensitivity matrix multiplied
by the uncertainty matrix at each frequency. For robust stability, the maximum singular values across frequency should be
less than 1 over the RTHS control band. For robust performance, the maximum singular values should be much less than 1
over the control band. These sufficient conditions for robust stability and performance were derived by casting the actuator
dynamics in the RTHS feedback loop as a multiplicative uncertainty and applying the small gain theorem. The proposed
robust stability and performance analysis method provides a useful tool for pre-test planning and post-test diagnostics of
RTHS tests involving multiple actuators. This analysis method can be used to evaluate the robust stability and performance
of the actuator transfer system and the compensation approach for RTHS. The attractive feature of this method is that it
accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator
dynamics. This presents a major advancement over previous RTHS stability analysis techniques which assume pure time
delay for the actuator dynamics and lumped parameter descriptions or the numerical and physical substructures.
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Chapter 2
Effect of Actuator Delay on Real-Time Hybrid Simulation Involving
Multiple Experimental Substructures

Cheng Chen, Frank Sanchez, and Maryam Khan

Abstract Real-time hybrid simulation provides an economical and effective experimental technique for seismic
performance evaluation of civil engineering structures in size limited laboratories. Servo-hydraulic dynamics pose challenges
for synchronizing restoring forces between substructures. Actuator tracking therefore contributes most detrimental error to
real-time hybrid simulation. Post-experiment reliability assessment through actuator tracking assessment is critical to
appropriately interpret real-time hybrid simulation results for the performance of structures under investigation. This study
analyzes the effect of actuator delays on the accuracy of real-time hybrid simulations involving multiple experimental
substructures. Unlike previous studies focusing on the stability of real-time hybrid simulation, this study acknowledges the
fact that delay compensation methods are capable of reducing the tracking errors. The modal analysis technique is evaluated
for real-time hybrid simulation involving both time delay and nonlinear structural behavior.

Keywords Real-time hybrid simulation • Actuator delay • Modal analysis • Frequency-domain analysis

2.1 Introduction

Experiments are important for earthquake engineering research. Real-time hybrid simulation (RTHS) splits the structure
into experimental substructure(s) and analytical substructure(s), which allows researchers to observe the behavior of critical
elements at large or full scale when subjected to dynamic loading [1–3]. The structural response under external excitation
is calculated by solving the dynamic equations of motion using an integration algorithm. The desired responses are then
imposed onto the experimental substructure(s) using servo-hydraulic actuators and their measured restoring forces are fed
back for next step displacement calculation. Real-time hybrid simulation provides an efficient and effective way to evaluate
seismic performance of large- or full-scale civil engineering structures in size limited laboratories. Since this experiment
is conducted in real-time manner, the RTHS is more approving for rate-dependent seismic devices [4, 5]. After years of
development, the RTHS has become a viable alternative to the more well-established shaking table testing method and the
pseudo-dynamic testing method [6–9].

However, due to inherent servo-hydraulic dynamics, the actuator has an inevitable time delay in response to the
displacement command. Previous researches showed that the time delay would lead to inaccurate test results and even
destabilize the entire simulation if not compensated properly [10–12]. Various compensation methods have been proposed to
minimize the effect of actuator delay. These compensation methods are either based on constant time delay assumption
[13–15] or formulated using adaptive control theory [16, 17]. The advance in delay compensation method has helped
reduce the actuator tracking error. Experimental studies however indicated that actuator tracking errors cannot be completely
eliminated even when a sophisticated compensation technique is used [18]. This brings concern on how reliably the real-time
hybrid simulation results have replicated the actual structural responses under earthquakes. In other words, it poses a great
challenge for reliability assessment of real-time hybrid simulation results with the presence of tracking errors since true
structural responses are often not available for an immediate comparison.

Various techniques have been used to evaluate the actuator delay induced tracking error, including the maximum tracking
error (MTE), root-mean-square (RMS) of the tracking error, tracking indicator (TI) [19] and energy error (EE) [20, 21]. These
variables provide qualitative but not quantitative assessment on the effect of actuator tracking. Guo et al. [22] proposed
a frequency evaluation index (FEI) method to interpret amplitude error and phrase error existing in actuator tracking,
which divides test error into. Chen et al. [23] further verified this method for RTHS tests of a single-story steel moment
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resisting frame with elastomeric damper. The FEI method utilizes the command displacements sent to the servo-hydraulics
and the measured displacements measured from experimental substructures. When a real-time hybrid simulation involves
multiple experimental substructures associated with multi-degree-of-freedom (MDOF), the FEI method application cannot
differentiate between different structural modes, therefore cannot provide quantitative information on the amplitude and
phase error for each structural mode. This study evaluates the effect of actuator delay on real-time hybrid simulation involving
multiple experimental substructures and explores the application of FEI method on MDOF structure to assess the effect of
actuator delay on multiple structural modes.

2.2 Real-Time Hybrid Simulation of Linear Elastic MDOF Structure

For a linear elastic MDOF structure, the equation of motion can be represented as:

M � ẍ C C � ẋ C K � x D F (2.1)

where M, C and K are the mass, viscous damping and stiffness matrices, respectively; ẍ
¯
, ẋ
¯

and x
¯

are the acceleration,

velocity and displacement response, respectively; and F is the external excitation force vector. For the purpose of analysis, a
two degree-of-freedom (DOF) structure is analyzed in this paper, where the mass matrix, stiffness matrix, damping matrix

and equations of motion can be expressed as M
¯

D
�
m1 0

0 m2

�
, C

¯
D

�
c11 c12
c21 c22

�
, K

¯
D

�
k1 C k2 �k2

� k2 k2

�
, x
¯

D
�
x1
x2

�
and

F
¯

D
�
F1
F2

�
, where m1 and m2 are the mass of the first and second story of the 2DOF structure, respectively; k1 and k2

represent the story stiffness; c11, c12, c21 and c22 represent the viscous damping inherent to the structure; F1 and F2 represent
the external excitation force on the structure; and x1 and x2 represent the displacement response of the first and second story,
respectively. The equation of motion for each story can also be written as

m1 � ẍ1 C c11 � ẋ1 C c12 � ẋ2 C k1 � x1 C k2 � .x1 � x2/ D F1 (2.2a)

m2 � ẍ2 C c21 � ẋ1 C c22 � ẋ2 C k2 � .x2 � x1/ D F2 (2.2b)

Assume that structural components associated with k1 and k2 are considered as experimental substructures and actuator
delays exist in a real-time hybrid simulation, Eq. (2.1) can be modified as

�
m1 0

0 m2

� �
ẍ1
ẍ2

�
C

�
c11 c12
c21 c22

� �
ẋ1
ẋ2

�
C

�
k1 C k2 �k2

� k2 k2

� �
x1 .t � £1/
x2 .t � £2/

�
D

�
F1 .t/
F2 .t/

�
(2.3)

where £1 and £2 are the delays due to the servo-hydraulic actuators attached to the experimental substructures in the first and
second story, respectively. The actuator delays are observed to be coupled for the 2DOF.

Figure 2.1 shows the comparison of the story displacements with and without actuator delay. The ground motion is the
1994 Northridge earthquake recorded by USC in Beverly Hills with a peak ground acceleration of 0.4158 g. The delay
incorporated is 3 ms and 3 ms for the actuators attached to the experimental substructures in the first and second story,
respectively. The structure has the natural frequencies of 3.88 rad/s and 10.17 rad/s for the first and second mode, respectively.
The structure is assumed to have 2 % Rayleigh viscous damping for both the first and second mode. It can be observed that
due to the actuator delay, story displacement from real-time hybrid simulation will deviate from the exact solution. Using
the definition of MAX error in Eqs. (2.4a) and (2.4b), MAX error in Fig. 2.1 is 20.5 % for the first story and 16.7 % for the
second story. This indicates again that small actuator delays can have major effects on the accuracy of RTHS results.

MAX1 D 100 � max .abs .x1c � x1m//

max .abs .x1c//
(2.4a)

MAX2 D 100 � max .abs .x2c � x2m//

max .abs .x2c//
(2.4b)
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Fig. 2.1 Comparison of story displacements for real-time hybrid simulation of a linear elastic MDOF structure with and without actuator delay

Fig. 2.2 MAX error for
real-time hybrid simulation with
actuator delay

Figure 2.2 presents the increase of MAX errors with respect to the actuator delay associated with the experimental
substructures in the first and second story. MAX errors for story displacements are observed even when the associated
actuators have no delay. This implies that individual actuator delay affects the all the experimental substructures. For the
same actuator delay, the MAX errors are also observed to be different. This indicates that the error in story displacement
should not be estimated based on the time delay existing in the associated actuator.

2.3 Modal-Based Frequency-Domain Analysis

The FEI method utilizes the command displacements sent to the servo-hydraulics and the measured displacements measured
from experimental substructures. In a more general form, the FEI method can be described as following: (1) Identify the
input and output signals and apply Fast Fourier Transform (FFT) [24] to the input and output signals. Guo et al. [22]
indicated that a Hanning Window technique [19] is necessary to minimize the effect of spectrum leakage. (2) Calculate the
frequency evaluation index (FEI) between the window transformed input and output signals using Eq. (2.5a). (3) Calculate
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the amplitude (A) and the phrase angle (�) using from Eqs. (2.5b) and (2.5c). (4) Calculate the equivalent frequency (feq) for
the input signal and the equivalent time delay d due to the servo-hydraulic dynamics using Eqs. (2.5d) and (2.5e).

FEI D
pX
jD1

8
ˆ̂<
ˆ̂:
F ŒO 0.t/�j
F ŒI 0.t/�j

:

��F ŒI 0.t/�j
��2

pP
iD1

kF ŒI 0.t/�ik2

9
>>=
>>;

(2.5a)

A D kFEIk (2.5b)

� D arc tan ŒIm.FEI/=Re.FEI/� (2.5c)

f eq D

pP
iD1

�
kF ŒI 0.t/�ik2 � fi

�

pP
iD1

kF ŒI 0.t/�ik2
(2.5d)

d D ��= .2� � f eq/ (2.5e)

where I0(t) and O0(t) are the input I(t) and output O(t) after the window transform, respectively; F represents the Fast Fourier
Transform; i and j are integer indices; and p represents the number of frequencies to be considered; represents the
modulo operation; and Im(�) and Re(�) represent the imaginary and real part, respectively; feq is the equivalent frequency of
the input signal; d is the equivalent time delay corresponding to the equivalent frequency; and fi is the ith frequency from the
FFT analysis. The parameter A in Eq. (2.5b) gives the ratio between the weighted amplitudes of the input and output signals;
while the parameter � in Eq. (2.5c) provides the weighted phase difference. Accurate actuator tracking in a real-time hybrid
simulation requires that the value of A from Eq. (2.5b) be close to 1.0 and the value of � from Eq. (2.5c) be close to zero.
The difference between A and 1 is referred to as amplitude error, where overshooting implies that A is larger than 1 and
undershooting for A smaller than 1. The value of � is referred to as phase error, where negative value of � means that the
output is lagging behind the input and positive means that the output is leading the input.

To apply the FEI method to assess the effect of actuator delay on different modes of a MDOF structure, modal analysis
is explored for the computational simulation results presented in Fig. 2.1. Assuming that ¥1 and ¥2 are the first and second
mode for the 2DOF structure, Eq. (2.1) can be rewritten as

M1 � q̈1 C C1 � q̇1 C K1 � q1 .t/ D F1 .t/ (2.6a)

M2 � q̈2 C C2 � q̇2 C K2 � q2 .t/ D F2 .t/ (2.6b)

where the modal masses are defined as M1 D ¥1
T � M

¯
� ¥1 and M2 D ¥2

T � M
¯

� ¥2; the modal damping is defined as

C1 D ¥1
T � C

¯
� ¥1 and C2 D ¥2

T � C
¯

� ¥2; the modal stiffness is defined as K1 D ¥1
T � K

¯
� ¥1 and K2 D ¥2

T � M
¯

� ¥2; the

excitation forces are defined as F1 D ¥1
T � F

¯
and F2 D ¥2

T � F
¯
; q1(t) and q2(t) are modal displacement for the first and second

story, respectively; and ¥1
T and ¥2

T represent the transpose of ¥1 and ¥2, respectively. Assume that modal orthogonality is
valid for real-time hybrid simulation of the 2DOF structure with actuator delay in Eq. (2.3),

M1 � q̈1 C C1 � q̇1 C K1 � q1m
	
t � £q1


 D F1 .t/ (2.7a)

M2 � q̈2 C C2 � q̇2 C K2 � q2m
	
t � £q1


 D F2 .t/ (2.7b)

where q1m(t) and q2m(t) are modal displacement for the first and second story, respectively, when actuator delays exist in a
real-time hybrid simulation; £q1m and £q2 are the delay corresponding to the first and second mode, respectively. The value
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Fig. 2.3 Comparison of story displacements from approximate analysis

of £q1m and £q2 can be calculated by applying the FEI method to the modal displacements q1(t) and q1m(t), q2(t) and q2m(t),
respectively. The story displacements can be derived using the modal displacements as

�
x1 .t/
x2 .t/

�
D �1 � q1m .t/C �2 � q2m .t/ (2.7c)

To evaluate the accuracy of the approximation in Eqs. (2.7a) and (2.7b), the story displacements from Eq. (2.7c) are compared
with the story displacements derived from Eq. (2.3). The comparison is presented in Fig. 2.3, where coupled represents
the accurate solution from MDOF delay different equation, and decoupled represents the approximate solution from Eq.
(2.7c). It can be observed that the story displacements match each other very well, indicating that the assumption of modal
orthogonality for MDOF equation of motion in Eq. (2.3) enables the FEI method to qualitatively identify the delay for each
structural mode. Figure 2.4 presents the FEI analysis results of delay for the first and second mode. Same delays for the
actuators associated with experimental substructures are observed to result in same values of delay for both first and second
modes. The same first story delay is observed to lead to different delay in different modes. For instance, when £1 is 8 ms and
£2 is zero, the resulting delay is about 2.0 ms for first mode and 6.0 ms for second mode. While when £2 is 8 ms and £1 is
zero, the resulting delay is about 3.5 ms for first mode and 7.2 ms for second mode.

2.4 Evaluation for Real-Time Hybrid Simulation of Nonlinear MDOF Structure

To further evaluate the effect of actuator delay on real-time hybrid simulation involving multiple experimental substructures,
computational simulation of nonlinear MDOF structure is conducted. The non-linear structural behavior is simulated using
the Bouc-Wen model [25]. The equations of motion for a 2DOF non-linear structure can be expressed in Eq. (2.8), where r1

and r2 are the restoring forces for the first and second story, respectively.

�
m1 0

0 m2

� �
ẍ1
ẍ2

�
C

�
c11 c12
c21 c22
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ẋ1
ẋ2

�
C

�
r1
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�
D

�
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F2 .t/

�
(2.8)
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Fig. 2.4 FEI analysis results of delay for (a) first structural mode, (b) second structural mode

Table 2.1 Parameter of the
Bouc-Wen model

Parameter � ˇ � q

Value 0.01 0.55 0.45 2

The nonlinear restoring force is simulated using the Bouc-Wen model [25], which is defined as

r.t/ D � � k � x.t/C .1 � �/ � k � xy � z.t/ (2.9a)

In Eq. (2.9a), xy is the yield displacement; � is the ratio of the post- to pre-yield stiffness; and z(t) is the evolutionary
parameter of the Bouc-Wen model governed by the following equation:

xy � ż.t/C � jẋ.t/j � z.t/ � jz.t/jq�1 C ˇ � ẋ.t/ � jz.t/jq � ẋ.t/ D 0 (2.9b)

The dimensionless parameters (� , ˇ and q) control the shape of the hysteretic loop. Table 2.1 lists the values of the Bouc-
Wen model parameters used in this study, with same linear elastic properties as the 2DOF structure presented previously.

Figure 2.5 presents the comparison of story displacement for real-time hybrid simulation of the nonlinear 2DOF structure
with and without actuator delay. Smaller difference can be observed when compared those in Fig. 2.1. MAX errors for the
story displacements are presented in Fig. 2.6. When £2 is equal to 10 ms and 20 ms, respectively, the MAX error in first story
displacement has an almost constant value of 10 % and 22 %, respectively, while the MAX error in second story displacement
monotonically increases with respect to the value of £1.

Figure 2.7 presents the FEI analysis results of delay for the first and second mode using the nonlinear simulation results.
Unlike Fig. 2.4, same delays for the actuators are observed to result in different values of delay for both first and second
modes. For instance, when £1 and £2 both equal to 10 ms, the resulting delay is about 1.4 ms for first mode and 10.0 ms for
second mode, respectively. For the particular structure presented in Fig. 2.7, it can be observed that the actuator delay has
more significant impact on the second mode than on the first mode, where the delay from FEI analysis for the second mode
is much larger than that for the first mode.

2.5 Summary and Conclusions

The effect of actuator delay is investigated for real-time hybrid simulation involving multiple experimental substructures in
this study. Both linear elastic and nonlinear structural behavior are studied for two degrees of freedom structures. Actuator
delays associated with different experimental substructures in different degrees of freedom are observed to be coupled.
Modal analysis is then explored in this paper to decouple the actuator delays associated with different degree-of-freedom
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Fig. 2.5 Comparison of story displacement for real-time hybrid simulation of a nonlinear MDOF structure with and without actuator delay

Fig. 2.6 MAX error for
real-time hybrid simulation of a
nonlinear MDOF structure with
actuator delay

into time delay for different modes using the FEI method. The comparison of story displacements shows good accuracy of the
approach for the cases presented in this study. It is then extended to real-time hybrid simulation involving multiple nonlinear
experimental substructures. Analysis results show that the actuator delays have different effect on different structural modes.
For the selected case, the second mode is observed to be influenced by the actuator delays. The presented study focuses on
limited number of cases. Future study will evaluate the proposed approach to more general simulations including different
ground motion and different structural properties as well as different number of degrees of freedom.
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Fig. 2.7 FEI analysis results of delay for (a) first structural mode, (b) second structural mode
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Chapter 3
Effective Control of a Six Degree of Freedom Shake Table

Joseph A. Franco III, Rui M. Botelho, and Richard E. Christenson

Abstract Real-Time Hybrid Substructuring (RTHS) is a new method of vibration testing that can be used to effectively
characterize the system level performance of mechanical equipment. RTHS allows mechanical equipment to be physically
tested while coupled through what is called a transfer system to a real-time numerical simulation of the support structure. The
challenge in applying RTHS to test mechanical equipment is twofold: the equipment itself can have little inherent damping
which, coupled with the inherent dynamics in the transfer system, can result in unstable RTHS tests; and the interface at
the attachment points can be complex with multi-directional and rotational motion and reactions which adds significant
complexity to the RTHS transfer system. To insure stability and accurately represent the complex interface between the
physical and numerical substructures, a high fidelity multiple-input-multiple-output (MIMO) servo-hydraulic actuator system
is needed for the RTHS transfer system. This paper presents a methodology to achieve effective control of a six degree-of-
freedom (6DOF) shake table and describes the corresponding MIMO system identification and model-based feedforward
feedback compensation to facilitate both stable and accurate RTHS testing of lightly damped mechanical systems. Results
show that the proposed compensation method can improve the magnitude and phase tracking of a 6DOF shake table located
at the University of Connecticut.

Keywords Real time hybrid simulation • Actuator dynamics • Feedforward compensation • Multiple input multiple
output • Coordinate transformation

3.1 Introduction

Real-time hybrid substructuring (RTHS) provides the capability to isolate and physically test the critical components of
a mechanical system early on in the design phase of a system. This capability is accomplished by including the dynamic
interaction at the time of the component testing by using a numerical representation of the remainder structural system
not being physically tested. RTHS is a relatively new method of vibration testing, made more practical due to advances in
computer power, digital signal processing hardware/software, and hydraulic control. RTHS has the potential to accurately
capture the dynamics of the coupled system at the lower frequencies as well as provide system level insight into the design of
mechanical systems during the component level testing. In doing so, RTHS can potentially remove unnecessary conservatism
from the design of the mechanical system. Figure 3.1 shows a general diagram of a RTHS closed loop test which illustrates
the closed loop nature of this type of testing.

Early research in RTHS focused on earthquake engineering and structural engineering [1–4]. RTHS was a significant
element of the Network for Earthquake Engineering Simulation (NEES) with a comprehensive list of projects and
publications posted at https://nees.org/wiki/RTHSwiki. A major focus of past RTHS research is the development of actuator
control methods for effective displacement tracking of the servo-hydraulic transfer system. Horiuchi et al. [4] used a
frequency independent time-delay model to approximate the servo-hydraulic actuator dynamics, and then a polynomial
prediction to compensate for the servo-hydraulic actuator dynamics. Jung and Shing [14] and Chen and Ricles [15] used
similar compensation methods based on a control signal error-compensation methods. These methods rely on a simplified
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Fig. 3.1 General block diagram for RTHS closed-loop testing

time domain representation of stationary servo-hydraulic actuator dynamics with relatively small time delays. Carrion and
Spencer [16] and Phillips and Spencer [17] proposed compensation techniques that involve higher order model-based
strategies including a feedforward compensator, that creates an approximate inverse of the actuator model to compensate
for the servo-hydraulic actuator dynamics in the transfer system. Phillips and Spencer [18] and Gao et al. [19] applied this
approximate inverse method to multi degree of freedom (MDOF) servo-hydraulic actuator systems for actuators providing
collinear displacements on a steel building frame. These tests involved testing frames or dampers (not mechanical equipment)
with higher levels of inherent damping and with transfer systems mostly limited to uniaxle motion.

A similar test method to RTHS is hardware-in-the-loop (HWIL). HWIL testing is typically used in mechanical
applications to test control systems. In HWIL testing, the physical substructure is often an electrical component and the
interface between the numerical and physical substructures is achieved through the direct transfer of electrical signals.
As such, the transfer system, as the system connecting the physical and numerical components is called in RTHS, does
not require any servo-hydraulic control system for HWIL. HWIL testing has been conducted on mechanical equipment
including HWIL research done in the design of electro-mechanical systems [7, 8] and Bouscayrol [9] and Carmeli et al.
[10] who use HWIL to predict the electrical performance of electric motors and distributed electric generators, respectively.
Similar research topics used a mechanical automotive engine as the physical substructure, referred to as engine-in-the-loop
[11–13].

RTHS allows for the combined testing of physical and numerical substructures as shown in Fig. 3.1. This figure illustrates
the closed loop nature of RTHS. The interface forces at the physical substructure connection points are measured by sensors,
converted to digital signals and transmitted to the numerical substructure. The numerical substructure uses the measured
interface forces along with any numerical loading to calculate the displacements at the same substructure connection points.
These numerical displacements are then imposed upon the physical substructure through a transfer system, typically a servo-
hydraulic actuator transfer system. While the transfer systems of typical RTHS tests in civil earthquake engineering are
usually single hydraulic actuators and uniaxial, the transfer system for the support of a piece of mechanical equipment can
be more complex, involving not only multiple translations, but rotations as well.

Since RTHS involves a feedback loop, it is critical for test stability and accuracy that all the forces and displacements are
transmitted between the two substructures accurately and timely, to insure compatibility of the substructures and stability
of the system. Accuracy and delay in a RTHS test can be a result of the sensors, the analog to digital and digital to analog
converters, and the computation time. However, it is typically dominated by the inherent dynamics (i.e. apparent time delay
and magnitude distortion) of the transfer system. This effect can be compounded when considering multiple actuators tuned
to work synchronously with one another.

This paper presents a methodology to achieve effective control of a six degree-of-freedom (6DOF) shake table for use in
RTHS of mechanical equipment. A MIMO system identification is conducted for the 6DOF shake table and model-based
feedforward feedback compensation is implemented to facilitate both stable and accurate RTHS testing of lightly damped
mechanical systems. This approach compensates the actuator dynamics of the six individual actuators of the shake table to
provide effective displacement tracking of the six Cartesian degrees-of-freedom (i.e., translations and rotations) of the shake
table. This nonlinear transformation was determined by Nakata et al. [20] for pseudo-dynamic hybrid testing. However, direct
application of this nonlinear transformation with linearized feedforward inverse compensation techniques can be problematic.
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This paper simplifies the nonlinear transformation by linearizing it for use with feedforward inverse compensation. Results
show that the proposed compensation method can improve the magnitude and phase tracking of the Cartesian degrees-of-
freedom of the 6DOF shake table located at the University of Connecticut to levels needed to conduct RTHS of mechanical
equipment.

3.2 Six Degree of Freedom Shake Table

Real Time Hybrid Simulation (RTHS) is the combination of a physical substructure with a numerical substructure. This
combination is performed by the use of sensors that transmit reactant forces from the physical substructure to the numerical
substructure and servo-hydraulic actuators that transmit displacements, calculated by the numerical substructure, to the
physical substructure. Figure 3.2 shows the general layout of a MIMO RTHS test of mechanical equipment at the University
of Connecticut using a 6-DOF servo-hydraulic shake table. The real time digital signal processor (DSP) is a dSPACE DS1103
PPC controller board. The numerical substructure, along with any compensation scheme is built in MATLAB Simulink and
then downloaded to the DS1103 through dSPACE’s real time interface (RTI). The DS1103 has eight BNC D/A channels and
twenty BNC A/D channels. The DSP controller sends commanded actuator displacements to the ShoreWestern SC6000 servo
valve controller which has an internal analog PID reference tracking controller to keep the system stable but is not sufficient
for the level of reference tracking required for RTHS. Each actuator has an LVDT which measures the displacement of that
actuator. This measured displacement is fed back into the internal PID control loop and the outer RTHS compensation control
loop as well as the DataPhysics data acquisition system. A picture of the 6DOF shake table is shown in Fig. 3.3.

Fig. 3.2 System diagram of RTHS substructuring of mechanical equipment
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Fig. 3.3 Six degree of freedom shake table

3.3 Actuator Dynamics System Identification

The first step to derive a feedforward compensator is to experimentally obtain the frequency response of the transfer system.
For a single actuator transfer system, single input single output (SISO) system identification is required. For a multi-actuator
transfer system, multiple input, multiple output (MIMO) system identification can be conducted since the operation of each
actuator can affect the dynamics of other actuators in the system due to cross-coupling from physical connections and
hydraulic fluid.

A MIMO system identification test for a six actuator shake table requires six reference channels which are also the
command channels and six measured channels. A compensated MIMO system identification test for a six actuator shake
table requires six reference channels, six command different command channels and six measured channels. Between the six
reference channels and the six command channels, twelve output signals are needed. The dSPACE DS1103 PPC controller
board, described above, has less D/A BNC outputs than are required for a compensated MIMO system identification test.
Because of this, six single input multiple output (SIMO) test are required .In this paper, it is verified that this multiple SIMO
system identification technique is equivalent to a single MIMO system identification technique which is used to measure the
frequency response of the multi-actuator system are described. The derivations of both SIMO and MIMO transfer functions
are described in full detail in Bendat and Piersol [21].

Using the theory of linear superposition, all of the actuators can be driven simultaneously with uncorrelated signals and
the complete transfer function matrix can be calculated in one system identification test [21]. As long as each actuator is
driven with a signal that is uncorrelated with the other input signals, the correlation between each of the outputs and the
inputs can also be calculated forming a coherence matrix of the MIMO system.

Let X be a column vector of the Fourier transforms of the m inputs to the system, the commanded actuator displacement,
and Y a column vector of the Fourier transforms of the n outputs of the system, the measured actuator displacement.
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Let X*, Y* be the complex conjugate vectors of X, Y, respectively, Gxx, Gyy the input and output auto spectral density
matrices, respectively, Gyx the cross spectral density matrix between the input and outputs can be determined as
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The frequency response function matrix, Hyx the and the coherence matrix, ”yx, can then be determined as
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Figure 3.4, shows the coherence of the six actuators. These results indicate that each actuator acts independently. The
coherence matrix shows unity coherence along the diagonal, which is the coherence of the actuator with itself. The off
diagonal terms of the coherence matrix are very low indicating negligible cross-coupling between the six actuators. Therefore
when one actuator is excited, the response of the other five actuators is negligible.

Figure 3.5 shows the measured diagonal terms of the frequency response matrix of measured to commanded actuator
displacement obtained from testing. Each of the actuators has its own dynamics but they are somewhat similar. All the
actuators show frequency-dependent magnitude attenuation that is approximately 20–25 dB over the 30 Hz bandwidth. The
actuators also have a frequency dependent effective time delay that is approximately 25–30 ms.

3.4 Feedforward Inverse Compensation

The servo-hydraulic control system used to interface the physical and numerical substructures has frequency dependent
dynamics that need to be compensated to provide accurate and timely tracking of desired displacements for stability and
accuracy of a RTHS. Figure 3.6 illustrates the model-based feedforward-feedback control architecture from Carrion and
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Fig. 3.4 Coherence matrix, ”yx
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Fig. 3.5 MIMO system identification frequency response function magnitude (a) and phase (b)

Spencer [16] used for compensating the actuator dynamics. The feedforward compensator is used to cancel the modeled
actuator dynamics, while the feedback gain is tuned experimentally to provide robustness due to modeling errors and changes
in physical substructure during the experiment.

The feedforward inverse compensator is designed to cancel the modeled actuator dynamics of the servo-hydraulic system.
Ideally, an exact inverse of the model fit of the servo hydraulic transfer function would be the perfect compensator.
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Fig. 3.6 Feedforward-feedback
control for actuator dynamics
compensation
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The development of feedforward inverse compensator starts with deriving a Laplace domain transfer function model of
the servo hydraulic dynamics from the mth commanded to the nth measured actuator displacement, which can be expressed
as
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(3.7)

where k is the number of poles and l is the number of zeros. The feedforward inverse compensator is determined by
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If the transfer function model fit has equal number of poles and zeroes then an exact inverse can be used. However, in most
cases, the model has less zeroes than poles making its inverse an improper transfer function, i.e. having more zeroes than
poles. Low pass compensation, as discussed subsequently, can be used to address this issue.

The feedback gain matrix can be selected term by term through experimental trial and error to provide stable and robust
performance of the servo-hydraulic system.

3.4.1 Cascaded Feedforward Inverse Compensation

The dynamics of the actuators are displacement and load dependent and therefore non-linear. To deal with the inherent non-
linearity of the actuator system and the very large frequency dependent dynamics, an approach referred to here as cascaded
feedforward inverse compensation was implemented. In this approach, the system identification of the uncompensated
system is used to develop an initial compensator. When this compensator is implemented, the commanded displacement
can become a lot larger in at some frequencies to compensate for the frequency dependent attenuation in magnitude. Because
the actuators are commanded a significantly larger displacement than the initial system identification, the dynamics of the
system change. The initial compensator may no longer be sufficient to achieve the desired actuator dynamics and additional
system identification is necessary. The dynamics of the actuator including the initial compensator is used to develop a second
compensator using the same methodology of the initial compensator in order to compensate for the remaining time delay.
These two compensators are then used in series as the feedforward compensator. Figure 3.7 illustrates the block diagram of
the feedforward-feedback compensation with cascaded feedforward compensators.
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Fig. 3.7 Block diagram of
cascaded feedforward inverse
compensation

3.4.2 Low Pass Inverse Compensation

One approach is to multiply the improper actuator inverse by a low pass transfer function to make a proper transfer function.
As described in Carrion and Spencer [16], this low pass inverse compensation (LPIC) technique involves an alpha scalar
value to duplicate the poles of the actuator transfer function as additional poles at higher frequencies. These additional poles
are used to create the low pass filter given by

Lynxm.s/ D
Yk

iD1˛ipi;m;nYk

iD1 .s � ˛ipi;m;n/
(3.10)

where k is the number of required additional poles. Multiplying the improper inverse of the actuator model by the low pass
transfer functions yields the LPIC transfer function

Cynxm.s/ D Aynxm.s/
�1Lynxm.s/ (3.11)

Instead of using an alpha scalar to multiply the existing poles, the additional poles here are forced to be a specific frequency.
This frequency should be high enough to minimize the effect on the low frequency dynamics over the control band but not
too close to the sampling frequency so that accurate numerical integration is possible. The low pass transfer function is
represented by
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(3.12)

An independent inverse compensator was derived for each of the input output pairs of the MIMO transfer function matrix.
Each of the elements of the MIMO transfer function matrix diagonal was treated as s SISO transfer function and was curve
fit using the invfreqs MATLAB function. A constant (zero order) numerator and a fourth order denominator was found to the
best fit of the frequency response data. The form of the curve fit is shown as

Aj .s/ D n0j

d4j s4 C d3j s3 C d2j s2 C d1j s C d0j
(3.13)

where j is the number of actuators. These SISO transfer function were place in a MIMO transfer function matrix along the
diagonal as
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Fig. 3.8 Frequency response function magnitude (a) and phase (b) of the six actuators uncompensated and with cascaded LPIC compensator

Since this MIMO transfer function matrix is diagonal, each SISO transfer function along the diagonal can be independently
inverted, which is the same as inverting the MIMO transfer function matrix. The LPIC transfer function matrix is then
determined by
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System identification of the actuators was performed incorporating the initial low pass inverse feedforward compensator.
All the actuators show a significant decrease in the frequency dependent magnitude attenuation that was approximately

20–25 dB and was improved to approximately 0–2 dB and the time delay that was approximately 25–30 ms and was improved
to approximately 2–3 ms. The addition of the second LPIC compensator left the magnitude mostly unchanged since that was
not the goal of the additional compensation. The time delay that was approximately 2–3 ms was improved to approximately
1 ms. After two iterations of system identification, sufficient performance was seen from the actuators. Figure 3.8 shows
uncompensated actuator frequency response functions versus the compensated actuator frequency response functions using
the cascaded LPIC compensator.

3.5 Cartesian to Actuator Transformation

The 6-DOF shake table uses external command inputs to drive each of the six individual actuators. The output of the
numerical substructure during the RTHS test will be in six Cartesian directions (three translation and three rotations). The
original nonlinear transformation matrix developed by Nakata [20] takes an initial pin location pi in 3D space and, by using
translation and yaw-pitch-roll matrixes, locates a new pin location. The Euclidean normal from the base point coordinates qi

to the new pin location is calculated and then the length of the initial actuator is subtracted which determines the necessary
displacement of the actuator ıli. The displacement calculation is done for each actuator in the control system given a set of
input translations and rotations, tx,y,z and � x,y,z respectively.

The linear actuator displacements necessary to achieve Cartesian displacements of the shake table causes various issues
when combined with linearized feedforward inverse compensation techniques. To achieve certain Cartesian displacements,
certain actuators are sent signals with sharp discontinuities. These discontinuities cause high frequency content which causes
unstable behavior in the simulation.
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The nonlinear transformation can be linearized by assuming linear small angle theorem. This simplifies the terms of
the transformation matrix by eliminating non-linear trigonometric functions, which also eliminates the normal direction
movement because of rotations. Using the small angle theorem,

sin� � � cos� � 1

The linear transformation matrix becomes
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The next step to simplify the transformation is to ignore any displacement that is not in the normal direction of the actuator.
This is done by inspection of the transformation terms of each of the actuators. This simplification of the transformation
matrix converts it from a 3D transformation into a 1D normal only transformation. The last step is to simplify the
transformation by assuming that the horizontal actuators are vertically aligned with the CG of the table. This eliminates
negligible vertical moment arms that require small actuator extensions. The final linear transformation matrix is then
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(3.17)

Where pij is the pin location of the ith in the jth direction. The above linearized transformation for the six degree of freedom
shake table can be easily used to determine the required actuator displacements to create the Cartesian displacements and
rotations of the shake table. In addition, a simple inverse of this transformation matrix can be used to calculate the shake
table displacements and rotations from the measured actuator displacements.

The linearized transformation was used to transform six table Cartesian command signal inputs into six actuator command
signals. These six actuator signals were then passed through the cascaded LPIC feedforward compensators described above.
The output of the feedforward compensators were commanded to the shake table actuators and the response of the table
were then recorded. This response is the displacement of each of the six actuators. To calculate Cartesian frequency response
functions, the responses of the actuators needed to be transformed back into the table Cartesian responses. This was done
using the inverse of the linearized transformation. The results of this calculation are shown in Fig. 3.9.
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Fig. 3.9 Frequency response function magnitude (a) and phase (b) of six cartesian directions using the linearized transformation
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Using the same cascaded LPIC compensator as shown in Fig. 3.8 demonstrates consistent performance for the Cartesian
frequency response functions than the actuator frequency response functions shown in Fig. 3.8.

3.6 Conclusion

This paper described MIMO system identification and model-based feedforward feedback compensation of a six degree of
freedom shake table for conducting stable RTHS testing of lightly damped mechanical systems. This approach involved
compensating the actuator dynamics of the six individual actuators of the shake table to provide effective displacement
tracking of the six Cartesian degrees of freedom (i.e., x, y, z translations and rotations) of the shake table. This was
accomplished by calculating a MIMO transfer function matrix quantifying the frequency dependent magnitude and time
delay. Once the actuator dynamics was quantified, a cascaded feedforward inverse compensation was developed to linearize
the actuator dynamics and reduce the inherent time delay. The nonlinear transformation matrix relating the Cartesian
degrees of freedom of the shake table to the six individual actuators was linearized to enable the use of feedforward
inverse compensators designed for the shake table control. The cascaded feedforward inverse compensation and linearized
transformation can be used to perform multiple degree of freedom RTHS testing of lightly damped mechanical systems using
the six degree of freedom shake table as part of future research.
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Chapter 4
Mathematical Equivalence Between Dynamic Substructuring
and Feedback Control Theory

Rui M. Botelho and Richard E. Christenson

Abstract This paper presents a reformulation of dynamic substructuring for vibrating structural systems as a feedback
control problem. Frequency based substructuring (FBS) using admittance coupling of two substructures is shown to be
mathematically equivalent to a feedback control system with the primary substructure acting as the controller and the
secondary substructure acting as the plant. This formulation can be used to perform time-domain simulations of dynamic
substructuring problems using MATLAB’s Simulink environment, whereby the primary substructure can be modeled by
three possible approaches: (1) Laplace domain transfer functions, (2) state-space models, or (3) finite impulse response
functions. The secondary substructure can be represented by a variety of Simulink blocks including nonlinear elements.
By inserting an actuator transfer system between the two substructures, this formulation also provides the basis for real-
time hybrid substructuring (RTHS) for coupling numerical and physical substructures as a cyber-physical system similar
to hardware-in-the-loop testing. In typical RTHS the numerical substructure acts as the controller and the actuator with
physical substructure acts as the plant. This feedback control formulation will lead to further advancements for both dynamic
substructuring and RTHS by adapting methods from classical and modern feedback control theory.

Keywords Frequency based substructuring • Experimental structural dynamics • Real-time hybrid testing • Dynamic
substructuring • Feedback control systems

4.1 Introduction

Dynamic substructuring has played a significant role in the field of structural dynamics since the advent of computational
methods, particularly the finite element method (FEM). Dynamic substructuring involves dividing a structural dynamic
system into parts or components, analyzing them separately, and then coupling them together by an assembly procedure.
This methodology was introduced over four decades ago to reduce the complexity and computational size of structural finite
element models, de Klerk et al. [1]. Although substructuring was initially conceived for computational modeling, it has
also been successfully applied to experimental structural dynamics and is shown to provide a foundation for real-time hybrid
substructuring (RTHS), which is a relatively new method of vibration testing that enables numerical and physical components
to be coupled together in real-time as a cyber-physical system similar to hardware-in-the-loop (HWIL) testing.

One of the first approaches for dynamic substructuring of structural finite element models is the reduction method
from Guyan [2]. Guyan reduction involves reducing the mass and stiffness matrices of a structural component using
a transformation matrix relating the static displacements between the retained and condensed degrees of freedom. The
reduced stiffness matrix is equivalent to static condensation and therefore an exact reduction, but the reduced mass matrix is
approximate. Due to its simplicity, Guyan reduction has become very popular and is still in wide use today for computational
dynamic substructuring of large finite element models. Since this method creates reduced mass and stiffness matrices in
physical coordinates, Guyan reduction is most convenient for creating numerical substructures from finite element models.

Component mode synthesis (CMS) is another popular method for dynamic substructuring, which was also originally
developed for computational modeling and then adapted for experimental structural dynamics. There are many flavors of
CMS, including the method from Craig and Brampton [3] using fixed-interface vibration modes and constraint modes and the
method from MacNeal [4] and Rubin [5] using free-interface vibration modes and residual flexibility modes. CMS was later
extended by Duarte and Ewins [6] for experimental dynamic substructuring using modal analysis techniques. CMS provides
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a dynamic substructuring framework for deriving a hybrid model of a structural system comprised of numerical and
experimental components or substructures described by their individual component modes. The component modes for
the numerical substructure can be obtained from an eigenvalue analysis of the finite element model, while those for the
experimental substructure can be obtained from experimental modal analysis as well as system identification techniques.
Equilibrium and compatibility at the connection points are then used to couple the numerical and experimental substructures
together into a reduced-order model of the original system. CMS is most appropriate for structural dynamic systems with
negligible frequency-dependent effects that can be described by a relatively few number of lightly damped modes.

Frequency based substructuring (FBS) from Jetmundsen et al. [7] and its subsequent extensions by Gordis [8] and de
Klerk et al. [9] provides a dynamic substructuring framework to couple numerical and experimental substructures together
as a frequency-domain hybrid model. FBS uses frequency response function (FRF) matrices, which can be obtained for
the experimental substructure using frequency response measurements and for the numerical substructure using finite
element analysis. The substructure matrices are then assembled together using equilibrium and compatibility relations
using either impedance coupling or its inverse called admittance coupling methods. An alternative method using Lagrange
multipliers to couple the FRF matrices of numerical and experimental substructures, called Lagrange Multiplier Frequency
Based Substructuring (LM-FBS), was introduced by de Klerk et al. [9]. These FBS methods can accommodate structural
dynamic systems with many modes, high damping, and frequency-dependent behavior. But as with most frequency domain
approaches, FBS methods assumes linearity and care must be taken to ensure reciprocity and passivity in the FRF matrices.

de Klerk et al. [1] and Maia and Silva [10] provide excellent reviews of the mathematical formulations for CMS and
FBS methods for both model reduction and experimental dynamic substructuring. Allen and Mayes [11] compared CMS and
FBS applied to a two-beam structures comprised of analytical and experimental beam substructures. While these approaches
can be effective, they are limited to linear time-invariant systems, which may be inadequate for capturing highly complex,
rate-dependent, and nonlinear behavior.

An approach to couple substructure state-space models was developed by Su and Juang [12]. This state-space coupling
approach was developed to take advantage of system identification techniques commonly used in the aerospace engineering
and controls systems analysis to identify state-space models. With this approach, the substructure state-space models are first
identified either in the frequency-domain using frequency response data or in the time-domain using impulse response data
or Markov parameters. Substructure state-space models are then assembled using transformations that enforce compatibility
and equilibrium at the substructure interfaces. Sjövall and Abrahamsson [13] applied a similar state-space coupling approach
but transforms the substructure state-space models into a coupling form to apply kinematic constraints and equilibrium
conditions at the interfaces. They identified that the order of the state-space models used during the system identification
process is critical to accurately synthesizing the coupled response.

Recently, Rixen and van der Valk [14] developed a time-domain counterpart to LM-FBS called Impulse Based
Substructuring (IBS) using impulse response functions (IRF’s) for the numerical and experimental substructures. The
numerical IRF’s can be obtained by transient finite element analysis of the numerical substructure subjected to impulse
force loading, while the experimental IRF’s can be obtained by hammer testing of the experimental substructure. The IBS
method assembles the coupled system and computes the time history of the system response by evaluating the convolution
product between the IRF’s and the applied external forces as well as the interface forces between the substructures. IBS
enforces compatibility at the interface of the substructures using Lagrange multipliers in a similar way as LM-FBS. IBS is
most useful for analyzing linear time-invariant systems subjected to impact or other transient loading. IBS can also be used
to perform computational hybrid simulation whereby linear numerical and experimental substructures described by IRF’s
are coupled to a numerical model of a nonlinear component solved by direct time integration.

Real-time hybrid substructuring (RTHS), also called real-time hybrid simulation or real-time dynamic substructuring, is a
relatively new method of structural dynamic testing made feasible by recent advances in numerical computing power, digital
signal processing, and high-speed servo-hydraulic actuation. RTHS allows a coupled system to be partitioned into separate
physical and numerical substructures. The substructures that are well understood are simulated in real-time using analytical
or numerical models, while those that are highly complex or nonlinear are physical tested using actual hardware specimens.
The numerical and physical substructures communicate together in real-time by transferring displacement and force signals
through a feedback loop using controlled actuation and sensing. The physical substructure is usually the experimental
component of interest, while the numerical substructure is typically an analytical or numerical model of the remaining
system incorporating various complexities that may be difficult to represent physically.

RTHS evolved from Pseudo Dynamic (PsD) testing to enable system-level characterization of physical structural
components with strong rate-dependent effects, such as base isolators and nonlinear damping devices, particularly magneto-
rheological (MR) fluid dampers, for seismic applications. Early developments of RTHS include Horiuchi et al. [15],
Nakashima and Masaoka [16], and Darby et al. [17]. RTHS is also a major element of the Network for Earthquake
Engineering Simulation (NEES). For example, Christenson and Lin [18] describe a large-scale RTHS test setup at the
University of Colorado Boulder NEES facility to examine the system-level performance of multiple 200 kN MR fluid
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dampers in a three-story building structure. RTHS offers a more general approach than CMS, FBS and IBS methods to
couple numerical and physical substructures together. CMS, FBS and IBS methods are essentially post-test experimental
dynamic substructuring techniques that use linearized mathematical models of the physical substructures derived from
measured data. RTHS is an online experimental dynamic substructuring technique, whereby the numerical and physical
substructures communicate together in real-time by transferring displacement and force signals through a feedback loop
using controlled actuation and sensing. Since RTHS involves a feedback loop, actuator dynamic compensation is needed to
reduce the inherent time delay of the actuator transfer system and provide effective actuator tracking and closed-loop stability
during RTHS testing.

Kim et al. [19] introduced the convolution integral method for RTHS (CIM-RTHS) as an alternative approach for solving
the numerical substructure in real-time by exploiting linear superposition. In CIM-RTHS, the displacements imposed on
the physical substructure are computed by convolving the measured restoring forces with pre-calculated impulse response
functions of the numerical substructure combined with pre-calculated displacements due to the applied numerical loading.
With this approach, the computational burden is moved from the RTHS testing into pre- and post-processing where real-
time calculations are not required, allowing larger numerical models with increased complexity to be used. Jiang et al. [20]
applied CIM-RTHS to evaluate large-scale MR dampers coupled to a complex bridge numerical substructure derived from
a detailed finite element model. Recently, Botelho et al. [21] extended CIM-RTHS using discrete convolution with finite
impulse response (FIR) filters for the numerical substructure and experimentally verified this method using RTHS testing of
a cantilevered beam as the numerical substructure coupled to a viscous damper as the physical component.

It should be noted that the IBS method from Rixen [14] has similarities to CIM-RTHS form Kim et al. [19]. IBS was
developed as the time-domain counterpart to LM-FBS to more efficiently perform computational and experimental dynamic
substructuring for transient loading. CIM-RTHS was specifically developed for RTHS to reduce the computational burden
of solving the numerical substructure by employing discrete convolution using pre-calculated impulse response functions.
The common ingredient in both methods is the innovative use of impulse response functions to represent the numerical
substructure. IBS can also be used to derive a hybrid time-domain model of the system by coupling numerical impulse
response functions with experimental impulse response functions, but this method assumes that the physical substructure is
linear. On the other hand, CIM-RTHS interfaces the impulse response functions of the numerical substructure to an actual
physical specimen in real-time through an actuator transfer system, allowing nonlinear behavior of the physical substructure
to be captured.

This paper presents a reformulation of dynamic substructuring as a feedback control problem. FBS using admittance
coupling of two substructures is shown to be mathematically equivalent to a feedback control system with the primary
substructure acting as the controller and the secondary substructure acting as the plant. This formulation can be used
to perform time-domain simulations of dynamic substructuring problems using MATLAB’s Simulink environment. By
inserting an actuator transfer system between the two substructures, this formulation also provides the basis for RTHS for
coupling numerical and physical substructures together in real-time. In typical RTHS, the numerical substructure acts as the
controller and the actuator with physical substructure acts as the plant. This feedback control formulation will lead to further
advancements for both dynamic substructuring and RTHS by adapting methods from classical and modern feedback control
theory.

4.2 Feedback Control Theory

To illustrate the mathematical equivalence between dynamic substructuring and feedback control, the closed loop response
for a typical multiple-input-multiple-output (MIMO) feedback control system for reference tracking and disturbance
rejection is first reviewed. Figure 4.1 shows the Laplace domain block diagram of a typical feedback control system.

Fig. 4.1 Block diagram of a
typical feedback control system
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In the diagram, D(s) is the disturbance transfer function relating the force inputs, f(s), to the disturbance outputs, d(s),
G(s) is the plant transfer function relating the control inputs, u(s), to the response outputs, x(s), and K(s) is the controller
transfer function relating the error signals, e(s), to the control inputs.

The error signals are related to reference inputs, r(s), and response outputs by

fe.s/g D fr.s/g � fx.s/g (4.1)

The response outputs are related to the force input and error by

fx.s/g D ŒD.s/� ff .s/g C ŒG.s/� ŒK.s/� fe.s/g (4.2)

Substituting (4.2) into (4.1) and rearranging yields the closed loop response

fx.s/g D ŒI CG.s/K.s/��1 ŒG.s/� ŒK.s/� fr.s/g C ŒI CG.s/K.s/��1 ŒD.s/� ff .s/g (4.3)

Note that the above expression has a common factor, which is the sensitivity matrix

ŒSFB.s/� D ŒI C LFB.s/�
�1 (4.4)

where, LFB.s/ D G.s/K.s/ is the loop gain.
Using the above expression, (4.3) becomes

fx.s/g D ŒSFB.s/� ŒG.s/� ŒK.s/� fr.s/g C ŒSFB.s/� ŒD.s/� ff .s/g (4.5)

The above equation represents the closed-loop response of a typical feedback control system subjected to a reference and
a disturbance input. The first term corresponds to the closed-loop response for reference tracking, while the second term
corresponds to the closed-loop response for disturbance rejection. This equation will be used later to contrast against the
coupled response for a dynamic substructuring problem. Note that the sensitivity matrix above has the subscript FB to
denote feedback control and differentiate it from the ones that will be derived for dynamic substructuring (DS) and real-time
hybrid substructuring (RTHS) in the following sections.

4.3 Dynamic Substructuring

Now consider the dynamic substructuring problem shown in Fig. 4.2, in which a notional structural dynamic system is
partitioned into two components, a primary substructure and a secondary substructure. The primary substructure is subjected
to a driving force, f (p)

d , while the secondary substructure is subjected to a driving force, f (s)
d . Although this system illustrates

a two interface degrees-of-freedom (DOFs), the subsequent reformulation of dynamic substructuring as a feedback control
problem is general and can be applied to cases with many interface DOFs.

Fig. 4.2 Dynamic substructuring
applied to a notional structural
dynamic system
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The traditional approach to couple two dynamic substructures is to employ FBS using either impedance or admittance
coupling methods. To illustrate the relationship to feedback control, FBS using admittance coupling and cast in the Laplace
domain provides a convenient starting point. Using s D i!, the response of the primary substructure can be written as
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(4.6)

In the above equation, x(p)
r are the displacements of the primary substructure at particular DOF’s of interest, x(p)

b are the
displacements of the primary substructure at the interface boundary DOF’s, f (p)

b are the boundary forces of the primary

substructure at the interface boundary DOF’s, and H.p/

xi fj
are the frequency dependent admittance matrix of the primary

substructure relating a force input at the jth DOF to a displacement output at the ith DOF.
From force equilibrium, the boundary forces of the primary substructure are related to the boundary forces of the

secondary substructure by

n
f
.p/

b .s/
o

D �
n
f
.s/

b .s/
o

(4.7)

From displacement compatibility, the boundary displacements of the primary substructure are related to the boundary
displacements of the secondary substructure by
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(4.8)

For the secondary substructure, the dynamic equilibrium equation can be written in the frequency domain as
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In the above equation, x(s)
d are the displacements of the secondary substructure at the drive force DOF’s, x(s)

b are the
displacements of the secondary substructure at the interface boundary DOF’s, f (s)

b are the boundary forces of the secondary

substructure at the interface boundary DOF’s, and D.s/

fi xj
are the frequency dependent dynamic stiffness matrix relating a

displacement input at the jth DOF to the reaction force output at the ith DOF. The upper equation of (4.9) leads to
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Substituting (4.10) into the lower equation of (4.9) and rearranging yields
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Where,
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The boundary forces at interface DOF’s are found by substituting (4.7) and (4.8) into the lower equation of (4.6) and then
substituting into (4.11), which yields
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Rearranging as
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Fig. 4.3 Block diagram of dynamic substructuring formulated as feedback control system

Comparing (4.13) to (4.3), we see that the above expression is essentially the same as that for the closed-loop response
of a MIMO feedback control system. The primary substructure admittance matrix, H.p/

xbfb
.s/, acts as the controller and the

secondary substructure dynamic stiffness, D̃.s/

fbxb
.s/, acts as the plant. Using this analogy, we see that the sensitivity matrix

for dynamic substructuring is

ŒSDS.s/� D ŒI C LDS.s/�
�1 (4.14)

where, LDS.s/ D D̃
.s/

fbxb
.s/H

.p/

xbfb
.s/ is the loop gain for dynamic substructuring.

Using the above expression, (4.13) becomes
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The above equation for dynamic substructuring resembles (4.5) for feedback control. The first term resembles the closed-
loop response for reference tracking, while the second term resembles the closed-loop response for disturbance rejection. The
corresponding block diagram for dynamic substructuring formulated as a feedback control problem is illustrated in Fig. 4.3.

Using the multiplication and summation operations, the above block diagram can also be used to derive the interface
boundary forces in (4.15). Using the block diagram or the upper equation of (4.6), the displacement responses are
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and the interface boundary displacements are
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Substituting (4.13) into (4.16), the displacement responses are then
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Substituting (4.13) into (4.17), the interface boundary responses are then
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Substituting (4.14) into (4.19) and expressing in matrix form, the displacement responses are
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The above feedback control formulation for dynamic substructuring can be used to solve coupled response of two
substructures. The primary substructure is represented by frequency-dependent admittance matrices, while the secondary
substructure is represented by frequency dependent dynamic stiffness matrices. By substituting s D i!, similar equations can
be derived in the frequency domain. The Laplace domain description however allows the use of MATLAB’s Control System
Toolbox for solving the frequency and time domain response of dynamic substructuring problems. This toolbox has several
methods from classical and modern feedback control theory, which can be directly applied to dynamic substructuring.

Using the block diagram, the above feedback control formulation for dynamic substructuring can also be used to perform
time-domain simulations using MATLAB’s Simulink environment. In Simulink, the primary substructure can be modeled by
three possible approaches: (1) Laplace domain transfer functions, (2) state-space models, or (3) finite impulse response (FIR)
filters. The secondary substructure, which is in the form of a dynamic stiffness matrix relating input displacements to output
forces, can be represented by combinations of gain and time derivative blocks as well as nonlinear element blocks available
Simulink. This approach facilitates the development of more complex and realistic simulations of dynamic substructuring,
including nonlinear substructures.

4.4 Real Time Hybrid Substructuring

By inserting an actuator transfer system between the two substructures, the above feedback control formulation for dynamic
substructuring provides the basis for real-time hybrid substructuring (RTHS). With RTHS, a structural dynamic system is
partitioned into separate numerical and physical substructures and interfaced together in real-time using controlled actuation
and sensing as a cyber-physical system similar to HWIL testing. Figure 4.4 illustrates RTHS applied to the same notional
structural dynamic system, but now partitioned into separate numerical and physical substructures.

The corresponding block diagram for RTHS, which is essentially a MIMO feedback control system, is shown in Fig. 4.5.
The numerical substructure is subjected to a numerical driving force, f (n)

d , while the physical substructure is subjected to an
experimental driving force, f (e)

d . The numerical response, x(n)
r , are the displacements of the numerical substructure at particular

DOF’s of interest, x(n)
b are the displacements of the numerical substructure at the interface boundary DOF’s, x(e)

b are the
experimental displacements of the physical substructure at the interface boundary DOF’s imposed by the actuator transfer
system, f (e)

b are the experimental restoring forces of the physical substructure measured at the interface boundary DOF’s. For

the numerical substructure, H.n/

xi fj
corresponds to the frequency dependent admittance relating a force input at the jth DOF

to a displacement output at the ith DOF. The force inputs include the numerical drive forces and the experimental restoring
forces at the interface boundary DOF’s. For the physical substructure,D.s/

fbxb
corresponds to the frequency dependent dynamic

stiffness relating an actuator displacement input to the experimental restoring force at the interface boundary DOF, andD.s/

fbfd
corresponds to the frequency dependent force transmissibility relating an experimental driving force input to the experimental
restoring forces at the interface boundary DOF’s.

To enforce force equilibrium, the experimental restoring forces from the physical substructure are fed back to the
numerical substructure and applied as equal and opposite input forces. To enforce displacement compatibility, the actuator
transfer system with compensation is used to impose the numerical displacement response onto the physical substructure.
The dynamics of the actuator transfer system with appropriate compensation is represented by the actuator transfer function
Â(s). It should be noted that sensor dynamics for the measured restoring force of the physical substructure are neglected.
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Fig. 4.4 RTHS applied to a notional structural dynamic system
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Fig. 4.5 Block diagram for RTHS of notional structural dynamic system

With appropriate selection of force sensors with constant magnitude and little phase distortion at low frequencies, this is a
reasonable assumption for the control band of a typical RTHS test below 100 Hz.

From the above block diagram, the closed-loop response for the experimental restoring force is
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Comparing (4.21) to (4.3), we see again that the above expression is similar to the closed-loop response of a MIMO feedback
control system. For RTHS, the numerical substructure admittance,H.n/

xbfb
.s/, acts as the controller and the actuator dynamics

with physical substructure dynamic stiffness, D.e/

fbxb
.s/bA.s/, acts as the plant. Using this analogy, we see that the sensitivity

matrix for RTHS is

ŒSRTHS.s/� D ŒI C LRTHS.s/�
�1 (4.22)

where LRTHS.s/ D D
.e/
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xbfb
.s/ is the loop gain for RTHS.

Using the above expression, (4.21) becomes
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The above equation for dynamic substructuring in terms of sensitivities resembles (4.5) for feedback control and (4.15) for
dynamic substructuring. The first term resembles the closed-loop response for reference tracking, while the second term
resembles the closed-loop response for disturbance rejection.

Using the block diagram, the closed-loop response for the displacement responses are
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The above feedback control formulation for RTHS can be used to couple a numerical substructure to a physical specimen and
solve the coupled system response in real-time. Figure 4.6 illustrates the general block diagram of the feedback loop for a
typical RTHS test. At a given time-step, numerical loading is applied to the numerical substructure to simulate the numerical
displacements, xn, to be imposed on the physical substructure in real-time. The numerical displacements are then fed into
a controller to apply the command displacements, xc, to the actuator transfer system, which is usually a set of hydraulic
actuators controlled by a proportional-integral-derivative (PID) servo-controller using the measured displacement, xm, as the
feedback signal. The measured restoring force, fr, of the physical substructure is then fed back into the numerical substructure
to compute the numerical displacements for the next time step. RTHS also accommodates physical loading of the physical
substructure from external shaker forcing of the physical specimen.

In a typical RTHS test, a real-time processing board is used to solve the numerical substructure and apply the actuator
dynamics compensation, which is needed to reduce the inherent time delay of the actuator transfer system. These components
can be programmed on a host computer and transferred to real-time processing board using MATLAB’s Real-Time
Workshop. To drive the physical substructure, the displacement commands from real-time processing board can be sent to
the motion controller of the servo-hydraulic actuator. The measured restoring force signals are then sent back into real-time
processing board to complete the RTHS feedback loop. The measured data from the physical accelerometer and force sensors
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Fig. 4.6 Block diagram of a typical RTHS test
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on the physical substructure and the virtual displacement sensors of the numerical substructure from real-time processing
board can be acquired using a standard data acquisition system. When using Simulink to program to setup an RTHS test, the
numerical substructure can be modeled by Laplace domain transfer functions or state-space models. Recently, Botelho et al.
[21] modeled the numerical substructure in a RTHS test using FIR filters.

4.5 Conclusions

This paper presented a reformulation of dynamic substructuring as a feedback control problem to illustrate their mathematical
equivalence. It was shown that FBS using admittance coupling of two substructures is mathematically equivalent to a
feedback control system with the primary substructure acting as the controller and the secondary substructure acting as
the plant. In addition, the formulation shows that the coupled response from a force input on the primary substructures
resembles the closed-loop response for reference tracking, while the coupled response from a force input on the secondary
substructures resembles the closed-loop response for disturbance rejection. By inserting an actuator transfer system between
the two substructures, this formulation also provides the basis for RTHS for coupling numerical and physical substructures
together in real-time. For RTHS, the numerical substructure acts as the controller and the actuator with physical substructure
acts as the plant. This feedback control formulation will lead to further advancements for both dynamic substructuring and
RTHS by adapting methods from classical and modern feedback control theory.
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Chapter 5
Feasibility of a Transmission Simulator Technique for Dynamic Real
Time Substructuring

Andreas Bartl and Daniel J. Rixen

Abstract Real time substructuring is an approach which couples numerical models and physical structures in a real time
experimental test. This can be a beneficial technique for several types of applications where neither full experimental tests
nor full simulations are applicable. This contribution tries to make use of decoupling techniques inspired by dynamic
substructuring (e.g. FIBS) in real time testing. In this study an experimental test rig (denoted as AB) is considered which
consists of substructure A and substructure B. Substructure B is the specimen, which needs to be tested in the real time test as
it is hard to model. Substructure A is an so called transmission simulator and is replaced in the real time test by the numerical
substructure C, such that the system CB is emulated. The approach can help to reduce the control effort and to include more
realistic interface dynamics in the test.

Keywords Hybrid modeling • Hardware in the loop • Real-time substructuring • Interface control • Transmission
simulator

5.1 Introduction

5.1.1 Background & Problem Statement

Realtime Substructuring—also denoted as Hardware-In-The-Loop—is a tool for conducting vibration tests with virtual
prototypes. The idea is to split a system in one substructure which is analysed experimentally and one substructure which is
simulated numerically. Both are coupled by a control system. The experimental substructure is hard to model or/and subject
to a safety or certification test. The numerical substructure may have large dimensions or is subject to frequent changes during
a design process. The first methods for realtime substructuring have been presented by Nakashima et al. [7], Horiuchi et al.
[5] and Blakeborough et al. [3]. Application include certification tests, long term tests, error analysis and rapid prototyping.
So far realtime substructuring has mainly been used in applications for civil engineering. However there are numerous
potential application fields in mechanical engineering. Ideas for new application fields include microsystems, satellite testing,
high-precision machinery and wind turbines. In this study we propose a transmission-simulator based approach to improve
performance of realtime substructuring tests. The idea is that the test rig mimics the dynamic behavior of the emulated system
with the help of a so-called transmission simulator. The controller only has to compensate the difference between testrig and
the emulated system. The testrig also includes the real interface dynamics. The process is illustrated in Fig. 5.1. This idea
is inspired by decoupling within the FRF-based substructuring framework discussed by Voormeeren and Rixen [11] and
[10]. An transmission simulator based approach has also been presented for component mode synthesis based techniques
in [6]. In order to demonstrate the problem setting consider the testrig (denoted as TR in the following) consisting of the
test specimen (denoted as EXP) and a transmission simulator (denoted as TS). It is assumed that a numerical model of TS
exists (denoted as NTS). The objective of the experimental test is to emulate a system consisting of a numerical substructure
(denoted as N) and the experimental specimen. This is achieved by decoupling the dynamics of TS and adding the dynamics
of the numerical substructure N with the help a controller in real time.The emulated system is denoted as EMU.
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Fig. 5.1 The emulated system
(EMU) is mimiced by removing
the dynamics of the transmission
simulator with the help of its
numerical model (NTS) and
adding the dynamics of a
different numerical model (N)

TR NTS

N EMU

5.2 The Transmission Simulator Problem

5.2.1 Compatibility and Equilibrium on the Interface

Two conditions need to be satisfied as accurately as possible in order to perform a real time substructuring test: the
equilibrium condition and the compatibility condition. This also holds for replacing a transmission simulator by a numerical
model in realtime. The compatibility condition states that the interface displacements of the three substructures uN;c ,uTR;c
and uTS;c must be equal. The compatibility is represented by the Eq. (5.1). The subscript c of the displacements denotes the
coupling DoFs.

uN;c D uTR;c

uN;c D uNTS;c (5.1)

The compatibility displacements can be assigned by Boolean matrices B̄TR, B̄N and B̄NTS .

uTR;c D B̄TRuTR

uNTS;c D B̄NTSuNTS (5.2)

uN;c D B̄NuN

They are chosen in this case as following. The subscriptsm,n and l represent the number of transmission simulator’s internal
DoFs (m), interface DoFs (n) and the test specimen’s DoFs (l).

B̄TR D Œ0nm Inn 0nl �

B̄N D Œ0nm Inn� (5.3)

B̄NTS D Œ0nm Inn�

The equilibrium condition for replacing a transmission simulator by a numerical model can be obtained by the following
consideration (the approach is illustrated in Fig. 5.2): suppose a force excitation on the test rig TR. It is obvious that, as
the test rig is excited, the transmission simulator TS is subject to a force from the experimental specimen EXP. Now a
force which is opposing the connection forces gTS between TS and EXP can be applied to the test rig TR in order to let the
specimen EXP behave as if it was not coupled to the transmission simulator. Subsequently the connection forces gN between
test rig TR and the new numerical substructure N are applied to the test rig TR. The equilibrium can then be represented
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Fig. 5.2 The transmission
simulator approach with
equilibrium and compatibility on
the interface DoFs

interface force
compatibility DoF

TR NTS N EMU

Fig. 5.3 The emulated system
consists of the new numerical
substructure and the test
specimen. They are coupled with
the force amplitudes 	N

N EXP

λN

by Eq. (5.4). The vectors 	TR, 	TS and 	N are the force amplitudes on the corresponding boundary. The resulting emulated
system is illustrated in Fig. 5.3.

0 D	TR � 	NTS C 	N (5.4)

The forces on the substructure are than assigned by the Boolean matrices B̄TR, B̄N and B̄NTS .

gTR DB̄
T

TR	TR

gNTS DB̄
T

NTS	NTS (5.5)

gN DB̄
T

N	N

Note that both N and EXP can be subject to the external forces f N;ext and f EXP;ext . The force amplitude vector 	TS can
be obtained by the use of a numerical model of transmission simulator TS in a control loop. It is than denoted as 	NTS in
this study. Regardless of the control structure equilibrium equation (5.4) always has to be solved for one unknown force
amplitude vector. However, it depends on the selection of the control structure which force amplitude vector will be obtained
by the equilibrium equation.

5.2.2 Compatibility and Equilibrium on an Extended Interface

As it will be shown in the numerical case study, differences between the transmission simulator (TS) and its numerical model
(NTS) can cause the synchronization between the substructures to fail. These differences can be generated by measurement
inaccuracies and modelling errors. For FRF-based experimental subtructuring techniques a similar effect has been shown
in [10]. It was shown for FRF-based experimental substructuring techniques in [2] and [1] that coupling on additional DoF
can help alleviating this problem. In this study we investigate if that approach also can be applied to realtime subtructuring.
In the following we will refer to the original interface as direct interface and to the additional coupling DoF as extended
interface. The idea is that the responses of the extended interface are influenced by the forces on direct interface. The
additional information on the state of the internal Dof of the transmission simulator could be used to reduce the influence
of the measurement and model errors on the control. The coupling of additional DoF on an extended interface also implies
that this extended interface has to be identical in all substructures, namely the test rig TR, the transmission simulator TS and
the replacing numerical substructure N. The approach is illustrated in Fig. 5.4. The Boolean matrices are in this case defined
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Fig. 5.4 Transmission simulator
approach with compatibility and
equilibrium on an extended
interface

TR NTS N EMU

extended Interface

direct interface

interface force
compatibility DoF

by (5.7). The subscripts m,n,q and l represent the number of the transmission simulator’s internal DoFs (m), the extended
interface DoFs (q), the interface DoFs (n) and the test specimen’s DoFs (l).

B̄TR D
�

0qn Iqq 0qm 0nl

0mn 0mq Imm 0ml

�

B̄N D
�

0qn Iqq 0qm

0mn 0mq Imm

�
(5.6)

B̄NTS D
�

0qn Iqq 0qm

0mn 0mq Imm

�

One can also think about enforcing compatibility and equilibrium only on the extended interface. Without the need to
place sensors and actuators on the direct interface, this approach would make it possible to include more realistic interface
dynamics in the measurement, which is one objective of a transmission simulator technique. Additionally it may be infeasible
for some practical applications to place sensors and actuators directly on the interface. With this approach the Boolean
matrices are:

B̄TR D �
0qn Iqq 0nm 0nl

�

B̄N D �
0qn Iqq 0qm

�
(5.7)

B̄NTS D �
0qn Iqq 0qm

�

5.2.3 Extended Interface with Non-collocated Equilibrium and Compatibility Condition

In many practical applications it may be useful to enforce compatibility and equilibrium on non-collocated DoF. The
approach is illustrated in Fig. 5.5. The Boolean matrices for compatibility and equilibrium now are not identical anymore.
We now refer to them as C̄ for the compatibility matrix and Ē for the equilibrium matrix. That means that the displacements
used for the compatibility are now defined by (5.8) and the interface forces are defined by (5.9).

uTR;c D C̄ TRuTR

uNTS;c D C̄NTSuNTS (5.8)

uN;c D C̄NuN

gTR DĒ
T

TR	TR

gNTS DĒ
T

NTS	NTS (5.9)

gN DĒ
T

N	N
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Fig. 5.5 Transmission simulator
approach with non-collocated
compatibility and equilibrium
conditions on the extended
interface

TR TS N EMU

interface force
compatibility DoF

One possible choice for the Boolean matrices is shown in (5.10). In this case compatibility is enforced on the direct interface
and equilibrium is enforced on the extended interface.

C̄ TR D �
0mn 0mq Imm 0ml

�
C̄N D �

0mn 0mq Imm
�

C̄NTS D �
0mn 0mq Imm

�
ĒTR D �

0qn Iqq 0nm 0nl
�

ĒN D �
0qn Iqq 0ql

�
ĒNTS D �

0qn Iqq 0ql
� (5.10)

One can also imagine methods where the number of compatibility and equilibrium condition is not identical. However, in
this study we will not address this possibility.

5.3 An Emulated-System Based Control Concept

Basically, the control in realtime substructuring has two objectives—synchronization of the substructures’ forces and
displacements as well as stability of the overall system. As stated in the previous section, the control structure of the realtime
substructuring system depends on the choice from the following three possibilities:

• control the displacement on the interface of N and NTS and apply the resulting forces gTR to TR.
• control the displacement on the interface of TR and N and apply the resulting forces gTS to TS.
• control the displacement on the interface of TR and NTS and apply the resulting forces gN to N.

In this study, we limit ourselves to the latter case. However, this choice was based on the control structure used for a test rig
in the authors’ institute and it has to be investigated in further studies which concept is preferable in application scenarios.

Using the above-mentioned structure the equilibrium equation (5.4) can be expressed by (5.11). Here, Ē
T

N refers to the
Boolean matrix which assigns the force amplitudes to the corresponding DoFs of N and gN denotes the force vector on N.

	N D � 	TR C 	TS

gN DĒ
T

N	N (5.11)

This strategy can be explained in other words as follows: at a certain time step the numerical model N predicts a displacement
on the interface (extended or direct). This displacement is then imposed to the NTS model and to the TR (using displacement
controlled actuators). The forces computed on the displacement driven DoFs on NTS and measured on the driven DoFs of
TR are then used to compute the force on N (Eq. (5.4) recasted in (5.11)). That force is then used to compute the response
of N in the next time step. The control system now consists of two so-called inner loop controls and an outer loop control.
It is illustrated in Fig. 5.6. The inner loop control enforces the compatibility between the substructures. The outer loop
enforces the equilibrium condition and improves the displacement error dynamics. It is important to note in that context that
in this study we choose a so-called emulator-based substructuring as described in [4]. It implies that the dynamics of all
substructures and the transmission system are known in advance and are used to design the controllers. However, it will be
part of future research to adapt the transmission simulator approach to more sophisticated control concepts. This is necessary
for instance when the test object has unknown dynamics. In the following the controllers will be designed in state space as
proposed in [8] and [9].
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Fig. 5.6 Overview of the outer
loop control
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Fig. 5.7 The innerloop control for the test rig model enforces compatibility between uN;c and uTR;c

5.3.1 Inner Loop

The dynamics of the actuated system without inner loop control are described by the state space model (5.12).

˙̂xTR DÂTRx̂TR C B̂TRuin;TR

uTR;c DĈ TRx̂TR

	TR DĈ TR;f x̂TR C D̂TR;f uin;TR (5.12)

The numerical model of the transmission simulator is described by the state space model (5.13).

˙̂xNTS DÂNTS x̂NTS C B̂NTS	NTS

uNTS;c DĈNTS x̂NTS (5.13)

The inner loop consists of a feed forward control and a state feedback, which is fed by a Kalman filter. The structures of the
inner loop control for test rig and transmission simulator are illustrated in Figs. 5.7 and 5.8. The feedforward compensator
includes a model based dynamical compensation of the actuation system. The systems with closed inner loop control are
represented by the following state space models. The vectors uTR and uNTS are the internal and interface displacements of
the test rig and the numerical transmission simulator. The vectors wTR and wNTS represent the inputs for the displacement
demand.

ẋTR DATRxTR C BTRwTR

uTR DC TRxTR (5.14)
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Fig. 5.8 The innerloop control
for the numerical transmission
simulator model enforces
compatibility between uN;c and
uNTS;c
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	TR DC TR;f xTR C DTR;f wTR

ẋNTS DANTSxNTS C BNTSwNTS

uNTS DCNTSxNTS (5.15)

	NTS DCNTS;f xNTS C DNTS;f wNTS

The numerical model, which is replacing the transmission simulator is described by the state space representation (5.16).
The force input vector is f N and the output displacement vector is uN .

ẋN DANxN C BNf N

uN DCNxN (5.16)

5.3.2 Outer Loop

5.3.2.1 Displacement Demand & Force Feedback

The displacement demand is applied to the test rig and the numerical transmission simulator by setting wTR and wNTS . The
new input vectors w�

TR and w�
NTS can be used for stabilization and improvement of the error dynamics.

wTR D uN;c C w�
TR D CNxN C w�

TR (5.17)

wNTS D uN;c C w�
NTS D CNxN C w�

NTS (5.18)

Equilibrium is enforced by setting the force input of the numerical substructure N as

f N Df ext;N C gN D f ext;N C Ē
T

N	N (5.19)

	N D � 	TR C 	NTS (5.20)
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The dynamics of the overall system then are represented as state space model:
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(5.21)

5.3.2.2 Error Feedback

The knowledge about the overall system can be used to improve the error dynamics and the robustness of the system. In
this study, a feedback in the form of the control law (5.22) is used. The regulator should minimize the synchronization error.
The state feedback matrix R is obtained as a linear-quadratic regulator minimizing the cost function J D R 1

0
xTe Qxe C

w�TPw�. The matrix Q is weighting the square of the synchronization error xe . The matrix P is weighting the square of
the displacement demand w�. The estimated state vector of the overall system x�

est is obtained by the use of a Kalman filter.

w� D �Rx�
est (5.22)

With this control law the overall systems dynamics is changed to Eq. (5.23). The systems dynamics is now manipulated such
that the above-mentioned cost function is minimized and the stability of the overall test dynamics is assured.

ẋ� D.A� � B�R/x� C F �f ext;N (5.23)

5.3.3 Consistency, Stability and Accuracy: Properties of a Test Method

For the evaluation of a test method it is crucial to consider consistency, stability and accuracy. Consistency in the context of
this study means that the overall dynamics of the test system should converge exactly to the dynamics of the emulated system
as the time step size is reduced. A general mathematical proof for the consistency of the described methods is not part of this
study. However, we will investigate consistency of the methods for a simple numerical system in the following section. With
stability here we refer to asymptotical stability. This means that, if f ext;N D 0, x�.t ! 1/ D 0 holds for arbitrary initial
conditions x.t0/. In this study the stability is ensured by the linear quadratic regulator. However, without knowledge of the
overall system—as it may be the case in a practical realtime substructuring test—we can not use this technique to guarantee
stability and have to rely on more sophisticated control strategies. Accuracy is indicated by the norm of the displacement
error between the desired emulated system and the test system. It can be visualized by synchronization plots as they can be
seen in the following section.
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5.4 Numerical Case Study

In order to investigate the approach described in the previous section, it is applied to a simple numerical example. We want
to address the following questions with the numerical case study:

• Are the described transmission simulator methods potentially consistent?
• Is it feasible to enforce compatibility and equilibrium only on the extended interface without enforcing it on the direct

interface?
• Is it feasible to enforce compatibility and equilibrium on non-collocated DoF?
• Do additional coupling DoF on the extended interface improve performance of the test?

The system used for the case study is illustrated in Fig. 5.9. The parameters for the system are given in Table 5.1. The system
is lightly damped. The system was discretized with the trapezoidal rule. As input forces sweeps are used (1–50 Hz in 50 s
on mass mN;1, 50–200 Hz in 10 s on mass mN;2 and 50–100 Hz in 20 s on mass mN;4). Figure 5.10 is an example of the
time response of the corresponding displacements of all substructures on the interface. The results of the investigation are
shown in synchronization plots. They show the displacement of massmEXP;3 of the test rig during the realtime substructuring
(uEXP;3;t ) test over the corresponding displacement of the desired system (uEXP;3;d ). The synchronization show an elliptic
shape if a phase lag between desired response and test response is existent. If an amplitude error is existent the slope of the
curve differs from 1. Perfect synchronization is indicated by a line crossing the coordinate origin with the slope 1.

5.4.1 Consistency of Transmission Simulator Test Methods

How can one verify consistency for a given numerical system? For the simulation, a perfect system is used. Namely, no
measurement errors were and an actuator with perfect transfer behavior was used. For this we choose the actuation system’s
transfer function to GA D I . The time step size of the simulation is then gradually decreased. If the results are converging to
perfect synchronization, we assume consistency of the method for the given system. In this study, the simulation is performed
with three different time step sizes (the smallest period related to a mode of the emulated system is 0.15 s and the biggest
period is 2.28 s):

• �t D 10�2 s
• �t D 10�3 s
• �t D 10�4 s

The different sets for the coupling DoF are listed in Table 5.2. Figures 5.11 and 5.12 show the results for different test
methods:

• Test 1: The coupling is performed on the direct interface. It seems that the synchronization error is converging to zero
as the time step size is decreasing. This was to be expected since the theory predicts that with exact decoupling of the
transmission simulator TS and coupling of N one should find the exact emulated systems response. This test thus shows
that the control strategy, can impose the necessary compatibility conditions.

• Test 2: The coupling is performed on the direct interface and one additional DoF on an extended interface. It seems that
the synchronization error is converging to zero as the time step size is decreasing.

• Test 3: The coupling is performed on the direct interface and two additional DoF on an extended interface. It seems that
the synchronization error is converging to zero as the time step size is decreasing.

• Test 4: The coupling is performed on only one DoF on the direct interface. No synchronization is present.
• Test 5: The coupling is performed on two DoF on an extended interface. It seems that synchronization error is converging

to zero as the time step size is decreasing. However, the convergence is slower than observed in the test 1–3.
• Test 6: A non-collocated coupling is performed: equilibrium is enforced on the direct interface and compatibility is

enforced on the extended interface. The synchronization is converging to a state where phase lag is present.
• Test 7: A non-collocated coupling is performed: equilibrium is enforced on the extended interface and compatibility is

enforced on the direct interface. The synchronization is converging to a state where phase lag is present. The phase lag
here is smaller than the phase lag observed in test 6.
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Fig. 5.9 Mass-spring test system used for the numerical case study

All techniques including the coupling of the direct interface are consistent as far as it can be seen in the presented numerical
study. It is remarkable that also the technique coupling only DoF on the extended interface seems to be consistent. For
comparison a simulation on a technique which is obviously not consistent is performed: coupling only one DoF on the direct
interface yields no satisfying synchronisation. For both non-collocated techniques simulated in this numerical study a phase
lag exists. The non-collocated method therefore is not consistent. However, the phase lag has to be seen in relation to the
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Table 5.1 Parameters of the
system used for the numerical
case study

Transmission simulator (TS) Replacing numerical substructure (N)

Stiffness (N/m) Mass (kg) Stiffness (N/m) Mass (kg)

kTS;1 2;000 mTS;1 10 kN;1 2;500 mN;1 6

kTS;12 2;000 mTS;2 3 kN;12 500 mN;2 6

kTS;13 200 mTS;3 3 kN;13 500 mN;3 1

kTS;24 1;000 mTS;4 3 kN;24 1;000 mN;4 3

kTS;35 1;000 mTS;5 3 kN;35 1;000 mN;5 3

kTS;45 500 mTS;6 2 kN;45 500 mN;6 2

kTS;58 1;000 mTS;7 2 kN;58 1;000 mN;7 2

kTS;46 200 mTS;8 4 kN;46 200 mN;8 4

kTS;67 200 kN;67 200

Test Specimen (EXP)

Stiffness (N/m) Mass (kg)

kEXP;13 2;000 mEXP;1 2

kEXP;23 200 mEXP;2 4

kEXP;34 1;000 mEXP;3 8

mEXP;4 5

0 1 2 3 4 5 6 7 8 9 10
−4
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0

2

4
·10−3

t

u

uEMU,7 uEMU,8
uTR,7 uTR,8
uNTS,7 uNTS,8

Fig. 5.10 Time response of the interface displacements (coupling on the two interface DoF, time step size �t D 10�3 s)

Table 5.2 Coupling sets used
for the consistency test

Test no. Compatibility DoF no. Equilibrium DoF no.

1 7 and 8 7 and 8

2 6, 7 and 8 6, 7 and 8

3 5, 6, 7 and 8 5, 6, 7 and 8

4 7 7

5 5 and 6 5 and 6

6 5 and 6 7 and 8

7 7 and 8 5 and 6

error caused by the actuation system. This error will be present in a real test. If one can find an error bound, the method may
still be usefull for some applications were the collocation of actuation and displacement measurement is not possible.

5.4.2 Influence of Model Inaccuracy of the Numerical Transmission Simulator

In practice, model inaccuracies (transmission simulator) or measurement errors may be inevitable. The effects of these
inaccuracies can cause the test to fail. For this reason, in this paragraph we investigate the influence of model inaccuracies
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Fig. 5.11 Synchronization plots:
verifying the consistency of test
methods
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Fig. 5.12 Synchronization plot:
verifying the consistency of test
methods
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Equilibrium on extended interface with 2 DoF
Compatibility on direct interface with 2 DoF (Test 7)
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on the synchronization. We multiply all masses and spring constants with the factor 0:9. Again, the simulation is performed
with three different time step sizes:

• �t D 10�2 s
• �t D 10�3 s
• �t D 10�4 s

The different sets for the coupling DoF are listed in Table 5.3.
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Table 5.3 Coupling sets used
for simulating the effects of
model inaccuracies on the test

Test no. Compatibility DoF no. Equilibrium DoF no.

8 7 and 8 7 and 8

9 6, 7 and 8 6, 7 and 8

10 5, 6, 7 and 8 5, 6, 7 and 8

11 5 and 6 5 and 6

Figure 5.13 shows the results for different test methods:

• Test 8: The coupling is performed on the direct interface. There is no satisfying synchronization for all time step sizes.
The results do not seem to improve for decreasing time step size.

• Test 9: The test is now performed with one additional DoF on the extended interface. The synchronization shows improved
results compared to the coupling on the direct interface. However, there is still a phase lag present. The results do not seem
to improve with further reduction of the time step size.

• Test 10: The test is now performed with two additional DoF on the extended interface. The synchronization shows
improved results compared to the coupling on the direct interface. However, there is still a phase lag present. It is
comparable with the one observed in test 9. The results do not seem to improve with further reduction of the time step
size.

• Test 11: The test is now performed coupling only two DoF on the extended interface. The synchronization shows improved
results compared to the coupling on the direct interface. However, there is still a phase lag present. It is remarkable that
the results are still comparable to those with coupling of 3 or 4 DoF.

Coupling additional DoF on the extended interface seem to improve the quality of the synchronization. However the effect
does not increase with further addition of more coupling DoF. Also the use of only two DoF on the extended interface shows
an improvement. A fact that is not consistent with the assumption that only additional coupling is improving the performance.
For that reason, further investigations are necessary here.

5.5 Conclusion

In this paper a family of transmission simulator based methods for real time substructuring techniques has been proposed.
The idea is to reduce the control effort and to include the interface dynamics more naturally in the test. The method has been
integrated in a simple emulated-system based real time substructuring system. Consistency of the method has been shown
for a numerical example, but not in general. It has been shown that coupling additional DoFs besides the direct interface can
help reducing the effects of model inaccuracies.

Further theoretical work is needed in order to proof the consistency of the proposed techniques mathematically. Criteria
for the selection of the coupling DoF (maybe based on their observability and controllability) need to be developed. Further
investigation is also needed on the effect of measurement errors. It is also may be helpful to extend the approach by techniques
which can make use o a higher number of compatibility conditions than equilibrium conditions. In that context it may be also
necessary to use techniques for sensor localization. In order to show the practical relevance of the techniques the methods
have to be implemented on a real test rig. It may be necessary to combine them with more sophisticated control approaches
in order to overcome the constraints by an emulator based control concept.
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Compatibility on direct Interface with 2 DoF (Test 8)
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Compatibility on extended interface with 2 DoF, equilibrium on direct interface with 2 DoF (Test 9)
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Equilibrium on extended interface with 2 DoF, compatibility on direct interface with 2 DoF (Test 10)
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Coupling on extended interface with 2 DoF (Test 11)
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Fig. 5.13 Synchronization plots: effects of extended interface methods on the test accuracy. The simulations were performed using an inaccurate
model of the transmission simulator
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Chapter 6
Ignoring Rotational DoFs in Decoupling Structures Connected
Through Flexotorsional Joints

Walter D’Ambrogio and Annalisa Fregolent

Abstract Substructure decoupling consists in the identification of the dynamic behaviour of a structural subsystem, starting
from the dynamic behaviour of both the assembled system and the residual subsystem (the known portion of the assembled
system). The degrees of freedom (DoFs) of the coupled system can be partitioned into internal DoFs (not belonging to the
couplings) and coupling DoFs. In direct decoupling, a fictitious subsystem that is the negative of the residual subsystem
is added to the coupled system, and appropriate compatibility and equilibrium conditions are enforced at interface DoFs.
Compatibility and equilibrium can be required either at coupling DoFs only (standard interface), or at additional internal
DoFs of the residual subsystem (extended interface), or at some coupling DoFs and some internal DoFs of the residual
subsystem (mixed interface). In this paper, a test bench is considered made by a cantilever column with two staggered short
arms coupled to a horizontal beam. This involves both flexural and torsional DoFs, on which rotational FRFs are quite
difficult to measure. Using a mixed interface, rotational DoFs are neglected and substituted by internal translational DoFs.
Experimental results are presented and discussed.

Keywords Substructure decoupling • Rotational DoFs • Flexotorsional joints • Mixed interface • Experimental dynamic
substructuring

6.1 Introduction

Substructure decoupling consists in the identification of the dynamic behaviour of a structural subsystem, starting from
the dynamic behaviour of both the assembled system and the residual subsystem (the known portion of the assembled
system). Decoupling is a need for subsystems that cannot be measured separately, but only when coupled to their neighboring
substructure(s) (e.g. fixtures needed for testing or subsystems in operational conditions).

Substructure decoupling represents a special case of experimental dynamic substructuring, where experimental means
that the model of at least one subsystem derives from tests. In Frequency Based Substructuring, Frequency Response
Functions (FRFs) are used instead of modal parameters to avoid modal truncation problems. A general framework for
dynamic substructuring is provided in [1], where primal and dual assembly are introduced.

A well known issue in experimental dynamic substructuring is related to rotational DoFs. In substructure coupling,
whenever coupling DoFs include rotational DoFs, the related rotational FRFs must be obtained experimentally. This becomes
a quite complicated task when measuring only translational FRFs, as shown in [2]. Several techniques for measuring
rotational responses have been devised since then, see e.g. [3, 4]. However, when such rotational FRFs are used for
substructure coupling, results are still unsatisfactory.

Substructure decoupling techniques can be classified as reverse coupling techniques or direct decoupling techniques.
In reverse coupling, the equations written for the coupling problem are rearranged to isolate (as unknown) one of the
substructures instead of the assembled structure. Examples of reverse coupling are impedance and mobility approaches [5, 6].

In direct decoupling, a fictitious subsystem that is the negative of the residual subsystem is added to the coupled system,
and appropriate compatibility and equilibrium conditions are enforced at interface DoFs. To solve the decoupling problem,
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a dual assembly [7], a primal assembly [8] or an hybrid assembly [9, 10] can be used. Compatibility and equilibrium can be
required either at coupling DoFs only (standard interface), or at additional internal DoFs of the residual subsystem (extended
interface), or at subsets of coupling DoFs and internal DoFs of the residual subsystem (mixed interface). The choice of
interface DoFs determines a set of frequencies at which the decoupling problem is ill conditioned, as shown in [7].

For some time, it was believed that issues related to rotational DoFs also applied to substructure decoupling. However, in
this case the actions exchanged through the connecting DoFs, and specifically through rotational DoFs, are already embedded
in each FRF of the assembled system. In practice, a mixed interface [11] can in fact be considered that allows to substitute
undesired coupling DoFs with internal DoFs of the residual subsystem. This approach is introduced in [12] using simulated
test data.

In this paper, a test bed is considered made by a cantilever column with two staggered short arms coupled to a horizontal
beam. This involves both flexural and torsional DoFs, on which rotational FRFs are quite difficult to measure. Using a mixed
interface, rotational DoFs are neglected and substituted by internal translational DoFs. Experimental results are presented
and discussed.

6.2 Direct Decoupling Using Dual Assembly

The unknown substructure U (NU DoFs) is a portion of a larger structure RU (NRU DoFs). The known portion of the
assembled structure RU , defined as residual substructure R (NR DoFs), is joined to the unknown substructure through a
number of couplings (see Fig. 6.1). The degrees of freedom (DoFs) can be partitioned into internal DoFs (not belonging to
the couplings) of substructure U (u), internal DoFs of substructure R (r), and coupling DoFs (c).

The goal is to find the FRF of the unknown substructure U starting from the FRFs of the assembled structure RU
and of the residual substructure R. The dynamic behaviour of the unknown substructure U can be extracted from that
of the assembled structure RU by taking out the dynamic effect of the residual subsystem R. This can be accomplished
by considering a negative structure, i.e. by adding to the assembled structure RU a fictitious substructure with a dynamic
stiffness opposite to that of the residual substructureR and satisfying compatibility and equilibrium conditions. The dynamic
equilibrium of the assembled structure RU and of the negative substructure is expressed in block diagonal format as:

"
ZRU 0

0 �ZR

# (
uRU

uR

)
D

(
fRU

fR

)
C

(
gRU

gR

)
(6.1)

where:

• ZRU, �ZR are the dynamic stiffness matrices of the assembled structure RU and of the negative structure, respectively;
• uRU, uR are the vectors of degrees of freedom of the assembled structure RU and of the negative structure, respectively;
• fRU, fR are the external force vectors on the assembled structure RU and on the negative structure, respectively;
• gRU, gR are the vectors of disconnection forces exchanged between the assembled structure and the negative structure

(constraint forces associated with compatibility conditions).

Compatibility and equilibrium conditions must be considered at the interface between the assembled structure RU and
the negative structure: such interface includes not only all the coupling DoFs between substructures U and R, but includes
as well all the internal DoFs of substructure R (the bottom part of the structure in Fig. 6.1). However, it is not required to

Fig. 6.1 Scheme of the direct
decoupling problem
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consider all these interface DoFs, because it is sufficient that the number of interface DoFs be not less than the number of
coupling DoFs nc . Therefore, several options for interface DoFs can be considered:

• standard interface, including only the coupling DoFs (c) between substructures U and R;
• extended interface, including also a subset of internal DoFs (i � r) of the residual substructure R;
• mixed interface, including subsets of coupling DoFs (d � c) and/or internal DoFs (i � r) of substructure R.

The use of a mixed interface may allow to ignore rotational coupling DoFs by substituting them with translational internal
DoFs.

The compatibility condition at the (standard, extended, mixed) interface DoFs implies that any pair of matching DoFs
uRUl and uRm, i.e. DoF l on the coupled system RU and DoF m on subsystem R must have the same displacement, that is
uRUl � uRm D 0. Let the number of interface DoFs on which compatibility is enforced be denoted as NC .

The compatibility condition can be generally expressed as:

h
BRU

C BR
C

i (
uRU

uR

)
D 0 (6.2)

where each row of BC D �
BRU

C BR
C

�
corresponds to a pair of matching DoFs. Note that BC has size NC � .NRU C NR/ and

is, in most cases, a signed Boolean matrix.
It should be noted that the interface DoFs involved in the equilibrium condition need not to be the same used to enforce

the compatibility condition, as long as compatibility can be ensured by disconnection forces applied at a different set of
DoFs. If the compatibility and the equilibrium DoFs are not the same, the approach is called non-collocated [11]. Obviously,
the traditional approach, in which compatibility and equilibrium DoFs are the same, is called collocated.

Let NE denote the number of interface DoFs on which equilibrium is enforced. The equilibrium of disconnection forces
implies that their sum must be zero for any pair of matching DoFs belonging to the equilibrium interface, i.e. gRUr CgRs D 0.
Furthermore, for any DoF k on the coupled system RU (or on the residual subsystem R) not belonging to the equilibrium
interface, it must be gRUk D 0 (gRk D 0).

Overall, the above conditions can be expressed as:

"
LRU

E

LR
E

#T (
gRU

gR

)
D 0 (6.3)

where the matrix LE D �
LRU

E LR
E

�
is a Boolean localisation matrix. Note that the number of columns of LE is equal to the

number NE of equilibrium interface DoFs plus the number NNE of DoFs not belonging to the equilibrium interface. Note
that NNE D NRU CNR � 2NE : in fact, the number of DoFs belonging to the equilibrium interface must be subtracted once
from NRU and once from NR. Therefore, the size of LE is .NRU CNR/ � .NRU CNR �NE/.

Equations (6.1)–(6.3) can be gathered to obtain the so-called 3-field formulation. Starting from the 3-field formulation,
several assembly techniques can be devised:

• dual assembly [1, 7] where equilibrium is satisfied exactly by defining a unique set of disconnection force intensities;
• primal assembly [1, 8] where compatibility is satisfied exactly by defining a unique set of interface DoFs;
• hybrid assembly [9, 10] where both compatibility and equilibrium are satisfied exactly.

In the sequel, only the dual assembly is recalled. It can be shown [9] that whenever NC D NE , i.e. the number of
compatibility DoFs is the same as the number of equilibrium DoFs, all assembly techniques provide the same result.

6.2.1 Dual Assembly

In the dual assembly, the equilibrium condition gRUr CgRs D 0 at a pair of equilibrium interface DoFs is ensured by choosing
gRUr D �	 and gRs D 	. If a Boolean matrix BE related to interface equilibrium DoFs is defined similarly to BC, the overall
interface equilibrium can be ensured by writing the disconnection forces in the form:

(
gRU

gR

)
D �

2
4BRU

E
T

BR
E
T

3
5 � (6.4)
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where � are Lagrange multipliers corresponding to disconnection force intensities and BE is a NE � .NRU C NR/ matrix.
Since there is a unique set of disconnection force intensities �, the interface equilibrium condition is satisfied automatically
for any �, i.e.

"
LRU

E

LR
E

#T (
gRU

gR

)
D �

"
LRU

E

LR
E

#T 2
4BRU

E
T

BR
E
T

3
5 � D 0 (6.5)

In the dual assembly, the total set of DoFs is retained, i.e. each interface DoF appears twice. Since Eq. (6.5) is always
satisfied, the 3-field formulation reduces to:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

"
ZRU 0

0 �ZR

# (
uRU

uR

)
C

2
4BRU

E
T

BR
E
T

3
5 � D

(
fRU

fR

)

h
BRU

C BR
C

i (
uRU

uR

)
D 0

(6.1�)

(6.2)

or in more compact form:

8
<
:

Zu C BE
T� D f

BCu D 0

(6.1�)

(6.2)

To eliminate �, Eq. (6.1�) can be written:

u D �Z�1BE
T� C Z�1f

which substituted in Eq. (6.2) gives:

BCZ�1BE
T� D BCZ�1f (6.6)

from which �, to be back-substituted in Eq. (6.1�), is found as:

� D 	
BCZ�1BE

T

C

BCZ�1f (6.7)

To obtain a determined or overdetermined matrix for the generalized inversion operation, the number of rows of BC must
be greater or equal than the number of rows of BE, i.e.

NC � NE � nc (6.8)

Note that, if NC > NE , Eq. (6.6) is not satisfied exactly by vector � given by Eq. (6.7), but only in the minimum square
sense. This implies that also Eq. (6.2) is not satisfied exactly, i.e. compatibility conditions at interface are approximately
satisfied. On the contrary, equilibrium is satisfied exactly due to the introduction of the disconnection force intensities � as
in Eq. (6.4).

By substituting � in Eq. (6.1�), it is obtained:

Zu C BE
T

	
BCZ�1BE

T

C

BCZ�1f D f (6.9)

Finally, u can be written as u D Hf, which provides the FRF of the unknown subsystem U :

u D
�

Z�1 � Z�1BE
T

	
BCZ�1BE

T

C

BCZ�1� f (6.10)
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i.e., by noting that the inverse of the block diagonal dynamic stiffness matrix can be expressed as:

"
ZRU 0

0 �ZR

#
D Z�1 D H D

"
HRU 0

0 �HR

#
(6.11)

where HRU and HR are the FRFs of the assembled structure and of the residual substructure, it is:

HU D H � HBE
T

	
BCHBE

T

C

BCH (6.12)

With the dual assembly, the rows and the columns of HU corresponding to compatibility and equilibrium DoFs appear
twice. Furthermore, when using an extended or mixed interface, HU contains some meaningless rows and columns: those
corresponding to the internal DoFs of the residual substructure R. Obviously, only meaningful and independent entries are
retained.

6.2.2 Interface Flexibility Matrix

In Eq. (6.12), the product of the three matrices to be inverted can be defined as interface flexibility matrix. The interface
flexibility matrix can be rewritten in expanded form as:

h
BRU

C BR
C

i "
HRU 0

0 �HR

# 2
4BRU

E
T

BR
E
T

3
5 D BRU

C HRUBRU
E

T � BR
CHRBR

E
T

(6.13)

It can be noticed that

BRU
C HRUBRU

E
T D ĤRU

where ĤRU is a subset of the FRF matrix of the coupled structure: pre-multiplication by BRU
C extracts rows at compatibility

DoFs, and post-multiplication by BRU
E extracts columns at the equilibrium DoFs. Similarly,

BR
CHRBR

E
T D ĤR

where ĤR is the FRF of the residual structure at the same DoFs as above.
Therefore, the interface flexibility matrix becomes:

BRU
C HRUBRU

E
T � BR

CHRBR
E
T D ĤRU � ĤR (6.14)

The interface flexibility matrix (6.14) is strictly related to singularity. In [7, 8], it is shown that the interface flexibility matrix
is singular at the resonant frequencies of the residual substructure with coupling DoFs grounded, both for standard interface
and for non collocated extended interface when equilibrium condition is enforced on coupling DoFs only. In other cases, it
is not so easy to find the frequencies at which the interface flexibility matrix is singular.

6.3 Test Structure

The proposed decoupling technique is tested on an aluminium structure (Fig. 6.2). The residual substructure R consists of a
cantilever column with two staggered short arms. The unknown substructure U is a horizontal beam. The horizontal beam is
bolted to the top of the column, involving both translational and rotational DoFs.
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Fig. 6.2 Sketch of the test
structure

Table 6.1 Geometrical
dimensions (mm)

a b c d e l

540 420 60 100 240 600

The geometrical dimensions are reported in Table 6.1. The cross section is 40 � 8 mm for all beams, with the short side
along the z-direction.

The experimental FRFs of the assembled system RU up to 2,000 Hz are obtained by applying impact excitation and
measuring the resulting accelerations along z-direction at seven locations (3, 6, 9, 10, 11, 13, 20), as shown in Fig. 6.3. For
the residual subsystem R (column) the experimental FRFs are similarly measured at five locations (3, 6, 9, 10, 11), as shown
in Fig. 6.4. A detail of the bolted junction between the beam and the column is shown in Fig. 6.5. Finally, to check decoupling
results, FRFs are measured also at three locations (11, 13, 20) of the unknown subsystem U (beam), supported by an inflated
rubber tube, shown in Fig. 6.6, giving rigid body eigenfrequencies well separated from the first flexible mode of the beam.

Measurements are performed by placing the accelerometers at the underside of each (sub)structure. In order to obtain a
complete FRF matrix, as required by the decoupling technique, impact excitation is sequentially provided on all DoFs at the
topside of each (sub)structure.

A reciprocity check is performed on the experimental FRFs showing that reciprocity is acceptable for all FRF pairs
involving coupling DoFs and internal DoFs of the residual subsystem, i.e. the DoFs that can be used to enforce compatibility
and equilibrium conditions. Figures 6.7 and 6.8 show the reciprocity check on experimental FRFs of the assembled structure
RU and of the residual subsystem R. No indication about possible FRFs that should be discarded because of lack of
reciprocity is provided by this check.
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Fig. 6.3 Assembled system

Fig. 6.4 Residual subsystem
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Fig. 6.5 Detail of the bolted
junction

Fig. 6.6 Unknown subsystem

6.4 Decoupling

The FRFs of subsystem U can be determined through the procedure described previously and summarized in Eq. (6.12),
where compatibility and equilibrium DoFs are defined case by case. A collocated approach is adopted in which compatibility
and equilibrium DoFs are the same.

FRFs to be used in decoupling can be either the raw FRFs or can be obtained by a curve fitting procedure. In the latter
case, results are very bad and are not shown in the paper. This occurs although curve fitting is performed using a global
procedure that gives rise to a unique modal model plus low and high frequency residuals obtained for all FRFs. Therefore,
raw FRFs are used in the sequel.
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Fig. 6.7 Reciprocity check on
experimental FRFs of the
assembled structure RU among
DoFs 3, 6, 9, 10, 11 (Color figure
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Fig. 6.8 Reciprocity check on
experimental FRFs of the residual
structure RU among DoFs 3, 6,
9, 10, 11 (Color figure online)
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6.4.1 Results Using Raw FRFs

Since rotational DoFs at the junction between the residual subsystem and the unknown subsystem can not be measured,
neither the standard interface nor the extended interface can be used. Therefore, only mixed interfaces can be considered.
The number nc of coupling DoFs is 3 so that it must be NE � nc D 3. To deal with overdetermined problems, a set of
attempts using mixed interfaces with NC D NE D 4 is performed.

First, an interface including DoFs 3z, 6z, 9z and 11z is used. Therefore

BC D BE D

uRU3z uRU6z uRU9y uRU11z2
66664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

BRU
C

uR3z uR6z uR9z uR11z

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3
77775

BR
C

(6.15)

The FRF of the unknown substructureU is shown in Fig. 6.9. It can be noticed that, although the FRF is not very scattered,
the peak around 1,000 Hz is not well described and some other peaks are shifted towards higher frequencies.

Another mixed interface including DoFs 3z, 6z, 10z and 11z is used. The signed Boolean matrices BC and BE are built
as in the previous case. The FRF of the unknown substructure U is shown in Fig. 6.10. It can be noticed that around 500 Hz
a spurious peak appear and another peak is considerably forward shifted. However, the peak around 1,000 Hz is better
described.

Fig. 6.9 HU
11z;11z: measured (blue

line), computed using mixed
interface with coupling DoF 11z,
and internal DoFs 3z, 6z, 9z (red
asterisks) (Color figure online)
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Fig. 6.10 HU
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 3z,
6z, 10z (red asterisks) (Color
figure online)
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Fig. 6.11 HU
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 3z,
9z, 10z (red asterisks) (Color
figure online)
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Fig. 6.12 HU
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 6z,
9z, 10z (red asterisks) (Color
figure online)
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Fig. 6.13 HU
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 3z, 9z
(red asterisks) (Color figure
online)
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Subsequently, a mixed interface including DoFs 3z, 9z, 10z and 11z is used. The signed Boolean matrices BC and BE are
built as in the first case. The FRF of the unknown substructure U is shown in Fig. 6.11. It can be noticed that around 600 Hz
the peak is shifted forward and around this peak the FRF is a bit scattered. However, the peak around 1,000 Hz is very well
described.

Finally, a mixed interface including DoFs 6z, 9z, 10z and 11z is used. The signed Boolean matrices BC and BE are built as
in the first case. The FRF of the unknown substructure U is shown in Fig. 6.12. At a first glance, the result looks very similar
to the previous one (interface DoFs 3z, 9z, 10z and 11z), but it is definitely worse because of several spikes and because the
FRF around 1,000 Hz is described less accurately than in the previous case.

A new set of attempts is performed using mixed interfaces including only 3 DoFs that give rise to determined problems.
Based on the previous results, a mixed interface that includes DoFs 3z, 9z and 11z is used. Such DoFs represent the set
intersection between DoFs 3z, 6z, 9z, 11z and 3z, 9z, 10z, 11z that provide the best results using 4 interface DoFs. The
signed Boolean matrices BC and BE are built similarly to the first case. The FRF of the unknown substructure U is shown in
Fig. 6.13. It can be noticed that the result is quite clean with no significant drawbacks.
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Fig. 6.14 HU
11z;11z: measured

(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 6z,
10z (red asterisks) (Color figure
online)
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Fig. 6.15 HU

11z;11z: measured
(blue line), computed using
mixed interface with coupling
DoF 11z, and internal DoFs 9z,
10z (red asterisks) (Color figure
online)
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To cross-check this result, a mixed interface that includes DoFs 6z, 10z and 11z is used. Such DoFs represent the set
intersection between DoFs 3z, 6z, 10z, 11z and 6z, 9z, 10z, 11z that provide the worst results using 4 interface DoFs. The
FRF of the unknown substructure U is shown in Fig. 6.14. It can be noticed that the result is quite bad with significant scatter
around the natural frequencies and several spurious peaks.

A further check is performed using a mixed interface that includes DoFs 9z, 10z and 11z. DoFs 9z, 10z are both able to
provide information about the rotational DoF �y (torsion of the column) but may miss the information about the rotational
DoF �x (bending of the column). The FRF of the unknown substructure U is shown in Fig. 6.15. It can be noticed that the
result is very bad because the two modes around 315 and 615 Hz are not clearly visible.

6.5 Concluding Remarks

In this paper, a procedure that ignores rotational DoFs in decoupling of substructures, connected to each other through
translational and rotational DoFs, is verified on an experimental test bed. The test bed is made by a cantilever column with
two staggered short arms coupled to a horizontal beam. This involves both flexural and torsional DoFs, on which rotational
FRFs are quite difficult to measure. Using a mixed interface, such FRFs are neglected and substituted by FRFs involving
internal translational DoFs.

Measured FRFs can be curve fitted to try to smooth out noise before using them in the decoupling procedure. However,
in this case, very bad results are obtained. Therefore, raw FRFs are used. Using a mixed interface including the single
translational coupling DoF and several combinations of 3 internal DoFs, the obtained results are not satisfactory in different
frequency bands: in two cases results are slightly better than in other cases. Further attempts are performed using a mixed
interface including the single translational coupling DoF and different combinations of 2 internal DoFs. In one case, the result
is almost satisfactory, whilst in the other cases results are worse than those obtained with 3 internal DoFs. (It can be noticed
that the minimum number of interface equilibrium DoFs is 3.) Therefore, increasing the number of interface DoFs to deal
with an overdetermined problem does not necessarily improve the results. Conversely, decreasing the number of interface
DoFs increases the variability of the results: this can lead to better results but care must be taken to avoid worse results.
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Chapter 7
A Comparison of Two Component TPA Approaches for Steering
Gear Noise Prediction

M.V. van der Seijs, E.A. Pasma, D. de Klerk, and Daniel J. Rixen

Abstract This paper presents a comparison of two component Transfer Path Analysis methods to predict the transmission
of steering gear vibrations into the vehicle. The blocked-force TPA concept is used, allowing to measure the electric steering
system on a test bench, separately from the car. Following up on an earlier study, a new test bench has been designed that is
more compliant and therefore better suited for matrix-inverse force determination. Equivalent blocked forces are determined
on this test bench using the in-situ method. A comparison is made with the blocked forces that were measured directly on
the former stiff test bench. It is shown that the two methods lead to very similar equivalent force spectra for the operational
steering system and therefore make a similar prediction for the noise in the vehicle.

Keywords Transfer path analysis • Dynamic substructuring • Experimental substructuring • Blocked force • In-situ

7.1 Introduction

Component Transfer Path Analysis (TPA) methods are aimed at characterising vibration sources in an assembled product by
quantities that are properties of the active components only. As with any TPA method, the goal is to investigate dominant
transmission paths from active excitation sources to certain locations of interest, such that design efforts can be directed
to optimising/reducing their contributions if NVH1 targets so require. Whereas classical and operational TPA methods
[4, 12, 17] are used to expose transfer paths in existing designs, component TPA methods [2, 10] are valuable in design
stages when the end-product or prototype is not yet there and an early prediction of vibration transfer is to be made. For
instance a supplier of high-precision machinery could be interested in the excitations and dynamic properties of the factory
floor on which the machinery is to be installed. Knowing the admittance and free velocity vibration levels of the floor
at the interfaces with the machine beforehand, the supplier can design a support structure such that critical requirements
on vibration levels are met [9, 21]. A vehicle manufacturer on the other hand would use excitation profiles from active
components or other vibration sources to predict the contribution to the noise level in the vehicle’s interior [1, 6, 16]. In the
latter case it is preferred to characterise the operational component excitations by (blocked) forces at its interfaces.

This paper reports on the application of component TPA to predict the noise from the electric power steering system
(EPS) inside the vehicle. In particular, two different procedures are followed to determine the so-called equivalent or blocked
forces, that have led to the construction of two distinct test benches. The first test bench is designed for maximum rigidness
such that boundary conditions are appropriate for direct measurement of blocked interface forces. Early results from EPS
measurements on this test bench have previously been reported in [16, 20]. Based on these findings, a second test bench
was designed that is more compliant in the directions of interest. The increased flexibility allows for matrix-inverse force
reconstruction schemes using acceleration measurements. Rather than applying conventional matrix-inverse in a classical
TPA sense (which would yield the interface forces), the in-situ force determination method is used as proposed by Moorhouse
en Elliott [5, 10]. This method allows to reconstruct equivalent blocked forces using only the admittance of the assembly of
the EPS system and the test bench.

1NVH is short for Noise Vibration and Harshness.
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The theoretic background of component TPA as derived from dynamic substructuring is briefly discussed in Sect. 7.2. The
application to steering gear vibrations is presented in Sect. 7.3 for two different test bench measurement campaigns. Details
on the test benches are included. The paper is concluded with a summary in Sect. 7.4.

7.2 Theory of Equivalent-Force TPA

This section summarises the substructuring theory needed to derive the equivalent force determination schemes for the
steering gear application in Sect. 7.3. An extensive derivation is found in [20]. The notation of Lagrange Multiplier Frequency
Based Substructuring (LM-FBS) as defined in [3] is adopted. In order to provide an appropriate framework for experimentally
modelled substructures, all systems are described by admittance matrices in a dual assembly. The interface dynamics are
described by 6-DoF FRF matrices per connection point; details on how the subsystems have been modelled from experiments
can be found in [18, 19].

7.2.1 Response to an Excitation for the Assembled Problem

The vibration transfer problem is illustrated by the dynamic system AB, schematically depicted as subsystems A and B in
Fig. 7.1. The active subsystem A contains the source excitation at node 1 (i.e. the vibrations of the steering gear); subsystem
B represents the passive receiver structure comprising the responses of interest at node 3 (i.e. the acoustic response inside the
vehicle). The subsystems are rigidly interconnected at their interfaces; for ease of notation they are represented by the single
node 2.

Approaching the vibration transmission problem top-down, the transfer problem to be approximated, relating the response
spectra at the receiving locations (u3) for an excitation spectrum only at the source (f1), reads:

u3.!/ D YAB
31 .!/ f1.!/ (7.1)

Matrix YAB.!/ contains admittance Frequency Response Functions2 (FRFs) measured on the total assembly, i.e. total vehicle
including the steering gear. Although trivial in this case, Eq. (7.1) governs the main transfer path problem that will be
approximated in the following sections by means of test bench measurements.

7.2.2 Equivalent Source Problem for a Substructured System

The total transfer function is first derived using the admittance FRF matrices of the individual subsystems YA and YB as
shown in Fig. 7.1. The system of equations is put in a block-diagonal format and augmented with unknown interface forces
g2 at both sides of node 2. Regarding that the system is only excited at node 1 of the active subsystem, the dual system reads:

Fig. 7.1 The transfer path
problem based on the admittances
of substructures A and B

A

Active component

u1

uA
2

B

Passive component

uB
2

u3

YA
21

YB
32

gA
2 gB

2

2The explicit frequency dependency .!/ is assumed for all further variables and will be omitted for clarity of notation.
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From the unassembled system of Eq. (7.2), a coupled system is obtained by imposing coordinate compatibility and force
equilibrium at the interface.3 We write uA

2 D uB
2 to enforce the compatibility condition; interface force equilibrium is satisfied

by defining a unique set of interface forces œ D gA
2 D �gB

2 . Hence the required set of interface forces œ to couple the two
subsystems can be determined by equating the second and third line of Eq. (7.2):

YA
21f1 C YA

22g
A
2 D YB

22g
B
2

	
YA
22 C YB

22



œ D �YA

21f1

œ D � 	
YA
22 C YB

22


�1
YA
21f1 (7.3)

Equation (7.3) provides the interface forces caused by the operational excitation f1 inside the active component A at the
coinciding interface DoFs uA

2 and uB
2 . Finally the response at the receiving side uB

3 is found by substituting Eq. (7.3) back
into the last line of Eq. (7.2):

u3 D �YB
32œ D

h
YB
32

	
YA
22 C YB

22


�1
YA
21

i
f1 (7.4)

The terms between the brackets represent the assembled admittance from Eq. (7.1) expressed in terms of its subsystem
admittances, which is a standard result of applying Dynamic Substructuring.

Rather than expressing the response u3 as a function of the excitation f1, one is interested in finding an equivalent set of
forces f eq

2 that, applied at the interface of the assembly, yield the same response at the receiving side. This is illustrated by
the applied force in Fig. 7.2. Analogue to Eq. (7.4), the response for an excitation at the interface f eq

2 is governed by:

u3 D YAB
32 f eq

2 D
h
YB
32

	
YA
22 C YB

22


�1
YA
22

i
f eq
2 (7.5)

Again the terms between the brackets represent the admittance assembled from its subsystems. Comparing Eqs. (7.4) and
(7.5), it follows naturally that the equivalent force f eq

2 should have the form:

f eq
2 D 	

YA
22


�1
YA
21 f1 (7.6)

Indeed the equivalent forces in Eq. (7.6) are dependent on the active component A only and lead to the same response u3
once applied to the interface of the assembled structure. In the next section various approaches will be discussed to obtain
such an equivalent force from practical test bench measurements.

Fig. 7.2 Application of
equivalent forces to the interface
of the assembly

A

B

u2

u3

YAB
32f eq

3More information on the expression of the compatibility and equilibrium condition is found in [3].
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Fig. 7.3 Measurement of
interface forces and
displacements on a test bench

7.2.3 Equivalent Force Strategies for Test Bench Measurement

The goal of a component TPA is to characterise the active component by means of operational forces/motion that are an
inherent property of the active component only. Let us therefore consider a test bench TB upon which the active component
A is mounted, visualised in Fig. 7.3. The interfaces A–TB are supposed to resemble those of the assembly A–B as closely as
possible, both in number and connection type.

It is important to note that the test bench is fully passive: no additional excitation is acting upon or coming from the test
bench. Therefore its dynamics are governed solely by the admittance at the interface YTB

22 , which can be anything between a
fully rigid (zero admittance) and a fully free (infinite admittance) boundary. The following system of equations can thus be
established for the general case:
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Furthermore, as the active component is rigidly connected to the test bench, coordinate compatibility and force equilibrium
at the interface are again assumed, i.e. uA

2 D uTB
2 and gA

2 D �gTB
2 . Analogue to the derivation of Eq. (7.3), the interface force

and interface displacement can be expressed as a function of the source excitation f1:

Operational interface forces W g?2 D �œ D 	
YA
22 C YTB

22


�1
YA
21 f1 (7.8a)

Operational interface displacements W u?2 D uA
2 D

h
I � YA

22

	
YA
22 C YTB

22


�1 i
YA
21 f1 (7.8b)

The superscripts are replaced by .�/? to emphasize that it now concerns measured states during operational tests (active
source excitation f1) obtained by means of force sensors4 and accelerometers. The goal is then to construct an equivalent set
of forces f eq

2 according to the definition of Eq. (7.6). It is readily observed that, regardless of the properties of the test bench
or active component, the equivalent force is formed as follows:

f eq
2 D g?2 C 	

YA
22


�1
u?2 (7.9)

This expression for equivalent forces can be generally applied for any test bench setup and was originally proposed in [2].
Special cases of Eq. (7.9) and alternative equivalent force strategies are discussed next.

4Note that the sign of g?2 corresponds with the interface force acting on the test bench. This is a different convention than in [16, 20] where it was
defined as seen from the side of the active component.
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7.2.3.1 Blocked Interface Force/Free Interface Motion

Consider an infinitely stiff test bench, i.e. YTB D 0. Under these conditions, interface forces are measured against a rigid
boundary and are therefore the true blocked forces, while displacement of the interface is null, as can be found from
substitution into Eq. (7.8). As a consequence the equivalent force is simply constituted by:

g?2 D 	
YA
22


�1
YA
21 f1

u?2 D 0

)
H) f eq

2 D g?2 (7.10)

As discussed earlier in [2, 20] this method is particularly suited for lower frequencies for which the rigidness assumption is
valid. An additional difficulty is the measurement of interface moments, as not many sensors that are currently available are
capable of measuring rotational forces.

At the other utmost, an infinitely compliant test bench, i.e. YTB D 1, leaves the interface entirely free. This yields a set
of equivalent forces that are completely composed from the interface displacements in a matrix-inverse procedure with the
admittance of the active component:

g?2 D 0

u?2 D YA
21f1

)
H) f eq

2 D 	
YA
22


�1
u?2 (7.11)

In practice one would need to suspend the active component somehow to be able to measure the interface motion at the active
component under operation, for instance with soft springs. Apart from any practical issues and the fact that the true rigid
body modes are in practice suppressed by a suspending system, the free interface motion method is expected to perform best
for higher frequencies.

Both variants are well-known special cases that were historically deduced from respectively the Thévenin and Norton
equivalent source problem (see for instance [7, 8, 11, 13]). They are indeed complementary and combine to the generic case
of Eq. (7.9).

7.2.3.2 In-situ Force Determination

Let us recall Eq. (7.9) and substitute for the interface forces g?2 the interface displacement u?2 with the matrix-inverse of the
admittance of the test bench YTB

22 , according to the last line of the system of Eq. (7.7):

f eq
2 D 	

YTB
22


�1
u?2 C 	

YA
22


�1
u?2

The two inverted admittance terms can be collected as they together represent the interface impedance of the assembled
subsystems A and TB. It follows naturally that one can determine equivalent forces directly from the admittance measured
on the assembly:

f eq
2 D 	

YATB
22


�1
u?2 (7.12)

This method has been introduced as the in-situ force determination method in [6, 10]. In fact it can be seen as the reverse of
Eq. (7.5) but in this case it is written for a larger set of responses u2 instead of u3 and an assembly of the active component
with the test bench is considered, rather than with the vehicle.

Other variants can be derived from Eq. (7.9) which is not covered here; see for more details [20]. The application in the
following section will focus on two methods in particular: the blocked interface force and in-situ method.

7.3 Application to Steering Gear Vibrations

This section discusses the noise prediction of the steering gear (active component) into the interior of the vehicle (passive
component). The steering gear is bolted at four connection point to the chassis, hence the interface problem is described by
24 DoFs. These are regarded as the dominant structure-borne transmission paths to the interior [18]. The response point of
interest is a microphone positioned at the left driver’s ear. All operational excitations result from a constant-speed steering
manoeuvre from maximum left to right at a vehicle speed of 0 km/h.
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The equivalent forces are determined on two test benches with different stiffness properties. Furthermore, the two methods
require different measurement equipment. In the next section the two test benches and the corresponding measurement
equipment are shortly described.

7.3.1 Design of Test Benches

Equation (7.8) suggests that the dynamic properties of the test bench influence the measured states g?2 and u?2 . Nevertheless,
by proper application of the described methodology, similar equivalent forces f eq

2 should be obtained. Regardless of the
chosen method, it is of great importance that the measured states have a significant signal-to-noise ratio (SNR).

Both test benches have four supports for the connection of the steering gear, bolted onto a rigid test table. The supports
of the first test bench (TB1) are designed for maximum stiffness to ensure proper conditions for the blocked interface
force method. Additionally the in-situ method is applied on TB1, although lower levels of accelerations (i.e. lower SNR)
are expected due to the high stiffness. The second test bench (TB2) is designed to apply the in-situ force determination
method. The supports of TB2 are more compliant than TB1, as can be observed from the receptance plots in Fig. 7.4. A more
compliant test bench improves the SNR on u2 for both the admittance FRF measurements and the operational measurements.

Figure 7.5 shows a support of both test benches. Note that TB1 has a tri-axial force sensor clamped between the support
and the steering gear, whereas TB2 has the steering gear mounted directly onto the support. In both cases all quantities (i.e.
g?2 and u?2 ) are measured on the test bench side. Properties of both test benches are summarised in Table 7.1.
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Fig. 7.4 The (displacement) receptance of the test benches in X-direction (left) and in Z-direction (right)

Fig. 7.5 A stiff support of the
test bench TB1 (left) and a more
compliant support of test bench
TB2 (right)
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Table 7.1 Properties of the two
test benches

Test bench 1 Test bench 2

Construction Steel cylindrical supports Aluminium asymmetrical supports

Measurement equipment One tri-axial force sensor
Four tri-axial accelerometers

Four tri-axial accelerometers

Eq. force method Direct interface force (in-situ) In-situ

TB2 in-situ
TB1 in-situ
TB1 direct force
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Fig. 7.6 The equivalent forces in X-direction (left) and in Z-direction (right) determined on the two test benches via the directly measured interface
forces and the in-situ force determination method

7.3.2 Determination of Equivalent Forces

The equivalent forces are determined on both test-benches by application of the direct interface force method and the in-
situ method. The measured interface forces are used directly as equivalent forces without further processing, as indicated
by Eq. (7.10). The in-situ method however relies on a two-stage measurement to obtain the equivalent forces according to
Eq. (7.12):

1. Determination of admittance FRFs YATB
22 on the passive assembly;

2. Measurement of interface accelerations u?2 with the EPS in operation.

All measurement equipment is equally located for both measurement phases. That means that accelerations measured during
operational testing are at the same place as where the admittance FRFs correspond to, hence no transformation or mapping is
needed. Concerning the equivalent forces however, it is needed to determine forces and moments that are compatible with the
model of the vehicle. The virtual point transformation [19] was therefore used to transform the force side of the admittance
YATB
22 to six virtual forces and moments in the centre of the connection. Therefore the in-situ set of f eq in Eq. (7.12) is

calculated in an over-determined manner, as for each support 12 acceleration channels are used to determine a total of six
forces and moments.

Figure 7.6 shows the equivalent forces for the two test benches. Three series of five curves each are shown, obtained from
repeated measurements. The series represent respectively f eq

2 as determined from:

Black line Blocked interface force from directly measured interface force g?2 on stiff TB1;
Red line In-situ force determination from measured accelerations u?2 on stiff TB1;
Blue line In-situ force determination from measured accelerations u?2 on compliant TB2.

Two methods are evaluated on the setup with the stiff test bench TB1. It was mentioned in Sect. 7.2.3 that the blocked
interface force method constitutes a limit case, i.e. for an infinitely stiff boundary with zero interface displacement. However
the in-situ method exists merely by the grace of flexibility, which is in contradiction with the former assumption. Note that
therefore, strictly speaking, both methods cannot be true at the same time.

Apart from the fact that all methods follow roughly the same trend, several observations can be made. The direct forces
on TB1 (black) in X-direction dive on three points clearly below the two in-situ determined force (red). This is due to the
dynamics of TB1, which indeed exhibits flexibilities around e.g. 1,100 Hz. Compensation for test bench flexibility is possible
in theory, but often results in an over-estimation of the equivalent forces [16]. The peak of the TB1 in-situ curve at 4,000 Hz
can be assigned to the switching frequency of the external servo actuator needed to operate the steering gear; this caused a
distortion on the accelerometer measurement channels.
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Fig. 7.7 The prediction of the
steering gear noise in at the left
driver’s ear in dB(A) TB2 in-situ
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The in-situ forces in Z-direction of TB1 show a significant higher amplitude up to 3,500 Hz compared with the direct
force measurement on TB1 and the in-situ method on TB2. This overestimation of the forces is due to the high stiffness of
the total system in Z-direction, as was observed form Fig. 7.4. Acceleration levels are consequently in the noise range and,
due to the inverse procedure of the in-situ method, measurement errors are amplified.

7.3.3 Prediction of Steering Gear Noise

The steering gear noise in the at the driver’s left ear is synthesised in this section from the blocked interface forces on
TB1 and the in-situ method on TB2. The prediction comprises a multiplication of the equivalent force spectra with the
mechanical-acoustic total vehicle FRFs from the 24 interface DoFs to the response microphone according to Eq. (7.5). In
Fig. 7.7 the A-weighted acoustic pressures are shown at the reference point of interest for the two methods. Some noteworthy
observations:

– The synthesised acoustic pressures following from the two different equivalent force determination schemes and two
different test benches are remarkably similar, even for high frequencies. This result shows that the equivalent forces
determined on both test benches are independent from the test bench dynamics.

– The response up to 500 Hz determined with in-situ method is slightly higher than the directly measured forces.
Over-estimation of the response in the low frequency band has been observed in earlier studies with matrix-inverse
equivalent force determination schemes [20]. However various regularisation methods can be employed to improve matrix
conditioning; see for instance [14, 15].

– The prediction from direct forces of TB1 is computed using translational forces only, as moments were not measurable
with the available measurement equipment. Still, it is for the present case believed that a total of 12 translational forces
are sufficient to synthesise a response. On the other hand, the predictions from in-situ methods are built from 4 � 6 D 24

DoFs, i.e. 12 translational forces plus 12 rotational moments. As those are determined from a matrix-inverse method, it is
interesting to investigate if the operational excitation could also be represented by fewer degrees of freedom. Again, more
insight could be gained from singular value decomposition of the equivalent force spectra or matrix regularisation.

7.4 Summary

Component TPA has been conducted for steering gear vibrations using two different test benches. Theoretically, test bench
independent forces can be derived that represent the internal excitations of the steering gear. A comparison has been
made between equivalent forces obtained from directly measured interface forces and from a matrix-inverse determination
following the in-situ method. Both methods show similar results over the full bandwidth of 6 kHz. This confirms the
theoretical assumption and demonstrates that the equivalent forces, if determined from a methodology that is appropriate
for the test bench at hand, are indeed a property of the steering gear only.
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Chapter 8
Experimental Dynamic Substructuring of a Catalytic Converter
System Using the Transmission Simulator Method

Matthew S. Allen and Daniel R. Roettgen

Abstract This paper contains an example of experimental substructuring using the transmission simulator method on an
assembly of automotive catalytic converters. These structures could be challenging to model with finite elements because of
uncertainties in the material properties of the catalytic converts and the joint between ceramic catalysts and metal housings.
This system is of interest because it has a production joint that has been found to exhibit nonlinearity and linear modeling
presented here will be a precursor to modeling the nonlinearity in the joint. The substructure being used is a single catalytic
converter attached to a steel plate. A modal test was performed in order to obtain a model of the substructure. The substructure
model was developed using elastic modes and rigid body modes that were analytically constructed from measured rigid body
mass properties and extracted FRF test data. This substructure is replicated about the connection axis and coupled to itself
to generate a model of the full system; this assumes that each catalytic converter is identical. The steel plate was attached to
the substructure to serve as the transmission simulator, and thus was subtracted from the final assembly. The substructuring
predictions from were then compared to a truth model which was derived from a modal test of a fully assembled system.

Keywords Experiment • MCFS • Dynamic substructuring • Transmission simulator • Exhaust system

8.1 Introduction

With the complexity of real world systems, it can be difficult to model the details of each part of the system and to
properly account for connections between each part. Sometimes parts of the model are unknown, and sometimes they are
too complicated the accurately model with reasonable effort. These situations lend themselves to dynamic substructuring.
Dynamic substructuring allows for the pieces of a system to be analyzed, or measured, individually and then to be
added together to determine the dynamic response of the full system. This paper contains a detailed example of dynamic
substructuring on an assembly of off the shelf catalytic converters. The goal of this exercise is to provide an example of
dynamic substructuring on a real world system using the transmission simulator method. This provides insight into the
feasibility and limitations of this method in a real industrial setting, where finite element analysis models are not easily
constructed. To complete this task multiple experiments were performed. The first is a modal test on a single catalytic
converter attached to a steel plate which acts as a transmission simulator. The second is a pair of catalytic converters attached
directly with use of a factory gasket seal.

The transmission simulator method was developed in the past decade to address issues when dealing with difficult to
simulate the boundary conditions at the joint between subcomponents of a larger system. To simulate theses boundary
conditions the transmission simulator acts to mass load and exercise these joint between subcomponents. This has been
found to greatly increase the accuracy of dynamic substructuring over a more classical free-free modes approach. Additional
details about the transmission simulator method including more examples can be found in [1–3].
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8.2 Test Objective and Methods

The objective of this exercise is to generate a full system model for a pair of catalytic converters, picture in Fig. 8.1, using
the transmission simulator method. This mimics the problem of more practical interest, where substructuring would be
used to develop a model for the upper part of the exhaust system including the engine and these two up-stream catalytic
converters, including the compliance and nonlinear stiffness and damping of this full assembly. However, the engine was not
available and so we simply seek to predict the response of the assembly shown below. These substructuring predictions will
be compared to a “truth model” comprised of data from testing of the fully assembled system. The catalytic converters
are connected by four bolts through the upper flanges of the system. From previous work [4], the frequency range of
interest was defined as below 300 Hz and therefore frequencies up to 600 Hz were considered in the subcomponent models.
After completing the modal testing the natural frequencies and damping ratios were extracted using the Algorithm of Mode
Isolation (AMI) [5].

Tests were performed on two different structures: a subcomponent test was performed using just one catalytic converted
attached to a transmission simulator, and a full assembly “truth” test was performed on the pair of converters shown in
Fig. 8.1. A global coordinate scheme was used for both tests is also shown in Fig. 8.1 with the z direction pointing into the
figure.

8.2.1 Subcomponent Test

The subcomponent consisted of the left hand catalytic converter from Fig. 8.1 and a steel plate used as the transmission
simulator. The catalytic converter was instrumented with four pairs of uniaxial accelerometers. Each pair consisted of one
accelerometer aligned with the global x-direction and one aligned with the global z direction. The transmission simulator
was instrumented with two tri-axial accelerometers as well was two pairs of uniaxial accelerometers. Figure 8.2 shows the
experimental set up for the substructure with the global z direction out of the page. Small metallic blocks were used to align
the accelerometers into the global xyz coordinate system. A stick model showing the measured node locations is shown in
Fig. 8.3.

The substructure was suspended using bungee cords to simulate free-free conditions as seen in Fig. 8.2. From [6] it is
desired to have the largest rigid body mode to be at least ten times smaller than the first elastic mode in order to minimize
error in the experiment. The lowest elastic mode occurred at 230 Hz and this system’s rigid body modes were below 10 Hz
so this condition was easily met.

The mass properties for the converter were obtained from the mass properties lab at Sandia National Labs and are
presented in Table 8.1. These mass properties were determined assuming products of inertia were negligible and that the
global coordinate system could be considered the principal coordinate system. Rigid body mode shapes were calculated

Fig. 8.1 Assembled catalytic
converter system
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Fig. 8.2 Subcomponent: single
catalytic converter and
transmission simulator

Fig. 8.3 Subcomponent stick
model

Table 8.1 Mass properties for
subcomponent system

Catalytic converter Transmission simulator Full subsystem

Mass [kg] 3.517 5.615 9.127
cgx [m] 0.004 0.035 0.023
cgy [m] 0.147 0.032 0.076
cgz [m] 0.074 �0.011 0.013
Ixx [kg m2] 0.03325 0.05525 0.12096
Iyy [kg m2] 0.00036 0.00491 0.04058
Izz [kg m2] 0.01313 0.00453 0.11935

using the moments of inertia and center of gravity of the catalytic converter as well as the transmission simulator. The origin
for these center of gravity measurements is the global coordinate system as labeled in for Fig. 8.2. The parallel axis theorem
was used to combine these measured mass properties for the catalytic converter with the analytical mass properties for the
transmission simulator. The transmission simulator mass properties were calculated using the mass of the part along with it’s
physical dimensions.

At low frequency the FRFs of a structure tend to a constant value caused by the sum of the rigid body modes, called mass
lines. The mass lines generated from the mass properties in Table 8.1 can be compared to those extracted experimentally.
When this was done, the mass lines constructed from the mass properties did not reproduce the mass lines of the experimental
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Table 8.2 List of modes and
descriptions for subcomponent
test

Mode Frequency [Hz] Damping ratio — [%] Description

1 0.00 1.00 x direction translation
2 0.00 1.00 y direction translation
3 0.00 1.00 z direction translation
4 0.00 1.00 rotation about x

5 0.00 1.00 rotation about y

6 0.00 1.00 rotation about z

7 230.49 0.519 1st bending
8 246.60 0.069 2nd bending
9 316.19 0.432 3rd bending
10 540.65 0.034 1st torsion
11 560.75 0.054 4th bending

Fig. 8.4 Subcomponent FRF:
[drive point 102-Z, response
point 101-Z]
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system and it was deduced this was due to missing product of inertia terms. In order to mitigate this error only the translational
rigid body modes were used from the mass properties in Table 8.1. An alternative set of rotational rigid body modes were
generated based on experimental data as detailed in Appendix 1.

The subsystem was excited with a modal impact hammer at several drive points in order to attempt to find the best location
to excite each individual mode. Drive points were gathered both on the catalytic converter as well as the transmission
simulator. Drive points on the catalytic converter were difficult to complete as it was difficult to hit in line with mounted
accelerometers without risking the integrity of the measurement. Ultimately, the drive points on the transmission simulator
yielded the best results, due to the difficulty of exciting at an appropriate location and in a precise direction on the catalytic
converters.

The analytical rigid body modes were combined with five elastic modes extracted from this modal experiment. These
modes are shown in Table 8.2. Drive points were taken at points 101, 102, 103, and 104 in the positive z direction as well as
the x and y directions to generate the rotational rigid body modes. Figure 8.4 shows an FRF that provides a comparison of
the truth data and the two ways of calculating the rigid body modes. From inspection it becomes obvious that the incomplete
mass properties do no simulate the mass lines and rigid motion of the system very well.

8.2.2 Truth Test

With the subcomponent test complete a full system “truth” test was also conducted to be used as a baseline for the
substructuring results. This truth test was completed using two catalytic converters pictured previously in Fig. 8.1. A stick
model showing full system truth test node numbering is pictured in Fig. 8.5.
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Fig. 8.5 Full system stick model

The full assembly system was excited at point 201 in the z direction, this allowed the structure to be hit in line with the
accelerometer where this would have been more difficult at points on the catalytic converters bodies. Nine elastic modes
were calculated to be compared with the substructuring predictions.

8.3 Substructuring Methodology

The transmission simulator method was utilized in order to assemble two copies of the experimentally derived model to
estimate the modes of the full assembly as shown in Fig. 8.1. The second copy of this subsystem needs to be rotated 180ı
such that node 101 from the first copy will be constrained to node 102 of the second copy and vice versa. Table 8.3 contains
the constrained degree of freedom pairs.

Note all of these points are located on the transmission simulator. With two copies of the subsystem included in the
full assembly model two transmission simulators will need to be removed in order to complete the substructuring. The first
elastic natural frequency of the transmission simulator was found to be 840 Hz. This frequency was beyond the bandwidth
of interest so the transmission simulator was treated as rigid. A later exercise may be completed to add this mode into the
system and see its impact on the substructuring results.

For the following calculations, the subscript A represents the first catalytic converter and transmission simulator pair with
B representing the same system rotated 180ı. The subscript C represents the fully assembled system and the subscript TS
represents the transmission simulator. The modal parameters ¨ and — represent the natural frequencies and damping ratios of
their respective subsystems and ˆ represents the associated mode shapes. The physical degrees of freedom are represented
by vectors denoted x and the modal degrees of freedom are denoted by vectors q. To begin, the system of equations is written
in the standard mass-normalized modal representation of the equations of motion.

2
4
IA 0 0

0 IB 0

0 0 �2I TS

3
5

8
<
:
q̈A
q̈B
q̈TS

9
=
; C

2
4
!A

2 0 0

0 !B
2 0

0 0 �2!TS2

3
5

8
<
:
qA
qB
qTS

9
=
; D

8̂
<
:̂

˚T
AFA

˚T
B FB

2˚T
TSFTS

9>=
>;

(8.1)

The following constraints between the physical displacements would enforce the connection between the two substructures.
This equation only applies to the subset of degrees of freedom which act to connect the transmission simulator between
substructures.
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Table 8.3 List of modes and
descriptions for subsystem test

Subsystem 1 degree of freedom Subsystem 2 degree of freedom

101 [x,y,z] 102 [x-,y,z-]
102 [x,y,z] 101 [x-,y,z-]
103 [z] 104 [z-]
104 [z] 103 [z-]

The constraint equation can then be rewritten in terms of modal coordinates as seen in Equation.
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In order to take advantage of the transmission simulator method, the constraints are now pre-multiplied by the pseudo-inverse
of the transmission simulator mode shapes partitioned to the constraint degrees of freedom. This has the effect of constraining
the estimated modal degrees of freedom of the TS to their projection on the A and B subcomponents.
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The rest of the steps are exactly as outlined in [1, 7]. The result is an estimate of modes of the assembly: !C, 
C and ˆC.

8.4 Substructuring Results

The substructuring predictions will now be compared to the full assembly truth test briefly discussed previously in this paper.
Comparisons of the frequencies, damping ratios are contained in Table 8.4. The Modal Assurance Criterion (MAC) between
the “truth test’ and the substructure predictions was also calculated and is contained in Table 8.4.

By inspection of Table 8.4 some trends can be identified. The first two elastic modes are more than 10 % off in frequency.
Despite this the frequencies compare very well for some of the elastic modes (modes 9, 10 and 13). Damping proved harder to
predict with errors as high as 95 %. The damping of the system was very light so small changes in damping ratio correspond
to large changes in percent difference. The modal damping estimated in the truth or subcomponent tests varied up 15 % (e.g.
a 10 % difference in — could correspond to damping ratios of 0.010 and 0.011) from one drive point to another. With such
variation, larger errors in the damping predictions were expected. It was very difficult to get a good driving point on the
subsystem which led to difficulty choosing one measurement over another.

Mode shapes were also correlated through MAC values and FRF reconstruction. A plot of the MAC values for the truth
test shapes and substructured shapes is shown in Fig. 8.6. MAC values for the three rigid body translation modes correlated
as expected. This verifies that the substructuring script is working since it is merely assembling the rigid body translation
modes, and the rigid body modes that are predicted for the assembly are simply a sum of the mass properties of the two
catalytic converters. The rotational modes did not correlate as well as the translational modes, but this was also expected as
the mass properties used to generate full assembly rigid body modes were those mentioned earlier shown to have substantial
error when comparing mass lines at the subcomponent level. Modes 7, 8, 10, and 12 also matched reasonably well but the
MAC values for modes 9, 11, 13 and 14 were poor. The sensor set used was also limited so it proves difficult to distinguish
all modes with such a small sensor set.

In addition to MAC correlation, mode shapes for the truth and substructured shapes were also visually compared. They are
illustrated in the YZ and XZ planes in Fig. 8.7. In these modes shape plots the solid blue and red lines show the substructuring
prediction representing the A and B catalytic converters respectively. The lines with markers are the truth test measurements
and the dashed lines are the undeformed shapes of each converter.

In Fig. 8.7 the best match between the substructured and truth test modes appears in mode 7 which matches well with the
calculated MAC values. For some of the more borderline MAC values, such as those in modes 8 and 10, visual comparison
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Table 8.4 Substructuring results

Truth test Substructuring prediction

Mode Frequency [Hz]
Damping
ratio [%] Frequency [Hz]

Damping
ratio [%]

Frequency
% error

Damping ratio
% error MAC Description

7 117.62 0.48 131.2 0.19 11.55 �59.45 .9850 Bending
8 235.05 0.43 203.34 0.44 �13.49 2.56 .6701 Torsion
9 245.18 0.12 246.84 0.08 0.68 �36.53 .4061 Torsion
10 251.78 0.24 250.37 0.11 �0.56 �52.90 .7930 Torsion
11 466.99 0.53 410.14 0.56 �12.17 6.13 .5811 Bending
12 510.56 0.85 542.34 0.04 6.22 �95.05 .7751 Bending
13 540.65 0.07 542.59 0.04 0.36 �44.79 .0089 Torsion
14 546.14 0.18 561.21 0.06 2.76 �66.19 .0014 Bending

Fig. 8.6 Subsystem full system
measurement degrees of freedom

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

"Truth" Test Modes

S
u

b
st

ru
ct

u
ri

n
g

 P
re

d
ic

ti
o

n
 M

o
d

es
Plot of MAC Matrix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of the mode shapes matched better than the MAC values would imply. For some the substructure seems to not have captured
these mode shapes well (Modes 9, 13, and 14). These modes are predominantly torsional system modes and modes near the
highest used sub-system frequency.

Often the purpose for performing substructuring is to estimate the response levels or strains at key points of interest. This
was explored by reconstructing the FRFs at a few points and comparing them to the experimental test data. Three examples
of reconstructed FRFs are shown in Figs. 8.8 and 8.9.

Figure 8.8 shows the drive point FRF for a strike and a measurement at location 201 in the z direction. Comparing this
model to the measured truth data several more assessments can be made of the substructuring results. First, the mass lines
match those of the experimental data fairly well. This indicates that the rigid body modes that were experimentally extracted
from the single systems seem do predict those of the full assembly.

The prediction of the response for the elastic modes does not match the experimental data very well, but there is good
qualitative agreement. The substructured mode shapes correctly assess the small response level for first elastic mode at the
drive point as seen in Fig. 8.8. In contrast, a large response is correctly identified at point 203 as seen in Fig. 8.9. Both FRF
plots show that the substructured model struggles to pick up the third elastic mode verifying the dissimilar mode shapes from
Fig. 8.7 and the low MAC value for these modes. The predictions based on the substructuring results did not reconstruct
the truth data perfectly, but one should bear in mind that on the first few iterations a finite element model would probably
not provide a better prediction of the response, especially considering all of the uncertainties associated with the material
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Fig. 8.7 Elastic mode shapes
(solid – substructuring
predictions, solid with markers –
truth test, dashed – undeformed)

properties of the ceramic catalysts and the compliance of the joints in the system. Furthermore, the authors do not believe
that these results represent the best that could be achieved with substructuring. The possible sources of error are discussed in
the next section.

8.4.1 Possible Error Sources

Based on the errors seen in the substructuring predications some possible error sources were identified. Investigation and
corrections of these sources may lead to an improved substructuring prediction for the fully assembled system. As mentioned
previously, only one of the two catalytic converters was tested and it was assumed that the other was identical. In reality there
are manufacturing tolerances that may cause differences. As a result, the substructuring results could give a better prediction
of the response of an assembly of identical catalytic converters than the truth test did (although this is unlikely).
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Fig. 8.8 FRF reconstruction:
driving point 201Z, response
point 201Z
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Fig. 8.9 FRF reconstruction:
driving point 201Z, response
point 203Z
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As mentioned above the mass properties originally used for the catalytic converter did not produce the correct mass lines of
the subcomponent. Instead experimentally derived rigid body modes were used to simulate the system more accurately. The
experiment was not set up to ideally capture these rigid body mode shapes. It was very difficult to get drive point excitations
on the structure thus constructing these rigid body rotational modes from multiple drive points became difficult. The triangle
method described in [8] could be used to create better drive point excitations. Furthermore, the accelerometers used were
low sensitivity (to allow for high amplitude tests to evaluate nonlinearity) and were certainly not ideal for measuring rigid
body motions. A more carefully designed experiment could be used to more accurately measure these rigid body modes and
create a better subsystem model that may mitigate one potential error source. Appendix 2 explains the results of using the
incorrect subsystem rigid body modes on our substructuring predictions.

Recall the largest MAC value deficiencies were observed in predominantly torsional modes. It is possible that the relatively
poor results on the torsion modes arise because the subsystem measurements don’t contain enough torsional motion. It may
be useful to complete more subcomponent tests on the substructure to attempt to better excite the torsional modes and
possibly include additional torsional modes in the subcomponent model. The bandwidth for the subcomponent experiment
should probably be expanded to include additional modes and ensure all the data needed to predict these torsional modes is
included.
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Similarly, the transmission simulator was assumed to be rigid because the first elastic mode was outside the bandwidth of
interest. Adding the first elastic mode of the transmission simulator to the substructure may provide additional information
needed to bring down some of the errors seen in the substructuring predictions. This will require creating a finite element
model for the transmission simulator and will be pursued in subsequent works.

8.5 Conclusions and Future Work

This effort created a substructuring prediction for an assembly of two catalytic converters by replicating and combing
the results from a subcomponent modal test. The resulting substructuring prediction was then compared to an experiment
conducted using two catalytic converters as a “truth test”.

After substructuring, the worst frequency error was observed to be 13.5 % although several of the modes were predicted
quite accurately. The damping ratios were the more difficult to predict with error as high as 95 %. Mode shapes were
compared using multiple methods. MAC values in the frequency bandwidth of interest ranged from as low as 0.4061
to as high as 0.985. For some of the questionable mode shapes visual matching show promising correlation between the
substructured and truth mode shapes. With the largest MAC errors occurring predominantly in torsional modes it is possible
that the frequency bandwidth was not adequate to describe the motions in the frequency range of interest. It was also observed
that it was difficult to obtain good drive point measurements, so while the measurements were clean and could be curve fit
easily, it was difficult to extract mode vectors that would correctly reconstruct the FRFs at all of the drive points. These
substructuring predictions were not able to replicate the truth test perfectly but provided a qualitatively good estimate for the
modes of interest and for the frequency response functions at several points, especially considering the time and effort that
would be required to create and update a finite element model of comparable quality.

Acknowledgements This work was conducted/supported by Sandia National Laboratories. Sandia is a multi-program laboratory operated under
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94-AL85000.

Appendix 1: Alternate Rotational Rigid Body Mode Calculation

The large mismatch in mass lines when using the assumed mass properties, as seen in Fig. 8.4, led to the development
of experimental rigid body rotational modes. This appendix details the calculation of these modes. The mass line for an
FRF can be calculated as a sum of the six rigid body modes or residues for the FRF. This means the total mass line for an FRF
can also be written as a sum of the translational mass lines and the rotational mass lines.

ML D
6X

nD1
resn (8.5)

MLtotal D MLtranslation CMLrotation (8.6)

The translational mass lines can be calculated using the mass of the system leaving only three rotational mass lines to
be solved for. These mass lines can be calculated as the translational mass lines (calculated analytically from a mass
measurement) subtracted from the total mass lines (measured experimentally). This total set of mass lines can come from
multiple drive point locations to ensure you excite all rotational rigid body modes and therefore account for all moments and
products of inertia.

MLrotation D MLtotal �MLtranslation (8.7)

In order to calculate the rotational rigid body modes an eigen value problem for the rotational mass lines must be solved.
The eigen values from this solution should be real and positive. Using the largest eigen values the approximate experimental
rigid body modes are then calculated.

�rotation D 1p
	
MLrotation� (8.8)

These rigid body modes provided a much better match for the mass lines of the experimental subcomponent.



8 Experimental Dynamic Substructuring of a Catalytic Converter System Using the Transmission Simulator Method 91

50 100 150 200 250 300 350 400 450 500 550
10-3

10-2

10-1

100

101

102

Frequency [Hz]

M
ag

n
it

u
d

e

Truth Data

Substructured Prediction

Incomplete Mass Properties
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Appendix 2: Substructuring Prediction with Incomplete Mass Properties

As mentioned previously, incomplete mass properties led to errors in the subcomponent mass lines as displayed in Fig. 8.4.
Matching these mass line is vital in order to obtain a quality substructuring prediction. Figure 8.10 shows an FRF
reconstructed using both the incomplete mass properties and the experimentally derived rotational rigid body modes. Here
the line in blue shows how the error effects not only the shapes but the frequencies that come out of in the substructuring
prediction. In the displayed FRF the system’s elastic modes are barley distinguishable above the rigid body mass line of the
system which creates a poor prediction of mode shapes and frequencies. Checking the mass line of an experimental system
with any rigid body modes created from mass properties is a good practice toavoid such errors.
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Chapter 9
A Modal Craig-Bampton Substructure for Experiments, Analysis,
Control and Specifications

Randall L. Mayes

Abstract This work was motivated by a desire to transform an experimental dynamic substructure derived using the
transmission simulator method into the Craig-Bampton substructure form which could easily be coupled with a finite element
code with the Craig-Bampton option. Near the middle of that derivation, a modal Craig-Bampton form emerges. The modal
Craig-Bampton (MCB) form was found to have several useful properties. The MCB matrices separate the response into
convenient partitions related to (1) the fixed boundary modes of the substructure (a diagonal partition), (2) the modes of the
fixture it is mounted upon, (3) the coupling terms between the two sets of modes. Advantages of the MCB are addressed.
(1) The impedance of the boundary condition for component testing, which is usually unknown, is quantified with simple
terms. (2) The model is useful for shaker control in both single degree of freedom and multiple degree of freedom shaker
control systems. (3) MCB provides an energy based framework for component specifications to reduce over-testing but still
guarantee conservatism.

Keywords Experimental dynamic substructures • Substructuring • Craig Bampton • Shaker control • Six DOF shaker
control • Environmental specifications • Energy methods

Nomenclature

CB Craig-Bampton method of substructuring
CMIF Complex mode indicator function
FE Finite element model
MCB Modal Craig-Bampton model form
TS Transmission simulator – the fixture attached to the experimental substructure of interest
dof Degree of freedom
sdof Single degree of freedom
mdof Multiple degree of freedom
p Modal dof of the experimental substructure with fixed boundary
q Modal dof of free modes extracted from experimental substructure with TS attached
s Free modal dof of the transmission simulator
x Physical displacement dof
! Frequency in radians per second

 Modal damping ratio
K Stiffness matrix
Lfix Reduction matrix applying fixed boundary constraint to experimental equations of motion
M Mass matrix
T Transformation matrix to convert free modal model to modal CB model
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ˆ Free mode shape matrix extracted for experimental substructure with TS attached
‰ Free mode shape matrix of the TS
� Eigenvectors resulting from fixed boundary constraint of experimental equations of motion
b Subscript for the fixture or boundary
fix Subscript for the fixed boundary modes of the experimental substructure with TS as the boundary
free Subscript for the free modes obtained in the modal test of the experimental substructure with TS
C Superscript indicating the Moore-Penrose pseudo-inverse of a matrix

9.1 Introduction

The main value of this work comes as an accidental discovery in an investigation focused on experimental dynamic
substructuring using the transmission simulator (TS) method [1]. The motivation of the work was to take the standard
form of the TS method and convert it to a form that could be used as a standard Craig-Bampton substructure in FE
codes. This is described more completely in another work [2]. After the associated theory was developed, the utility of the
intermediate modal CB form was realized. In the modal CB form, the boundary degrees of freedom (dof) are characterized
with generalized dof instead of the classic physical dof. In the method provided here, this can potentially provide a drastic
reduction in the number of boundary dof with a mild cost in modal truncation error. The theory here utilizes a modal basis
of free modes of the TS to quantify the boundary motion, but this is not a limitation, and it may be that other bases may be
found that are more accurate.

For those who are not familiar with TS method, the TS is a fixture that is attached to the substructure of interest in
exactly the same way as the complement of the real system will be attached, which might be modeled with FE or another
experiment. The TS is instrumented with enough sensors to capture the motion adequately with a truncated set of modes to
the desired frequency band. The TS instrumentation does not have to be located at every connection dof, and rotational dof
are not required. However, the rotational and connection dof are inherently carried along in the modal dof of the TS. This
method captures the stiffness and damping of the joint between the connected structures as well as the characteristics of the
substructure of interest. All the measured dof on the TS are considered as part of the CB boundary dof, which leads to the
utility to be discussed later.

In the following theory, it will be demonstrated that the experimental free modes model of the TS connected to the
substructure of interest can be transformed to a matrix form called a modal CB. One partition of the stiffness, mass and
damping matrices is diagonal. It is exactly the same as the standard CB form and accounts for the fixed boundary modes,
where the TS fixture is considered the boundary. The other modal dof are associated with the motion of the TS. Coupling
terms connect the two in some cases. The value here is that the motion of the substructure has been separated into the
dof that strain the substructure, and the dof describing the motion of the base. This separation provides the capability to
gain tremendous insight that is not possible when the motion of the boundary is described in standard physical coordinates.
With this approach one acquires the following power directly from the analysis. (1) The effects of the impedance of the
boundary are directly quantified, mode by mode. (2) The motion input to the boundary dof can be directly calculated to
produce a desired substructure modal response (for example in sdof or mdof shaker control). (3) One can utilize the fixed
base modal dof to specify energy based qualification testing for the substructure. This method drastically reduces the classic
but unnecessary over-conservatism at many frequencies, but still theoretically guarantees conservatism at all frequencies of
interest, which is not the case with current standard methodologies for dynamic testing.

Hereinafter is presented the theory of the transformation in Sect. 9.2, the value of the modal CB form for quantifying the
uncertainty in the boundary condition (impedance) in Sect. 9.3, the value in sdof or mdof control in Sect. 9.4, and the value
for superior qualification specifications in Sect. 9.5. Afterward are the conclusions in Sect. 9.6.

9.2 Theory

Consider an experimental substructure tested with the TS fixture attached. The test captures modal parameters for the free
modes of the substructure and the attached TS fixture. It is desired to transform the experimental model to a modal CB
form which contains fixed boundary modes for the substructure of interest, free modes of the fixture and coupling terms to
connect the generalized dof. As an example, consider component A, the substructure of interest attached to a fixture, the
TS, in Fig. 9.1. The test article would be instrumented according to the traditional TS method. The goal is to transform the
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Fig. 9.1 Example component
on test fixture

Component A

Fixture (Transmission Simulator)

free mode test results to a modal CB form, which has useful properties that will then be examined. The free modal test will
produce modal parameters associated with the q dof. After a transformation, the TS has free modal parameters associated
with the s dof, and the motion of component A will be described with the fixed boundary modal dof p.

Generally, there is a FE model of the TS. The FE model is used in test planning to define measurement locations that will
achieve independent mode shape measurements for all free modes of the TS slightly beyond the frequency band of interest.
The TS fixture is thus instrumented. The transmission simulator hardware is attached to the experimental substructure and the
free TS mode shapes are assumed to span the space of the fixture motion when connected to the experimental substructure.
How well it spans the actual connection motion space affects the fidelity of the substructure model. The modal parameters
from a free modal test of the experimental substructure with the TS attached can be used to produce the following equations
of motion as

�
!2free C j 2!!free
free � !2I �

q D 0 (9.1)

where the subscript free represents the set of modes obtained from the experimental modal test. The subscript free is used
because the structure is typically suspended by bungee cords or some very soft suspension whose mass, stiffness and damping
are considered negligible. The mass-normalized mode shapes derived from the test will be contained in the measured mode
shape matrix,ˆ. For convenience, the rest of this derivation will drop the damping matrices, but they may easily be included.
The goal is to derive a square matrix transformation, T, that will convert Eq. (9.1) to a modal CB form. Define the generalized
coordinates, p, as the fixed-boundary modal coordinates and the generalized coordinates, s, as the coordinates that account
for the motion of the TS, which is considered to be on the boundary of the experimental substructure as

q D T

�
p

s

�
: (9.2)

First consider a constraint that ties the free TS to the tested structure. Use the modal approximations to set the motion of the
experiment on the boundary (TS dof) to match the free modal motion of the TS as

˚bq � �bs (9.3)

where the subscript b dof will actually be a subset of the boundary dof where the measurements are made, ˆ is the
experimental mode shape and ‰ is the chosen truncated set of free modes of the TS. ‰ usually comes from a TS FE
model, but could also be measured. Then the relation between q and s is

q D ˚C
b �bs (9.4)

where the C sign represents the Moore-Penrose pseudo inverse. This provides the right hand partition of the transformation,
T, associated with the s dof.

To obtain the fixed boundary modal dof, p, describing the elastic motion of component A, fix the boundary dof with

xb D ˚bq D 0: (9.5)

Previous work [3] has shown that a practical way to accomplish Eq. (9.5) is to fix the TS dof with

�C
b ˚bq D s D 0: (9.6)

Using Rixen’s primal assembly [4], the modal dof are replaced with

q D Lf ix� (9.7)
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which is substituted back into Eq. (9.6) to obtain

�C
b ˚bLf ix� D 0: (9.8)

Since � can be many vectors, depending on the forcing motion, Lfix is chosen to guarantee satisfaction of the constraint as

Lf ix D nul l
	
�C
b ˚b



: (9.9)

Pre and post-multiply Eq. (9.1) using the transformation Lfix appropriately to give

LTf ix
�
!2f ree � !2I �

Lf ix� D 0: (9.10)

Solve Eq. (9.10) to get the eigenvectors, � , and the eigenvalues to uncouple the dof, p. Then the relationship between q and
the fixed boundary dof, p, is

q D Lf ix p (9.11)

which provides the rest of the transformation. T is written from Eq. (9.4) and (9.11) as

T D �
Lf ix ˚C

b �b
�
: (9.12)

Pre multiplying Eq. (9.1) by the transpose of T and substituting Eq. (9.2) into Eq. (9.1) for q yields the following transformed
equations of motion for free vibration

""
8

!2f ix
n

Kps

KT
ps Kss

#
� !2

"
I Mps

MT
ps Mss

## �
p

s

�
D 0 (9.13)

for which the eigenvalue and eigenvector solution have not changed from Eq. (9.1). It has exactly as many dof as Eq. (9.1),
but now they have been transformed to the fixed base modes associated with p and the free TS modes which were on the
boundary as modal dof s. The upper left portion of the matrices is diagonal. Now there are coupling terms between the fixed
base modes and the free TS motion. Considering the upper partition of Eq. (9.13) and moving the boundary TS dof, s, to the
right hand side develops equations of motion from enforced boundary motion as

hh
8

!2f ix
n

i
� !2 ŒI �

i
fpg D ��

0 �Kpse

� C !2
�
Mpsrb Mpse

�� �
srb
se

�
(9.14)

where the e subscript is associated with the free elastic modes of the TS structure and the rb subscript is associated with the
free rigid body modes of the TS structure. Notice that there is no coupling of the p dof with the srb dof through stiffness but
there is coupling through mass terms. The p dof are coupled with the elastic se dof through both stiffness and mass terms. In
general there are many p, six srb, and many se dof. For discussion purposes let us assume there is only one srb dof and one se

dof. Since the left hand side is uncoupled, we can consider the scalar equation of motion for the very first p dof as

	
!2fixed_1 � !2
p1 D !2mrb_1srb_1 C 	�ke_1 C !2me_1



se_1: (9.15)

Equation (9.15) determines how much elastic modal dof p1 is excited by enforce rigid body motion and elastic motion of
the TS.

9.3 Value of the Modal CB Form for Removing Uncertainty in the Boundary Condition

Suppose one performs a free modal test of the structure in Fig. 9.1, has a FE model of the fixture, and transforms the results
of Eq. (9.1) into the modal CB form as in Eq. (9.14). One might also achieve the results of Eq. (9.14) with a modal model
derived from a FE model of component A and the fixture. Such a model conveniently quantifies the effect of the boundary
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condition (the fixture) on the elastic motion of a substructure such as component A. Consider one mode of component A
in Eq. (9.15). The elastic motion of component A characterized by generalized dof p1 is influenced by each TS rigid body
modal dof times its mass coupling term, which is classically called the modal participation factor [3]. In addition, mode p1

is influenced by the elastic motion of each mode of the TS multiplied by both a stiffness and a mass coupling term. This
immediately describes the impedance effects of the TS on component A on a mode by mode basis. All of these mass, stiffness
and damping coupling terms come directly from the transformation that is applied to the free modal model of component
A attached to the fixture (TS). This quantification removes the uncertainty associated with the boundary condition that has
clouded virtually all component qualification testing.

It was observed by Savoie [4] that if a similar transformation were applied not only to component A with the TS as its
vibration/shock testing fixture, but also to component A with the TS as the FIELD SYSTEM, the impedance effects could
be directly compared between field environment and ground test to see how different they are. Many times there is a FE of
the rest of the system that could be used as the TS. This difference between the field and test boundary conditions has always
been a massive uncertainty using traditional methods of qualification specification and testing. In addition, environments
engineers have related stories of overtesting of components at certain resonant frequencies associated with elastic modes of
the fixture, se_k, which were not experienced in the actual field environment.

The reasoning in the paragraph above also suggests that we can quantify the quality of the test fixture in replicating the
boundary conditions for the next higher level assembly. Future work could explore improving fixture design as well as test
specification tailored to the different test fixtures used in qualification (e.g. different vibration fixtures for different axes,
shock fixtures, etc.) [4].

9.4 Value of the Modal CB Form for Vibration Control in SDOF or MDOF Tests

Equation (9.14) could also be very useful from the standpoint of vibration control for testing of component A. The ideal
fixture for shock or vibration control in qualification of a substructure like component A would be rigid, having only srb terms
and no elastic se terms like the one shown in Eq. (9.15). Then one could excite the associated pi terms exactly as desired
by controlling the rigid body motion of the fixture and knowing the modal participation factors. This applies to the standard
sdof (one translation direction) excitation as well as emerging mdof (e.g. 3 dof or 6 dof) shaker control. Unfortunately, there
are usually elastic fixture modes in the bandwidth of interest. For sdof control, usually only one srb term (for one desired
direction) is excited by the shaker, but there will also be elastic se terms excited. Using the modal CB model, one can see
how much excitation of pi comes from the desired rigid body fixture motion AND how much excitation comes from elastic
motion of the fixture. Over-excitation of a particular pi of component A due to elastic fixture modes can be remedied with
this knowledge.

There is also the possibility of identifying uncontrollable input. For example, in a sdof shaker, the terms of the right
hand side may add in such a way to produce a near zero value at some frequency. For a sdof shaker, all the s terms will be
proportional to the input, i.e., the ratio of one s term to another is always the same. No matter what control algorithm is used,
one will not have any control at this frequency. Nonlinearities in the system may produce undesired motion at this frequency.
This formulation can warn the vibration engineer that there is danger of an uncontrollable frequency regime.

9.5 Value of the Modal CB Form as a New Paradigm for Qualification Specifications
in the Energy Domain

At Sandia National Laboratories, energy methods are being used for quantification of environmental margin of components,
such as component A. Edwards [5] has shown how such a method can predict the damaging energy absorbed by a test
article subject to random vibration. Damage is generally induced in a component by elastic motion, not rigid body motion.
Standard environmental specifications do not distinguish the rigid body motion from the elastic motion, i.e. these motions
are confounded in the specification. A great advantage of the modal CB method is that it conveniently quantifies ONLY the
damaging elastic motion with the generalized p dof, the motion of true interest for qualification. Based on Eqs. (9.14, 9.15)
the amount of strain, dissipative or kinetic energy in the substructure may be determined for any specific mode as

SE D 1=2!2fixed_ip
2
i (9.16)



98 R.L. Mayes

DE D
Z

2
i!fixed_i ṗipidpi (9.17)

KE D 1=2ṗ2i (9.18)

where SE is strain energy, DE is dissipative energy and KE is kinetic energy. To specify environments, one could quantify
them in terms of these values. For example, if an environment causes a failure by strain, one could determine the maximum
strain from an environment in each of the p modes. Uncertainty in the fixed base natural frequency could be included in
Monte Carlo or other statistical analyses to determine the maximum SE that might be achieved in any subsystem for the
environments being considered and a specification for the vibration or shock testing written based on each p. This would
then be guaranteed to be conservative, unlike current acceleration frequency based specifications in a uniaxial direction. It
has been shown for certain cases that the rate of fatigue damage is increased over uniaxial random input by a factor of two
with more realistic three axis excitation [6]. However, the over-conservatism in many frequency lines of current acceleration
frequency based specifications would be removed using energy methods with the fixed boundary modal dof. Equation (9.14)
could then be used in the vibration test to perform the control for the qualification test.

Future work might also bring another enhancement to this model. Suppose there are some pi dof that have no relevant
contribution to the failure modes of component A. If even some of those can be identified, their effect could be minimized,
or possibly even removed from the qualification specification [4].

9.6 Conclusions

The modal CB form conveniently separates the elastic response of the substructure of interest from the modal dof response of
the structure that it is mounted upon, the TS. Simple coefficients relate the substructure response mode to the modal motion
of the TS. The TS can be a test fixture, or it can be the entire system upon which the substructure is mounted. The differences
in impedance between a test fixture and the field system can be quantified, which would introduce a new capability. The
modal dof of the fixture can be used directly in establishing control parameters to excite the substructure in vibration or
shock testing. This is of value for either traditional sdof input testing or emerging mdof testing capabilities. It is suggested
that the energy methods, sometimes used in margin quantification, could be utilized with this modal CB form to specify
environments in a way that guarantees conservatism, but reduces traditional over-conservatism in many frequency bands by
a large margin.
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Chapter 10
A Comparison of the Dynamic Behavior of Three Sets
of the Ampair 600 Wind Turbine

Andreas Linderholt, Thomas Abrahamsson, Anders Johansson, Daniel Steinepreis, and Pascal Reuss

Abstract The Ampair 600 wind turbine assembly has been modified to suit as a benchmark structure in the pursuit of
finding best practices for experimental substructure coupling of structural dynamic systems. Seven such systems have been
assembled in test laboratories in Europe and in the USA. We scrutinize the dynamic behavior of the total assembly of three
of those by vibration testing and compare the test outcome from seemingly identical assemblies. The aim is to support
future component synthesis activities with high fidelity data and support future model validation. Comparisons are made
by evaluating deviations of measured frequency response functions, the differences of identified structural eigenfrequencies
and the correlation between eigenvector estimates. The testing is made in two parts. First, a partly assembled system, not
including the hub and blades, is tested. This constitutes one possible and logical subsystem splitting that is likely to appear in
future substructure synthesis efforts. In the second part, the full system assembly is tested. The test procedure, the test setup,
the obtained test data and test data statistics are presented.

Keywords Ampair 600 wind turbine • Substructuring • Model calibration • Manufacturing spread • Vibrational tests

10.1 Introduction

A production sequence will always contain uncertainties, causing a spread in dynamic properties between individuals in a
produced population. This spread stems from a variety of sources, such as material spread, production process variability and
finite precision in the assembly of components. In order to make qualified predictions on system modifications, quantification
of such spread in seemingly equal systems is important [1]. Here, such variations are captured by vibrational data stemming
from tests made on three individuals.

The SEM Substructuring Focus Group has chosen the Ampair 600 W (A600) wind turbine [2], shown in Fig. 10.1, as a
benchmark test bed for studies of substructuring. Since its introduction at IMAC XXX [3], such studies have been carried out
by several institutes in a number of countries, e.g. [4–6]. This study will focus on three A600 wind turbines. One is situated
at Linnaeus University in Växjö and another at Chalmers University of Technology in Göteborg; both in Sweden. The third
system is at the University of Stuttgart, Germany. The systems are tested in two configurations; the system without the hub
and the blades as well as the complete wind turbine test bed. The reason for this is that the hub together with blades and the
remaining system form two natural subsystems to be used in future substructuring exercises.

Previous measurements of the system have been made by Dan Rohe at the University of Wisconsin-Madison and at Sandia
National Laboratories [7]. A lot of test data are shared on the SEM’s focus group wiki page [8].
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Fig. 10.1 The Ampair 600 W
turbine (Source: http://www.
ampair.com/)

Table 10.1 The masses of the
components building up the wind
turbines tested

Component LNU Chalmers Universität Stuttgart

Foot 110 N/A N/A
Pole 3.20 N/A 3.19
Foot-pole connection 0.37 N/A
Housing-pole-connection 2.90 N/A
Housing without cover 7.55 2.75
Disk inside the housing 4.76 4.74
Housing cover with screws 0.88 0.89 0.87
Fin with screws 3.50 3.49 3.45
Hub 3.60 3.71 3.68
Blades 2.44 2.45 2.43

10.2 Tests on Three A600 Wind Turbines

Vibrational tests were made on one A600 system at each of Linnaeus University (LNU), Chalmers University of Technology,
and University of Stuttgart. Several single input/multiple output (SIMO) stepped sine tests were made at LNU and Chalmers.
The excitation frequencies span from 2.025 to 1,000 Hz and constant frequency steps of 0.025 Hz were used for all
the tests. At Linnaeus University, an LMS measurement system together with a modal shaker, 2025E, was used for
excitation. Furthermore, an impedance head, PCB 288D01, a triaxial accelerometer, PCB T356A16, and several single
axial accelerometers, PCB 352A56, were used for sensing. Chalmers used a National Instruments PXIe rack mounted
measurement system running in-house Matlab code, a Brüel and Kjær force transducer type 8203 and single axial PCB
accelerometers of type 352C22 everywhere but at the baseplate, where type 333B32 was used instead. At Stuttgart, impact
tests were made using an LMS measurement system, two triaxial accelerometers, PCB 356A24/NC and an impulse hammer,
Kistler 9722 A500. Only the frequencies up to 400 Hz are reported in this paper. The masses of some components for the
three systems are shown in Table 10.1.

http://www.ampair.com/
http://www.ampair.com/
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10.2.1 Partly Assembled Systems

The first configuration that is tested is a partly assembled system consisting of the wind turbine structure without the hub
and the blades. For this configuration, 24 degrees of freedom distributed at 18 points on the structure are measured. Four
single axis sensors, measuring in the z-direction, are positioned at points 1–4 along the x- and y-axes (positive and negative
directions) 25 mm from the edge. Four points (5–8) are defined on the pole at 100, 550, 1,000, 1,450 mm above the foot’s
surface and measurements are made in the x- and y-directions. On the A600 fin, five measurement points (9–13) are defined
where lines drawn 15 mm from the edges cross each other; measurements in the y-direction are made here. Four points (14–
17) are defined on the housing cover at all the combinations of ˙60 mm in the x- and y-directions; here the accelerations in
the x-direction are measured. In addition, measurements in the x-, y- and z-directions are made on the center of the housing
cover (point 18). In practice, the measurements are made on a small aluminum cube attached to a pin bolt. As suspension, the
rubber parts of four Cobra 6-in. dia. rubber plungers are used at LNU and Chalmers. At Stuttgart, the structure was supported
on wheels, see Fig. 10.3c. Five of the defined dofs are also used, one at the time, for excitation. The measurement points
together with the coordinate system and suspension used are shown in Fig. 10.2. Some pictures of a test made at LNU, where
the excitation is on point 18 (the aluminum cube) in the negative Z-direction are shown in Fig. 10.3.

Fig. 10.2 (a) The coordinate system and the measurement points on the partly assembled system. (b) Four points on the foot; measurements in the
z-direction. (c) Measurements in the x- and y-directions at four positions on the pole. (d) Measurements in the y-direction at five positions on the
original (large) fin. (e) Measurements in the x-direction in four positions surrounding the center (at the shaft’s hole) of the housing cover together
with measurements in three directions on a cube mounted on the shaft positions. (f) One of four plungers used for suspension
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Fig. 10.3 (a) and (b) excitation
on point 18, in the negative
z-direction, on the partly
assembled structure without hub
and blades. The excitation is
made on an aluminum cube
added to the structure. The
pictures are taken at LNU.
(c) Support realization used in the
test setup in Stuttgart

10.2.1.1 Frequency Response Functions for the Partly Assembled Systems

To illustrate the spread in dynamic characteristics between the three partly assembled systems, the direct point accelerances
are shown in Fig. 10.4.

10.2.1.2 System Identification Results for the Partly Assembled Configuration

The real objective of the system identification procedure is to acquire frequency and shape information of the modes in the
frequency range from 10 to 400 Hz. System identification for each of the data sets stemming from measurements made at the
three universities were made using frequency data based state space subspace calibration by the n4sid algorithm in Matlab
[9, 10]. The data sets were each split into a number of different frequency ranges, for which automated identification using a
recently developed methodology to find the best model order was performed [11, 12]. However, where such an approach was
deemed unsatisfying by the technician, manual interference was allowed. Examples of the quality of the system identification
in terms of plots of FRFs stemming from test data overlaid by FRFs synthesized from system identification results are given
in Fig. 10.5 in which the denotation #i,j refers to response in dof i due to excitation in dof j.

The mode shapes are compared using the modal assurance criterion (MAC); the plots of the MAC matrices are shown in
Fig. 10.6. Overlaying illustrations of the extracted mode shapes for the three partly assembled systems are shown in Fig. 10.7.
There are clear differences between the modes stemming from measurements made in Stuttgart and the ones stemming from
Linnaeus and Chalmers. It is possible that mistakes were made during the collocation of test data. Differences in measurement
techniques, for which nonlinearities may be more or less engaged, instrumentation and suspension are other possible causes.
The explanation could also be differences in the physical properties of the seemingly identical components and assemblies.
The causes have to be further investigated.
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Fig. 10.4 Direct point accelerances for the systems without hub and blades. The blue solid FRFs stem from Chalmers, the red dashed FRFs
stem from LNU and the black solid stem from Stuttgart. (a) Point 7, x-direction, (b) point 7, y-direction, (c) point 18, x-direction, (d) point 18,
y-direction, (e) point 18, z-direction
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Fig. 10.5 (c) and (d) figures from Fig. 10.4 with identified models in red. Top to bottom: results for Chalmers, Lineaus and Stuttgart turbines

10.2.2 The Completely Assembled Systems

The second configuration to be tested is the complete benchmark structure selected by the SEM substructuring focus group.
It differs from the previous setup in that the hub together with three blades is added to the structure. At the same time, the
measurement point number 18 is moved to the tip of the hub. One single axis accelerometer is also added to each blade tip,
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Fig. 10.6 MAC plots. Left to right: Chalmers-Linneaus, Chalmers-Stuttgart, Linneaus-Stuttgart

see Fig. 10.8. The exact blade tip positions are in accordance to the blade measurement points used by Harvie and Avitabile
[13]. The blades used at LNU and Chalmers have previously been studied in detail [14] in which the mass and the center of
gravity (CoG) were measured for each blade. Also the blade angles were measured; it was found that the tip angles had a
spread of several degrees.

10.2.2.1 Frequency Response Functions of the Completely Assembled Systems

Comparisons between the three sets, of two direct point accelerances are shown in Fig. 10.9. Evidently, there is a resemblance
between the FRFs stemming from Linnaeus and Chalmers whereas the FRFs stemming from Stuttgart deviates more. The
reason may be mistakes made during the collocation of data, the differences in test setups or dynamic properties of the
systems tested.

10.2.2.2 System Identification of the Completely Assembled Systems

The same basic approach to system identification was used for completely assembled systems as for the partly assembled,
the only difference being that the frequency range was divided into a higher number of (that is, tighter) frequency intervals
on account of the higher mode density. The results are shown in Figs. 10.10 and 10.11. The resemblance between the FRFs
stemming from test data and their associated synthesized FRFs are in general good around the resonances. No residual terms
were used. However, as seen, the degree of resemblance varies.

10.2.2.3 Results of Studies Made on the Completely Assembled Systems

The data indicate that the measured dynamics of the structures at Chalmers and Linnaeus are closely related although there
are deviations. The data from Stuttgart differs more. The explanation can be that simple mistakes were made but differences
in measurement techniques, for which nonlinearities may be more or less engaged, instrumentation and suspension are other
possible causes. The explanation could also be differences in the physical properties of the seemingly identical components
and assemblies. The causes have to be further investigated.

10.3 Conclusions

In this paper, three Ampair 600 W wind turbines, partly modified according to the SEM substructuring focus group’s
instructions for the benchmark structure, have been tested. One was tested at Linnaeus University in Växjö, one stryk
at Chalmers University of Technology in Göteborg, and one stryk at the University of Stuttgart. Results from several
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Fig. 10.7 Illustrations of mode
shapes of the partly assembled
systems at Chalmers, Linneaus
and Stuttgart extracted by system
identification
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Fig. 10.8 Excitation on point 18, in the negative z-direction, on the completely assembled structure. The structure is located at Linnaeus University
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Fig. 10.9 Direct point accelerances for the completely assembled systems with hub and blades. The blue solid FRFs stem from Chalmers, the red
dashed FRFs stem from LNU and the black FRFs stem from Stuttgart. (a) Point 7, x-direction, (b) point 7, y-direction, (c) point 18, x-direction,
(d) point 18, y-direction, (e) point 18, z-direction
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Fig. 10.10 (c) & (d) figures from previous figure with identified model in red. Top to bottom: results for Chalmers, Lineaus and Stuttgart turbines

single-input-multiple-output stepped sine as well as impact vibrational tests spanning from 2 to 400 Hz have been reported
and compared.

The structures are seemingly identical. However, as shown in this paper, there is spread in the physical properties of
components that should be identical. It is also believed that the assembling procedures used at the different universities
introduced deviations. Furthermore, the excitation forces were not controlled to be identical but kept low. Some FRFs,
here accelerances. stemming from different measurements show close resemblance whereas some show large deviations.
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Fig. 10.11 Illustrations of mode
shapes of the completely
assembled systems at Chalmers,
Linneaus, and Stuttgart extracted
by system identification
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Collocating and distributing test data, origin from different measurement systems and universities, close to the deadline for
submission could be a source of error. However, the differences in methods and structures are other possible sources. The
causes will be further investigated.

A certain amount of non-linearity is expected so the excitation forces may explain some differences. However, on a
bigger scale, the direct point accelerances are qualitatively similar and the mode shapes, found by system identification,
show good cross couplings. Some modes showing clear shapes and cross resemblances were further inspected. The deviation
in eigenfrequencies between these paired modes were below 11 %; often much lower, for the configuration without hub and
blades. The structures are found to be lightly damped which requires a good frequency resolution in measurement data.
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In the same manner, an inspection of some selected, well paired, modes was made for the configuration with hub and
blades. The deviations in frequencies are generally larger. One explanation is that the blades and the hubs have larger
differences. The blades have different center of gravity as well as different blade twists. The hubs were severely modified,
according to the SEM focus group’s instructions, including filling them with plastics. It is believed that these processes were
made quite differently.

Most likely, the hub together with the blades will form one natural substructure while the remaining parts form another,
in future substructuring studies. Hence, measurement data, especially at the coupling point, will be most useful.
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Chapter 11
Ampair 600 Wind Turbine Three-Bladed Assembly Substructuring
Using the Transmission Simulator Method

Daniel R. Roettgen and Randall L. Mayes

Abstract This paper contains an example of the transmission simulator method for experimental dynamic substructuring
using the Ampair 600 Wind Turbine. The structure of interest is the hub-and-three-bladed assembly. A single blade and hub is
used as a substructure to develop a model for the hub-and-three-bladed assembly. The single-blade-and-hub substructure was
developed from elastic modes of a free-free test and rigid body modes analytically derived from measured mass properties.
This substructure can be rotated and replicated using the hub as a transmission simulator. Substructuring calculations were
then performed using the transmission simulator method to derive a model of the hub-and-three-bladed assembly. This paper
concludes with a comparison for this combined model to truth data derived from a free-free modal test of the entire rotor.

Keywords Experiment • MCFS • Dynamic substructuring • Transmission simulator • Wind turbine

11.1 Introduction

As manufactured systems become more complex a need for advanced analytical tools to analyze these systems becomes a
necessity. Dynamic substructuring allows an analyst to predict the dynamic response of a complex system by analyzing or
testing subcomponents. Thus, if subcomponents can be modeled or tested, the result for a full model can be predicted and
these subcomponents can be modified to help mature the design. Experimental substructuring is particularly useful when a
system is too large to test as an assembly, or when subcomponent hardware is available but the detailed design definition
is not (for example, for a subcomponent produced by an outside company). This paper contains a detailed example of
dynamic substructuring on the Ampair 600 Wind Turbine test bed. The goal of this exercise is to construct the dynamics
of a three-bladed rotor experiment using the results from a single-blade-and-hub experiment. To complete this exercise, two
experiments were performed. The first was a hub-and-three-bladed experiment that will be used as a truth model. The second
was the testing of the subcomponent containing one blade and the rotor hub. In addition to the details of these experiments,
this paper contains the substructuring methodology and some simple experimental checks used to help ensure the quality of
the data that was taken experimentally. For this exercise the transmission simulator method was used.

Advantages of the transmission simulator method can be found in [1–3]. Here we focus on a few of the advantages for
this application. The transmission simulator method is often used over more traditional substructuring methods when it is
difficult to simulate the boundary conditions between individual pieces of a system. By using the hub as the transmission
simulator two key advantages are gained. One is that the compliance and the damping of the joint connecting the blade and
hub are captured. The second is that the hub mass loads the root of the blade so that blade stiffness at the root is appropriately
exercised. Often a similar fixture is used as a transmission simulator, but for this exercise the actual part was used because it
was readily available and was certain to simulate the interface conditions correctly. This provides the best possible simulation
of the blade-to-hub joint as the actual joint dynamics are contained within the experiment.
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11.2 Test Objective and Methods

The objective for this exercise is to generate a dynamic model of the hub-and-three-bladed system, pictured in Fig. 11.1, from
the Ampair 600 Wind Turbine using the transmission simulator method. This model will be compared to a “truth model” that
was derived from a modal test of the pictured assembly. Previous tests containing these structures in similar configurations
[4–6] show that the highest frequencies of interest would occur below 175 Hz, and thus the test range was set to 200 Hz
for the truth model to allow the modes of interest (and a few higher) to be captured. For each test, a PCB 086C05 impact
hammer was used to excite the structures’ elastic modes. In an attempt to minimize non-linearities in the system, the output
of the hammer was amplified allowing extremely soft taps to be used during testing. The auto spectrum of this input was
monitored during testing to ensure quality data was gathered. After completing the modal testing, modes were extracted from
the experimental data using the SMAC algorithm [7].

Tests were performed on two different structures in order to create both a full-assembly “truth” model and a sub-assembly
“substructure” model that could be replicated and assembled into the complete hub-and-three-bladed assembly. The first
structure was the hub connected to all three blades. Hardware assets were used from Sandia National Laboratories with the
serial numbers for Blades A, B, and C being SNL009, SNL008, and SNL007, respectively. The second structure tested was
the turbine hub assembly with just Blade A connected. The results from the substructure test will be replicated (and rotated)
two times, so two additional hubs will need to be subtracted as they are the common piece being used as a transmission
simulator.

Each third of the turbine was given its own Cartesian coordinate system with x along the blade, y perpendicular to x in the
rotation plane, and z along the axis of rotation. The origin of these coordinates systems was defined at a common point on
the center of the hub. Figure 11.2 shows these coordinate systems as they are aligned with each blade.

11.2.1 Hub-and-Three-Bladed Test (Truth Test)

11.2.1.1 Test Set-Up

The hub-and-three-bladed assembly was instrumented with 36 single axis accelerometers as well as three triaxial
accelerometers. The primary blade (Blade A) was instrumented based on previous testing [4–6] such that all mode shapes
up to the third out-of-plane bending mode would be independent. This primary blade was instrumented more heavily
than the secondary blades as this instrumentation would remain in place to capture data during the subcomponent testing.
Accelerometer locations and directions are depicted in Fig. 11.3.

Fig. 11.1 Wind turbine truth assembly
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Fig. 11.2 Wind turbine
coordinate system – truth test

Fig. 11.3 Truth model assembly instrumentation Diagram
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Two 2250 AM1-10 uniaxial accelerometers with a sensitivity of 10 mV/g were placed at four locations along the leading
edge of each blade. These accelerometers were oriented with the y and z directions for each blade’s local coordinate
system. Accelerometers were also placed along the trailing edge of the blade but mainly oriented in the z direction with
one accelerometer placed in the y direction at the trailing edge root of each blade.

The hub was instrumented with three tri-axial Endevco 65–100 accelerometers with a higher sensitivity of 100 mV/g.
This higher sensitivity was required because hub motion tended to be very small compared to the light flexible blades.
These tri-axial accelerometer was placed on the branch extending from the hub associated with each blade. Additionally,
one 100 mV/g uniaxial PCB 352/A-24 accelerometer was placed on the Blade A third of the hub pointed in the y
direction.

Blocks were used to align the accelerometers in the local blade displacement coordinate systems with accelerometers on
the blade face pointing in the z direction and those on the trailing and leading edge in the y direction. These wood blocks
were taken into account when analytically constructing rigid body modes for the different assemblies.

The hub-and-three-bladed assembly was suspended from a structure on an optical table using bungee cords to simulate
a free-free condition as seen in Fig. 11.1. Previous work showed the lowest elastic mode to occur at about 20 Hz. In an
effort to minimize error due to the boundary conditions, the bungee cords provided a rigid body bounce mode around 2 Hz.
This achieved a desired ratio of 10 times in order to minimize frequency error due to boundary conditions as discussed
in [8].

Analytical rigid body mode shapes were calculated using the moments of inertia and center of gravity detailed in [5]. With
the larger number of accelerometers (and positioning blocks), it was decided that the mass of these items was not negligible
in the calculation of the mass properties. These blocks were accounted for when calculating the mass properties used to
determine rigid body modes. The mass properties are listed in Table 11.1.

The suspended structure was excited at several drive points in the usual attempt to find the best location to excite each
individual mode. Drive points were gathered on the blades and on the rotor hub. The drive points on the rotor hub provided
the best results, not because they excited the modes the most, but because they excited the modes well enough and produced
FRFs with the most linear characteristics. To create a truth model for the hub-and-three-bladed assembly, the measured
response from the best was used to calculate the modal parameters for each elastic mode. Modes 7, 8, 9, 12, and 15 were
derived from excitations with a drive point at node 1 in the z direction; while modes 10 and 11 were derived from excitations
at node 4 in the y direction, and modes 13 and 14 were derived from excitations at node 3 in the z direction.

11.2.1.2 Results

The analytically generated rigid body modes were combined with nine elastic modes extracted from the impact tests. These
modes are detailed in Table 11.2. Light hammer excitations were used in an attempt to avoid non-linarites due to the jointed
connection. Of particular note, modes 10 and 11 (elastic modes 4 and 5) exhibited a great deal of non-linearity and were
particularity sensitive to the input force levels. Complex modal indicator functions (CMIFs) are shown for each of the drive
points in Fig. 11.4. Note that no single reference excites all modes well. Circles in the figure show which modes were selected
from each reference. We recognize that this truth test is only one realization of truth, since there is definitely variability in
individual blades as well as the clearances in the hub brackets holding the blades.

Table 11.1 Mass properties for
hub-and-three-bladed system

Entire rotor

Mass 6.29 kg
cgx 0.00 m
cgy 0.00 m
cgz �0.0673 m
Ixx 0.221 kg-m2

Iyy 0.224 kg-m2

Izz 0.441 kg-m2
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Table 11.2 List of extracted and
analytically calculated modes
from the hub-and-three-bladed
test

Mode Frequency (Hz) Damping ratio — [%] Description Drive point

1 0.00 1.00 x direction translation Analytical
2 0.00 1.00 y direction translation Analytical
3 0.00 1.00 z direction translation Analytical
4 0.00 1.00 Rotation about x Analytical
5 0.00 1.00 Rotation about y Analytical
6 0.00 1.00 Rotation about z Analytical
7 20.56 1.00 First bending, three blades in phase 1Z
8 27.78 0.98 First bending, Blade C out of phase 1Z
9 29.03 0.87 First bending, Blade B out of phase 1Z
10 61.10 1.71 Edge-wise mode, Blade C out of phase 4Y
11 64.29 1.27 Edge-wise mode, Blade B out of phase 4Y
12 70.68 1.11 Second bending, three blades in phase 1Z
13 99.40 1.48 Second bending, Blade C out of phase 3Z
14 102.95 1.08 Second bending, Blade B out of phase 3Z
15 155.00 1.33 Third bending, three blades in phase 1Z

Fig. 11.4 CMIFs for truth model (blue) and drive point measurements (black). Drive points: 1Z (top), 3Z (middle), 4Y (bottom)
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Fig. 11.5
Single-blade-and-rotor-hub
experimental set-up

Table 11.3 Mass properties for
single-blade-and-hub system

Single-blade-and-hub assembly

Mass 4.52 kg
cgx 0.0756 m
cgy 0.000 m
cgz �0.0632 m
Ixx 0.0252 kg-m2

Iyy 0.0972 kg-m2

Izz 0.1414 kg-m2

11.2.2 Single-Blade-and-Hub Test (Substructure Test)

11.2.2.1 Test Set-Up

With one realization of a truth model established, the next test to be completed was the single-blade-and-hub test. Blades
B and C were removed from the hub leaving Blade A. The accelerometers on Blade A were not removed to preserve their
location relative to the hub-and-three-bladed testing. The same impact hammer and instrumentation set-up were used for
Blade A and the hub. Measurements were taken up to 200 Hz in order to capture up to the first three out-of-plane bending
modes. The test set-up for the single-blade-and-rotor-hub system can be seen in Fig. 11.5.

Mass properties of the substructure were calculated using geometry and assumed symmetry properties of the hub-
and-three-bladed system. Analytical rigid body modes were again calculated using the mass properties of the system.
Substructure moments of inertia were calculated based on geometry and symmetry conditions and are shown in Table 11.3.
The instrumentation blocks located on the single-blade-and-hub assembly were accounted for in these calculations.

The subsystem was similarly tested at several drive points in order to determine the excitation locations that provided the
best data for the subsystem’s elastic modes. Modes 7, 8, 9, and 11 were derived from excitations at drive point location 3 in
the z direction while mode 10 was derived from drive point location 4 in the y direction.
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Table 11.4 List of extracted and
analytically calculated modes
from the single-blade-and-hub
test

Mode Frequency (Hz) Damping ratio — [%] Description Drive point

1 0.00 1.00 x direction translation Analytical
2 0.00 1.00 y direction translation Analytical
3 0.00 1.00 z direction translation Analytical
4 0.00 1.00 Rotation about x Analytical
5 0.00 1.00 Rotation about y Analytical
6 0.00 1.00 Rotation about z Analytical
7 29.84 0.91 First bending 3Z
8 86.75 0.92 Second bending 3Z
9 149.82 1.51 Edgewise motion 3Z
10 178.25 2.62 First torsion 4Y
11 195.10 1.30 Third bending 3Z

Fig. 11.6 CMIFs for substructure model (blue) and drive point measurements (black). Drive points: 3Z (top), 4Y (bottom)

11.2.2.2 Results

The six analytically generated rigid body modes were combined with five elastic modes extracted from the impact tests.
These modes are detailed in Table 11.4. Again, each elastic mode was selected from the strongest responding drive point.
CMIFs for those selected drive points can be seen in Fig. 11.6. Hammer strikes in the z-direction were found to easily excite
bending and torsional modes while a y direction strike was again required to excite the blade in edgewise motion. The modes
extracted from each reference are circled.
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11.3 Substructuring Methodology

The transmission simulator method was utilized in order to assemble the single-blade-and-hub into the full system. The rotor
hub was used as the transmission simulator fixture. Three copies of the subsystem were rotated and added together linking
the rotated degrees of freedom associated with the tri-axial accelerometers located on the rotor hub (transmission simulator).
With three copies of the substructure included, two analytical copies of the transmission simulator needed to be subtracted
out of the combined system to achieve the proper results for the mass of the hub.

The same rotor hub was used as a transmission simulator in a past experiment and was found to have a first elastic natural
frequency above 1,200 Hz [5]. This first elastic mode is far beyond the scope of the current test so only the rigid body modes
of the transmission simulator will be used to couple the systems.

For the following calculations, the subscript A represents the first blade, Blade A, with B, and C representing the second
and third blade respectively; the subscript TS represents the transmission simulator (rotor hub). The modal parameters !
and 
 represent the natural frequencies and damping ratios of their respective subsystems and ˆ represents the associated
mode shapes. The physical degrees of freedom are represented by vectors denoted x and the modal degrees of freedom are
denoted by vectors q. To begin, the system of equations is written in the standard mass-normalized modal representation of
the equations of motion.
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The physical constraints can be assembled equating the motion of each subsystem with that or the transmission simulator.
This equation only applies to the subset of degrees of freedom which act to connect the transmission simulator between
substructures.
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The constraint equation can then be rewritten as modal coordinates as seen in Eq. 11.3.
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In order to take advantage of the transmission simulator method, the constraints are now pre-multiplied by the pseudo-inverse
of the transmission simulator mode shapes partitioned to the constraint degrees of freedom.
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The two leading matrices can now be collected to form a single matrix, A, that contains the constraints for the modal degrees
of freedom.

A

8̂
<̂
ˆ̂:

qA
qB
qC
qTS

9>>=
>>;

D A fqg D 0 (11.5)

These constrained modal degrees of freedom can be transformed by some matrix, L, into a set of unconstrained generalized
coordinates, qg.

fqg D L
˚
qg


(11.6)

Using this substitution requires that L reside in the null space of A because qg D 0 would be a trivial solution. This means
that L must be orthogonal to A to fulfill Eq. 11.5.

AL
˚
qg

 D 0 (11.7)

This substitution is then used in Eq. 11.1 which is also pre-multiplied by ALT resulting in the coupled equations of motion
for the system. The modal properties for this system can then be found as the modal properties for the new analytically
substructured system. A final transform is then used to bring the solution for the modal degrees of freedom back into the
physical domain. Note the M, C and K are defined as shown in Eq. 11.1.
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11.4 Substructuring Results

The experimental single-blade-and- hub system was used in the substructuring calculations detailed in the previous section to
create a full hub-and-three-bladed turbine model. This substructured model will now be now compared to the results from the
truth test described earlier in this paper. Because some modes of the system were found to be closely spaced these modes had
to be correlated based on their Modal Assurance Criterion (MAC) values. This identification was important when looking at
the 8th and 9th substructured modes as well as the 13th and 14th. These modes could be identified by MAC values as well
as visual representation The MAC values and modal parameter comparisons can be seen in Table 11.5.

By inspection of Table 11.5, some trends can be identified. The first, second and third in-phase out-of-plane bending
modes (Modes 7, 12 and 15) are too high in frequency. Three of the four anti-symmetric out of plane bending modes (9, 13
and 14) are low in frequency. The edgewise modes (10 and 11) are high in frequency.

The substructured damping ratios are a further off than the natural frequencies. Some modes (9 and 15) are quite close in
damping while others are as high as 58 % off mark.

The correlation of modes between the substructured and truth models could be determined either by MAC as shown in
Fig. 11.7 or visual comparison as shown in Figs. 11.8 and 11.9. Figure 11.8 contains the bending modes in an isometric view
while Fig. 11.9 shows the edgewise modes in the xy plane.
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Table 11.5 Substructuring results

Truth
Mode

Frequency
(Hz)

Damping
ratio

Substr.
mode

Substr.
frequency

(Hz)

Frequency
error

Substr.
damping

Damping
error

MAC 

7 20.56 1.00  % 7 23.49 14.26 % 0.73 % –27.19 % .9912 
8 27.78 0.98  % 9 28.33 2.00 % 0.86 % –12.07 % .7655 
9 29.03 0.87  % 8 28.03 –3.44 % 0.85 % –1.88 % .8808 
10 61.10 1.71  % 10 66.53 8.91 % 0.71 % –58.31 % .9422 
11 64.29 1.27  % 11 66.67 3.72 % 0.71 % –44.03 % .9787 
12 70.68 1.11  % 12 77.33 9.41 % 0.84 % –23.71 % .9402 
13 99.40 1.48  % 14 96.30 –1.75 % 1.00 % –32.17 % .8618 
14 102.95 1.08  % 13 97.66 –6.45 % 0.99 % –8.82 % .8849 
15 155.00 1.33  % 15 167.26 7.91 % 1.29 % –3.05 % .7850 

Fig. 11.7 MAC between truth
and substructured modes
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11.5 Possible Error Sources

There were errors of up to 15 % in natural frequency, 59 % in damping and MAC values as low as 0.7655. Several issues
could lead to these errors that could be investigated further with additional study. Some important experimental check and
possible error sources will be mentioned in this section. Modal truncation errors are known to exist but they are not addressed
in this exercise.

11.5.1 Testing Checks and Validations

Previous work [9] has shown that the most important mode shapes to obtain accurately are the rigid body mode shapes. When
analytically adding rigid body modes to the experimental data, a check can be performed to ensure the analytically derived
rigid body modes are a good match of the system that was tested. In this case, we can take the derived rigid body mode FRF
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Fig. 11.8 Bending mode
shape comparison
(blue – substructured, green –
truth test, dashed – undeformed)

Fig. 11.9 Edgewise mode
shape comparison
(blue – substructured, green –
truth test, dashed – undeformed)

and overlay the plot with the driving point FRF taken from experimental data. Rigid body modes are often hard to extract, but
the masslines of these rigid body modes can be compared in such a plot. Figure 11.10 shows a massline comparison for our
substructure. After the rigid body modes, around 1–2 Hz, the massline magnitude should be similar between the analytical
and measured FRFs. If this is not true, the mass properties used to calculate the rigid body modes may be off and could be
adjusted to get a better model of the system.

Additional best practices were followed when setting up and performing the experiments. Hammer calibration lab reports
showed up to 15 % variation of hammer measurement sensitivity. To mitigate this large error source the hammer sensitivity
was adjusted using a large block of known mass with a high sensitivity accelerometer attached. The hammer sensitivity was
adjusted and checked to within accelerometer specified accuracy.

Also, as mentioned previously, multiple reference locations were used. In the final model the best fit for each elastic mode
shape was utilized. The circles in Fig. 11.6 show which reference locations provided the best fit for each elastic mode.



122 D.R. Roettgen and R.L. Mayes

0 1 2 3 4 5 6 7 8 9 10

-100

-50

0

50

100

150

200

Frequency [Hz]

R
ea

l A
cc

el
/E

xc
ita

tio
n 

F
or

ce
 [(

in
/s

2 )
/lb

f]

Fig. 11.10 Rigid body massline comparison: blue – measured data, green – analytical model

11.5.2 Transmission Simulator Stiffness

This exercise was completed assuming the transmission simulator was completely rigid and therefore only the rigid body
modes of the transmission simulator were used. The flanges were mounted on a shaft that extends into a mechanism within
the hub. This mechanism was potted, but it was observed that small amounts of flexibility may still be present. Ignoring this
flexibility means the transmission simulator model was too stiff and may have led to the increased natural frequencies as
seen in modes that strain this potting the most.

11.5.3 Accelerometer Mounting

The accelerometers used on the rotor hub and Blade A were not removed between the testing of the hub-and-three-bladed and
single-blade-and-hub systems. Therefore, they are in the same position from test to test. Blades B and C were instrumented
individually for the hub-and-three-bladed test. Small discrepancies were found in the placement of the accelerometers on
Blades B and C when compared to those of Blade A. These deviations on the order of one-eighth of an inch could lead to
errors when results from Blade A are rotated and assumed to be in the same locations but in the Blade B and C coordinate
systems. An additional substructuring exercise was completed using the six degrees of freedom of the center of mass of the
hub as the connection degrees of freedom to abate these measurement discrepancies. This method led to a small change in
natural frequency (less than 2 %).

11.5.4 Damping Errors

Calculated damping ratios had the highest errors. When assembling the system the damping is all placed on the diagonal
of the damping matrix when in reality there are coupled terms within the damping matrix. Neglecting these coupled terms
makes the mathematics simpler but leads to less accurate results than desired. Further investigation would be warranted to
attempt to include these coupled damping terms in the substructuring process.
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11.6 Conclusions and Future Work

This exercise used results from a modal test of a single-blade-and-hub substructure to create a model of a full hub-and-three-
bladed assembly. This substructure was rotated and linked together generating three blades and three hubs (transmission
simulators), thus two of the hubs were analytically removed. The results of this substructuring exercise were then compared to
an experiment conducted on the full hub-and-three-bladed assembly. The rigid body modes for these cases were constructed
from mass properties.

After substructuring, all elastic modes could be correlated to the truth model either through MACs or using visual shapes.
The worst frequency error was about 15 % in the first mode. The damping ratios were the most difficult to predict with error
as high as 55 %. MAC values ranged from 0.77 to 0.99. Future work to improve these measurements could be completed by
measuring the elastic modes of the transmission simulator by mass loading the flanges and completing another substructuring
exercise. Further investigation of the system damping to include the coupling terms may also be of interest to look at
improving substructure modal damping ratio predictions.
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Chapter 12
Quantifying Epistemic and Aleatoric Uncertainty in the Ampair 600
Wind Turbine

Brett A. Robertson, Matthew S. Bonney, Chiara Gastaldi, and Matthew R.W. Brake

Abstract Determining the uncertainty in a mechanical joint is very important and very difficult. This paper presents two
methods of determining the uncertainty in the joint: maximum entropy approach and sampling methods. Maximum entropy
is an approach that can quantify the aleatoric and epistemic uncertainty independently. This approach is applied on a rigid
connection of the Ampair 600 Wind Turbine and shows that the epistemic uncertainty of the system is very high. Sampling
methods are used on an simplified representation of the wind turbine as a lumped mass approximation. The sampling methods
are able to treat the joint in a nonlinear sense by using a discrete four-parameter Iwan model as the joint model. This is able
to predict accurately the data within the uncertainty bounds when considering epistemic uncertainty. The Iwan joint model
is then implemented on the high fidelity model and preliminary results are presented.

Keywords Uncertainty • Iwan models • Ampair wind turbine • Decoupling • Nonlinear • Joints

12.1 Introduction

Determining the uncertainty in a mechanical joint is vital to model correctly the global system. The dissipation of energy
through a joint can lead to higher damped systems than what is designed. While characterizing the uncertainty, there are
two main types of uncertainty that are important to consider: aleatoric (parameter-based) and epistemic (model-based)
uncertainty. Aleatoric uncertainty accounts for part to part variability and epistemic uncertainty corresponds to the uncertainty
due to the unknown physics in the system such as model form error. In order to characterize this uncertainty, two different
methods are used in this research: maximum entropy and sampling methods.

Maximum entropy is an approach to quantify uncertainty that can determine the distribution of both the input and output
variables [1]. This is combined with random matrix theory to create a set of model variables that maintain a positive
definite matrix [2] and used for linear systems. Nonlinear systems can also use this method with some slight changes
[3]. This approach is able to treat the aleatoric and epistemic uncertainty independently by determining the distribution
of the parameters using experimental data to select an optimal dispersion parameter, which can be thought of similar to the
coefficient of variation [4]. New advances in the maximum entropy approach are ongoing [5].
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Sampling-based methods are the most robust uncertainty techniques available. They generate sets of samples according
to the probability distributions of the uncertain variables and map them into corresponding sets of response functions.
Advantages of sampling-based methods include their relatively simple implementation and their applicability to a various set
of problems, including those with friction-induced nonlinearities. The importance of developing stochastic models of friction
interfaces, such as bolted joints, is highlighted in [6]. The approach of [6] allows for parameter distributions to account for
the joint-to-joint variability given by the extreme sensitivity to the exact conditions of the assembly.

The system chosen to test these methods is the Ampair 600 Wind Turbine [7, 8] because of the extensive data set for the
experimental measurements from multiple labs available on-line [9]. Additional testing is needed for several types of data
that are unavailable. There are three blades that connect to a hub that is significantly more massive. The bolted connections
are of particular interest in describing the nonlinearities.

There are several ways to model a bolted joint. This research considers two methods: treating the joint as a rigid connection
and treating the joint with a discrete four-parameter Iwan model [10]. This paper presents additional testing in Sect. 12.2
to compliment the available data that is online [9]. In Sect. 12.3, the maximum entropy approach is applied to the rigid
connection. Section 12.4 develops a simplified model of the wind turbine in which the joint is modeled using the four-
parameter Iwan model and the uncertainty is quantified with sampling methods. Preliminary results of the implementation of
Iwan joints on the high fidelity finite element model of the wind turbine are also included. Lastly, conclusions are presented
in Sect. 12.5.

12.2 Additional Testing

The system of investigation is the Ampair 600 Wind Turbine. The model for the Ampair 600 Wind Turbine is developed by
[7]. The available test data does not contain all of the necessary measurements for model validation. Thus, in order to validate
the model to a high accuracy level, additional testing is performed. Two sets of experiments are reported: a measurement
of the hub by itself in order to calibrate the finite element (FE) model, and a measurement of the hub with a single blade
attached in order to deduce the parameters for the Iwan model.

12.2.1 Hub Only Test

In order to build confidence in the models, it is important to have a sufficient set of experimental data to enable model
validation. Experiments are conducted to ensure that the material properties of the components inside the hub are modeled
correctly. In order to do this, an impact hammer test is performed to obtain the natural frequencies of the system and compare
those to the results of an eigenvalue analysis using SIERRA [11], which is a FE code created by Sandia National Laboratories
specializing in parallel solving of large FE problems. The impact hammer test consists of placing multiple single- and tri-
axial accelerometers around the bungee-suspended hub and using a roving hammer technique to excite the system as seen in
Fig. 12.1. The software used for these tests is NX-Ideas, and a Matlab program that uses the SMAC algorithm [12] is used to
analyze the data received and create frequency response functions (FRFs).

The wind turbine hub is a system that exhibits a large number of nonlinear behaviors as there are many joints throughout
it. Additionally, a resin fills all of the internal gaps in the hub in order to hold the components together. If the resin contains
any holes or gaps that might allow sub-components to move, nonlinearities could be seen in the system’s response.

The impact hammer test provide results for the first three natural frequencies at 800, 1,250, and 2,300 Hz. Due to similar
test data and predicted values from the model [9], the natural frequencies at 1,250 and 2,300 Hz are used to further calibrate
the model. The first natural frequency is neglected in the calibration as differences between the model and measurements
persist that are most likely due to the degradation of the resin or possible damage that it could have experienced since
assembly. The material properties of the hub and its components were obtained from [8].

12.2.2 Hub and One Blade: Testing for Nonlinearities

The second set of experiments is an impact hammer test on the hub with one blade attached. Accelerometers are placed on
both the hub and blade. Different loading levels are used to see if there is an amplitude dependent nonlinearity in the system.
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Fig. 12.1 Hub only impact
hammer test

Fig. 12.2 Hub and one blade

The test apparatus includes two bungee cords, one around the hub and one around the blade, simulating a free-free system.
Modes seen by resonance in the bungee cords (i.e. bungee modes) are significantly lower in frequency than the modes of this
system. This apparatus and system can be seen in Fig. 12.2.

The impact hammer test included load levels of 4, 7, 10, and 45 pounds. Multiple hits are measured at multiple spots
throughout the system and an averaging is used to calculate the FRF at each impact location. Figure 12.3 shows the
differences in the FRFs for the different load levels.

For the first two natural frequencies, small changes are observed in the peak magnitudes and damping ratios, but not in the
frequencies. For the third natural frequency, however, a nonlinear response is observed as the peak shifts 10 Hz in frequency
between the 4 and 45 pound hammer impacts.

12.3 Maximum Entropy Approach

The goal of this research is to analyze the uncertainty quantification of the epistemic and aleatory uncertainty independently
of each other. One way to achieve this is to performed a maximum entropy analysis. The approach used here is a combination
of maximum entropy and random matrices as proposed by Soize [1]. This approach involves using independent domains for
the parameter, or aleatoric, uncertainty and the model form, or epistemic, uncertainty.
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Fig. 12.3 Frequency response of
hub and one blade system,
different load levels performed

12.3.1 Background

Soize’s method [3] is developed for two cases: (1) some experimental data is available, and (2) no experimental data is
available. In the following research, some experimental data is available; thus, only the first case discussed in [3] is presented.
In a typical model updating, there are many unknowns. This method, however, only uses select truth data in order to determine
the unknowns [3]. For this analysis, two main pieces of data are used: the natural frequencies of the system along with the
FRF at a specific point. The analysis allows for using the FRF at multiple points in order to get a more accurate system, but
for the present research only one FRF is used. A more detailed explanation of how to implement this approach can be found
in [4].

The first step to implement this approach is to develop a reduced order model (ROM) of the system that has been
validated/calibrated to represent accurately the system. A ROM is important because of the computational burden of this
approach, which involves several Monte-Carlo (MC) analyses. Along with the ROM, a set of truth or experimental data is
required to use the format laid out in this section. The second step is to decide which variables would be considered parameter
variables and which ones would be considered model variables. In [1], physical variables, such as Poisson’s ratio and the
elastic modulus, are considered parameter variables and model form variables, such as the mass matrix and the stiffness
matrix, are classified as the model variables. Once the determination of which variables are parameter and which are model
variables, each variables is treated stochastically.

For the next step, a sweep is done for the parameter variables. The sweep is to determine the uncertain dispersion
variables for each parameter, which can be classified in several ways, for example: unbounded parameters, semi-positive
parameters, and positive parameters. Each one of these cases have different distributions based on the maximum entropy
of each probability density function (PDF). For the unbounded parameter (a range of .�1;1/), the distribution is that of
a normal distribution and the uncertainty variable is considered the coefficient of variation. For a semi-bounded parameter
of the range of Œ0;1/, a gamma distribution, which takes a special form as presented later in this section, is used with a
scale parameter of one [2]. This distribution is implemented into random matrix theory in order to generate an ensemble of
matrices that follow the characteristics of the mass and stiffness matrices. These characteristics are: positive definiteness and
full rank. The random matrices used are forced to be positive definite, which prevents there from being any rigid body modes
in the system. For more information about how to account for rigid bodies, refer to [4]. In order to generate this ensemble
that meets all of the characteristics that are desired, a decomposition of the matrices is done. For this parameter sweep,
each parameter is treated as a 1 � 1 matrix then randomized. The mass matrix, and any other matrix that is randomized,
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must still be positive definite, allowing for a Cholesky decomposition to be used to decompose the matrices. The Cholesky
decomposition takes the form of Eq. (12.1), where [M] is the mass matrix in this example and ŒLM � is an upper-triangular
matrix

ŒM � D ŒLM �
T ŒLM �: (12.1)

Once the decomposition of the matrix is calculated, a random germ is added that generates a stochastic ensemble that meets
the desired requirements. This addition can be seen in Eq. (12.2), where ŒG � is the random germ

ŒM � D ŒLM �
T ŒG �ŒLM �: (12.2)

The random germ is a nearly diagonal matrix where the expected value of the matrix is an identity matrix. The random germ
is created by using a gamma distribution on the diagonal terms and zero mean normal variables on the off-diagonal terms. All
of the terms in the random germ depend on the dispersion variable, which is the value that is swept. The dispersion variable

is not dependent on the size of the system but is bounded by it. The range on the variable is Œ0;
q

nC1
nC5 /, where n is the size

of the matrix or the number of degrees of freedom. This random germ is also positive definite so it can be decomposed by
using a Cholesky decomposition. The off-diagonal terms in the Cholesky decomposition are determined by using Eq. (12.3),
and the diagonal terms are determined via Eq. (12.4)

�n D ıp
nC1 ŒLg �ijjj>i D �nZij Zij � N.0; 1/ (12.3)

ŒLg �jj D �n
p
2Vjj Vjj � �.nC1

2ı2
C 1�j

2
/ (12.4)

where Zij is a standard normal distribution, �n is a scaling factor, and ŒLg � is an upper triangular matrix used in the Cholesky
decomposition of the random germ. For the parameter sweep n D 1, which results in the dispersion variable ranging from
[0,1/3). A MC analysis is conducted for each combination of values for the dispersion variables, and the number of MC
samples is determined based on the number of parameters in the analysis. For each MC analysis, the probability that the
experimental data lies within the calculated PDF is needed. This probability is calculated via the maximum likelihood
criterion [3], which uses the measured natural frequencies and is given in Eq. (12.5). In order to reduce the complexity of this
problem, it is assumed that each natural frequency is independent. Taking the natural log of this function allows the product
of probabilities to become a summation. The natural log is also a monotonic function so the maximum of the natural log of
a function occurs at the same location as the maximum of the original function. The final form of the likelihood function is
shown in Eq. (12.5), where ık is the dispersion variable, Pi.Xtruthjık/ is the probability that the truth value lies within the
distribution with the given dispersion variable, which is calculated with a histogram within a tolerance of the true value, ıopt

is the dispersion variable that provides the optimal distribution to match the experimental data, and i is the index on the truth
data such as each natural frequency

ıopt D argmax
X
i

lnŒPi .Xtruth;i jık/�: (12.5)

The likelihood function is compared for each combination k of dispersion variables. The combination of dispersion variables
that creates the maximum value is then selected as the dispersion variables for each parameter and these dispersion variables
are then fixed for the rest of the analysis.

The next step is to analyze the model form error. This step involves performing a sweep of the dispersion variables for the
matrices being used. This analysis uses a linear system in order to solve for the natural frequencies and FRFs. The matrices
that are used are the mass and stiffness matrices. Each of these matrices follow the positive definite stochastic matrices as
previously discussed. The main difference between the two sweeps is that for the model variable sweep, the FRF is used to
calculate the likelihood function while the parameter variable sweep uses the natural frequencies to calculate the likelihood
function. The frequency response function is not directly used to compute the likelihood function, instead a Z variable is
used to consider the FRF in terms of a decomposition that is a statistical reduced representation, similar to a Karhunen-Loeve
expansion [3].

In order to use this reduced representations, several new variables are defined. The first vector that is defined is the random
observed vector Y which is a nobs � nfreq vector where nobs is the number of MC samples used and nfreq is the number of
frequency points that is done experimentally. This vector is defined for each combination of values of the dispersion variable
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for the model variables. The mean and covariance of each of these vectors are defined according to Eq. (12.6) where MY.ıG/

is the mean vector, ŒCY.ıG/� is the covariance matrix, and EŒ� is the expected value function

MY.ıG/ D EŒY� ŒCY.ıG/� D EŒ.Y � MY.ıG//.Y � MY.ıG//
T �: (12.6)

Once these variables are calculated, the covariance matrix is then decomposed by performing an eigenvalue decomposition,
with the j th eigenvalue 	j .ıG/ and the j th eigenvector Hj .ıG/ both sorted in descending order. After these variables are
calculated, the Z variable is defined. The j th value of Z is calculated via to Eq. (12.7), with the inner product denoted by
<;>

Zj D 1p
	j .ıG/

< Y � MY.ıG/;H
j .ıG/ > : (12.7)

Not every value of Z needs to be computed. A subset of Z can be used to decrease computation time since these vectors
can be very large. The same transformation as in Eq. (12.7) can be done for the experimental FRF. Once the Z parameters
are compared by using the likelihood function, the maximum of the likelihood function is used to determine the dispersion
variables for each of the matrices as seen in Eq. (12.5), where i is the number ofZ parameters that are used in the comparison.
Since the dispersion variable is then known for each the parameters and for the model form, a large MC analysis is done in
order to get final distributions of the desired quantities.

12.3.2 Results

Maximum entropy [1] is applied to the Ampair 600 wind turbine [8] in order to calculate the distribution of the natural
frequencies for two cases: when only aleatoric uncertainty is considered, and when both aleatoric and epistemic uncertainty
are considered. The first five natural frequencies predicted by the analysis are compared to those of the measurements of the
single bladed assembly (Sect. 12.2.2). Known epistemic uncertainty is introduced through modeling the bolted connection
between the blade and the hub as a rigid attachment. Results from this over-simplifying assumption are able to serve as a
baseline for comparison with other methods in order to determine an accuracy verses time investment for different methods
of modeling the bolted connection in this system.

A high fidelity model developed using SIERRA [11] is reduced by considering the model in the modal domain. This
allows for quicker computations and for a more in depth investigation to be performed. For this investigation, the first five
natural frequencies are of interest, which spanned up to 200 Hz. The reduced model consists of the first nine modes, which
spanned up to 400 Hz. The number of MC samples is picked to be 500 for the determination of the likelihood function and
100,000 to calculate the final PDFs with only aleatoric uncertainty and with both aleatoric and epistemic uncertainty. In this
analysis, six parameter variables (the elastic moduli of five different materials and the shear modulus of blade’s orthotropic
shell) and two model form variables (the mass and stiffness matrices) are used, and damping is added to the model form as
1.0 % modal damping in order to prevent computational instabilities at the natural frequencies.

The results show that the dispersion variable for each of the parameter variables to be less than 0.5 %. The model variables
had considerable large dispersion variables of 55 % and 75 % for the stiffness and mass matrices respectively. Due to the size
of the system the upper range for the dispersion variable is 85 %. The largest effect of this can be seen in the first natural
frequency. The PDF of the first natural frequency can be seen in Fig. 12.4, which shows the histogram while only considering
aleatoric uncertainty (Fig. 12.4a), and the histogram when both aleatoric and epistemic uncertainty is considered (Fig. 12.4b).
The vertical line represents the measured natural frequency.

The main result from Fig. 12.4 is that the mean of the natural frequency closer approximated the natural frequency that
is obtained experimentally when epistemic uncertainty is accounted for. The results from the MC analysis are presented in
Table 12.1. For the first two modes, accounting for both aleatoric and epistemic uncertainty made the mean of the PDF closer
to the experimental data. For the higher modes, it is less clear if the consideration of epistemic uncertainty improved the
results. It is expected that expanding the ROM to include more modes will yield better accuracy of the higher frequency
modes because this mitigates the error due to modal truncation.
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Fig. 12.4 Histograms of first natural frequency where the red line is the experimental data and the blue curve is the histogram for (a) with only
aleatoric uncertainty and (b) with both aleatoric and epistemic uncertainty (Color figure online)

Table 12.1 Mean natural
frequencies from different
uncertainty models (Hz)

Mode Experimental Nominal model Aleatoric only Aleatoric and epistemic

1 29:839 34:667 33:717 29:824

2 86:75 95:877 92:93 79:638

3 150:65 160:82 154:54 123:19

4 178:25 177:38 171:45 164:64

5 195:1 191:36 186:38 216:17

12.4 Iwan Joint

Following the application of Soize’s method [1] to a linearized system, a more realistic system that models the bolted
connections with Iwan models is considered. The four-parameter Iwan model [10] is used to characterize the nonlinear and
dissipative behavior observed at the bolted joint interface between hub and blade. The sensitivity to the exact conditions of
the assembly and the difficulty in determining exact values of contact parameters calls for an uncertain formulation of such
a model.

In what follows, a parametrically defined probability density function (due to the limited availability of data) is used in
the analysis with assumptions stated in Sect. 12.4.1 and the framework for a nondeterministic sampling method presented
in Sect. 12.4.2. The model is based on a lumped mass system that represents the mass-hub portion of the Ampair 600 Wind
Turbine. The analysis focuses on both uncertainty quantification and parameter sensitivity: exploring the input domain to
obtain a better understanding of the variability of the outputs provides an added value to any design tool, especially in cases
(such as contact models) where it is difficult to estimate the input parameters. Section 12.4.3 describes the implementation
of an Iwan joint into the high fidelity model within Sierra.

12.4.1 Assumptions for the Parameter Distributions

Useful strategies to calculate appropriate distributions include expansion-type representations (e.g. polynomial chaos) and
maximum entropy concepts. In this paper the maximum entropy concept is selected by choosing distributions which
maximize the spread of each variable. The assumptions made to perform the parametrization are stated beforehand.

• Due to the lack of data coming from the direct experimental observation of the Ampair 600 Wind Turbine the parameters
�, ˇ and KTbolt are deduced from the available database constructed from other single-bolt jointed interfaces available at
Sandia National Laboratories. These parameters are considered independent from each other.
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Table 12.2 Iwan model
parameters distributions

Parameters Method ˛ 	

�C 1 Moments 90:025 0:0029218

Max. likelihood 87:642 0:0030012

ˇ Moments 0:83801 0:088759

Max. likelihood 1:6684 0:044584

KTbolt Moments 77:986 1.25eC005

Max. likelihood 67:211 1.458eC005

• The stiffness of a single bolt can be deduced from the available data on similar joints, as described above. However since
the goal is to characterize an interface jointed by three bolts an additional assumption has been made. Using the available
experimental data as a comparison the stiffness of the interface KTinterface D 2 �KTbolt .

• The mean value of the slip force FS is deduced from the following empirical calculation and assumptions. Each bolted
interface is composed by three 5/1600–18 bolts, each of which, when tightened to the prescribed torque value of 157 in�lbf ,
exerts an axial clamping force of 3,072 lbf. Assuming a friction coefficient that can vary between 0.2 and 0.8 the limiting
friction force is assumed to have a uniform distribution [614–2,457] lbf. These values are consistent with the ones coming
from the database (min D 100 max D 5; 000 lbf). Considering three bolts are clamping together the interface the final
distribution will be [1,842–7,371] lbf = [8183 � 32:7 � 103] N.

• Apart from the parameter FS , which has already been assigned a uniform distribution, the other three parameters still
need to be assigned a proper distribution shape. Referring to [6], since the parameter � must be larger than �1, it is
proposed that �C 1 be represented in terms of a Gamma random variable. A similar modeling of the stiffness KTbolt and
the coefficient ˇ is also proposed.

The parameters for each of the gamma distributions are derived using both the moments and the maximum likelihood method
on the available database. The two approaches yield comparable results (as shown in Table 12.2), but the maximum likelihood
approach is preferred since the method of moments yields for the case of ˇ a distribution that is almost exponential. Due
to the fact that it is not feasible to have a null ˇ (it would mean no stiffness discontinuity at macroslip, therefore an infinite
number of elements) the exponential approximation is not the correct fit.

12.4.2 Uncertainty Propagation on a Lumped Mass Model

Once the Iwan-model parameters are made uncertain, their effect is evaluated on the output quantities of interest. Sampling-
based methods are the most robust uncertainty techniques available, are applicable to almost all simulations, and possess
rigorous error bounds; consequently, they can be used whenever the function is relatively inexpensive to compute and
adequate sampling can be performed. The main drawback of these techniques is the large number of function evaluations
needed to generate converged statistics. Latin HyperCube Sampling (LHS) techniques, in general, require fewer samples
than traditional Monte Carlo for the same accuracy in statistics. The LHS package is offered by Dakota, which is used to
perform this analysis [13].

12.4.2.1 Tuning Protocol

The lumped mass model is composed of a set of masses and a set of springs plus an Iwan element chosen to simulate the
hub C blade system (see Fig. 12.5). The mass and springs values are tuned, in both cases, to match the first three measured
frequencies in the macroslip stage (see Fig. 12.3). This corresponds to exciting the actual hub with a 45 lbf hammer hit. This
assumption is justified by the significant frequency shift of the third mode and by the nonlinearity shown by the Zeroed Early
FFT method [14] (see Fig. 12.6). An impulse forcing function representing a hammer hit is used, with the magnitude varied
across multiple simulations to excite the system in both microslip (with increasing percentage of contact elements slipping)
and macroslip. To find the right force levels to excite the system in the macroslip and microslip states, a parameter sweep is
been performed with Dakota, using the mean values of the Iwan parameters.
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Fig. 12.5 (a) Lumped mass model of hub-blade system. (b) Hub-blade system experimental set-up

Fig. 12.6 Zeroed early fast
Fourier transform of 45 lbf
hammer hit showing strong
nonlinearities. The color of the
lines indicates the different
ZEFFTs for an increasing zero
time tz: from 0 s (dark blue) to
248.4 ms (cyan) to 1,494 ms
(dark red) (Color figure online)

Given the discrete nature of the model, the simulated hammer hit that causes macroslip is one order of magnitude higher
than the experimental counterpart. Since this is a simple heuristic model, this is considered acceptable; the comparison with
true force magnitude excitations is performed on the high fidelity model. In order to compare the results of the heuristic
model with the experimental data, the forces are normalized by the values (numerical and experimental respectively) needed
to obtain macroslip.

12.4.2.2 Influence of Parameters on Modes’ Frequencies

The performance of the model is been verified against a broad range of forcing function levels, and compared with the
experimental data available. The first mode, does not exhibit any frequency shift. This behavior is consistent with the
available experimental data, despite the predicted value shifting from the experimental data (by 1 Hz). The Iwan model
has no qualitatively observable effect over the frequency of this mode; in fact, no uncertainty band is obtained, which is due
to the first two masses mh and mb1 moving in phase. In the physical system, the first mode is a bending mode of the blade,
which does not excite the bolted interface.

The second mode exhibits a slight dependence on the force level. Once again, despite a small shift (2 Hz) between the
experimental and the predicted values, the behavior of the frequencies is the same: a decrease of 0.5 Hz during the transition
from microslip to macroslip regime. In this case the uncertainty band is present, but its width is not sufficient to cover the
gap between the experimental and the predicted values. This is due to the fact that two masses linked by the Iwan element
do show a small relative motion in this mode. In the physical system the second mode is also a bending mode.

The third mode is quite sensitive to the excitation force level. In this case, the two masses connected by the Iwan element
vibrate 180ı out of phase. The predicted response matches the experimental data (except for one force level: 7 lbf), as shown
in Fig. 12.7. In the physical system at the third mode, the blade shows an in-plane rotation against the hub.
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Fig. 12.7 Uncertain third mode frequency as a function of input force level. Blue dashed line: nominal parameter curve. Red lines: 5–95 %
parameter uncertainty bands. Green lines: 5–95 % epistemic and parameter uncertainty bands. The black squares represent the experimental data
points (Color figure online)

12.4.2.3 Accounting for Epistemic Uncertainty

Up to now the stiffness of the jointed interface is accounted for as twice that of a single bolt. However the true stiffness may
be different: a reasonable assumption is a range varying from one to three times (three parallel bolts) the stiffness of a single
bolt. The epistemic uncertainty regarding the joints’ stiffness is turned into parametric uncertainty KTint D s � KTbolt where
the PDF of s has a uniform distribution with bounds Œ1; 3�. The resulting uncertainty bands regarding the position of the third
mode’s frequency are reported in Fig. 12.7. The experimental values (represented by the black squares) now all fall within
the uncertainty bands.

12.4.2.4 Sensitivity Analysis

In addition to confidence intervals, LHS accounts for correlation among variables, a useful indicator of the sensitivity of
each output with respect to the input contact parameters. The nonlinearity of the model manifests itself in the behavior of
the parameters, and their influence of the relevant output quantities (dependent on the excitation force). Therefore different
correlation matrices are obtained depending on the excitation force level.

If the exciting force is not enough to cause slip of any of the contact elements of the Iwan model, the Iwan model itself
behaves like a linear spring (see Fig. 12.8a); consequently, the parameters that most influence the position of the modes’
frequencies are those connected to the stiffness of the joint (s and KTbolt). The higher the stiffness, the higher the third
natural frequency. If the forcing function increases (see Fig. 12.8b), Fs (limiting friction force) gains a stronger influence
(it influences the number of slipping elements) and therefore a loss of stiffness results. Parameters s and KTbolt now show
a negative correlation since, the higher they are, the larger the loss of stiffness due to slipping. This happens because the
distribution of the parameter ˇ covers values close to 0, therefore the majority of the stiffness is lost during the early stages
of microslip, as in Fig. 12.8b. The second mode is now affected by the parameters’ variations since, given the moderate
relative motion, with the right combination of parameters some slipping can be produced even at that frequency. Excitation
force levels well above the macroslip limit served as a control case: the variation of parameters has no relevance since
macroslip is being forced on the system.

Sensitivity analysis is performed on another quantity of interest: the dissipation per cycle. In this case the system
was excited by a sinusoidal forcing function at different amplitudes and frequencies in the range (135–170 Hz). A LHS
procedure with 1,000 samples is used to investigate the influence of the input contact parameters on the dissipation per cycle.
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Fig. 12.8 Partial correlation matrix between inputs (Iwan model parameters) and outputs (modes’ frequency). (a) Stick regime. (b) Microslip
regime

Fig. 12.9 (a) Partial correlation matrix between inputs (Iwan model parameters) and outputs (dissipated area per cycle) in microslip regime—
small F0 amplitude. (b) Partial correlation matrix in macroslip regime—large F0 amplitude. (c) Hysteresis cycles for different values of parameter
FS . Green cycle: nominal microslip case. Red dashed cycle: microslip case with Fs D 1:5 � Fsnom. Blue cycle: nominal macroslip case. Magenta
dashed cycle: macroslip case with Fs D 1:5 � Fsnom (Color figure online)

As expected, the changing frequency influences the amplitude of the forcing function for which the system enters macroslip.
The correlation between input parameters and dissipation is different depending on the amplitude of the forcing function
and on the regime (macro or microslip). An example is given in Fig. 12.9, the two matrices have been obtained for the same
frequency and different amplitude of forcing function.

It is worth noting how, when the combination of frequency and amplitude of excitation force is large enough to guarantee
macroslip for any choice of the contact parameters, the limiting friction force FS and the tangential contact stiffnessKTinterface

are positively correlated to the output: the higher they are, the larger the area within the curve is (see Fig. 12.9c). Conversely,
when the regime is microslip, FS andKTinterface are negatively correlated to the output, since the higher their value, the lower
the number of contact elements inside the Iwan model to reach the slip condition.

The behavior of � is dependent on the amplitude of the exciting force: as described by Segalman [10], the dissipation
per cycle given by a harmonic input force F0 is D.F0/ D � � F �C3

0 . By computing @D.F0/

@�
it is possible to find the value of

F0 D F �
0 above which � will start influencing D.F0/ in a positive way. This distinction can correspond, as in Fig. 12.9, to

different contact states; however, there may be cases for which an input force F0 < F �.0/, applied to a frequency close to
resonance, could produce a negative correlation between D.F0/ and � even if during macroslip. Vice-versa, there could be
cases where, even though F0 > F �

0 , the combination of contact parameters and frequency is not enough to cause macroslip,
which would result in a case of microslip with a positive correlation between � and D.F0/.
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Fig. 12.10 Spider connecting
interface nodes on blade

Fig. 12.11 Spider connecting
interface nodes on hub flange

12.4.3 Implementing Iwan Elements in High Fidelity Models

The simplified model gives a good approximation of the system in lower order, in order to get a higher order representation,
the Iwan model is implemented in the high fidelity model in order to reveal the nonlinearities in the system using SIERRA.
The current process for adding an Iwan element to a model includes making a “spider-web” of rigid bars centered at a single
node and extending to all of the interface nodes. An example of this “spider-web” is shown in Fig. 12.10 for the blade and
in Fig. 12.11 for the hub connecting flange. Each block being connected has a center node and “spider-web” and to tie them
together. The two center nodes are connected using a Joint2G with four Iwan parameters, �, ˇ, Kt , Fs . The Joint2G element
is a spring element defined in SIERRA, which connects two nodes that can be adjusted to act as an Iwan joint for nonlinear
analysis or a linear spring.

Sierra is used to replicate an impact hammer test: a haversine pulse is applied at a single node on the hub, and the response
at a node on the blade is observed. Different load levels are used to see if nonlinearities exist in the system. Load levels of
5 and 5,000 N are tested in order to magnify the nonlinearities in the system. To make sure the model is correct and the
Joint2G is connected correctly, the first test is run using a linear spring. The FRF for the linear transient test shows natural
frequencies matching those of a test run using a model where the hub and blade are merged together.

Now that the model is verified for a linear system, the Iwan model is implemented. The Joint2G contains six degrees of
freedom, each can be specified as linear or nonlinear. For the model, since the load is in the Z-axis and the first modes are
rotational about the X-axis, the Kz and Krx terms (i.e. stiffness in these respective dimensions) are specified as nonlinear
Iwan elements and the remaining four degrees of freedom are still considered linear springs with high spring coefficients to
simulate a bolted joint. A nonlinear transient test is set up with a load of a haversine pulse with amplitude and period very
close to that of the impact hammer pulse from the experiment. Results from this transient test are shown in Fig. 12.12. Slight
differences in the frequency response can be seen between the different load levels. The differences become more apparent
as the frequency increases. Current efforts to improve these results include using a reduced model in SIERRA containing
super-elements. This will allow the time step of the transient test to be reduced significantly and will possibly help solver
convergence.
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Fig. 12.12 FRF of Sierra
nonlinear transient test

12.5 Conclusions and Future Work

This paper uses several methods to account for the various sources of uncertainty affecting the Ampair 600 Wind Turbine and
its model. The maximum entropy method is able to describe the model form and parameter uncertainty independently. This
is, however, only done for a linear system and rigid connections due to the computational requirements. The Latin hypercube
sampling method is a robust and useful tool to gain an insight on the relevance of Iwan parameters (and their uncertainty) on
the output quantities of interest. Investigations on simplified systems can give a valuable insight into the inner mechanism
of contact models, highlighting relations between variables (see Sect. 12.4.2.4) useful for any subsequent application of the
Iwan contact model. Moreover the methodology here developed is fit to be applied to more complex FE models.

Both the maximum entropy approach and the Latin hypercube sampling method show that accounting for epistemic
uncertainty yields good agreement with the experimental results but, at the same time, broadens the uncertainty bands.
Recognizing and accounting for the presence of epistemic uncertainty can be useful to highlight the critical areas affecting
the model, but it is only the first step towards the real goal, which should be the minimization of epistemic uncertainty.

Expected future work in this field include the following: implementing the uncertain Iwan model in the high fidelity
finite element model, implementing maximum entropy to decouple uncertainty in an Iwan joint connection, investigating the
influence of Iwan parameters over other quantities such as damping, and investigating the accuracy of different Iwan models,
such as modal Iwan, in the turbine system.
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Chapter 13
A Craig-Bampton Experimental Dynamic Substructure
Using the Transmission Simulator Method

Randall L. Mayes

Abstract Experimental dynamic substructures in both modal and frequency response domains using the transmission
simulator method have been developed for several systems since 2007. The standard methodology couples the stiffness, mass
and damping matrices of the experimental substructure to a finite element (FE) model of the remainder of the system through
multi-point constraints. This can be somewhat awkward in the FE code. It is desirable to have an experimental substructure
in the Craig-Bampton (CB) form to ease the implementation process, since many codes such as Nastran, ABAQUS, ANSYS
and Sierra Structural Dynamics have CB as a substructure option. Many analysts are familiar with the CB form. A square
transformation matrix is derived that produces a modified CB form that still requires multi-point constraints to couple to the
rest of the FE model. Finally the multi-point constraints are imported to the modified CB matrices to produce substructure
matrices that fit in the standard CB form. The physical boundary degrees-of-freedom (dof) of the experimental substructure
matrices can be directly attached to physical dof in the remainder of the FE model. This paper derives the new experimental
substructure that fits in the CB form, and presents results from an analytical and an industrial example utilizing the new
CB form.

Keywords Experimental dynamic substructures • Substructuring • Craig Bampton

Nomenclature

CB Craig-Bampton method of substructuring
CMIF Complex mode indicator function
FE Finite element model
FRF Frequency response function
MCFS Method of constraint for fixture and subsystem
MPC Multi-point constraint
TS Transmission simulator – the fixture attached to the experimental substructure of interest
dof Degree of freedom
sdof Single degree of freedom
p Modal dof of the experimental substructure with fixed boundary
q Modal dof of free modes extracted from experimental substructure with TS attached
s Free modal dof of the transmission simulator
x Physical displacement dof
! Frequency in radians per second

 Modal damping ratio
K Stiffness matrix
Lfix Reduction matrix applying fixed boundary constraint to experimental equations of motion
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M Mass matrix
T Transformation matrix to convert free modal model to modified CB model
ˆ Mode shape matrix extracted for experimental substructure with TS attached
‰ Free mode shape matrix of the TS
� Eigenvectors resulting from fixed boundary constraint of experimental equations of motion
b Subscript for the fixture or boundary
fix Subscript for the fixed boundary modes of the experimental substructure with TS as the boundary
free Subscript for the free modes obtained in the modal test of the experimental substructure with TS
C Superscript indicating the Moore-Penrose pseudo-inverse of a matrix

13.1 Introduction and Motivation

Experimental dynamic substructuring has experienced a resurgence in the last 10 years. Multiple groups have been motivated
to couple experimental substructures with FE substructures to obtain full system response. In general, one cannot couple the
physical connection dof of the experimental substructure to the physical dof of the FE model because small errors in the
experimental model will cause the coupling to be so ill conditioned that the effort will fail. There are additional challenges
including:

1. Rotational connection dof are difficult to measure but can be important;
2. Translation connection dof may not be measurable either (often the connection dof are in a joint interface where

transducers cannot be installed);
3. The connection dof may not actually be discrete, i.e. the connection may be a large surface contact;
4. The basis vectors from a standard free modal test may not span the space of the true connected motion well;
5. The joint stiffness and damping are often uncharacterized and usually ignored.

A method using an instrumented fixture known as a transmission simulator (TS), originally dubbed the method of
constraint for fixture and subsystem (MCFS) [1], mitigates these problems. By attaching the fixture to the desired substructure
in the same way it will be attached to the rest of the system, which will be modeled as a FE substructure, the joint stiffness
and damping are captured. The TS can be instrumented at only translational dof that capture the motion of the connected TS
in a truncated set of the free modes of the TS. Generally, the TS is a relatively simple structure that can be modeled with FE to
help plan where to mount the instrumentation. The fixture is designed so that accelerometers may be mounted in convenient
locations and directions. Ultimately the generalized dof of the TS are used to couple the experimental substructure to the FE
model of the rest of the system. Because the generalized dof inherently contain the rotational dof, these are no longer being
neglected. As long as the retained modes of the TS capture the connected motion, the method can even capture continuous,
not just discrete, connections. For this reason, the method becomes a tremendous tool for providing a reduced order model.
Originally, the TS method utilized multi-point constraints (MPC’s) to couple the experimental substructure generalized
coordinates to the FE model of the rest of the system, which removed most of the ill conditioning that is seen when one
attempts to couple the measured physical dof directly. This improvement is due to a least squares fitting of the physical
motion to the generalized dof that does not require that the errors in the experimental measurements have perfect continuity
with the physical FE dof to which they will ultimately be attached.

However, this approach has been utilized mostly in third party codes such as MATLAB for the coupling, since FE codes
often do not allow MPC’s to couple generalized to generalized or generalized to physical dof. This makes it awkward to
implement the experimental model directly in the FE code, which would be the ideal approach for the FE analyst. However,
the Craig Bampton substructure is already implemented into several FE codes such as NASTRAN, ABAQUS, ANSYS and
the Sierra Structural Dynamics code at Sandia National Laboratories. Researchers have developed a couple of methods to
utilize the CB form of the TS method in FE codes [2]. Here, another transformation is developed, dubbed the Craig-Mayes
method, which transforms the free modes from the experimental model with the TS mode shapes into a modified CB form.
This method preserves the experimentally extracted modal parameters exactly.

This paper will present the theory first, an analytical problem applying the method next, and finally an industrial problem
applying the method. Some discussions on maintaining good conditioning for the matrices follows, and then conclusions are
presented.
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13.2 Theory

Consider an experimental substructure tested with the TS fixture attached. An experimental substructure that can be
implemented in the Craig-Bampton form is desired. An example, which will be developed fully hereinafter, is the beam
pictured in Fig. 13.1. The red beam is the experimental structure for which a substructure in the CB form is desired. It is tested
in a free-free modal test with the TS fixture, the magenta beam, attached. The goal is to transform the test results so that there
is a substructure of the red beam that fits in the CB form. To achieve this, the magenta TS must be subtracted. The modal
test will produce modal parameters associated with the q dof. The TS has free modal parameters associated with the s
dof, and the final desired substructure in the CB form will have stiffness, mass and damping matrices associated with the
physical boundary dof, xb, and the fixed boundary modal dof p.

Generally, there is a FE model of the TS. The FE model is used in test planning to define measurement locations that will
achieve independent mode shape measurements for all free modes of the TS slightly beyond the frequency band of interest.
The TS fixture is thus instrumented. The transmission simulator hardware is attached to the experimental substructure and
the free TS mode shapes are assumed to span the space of the motion when connected to the experimental substructure. How
well it spans the actual connection motion space affects the fidelity of the substructure model. Ultimately, the TS stiffness,
mass and damping will be subtracted from the experimental substructure, so that the experimental substructure may then
be coupled with the FE model of the rest of the system. The modal parameters from a free modal test of the experimental
substructure with the TS attached can be used to produce the following equations of motion as

�
!2f ree C j 2!!f ree
f ree � !2I �

q D 0 (13.1)

where the subscript free represents the set of modes obtained from the experimental modal test of the experimental
substructure attached to the TS in which there are generally no additional constraints added to the structure (The structure
is typically suspended by bungee cords or some very soft suspension whose mass, stiffness and damping are considered
negligible). The mass-normalized mode shapes derived from the test will be contained in the measured mode shape matrix,ˆ.
For convenience, the rest of this derivation will drop the damping matrices, but they may easily be included. Now we wish to
derive a square matrix transformation, T, that will convert Eq. (13.1) to a modified CB form. Here we consider the generalized
coordinates, p as the fixed-boundary modal coordinates and the generalized coordinates, s as the coordinates that account for
the motion of the TS, which is considered the boundary of the experimental substructure as

q D T

�
p

s

�
: (13.2)

The first constraint ties the TS to the tested structure. Use the modal approximations to set the motion of the experiment on
the boundary (TS dof) to match the free modal motion of the TS as

˚bq � �bs (13.3)

where the subscript b dof will actually be a subset of the boundary dof where the measurements are made, ˆ is the
experimental mode shape and ‰ is the chosen truncated set of free modes of the TS. ‰ usually comes from a TS FE
model, but could also be measured. Then the relation between q and s is

q D ˚C
b �bs (13.4)

where the C sign represents the Moore-Penrose pseudo inverse. This provides the s portion of the transformation, T.
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To obtain the fixed boundary modal dof, p, fix the boundary dof with

xb D ˚bq D 0: (13.5)

Previous work [3] has shown that a practical way to accomplish Eq. (13.5) is to fix the TS dof with

�C
b ˚bq D s D 0: (13.6)

With Rixen’s primal assembly [4], the modal dof are replaced with

q D Lf ix� (13.7)

which is substituted back into Eq. (13.6) to obtain

�C
b ˚bLf ix� D 0: (13.8)

Since � can be anything, depending on the forcing motion, Lfix is chosen to guarantee satisfaction of the constraint as

Lf ix D nul l
	
�C
b ˚b



: (13.9)

Pre and post-multiply Eq. (13.1) using the transformation Lfix appropriately to give

LTf ix
�
!2f ree � !2I �

Lf ix� D 0: (13.10)

Solve Eq. (13.10) to get the eigenvectors, � , and the eigenvalues to uncouple the dof, p. Then the relationship between q and
the fixed boundary dof, p, is

q D Lf ix p (13.11)

which provides the rest of the transformation written from Eqs. (13.4) and (13.11) as

T D �
Lf ix ˚C

b �b
�
: (13.12)

Pre multiplying Eq. (13.1) by the transpose of T and substituting Eq. (13.2) into Eq. (13.1) for q yields the following
transformed equations of motion for free vibration

""
8

!2f ix
n

Kps

KT
ps Kss

#
� !2

"
I Mps

MT
ps Mss

## �
p

s

�
D 0 (13.13)

for which the eigenvalue and eigenvector solution have not changed from Eq. (13.1). It has exactly as many dof as Eq. (13.1),
but now they have been transformed to the fixed base modes associated with p and the TS modes which were on the boundary
as modal dof s. The upper left portion of the matrices is diagonal. Now there are coupling terms between the fixed base
modes and the TS motion. The shapes associated with p are ˆLfix� which one can see by pre-multiplying Eq. (13.11) by ˆ.
To obtain the experimental substructure without the TS attached, simply subtract the TS stiffness and mass from the lower
right partition which corresponds to the boundary motion, as

""
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ps Kss � 8

!2TS
n

#
� !2

"
I Mps

MT
ps Mss � I

## �
p

s

�
D 0: (13.14)

This is almost in the form of CB matrices, but the generalized dof, s, must be converted to physical dof, xb, to couple it with
the FE model of the rest of the system in codes with CB substructure capability.

Since

xb D �bs (13.15)
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write a transformation

�
p
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�
D

�
I 0

0 �C
b

� �
p
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�
(13.16)

and, similar to Eq. (13.10), pre and post-multiply Eq. (13.14) appropriately by this transformation to produce the modified
CB form as
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�
D 0: (13.17)

This form is slightly modified from the normal CB in that there are non-zero stiffness coupling terms, Kps, which are zero in
the normal CB form. However, this can now be implemented directly in the FE model as a CB type substructure. The author
calls this form Craig-Mayes. Note the damping can be carried along in an analogous way. One disturbing issue about the
Craig-Mayes form is that Eq. (13.17) has become rank deficient, unlike Eq. (13.14), so it is not useful to solve Eq. (13.17) by
itself. This is because the length of vector xb is greater than the length of vector s. However, as pointed out by Simmermacher
[5], when coupled with another FE substructure, the entire system will not be rank deficient because of the stiffness and mass
added by the FE substructure to the xb dof. As a final note, the basis shapes chosen in Eq. (13.3) need not necessarily be the
free shapes of the TS. Other basis shapes may prove to give more accurate or robust solutions. If one uses the free shapes,
the result in coupling the Craig-Mayes substructure of Eq. (13.17) with the FE model is exactly what is obtained with the
standard TS method when Eq. (13.1) is coupled to a FE substructure through MPC’s.

13.3 Beam Example

In this analytical example, a beam is the experimental structure. A short beam is attached at one end which is the TS. This
system is converted to the Craig-Mayes substructure and coupled to a FE model of a second beam to produce the response
of two beams attached to one another. The results are compared to the FE model of the entire system which acts as the truth
model. Figure 13.2 shows the beam substructures. In this problem the right beam is 15 units long and the TS simulator is a
short beam 4 units long that overlaps the left most 4 units of the right beam. The experimental structure is the right beam
with TS beam attached. The FE substructure is the left beam that is 20 units long and is ultimately to be coupled with the
right beam in the substructuring process. The FE substructure overlaps the right beam by four units. Figure 13.3 shows the
first four elastic bending modes of the “truth” assembly. The circle/asterisk dof in the middle are where the two beam overlap
and are connected.

The FE model of seven modes (up 5,876 Hz) of the right beam with the short TS attached was used to create the virtual
test and the resulting experimental structure. The TS had six measured dof, three vertical translations and three horizontal
translations at the three nodes located at the TS beam left end, center, and right end. Four modes of the TS were retained
(three rigid body modes and one elastic bending mode). The Craig-Mayes substructure was created using the TS shapes
and the seven virtual test shapes. It had three fixed base modes and six connection dof. This was coupled to the FE model
of the 20 unit long left beam at the six “measured” connection dof. The frequency comparisons of the truth beam and the
substructured beam are given in Table 13.1.

FE Beam
Experimental Beam

TS BeamFinal System Beam

Fig. 13.2 Beam substructures and final assembled beam
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Fig. 13.3 Bending mode shapes
of truth beam
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Table 13.1 Comparison of beam
truth frequency and Craig-Mayes
substructure frequency (elastic
modes only)

Truth frequency (Hz) Substructured frequency (Hz) Error in frequency (%)

212.0 209.7 �1.1
574.6 571.5 �0.5
1,121.0 1,131.4 0.9
1,867.3 1,877.4 0.5
2,750.2 2,782.4 1.2
3,341.7 3,398.4 1.7
3,949.6 4,034.7 2.2
5,115.9 5,167.6 1.0
*5,965.5 5,946.9 �0.3

*Highest frequency experimental substructure mode retained was 5,876 Hz

13.4 Industrial Example

The industrial hardware consisted of a shell with dozens of internal components. The shell is chosen as the TS, and a FE
model of the shell exists. The shell is relatively easy to model, but the internal parts are not easily modeled with FE. Dozens of
internal accelerometers measured response of internal components of interest. Figure 13.4 shows a schematic representation
of the test setup.

13.4.1 Description of Transmission Simulator Model

A FE eigenvalue analysis of a large number of the external translation dof of the empty shell for the first 200 free modes was
performed. From this analysis, 38 modes of the TS were chosen to attempt to obtain response out to 2,000 Hz. Analysis to
select measurement dof on the outside of the shell was performed. The algorithm selected measurement dof by attempting to
keep the condition number of the mode shape matrix to a minimum. The condition number for the selected 84 measured dof
and 38 modes was 3.54. When one more mode was added the condition number jumped to 7.2. The frequency of the 38th
mode was 2,285 Hz. Seven modes had frequencies above the desired 2,000 Hz. After the dof selection was performed, the
external shell was instrumented per the dof selection analysis. Optimal driving points based on the mode shapes of the free
TS were also chosen.
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Fig. 13.4 Schematic of free
modal test of shell with internal
components

13.4.2 Modal Test of Industrial Structure with Transmission Simulator

The structure was supported by bungee cords, and a modal test was performed with an impact hammer. Twelve reference
input locations were used in the analysis. Each reference was analyzed separately because the structure was slightly nonlinear,
so multi-reference algorithms could not handle the frequency shifts of like modes extracted from one reference to another.
The SMAC algorithm [6] in automated mode was utilized to extract the modes. The option to extract real modes was utilized.
Almost 500 modes were extracted in the 12 data sets. Many of these were redundant extractions of the same mode already
in another data set, and some modes were poorly excited. The modal parameters were culled to 110 elastic modes with the
six rigid body modes (calculated analytically from mass properties) for the experimental model with the TS associated with
Eq. (13.1).

13.4.3 Craig-Mayes Experimental Substructure Coupled to FE Model: Comparison
with Free Modal Model

The TS fixture is the actual part that the internal components are mounted within. This allows us to have a convenient “truth”
comparison. A Craig-Mayes substructure was developed by taking the experimental model and subtracting the 38 mode FE
TS. The Craig-Mayes substructure was then added to a 200 mode modal substructure of the shell derived from the FE model
of the shell. This was coupled together in MATLAB. This result is utilized to attempt to reproduce the original modal test
FRF data. In Fig. 13.5 the top level complex mode indicator function (CMIF) is plotted for the experimental data (blue),
the extracted modal model (green), and the Craig-Mayes substructure coupled with the 200 mode FE model of the shell
(magenta). The CMIF plots incorporate all the FRF data together in one plot. Differences between the experimental and
modal model CMIFs show errors in the modal fitting. Differences between the modal model and the substructured CMIF
show errors due to the truncated modal model used for the TS and errors due to the FE model. To the extent the TS mode
shapes do not span the space of the true experimental motion, constraining errors are introduced which can move the resonant
frequencies and change the amplitudes of certain mode shapes. If one compares the modal model (green) and substructured
CMIFs (magenta), one can see that the results below 1,000 Hz are nearly identical, but the substructured CMIF results above
1,000 Hz are not quite as good as the original modal extraction for the experiment. The constraining process pollutes the
higher frequency modes either because the 38 TS mode shapes did not perfectly reproduce the motion that was actually
experienced in the modal test on the shell, and the FE model of the shell is not perfect.

Figure 13.6 shows sample experimental FRFs (blue), FRFs synthesized from extracted modal parameters (green), and
FRFs synthesized from the Craig-Mayes substructure coupled to the 200 mode FE model of the shell (magenta). The pattern
is similar to the CMIFs in that the accuracy of the substructured FRFs deteriorates some with higher frequency. However,
if one considers only the amplitude for defining specification envelopes, and one is willing to accept a factor of two in the
uncertainty of the amplitude at certain frequencies, even the high frequency results in the magenta curves of the substructured
model might be considered “useful”. The responses are all from different forcing input locations. The first row shows two
responses on the outside shell. The second row shows two responses on substantial internal components. The third row shows
two responses from small internal components.
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Fig. 13.5 CMIF experiment (blue) vs modal model (green) vs Craig-Mayes substructure added to 200 modes of FE shell (magenta)

13.5 Discussion on Conditioning of the Matrices

As mentioned in Sect. 13.4.1, the condition of the TS mode shape matrix,‰, is kept low by using as few modes as possible to
span the desired bandwidth and placing accelerometers at appropriate dof to keep the mode shapes independent. The number
of measured dof is large enough so the least squares estimate of s is accurate (typically 1.5–2 times the number of TS modes
retained). The author has not studied the effect of increasing the condition number significantly above four.

It was discovered that the condition number of a matrix from Eq. (13.4), ˚C
b �b , was found to be important in maintaining

the conditioning of the entire substructuring problem. In the beam problem, when ‰b had four shapes, a condition number
of 10.5 was calculated for ˚C

b �b . However, when ‰b was increased to five shapes, the condition of ˚C
b �b was 1.02 � 1014,

even though the condition of ‰b was 2.3. With the large condition number of ˚C
b �b , the coupling in the physical dof

gave negative eigenvalues for the stiffness matrix, and the coupling with the FE beam failed. In the industrial problem, the
condition number of ˚C

b �b was 130, which may be near the limit of allowing a successful substructuring problem even with
condition number of ‰b at 3.5 as it was here. Adding one more mode to ‰b caused the condition number of ‰b to double
to 7.2 and the condition number of ˚C

b �b to go up to 134, but then the coupling with the FE model of the shell produced
a negative eigenvalue when the eigen analysis of the full system was performed in MATLAB. A negative eigenvalue is not
desirable in a FE code, and can cause a fatal error. Negative eigenvalues can be removed from either a substructure’s mass
or stiffness matrix using methods described in previous work [7]. If the negative eigenvalues are not too large, they can be
removed with only minor degradation of the resulting solution.
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Fig. 13.6 Sample FRFs from experiment (blue), synthesized modal parameters (green), and from the Craig-Mayes substructure Plus 200 mode
FE model of shell (magenta) – Row 1 external responses on shell, Row 2 substantial internal responses, Rows 3 small internal component responses
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13.6 Conclusions

The standard free modes transmission simulator (TS) substructuring capability has been augmented by providing a
transformation to convert the free modes substructure to a modified Craig-Bampton form called the Craig-Mayes
substructure. This form can fit directly into a FE code with the Craig-Bampton substructure capability to couple the Craig-
Mayes substructure directly with an FE model of the complement of the full system to provide full system response
calculations. The experimental substructure includes the damping that occurred in the experimental substructure as well
as its connection to the next substructure. The theory was presented along with results from an analytical example and an
actual industrial substructure with 116 experimental modes. The effects of the constraining process were noted. New insight
for the conditioning of certain important matrices was presented.
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Chapter 14
A Parallel Solution Method for Structural Dynamic Response Analysis

Vahid Yaghoubi, Majid Khorsand Vakilzadeh, and Thomas Abrahamsson

Abstract With the continuous improvements of technology in and around multi-core CPU:s and GPU:s there is a strong
desire to exploit this technology in its full potential. For structural dynamics problems, the domain decomposition is a very
mature technique that is well adapted to parallel computations in multi-core machines as it is almost trivially parallelizable.
However, competing alternatives with model reduction without parallel computation has also reached an extremely high level
of maturity and are thus highly competitive. In this paper, a domain decomposition method, in a procedure named the split-
stitch-spread (S3) procedure, is proposed to do transient analysis of large finite element models in parallel. In the method,
the structure splits into model substructures with elastic interfacial substructures coupling them together. Each of them can
be sent to different computer cores to do time discretization. The model substructures stitch to each other by using interfacial
forces and as a result, the systems’ state sequence will be obtained. The solution can then be spread into the substructures
and response quantities can be evaluated in parallel processing. The method is applied to a multi-story building subjected to
earthquake loading and the results are compared with mode displacement method as a model reduction method with focus
on computational efficiency.

Keywords Domain decomposition • Parallel substructure • Transient analysis • Interfacial coupling • Elastic interface

14.1 Introduction

Dynamic analysis of large-scale structures usually requires considerable execution time and large memory usage due to the
large amount of matrix operations. These obstacles prevent researchers from getting more accurate results by using higher
resolution meshes and smaller time increments. Two approaches can be used to solve larger and more complex structures
numerically. One approach is to develop more efficient solution schemes in the sense of the time and memory storage. Fast
integration methods and model order reduction algorithms are examples of this approach which in the context of structural
dynamics are well developed for both second-order systems [1] and first-order systems [2]. The alternative approach is
in accordance with continuous improvements of technology in multi-core CPU:s and GPU:s, to better exploit advanced
computer hardware and software technology. This utilizes the more powerful computer systems to analyze larger engineering
problems. Parallel equation solver methods and parallel domain decomposition methods are two most well-known strategies
of this approach. Obviously, these two approaches can be applied simultaneously to solve larger engineering problems in
more efficient ways.

As mentioned, structures can be simulated efficiently in both first-order and second-order form. Parallel equation solver
methods which focus on solving the linear equations in parallel either direct [3] or iteratively, can be considered as extension
of integration methods in parallel computing. A family of the integration methods that stems from exact solution of first-order
differential equation is exponential integrators [4]. In a recent paper, a very efficient and accurate exponential predictor-
corrector integrator is used to simulate structures with local nonlinearity [5]. It was also shown that simulating a first-order
system imposes two time-consuming steps when working with large structures. The first step consists of transferring the
second-order to first-order differential equation form and the next step is the time-discretization of the model. The latter of
these two steps often takes more time than the simulation time. If discretization in time is done in parallel, it means a big
improvement in the overall simulation time. It is worth to mention that even in model reduction methods often the most time-
consuming part is solving the eigenvalue problem in order to reduce the model order and not solving the resulting system
equation. Therefore using parallel computers to find eigenvalues of the systems is also of great interest.
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Domain decomposition methods utilize a partitioning scheme such that the structure is decomposed into several
substructures. For each substructure, which is spatially discretized using finite element methods before or after partitioning,
the equation system is formed and interface equation system is generated. Then each substructure is assigned to different
cores and computational operations can be done in parallel with no between-cores communication. Solving the interface
equation usually needs communication between the cores. After solving the interface equations, the back-substitution of
results to each substructure can be made in parallel. Parallel substructuring methods [6] and finite element tearing and
interconnecting (FETI) [7, 8] are some of the most well-known domain decomposition methods in structural analysis.

In the FETI-1 method, the continuity of the structure is established only at convergence by introducing Lagrange
multipliers technique. In FETI-DP the continuity of the solution is held throughout the iteration in the primal variables while
at dual variables continuity imposed only at convergence using Lagrange multipliers. Gonzales and Park [9] presented an
explicit-implicit FETI method that separate rigid-body modes from flexible modes in each substructures and use an explicit
integration method to solve the rigid-body (d’Lamaber Lagrange principal) equations and an implicit integration method
to solve for the flexible modes. Tak and Park[10] presented a method that prescribed Dirichle boundary condition to all
subdomains to remove rigid body modes.

In this paper a method is proposed to decompose the model into several subdomains in which each subdomain can be
reduced, transferred to first-order systems, discretized in time and block-diagonalized in their own CPU core without any
communication between the cores. Then, the condensed sparse time-discretized and real block-diagonal state-space matrices
are assembled in the main core and simulation of the interface is done sequentially in one core or in GPUs. In the method,
rigid body modes in floating substructures are constrained using interfacial force and interface compatibility is achieved by
elastic interfacial substructure and fixed-point iteration coupling. In the following chapters, the theory behind the method is
presented and the method is applied to a large-scale 3D building in an earthquake response analysis.

14.2 Theory

A finite element model of a structure is presented in the form of

Mq̈ C V q̇ C Kq D Ruu .t/ (14.1)

in which Mq̈, V q̇ and Kq are the inertial, dissipative and elastic forces, q 2 R n is the displacement vector and u 2 R n

is the external stimuli vector consisting of non-zero localized forces and couples. Ru is a boolean matrix that distribute the
external forces on the system’s degrees-of-freedom (DOF).

There are several method in the literature to solve the second-order differential equation numerically [11, 12] but
transferring that to first order differential equation form and then solve is an alternative that can utilize efficient and accurate
solvers [5, 13] in order to make that adaptable for control purposes.

we recast to state-space form, Eq. (14.1) into

ẋ D Ax .t/C Bu .t/

y D C x .t/C Du .t/ (14.2a,b)

Where (14.2a) is obtained using the following matrices

A D
�

0 I

�M �1K �M �1V

�
; B D

�
0

M �1Ru

�
: (14.3a,b)

For an n-DOF structure with m inputs and p outputs, A 2 R 2nx2n, B 2 R 2nxm, C 2 R px2n and D 2 R pxm. Here x 2 R
2n being the state vector and y 2 R p is the system output. C is used for linear mapping of the states to the output y with
entities selected with the application in mind. D is the associated direct throughput matrix. Accelerations, velocities, relative
and absolute displacements, stresses and strains are normal ingredients of y for mechanical system analysis.
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The state variables in x can be linearly transformed according to x D T x, which state-space matrices pertinent to the
transformed coordinate presented in the following

A D T �1AT ; B D T �1B; C D C T ; D D D (14.4)

Diagonalizing any state-space representation is accomplished by means of a particular similarity transformation specified by
the eigenvectors of the state transition matrix A. An eigenvector of the square matrix A is any vector  i for which

A i D 	i  i (14.5)

where the eigenvalue 	i may be complex valued. In other words, when the matrix T of the similarity transformation is
composed of the eigenvectors of A,

T D Œ  1 : : :  n� ; (14.6)

so,

AT D T �; (14.7)

where

� D diag .	1; 	2; : : : ; 	n/ : (14.8)

the transformed system will be diagonalized into

A D T �1AT D T �1T � D � (14.9)

Here the diagonal matrix Ā having the (complex) eigenvalues of A along the diagonal. With the notation of Eq. (14.4), B,
C and D can be easily found. The complex-valued quadruple

˚
A;B;C ;D


, is a diagonal state-space representation. For

simulation this requires complex arithmetic. An alternate block-diagonal real form, that does not need complex arithmetic
exist and maybe an alternative.

To obtain a numerical solution, the continuous-time ordinary differential equation (ODE) of Eq. (14.6), needs to be
discretized in a time-marching algorithm with time step T. This can be made through the recursive formula

xkC1 D Adxk C Bduk; yk D C dxk C Dduk (14.10a,b)

in which subscript (.)k stands for time t D kT. The state simulation result at t D (k C 1)T is obtained from data given by the
previous step at t D kT. The exact coefficient matrices of the discretized form can be shown to be

Ad D eAT

Bdu D B

Z kTCT

kT

eA.kTCT��/u .�/ d� (14.11)

The integral expression for the source term Bdu can be established only approximately for a general loading u(t). this
elaborate more on the following.

Based on superposition principle, for a linear system with m inputs Eq. (14.10) can be rewritten as

x
.�/

kC1 D Adx
.�/

k C B
.�/

d u.�/k ; y
.�/

k D C dx
.�/

k C D
.�/

d u.�/k (14.12a,b)
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in which x
.�/

kC1 and y(�)
k � D 1; 2; : : : ; m are state responses and system responses of the � th input and the total responses are

xk D
Xm

�D1x
.�/

k ; yk D
Xm

�D1y
.�/

k : (14.13a,b)

14.3 Split-Stitch-Spread (S3) Algorithm

In this chapter the Split-Stitch-Spread algorithm for parallel finite element analysis is presented. In this method, the domain�
is decomposed to create model substructures �i i D 1,2, : : : ,l and elastic, massless interfacial substructures � jk j D 1,2, : : : ,r
and k D 1,2, : : : ,s placed between �j and �k . Here we note that � D S

�i and we let � D S
�jk . For an illustration see

the L-shape domain � shown in plot (a) of Fig. 14.1 that is decomposed into three model substructures and two interfacial
substructures. The massless coordinates in the interfacial substructures are called interfacial coordinates and the elements
that coupled theses coordinates to each other are called interfacial elements. The coordinates in the subdomain �i which
are close to interfacial substructure � jk are called adjacent coordinates, !jki and let ¨ D S

!
jk
i . Because of continuity, the

interfacial coordinates have the same displacement and velocity with their corresponding adjacent coordinates. The interior
coordinates of ith substructure is denoted by qio and the adjacent coordinates coordinate in the ith subdomain is denoted by
qia, (see Fig. 14.1) and therefore q D ˚

q1o I q1aI q2o I q2aI : : : I qpo I qpa

.

Let the global assembled stiffness matrix of the interfacial substructure be Ka and the assembled stiffness matrix of the
model substructures be Ko. Then Eq. (14.1) can be rewritten in closed matrix form as

Mq̈ C V q̇ C .K o C K a/ q D Ruu .t/ (14.14)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Γ12

Ω2 Γ23 Ω3

13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

a b

Fig. 14.1 (a) main domain �, (b) decomposed domain, black bullet are coordinates with mass, and circles are massless coordinates
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or in open matrix form as

2
666664

�
M�1
oo M�1

oa

M�1
ao M�1

aa

�
0 0

0
: : : 0

0 0

�
M�l
oo M�l

oa

M�l
ao M�l

aa

�

3
777775

8̂
ˆ̂̂
<̂
ˆ̂̂̂
:̂

q̈1o
q̈1a
:::

q̈lo
q̈la

9>>>>>=
>>>>>;

C

2
666664

�
V �1
oo V �1

oa

V �1
ao V �1

aa

�
0 0

0
: : : 0

0 0

�
V �l
oo V �l

oa

V �l
ao V �l

aa

�

3
777775

8̂
ˆ̂̂
<̂
ˆ̂̂̂
:̂

q̇1o
q̇1a
:::

q̇lo
q̇la

9>>>>>=
>>>>>;

C

2
666664

�
K�1
oo K�1

oa

K�1
ao K�1

aa

�
0 0

0
: : : 0

0 0

�
K�l
oo K�l

oa

K�l
ao K�l

aa

�

3
777775

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

q1o
q1a
:::

qlo
qla

9>>>>>=
>>>>>;

C

2
66666666666666664

2
64
0 0

0

lX
kD1
K�1k
aa

3
75

�
0 0

0 K�12
aa

�
: : :

�
0 0

0 K�1l
aa

�

�
0 0

0 K�21
aa

�
2
64
0 0

0

lX
kD1
K�22
aa

3
75 � � �

�
0 0

0 K�2l
aa

�

:::�
0 0

0 K�l1
aa

�
: : :�

0 0

0 K�l2
aa

� : : :

: : :

2
64
0 0

0

lX
kD1
K�ll
aa

3
75

3
77777777777777775

8̂
ˆ̂̂
<̂
ˆ̂̂̂
:̂

q1o
q1a
:::

qlo
qla

9>>>>>=
>>>>>;

D Ruu .t/

(14.15)

in which the first stiffness matrix is Ko and the second one is Ka. The structures of the stiffness matrices for the L-shape
structure are illustrated in Fig. 14.2.Kaqa can be transferred to the right hand side of equation and consider as a pseudo force
applied to the system as,

Mq̈ C V q̇ C K oq D Ruu .t/ � K aqa (14.16)

In which, M, V and Ko are block diagonal and Ka is normally a very sparse matrix.

Fig. 14.2 (a) Ko, different colors
for stiffness matrix of different
model substructures. (b) Ka,
different colors for stiffness
matrix of different interfacial
substructures

a b
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14.3.1 Splitting

In the splitting procedure, each block of matrices that are associated to the subdomain’s interior coordinates can be sent to
one CPU for processing. There they are transferred to the first-order model using Eq. (14.2). No interprocess communication
with other CPUs is required in this process. To make the matrices sparser, by using Eqs. (14.4, 14.5, 14.6, 14.7, 14.8, 14.9)
the state-space matrices may be transformed to real block-diagonal form. The systems are discretized temporally using Eq.
(14.11) and simulated at their internal coordinate using their individual external forces i.e. y�, u

k by using Eq. (14.10a, b).

14.3.2 Stitch

At this step model substructures stitch to each other by using interfacial forces. All sparse, real block-diagonal (tridiagonal)
and time-discretized matrices collect at a main core to be solved numerically at the adjacent coordinates. This equates to
the motion at corresponding interfacial coordinates, y¨k D qa

k because of continuity of the structure at the interfaces. By
use of the interfacial stiffness Ka and the motion at the interfacial coordinates, interfacial forces can be calculated using Eq.
(14.17b). In order to have the full system response at the interface, interfacial forces use as pseudo-forces in the assembled
system using the following,

y¨k D y
¨;u
k C C ¨

d x
f

k C D¨
d f k; f k D �K ay¨k (14.17a,b)

in which xf
k is the state-response of the systems due to interfacial force. It can be rewritten as

y¨k D �
I C D¨

d K¨
��1 �

y
¨;u
k C C ¨

d x
f

k

�
(14.18)

With the displacement solution y¨k at the adjacent coordinate, the full state response of the structure can be obtained using

x
f

kC1 D Adx
f

k C B¨
d f k D Adx

f

k � B¨
d K ay¨k (14.19)

with B¨d is time-discretized form of B¨ and

B¨ D
�

0

M �1Ra

�
(14.20)

with Ra being a boolean matrix that distribute the pseudo-forces on the system’s degrees-of-freedom(DOF). Therefore, at the
end of this step, the system response at the interface is calculated along with state-response of interfacial force at all DOFs.

14.3.3 Spread

In a spreading step, the interfacial forces are spread into the substructures and system response at all DOFs will be obtained.
At the preceding splitting step, the system response due to external force y�, u

k was obtained and proceeded with a stitching
step in which the final system response at in the interfacial coordinates, y¨k , along with state-response of the structure due to
interfacial force, xf

k,were obtained. At spreading step, by using the superposition principle, the full system response will be
found using

y�k D y
�;u
k C y

�;f

k (14.21)

or,

y�k D y
�;u
k C C�

d x
f

k C D�
d f k (14.22)

A flowchart of the presented algorithm is shown in Fig. 14.3.
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Fig. 14.3 Flowchart of the presented algorithm for parallel substructure method

14.4 Stability Consideration and Discretization

By substituting Eq. (14.20b) into Eq. (14.19) we have,

xkC1 D Adxk � B¨
d K ay¨k (14.23)

using y¨k from Eq. (14.18) results in

xkC1 D „xk C …y
¨;u
k (14.24)
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in which

„ D
�
Ad � B¨

d K¨
�
I C D¨

d K¨
��1

C d

�
; … D �B¨

d K¨
�
I C D¨

d K¨
��1

(14.25a,b)

The system is stable when all the eigenvalues of � are located inside of the unit disc i.e. jeig(� )j< 1. The method of
discretization has effect on the stability and accuracy of the results. it has been found that if triangular-hold interpolation is
used to approximate the loading, the result is very accurate but the integration scheme gives only small time-stepping range
of stability while bilinear or Tustin discretization result in less accurate results but with wider time-stepping stability range.
On the other hand, when a triangular-order hold scheme is used for discretization, the stability of the method can be enforced
by small time step for simulation while for the Tustin method, it is the required accuracy that set the limit for time step
increments.

14.5 Application

In this section the S3 method has been applied to a large scale structural problem to illustrate its efficiency. The building
structure’s response to an earthquake loading has been simulated in a Dell Optiplex 980, with a processor of 3.33 GHz and
8 GB of RAM. Matlab R2013a was used get the results.

The 20-story frame building, see Fig. 14.4, has a height of 8 m in first story and 4 m in the next 19 stories, leading to
84 m total height. It has a 40 m � 30 m rectangular 5 � 3-bay plane in the first five stories, then set back to 3 � 2-bay in 5
stories and 2 � 2-bays in the top half of the building. Cross braces on all external faces provide additional lateral and torsional
stiffness. The columns and floor beams are modeled with Euler-Bernoulli beam elements; the beam-column connections are
rigid. The cross braces carry only axial loads; their connections are hinges. Cross elements in the plane of the floors provide
additional in-plane stiffness of the floors.

The building consists of a 1620-DOF finite element model that connects to a very massive body resembling the ground,
about 300 times heavier than the whole building. The body moves in 3D and the input in the form of forces that provide the
specified earthquake motion. The ground acceleration, recorded with a sample rate of 50 Hz is taken to be the N-S El Centro
record of the 18 May 1940 Imperial Valley earthquake (Fig. 14.4). To make the data smoother, they are upsampled 10 times
faster, i.e. at 500 Hz.

The equation of motion of the structure is

Mq̈ C V q̇ C Kq D Ruu.t/ (14.26)

where M,V and K are mass, damping and stiffness matrices of the superstructure, q is the displacement vector of the structural
joints and Ru indicates location of the input force. The model decomposed into several parts and 25 s loading is simulated
based on the S3 algorithm. Figure 14.5 illustrates the building decomposed to three model substructures and 2 interfacial
substructures in front view (left plot) and left view (right plot).

Figure 14.6 shows results for 25-s simulation of the top floor of the structure. It is simulated sequentially using the full
model, reduced model and the parallel method. The simulation results are in good agreement with each other. The required
time for transferring to first order differential equation and its time-discretization using triangular-hold interpolation and
also required time for solving the equation numerically are tabulated in Table 14.1. To reduce the model order, the mode
displacement method has been applied to the structure equation and it took about 100 sec to solve full eigenvalue problem
but in order to reduce the model order sparse eigenvalue calculation is used to find first 100 modes and it took about and it
imposed 0.15 % error to the simulation results, see Table 14.1. Error defined by the relative Frobenious norm of difference
between the simulated and reference responses at the time samples, as

e D jjX � X refjjF
jjX refjjF

� 100 (14.27)
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Fig. 14.4 (a) the three dimensional 20-story building connected to a massive body. (b-d) time history of the applied force at ground mass in X, Y
and Z-directions

where X and Xref are the n � nt response matrices in which n is the number of DOFs and nt is the number of time steps used
for simulation. X is given either by the reducing the model and solving sequentially or simulating using proposed parallel
algorithm. Xref is the reference response matrix given by full model simulation that is discretized temporally by the triangular
hold interpolation method.



158 V. Yaghoubi et al.

Interfacial 
Substructure

Interfacial 
substructure

a b

Fig. 14.5 View of structure splitted into three substructures and two interfacial substructures. (a) front view, (b) left view

Table 14.2 shows the effect of decomposing the structure into several parts in both simulation time and error analysis.
The number of DOFs at each substructure is also shown in Table 14.2. The simulation time at each step of the S3 algorithm
is shown in. It indicates that decomposing the model into more parts can speed up the simulation in the splitting step but it
reduces the efficiency in the stitching step. There is not much time variation in the spreading step, therefore when it comes
to the number

of decompositions, there is tradeoff between decreasing the simulation time by splitting into more parts and increasing
that by stitching more parts to each other. The effect of decomposition on accuracy of the results is presented in Table 14.2
and indicates that by increasing the decomposed parts the error will increase (Fig. 14.7).
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Fig. 14.6 Simulation result at top floor of the building with time-step increments 2 ms and 3 substructures for parallel simulation. (a) in
X-direction, (b) in Y-direction and (c) in Z-direction

Table 14.1 Required time to do reduction, discretization and simulation for 25 s with time step increments
of 2 ms

Reduction To first order DE Discretization Simulation time Overall Error (%)

Full model – 3.22 37.46 109.11 149.79 –
Mode displacement 15.11 0.014 0.077 0.6 15.70 0.15

Table 14.2 Effect of decomposition, the number of DOFs at each substructure. Overall simulation
time including all S3 steps and accuracy for simulating the substructures for 25 s with time step
increment of 2 ms

No. substructures 1 2 3 4

No. DOFs 1,623 867 756 723 360 540 723 360 270 270
Overall simulation time (s) 149.79 56.79 43.54 42.53
Error (%) – 3.37 4.24 6.77
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Fig. 14.7 Required time at each
step of the method
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14.6 Conclusion and Future Work

In this paper the Split-Stitch-Spread (S3) algorithm for parallel finite element analysis has been presented. The method
consists of three steps, in the first step, the structure is splitted into several parts and each part send to a CPU core to do
reduction, discretization and simulation due to external force. At the next step, the substructures stitch to each other through
elastic and massless interfacial substructures using interfacial forces. At the end, the motion of the interfacial substructures
is spread into all DOFs of the structure. The method is applied to earthquake response of a 3D building. Results show that
parallelization speed up the split step but slow down the stitch step with small effect on spread step. Since the assembled
matrices in the stitching step are very sparse and matrix-vector multiplication is quit fast in GPUs, as the future work,
implementation of the stitching part in a GPU will be investigating to see the potential speeds up. The results have been
compared with a reduction method, the mode displacement, with focus on time efficiency. Results indicate that in the
reduction method the most time consuming part is calculating the eigenvalues of the matrix and not in the simulation based
on large sparse matrices. It was found that the presented parallel algorithm can compete favorably with reduction methods.
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Chapter 15
Structural Coupling of Two-Nonlinear Structures

Cagri Tepe and Ender Cigeroglu

Abstract In mechanical design, modeling and analysis of a complex structure can be simplified with dividing the structure
into substructures; therefore, any change in the structure can be addressed easily which is referred as “structural coupling”.
Utilization of proper coupling techniques, it is possible to understand the behavior of the whole structure by considering the
behavior of its substructures. For linear structures, coupling is a common technique; however, in most of the engineering
structures, nonlinearities are also encountered; therefore, it is required to extend linear coupling methods to nonlinear
systems. Although, there exists studies on nonlinear coupling, existing methods are limited to coupling of structures where
one substructure is linear and the other is nonlinear or two linear substructures coupled with a nonlinear element. In this
paper, a structural coupling method is proposed to couple two-nonlinear substructures. Similar to linear coupling methods,
the proposed method considers the compatibility of internal forces at the connection degrees of freedom in addition to
displacements. Since, the substructures are nonlinear, the resulting system of nonlinear differential equations are converted
into a set of nonlinear algebraic equations by using Describing Function Method, which are solved by using Newton’s
method with arc-length continuation.

Keywords Structural coupling • Nonlinear structural coupling • Vibration of nonlinear structures

15.1 Introduction

In the design of mechanical systems, engineers should test and analyze each prototype created in order to provide a qualified
and optimized design which has a wide range of requirements. Over the last 40 years, engineering structures are analyzed
by the finite element method which is proven to be a reliable tool. However, in order finalize the design, whole structure has
to be analyzed several times; therefore, an alternative approach is required in order to decrease the number of analyses and
tests. Utilizing structural coupling, modeling and analysis of a complex structure can be simplified by dividing the structure
into substructures and applying the required changes only on one or some of the substructures, where each substructure can
be analyzed individually.

Substructure analysis of linear systems is a well-known subject dated back to 1960s by the works of Bishop and Johnson
[1] on Receptance method and Hurty [2] on Component Mode Synthesis which was a simplified version of the method
developed by Craig and Bampton [3]. Many different substructure and coupling methods for linear structures are developed
by Rubin [4], Przemieniecki [5], Urgueira [6], Ewins [7], Klosterman and Lemon [8] and Ren and Beards [9]. All of
these methods are developed for linear systems and the methodology is based on the compatibility of internal forces at
the connection degrees of freedom in addition to the compatibility of the displacements. However, there is a need to extend
linear coupling methods to non-linear systems; since many structures, which are considered as linear, are nonlinear in reality.

Analysis of nonlinear systems is much more complicated compared to linear systems [10] due to their response dependent
behavior. In this paper, Describing Function Method (DFM) is used for the solution of nonlinear systems which was
introduced by Krylov and Bogolyubov [11] in order to analyze nonlinear control problems based on an earlier work of
Van der Pol [12]. Later, Taylor [13] replaced each nonlinear element with a quasilinear descriptor to define this approach.
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Solution of multi degree of freedom nonlinear system with symmetrical nonlinearities is introduced by Budak and
Özgüven [14, 15], which utilizes a special algebra. Later, Tanr{kulu [16] and Tanr{kulu et al. [17] extended this formulation
for any type of nonlinearity by replacing this special algebra with describing functions.

Although, several studies on structural coupling of linear systems and modelling systems with nonlinearities are available
in literature, the numbers of studies that consider nonlinear structural coupling are limited. Existing studies on nonlinear
structural coupling are focused on coupling of structures where one substructure is linear and the other one is nonlinear
or coupling of two linear substructures with a nonlinear coupling element. Watanabe and Sato [10] suggested “Nonlinear
Building Block” approach, for coupling of linear substructures with nonlinear coupling elements. Cömert and Özgüven [18]
developed a method for coupling of linear substructures with nonlinear connecting elements by using DFM, in which FRFs
of the linear substructures are used. Ferreira and Ewins [19] proposed a new Nonlinear Receptance Coupling Approach
and Ferraira [20] extended the approach with Multi-Harmonic Nonlinear Receptance Coupling Approach. Both approaches
are capable of coupling a linear structure with a nonlinear structure with different types of joints. Chong and Imregün [21]
suggested an iterative algorithm for the coupling of nonlinear structures with linear ones.

In this paper, an approach is developed to dynamic reanalysis of nonlinear substructures. Different from the existing
methods in literature, proposed method is capable of coupling of two nonlinear substructures. Moreover, with the proposed
coupling method, in addition to linear coupling elements, nonlinear coupling elements can as well be used. The proposed
method considers the compatibility of internal forces at the connection degrees of freedom in addition to the displacements,
and uses both of these equations to couple nonlinear substructures. Since, the substructures are nonlinear, the resulting
system of nonlinear differential equations are converted into a set of nonlinear algebraic equations by using Describing
Function Method, which are solved by using Newton’s method with arc-length continuation.

15.2 Theory

15.2.1 Structural Coupling of Linear Substructures

Consider two substructures A and B, shown in Fig. 15.1, where internal DOFs are represented by subscripts, iA and iB
respectively and the connection DOFs are represented by subscripts cA and cB, respectively.

The corresponding equilibrium of each substructure can be written as

� ffiAg
ffcAg

�
D

�
ŒZiAiA � ŒZiAcA �

ŒZcAiA � ŒZcAcA �

� � fxiAg
fxcAg

�
; (15.1)

� ffiB g
ffcB g

�
D

�
ŒZiB iB � ŒZiBcB �

ŒZcBiB � ŒZcBcB �

� � fxiB g
fxcB g

�
; (15.2)

where fxiAg and fxiB g are generalized displacement vectors for internal DOFs, fxcAg and fxcB g are generalized displacement
vectors for coupled DOFs of substructures A and B, respectively. ffiAg and ffiB g are internal forcing vectors for internal
DOFs, ffcAg and ffcB g are coupled forcing vectors for internal DOFs of substructures A and B, respectively. Lastly, [ZA] and
[ZB] are the impedance matrices of substructures A and B. Equilibrium of the forces between the connection DOFs can be
written as

ffcg D ffcAg C ffcB g ; (15.3)

Fig. 15.1 Schematic view of
structural coupling
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where ffcg is the external force acting on the connection DOFs. Considering the compatibility of displacements of the
substructures the following relation can be written

�
Dcoupling

�
.fxcAg � fxcB g/ D ffcAg ; (15.4)

where [Dcoupling] is dynamic stiffness matrix of coupling elements. Substituting compatibility and equilibrium equations, i.e.
Eqs. (15.3) and (15.4), into Eqs. (15.1) and (15.2), the overall impedance of the assembled system can be written as

ŒZ� D
2
4
ŒZiAiA � Œ0� ŒZiAcA �

Œ0� ŒZiB iB � ŒZiBcB �

ŒZcAiA � ŒZcBiB � ŒZcAcA �C ŒZcBcB �

3
5 : (15.5)

15.2.2 Structural Coupling of Two Nonlinear Substructures

The equation of motion of the nonlinear substructures A and B excited with a harmonic external forcing ff (t)g, can be
written as

ŒMA� fẍA.t/g C ŒCA� fẋA.t/g C i ŒHA� fxA.t/g C ŒKA� fxA.t/g C ffNA.t/g D ffA.t/g ;
ŒMB� fẍB.t/g C ŒCB� fẋB.t/g C i ŒHB� fxB.t/g C ŒKB� fxA.t/g C ffNB .t/g D ffB.t/g (15.6)

where [M], [C], [H] and [K] are the mass, viscous damping, structural damping and stiffness matrices of the linear system
and ffN(t)g is the nonlinear forcing vector. Generalized displacement vectors fxA(t)g and fxB(t)g can be written as

fxA.t/g D
� fXiAg

fXcAg
�
; fxB.t/g D

� fXiB g
fXcB g

�
; (15.7)

and external forcing vectors ffA(t)g and ffB(t)g can be written as

ffA.t/g D
� fFiAg

fFcAg C ffcAg
�
; ffB.t/g D

� fFiB g
fFcB g C ffcB g

�
; (15.8)

where fFiAg and fFiB g are external forcing vectors acting on internal DOFs and fFcAg and fFcB g are external force vectors
acting on the coupled DOFs. If the external forcing, fF(t)g is periodic, response of the system, fx(t)g, can as well be assumed
periodic, which can be expressed as follows

ff .t/g D fF g0 C Im

" 1X
mD1

fF gm � eim 
#
; (15.9)

fx.t/g D fXg0 C Im

" 1X
mD1

fXgm � eim 
#
: (15.10)

Utilizing Describing Function Method (DFM) [14, 22] and substituting Eqs. (15.7) and (15.8) into Eq. (15.6) as the following
result is obtained

	�!2 ŒM�C i � ! ŒC �C i ŒH �C ŒK�C Œ��

 � fXiAg

fXcAg
�

D
� fFiAg

fFcAg C ffcAg
�
;

	�!2 ŒM�C i � ! ŒC �C i ŒH �C ŒK�C Œ��

 � fXiB g

fXcB g
�

D
� fFiB g

fFcB g C ffcB g
� (15.11)
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where, [�] is the “nonlinearity matrix”, which is function of the displacement vector. The elements of nonlinearity matrix
are defined as

Œ��kj D
nX

jD1
�kj k D j;

Œ��kj D ��kj k ¤ j

(15.12)

where �kj is describing function of the nonlinearity between the kth and the jth degrees of freedom, which is a quantity
complex in general. For k D j nonlinearity is between the kth degrees of freedom and the ground. Details of DFM can be
found in [14, 22].

Internal forcing vector ffcAg can be written as

ffcAg D
h
DNL

coupling

i
.fXcAg � fXcB g/ D 	�!2 ŒM�C i � ! ŒC �C i ŒH �C ŒK�C Œ��



.fXcAg � fXcB g/ ; (15.13)

where, [DNL
coupling] is the nonlinear dynamic stiffness matrix of the connection elements. Substituting Eqs. (15.3) and (15.13),

into Eq. (15.11), equation of motion can be obtained as

	�!2 ŒM�C i � ! ŒC �C i ŒH �C ŒK�C Œ��

 � fXiAg

fXcAg
�

D
( fFiAg

fFcAg C
h
DNL

coupling

i
.fXcAg � fXcB g/

)
:

	�!2 ŒM�C i � ! ŒC �C i ŒH �C ŒK�C Œ��

 � fXiB g

fXcB g
�

D
( fFiB g

fFcB g C ffcg �
h
DNL

coupling

i
.fXcAg � fXcB g/

) (15.14)

Equation (15.14) can be solved by a nonlinear equation solver and in this paper; Newton’s method with arc-length
continuation [23] is used. Algorithm of the proposed nonlinear coupling method is given in Fig. 15.2.

Fig. 15.2 Algorithm of the
proposed method

Solve Substructure A

Solve Substructure B

Initial
Guess

Bi
x

Bc
x

Ai
x

Ac
x

( ) ( )1
Until 10−8

A A

i i

c cx x
+
− <

Ac
x



15 Structural Coupling of Two-Nonlinear Structures 167

Fig. 15.3 (a) Schematic drawing, (b) corresponding hysteresis curve for dry friction nonlinearity [22]

15.2.3 Describing Functions of the Nonlinear Elements Used

In this paper, cubic stiffness and hysteretic dry friction are used as nonlinear elements in the substructures. The nonlinear
forcing in a cubic stiffness element can be given as

FN D kc � x3; (15.15)

where kc is the coefficient of the cubic stiffness nonlinearity. Describing function of the cubic stiffness nonlinearity is given as

� D 3

4
� kc �X2; (15.16)

where X is the amplitude of the relative displacement between the two ends of the cubic stiffness element.
There exists several friction models in the literature and in this paper, a one-dimensional Coulomb friction model with

constant normal load is used. One-dimensional dry friction element and the corresponding hysteresis curve for a single
harmonic input are given in Fig. 15.3.

Describing function of the hysteresis curve given in Fig. 15.3a can be written as [22, 24]

� D

8
<̂
:̂

"
1
�

�
k � 2���N

X

� r
1 �

�
k�X�2���N

k�X
�2 C k� 1

�
� k

2

#
� i

h
4���N.��N�k�X/

� �k�X2
i

for jk �X j > �N
k for jk �X j 	 �N

; (15.17)

where, k is the contact stiffness between rubbing surfaces, N is the constant normal force, � is the dry friction coefficient
and  1

 1 D � � a sin

�
k �X � 2 � � �N

k �X
�
: (15.18)

15.3 Case Studies

In this section, the proposed coupling method is demonstrated on different model. In the first one, substructures are coupled
from a single DOF whereas in the second one, they are coupled from two DOFs.
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Fig. 15.4 Schematic view of 8-DOF coupled system

Table 15.1 Parameters of
substructures A and B

Substructure A Substructure B

m1 [kg] m2 [kg] m3 [kg] m4 [kg] m5 [kg] m6 [kg] m7 [kg] m8 [kg]

1 0.75 2 1 0.75 1 1 2
k1 [N/m] k2 [N/m] k3 [N/m] k4 [N/m] k5 [N/m] k6 [N/m] k7 [N/m] k8 [N/m]
5,000 2,000 4,000 6,000 3,000 2,000 5,000 3,000
h1 [N/m] h2 [N/m] h3 [N/m] h4 [N/m] h5 [N/m] h6 [N/m] h7 [N/m] h8 [N/m]
50 20 40 60 30 20 50 30

Table 15.2 Parameters of
coupling elements

kc [N/m] hc [N/m]

4,000 40

Table 15.3 Nonlinear elements
of substructures A and B in case
study 1

Nonlinear connection DOFs Nonlinearity type [N/m3] Nonlinearity coefficients

1-Ground Cubic stiffness �1 � 105

1-2 Cubic stiffness �2 � 105

2-3 Cubic stiffness �10 � 105

3-4 Cubic stiffness �1 � 105

5-6 Cubic stiffness �1 � 105

6-7 Cubic stiffness �3 � 105

7-8 Cubic stiffness �1 � 105

8-Ground Cubic stiffness �5 � 105

15.3.1 Example 1: Coupling from a Single DOF

In the first example, application of the proposed approach is presented on a simple 8-DOF system shown in Fig. 15.4.
Parameters of substructures A and B are given Table 15.1 and coupling elements at Table 15.2. The nonlinear elements used
in the first case study, case study 1, are defined in Table 15.3.

Normalized response of the 1st and the 8th DOFs obtained from the proposed nonlinear coupling method and by solving
the entire system directly are given in Figs. 15.5 and 15.6. The response of the system is obtained for three different excitation
amplitudes, 8 N, 12 N and 16 N in order to observe the effect of cubic stiffness nonlinearity.

It can be seen from the Figs. 15.5 and 15.6 that, natural frequency is shifted due to cubic stiffness nonlinearity.
Furthermore, more importantly the proposed method is in exact agreement with the ones obtained from entire system
solution, even in unstable regions where the path turns back or intersects itself.

In the second case study, case study 2. 8-DOF system is obtained from the coupling of a 6-DOF, 2-DOF systems as shown
in Fig. 15.7. Parameters of substructures A and B, and coupling elements are given in Tables 15.4 and 15.5, respectively. The
nonlinear elements present in the system are defined in Table 15.6.

Corresponding response plots are plotted in Figs. 15.8 and 15.9 for the 1st DOF. Normalized responses of the coupled
structure obtained from the proposed nonlinear coupling method and by solving the entire system directly are compared in
Figs. 15.8 and 15.9. In Fig. 15.8, the response of the coupled system is obtained for 12 N, 24 N and 36 N excitation force
amplitudes, while the slip load of dry friction nonlinearities are kept constant as �N D 100N. In Fig. 15.9, responses of the
coupled structure are given for an external forcing of F D 12N and for different slip loads. Perfect agreement between the
results obtained from the proposed nonlinear coupling method and the entire system solution is observed which verifies the
developed coupling method.
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Fig. 15.5 Normalized response of the 1st DOF in case study 1
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Fig. 15.6 Normalized response of the 8th DOF in case study 1
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Fig. 15.7 Schematic view of 8-DOF coupled system
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Table 15.4 Parameters of
substructures A and B

Substructure A Substructure B

m1 [kg] m2 [kg] m3 [kg] m4 [kg] m5 [kg] m6 [kg] m7 [kg] m8 [kg]

0.75 2 1 1 2 0.75 2 2
k1 [N/m] k2 [N/m] k3 [N/m] k4 [N/m] k5 [N/m] k6 [N/m] k7 [N/m] k8 [N/m]
3,000 5,000 4,000 6,000 6,000 5,000 3,000 5,000
h1 [N/m] h2 [N/m] h3 [N/m] h4 [N/m] h5 [N/m] h6 [N/m] h7 [N/m] h8 [N/m]
60 100 80 120 120 100 60 100

Table 15.5 Parameters of
coupling elements

kc [N/m] hc [N/m]

2,000 40

Table 15.6 Nonlinear elements
of substructures A and B in case
study 2

Nonlinear connection coordinates Nonlinearity type Nonlinearity coefficients

1-Ground Cubic stiffness [N/m3] 1 � 105

1-2 Cubic stiffness [N/m3] 2 � 105

2-3 Cubic stiffness [N/m3] 1 � 105

3-4 Dry friction [N] �N
4-5 Cubic stiffness [N/m3] 1 � 105

5-6 Cubic stiffness [N/m3] 3 � 105

7-8 Cubic stiffness [N/m3] 1 � 105

8-Ground Dry friction [N] �N

Fig. 15.8 Normalized response of the 1th DOF in case study 2

15.3.2 Example 2: Coupling from Multiple DOFs

In this section, a 6-DOF system is used as a case study as shown in Fig. 15.10. Parameters of substructures A and B, and
coupling elements are given in Tables 15.7 and 15.8. The nonlinear elements used in the third case study, case study 3, are
defined in Table 15.9.

Normalized response of the 1st DOF obtained from the proposed nonlinear coupling method and by solving the entire
system directly is given in Fig. 15.11. The response of the system is obtained for three different excitation amplitudes, 6 N,
9 N and 12 N. It is observed that the results obtained from the proposed nonlinear coupling method and the entire system
solution are in perfect agreement, for this case as well.
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Fig. 15.10 Schematic view of
6-DOF coupled system
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Table 15.7 Parameters of
substructures A and B

Substructure A Substructure B

m1 [kg] m2 [kg] m3 [kg] m4 [kg] m5 [kg] m6 [kg]
1 0,75 2 1 0,75 1
k1 [N/m] k2 [N/m] k3 [N/m] k4 [N/m] k5 [N/m] k6 [N/m]
5,000 4,000 3,000 4,000 3,000 5,000
h1 [N/m] h2 [N/m] h3 [N/m] h4 [N/m] h5 [N/m] h6 [N/m]
25 20 15 20 15 25

Table 15.8 Parameters of
coupling elements

kc1 [N/m] hc1 [N/m] kc2 [N/m] hc2 [N/m]

5,000 25 3,000 15
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Table 15.9 Nonlinear elements
of substructures A and B in case
study 3

Nonlinear connection coordinates Nonlinearity type [N/m3] Nonlinearity coefficients

1-Ground Cubic stiffness 1 � 105

1-2 Cubic stiffness 2 � 105

2-3 Cubic stiffness 1 � 105

3-4 Cubic stiffness 2 � 105

5-6 Cubic stiffness 1 � 105

6-Ground Cubic stiffness 2 � 105
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Fig. 15.11 Normalized response of the 1th DOF in case study 3

15.4 Discussion and Conclusion

In this paper, a new structural coupling method is introduced which is capable of coupling of two nonlinear substructures,
where the connection elements can be nonlinear as well. Compatibility and equilibrium equations, which are derived from
existing linear coupling methodology, are added to nonlinear equations of motions in order to model coupled system.
The resulting nonlinear equations of motion of the coupled system are solved by using Newton’s method with arc-length
continuation. Cubic stiffness and hysteretic dry friction are used as nonlinear elements in the substructures. Applications
of the proposed nonlinear coupling approach are demonstrated by numerical case studies. Two examples are considered
in the case studies. In the first one two substructures are coupled from a single DOF; whereas, in the second example, two
substructures are coupled from two DOFs. Normalized responses of the selected DOFs obtained from the proposed nonlinear
coupling method and by solving the entire system directly are compared in order to verify the proposed method for different
nonlinear systems. The results obtained from the proposed method and the ones obtained by directly solving the entire system
agree perfectly with each other, which verifies the developed nonlinear coupling method.
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