
When a Formal Model Rhymes
with a Graphical Notation

Akram Idani1,2(B) and Nicolas Stouls3

1 LIG, University of Grenoble Alpes, 38000 Grenoble, France
2 LIG, CNRS, 38000 Grenoble, France

Akram.Idani@imag.fr
3 CITI-INRIA, Université de Lyon, INSA-Lyon, 69621 Lyon, Villeurbanne, France

Nicolas.Stouls@insa-lyon.fr

Abstract. Formal methods are based on mathematical notations which
allow to rigorously reason about a model and ensure its correctness
by proofs and/or model-checking. Unfortunately, these notations are
complex and often difficult to understand from a human point of view
especially for engineers who are not familiar with formal methods. Sev-
eral research works have proposed tools to support formal models using
graphical views. On the one hand, such views are useful to make formal
documents accessible to humans, and on the other hand they ease the
verification of some behavioral properties. However, links between graph-
ical and formal models proposed by these approaches are often difficult
to put into practice and depend on the targeted formal language. In this
paper, we discuss these links from a practical approach and show how
a behavioral description can be computed from a formal model based
on two complementary paradigms: under-approximation (or animation-
based) and over-approximation (or proof-based). We applied these para-
digms in order to produce behavioural state/chart views from B models
and we carried out an empirical study to assess the quality and relevance
of these graphical representations for humans.

Keywords: B method · Symbolic LTS · Animation · Abstraction

1 Introduction

Several research works are devoted to bridge the gap between formal and semi-
formal methods considering their complementary aspects and cross contribu-
tions. Indeed, on the one hand, semi-formal methods (thanks to their support for
graphical notations such as UML) are synthetic, structuring and more intuitive
for humans, and on the other hand, formal methods (thanks to their mathemat-
ical notations) are precise and support automated reasonings. These works were
widely interested by translations from a semi-formal UML model to a formal
specification: from UML to B [15], from UML to Z [10], from UML to Alloy [3],
etc. Their main motivations are to provide precise semantics to UML notations
in order to remedy the lack of tools for formally analyzing UML models.
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 54–68, 2015.
DOI: 10.1007/978-3-319-15201-1 4



When a Formal Model Rhymes with a Graphical Notation 55

Despite of these numerous tools dedicated to such translation, several com-
panies have an established software development process entirely based on a
formal method. For example, Siemens Transport [7], Clearsy [13], Gemplus [5]
have used the B method as its core development method without any accom-
panying UML model. Indeed, since the targeted formal language is not object
oriented, translations from UML often lead to a complex specification which
is, on the one hand, far from what a developer could write directly, and on
the other hand incomplete for a safety critical system. This motivates other
kind of works to define a formal link between a formal model and its behav-
ioral representation. For example, works of C. Snook and M. Butler [15] ant its
support tool iUML-B [14], provide a graphical front end, used conjointly with
a formal B specification in order to keep the distance between both formal and
graphical models as thin as possible. We can also cite the ProB tool [11] which
is an animator and a model-checker able to draw an accessibility graph after an
exhaustive exploration of the specification state space. However, it considers con-
crete states rather than symbolic ones and the resulting graphical representation
is complex because of the combinatorial explosion problem. In order to remedy
this shortcoming, [12] provides some heuristics to reduce the accessibility graph
size by using a symmetry analysis technique. Furthermore, it was not dedicated
to make the focus on the understanding of some particular properties, since the
abstract state space could not be provided by an expert user.

In this paper, the starting point is a B or Event-B formal model [1,2]. Our
aim is to provide tools able to extract graphical views representing some proper-
ties of the formal model and hence increase its understanding by humans who are
not trained with such a formal notation. We discuss and compare two paradigms:
under-approximation (or animation-based) and over-approximation
(or proof-based). We applied these paradigms in order to produce behavioural
views from B models and then we carried out an empirical study to assess the
quality and relevance of these graphical representations for humans.

In Sect. 2 we give a simple example in order to illustrate contributions of this
paper. Section 3 discusses the under-approximation approach and presents an
algorithm which improves automation of this technique. Section 4 describes the
over approximation technique and presents the GénéSyst-tool. Results of our
empirical study are discussed in Sect. 5. Finally, Sect. 6 summarizes our compar-
ative study of both techniques and draws the conclusions and perspectives of
this work.

2 Case-Study

Figure 1 gives a simple scheduler specification taken from [6] and written in B.
It models exclusive access of processes to a unique resource. Variables wait-
ing, ready and active model states of processes managed by the system. The
set of all processes is an abstract set (set PID). An idle process which doesn’t
request access to the unique resource is introduced by the system using the wait-
ing variable. Variable ready is the set of processes that have requested access



56 A. Idani and N. Stouls

to the resource. Finally, variable active contains the active process to which the
resource is assigned. Evolutions of these variables are performed by three events.
Event NEW(pp) creates a new waiting process. Event READY(pp) changes
process pp from the waiting state to the ready state. If there is no active process
it directly activates process pp. Finally, event SWAP puts the active process in
the waiting state and activates non-deterministically some ready process.

Fig. 1. Scheduler Specification from [6]

A palette of graphical representations that can be issued from the scheduler
example can be found in [8]. These representations provide a graphical docu-
mentation of the behaviour of B specifications and allow to identify different
viewpoints potentially useful for humans. IFor example, a B analyst may be
interested by a graphical representation of the SCHEDULER that intuitively
show a process life cycle. Hence, the abstract graphical view may deal with



When a Formal Model Rhymes with a Graphical Notation 57

three states corresponding to the fact that a process pi (such that pi ∈ PID) is
in state waiting, ready or active. In other words, states of the abstract view are:
(1) pi ∈ waiting, (2) pi ∈ ready, and (3) pi ∈ active. Figure 2, built manually,
gives an abstract view of the SCHEDULER system based on these three states.

[active = ∅]READY(pi)

pi ∈ waiting

NEW(pi)

pi ∈ active

pi ∈ ready

SWAP

SWAP

SWAP[active = ∅]READY(pi)

Fig. 2. Example of an intuitive abstract view of the SCHEDULER system

From a documentation point of view the interest of this representation is to
emphasize graphically some intrinsic properties of the SCHEDULER system, for
example:

– The process equity property, indicating that every process may be activated, is
not verified by the specification. Indeed, Fig. 2 shows that in state pi ∈ ready,
SWAP has a non-deterministic behaviour justified by the existence of two
transitions with the same label. This means that event SWAP can block a
process pi indefinitely in state pi ∈ ready.

– The non-blocking property, indicating that after being active a process does
not stop the system is verified by the specification. Indeed, in Fig. 2 the tran-
sition SWAP is triggered on from the state (pi ∈ active) and always leads to
state (pi ∈ waiting).

This paper shows how these graphical representations can be extracted auto-
matically using two kinds of techniques: under-approximation (or animation-
based) and over-approximation (or proof-based).

3 Under-Approximation Approach

Under-approximation is based on exploration of a useful subset of the state space.
We apply this technique in order to draw a graphical representation which is
useful from a documentation point of view but which may miss some behaviours.

3.1 Construction Method and Usability Constraints

One way to build an under-approximating graphical abstraction is to exhaus-
tively explore the concrete state space of the B specification and then to apply
an abstraction algorithm to group concrete states. For a bounded state space,



58 A. Idani and N. Stouls

animators such as ProB [11] can help to explore all states. In other cases, such as
for the SCHEDULER example, we must start by bounding unbounded elements
(i.e. specifying PID with a bounded set). If we introduce only two processes
p1 and p2 in the system, we obtain ten accessible states (Fig. 3). If the number
of processes increases, the accessibility graph becomes too large and difficult
to understand. For example, having PID = {p1, p2, p3} we obtained thirty five
accessible states with numerous transitions.

3.2 Graph Abstraction Algorithm

We note G = (N,T ) an accessibility graph issued from a B system, where N
is the set of concrete states of graph G, and T is the set of transitions between
states of N . A concrete state Sv (Sv ∈ N) gives particular values assigned to
state variables v (v = {v1, . . . , vn}) of the B system. Consequently, each state s

waiting = {p1, p2}

active = ∅
ready = ∅

waiting = {p1}

active = ∅
ready = ∅
waiting = ∅

active = ∅
ready = ∅

waiting = {p2}

active = {p1}
ready = ∅

waiting = {p2}

active = {p2}
ready = ∅

waiting = {p1}

active = {p2}
ready = ∅
waiting = ∅

active = {p1}
ready = ∅
waiting = ∅

active = {p2}
ready = {p1}
waiting = ∅

active = {p1}
ready = {p2}
waiting = ∅

INITIALISATION

NEW (p1) NEW (p2)

NEW (p1)NEW (p2)

NEW (p2) NEW (p1)

READY (p1)

SWAP SWAP

READY (p2)

READY (p1)

SWAP SWAP

READY (p2)

READY (p2) READY (p1)
SWAP SWAP

active = ∅
ready = ∅

Fig. 3. Accessibility Graph of the SCHEDULER for PID = {p1, p2}



When a Formal Model Rhymes with a Graphical Notation 59

can be formally expressed by a predicate P (Sv) as the conjunction of equality
predicates that associate to each state variable vi its value in Sv:

P (Sv) �
n∧

i=1

(vi = valj)

Where valj is a value of vi allowed by the invariant. A concrete state Sv satisfies
an abstract state Sabstract (noticed Sv � Sabstract), defined by a predicate R (e.g.
p1 ∈ ready), if and only if we can prove that P (Sv) ⇒ R.

Hence, according to an accessibility graph and a set of abstract states, the
following algorithm can produce a symbolic representation by grouping concrete
states satisfying a same abstract state predicate. The inputs are: (i) an acces-
sibility graph G = (N,T ) and (ii) a set of abstract state predicates Nabstract

(Fig. 4).

Fig. 4. Under approximation algorithm.

The algorithm checks each concrete state against each abstract state pred-
icate, using the AtelierB prover. If the proof succeeds, then an abstract state
has been found for the concrete state. The next step in the construction of the
abstract state-transition diagram is to identify the transitions. Since each node
of the concrete graph corresponds to a node of the abstract diagram, each tran-
sition of the concrete graph can be translated into a transition in the abstract
diagram. In order to decrease the number of transitions, the tool groups all tran-
sitions which correspond to the same pair of nodes, and to the same B event.



60 A. Idani and N. Stouls

Our algorithm links concrete states to abstract ones, and hence the nodes of
the abstract state-transition diagram are: (a) the abstract state predicates given
by the user, and (b) the concrete nodes which don’t appear in the domain of the
abstraction function. This guarantees that each concrete node will correspond
to a node of the abstract diagram. Furthermore, in order to obtain a relevent
abstract view, two conditions should be verified:

1. abstract state predicates are disjoint, i.e. each concrete state corresponds to
at most one abstract state.

2. abstract state predicates cover all the state space allowed by the invariant, i.e.
the nodes of the abstract diagram only correspond to the abstract predicates.

The abstract view of Fig. 2 respects only the first condition because it misses
all concrete states reached from the initialization. These states can be grouped
in an abstract state pi �∈ (waiting ∪ active ∪ ready) which is reached when
the system is initialized. The left hand side of Fig. 6 shows the result of this
technique when applied to accessibility graph of Fig. 3 in which set PID contains
two processes p1 and p2.

4 Over-Approximation Approach

The under-approximation technique is useful when the accessibility graph
explores a relevant finite subset of state space from which we can exhibit a useful
abstract view for a documentation purpose. If some interesting behaviours are
not included in the concrete graph, they will not appear in the abstract diagram.
An over-approximation technique is then more interesting because it allows to
produce a symbolic transition system that represent a potentially infinite set of
values. Such tools reason on event enabledness and state reachability properties.

4.1 Construction Method and Usability Constraints

Our objective is to directly compute an abstract view from the B model prop-
erties, rather than to reason on a concrete graph. For instance, if an over-
approximation view shows that a state is not reached by any transition, then
one can conclude that associated concrete valuations could not be reachable by
any execution of the B model.

Our approach tries first to prove, for each event e and each couple of abstract
states S1 and S2, that no execution of event e from state S1 can reach state S2.
This goal is a proof obligation (PO) assuming that if state predicate P (S1) is
true then event e establishes the negation of state predicate P (S2):

P (S1) ⇒ [e]¬P (S2)

This first step allows to identify by proofs, all uncrossable transitions between
states S1 and S2. In fact, if the above PO is solved, then we assert that event e
never reaches S2 from S1. Variations of this PO allow to compute whether S2 is
always or possibly reached by e from S1:



When a Formal Model Rhymes with a Graphical Notation 61

– S2 always reached from S1: P (S1) ⇒ [e]P (S2)
– S2 possibly reached from S1: P (S1) ⇒ ¬[e]¬P (S2).

For example, the following proofs (but not only) should succeed for event
SWAP1:

– it always deactivate an active process: (pi ∈ active) ⇒ [SWAP](pi ∈ waiting)
– it never activate a waiting process: (pi ∈ waiting) ⇒ [SWAP](pi �∈ active)
– it may activate a ready process: (pi ∈ ready) ⇒ ¬[SWAP](pi �∈ active)

As for the under-approximation approach, two conditions must be verified:
abstract state predicates are disjoint and cover all the state space allowed by the
invariant. The first condition avoids states overlapping and the second one allows
to have a global view on the complete system. An important proof obligation
is then to establish the completeness of the state predicates according to the
invariant:

I =⇒
n∨

i=1

P (S − v)

4.2 The GénéSyst Tool

The GénéSyst tool2 [4] implements the ideas of this approach. It computes a
Symbolic Labelled Transition System (SLTS) describing all possible behaviours
of a given event-B model, according to a given set of disjoint state predicates.
Generated proof obligations are discharged by means of the AtelierB automatic
prover.

The overall GénéSyst algorithm is presented in Fig. 5, where we distinguish
transitions from the initialization, and transitions associated to other events. In
this algorithm, conditions are written under a negative form (i.e. if ¬A can not
be established), since a formula that has not been proved is not necessarily true.
In this algorithm, no any information is presented to consider simplification of
the conditions. The reader can refer to [4] for further semantical details.

In order to restrict the undecidability problem of proofs, heuristics are used
to compute the over-approximation graph (the SLTS). One of them is to split
proofs into two parts: enabledness and reachability . In this approach, for each
pair of abstract states S1 and S2, and each event e, a transition t of the SLTS

is defined by (S1
(D,A,e)−→ S2), where D is the enabledness condition (condition

under which the event e can be triggered from S1) and A is the reachability
condition (condition under which the event e can reach the state S2). We define
enabledness and reachability as follows:

– Enabledness condition D : P (S1) ⇒ (D ⇔ guard(e))
– Reachability condition A : P (S1) ∧ D ⇒ (A ⇔ ¬[action(e)]¬P (S2)).

1 These properties are not all properties of event SWAP.
2 GénéSyst : http://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=Logiciels.

http://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=Logiciels


62 A. Idani and N. Stouls

Fig. 5. GénéSyst main algorithm

In the context of the starting state, the enabledness condition D is equivalent
to the B event guard (denoted guard(e)). Technically, the tool asks
AtelierB to prove if D can be reduced to true, by trying to proof the asser-
tion I ∧ P (S1) ⇒ guard(e), where I is the invariant. If this proof succeeds, it
concludes that e can always be enabled from S1; otherwise it asks AtelierB to
prove if D can be reduced to false, by trying to proof I ∧ P (S1) ⇒ ¬guard(e). If
this second proof succeeds then the tool concludes that e can’t be enabled from
S1. The same principle is applied for the reachability property. Condition A is
equivalent to ¬[action(e)]¬P (S2) which means that if A is reduced to true, then
e may reach S2. But if it is reduced to false then e cannot reach S2. By the way,

a transition (S1
(D,A,e)−→ S2) is said valid if and only if ∃x · (P (S1) ∧ D ∧ A).

Right hand side of Fig. 6 is produced by this technique without any bounding
of set PID. It describes all possible behaviours around states focused on a process
life-cycle. The two crossing conditions between brackets represent respectively
conditions D and A, for enabledness and reachability. Empty brackets mean that
the condition is proved true. A cross X on a condition means that this condition
has not been proved neither true, nor false.



When a Formal Model Rhymes with a Graphical Notation 63

Fig. 6. Results of Under and Over-Approximation Techniques

Compared to the under-approximation diagram produced for two processes,
some transitions exhibited by GénéSyst don’t correspond to any transition of the
concrete representation (New, ready and swap transitions, reflexive on state
Pi ∈ Ready). Indeed, limited to two processes for this example the under-
approximation technique didn’t explore a sufficient number of states.

5 Human Oriented Empirical Study

Techniques discussed in the previous sections allow to produce behavioural views
from a formal B specification depending on the abstraction chosen by the ana-
lyst. We have conducted experimentally a qualitative study with students from
a master’s degree specialized on software engineering, and who have finished
a detailed course about the B method. We formed two groups of 17 students
to which we provided two different specifications: the scheduler example dis-
cussed in this paper, and a B specification modelling access control mechanisms
to buildings. We applied our tools to these specifications and produced various



64 A. Idani and N. Stouls

Fig. 7. Diagrams reduce significantly error rate for some questions

diagrams in order to graphically document them. Every group had two lists of
questions about two different specifications where only one was supported by
diagrams. Our intension was to evaluate the error rate variations of answers to
quiet simple questions about these specifications when diagrams are provided.
This study allowed to observe an error rate decrease from 26.14% to 15.60%
when specifications are documented graphically. A variation about 11 % is inter-
esting, because it hightlights the contribution of diagrams to the understanding
of B specifications, but it may not seem very promising. We believe that the
inverse would be surprising because specifications provided to students are not
complex and should be accessible for them. Indeed, a global error rate near
26 % may be acceptable for persons who are not skilled with formal techniques,
but 15 % is better. More specifically, we observed that diagrams reduce signifi-
cantly the number of wrong answers for several questions. Figure 7 gives wrong
answers proportions with and without diagrams and shows that the error rate
can be divided by three and sometimes it is reduced from around 50 % to zero.

Questions G5-Q23 will be detailed further. 30 % of students to whom we
didn’t provide diagrams, misunderstood the equity property and considered
that a process can’t be bloqued indefinitely in the ready state (question Q11

card(active) = 0 card(active) = 1 card(active) > 1

NEW

SWAPSWAPNEW

INITIALISATION READY

READY

Fig. 8. State/Transition diagram focused on active processes



When a Formal Model Rhymes with a Graphical Notation 65

Fig. 9. Did the diagrams help you to understand specifications?

Fig. 10. Self-rated familiarity with B and UML for unfavourable students

in Fig. 7). However, when the diagram of Fig. 2 is provided, only 10 % gave the
wrong answer. We believe that such a property is somehow difficult to perceive
from a human point of view. Indeed, in order to be verifyied, the equity prop-
erty needs more automated tool analysis or other formal languages, such as LTL,
because it is a kind of behavioural properties not explicit in the B model. Nev-
ertheless, invariant properties can be illustrated graphically using state tran-
sition diagrams. For example, Fig. 8, produced by our tools, shows that state
card(active) > 1 is not reached by any transition and hence it is conformant to
invariant card(active) ≤ 1.

Without this diagram, about 40% of students said that there may be several
active processes at the same time (question Q5 in Fig. 7). Although invariant
card(active) ≤ 1 is clearly mentioned in the scheduler specification, students
were not able to attest that the scheduler operations preserve such a trivial
property. This result emphasizes the interest to document graphically an invari-
ant property for a better human understanding. Indeed, we obtained 100% of
good answers when Fig. 8 is provided.

An overall appreciation of the graphical views is given in Fig. 9 and shows
that two out of three students think that diagrams helped them to understand
specifications and the remaining one third expresses an unfavourable opinion.



66 A. Idani and N. Stouls

Fig. 11. Self-rated familiarity with B and UML for favourable students

In these two proportions, 13.33% of students say that diagrams didn’t help
them at all and 13.33% of them have the opposite opinion. In order to refine
these results we asked students to evaluate their knowledge of B and UML nota-
tions (Figs. 10 and 11). A great part of students who disagree with the interest
of diagrams seem to be uncomfortable with UML notations and has a better
familiarity with the formal B notation. Basing on this self-rated familiarity with
B and UML, one may conclude that although graphical views seem to be a
way for making a formal specification more accessible, they can have the inverse
effect because they also require some knowledge. This observation is confirmed
by the proportion of students who appreciated diagrams and who has obviously
a better mastering of graphical UML notations.

6 Conclusion

It is commonly known that formal specifications are complex because of nota-
tions that need a great mathematical background. In this paper, we focused our
interest on a B specification which is based on a verbose notation, close to a
programming language, and which should be more affordable than other formal
notations. Our empirical study showed that the language itself is not the main
reason to be less at ease with a formal method. Obviously, the difficulty for
humans is to have an overall view on the formal model.

This paper has presented two complementary approaches providing a behav-
ioural abstract view from a formal specification, in order to ease its
understanding. Figure 6 shows an example of results issued from under and
over-approximation techniques. We can observe from these diagrams that the
GénéSyst tool associates guards to events in order to describe their enabledness
and reachability properties. However, reflexive transitions SWAP, READY and
NEW in state pi ∈ ready are not possible when the scheduler system deals with
only two processes. For this particular set of processes the graph abstraction tool
produced a more precise diagram. GénéSyst being based on proof techniques,
it suffers the usual limitations of automatic provers: some theorems cannot be
proved automatically and require user interaction. Furthermore, if the under-
approximation approach can be used to verify reachability properties, then the



When a Formal Model Rhymes with a Graphical Notation 67

over-approximation approach is mainly interesting in case of safety properties.
Both techniques have some restrictions such as a limited state space for the first
one and a too large abstraction in case of leak of proof for the second one.

We also measured the computational time of each approach and we noticed
that the graph abstraction tool produced the state/transition diagram of a
process life cycle in 7 s for PID = {p1, p2} and 13 s for PID = {p1, p2, p3};
while the GénéSyst tool produced this diagram in 80 s for an unbounded state
space. This confirms that under-approximation tools are interesting when the
state space can be reduced to a small finite space. Furthermore, if some interest-
ing behaviours are not included in the concrete graph, they will not appear in
the abstract diagram. Given sets, such as PID, can be turned into enumerated
sets but numerical data structures such as NAT are less easy to address. Over-
approximation tools are much more interesting for such complex data structures
because they may be used to provide more formal evidence on the diagram
transitions.

Over-approximation, can be dedicated to verify safety properties as proposed
in [4] and [16]. It has the advantage to preserve infinite concrete state space
without any constraint, and hence safety properties could be established on the
symbolic transition system. The resulting LTS could also be used like a test
oracle which brings some interesting perspectives [9].

References

1. Abrial, J.-R.: Extending B without changing it (for developing distributed sys-
tems). In: Habrias, H. (ed.) First Conference on the B method, France, pp. 169–190
(1996)

2. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
3. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model

transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

4. Bert, D., Potet, M.-L., Stouls, N.: GeneSyst: a tool to reason about behavioral
aspects of B event specifications. Application to security properties. In: Treharne,
H., King, S., C. Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
299–318. Springer, Heidelberg (2005)

5. Casset, L.: Development of an embedded verifier for java card byte code using
formal methods. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol.
2391, pp. 290–309. Springer, Heidelberg (2002)

6. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specifications. In: Woodcock, J.C.P., Larsen, P.G. (eds.) FME ’93:
Industrial Strength, Formal Methods. LNCS, vol. 670, pp. 268–284. Springer,
London (1993)

7. Essamé, D., Dollé, D.: B in large-scale projects: the Canarsie line CBTC experience.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254.
Springer, Heidelberg (2006)

8. Idani, A., Ledru, Y.: Dynamic graphical UML views from formal B specifications.
Int. J. Inf. Softw.Technol. 48(3), 154–169 (2006). Elsevier

9. Julliand, J., Stouls, N., Bué, P.-C., Masson, P.-A.: B model slicing and predicate
abstraction to generate tests. Softw. Qual. J. 21(1), 127–158 (2013)



68 A. Idani and N. Stouls

10. Ledru, Y.: Using Jaza to animate RoZ specifications of UML class diagrams. In:
SEW, pp. 253–262. IEEE Computer Society (2006)

11. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

12. Leuschel, M., Butler, M., Spermann, C., Turner, E.: Symmetry reduction for B by
permutation flooding. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol.
4355, pp. 79–93. Springer, Heidelberg (2007)

13. Pouzancre, G.: How to diagnose a modern car with a formal B model? In: Bert, D.,
Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 98–100.
Springer, Heidelberg (2003)

14. Savicks, V., Snook, C.: A framework for diagrammatic modelling extensions in
Rodin. In: Rodin Workshop (2012)

15. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Method. (TOSEM) 15(1), 92–122 (2006)

16. Vu, D-H., Chiba, Y., Yatake, K., Aoki, T.: Model checking conformance of design
model to its formal specification, Research report (2014)


	When a Formal Model Rhymes with a Graphical Notation
	1 Introduction
	2 Case-Study
	3 Under-Approximation Approach
	3.1 Construction Method and Usability Constraints
	3.2 Graph Abstraction Algorithm

	4 Over-Approximation Approach
	4.1 Construction Method and Usability Constraints
	4.2 The GénéSyst Tool

	5 Human Oriented Empirical Study
	6 Conclusion
	References


