
A Coloured Petri Net Approach to Model
and Analyse Stateful Workflows Based

on WS-BPEL and WSRF

José Antonio Mateo, Valent́ın Valero, Hermenegilda Macià,
and Gregorio Dı́az(B)

University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
{JoseAntonio.Mateo,Valentin.Valero,Hermenegilda.Macia,

Gregorio.Diaz}@uclm.es

Abstract. Composite Web services technologies are widely used due
to their ability to provide interoperability among services from differ-
ent companies. Web services are usually stateless, which means that no
state is stored from the clients viewpoint. However, some new applica-
tions and services require to capture the state of some resources after
each computation. Thus, new standards to model Web services states
have emerged e.g. Web Services Resource Framework (WSRF). In this
paper, we present a formal model based on WS-BPEL and WSRF,
and we provide a prioritised-timed coloured Petri net semantics for it.
This semantics captures the main activities of WS-BPEL, but we also
consider other important aspects, both from WS-BPEL and WSRF,
such as fault handling, resource management, time-outs and a publish-
subscribe system.

1 Introduction

The development of software systems is becoming more complex with the appear-
ance of new computational paradigms such as Service-Oriented Computing (SOC),
Grid Computing and Cloud Computing. These systems are characterized by a
dynamic environment due to the heterogeneity and volatility of resources and,
moreover, the service provider needs to ensure some levels of quality and privacy to
the clients in a way that had never been considered. Formal models of concurrency
have been widely used for the description and analysis of concurrent and distrib-
uted systems. It is then required to develop new techniques to benefit from the
advantages of recent approaches such as Web service compositions. In this work,
we use the language Web Services Business Process Execution Language (WS-
BPEL) [1] to model this composition. In WS-BPEL, the behaviour of each partic-
ipant (called orchestrator) is defined in terms of invocations to other services.

Although the Web service definition does not consider the notion of state,
interfaces frequently provide the user with the ability to access and manipu-
late states, that is, data values that persist across, and evolve as a result of

Research partially supported by projects TIN2009-14312-C02-02 and TIN2012-
36812-C02-02.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 389–404, 2015.
DOI: 10.1007/978-3-319-15201-1 26

390 J.A. Mateo et al.

Web service interactions. The messages that the services send and receive imply
(or encourage programmers to infer) the existence of an associated stateful
resource. It is then desirable to define Web service conventions to enable the
discovery of, introspection on, and interaction with stateful resources in stan-
dard and interoperable ways. To this end, a new standard, Web Services Resource
Framework (WSRF) [2,5,10], was defined. In addition, it is required to provide
notification mechanisms (e.g. publish-subscribe systems) so that each service can
be notified about state changes.

The main motivation of this work is to provide a formal semantics for WS-
BPEL+WSRF/WSN to manage stateful Web services workflows by using the
existing machinery in distributed systems, and specifically a well-known formal-
ism, such as coloured Petri nets extended with time and priorities, which are
a graphical model, but they also provide us with the ability to simulate and
analyse the modelled system. Notice that our aim is not to provide just another
WS-BPEL semantics since WS-BPEL has been widely studied. Nevertheless, we
have realised that it is more convenient to introduce a specific semantic model,
which covers properly all the relevant aspects of WSRF/WSN (e.g. notifications
and resource time-outs) instead of reusing some previous model.

WS-BPEL [1], for short BPEL, is an OASIS orchestration language for spec-
ifying actions within Web services business processes. WS-BPEL is therefore an
orchestration language in the sense that it is used to define the composition of
services from a local viewpoint, describing the individual behaviour of each par-
ticipant. More specifically, WS-BPEL is a language for describing the behaviour
of a business process based on interactions between the process and its partners.
At the core of the WS-BPEL process model is the notion of peer-to-peer interac-
tion between services described in Web Services Description Language (WSDL),
both the process and its partners are exposed as WSDL services. Thus, a business
process defines how to coordinate the interactions between a process instance
and its partners through Web Service interfaces, whereas the structure of the
relationship at the interface level is encapsulated in what is called a partnerLink.
These are instances of typed connectors which specify the WSDL port types the
process offers to and requires from a partner at the other end of the partner
link.

In particular, we will define a web service composition as a set of orches-
trators, described by BPEL+WSRF+WSN syntax, which exchange messages
through some communication channels, PartnerLinks. Moreover, WS-BPEL
processes use variables to temporarily store data. Variables are therefore declared
on a process or on a scope within that process. In our case, there will be a single
scope (root), so no nesting is considered in our framework. Besides, for simplicity
again, we will only consider integer variables.

An orchestrator consists of a main activity, representing the normal behav-
iour of this participant. There are also fault activities, which are executed upon
the occurrence of some unexpected events, or due to some execution failures,
respectively. WS-BPEL activities can be basic or structured. Basic activities are
those which describe the elemental steps of the process behaviour, such as the

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 391

assignment of variables (assign), empty action (empty), time delay (wait), invoke
a service (invoke) and receive a message (receive), reply to a client (reply), and
throw an exception (throw). We also have an action to terminate the process
execution at any moment (exit). For technical reasons we have also included an
additional activity reply, which is used when a service invocation expects a reply,
in order to implement the synchronization with the reply action from the server.
On the contrary, structured activities encode control-flow logic in a nested way.
The considered structured activities are the following: a sequence of activities,
separated by a semicolon, the parallel composition, represented by two parallel
bars (‖), the conditional repetitive behaviour (while), and a timed extension of
the receive activity, which allows to receive different types of messages with a
time-out associated (pick).

On the other hand, WSRF [2] is a resource specification language devel-
oped by OASIS and some of the most pioneering computer companies, This
standard consists of a set of specifications that define the representation of a
WS-Resource (web service + associated resource) in the terms that specify the
messages exchanged and the related XML documents. These specifications allow
the programmer to declare and implement the association between a service and
one or more resources. It also includes mechanisms to describe the means to
check the status and the service description of a resource, which together form
the definition of a WS-Resource.

Here, we can see a WS-Resource as a collection of properties P identified
by an address EPR with an associated timeout. This timeout represents the
WS-Resource lifetime. Without loss of generality, we have reduced the resource
properties set to only one allowing us to use the resource identifier EPR as
the representative of this property. In addition, in WS-BPEL, we have taken
into consideration the root scope only, thus avoiding any class of nesting among
scopes, and we have considered fault handling, leaving the other handling types
as future work.

Related Work. WS-BPEL has been extensively studied with many formalisms,
such as Petri nets, Finite State Machines and process algebras, but there are
only a few works considering WS-BPEL enriched with WSRF, and they only
show a description of this union, without a formalization of the model. In [16]
Slomiski uses BPEL4WS in Grid environments and discusses the benefits and
challenges of extensibility in the particular case of OGSI workflows combined
with WSRF-based Grids. Other two works centred around Grid environments
are [8,12]. The first justifies the use of WS-BPEL extensibility to allow the com-
bination of different GRIDs, whereas Ezenwoye et al. [8] share their experience
on WS-BPEL to integrate, create and manage WS-Resources that implement
the factory/instance pattern.

Table 1 shows the comparison of the related works where, the columns show
the BPEL version considered, the coverage degree of the recovery framework,
whether they use WSRF, the formalism they use, the focus area and if the work
is supported by a tool.

392 J.A. Mateo et al.

Table 1. Related works comparison.

Author BPEL Rec. WSRF Formalism Focus Tool

Slomiski [16] 1.0 × � – Extensibility ×
Ezenwoye [8] 1.0 × � – Resource management ×
Ouyang [14] 1.0 Part × Petri nets BPEL analysis �
Lohmann [7] 2.0 � × Petri nets BPEL analysis �
Dragoni [6] 2.0 � × π-calculus BPEL recovery

framework
×

Qiu [15] 1.0 Part × Proc. Algebra Fault and
compensation

×

Farahbod [9] 1.0 Part × Finite State
Machines

BPEL analysis ×

Busi [3] 1.0 Part × Proc. Algebra Conformance Chor. vs
Orch

×

Our work 2.0 Part � Petri nets Resource management �

2 Prioritised-Timed Coloured Petri Nets

Next, we introduce the specific model of prioritised-timed coloured Petri net con-
sidered for the translation. We use prioritised-timed coloured Petri nets, which
are a prioritised-timed extension of coloured Petri nets, the well-known formal-
ism supported by CPNTools [4]. In Definition 1, we recall the formal definition
of coloured Petri nets presented in [11], whereas, in Definition 2, we define the
precise model used in this work. We use the classical notation on Petri nets to
denote the precondition and postcondition of both places and transitions:

∀x ∈ P ∪ T : •x = {y | (y, x) ∈ A} x• = {y | (x, y) ∈ A}
Definition 1. A timed non-hierarchical Coloured Petri Net is a nine-tuple
CPNT = (P, T, A, Σ, V, C, G, E, I) where:

– P is a finite set of places.
– T is a finite set of transitions such that P ∩ T = ∅.
– A ⊆ (P × T) ∪ (T × P) is a set of directed arcs.
– Σ is a finite set of non-empty colour sets. Each colour set is either untimed

or timed.
– V is a finite set of typed variables such that Type[v] ∈ Σ for all variables

v ∈ V .
– C : P → Σ is a colour set function that assigns a colour set to each place. A

place p is timed if C(p) is timed, otherwise p is untimed.
– G : T → EXPRV is a guard function that assigns a guard to each transition

t such that Type[G(t)] = Bool.
– E : A → EXPRV is an arc expression function that assigns an arc expression

to each arc a such that

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 393

• Type[E (a)] = C (p)MS if p is untimed;
• Type[E (a)] = C (p)TMS if p is timed.

Here, p is the place connected to the arc a. Moreover, MS and TMS are
untimed and timed colour sets in Σ, respectively.

– I : P → EXPR∅ is an initialisation function that assigns an initialisation
expression to each place p such that

• Type[I (p)] = C (p)MS if p is untimed;
• Type[I (p)] = C (p)TMS if p is timed.
�
In this work, we define a subclass of CPNT , where three functions have

been added. First, a labelling function is used to label places and transitions.
Transitions can be labelled with either strings or nothing. Places are labelled
as entry places, output places, error places, exit places, internal places, variable
places and resource places, which, respectively, correspond to the following labels:
{in, ok , er , ex , i , v , r}. Second, a delay function to assign a time interval to some
transitions. This time interval is uniformly distributed. This is a shorthand for
adding this time delay inscription to the time delay inscription of each output
arc expression. Finally, the priority function assigns priorities to transitions,
considering only two levels PLOW and PNORMAL(by default).

Definition 2. We define a prioritised-timed coloured Petri net (PTCPN) as a
tuple (CPNT , λ,D, π), where:

– CPNT is a CPN according to Definition 1, with the restrictions indicated
below.

– λ is the labelling function such that
• λ(p) = k, with k ∈ {in, ok , er , ex , i , v , r}, if p ∈ P .
• λ(t) = q, where q is a label with t ∈ T .

– D : T −→ IN × IN is the delay function.
– π : T −→ {PLOW , PNORMAL} is the priority function.
�

In our specific model, a PTCPN will have an only entry place pin with colour
set TUNIT (UNIT colour set with time), such that •pin = ∅, which will be ini-
tially marked with a single token. According to WS-BPEL and WSRF standards,
we can distinguish between two kinds of termination: normal and abnormal. On
the one hand, the normal mode corresponds to the execution of a workflow with-
out faults or without executing any exit activity. Thus, in our net model, there
is an output place pok with colour set TUNIT, such that p•

ok = ∅, which will be
marked with one token when the workflow ends normally. On the other hand, a
workflow can finish abnormally by means of the execution of an explicit activity
(exit or throw) as well as the occurrence of an internal fault in the system. Each
PTCPN has also a single error place per with colour set TUNIT, which will
become marked with one token in the event of a failure, then starting the fault
handling activity. In a similar way, the exit place (with colour set TUNIT) will
be marked when the exit activity is performed by an orchestrator.

Variable places are denoted by pv , to mean that they capture the value of
variable v. They contain a single token, whose colour is the variable value. We

394 J.A. Mateo et al.

assume that the initial value of all variables is zero so that these tokens have ini-
tially value 0. For any resource r in the system we will have two complementary
resource places, pri , pra . The first one will be marked with one token when the
resource has not been instantiated or has been released (due to a time-out expi-
ration), whereas the second one becomes marked when the resource is created,
its token colour being a tuple representing the resource identifier (EPR), lifetime,
and value. All the remaining places will be considered as internal. Markings of
PTCPNs are defined in the same way as in [11]. The interested reader is referred
to [11] for further information.

3 PTCPN Semantics for WSRF/BPEL/WSN

It is worth noting that we have previously presented an operational semantics
for this language in a previous work [13].

3.1 Basic Activities

– Throw, Empty, Assign, Exit and Wait activities:
These are translated as indicated in Fig. 1, by means of a single transition
labelled with the name of the corresponding activity linked with the corre-
sponding terminating place. The time required to execute assign, empty, throw
and exit is negligible, so that the corresponding transitions have a null delay
associated. Notice that for the assign activity translation we use a self loop
between the transition and the place associated with the variable (pv) in order

Fig. 1. Basic activities translation

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 395

to replace its previous value by the new one, being this new value obtained
from an expression (exp) consisting of variables pv1, . . . , pvn and integers. For
the wait activity, we have a time interval [a, b] associated, so the delay is
randomly selected inside this interval.
Notice the use of a “control” place, to abort all possible remaining activities
in the system when either throw or exit are executed. Thus, the idea is that
all transitions in the net must be connected with this place, as the different
illustrations show.

– Communication activities: The model we use is based on the invoke and receive
operations, as well as the reply activity that uses a server to reply to a client.
We have also added a barred version of reply to synchronise with the response
from the client. We have therefore introduced this last activity in our semantics
to deal with the request-response operation mode, so the reply activity is
optional in our syntax.

Fig. 2. Invoke/receive activities translation

Figure 2 shows the translation for both the invoke/receive and the reply/reply
pairs of activities. Part Fig. 2a of the figure corresponds to the invoke/receive
translation, in which the net of the invoke activity is depicted on the

396 J.A. Mateo et al.

left-hand-side part, whereas the receive activity is depicted on the right-hand-
side part. There are two shared places, PLijs and PLijr , which are used
to implement the synchronisation between the invocation and reception of
services. Both places are associated to the partnerlink used for this commu-
nication, denoted here by (i, j), where i and j are the orchestrator identifiers
performing those activities. Notice that the value of a single variable is trans-
mitted, which is obtained from the corresponding variable place, pv. In the
same way, the receive activity stores this value in its own variable. The inter-
pretation of Fig. 2b is analogous.

3.2 Ordering Structures

The set of structured activities in WS-BPEL is not intended to be minimal
[1], so there are cases where the semantics of one activity can be represented
using another activity. Nevertheless, in order to reduce the complexity of our
translation, our approach omits many derived activities only dealing with the
most important ones from the modelling viewpoint, such as sequence, parallel
and choice. For all these cases we provide the translation by only considering
two activities. However, the generalization to a greater number of activities is
straightforward in all of them.

– Parallel: The translation for a parallel activity is depicted in Fig. 3, which
includes two new transitions t1 and t2. The first to fork both parallel activities
and the second to join them when correctly terminated. Transition t1 thus puts
one token on the initial places of both PTCPNs, NA1 and NA2 , in order to
activate them, and also puts one token on a new place, pc, which is used to
stop the execution of one branch when the other has failed or the exit activity
is explicitly executed in one of them. This place is therefore a precondition of
every transition in both PTCPNs, and it is also a postcondition of the non-
failing transitions. However, in the event of a failure or an exit activity, the
corresponding throw or exit transition will not put the token back on pc, thus
halting the other parallel activity.
Notice also that the error places of NA1 and NA2 have been joined in a single
error place (per), which becomes marked with one token on the firing of one
throw transition. In this case, the other activity cannot execute any more
actions (pc is empty), so some dead tokens would remain permanently on
some places in the PTCPN. However, these tokens cannot cause any damage,
since the control flow has been transferred either to the fault handling activity
of the PTCPN, once the place per has become marked, or the whole system
has terminated once the place pex is marked.

– Sequence: A sequence of two activities A1;A2 (with PTCPNs NA1 and NA2 ,
respectively) is translated in a simple way by just collapsing in a single place
(this will be an internal place of the new PTCPN) the output place Pok of
NA1 , and the entry place of NA2 . The entry place of the new PTCPN will
be the entry place of NA1 . The output place of the new PTCPN will be the
output place of NA2 , and we also collapse the exit, error and control places of
both PTCPNs.

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 397

Fig. 3. Parallel activity translation.

– Pick ({(pli, opi, vi, Ai)}ni=1, A, timeout): The <pick> activity waits for the
occurrence of exactly one event from a set of events, also establishing a time-
out for this selection. The translation is depicted in Fig. 4 where a timer is
implemented on the place p a in order to enforce the firing of transition ta
when the timeout has elapsed, thus activating NA. The colour set INT of the
place p a is timed. To illustrate how this construction works, we define the
following example.

Example 1. In this example, there are three actors: two customers and a
seller. The customers contact the seller in order to gather information about
a specific product identified by id1 and id2, respectively. The seller checks
the stock and sends the requested information to the customers. The seller
has established a timeout of 24 h to receive requests. Let the orchestrations
Oc1 = (Ac1, empty), Oc2 = (Ac2, empty) and Os = (As, empty), the BPEL-
RF code for the primary activity of both participants is:

398 J.A. Mateo et al.

Fig. 4. Pick activity translation.

Ac1 = invoke(pl1, info, id1); receive(pl1, inforec1, id3)
Ac2 = invoke(pl1, info, id1); receive(pl2, inforec2, id4)
As = pick({(pl1, info, ids1, reply(pl1, inforec1, id3), (pl2, info, ids2,

reply(pl2, inforec2, id4))}, empty, 24)

Looking at Fig. 4, it can be observed that when Os executes the pick activity
the input place, pin of the net is marked. Next, transition tin is fired in order
to mark the place pa with the value timeout + 1. This timeout is passed as a
parameter in the activity and, in this case, its value is equal to 24. Once this
place is marked, two possibilities can arise. On the one hand, one of the buyers
runs its invoke activity before timeout expiration, putting a token in the
corresponding input place, plijis of the transition ri , i ∈ 1, .., n, and, then, the
behaviour hereafter is the same as in the receive activity (Fig. 2). On the other
hand, if none of the buyers executes an invoke activity, the current time must
be increased by means of the transition tr and the arc inscription @ + 1 . Thus,
after t imeout time units without receiving any request, the alarm transition,
ta is fired executing the activity A passed as parameter. It is worthwhile to
remark that variable x is used as a countdown timer since CPNTools does

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 399

Fig. 5. While activity translation.

not allow to include the time function in guards since its inclusion could pose
side-effects [4].

– While (cond,A): The machinery needed to model this construction is fairly
straightforward since we only must check if the repetition condition holds or
not in order to execute the contained activity or skip it. Figure 5 shows this
translation.

3.3 WSRF-Compliant

Let us now see the WSRF activities, and their corresponding translations.

– CreateResource (EPR,val,timeout,A): EPR is the resource identifier, for which
we have two complementary places in Fig. 6, pri and pra , where the sub-index
represents the state of the resource: i when it is inactive and a when it is
active. The initial value is val, and A is the activity that must be executed
when the time-out indicated as third parameter has elapsed.
We can see in Fig. 6 how the transition createResource removes the token
from the inactive place, and puts a new token on the active place, whose
colour contains the following information: resource identifier (EPR), its life-
time (max), and its value (val). Transition t0 is executed when the lifetime
of the resource has expired, thus removing the token from the active place,
marking again the inactive place, and activating NA. We can also see that
the active place is linked with a number of transitions, which correspond to
the subscribers (we know in advance these possible subscribers from the WS-
BPEL/WSRF document). These transitions can only become enabled if the
corresponding places subsi are marked by performing the corresponding activ-
ity subscribe. The PTCPNs Ncondi are the nets for the activities passed as
parameter in the invocation of a subscribe activity.

– Subscribe (EPR,cond′,A): In this case, an orchestrator subscribes to the
resource EPR, with the associated condition cond′, upon which the activity

400 J.A. Mateo et al.

p_r_i p_r_a

pAin

pAok

xep rep

crcontrol

subs1 subsn

NA
Ncond1 Ncondn

(EPR,max) createResource (EPR,max,val)

(EPR,max,val)

0

pok pin

(EPR,max,val)

 0 0

0

pCond1in

pCond1ok pCondnok

 0
 0

0 0

pCondnin

(EPR,max,val)

[g1] [gn]

0 0

t0

(EPR,max)

0

0

0@+max

Fig. 6. CreateResource activity translation.

Fig. 7. Subscribe activity translation.

A must be performed. Figure 7 shows this translation, where we can observe
that the associated place subsi is marked in order to allow the execution of
the PTCPN for the activity A if the condition gi holds. On the contrary, if
the resource is not active, we will throw the fault handling activity.

– SetProp (EPR,expr): In Fig. 8 it can be observed how the new value is assigned
to the resource. We omit the translation for the activities getProp and SetLife-
Time since they are similar to this activity.

3.4 Orchestration Translation

Once we have defined the translation for the activities, we can now introduce the
definition for the PTCPN at the orchestration level. Notice that all PTCPNs gen-
erated for the different orchestrators cooperate to form the entire system (chore-
ography). Let us call NA and Nf the PTCPNs that are obtained by applying

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 401

Fig. 8. SetProperty activity translation.

Fig. 9. Orchestration translation

the translation to each one of these activities A and Af :

NA = (Pa, Ta, Aa, Σa, Va, Ga, Ea, λa,Da, πa) (PTCPN for A)
Nf = (Pf , Tf , Af , Σf , Vf , Gf , Ef , λf ,Df , πf) (PTCPN for Af)

Let pain
and pfin be the initial places of NA and Nf respectively; paok

and
pfok their correct output places, paer

and pfer their error places and, finally, paex

and pfex their exit places. The PTCPN for the orchestrator is then constructed
as indicated in Fig. 9. This PTCPN is then activated by putting one token 0 on
pain

. However, we can have other marked places, for instance, those associated
with integer variables or resources. The other places are initially unmarked.

4 Case Study: Automatic Management System
for Stock Market Investments

The case study concerns a typical automatic management system for stock mar-
ket investments, which consists of n+1 participants: the online stock market sys-
tem and n investors, Ai, i = 1, . . . , n. The complete and detailed version of this
case study can be obtained in http://www.dsi.uclm.es/retics/bpelrf/casestudies.
htm. Here, the resource will be the stocks of a company that the investors want to

http://www.dsi.uclm.es/retics/bpelrf/casestudies.htm
http://www.dsi.uclm.es/retics/bpelrf/casestudies.htm

402 J.A. Mateo et al.

buy just in case the price falls below an established limit, which the investors fix
previously by means of subscriptions, i.e., an investor subscribes to the resource
(the stocks) with a certain guard (the value of the stocks he/she want to pay
for it). The lifetime lft will be determined by the stock market system and the
resource price will be fluctuating to simulate the rises/drops of the stock. Notice
that we do not take into account the stock buy process since our aim is to model
an investors’ information system. Thus, the participants will be notified when
their bids hold or the resource lifetime expires. Let us consider the choreog-
raphy C = (Osys ,O1 , . . . ,On), where Ok = (Ak ,Af k

), k=sys, 1,..., n; Varsys =
{at, vEPR}, V ari = {vi}, Afk=exit. Variable vEPR serves to temporarily store
the value of the resource property before being sent; vi is the variable used for
the interaction among participants, and, finally, at controls the period of time
in which the auction is active. Note that the value x indicates the resource value
at the beginning, at0 is the time that the “auction” is active, and, finally, xi is
the value of the stocks that he/she wants to pay for. Suppose that the variables
are initially 0:

Asys = assign(x + 1 , vEPR); assign(at0 , at);CreateResource(EPR, lft , x , empty);
while(actualTime() <= at ,Abid)
Abid = getProp(EPR, vEPR); assign(vEPR + bid(), vEPR); setProp(EPR, vEPR);
wait(1 , 2)
Ai = wait(1 , 2); subscribe(Oi ,EPR,EPR < xi ,Acondi);
pick((pli , buy , vi , empty), empty , at0)
Acondi = getProp(EPR, vEPR); invoke(pli , buy , vEPR)

Here, the function bid is used to increase/decrease the stocks value simulating
the fluctuation of the stocks price. Next, we present the analysis part.

CPNTools offers us two forms to check the correctness of our system: formal
verification and simulation. First, the simulation helps designers to understand
how the system exactly works and it is a mean to detect possible errors in early
stages of the development process in order to refine the model according the
clients’ requirements. Besides, formal verification through state space analysis
could be done in order to ensure that our system achieves some formal properties
such as liveness, deadlock-freeness and so on. In this way, Table 2 shows the
results obtained considering 1, 2, 3, 4 or 5 investors. Note that we have considered
the following assumptions:

– The “auction” time at0 is limited to 10 time units.
– The resource is active during 15 time units (lft=15).
– The resource value x is 100 money units.
– The value of subscription of each investor i, xi, is x − (9 + i), that is, if the

system has only one investor its subscription guard will be x < 90, whereas
with 5 investors, the last investor will have a subscription guard of x < 86.

– The function bid will fluctuate the stocks price between -2 and 1 in order to
simulate that the price only can rise 1 and drop 2 at most each time unit.

We will focus on deadlock-freeness to ensure that the system never gets stuck
while the participants have activities to do in their workflow. We have leveraged

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 403

Table 2. State space analysis results

Properties Number of investors

1 2 3 4 5

State Space Nodes 3561 7569 16983 50350 89879

State Space Arcs 5203 12843 33271 112101 262215

Time (s) 2 7 23 146 1140

Dead Markings 124 244 454 1108 874

the functions offered by CPNTools to demonstrate that in all dead markings of
the system the final place is marked, which leads us to conclude the system has
finished correctly. Let us suppose that the final place of this Petri net is called
Pokfinal0 and this final place is marked by a transition when all the participants
have finished their execution. For the sake of clarity, we have not drawn this place
in each figure. Thus, the next SML code checks when this situation occurs: fun

DesiredTerminal n =((Mark.PetriNet’Pokfinal0 1 n) == 1’true), which returns true
if the place Pokfinal0 is marked. In addition to this, it is necessary to evaluate
the predicate: PredAllNodes DesiredTerminal=ListDeadMarkings(), to check that
the list of dead marking contains the marking of the Pokfinal0 place.

By using CPNTools, we checked that all dead markings hold the predicate
DesiredTerminal, and, therefore, when the system reaches a dead marking is
because system has terminated, which demonstrates the absence of deadlocks in
our case study.

5 Conclusions and Future Work

In this paper, we have integrated two complementary approaches in order to
improve the definition of business processes models on BPEL by adding the capa-
bility of storing their state. We have thus transformed stateless business processes
into stateful business processes. To this end, we have defined a prioritised-timed
coloured Petri net model and presented its corresponding semantics to represent
the constructions of WS-BPEL and the standard selected for the definition of
resources, namely WSRF. Apart from including the notion of state in business
processes, our work also includes a publish-subscribe notification system based
on WS-BaseNotification, presenting a PTCPN model and its semantics. Thus,
an orchestrator can show interest of being notified when a condition holds, e.g.,
the load of a server exceeds a certain limit. Our approach is based on the one
used in CPNTools, allowing us to take advantage of its capability of analysis
and verification systems. Moreover, our work in progress is the development
of a tool (a beta version can be accessed at: http://www.dsi.uclm.es/retics/
bpelrf/) to transform automatically WS-BPEL and WSRF specifications into
CPNTools nets. As future work, we plan to study some interesting properties
such as safeness, soundness and so on. In addition, it is interesting to define a
complete semantics of WS-BPEL and WSRF. Finally, as commented above, we

http://www.dsi.uclm.es/retics/bpelrf/
http://www.dsi.uclm.es/retics/bpelrf/

404 J.A. Mateo et al.

defined an operational semantics in a previous work, so we will demonstrate in
a future work the equivalence between both semantics.

References

1. Andrews, T., et al.: BPEL4WS - Business Process Execution Language for
Web Services, Version 1.1 (2003). http://www.ibm.com/developerworks/library/
specification/ws-bpel/

2. Banks, T.: Web Services Resource Framework (WSRF) - Primer, OASIS (2006)
3. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and

orchestration: a synergic approach for system design. In: Benatallah, B., Casati,
F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Hei-
delberg (2005)

4. CPNTools website. http://cpntools.org/
5. Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling,

D., Tuecke, S., Vambenepe, W.: The WS-Resource Framework Version 1.0 (2004).
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

6. Dragoni, N., Mazzara, M.: A formal semantics for the WS-BPEL recovery frame-
work. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 92–109.
Springer, Heidelberg (2010)

7. Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In:
Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

8. Ezenwoye, O., Sadjadi, S.M., Cary, A., Robinson, M.: Orchestrating WSRF-based
GridServices. Technical report FIU-SCIS-2007-04-01 (2007)

9. Farahbod, R., Glässer, U., Vajihollahi, M.; A formal semantics for the business
process execution language for Web services. In: Joint Workshop on Web Ser-
vices and Model-Driven Enterprise Information Services (WSMDEIS), pp. 122–133
(2005)

10. Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann,
F., Nally, M., Storey, T., Weerawaranna, S.: Modeling Stateful Resources with Web
Services, Globus Alliance (2004)

11. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009)

12. Leyman, F.: Choreography for the grid: towards fitting BPEL to the resource
framework. J. Concurrency Comput. Pract. Exp. 18(10), 1201–1217 (2006)

13. Mateo, J.A., Valero, V., Dı́az, G.: An operational semantics of BPEL orchestrations
integrating Web services resource framework. In: Carbone, M., Petit, J.-M. (eds.)
WS-FM 2011. LNCS, vol. 7176, pp. 79–94. Springer, Heidelberg (2012)

14. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2–3), 162–198 (2007)

15. Qiu, Z., Wang, S.-L., Pu, G., Zhao, X.: Semantics of BPEL4WS-like fault and
compensation handling. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM
2005. LNCS, vol. 3582, pp. 350–365. Springer, Heidelberg (2005)

16. Slomiski, A.: On using BPEL extensibility to implement OGSI and WSRF grid
workflows. J. Concurrency Comput. Pract. Exp. 18, 1229–1241 (2006)

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://cpntools.org/
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

	A Coloured Petri Net Approach to Model and Analyse Stateful Workflows Based on WS-BPEL and WSRF
	1 Introduction
	2 Prioritised-Timed Coloured Petri Nets
	3 PTCPN Semantics for WSRF/BPEL/WSN
	3.1 Basic Activities
	3.2 Ordering Structures
	3.3 WSRF-Compliant
	3.4 Orchestration Translation

	4 Case Study: Automatic Management System for Stock Market Investments
	5 Conclusions and Future Work
	References

