
Scalable Verification of Markov
Decision Processes

Axel Legay, Sean Sedwards(B), and Louis-Marie Traonouez

Inria Rennes – Bretagne Atlantique, Rennes, France
sean.sedwards@inria.fr

Abstract. Markov decision processes (MDP) are useful to model con-
current process optimisation problems, but verifying them with numer-
ical methods is often intractable. Existing approximative approaches do
not scale well and are limited to memoryless schedulers. Here we present
the basis of scalable verification for MDPSs, using an O(1) memory rep-
resentation of history-dependent schedulers. We thus facilitate scalable
learning techniques and the use of massively parallel verification.

1 Introduction

Markov decision processes (MDP) describe systems that interleave nondetermin-
istic actions and probabilistic transitions, possibly withrewards or costs assigned
to the actions [3,19]. This model has proved useful in many real optimisation
problems and may also be used to represent concurrent probabilistic programs
(see, e.g., [2,4]). Such models comprise probabilistic subsystems whose transi-
tions depend on the states of the other subsystems, while the order in which
concurrently enabled transitions execute is nondeterministic. This order may
radically affect the expected reward or the probability that a system will satisfy
a given property. It is therefore useful to calculate the upper and lower bounds
of these quantities.

Figure 1 shows a typical fragment of an MDP. Referring in parentheses to the
labels in the figure, the execution semantics are as follows. In a given state (s0),
an action (a1, a2, . . . ) is chosen nondeterministically to select a distribution of
probabilistic transitions (p1, p2, . . . or p3, p4, etc.). A probabilistic choice is then
made to select the next state (s1, s2, s3, s4, . . . ). To each of the actions may be
associated a reward (r1, r2, . . . ), allowing values to be assigned to sequences of
actions.

To calculate the expected total reward or the expected probability of a
sequence of states, it is necessary to define how the nondeterminism in the MDP
will be resolved. In the literature this is often called a strategy, a policy or an
adversary. Here we use the term scheduler and focus on MDPs in the context of
model checking concurrent probabilistic systems. Model checking is an automatic
technique to verify that a system satisfies a property specified in temporal logic
[7]. Probabilistic model checking quantifies the probability that a probabilistic
system will satisfy a property [9]. Classic analysis of MDPs is concerned with
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 350–362, 2015.
DOI: 10.1007/978-3-319-15201-1 23



Scalable Verification of Markov Decision Processes 351

Fig. 1. Fragment of a typical Markov
decision process.

Fig. 2. MDP with different optima
for general and memoryless schedulers
when p1 �= p2.

finding schedulers that maximise or minimise rewards [3,19]. The classic verifica-
tion algorithms for MDPs are concerned with finding schedulers that maximise
or minimise the probability of a property, or deciding the existence of a sched-
uler that ensures the probability of a property is within some bound [4]. Our
techniques can be easily extended to include rewards, but in this work we focus
on probabilities and leave rewards for future consideration.

1.1 Schedulers and State Explosion

The classic algorithms to solve MDPs are policy iteration and value iteration
[19]. Model checking algorithms for MDPs may use value iteration applied to
probabilities [2, Chapter 10] or solve the same problem using linear programming
[4]. All consider history-dependent schedulers. Given an MDP with set of actions
A, having a set of states S that induces a set of sequences of states Ω = S+, a
history-dependent (general) scheduler is a function S : Ω → A. A memoryless
scheduler is a function M : S → A. Intuitively, at each state in the course of
an execution, a history-dependent scheduler (S) chooses an action based on the
sequence of previous states, while a memoryless scheduler (M) chooses an action
based only on the current state. History-dependent schedulers therefore include
memoryless schedulers.

Figure 2 illustrates a simple MDP for which memoryless and history-dependent
schedulers give different optima for logical property X(ψ∧XGt¬ψ) when p1 �= p2
and t > 0. The property makes use of the temporal operators next (X) and glob-
ally (G). Intuitively, the property states that on the next step ψ will be true and,
on the step after that, ¬ψ will be remain true for t+1 time steps. The property is
satisfied by the sequence of states s0s1s0s0 · · · . If p1 > p2, the maximum proba-
bility for s0s1 is achieved with action a2, while the maximum probability for s0s0
is achieved with action a1. Given that both transitions start in the same state, a
memoryless scheduler will not achieve the maximum probability achievable with
a history-dependent scheduler.

The principal challenge of finding optimal schedulers is what has been
described as the ‘curse of dimensionality’ [3] and the ‘state explosion problem’ [7]:



352 A. Legay et al.

the number of states of a system increases exponentially with respect to the
number of interacting components and state variables. This phenomenon has led
to the design of sampling algorithms that find ‘near optimal’ schedulers to max-
imise rewards in discounted MDPs. Probably the best known is the Kearns algo-
rithm [13], which we briefly review in Sect. 2.

The state explosion problem of model checking applied to purely probabilistic
systems has been well addressed by statistical model checking (SMC) [21]. SMC
uses an executable model to approximate the probability that a system satisfies
a specified property by the proportion of simulation traces that individually
satisfy it. SMC algorithms work by constructing an automaton to accept only
traces that satisfy the property. This automaton may then be used to estimate
the probability of the property or to decide an hypothesis about the probability.
Typically, the probability of property ϕ is estimated by 1

N

∑N
i=1 1(ωi |= ϕ),

where ω1, . . . , ωN are N independently generated simulation traces and 1(·) is
an indicator function that corresponds to the output of the automaton: it returns
1 if the trace is accepted and 0 if it is not. N is chosen a priori to give the required
statistical confidence (e.g., using a Chernoff bound [18], see Sect. 4.2). Sequential
hypothesis tests (e.g., Wald’s sequential probability ratio test [20], see Sect. 4.1)
do not define N a priori, but generate simulation traces until an hypothesis can
be accepted or rejected with specified confidence. The state space of the system
is not constructed explicitly–states are generated on the fly during simulation–
hence SMC is efficient for large, possibly infinite state, systems. Moreover, since
the simulations are required to be statistically independent, SMC may be easily
and efficiently divided on parallel computing architectures.

SMC cannot be applied to MDPs without first resolving the nondetermin-
ism. Since nondeterministic and probabilistic choices are interleaved in an MDP,
schedulers are typically of the same order of complexity as the system as a whole
and may be infinite. As a result, existing SMC algorithms for MDPs consider
only memoryless schedulers and have other limitations (see Sect. 2).

1.2 Our Approach

We have created memory-efficient techniques to facilitate Monte Carlo veri-
fication of nondeterministic systems, without storing schedulers explicitly. In
essence, the possibly infinite behaviour of schedulers is fully specified implicitly
by the seed of a pseudo-random number generator. Our techniques therefore
require almost no additional memory over standard SMC. In doing this, we are
the first to provide the basis for a complete lightweight statistical alternative to
the standard numerical verification algorithms for MDPs. A further contribution
is our derivation of the statistical confidence bounds necessary to test multiple
schedulers. These results suggest obvious solutions to problems encountered with
existing algorithms that rely on multiple statistical tests (e.g., [11]).

In this work we demonstrate the core ideas of our approach with simple
SMC algorithms that repeatedly sample from scheduler space. Practical imple-
mentations require more sophisticated algorithms that adopt “smart sampling”



Scalable Verification of Markov Decision Processes 353

(optimal use of simulation budget) and lightweight learning techniques. Some of
our results make use of these ideas, but a full exposition is not possible here.

2 Related Work

The Kearns algorithm [13] is the classic ‘sparse sampling algorithm’ for large,
infinite horizon, discounted MDPs. It constructs a ‘near optimal’ scheduler piece-
wise, by approximating the best action from a current state using a stochastic
depth-first search. Importantly, optimality is with respect to rewards, not prob-
ability (as required by standard model checking tasks). The algorithm can work
with large, potentially infinite state MDPs because it explores a probabilistically
bounded search space. This, however, is exponential in the discount. To find the
action with the greatest expected reward in the current state, the algorithm
recursively estimates the rewards of successive states, up to some maximum
depth defined by the discount and desired error. Actions are enumerated while
probabilistic choices are explored by sampling, with the number of samples set as
a parameter. The error is specified as a maximum difference between consecutive
estimates, allowing the discount to guarantee that the algorithm will eventually
terminate.

There have been several recent attempts to apply SMC to nondetermin-
istc models [5,10,11,16]. In [5,10] the authors present on-the-fly algorithms to
remove ‘spurious’ nondeterminism, so that standard SMC may be used. This
approach is limited to the class of models whose nondeterminism does not affect
the resulting probability of a property–scheduling makes no difference. The algo-
rithms therefore do not attempt to address the standard MDP model checking
problems related to finding optimal schedulers.

In [16] the authors first find a memoryless scheduler that is near optimal with
respect to a reward scheme and discount, using an adaptation of the Kearns
algorithm. This induces a Markov chain whose properties may be verified with
standard SMC. By storing and re-using information about visited states, the
algorithm improves on the performance of the Kearns algorithm, but is thus
limited to memoryless schedulers that fit into memory. The near optimality of
the induced Markov chain is with respect to rewards, not probability, hence [16]
does not address the standard model checking problems of MDPs.

In [11] the authors present an SMC algorithm to decide whether there exists
a memoryless scheduler for a given MDP, such that the probability of a property
is above a given threshold. The algorithm has an inner loop that generates
candidate schedulers by iteratively improving a probabilistic scheduler according
to sample traces that satisfy the property. The algorithm is limited to memoryless
schedulers because the improvement process counts state-action pairs. The outer
loop tests the candidate scheduler against the hypothesis using SMC and is
iterated until an example is found or sufficient attempts have been made. The
inner loop does not in general converge to the true optimum, but the outer loop
randomly explores local maxima. This makes the number of samples used by the
inner loop critical: too many may significantly reduce the scope of the random



354 A. Legay et al.

exploration and thus reduce the probability of finding the global optimum. A
further problem is that the repeated hypothesis tests of the outer loop will
eventually produce erroneous results. We address this phenomenon in Sect. 4.

We conclude that (i) no previous approach is able to provide a complete set
of SMC algorithms for MDPs, (ii) no previous SMC approach considers history-
dependent schedulers and (iii) no previous approach facilitates lightweight sam-
pling from scheduler space.

3 Schedulers as Seeds of Random Number Generators

Storing schedulers as explicit mappings does not scale, so we have devised a
way to represent schedulers using uniform pseudo-random number generators
(PRNG) that are initialised by a seed and iterated to generate the next pseudo-
random value. In general, such PRNGs aim to ensure that arbitrary subsets of
sequences of iterates are uniformly distributed and that consecutive iterates are
statistically independent. PRNGs are commonly used to implement the uniform
probabilistic scheduler, which chooses actions uniformly at random and thus
explores all possible combinations of nondeterministic choices. Executing such an
implementation twice with the same seed will produce identical traces. Executing
the implementation with a different seed will produce an unrelated set of choices.
Individual deterministic schedulers cannot be identified, so it is not possible to
estimate the probability of a property under a specific scheduler.

An apparently plausible solution is to use independent PRNGs to resolve
nondeterministic and probabilistic choices. It is then possible to generate mul-
tiple probabilistic simulation traces per scheduler by keeping the seed of the
PRNG for nondetermistic choices fixed while choosing random seeds for a sepa-
rate PRNG for probabilistic choices. Unfortunately, the schedulers generated by
this approach do not span the full range of general or even memoryless sched-
ulers. Since the sequence of iterates from the PRNG used for nondeterministic
choices will be the same for all instantiations of the PRNG used for probabilistic
choices, the ith iterate of the PRNG for nondeterministic choices will always be
the same, regardless of the state arrived at by the previous probabilistic choices.
The ith chosen action can be neither state nor trace dependent.

3.1 General Schedulers Using Hash Functions

Our solution is to construct a per-step PRNG seed that is a hash of the an
integer identifying a specific scheduler concatenated with an integer representing
the sequence of states up to the present.

We assume that a state of an MDP is an assignment of values to a vector
of system variables vi, i ∈ {1, . . . , n}. Each vi is represented by a number of
bits bi, typically corresponding to a primitive data type (int, float, double, etc.).
The state can thus be represented by the concatenation of the bits of the system
variables, such that a sequence of states may be represented by the concatenation
of the bits of all the states. Without loss of generality, we interpret such a



Scalable Verification of Markov Decision Processes 355

sequence of states as an integer of
∑n

i=1 bi bits, denoted s, and refer to this in
general as the trace vector. A scheduler is denoted by an integer σ, which is
concatenated to s (denoted σ : s) to uniquely identify a trace and a scheduler.
Our approach is to generate a hash code h = H(σ : s) and to use h as the seed
of a PRNG that resolves the next nondeterministic choice.

The hash function H thus maps σ : s to a seed that is deterministically
dependent on the trace and the scheduler. The PRNG maps the seed to a value
that is uniformly distributed but nevertheless deterministically dependent on
the trace and the scheduler. In this way we approximate the scheduler functions
S and M described in Sect. 1.1. Importantly, our technique only relies on the
standard properties of hash functions and PRNGs. Algorithm 1 is the basic
simulation function of our algorithms.

Algorithm 1. Simulate
Input:

M: an MDP with initial state s0
ϕ: a property
σ: an integer identifying a scheduler

Output:
ω: a simulation trace

Let Uprob, Unondet be uniform PRNGs with respective samples rpr, rnd
Let H be a hash function
Let s denote a state, initialised s ← s0
Let ω denote a trace, initialised ω ← s
Let s be the trace vector, initially empty
Set seed of Uprob randomly
while ω |= ϕ is not decided do

s ← s : s
Set seed of Unondet to H(σ : s)
Iterate Unondet to generate rnd and use to resolve nondeterministic choice
Iterate Uprob to generate rpr and use to resolve probabilistic choice
Set s to the next state
ω ← ω : s

3.2 An Efficient Iterative Hash Function

To implement our approach, we have devised an efficient hash function that
constructs seeds incrementally. The function is based on modular division [14,
Chapter 6], such that h = (σ : s)mod m, where m is a suitably large prime.

Since s is a concatenation of states, it is usually very much larger than the
maximum size of integers supported as primitive data types. Hence, to generate
h we use Horner’s method [12,14, Chapter 4]: we set h0 = σ and find h ≡ hn (n
as given in Sect. 3.1) by iterating the recurrence relation

hi = (hi−12bi + vi)mod m. (1)



356 A. Legay et al.

The size of m defines the maximum number of different hash codes. The pre-
cise value of m controls how the hash codes are distributed. To avoid collisions,
a simple heuristic is that m should be a large prime not close to a power of
2 [8, Chapter 11]. Practically, it is an advantage to perform calculations using
primitive data types that are native to the computational platform, so the sum
in (1) should be less than or equal to the maximum permissible value. To achieve
this, given x, y,m ∈ N, we note the following congruences:

(x + y)mod m ≡ (x mod m + y mod m)mod m (2)
(xy)mod m ≡ ((x mod m)(y mod m))mod m (3)

The addition in (1) can thus be re-written in the form of (2), such that each
term has a maximum value of m − 1:

hi = ((hi−12bi)mod m + (vi)mod m)mod m (4)

To prevent overflow, m must be no greater than half the maximum possible
integer. Re-writing the first term of (4) in the form of (3), we see that before
taking the modulus it will have a maximum value of (m− 1)2, which will exceed
the maximum possible integer. To avoid this, we take advantage of the fact that
hi−1 is multiplied by a power of 2 and that m has been chosen to prevent overflow
with addition. We thus apply the following recurrence relation:

(hi−12j)mod m = (hi−12j−1)mod m + (hi−12j−1)mod m (5)

Equation (5) allows our hash function to be implemented using efficient native
arithmetic. Moreover, we infer from (1) that to find the hash code corresponding
to the current state in a trace, we need only know the current state and the hash
code from the previous step. When considering memoryless schedulers we need
only know the current state.

4 Confidence with Multiple Estimates

The Chernoff bound [6,18] and Wald sequential probability ratio test [20] are
commonly used to bound errors of SMC algorithms. Their guarantees are prob-
abilistic, such that with specified non-zero probability they produce an incorrect
result. If such bounds are used on M schedulers, some of whose true probabilities
lie in the interval (0, 1), then as M → ∞ the probability of encountering an error
is a.s. 1. In particular, the maximum and minimum estimates will tend to 1 and
0, respectively, regardless of the true values.

To overcome this phenomenon, in Sects. 4.1 and 4.2 we derive new confidence
bounds to allow SMC algorithms to test multiple schedulers. We illustrate their
use with simple algorithms that sample M schedulers at random, where M
is a parameter. These algorithms are the basis of a technique we call “smart
sampling”, which can exponentially improve convergence. The basic idea is to
assign part of the simulation budget to obtain a coarse estimate of the extremal



Scalable Verification of Markov Decision Processes 357

probabilities and to use this information to generate a set of schedulers that
contains a “good” scheduler with high probability. The remaining budget is
used to refine the set to find the best scheduler. Smart sampling has provided
improvements of several orders of magnitude with the illustrated examples and
is the subject of ongoing development. Lack of space prevents further discussion.

4.1 Sequential Probability Ratio Test for Multiple Schedulers

The sequential probability ratio test (SPRT) of Wald [20] evaluates hypotheses
of the form P(ω |= ϕ) �� p, where ��∈ {≤,≥}. The SPRT distinguishes between
two hypotheses, H0 : P(ω |= ϕ) ≥ p0 and H1 : P(ω |= ϕ) ≤ p1, where p0 > p1.
Hence, to evaluate P(ω |= ϕ) �� p, the SPRT requires a region of indecision
(an ‘indifference region’ [21]) which may be specified by parameter ϑ, such that
p0 = p + ϑ and p1 = p − ϑ. The SPRT also requires parameters α and β, which
specify the maximum acceptable probabilities of errors of the first and second
kind, respectively. An error of the first kind is incorrectly rejecting a true H0; an
error of the second kind is incorrectly accepting a false H0. To choose between
H0 and H1, the SPRT defines the probability ratio

ratio =
n∏

i=1

(p1)1(ωi|=ϕ)(1 − p1)1(ωi �|=ϕ)

(p0)1(ωi|=ϕ)(1 − p0)1(ωi �|=ϕ)
,

where n is the number of simulation traces ωi, i ∈ {1, . . . , n}, generated so far.
The test proceeds by performing a simulation and calculating ratio until one of
two conditions is satisfied: H1 is accepted if ratio ≥ (1−β)/α and H0 is accepted
if ratio ≤ β/(1 − α).

To decide whether there exists a scheduler such that P(ω |= ϕ) �� p, we
would like to apply the SPRT to multiple (randomly chosen) schedulers. The
idea is to test different schedulers, up to some specified number M , until an
example is found. Since the probability of error with the SPRT applied to mul-
tiple hypotheses is cumulative, we consider the probability of no errors in any of
M tests. Hence, in order to ensure overall error probabilities α and β, we adopt
αM = 1 − M

√
1 − α and βM = 1 − M

√
1 − β in our stopping conditions. H1 is

accepted if ratio ≥ (1 − βM )/αM and H0 is accepted if ratio ≤ βM/(1 − αM ).
Algorithm 2 demonstrates the sequential hypothesis test for multiple schedulers.
If the algorithm finds an example, the hypothesis is true with at least the spec-
ified confidence.

4.2 Chernoff Bound for Multiple Schedulers

Given that a system has true probability p of satisfying a property, the Chernoff
bound ensures P(| p̂ − p |≥ ε) ≤ δ, i.e., that the estimate p̂ will be outside the
interval [p − ε, p + ε] with probability less than or equal to δ. Parameter δ is
related to the number of simulations N by δ = 2e−2Nε2

[18], giving

N =
⌈
(ln 2 − ln δ)/(2ε2)

⌉
. (6)



358 A. Legay et al.

Algorithm 2. Hypothesis testing with multiple schedulers
Input:

M, ϕ: the MDP and property of interest
H ∈ {H0, H1}: the hypothesis of interest with threshold p ± ϑ
α, β: the desired error probabilities of H
M : the maximum number of schedulers to test

Output: The result of the hypothesis test

Let p0 = p + ϑ and p1 = p − ϑ be the bounds of H
Let αM = 1 − M

√
1 − α and βM = 1 − M

√
1 − β

Let A = (1 − βM )/αM and B = βM/(1 − αM )
Let Useed be a uniform PRNG and σ be its sample
for i ∈ {1, . . . , M} while H is not accepted do

Iterate Useed to generate σi

Let ratio = 1
while ratio < A ∧ ratio > B do

ω ← Simulate(M, ϕ, σi)

ratio ← (p1)1(ω|=ϕ)(1−p1)1(ω �|=ϕ)

(p0)1(ω|=ϕ)(1−p0)1(ω �|=ϕ) ratio

if ratio ≥ A ∧ H = H0 ∨ ratio ≤ B ∧ H = H1 then
accept H

The user specifies ε and δ and the SMC algorithm calculates N to guarantee the
estimate accordingly. Equation (6) is derived from equations

P(p̂ − p ≥ ε) ≤ e−2Nε2
and P(p − p̂ ≥ ε) ≤ e−2Nε2

, (7)

giving N =
⌈
(ln δ)/(2ε2)

⌉
to satisfy either inequality.

We consider the strategy of sampling M schedulers to estimate the optimum
probability. We thus generate M estimates {p̂1, . . . , p̂M} and take either the
maximum (p̂max) or minimum (p̂min), as required. To overcome the cumulative
probability of error with the standard Chernoff bound, we specify that all esti-
mates p̂i must be within ε of their respective true values pi, ensuring that any
p̂min, p̂max ∈ {p̂1, . . . , p̂M} are within ε of their true value. Given (7) and the
fact that all estimates p̂i are statistically independent, the probability that all
estimates are less than their upper bound is expressed by P(

∧M
i=1 p̂i − pi ≤ ε) ≥

(1 − e−2Nε2
)M . Hence, P(

∨M
i=1 p̂i − pi ≥ ε) ≤ 1 − (1 − e−2Nε2

)M . This leads to
the following expression for N , given parameters M , ε and δ:

N =
⌈
− ln

(
1 − M

√
1 − δ

)
/2ε2

⌉
(8)

Since the case for pmin is symmetrical, (8) also ensures P(pmin − p̂min ≥ ε) ≤ δ.
Hence, to ensure the more usual conditions that P(| pmax − p̂max |≥ ε) ≤ δ and
P(| pmin − p̂min |≥ ε) ≤ δ,

N =
⌈(

ln 2 − ln
(
1 − M

√
1 − δ

))
/(2ε2)

⌉
. (9)



Scalable Verification of Markov Decision Processes 359

N scales logarithmically with M (e.g., for ε = δ = 0.01, N ≈ log1.0002(M) +
26472), making it tractable to consider many schedulers. Algorithm 3 is the
resulting extremal probability estimation algorithm for multiple schedulers.

Algorithm 3. Extremal probability estimation with multiple schedulers
Input:

M, ϕ: the MDP and property of interest
ε, δ: the required confidence bound
M : the number of schedulers to test

Output: Extremal estimates p̂min and p̂max

Let N =
⌈
ln(2/(1 − M

√
1 − δ ))/(2ε2)

⌉
be the no. of simulations per

scheduler
Let Useed be a uniform PRNG and σ its sample
Initialise p̂min ← 1 and p̂max ← 0
Set seed of Useed randomly
for i ∈ {1, . . . , M} do

Iterate Useed to generate σi

Let truecount = 0 be the initial number of traces that satisfy ϕ
for j ∈ {1, . . . , N} do

ωj ← Simulate(M, ϕ, σi)
truecount ← truecount + 1(ωj |= ϕ)

Let p̂i = truecount/N
if p̂max < p̂i then

p̂max = p̂i

if p̂i > 0 ∧ p̂min > p̂i then
p̂min = p̂i

if p̂max = 0 then
No schedulers were found to satisfy ϕ

4.3 Experiments

We implemented Algorithms 2 and 3 in our statistical model checking platform
Plasma [1] and performed a number of experiments.

Figure 3 shows the empirical cumulative distribution of schedulers generated
by Algorithm 3 applied to the MDP of Fig. 2, using p1 = 0.9, p2 = 0.5, ϕ = X(ψ∧
XG4¬ψ), ε = 0.01, δ = 0.01 and M = 300. The vertical red and blue lines mark
the true probabilities of ϕ under each of the history-dependent and memoryless
schedulers, respectively. The grey rectangles show the ±ε error bounds, relative
to the true probabilities. There are multiple estimates per scheduler, but all
estimates are within their respective confidence bounds. Note that the confidence
is specified with respect to estimates, not with respect to optimality. Defining
confidence with respect to optimality remains an open problem.

In Fig. 4 we consider a reachability property of the Wireless LAN (WLAN)
protocol model of [15]. The protocol aims to minimise “collisions” between
devices sharing a communication channel. We estimated the probability of the



360 A. Legay et al.

Fig. 3. Empirical cumulative distribu-
tion of estimates from Algorithm 3.

Fig. 4. Max. and min. probabilities of
second collision in WLAN protocol.

second collision at time steps {0, 10, . . . , 100}, using Algorithm 3 with M =
4000 schedulers per point. Maximum and minimum estimated probabilities are
denoted by blue and red circles, respectively. Maximum probabilities calculated
by numerical model checking are denoted by black crosses. The shaded areas
indicate the ±ε error of the estimates (Chernoff bound ε = δ = 0.01) and reveal
that our estimates are very close to the true values.

To demonstrate the scalability of our approach, we consider the choice coor-
dination model of [17] and estimate the minimum probability that a group of
six tourists will meet within T steps. The model has a parameter (BOUND)
that limits the state space. We set BOUND = 100, making the state space of
≈5 × 1016 intractable to numerical model checking. For T = 20 and T = 25 the
true minimum probabilities are respectively 0.5 and 0.75. Using smart sampling
and a Chernoff bound of ε = δ = 0.01, we correctly estimate the probabilities to
be 0.496 and 0.745 in a few tens of minutes on a standard laptop computer.

5 Prospects and Challenges

Our techniques are immediately extensible to continuous time MDPs and other
models that use nondeterminism. It is also seems simple to consider MDPs with
rewards. Although the presented algorithms are not optimised with respect to
simulation budget, in a forthcoming work we introduce the notion of “smart
sampling” to maximise the chance of finding good schedulers with a finite budget.

A limitation of our approach is that the algorithms sample from only a subset
of possible schedulers. It is easy to construct examples where good schedulers
are vanishingly rare and will not be found. Our ongoing focus is therefore to
develop memory-efficient learning techniques that construct schedulers piece-
wise, to improve convergence and consider a much larger set of schedulers.

Acknowledgement. This work was partially supported by the European Union Sev-
enth Framework Programme under grant agreement no. 295261 (MEALS).



Scalable Verification of Markov Decision Processes 361

References

1. PLASMA project web page. https://project.inria.fr/plasma-lab/
2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge

(2008)
3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
4. Bianco, A., De Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026. Springer,
Heidelberg (1995)

5. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order
methods for statistical model checking and simulation. In: Bruni, R., Dingel, J.
(eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 59–74. Springer,
Heidelberg (2011)

6. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Statist. 23(4), 493–507 (1952)

7. Clarke, E., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and
debugging. Commun. ACM 52(11), 74–84 (2009)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, New York (2009)

9. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

10. Hartmanns, A., Timmer, M.: On-the-fly confluence detection for statistical model
checking. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871,
pp. 337–351. Springer, Heidelberg (2013)

11. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical
model checking for Markov decision processes. In: 2012 Ninth International Con-
ference on Quantitative Evaluation of Systems, pp. 84–93. IEEE (2012)

12. Horner, W.G.: A new method of solving numerical equations of all orders, by
continuous approximation. Philos. Trans. R. Soc. Lond. 109, 308–335 (1819)

13. Kearns, M., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Mach. Learn. 49(2–3), 193–208 (2002)

14. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Addison-Wesley, Read-
ing (1998)

15. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of the
IEEE 802.11 wireless local area network protocol. In: Hermanns, H., Segala, R.
(eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol.
2399, pp. 169–187. Springer, Heidelberg (2002)

16. Lassaigne, R., Peyronnet, S.: Approximate planning and verification for large
Markov decision processes. In: Proceddings of 27th Annual ACM Symposium on
Applied Computing, pp. 1314–1319. ACM (2012)

17. Ndukwu, U., McIver, A.: An expectation transformer approach to predicate
abstraction and data independence for probabilistic programs. In: Proceedings of
8th Workshop on Quantitative Aspects of Programming Languages (QAPL’10)
(2010)

18. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10(1), 29–35 (1958)

19. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience, New York (1994)

https://project.inria.fr/plasma-lab/


362 A. Legay et al.

20. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

21. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002)


	Scalable Verification of Markov Decision Processes
	1 Introduction
	1.1 Schedulers and State Explosion
	1.2 Our Approach

	2 Related Work
	3 Schedulers as Seeds of Random Number Generators
	3.1 General Schedulers Using Hash Functions
	3.2 An Efficient Iterative Hash Function

	4 Confidence with Multiple Estimates
	4.1 Sequential Probability Ratio Test for Multiple Schedulers
	4.2 Chernoff Bound for Multiple Schedulers
	4.3 Experiments

	5 Prospects and Challenges 
	References


