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Abstract. Ecosystems and their biodiversity have to be protected and
preserved as sources of services and goods. The human population con-
trols and modifies ecosystems to improve its health conditions and wel-
fare. The consequences of human activities should be carefully monitored
and ecosystems should be managed to protect all of the species and
preserve their functioning. The development of strategies for ecosystem
management benefits from the use of computational techniques to model
the dynamics of species that interact with their abiotic and biotic envi-
ronment. Life scientists and computer scientists need to work together to
define and analyse ecosystem models. However, there is a multifaceted
gap between the approaches used in life science and those used in com-
puter science. Such gap is both cultural and technical, and results in
a number of challenges. In this paper we identify these challenges and
provide technical and cultural proposals for solving them.

1 Introduction

As human activity threatens the functioning of ecological systems by habitat
destruction [26], fragmentation [69], climate change [12], and introduction of
allochthonous species [27,64], we face the problem of understanding and manag-
ing the consequences of these impacts. The goal of environmental policy actions
is to preserve biodiversity and ecosystem services. Then identifying the key fea-
tures responsible for species survival (e.g. absence of a specific pollutant; level of
fragmentation of the landscape network; genetic heterogeneity within the popu-
lation) is the only viable long term solution for managing biodiversity loss.

In population ecology (which deals with the dynamic behaviour of popula-
tions, by focusing on the interactions with other species and the abiotic envi-
ronment), there is a need to combine and coordinate information from different
domains. The behaviour of each individual emerges from the complex inter-
play between social relationships within the population, trophic and non-trophic
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interactions (e.g. host-parasite and plant-pollinator) with individuals of other
species and spatial movements (i.e. dispersal in the landscape network). Linking
these organisational levels is still a challenge: an increasing need for hierarchi-
cal thinking is present in ecological stoichiometry (community-level patterns
concerning the ratios of certain elements [30]), and community genetics (how
genetic variance influences ecosystem functioning [38]). Traditional modelling,
focusing on macroscopic patterns and adopting a deterministic approach based
on average population behaviour (i.e. through the application of ordinary dif-
ferential equations), is weak in several respects. The inherent stochasticity and
variability and the large-scale patterns produced by local rules are important
features that should be more thoroughly investigated. Although the importance
of these aspects is recognised, novel approaches should be developed to incor-
porate stochastic dynamics in ecological modelling (e.g. stochastic processes are
often modelled by deterministic equations with added random noise).

New tools should be implemented for better understanding how to preserve
highly endangered species and plan actions of biodiversity conservation in com-
plex ecological communities. There is a need to improve stochastic modelling
for better understanding demographic noise and local interactions, especially in
case of small populations. Stochasticity is not a source of unpredictability and
randomness; rather, it represents a set of processes that are often neglected in
the phase of model design, but that can produce higher-level patterns [23]. Such
new tools would help in modelling the link between local and global processes,
simulating density dependence [17] and dealing with several other challenges of
ecology. Most likely the explicit modelling of hierarchical organisation will be
one of the key contributions to ecological research [47,65]. Ecologists empha-
sised the importance of modelling demographic and environmental stochasticity
in metapopulation dynamics [18], investigated fluctuations affecting the densities
of populations in communities as a consequence of environmental variability [62],
and analysed the effects of random perturbations on cyclic population dynamics
[43]. Actions of conservation biology often aim to protect rare species, which are
characterised by small population size, with individuals showing a highly het-
erogeneous behaviour. For these reasons, we argue that stochastic modelling can
represent a step ahead in the domain of ecological research. Ecosystem man-
agement would benefit from novel computational tools that allow researchers
to extend stochastic-based dynamics towards spatial and temporal simulations.
Results extracted from these analyses could serve for suggesting best strategies
of environmental sustainability and planning actions for biodiversity conserva-
tion [52]. In practice, they might aid in planning systems-based conservation
strategies [15], defining optimum programmes for managing multispecies fish-
eries [71], creating sustainable agroecosystems [58], investigating the functioning
of bio-geochemical cycles [19], predicting risks of secondary extinction [29], and
ranking of conservation priorities [50].

Section 2 reviews the main modelling approaches used in ecosystem science.
Section 3 discusses the multifaceted gap between the individual-based modelling
used in life science and identifies challenges that emerge from such gap. Section 4
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provides technical and cultural proposals for solving the identified challenges and
Sect. 5 concludes with some considerations on opinions of other scientists that
provide possible alternatives to our proposals.

2 State of the Art and Literature Review

2.1 Mathematical Modelling

Mathematical models [33] are essential in making precise theoretical arguments
about the factors affecting observed phenomena. Once validated, mathematical
models can be exploited to make predictions about the future evolutions of the
system under study.

The use of mathematical models in population biology and ecology is nowa-
days common practice. Many books describe the basic concepts and the most
well-established models [36,46,53,60]. Among the most successful modelling
strategies we mention two approaches: age-structured population growth and
spatial spread [36]. The first approach allows predictions concerning long-term
changes in population numbers based on information about the age at which
individuals have offspring and the probabilities of death at different ages. The
second approach allows predictions about the future rate of spread of some pop-
ulations from initial observations. However, the use of mathematical models
has also some limitations: for example, such models are often based either on
differential equations or on recurrence relations describing how the size of a
population changes over time (with continuous or discrete time, respectively).
Since differential equations and recurrence relations are deterministic, they are
not suitable to model systems whose behaviour could be determined by choices
between alternatives associated with probabilities.

Although mathematical models become difficult to be studied analytically
when the complexity of the modelled system grows, a large increase in com-
putational power and the development of high-level modelling methods now
support the simulation of highly complex models. New methods and tools have
been developed to ease the definition of models that are based on differential
equations. One of these methods, System Dynamics (SD), developed at the
Massachusetts Institute of Technology in the early 1960s, provides a powerful
framework to build, simulate and analyse complex models, stressing the rela-
tionship between model structure and behaviour [61]. Moreover, the SD method
enables a multidisciplinary approach to problems [68], and thus supports the
development of comprehensive models for decision-making. Such comprehensive
models can be built in a modular way, to allow for some flexibility and adapt-
ability of model structure to different circumstances.

A fundamental characteristic of these models is that system descriptions are
very high level, with populations represented as a whole and their dynamics
defined top-down in terms of global laws. The internal dynamics is, therefore,
a black box. Thus, models can describe neither biological aspects of individ-
uals nor interactions among individuals that are not reflected in global laws
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controlling the dynamics of the population. A bottom-up definition of the popu-
lation dynamics, in which population properties emerge through the interaction
of individuals, is not possible using SD or methods based on differential equa-
tions. Although it is possible to play with the parameters of global laws and
identify patterns of changes, such as growth, oscillation and decay, and how
these patterns may respond to human intervention, there is actually no way to
capture the impact of human intervention at a lower level, e.g. at individual
level. For example, imagine that we introduce genetically modified plants that
are resistant to chemical treatments in a natural ecosystem, with the purpose of
using a given herbicide without leading to the death of the genetically modified
individuals, and we know that a side effect (e.g. susceptibility to drought) of this
genetic modification is a change in single individual’s behaviour. Methods based
on differential equations cannot capture the impact of the behavioural changes
in single individuals on the population dynamics, unless such a situation has
been observed in the past, which is not always the case.

2.2 Individual-Based Models Using Formal Notations

The notion of individual-based model in ecological modelling corresponds to the
computer science notion of agent-based model, namely of a model in which
there are multiple active entities (the agents), whose behaviour is governed by
a set of usually simple rules, that are allowed to interact with each other and
move in some virtual environment. A classical example of agent-based modelling
notation is that of Cellular Automata [25,45], which consists in a regular grid
of cells (usually one- or bi-dimensional), where each cell is associated with a
finite number of states and can pass from one state to another depending on the
states of adjacent cells in the grid. In the simplest versions of Cellular Automata
agents are identified with cells, but there exist extensions in which cells represent
positions in the environment, whereas agents are entities that can move from one
cell to another, and behave in accordance with the state of the cell and of other
agents in the same cell.

A class of modelling notations that are well-known in computer science and
can be used to describe populations at the individual level is Petri Nets [59]. Petri
Nets, in their most common formulation, are diagrammatic notations consisting
of places and transitions, which have been defined with the aim of modelling
concurrent systems sharing common resources. Places represent conditions and
transitions represent events that may occur when there are agents that satisfy
certain conditions. Agents are represented by tokens that can move from one
place to another when transitions take place. Petri Nets are one of the sim-
plest and most successful notations of computer science for the description and
analysis of concurrent systems. They have also been applied to the modelling of
ecological systems [66], also in combination with Cellular Automata [34].

Other recent definitions of individual-based models that exploit formal nota-
tions of computer science are based on membrane systems [54]. Membrane
systems are distributed parallel computing devices inspired by the structure
and the functioning of living cells. A membrane system consists of a hierarchy
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of membranes, each of them containing a multiset of objects, representing mole-
cules, a set of evolution rules, representing chemical reactions, and possibly other
membranes. A model of a population of Bearded Vultures based on membrane
systems has been developed using P systems, a formalism belonging to the cat-
egory of membrane system [20].

The individual-based approach [51] is computationally more expensive than
the mathematical modelling approach based on differential equations described
in Sect. 2.1, but allows life scientists to explore how the dynamics of a popula-
tion or of an ecosystem arises from the ways in which individuals interact with
each other and with the environment. Due to this computational cost a pure
individual-based approach can only be used with populations consisting of a
small number of individuals.

2.3 Stochastic Simulation and Individual-Based Models

The limitations of mathematical modelling, the effectiveness of computational
models to deal with stochastic aspects, and the level of performances reached
by computers in the last few years motivate the increase in the application
of computational means in life sciences. In fact, the adjective “computational”
is becoming widely used in life sciences to qualify disciplines such as biology,
ecology, epidemiology, and so on. However, in these disciplines the adjective
“computational” often simply means that stochastic simulation techniques are
exploited in order to study properties of mathematical models of systems of
interest.

Most stochastic simulation techniques usually consider a relatively small
number of classes of individuals, and then use standard probability distribu-
tions (binomial, Poisson, etc.) to generate the number of individuals in each
class, at each successive time step.

The current trend in the study of population dynamics is to enrich individual-
based models with stochasticity, in order to attempt to follow each individual
in the population from its birth, through growth, dispersal and reproduction, to
death [10]. Such an “individual-based” stochastic approach [51] is computation-
ally more expensive than stochastic traditional approaches, which make use of
a small number of aggregate categories, but allows life scientists to explore how
the dynamics of a population or of an ecosystem arises from the ways in which
individuals interact with each other and with the environment. In this individual-
based context, stochastic simulation algorithms such as one of the variants of the
Gillespie Algorithm [31,32] generate statistically correct population evolutions.

3 Identification of Research Challenges

Formal analysis techniques of theoretical computer science, such as static analy-
sis and model checking, can be applied to agent-based models in order to ver-
ify properties of the described systems. These techniques are well-established
in computer science but are practically unknown to life scientists. The rest of
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this section is organised as follows. In Sect. 3.1 we identify the multifaceted gap
between individual-based modelling and formal analysis techniques. Then in
Sect. 3.2 we illustrate the research challenges that we encounter in order to fill
in this gap.

3.1 A Multifaceted Gap

There is a mutifaceted gap between the individual-based modelling used in life
science and the formal analysis techniques used in computer science. This gap
can be characterised by the following aspects.

A1 — High-level vs. Low-level Descriptions. Life scientists use high-level
notations that represent models in a visual way annotated with natural lan-
guage descriptions. Such notations support an almost direct representation of
biological and ecological processes. However, the semantics of such models is
not formally defined and there is no guarantee that simulations really reflect
the intended behaviour of the model. Formal languages are based on low-
level primitives that are close to machine-readable operators, but have to be
combined in a complex manner to define high-level biological and ecological
processes. Their semantics can be unambiguously defined using mathematical
transformations and tools, which, however, obscure the intuition and require
deep mathematical skills to be used.

A2 — Extensive Simulations vs. Property Verification. Life scientists
perform a large number of simulations of the same model and then use sta-
tistics and/or data mining techniques to extract patterns, oscillations and
tendencies in the population dynamics. Static analysis and model checking
techniques support the characterisation and verification of properties of a
model of population dynamics without explicit recourse to simulations.

A3 — Ecological Problem vs. Mathematical Tool. Life scientists focus
on the ecological problem and see mathematical notations and tools as mere
instruments to solve their problem. Computer scientists normally focus on
mathematical notations and tools and use simplified and often unrealistic ver-
sions of biological and ecological problems to investigate theoretical aspects
of such notations and tools.

A4 — Field Data Collection vs. Ad-hoc Data. Life scientists collect data
in the field and/or use historical data to calibrate their models and run sim-
ulations. Computer scientists often have to cope with the lack of data to be
used for running their models. Thus they are often forced to define ad-hoc
data, which may not be realistic, with the danger of being biased in choosing
data that best illustrate the features and potential of their formal languages
and analysis techniques.

A5 — Realistic Models vs. Abstract Models. Life scientists tend to
include realistic details that facilitate the intuitive understanding of the
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model behaviour and make the model more appealing, but this often increases
the computational complexity of the model itself with a negative impact on
the efficacy of the analysis techniques. Computer scientists define abstract
models that contain only the details needed for the intended analysis, thus
possibly obscuring the understanding of the model behaviour.

A6 — Understand/Control vs. Replication. The final goal of life scien-
tists is to be able to understand the functioning of the ecosystems and test
possible control intervention on components of the ecosystem model, aiming
to perform adjustments to the system behaviour and evaluate the impact of
such intervention on the entire ecosystem. Although the final goal of life sci-
entists has been supported by the mathematical modelling work performed
using the SD approach, the use of formal models has been restricted to the
in-silico replication of the ecosystem evolution without much attention to
the evaluation of human intervention impact. To make it worse, as we have
seen in Aspect A4, since computer scientists typically do not use real data,
the ability of replicating reality is mostly just potential and is seldom docu-
mented in the literature.

3.2 Research Challenges

A lot of efforts have been devoted during the last decade to the attempt of filling
in the gap between individual-based modelling and formal analysis techniques. In
spite of such large efforts there are still no conclusive results in this direction and
a number of challenges have emerged in the process. In this section we illustrate
such challenges and match each of them to the aspects of the gap identified in
Sect. 3.1, by using the same top-level sequential number n for challenges (Cn)
as we used for their corresponding aspects (An).

C1 — Define an Appropriate Common Language. The definition of a
common language that allows life scientists and computer scientists to coop-
erate in the definition and analysis of models requires the selection of basic
biological and ecological processes and their implementation using a formal
language. The main challenges in this task are:
C1.1 — Language Expressiveness. There is a need to define a set of

high-level primitives that is sufficiently expressive for life scientists.
C1.2 — Intuitive Semantics. Each primitive should be associated with a

simple semantics that addresses intuition and can be understood without
a deep mathematical knowledge.

C1.3 — Correctness of the Implementation. There is a need to guar-
antee that the implementation faithfully captures the behaviour resulting
from the selected biological and ecological processes.

C1.4 — Modelling Ease. The use of the primitives in the modelling
process should be facilitated through the use of templates, defined oper-
ators and modelling frameworks.
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C2 — Limitations of Simulation and Verification
C2.1 — Analysis of Simulations. Simulations provide only a sample of

possible behaviours rather than a characterisation of all possible behav-
iours. Moreover, extracting global information from a set of simulations
is not an easy task and the outcome of this process may vary depending
on the techniques used (i.e. various statistical methods and data mining
techniques) and on the assumptions and choices made in applying such
techniques (choice of simulation parameters and pieces of information to
data mine).

C2.2 — State Space Explosion Problem. The use of verification tech-
niques in a stochastic individual-based approach results in state spaces
that grow exponentially with the size of the population; the use of spa-
tiality makes the exponential growth even faster.

C3 — Right Model for a Given Ecosystem. A cultural challenge is to urge
computer scientists to shift the primary focus of their research investigation
from the mathematical tool to the ecological problem. The challenge for
computer scientists is therefore to be able to define “the right model for
a given ecosystem” rather than “the appropriate ecosystem for their own
model”.

C4 — Data Collection. There is a need to create multidisciplinary research
teams in which life scientists and computer scientists collaborate in all phases
of the research: field work planning, data collection, data analysis, model
design and implementation, in-silico experiments and their interpretation. In
particular, computer scientists cannot use data that have been collected by
life scientists for other purposes, but they have to design new field work for
collecting appropriate data for their research. The challenge here is for life
scientists and computer scientists to define the appropriate form of collab-
oration, in which the field work is planned by a multidisciplinary research
team, is carried out by life scientists and produces data to be analysed by a
multidisciplinary research team.

C5 — Right Level of Abstraction. The model must be defined at an abstrac-
tion level sufficiently informative to keep alive the intuition about the sys-
tem behaviour without including irrelevant details that may have a negative
impact on the computational complexity.

C6 — Addressing Policy Support. The use of formal models to address
policy support is a challenging task. SD has been successful in exploring the
impact of policy implementation on behaviour of ecosystems [68]. In partic-
ular, the use of SD in the T21 modelling framework [1], developed by the
Millennium Institute, integrates economic, social and environmental factors
to support comprehensive and participatory development planning. However,
the T21 approach, and in general any approach based on SD, does not sup-
port the modelling of the impact of policy implementation at individual level.
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The challenge in using a formal approach for individual-based modelling is
the integration of economic, social and environmental factors within the same
model.

4 Addressing Challenges

In this section we address the challenges identified in Sect. 3.2 and propose possi-
ble strategies and research questions to bridge the gap between individual-based
modelling of populations and formal analysis techniques.

The final aim is to develop new theories of population dynamics based on
theoretical computer science means. New theories should be based on well-
established computer science notations, such as rewrite systems, finite state
automata and Petri Nets, adapted and extended to describe population individ-
uals. Moreover, such theories should deal with both deterministic and stochastic
behaviours of individuals and take into account spatial movement and landscape
dispersal.

4.1 Formal Notation (Addressing Challenge C1)

The events in the life of an individual that are usually of interest for the con-
struction of a population model are birth, death and interactions with other
individuals (either conspecific or belonging to different species) and with the
environment. Examples of relevant interaction events are those that have some
influence on the population size (e.g. mating, predation) or on the life-conditions
of the individual itself (e.g. nutrition, migration). All these events are often dis-
crete and may cause new individuals to appear (e.g. to be born, to come from
another population in the neighbourhood), and current individuals to disap-
pear (e.g. to die, to leave the local population) or change their states (e.g. from
“available to mate” to “pregnant”, from “egg” to “larva”).

Rewrite Systems. A possible way to model such events is by using rewrite
systems [11]. In the rewrite systems approach events may be modelled as rewrite
rules, such as egg −→ larva, that is the rule that rewrites a term (egg) into a
new one (larva). In this way the set of rewrite rules of the model of a population
(or a category of individuals in a population) predicts all events that may occur
to that population (or to that category of individuals). For example set {egg −→
larva, egg −→ ε}, where egg −→ ε describes the death of an egg, with ε denoting
the empty term, predicts all possible events that may occur to an egg.

The occurrence of these kinds of events, however, depends not only on the
current state of the individual (e.g. an egg may change to larva, but an adult
cannot) but also on the current state of the environment in which the individual
lives (e.g. an egg dies if the temperature goes below a specific threshold). In
general, in ecological systems we need to deal with a variety of environmental
events, whose cause is often unknown or depends on a very complex combination
of factors, which are external to the system itself. For example the dynamics of
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a population of a given species depends not only on the interaction with other
species within the same ecosystem, such as predators, prey and competitors, but
also on the occurrence of environmental events such as climatic events (i.e. vari-
ation of temperature and rainfalls) and events related to habitats (i.e. tree clear-
ing, bushfires, desiccation of a water container, pollution, hunting and human
settlement). Therefore, we have to associate a representation of the environment
Env with the current term and include in the rule the representation of the
environmental condition cond(Env) that enables the rule. Thus the rule that
models the death of an egg becomes cond(Env) : [egg]Env −→ [ε]Env. Finally, in
order to introduce stochasticity in an individual-based model defined as a rewrite
system, rewrite rules are associated with a rate k that describes the frequency
with which the rule is used in the computation. Thus the rule that models the
death of an egg becomes cond(Env) : [egg]Env −→k [ε]Env.

In previous work [11] we assume the existence of a list of external events,
with information about the time when these events occur. The occurrence of an
external event may modify some environmental information that affects ecosys-
tem evolution, such as temperature, vegetation density, volume of water, level
of pollution, size of a population, human density. Moreover, the list of external
events may change dynamically. For instance, a bushfire event, which decreases
the vegetation density, will be removed from the list of external events after the
occurrence of a rainfall event, and will be replaced with a new bushfire event
with a later occurrence time. Similarly, a desiccation event, which decreases the
volume of a water container will be removed from the list of external events after
the occurrence of a rainfall event, and will be replaced with a new desiccation
event with a later desiccation time. Lists of external events that contain histor-
ical data or data collected through field work are used to calibrate the model.
Once calibrated, the model is run together with a new list of external events
that describe human intervention and policy implementation.

This approach addresses Challenges C1.1–C1.3: the rule construct is suffi-
ciently expressive to describe relevant high-level events such as birth and death
(C1.1); the semantics of rewriting is quite intuitive even for the stochastic
version in which rules are associated with rates (C1.2); variants of Gillespie
algorithms ensure a correct implementation of the rules (C1.3). However, the
approach does not address Challenge C1.4. This is due to the following two
issues: (1) when the number of the details needed for describing the complexity
of an organism increases, the set of rules associated with the term that describes
a state of that organism also increases and each rule of such set may be affected
by a complex combination of environmental conditions and interactions with
other individuals; (2) the rate of a rule is not constant but often depends on a
complex combination of environmental conditions.

Although the number of different states in which an individual might be is
usually quite small, the large number of rules that describes the state transition
associated with each state and the complexity of functions describing rule rates
make the task of the modeller difficult.
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Automata, Process Algebras and Petri Nets. The fact that the number
of different states in which an individual might be is usually quite small sug-
gests that some extensions of finite state automata and process algebras with
appropriate parallel composition and interaction capabilities could be exploited.

Some interesting work has been carried out in systems biology using mod-
elling languages based on process algebras. Ciocchetta and Hillston developed
Bio-PEPA [22], a language for the modelling and analysis of biochemical net-
works, which is based on PEPA (Performance Evaluation Process Algebra).
Although Bio-PEPA can successfully handle some features of biochemical net-
works, such as stoichiometry and different kinds of kinetic laws, the operators
that describe interactions of reactants, products and enzymes do not address
intuition and, therefore, do not appeal life scientists. Moreover, Bio-PEPA does
not support the modelling of external events, thus lacking an essential feature
for modelling ecosystems. Kahramanoğulları et al. [41,42] developed LIME (Lan-
guage Interface for Modeling Ecology), a language tool for stochastic dynamic
simulation in ecology. LIME supports model definition using a narrative style
that facilitates the analysis of parallel, multiple ecological interactions in meta-
communities. LIME translates the model description into the BlenX program-
ming language for stochastic dynamical simulation [28]. In BlenX, the
propensities of interactions between individual entities can be modelled either as
simple rates or in terms of more complex functions (e.g. Holling’s type functional
responses), and the spatial distribution is described in terms of membership to
discrete locations in space (e.g. landscape patches). This discrete description of
space might impair the chance of modelling individual dynamics for which exact
spatial coordinates need to be known and traced (e.g. fish schooling [48]).

Since births and deaths of individuals must always be described while mod-
elling ecosystems, it would be useful to have a formalism that supports dynamic
creation and destruction of components of a parallel composition. A formalism
that presents this feature is the Dynamic I/O Automata proposed by Attie and
Lynch [4]. An automata-based formalism can be suitably used to build a popula-
tion model by starting from the description of the events that may happen in the
life of each kind of individual. We would need to define an automaton for each
kind of individual and compose in parallel as many copies of such automata
as individuals of the corresponding kind are present in the initial population.
Another important characteristic that makes Dynamic I/O Automata useful in
modelling populations of individuals is the ability to dynamically change the
signature of an automaton, that is, the set of actions in which the automaton
can participate. In this way an automaton describing an individual can change
its signature to mimic the evolution of that individual through its maturation
stages (e.g. from “egg” to “larva” to “adult”). This is definitely more natural
than the destruction of the old term and the creation of a new term that is used
to model maturation with a rewrite system.

We might also think of translating a process algebraic model or a constructed
parallel composition of automata into a Place/Transition Petri Net. Since the
number of kinds of individuals that belong to a population is finite, as well as
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the number of states of every process/automaton modelling a single individual,
a Petri Net could be constructed by considering one place for each state of each
process/automaton modelling a kind of individual, and one transition for each
transition in any of such process/automaton (by taking into account synchro-
nisations between processes/automata). The translation into Petri Nets would
allow some properties of the population dynamics to be verified statically by
computing the invariants of the obtained net.

In order to be used for modelling ecosystems, formalisms based on automata,
process algebras and Petri nets must be extended aiming to the definition of a
complete modelling framework in which also quantitative [9] and spatial aspects
[7,8] of population dynamics are taken into account. Quantitative aspects of
population dynamics are related with duration, frequency and probability of
the events that may happen in the population. Spatial aspects consist of the
description of the topology of the population environment, the positions of the
individuals in the environment and the movement from one position to another.
Several probabilistic, stochastic, timed and spatial extensions of automata and
Petri Nets have already been defined and are now well-established in computer
science [3,14,44,70]. Similar extensions have also been proposed for other kinds
of formalisms such as process algebras [13,37,40,57] and rewrite systems [6,11,
16,21,55,67].

Automata-based and process algebraic formalisms as well as Petri Nets have
the advantage that verification techniques, such as model checking, can often
be applied easily to them. Moreover, they are usually associated with friendly
graphical notations, which make them immediately understandable also to non-
specialists. These advantages with respect to rewrite systems clearly address
Challenge C1.4. However, up to now, we could not identify any approaches based
on automata, process algebras or Petri nets that address Challenges C1.1–C1.2.

4.2 Analysis Methodologies (Addressing Challenge C2)

Simulation is nowadays one of the most common analysis techniques for models
of biological and ecological systems. Simulators can be implemented quite easily
by following standard approaches (e.g. Monte Carlo simulation and numerical
integration) and can give useful information on the dynamics of the modelled
systems with acceptable computational costs. Moreover, simulators for some
standard ecological models are available to be used by ecologists and wildlife
managers without the need of knowing model details. Furthermore, simulation
may characterise the most probable system behaviours and be used for calibra-
tion purposes, that is, to validate models against available data.

Concerning formal analysis, model checking and abstract interpretations are
well established techniques that can potentially be used to analyse biological and
ecological systems. Efficient probabilistic model checkers, such as PRISM [49],
are the most promising tools in this sense; modelling notations for ecosystem
modelling can be translated into the input language of a model checker. Impor-
tant work in this direction has been carried out by Romero-Campero et al. [63]
and by Philippou, Toro and Antonaki [56].
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However, in order to deal with quantitative and spatial aspects of popula-
tion biology and ecology, formalisms must express notions such as position, age,
probability and duration, which all together could make the translation into
the input language of the model checker not feasible. Consequently, it would
be reasonable to translate into the model checker language only fragments of
the formalism that are suitable to describe particular classes of biological and
ecological systems, whereas new verification techniques should be developed, in
which all the quantitative and spatial notions are handled.

Interesting model checking methodologies for stochastic processes have been
developed in the last decade. Quantitative properties of stochastic systems are
usually specified in logics that explicitly compare the measure of executions sat-
isfying certain temporal properties with thresholds. The model checking problem
for stochastic systems with respect to such logics is typically solved by a numer-
ical approach that iteratively computes (or approximates) the exact measure
of paths satisfying relevant subformulae; the algorithms themselves depend on
the class of systems being analysed as well as the logic used for specifying the
properties. Hansson and Jonsson [35] introduced the Probabilistic Computation
Tree Logic (PCTL) for specifying properties of Discrete-Time Markov Chain
(DTMC) while Baier et al. [5] carried out extensive work on model checking
of Continuous-Time Markov Chains (CTMC), by defining the Continuous Sto-
chastic Logic (CSL) and developing the proofs of theoretical foundations as well
as the model checking algorithms. In general, these model checking approaches,
called numerical model checking, have a number of limitations: (1) numerical
algorithms work only for special systems that have certain structural properties
(e.g. Markov Models); (2) numerical algorithms require a lot of time and space,
thus scaling to large systems is a challenge; (3) the logics for which model check-
ing algorithms exist are extensions of classical temporal logics, which are often
not the most popular among life scientists.

One way to overcome these weaknesses of numerical model checking could
be the search for the right compromise between simulation and model checking.
An interesting approach in this direction is statistical model checking, which
overcomes the disadvantages of numerical model checking at the cost of being less
accurate. In this approach the system is simulated for finitely many runs, using
hypothesis testing to infer whether the samples provide a statistical evidence for
the satisfaction or violation of the specification. Statistical model checking was
first introduced by Younes [72] in 2005. The idea underlying statistical model
checking is to perform the model checking analysis on a sample of the population
rather than the entire population. Although the use of a sample causes a loss in
accuracy, statistical model checking provides a mechanism to calculate the size of
the sample that ensures the satisfaction of the property with a given probability.

The most basic statistical model checking algorithm considers the probability
α of false positive and β of false negative with respect to a given property ϕ.
Then, given a probability p, the algorithm computes two natural numbers, c
and n, such that property ϕ has to be satisfied by c simulations of a Stochastic
Discrete Event System M out of a total of n performed simulations to ensure
that ϕ is satisfied in M with probability p.
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Interest in statistical model checking has been growing during the last five
years and a workshop explicitly devoted to statistical model checking has been
held for the first time in 2013 [2]. The limited number of applications of statistical
model checking to biological systems that have been carried out up to now
include the verification of temporal properties of rule-based models of cellular
signalling networks [24] and a sophisticated statistical model checking algorithm
that uses Bayesian sequential hypothesis testing. This requires fewer system
simulations and has the ability to incorporate prior biological knowledge about
the model being verified [39].

We believe that statistical model checking has the potential to address Chal-
lenge C2 by realising an optimal compromise between simulation and verifica-
tion. As a model checking technique it supports the verification of a property,
but drastically reduces the number of system simulations, thus overcoming the
state explosion problem (Challenge C2.1).

4.3 Filling in the Cultural Gap (Addressing Challenges C3–C6)

In Sects. 4.1 and 4.2 we have dealt with the most technical Challenges (C1–C2)
in filling the gap between the individual-based modelling used in life science
and the formal analysis techniques used in computer science. In this section
we globally address Challenges C3–C6 using a cultural rather than technical
perspective.

Challenge C3 is the most representative aspect of the cultural gap between
life scientist and computer scientist. Here the need to change culture only involves
computer scientists, who should shift their research focus from mathematical
tools to ecological problems.

Only after this cultural challenge is solved, the other three challenges
(C4–C6) can be properly addressed. Moreover, establishing the technical basis
of a common language (Challenge C1) is the prerequisite that can facilitate the
creation of multidisciplinary research teams and their collaboration through-
out all research phases from field data collection to interpretation of in-silico
experiments (Challenge C4). Throughout this continuous collaboration process,
multidisciplinary teams should be also facilitated in agreeing on the right level
of abstraction for the considered problem (Challenge C5) and on the choice of
the factors to consider in evaluating and comparing policy implementations and
their impact on the ecosystem (Challenge C6).

Finally, we must mention that it is opinion of some researchers from both
computer science and ecology that cultural differences between the two commu-
nities are slowly disappearing. Worldwide there are efforts in proposing mul-
tidisciplinary projects, and universities are developing new multidisciplinary
educational programmes. We can optimistically expect that future generation of
scientists will have the necessary multidisciplinary culture to successfully address
Challenges C1-C6.
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5 Final Considerations

In this paper we have taken an ecology-driven perspective and claimed that it
is essential to address all Challenges C1–C6 in order to be able to define an
effective framework for modelling ecosystem dynamics.

Some computer scientists, instead, have as their main concern the challenge
of designing the appropriate mathematical notations for capturing ecological sys-
tems, while dealing with the state-space explosion problem and other technical
challenges. In this perspective, the main aim is that of refining frameworks in
order to better capture aspects and properties of ecological systems. The use
of simplistic or even unrealistic ad hoc data, therefore, would be justified by a
need to first address Challenges C1–C2, without taking Aspects A3–A6 into
account, with the expectation that, once the theory matures enough, researchers
will naturally turn to address Challenges C3–C6.

In Sect. 4.1 we have surveyed a number of formal notations used in modelling
biological and ecological systems and identified which, in our opinion, may be
appropriately extended to successfully address Challenges C1.1–C1.4.

An alternative approach, which has both computer scientists and life scien-
tists among its supporters, favours the adoption of graphical languages similar to
the ones typically adopted by ecologists. The main challenges of such approach
would be to give a formal semantics to the graphical language and, based on
such a semantics, define a translation to a formal language or tool to be used
for analysis.
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