
Carlos Canal
Akram Idani (Eds.)

 123

LN
CS

 8
93

8

SEFM 2014 Collocated Workshops: HOFM, SAFOME,
OpenCert, MoKMaSD, WS-FMDS
Grenoble, France, September 1–2, 2014, Revised Selected Papers

Software Engineering
and Formal Methods

Lecture Notes in Computer Science 8938

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Carlos Canal • Akram Idani (Eds.)

Software Engineering
and Formal Methods
SEFM 2014 Collocated Workshops: HOFM,
SAFOME, OpenCert, MoKMaSD, WS-FMDS
Grenoble, France, September 1–2, 2014
Revised Selected Papers

123

Editors
Carlos Canal
University of Malaga
Malaga
Spain

Akram Idani
LIG Lab
Saint Martin d’Hères Cedex
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-15200-4 ISBN 978-3-319-15201-1 (eBook)
DOI 10.1007/978-3-319-15201-1

Library of Congress Control Number: 2014960220

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the technical papers presented in the five high-quality workshops
associated to SEFM 2014 (12th International Conference on Software Engineering and
Formal Methods, held in Grenoble, September 1–5, 2014). SEFM 2014 was organized
by Inria and supported by Grenoble INP, Joseph Fourier University, LIG, and CNRS.

SEFM 2014 brought together practitioners and researchers from academia, industry,
and government to advance the state of the art in formal methods, to facilitate their
uptake in the software industry, and to encourage their integration with practical
engineering methods. Satellite workshops provided further opportunities for collabo-
rating and exchanging ideas about specific topics of Formal Methods and Software
Engineering, from conceptual to practical aspects.

The workshops focused on specific topics in the Software Engineering and Formal
Methods related domains: the First Workshop on Human-Oriented Formal Methods –
From Readability to Automation (HOFM 2014), the Third International Symposium on
Modeling and Knowledge Management Applications – Systems and Domains
(MoKMaSD 2014), the Eighth International Workshop on Foundations and Tech-
niques for Open Source Software Certification (OpenCert 2014), the First Workshop on
Safety and Formal Methods (SaFoMe 2014), and the Fourth Workshop on Formal
Methods in the Development of Software (WS-FMDS 2014). The review and the
selection process was performed rigorously, with each paper being reviewed by at least
three Program Committee (PC) members. A brief description of each workshop
follows, written by their organizers.

For each of the workshops at SEFM 2014, we thank the organizers for these
interesting topics and resulting talks. We also thank the paper contributors to
these workshops and those who attended them. We would like to extend our thanks
to all keynote speakers for their support and excellent presentations, and also, members
of each workshop’s Program Committee.

September 2014 Carlos Canal
Akram Idani

HOFM Organizers’ Message

While designing and applying formal methods, computer scientists have dominantly
focused on two factors only: first, a method must be precise and sound, and secondly,
it must be mathematically concise and aesthetic. Other important characteristics such
as simplicity, learnability, readability, memorability, ease of use and communication
or, even support for integrating tools into larger development tool chains are ignored
too often. These nonfunctional properties, however, are key attributes of usability and
user satisfaction. If usability is compromised, methods are not fit for the purpose of
documenting, reproducing, and communicating key design and realization decisions,
or analysis results, especially when these need to communicate or mediate between
expertise in different disciplines, different tool chains, or across technological or
organizational boundaries. For these reasons, many engineers and practitioners largely
reject formal methods and formal specification languages as “too hard to understand
and use in practice” while admitting that they are powerful and precise.

With increasing computing power and its consequent automation capabilities, the
research and development community, however, is slowly but definitely focusing on
usability in combination with automation. Moreover, practitioners across numerous
domains are increasingly interested in formal domain-specific modeling, simulation,
and validation, whether in application areas of energy, robotics, health, biology,
climate, and sustainable development, or, for specific technologies of importance such
as data analytics and user interface specification for an exponentially growing number
of handheld or wearable devices. While there are many applications of formal
methods to analyze human-machine interaction and to construct user interfaces, the
field of application of human factors to the analysis and to the optimization of formal
methods area is almost unexplored.

The HOFM workshop was held on September 1, 2014 in Grenoble, France. This
international workshop was affiliated to the 12th International Conference on Software
Engineering and Formal Methods (SEFM). The goal of the HOFM (Human-Oriented
Formal Methods) workshop was to bring together researchers, engineers, and
practitioners from academia and industry to baseline the state of the art in this
increasingly important domain. Every submitted paper was reviewed by at least three
Program Committee members, four regular papers were accepted for presentation at
HOFM 2014. An introduction to the first HOFM workshop was given by Maria
Spichkova on “Human-Oriented Formal Methods: Human Factors + Formal
Methods.” The program of the workshop was enriched by two keynote talks:

– Arkady Zaslavsky, CSIRO, Australia, “Internet of Things: New Dimensions of
Modelling, Usability and Human-Computer Interaction”

– Martin Glinz, University of Zurich, Switzerland, “Advantages and Pitfalls of Formal
or Formalizable Graphic Requirements Models”

The HOFM 2014 pre-proceedings, which include all papers presented at the
workshop, are available online at the workshop site http://hofm2014.wordpress.com.

http://hofm2014.wordpress.com

All authors of the HOFM workshop were invited to submit extended versions of their
papers, taking into account discussions made during the workshop.

We would like to thank all authors who contributed to HOFM 2014 as well as all
attendees to the workshop. We hope that the attendees found the program relevant to
their interests and inspiring. We also thank the Program Committee members for their
support and considered reviews, and the SEFM workshop chairs and local organizers
for their help.

Maria Spichkova
Heinz W. Schmidt

Program Committee

Katherine Blashki Noroff University College, Norway
Manfred Broy Technical University of Munich, Germany
Jan Carlson Mälardalen University, Sweden
Pedro Isaas Universidade Aberta, Portugal
Lalchandani Jayprakash IIIT Bangalore, India
Margaret Hamilton RMIT University, Australia
Peter Herrmann NTNU Trondheim, Norway
Tim Miller The University of Melbourne, Australia
Srini Ramaswamy ABB Bangalore, India
Daniel Ratiu Siemens AG, Germany
Bernhard Schätz fortiss GmbH, Germany
Heinz W. Schmidt (Chair) RMIT University, Australia
Carol Smidts Ohio State University, USA
Maria Spichkova (Chair) RMIT University, Australia
Judith Stafford University of Colorado, USA

VIII HOFM Organizers’ Message

SaFoMe Organizers’ Message

The enhancement of quality of service (QoS) and the reduction of the risk of fatalities
and injuries of strategic industrial products is a real need in many domains, including
for instance automotive, avionics, and rail. To achieve this, there is a need for cost-
efficient processes and methods supporting the development and operation of safety
enabling embedded systems.

Among several approaches, Component-Based Development (CBD) has emerged
as suitable to improve both the reuse and maintainability of systems. Many CBD
techniques use the concept of a contract, which describes what a component interface
provides and what it expects from other components. During system composition
contracts are compared to determine system compatibility. The majority of these
works has concentrated on the functional properties of systems. Much less work has
been devoted to apply CBD while dealing with nonfunctional properties, including
dependability properties such as safety, reliability, performance, and availability.

Formal methods have traditionally been advocated for improving the reliability of
safety-relevant systems. The First International Workshop on Safety and Formal
Methods, SaFoMe 2014, which was held in Grenoble, France, on September 1, 2014,
aimed at providing a forum for people from academia and industry to communicate
their latest results on theoretical advances, industrial case studies, and lessons learned
in the application of formal methods to safety certification, verification, and/or
validation in (but not limited to) component-based systems.

Papers submitted to SaFoMe 2014 were carefully reviewed by at least three
members of the Program Committee. From nine submissions, five papers were finally
selected to discuss the following topics: survivability, diagnosis, verification of safety
contracts, and formalization of behavioral patterns and shared resources. Prof. Dr. Jan
Jürgens from TU Dortmund and Fraunhofer ISST gave an invited talk on Security
Certification in the Presence of Evolution: Models vs. Code. A Round Table was held
at the end of the workshop where current challenges in industrial application of
Formal Methods in the safety context were actively discussed by the attendees, which
consisted of people both from academia and industry. The conclusion was that we are
still far from applying formal methods to deal with safety concerns in industrial
contexts, since there are too many modeling languages and tools that partially analyze
safety concerns while considering the evolving requirements.

Several people contributed to the success of SaFoMe 2014. We would like to
express our gratitude to all members of the Program Committee for their efforts and
commitment. The SEFM workshop’s organizers deserve special thanks for their
dedication and good work, which clearly made our organization tasks easier. We also
thank the nSafeCer project (EU ARTEMIS Joint Undertaking under grant agreement
no. 295373) for their support. Finally, thanks to the authors and attendees for their
passion and interest.

Program Co-chairs

Hans Hansson
Clara Benac Earle

Organization Committee

Elena Gómez-Martínez
Ricardo J. Rodríguez
Catia Trubiani

Program Committee

Clara Benac Earle Universidad Politécnica de Madrid, Spain
Simona Bernardi Centro Universitario de la Defensa, Universidad

de Zaragoza, Spain
Jan Carlson Mälardalen University, Sweden
David Garcia-Rosado Universidad de Castilla-La Mancha, Spain
Christophe Gaston Institut CARNOT CEA LIST, France
Elena Gómez-Martínez Universidad Politécnica de Madrid, Spain
Hans Hansson Mälardalen University, Sweden
José Merseguer Universidad de Zaragoza, Spain
Sasikumar Punnekkat Mälardalen University, Sweden
Nicolas Rapin Institut CARNOT CEA LIST, France
Ricardo J. Rodríguez Universidad de León, Spain
Fernando Rosa-Velardo Universidad Complutense de Madrid, Spain
Stefano Tonetta Fondazione Bruno Kessler, Italy
Catia Trubiani Gran Sasso Science Institute, Italy
Xavier Zeitoun Institut CARNOT CEA LIST, France

X SaFoMe Organizers’ Message

OpenCert Organizers’ Message

OpenCert provides for a unique venue advancing the state of the art in the analysis and
assurance of open-source software with an ultimate aim of achieving certification
and standards. The dramatic growth in open-source software over recent years has
provided for a fertile ground for fundamental research and demonstrative case studies.
Over the years, OpenCert has enabled a thriving community, small but focused,
examining issues ranging from certification to security and safety analysis for
applications areas as diverse as railways, aviation, knowledge management, sustain-
able development, and the open-source developers community.

The OpenCert workshop has successfully been held for seven consecutive editions.
The 8th year’s edition was colocated with SEFM 2014, being held in Grenoble,
France. The workshop attracted a total of six papers, out of which three were accepted
(an acceptance rate of 50 %). Each paper was reviewed by two to three reviewers. The
accepted papers offer a diverse range of topics from modeling approaches to learning
processes to state-of-the-art reviews on open-source software development processes.

The organizers are grateful to the Program Committee for their contribution in
terms of reviews and discussions.

Victor Fonte
Siraj Ahmed Shaikh

Program Committee

Bernhard Aichernig Technical University of Graz, Austria
Luis Barbosa University of Minho, Portugal
Alessandro Bessani Lisbon, Portugal
Peter Breuer Birmingham City University, UK
Antonio Cerone University of Pisa, Italy
Yannis Dimitriadis University of Valladolid, Spain
Fabrizio Fabbrini ISTI-CNR, Italy
Jesus Arias Fisteus Carlos III University of Madrid, Spain
Victor Fonte (Co-chair) University of Minho, Portugal
Maria João Frade University of Minho, Portugal
Paddy Krishnan Oracle Labs, Australia
Imed Hammouda Tampere University of Technology, Finland
Alexandre Madeira HASLab INESC TEC, Portugal
Paolo Milazzo University of Pisa, Italy
John Noll Lero – The Irish Software Engineering

Research Centre, Ireland
Alexander K. Petrenko ISP RAS, Russia
Simon Pickin Universidad Complutense de Madrid, Spain
Miguel Rio University College London, UK

Gregorio Robles King Juan Carlos University, Spain
Bruno Rossi Masaryk University, Czech Republic
Alejandro Sanchez Universidad Nacional de San Luis, Argentina
Siraj Ahmed Shaikh (Co-chair) Coventry University, UK
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Ralf Treinen Paris Diderot University, France
Tony Wasserman Carnegie Mellon Silicon Valley, USA

XII OpenCert Organizers’ Message

WS-FMDS Organizers’ Message

The Fourth International Workshop on Formal Methods in the Development of
Software, WS-FMDS 2014, was held in Grenoble, France, on September 2, 2014. The
purpose of WS-FMDS is to bring together scientists and practitioners who are active
in the area of formal methods and interested in exchanging their experiences in the
industrial usage of these methods. This workshop also strives to promote research and
development for the improvement of theoretical aspects of formal methods and tools
focused on practical usability for industrial applications.

After a careful reviewing process in which every paper was reviewed by at least
three WS-FMDS PC members and additional reviewers, the Program Committee
accepted seven regular papers, which is around half of the submitted papers. The
program of WS-FMDS 2014 was enriched by the keynote speech of Radu Mateescu,
on “Mu-Calculus Property-Dependant Reductions for Divergence-Sensitive Branch-
ing Bisimilarity.”

Several people contributed to the success of WS-FMDS 2014. We are grateful to the
general chair of the 12th International Conference on Software Engineering and Formal
Methods SEFM 2013, Prof. Radu Mateescu, for his support and help. We also would
like to thank the Program Committee members as well as the additional reviewers for
their work on selecting the papers. The process of reviewing and selecting papers was
significantly simplified using Easy-Chair. We would like to thank the attendees of the
workshop and hope that they found the program useful, interesting, and challenging.

Carlos Gregorio-Rodríguez
Fernando L. Pelayo

Program Committee

Mario Bravetti University of Bologna, Italy
Carlos Gregorio-Rodríguez Universidad Complutense de Madrid, Spain
Raluca Lefticaru University of Bucharest, Romania
Luis LLana University Complutense de Madrid, Spain
Jasen Markovski Eindhoven University of Technology,

The Netherlands
Fernando L. Pelayo Universidad de Castilla-La Mancha, Spain
Pascal Poizat Université Paris Ouest Nanterre La Défense

and LIP6, France
Fernando Rosa-Velardo Universidad Complutense de Madrid, Spain
Franz Wotawa Graz University of Technology, Austria
Fatiha Zadi University of Paris-Sud, France

Additional Reviewers

Souheib Baarir Paris-Sorbonne University and LIP6, France
M. Emilia Cambronero Universidad de Castilla-La Mancha, Spain
Fernando Cuartero Universidad de Castilla-La Mancha, Spain
Miguel Palomino Universidad Complutense de Madrid, Spain
Ismael Rodriguez Universidad Complutense de Madrid, Spain

XIV WS-FMDS Organizers’ Message

MoKMaSD Organizers’ Message

The Third International Symposium on Modelling and Knowledge Management
applications: Systems and Domains (MoKMaSD 2014) was held in Grenoble, France,
on September 2, 2014. The aim of the Symposium is to bring together practitioners and
researchers from academia, industry, government, and non-government organizations to
present research results and exchange experiences, ideas, and solutions for modeling and
analyzing complex systems and using knowledge management strategies, technology,
and systems in various domain areas such as ecology, biology, medicine, climate,
governance, education, and social software engineering. In particular, the focus is on
synergistic approaches that integrate modeling and knowledge management/discovery or
exploit knowledge management/discovery to develop/synthesise system models.

After a careful review process, the Program Committee accepted seven papers. The
program of MoKMaSD 2014 was enriched by keynote speeches by Alberto d’Onofrio
entitled “Human Behavior and the Spread of Infectious Diseases: A Challenge for
Modeling” and by Elisa Fromont entitled “Mine First to See Better.”

Several people contributed to the success of MoKMaSD 2014. We are grateful to
Antonio Cerone, who invited us to chair this edition of the Symposium and assisted us
in some organization aspects of the event. We would like to thank the organizers of
SEFM 2014, and in particular the General Chair Radu Mateescu, the Workshop Chairs
Carlos Canal and Akram Idani, and the Program Chair Gwen Salaun. We would also
like to thank the Program Committee and the additional reviewers for their work on
reviewing the papers. The process of reviewing and selecting papers was significantly
simplified using EasyChair.

We welcome all attendees to the symposium and hope that this event will enable
good exchange of ideas and generate new collaborations among attendees.

Paolo Milazzo
Anna Monreale

Program Committee

Orlando Belo University of Minho, Portugal
Paloma Cáceres Rey Juan Carlos University, Spain
Giulio Caravagna University of Milano-Bicocca, Italy
Antonio Cerone University of Pisa, Italy
Michele Coscia Harvard Kennedy School, USA
Andrea Esuli ISTI-CNR, Pisa, Italy
Alexeis Garcia-Perez Coventry University, UK
Jane Hillston University of Edinburgh, UK
Joris Hulstijn Delft University of Technology, The Netherlands
Marijn Janssen Delft University of Technology, The Netherlands
Ferenc Jordan COSBI, Italy

Wei-chung Liu Academia Sinica, Taiwan, R.O.C
Donato Malerba University of Bari, Italy
Stan Matwin University of Ottawa, Canada
Paolo Milazzo (Co-chair) University of Pisa, Italy
Anna Monreale (Co-chair) University of Pisa, Italy
Siegfried Nijssen KU Leuven, Belgium and Leiden University,

The Netherlands
Adegboyega Ojo DERI, National University of Ireland, Ireland
Giovanni Pardini University of Pisa, Italy
Matteo Pedercini Millennium Institute, USA
Nikos Pelekis University of Piraeus, Greece
Anna Philippou University of Cyprus, Cyprus
Marco Scotti GEOMAR Centre, Germany
Luca Tesei University of Camerino, Italy
Daniel Villatoro IIIA-CSIC and Universitat Autònoma de

Barcelona, Spain
Hui Xiong Rutgers, The State University of New Jersey, USA

Additional Reviewer

Pasquale Bove

XVI MoKMaSD Organizers’ Message

Internet of Things: New Dimensions of Modelling,
Usability and Human-Computer Interaction

Arkady Zaslavsky

CSIRO, Australia

Keynote Speaker of HOFM 2014

The Internet of Things (IoT) is one of the pillars of Future Internet and will connect
billions of “things”, where things include computers, smartphones, sensors, objects
from everyday life with embedded computational and communication capabilities and
the list goes on and on. Each of those things will have their physical and/or virtual
identity, attributes, intelligent and human-oriented interfaces, componentised func-
tionality and standardised communication protocols.

The Internet of Things will be generating massive amounts of data that will have to
be stored, validated, processed and communicated to relevant services, applications
and systems. This means also new dimensions of modelling, usability, and human-
computer interaction.

This talk focuses on the challenges of developing tools, middleware and software
platforms for the IoT, disruptively big data it generates, discovery of things for various
services and applications, representing semantics and enriching IoT data with semantics,
transforming IoT data into context and integrating these into knowledge. The talk will
also present various CSIRO projects in IoT, including EU FP7 OpenIoT which
developed open source flexible sensor-based system middleware platform. OpenIoT
brings together sensing and cloud computing and is an efficient platform for handling big
IoT data. Another advantage of the platform is human-orientation and usability –
OpenIoT offers users zero-programming integrated development environment.

Advantages and Pitfalls of Formal or Formalizable
Graphic Requirements Models

Martin Glinz

University of Zurich, Switzerland

Keynote Speaker of HOFM 2014

Every formal requirements specification needs to be validated by the stakeholders
of the system to be built. This is a major challenge as stakeholders typically have no
training in formal methods, thus making validation of formal requirements specifi-
cations a difficult or even impossible task. Formal or formalizable graphic models of
requirements have the potential of providing a solution to this problem as they are
demonstrative and can be simulated or executed. However, graphic formal models
also have pitfalls and limitations.

In my talk I will first introduce and situate the problem. Then I will take the
audience on a guided tour through some typical formal or formalizable graphic
requirements modeling languages such as statecharts, labeled transition systems, Petri
nets, and UML activity diagrams, highlighting advantages, pitfalls and limitations.

Security Certification in the Presence of Evolution:
Models vs. Code

Jan Jürjens

Technical University of Dortmund and Fraunhofer Institute for Software
and Systems Technology ISST, Dortmund (Germany)

http://jan.jurjens.de

Keynote Speaker of SaFoMe 2014

Security certification of complex systems requires a high amount of effort. As a
particular challenge, today’s systems are increasingly long-living and subject to
continuous change. After each change of some part of the system, the whole system
needs to be re-certified from scratch (since security properties are not in general
modular), which is usually far too much effort.

We present a tool-supported approach for security certification that minimizes the
amount of effort necessary in the case of re-certification after change. It is based on an
approach for model-based development of secure software which makes use of the
security extension UMLsec of the Unified Modeling Language (UML) [Jur05]. It
allows the user to integrate security requirements such as secure information flow
[Jur00] and audit security [Jur01] into a system design model and has been applied to
a number of industrial applications such as an electronic purse system [JW01].

The approach presented is based on results that determine under which conditions
change preserves security properties (for example in the context of structuring
techniques such as refinement or architectural principles such as modularization). The
approach supports an automated difference-based security analysis, at the level of
design models as well as the implementation code (using static security analysis
[AGJ11] or run-time verification). It has been applied e.g. to cryptographic protocols,
distributed security infrastructures, and identity management systems, and there are
empirical results comparing it to classical techniques for security certification. In the
outlook, we briefly present current research directions, such as applying the approach
to the security certification of cloud-based systems.

References

[Jur00] Jürjens, J.: Secure information flow for concurrent processes. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 395–409. Springer, Heidelberg (2000)

[Jur01] Jürjens, J.: Modelling audit security for smart-cart payment schemes with UML-SEC.
In: IFIP TC11 Sixteenth Annual Working Conference on Information Security (IFIP/
Sec’01), pp. 93–108. Kluwer, Norwell (2001)

[Jur05] Jürjens, J.: Secure systems development with UML. Springer, Heidelberg (2005)

http://jan.jurjens.de

[JW01] Jürjens, J., Wimmel, G.: Security modelling for electronic commerce: the common
electronic purse specifications. In: Schmid, B., Stanoevska-Slabeva, K., Tschammer,
V. (eds.) Towards the E-Society. IFIP, vol. 74, pp. 489–506. Springer, Heidelberg
(2001)

[AGJ11] Aizatulin, M., Gordon, A.D., Jürjens, J.: Extracting and verifying cryptographic
models from C protocol code by symbolic execution. In: 18th ACM Conference on
Computer and Communications Security (CCS 2011), pp. 331–340 (2011)

XX Security Certification in the Presence of Evolution: Models vs. Code

Static Analysis by Abstract Interpretation
and Decision Procedures

Matthieu Moy

Verimag, France
Joint work with Julien Henry and David Monniaux

Keynote Speaker of OpenCert 2014

Abstract interpretation techniques can be made more precise by distinguishing paths
inside loops, at the expense of possibly exponential complexity. SMT-solving
techniques and sparse representations of paths and sets of paths avoid this pitfall.

We improve previously proposed techniques for guided static analysis and the
generation of disjunctive invariants by combining them with techniques for succinct
representations of paths and symbolic representations for transitions based on static
single assignment.

Because of the non-monotonicity of the results of abstract interpretation with
widening operators, it is difficult to conclude that some abstraction is more precise
than another based on theoretical local precision results. We thus conducted extensive
comparisons between our new techniques and previous ones, on a variety of open-
source packages.

Human Behavior and the Spread of Infectious Diseases:
A Challenge for Modeling

Alberto d’Onofrio

International Prevention Research Institute (iPRI), France

Keynote Speaker of MoKMaSD 2014

This talk concerns a fast growing research area: modeling the influence of information-
driven human behavior on the spread and control of infectious diseases. In particular,
we shall focus on two main and inter-related “core” topics: behavioral changes in
response to global (or “perceived global”…) threats, and the pseudo-rational
opposition to vaccines. Indeed, people are likely to change their behavior and their
propensity to vaccinate themselves and their children based on information and, even
more often, rumors about the spread of a disease. This, implicitly, induces a feedback
that can deeply affect the dynamics of epidemics and endemics. In order to make
realistic predictions, modelers must go beyond classical mathematical epidemiology,
where, in anology with systems biology, the individuals are abstracted as particles in
brownian motion.

Mine First to See Better

Elisa Fromont

Université de Lyon, Université de St-Etienne, France

Keynote Speaker of MoKMaSD 2014

I will explain how data mining techniques such as pattern mining or (semi-supervised)
clustering can and should be used to improve fundamental computer vision tasks such
as image classification, image or video retrieval or object tracking in videos. The main
idea is to build on low level vision features such as segmentations or SIFT bag-of-
visual-words to construct more discriminant and invariant “mid-level” descriptors.
I will show examples of success stories that have used this pattern mining phase in the
last years. On the algorithmic point of view, I will focus on a dynamic plane graph
mining algorithm that integrates spatio-temporal constraints and can be used to help
tracking objects in videos in an unsupervised way.

Mu-Calculus Property-Dependent Reductions
for Divergence-Sensitive Branching Bisimilarity

Radu Mateescu

Head of the CONVECS Research Team, INRIA Grenoble, France
Chair of the FMICS working group of ERCIM

Keynote Speaker of WS-FMDS 2014

When analyzing the behavior of finite-state concurrent systems by model checking, one
way of fighting state space explosion is to reduce the model as much as possible whilst
preserving the properties under verification. We consider the framework of action-
based systems, whose behaviors can be represented by labeled transition systems
(LTSs), and whose temporal properties of interest can be formulated in modal mu-
calculus (Lmu). First, we determine, for any Lmu formula, the maximal set of actions
that can be hidden in the LTS without changing the interpretation of the formula. Then,
we define Lmu-dsbr, a fragment of Lmu adequate w.r.t. divergence-sensitive branching
bisimilarity. This enables one to apply the maximal hiding and to reduce the LTS
modulo this relation when verifying any formula of Lmu-dsbr. We show that this
fragment is equally expressive to mu-ACTL, the action-based counterpart of CTL
extended with fixed point operators. The experiments that we performed on various
examples of communication protocols and distributed systems show that this reduction
approach can significantly improve the performance of verification.

Contents

HOFM 2014

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups . . . 3
Bernhard Beckert, Sarah Grebing, and Florian Böhl

An Approach for Creating Domain Specific Visualisations of CSP Models. . . 20
Lukas Ladenberger, Ivaylo Dobrikov, and Michael Leuschel

Using Z in the Development and Maintenance of Computational Models
of Real-World Systems . 36

Shahrzad Moeiniyan Bagheri, Graeme Smith, and Jim Hanan

When a Formal Model Rhymes with a Graphical Notation 54
Akram Idani and Nicolas Stouls

SaFoMe 2014

On a Process Algebraic Representation of Sequence Diagrams 71
Jaco Jacobs and Andrew Simpson

Modelling and Verification of Survivability Requirements for Critical Systems . . . 86
Simona Bernardi, Lacramioara Dranca, and José Merseguer

Model-Based Verification of Safety Contracts. 101
Elena Gómez-Martínez, Ricardo J. Rodríguez, Leire Etxeberria Elorza,
Miren Illarramendi Rezabal, and Clara Benac Earle

A Testing-Based Approach to Ensure the Safety of Shared Resource
Concurrent Systems. 116

Lars-Åke Fredlund, Ángel Herranz, and Julio Mariño

A Contracts-Based Framework for Systems Modeling and Embedded
Diagnostics . 131

Gregory Provan

OpenCert 2014

Modelling and Verifying Smell-Free Architectures with the ARCHERY Language . . . 147
Alejandro Sanchez, Luis S. Barbosa, and Alexandre Madeira

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities . . . 164
Patrick Mukala, Antonio Cerone, and Franco Turini

http://dx.doi.org/10.1007/978-3-319-15201-1_1
http://dx.doi.org/10.1007/978-3-319-15201-1_2
http://dx.doi.org/10.1007/978-3-319-15201-1_3
http://dx.doi.org/10.1007/978-3-319-15201-1_3
http://dx.doi.org/10.1007/978-3-319-15201-1_4
http://dx.doi.org/10.1007/978-3-319-15201-1_5
http://dx.doi.org/10.1007/978-3-319-15201-1_6
http://dx.doi.org/10.1007/978-3-319-15201-1_7
http://dx.doi.org/10.1007/978-3-319-15201-1_8
http://dx.doi.org/10.1007/978-3-319-15201-1_8
http://dx.doi.org/10.1007/978-3-319-15201-1_9
http://dx.doi.org/10.1007/978-3-319-15201-1_9
http://dx.doi.org/10.1007/978-3-319-15201-1_10
http://dx.doi.org/10.1007/978-3-319-15201-1_11

Process Mining Event Logs from FLOSS Data: State of the Art
and Perspectives . 182

Patrick Mukala, Antonio Cerone, and Franco Turini

MoKMaSD 2014

A Latent Representation Model for Sentiment Analysis in Heterogeneous
Social Networks . 201

Debora Nozza, Daniele Maccagnola, Vincent Guigue,
Enza Messina, and Patrick Gallinari

Use of Mobile Phone Data to Estimate Visitors Mobility Flows 214
Lorenzo Gabrielli, Barbara Furletti, Fosca Giannotti,
Mirco Nanni, and Salvatore Rinzivillo

An Abstract State Machine (ASM) Representation of Learning Process
in FLOSS Communities . 227

Patrick Mukala, Antonio Cerone, and Franco Turini

A Mathematical Model for Assessing KRAS Mutation Effect on Monoclonal
Antibody Treatment of Colorectal Cancer. 243

Sheema Sameen, Roberto Barbuti, Paolo Milazzo, and Antonio Cerone

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 259
Cesar Augusto Nieto Coria, Luca Tesei, Giuseppe Scarcella,
Tommaso Russo, and Emanuela Merelli

Research Challenges in Modelling Ecosystems . 276
Antonio Cerone and Marco Scotti

Retrieving Points of Interest from Human Systematic Movements 294
Riccardo Guidotti, Anna Monreale, Salvatore Rinzivillo,
Dino Pedreschi, and Fosca Giannotti

WS-FMDS 2014

Path-Sensitive Race Detection with Partial Order Reduced Symbolic Execution . . . 311
Andreas Ibing

Phase-Type Approximations for Non-Markovian Systems: A Case Study 323
Gabriel Ciobanu and Armand Rotaru

Quantitative Anonymity Evaluation of Voting Protocols. 335
Fabrizio Biondi and Axel Legay

Scalable Verification of Markov Decision Processes 350
Axel Legay, Sean Sedwards, and Louis-Marie Traonouez

XXVI Contents

http://dx.doi.org/10.1007/978-3-319-15201-1_12
http://dx.doi.org/10.1007/978-3-319-15201-1_12
http://dx.doi.org/10.1007/978-3-319-15201-1_13
http://dx.doi.org/10.1007/978-3-319-15201-1_13
http://dx.doi.org/10.1007/978-3-319-15201-1_14
http://dx.doi.org/10.1007/978-3-319-15201-1_15
http://dx.doi.org/10.1007/978-3-319-15201-1_15
http://dx.doi.org/10.1007/978-3-319-15201-1_16
http://dx.doi.org/10.1007/978-3-319-15201-1_16
http://dx.doi.org/10.1007/978-3-319-15201-1_17
http://dx.doi.org/10.1007/978-3-319-15201-1_18
http://dx.doi.org/10.1007/978-3-319-15201-1_19
http://dx.doi.org/10.1007/978-3-319-15201-1_20
http://dx.doi.org/10.1007/978-3-319-15201-1_21
http://dx.doi.org/10.1007/978-3-319-15201-1_22
http://dx.doi.org/10.1007/978-3-319-15201-1_23

Towards Synthesis of Attack Trees for Supporting Computer-Aided
Risk Analysis . 363

Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek

On Generation of Context-Abstract Plans . 376
Łukasz Mikulski, Artur Niewiadomski, Marcin Piątkowski,
and Sebastian Smyczyński

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows
Based on WS-BPEL and WSRF . 389

José Antonio Mateo, Valentín Valero, Hermenegilda Macià,
and Gregorio Díaz

Author Index . 405

Contents XXVII

http://dx.doi.org/10.1007/978-3-319-15201-1_24
http://dx.doi.org/10.1007/978-3-319-15201-1_24
http://dx.doi.org/10.1007/978-3-319-15201-1_25
http://dx.doi.org/10.1007/978-3-319-15201-1_26
http://dx.doi.org/10.1007/978-3-319-15201-1_26

HOFM 2014

A Usability Evaluation of Interactive Theorem
Provers Using Focus Groups

Bernhard Beckert, Sarah Grebing(B), and Florian Böhl

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,sarah.grebing,boehl}@kit.edu

Abstract. The effectiveness of interactive theorem provers (ITPs)
increased such that the bottleneck in the proof process shifted from effec-
tiveness to efficiency. While in principle large theorems are provable, it
takes much effort for the user to interact with the system. A major
obstacle for the user is to understand the proof state in order to guide
the prover in successfully finding a proof. We conducted two focus groups
to evaluate the usability of ITPs. We wanted to evaluate the impact of
the gap between the user’s model of the proof and the actual proof per-
formed by the provers’ strategies. In addition, our goals are to explore
which mechanisms already exist and to develop, based on the existing
mechanisms, new mechanisms that help the user in bridging this gap.

1 Introduction

Motivation. The degree of automation of interactive theorem provers (ITPs)
has increased to a point where complex theorems over large formalisations for
real-world problems can be proven effectively. But even with a high degree of
automation, user interaction is still required on different levels. On a global level,
users have to find the right formalisation and have to decompose the proof task
by finding useful lemmas. On a local level, when automatic proof search for a
lemma fails, they have to either direct the proof search or understand why no
proof can be constructed and fix the lemma or the underlying formalisation. As
the degree of automation increases, the number of interactions decreases. But
the remaining interactions get more and more complex as ITPs are applied to
more and more complex problems.

When proving theorems, the automated proof search often leads the proof
into a direction that differs from the way a human would conduct the proof. To
interact with the theorem prover in a meaningful way during the proof process,
users have to understand the prover’s strategy and the state of proof construction
and, thus, have to bridge the gap between their own model of the proof search
and the current proof state of the tool. Open goals in partial proofs are the
result of syntactic transformations that may not be intended to make it easy
for humans to understand them. The intention of the transformations is rather

This work is part of the project Usability of Software Verification Systems within the
BMBF-funded Software Campus. Florian Böhl was funded by MWK grant “MoSeS”.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-15201-1 1

4 B. Beckert et al.

to get the automated proof search closer to a complete proof. Therefore, users
need to understand the prover’s strategy and often have to look at intermediate
proof states, resulting from rule applications onto the original proof obligation,
to comprehend the current state.

Although it is easy to accept that there is a gap between a human user’s
model of the proof resp. proof search and the actual automated proof search,
it is rather unclear how large its impact on interactive theorem proving is for
typical proof obligations. Nevertheless, the following is a central hypothesis for
our work, which we wanted to test during the usability evaluation:

Bridging the gap between the user’s model of the proof state and the
state of the theorem prover at interaction points is the paramount and
prominent challenge for efficient and effectively usable general theorem
provers.

In addition, we are interested in evaluating which tools or mechanisms are
already present in today’s provers that help to bridge the gap and how to extend
existing mechanisms to help the user in understanding the proof states.

Our contribution in this work is that we conducted an experiment using the
survey method focus groups to get a first evaluation of whether our hypothesis
is true and to gain answers to our two questions: (a) Which mechanisms of this
kind are already used in theorem provers? (b) What mechanisms are missing?

Survey method. We have carried out two experiments, where we applied the
focus group method [10,16] to two different ITPs: the tactical theorem prover
Isabelle/HOL [18] and the interactive program verification system KeY [7].

Focus groups are a qualitative survey method typically used in an early stage
of the usability engineering process [12,17]. Based on their results, (prototypi-
cal) mechanisms for improving usability can be developed, which can then be
evaluated with methods such as usability testing and user questionnaires to
quantitatively measure increases in usability. While focus groups explore the
subjective experience of users, they are designed to eliminate experimenter-bias
and to provide more objective results. The number of participants required to
get significant results is much smaller than for quantitative evaluations, which
makes focus groups well-suited for the relatively small user base of ITPs.

Background. Our work is part of the BMBF-funded Software Campus pro-
gramme. We apply various methods known from the field of human-computer-
interaction (HCI) to ITPs, including focus group discussions, usability testing,
and user experience questionnaires. Since expertise from both fields (ITP and
HCI) is required, we cooperate with user experience experts from DATEV eG
who are well-versed in the ergonomic evaluation of standard software.

Structure of this paper. Section 2 briefly reviews related work on usability eval-
uations of ITPs. The focus group method is introduced in Sect. 3. In Sect. 4
we present the results of the experiments and relate them to our hypothesis.
Section 4.5 presents our results regarding mechanisms and tools for understand-
ing the proof state. We conclude and discuss future work in Sect. 5.

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 5

2 Related Work

The ITP community has noticed the need to evaluate and improve usability, but
so far structured usability evaluation methods have rarely been applied to ITPs.

In previous work [5], we have performed a questionnaire-based evaluation of
the KeY system based on Green and Petre’s Cognitive Dimensions questionnaire
[9] to get a first impression of the user’s perception and to develop first hypothe-
ses about the usability of the KeY system. Beyond that Kadoda et al. [14] evalu-
ated proof systems using Green and Petre’s Cognitive Dimensions questionnaire
to develop a list of desirable features for educational theorem provers.

Aitken and Melham [1–3] evaluated the interactive proof systems Isabelle
and HOL using recordings of user interactions with the systems in collabora-
tion with HCI experts. During the proof process the users were asked to think
aloud and after the recordings the users were interviewed. The goal of this work
was to study the activities performed by users of interactive provers during the
proof process to obtain an interaction model of the users. They propose to use
typical user errors as usability metric and they compared provers w.r.t. these
errors. Also, suggestions for improvements of the systems have been proposed by
the authors based on the evaluation results, including, besides others, improved
search mechanisms and improved access to certain proof-relevant components.

Jackson et al. used co-operative evaluation methods on the CLAM Proof
Planner [13]. Users were asked to perform predefined tasks while using the
“think-aloud technique” to comment on what they were doing.

Vujosevic and Eleftherakis used questionnaires and interviews to explore why
Formal Methods Tools are not used in industry [20]. Their work includes eval-
uations of usability aspects of several formal methods tools, such as the Alloy
Analyzer. For improving the interface of the prover NuPRL, a self-designed ques-
tionnaire was used to evaluate the users’ perceptions of the interface [11].

Similar to our findings, Archer and Heitmeyer [4] also realized the gap between
the prover’s and the user’s model of the proof. They have developed the TAME
interface on top of the prover PVS to reduce the distance between manual proofs
and proofs by automation. TAME is able to prove properties of timed automata
using so called human-style reasoning. Proof steps in TAME are intended to be
close to the large proof steps performed in manual proofs. The authors have devel-
oped strategies on top of the PVS strategies that match more closely the steps per-
formed by humans. The goal is to provide evidence and comprehension of proofs
for domain but not proof experts.

Lowe et al. describe in their work [15] their approach to building a co-operative
theorem prover and describe some undesirable features of ITPs focussing on feed-
back of the system. They have implemented the BARNACLE interface for the
CLAM prover which allows explanations for failing preconditions, which should
make proofs more comprehensible for the users.

Ouimet identified different issues, e.g., large proof size and number of proof
steps, that have to be addressed in order to have a widespread use of theorem
provers in [19] and evaluated the system ESC/Java against these issues. The
issues were identified by examining a large case study conducted at Motorola.

6 B. Beckert et al.

3 Survey Method: Focus Groups

Focus group discussions are a qualitative method to explore opinions of users
about specific topics or products, e.g., in market research. In the field of human-
computer interaction (HCI) they are used to explore user perspectives on soft-
ware systems and their usability in an early stage of the usability engineering
process [12,17]. As already mentioned in the introduction, they provide the sub-
jective experience of the users and require only a small number of participants
(five to ten). The duration of the discussion groups is around one to two hours
and it is guided by a moderator who uses a script to structure the discussion.
Focus groups have three phases: Recruiting participants, performing the discus-
sion and post-processing. In the following we will briefly give an insight into the
script which was used to guide the discussion. The full description of the setup
and script can be found in [6].

Script for the discussions. The main questions and tasks in the script were the
same for both conducted focus groups as we wanted to compare the results.
Adaptations of the questions and presented mock-ups to the specifics of the two
systems were the main differences. As a warm-up task, we asked about typical
application areas of the systems and about their strengths and weaknesses related
to the proof process. In the main part of the discussion, we had two topics: (1)
Support during the proof process and (2) Mechanisms for understanding proof
states. As a cool-down task, we asked the participants to be creative and imagine
their ideal interactive proof system. The full scripts with all questions for our
experiments are available at http://formal.iti.kit.edu/∼grebing/SWC.

4 Evaluation of the Focus Groups and Analysis Results

4.1 The User’s and the Tool’s Model of the Proof Process

ITPs are used to aid users in proving complex theorems in many areas of com-
puter science and mathematics. For using such systems, the user needs to have
a certain level of experience in proving theorems. In general, the user has a con-
cept or plan of how to prove the desired theorem. We call this concept user’s
model of the proof. This can either be already a whole proof plan or just first
ideas on the proof process. This model also includes an assumption about the
theorem prover’s strategies as we do not consider the proof plan for a pen and
paper proof as being the user’s model, but the proof plan for how the user would
prove the problem using a theorem prover.

One big difference between the user’s model of the proof and the current
partial proof is that the proof steps in the model are coarser and have an intu-
itive (summing up) semantic for the user (such as “simplification of the proof
obligation”), whereas the prover’s steps are more fine-grained and are a syntac-
tic manipulation of the proof state. While an intuitive semantic for each rule
application exists (as given by the rule’s author), a sequence of consecutive rule
applications in the system may not have a clear intuitive semantic for the user.

http://formal.iti.kit.edu/~grebing/SWC

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 7

P
r
o
o
f
p
r
o
c
e
s
s

Start

Interaction

δUser
Tool

Interaction

Anchor
point

u
p

point

Fig. 1. Model of the proof
process

In Fig. 1 we have sketched our idea of the rela-
tion between the actual proof performed by the
prover’s search strategy (p) and the user’s proof
model (u). At the beginning of the proof process
the user’s model is identical with or close to the
proof obligation in the proof system. However, the
more the automatic strategies of the prover try to
prove the proof obligation (arrow p), the more the
actual proof state in the system differs from the
user’s model (arrow u). As the user has to guide
the prover by interacting with it, the user has to
understand the process of the prover and relate the

actual proof state to the user’s model. For this relation the user has to inspect
the current proof state (interaction point) and find a corresponding state in the
own model (anchor point). After the user interacts with the prover, the proof
of the system below the interaction point is proceeding to some extent into the
direction of the user’s model, reducing the gap.

In some cases, no useful anchor point may exist. Then the user has to follow
and understand the automatic proof construction and, in doing so, construct a
new model u that is identical with or an abstraction of p. In contrast, if the user
only applies rules manually and there is no automatic proof search, then p is
identical to u (in case the user fully understands the effect of the applied rules).

In the standard case, however, where there is a gap between u and p, there
should be mechanisms in the systems that help the user in relating the anchor
point with the interaction point (dotted line). In general, we can identify two
parameters which can differ from system to system: the size of the gap between
the actual proof and the user’s model (δ), and the mechanisms that help to
relate the user’s model and the current proof state to aid the user in compre-
hending the proof state (dotted line between anchor and interaction point).

Apart from the gap it could be that the user does not have a clear model of
the proof or even none at all. Here the gap, as described is not applicable. In
this case the user uses the automation of the prover without any model in mind
in order to use the resulting proof state to concretize the own fuzzy model and
therefore the user has to comprehend the resulting proof state.

4.2 The Participants of Our Focus Group Discussions

We conducted two focus groups, one for the Isabelle system and one for the
KeY system. To categorize the participants, we draw a distinction between tool
knowledge and domain knowledge. Most of them were at expert or intermediate
level w.r.t. domain knowledge. With respect to tool expertise, the Isabelle group
consisted of five participants: one less experienced, two intermediate, and two
expert users. The KeY group consisted of seven participants: one less experi-
enced, two intermediate, and four expert users.

8 B. Beckert et al.

4.3 Targets of Evaluation

In the following we will briefly introduce the two systems under evaluation with
the focus on those parts that were mentioned by the participants. Here, we start
with the application areas of the systems as given by the participants.

KeY system. The KeY system is an interactive verification system for programs
written in Java annotated with the Java Modelling Language (JML). As such it
is mostly used for the verification of Java programs w.r.t. a formal specification
(usually a functional specification but also, for example, information-flow prop-
erties). KeY is also used for teaching and demonstrating formal methods, and
as verification condition generator for other systems. KeY has an explicit proof
object, i.e., all intermediate proof states can be inspected by the user. KeY uses
a sequent calculus for Java Dynamic Logic [8]. Its user interface shows proofs
as a tree, the nodes of the tree contain intermediate proof goals (i.e., sequents).
Each node N is annotated with the rule that was applied to some formula in
N ’s parent node to construct N .

Isabelle. Isabelle is a theorem prover for higher-order logic. As mentioned by the
participants, it is especially used for the formalization, verification and execution
of algorithms, for proving in general and for the development of formal models.
It has an implicit proof object, i.e., not all intermediate proof states are shown to
the user, only goal-states where the system stops its automatic strategies. These
automatic strategies are called methods, however the participants used the term
tactics, therefore we use this term throughout the paper. Isabelle’ proof tactics
are basically sets of rules or lemmas that can be applied to the goal state. In this
paper, the auto tactic will often be mentioned, which applies a large number of
rule sets automatically, and the simp tactic, which applies rules that simplify
the goal-state. Within Isabelle also different tools can be invoked that generate
counterexamples (e.g., nitpick, quickcheck) or that invoke SMT solvers to find a
(sub-)proof (e.g., sledgehammer).

4.4 Strengths and Weaknesses of the Targets of Evaluation

Here, we discuss the strengths and weaknesses of the systems with respect to the
proof process as mentioned by the participants. Interestingly, some characteris-
tics of the systems that were first named as a strength lead to lively discussions in
later phases, which often brought up negative aspects of the same characteristics.

Strengths. First, we discuss results of the focus groups w.r.t. the strengths of
the systems, which are summarized in Table 1.

KeY System. The group on KeY agreed that the expressiveness of the system is
an important strength. The participants like how the Java Modeling Language
can be used to annotate Java code. They appreciated that a proof with the
KeY system always follows a certain structure, that this structure is visualized

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 9

Table 1. Strengths of the two systems according to the participants. The labels indicate
whether a characteristic is linked to our (M)odel of the proof process (see Sect. 4.1) or
rather to (O)ther aspects of interactive theorem proving (the classification is our own
and not the focus group’s).

KeY Isabelle

· Expressive specification language (O) · Underlying language very intuitive (M)

· Proof can be inspected in detail (M) · Helpful community (O)

· KeY tries to simplify open goals (M) · Large public library of theorems (O)

· High degree of automation for simple
problems (O)

· Automatic tactics and tools ease proof
process (M)

· All proofs follow a similar structure (M) · Proofs can be modularized (M)

· Intuitive presentation of proof by using
macros and proof tree (M)

· Flexible w.r.t. use of top down or
bottom up approach (O)

· Allows user-defined rules (M) · Code export for testing the model (M)

· Support of JML (O) · User-adjustable syntax (M)

in form of the proof tree, and that this tree can be inspected at an arbitrary
level of detail. Macros, which group rules similar to tactics in Isabelle, ease the
interaction process and help to give the proof the direction intended by the user.
According to the participants, the KeY system can solve easy problems without
any or with only very little interaction. Furthermore, KeY supports user-defined
rules. These rules can be of help during the proof process.

Isabelle. The group on Isabelle considers the underlying proof input language
Isar to be one of the system’s main advantages. It allows for proofs to be struc-
tured and presented in a standard textbook style that is very intuitive for
humans. The large user community of Isabelle is considered to be an impor-
tant strength. It provides a growing (and already quite extensive) library of
theorems available to everyone. Furthermore, the community is a good resource
of knowledge and friendly towards beginners. Isabelle provides a variety of tools
that help during the proof process, e.g., sledgehammer and nitpick. The system
can be used for a top-down as well as for a bottom-up proof approach.

Weaknesses. The results of the focus groups w.r.t. weaknesses of the systems,
i.e., room for improvements are shown in Table 2. For this brief overview, we
omit some of the more technical remarks by participants that are not related
to the general proof process in our opinion. For example, regarding KeY there
were complaints about an unstable proof loading mechanism and memory leaks.
Some Isabelle users complained about specific features of jEdit – a widespread
editor for Isabelle proofs.

KeY System. Interestingly, several characteristics of KeY that were named as
strengths by the focus group were also identified as areas with potential for

10 B. Beckert et al.

Table 2. Weaknesses of the two systems according to the participants. The labels
indicate whether a characteristic is linked to our (M)odel of the proof process (see
Sect. 4.1) or rather to (O)ther aspects of interactive theorem proving (the classification
is our own and not the focus group’s).

KeY Isabelle

· Necessity of repeated trivial manual
interactions (M)

· Finding the right tactic for a proof
state is a non-trivial explorative
task (M)

· Not possible to get practically usable
counterexamples (M)

· Unexpected inference of types leads
to unintuitive errors (M)

· Proof tree too detailed (M) · Bloated formulas (M)

· Interaction on low-level logic formulas
required (M)

· No insight into automatic tactics;
unintuitive (M)

· Unintuitive mapping between formula and
program (M)

· Messy downward compatibility for
older proofs in newer system
versions (O)

· Performance of automatic strategy (O) · No support for proof refactoring (O)

· Practical scalability (O) · Library: important mathematical
foundations are missing (O)

improvement. The proof tree – whose existence was perceived as a strength of
KeY – was considered to be too detailed. Some stated that linking proof states to
Java code would be helpful. Interaction on the low-level logic formulas is neces-
sary, sometimes trivial and tedious. Manual interaction often has to be repeated
in similar situations. There are no useful tools to generate counterexamples.

Isabelle. According to the participants, an important downside of Isabelle is
that the process of choosing the right tactics and tactic parameters to conduct
a proof is not always intuitive. If a tactic cannot be applied successfully in a
situation it is hard to find the reason. A technical problem is that type inference
sometimes leads to very unintuitive errors. Additionally, formulas belonging to
different properties that could be checked (and thus presented) independently
are all combined in a single goal state which increases the size of the formula
(e.g., invariants encoding type information for functions).

An often recurring task when working with Isabelle is to refactor proofs
towards better understandability, however, tools for refactoring are missing.
While the public library of theorems was also mentioned as a strength, a weak-
ness is that some important mathematical foundations are still missing, i.e., in
some theories lemmas are still missing.

Observations and Relation of Results to Our Model. Here, we relate
results of the focus groups to our model of the proof process (Sect. 4.1) and to
our hypothesis. We evaluate the characteristics (Tables 1 and 2) w.r.t. to three
challenges an ITP has to solve:

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 11

(A) Keeping the gap small. In general, mechanisms that help to keep the gap
between the tool’s proof state and the user’s mental model small are seen as
strengths of the systems – unintuitive behavior of the tools in the proof process
is often mentioned as a problem. Several strengths of KeY help to keep the gap
small: Proofs follow the same structure, macros help to guide the proof into
the expected direction (similar to tactics which were mentioned as a strength
of Isabelle), and users can introduce new rules that match their intuition (these
rules have to be proven correct). Both tools allow the proof to be modularized
(in Isabelle it can be split up into lemmas, in KeY into contracts) – this allows
structuring the proof as a sequence of statements intuitive for humans. Some KeY
users stated that they use the automatic proof search only if it closes a branch
as otherwise the resulting state is too unintuitive to continue interactively.

(B) Bridging the gap. Understanding a given proof state is an important chal-
lenge for users of both systems during the proof process. Consequently, mecha-
nisms and characteristics of the systems that help the user’s understanding are
considered to be important strengths. Here, Isabelle provides a couple of useful
tools (quickcheck and nitpick to name two). Furthermore, the intuitive structure
of the underlying language Isar is named as an important strength. Correspond-
ingly, the absence of suitable mechanisms for certain situations is an important
weakness. For example, our participants criticized that KeY does not provide
a useful tool to generate counterexamples. Such a tool is necessary to detect
whether the prover is stuck because further user input is needed or the property
does not hold and no proof exists. While there are tools to generate counterex-
amples for Isabelle, the counterexample representation could be improved in the
eyes of some participants in case proof obligations contain functions. Currently
it is difficult to find the part of a proposition that is not provable.

(C) Supporting Interaction. Finally, as soon as users have a sufficient under-
standing of the proof state, they need to interact with the tool in an effective
way. In this area there still seems to be a lot of room for improvement for both
tools. The participants of the KeY focus group criticized that the interaction
often has to be performed not on the annotation level but on low-level logic
formulas. Furthermore, low-level steps have to be repeated by hand in similar
situations. The Isabelle users were unhappy about the tedious task of finding
the correct tactic to continue.

Conclusion. We observe a strong connection between the named strengths and
weaknesses and our model of the proof process from Sect. 4.1. More than half
of the mentioned characteristics can be associated with concepts introduced by
the model. Furthermore, the results support our hypothesis that bridging the
gap between the user’s model of the proof and the ITP’s proof state is very
important during the proof process.

12 B. Beckert et al.

4.5 User Support During the Proof Process

We divided the part of the discussion about the proof processes into two parts,
namely the global proof process (finding the right formalization and decomposing
the proof task) and the local proof process (proving a single lemma or theorem).
The participants were asked to describe their typical proof process respectively,
and to name feedback mechanisms that the systems provide. Our expectations
were that existing prover support and mechanisms to aid the user are adapted
to the respective abstraction levels of the two processes.

4.6 State-of-the-Art in User Support

Global proof process. For both, KeY and Isabelle, the participants described a
similar proof process: it starts with the formalization of the system/problem and
its main properties. Users considered the modeling task to be among the most
time-consuming ones. However, system feedback in this phase is restricted to
syntactical and simple consistency tests. Instead, feedback causing the user to
revise the model on the global level results from the local proof process. It is
not surprising that there is only little user support for the global process, as the
tasks often require creativity and depend on the particular problem.

Local proof process. In the local proof process, the users are guided by their
individual impression of the complexity of open goals/proof obligations. If the
user considers the obligation to be“easy enough”, he or she tries a fully auto-
matic strategy. Otherwise, or if the automation fails, the user tries to prove
the obligation interactively. In this case there are two options: structured proofs
(Isar/macros) or proof exploration (manual application of rules resp. tactics).

The case where the problem is considered to be easy and is tried to be proven
automatically fits our model: It is the case where the user’s proof plan has only
one step leading to the proof state “proof complete”. In the other case, proof
exploration corresponds to the user having only a partial proof model, or a set of
different models from which the appropriate one has to be determined. In terms
of Fig. 1, we observe multiple arrows originating from the proof obligation.

Both KeY and Isabelle aid the user by providing search mechanisms or sug-
gestion mechanisms for proof rules resp. lemmas: As stated by the participants,
Isabelle supports the user in finding the right proof technique with a search
mechanism for theorems in the library. KeY offers different search mechanisms
and suggests applicable rules for a user-selected formula.

System feedback for the local process. In the local processes the systems give dif-
ferent kinds of feedback, e.g., counterexamples, open or closed goals, and (partial)
proofs. Some of these are explicit (e.g., message boxes), others are implicit in a
changed proof state.

The main difference between both tools is that KeY provides the full path to
the open goals as proof tree, while no explicit tree is available in Isabelle.

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 13

Which part of the system (e.g., sequent, proof tree, formalization) is inspected
by the user to decide on how to continue the proof depends on the problem, but
we also learned that different users use different information.

From an abstract perspective the approach of inspecting the proof state,
especially in KeY, corresponds to top-down analysis of the proof: the focus
moves from the specification to single goals/sequents. At the beginning of the
proof process, the specification is inspected more often and the shape of the proof
tree plays an important role. Later in the process, the branches in the proof tree
and the sequents in the open goals become more important. Also, problem com-
plexity influences whether the sequents of the open goals are helpful or not.

In Isabelle, the strategy try (that carries out the complexity estimation in a
simple form) and other tools and tactics (e.g., sledgehammer, quickcheck, nitpick,
auto) give feedback about the goal-state. If the tactics cannot find a proof, the
resulting goal-states have to be inspected by the user. However, Isabelle does
not provide information about the used rules or lemmas leading to an open goal.
As stated especially in the Isabelle group, it is a matter of experience to decide
how proof search should proceed.

The comments on the feedback mechanisms of the proof systems support our
hypothesis: the user has to understand the system’s proof. The different proof
artifacts are inspected and the user tries to recognize certain familiar shapes, for
which he or she knows from experience how to continue in the proof process.

Proof granularity in the local process. One part of our hypothesis is that the
granularity of the automatic strategies as presented to the user does not match
the granularity in the user’s proof model.

When the application of automatic strategies and tools does lead to open
goals instead of a closed proof, information about used lemmas or rules is often
missing. An example is the auto tactic: if it finds a proof, showing only a single
proof step is appropriate. If it does not find a proof, it does not provide infor-
mation about the concrete proof rules it applied and the resulting intermediate
states (although this information is available internally). Only the remaining
goal-states are presented to the user. Better feedback is provided by sledgeham-
mer, as it displays the lemmas used in the underlying SMT proof.

Granularity of the proof and feedback of single steps also plays a role when
publishing or refactoring a proof depending on the intended audience. In user-
constructed proofs Isabelle allows different levels of granularity. Often proofs in
Isabelle are more fine grained than proofs on paper.

In KeY, there are three different granularity levels (in this case for proof
construction): (a) each rule application individually, (b) using the full automatic
strategy, and (c) proof macros together with one step-simplification as middle-
course. Proof macros are a preferred way of proving. However, they are not
applicable in every proof situation.

In both systems, the granularity of the proof steps can be too fine-grained or
too coarse, depending on the proof situation (e.g., failed proof attempts) and the
purpose of the proof (e.g., publishing a proof). We conclude that there should
be a compromise between the two extremes, e.g., a mechanism that allows to get

14 B. Beckert et al.

insight into the Isabelle tactics if required. For the KeY system, a mechanism
would be useful that summarizes steps in the proof tree and only unfolds them
on user inspection – extending existing mechanisms that collapse/unfold certain
kind of proof nodes like intermediate steps or closed proof branches.

Time-consuming tasks during the proof process. We suspected that inspecting
open goals resp. finding relations between different proof artifacts would be time-
consuming tasks. To test this, we asked for time-consuming actions in the proof
processes. As mentioned above, in the global process the modelling and specifi-
cation task is time-consuming as well as the proof attempts in the local process.
Additionally, when the user wants to minimize the proof attempts in the local
process, the setup for the automatic strategies is time-consuming in both sys-
tems. Other time-consuming tasks that were mentioned, are the decision when to
reconsider the whole model, proof refactoring (in Isabelle), and model refactoring
(in KeY).

In the local process, the following time-consuming actions are related to
understanding the proof state: analyzing open goals, finding counterexamples,
identifying the cause of a failed proof, as well as systematic proof exploration
(in KeY), and find theorems and proof exploration by using apply scripts (in
Isabelle). These answers support our hypothesis, as they provide evidence that
understanding the proof state is a laborious task. Also, other costly tasks were
mentioned: automatic proofs (as the user has to wait for the prover) and trivial
repetitive instantiations on different branches (in KeY), as well as redoing a proof
and especially finding the correct point to which to backtrack before correcting
the model or specification. In Isabelle, cleaning up proofs takes time as well.

Conclusion. Our observation is that a lot of answers focused on understanding
the proof state. For example, Isabelle users spend a lot of time cleaning up
their proofs to make them accessible and understandable for other users. The
answers related to the topic “understanding the proof state” in the part about
time-consuming actions also support this observation. To conclude, the answers
support our hypothesis that understanding a proof is a central and important
task in theorem proving. The participants spend time on understanding the
proof state in order to be able to proceed with the proof or find the cause for a
failed proof attempt. Comprehending the proof state is also necessary for proof
exploration, e.g., when the user only has parts of the proof process in mind or
when the user does not know how to start or proceed.

4.7 Mechanisms Supporting the Comprehension of the Proof State

Prior to the discussion, we developed paper mock-ups of mechanisms for both
verification tools which we believe aid the user in understanding the proof (state)
and therefore help to overcome the discrepancy between the proof model of the
user and the actual proof of the system. Implementing these remains for future
work. These mock-ups were presented to the focus groups as a sequence of screen-
shots that show how to invoke the mechanism and the effect of the mechanism

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 15

in a particular proof situation.1 Our intention was to gain feedback whether our
developed mechanisms are comprehensible, serve our intended purpose (bridge
or reduce the gap) and are of interest for the participants. The task for the par-
ticipants was to describe the purpose and effect of the mechanism (as they saw
it) and share their opinion about it.

Tracing Terms/formulas/variables. We showed two mock-ups (designs) for
each system for the mechanism of tracing the origin of formulas respectively
variables in an open goal: In Isabelle we showed the parent formula of an open
goal with renamed variables. Additionally, the relation between the original and
the renamed variables was depicted. As a second mock-up we showed a state
with a number of open goals. By clicking on one of the goals, some of the used
lemmas and definitions leading to that goal were shown.

For the KeY system, the starting point for both designs was the same: we
selected one (sub-)formula of the sequent in the open goal. Then, for the first
design, we depicted a new window showing the selected formula and its ancestors
up to the original proof obligation (we summarized some of the intermediate
parent formulas to not clutter up the screen). In addition, the names of the rules
producing the formulas were given. The top-most parent shown was that part of
the specification where the formula had its origin. In the second design we did
not use a new window, instead we highlighted the parents in each inner node of
the proof tree up to the root, which contains the original proof obligation.

When the groups where shown the mock-up of the mechanism for tracing for-
mulas, the first reaction was clearly positive, particularly in the Isabelle group
for the first mock-up. Almost all participants intuitively understood the mech-
anism. One participant reported that he simulates this mechanism by manual
“reverse-renaming” in an external text editor. However, the question came up
whether the additional information may be confusing or clutter the screen. It
was suggested to implement the mechanism carefully, possibly using mouse-over
tags and – in particular for KeY – include it into the existing GUI concept.

Inspired by the second mechanism for Isabelle (showing the used lemmas)
some participants stated that it would be useful to have a mechanism showing
the path or case distinctions leading to selected open goals on demand.

The second design in the KeY group triggered a new idea: some participants
suspected a filtering mechanism and discussed about filtering the sequent and
the proof tree.

What Needs to Be Proven? For the Isabelle system, a mock-up was given,
showing which lemmas and theorems contribute to a proof (depicted as a simple
coloured graph). Unproven lemmas were coloured red, lemmas whose proofs used
unproven lemmas were coloured orange, and fully proven lemmas were coloured
green. The lemmas already proven were depicted with a box with an ellipsis
as description. The red and orange boxes were labelled with the name of the
1 The screenshots may be found at http://formal.iti.kit.edu/∼grebing/SWC/.

http://formal.iti.kit.edu/~grebing/SWC/

16 B. Beckert et al.

lemma that still needs to be proven resp. uses unproven lemmas. The participants
described the mechanism as separating the used from the unused lemmas and
that it would be useful in combination with, e.g., the automatic strategy simp.

Most of the participants showed a positive reaction to this mechanism. Some
participants would prefer a textual representation of the used and unused lem-
mas. The design of our mock-up can be improved in general. The level of detail
should be chosen carefully in order not to clutter up the screen (e.g., fold proven
lemmas with the option to unfold) and the view should be hierarchic.

What Happened During the Proof Process? For the KeY system, the
mock-up showed a diff mechanism relating two nodes in the proof tree (not
necessarily adjacent nodes). We designed the mock-up such that all unchanged
parts of the sequent were blurred out and the relevant changes were shown
directly above each other. The participants needed some time to understand
the idea and the blurring was found to be confusing, as the presentation of two
different sequent parts can be mistaken as belonging to the same single sequent.

One participant noticed that something similar is implemented in the KeY
system already as string diff mechanism, where the diff between two sequents
is shown in one new window. However, this participant also claimed that the
mechanism needs improvement, which supports our idea that such a functionality
should be implemented in the KeY system.

Already during the discussion, ideas for improvement came up, e.g., that the
diff between two sequents should be shown in two windows adjacent to each
other or above each other. Also, like in a text-diff viewer, the changes should be
marked using colours or typographical presentations. And in the proof tree, the
two nodes which are being compared should be marked.

In conclusion, we suggest to develop a user-configurable diff mechanism which
shows the two sequents being compared in two windows. One window depicts
the old sequent and one depicts the new sequent. In addition, the algorithm
for comparing two sequents has to be chosen carefully and consider the tree-
structure of the sequent. A string diff algorithm is not sufficient for comparing
tree-shaped sequents, as certain differences are recognized in the wrong way. For
example, it is wrong to assume that replacing n by null results from appending
ull to n.

4.8 The Ideal Interactive Proof System

As a cool-down task, we asked the participants to name properties that an ideal
interactive verification system should or should not have. Our goal here was
twofold – we wanted to collect more ideas about desirable features of ITPs and
evaluate our hypothesis at the same time. For the sake of brevity, we can only
present some of the mentioned features here. We decided to omit comments that
were of technical nature (e.g., “It should not have memory leaks.”) as well as
points that have already been mentioned in previous phases.

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 17

Intuitive proof process. Both groups wished that an ideal interactive proof system
would produce proofs “close to what an experienced user would expect.”

This perfectly supports our paradigm of reducing the gap resp. keeping the
gap small between the user’s model of the proof and the ITP’s current proof
state.

Understandable proof states. The focus group on KeY prefers more interaction
in terms of the original proof obligation (e.g., specification and program) while
the Isabelle group wishes for semi-automatic proof steps (instead of the fully
automatic tactics). In our opinion this illustrates that too many as well as too
few details have a negative effect on understandability of the ITP.

Convenient interaction. One important feature that was wished for by both
groups is a good performance of the ITP. The performance can impede usability
if the user has to wait too long between interaction steps.

Conclusion. In summary, participants of our focus groups asked for an ITP that
(i) produces intuitive proofs, (ii) can present proof steps in an understandable
way (and give counterexamples if the proof can not be closed), and (iii) provides
a convenient interface for interaction.

5 Conclusion and Future Work

We conducted two focus group discussions to evaluate the usability of ITPs. Our
goal was to find evidence that a gap between the user’s model of the proof and
the system’s current proof state exists and that this gap is a central problem for
the usability of ITPs. In addition, we have developed mock-ups for mechanisms
that help to bridge this gap or keep it small. We have developed a first model
of the proof process with the focus on the relation between the user’s (partial)
model of the proof process and the current proof state.

In this evaluation we have found evidence that our model of the proof process
is reasonable: the model does not fully represent the complexity of interactive
proof search but captures already a lot of peculiarities. Our findings also indicate
that the gap between the user’s model of the proof and the system’s current proof
state is a central problem in interactive theorem proving.

We have also encountered related topics, such as counterexample generators
and finding the correspondence between the current proof state and the program
(in the KeY system) that clearly show that our model does not capture all the
details of proving yet and therefore for future work this model will be extended.
We have also discovered other usability issues in the systems not related to
our hypothesis. These are often either technical or relate to other topics, e.g.,
performance of the automatic strategies. We believe that attention has to be
drawn to these as well to enhance the user experience for ITPs.

We have presented functionalities that should help to bridge the gap or reduce
the gap concentrated on providing the user insights into what happened dur-
ing the automatic proof search. The participants reacted positively towards the

18 B. Beckert et al.

mechanisms and provided feedback for improvements or new ideas, such as user
defined filter mechanisms for the proof tree in KeY.

For future work we will extend the proposed mechanisms and prototypi-
cally implement them in the KeY system and perform usability tests to evaluate
our solutions. Additionally, we plan to extend the model to take into account
that there are also different proof strategies for one proof and it is often user-
dependent which proof style is used for a proof.

Acknowledgements. We thank the participants of our focus group discussions on
the usability of KeY and of Isabelle and, in particular, the two moderators for their
great work. In addition, we thank our project partners from DATEV eG for sharing
their expertise in how to prepare and analyse focus group discussions.

References

1. Aitken, J.S., Gray, P., Melham, T., Thomas, M.: Interactive theorem proving: an
empirical study of user activity. J. Symb. Comp. 25(2), 263–284 (1998)

2. Aitken, J.S., Melham, T.F.: An analysis of errors in interactive proof attempts.
Interact. Comput. 12(6), 565–586 (2000)

3. Aitken, S., Gray, P., Melham, T., Thomas, M.: A study of user activity in inter-
active theorem proving. In: Task Centred Approaches To Interface Design, pp.
195–218. GIST Technical. Report G95.2, Department of Computing Science (1995)

4. Archer, M., Heitmeyer, C.: Human-style theorem proving using PVS. In: Ait
Mohamed, O., Muoz, C., Tahar, S. (eds.) LNCS. Springer, Heidelberg (1997)

5. Beckert, B., Grebing, S.: Evaluating the usability of interactive verification systems.
In: Proceedings, 1st International Workshop on Comparative Empirical Evalua-
tion of Reasoning Systems (COMPARE), Manchester, UK, June 30, 2012, CEUR
Workshop Proceedings, vol. 873, pp. 3–17. CEUR-WS.org (2012)

6. Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: using focus
groups to evaluate the usability of interactive theorem provers. In: Benzmüller,
C., Woltzenlogel Paleo, B. (eds.) Proceedings, Workshop on User Interfaces for
Theorem Provers (UITP), Vienna. EPTCS, July 2014 (to appear)

7. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS, vol. 4337. Springer, Heidelberg (2007)

8. Beckert, B., Klebanov, V., Schlager, S.: Dynamic logic. In: Beckert et al. [7], chapter
3, pp 69–175

9. Blackwell, A., Green, T.R.: A cognitive dimensions questionnaire (v. 5.1.1) Feb
2007. www.cl.cam.ac.uk/∼afb21/CognitiveDimensions/CDquestionnaire.pdf

10. Caplan, S.: Using focus group methodology for ergonomic design. Ergonomics
33(5), 527–533 (1990)

11. Cheney, J.: Project report - theorem prover usability. Technical report, 2001.
Report of project COMM 641. http://homepages.inf.ed.ac.uk/jcheney/projects/
tpusability.ps

12. Ferré, X., Juzgado, N.J., Windl, H., Constantine, L.L.: Usability basics for software
developers. IEEE Softw. 18(1), 22–29 (2001)

13. Jackson, M., Ireland, A., Reid, G.: Interactive proof critics. Formal Aspects Com-
put. 11(3), 302–325 (1999)

www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
http://homepages.inf.ed.ac.uk/jcheney/projects/tpusability.ps
http://homepages.inf.ed.ac.uk/jcheney/projects/tpusability.ps

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 19

14. Kadoda, G., Stone, R., Diaper, D.: Desirable features of educational theorem
provers: a cognitive dimensions viewpoint. In: Proceedings of the 11th Annual
Workshop of the Psychology of Programming Interest Group (1996)

15. Lowe, H., Cumming, A., Smyth, M., Varey, A.: Lessons from experience: making
theorem provers more co-operative. In: Proceedings 2nd Workshop User Interfaces
for Theorem Provers (1996)

16. Morgan, D.L.: Focus groups. Annu. Rev. Sociol. 22(1), 129–152 (1996)
17. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San

Francisco (1993)
18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
19. Ouimet, M., Lundqvist, K.: Formal software verification: model checking and the-

orem proving. Technical report, March 2007
20. Vujosevic, V., Eleftherakis, G.: Improving formal methods’ tools usability. In:

Eleftherakis, G. (ed.) 2nd South-East European Workshop on Formal Methods
(SEEFM 05), Formal Methods: Challenges in the Business World, Ohrid, 18–19
Nov 2005. South-East European Research Centre (SEERC) (2006)

An Approach for Creating Domain Specific
Visualisations of CSP Models

Lukas Ladenberger(B), Ivaylo Dobrikov, and Michael Leuschel

Institut für Informatik, Universität Düsseldorf, Düsseldorf, Germany
{ladenberger,dobrikov,leuschel}@cs.uni-duesseldorf.de

Abstract. A domain specific visualisation can greatly contribute to bet-
ter understanding of formal models. In this work we propose an approach
that supports the user in creating domain specific visualisations of CSP
models. CSP (Communicating Sequential Processes) is a formal language
that is mainly used for specifying concurrent and distributed systems. We
have successfully created various visualisations of CSP models in order
to demonstrate our approach. The visualisations of two case studies are
presented in this paper: the bully algorithm and a level crossing gate.
In addition, we discuss possible applications of our approach.

Keywords: Formal methods · CSP · Domain specific visualisation ·
Validation · Method · Tool support · Graphical editor

1 Introduction and Motivation

The feedback from a domain expert is crucial in the process of creating a formal
model since certain types of errors can only be detected by a domain expert.
Moreover, it is very important for the domain expert to make sure that his
expectations are met in the formal model. However, the communication between
the developer of a formal model and the domain expert can be challenging. One
reason for this is the fact that discussing a formal model requires knowledge
about the mathematical background of the respective formalism that the domain
expert might not have. To overcome this challenge, it may be useful to create
domain specific visualisations of formal models.

Inspired by the successful application of domain specific visualisations [1,6]
of Event-B models [3], we have started an attempt to develop an approach
for creating domain specific visualisations for CSP (Communicating Sequential
Processes). CSP is a notation used mainly for describing concurrent and distrib-
uted systems. There are two major CSP dialects: CSP-M [15] and CSP# [17].
The most popular tools that support model checking of CSP-M specifications
are FDR [19] and ProB [10]. Support for animating processes of CSP-M spec-
ifications is provided by ProB and ProBE [5]. The more recent CSP# [17] is

The work in this paper is partly funded by ADVANCE, an European Commission
Information and Communication Technologies FP7 project.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 20–35, 2015.
DOI: 10.1007/978-3-319-15201-1 2

An Approach for Creating Domain Specific Visualisations of CSP Models 21

supported by the PAT system [18]. In this work, we concentrate on the creation
of domain specific visualisations for CSP-M models.

Some of the tools provide features for visualising some aspects of the formal
CSP model. For instance, ProB, PAT, and FDR can provide visualisations of
counter examples that come in form of graphs. On the other hand, this work
is concerned with creating domain specific visualisations. This means that if
we were modelling, an interlocking system we could create a domain specific
visualisation that shows a track layout with blocks and points as well as signals
and trains. From now on, when we speak about a visualisation we mean a domain
specific visualisation.

In this work we present an approach (method and tool) for visualising CSP-
M models. We describe the method and present an implementation that comes
as an extension for BMotion Studio [8]. BMotion Studio is a visual editor that
supports the user in creating domain specific visualisations for Event-B, a formal
language for state-based modelling and verification of systems.

The difference between our contribution and the original visualisation app-
roach of BMotion Studio is imposed by the specifics of the CSP formal language.
The basic idea of BMotion Studio is to visualise the information that is encoded
in the states of an Event-B model (e.g. the values of variables), where each state
of the model is mapped to a particular visualisation. In contrast to Event-B, in
CSP the states of the modelled system are left uninterpreted and the behaviour
is defined in terms of sequences of events (traces). Thus, the concepts of BMo-
tion Studio are not longer applicable on event-based formalisms as CSP. The
intention of our approach is to visualise the traces of the underlying CSP model.

In order to demonstrate our approach, we have created visualisations for
various CSP-M models that we have found in the literature. In this paper, we
focus on the presentation of the visualisations of the bully algorithm [13] and of
a level crossing gate [14]. We also discuss how our approach can be of use in the
process of analysing and validating CSP specifications.

The paper is organised as follows: Sects. 2 and 3 describe the method and tool
support, respectively. The presentation of the visualisation of both case studies
is given in Sect. 4. The discussion of possible applications of our approach is
outlined in Sect. 5. Finally, we present our conclusions and compare our work
with related work.

Tool Website. The tool, various case studies, and a tutorial can be found at
http://www.stups.hhu.de/bmotionstudio/index.php/CSP.

2 The Method

The mathematical semantics of CSP are mainly based on traces. A trace is a
sequence of events performed by a process that can communicate and interact
with other processes within the CSP model. The basic idea of our approach
is to visualise the information encoded in the given sequence of events (trace).
However, a process may perform many different traces and thus creating a visu-
alisation manually for each possible trace is an almost impossible task.

http://www.stups.hhu.de/bmotionstudio/index.php/CSP

22 L. Ladenberger et al.

Our method requires the user to set up only one visualisation that may be
capable of representing any possible trace of a CSP process of a particular model.
This is achieved by means of observers that are used to link the visualisation
with the model. Formally, one can describe the method by means of Algorithm1.

Algorithm 1. Visualising a CSP trace
1 procedure visualiseTrace(trace 〈e1, e2, . . . , en〉, observers obs)
2 for i=1 to n do
3 foreach o ∈ obs do
4 if member(ei, o.exp) then
5 trigger(o.acts)
6 end if

7 end foreach

8 end for
9 end proc

For visualising a particular trace tr = 〈e1, e2, . . . , en〉, we sequentially go
through each event ei of tr with i ∈ {1..n} and execute all established observers
obs for ei. Note that by “visualisation of a trace” we mean the visualisation of
the state reached after the sequential execution of the events of a trace.

Each observer o has a user-defined CSP expression o.exp that constitutes
a set of observed events. For instance, the CSP expression {e.x | x ← {0..3}}
will constitute the set of observed events {e.1, e.2, e.3}. In addition, an observer
defines a list of actions o.acts that determine the appearance and the behaviour
of the visualisation. The actions are only triggered when the currently processed
event ei of the given trace is a member of the respective set of observed events
defined by o.exp. More precisely, the actions are triggered (line 5) whenever the
expression member(ei, o.exp) evaluates to true (line 4).

3 Tool Support

Figure 1 shows an overview of the tools and components that are used in this
work, as well as how our contribution fits into this overview (marked with dotted
border).

We implemented the method presented in Sect. 2 as an extension for the new
version1 of BMotion Studio [8]. BMotion Studio is a visual editor for creating
domain specific visualisations of formal models. It uses ProB [9] to interact
with the model, to obtain trace information and to evaluate expressions. ProB
is a validation tool for model checking and animating Event-B, Classical-B and
CSP-M models [10], as well as other formalisms (e.g. [7,12]). The current ver-
sion of BMotion Studio supports the user in creating visualisations for Event-B
models [8]. This work extends BMotion Studio to support the creation of visu-
alisations for CSP-M models.
1 The new version of BMotion Studio is not officially released yet, but the source code

is available from http://www.stups.hhu.de/bmotionstudio/index.php/Source.

http://www.stups.hhu.de/bmotionstudio/index.php/Source

An Approach for Creating Domain Specific Visualisations of CSP Models 23

ProB

Model
Checker Animator

BMotion Studio
Graphical Editor

query
CSP expression

result of
CSP expression

+
trace

information

Visualisation Template

CSP Event Observers
(JSON)

actions

Visual Elements
(SVG and CSS)

CSP-M model

Refinement
Checker

CSP Support

Fig. 1. Overview of the components that are used in this work

In BMotion Studio, a visualisation is described by a visualisation template
that contains visual elements and observers. Visual elements may be, for instance,
shapes or images that represent some aspects of the model. For example, in case of
modelling a communication protocol, we can use circles for representing the com-
municating entities of the protocol and arrows for the message exchanges between
the entities. The new version of BMotion Studio uses web technologies like Scal-
able Vector Graphics (SVG) [21] and Cascading Style Sheets (CSS) [20] for this
purpose. SVG is an XML-based markup language for describing two-dimensional
vector graphics. It comes with a number of visual elements like shapes, images and
paths. On the other hand, CSS is a language that can be used to describe the style
of SVG visual elements (e.g. the colour or the dimension).

Observers are used to link visual elements with the model. An observer is noti-
fied whenever a model change its state, e.g. an event was executed. In response,
the observer will query the model’s state and triggers actions on the linked visual

24 L. Ladenberger et al.

elements in respect to the new state. BMotion Studio comes with a number of
default observers for creating visualisations for Event-B. For instance, BMotion
Studio provides an observer that takes a user-defined predicate that is to be
evaluated in every state. Depending on the result of the predicate (true or false),
the observer will trigger an action to change the appearance of the linked visual
elements (e.g. the colour of a shape).

We extended BMotion Studio with a new observer type called CSP event
observer in order to support creating visualisations of CSP models. The observer
has the following JSON structure (in BMotion Studio an observer is represented
in JSON [2]):

{ "exp": "<user-defined CSP expression>",

"actions": [

{"selector":"<selector>", "attr":"<attribute>", "value":"<value>" },

{ ... }

] }

Each observer has a user-defined CSP expression and a list of actions. The
user-defined expression constitutes a set of observed events, whereas the actions
determine the changes made on visual elements.

An action defines a selector that matches a set of visual elements in the
visualisation (SVG graphic). A selector follows the syntax provided by jQuery2.
For instance, to match the visual element with the ID “elem1” (each element
should have a unique ID in the visualisation) the user can define the selector
“#elem1”. The prefix “#” is used for matching a visual element by its ID in
jQuery. An action also defines an attribute (e.g. “fill” for colouring the interior
of a visual element like a circle shape) and a corresponding value that will be
set as the new value of the attribute when the action is triggered. The actions
of an observer o are triggered when the currently processed event is in the set
of observed events of o.

The user can refer to the information given by the arguments of the currently
processed event within the action fields (selector, attribute and value). This
is achieved by means of the construct “{{aN}}” where aN refers to the N-th
argument of the event. For instance, if the event has two arguments, then the first
and the second one can be obtained with “{{a1}}” and “{{a2}}”, respectively.
To illustrate this, consider an event evt.x with x ← 0..4. One may want to
use the information given by the first argument x of evt within a selector in
order to match visual elements that have an ID of the form “elemx”. This can
be done by defining the selector “#elem{{a1}}”. The construct “{{a1}}” will
be replaced by the value of the first argument of the currently processed event in
the observer. For instance, if the currently processed event is evt.2, the selector
“#elem{{a1}}” will become “#elem2”.

Figure 2 illustrates the function of the CSP event observer on a simple exam-
ple. The visualisation consists of an SVG graphic with a text field element with
the ID “txt” and one CSP event observer. The CSP event observer defines an
2 For more information about jQuery and selectors we refer the reader to the jQuery

API documentation http://api.jquery.com/category/selectors/.

http://api.jquery.com/category/selectors/

An Approach for Creating Domain Specific Visualisations of CSP Models 25

Fig. 2. The function of the CSP event observer

expression that constitutes the set of observed events evt = {evt.2, evt.4, evt.6, ..}
and one action act1 that changes the value of the attribute “text” to “{{a1}}”
of the visual element with the ID “txt” (the text field). According to our method
(see Sect. 2), the observer is executed for each event of a given trace. This means
that, whenever the currently processed event is in the set of observed events
evt, the observer will trigger the defined action act1. For instance, the execution
of the event evt.4 causes the observer to set the value of the text field element
to “4” as demonstrated in Fig. 2.

Creating a Visualisation. BMotion Studio provides a graphical editor with
different views and wizards that supports users in creating visualisations for for-
mal models. Figure 3 shows the bully algorithm visualisation template opened
in the graphical editor (the bully algorithm visualisation will be introduced
in Sect. 4). The editor consists of a set of tools (1) for creating SVG widgets
(e.g. visual elements as shapes and images), a canvas (2) holding the actual
visual elements, a view (3) for editing observers, and another view (4) for manip-
ulating the attributes of the currently selected visual element in the canvas. The
corresponding JSON file which contains the observers is created by the editor
automatically. We extended the graphical editor of BMotion Studio in order to
support the editing of CSP event observers.

Running a Visualisation. Once a visualisation template is created, it can
be started with BMotion Studio as shown in Fig. 4. BMotion Studio uses the
default web browser of the user’s operating system to view the visualisation and
the ProB tool to animate the corresponding CSP-M model.

26 L. Ladenberger et al.

(1) (2) (3) (4)

Fig. 3. CSP support within BMotion Studio graphical editor

The user can access the entire function range of ProB. For instance, Fig. 4
shows two views (Events and History) that come from ProB. The first one
(Events) lists all possible events that are available in the current state of the
animation. The second one (History) shows the executed events so far. The left
side of Fig. 4 shows the visualisation of the trace that is displayed in the History
view. If the user executes an event in the Events view, a new trace (the trace
generated so far plus the recently executed event) is provided which is visualised
according to our approach.

4 Case Studies

In order to test our approach, we successfully created various visualisations for
CSP specifications that we have found in the literature. In this work we present the
visualisation of the bully algorithm specification from [13] and of the level crossing
gate specification from [14]. The specifications are written in the machine readable
dialect CSP-M and have not been modified for the visualisation we have created.
Both visualisations were created by means of the built-in graphical editor of BMo-
tion Studio. However, for presentation purposes the observers of the visualisations
are described in the JSON notation in this section.

4.1 The Bully Algorithm

The algorithm represents a method of distributed computing for electing a node
to be the coordinator amongst a group of nodes. Each node has a unique ID
and the algorithm intends to select the node with the highest ID to be the
coordinator. It is assumed that the nodes may fail and revive from time to time
and the communication between the nodes is reliable. Three types of messages

An Approach for Creating Domain Specific Visualisations of CSP Models 27

ProBBMotion Studio

Fig. 4. The bully algorithm visualisation

are defined within the design of the algorithm: election (announcing an election),
answer (responding to an election message), and coordinator (announcing the
identity of the coordinator).

The specification from [13] defines six additional types of events needed for
the formalisation of the algorithm in CSP: the fail and revive events (for mod-
elling failing and reviving of a node), the test and ok events (for simulating a
test-response communication), the leader events (for indicating the coordinator
of a living node), and the tock event (for modelling timeouts and time).

Visualising the Bully Algorithm. In general, we want to visualise the process
of electing a leader in the network. More precisely, we aim to visualise the
Network process of the CSP specification. As the bully algorithm specifica-
tion in [13] is presented for a network with four nodes, we also intend to create
a visualisation for four nodes (the nodes are enumerated from 0 to 3). Figure 4
demonstrates the visualisation of a particular trace.

There are two major aspects of the specification that we want to visualise:
the nodes and the communication between the nodes. Each node is visualised
by means of a circle in which the respective ID is positioned, whereas the com-
munication between the nodes is illustrated by directed arrows. Each directed
arrow is made up of a line and a corresponding arrowhead.

To each visual element in the visualisation we assign a unique ID referring
to the elements in the CSP specification. Thus, the node with ID x in the CSP
specification is presented by the circle with ID “n-x” in the visualisation. Addi-
tionally, a message transfer from the node with ID x to the node with ID y is
represented by the line with ID “l-x-y” and the arrowhead with ID “p-y” (i.e.
the arrow connecting “n-x” and “n-y”). In this section, both symbols x and y
stand for an integer ranging from 0 to 3.

We can classify all types of events in the specification into the following
groups:

– status: Events that can change the status of a particular node x: fail.x,
revive.x, coordinator.x.y, and leader.x.y.

28 L. Ladenberger et al.

– message: Events illustrating a message transfer from node x to node y:
test.x.y, ok.x.y, election.x.y, answer.x.y, and coordinator.x.y.

– hidden: Events that are not considered in the visualisation: tock.

Thus, we can infer that there are two general types of observers to define: the
status and the message observers. Note that each coordinator event (coordina-
tor.x.y) has been included in the first two groups above. This is because in the
specification each of the coordinator events intends to identify the coordinator
(x) and at the same time represents a message transfer (to node y).

The status of a node usually changes when one of the status events has been
executed. Each node, except for the node with the lowest ID3, can have the fol-
lowing status: failed, revived, coordinator, or coordinated. A unique fill pat-
tern has been selected for distinguishing each possible status of a node (see legend
in Fig. 4).

In order to associate a status event from the CSP specification with a node
in the visualisation, we use the selector “#n-{{a1}}” in the definition of the
respective observer. The construct “{{a1}}” is used in the selector for obtaining
the value of the first argument of the respective status event. For example, the
observer for changing a status of a node to failed can be defined as follows:

{ "exp": "{fail.x | x <- {0..N-1}}",

"actions": [{"selector":"#n-{{a1}}",

"attr":"fill", "value":"url(#diagonalHatch) "}] }

The observer will fill the respective node with a diagonal hatch pattern whenever
a fail event has been processed. For instance, the node with ID “n-3” will be
filled with a diagonal hatch pattern when the event fail.3 has been processed. In
a similar fashion we have defined the observers for the other node status changes.

For creating the message observers we need to consider both arguments of
the message events. The types of the messages are distinguished by different
stroke patterns (see Fig. 4). Thus, each message observer, except for the coordi-
nator observer (this observer has three actions), has two actions: one action for
appearing the arrow (the line and arrowhead constituting the respective arrow
in the visualisation) and one action for changing the stroke pattern of the arrow.
For instance, the observer for visualising the election message can be defined as
follows:

{ "exp": "{election.x.y | x <- {0..N-1}, y <- {0..N-1}}",

"actions": [{ "selector": "#l-{{a1}}-{{a2}}, #p-{{a2}}",

"attr": "class", "value": "visible" },

{ "selector": "#l-{{a1}}-{{a2}}",

"attr": "stroke-dasharray", "value": "5,2,2,2" }] }

To provide a clear visualisation an additional observer has been added to
hide all arrows after performing an arbitrary event. This observer is applied on
the currently processed event before all other defined observers.

3 The node with ID 0 can never be a coordinator as there is no node with a lower ID.

An Approach for Creating Domain Specific Visualisations of CSP Models 29

ProBBMotion Studio

Fig. 5. The level crossing gate visualisation

The initial state of the specification and the visualisation is the state in
the network where all nodes are alive and the coordinator is the node with the
ID 3 (the node with the greatest ID). Additionally, no message exchanges are
performed.

4.2 Level Crossing Gate

The model of the first case study introduced in [14] specifies a level crossing
gate of a single railway track along which trains move only in one direction. The
track is divided into segments such that each of the segments is at least as long
as any train. There are five track segments considered for the level crossing gate
where one of the track segments represents the outside world.

The track segments are numbered. The input sensor is placed in segment 1
and the crossing and output sensors in segment 4. The outside world segment is
identified by 0. A train enters segment (i+1) before it leaves segment i. Entering
and leaving of a segment are specified by the events enter and leave, respectively.
The entering of train t into segment j is described by enter.j.t. Accordingly, the
leaving of train t from segment j is designed by means of the event leave.j.t.

The sensors send control signals to the gate. The gate goes down after a
train enters segment 1 and accordingly the gate goes up after the train leaves
segment 3 and no train is moving along the segments 1 to 2. The control signals
sent by the input and output sensors are specified by the events sensor.in and
sensor.out, respectively. The communication between the controller and the gate
processes is specified by the channel gate which defines four different events. The
events gate.go down and gate.go up represent the commands from the controller
to the gate for moving the barriers down or up. And the events gate.down and

30 L. Ladenberger et al.

gate.up denote the confirmations from the gate sensors that the barriers are
down or up, respectively.

In addition, timing constraint are set for the trains moving on the tracks. The
speed of each train is determined by how many units of time a train can spend
per track segment. This additional property is required since the goal of the
system is to guarantee via timing that the gate is up and down at appropriate
moments. In the CSP model the speed of a train per track segment has been
set to three time units. A unit of time is denoted by the tock event in the level
crossing gate specification.

Visualising the Level Crossing Gate. In our visualisation (see Fig. 5) we
assume that the trains are moving from left to right. Track segments 1 to 4 are
illustrated by rectangles separated by vertical, dotted lines. Segment 0, which
represents the outside world, can be seen as the space left from track segment
1 and the space right from segment 4. A train leaves the outside world after
entering track segment 1 and a train enters the outside world before leaving track
segment 4. The length of each of the track segments 1–4 in the visualisation is
considered to be 100 pixels.

Since the model from [14] handles two trains, we also intend to visualise
only two trains (these are indicated as Train1 and Train2). Both trains are
represented by two boxes coloured in grey and slate grey, respectively. Moving
of a train along the track is simulated by shifting the respective box from left
to right. In order to simulate a movement along the track segments, we shift the
respective box 50 pixels from left to right. In doing so, entering of a new segment
is represented such that the box is laid half on the new segment and half on
the previous. On the other hand, when the train leaves a track segment, the
box is moved fully on the recently entered segment. Referring to Fig. 5, the grey
box representing Train1 is laid half on segment 4 and half on segment 3 after
executing the event enter.4.T rain1, whereas Train2 (the slate grey box) is moved
fully on segment 1 after performing consecutively the events enter.1.T rain2
and leave.0.T rain2. We have set each box representing a train to the length of
100 pixels.

For visualising the movement of the trains, we defined two observers that
listen respectively to the events enter.j.t and leave.j.t. Both observers contain
an action that changes the transform attribute [21] of the matched visual ele-
ment. For instance, the leave observer is defined such that by executing an event
leave.j.t the visual element with the ID “train-t” (t refers to the second argument
of the leave events) will be moved 50 pixels to right by setting the transform
attribute to the value translate(50, 0). Thus, the observer for leaving a track is
defined as follows:

{ "exp": "{leave.j.t | j <- {0..3}, t <- {Train1,Train2}}",

"actions": [{ "selector":"#train-{{a2}}",

"attr":"transform", "value":"translate(50,0)" }] }

Note that the leave observer does not fire its actions when an event leave.4.t
is executed since in our visualisation the respective box “train-t” is intended to
be moved on the left site of track segment 1 when the event enter.0.t is executed.

An Approach for Creating Domain Specific Visualisations of CSP Models 31

We decided to define the observers in this way because after entering the outside
world (track segment 0) and leaving at last track segment 4, the same train can
enter the crossing gate segments once again.

For the overall visualisation we defined four different observers. The other
two observers are responsible for simulating the up and down movement of the
barriers in the visualisation after proceeding of the events gate.up and gate.down,
respectively. For this, we created for each of the barriers two visual elements that
illustrate accordingly the two possible states of the appropriate barrier: barrier is
up and barrier is down. This means that we have four visual elements illustrating
the different positions of the barriers. When, for example, the event gate.down
is processed, then the go-down observer executes two actions. The first is to
hide all barrier elements and the second action is to display the visual elements
representing that the barriers are down. The hiding and displaying of the barriers
are realised by setting the “opacity” attribute of the visual elements to 0 and
100, respectively. The go-down observer is given as follows:

{ "exp":"{gate.down}",

"actions": [

{ "selector":"g[id^=gate]", "attr":"opacity", "value":"0" }

{ "selector":"g[id^=gate-go_down]", "attr":"opacity", "value":"100" }]}

Analogously, we defined the go-up observer. The initial state of the specifi-
cation and its visualisation is the state in which both trains are in the “outside
world” track segment and both barriers are up.

5 Application of the Approach

Using validation tools for performing various consistency checks automatically is
a powerful technique for verifying the correctness of the analysed specification.
A failure of a consistency check is mostly reported by producing of a counterex-
ample (very often presented as a trace leading to an error state). However, trying
to understand the failure behaviour of the model by simply examining the trace
can sometimes be difficult as the error trace may, for example, be the result
of the interaction of various components in the specified system. Thus, using a
visualisation in order to facilitate the effort of understanding the error trace can
be very useful.

In this Section we show how the bully algorithm visualisation introduced in
Sect. 4 may, for example, contribute to the better understanding of an erroneous
behaviour in the models.

For example, the trace of the Network process of the bully algorithm model

〈fail.2, fail.3, test.1.3, tock, election.1.3, election.1.2, revive.2, revive.3,
coordinator.3.2, fail.3, test.0.3, tock, coordinator.1.0, leader.2.3〉

represents a sequence of events leading to a state in the network in which the
elected leader is not the living node with the greatest ID. In general, the false

32 L. Ladenberger et al.

test.1.3 tock, election.1.3

election.1.2

revive.3, revive.2coordinator.3.2

fail.3

test.0.3

leader.2.3

fail.2, fail.3

tock, coordinator.1.0

Fig. 6. A stepwise visualisation of a trace of the bully algorithm model

behaviour that is explicitly discussed in [13] illustrates a problem occurring by
a certain combination of node failures and mixing up various elections.

While examining the given error trace, it is hard for the user to reproduce
and to see the actual problem. In contrast, Fig. 6 shows a stepwise graphical
representation of the error trace. The user can see at a glance the erroneous
behaviour that is shown in the last step of the trace (after performing leader.2.3)
in the graphical representation.

6 Conclusion

In this paper, we presented an approach for creating domain specific visualisa-
tions of CSP-M models and an implementation based on BMotion Studio. In
particular, we extended BMotion Studio and the built-in graphical editor with
a new observer type (CSP event observer) that implements the algorithm pre-
sented in Sect. 2.

An Approach for Creating Domain Specific Visualisations of CSP Models 33

The difference between our contribution and the primary approach of BMo-
tion Studio (the domain specific visualisation of Event-B models) is imposed by
the question of what is to be visualised of a model. On the one hand, in CSP each
trace is mapped to a particular visualisation. On the other hand, in Event-B the
information to be visualised is given by the states (e.g. the values of variables)
of an Event-B model, where each state is mapped to an individual visualisation.

We tested our approach by creating visualisations of various CSP-M models.
A demonstration of our approach is given by visualising the bully algorithm
specification from [13] and the level crossing gate specification from [14]. We
also have shown how our approach could be of use in the process of analysing
and validating CSP specifications.

Our tool comes with a graphical editor that can be used to create easily
visualisations. The developer of a visualisation remains in the CSP domain. This
means that only CSP expressions and jQuery selectors (see Sect. 3) are required
for establishing the link between a visualisation and the CSP model. Moreover,
a modification of the CSP model is not necessary to create a visualisation for it.

A domain specific visualisation of a CSP model can be useful in various ways.
For example, the graphical representation of the behaviour of the CSP processes
can be helpful for discussing the specification with non-formal method experts
and for the further development of the specification.

We also believe that our approach may be of use to identify inconsistencies or
unexpected behaviours within the specification. Indeed, in the process of exam-
ining the various case studies, the visualisation helped us to better understand
some of the unexpected behaviours (error traces) discovered by validating the
corresponding specification (see Sect. 5).

Finally, we believe that our approach may be useful for teaching formal meth-
ods, as the execution of a specification with a graphical representation may give
a better idea and overview of the system being modelled. For instance, we used
our approach successfully in our lectures as a way to present formal models to
students and to motivate them to write their own formal models.

Related Work. BMotion Studio was initially developed for creating domain
specific visualisations of Event-B models [8]. Our approach extends BMotion
Studio to permit users to also create visualisations for CSP-M.

The tools presented in [4,16] support the creation of domain specific visuali-
sations for Classical-B. In contrast to our approach, both tools require the user
to set up scripts in order to link the visualisation to the model.

Our approach uses ProB [10] to execute a CSP-M specification. ProB and
other CSP tools [18,19] are capable of displaying graphs of processes and coun-
terexamples. Whereas, the purpose of our work is to provide a tool that allows
the user to create custom visualisations that are specific to a domain.

A central goal of our work is to gain a better understanding of CSP models
by creating domain specific visualisations. A different approach has been taken
by [11], which presents a tool for visualising CSP in UML.

34 L. Ladenberger et al.

References

1. ADVANCE Deliverable D4.2 (Issue 2). Methods and tools for simulation and test-
ing I, March 2013

2. ECMA-404 The JSON Data Interchange Standard. Ecma International, October
2013

3. Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

4. Bendisposto, J., Leuschel, M.: A generic flash-based animation engine for ProB.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 266–269.
Springer, Heidelberg (2006)

5. Formal Systems (Europe) Ltd., Process Behaviour Explorer (ProBE User Manual,
version 1.30). http://www.fsel.com/probe manual.html

6. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66–79. Springer,
Heidelberg (2014)

7. Hansen, D., Leuschel, M.: Translating TLA+ to B for validation with ProB. In:
Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321,
pp. 24–38. Springer, Heidelberg (2012)

8. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising event-B models with
B-motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009.
LNCS, vol. 5825, pp. 202–204. Springer, Heidelberg (2009)

9. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

10. Leuschel, M., Fontaine, M.: Probing the depths of CSP-M: a new fdr-compliant
validation tool. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
278–297. Springer, Heidelberg (2008)

11. Ng, M.Y., Butler, M.: Tool support for visualizing CSP in UML. In: George, C.W.,
Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 287–298. Springer, Heidelberg
(2002)

12. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator
and model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591,
pp. 480–500. Springer, Heidelberg (2007)

13. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer-Verlag New York
Inc., New York (2010)

14. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

15. Scattergood, B., Armstrong, P.: CSP-M: A Reference Manual (2011)
16. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand,

J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer,
Heidelberg (2006)

17. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for
system modeling and verification. In: Chin, W.-N., Qin, S. (eds.) Proceedings TASE
2009, pp. 127–135. IEEE Computer Society (2009)

18. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 709–714. Springer, Heidelberg (2009)

http://www.fsel.com/probe_manual.html

An Approach for Creating Domain Specific Visualisations of CSP Models 35

19. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

20. W3C CSS Working Group. Cascading Style Sheets (CSS) Snapshot 2010. http://
www.w3.org/TR/css-2010/, May 2011

21. W3C SVG Working Group. Scalable Vector Graphics (SVG) 1.1 (Second Edition),
August 2011. http://www.w3.org/TR/SVG11/

http://www.w3.org/TR/css-2010/
http://www.w3.org/TR/css-2010/
http://www.w3.org/TR/SVG11/

Using Z in the Development and Maintenance
of Computational Models of Real-World Systems

Shahrzad Moeiniyan Bagheri1,2(B), Graeme Smith1, and Jim Hanan2

1 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

2 Queensland Alliance for Agriculture and Food Innovation,
The University of Queensland, Brisbane, Australia
shahrzad.moeiniyanbagheri@uqconnect.edu.au

Abstract. There are two main challenges in developing computational
models of a real-world phenomena. One is the difficulty in ensuring
clear communication between the scientists, who are the end-users of
the model, and the model developers. This results from the difference in
their backgrounds and terminologies. Another challenge for the develop-
ers is to ensure that the resultant software satisfies all the requirements
accurately. Utilising a formal notation such as Z which is easy to learn,
read, understand and remember can address these issues by (a) act-
ing as a means to unambiguously communicate between scientists and
simulation developers, and (b) providing a basis for systematically pro-
ducing and maintaining simulation code that meets the specification. In
this paper, we describe a translation scheme for producing code for the
widely used agent-based simulation environment NetLogo from Z spec-
ifications. Additionally, we report on the use of the approach on a real
project studying the movement of chyme, i.e. food undergoing digestion,
through a pig’s intestine as a means of understanding the effect of dietary
fibre on human health.

1 Introduction

Studying real-world processes through experimental observation can be techni-
cally difficult. It can also be costly both in time and resources, and in certain
areas ethical issues can arise. A more convenient approach is to develop a compu-
tational model of the system. Such a model allows scientists to uncover patterns
in the studied system and to determine the system parameters and factors that
are the most influential. While the visualisations provided by a computational
model allows scientists to observe macro-level behaviour, this behaviour is only
representative of their understanding of how the system works when that under-
standing has been accurately encoded. Furthermore, such visualisations repre-
sent specific system behaviours, not the general system behaviour. Ensuring an
accurate encoding of the general behaviour can be difficult to achieve, particu-
larly when the developers of the model are not part of the scientific team and are
from different backgrounds. The situation can become even worse if developers

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 36–53, 2015.
DOI: 10.1007/978-3-319-15201-1 3

Using Z in the Development and Maintenance of Computational Models 37

and scientists have different and even sometimes conflicting terminologies. For
example, they may use different terms for the same concepts, or a single term
for different concepts.

An additional problem is that the scientists’ understanding of the system
may evolve over time and the model needs to be modified to reflect this. Again
it is important that the modifications are an accurate reflection of the required
change. This is facilitated if the model is expressed in terms of constructs that
are easy to learn and remember. The constructs of the implementation language
of a typical simulation environment are too low-level (i.e., too close to program-
ming constructs) to satisfy this criteria for scientists who are not familiar with
programming.

To overcome these issues, two considerations are essential. Firstly, the sys-
tem needs to be specified and the design ideas and decisions documented using
a method that is easy to learn, read, understand and remember by all the peo-
ple involved, both during the development and for future purposes like testing
and maintenance. Such a method should make the communication between the
scientists and developers, and also between the development team members,
more convenient, efficient and well-documented. Secondly, the applied method
for specifying the system should provide a basis for ensuring efficient and accu-
rate implementation of the specified requirements. Not only should this facilitate
the production of the code, but also its maintenance. The changes in the scien-
tists’ understanding of the system, and as a result in the specification, should
be readily incorporated into the code. This reduces the burden of the resultant
model’s integrity assurance and its maintenance on the developers’ shoulders.

To achieve these two goals, formal methods can be utilised. Formal specifi-
cations provide a communication method that does not include the ambiguities
that are found in informal (e.g., natural language) specifications [3]. These meth-
ods also allow the developers to gain a clear understanding of the system, before
starting the implementation process. Moreover, such specifications can form the
basis of a systematic approach for deriving simulation code. This is in contrast
to semi-formal specifications (e.g., UML [2]) that only achieve the first goal.

Recently, we developed simulation software for biologists at the Centre for
Nutrition and Food Sciences (CNAFS), The University of Queensland, who are
examining the effect of dietary fibre on human health. To facilitate the commu-
nication in the development process and future maintenance of the software, we
utilised the formal notation Z [10,13]. Z was chosen due to it being a simple
extension of set theory and first-order predicate logic which is relatively easy
to learn. Since the biologists are not necessarily familiar with programming,
notations supporting program-like constructs (such as B [1]) or program-like
structuring (such as Object-Z [9]) were seen as having more concepts to learn,
and hence being less suitable. It should be noted that in order to achieve the
goal of having a fairly simple and easy to learn notation, the use of Z in this
research was restricted to avoid more complex notations and certain modelling
techniques, such as promotion [13], which are regarded as difficult to understand
for non-computer scientists.

38 S. Moeiniyan Bagheri et al.

For the purpose of implementing this simulator, the NetLogo [11] simulation
environment was chosen. NetLogo is a modelling language and environment that
is widely used for developing agent-based simulation software. The agent-based
approach considers smaller components of the system as autonomous entities
(agents) that can form more complex system-level behaviours while perform-
ing relatively simple interactions with each other and with their environment
[8]. Additionally, a systematic translation scheme from Z to NetLogo code was
defined. This made the implementation much easier and enabled us to ensure
that the simulation software behaved as required and specified.

Mens and Van Gorp [6] argue that even source code can act as the specifica-
tion of a system being studied. As a result, the need for utilising Z for specifying
the system requirements might be questioned in this research, especially when
a Z specification block and its equivalent NetLogo code are almost of similar
length. However, what makes a Z specification a more appropriate means of
communication than NetLogo code is that it is based on first-order predicate
logic. This makes the Z notation easy to learn, read, understand and remem-
ber. On the other hand, in order to understand the logic behind NetLogo source
code, the reader is required to learn quite a large amount of syntax as well.
Consequently, like with many other programming languages, it is not easy and
straightforward to learn NetLogo and more importantly memorise its syntax for
future references, modifications and maintenance.

In this paper, we present an approach for systematically translating Z speci-
fications to NetLogo code that was developed while working on the CNAFS case
study. We begin in Sect. 2 with an overview of NetLogo syntax. In Sect. 3 we pro-
vide the translation scheme and illustrate its application on part of the CNAFS
case study in Sect. 4. We then conclude with a discussion of lessons learnt and
future directions in Sect. 5.

2 Overview of NetLogo

In this section we describe the syntax of NetLogo [11] relevant to the case study
described in Sect. 4. A comprehensive documentation of NetLogo can be found
in the NetLogo User Manual [12].

2.1 Agents

NetLogo allows developers to define specific breeds of agents using the syntax

breed[MyBreeds mybreed]

where MyBreeds is the plural, or agentset , form of the breed name and mybreed
is the singular form.

Each type of breed can have its own properties. These are a set of attributes
that are specific to agents of the breed and, for a given agent, can only be

Using Z in the Development and Maintenance of Computational Models 39

accessed and modified by the agent itself. For example, the following defines
agents of type MyBreeds as having properties x , y and z .

MyBreeds-own[x y z]

A number of commands exist for creating and accessing agents. For example,

create-MyBreeds 2 [set x 0
set y 100]

creates two agents of type MyBreeds where the brackets enclose a sequence of
tasks which are applied to the agents upon creation. In this case NetLogo’s set
keyword is used to set the agents’ property x to 0 and property y to 100. Note
that when agents are created, a unique non-negative integer is automatically
assigned to them, no matter which agentset they are from. This unique number
is called who number.

In NetLogo, in order to update the property values of an agent, the ask
command, which takes an agent or agentset as its input, is used. Thus, the value
of z can be set to 10 for all existing agents of type MyBreeds as follows.

ask MyBreeds [set z 10]

2.2 Procedures

Procedures in NetLogo enable developers to modularise their code. A procedure
includes a group of statements that aims to perform a particular task on agents,
their environment, interface controls, inputs or outputs to the system. NetLogo
procedures can be defined either as a reporter or as a command procedure. A
reporter procedure is one that reports a value when it is called somewhere in the
code, whereas a command procedure only performs some tasks. Additionally,
both reporter and command procedures can take input variables. When a pro-
cedure, which takes n inputs, is called elsewhere in the code, the first n words
after the procedure name are considered as its inputs.

Procedures of each type can be defined using the syntax

to mycommand [myinput]
print myinput

end

to-report myreporter
report myval

end

where mycommand is a command procedure that takes myinput as its input and,
using the print command, prints its value in the NetLogo Command Center
which is part of NetLogo’s interface. Also, myreporter is a reporter procedure
that uses the report keyword to report the value of the myval variable. Having
defined these two procedures, the following code prints the value of the myval
variable to the Command Centre

mycommand myreporter

where the value reported by myreporter is passed to mycommand as an input.

40 S. Moeiniyan Bagheri et al.

2.3 Data Structures

NetLogo is an untyped programming language, which allows a variable to take
different types of values whenever required. In order to define a variable, there-
fore, it is not required to identify its data type. This section describes the main
types of data structures that have been used in the case study.

Globals are those types of variables in the system that can be accessed by all
procedures. Such variables can be defined either by using the globals keyword
as follows

globals[myglobal1 myglobal2]

or by assigning a name to an interface control such as a slider or switch, which
can then be treated as a global variable throughout the code. It should be noted
that the defined breeds are also accessible globally.

Locals, on the other hand, are the variables that can only be accessed within
the scope of the procedure in which they have been defined. A local can be
defined using the let keyword and is accessible to following statements within
the procedure.

to myprocedure
let mylocal myvalue

. . . ; other statements
end

Strings, numbers, booleans and lists are the main data types that exist in
NetLogo. For instance, a string, number and boolean can be defined as follows.

let mystring “my string value”
let mynumber 1000
let myboolean? false

It is common in the NetLogo user community to add a ‘?’ to the end of a
boolean variable name, however it is not compulsory.

Lists allow developers to define more complex data structures. Each element
of a list can be a number, string, agent, agentset or a list. A list can be defined
as follows.

let mylist list 1 2 ; a list with the two elements 1 and 2

2.4 Operators and Reporters

NetLogo supports the usual range of arithmetic (e.g., +,−, ∗, /), comparison
(e.g., <=, >=,= and ! =) and logical operators (e.g., and, or and not). NetLogo
also has a range of built-in reporters that are explained in the rest of this section.

Using Z in the Development and Maintenance of Computational Models 41

The with reporter can be used to report only those agents from an agentset
that satisfy the given conditions as follows

ask MyBreeds with [x = 10] [set z 10]

where z will be set to 10 only for those agents with x = 10. The with reporter
can be used together with all of the following reporters when required.

The one-of reporter can be used to randomly choose a single agent from an
agentset. For example, the following equates to an agent with x = 10.

one-of MyBreeds with [x = 10]

The min-one-of reporter can be used to randomly choose an agent with the
minimum value for a given property. For example, the following equates to an
agent with the minimum value of z out of all those agents with x = 10.

min-one-of MyBreeds with [x = 10] [z]

Note that in both the one-of and min-one-of examples, a reserved value
in NetLogo, nobody (representing no agent), is reported in the case where no
mybreed with x = 10 is found.

Additionally, whenever it is required to get the value of any agent’s properties,
the of reporter can be used. For example, the x property of an agent can be
accessed as follows

[x] of mybreed 0

where mybreed 0 refers to the agent of type MyBreeds with who number equal
to 0.

The member? reporter can be used to check that an agent mb (defined, for
example, as a local variable) is a member of the agentset MyBreeds as follows.

member? mb MyBreeds

The all? or any? reporters, which report true or false, can be used to
check conditions on all or any agents in an agentset. For example,

set myboolean? (all? MyBreeds with [color = green] [x = 0])

sets myboolean? to true when all agents of type MyBreeds with color green
have their x property equal to 0, or when there is no green mybreed1. Otherwise,
myboolean? will be set to false. Also,

set myboolean? (any? MyBreeds with [color = green and x = 0])

sets myboolean? to true when at least one agent of type MyBreeds with color
green and x = 0 exists. Otherwise, myboolean? will be set to false.
1 color is a property of all agents, and green is a constant that may be assigned to
color.

42 S. Moeiniyan Bagheri et al.

2.5 Branching

The main branching structures in NetLogo, as in most programming languages,
are the if and ifelse commands. The latter can be used to control the flow of
the program under two opposite conditions as follows.

ifelse mytotal < 1000
[create-MyBreeds 1 [set color green]]
[ask MyBreeds with [color = green] [die]]

In this example, if mytotal is less than 1000, the commands within the first
brackets will be executed and as a result, one agent of type MyBreeds will be
created and its initial color will be set to green. However, if mytotal is greater
than or equal to 1000, then the commands inside the second brackets will be
executed and consequently, all the green MyBreeds will die. The die command
can be applied on all agents of the system and removes the specified agent from
its agentset.

3 Translating Z to NetLogo

The goal of this section is to describe how a Z specification can be systematically
translated into NetLogo code. We adopt the guarded (or blocking) interpretation
of Z [4] in which operations can only occur when their pre-state predicates, i.e.,
their predicates describing the state before the operation, hold. In the traditional
(or non-blocking) interpretation of Z, operations can always occur but have an
undefined effect when their pre-state predicates do not hold.

It should be noted that not all of the Z notation has been investigated in
this work. Rather we have considered a subset of Z that we believe satisfies our
requirements of being easy to learn, read, understand and remember while also
being adequate for modelling the kinds of systems we are targeting. In particular,
all updates of variables are written in the form x ′ = e, where e is an expression,
facilitating translation to NetLogo set commands. Similarly, all initialisations
of variables are written x = e. Also, some constructs which are not readily
translated are avoided. For example, nested quantifiers are avoided in operation
guards. Also, use of promotion schemas (used in Z to promote operations on local
state spaces to the global system state) is avoided by specifying all operations
directly on the global system state.

Additionally, as in other programming languages, there are alternative ways
to implement a single task in NetLogo, each of which differs in terms of perfor-
mance, efficiency, readability and other characteristics. Consequently, the trans-
lation examples in this section are not necessarily the best or the most efficient
way to implement a Z specification. Instead, they represent how a Z specification
could be translated into NetLogo code effortlessly. In this section, we use a car
racing game as an example.

Using Z in the Development and Maintenance of Computational Models 43

3.1 Type Definitions

In addition to the predefined types such as N (natural numbers) and Z (integers),
Z also supports definition of other types [10,13], such as free types. Free types
represent the fact that a variable of this type can take a value from the set of
distinct specified constants. For instance,

LicenceClass ::= Car | Lightrigid | Mediumrigid | Heavyrigid

represents a type for specifying different kinds of a driver’s licence.
Schemas in Z can also be used as (record) types. This is useful for expressing

more details regarding the format of a defined type. For instance, the following
schema defines a Driver type

Driver
licence : LicenceClass
age : N

where licence and age represent the driver’s licence type and age respectively.
Since NetLogo does not support type definition, it is the implementer’s

responsibility to ensure that the values of variables of such types satisfy the
specified constraints throughout the program.

3.2 Global Constants

Z supports the definition of global constants which are accessible throughout a
specification. They are defined using an axiomatic definition as follows

SPEED LIMIT : N

SPEED LIMIT = 200

where SPEED LIMIT represents the highest speed allowed for cars on a road.
In NetLogo, global constants can be defined like global variables using the

following syntax.

globals[SPEED LIMIT]

The value of SPEED LIMIT should then be set in the first procedure that will
be run in the NetLogo code (usually called setup), so that its value can be used
throughout the program. This value should not be changed anywhere else in the
code as it is a constant.

to setup
set SPEED LIMIT 200
. . . ; other tasks, which should be performed in the setup procedure

end

44 S. Moeiniyan Bagheri et al.

3.3 State and Initial State Schemas

As mentioned in Sect. 3.1, schemas can be used as types in Z. State schemas are
also used for specifying the main entities of a system. In our car racing game, cars
are the main entities (agents) of the system and are specified with the following
state schema

Car
ID : N
fuelAmount : N
speed : N

speed ≤ SPEED LIMIT

where ID , fuelAmount and speed (in the declaration part of the schema) rep-
resent the car’s unique ID in the race, amount of fuel and speed respectively.
In NetLogo, the main system’s entities can be implemented as breeds of agents
using the following syntax.

breed [Cars Car]
Cars-own [ID fuelAmount speed]

In Z, the invariant part of the Car state schema (speed ≤ SPEED LIMIT)
is implicitly included in all other schemas in which Car is included. However,
in NetLogo, such invariants need to be implemented explicitly. For example,
whenever the speed variable changes, the programmer needs to check its new
value to ensure that it satisfies the specified constraint.

State schemas are also used to model the entire system of agents. For example,
given the type definition

GameStatus ::= Normal | Dangerous

CarRacingGame is a multi-agent system with a set of cars as the agents of
the system and status as the game status.

CarRacingGame
cars : PCar
status : GameStatus

InitCarRacingGame
CarRacingGame

status = Normal
∀ c : cars •
c.fuelAmount = 100 ∧ c.speed = 0

In NetLogo, the variables of the multi-agent system schema can be defined
as globals (as described in Sect. 2.3).

The InitCarRacingGame specifies that the game status is Normal in the
initial state of the system. This can be implemented by setting the value of the

Using Z in the Development and Maintenance of Computational Models 45

global variable status to Normal at the beginning of the program (usually in
the setup procedure). The next predicate starts with a universal quantifier (∀),
where the • symbol reads such that and states that there are some constraints
on the quantified variable c. The constraint part of the predicate then specifies
that, in the initial state of the system, each member (c) of the cars set has a
fuel amount of 100 (c.fuelAmount = 100) and a speed of 0 (c.speed = 0). These
values can be set when the agents are created as described in Sect. 2.1.

3.4 Operation Schemas

In NetLogo, operation schemas of Z can be implemented using procedures. As
an example, consider the following operation schemas on the state space of
CarRacingGame.

Assume that for safety reasons, all moving cars should have a fuel amount
higher than 10. If this is the case, the game status would be Normal ; otherwise,
the game status would be Dangerous and one of the unsafe cars is reported.
In Z, a variable followed by ! specifies an output of the operation. Also, the Δ
symbol represents that one or more variables of the following state schema will
be changed as a result of the operation being performed. Note that the post-state
variables in Z are displayed using the prime symbol (′).

GameStatusNormal
ΔCarRacingGame

∀ c : cars • c.speed > 0 ⇒
c.fuelAmount > 10

status ′ = Normal ∧ cars ′ = cars

GameStatusDangerous
ΔCarRacingGame
unsafe! : Car

∃ c : cars • c.speed > 0 ∧
c.fuelAmount ≤ 10 ∧ unsafe! = c

status ′ = Dangerous

The GameStatusNormal and GameStatusDangerous operation schemas can
be implemented in NetLogo as follows. Note that in translating an operation
no action is required if a variable remains unchanged (e.g., as in the predicate
cars ′ = cars).

to game-status-normal
if all? Cars with [speed > 0][fuelAmount > 10]
[set status “Normal”]

end
to-report game-status-dangerous

ifelse any? Cars with [speed > 0 and fuelAmount <= 10]
[report one-of Cars with [speed > 0 and fuelAmount <= 10]
set status “Dangerous”]
[report nobody]

end

46 S. Moeiniyan Bagheri et al.

As can be seen, we use nearly direct translation from the quantified expressions
of the operation schemas in Z to the NetLogo statements inside the procedures.
These expressions are guards of the operations and hence checked using an if
or ifelse statement. The with reporter can be used in the all? statement to
introduce constraints on the quantified variable. Such constraints would appear
in Z as proposition P(x) in predicates of the form ∀ x : X | P(x) • Q(x) or
∀ x : X • P(x) ⇒ Q(x). The translation of Q(x) comes within the last brackets
in the all? statement. Similar constraints P(x) in Z predicates of the form ∃ x :
X | P(x) • Q(x) appear in the single set of brackets after the with, combined with
the translation of Q(x) using and. To access an existentially quantified variable,
such as c in GameStatusDangerous, we utilise the one-of reporter. Note that if
the existentially quantified variable is required to have the minimum value for a
given property (as in the case study of Sect. 4) we use the min-one-of reporter
instead.

Whenever a Z operation has an output, it needs to be translated as a reporter
procedure in NetLogo. Hence, the game-status-dangerous procedure is defined
as a reporter. The output is nobody in the case where the Z operation’s guard
is false.

In Z such outputs can be used as inputs to other schemas using the piping
operator (>>) [10]. For example, RefuelUnsafe specifies an operation in which
an unsafe car is refuelled. In this operation the output unsafe! of GameStatus
Dangerous is equated with the input unsafe? of Refuel . In Z, a variable followed
by ? denotes an input to the operation.

Refuel
ΔCarRacingGame
unsafe? : Car

unsafe? ∈ cars
∃ uc : Car • uc.ID = unsafe?.ID ∧ uc.fuelAmount = 100 ∧ uc.speed = 0

∧ cars ′ = cars \ {unsafe?} ∪ {uc}

RefuelUnsafe =̂ GameStatusDangerous >> Refuel

The ∃ quantifier in Refuel is used to define a new car uc, which has the
same ID as the unsafe?, fuel amount of 100 and speed of 0. The last part of the
predicate specifies that the new car uc is replaced with the unsafe car unsafe?
in the cars set. The union symbol (∪) can be translated into NetLogo code by
creating a new agent. This agent will automatically be added to the agentset.
Also, the set difference symbol (\) is translated by using the die command which
removes the old agent from the agentset. Hence, the above operations can be
translated as

Using Z in the Development and Maintenance of Computational Models 47

to refuel [unsafe]
if (member? unsafe Cars)
[create-Cars 1 [set ID ([ID] of unsafe)

set fuelAmount 100
set speed 0]

ask Cars with [self = unsafe][die]]
end
to refuel -unsafe

if game-status-dangerous != nobody
[refuel game-status-dangerous]

end

where self is a reporter used to refer to the current agent at each iteration
of the ask command. Note that equality between two agents (= operator) is
checked according to their who numbers. Additionally, in order to access the
state variables of a variable that is of type schema in Z a dot (.) is used. This
dot can be translated using the of reporter in NetLogo, e.g., unsafe?.ID in Z is
translated into [ID] of unsafe.

4 Case Study

In this section, we illustrate the translation scheme on a small part of the CNAFS
case study: a model of movement of chyme, i.e., food undergoing digestion,
through the small intestine of a pig. In their experiments, the researchers con-
sider the small intestine as comprising 6 different intestine segments (SI1–SI6).
One of the main reasons for this segmentation is that the movement rate of
chyme varies in each of these segments. To allow results of the simulation to
be verified against experimental data, most parts of the specification are based
on CNAFS researchers’ hypotheses and their methods of running their experi-
ments. Additional biological details of small intestine functionality are derived
from Guyton and Hall [5]. Using the built-in NetLogo visualisation facilities, the
outcome of this simulation provides the biologists with a visualisation of the
system at each time step and some statistical results, such as total amount of
chyme content and marker content in each intestine segment at each time step.

4.1 State Definitions

All non-schema types used in this section are defined as appropriate global types
in Z. The agents of the system are intestine segments and packets of chyme. The
idea of considering chyme as a collection of discrete packets is derived from
the functionality of the pyloric valve which controls chyme entry to the small
intestine [5].

An intestine segment is specified in terms of its length, the total amount
of chyme content that exists in the segment, and the movement rate of chyme
packets in the segment. Also, each segment can only take up to a certain amount

48 S. Moeiniyan Bagheri et al.

of chyme because of physical limits on its expansion. This value is represented
by contentThreshold . When the total amount of chyme content in a segment
reaches this threshold, the variable entryBlocked of the segment will be set to
Yes to specify that the segment cannot take any more packets. The value of
entryBlocked will be changed back to No whenever the total amount of chyme
content is decreased to a value less than contentThreshold .

IntestineSegment
length : NonNegativeReal
totalExistingChymeContent : NonNegativeReal
chymePassageRate : NonNegativeReal
contentThreshold : NonNegativeReal
entryBlocked : YesOrNo

totalExistingChymeContent ≥ contentThreshold ⇔ entryBlocked = Yes

A schema Position represents a chyme packet’s current position in the small
intestine. In the Position schema, segNum represents the ID of the segment that
the packet is currently in and posInSeg specifies the packet’s distance from the
beginning of the segment. Each chyme packet contains specific amounts of nutri-
ents, markers and water. Markers are consumable, but non-absorbable materials
used in experiments for different purposes such as calculation of passage rate in
the gastrointestinal tract [7]. All these contents together have a total mass that
is represented by the variable totalContent .

Position
segNum : SegmentID
posInSeg : NonNegativeReal

ChymePacket
Position
nutrients : PNutrient
markers : PMarker
waterAmount : NonNegativeReal
totalContent : NonNegativeReal

The (multi-agent) system is a small intestine comprising a sequence of intes-
tine segments and set of chyme packets that have entered, but not left the small
intestine. The variables totalLength, chymeEntryRate and emptyingBlocked rep-
resent the small intestine length, the rate at which the chyme packets enter the
small intestine and whether the packets can leave the small intestine or not,
respectively.

Using Z in the Development and Maintenance of Computational Models 49

SmallIntestine
segments : SegmentID → IntestineSegment
chymePackets : FChymePacket
totalLength : NonNegativeReal
chymeEntryRate : NonNegativeReal
emptyingBlocked : YesOrNo

∀ c1, c2 : chymePackets •
c1.segNum = c2.segNum ∧ c1.posInSeg = c2.posInSeg ⇔ c1 = c2

(segments 1).length = (segments 6).length = 1
∀ segID : SegmentID • segID = 1 ∧ segID = 6 ⇒

(segments segID).length = (totalLength − 2) div 4
∀ c : chymePackets; segID : SegmentID •

c.segNum = segID ⇒ c.posInSeg ≤ (segments segID).length

The predicate of SmallIntestine states that no chyme packets have the same
position. Additionally, according to the experiments at CNAFS, both the first
and the last segments (SI1 and SI6) of the small intestine are considered to be
1 metre long and the other four segments are each one quarter of the remaining
length of the small intestine. Finally, the position of each chyme packet in each
segment must be less than or equal to the segment length.

When translating a schema such as ChymePacket that includes another
schema, we include the variables of the included schema as properties of the
NetLogo breed. When translating collections of agents such as segments which
are specified in terms of a function, we include the domain value associated with
an agent, as a property of the NetLogo breed. Effectively, we are using the Z
interpretation of the function as a set of ordered pairs of domain and range val-
ues [10]. Hence, the NetLogo translation of the above is as follows. As mentioned
in Sect. 3.3, state invariants need to be implemented explicitly in operations.

breed [IntestineSegments IntestineSegment]
breed [ChymePackets ChymePacket]
IntestineSegments-own [segmentID length chymePassageRate . . .]
ChymePackets-own [segNum posInSeg nutrients markers . . .]
globals [totalLength chymeEntryRate emptyingBlocked . . .]

4.2 Operations

This section describes the case in which a chyme packet wants to move through
one intestine segment, but will be blocked by another packet. One of the assump-
tions made in the specification is that chyme packets move through and leave
the small intestine in the same order as they arrive. Therefore, packets cannot
pass each other and sometimes packets may be blocked.

An operation MovingBlocked in the Z specification specifies the movement of
a packet pkt? being blocked by another packet blocking ! in the same segment. The
function Min is a predefined global constant in the specification which returns
the minimum of a set of real numbers (defined similarly to Z’s min function for
integers [10]).

50 S. Moeiniyan Bagheri et al.

MovingBlocked
ΞSmallIntestine
pkt? : ChymePacket
blocking ! : ChymePacket

pkt? ∈ chymePackets
pkt?.posInSeg +

(segments pkt?.segNum).chymePassageRate ∗ TIMESTEP ≤
(segments pkt?.segNum).length

∃ c : chymePackets •
c.segNum = pkt?.segNum ∧ c.posInSeg > pkt?.posInSeg ∧
c.posInSeg ≤ pkt?.posInSeg +

(segments pkt?.segNum).chymePassageRate ∗ TIMESTEP ∧
c.posInSeg = Min({ch : chymePackets | ch.segNum = pkt?.segNum ∧

ch.posInSeg > pkt?.posInSeg • ch.posInSeg}) ∧
blocking ! = c

The first two predicates state that pkt? is a chyme packet in a segment of the
small intestines which, if unblocked, would not leave that segment in the next
time step (TIMESTEP is a global constant representing the time step in our
NetLogo simulation). The final predicate states there exists another packet c
which will block pkt?’s movement and assigns that packet to the output variable
blocking !. Following the translation scheme in Sect. 3, the operation is translated
as follows. Note that in order to access agents which are specified in the range
of a function, such as segments, the one-of and with reporters are used, where
the desired domain value comes inside the brackets after with.

to-report MovingBlocked [pkt]
ifelse (member? pkt ChymePackets) and

([posInSeg] of pkt +
([chymePassageRate] of one-of IntestineSegments with

[segmentID = [segNum] of pkt] ∗ TIMESTEP) <=
[length] of one-of IntestineSegments with

[segmentID = [segNum] of pkt]) and
(any? ChymePackets with [(segNum = [segNum] of pkt) and

(posInSeg > [posInSeg] of pkt) and
(posInSeg <= [posInSeg] of pkt +

([chymePassageRate] of one-of IntestineSegments with
[segmentID = [segNum] of pkt] ∗ TIMESTEP))])

[report min-one-of ChymePackets with
[segNum = [segNum] of pkt and
posInSeg > [posInSeg] of pkt] [posInSeg]]

[report nobody]
end

The operation MoveUntilBlocked specifies that a chyme packet pkt? moves to
right behind another packet blocking? which is blocking it.

Using Z in the Development and Maintenance of Computational Models 51

MoveUntilBlocked
ΔSmallIntestine
pkt? : ChymePacket
blocking? : ChymePacket

pkt? ∈ chymePackets ∧ blocking? ∈ chymePackets
∃ updPkt : ChymePacket • updPkt .segNum = pkt?.segNum ∧

((blocking?.posInSeg − PKTSIZE > pkt?.posInSeg ⇒
updPkt .posInSeg = blocking?.posInSeg − PKTSIZE)

∨ (blocking?.posInSeg − PKTSIZE ≤ pkt?.posInSeg ⇒
updPkt .posInSeg = pkt?.posInSeg))

updPkt .nutrients = pkt?.nutrients ∧ updPkt .markers = pkt?.markers ∧
updPkt .waterAmount = pkt?.waterAmount ∧
updPkt .totalContent = pkt?.totalContent ∧
chymePackets ′ = chymePackets \ {pkt?} ∪ {updPkt}

totalLength ′ = totalLength ∧ emptyingBlocked ′ = emptyingBlocked
segments ′ = segments ∧ chymeEntryRate ′ = chymeEntryRate

The first predicate of this schema states that pkt? and blocking? are chyme
packets within the small intestine. The second predicate replaces pkt? with a new
chyme packet updPkt which is in the position the blocked packet would move to,
and is otherwise identical to pkt? (PKTSIZE is a global constant representing
the size of chyme packets in our NetLogo simulation). The remaining predicates
indicate that the small intestine is otherwise unchanged.

MoveUntilBlocked is combined with the operation schema MovingBlocked ,
which provides the input blocking?, as follows.

PacketMoveInSegmentBlocked =̂ MovingBlocked >>MoveUntilBlocked

This part of the specification is translated into the following NetLogo code.

to MoveUntilBlocked [pkt blocking]
if(member? pkt ChymePackets) and (member? blocking ChymePackets)
[create-ChymePackets 1 [

set segNum ([segNum] of pkt)
ifelse ([posInSeg] of blocking − PKTSIZE) > ([posInSeg] of pkt)

[set posInSeg ([posInSeg] of blocking − PKTSIZE)]
[set posInSeg ([posInSeg] of pkt)]

set nutrients ([nutrients] of pkt)
set markers ([markers] of pkt)
set waterAmount ([waterAmount] of pkt)
set totalContent ([totalContent] of pkt)]

ask ChymePackets with [self = pkt] [die]]
end
to PacketMoveInSegmentBlocked [pkt]

if MovingBlocked pkt != nobody
[MoveUntilBlocked pkt (MovingBlocked pkt)]

end

52 S. Moeiniyan Bagheri et al.

5 Conclusion

This research combined the use of the Z formal notation with computational
modelling in the NetLogo simulation language. This reduced a large amount
of effort required for the developer of the simulation to firstly understand the
system requirements and functionality clearly, and to secondly efficiently derive
code directly from the specification of these requirements. The approach was tri-
alled on a real project studying digestion in pigs’ intestines. During simulations,
the emergent property of total contents in different segments increased along the
intestine in a manner qualitatively in agreement with the patterns seen in exper-
imental data. Additionally, modifications to the model were readily integrated
into the Z specification and, via translation, into the NetLogo simulation. Over-
all, the application of the approach was successful in the sense that it made the
development process more convenient for all the people involved. This warrants
its ongoing use as well as use in similar projects in the future.

A major lesson learnt is that the usability and effectiveness of formal methods
is influenced by human-factors such as the background of the people involved
in the development process. Consequently, one important step before applying
formal methods is to choose a suitable formal modelling language that makes
the software development process more efficient and convenient for all the people
involved.

Acknowledgements. This project was jointly supported by the Queensland Alliance
for Agriculture and Food Innovation (QAAFI) and Australian Research Council (ARC)
Discovery Grant DP110101211.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1999)

3. Bowen, J.P.: Formal Specification and Documentation Using Z: A Case Study
Approach. International Thomson Computer Press, London (1996)

4. Derrick, J., Boiten, E.: Refinement in Z and Object-Z, Foundations and Advanced
Applications, 2nd edn. Springer, London (2014)

5. Guyton, A.C., Hall, J.E.: Guyton and Hall Textbook of Medical Physiology, 12th
edn. Saunders/Elsevier, Philadelphia (2011)

6. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125–142 (2006)

7. Owens, F.N., Hanson, C.F.: External and internal markers for appraising site and
extent of digestion in ruminants. J. Dairy Sci. 75(9), 2605–2617 (1992)

8. Singh, V.K., Gautam, D., Singh, R.R., Gupta, A.K.: Agent-based computational
modeling of emergent collective intelligence. In: Nguyen, N.T., Kowalczyk, R.,
Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 240–251. Springer, Heidelberg
(2009)

Using Z in the Development and Maintenance of Computational Models 53

9. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers,
Dordrecht (2000)

10. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
(1992)

11. Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity.
In: International Conference on Complex Systems, pp. 16–21 (2004)

12. Wilensky, U.: NetLogo User Manual. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL, 5.0.5 edition
(2013)

13. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Refinement, and Proof. Pren-
tice Hall, New York (1994)

When a Formal Model Rhymes
with a Graphical Notation

Akram Idani1,2(B) and Nicolas Stouls3

1 LIG, University of Grenoble Alpes, 38000 Grenoble, France
2 LIG, CNRS, 38000 Grenoble, France

Akram.Idani@imag.fr
3 CITI-INRIA, Université de Lyon, INSA-Lyon, 69621 Lyon, Villeurbanne, France

Nicolas.Stouls@insa-lyon.fr

Abstract. Formal methods are based on mathematical notations which
allow to rigorously reason about a model and ensure its correctness
by proofs and/or model-checking. Unfortunately, these notations are
complex and often difficult to understand from a human point of view
especially for engineers who are not familiar with formal methods. Sev-
eral research works have proposed tools to support formal models using
graphical views. On the one hand, such views are useful to make formal
documents accessible to humans, and on the other hand they ease the
verification of some behavioral properties. However, links between graph-
ical and formal models proposed by these approaches are often difficult
to put into practice and depend on the targeted formal language. In this
paper, we discuss these links from a practical approach and show how
a behavioral description can be computed from a formal model based
on two complementary paradigms: under-approximation (or animation-
based) and over-approximation (or proof-based). We applied these para-
digms in order to produce behavioural state/chart views from B models
and we carried out an empirical study to assess the quality and relevance
of these graphical representations for humans.

Keywords: B method · Symbolic LTS · Animation · Abstraction

1 Introduction

Several research works are devoted to bridge the gap between formal and semi-
formal methods considering their complementary aspects and cross contribu-
tions. Indeed, on the one hand, semi-formal methods (thanks to their support for
graphical notations such as UML) are synthetic, structuring and more intuitive
for humans, and on the other hand, formal methods (thanks to their mathemat-
ical notations) are precise and support automated reasonings. These works were
widely interested by translations from a semi-formal UML model to a formal
specification: from UML to B [15], from UML to Z [10], from UML to Alloy [3],
etc. Their main motivations are to provide precise semantics to UML notations
in order to remedy the lack of tools for formally analyzing UML models.
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 54–68, 2015.
DOI: 10.1007/978-3-319-15201-1 4

When a Formal Model Rhymes with a Graphical Notation 55

Despite of these numerous tools dedicated to such translation, several com-
panies have an established software development process entirely based on a
formal method. For example, Siemens Transport [7], Clearsy [13], Gemplus [5]
have used the B method as its core development method without any accom-
panying UML model. Indeed, since the targeted formal language is not object
oriented, translations from UML often lead to a complex specification which
is, on the one hand, far from what a developer could write directly, and on
the other hand incomplete for a safety critical system. This motivates other
kind of works to define a formal link between a formal model and its behav-
ioral representation. For example, works of C. Snook and M. Butler [15] ant its
support tool iUML-B [14], provide a graphical front end, used conjointly with
a formal B specification in order to keep the distance between both formal and
graphical models as thin as possible. We can also cite the ProB tool [11] which
is an animator and a model-checker able to draw an accessibility graph after an
exhaustive exploration of the specification state space. However, it considers con-
crete states rather than symbolic ones and the resulting graphical representation
is complex because of the combinatorial explosion problem. In order to remedy
this shortcoming, [12] provides some heuristics to reduce the accessibility graph
size by using a symmetry analysis technique. Furthermore, it was not dedicated
to make the focus on the understanding of some particular properties, since the
abstract state space could not be provided by an expert user.

In this paper, the starting point is a B or Event-B formal model [1,2]. Our
aim is to provide tools able to extract graphical views representing some proper-
ties of the formal model and hence increase its understanding by humans who are
not trained with such a formal notation. We discuss and compare two paradigms:
under-approximation (or animation-based) and over-approximation
(or proof-based). We applied these paradigms in order to produce behavioural
views from B models and then we carried out an empirical study to assess the
quality and relevance of these graphical representations for humans.

In Sect. 2 we give a simple example in order to illustrate contributions of this
paper. Section 3 discusses the under-approximation approach and presents an
algorithm which improves automation of this technique. Section 4 describes the
over approximation technique and presents the GénéSyst-tool. Results of our
empirical study are discussed in Sect. 5. Finally, Sect. 6 summarizes our compar-
ative study of both techniques and draws the conclusions and perspectives of
this work.

2 Case-Study

Figure 1 gives a simple scheduler specification taken from [6] and written in B.
It models exclusive access of processes to a unique resource. Variables wait-
ing, ready and active model states of processes managed by the system. The
set of all processes is an abstract set (set PID). An idle process which doesn’t
request access to the unique resource is introduced by the system using the wait-
ing variable. Variable ready is the set of processes that have requested access

56 A. Idani and N. Stouls

to the resource. Finally, variable active contains the active process to which the
resource is assigned. Evolutions of these variables are performed by three events.
Event NEW(pp) creates a new waiting process. Event READY(pp) changes
process pp from the waiting state to the ready state. If there is no active process
it directly activates process pp. Finally, event SWAP puts the active process in
the waiting state and activates non-deterministically some ready process.

Fig. 1. Scheduler Specification from [6]

A palette of graphical representations that can be issued from the scheduler
example can be found in [8]. These representations provide a graphical docu-
mentation of the behaviour of B specifications and allow to identify different
viewpoints potentially useful for humans. IFor example, a B analyst may be
interested by a graphical representation of the SCHEDULER that intuitively
show a process life cycle. Hence, the abstract graphical view may deal with

When a Formal Model Rhymes with a Graphical Notation 57

three states corresponding to the fact that a process pi (such that pi ∈ PID) is
in state waiting, ready or active. In other words, states of the abstract view are:
(1) pi ∈ waiting, (2) pi ∈ ready, and (3) pi ∈ active. Figure 2, built manually,
gives an abstract view of the SCHEDULER system based on these three states.

[active = ∅]READY(pi)

pi ∈ waiting

NEW(pi)

pi ∈ active

pi ∈ ready

SWAP

SWAP

SWAP[active = ∅]READY(pi)

Fig. 2. Example of an intuitive abstract view of the SCHEDULER system

From a documentation point of view the interest of this representation is to
emphasize graphically some intrinsic properties of the SCHEDULER system, for
example:

– The process equity property, indicating that every process may be activated, is
not verified by the specification. Indeed, Fig. 2 shows that in state pi ∈ ready,
SWAP has a non-deterministic behaviour justified by the existence of two
transitions with the same label. This means that event SWAP can block a
process pi indefinitely in state pi ∈ ready.

– The non-blocking property, indicating that after being active a process does
not stop the system is verified by the specification. Indeed, in Fig. 2 the tran-
sition SWAP is triggered on from the state (pi ∈ active) and always leads to
state (pi ∈ waiting).

This paper shows how these graphical representations can be extracted auto-
matically using two kinds of techniques: under-approximation (or animation-
based) and over-approximation (or proof-based).

3 Under-Approximation Approach

Under-approximation is based on exploration of a useful subset of the state space.
We apply this technique in order to draw a graphical representation which is
useful from a documentation point of view but which may miss some behaviours.

3.1 Construction Method and Usability Constraints

One way to build an under-approximating graphical abstraction is to exhaus-
tively explore the concrete state space of the B specification and then to apply
an abstraction algorithm to group concrete states. For a bounded state space,

58 A. Idani and N. Stouls

animators such as ProB [11] can help to explore all states. In other cases, such as
for the SCHEDULER example, we must start by bounding unbounded elements
(i.e. specifying PID with a bounded set). If we introduce only two processes
p1 and p2 in the system, we obtain ten accessible states (Fig. 3). If the number
of processes increases, the accessibility graph becomes too large and difficult
to understand. For example, having PID = {p1, p2, p3} we obtained thirty five
accessible states with numerous transitions.

3.2 Graph Abstraction Algorithm

We note G = (N,T) an accessibility graph issued from a B system, where N
is the set of concrete states of graph G, and T is the set of transitions between
states of N . A concrete state Sv (Sv ∈ N) gives particular values assigned to
state variables v (v = {v1, . . . , vn}) of the B system. Consequently, each state s

waiting = {p1, p2}

active = ∅
ready = ∅

waiting = {p1}

active = ∅
ready = ∅
waiting = ∅

active = ∅
ready = ∅

waiting = {p2}

active = {p1}
ready = ∅

waiting = {p2}

active = {p2}
ready = ∅

waiting = {p1}

active = {p2}
ready = ∅
waiting = ∅

active = {p1}
ready = ∅
waiting = ∅

active = {p2}
ready = {p1}
waiting = ∅

active = {p1}
ready = {p2}
waiting = ∅

INITIALISATION

NEW (p1) NEW (p2)

NEW (p1)NEW (p2)

NEW (p2) NEW (p1)

READY (p1)

SWAP SWAP

READY (p2)

READY (p1)

SWAP SWAP

READY (p2)

READY (p2) READY (p1)
SWAP SWAP

active = ∅
ready = ∅

Fig. 3. Accessibility Graph of the SCHEDULER for PID = {p1, p2}

When a Formal Model Rhymes with a Graphical Notation 59

can be formally expressed by a predicate P (Sv) as the conjunction of equality
predicates that associate to each state variable vi its value in Sv:

P (Sv) �
n
∧

i=1

(vi = valj)

Where valj is a value of vi allowed by the invariant. A concrete state Sv satisfies
an abstract state Sabstract (noticed Sv � Sabstract), defined by a predicate R (e.g.
p1 ∈ ready), if and only if we can prove that P (Sv) ⇒ R.

Hence, according to an accessibility graph and a set of abstract states, the
following algorithm can produce a symbolic representation by grouping concrete
states satisfying a same abstract state predicate. The inputs are: (i) an acces-
sibility graph G = (N,T) and (ii) a set of abstract state predicates Nabstract

(Fig. 4).

Fig. 4. Under approximation algorithm.

The algorithm checks each concrete state against each abstract state pred-
icate, using the AtelierB prover. If the proof succeeds, then an abstract state
has been found for the concrete state. The next step in the construction of the
abstract state-transition diagram is to identify the transitions. Since each node
of the concrete graph corresponds to a node of the abstract diagram, each tran-
sition of the concrete graph can be translated into a transition in the abstract
diagram. In order to decrease the number of transitions, the tool groups all tran-
sitions which correspond to the same pair of nodes, and to the same B event.

60 A. Idani and N. Stouls

Our algorithm links concrete states to abstract ones, and hence the nodes of
the abstract state-transition diagram are: (a) the abstract state predicates given
by the user, and (b) the concrete nodes which don’t appear in the domain of the
abstraction function. This guarantees that each concrete node will correspond
to a node of the abstract diagram. Furthermore, in order to obtain a relevent
abstract view, two conditions should be verified:

1. abstract state predicates are disjoint, i.e. each concrete state corresponds to
at most one abstract state.

2. abstract state predicates cover all the state space allowed by the invariant, i.e.
the nodes of the abstract diagram only correspond to the abstract predicates.

The abstract view of Fig. 2 respects only the first condition because it misses
all concrete states reached from the initialization. These states can be grouped
in an abstract state pi �∈ (waiting ∪ active ∪ ready) which is reached when
the system is initialized. The left hand side of Fig. 6 shows the result of this
technique when applied to accessibility graph of Fig. 3 in which set PID contains
two processes p1 and p2.

4 Over-Approximation Approach

The under-approximation technique is useful when the accessibility graph
explores a relevant finite subset of state space from which we can exhibit a useful
abstract view for a documentation purpose. If some interesting behaviours are
not included in the concrete graph, they will not appear in the abstract diagram.
An over-approximation technique is then more interesting because it allows to
produce a symbolic transition system that represent a potentially infinite set of
values. Such tools reason on event enabledness and state reachability properties.

4.1 Construction Method and Usability Constraints

Our objective is to directly compute an abstract view from the B model prop-
erties, rather than to reason on a concrete graph. For instance, if an over-
approximation view shows that a state is not reached by any transition, then
one can conclude that associated concrete valuations could not be reachable by
any execution of the B model.

Our approach tries first to prove, for each event e and each couple of abstract
states S1 and S2, that no execution of event e from state S1 can reach state S2.
This goal is a proof obligation (PO) assuming that if state predicate P (S1) is
true then event e establishes the negation of state predicate P (S2):

P (S1) ⇒ [e]¬P (S2)

This first step allows to identify by proofs, all uncrossable transitions between
states S1 and S2. In fact, if the above PO is solved, then we assert that event e
never reaches S2 from S1. Variations of this PO allow to compute whether S2 is
always or possibly reached by e from S1:

When a Formal Model Rhymes with a Graphical Notation 61

– S2 always reached from S1: P (S1) ⇒ [e]P (S2)
– S2 possibly reached from S1: P (S1) ⇒ ¬[e]¬P (S2).

For example, the following proofs (but not only) should succeed for event
SWAP1:

– it always deactivate an active process: (pi ∈ active) ⇒ [SWAP](pi ∈ waiting)
– it never activate a waiting process: (pi ∈ waiting) ⇒ [SWAP](pi �∈ active)
– it may activate a ready process: (pi ∈ ready) ⇒ ¬[SWAP](pi �∈ active)

As for the under-approximation approach, two conditions must be verified:
abstract state predicates are disjoint and cover all the state space allowed by the
invariant. The first condition avoids states overlapping and the second one allows
to have a global view on the complete system. An important proof obligation
is then to establish the completeness of the state predicates according to the
invariant:

I =⇒
n
∨

i=1

P (S − v)

4.2 The GénéSyst Tool

The GénéSyst tool2 [4] implements the ideas of this approach. It computes a
Symbolic Labelled Transition System (SLTS) describing all possible behaviours
of a given event-B model, according to a given set of disjoint state predicates.
Generated proof obligations are discharged by means of the AtelierB automatic
prover.

The overall GénéSyst algorithm is presented in Fig. 5, where we distinguish
transitions from the initialization, and transitions associated to other events. In
this algorithm, conditions are written under a negative form (i.e. if ¬A can not
be established), since a formula that has not been proved is not necessarily true.
In this algorithm, no any information is presented to consider simplification of
the conditions. The reader can refer to [4] for further semantical details.

In order to restrict the undecidability problem of proofs, heuristics are used
to compute the over-approximation graph (the SLTS). One of them is to split
proofs into two parts: enabledness and reachability . In this approach, for each
pair of abstract states S1 and S2, and each event e, a transition t of the SLTS

is defined by (S1
(D,A,e)−→ S2), where D is the enabledness condition (condition

under which the event e can be triggered from S1) and A is the reachability
condition (condition under which the event e can reach the state S2). We define
enabledness and reachability as follows:

– Enabledness condition D : P (S1) ⇒ (D ⇔ guard(e))
– Reachability condition A : P (S1) ∧ D ⇒ (A ⇔ ¬[action(e)]¬P (S2)).

1 These properties are not all properties of event SWAP.
2 GénéSyst : http://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=Logiciels.

http://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=Logiciels

62 A. Idani and N. Stouls

Fig. 5. GénéSyst main algorithm

In the context of the starting state, the enabledness condition D is equivalent
to the B event guard (denoted guard(e)). Technically, the tool asks
AtelierB to prove if D can be reduced to true, by trying to proof the asser-
tion I ∧ P (S1) ⇒ guard(e), where I is the invariant. If this proof succeeds, it
concludes that e can always be enabled from S1; otherwise it asks AtelierB to
prove if D can be reduced to false, by trying to proof I ∧ P (S1) ⇒ ¬guard(e). If
this second proof succeeds then the tool concludes that e can’t be enabled from
S1. The same principle is applied for the reachability property. Condition A is
equivalent to ¬[action(e)]¬P (S2) which means that if A is reduced to true, then
e may reach S2. But if it is reduced to false then e cannot reach S2. By the way,

a transition (S1
(D,A,e)−→ S2) is said valid if and only if ∃x · (P (S1) ∧ D ∧ A).

Right hand side of Fig. 6 is produced by this technique without any bounding
of set PID. It describes all possible behaviours around states focused on a process
life-cycle. The two crossing conditions between brackets represent respectively
conditions D and A, for enabledness and reachability. Empty brackets mean that
the condition is proved true. A cross X on a condition means that this condition
has not been proved neither true, nor false.

When a Formal Model Rhymes with a Graphical Notation 63

Fig. 6. Results of Under and Over-Approximation Techniques

Compared to the under-approximation diagram produced for two processes,
some transitions exhibited by GénéSyst don’t correspond to any transition of the
concrete representation (New, ready and swap transitions, reflexive on state
Pi ∈ Ready). Indeed, limited to two processes for this example the under-
approximation technique didn’t explore a sufficient number of states.

5 Human Oriented Empirical Study

Techniques discussed in the previous sections allow to produce behavioural views
from a formal B specification depending on the abstraction chosen by the ana-
lyst. We have conducted experimentally a qualitative study with students from
a master’s degree specialized on software engineering, and who have finished
a detailed course about the B method. We formed two groups of 17 students
to which we provided two different specifications: the scheduler example dis-
cussed in this paper, and a B specification modelling access control mechanisms
to buildings. We applied our tools to these specifications and produced various

64 A. Idani and N. Stouls

Fig. 7. Diagrams reduce significantly error rate for some questions

diagrams in order to graphically document them. Every group had two lists of
questions about two different specifications where only one was supported by
diagrams. Our intension was to evaluate the error rate variations of answers to
quiet simple questions about these specifications when diagrams are provided.
This study allowed to observe an error rate decrease from 26.14% to 15.60%
when specifications are documented graphically. A variation about 11 % is inter-
esting, because it hightlights the contribution of diagrams to the understanding
of B specifications, but it may not seem very promising. We believe that the
inverse would be surprising because specifications provided to students are not
complex and should be accessible for them. Indeed, a global error rate near
26 % may be acceptable for persons who are not skilled with formal techniques,
but 15 % is better. More specifically, we observed that diagrams reduce signifi-
cantly the number of wrong answers for several questions. Figure 7 gives wrong
answers proportions with and without diagrams and shows that the error rate
can be divided by three and sometimes it is reduced from around 50 % to zero.

Questions G5-Q23 will be detailed further. 30 % of students to whom we
didn’t provide diagrams, misunderstood the equity property and considered
that a process can’t be bloqued indefinitely in the ready state (question Q11

card(active) = 0 card(active) = 1 card(active) > 1

NEW

SWAPSWAPNEW

INITIALISATION READY

READY

Fig. 8. State/Transition diagram focused on active processes

When a Formal Model Rhymes with a Graphical Notation 65

Fig. 9. Did the diagrams help you to understand specifications?

Fig. 10. Self-rated familiarity with B and UML for unfavourable students

in Fig. 7). However, when the diagram of Fig. 2 is provided, only 10 % gave the
wrong answer. We believe that such a property is somehow difficult to perceive
from a human point of view. Indeed, in order to be verifyied, the equity prop-
erty needs more automated tool analysis or other formal languages, such as LTL,
because it is a kind of behavioural properties not explicit in the B model. Nev-
ertheless, invariant properties can be illustrated graphically using state tran-
sition diagrams. For example, Fig. 8, produced by our tools, shows that state
card(active) > 1 is not reached by any transition and hence it is conformant to
invariant card(active) ≤ 1.

Without this diagram, about 40% of students said that there may be several
active processes at the same time (question Q5 in Fig. 7). Although invariant
card(active) ≤ 1 is clearly mentioned in the scheduler specification, students
were not able to attest that the scheduler operations preserve such a trivial
property. This result emphasizes the interest to document graphically an invari-
ant property for a better human understanding. Indeed, we obtained 100% of
good answers when Fig. 8 is provided.

An overall appreciation of the graphical views is given in Fig. 9 and shows
that two out of three students think that diagrams helped them to understand
specifications and the remaining one third expresses an unfavourable opinion.

66 A. Idani and N. Stouls

Fig. 11. Self-rated familiarity with B and UML for favourable students

In these two proportions, 13.33% of students say that diagrams didn’t help
them at all and 13.33% of them have the opposite opinion. In order to refine
these results we asked students to evaluate their knowledge of B and UML nota-
tions (Figs. 10 and 11). A great part of students who disagree with the interest
of diagrams seem to be uncomfortable with UML notations and has a better
familiarity with the formal B notation. Basing on this self-rated familiarity with
B and UML, one may conclude that although graphical views seem to be a
way for making a formal specification more accessible, they can have the inverse
effect because they also require some knowledge. This observation is confirmed
by the proportion of students who appreciated diagrams and who has obviously
a better mastering of graphical UML notations.

6 Conclusion

It is commonly known that formal specifications are complex because of nota-
tions that need a great mathematical background. In this paper, we focused our
interest on a B specification which is based on a verbose notation, close to a
programming language, and which should be more affordable than other formal
notations. Our empirical study showed that the language itself is not the main
reason to be less at ease with a formal method. Obviously, the difficulty for
humans is to have an overall view on the formal model.

This paper has presented two complementary approaches providing a behav-
ioural abstract view from a formal specification, in order to ease its
understanding. Figure 6 shows an example of results issued from under and
over-approximation techniques. We can observe from these diagrams that the
GénéSyst tool associates guards to events in order to describe their enabledness
and reachability properties. However, reflexive transitions SWAP, READY and
NEW in state pi ∈ ready are not possible when the scheduler system deals with
only two processes. For this particular set of processes the graph abstraction tool
produced a more precise diagram. GénéSyst being based on proof techniques,
it suffers the usual limitations of automatic provers: some theorems cannot be
proved automatically and require user interaction. Furthermore, if the under-
approximation approach can be used to verify reachability properties, then the

When a Formal Model Rhymes with a Graphical Notation 67

over-approximation approach is mainly interesting in case of safety properties.
Both techniques have some restrictions such as a limited state space for the first
one and a too large abstraction in case of leak of proof for the second one.

We also measured the computational time of each approach and we noticed
that the graph abstraction tool produced the state/transition diagram of a
process life cycle in 7 s for PID = {p1, p2} and 13 s for PID = {p1, p2, p3};
while the GénéSyst tool produced this diagram in 80 s for an unbounded state
space. This confirms that under-approximation tools are interesting when the
state space can be reduced to a small finite space. Furthermore, if some interest-
ing behaviours are not included in the concrete graph, they will not appear in
the abstract diagram. Given sets, such as PID, can be turned into enumerated
sets but numerical data structures such as NAT are less easy to address. Over-
approximation tools are much more interesting for such complex data structures
because they may be used to provide more formal evidence on the diagram
transitions.

Over-approximation, can be dedicated to verify safety properties as proposed
in [4] and [16]. It has the advantage to preserve infinite concrete state space
without any constraint, and hence safety properties could be established on the
symbolic transition system. The resulting LTS could also be used like a test
oracle which brings some interesting perspectives [9].

References

1. Abrial, J.-R.: Extending B without changing it (for developing distributed sys-
tems). In: Habrias, H. (ed.) First Conference on the B method, France, pp. 169–190
(1996)

2. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
3. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model

transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

4. Bert, D., Potet, M.-L., Stouls, N.: GeneSyst: a tool to reason about behavioral
aspects of B event specifications. Application to security properties. In: Treharne,
H., King, S., C. Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
299–318. Springer, Heidelberg (2005)

5. Casset, L.: Development of an embedded verifier for java card byte code using
formal methods. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol.
2391, pp. 290–309. Springer, Heidelberg (2002)

6. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specifications. In: Woodcock, J.C.P., Larsen, P.G. (eds.) FME ’93:
Industrial Strength, Formal Methods. LNCS, vol. 670, pp. 268–284. Springer,
London (1993)

7. Essamé, D., Dollé, D.: B in large-scale projects: the Canarsie line CBTC experience.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254.
Springer, Heidelberg (2006)

8. Idani, A., Ledru, Y.: Dynamic graphical UML views from formal B specifications.
Int. J. Inf. Softw.Technol. 48(3), 154–169 (2006). Elsevier

9. Julliand, J., Stouls, N., Bué, P.-C., Masson, P.-A.: B model slicing and predicate
abstraction to generate tests. Softw. Qual. J. 21(1), 127–158 (2013)

68 A. Idani and N. Stouls

10. Ledru, Y.: Using Jaza to animate RoZ specifications of UML class diagrams. In:
SEW, pp. 253–262. IEEE Computer Society (2006)

11. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

12. Leuschel, M., Butler, M., Spermann, C., Turner, E.: Symmetry reduction for B by
permutation flooding. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol.
4355, pp. 79–93. Springer, Heidelberg (2007)

13. Pouzancre, G.: How to diagnose a modern car with a formal B model? In: Bert, D.,
Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 98–100.
Springer, Heidelberg (2003)

14. Savicks, V., Snook, C.: A framework for diagrammatic modelling extensions in
Rodin. In: Rodin Workshop (2012)

15. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Method. (TOSEM) 15(1), 92–122 (2006)

16. Vu, D-H., Chiba, Y., Yatake, K., Aoki, T.: Model checking conformance of design
model to its formal specification, Research report (2014)

SaFoMe 2014

On a Process Algebraic Representation
of Sequence Diagrams

Jaco Jacobs(B) and Andrew Simpson

Department of Computer Science, University of Oxford, Oxford, UK
{jaco.jacobs,andrew.simpson}@cs.ox.ac.uk

Abstract. Sequence diagrams depict the interaction between entities
as a sequence of messages arranged in a temporal order. However, they
lack a formal execution semantics: the Unified Modeling Language (UML)
specification opts to use natural language to describe fundamental con-
cepts such as interaction operators that alter the behaviour of a frag-
ment. Communicating Sequential Processes (CSP) is a process-algebraic
formalism that is suited to modelling patterns of behavioural interaction.
Moreover, the associated refinement checker, Failures-Divergence Refine-
ment (FDR), gives rise to a practical approach that enables us to reason
about these interactions in a formal setting. In this paper, we show how
CSP and FDR have been used to provide a process-algebraic represen-
tation of sequence diagrams that is amenable to refinement-checking.

1 Introduction

Sequence diagrams are used to depict the interactions between entities in a
sequential, temporal order and have been applied in a wide range of contexts,
including: the automatic generation of test cases [1]; the specification of inter-
action protocols in multi-agent systems [2]; and in technical documentation
outlining the specification and design of a product [3]. In this paper, we give
consideration to sequence diagrams within the context of the Systems Modeling
Language (SysML),1 an extension of a subset of the Unified Modeling Language.2

The UML specification makes use of meta-models in order to capture the
abstract syntax of a diagram. While the benefits of this approach are signifi-
cant, a drawback is that the execution semantics are expressed using natural
language [4,5]. The lack of sufficient formalism in the specification makes it
problematic to interpret the precise meaning of a complex diagram [5]. In addi-
tion, the use of natural language may lead to ill-defined semantics, or induce
further confusion with regards to how a diagram ought to be interpreted. Thus,
approaches that translate UML diagrams into formal representations are advan-
tageous. Our focus is the process algebra Communicating Sequential Processes
(CSP) [6], with a view to establishing a formal framework that supports the auto-
mated reasoning about patterns of behaviour exhibited by sequence diagrams.

1 www.sysml.org.
2 www.uml.org.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 71–85, 2015.
DOI: 10.1007/978-3-319-15201-1 5

http://www.sysml.org
http://www.uml.org

72 J. Jacobs and A. Simpson

One notable reference where sequence diagrams are translated into CSP
(via a model-driven engineering approach) is that of Li and Li [7], where the
emphasis is placed on the translation process, which is insightful in terms of a
mechanised implementation approach. In contrast, we direct our efforts towards
the definition of adequate and succinct CSP processes in an implementation-
independent manner. Our objective therefore is to provide concise definitions —
using the process algebra CSP — of the patterns of behaviour represented by the
different interaction operators. This is done in the spirit of work undertaken by
Ng and Butler for state machines [8], and Dong et al. for activity diagrams [9]. We
view the mechanised translation, using, for example, model-driven techniques, as
an implementation of our approach; as such, will address this separately. While
these contributions have their benefits, none of them provide a satisfactory (for
our purposes) behavioural semantics for sequence diagrams in terms of CSP.

2 Background

2.1 Communicating Sequential Processes

Events are at the heart of CSP, with an event being an indivisible communication
or interaction. We denote by Σ the set of all possible events for a particular
specification. We can also give consideration to the alphabet of a process — the
events that it can perform. We write αP to denote the alphabet of a process P .

A communication takes place when two or more processes agree on an event.
The communication can either be a primitive event, or can take a more struc-
tured, message-passing form, utilising channels. The message-passing mechanism
is based on the principle of a rendezvous between a sending and a receiving
process: if the communication takes place on channel c, and a sending process
wants to output a value e, the receiving process has to allow for this (by inputting
on c). Once this has happened, the event is abstracted as c.e.

CSP is compositional in that it provides operators that allow us to define a
process in terms of other, constituent processes. The CSP syntax utilised in this
paper can be defined thus (where P , P1 and Pn denote processes, e denotes an
event, X and Y denotes sets of events, and b denotes a Boolean condition):

P =̂ P | Stop | Skip | e → P |
P � P | � e : X • e → P | P � P | � e : X • e → P |
P \ X | P o

9 P | if b then P else P |
P [X ‖ Y] P | P [| X |] P | ‖ i • [Xi]Pi | P ||| P | ||| i • Pi |

Stop is the deadlocked CSP process: it will refuse to participate in all events.
Skip models successful termination: it performs the special internal event �,
before behaving like Stop. The process e → P , modelled using the prefixing
operator, performs the event e and subsequently behaves as P .

CSP provides two choice operators: the external or deterministic choice oper-
ator, �, offers the environment the choice between the initial events of its argu-
ment processes; conversely, the internal or nondeterministic choice operator, �,

On a Process Algebraic Representation of Sequence Diagrams 73

Fig. 1. Relevant constructs of the sequence diagram.

offers no such choice and the observed behaviour may be that of either process.
Indexed versions exist for both operators.

The hiding operator, \, conceals the events of X from the view of the external
environment of P . The process P1

o
9 P2 represents the sequential composition of

P1 and P2. This process behaves as P1 until it terminates successfully, after
which it behaves as P2. A conditional choice construct is available in the form
if b then P1 else P2, where a process behaves as P1 if b is true and P2 otherwise.

The process P1 [| X |] P2 uses the generalised parallel operator to define an
interface on which P1 and P2 must synchronise. Events outside X may occur
independently in either process. The process P1 [X ‖Y]P2 denotes alphabetised
parallel, where synchronisation takes place on events in the set X ∩ Y . The
interleaving operator, |||, expresses the unsynchronised concurrent interleaving
of the events of its constituent processes. Indexed forms exist for each.

The refinement checker Failures-Divergence Refinement (FDR) — which uses
the machine-readable dialect of CSP, CSPM [10] — employs CSP’s theory of
refinement to investigate whether a potential design meets its specification. If
such a test fails, a counter-example is returned to indicate why this is so. We
write P �T Q when the process Q is a traces-refinement of the process P . While
other forms of refinement exist, traces-refinement is sufficient for our purposes.

2.2 Sequence Diagrams

Sequence diagrams facilitate the modelling of interactions between structural
constructs as sequences of temporal occurrences. These interaction occurrences,
or occurrence observations, can be broadly categorised into three classes: the
sending or receiving of a message; the creation or destruction of an instance;
and the start or end of another behaviour. In the interests of brevity, we restrict
our treatment to the first class of occurrence observations.

Messages can be exchanged either synchronously or asynchronously. If the
communication is synchronous, the sender blocks until the arrival of a response.
Conversely, during an asynchronous exchange, the sender does not block; rather,
it continues execution after sending the message. In SysML, for example, an
interaction executes within the context of its owning block, and specifies the

74 J. Jacobs and A. Simpson

interaction between parts or references [11]. A sequence diagram depicts this
interaction graphically.

Figure 1 shows the notation of interest. On the diagram, lifelines correspond
to the parts (or references). A lifeline is represented as a dashed line with the
name of the reference or part enclosed in a rectangle. A synchronous message
exchange is indicated using a solid line with a filled arrowhead from the sending
lifeline to the receiving lifeline; the return message, unblocking the sender, is
a dashed line with opposite direction. An asynchronous message is represented
using a solid line from the sending lifeline to the receiving lifeline; there is no
associated return message as the interaction does not block. When an interaction
executes, it produces a sequence of interaction occurrences, termed a trace.

Several interaction operators exist. An operator either alters the behaviour
of the prescribed sequence, or alters our interpretation of the trace. Examples
include the optional interaction operator, opt, and the assertion operator, assert.

3 Formalisation Using CSP

An interaction, I , is a quintuple of the form I =̂ (LI ,EI ,M S
I ,MO

I ,OI), where:

– LI denotes the set of lifelines of the sequence diagram, I ;
– EI denotes the set of event types (partitioned by disjoint sets for the signals,

ES
I , or operations, EO

I , that type messages);
– M S

I : ID �→ ES
I uniquely identifies the asynchronous messages of an interac-

tion and associates a message with the signal that typed it;
– MO

I : ID �→ EO
I uniquely identifies the synchronous messages of an interaction

and associates a message with the operation that typed it; and
– OI ⊆ LI × seq (ID × {snd , rcv , ack}) describes all interaction occurrences as

a set of pairs, with the first element being the lifeline and the second being a
sequence of occurrence observations.

We partition EI into two disjoint sets, ES
I and EO

I , representing signal events
and operation events, respectively. An instance of a signal event corresponds to
the sending and receiving of an asynchronous message in the interaction; simi-
larly, an operation event types an operation call and can be either synchronous
or asynchronous. For the purposes of this paper, we will treat all call operations
as synchronous (asynchronous call operations are similar to signals).

To provide each message (we view the acknowledgement message as part of
the synchronous message) with a unique identifier, we require that the domains
of the functions M S

I and MO
I be pairwise disjoint: dom (M S

I) ∩ dom (MO
I) = ∅.

As an additional constraint, we assume that each synchronous message has an
associated acknowledgement (with opposite direction). This acknowledgement is
not a message in the conventional sense — it merely exists in order to unblock
the sender. We can think of the acknowledgement as a rendezvous between the
communicating lifelines in order to unblock the sender. As such, we do not
associate it with its own identifier (it uses that of the corresponding synchronous
message); nor do we associate with it snd or rcv occurrence observations. In order

On a Process Algebraic Representation of Sequence Diagrams 75

for the communicating lifelines to synchronise on this event, both observe it as
an ack.

In addition, we define the following auxiliary functions:

– sd : ID �→ LI returns, for a message identifier, the sending lifeline;
– rv : ID �→ LI returns, for a message identifier, the receiving lifeline; and
– occurrences : LI �→ seq (ID × {snd , rcv , ack}) denotes the sequence of event

occurrences on the argument lifeline in temporal order.

Interaction occurrences appear in temporal order on a lifeline, with time pro-
gressing downwards. An interaction implicitly imposes an order on the messages
sent between lifelines. This weak sequencing implies that the order of interac-
tion occurrences on a particular lifeline is significant, but that ordering between
occurrences on different lifelines can be interleaved. An additional (and seem-
ingly obvious) constraint is that, for a particular message, the send occurrence
must happen before the receive occurrence. For example, consider again Fig. 1.
Message A (and all other messages) must be sent before it can be received. Addi-
tionally, for entity 2, A must be received before B can be sent. However, there
are no direct constraints between the send occurrences of messages D and E .

Our approach for translating sequence diagrams to CSP is based on mirror-
ing the structure of the corresponding diagram. Broadly, each lifeline is mapped
to a process and each occurrence observation is mapped to a CSP event. The
process then enforces weak sequencing by insisting that the occurrence obser-
vations appear in the temporal order specified on the corresponding lifeline.
The acts of sending and receiving a message are completely detached; as such,
we require an additional constraint process to enforce the fact that a message
cannot be received before it was sent.

We treat the various interaction operators of sequence diagrams using tem-
plate processes that describe their respective patterns of behaviour. These are
defined formally in Sect. 4.

Consider an interaction, I , with a corresponding sequence diagram. Our app-
roach can be outlined as follows.

– With each lifeline, l ∈ LI , we associate a sequence of events of the same
temporal order. The sequence of events is given by occurrences (l). An element
of this sequence is a pair of the form (id , obs), where id ∈ ID and obs ∈
{snd , rcv , ack}.

– We model each occurrence observation with a corresponding CSP event. The
unique identifier is communicated as part of the event due to the finer nuances
of weak sequencing semantics. Let obs ′ ∈ {snd , rcv}. Recall that for acknowl-
edgements we use the same id as that of the associated synchronous message.
Depending on the observation and the nature of the message, the event takes
the following form:
• for asynchronous messages, msg .asynch.id .obs ′.sd(id).rv(id).M S

I (id)
• for synchronous messages, msg .synch.id .obs ′.sd(id).rv(id).MO

I (id)
• for acknowledgements, msg .synch.id .ack .rv(id).sd(id).MO

I (id)

76 J. Jacobs and A. Simpson

– Each lifeline has a corresponding CSP process that communicates the events
in the required order (defined in the template process).

– For each message in an interaction, we associate a triple, (from, to,name),
where {from, to} ⊆ LI and name ∈ EI .

– Each message has an associated process with send and receive occurrence
events that synchronise with the appropriate sending and receiving lifelines
(defined in the template process).

– Depending on the interaction, we instantiate the correct template process
(as defined in the next section) to describe the behaviour.

– A sequence diagram that consists of more than one interaction operator is sub-
sequently defined as the sequential composition of the CSP template processes
that describe the respective interaction operators.

The approach does not require fixed sized buffers to model asynchrony, as the
sending and receiving lifelines do not synchronise on a message. This allows for a
uniform treatment of synchronous and asynchronous messages: in an asynchro-
nous exchange neither the sending nor the receiving lifelines are blocked; con-
versely, for a synchronous exchange, the sending lifeline blocks until the receiving
lifeline communicates the acknowledgement.

In order to simplify the CSP presented here, we do not model passing argu-
ments for call operations or signals; however, these can be readily incorporated
via the use of CSP channels.

4 Complex Interactions

Combined fragments allow for the description of complex patterns of interaction
in a concise and compact manner. UML (and, therefore, SysML) defines differ-
ent interaction operators, each enabling the specification of different rules with
regards to the ordering of messages (and their associated occurrence observa-
tions). A combined fragment is an interaction operator with associated operands.
Figure 1 gives an example of the use of the opt interaction operator.

The operands of an interaction operator is dependant upon the type of the
operator: the alternative and parallel operator each “have multiple horizontal
partitions, separated by dashed lines that correspond to their operands. Others
have just a single partition” [11]. For single partition operators, their operands
correspond to the messages enclosed in the combined fragment. In addition, the
operands of the interaction operators follow weak sequencing semantics (unless
it is the strict operator): “During execution of an interaction, all operands use
weak sequencing semantics on their contents” [11].

The weak sequencing interaction operator, seq, is the default. The operator
imposes a weak sequencing semantics on its operands, with the operands of the
weak sequencing operator being the messages contained within the combined
fragment. The UML specification [4] defines weak sequencing as follows.

1. “The ordering of occurrence specifications within each of the operands
[messages] are maintained in the result.”

On a Process Algebraic Representation of Sequence Diagrams 77

2. “Occurrence specifications on different lifelines from different operands [mes-
sages] may come in any order.”

3. “Occurrence specifications on the same lifeline from different operands [mes-
sages] are ordered such that an occurrence specifications of the first operand
[message] comes before that of the second operand [message].”

Thus: a message needs to be sent before it can be received; occurrence specifi-
cations between different lifelines (also between different messages) impose no
additional ordering constraints upon each other; and the temporal order of the
occurrence specifications on each lifeline must be honoured.

The process Message asserts that the sending of a message necessarily occurs
before its reception, as per condition 1. The parameters type and id correspond
to the type (synchronous or asynchronous) and unique identifier, respectively;
from and to model the sending and receiving lifelines; and name corresponds to
the signal or operation (an instance of an event type).

Message (type, id , from, to,name) =
msg .type.id .snd .from.to.name → msg .type.id .rcv .from.to.name → Skip

αMessage (type, id , from, to,name) =
{| msg .type.id .snd .from.to.name,msg .type.id .rcv .from.to.name |}

PrefixComposition, if supplied a sequence as input, is the process that com-
municates the events in order and then behaves as Skip. Given a temporal
sequence of interaction occurrences for a lifeline, we use PrefixComposition to
enforce condition 3:

PrefixComposition (s) =
if null (s) then Skip else head (s) → PrefixComposition (tail (s))

The process Lifelines models the parallel composition of a set of lifelines.
The process takes as input a set of sequences, where each sequence describes
occurrence specifications for a lifeline in temporal order. Each lifeline in the
composition synchronises on its entire alphabet. (In the following, the function
set converts a sequence to a set.)

Lifelines (l) = ‖ line : l • [set (line)]PrefixComposition (line)
αLifelines (l) =

⋃ {line : l • set (line)}
The process Messages is the parallel composition of the Message processes,

with each taking a quintuple of the form (type, id , from, to,name) as input.

Messages (m) =
‖(t , id , from, to,n) : m •

[αMessage (t , id , from, to,n)]Message (t , id , from, to,n)
αMessages (m) =

⋃ {(t , id , from, to,n) : m • αMessage (t , id , from, to,n)}
We can now model weak sequencing behaviour. By placing Messages and

PrefixComposition in parallel, we restrict the traces to adhere to the behaviours

78 J. Jacobs and A. Simpson

Fig. 2. The default seq operator (adapted from [11]).

imposed by the first and last condition. Condition 2 places no further restrictions
on the behaviour, and, as the interaction occurrences between different lifelines
do not have any shared events in common, we require no process to model this
behaviour. Seq , which models weak sequencing, is defined thus (for brevity, we
write αLifelines (l) and αMessages (m) as Lα and Mα, respectively):

Seq (l ,m) = Lifelines (l) [Lα ‖ Mα] Messages (m)

The operands of the strict sequencing operator, strict, are the messages con-
tained within the combined fragment: “the semantics of strict sequencing defines
a strict ordering of the operands [messages]” [4].

Strict sequencing semantics therefore impose an additional constraint upon
weak sequencing, in that the operands (messages) must be sequenced across all
participating lifelines [11]. This implies that, for a particular message, the send
and receive occurrences must occur in strict succession.

We can subsequently define strict sequencing by placing another process
(Enforce) in parallel to constrain the behaviour of weak sequencing.

The process Strict is defined as follows:

Strict (l ,m) = (Lifelines (l) [Lα ‖ Mα] Messages (m)) [| Mα |] Enforce (m)
Enforce (m) = � (msg .m.i .snd .f .t .n) : Mα •

msg .m.i .snd .f .t .n → msg .m.i .rcv .f .t .n → Enforce (m)
� Skip

Our approach allows for detecting when the operands of an interaction opera-
tor are not well-defined. For example, when we try and enforce strict semantics on
the sequence of Fig. 2, FDR detects a deadlock and returns a counter-example —
message overtaking is not possible using strict semantics.

The parallel operator, par, designates an interleaving between its operands.
The horizontal partitions (within the combined fragment) correspond to the
operands. The interleaving operator of CSP models this pattern of behaviour
perfectly. We therefore define the par interaction operator as the interleaved
behaviour of sequentially interleaved processes. For readability, the definition
below assumes that there are only two partitions within the combined fragment;

On a Process Algebraic Representation of Sequence Diagrams 79

we can, however, easily extend this to cover more partitions, or even generalise
the definition to cover an arbitrary number of horizontal partitions.

Par (l1,m1, l2,m2) = Seq (l1,m1) ||| Seq (l2,m2)

The alternative operator, alt, offers the choice between the behaviours of its
operands, based on the guard associated with each partition. Recall that the hor-
izontal partitions (within the combined fragment) correspond to the operands.
In a scenario in which more than one guard evaluates to true, the choice is non-
deterministic; if none evaluate to true, an optional else partition is selected [11].
We can use the nondeterministic and conditional choice constructs to model this
behaviour. Below we provide a definition for a combined fragment consisting of
two conditionally guarded partitions and one else clause. This definition can be
generalised to handle an arbitrary number of conditional clauses, but a simplified
version is presented here to illustrate the concepts.

Alt (l1,m1, g1, l2,m2, g2, l3,m3) =
if (g1 ∧ g2) then Seq (l1,m1) � Seq (l2,m2)
else if g1 then Seq (l1,m1)

else if g2 then Seq (l2,m2) else Seq (l3,m3)

The operator opt models optional behaviour. The operand (messages con-
tained within the combined fragment) is only executed if the guard condition is
true. This behaviour is precisely that of an alt operator with a single operand.

Opt (l ,m, g) = if (g) then Seq (l ,m) else Skip

The break interaction operator is used to model a breaking scenario from
another enclosing fragment. The behavioural semantics is such that if the guard
associated with the break evaluates to true, then its operand is executed (rather
than the remainder of the enclosing fragment). For example, consider a break
nested within an enclosing seq fragment, which we model in terms of the process
Break . The first two parameters (lpre and mpre) describe the lifelines and mes-
sages of the enclosing fragment preceding the break; the final two parameters
(lpost and mpost) model the remainder of the enclosing behaviour. The l , m and
g parameters correspond to the operands of the break fragment.

Break (lpre ,mpre , l ,m, g , lpost ,mpost) =
Seq (lpre ,mpre) o

9 (if g then Seq (l ,m) else Seq (lpost ,mpost))

The loop operator repeats its operand (the messages contained within the
combined fragment) until the termination condition imposed upon it is satisfied.
The semantics of the loop operator allows for the termination condition to be
expressed as either: an iteration bound (of the form (lower , upper) or (exact));
a Boolean condition; or a combination of both. (In practice, however, one would
use one or the other, rather than a combination.)

80 J. Jacobs and A. Simpson

The UML specification is ambiguous with regards to the semantics when the
termination condition is expressed as a combination of an iteration bound and
Boolean guard: it is unclear what happens if the Boolean condition evaluates to
false before the minimum number of iterations have executed. This ambiguity
arises as a result the following two quotes from the UML specification: “after
the minimum number of iterations have executed and the Boolean expression is
false the loop will terminate” [4], and “the loop will only continue if that specifi-
cation evaluates to true during execution regardless of the minimum number of
iterations specified in the loop” [4]. As such, we consider in our treatment only
the cases where either an iteration bound or Boolean guard is specified.

The sequencing operator of CSP is used to express behaviour as a sequence
of process executions. We can convey the desired behaviour of the loop operator
through successive application of the sequencing operator (to the CSP process
modelling the behaviour of the operand) in accordance with the stated termina-
tion condition. Consider the case where there is a single integer iteration bound
is specified as the termination condition. The process Loop models this:

Loop (l ,m, e) = if (e ≥ 1) then (Seq (l ,m) o
9 Loop (l ,m, e − 1)) else Skip

5 Interaction Interpretation

The interaction operators described in the previous section allowed us to model
different forms of control flow — alternative or parallel behaviour, for example.
In this section, we introduce the three operators that change our interpretation
of a particular interaction sequence. We discuss these in the context of how they
might possibly be used in a refinement check. In addition, we motivate why it is
inappropriate to define process definitions in the spirit of the preceding section.

The ignore interaction operator provides, as part of the combined frag-
ment, a set of messages that are to be ignored. Consequently, the messages
are not allowed within the interaction fragment. The interpretation is that the
messages are insignificant and irrelevant and are to be ignored if they appear in
the interaction. An alternative interpretation is that the ignored messages can
appear anywhere in a trace and still be considered valid.

It is possible to model this as a template process, where the ignored traces
are interleaved with those of the interaction (assuming we followed the second
interpretation, and ignore contained all the valid observations of the ignored
events between participating lifelines):3

Ignore (l ,m, ignore) = Seq (l ,m) ||| Run (ignore)

A more elegant solution can be achieved via the hiding operator and the
first interpretation: in a refinement, we simply hide the ignored events from any
behaviour we are comparing against. For example, StateMachines \ ignore �T

3 Here, Run (E) = � e : E • e → Run (E).

On a Process Algebraic Representation of Sequence Diagrams 81

Fig. 3. Example 1

Seq (lifelines,messages) would test if an interaction is valid for a pair of com-
municating state machines, StateMachines.

The consider interaction operator specifies a set of messages that are to be
considered as part of this combined fragment; all other messages are ignored.
Consequently, the combined fragment can only contain the considered messages.
The semantics is interpreted to mean that other messages might occur as part
of the interaction, but that these are irrelevant and ought to be ignored. The
consider operator can be defined in terms of ignore: ignore all other messages not
considered. As was the case for ignore, there exists an alternative interpretation,
where all messages that are not considered may appear anywhere in the traces.
(In the interests of brevity, we do not expand further on the consider operator.)

The assertion operator, assert, declares that the interaction fragment models
the only valid continuations; any other eventuality is considered invalid. In this
case, we need the refinement relation to hold in both directions.

6 Examples

Having defined a process-algebraic formal semantics for sequence diagrams, we
can test whether the behaviour of one interaction sequence is contained within
another by considering trace semantics. Consider Fig. 3. If we regard the behav-
iour (in terms of traces) of I2 = Seq (L2,M2) as the valid behaviours (a safety
specification), and we want to test whether another interaction sequence, I1 =
Seq (L11,M11) o

9 Alt (L12,M12, b,L13,M13) o
9 Loop (L14,M14, 3), does not deviate

from this, we can use a traces-refinement (I2 �T I1) to confirm this.
As another example, we might want to be sure that interaction diagrams

at different levels of the specification are consistent (see Fig. 4). Such vertical
consistency problems are induced by a development process where models are
iteratively refined: we start with an interaction sequence at a higher level and add
more detail as we move closer to the implementation level specification. Assum-
ing Higher = Seq (Lh ,Mh) and Lower = Seq (Ll ,Ml), we can check whether

82 J. Jacobs and A. Simpson

Fig. 4. Example 2

Fig. 5. Example 3

Higher �T Lower \ hidden (where hidden denotes those occurrence observa-
tions present at the lower level, but not at the higher level).

Finally, we might make use of sequence diagrams to check the validity of
communicating state machines, as described in [12,13]. We can, for example,
test whether a particular sequence of events is possible when we consider the
combined behaviour of a set of communicating state machines. We can check
Blocks �T SEQ , where SEQ = Seq (L,M). Here, Blocks denotes the compo-
sitional process describing the combined behaviour of the communicating state
machines. We would also expect to make use of the CSP renaming operator in
order to consolidate the events of our interaction semantics with the events of
the state machine semantics, as proposed in [13] (Fig. 5).

7 Related Work

State machine diagrams were given a CSP semantics by Ng and Butler in [8];
activity diagrams were formalised by Dong et al. [9]. To the best of our knowl-
edge, there has been no such mapping done in the spirit of the aforementioned

On a Process Algebraic Representation of Sequence Diagrams 83

papers for sequence diagrams. Both [8,9] focus on the provision of a CSP seman-
tics in an implementation-independent fashion; this was our goal for sequence
diagrams. Other examples where state-based graphical models have been given
a formal CSP semantics include [14,15].

Li and Li [7] considered the automatic translation of sequence diagrams to
CSP using a model-driven approach. Sibertin-Blanc et al. [16] showed four possi-
ble semantic interpretations of sequence diagrams, partly due to the semi-formal
nature of the UML specification. Rasch and Wehrheim [17] used sequence dia-
grams to check the validity of scenarios in a UML model. Our work differs, in
that they define a semantics for sequence diagrams in terms of the messages
communicated; in addition, they exclude the interaction operators from their
analysis. Our work considers sequence diagrams in terms of occurrence observa-
tions, rather than messages, and extends to all operators. The checking of the
validity of scenarios, using our semantics as a model of interaction, will be a focus
of future research. Other notable works of reference can be found in [18,19].

8 Discussion

We have introduced patterns of behaviour to model the interaction operators as
per the UML standard. In addition, we have provided a uniform treatment of
synchronous and asynchronous messages. Furthermore, our approach does not
rely on fixed size buffers in order to model asynchronous exchanges. Finally, we
are able to deal with lost and found messages, as well as message overtaking.

The process-algebraic approach suggested enables us to compare the behav-
iour of a sequence of interactions against another interaction in a natural fashion.
This is in contrast to approaches that rely on traditional model checking, such
as the work of Lima et al. [20] — where such comparisons are not possible. Fur-
thermore, the only other formalisation of the semantics of sequence diagrams
that makes use of CSP that we are aware of is that of Li and Li [7]. Our app-
roach differs in that we define our semantics for sequence diagrams in terms of
templates that describe the patterns of behaviour for the various interaction
operators. Additionally, we consider the seq, strict, ignore, consider, and assert
operators. The advantage of our approach is that any implementation of an auto-
mated translation mechanism would only have to instantiate the proposed CSP
processes in order to describe the behaviour of the desired interaction operator.

The work of Li and Li [7] models the sending of a message between lifelines
L1 and L2 using the channel construct, with the lifelines synchronising on the
message being exchanged. The problem here, from our perspective, is that we
require the sending and receiving of a message to be modelled as two, separate,
detached events (the sending and receiving occurrence specifications related to
the message exchange). However, the suggested approach abstracts them into
a single event. This might have been appropriate, for example, if we were only
concerned with the act of exchanging a message. However, this is not our desire
here. Instead, we wish to decompose the exchange into two separate events. In
doing so, we will be able to operate our CSP models at a finer granularity.

84 J. Jacobs and A. Simpson

Consider making use of sequence diagrams to check the validity of communi-
cating state machines, as described by the present authors in [12,13]. Activities
are used to augment the behaviour of state machines in [21]. Using our model for
sequence diagrams, we would be able to make use of events (like a state machine
sending an asynchronous message) that correspond to interaction occurrences on
the sequence diagram. Of course, the sending of an asynchronous message by one
state machine does not guarantee that the message is received by another. Even
if it is received immediately, it might still be placed in an event queue, so the
receiving state machine might only process it later. If we operated at a coarser
granularity, we would have to be content with only modelling the exchange of
the message, making it impossible to distinguish between when it was sent and
when it was received.

The approach presented here is novel as we give a detailed account of inter-
action operators. Moreover, due to the nature of a process-algebraic formalism
like CSP, where the focus is on describing intricate patterns of behaviour, we
are able to deal with interaction operators that alter our interpretation of an
interaction sequence more naturally that in approaches that rely on traditional
model checking using temporal logics [20]. In addition, the refinement checker,
FDR, which allows the behaviour of one process to be compared against that of
another in terms of a refinement hierarchy, provides a practical means of com-
paring behaviour of one sequence diagram against that of another (incorporating
the operators that alter interaction interpretation, for example).

Possible areas of future work include checking the validity of scenarios.

References

1. Swain, S.K., Mohapatra, D.P., Mall, R.: Test case generation based on use case
and sequence diagram. Int. J. Softw. Eng. 3(2), 21–52 (2010)

2. Odell, J.J., Van Dyke Parunak, H., Bauer, B.: Representing agent interaction pro-
tocols in UML. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol.
1957, pp. 121–140. Springer, Heidelberg (2001)

3. Bist, G., MacKinnon, N., Murphy, S.: Sequence diagram presentation in technical
documentation. In: Proceedings of the 22nd International Conference on Design of
Communication: The Engineering of Quality Documentation, SIGDOC 2004, pp.
128–133. ACM (2004)

4. Object Management Group: Unified Modeling Language Specification, version
2.4.1 (2011)

5. Kim, S.-K., Carrington, D.: A formal model of the UML metamodel: the UML state
machine and its integrity constraints. In: Bert, D., Bowen, J.P., C. Henson, M.,
Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 497–516. Springer, Heidelberg
(2002)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

7. Li, D., Li, D.: An approach to formalize UML sequence diagrams in CSP. Int. Proc.
Comput. Sci. Inf. Technol. 53(2), 109–115 (2010)

8. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Pro-
ceedings of the 1st International Conference on Software Engineering and Formal
Methods, SEFM 2003, pp. 138–147. IEEE (2003)

On a Process Algebraic Representation of Sequence Diagrams 85

9. Dong, X., Philbert, N., Zongtian, L., Wei, L.: Towards formalizing UML activity
diagrams in CSP. In: Proceedings of the International Symposium on Computer
Science and Computational Technology, ISCSCT 2008, pp. 450–453. IEEE (2008)

10. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River (1997)

11. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann Publishers, San Francisco (2008)

12. Jacobs, J., Simpson, A.C.: A process algebraic approach to decomposition of com-
municating SysML blocks. Int. J. Model. Opt. 3(2), 153–157 (2013)

13. Jacobs, J.: A Formal Refinement Framework for the Systems Modeling Language.
Department of Computer Science, University of Oxford, Doctor of Philosophy the-
sis (2015)

14. Yeung, W.L., Leung, K.R.P.H., Dong, W., Wang, J.: Improvements towards for-
malising UML state diagrams in CSP. In: Proceedings of the 12th Asia-Pacific
Software Engineering Conference, APSEC 2005, pp. 176–182. IEEE (2005)

15. Roscoe, A.W., Chakraborty, S.: Verifying statemate statecharts using CSP and
FDR. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 324–
341. Springer, Heidelberg (2006)

16. Sibertin-Blanc, C., Hameurlain, N., Tahir, O.: Ambiguity and structural properties
of basic sequence diagrams. Innov. Syst. Softw. Eng. 4(3), 275–284 (2008)

17. Rasch, H., Wehrheim, H.: Checking the validity of scenarios in UML models. In:
Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 67–82.
Springer, Heidelberg (2005)

18. Sibertin-Blanc, C., Tahir, O., Cardoso, J.: Interpretation of UML sequence dia-
grams as causality flows. In: Ramos, F.F., Larios Rosillo, V., Unger, H. (eds.)
ISSADS 2005. LNCS, vol. 3563, pp. 126–140. Springer, Heidelberg (2005)

19. Bernardi, S., Merseguer, J.: Performance evaluation of UML design with stochastic
well-formed nets. J. Syst. Softw. 80(11), 1843–1865 (2007)

20. Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., Pourzandi, M.: For-
mal verification and validation of UML 2.0 sequence diagrams using source and
destination of messages. Electron. Notes Theor. Comput. Sci. 254, 143–160 (2009)

21. Jacobs, J., Simpson, A.C.: On the formal interpretation of SysML blocks using
a safety critical case study. In: Proceedings of the 8th Brazilian Symposium on
Software Components, Architectures, and Reuse, SBCARS 2014. IEEE (2014)

Modelling and Verification of Survivability
Requirements for Critical Systems

Simona Bernardi1(B), Lacramioara Dranca1, and José Merseguer2

1 Centro Universitario de la Defensa, Academia General Militar,
Zaragoza, Spain

{simonab,licri}@unizar.es
2 Dpto. Informática e Ing. de Sistemas, Universidad de Zaragoza,

Zaragoza, Spain
jmerse@unizar.es

Abstract. Survivability is a property of systems that guarantees ser-
vices which operate safe and timely. Safety-critical services must survive
despite the presence of faults or attacks. The contribution of the paper is
twofold: construction of a survivability assessment model (SAM) and its
transformation to a model checking problem. Our SAM is automatically
obtained from an improved specification of misuse cases, which encom-
passes essential services, threats and survivability strategies. The SAM
is automatically converted, using model-driven techniques, into a Petri
Net model for verifying survivability properties through model check-
ing. The method has been applied to a military command-and-control
information system.

Keywords: Safety assessment · Survivable services · Petri Nets

1 Introduction

Critical systems offer services that must operate safe and timely, despite the
presence of faults or attacks. This is the case, for example, of military Command
and Control Information Systems (C2IS). For these systems, “essential services”
must survive even when the system is infiltrated, compromised or crashed. Sur-
vivability strategies, resistance, recognition and recovery, are in this case cor-
nerstone system capabilities. In particular, resistance is the capability to repeal
attacks and to mask faults, recognition is the capability to detect attacks and
faults and to evaluate damage and, recovery is the capability to restore services
after intrusions or failures.

We propose a method to obtain a system survivability assessment model
(SAM), which can be formally verified. The method is based on misuse cases [1],
which we enhance with a QoS definition for the essential services and with a
survivability specification. The latter consists of a specification of faults and
attacks, threatening essential services, and of survivable strategies for threats
mitigation. The language used for specification is UML [16] and its extension

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 86–100, 2015.
DOI: 10.1007/978-3-319-15201-1 6

Modelling and Verification of Survivability Requirements 87

mechanisms. As a byproduct of the improved misuse cases, our method automat-
ically yields a service modes specification, which we call SAM. It comprises full
service and degraded modes and paths that account for threats and survivable
strategies. Special feature of the method is its ability to verify whether fun-
damental properties for survivable systems are considered in the requirements
specification, such as the capability of the system to recover the full service
mode. The method then provides a support for the engineer to identify lacks or
errors in the SAM.

The method primarily focuses on how to represent system requirements for
getting an appropriate SAM, rather than addressing the issues of eliciting and
gathering the requirements, which definitely are in the use case technique [10].
Model-driven techniques are used to derive from the SAM a Petri net model [15],
where model-checking is applied for a system survivable verification.

The paper is organized as follows. Section 2 describes our method. Section 3
illustrates the method using a military C2IS case study. Section 4 reviews the
literature. Conclusions are drawn in Sect. 5.

2 Survivability Assessment Method

We propose a method, as a four steps process, for creating a survivability
assessment model (SAM) and for verifying survivability properties on this SAM.
Figure 1 outlines the method, the first two steps comply with the SNA method [7].
Our method is primarily proposed to be used within iterative and incremental
processes, such as the Rational unified process [12], in the requirements stage. It
is also worth noting that the method resorts to the (mis)use cases technique [1].
Today, most development processes include use cases, being then the method also
practicable in prototype-based or agile processes.

Identify essential
services and

service modes

Obtain an improved
misuse case
specification

Obtain a SAM (conven-
tional and formal model)

No

Yes
Next Iteration

Verify
survivability

properties

Step1 Step2 Step3 Step4

Verification
succeeds?

SNA method

Specification

Analysis&Design,
Implementation,

Test,
Deployment, ...

Requirements

Fig. 1. Method overview

88 S. Bernardi et al.

2.1 Identify Essential Services and Service Modes

From a use case list the engineer selects those that must not collapse, even when
operating in adverse conditions of fault or attack. Our process supplements a
use case specification as follows:

– Each selected use case is an essential service stereotyped as service.
– The engineer develops a QoS specification for essential services, see Table 2

for an example. She identifies the system service modes, the metrics (e.g.,
availability, response time) and indicators (e.g., confidence level) of interest
and she decides the acceptable metric’s (indicator’s) thresholds.

Regarding service modes, it is expected to have a low number; three or four
different services modes can be reasonable even for large systems. Service modes
in Table 2 describe a paradigmatic case.

2.2 Obtain an Improved Misuse Case Specification

The objective is to develop an improved misuse case specification, which consists
of both a specification of the threats to the system and a set of survivable strate-
gies - resistance, recognition and recovery -. The former is a faults and attacks
specification. Our method supplements the well-known misuse case technique as
follows to get an improved specification.

Sub-step 2.1. Threats Specification. Fault and attack scenarios threatening
each essential service are discovered and represented by misuse cases stereotyped
as misuse. Similarly to use cases, also misuse cases are detailed with informal
descriptions; Table 3 shows an example. Each misuse case is annotated with
tagged-values that describe the characteristics of the threat, according to the
classification in [3]. The engineer should specify at least the persistency of the
threat (i.e., transient or permanent), the origin (i.e., malicious, if the threat is
an attack, or not malicious if the threat is a fault), the effect on the threatened
essential services, that is the service failure modes, and the affected QoS (i.e.,
the affected metrics/indicators defined in the QoS specification). In particular,
the service failure modes characterize the incorrect service according to differ-
ent viewpoints: the domain (i.e., content, early or late timing, halt, erratic),
the detectability (i.e., signaled or unsignaled), the consistency (i.e., consistent
or inconsistent) and the consequence on the environment (application-specific
severity levels are normally used which are associated to maximum acceptable
probabilities of occurrence). The misuse case annotations in Figs. 4 and 7 show
examples of the threats characterization.

Sub-step 2.2. Survivable Strategies. For each misuse case, survivability
strategies need to be specified to mitigate its effects on the essential services.
A strategy is stereotyped either resistance, recognition or recovery accord-
ing to the classification in [7]. The survivability strategies mitigating a given
misuse case are identified as follows:

Modelling and Verification of Survivability Requirements 89

<<serviceMode>>
Full Functionality

<<serviceMode>>
Degraded

[covered] [not covered]

<<serviceMode>>
Full Functionality

<<serviceMode>>
Degraded

<<resistance>>
UC1-1

<<service>>
UC1

<<misuse>>
MUC1

<<threatens>>

<<mitigates>>

<<recovery>>
UC1-4

<<recovery>>
UC1-5

<<mitigates>>

(A)

(B2) Pattern B

<<resistance>>
UC1-2

<<misuse>>
MUC1

servMode="Degraded"

<<service>>
UC2

<<threatens>>

servMode="FullFunctionality"

<<recognition>>
UC1-3

<<mitigates>><<mitigates>>

<<change>>
threats="MUC1"
resistance=(UC1-1,UC1-2)

<<change>>
recognition="UC1-3"

<<mitigates>>

servMode="Degraded"

<<change>>
recovery="UC1-5"

<<change>>
recovery="UC1-4"

(B1) Pattern A

Fig. 2. Service modes specification patterns.

1. The engineer studies if one or more resistance strategies can be devised, and
creates one use case per strategy. The interpretation is that the resistance
introduced by UC1-1 AND UC1-2, see Fig. 2, when applied to MUC1 would
leave the system in full functionality. But it is also possible that the resistance
does not succeed, then the system reaches a degraded service mode. The
reached service mode is specified as a tagged-value associated to the UCs
(servMode in Fig. 2(A)).

2. The engineer studies a strategy for the system to recognize the degraded
service mode induced by the success of the misuse case. If she identifies such
strategy, she creates the corresponding use case (UC1-3 in Fig. 2(A)).

3. The engineer identifies one or more strategies to recover the system, and
creates one use case for each strategy. Each use case is annotated with a
tagged value indicating the impact of the strategy. For example, one strategy
could recover the system to full functionality, but other can get less impact
(see Fig. 2(A), UC1-5 and UC1-4 respectively).

Sub-step 2.3. Review the QoS Specification. The improved misuse case
specification -created by Steps 2.1 and 2.2- will help the engineer to review the
QoS specification initially proposed in the first step of the method. So, new
service modes can be added, new metrics can be devised, and modifications in
the thresholds introduced. Again a few experience in QoS is required.

2.3 Obtain a Survivability Assessment Model

Two equivalent survivability assessment models (SAM) are obtained through
two sequential steps. First, a semi-formal SAM is automatically obtained by

90 S. Bernardi et al.

leveraging the improved misuse case specification and QoS specification. Then,
a new SAM is also automatically obtained from the semi-formal SAM. The last
SAM is a formal model, in terms of Petri Nets, where survivability properties of
the system can be verified. Let us detail the obtention of the semi-formal SAM.

The semi-formal SAM is a UML state-machine whose states are the system
service modes in the QoS specification. The transitions are obtained from the
improved misuse case specification. We consider two patterns to obtain the tran-
sitions. For each misuse case we first apply pattern A and then pattern B.

Pattern A (in Fig. 2-B1). We create a choice node1 whose input is the full
functionality state. The choice has two output transitions. One to full func-
tionality mode to represent that the resistance to the misuse case succeeds. The
other output leads to the degraded mode specified by the servMode tagged-value
associated to the resistance strategies (Fig. 2-A). The transition from the full
functionality state to the choice node is labelled change and the tagged-values
specify the mitigated misuse case (threats) as well as the resistance strategy use
cases. The change transition from the choice node to the degraded state specifies
the recognition use case.

Pattern B (in Fig. 2-B2). We review the recovery strategies for the misuse
case. For each one we create a transition whose input is the degraded mode
induced by the misuse case and its output the target mode indicated by the strat-
egy (servMode tagged-value). The transition is labelled change to indicate the
recovery use case.

The SAM Petri Net model is derived by applying a model-to-model trans-
formation to the semi-formal SAM.

Figure 3 sketches the mapping: the SAM on the left is actually the one pro-
duced in next section, C2IS case study, for the first iteration (cf. Fig. 5, white
part). The translation approach is quite intuitive: SAM states are mapped to
single PN places, while SAM transitions correspond to sequences of causally
connected PN transitions where the number of the latter depends on the anno-
tations associated to the former. In particular, a change of service mode can
be characterized by a threat causing it (threats tagged-value) and/or by a sur-
vivability strategy aimed at mitigating it (resistance, recognition, recovery). So
each tagged-value, annotated to a change SAM transition, is mapped to a PN
transition with the same name. The causality of the threat occurrence and the
consequent resistance and/or recognition and/or recovery is captured by the
causal connection of the corresponding PN transitions. The choice in the SAM
is translated to a free-choice conflict between two PN transitions: one repre-
senting the successful coverage of the resistance strategy (e.g., coveredUC4) and
the other the unsuccessful case (e.g., notcoveredUC4). Finally there is a unique
marked place (initial marking), which is the one corresponding to the initial
state of the SAM.

1 The choice node is graphically represented by the diamond shape.

Modelling and Verification of Survivability Requirements 91

coveredUC4

FullFunctionality

Jamming

UC4

UC5

DegradedPerformance

UC6

notcoveredUC4

Eavesdropping

UC7

notcoveredUC7

DegradedConfidentiality

coveredUC7

P1

P2

P4

P5

<<serviceMode>>
FullFunctionality

<<serviceMode>>
Degraded

Performance

[covered]

[not covered]

<<serviceMode>>
Degraded

Confidentiality

Transformationa) SAM b) PN
<<change>>
threats="Eavesdropping"
resistance="UC7"

<<change>>
threats="Jamming"
resistance="UC4"

<<change>>
recognition="UC5"

<<change>>
recovery="UC6"

P3

[covered] [not covered]

Legend

marked place
place

transition

Fig. 3. Model transformation.

2.4 Verify Survivability Properties

In the last step, the formal SAM, Petri Net model, is used for verifying surviv-
ability properties through model-checking techniques. The step aims at provid-
ing a feedback to the engineer about the completeness and correctness of the
service modes specification. In particular, considering that the SAM represents
the acceptable service modes of the essential services and the change of service
modes due to adverse conditions (attacks or faults), it may be interesting to
check, at least, the following properties of survivability:

P1. The system should always be able to recover to full functionality.
P2. The survivability strategy S is feasible.
P3. As a response to the occurrence of an adverse condition C, the system should

be able to carry out the survivability strategy S.

Model checking techniques [8] are state space based techniques that consist
in verifying logical properties on the reachability graph of the PN model. Logical
properties need to be formally specified as queries in order to be processed by a
model checker: there exist different temporal logic languages that can be applied
(e.g., CTL [4], LTL [14]), depending on the type of property to be checked and
on the type of model checking technique. On the other hand, we need to interpret
the survivability properties in terms of logical properties of the PN model, which
will be then expressed as queries on the PN reachability graph using a formal
language.

Table 1 shows the PN properties2 (second column) that ensure the satisfia-
bility of the properties P1–P3 and the PN queries (third column) that can be

2 Petri Nets have well-established properties, such as home state, which are usually
defined in terms of place markings and transition firings [15].

92 S. Bernardi et al.

Table 1. Mapping of properties to PN queries.

PN property PN query Logical condition description

P1 Initial home state Q1: AG(EF(init)) initial PN marking (init)
P2 Potential firability Q2: EF(pres) enabling set of s (pres)
P3 Causal dependence Q3: G(prec ⇒F pres) enabling sets of c and s (prec, pres)

formulated using temporal logic languages. All the queries are characterized by
logical conditions on the PN marking (fourth column).

In particular, the full functionality service mode in the semi-formal SAM is
represented by the initial marking of the PN model. The recoverability of the
former (P1) is ensured if the latter is a home state, that is if it is reachable from
any other reachable marking. The feasibility of a survivability strategy (P2)
corresponds to the potential fireability of the PN transition s representing the
strategy, that is the latter belongs at least to a firing sequence. Finally, the cause-
effect relationship between the occurrence of an adverse condition C and the
execution of a survivability strategy S (P3) corresponds to the causal dependence
between the PN transitions c and s modeling C and S, respectively. Observe that,
for a given PN property, different possible queries can be formulated; in Table 1,
Q1 and Q2 are CTL formulas and Q3 is an LTL formula.

Once the PN queries have been defined, they can be executed using a PN
model checker: besides the true/false answer, usually the model checker pro-
duces a counter-example path for queries of universal type (e.g., Q1 and Q3)
and a witness path for queries of existential type (e.g., Q2). For example, using
PROD [17], the query Q1 on the PN model of Fig. 3(b) returns a false value. A
counter-example path is also produced that indicates a path, on the reachability
graph of the PN model, leading to a deadlock marking (i.e., DegradedConfiden-
tiality place marked).

3 The C2IS Case Study

We consider a military Command and Control Information System (C2IS) [6].
Regardless the levels of command at which military C2IS systems are used, they
generally share information to synchronize the Situational Awareness and the
Purpose of the Chief in order to (1) provide timely an accurate view of what
is happening in the theater of operations to the officers in charge and (2) send
timely their orders to subordinates. In particular, they incorporate messaging
capabilities and a map situation.

We exemplify the method application considering two consecutive iterations
within the development process.

3.1 First Iteration

In the first step, three essential services related to information exchange are
identified: send reports, transmit orders and request supplies. Figure 4 (left part)

Modelling and Verification of Survivability Requirements 93

shows use cases (UCs) stereotyped service3. The exchange information func-
tionalities are all characterized by QoS requirements, that are considered in the
definition of the system service modes (see Table 2): full functionality defines
the required QoS under normal condition, i.e., assuming no threats affecting
the essential services. The other two modes define the required QoS under
degraded conditions, either considering degraded performance or degraded confi-
dentiality. The QoS metrics of interest are the steady state availability (ssAvail)
and response time (respTime), while confidentiality is a qualitative indicator
(confLevel) that enables to restrict the information exchange depending on the
NATO clearance levels (i.e., top secret, secret, confidential, restricted). For exam-
ple, a high confidence level indicates that the information can be exchanged at
all clearance levels, while a medium one limits the exchange of confidential and
restricted information. Finally, metric (indicator) threshold values are assigned
to the essential services: an exemplification is provided in Table 2.

Fig. 4. Misuse case diagram (Iteration 1)

In the second step a vulnerability analysis is carried out first, to identify
potential threats affecting essential services. Two types of attacks are consid-
ered specifically: sending radio signals to disrupt communication (jamming) and
accessing to the information exchanged between officers and subordinates (eaves-
dropping). The attacks are represented by misuse cases (see Fig. 4), they are
described in natural language using templates (see Table 3) and classified using
the taxonomy in [3]. The result of such classification is specified in the diagram
3 To avoid cluttering, the figure shows only the essential services considered in this

iteration.

94 S. Bernardi et al.

Table 2. Specification of QoS for each service mode

Full Functionality UC1 UC2 UC3

ssAvail 99% 99% 99%
respTime (10,sec,max) (10,sec,max) (100,sec,max)
confLevel high high high

Degraded Performance UC1 UC2 UC3

ssAvail 95% 95% 95%
respTime (100,sec,max) (100,sec,max) (1000,sec,max)
confLevel high high high

Degraded Confidentiality UC1 UC2 UC3

ssAvail 99% 99% 99%
respTime (10,sec,max) (10,sec,max) (100,sec,max)
confLevel medium medium medium

using tagged-values associated to the misuse cases: e.g., a jamming attack is a
malicious transient fault that causes delays in the information exchange (late-
Timing), in particular it affects the QoS (ssAvail, respTime).

Table 3. Detailed description of the jamming attack.

MUC Name Jamming

Scope C2IS

Level Service goal

Main Misusers Attacker

Success guarantee The information is not delivered timely

Main scenario The Attacker identifies the messaging system as a target:

1. The Attacker identifies the features of the communication

link in use

2. The Attacker sends an interference signal

3. Communication is interrupted

Once threats affecting essential services have been identified, survival strate-
gies to mitigate them are devised. Several strategies are required to mitigate
a jamming attack (Fig. 4, white UCs): use of spread spectrum communica-
tion (resistance strategy that may not provide a 100% threat coverability),
detection of absence of communication in case the resistance does not succeed
(recognition) and consequent reconfiguration with an alternative communica-
tion mean (recovery). Both the above resistance and the recovery strategies
should guarantee an acceptable degraded performance service mode (servMode
tagged value). On the other hand, to mitigate an eavesdropping attack only data
encryption is required (resistance) that may lead to a degraded confidentiality
service mode in case of successful intrusion.

Modelling and Verification of Survivability Requirements 95

In the third step, the SAM shown in Fig. 5 (white portion) is automatically
obtained from Fig. 4, by applying the patterns described in the previous section.
In particular, the states (serviceMode) represent the system service modes of
Table 2, the transitions (change) model changes of service mode due to threat
occurrence and consequent survivability strategies execution. Observe that the
tagged values associated to change transitions refer to (mis)use cases of Fig. 4.

Fig. 5. SAM state-machine (Iteration 1)

In the fourth step, the Petri Net of Fig. 3(b) is used as a SAM formal model
to verify properties as described in Sect. 2.4. The formal SAM was derived from
the semi-formal SAM in Fig. 3(a), the same as in Fig. 5 (white portion). It is
used to verify, through model-checking techniques, whether the system require-
ments specification satisfies the survivability properties described in Sect. 2.4. In
particular, the recoverability property P1 is not satisfied. As counterexample
the model checker found that, once reached the Degraded Confidentiality mode
is not still possible to recover to the Full Functionality. This result suggests to
require a stronger resistance strategy to eavesdropping attacks, and the engineer
decides to apply Tempest shielded equipment that together with data encryp-
tion should guarantee a 100% of coverage. The misuse case diagram is updated
accordingly by adding a new use case (UC8 in Fig. 4) and new SAMs -semi-
formal and formal- are generated. Property P1 is newly checked and, again, a
new counterexample is found since it is not possible to leave from a Degraded
Performance mode. Then, the engineer needs to introduce a new recovery strat-
egy to restore the original communication once a jamming attack disappears4

(UC9 in Fig. 4). The resulting semi-formal SAM is the one in Fig. 5 with the grey
transitions and where the transition path from Full Functionality to Degraded

4 Observe that attack is a transient fault.

96 S. Bernardi et al.

Confidentiality is removed. All the survivability properties are satisfied in this
SAM version, so the final misuse case specification can be used as input artifact
for the design phase in this iteration.

3.2 Second Iteration

The application of the method in a next iteration restarts identifying new essen-
tial services. An essential service related to the coordination of land/sea/air
operations (UC10 in Fig. 7) and two other related to map management (UC11
and UC12 in Fig. 7) are identified in the first step of the method. All of them are
stereotyped service and their associated QoS requirements identified. Specifi-
cally, the considered functionalities are characterized by performance and con-
fidentiality (QoS requirements shared with the functionalities analyzed in the
previous iteration) and some of them by integrity (a new QoS requirement).
The integrity metric of interest is a qualitative indicator (integLevel). A high
integrity level would grant writing permissions to those processes that exchange
critical, essential and routine information. The engineer considers the new metric
in the scope of the service modes already defined and identifies a new degraded
service mode degraded integrity. Initial threshold values are specified for each
new essential service with respect to all service modes and metrics (see Fig. 6).
Obviously, for metrics studied in previous iterations, its values remain the same
for the service modes already considered.

In the second step threats to new essential services are identified. The threats
analyzed in the previous iteration (jamming and eavesdropping) affect also some
of the essential services considered in the running iteration and the relationship
is reflected in the diagram in Fig. 7. Two new types of threats are considered:
destroying a communication node (destroy node) and manipulation of the data
sent by sensors or officers when updating the common situation map (manipulate
information). Each of them is specified in the diagram with the QoS metrics
affected, e.g., the latter attack is a malicious transient fault that affects the
content of the information exchanged (content), and consequently the QoS of
the confidence and integrity metrics (confLevel, integLevel).

Also in the second step survivable strategies are devised for the new threats in
this iteration. First, the engineer specifies a resistance strategy (Apply redun-
dancy - UC13 in Fig. 7) and a recognition strategy (Monitor node status -
UC14 in Fig. 7) to mitigate the destruction of a communication node, these
strategies should guarantee a 100 % of coverage. Next, a control access is required
as resistance strategy to a manipulate information attack that may lead to a
degraded integrity service mode in case the resistance fails. A recognition strat-
egy (monitoring data quality) and recovery strategy (restore original mode)
should eventually bring the system back to full functionality mode.

In the third step, a new semi-formal SAM is obtained considering the new
essential services only. It is used further to automatically build a formal SAM -
Petri Net-. In the fourth step, the verification of survivability properties on
this model gives useful feedback to the engineer. Specifically, the recognition
strategy UC14 does not satisfy the feasibility property P2 (see Sub-sect. 2.4).

Modelling and Verification of Survivability Requirements 97

The engineer corrects the specification (Fig. 7, grey part), so that the resistance
strategy Apply redundancy may lead to a degraded performance service mode
and she adds a new recovery strategy (Reconfigure - UC18) that should even-
tually bring the system back to full functionality mode.

Full Functionality

Degraded Performance

Degraded Confidentiality

ssAvail
respTime
confLevel
integLevel

UC1 UC2 UC3

First Iteration

UC10 UC11 UC12

Degraded Integrity

ssAvail
respTime
confLevel
integLevel

ssAvail
respTime
confLevel
integLevel

ssAvail
respTime
confLevel
integLevel

99% 99% 99%
(10,sec,max) (10,sec,max) (20,sec,max)

high high high
high high

high high high
high high

medium medium medium
high high

99% 99% 99%
(10,sec,max) (10,sec,max) (20,sec,max)

99% 99% 99%
(10,sec,max) (10,sec,max) (20,sec,max)

low low low
medium medium

95% 95% 95%
(100,sec,max)(100,sec,max) (100,sec,max)

Second Iteration

Fig. 6. Specification of QoS for each service mode (Iteration 2).

4 Related Work

Survivability has always been an important requirement in the military context
for platforms, communication systems, and nowadays more generally to mis-
sions. It has also been a concern of those civil system domains (e.g., information
systems and critical infrastructures) where it is crucial to guarantee certain QoS
levels despite a set of pre-specified threats.

Ellison et al. [7] proposed a method (SNA) for survivability assessment of dis-
tributed software systems at architectural level, however we place our method
in the requirements stage. The first two steps of our method comply with SNA
and we have introduced a new survivability assessment model, based on (mis)use
cases and QoS specifications, that is leveraged through model-checking for veri-
fication.

Knight and Strunk [11] proposed a formal definition for acceptable levels of
service offered by a survivable system under different environment conditions.

98 S. Bernardi et al.

Fig. 7. Misuse case diagram (Iteration 2)

Each level is quantified by relative values (as perceived by the users) and can
be expressed in terms of QoS requirements. The survivability specification is
a graph, where the nodes represent the acceptable levels of service offered by
the system and the edges model the change of levels when certain environment
conditions are met. We have also used a graph representation for the different
system service modes. Our work goes one step further by supporting the formal
verification of the survivability properties.

Several approaches have been proposed in the literature to collect QoS requi-
rements related to survivability. Mustafiz et al. [13] define a requirement engi-
neering process to elicit reliability/safety requirements and degraded services.
Similar to our proposal, use cases are profiled to model undesired situations
that can interrupt the normal behavior of the system and handlers to guaran-
tee reliable and safe services. In [5], a framework (UMD) has been proposed
for eliciting and modeling dependability requirements that is designed around a
basic modeling language defined by the authors. As in our proposal, UMD can
be used to identify and define measurable dependability requirements and prop-
erties of the system. Allenby and Kelly [2] integrate use case and hazard iden-
tification techniques for safety requirements elicitation in aerospace application
domain. The work in [9] inherits from [2] the use case specification and applies
Practical Formal Specification to specify safety requirements and to verify them
for completeness and consistency.

Modelling and Verification of Survivability Requirements 99

5 Conclusion

To the best of our knowledge, the task of verifying survivability requirements is
an important issue not yet addressed in the literature. In particular, the deriva-
tion of service modes specification from the requirements and its formal verifi-
cation are novel contributions of this work.

Reproducibility. Our method has been conceived to be easily reproduced
in different software development processes (iterative and incremental, agile or
prototype-based) through the use of the (mis)use case technique. In particular,
Step1 and Step2 clearly identify how to supplement (mis)use cases, while Step3
and Step4 should be accomplished automatically. We are currently developing a
framework based on the Eclipse platform as a support of the method.

Scalability. This is a strong point for the method. At this regard the main
issue should be the model checking analysis of the SAM due to state space
explosion. However, the number of states always remain low since they just
indicate service modes, as previously discussed. Moreover, each new iteration
gets a new SAM automatically, where only new essential services and new misuse
cases are considered and consequently analyzed. For large systems the number
of misuse cases could be large, however they only impact in the number of
transitions, which is not a problem for the analysis. A large number of use cases
does not hamper the method since they are not represented in the SAM for
analysis. In our case study, the analyses carried out by PROD lasted for a few
minutes.

Acknowledgements. Special thanks to the Lieutenant Colonel Félix Borque Pérez
of the CASIOPEA centre at CENAD “San Gregorio‘” (Zaragoza, Spain) for his help
in gathering the C2IS requirements. This work has been supported by the Spanish
projects TIN2011-24932 and TIN2013-46238-C4-1-R of the Ministerio de Economı́a y
Competitividad, and by the Distributed Computation (DisCo) research group of the
Aragonese Government (Ref. T94).

References

1. Alexander, I.: Misuse cases: use cases with hostile intent. IEEE Softw. 20(1), 58–66
(2003)

2. Allenby, K., Kelly, K.: Deriving safety requirements using scenarios. In: Interna-
tional Conference on Requirements Engineering, pp. 228–235. IEEE Computer
Society (2001)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 01(1), 11–33 (2004)

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

5. Donzelli, P., Basili, V.: A practical framework for eliciting and modeling system
dependability requirements: experience from the NASA high dependability com-
puting project. J. Syst. Softw. 79, 107–119 (2006)

100 S. Bernardi et al.

6. Diedrichsen, L.D.: Command & Control operational requirements and system
implementation. Inf. Secur. Int. J. 5, 23–40 (2000)

7. Ellison, R.J., Linger, R.C., Longstaff, T., Mead, N.R.: Survivable network system
analysis: a case study. IEEE Softw. 16(4), 70–77 (1999)

8. Girault, C., Valle, R. (eds.): System Engineering: A Petri Net Based Approach to
Modelling, Verification and Implementation, Chapter: State Space Based Methods
and Model Checking, pp. 171–190. KRONOS (1998)

9. Iwu, F., Galloway, A., McDermid, J., Toyn, J.: Integrating safety and formal analy-
ses using UML and PFS. Reliab. Eng. Syst. Saf. 92(2), 156–170 (2007)

10. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison Wesley, Reading (1999)

11. Knight, J.C., Strunk, E.A.: Achieving critical system survivability through software
architectures. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting
Dependable Systems II. LNCS, vol. 3069, pp. 51–78. Springer, Heidelberg (2004)

12. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
Longman Publishing, Boston (2003)

13. Mustafiz, S., Kienzle, J., Berlizev, A.: Addressing degraded service outcomes and
exceptional modes of operation in behavioural models. In: Proceedings of the
RISE/EFTS Joint International Workshop on Software Engineering for Resilient
Systems, SERENE 2008, pp. 19–28. ACM, New York (2008)

14. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13(1), 45–60 (1981)

15. Reisig, W.: Petri Nets. An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1985)

16. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison Wesley, Reading (2004)

17. Varpaaniemi, K., Heljanko, K., Lilius, J.: PROD 3.2 — an advanced tool for effi-
cient reachability analysis. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 472–475. Springer, Heidelberg (1997)

Model-Based Verification of Safety Contracts

Elena Gómez-Mart́ınez1, Ricardo J. Rodŕıguez1(B), Leire Etxeberria Elorza2,
Miren Illarramendi Rezabal2, and Clara Benac Earle1

1 Babel Group, Universidad Politécnica de Madrid, Madrid, Spain
{egomez,rjrodriguez,cbenac}@babel.ls.fi.upm.es

2 Embedded Systems Research Group, Mondragon Goi Eskola Politeknikoa (MGEP),
Arrasate-Mondragón, Spain

{letxeberria,millarramendi}@mondragon.edu

Abstract. The verification of safety becomes crucial in critical systems
where human lives depend on the correct functioning of such systems.
Formal methods have often been advocated as necessary to ensure the
reliability of software systems, albeit with a considerable effort. In any
case, such an effort is cost-effective when verifying safety-critical sys-
tems. Safety requirements are usually expressed using safety contracts,
in terms of assumptions and guarantees. To facilitate the adoption of for-
mal methods in the safety-critical software industry, we propose the use
of well-known modelling languages, such as UML, to model a software
system, and the use of OCL to express the system safety contracts within
UML. A UML model enriched with OCL constraints is then transformed
to a Petri net model that enables to formally verify such safety contracts.
We apply our approach to an industrial case study that models a train
doors controller in charge of the opening and closing of train doors. Our
approach allows to perform an early safety verification, which increases
the confidence of software engineers while designing the system.

Keywords: Safety contracts · Model-based · Verification · Petri nets

1 Introduction

With the growing adoption of software in safety-critical systems, safety assess-
ment has become a crucial software engineering task as it has been recognised by
several initiatives, for instance, the ARTEMIS JU nSafeCer project [1]. More-
over, software system safety engineering must be incorporated early in the soft-
ware design process and be part of the development and operational lifecycle of
the system.

Contract-based design is a popular approach for the design of complex
component-based systems where safety properties are difficult to guarantee [2,3].
A key benefit of using contracts is that they follow the principle of separation

The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement no 295373 (project nSafeCer) and from National
funding.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 101–115, 2015.
DOI: 10.1007/978-3-319-15201-1 7

102 E. Gómez-Mart́ınez et al.

of concerns [4], separating assumptions that the environment of a component
obeys from what a component guarantees under such an environment.

The Unified Modelling Language (UML) [5] is widely adopted to model the
design of a system. By providing the means to include safety requirements in
UML, the integration of safety activities in the normal software lifecycle is facili-
tated. For safety specification, two approaches have been proposed: (i) to use the
Object Constraint Language (OCL) [6] which is a well-known language among
modelisation engineering community, or (ii) to use specific UML profiles [7]. In
previous work [8], we have proposed a technique that combines both approaches.
In this paper, in contrast, we focus on the representation of safety contracts as
OCL constraints.

For the verification of safety contracts, several formal verification techniques
have been proposed, for instance [3], which uses model checking. Our proposal is
to translate UML to Petri Nets and perform the analysis by computing probabil-
ities using the GreatSPN tool [9]. By combining standard engineering practice,
i.e., UML, with formal verification techniques, i.e. Petri nets, we provide a rig-
orous safety analysis available for software engineers.

Our approach has been used to verify a set of safety contracts on an industrial
case study where the UML model of a train doors controller has been analysed.
The train doors controller is the component in charge of opening and closing train
doors. The CAF Power & Automation company1 develops these train compo-
nents. Thus, components like the train doors controller are modelled in UML
previous to their implementation.

In summary, the contributions of the work presented in this paper are the
following:

– a formal definition of the proposed transformation of a safety contract into an
OCL constraint.

– an (informal) transformation of OCL constraints into Petri nets by means of
the case-study.

– a (partly automatic/partly manual) translation of the case-study UML dia-
grams annotated with OCL to Petri Nets.

– the safety analysis of the case-sudy.

The rest of the paper contains the following sections. Firstly, Sect. 2 outlines
the basic concepts. Section 3 details the train doors controller. Then, Sect. 4
describes a proposal of safety contract specification in OCL, and its transforma-
tion to Petri nets. It also introduces the safety contracts of the case study, which
are analysed in Sect. 5. Finally, Sect. 6 covers related work and Sect. 7 states
some conclusions.

2 Previous Concepts

UML [5,10] is a semi formal general-purpose visual modelling language used
for specifying software systems. UML can be tailored for specific purposes by
1 http://www.cafpower.com/es/.

http://www.cafpower.com/es/

Model-Based Verification of Safety Contracts 103

profiling. A UML profile is a UML extension to enrich UML model semantics
defined in terms of: stereotypes (concepts in the target domain), tagged values
(attributes of the stereotypes) and constraints (formulae that apply to stereo-
types and UML elements to extend their semantics). Numerous UML profiles can
be found in the literature targeting different specific domains and non-functional
properties system analysis (e.g., performance, dependability, security, etc.). For
instance, MARTE (Modeling and Analysis of Real-Time and Embedded sys-
tems) profile [11] provides support for schedulability and performance analysis in
real-time and embedded systems, while DAM (Dependability Analysis and Mod-
elling) profile [12] supports dependability analysis and SecAM (Security Analysis
and Modelling) profile [13] focuses on security aspects. In this paper, we use the
MARTE profile to indicate the duration of activities in a UML model. The stereo-
type provided by MARTE to this goal is gaStep (hostDemand tagged value),
within the MARTE analysis framework called Generic Quantitative Analysis
Model (GQAM).

Another extension to enrich UML semantics is the Object Constraint Lan-
guage (OCL) [6]. OCL is a pure expression language for describing constraints
that apply to UML models. When an OCL expression is evaluated, it simply
returns a value without further effects in the model. OCL allows to specify
invariants (on classes and types), to describe pre- and post-conditions (on oper-
ations and methods), guards or either constraints (on operations). Note that
although an OCL expression can be used to specify a state change (e.g., by
means of a post-condition), the state of the system will never effectively change
because of the evaluation of an OCL expression (that is, OCL only provides
textual description).

Unfortunately, a UML model annotated with OCL and a profile that provides
support for non-functional properties specification is not a suitable model to
quantitatively or qualitatively evaluate such properties. For this aim, formal
methods may help. In this paper, we consider Petri nets [14] as the formal
modelling language. More precisely, we translate the annotated UML diagrams
into Generalized Stochastic Petri Nets (GSPNs [15]), following the guidelines
proposed in [16].

A GSPN is a graphical and mathematical formalism used for the modelling of
concurrent and distributed systems. A gentle introduction to GSPN can be found
in [15]. Informally, a GSPN is a bipartite graph of places and transitions joined
by arcs (graphically represented by circles, bars and arrows respectively). They
describe the flow of the system with concurrency and synchronous capabilities.
Places can hold tokens, which represent system resources or system workload,
while transitions represent system activities. The firing of transitions represents a
change in the system state. When a transition fires, tokens from input places are
placed in output places. A GSPN distinguishes two kind of transitions: immedi-
ate transitions, which fire at zero time (i.e. its firing does not consume any time);
and timed transitions, which may follow different firing distributions such as uni-
form, deterministic or exponential distributions. In this paper, we consider timed
transitions with exponentially distributed random firings. Immediate transitions,

104 E. Gómez-Mart́ınez et al.

depicted as thin black bars, can have also associated probabilities to represent
the system routing alternatives. Exponential transitions, drawn as white boxes,
account for the time that takes an activity to complete.

3 Case Study: Train Doors Controller

As a case study in this paper, we consider the door control management per-
formed by a Train Control and Monitoring System (TCMS). The TCMS is a
complex distributed (along the train) system that controls many subsystems. It
contains several Input/Output (IO) modules that gather data and send it to a
PLC (Programmable Logic Controller) via a communication bus. Each of the
IO modules has a CPU, digital/analogical inputs and outputs and is connected
to the communication bus. The logic of the TCMS is performed in the PLC.

The system level requirements concerning the operation of opening and clos-
ing of doors are satisfied by the following components:

– the TCMS component that decides whether to enable or disable the doors. Doors
must be enabled before they can be opened and disabled before closing;

– the Door component that effectively controls the opening or closing of a door;
– the Traction component that controls the train movement; and
– the MVB (Multifunction Vehicle Bus) component that communicates the com-

ponents among them.

Figure 1 shows the composite diagram of the system. The subcomponents of
the Door component, i.e., the controller (in the following we will refer to this
component as the Door Controller), the limit sensors, the obstacle sensor, and
a button for opening doors, are also depicted in the diagram.

In this paper, we focus on the control of doors. The case study presented here
concerns a real system where some simplifications have been made. Namely, the
interaction with other components of the TCMS and the dependencies with other
subcomponents, and their communication has been omitted. Besides, concerning
the closing of doors, in the original design there were different versions of the
existence of obstacles, while here we have chosen only one of them.

In the following, we present the UML Sequence Diagrams (UML-SD) for the
opening and closing of doors. Figure 2(a) depicts the UML-SD for opening the
door. When a train driver requests the opening of doors, first the TCMS checks
whether the train status is suitable for opening the doors without risk, checking
that the train is really stopped before sending the “enable door” order to the
Door Controller component. Thus, the TCMS system sends the “enable door”
command request to the Door Controller component only when the train is in
a safe condition (e.g. speed is zero) to perform the request properly and without
risk for passengers. The Door Controller component opens the door only if it
is enabled, i.e., it has received the “enable door” order from the TCMS and if
some passenger has request the opening of a door (“open request”) using any of
the buttons (interior or exterior) of the door.

Model-Based Verification of Safety Contracts 105

Fig. 1. The Composite diagram of the system.

The door closing operation is depicted in Fig. 2(b). When the driver com-
mands doors closing, the TCMS system sends the “not enable door” command
to the Door component. The Door component disables the door and closes the
door if it is safe, i.e. there is no detected obstacle. When there is an obstacle,
the door is opened and closed once such an obstacle has disappeared.

In order to enable an incremental certification process and to demonstrate the
benefits of reusability, this case study adopts the methodology of contract-based
design. In contract-based design each safety critical component of the system and
non-critical components are seen as separate components [17] which interact with
their environment. As we formally explain in the next section, we associate to
each safety critical component C a safety contract, i.e. an abstract specification
in the form of a tuple SC = 〈A,G〉, where A represents the assumptions on the
environment of the component, and G represents what the component guarantees
under these assumptions. A contract is intended to expose enough information
about the component, but not more than necessary. We say that a component
implements its contract if it satisfies the guarantees when the environment meets
the assumptions.

In the following section we introduce a framework for safety contract speci-
fication and the transformation to OCL constraints, which will be later used for
formal safety assessment using Petri nets.

106 E. Gómez-Mart́ınez et al.

4 Specification of Safety Contracts as OCL
and Petri Nets

In a component-based system a contract defines the obligations to be met by a
certain component and its dependencies [18]. As it is claimed in [19], a safety
contract is similar to a (software) contract but instead of pre/post-conditions
contains assumptions and guarantees that endorse a certain level of integrity of
functional properties depending on the component’s environment.

In this paper, we adhere to the definition of a Safety Contract Fragment
(SCF) given in [19]. A SCF conforms a safety contract as a set of assumptions –
what it is expected to be met by the component’s environment – and a set of
guarantees, which specify the behaviour of a component under such an environ-
ment. In a previous work we have explored the idea of transforming an SCF to
an OCL invariant within UML models [8]. In this work, we revise and formalise
our model-based transformation approach. In the sequel, we formally define a
SCF and the transformation from an SCF to an OCL invariant.

Let us assume a system composed of a set of components that interact
between them. Let C = 〈I,O〉 be a component of such a system having a set
I of input ports and a set O of output ports. Let SC = 〈A,G〉 be a SCF [19]
defined over a component C, where A = A+

⋃ A∗ is a superset of disjoint sets
A+,A∗ of OR and AND safety constraints, respectively, and G = G+

⋃ G∗ is a
superset of disjoint sets G+,G∗ of OR and AND guarantees2. A safety contract
assumption A is a proposition that relates one or more of the input ports of a
component. Similarly, a safety contract guarantee G is a proposition that relates
one or more of the output ports of a component.

Recall that OCL is a UML extension to express constraints into UML models.
An OCL constraint is defined over a context that describes where such a con-
straint is acting. As it is introduced in Sect. 2, OCL defines different constructs,
such as inv to define invariants, which state conditions that must always be
met by all instances of a context type, pre to state a condition that must be
true when an operation starts its execution, or post to state a condition that
must be true when an operation ends its execution. In this paper, we consider
only OCL invariants. An OCL constraint can be formally defined as follows. Let
R = 〈X ,V〉 be an OCL constraint defined over a context X and having an invari-
ant formula V = 〈ls, rs〉. An invariant formula is conformed by two propositions
ls, rs joined by a boolean or implies operator. Note that the right-hand side of
an invariant formula can be empty.

As it has been previously mentioned, an OCL constraint is defined over a
context that describes where such a constraint is acting. In the proposed trans-
lation, a SCF corresponds to an OCL constraint. Since a SCF is specified over
a component, it is reasonable to match the context of the corresponding OCL
constraint to such a component as well. Thus, a transformation from SCF to
OCL invariant can be straightforwardly defined as follows:
2 As in [8], we restrict the logic of SCF assumptions and guarantees to AND and OR

logic operators.

Model-Based Verification of Safety Contracts 107

(a
)

D
o
o
r

o
p
en

in
g

U
M

L
-S

D
(b

)
D

o
o
r

cl
o
si
n
g

U
M

L
-S

D

F
ig
.
2
.
(a

)
D

o
o
r

o
p
en

in
g

a
n
d

(b
)

d
o
o
r

cl
o
si

n
g

U
M

L
se

q
u
en

ce
d
ia

g
ra

m
s.

108 E. Gómez-Mart́ınez et al.

Proposition 1. Let C be a component of a system on which a Safety Contract
Fragment S = 〈A,G〉 has been defined. Thus, an OCL R = 〈X ,V〉 can be built
considering X = C and V = 〈A,G〉.
As it can be seen, the component C defines the context X of the OCL constraint,
while the content of such an OCL constraint (the invariant) is defined by the
assumptions and guarantees of the Safety Contract Fragment S defined on C.

Let us describe how our transformation approach works by means of the case
study described in Sect. 3. Consider the following safety requirements given by
the engineers designing the system:

SR1. The door opening is not enabled when the traction is on or the train speed
is distinct than zero.

SR2. The door must be closed but remains open when some obstacle has been
detected.

SR3. The door is closed when the door opening is enabled and the close event
is received.

The above safety requirements can be expressed in terms of Safety Con-
tract Fragments, considering the component-based system depicted in Fig. 1, as
follows:

– S1 = 〈(traction OR (tractionSpeed �= 0)), (NOT enableOpening)〉, defined
on the TCMS component.

– S2 = 〈obstacle, doorStatus = opening〉. In this case, the component on which
this SCF is defined is DoorController.

– S3 = 〈(enableOpening AND close), doorStatus = isClosed〉. This SCF is
defined on the component Door.

Note that the assumptions and guarantees of the former SCFs relate, respec-
tively, input and output ports of the components where they are defined.

Following the Proposition (1), the above SCFs can be straightforwardly con-
verted to OCL invariants as it is listed in Code 1.1. Here, the task of a require-
ment engineer is to interpret the safety requirements in terms of SFC. This task
is accomplished by matching the safety requirements to the UML component-
based design. This task is surely a difficult one but once this task has been
performed the transformation to OCL invariants becomes trivial. Recall that
these OCL invariants that express safety requirements allow to perform safety
assessment in a system, as shown in the following section.

Code 1.1. OCL constraints obtained from SCF transformation.

context TCMS SR1
inv : (t r a c t i o n or t rac t i onSpeed <> 0)

imp l i e s not enableOpening

context DoorControl ler SR2
inv : ob s t a c l e

Model-Based Verification of Safety Contracts 109

imp l i e s (doorStatus = opening)

context Door SR3
inv : (enableOpening and c l o s e)

imp l i e s doorStatus = i sC lo s ed

Let us show how this OCL invariants can be transformed to Petri nets. Note
that we use only the implies binary operator (→) within the OCL invariant.
Recall that in classical logic the implies binary operator can be transformed to
an equivalent form using or and not operators, i.e., p → q is logically equivalent
to ¬p ∨ q. If we consider each proposition of OCL invariant as Petri net places,
and transform the invariant to its logically equivalent, we obtain the Petri net
models depicted in Fig. 3 for each safety contracts considered for the case under
study3.

The sink places (without output transitions) of each Petri net representa-
tion depicted in Fig. 3(a), (b) and (c) allow us to compute the probability of
having a marking in such a place (post-condition) greater than zero, indicating
that preconditions are fulfilled. Note that this solution does not provide us with
information regarding the event order or any other kind of temporal informa-
tion. This is an interesting issue that deserves further study, as discussed in the
following section.

5 Safety Analysis

We describe the safety analysis we propose by means of the case study. In order to
analyse the safety scenarios, i.e. the opening and closing of doors, the correspond-
ing UML-SD diagrams annotated with OCL, respectively depicted in Fig. 2(a)
and (b), are translated into GSPNs using the ArgoSPE tool [20] according to
the algorithms proposed in [16]. The resulting GSPN is shown in Fig. 4. The
left-hand side of the figure represents the door opening and the left-hand side,
the door closing. Even though part of the translation is done automatically using
the ArgoSPE tool some simple manual modifications to the GSPN are needed to
represent OCL constraints. In particular, modifying this GSPN with the Great-
SPN [9] tool, we have manually modelled the obstacle detection event as a place,
named p Obstacle, since it has associated an OCL constraint, as we explain in
the following paragraph. Moreover, we have modelled the Traction operation
without considering human interaction, thus, our system automatically speeds
up after closing the door and it brakes when the traction receives a traction stop
signal.

Since the OCL constraints are interpreted in a GSPN, they are equivalent
to compute the probability of a condition. Each condition is represented by a
place of the GSPN. For instance, the place p door OPEN represents the status
in which a door is open and the place p switch ON represents when the door
button is switched on. The probability of (eventually) reaching a condition is

3 I. Sljivo, personal communication, April 1, 2014.

110 E. Gómez-Mart́ınez et al.

(a) OCL constraint TCMS SR1 (b) OCL constraint DoorController SR2

(c) OCL constraint Door SR3

Fig. 3. Petri net representation of OCL constraints of the case study.

represented as a place being (eventually) marked. Note that a place eventually
marked does not necessary mean a place eventually always marked.

The Petri nets representing the safety contracts, depicted in Fig. 3 can now
be composed with the Petri net of the system depicted in Fig. 4. Both nets are
merged using the transitions that create tokens in places representing the same
issue, i.e., places NOTtraction and tractionSpeedZero in Fig. 3 represent the
same state than p traction on FALSE and p traction STOP , respectively, in
Fig. 4. The connection to places representing safety contracts have been high-
lighted (grey colour) in Fig. 4.

Finally, we use the GreatSPN tool [9] to compute the steady-state probability
of places SR1, SR2, SR3 having a marking greater than zero (i.e. the place is
eventually marked), which will indicate that the OCL constraints TCMS SR1,

Model-Based Verification of Safety Contracts 111

Fig. 4. Petri net corresponding to the opening and closing of a door.

112 E. Gómez-Mart́ınez et al.

DoorController SR2 and Door SR3 are fulfilled. A simulation of the net with
GreatSPN returns a positive value for these probabilities, thus safety contracts
are fulfilled in the system model.

Although the UML models that we use are enriched with MARTE profile
annotations, we do not currently use such an information for the safety analysis
even though it can be necessary for verifying some safety properties [18]. For this
aim, we may use OCL/RT [21], an extension of native OCL to specify time issues,
in conjunction with the MARTE profile, and translate such an information into
the GSPN models. We consider this an interesting issue which deserves further
study.

6 Related Work

Many formalisms have been proposed to express contracts, such as the Require-
ments Specification Language (RSL) [2], the Othello language [3], which is based
on Linear Temporal Logic, or Modal Transmission Systems [22]. Unlike OCL,
these languages are more expressive but OCL is a well-known language among
modelisation engineering community. However, a major drawback of these for-
malisms is that the requirement engineers need to learn a new formalism each
time they need to write contracts in a specific domain. In contrast, OCL is a
well-known language in industry. Besides, to the best of our knowledge some of
the proposed formalisms lack the means to verify that a component model fulfils
their contracts [2,22], or only focus on verification of functional properties [3].
In this work, we have shown that OCL contracts can be used to perform safety
assessment by translating the UML models to Petri nets. Although currently we
also focus on functional properties, the use of UML profiles enables to analyse
other non-functional properties that can affect to safety, such as performance,
dependability or security.

Representing safety contracts using OCL has been previously proposed in [18].
The novelty of our work is that we propose a translation from safety contracts
in the form of assumptions and guarantees to OCL. Our work complements the
work of OTHELLO language [3] and OCRA [23]. In particular, the analysis
of non-functional properties can complement the work on verifying functional
properties in OCRA [23]. Other work similar to ours is [24], where UML/OCL is
used to express system invariants, transformed to Place/Transition nets (with-
out time) and to LTL logic for the verification. In contrast to their work, we
formalise the safety contracts, and, moreover, our Petri net models capture the
timing information.

Some works refine safety contract assumptions in strong and weak assump-
tions [2,25]. Strong assumptions specify what always is fulfilled by the
environment, context-independently, while weak assumptions provide additional
information about the context where a component could operate (e.g.,
the expected timing between input signals). In this paper, we consider the defi-
nition of safety contract as given in [19], having only strong assumptions. In our
case, the weak assumptions can be implicitly described by UML annotations.

Model-Based Verification of Safety Contracts 113

As future work, we aim at extending our safety contract specification to explic-
itly express timing issues.

7 Conclusions and Future Work

Safety assessment is a crucial software engineering activity in critical systems,
since people integrity, and even their lives may depend on it. In the last years,
contract-based design has emerged as a promising approach for designing safe
systems, where contracts describe the expected behaviour of a component.

In this paper, we propose a specification of safety contracts as assumptions
and guarantees based on the input and output ports of a component, and then
translate these contracts to OCL in the UML context. Finally, these UML models
are transformed into a formal model, in terms of Generalized Stochastic Petri
nets (GSPN), to verify that safety contracts are fulfilled. As a case study, we have
analysed three safety contracts on a train door controller designed by CAF Power
& Automation. The most challenging tasks regarding the case study were the
formalisation of safety contracts and the translation of UML models to GSPN.
In the latter, although some automation exists, the complexity of some aspects
of the case study (for instance, the existence of obstacles) required a manual
translation to GSPN.

The specification of safety contracts in terms of OCL within UML models
allows to recap safety requirements and system description in a single picture.
Besides, the adoption of formal models, obtained after the transformation of
UML/OCL models to Petri nets, are facilitated as UML/OCL are languages
familiar to the industry engineers. The result is that we have sacrificed expres-
sion power to keep safety contracts expressed with OCL easier to understand
than contracts written in more expressive languages like, for instance, Linear
Temporal Logic (LTL). This issue can be overcome in the future by extending
the native OCL with more operators.

As for further work, our aim is to keep on formalising more complex contracts
expressed in OCL, as well as exploring how to provide the event order or any
other kind of temporal information (or other non-functional property). Improv-
ing the automatic translation from the UML models to GSPN deserves also
further study. In addition, we also plan to propose a well-established methodol-
ogy to assess safety and to develop a tool that implements this methodology.

References

1. nSafeCer project: Safety Certification of Software-Intensive Systems with Reusable
Components. Project Grant Agreement no 295373. More information at: http://
safecer.eu/

2. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture
design. In: Proceedings of the Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1–6, March 2011

http://safecer.eu/
http://safecer.eu/

114 E. Gómez-Mart́ınez et al.

3. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.
In: Proceedings of the 38th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 21–28, September 2012

4. Kath, O., Schreiner, R., Favaro, J.: Safety, security, and software reuse: a model-
based approach. In: Proceedings of the Fourth International Workshop in Software
Reuse and Safety (2009)

5. OMG: Unified Modeling Language (UML). Version 2.4.1, August 2011. Specifica-
tion available at: http://www.omg.org/spec/UML/2.4.1/

6. OMG: Object Constraint Language (OCL). Object Management Group, v2.2,
formal/2010-02-01, February 2010

7. OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms (QoS & FT). Version 1.1 (2008). Specification available
at: http://www.omg.org/spec/QFTP/

8. Rodŕıguez, R.J., Gómez-Mart́ınez, E.: Model-based safety assessment using OCL
and Petri Nets. In: Proceedings of the 40th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 56–59 (2014)

9. Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., Franceschinis,
G.: The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev.
36(4), 4–9 (2009)

10. ISO/IEC: 19505–1:2012-Information technology-Object Management Group Uni-
fied Modeling Language (OMG UML)-Part 1: Infrastructure (2012)

11. OMG: A UML profile for Modeling and Analysis of Real Time Embedded Systems
(MARTE). Version 1.1 (2011). Specification available at: http://www.omgmarte.
org/

12. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of
software systems specified with UML. ACM Comput. Surv. 45(1), 2 (2012)

13. Rodŕıguez, R.J., Merseguer, J., Bernardi, S.: Modelling and analysing resilience as
a security issue within UML. In: Proceedings of the 2nd International Workshop
on Software Engineering for Resilient Systems, SERENE 2010, pp. 42–51. ACM,
New York (2010)

14. Murata, T.: Petri Nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

15. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley Series in Parallel Com-
puting, Chichester (1995)

16. Bernardi, S., Merseguer, J.: Performance evaluation of UML design with Stochastic
Well-formed Nets. J. Syst. Softw. 80(11), 1843–1865 (2007)

17. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein:
contract-based design for cyber-physical systems. Eur. J. Control 18(3), 217–238
(2012)

18. Bate, I., Hawkins, R., McDermid, J.: A contract-based approach to designing safe
systems. In: Proceedings of the 8th Australian Workshop on Safety Critical Systems
and Software, SCS 2003, vol. 33, pp. 25–36. Australian Computer Society, Inc.
(2003)

19. Söderberg, A., Johansson, R.: Safety contract based design of software components.
In: IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), pp. 365–370 (2013)

20. Gómez-Mart́ınez, E., Merseguer, J.: ArgoSPE: model-based software performance
engineering. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol.
4024, pp. 401–410. Springer, Heidelberg (2006)

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/QFTP/
http://www.omgmarte.org/
http://www.omgmarte.org/

Model-Based Verification of Safety Contracts 115

21. Cengarle, M.V., Knapp, A.: Towards OCL/RT. In: Eriksson, L.-H., Lindsay, P.A.
(eds.) FME 2002. LNCS, vol. 2391, pp. 390–409. Springer, Heidelberg (2002)

22. Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman,
U., W ↪asowski, A.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58.
Springer, Heidelberg (2012)

23. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement of
temporal contracts. In: 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 702–705. IEEE (2013)

24. Bouabana-Tebibel, T., Belmesk, M.: Integration of the association ends within
UML state diagrams. Int. Arab. J. Inf. Technol. 5(1), 7–15 (2008)

25. Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Strong and weak contract formalism
for third-party component reuse. In: IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 359–364, November 2013

A Testing-Based Approach to Ensure the Safety
of Shared Resource Concurrent Systems

Lars-Åke Fredlund, Ángel Herranz, and Julio Mariño(B)

Babel Group, Universidad Politécnica de Madrid, Madrid, Spain
{lfredlund,aherranz,jmarino}@fi.upm.es

Abstract. The paper describes an approach to testing a class of safety-
critical concurrent systems implemented using shared resources.

Shared resources are characterized using a declarative specification,
from which both an efficient implementation can be derived, and which
serves as the first approximation of the state-based test model used for
testing an implementation of the resource.

In this article the methodology is illustrated by applying it to the task
of testing the safety-critical software that controls an automated shipping
plant, specified as a shared resource, which serves shipping orders using
a set of autonomous robots. The operations of the robots are governed
by a set of rules limiting the weight of robots, and their cargo, to ensure
safe operations.

1 Introduction

Developing reliable safety-critical software for concurrent systems is notoriously
difficult, with subtle race conditions often going unnoticed by programmers and
test personnel until disaster strikes.

Apart from the inherent complexity of the task, the situation can be made
worse by the choice of an unsuitable programming language (or library). A case
in point is Java. Programming safety-critical applications in Java is tempting
(except if the targeted system has hard real-time constraints due to the e.g.
presence of automatic garbage collection) since there is a large body of Java
programmers available. However, the language and its libraries provide a large
number of different concurrency primitives, and their limitations are often not
well understood. Moreover, the Java concurrency primitives are generally low-
level constructs, primarily targeting efficient execution rather than safe execu-
tion, thus constituting poor choices for implementing safety-critical systems.

In this work we attempt to improve the situation in two ways. First, we intro-
duce a higher-level concurrency construct called shared resources [6]. Essentially
a shared resource is a process (or thread) protecting some shared resource, and
providing controlled methods for accessing the shared resource. The behaviour
of a shared resource is specified declaratively, defining a set of operations whose
behaviour is characterised using post/pre-conditions. To handle concurrency a
new type of precondition is added: the concurrency precondition. These are pre-
conditions expressing restrictions not only on the arguments of an operation,
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 116–130, 2015.
DOI: 10.1007/978-3-319-15201-1 8

A Testing-Based Approach to Ensure the Safety 117

but on the combination of the arguments of an operation and the resource state.
Failing to satisfy a concurrency precondition does not imply that the operation
fails (as is the case for normal preconditions), rather its execution is postponed
until a time when the resource state changes leading the concurrency precondi-
tion to become true.

Still, even if the safety-critical problem has been structured well using a
shared resource, if we wish to use Java to implement the resource we still have
to use the somewhat inadequate language primitives and libraries in its imple-
mentation, and typical programmers commit many errors using such concurrency
primitives, as we shall see in Sect. 6. Clearly we must at least test, systematically,
the resulting implementation.

The second component of the methodology is thus the extensive use of
property-based testing to automatically generate test cases (using the declara-
tive specification as a base), and to automatically decide whether test execution
is successful (again using the declarative specification as a base). The testing tool
we use, Quviq QuickCheck [2], a variant of the well-known QuickCheck tool [4],
has excellent support for testing stateful code. Essentially we build a model of
the system under test (the shared resource), and use the model both to derive
tests, and to judge the correctness of the execution of the system under test by
comparing it with the execution of the system model.

To evaluate the efficacy of the approach, we apply it to the task of specify-
ing and verifying a prototypical concurrent safety-critical system, a warehouse
complex where autonomous robots move around fulfilling shipping orders. The
safety-critical aspect we consider here is that the weight of the robots, in any
given warehouse, should never exceed a certain maximum weight. To evaluate
the usefulness of automatic testing, we proceed to test a large number of imple-
mentations of the warehouse control system by undergraduate students at the
Polytechnic University of Madrid.

In Sect. 2 we introduce the QuickCheck property-based testing tool. Next
the warehouse case study is described in Sect. 3. The shared resource formal-
ism is introduced in Sect. 4, and Sect. 5 describes how shared resources based
safety-critical systems are tested using our approach. The testing methodology
is evaluated by applying to a number of implementations of the warehouse con-
trol system in Sect. 6. Finally, Sect. 7 draws conclusions from the work realised
so far, and details issues for future work.

2 QuickCheck

The basic functionality of QuickCheck is simple: when supplied with a data
term that encodes a boolean property, which may contain universally quantified
variables, QuickCheck generates a random instantiation of the variables, and
checks that the resulting boolean property is true. This procedure is by default
repeated at most 100 times. If for some instantiation the property returns false,
or a runtime exception occurs, an error has been found and testing terminates.

118 L.-Å Fredlund et al.

2.1 Erlang

Quviq QuickCheck uses the Erlang functional programming language [1,3] to
express correctness properties and test models. This does not mean that the
tested software must be written in Erlang; a good interface library for C code
has e.g. permitted the testing of AUTOSAR components and infrastructure on
a commercial basis [7]. In this article we focus on testing control systems written
in Java using the JavaErlang interface library1.

2.2 QuickCheck State Machines

For checking “stateful” code, QuickCheck provides a state machine library. Here
the tested “object” is not a simple boolean property, but rather a sequence of
function calls each with an associated post condition that determines whether
the execution of a call was successful or not. A QuickCheck state machine has a
state, obviously, which can be understood as the model state of the system under
test. Given a model state, the library generates a suitable next API command,
and proceeds to execute the call, checking after the call has completed whether
the result was the expected one given the model state of the state machine.
Next, a new model state is computed, and the generation of commands and
their execution is repeated, until a test sequence of sufficient length has been
generated and tested. In other words, the QuickCheck state machine acts as a
model for the program under test.

To use the state machine library a user has to supply a “callback” Erlang
module providing a set of functions with predefined names. The functions defined
in the callback module are called by QuickCheck during test generation and test
execution. The functions that should be implemented by a tester are enumerated
below.

initial_state ()

command(State)

precondition(State ,Call)

next_state(State ,Result ,Call)

postcondition(State ,Call ,Result)

The model state is initialized by the initial state function, and is updated
by next state. API calls are generated by the function command, which returns
symbolic calls of the form {call,ModuleName,Function,Args}, which are then
executed. The postcondition function checks that the return value of a call is
correct, considering the current model test state.

3 Case Study

The case study used in the paper is the control system for a warehouse complex
serviced by a set of autonomous robots. An example warehouse complex, with
robots, is depicted in Fig. 1.
1 https://github.com/fredlund/JavaErlang.git.

https://github.com/fredlund/JavaErlang.git

A Testing-Based Approach to Ensure the Safety 119

A robot must first enter warehouse 0, then it may load an item, and next it
exits warehouse 0 and enters the corridor between warehouse 0 and warehouse
1. Then, it enters warehouse 1, etc., until it finally exits the warehouse complex
by exiting the last warehouse (warehouse 2 in the figure).

Each robot has a weight, and the total weight of a robot and its cargo
increases monotonically as it moves around in the warehouse complex.

A warehouse can admit any number of robots, but to ensure safe opera-
tions the total weight of robots and their cargo cannot exceed the constant
MAX WEIGHT IN WAREHOUSE when a new robot enters the warehouse.
It is permitted that the total weight in a warehouse is temporarily above the
limit, due to loading operations, but then no more robots can be admitted to
the warehouse (until a robot leaves). A corridor has place for a single robot.

In Fig. 1, the constant MAX WEIGHT IN WAREHOUSE is set to 1000 kg,
and thus, for example, we can see that since the total weight in warehouse 0 is
500 + 200 + 200 = 900 the robots with weights 200 and 300 that want to enter
should be blocked, while the robot with weight 100 can be permitted to enter.
Moreover, as the corridor between warehouse 1 and 2 is occupied, the robots
inside warehouse 1 should be blocked from exiting it, until the robot occupying
the corridor enters warehouse 2.

MAX_WEIGHT_IN_WAREHOUSE == 1000

200

200

200

100

300

400

300

300

100

300

100

200

cannot
enter

cannot exit

cannot exit

500

cannot

enter

300

210

Fig. 1. Warehouses and robot movements

4 Resources

One commonly used mechanism for controlling interactions between concurrent
processes is to impose some form of central control, to serialize potentially con-
flicting requests.

The shared resources introduced in [6] is one such centralized mechanism, and
we will explain its syntax and semantics using the robot warehouse example.
Figure 2 contains the specification of the control part of the robot warehouse
example.

120 L.-Å Fredlund et al.

Fig. 2. Specification of the robot controller.

The resource specification details two operations that can be used to coordi-
nate movements between warehouses:

enterWarehouse(n,w) – A request for permission for a robot to enter ware-
house n carrying weight w.

exitWarehouse(n,w)] – A request for permission for a robot to exit a ware-
house n towards a corridor carrying weight w.

The state of the resource has two fields: weight, a map from a warehouse to
weight (a natural number), and occupied, a map from a warehouse to a boolean.
Intuitively, weight should correspond to the accumulated weight in the ware-
house, and occupied[n] is true if there is a robot present in the corridor n leading
from the warehouse.

Initially, as specified in the INITIAL clause, the weight in all warehouses
is zero, and no robot is present in any corridor. The resource has an invariant

A Testing-Based Approach to Ensure the Safety 121

over the state, as specified by the INVARIANT clause, i.e., that the weight
in a warehouse should always be less than or equal to the maximum weight
MAX WEIGHT WAREHOUSE.

A robot that wants to enter warehouse n with weight w should first call
enterWarehouse(n,w) to ask the resource (controller) for permission to do
so. It is the task of the (implemented) resource to ensure that the call does not
return (i.e., that it blocks) until it is safe for the robot to enter the warehouse.
The concurrency precondition CPRE specifies when access is safe, i.e., when the
accumulated weight of the robots already in the warehouse plus the weight of
the new robot is less than or equal to the allowed maximum weight. The POST
condition specifies the change on the resource state provoked by the completion
of a call. It is possible to provide preconditions (PRE) for operations too, which
specify requirements on the arguments to an operation that every call must
satisfy.

Similarly, a robot should always call the operation exitWarehouse(n,p) to
ask for permission to leave a warehouse. The CPRE condition of the resource
specification ensures that the call does not return until the corridor leading
away from the warehouse is free from robots. A restriction on the caller to
these operations is that the weight w provided as argument to the operation
exitWarehouse(n,w) when asking for permission for leaving a warehouse,
must be identical to the weight provided when asking for permission to enter
the warehouse, i.e., enterWarehouse(n,w). That is, the exit weight should
not reflect any cargo loaded in the warehouse, instead, the weight increase
should be factored into the next call to enterWarehouse, e.g., enterWare-
house(n+1,w+cargoWeight).

4.1 Resource Semantics

Conceptually a resource implements a recursive behaviour, serializing state
updates. Below we depict the symbolic behaviour of a generic resource, as a
recursive function RESOURCE(state,Calls). We let Calls be the set of calls made
to the resource, initially the empty set, and state is the state of the resource, its
initial value provided by the INITIAL clause. The notation CPRE(call, state)
is used to denote the calculation of the concurrency precondition of a call, given
the current state of the resource, and POST(pcall,state) is the post condition
function that given a call and the current state returns a new state.

RESOURCE(state,Calls) ≡
1. If a new call is pending add it to Calls

Calls′ = Calls ∪ {call}

2. Pick a call ∈ Calls’ such that its concurrency precondition CPRE(call, state)
is true, and remove it from Calls’, i.e.,

Calls′′ = Calls′ − {call}

122 L.-Å Fredlund et al.

3. If there is no such call, call RESOURCE(state,Calls′) recursively.
4. Otherwise modify the resource state according to the postcondition (POST)

of the selected operation (and call parameters):

state′ = POST(call, state)

5. Signal to the caller that call has terminated.
6. Call RESOURCE(state′,Calls′′) recursively.

4.2 Implementing a Resource

A correct implementation of a shared resource ensures that its operations are
executed only when the concurrency precondition (CPRE) so permits, and in
isolation. However, there may also be additional requirements on the order in
which different calls are served which are not expressed by the resource specifi-
cation. For instance, we may stipulate that calls (that meet the CPRE) should
be served in a strictly first-come-first-served order (thus refining step 2 above).

A resource specification can be implemented in different languages, using dif-
ferent concurrency language primitives. We can implement a resource in Java,
for instance, using e.g. the Locks and Condition classes provided by the
java.util.concurrent package. As an example, Fig. 3 provides a (sketched)
Java class that can serve as a starting point for a complete implementation.
Note that the class is rather incomplete. It does for instance not address the
special role of the last and first warehouses, i.e., that there is no corridor before
the first warehouse, and the absence of a corridor after the last warehouse.

The exitWarehouse(n,w) method begins by acquiring a lock, ensuring
that no other call executes simultaneously. Then, the concurrency precondition
(CPRE) is continuously evaluated. If CPRE does not hold, because the corri-
dor is not empty, the thread executing the method will wait on the condition
freedCorridor[n+1] until another thread signals it (in enterWarehouse(n,w)).

Once the CPRE is established, the POST condition is established by mod-
ifying the state of the resource (not shown in the code excerpt). Then, finally,
the method signals any other thread, corresponding to a robot waiting to enter
warehouse n which the robot executing exitWarehouse(n,w) just left.

5 Testing Resources

There are different aspects of a system implemented using shared resources that
we can test. We can for instance focus on testing the specification itself, to vali-
date that the specification is internally consistent, and that it faithfully expresses
the informal requirements an implemented system should satisfy. An example of
a consistency property is that all post conditions should preserve the resource
invariant.

Here, instead, we mainly focus on the task of verifying that an implemented
system faithfully conforms to the resource specification on which it is based.

A Testing-Based Approach to Ensure the Safety 123

public class WarehouseResource {
// Resource state
private int weight[];
private boolean occupied[];

// Handling concurrency
private Lock lock;
private Condition freedWarehouse[];
private Condition freedCorridor[];

public WarehouseResource() {
// initialize state and create monitors and conditions

}

public void enterWarehouse(int n, int w) {
lock.lock();

// Check CPR -- coded in Java -- until it becomes true
while (!CPRE(...)) freedWarehouse[n].await();

// CPRE holds here, update resource state (POST)
// ...

// Signal waiters that the robot has left the corridor
freedCorridor[n].signal();

lock.unlock();
}

public void exitWarehouse(int n, int w) {
lock.lock();

// Check CPR -- coded in Java -- until it becomes true
while (!CPRE(...)) freedCorridor[n+1].await();

// CPRE holds here, update resource state (POST)
// ...

// Signal waiters that the robot has left the warehouse
freedWarehouse[n].signal();

lock.unlock();
}

}

Fig. 3. An implementation sketch of the warehouse resource

124 L.-Å Fredlund et al.

However, we also test other aspects of the system which are not expressible in
the resource specification, i.e., that the order in which the implemented system
services the calls whose concurrency preconditions (CPREs) hold, conforms to
stated requirements.

For the warehouse example, there is just a single requirement on servicing
calls, to enforce progress:

if the set of calls with true concurrency preconditions is non-empty, the
system must eventually select a call to execute.

We can illustrate the semantics of this requirement by an example, assuming
that the maximum weight permitted in warehouse 0 is 1000 kg:

enterWarehouse (0 ,900) -- does not block

enterWarehouse (0 ,200) -- blocks

enterWarehouse (0 ,100) -- must not block

We assume that calls are made sequentially. The first call does not block, as
900 ≤ 1000. The second call blocks, as 900 + 200 > 1000. The third call is
permitted by the concurrency precondition as 900 + 100 ≤ 1000, and can thus
not be blocked for infinitely long.

We will test a shared resource by developing a model for the behaviour of the
resource as a Quviq QuickCheck [2] state machine. In the following we assume
that the system is implemented using Java, although this is not crucial to the
approach.

A first question to ask is what errors can we expect programmers to commit.
We can separate the errors into three classes:

e1: the evaluation of the concurrency precondition and postcondition, of different
calls, are interleaved, although the precondition and postcondition of a given
call should be evaluated in sequence. These errors are likely due to basic
misunderstandings with regards to using Java concurrency primitives. To
find such errors we must issue simultaneous calls to the controller.

e2: either the CPRE or POST function is incorrectly implemented. To catch
such errors issuing a sequence of sequential calls is sufficient.

e3: the programmer may have made mistakes in the selection of a call candidate
eligible to enter the resource; this can be a difficult task due to ordering
constraints and the manner in which blocked tasks must be woken up. Cor-
rectly programming this functionality in Java is not an easy task, and we can
expect to see many errors committed here. To detect such errors we must
be able to observe which pending calls were unblocked by the execution of a
non-blocking call. That is, if the concurrency preconditions for all pending
calls in a shared resource are false, and a new call c1 arrives whose precondi-
tion is true, we should observe which pending calls c2, . . . , cn are unblocked
due to the execution of c1.

Unfortunately we can in general not observe the exact order in which the
calls c2, . . . , cn in errors of class e3 are unblocked (we consider black-box testing

A Testing-Based Approach to Ensure the Safety 125

only, i.e., we do not have access to the source code of the implementation of the
resource).

In the following we consider the specific problem of testing the warehouse
resource, but take care in pointing out what parts of the test model are generic,
and what parts are specific to the task of testing the warehouse resource.

To develop a QuickCheck state machine for testing the system we have to
decide on a model state, to decide which command to generate in a particular
model state (i.e., implement the command function). Moreover we have to be able
to decide whether the execution of a command was successful or not (i.e., imple-
ment the postcondition function), and to compute a next model state after a
command has finished executing (i.e., implement the next state function),

Using these functions, the QuickCheck state machine library repeatedly gen-
erates a test sequence of modest length composed of commands, where each
individual command is generated by one call to the command function, executes
the command sequence, and determines whether the execution revealed an error
or not.

5.1 The State of a Resource

To produce more comprehensible tests we introduce the notion of a robot iden-
tifier, which is simply a natural number. In the model we extend the ware-
house operations with a robot identifier as a first argument, i.e., a call is now
enterWarehouse(r,n,w) where r is the robot identifier, n is the warehouse iden-
tifier, and w is the weight. However, before actually issuing the call to the imple-
mented resource, the robot identifier is stripped. Thus robot identifiers are used
only internally in the QuickCheck state model, and the resource specification
need not change.

The state of a resource is represented as a record with fields warehouses
and corridor which corresponds to the resource state; num enters counts the
number of robots that have entered warehouse 0, and blocked jobs is a list with
information about the currently blocked jobs (i.e., calls to the resource which
have not completed yet).

The blocked jobs field will be a component of any shared resource test
model, whereas the other fields are specific to the warehouse example.

5.2 Generation of Commands

Clearly not all commands can be invoked in all situations, and thus test sequences
must be generated that respect such restrictions. In the following we abbreviate
enterWarehouse as enter and exitWarehouse as exit.

For instance, a test sequence containing only the test exit(0,0,350) is not
very sensible, as there is no prior call in which robot 0 actually entered warehouse
0. Since robots are expected to move sequentially through the warehouse com-
plex, entering warehouse 0, exiting warehouse 0, entering warehouse 1, etc., the
test command sequences we generate should respect such sequential behaviour.

126 L.-Å Fredlund et al.

Similarly, if a call enter(0,0,350) blocks, it does not make sense to issue a
call to exit(1,0,350) until the prior call is unblocked. Moreover, as commented
earlier, it is expected that a call to exit(n,w) has the same weight parameter as
the earlier call to enter the warehouse. Finally, the weight parameter w2 in a call
to enter(r,n+1,w2) should be greater than or equal to the weight parameter
w1 in a prior call exit(r,n,w1) (if any). Note that such restrictions are not
inferrible from the warehouse resource specification in Fig. 2.

The actual command to generate in a model state is chosen randomly between
all possible commands. As an example, we show below a QuickCheck generator
that is capable of generating exit commands exit(r,n,w), using the current
model state:

1 eqc_gen:oneof

2 ([{call ,warehouse ,exit ,[R,N,W]} ||

3 N <- warehouses (),

4 {R,W} <- warehouse(N,State),

5 not(lists:member(R,blocked(State)))

6]).

A symbolic command calling the exit function (in the software module
warehouse) is represented as {call,warehouse,exit,[R,N,P]} where [R,N,W]
are the function arguments (robot identifier, warehouse identifier, and weight).

Such a command can be generated if N is a warehouse identifier (line 3), and
R,W and the robot with identifier R and weight W is in warehouse N in the model
state (line 4), and no call concerning robot R is currently blocked (line 5, also
checked using the model state).

There may be several robots that are able to exit a warehouse at any given
time, and the above generator chooses randomly between all such possible com-
mands (line 1).

The full command generator also generates enter commands; we cut down
on the number of possible commands by enforcing that robots enter warehouse
0 with sequentially increasing robot identifiers, starting with 0, and up to some
small maximum (10). To increase the possibility that the sum of weights in a
warehouse sum exactly to the maximum weight in a warehouse (normally 1000),
starting weights for robots are chosen randomly using the QuickCheck gener-
ator2 ?LET(X,eqc gen:choose(1,11),X*100), i.e., the generator first chooses
a random integer between 1 and 11, and multiplies it with 100. Thus possible
weights are 100, 200, . . . , 1100.

A call to the command function to generate a command actually does not
return a single command, but rather a small number of commands that should
be invoked concurrently (to be able to detect errors of type e1 above). The
exact number of concurrent commands is chosen randomly. However, care must
be taken that such concurrent calls are non-interfering, in the sense that the
2 A QuickCheck generator is a function that is capable of, according to some prob-

ability distribution, generating an infinite number of elements for some type. The
generator int(), for example, can generate random integers, and list(int()) gen-
erates lists of random length, containing random integers.

A Testing-Based Approach to Ensure the Safety 127

execution of one command cannot render another command non-executable (due
to the restrictions above). In the case of the warehouse this corresponds to
ensuring that concurrent calls concern distinct robots.

As an example, the following set of (concurrent) calls could be generated from
the initial model state: {enter(0,0,300), enter(1,0,700), enter(2,0,300)}.
Note that the concurrent calls concern different robots to prevent interference.

5.3 Execution of Commands

Commands are executed simply by invoking, in parallel, the Java methods corre-
sponding to the resource operations, taking care to first strip the robot identifier.
Next, the test code waits for a small interval of time, and checks which calls have
completed. The result of executing the set of concurrent calls is a set of tuples
〈call, result〉 denoting a call call that has finished with some result (a normal
return value, or a Java exception). The concurrent calls that have not yet com-
pleted are considered blocked.

Note that there may be more completed calls than the number of concurrent
calls invoked, as a call may unblock calls blocked earlier in the execution of the
test sequence.

Moreover, note also that there is no way to detect in which order the calls
completed.

5.4 Computing the Next Model State

To compute the next model state, given the result of the execution of a set of
concurrent calls, we must calculate a “feasible” ordering of the finished calls
that permits all calls to execute, considering the restrictions enforced by the
concurrency precondition CPRE.

Given the current model state s, and a set of finished calls c1, . . . , cn, we
explore all possible interleavings of these calls. That is, beginning with c1, if
c1 should still block in the model state (according to the CPRE) it cannot
have been the first call to terminate, and thus no interleavings beginning with
c1 needs to be considered further. If on the other hand c1 should not block,
we compute a new model state s2 = POST(c1, s), and explore all interleavings
of the remaining commands c2, . . . , cn. Similarly, we explore all interleavings
beginning with c2, etc. The successful interleavings are those which succeeded
in executing (without blocking) all completed calls c1, . . . , cn, and the successful
new model states are the final new model states.

In general there may be more than one successful interleaving, e.g., consider
the example with generated commands above. A potential execution result is
that the two calls enter(0,0,300) and enter(0,0,700) finished (all three calls
cannot finish). Clearly both possible interleavings of these calls are successful.
However, the final model states are identical.

In fact, in this article we focus on a subclass of shared resource specifications,
to permit “deterministic testing”, where the following property holds:

128 L.-Å Fredlund et al.

given an execution s0, . . . , s from the initial model state s0 and ending in

model state s, and a set of concurrent calls Calls generated from model state

s, suppose that the concurrent execution of Calls causes the set of calls Calls1
to finish, then the final model states computed from s and Calls1 must all be

identical.

This property holds of the warehouse example, but it is easy to construct
a resource specification where the property does not hold. For instance, we can
stipulate two operations a and b, where if a executes first the final model state
is a (the execution of b has no effect, but does not block), and vice versa if b
executes first the final model state is b.

This restriction can be lifted by generalizing a model state as a set of possible
“simple” model states, corresponding to all possible final model states. However,
we are then faced with the problem of generating commands that are permitted
in all simple model states.

Note that if there exists no interleaving of the completed calls that is per-
mitted according to the concurrency precondition, we have found a bug in the
implementation of the shared resource.

The computation of all possible interleavings is done in a lazy manner, taking
care not to generate all interleavings at once, but rather in a stepwise manner,
discarding failed interleavings at once, and merging identical interleavings (i.e.,
whose model states are the same, and with the same remaining calls to consider)
as soon as possible, to improve analysis efficiency. Nevertheless, in the worst
case there may be an exponential number of interleavings to explore, although
potential slow-downs caused by this are mitigated by the fact that we explore
only tests of a limited size, and where the number of concurrent calls are severely
limited by design. In practice we have so far not experienced any problems due
to this potential inefficiency.

5.5 Checking if the Execution of a Command Was Correct

To check that the execution of a command was as predicted by the current
model state, we compute the next model state snew given the current one and
the completed calls (as explained in the previous section).

Again, if there is no possible interleaving of the calls such that the concur-
rency precondition holds for all calls, we have found a bug in the implementation
and testing can finish. Moreover, we examine the return values for all completed
calls; if any call raised an exception we have found a bug in the implementation.

Finally, we consider all calls that have not completed but remain blocked.
If, in the new model state, any of these calls can be completed, i.e., there exists
a call cn ∈ blocked(snew).CPRE(cn, snew), they should have already finished
(due to the requirement on progress), and thus we have found a bug in the
implementation.

A Testing-Based Approach to Ensure the Safety 129

6 Testing the Warehouse Resource

To validate the approach we developed a QuickCheck state machine according to
the principles explained in the previous section, and used it to test 98 Java-based
implementations of the Warehouse shared resource.

These implementations were written by undergraduate students attending a
course on concurrency at the Polytechnic University of Madrid. The students
were required to use a particular concurrency construct [5], which is an improve-
ment on the lock and condition solution seen in Fig. 3, in that it is not needed
to test the concurrency precondition using a while loop.

Before we ran the QuickCheck based test on the student programs, the stu-
dents had already successfully tested their solutions on a small set of manually
developed jUNIT test cases. Moreover, the students had a strong incentive in
handing in good solutions, as the warehouse implementations were graded, and
these grades were factored into the final course grade.

Although the task may not appear overly difficult, the results of our testing
using QuickCheck are somewhat discouraging. Of the 98 solutions tested, we
found errors in 33 of them, i.e., 34 % of the solutions handed contained at least
one error. The following is a typical error report produced:

Test failed with reason {postcondition ,false}

Generated test sequence:

<< enter (0 ,0 ,1000) >> -- unblocks 0

<< enter (1 ,0,600) >>

<< exit (0,0,1000),

enter (2,0 ,500) >> -- unblocks 0,unblocks 1

<< enter (0,1,1000),

enter (3,0,600),

exit (1,0,600) >> -- unblocks 0,unblocks 1,

unblocks 3,unblocks 2

In the error report we can see that robot tries to enter warehouse 0, carry-
ing weight 1000 (the maximum allowed), and succeeds. Next, robot 1 tries to
enter with weight 600, and blocks (correctly). Next two commands are executed
concurrently, robot 0 exiting warehouse 0 to the following corridor, and robot 2
entering warehouse 0 with weight 500. The result is that the exiting operation
succeed, and the previous request from robot 1 to enter warehouse 0 also suc-
ceeded. Finally, three commands are run in parallel, a request from robot 0 to
enter warehouse 1, a request from robot 1 to exit warehouse 0, and a request
from 3 to enter warehouse 0 with weight 600. All requests are successful, as well
as the previous request of robot 2 to enter warehouse 0. Thus, both robot 2
and 3 have received permission to enter the warehouse, but the total weight of
robots in the warehouse would then be 600 + 500 which exceeds the permitted
maximum of 1000; a safety critical bug!

130 L.-Å Fredlund et al.

7 Conclusions and Future Work

We have provided a methodology for developing and testing concurrent safety-
critical systems, based on the use of a high-level concurrency mechanism: shared
resources. The methodology was tested in a case study, and was found to be able
to detect a large number of concurrency errors in a prototypical safety-critical
system.

Items for future work includes providing the functionality of deriving indi-
vidual test cases (and indeed entire test suites). This can be already achieved
using the approach explained here, except the execution of a generated test case
need not be deterministic, but instead depend on the particular implementa-
tion. Thus such a “pre-generated” test case may have to be aborted in mid-run
because an invoked operation may be nonsensical (e.g., if a robot desires to exit
a warehouse before it has been given permission to do so). In contrast, using the
approach adopted in this article we do not have to abort test cases in mid-run,
as the test case generation is steered by the actual implementation being tested.

References

1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang. Prentice-Hall, Englewood Cliffs (1996)

2. Arts, T., Hughes, J., Johansson, J., Wiger, U.T.: Testing telecoms software with
quviq QuickCheck. In: Proceedings of the 2006 ACM SIGPLAN Workshop on
Erlang, Portland, Oregon, USA, pp. 2–10 (2006)

3. Cesarini, F., Thompson, S.: Erlang Programming - A Concurrent Approach to Soft-
ware Development. O’Reilly Media, Sebastopol (2009)

4. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of haskell
programs. In: Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming, ICFP 2000, pp. 268–279. ACM, New York (2000)

5. Herranz, Á., Mariño, J.: A verified implementation of priority monitors in Java. In:
Beckert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp.
160–177. Springer, Heidelberg (2012)

6. Herranz, A., Mariño, J., Carro, M., Moreno Navarro, J.J.: Modeling concurrent
systems with shared resources. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS
2009. LNCS, vol. 5825, pp. 102–116. Springer, Heidelberg (2009)

7. Svenningsson, R., Johansson, R., Arts, T., Norell, U.: Testing AUTOSAR basic
software models with quickcheck. In: Pavese, F., Bár, M., Filtz, J.-R., Forbes, A.B.,
Pendrill, L., Shirono, K. (eds.) Advanced Mathematical And Computational Tools
In Metrology And Testing IX, pp. 391–395. World Scientific, Singapore (2012)

A Contracts-Based Framework for Systems
Modeling and Embedded Diagnostics

Gregory Provan(B)

Department of Computer Science, University College Cork, Cork, Ireland
g.provan@cs.ucc.ie

Abstract. Two key impediments for the commercial success of model-
based diagnosis (MBD) include (a) a failure to integrate diagnostics mod-
eling within the requirements and design phase, and (b) a high degree
of diagnostic ambiguity during run-time. This article addresses both
of these impediments by providing a formal framework that integrates
requirements-based design with MBD modeling. The proposed frame-
work extends the consistency-based theory of MBD with a requirements-
based design theory based on contracts.

Keywords: Contracts · Model-based diagnostics · Systems modeling

1 Introduction

Model-based design has proven to be very effective for a range of systems. How-
ever, most companies still generate diagnostics models and simulation/control
models independently, even though these models have significant overlap. For
example, design models of autopilot systems incorporate many safety require-
ments, yet embedded autopilot diagnostics systems typically are designed and
implemented independent of the simulation models. This approach creates mul-
tiple problems, such as conflicts between embedded diagnostics and control, and
wasted resources during the design/implementation phases.

In this article, we address certain problems arising in on-board model-based
diagnosis (MBD) software, which aims to isolate the components that are faulty
during run-time. This differs from safety analysis, e.g., [13], which typically aims
to identify, a priori, if unsafe states can be entered.

A problem with model-based diagnosis (MBD) is that there is no notion
of “acceptable” inputs to a system/component. Hence the problem of cascaded
faults occurs when an upstream fault in component C causes inconsistent data
to be transmitted to components downstream of the original fault, which results
in downstream components all signalling faults, when in fact only C is faulty.
To circumvent such problems, we extend an MBD model with an A/G model,
which explicitly rules out inconsistent input data as failing to fulfil the compo-
nent/system model.

This article presents a formal framework that extends the consistency-based
theory of MBD [17] with a component-based requirements/design theory based

Gregory Provan—Supported by SFI grant 12/RC/1189.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 131–143, 2015.
DOI: 10.1007/978-3-319-15201-1 9

132 G. Provan

on contracts [9]. This assume/guarantee theory defines a system Φ in terms of
an inter-connected collection of “rich” components [1], each of which must fulfil
a contract (e.g., based on design requirements) given assumptions in which the
component operates. Given a contract-based specification for Φ, one can prove
properties about fulfilment of the design requirements. Contracts have been used
for hardware design optimization [20], and also for software analysis during run-
time [10]. Moreover, based on observations and the possibility of stochastic (or
non-deterministic faults), one can then diagnose the reasons for the contracts
violated during operation of Φ [18,21].

This approach offers a formal methodology not only to integrate requirements
specification within diagnostics models, but also to significantly reduce the inci-
dence of two challenging classes of ambiguous or “spurious” fault, commonly
known as No-Fault-Found (NFF) and cascaded fault-reports. During run-time,
many ambiguous diagnoses can arise due to inability to define models that ade-
quately distinguish “local” faults from exogenous influences. For example, the
No-Fault-Found is a common diagnosis that causes problems in many domains,
particularly avionics: it is a fault that is isolated during device operation, but
when the “faulty” component is replaced, the fault cannot be duplicated during
testing of the component. In many cases, this fault occurs when the component
is operated outside of its design intent. For example, fighter jets have many actu-
ator faults that occur when the jets are operated outside of design specifications.

Cascaded faults are another difficult situation that arise in typical FDD sit-
uations: in avionics, for example, an upstream module will compute some faulty
data, and then all downstream modules that process this faulty data will issue
(erroneous) fault reports, when in fact downstream modules do not have hard-
ware faults, but issue fault reports due to the incoming corrupted data. In this
case, the failure to identify exogenous anomalies properly leads to many erro-
neous diagnoses.

Assume-guarantee reasoning considers components not in isolation, but in
conjunction with assumptions about their context. Hence, the assume/guarantee
(A/G) approach focuses on reasoning about a component in terms of the assump-
tions about its environment, and by proving that these assumptions are satis-
fied by the environment, establishing a set of system obligations, the contract.
This approach has been use for (a) validating the requirements of a design (and
thereby reducing the design-space that must be searched during design optimiza-
tion [20]), and (b) during run-time for system-level verification [4].

The contributions of the article are as follows:

– We generalize the consistency-based theory of MBD to a contract-based theory
that enables design models, with their environment-based requirements, to be
integrated with an MBD model.

– We show how we can use the existing MBD inference to compute not only
faults, but also operating-condition violations, and thereby rule out faults
based on incorrect component inputs.

– We illustrate how our new approach can distinguish faults and assumption
violations with a running example.

A Contracts-Based Framework for Systems Modeling 133

2 Related Work

This article synthesizes the notion of contracts with that of fault diagnosis of
DESs, thereby extending both.

Previous work has been done on using LTL for model-based diagnostics
[11,12]. This research has focused on mapping LTL specifications into propo-
sitional clauses that are amenable to MBD inference directly. In particular, [12]
creates a structure-preserving SAT encoding for an LTL specification, such that
inference based on Reiter’s diagnosis theory [16] can be efficiently applied. In
contrast, we do not focus on computationally efficient solutions, but rather aim
towards extending Reiter’s diagnosis theory with contracts. In future work we
hope to explore the computational speedups possible within this MBD frame-
work, using a tool-kit described in [14].

Sampath et al. [17] first proposed the framework for failure diagnosis of qual-
itative behaviors of discrete-event systems (DESs). They defined a DES execut-
ing a faulty event as diagnosable if it must be eventually diagnosed within a
bounded number of state-transitions/events. To compute a diagnosis they define
an automaton for that purpose, called a diagnoser, and showed necessary and
sufficient conditions for diagnosability in terms of certain properties of the diag-
noser. Subsequently, several researchers extended this work, e.g.,

In this paper, we adopt the failure diagnosis specification using linear-time
temporal logic (LTL) [7]. Given a DES to be diagnosed, we use an LTL formula Φ
for specifying a fault as follows: an infinite state-trace of the system is said to be
faulty if it violates Φ. Thus for example, we can declare an infinite state-trace to
be faulty if it visits a faulty state, which may be faulty by itself (as in [2] [24, 25,
45]), or may be a state introduced for representing a transition labeled by a faulty
event (as in [4–6,11] [32, 35–37]). We can also have more general specifications
for non-faulty state-traces in our setting such as a certain set of states should be
visited infinitely often, or a certain set of states should be eventually invariant.
Thus properties such as “invariance”, “recurrence”, “stability”, etc. can be used
to specify (non)-faulty behavior in our setting.

3 Running Example: TO/GA System

3.1 Example

This section introduces a simple example that we use throughout the article.
The Take-off/Go Around (TO/GA) system is an autopilot sub-system that acti-
vates take-off or go-around thrust. During take-off, pressing the TO/GA switch
causes the engines to increase their RPM to their computed take off power, as
computed from parameters such as runway length, wind speed, temperature, and
the weight of the aircraft. The go-around mode is engaged on approach to land,
and switches the plane from autopilot approach mode by engaging the thrust
levers until they reach the position go-around thrust.

Most commercial aircraft use some form of hardware/software redundancy
to ensure high reliability of autopilot systems. For example, this may be a

134 G. Provan

TOGA

B1p

B1s

Vp

B2p

B2s

Vp

AFDC

I2

I1

I2

I1

I2

I1

secondary

primary
Op

Os

FRp

FRs

Fig. 1. Dual-dual autopilot TOGA sub-system, with TO/GA signals I1, I2 sent to
primary and secondary AFDC computers.

dual-redundant or a triply-redundant approach, as in the Boeing 777 aircraft’s
TO/GA architecture. In this article we study a TO/GA System with a dual-dual
redundant approach, as shown in Fig. 1. In such systems, the TO/GA commands
are replicated and sent to two autopilot flight director control (AFDC) comput-
ers, which compute thrust levels in each of the AFDC computers. The AFDC
outputs are sent to the engines, and any anomalies are sent to fault-report moni-
tors. Each TO/GA signal is tagged with a time stamp, to ensure that the signals
being compared are closely-spaced temporally and thus represent the same com-
putation done in different downstream components.

We represent a state at time τ using the tuple (I1, I2, μ,OP , OS), where I1
and I2 are the two TO/GA inputs, μ = |τI1 − τI2 | is the input time difference,
and OP and OS are the primary and secondary outputs, respectively.1

The aim of embedded diagnostics is to compute the primary and secondary
fault reports, denoted FRP and FRS , respectively. The AFDC has primary
and secondary computers; the primary AFDC is engaged as long as no possible
data corruption is detected. If a signal mis-compare occurs, the primary AFDC
issues a fault report and the secondary AFDC is also engaged. If the secondary
AFDC does not detect a mis-compare, it is now used as the primary unit. If
the secondary AFDC also detects a mis-compare, it also issues a fault report
and a pilot-warning, which notifies the cockpit of TO/GA problems, with a
recommendation to switch to manual TO/GA procedures.

Environment-Based Requirements Specification. This section defines two
TOGA system signal requirements as propositions (R1, R2), in order to fit in with
the MBD language. The requirements for the AFDC are that it must test signal
equality for two asynchronous signals (R1), which must be generated within a
time difference μ no greater than a fixed constant δ (R2). We formalise the two
requirements as follows:

R1 the time-difference between the AFDC input signals I1 and I2 must be such
that |τI1 − τI2 | < δ, when μ = t; else μ = f ;

1 Note that we suppress temporal indexing to simplify the notation.

A Contracts-Based Framework for Systems Modeling 135

Table 1. Set of states for dual-dual comparator, with state name xi, inputs (I1, I2),
time-difference μ for inputs, and outputs Op and Os

state (I1, I2) μ Op Os

x1 (t,t) t t t

x2 (t,t) t f t

x3 (t,t) t f f

x4 (f,f) t t t

x5 (t,f) f f f

x6 (f,t) f f f

x7 (t,t) f f f

R2 if the TOGA outputs are both t, set the input flag I = t; else I = f .
This is given by (I1 ∩ I2) ⇔ I.

Hence, for this sub-system, we can define the requirements specification as
R = μ ∧ I. We assume that the requirements are consistent.

A typical “run” of this system will consist of a sequence of states. For exam-
ple, consider a state sequence S = {x1, x2, x3, x3, x3, x4}, as shown in Table 1.
We can classify states as satisfying the requirements or not. For example, if
we examine the input-equality and timing requirements for S, we see that x4

through x7 satisfy these requirements, and the other states do not.

4 Notation and Model

4.1 Components and System Composition

We adopt a component-based framework for systems. A component is an entity
that represents a base-level unit of design. We create systems (hierarchically)
by connecting components together such that connected components share and
agree on the values of the connected ports and variables.

The environment of a component consists of a set of states over time (a trace
or behaviour) external to the component. A system (or component) accepts as
input a subset of exogenous traces (from its environment) and modifies these to
produce an output trace.

We formalise a component using the notion of an interface and a set of
behaviours over the interface. The interface is represented by a set P of input
and output ports, which specify allowable values for the ports. The behaviour is
characterised by sets of traces.

Definition 1 (Component). A component C is a tuple 〈P, TI , TO, Tobs〉 in
which: P is the set of ports; TI and TO are disjoint sets referred to as inputs
and outputs, respectively, (the union of which is denoted by T); Tobs ⊆ T is the
subset of observable traces.

136 G. Provan

A component modifies the input TI to create the output TO, and we use a
model Φ to characterise this process. In the following we will specify models for
diagnosis and for contracts.

In this article we focus on integrating a diagnosis and A/G model. We assume
the well-known concepts of component composition to create a system model,
and refer to articles such as [2,15,20] for details of model composition.

4.2 Model-Based Diagnosis Representation

This section described our fault model for discrete-event systems (DESs). Our
work extends DES diagnosis by adding in the concept of contracts to rule out
anomalous inputs that violate a contract. The research on DES diagnosis has
a long history. Sampath et al. [17] first proposed a framework for failure diag-
nosis of qualitative behaviours of DESs. They defined a DES executing a faulty
event as diagnosable if it can be diagnosed within a bounded number of state-
transitions/events. They define an automaton, called a diagnoser, to compute
a diagnosis, and show necessary and sufficient conditions for diagnosability in
terms of properties of the diagnoser. Subsequently, several researchers extended
this work, e.g., more general frameworks, as in timed systems in [5] and decentral-
ized diagnosis [3], and improvements in efficiency from exponential-complexity
diagnosability inference [17] to poly-time [6].

In this paper, we adopt the linear-time temporal logic (LTL) [19] failure
diagnosis specification of [7]. In brief, LTL is built up from a finite set of propo-
sitional variables AP , the logical operators ∧, ∨, ¬ and ⇒, and the temporal
modal operators © (next), � (always), � (eventually), U (until) and R (release).
Formally, the set of LTL formulas over AP is inductively defined as follows:

– if p ∈ AP then p is a LTL formula;
– if ψ and ξ are LTL formulas then ¬ψ, ψ ∨ ξ, �ψ, and ψ � ξ are LTL formulas.

Given a DES to be diagnosed, we use an LTL formula Φ for specifying a fault
as follows: an infinite state-trace of the system is faulty if it violates Φ. In other
words, a fault is inconsistent with the model Φ.

We represent a system as accepting as input a trace TI and creates as output
a trace TO; our specification (model) of the system by ΦΔ, an LTL formula that
specifies the nominal (non-faulty) behavior of the system.

We formalise the model as follows:

Definition 2 (Model Φ). A model Φ is defined by the tuple (X,Σ,R,X0, ξ, λ),
where

– X is the set of states;
– Σ is a finite set of event labels;
– R : X × (Σ ∪ ε) × X is a transition relation;
– X0 ⊆ X is the initial set of states;
– ξ is a finite set of proposition symbols;
– λ : X → 2ξ is a labelling function.

A Contracts-Based Framework for Systems Modeling 137

This model is capable of generating a trace as follows:

Definition 3 (Trace T). A system S generates a finite or infinite state-trace
T = (x1, ..., xm) given as input x0 ∈ X0, such that ∀i > 0 there exists a σi ∈
Σ ∪ {ε} such that (xi−1, σi, xi) ∈ R.

A finite or infinite state-trace T = (x0, x1, ...0) over Σ ∪ {ε} is associated
with a event-trace σ = (e0, e1, ...) if ∀i > 0, (xi−1, ei, xi) ∈ R.

If we represent a behaviour as T = TI ∪ TO, a fault occurs if the behaviour
is inconsistent with the diagnosis model ΦΔ:

Definition 4. Let S be a system, ΦΔ be a LTL specification for S, and T be an
infinite observed state-trace generated by S, then T is called a faulty state-trace
if T �|= ΦΔ.

Given an anomalous observation TΔ, we aim to compute the failure state
of the system that is the “cause” of TΔ. A key aspect for MBD is to take an
observed event sequence (called an observation) and identify the fault status of
the system based on the observation. Observations of events executed by system
S are filtered through an observation mask m : Σ∪{ε} → Γ ∪{ε} with m(ε) = ε,
where Γ is the set of observed symbols.

Assume that system S has a set F = {F1, ..., Fn} failures that can occur.
We assume, using [17], that a failure event ΣFi

precedes failure Fi. Hence, our
task thus consists of isolating the failure events when an anomalous observation
occurs. An anomalous observation is a faulty state-trace which is observable.

We can classify the states as being either faulty XF or nominal (not faulty)
XN . Using the mapping from state-trace to event-trace, each faulty state-trace
must be associated with one or more failure events. Further, based on [17], we
associate to every failure event Σf one or more observable indicator events.
Definition 5. Let S be a system and T be a finite state-trace generated by S, T
is called an indicator if all its infinite extensions in S are faulty. We use IndS

to denote the set of all indicators in S.
Example: In our TO/GA example, we use the FR (fault-report) variable as our
observable variable, i.e., we emit an observable signal to indicate the detection
of a fault.

We can model each AFDC in our TO/GA example using the following:

(FR = OK) ⇒ �[(I1 ∧ I2) ⇒ Oi] (1)
(FR = fault) ⇒ �[¬Oi] (2)

Equation 1 states that FR indicating it is OK means that the inputs should
agree with output i, i.e., OP and OS . Equation 2 states that FR indicating it is
faulty means that eventually we should obtain a false output.

The diagnosis model automaton shown in Fig. 2(a) depicts a transition rela-
tion that, starting from the nominal state (where FR = OK), constrains the
system to continue in the nominal state or to move to a fault state (where
FR = fault).

The two main inference techniques used for diagnostic state estimation are a
diagnoser [6,17] or a diagnostics search engine built on top of a theorem prover
(e.g., [8]).

138 G. Provan

Fig. 2. Automata for diagnosis (a), and integrated (b), models

4.3 Assume/Guarantee Representation

This section describes a model ΦAG that specifies the notion of a contract for a
component. This can be extended to a system contract, as described in [2].

An AG specification consists of two (prefix-closed) sets of traces referred to
as the assumption A and guarantee G. The assumption specifies the environ-
ment’s allowable interaction sequences, while the guarantee is a constraint on
the component’s behaviour.

A component may include both implementations and contracts. An imple-
mentation M is an instantiation of a component and consists of a set P of ports
and of a set of behaviours, or runs, also denoted by M , which assign a history of
“values” to ports. Given an A/G specification ΦAG for S, with assumption A and
guarantee G, we informally characterize how a component S satisfies a contract
as follows [2]. S satisfies ΦAG if for any interaction between S and the environ-
ment characterised by a trace T , if T ∈ A, then T ∈ A, and T cannot become
inconsistent in S without further inputs from the environment. Components can
thus be thought of as implementations of /AG specifications.

Given an MBD model ΦΔ, an A/G model ΦAG is defined over the same
observable state-space, i.e., observations for the system and its sensors are the
same. The A/G model is different in that it uses a model that constrains the
transition relation to identify certain transitions as not fulfilling the contract.
Hence, we must identify two classes of event label: events that satisfy the contract
ΣC and events that violate the contract ΣC̄ , where these two classes form a
partition of Σ. There is a corresponding partition of the complete state-space:
X = XC ∪ XC̄ . Figure 2(b) shows the automaton for this extended model.

In this new framework, an assumption that violates the contract is defined
as follows:

A Contracts-Based Framework for Systems Modeling 139

Definition 6. Given a system S, an A/G LTL specification ΦAG for S, and an
assumption A, i.e., an infinite state-trace, we say that A violates the contract
for guarantee G if A �|= ΦAG.

Example: In our TO/GA example, we can model each AFDC using

(FR = OK) ⇒ �[A ⇒ Oi] (3)
(FR = C̄) ⇒ �[¬Oi] (4)

Equation 3 means that when the contract is satisfied the output Oi is assigned
t. Equation 4 means that failure to satisfy the contract entails the output Oi

eventually being assigned f .
The A/G model automaton shown in Fig. 2(b) depicts a transition relation

that, starting from the nominal state (where FR = OK), constrains the system
to continue in the nominal state or to move to a Contract Violation state (where
FR = ¬C).

5 Assume/Guarantee and MBD Extended Model

This section describes how we extend our MBD model to incorporate A/G
models.

5.1 Formal Model

In our framework, we assume a model Φ that accepts as input a trace TI and
creates as output a trace TO. If we represent a behaviour as T = TI ∪TO, a fault
occurs if the behaviour is inconsistent with the model Φ, i.e., T �|= Φ.

Within the MBD framework, we model a system/component using an LTL
model ΦΔ (see Definition 2). Given an anomalous observation πΔ, we aim to
compute the failure state of the system that is the “cause” of πΔ.

To extend ΦΔ, we must define an A/G model ΦAG, and then specify the
extended model as Φ = ΦΔ ∪ ΦAG.

The extended model thus has the following partition of the state set: X =
XΔ × XAG = (XN ∪ XG) × (XC ∪ XC̄), which gives X = XNXC ∪ XNXC̄ ∪
XF XC ∪ XF XC̄ . The extended model has the following analogous partition of
the event label set: Σ = ΣΔ × ΣAG.

5.2 Example

We now describe how our running example covers this extended model.
The integrated diagnosis and A/G model automaton shown in Fig. 2(c)

depicts a transition relation that, starting from the nominal state (where FR =
OK), constrains the system to continue in the nominal state or to move to a
fault state (where FR = fault), a Contract Violation state (where FR = ¬C),
or a state where a fault exists and the contract is violated.

140 G. Provan

Table 2. Diagnostics and contract status for dual-dual comparator, with state name
xi, i = 1, ..., 7, inputs (I1, I2), time-difference μ for inputs, and outputs Op and Os

state (I1, I2) μ Op Os ΦΔ ΦAG ΦInt

x1 (t,t) t t t - - -

x2 (t,t) t f t � - fault

x3 (t,t) t f f - � fault

x4 (f,f) t t t - - -

x5 (t,f) f f f � � ¬C

x6 (f,t) f f f � � ¬C

x7 (t,t) f f f � � fault ∧¬C

We can model each AFDC using

(FR = OK) ⇒ �[A ⇒ Oi] (5)
(FR = fault) ⇒ �[¬Oi] (6)

(FR = C̄) ⇒ �[¬Oi] (7)
(FR = fault ∧ C̄) ⇒ �[¬Oi] (8)

Table 2 depicts what can be computed from a given state xi (assuming xi is
preceded by a nominal state sequence) by the different models: ΦΔ, ΦAG, and
ΦInt. Note that � denotes that the particular model identifies either a fault or
a contract violation. As examples of the computed results:

– State x2 presents a fault in output OP , and that is properly identified by ΦΔ.
– State x3 presents a fault in outputs OP and OS , and that is properly identified

by ΦΔ.
– State x5 presents a contract violation in the inputs (which are t and f rather

than t, t) which (correctly) produces a f output in OP and OS . However,
that output is incorrectly identified as a fault by ΦΔ. The combined model
can rule out this as a fault, identifying this as a contract violation.

– State x6 presents another example of a contract violation in the inputs (which
are f and t rather than t, t); this (correctly) produces a f output in OP

and OS . However, that output is incorrectly identified as a fault by ΦΔ. The
combined model can rule out this as a fault, but identifies it as a contract
violation.

6 Properties of Extended Model

6.1 Diagnostic Soundness/Completeness

We can show that an A/G model ΦAG can preserve all local component faults
while excluding faults that the diagnosis model ΦM incorrectly identifies based
on contract violations.2

2 The proof is provided in the supplementary material.

A Contracts-Based Framework for Systems Modeling 141

Theorem 1. Given a diagnosis model ΦΔ, a corresponding integrated model
ΦInt, and an observation α, ΦInt is sound and complete with respect to the local
component faults of ΦΔ.

Proof:
Sound: Since we are using a monotonic logic, adding extra clauses to any

formula F will reduce the number of logical models (diagnoses) of F . If Ω(ΦΔ, α)
and Ω(ΦInt, α) denote the set of diagnoses given the diagnosis and integrated
models, respectively, then Ω(ΦΔ, α) ⊇ Ω(ΦInt, α). Hence for a local component
diagnosis ω, there is no ω ∈ Ω(ΦInt, α) such that ω �∈ Ω(ΦΔ, α).

Complete: Let Ω̃(ΦInt, α) as the local component diagnoses, i.e., diagnoses
with value bad. If ∃ω ∈ Ω̃(ΦInt, α) such that ω �∈ Ω̃(ΦM , α), then we must
have Ω(ΦΔ, α) �⊇ Ω(ΦInt, α), which is a contradiction. Hence we must have
completeness of the local component faults of ΦInt with respect to ΦM . �

6.2 Ambiguity Reduction

We now show that, by using ΦAG, we can reduce the number of ambiguous faults
that arise during the fault isolation process without losing any true faults.

A complete test vector α = {α1, · · · αm} for a fault ω and model ΦΔ is a
sequence of observations such that ΦΔ ∪ α ∪ ω �|=⊥ and there is no other fault
ω′ �= ω such that ΦΔ ∪ α ∪ ω′ �|=⊥.

We now define the notion of fault ambiguity. Given a complete test α =
{α1, · · · αm}, a “true” fault ω∗ is such that ΦΔ ∪ α ∪ ω∗ �|=⊥. An ambiguous
fault is some ω �= ω∗ such that ω is entailed by some observation α ∈ α, i.e.,
ΦΔ ∪ α ∪ ω �|=⊥, but not for a superset test of α, i.e., ∃α′ ⊃ α such that
ΦΔ ∪ α′ ∪ ω |=⊥.

Given these definitions, we now prove that the strengthened model does not
exclude any true faults.

Lemma 1. Given an MBD model ΦΔ and any observation vector α, � ∃ωR such
that (ΦAG ∪ ΦΔ) ∪ α ∪ ωR �|=⊥ unless ΦΔ ∪ α ∪ ωR �|=⊥.

Proof: We perform a proof by contradiction. Assume that there exists some ωR

such that (ΦAG ∪ ΦΔ) ∪ α ∪ ωR |=⊥ and ΦΔ ∪ α ∪ ωR �|=⊥. In this case it must
be that ΦAG |=⊥, i.e., the A/G model is inconsistent, which is a contradiction.�

7 Conclusions

This article has extended MBD to include contracts. This enables a diagnostic
system to avoid false-positive faults to be signalled when contracts for com-
ponents are being violated. It also indicates when poor requirements lead to
excessive fault reporting even though contracts are not violated.

In future work we plan to examine more efficient LTL encoding, e.g., using [11],
and to examine the impact of contract-based diagnostics on larger systems.

142 G. Provan

References

1. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200–225. Springer, Heidelberg (2008)

2. Chilton, C., Jonsson, B., Kwiatkowska, M.: Compositional assume-guarantee rea-
soning for input/output component theories. Sci. Comput. Program. 91, 115–137
(2014)

3. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for
failure diagnosis of discrete event systems. Discrete Event Dyn. Syst. 10(1–2),
33–86 (2000)

4. Giese, H., Henkler, S., Hirsch, M.: A multi-paradigm approach supporting the
modular execution of reconfigurable hybrid systems. In: Transactions of the Society
for Modeling and Simulation International (2010)

5. Hashtrudi Zad, S., Kwong, R., Wonham, W.: Fault diagnosis in timed discrete-
event systems. In: Proceedings of the 38th IEEE Conference on Decision and Con-
trol, vol. 2, pp. 1756–1761. IEEE (1999)

6. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing
diagnosability of discrete-event systems. IEEE Trans. Autom. Control 46(8), 1318–
1321 (2001)

7. Jiang, S., Kumar, R.: Failure diagnosis of discrete-event systems with linear-time
temporal logic specifications. IEEE Trans. Autom. Control 49(6), 934–945 (2004)

8. Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults.
J. Comput. Syst. Sci. 78(2), 441–460 (2012)

9. Martin, A., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15, 73–132 (1993)

10. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test
themselves. Computer 42(9), 46–55 (2009)

11. Pill, I., Quaritsch, T.: An ltl sat encoding for behavioral diagnosis. In: International
Workshop on the Principles of Diagnosis, pp. 67–74 (2012)

12. Pill, I., Quaritsch, T.: Behavioral diagnosis of ltl specifications at operator level.
In: Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, pp. 1053–1059. AAAI Press (2013)

13. Prokhorova, Y., Troubitsyna, E.: A survey of safety-oriented model-driven and
formal development approaches. Int. J. Crit. Comput.-Based Syst. 4(2), 93–118
(2013)

14. Quaritsch, T., Pill, I.: Pymbd: A library of mbd algorithms and a light-weight
evaluation platform. In: Proceedings of Dx-2014 (2014)

15. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundamenta Informaticae
108(1), 119–149 (2011)

16. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

17. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.C.:
Failure diagnosis using discrete-event models. IEEE Trans. Control Syst. Technol.
4(2), 105–124 (1996)

18. Slâtten, V.: Model-Driven Engineering of Dependable Systems. In: 2010 Third
International Conference on Software Testing, Verification and Validation, pp. 359–
362. IEEE (2010)

A Contracts-Based Framework for Systems Modeling 143

19. Stirling, C.: Modal and temporal logics (1991)
20. Sun, X., Nuzzo, P., Wu, C., Sangiovanni-Vincentelli, A.: Contract-based system-

level composition of analog circuits. In: Proceedings of the 46th Annual Design
Automation Conference, pp. 605–610. ACM (2009)

21. Zulkernine, M., Seviora, R.: Towards automatic monitoring of component-based
software systems. J. Syst. Softw. 74(1), 15–24 (2005)

OpenCert 2014

Modelling and Verifying Smell-Free
Architectures with the ARCHERY Language

Alejandro Sanchez1,2, Luis S. Barbosa2, and Alexandre Madeira2(B)

1 Departamento de Informática, Universidad Nacional de San Luis,
Ejército de los Andes 950, D5700HHW San Luis, Argentina

asanchez@unsl.edu.ar
2 HASLab INESC TEC and Universidade Do Minho,

Campus de Gualtar, 4710-057 Braga, Portugal
{asanchez,lsb,madeira}@di.uminho.pt

Abstract. Architectural (bad) smells are design decisions found in soft-
ware architectures that degrade the ability of systems to evolve. This
paper presents an approach to verify that a software architecture is smell-
free using the Archery architectural description language. The language
provides a core for modelling software architectures and an extension
for specifying constraints. The approach consists in precisely specify-
ing architectural smells as constraints, and then verifying that software
architectures do not satisfy any of them. The constraint language is based
on a propositional modal logic with recursion that includes: a converse
operator for relations among architectural concepts, graded modalities
for describing the cardinality in such relations, and nominals referencing
architectural elements. Four architectural smells illustrate the approach.

1 Introduction

Software systems evolve to cope with contextual change. This change compro-
mises the value a system delivers as it might come, for instance, from the market
or legislation in which the system is embedded. The principal design decisions
governing a system, i.e., the software architecture [14], play a fundamental role
in its ability to evolve and address change.

Architectural (bad) smells are recurrent architectural decisions that have a
negative impact on the ability of a system to evolve [5]. A catalogue is pre-
sented in [6], where they are characterized in terms of the basic building blocks
that architectural description languages (ADL) offer, i.e., components, connec-
tors, interfaces, and configurations. These design decisions may not constitute
an error or fault, but violate engineering principles such as isolation of change
and separation of concerns. They affect the ability to evolve since they difficult
understanding, testing, maintaining, extending and reusing parts of a system.

In the context of open source software (OSS), architectural smells acquire
further relevance. This is because one of the most important success factors is
the voluntary contribution of OSS community members [1]. Thus, the easier the
system is to understand, test, maintain, extend and reuse, the greater the chances
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 147–163, 2015.
DOI: 10.1007/978-3-319-15201-1 10

148 A. Sanchez et al.

of involving volunteers. Formal approaches enabling the automatic verification of
smell-freeness of architectures will have a positive impact in both the quality of
OSS projects and in the health of the involved community [2].

The work reported in this paper aims toward such end. The approach consists
in using the Archery language [8,9], an ADL with formal semantics, to verify
constraints specifying the absence of architectural smells in software architec-
tures. It does not aim at replacing existing practices in OSS communities, but
to complement them, as suggested by the proposal discussed in [2]. Archery
is organized as a basic language, named Archery-Core, and extensions built
on top of it. Archery-Core allows modelling the structure and behaviour of
software architectures in terms of architectural patterns, and the extensions are
for specifying reconfiguration scripts and constraints.

Archery-Constraint is the extension for specifying constraints upon either
structure, behaviour or reconfiguration processes of architectures. The specifica-
tion language is based on a propositional modal logic. As a consequence, con-
straints become formulæ of a modal logic, interpreted over Kripke structures
obtained from Archery’s specifications (see [10] for reconfiguration and [11]
for structure). Since the proposed approach focuses on structural constraints,
modalities allow inspecting the Kripke structure obtained from an architecture,
by regarding the configuration constituents and their relationships as the Kripke
structure’s worlds and relationships, respectively.

The underlying logic is a fully enriched μ-calculus [3]. It includes fixed points,
a converse operator, two graded modalities and hybrid features. Fixed points are
for specifying recursive formulæ, and thus liveness and safety conditions. The
converse operator allows exploring the converse of relations, and graded modal-
ities allow describing their cardinalities. Hybrid features consist of a mechanism
to explicitly refer to specific worlds through nominals, elementary propositions,
each of which is only true at the world it identifies, and a reference operator
which asserts that a formula is satisfied at the world named by a specific nomi-
nal. These features make possible, for instance, to express the equality between
two worlds, to denote that a world is accessible through a relation from another
world, or to assert the irreflexivity of a relation. Moreover, they make possible
to describe acyclic structures when included in recursive constraints [11].

The approach can be used upon recovery techniques are applied to obtain an
Archery model. In fact, techniques were applied in [12] to recover an Archery
model for an existing software system, and subsequent model-based analysis and
modifications were carried out. It is worth noting that the unrestricted access to
source code renders OSS systems a natural target for the presented approach.

Architectural smells described in [6], and architectures of actual software sys-
tems illustrate the approach. The architectures were either documented during
development, or recovered from source code, and are described in references also
available in [6]. Observe that one of the example architectures was recovered
from Linux [4], an open source operating systems widely adopted.

The obtained constraints correspond to decidable fragments of the underlying
logic. The fully enriched μ-calculus is known to be not decidable, however, the

Modelling and Verifying Smell-Free Architectures 149

fragments obtained by omitting one of either the converse operator, the graded
modality operators, or the hybrid features, is [3]. None of the constraints that
characterize the smells requires recursion, and three of them exclude either the
converse operator, the graded modality operators, or the hybrid features.

The contribution of the paper is two fold. First, the constraint language pre-
sented in [11] is extended by including graded modalities. Second, the extended
language is applied to precisely model architectural bad smells, which enables
formally verifying the absence of these violations to design principles.

The rest of the paper is structured as follows: Sect. 2 briefly describes the
Archery language; Sect. 3 characterizes the smells as structural constraints;
Sect. 4 describes the fully enriched μ-calculus, the translation of structural con-
straints to it, and illustrates how a constraint is verified; Sect. 5 summarizes
results and describes future work.

2 The ARCHERY Language

This section describes Archery-Core in a brief and partial way (detailed
descriptions can be found in [8,9]), and extends the structural part of Archery-
Constraint presented in [11]. The language is illustrated with an architectural
pattern inspired in the Java Messaging Service (JMS). It prescribes three archi-
tectural elements: queues, where messages are kept in a specific order; producers,
that send messages to the queue; and consumers, that receive messages from the
queue. In the example pattern, a consumer provides one of three possible ser-
vices, depending on the received message.

2.1 ARCHERY-CORE: Modelling Structure

An Archery-Core specification comprises one or more (architectural) pat-
terns, a variable that references the main architecture, and global data specifi-
cations (not part of the examples in this paper). A pattern defines one or more
(architectural) elements (connectors and components), such as the JMS pattern
and the Queue, Producer and Consumer elements shown in Listing 1.

1 pattern JMS()
2 element Queue() interface in rcvMsg; out dlvr;
3 element Producer() interface in start; out sndMsg;
4 element Consumer() interface in onMsg; out func;
5 act funcA,funcB,funcC;
6 end
7 jms:JMS = architecture JMS()
8 instances
9 q:Queue();

10 p:Producer=Producer(); c:Consumer=Consumer();
11 attachments
12 from p.sndMsg to q.rcvMsg;
13 from q.dlvr to c.onMsg;

150 A. Sanchez et al.

14 interface p.start as produce; c.func as consume;
15 end

Listing 1. JMS Pattern and architecture

Each element includes an interface that contains one or more ports. A port
is defined by a polarity, either in or out and a name. For instance, the interface
of Queue defines two ports in line 2. An element can optionally include a set
of actions, and a set of process descriptions expressed in a subset of the mCRL2
process algebra. An action represents an event that is not a port activation, e.g.,
see line 5. Process descriptions are not considered in the sequel.

A variable (see line 7) has an identifier and a type that must match an element
or pattern name. Allowed values are instances of a type (element or pattern),
that do not necessarily need to match the variable’s own type.

An architecture describes the configuration a set of instances adopt. It con-
tains a token that must match a pattern name, a set of variables, an optional set
of attachments, and an optional interface. The type of each variable in the set is
limited to an element in the pattern the architecture is instance of, such as in line
10. Each attachment includes port references to an output and an input port.
A port reference is an ordered pair of identifiers: the first one matching a variable
identifier, and the second matching a port of the variable’s instance. Then, an
attachment indicates which output port communicates with which input port –
see e.g. p.sndMsg with q.rcvMsg in line 13. The architecture interface is a set
of one or more port renamings. Each port renaming contains a port reference
and a token with the external name of the port. An example interface is shown
in line 14. Ports not included in this set are not visible from the outside.

2.2 ARCHERY-CONSTRAINT: Describing Structure

Structural constraints are verified over Kripke models obtained from Archery-
Core specifications. Each model includes a set W of worlds and a family R of
binary relations among them, with Mod a set of relation labels. The meta-model
of Archery’s architectures is shown in Fig. 1. The worlds are the constituents:
instances, ports, actions, variables, port references, attachments, names, and
renamings. The relationships among constituents conform the family R of rela-
tions. The labels of relationships in Fig. 1 become the modality symbols m ∈
Mod. For convenience, modality symbols attd and evt are included. The for-
mer names the relationship that relates two worlds representing variables con-
nected through an attachment. It is obtained as R[vref]◦ ◦ R[strt]◦ ◦ R[end] ◦
R[vref], where R◦ denotes the converse of a relation. The latter is obtained as
R[prt] ∪ R[act].

Propositions test if a specific condition is present at a (world) w. They are
classified in: (a) Naming propositions exist for each action and port name, and
hold when evaluated at a world representing the corresponding action or port.
(b) Meta-type propositions hold when w belongs to a specific participant set, e.g.,
PatternInstance. (c) Emptiness is checked by a single proposition, namely
Empty, which holds when w is a variable with no associated instance. (d) Type

Modelling and Verifying Smell-Free Architectures 151

Fig. 1. Relations and roles in spatial specifications

propositions depend on the pattern definition. They test if w is an instance or
a variable of a type. For example, the JMS pattern generates four proposition
symbols: JMS, Queue, Producer and Consumer.

Each variable in a specification defines a nominal in the set Nomvar. In
addition, depending on the variable’s type, they are also included in a subset
Nomvar:TY PEID. Then, each nominal holds exactly at the world that represents
the corresponding variable.

Structural constraints are associated to a pattern or to a pattern instance.
They allow precisely describing design decisions that characterize architectural
patterns [11], and the absence of smells, as it is shown in this paper.

Fig. 2. Grammar of structural constraints

A well-formed constraint is either a propositional formula, a modal formula,
a converse formula, a graded modality formula, a recursive formula, or a hybrid
formula (see grammar in Fig. 2). In a modal formula, a 〈M〉F indicates that
there exists a relationship M (named by expression M) between the present
world and another world satisfying (formula) F, whereas a [M]F indicates that
any relationship M leads to a world satisfying F. An M non-terminal describes
either a modal symbol Mod, that names a relation R[Mod] in the Kripke model,

152 A. Sanchez et al.

or the converse R[Mod]◦ indicated with Mod-. Graded modality formuæ, <n,M>F
and [n,M]F, describe a world where F holds in at least n+1 M-related worlds,
and a world where F holds in all but at most n M-related worlds, respectively. In
recursive formulæ, an ID designates a formula, and it is indicated if the recursion
is expected to be finite or infinite. Hybrid formulæ are built of a nominal Nom,
that is satisfied if the current world is the unique world referenced by such Nom,
and of a reference operator at Nom F, which is satisfied if at the world named
by Nom, F is. Global modality formulæ EF and AF are also included in the logic,
as they allow defining duals for the reference operator. They are as 〈M〉F and
[M]F but with W × W as the underlying relation.

The quantifiers all and exists can only occur in the beginning of a
constraint and have as domain the variables of the configuration. The mean-
ing of an all x:TYPEID F is the conjunction of formulæ at i F, for each
i ∈ Nomvar:TY PEID. The meaning of an exists x:TYPEID F, is a disjunction
of formulæ at i F, for each i ∈ Nomvar:TY PEID.

3 Architectural Smells

In this section, the Archery language is used to characterize the architectural
smells in [6]: connector envy, scattered parasitic functionality, ambiguous inter-
faces, and extraneous adjacent connector. The smells are illustrated using the
same examples used in [6], which are specified and then verified using Archery.
The examples do not aim at including an exact model of the software architec-
ture, but to cover the fragment which is relevant to the smell.

3.1 Connector Envy

Components with connector envy assume responsibilities that a connector typ-
ically assumes. These responsibilities supporting interaction are classified as
either concerning communication, coordination, conversion, or facilitation [7].
Communication and coordination services carry out the transfer of data and
control, respectively. Conversion services address mismatches between required
and provided interactions. Facilitation services cover streamlining and optimiza-
tion needs in interactions.

The filesystem daemon of the Grid Datafarm [13] is an instance of connector
envy [6]. The Grid Datafarm is a framework for petabyte scale data-intensive
computing. It offers a filesystem distributed over the nodes of a PC cluster, where
the operations in each node are facilitated by a daemon. The smell emerges as
each daemon incorporates, besides its domain specific functionality, coordination
behaviour that relies in a private remote procedure call (RPC) mechanism to
interact with other daemons.

Listing 2 shows the specification of the pattern fragment and an instance. It
only includes the daemon element GFSD, which has ports to coordinate work with
peers through RPC (sndRpcCoord and rcvRpcCoord), and to allow accessing
its functionality (sndResFun and rcvReqFun). The architecture consists of two
instances of the daemon connected through the ports for RPC coordination.

Modelling and Verifying Smell-Free Architectures 153

1 pattern GDatafarm()
2 element GFSD()
3 interface
4 in rcvReqFun, rcvRpcCoord; out sndResFun, sndRpcCoord;
5 end
6 df:GDatafarm = architecture GDatafarm()
7 instances d1:GFSD=GFSD(); d2:GFSD=GFSD();
8 attachments
9 from d1.sndRpcCoord to d2.rcvRpcCoord;

10 from d2.sndRpcCoord to d1.rcvRpcCoord;
11 end

Listing 2. Fragment of Grid Datafarm pattern and example architecture

The constraint that verifies that an architecture does not suffer of connector
envy is shown in Listing 3. It is divided in two parts, one that is generic and
another that is specific to the pattern. The generic part comprises lines 1 to 4.
It states that if a world represents an element instance, then it is not possible to
access to a world that represent domain functionality and to a world that repre-
sent interaction (communication, coordination, conversion, or facilitation) from
it. The specific part, line 4–8, establishes the worlds that represent functionality
and interaction by indicating the propositions that hold in such worlds.

1 const ConnEnvy
2 A (ElementInstance implies
3 not (<evt> Function and <evt> Interaction));
4 finite Interaction = Comm or Coord or Conv or Fac;
5 finite Function = rcvReqFun or sndResFun;
6 finite Comm = False;
7 finite Coord = rcvRpcCoord or sndRpcCoord
8 finite Conv = False; finite Fac = False;
9 end

Listing 3. Specification of connector envy for Grid Datafarm

3.2 Scattered Parasitic Functionality

The scattered parasitic functionality is found when a set of architectural elements
share a concern while at the same time, some of them individually address an
additional unrelated concern. Thus, the principle of separation of concerns is
violated in two different ways: by scattering a concern among a set of elements,
and by making a single element responsible of two concerns.

This smell is found in the Linux kernel architecture [6] as recovered in [4].
The PROC file system contains status information about the kernel, including
its executing processes. However, it relies on other kernel subsystems to report
their own status. As a result, the Process Scheduler and the Network Interface
subsystems depend on the PROC file system.

154 A. Sanchez et al.

Listing 4 shows an Archery’s specification for a fragment of the recov-
ered architecture of the Linux kernel. The pattern includes a ProcFS element
that receives status reports in port rcvStatus. It also includes the elements
NetInterface and ProcScheduler that share a port sndStatus and an
action statusChk, as their instances send a status report to an instance of
ProfFS. These two elements also have unshared functionality, modelled by other
actions. The architecture contains an instance of each element, and connects the
other two with the ProcFS instance.

1 pattern Kernel()
2 element ProcFS() interface in rcvStatus;
3 element NetInterface() interface out sndStatus;
4 act connect, access, statusChk;
5 element ProcScheduler() interface out sndStatus;
6 act schedule, statusChk;
7 end
8 k:Kernel = architecture Kernel()
9 instances

10 prc:ProcFS=ProcFS(); sch:ProcScheduler=ProcScheduler();
11 net:NetInterface=NetInterface();
12 attachments
13 from sch.sndStatus to prc.rcvStatus;
14 from net.sndStatus to prc.rcvStatus;
15 end

Listing 4. Fragment of Linux kernel architecture

The constraint specifying the absence of the scattered parasitic function-
ality is shown in Listing 5. It requires that for each instance in an architec-
ture, referenced by a nominal x, if there is a name that corresponds to an
action of (the instance referenced by) x, then, it is not possible to find two
actions with that name that belong to instances in the same architecture as x,
which also have at least another action. The meaning of some of the expres-
sions is as follows: <name-><act->x describes a name that corresponds to an
action of x; <name-><2,act-> holds in a name shared by at least two actions;
<comp-><comp>x holds in an instance placed in the same architecture as x;
and <2,act>True holds in an instance with at least two actions.

1 const ScatteredParasiticFunc
2 all x. A ((Name and <name-><act->x) implies not
3 (<name-><2,act->(<comp-><comp>x and <2,act>True));
4 end

Listing 5. Specification of scattered parasitic functionality

Modelling and Verifying Smell-Free Architectures 155

3.3 Ambiguous Interfaces

An ambiguous interface offers a single entry point into an architectural element
that offers multiple services. Instance of this smell are found in the JMS pattern,
as reported in [6]. The example pattern is described in Sect. 2.

Listing 1 shows the specification that corresponds to a fragment of the JMS
pattern and a software architecture. The smell is present in consumer instances
that receive messages in port onMsg, but can perform any of three functionalities
represented by actions FuncA, FuncB and FuncC.

The absence of cases of this smell is specified for the JMS example in Listing 6.
The constraint detects the cases in which there is a single entry point, but
multiple services are offered. The constraint holds if whenever there is an element
instance, it is not the case that it has a number of ports less or equal to two, with
one having inward direction, and it also has at least two actions that correspond
to specific functionality. Note that the expressions [2,prt]False holds at
worlds that represent instances that have at most two ports.

1 const AmbInt
2 A (ElementInstance implies not
3 ([2,prt]False and <prt>In and <2,act>Function);
4 finite Function = FuncA or FuncB or FuncC
5 end

Listing 6. Specification of ambiguous interfaces for JMS architectures

3.4 Extraneous Adjacent Connector

This smell occurs when two architectural elements interact through two different
connector types. The presence of an extra connector type may cause a cancella-
tion of the benefits that each of them offers individually.

The MIDAS System shows an instance of extraneous adjacent connector as
reported in [6]. Communication in the system is mainly supported by event-
based connectors, which are used by all high-level services. An exception is the
service discovery engine that accesses the service registry using procedure calls.
Then, the two components interact through two different connector types, which
constitutes an instance of the extraneous adjacent connector.

The specification in Listing 7 characterizes a fragment of the pattern of the
MIDAS system, and an architecture where the smell is found. It includes four
elements: two connector types, and two component types. The former represent
the event-based connector type Channel and the procedure call connector type
PC. The component types are ServiceDiscovery and ServiceRegistry.
The architecture includes an instance of each of the elements, and connects
the two components using two connectors of different types. This configuration
constitutes an instance of the extraneous adjacent connector.

156 A. Sanchez et al.

1 pattern MIDAS()
2 element Channel() interface in rcvEvnt; out sndNtf;
3 element PC() interface in rcvPcComm; out sndPcComm;
4 element ServiceDiscovery()
5 interface in rcvNtf; out sndEvnt, sndPc;
6 element ServiceRegistry()
7 interface in rcvNtf, rcvPc; out sndEvnt;
8 end
9 m:MIDAS = architecture MIDAS()

10 instances c:Channel=Channel(); pc:PC=PC()
11 sd:ServiceDiscovery = ServiceDiscovery();
12 sr:ServiceRegistry = ServiceRegistry();
13 attachments
14 from sd.sndEvnt to c.rcvEvnt;
15 from sr.sndEvnt to c.rcvEvnt;
16 from c.sndNtf to sd.rcvNtf; from c.sndNtf to c.rcvNtf;
17 from sd.sndPc to pc.rcvPcComm;
18 from pc.sndPcComm to sr.rcvPc;
19 end

Listing 7. Fragment of MIDAS Pattern and architecture

The constraint in Listing 8 specifies the absence of a case of extraneous adja-
cent connector. The constraint holds if whenever there is an element instance,
it is not attached to connectors of different type. It is formulated in a very spe-
cific way, as it only considers the connector types of the pattern. If the pattern
includes different connector types, the conjunction of the constraint needs to be
reformulated, to consider all different pairs.

1 const ExtAdjConn
2 A (ElementInstance implies not
3 (<attd>PC and <attd>Channel));
4 end

Listing 8. Specification of extraneous adjacent connector for MIDAS

4 Verifying Architectural Constraints

This section describes the syntax and semantics of the fully enriched μ-calculus
[3], provides a translation that takes a constraint and yields a formula in such
logic, establishes the fragment of the logic used to characterize each architectural
smell, and illustrates the logic with a manual verification of the formula that
corresponds to the absence of the ambiguous interface smell on the model for
the JMS example architecture.

The syntax of the fully enriched μ-calculus is shown in Definition 1.

Modelling and Verifying Smell-Free Architectures 157

Definition 1. Let Prop be a set of propositional symbols, Mod a set of atomic
modal symbols, XVar a set of states variables, and Nom a set of nominals.
A modal symbol β is either

(a) an atomic modal symbol α, or
(b) the converse of an atomic modal symbol (denoted as) α◦.

Then, the set SForm of well-formed state formulæ of the fully enriched μ-calculus
is the smallest set such that a state formula is either

(c) the top constant �,
(d) a proposition p,
(e) a negation ¬ϕ,
(f) a conjunction ϕ ∧ ψ,
(g) a possibly operator 〈β〉ϕ,
(h) a state variable X,
(i) a maximal fixed point formula νX.ϕ, with every free X in ϕ occurring pos-

itively, i.e., within the scope of an even number of negations,
(j) an at least graded modality 〈n, β〉ϕ with n ∈ N,
(k) a global possibly operator Eϕ,
(l) a nominal i,
(m) a formula satisfaction operator @iϕ

where p ∈ Prop, {ϕ,ψ} ⊆ SForm, X ∈ XVar , and i ∈ Nom.
�
Derived constants and operators are obtained as follows:

⊥ = ¬� ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)
ϕ → ψ = ¬ϕ ∨ ψ ϕ ↔ ψ = ϕ → ψ ∧ ψ → ϕ

[β]ϕ = ¬〈β〉¬ϕ ¬〈n, β〉ϕ = [n, β]¬ϕ

Aϕ = ¬E¬ϕ μX.ϕ = ¬νX.¬ϕ[X/¬X],

where ϕ[X/¬X] denotes a formula ϕ with all occurrences of X replaced with
occurrences of ¬X.

Table 1. Fragments of the fully enriched µ-calculus

Logic Clauses Constraint (listing)

Fully enriched µ-calculus (a)–(m) Scattered parasitic func. (5)

Full graded µ-calculus (a)–(j) –

Full hybrid µ-calculus (a)–(i), (k)–(m) –

Hybrid graded µ-calculus (a), (c)–(m) Ambiguous interfaces (6)

Graded µ-calculus (a), (c)–(j) –

Hybrid µ-calculus (a), (c)–(i), (k)–(m) Extraneous adjacent conn. (8),
Connector envy (3)

158 A. Sanchez et al.

Restricted groups of clauses define less expressive, but useful logics. Five
of these logics and the specific clauses that define them are shown in Table 1.
The third column indicates which logic is required to specify each of the four
architectural smells. Note that an actual recursion is not required by any of the
four constraints, which may allow defining them in a less expressive logic. The
translation in Definition 4 provides the correspondence between the structural
constraint extension and the logic, which is used to classify the smells.

Fully enriched μ-calculus formulæ are interpreted over Kripke models.

Definition 2. A Kripke model for the fully enriched μ-calculus is a triple M =
(W,R, V) where

– W is a non-empty set of worlds, also called states or points;
– R : Mod → W ×W is a relation function that yields, for a given atomic modal

symbol α, a binary relation on W ; and
– V = V : Prop � Nom → P(W) is a valuation function that returns the set of

worlds where a given propositional symbol or nominal holds.
�

The interpretation of formulæ is described relying on the notation as follows:
the expression m[d �→ r] denotes a map m′ in which m′(d′) = m(d′) for all d′ �= d
and m′(d) = r otherwise; the set of values in the domain mapped by m is called
its support, and is denoted as supp(m).

The meaning of a state formula is defined in terms of sets of W , as it is
described in Definition 3.

Definition 3. Let M be a Kripke structure for the fully enriched μ-calculus,
and s : XV ar → P(W) be a state environment that yields a set of worlds for a
given state variable. The set of worlds that satisfy a state formula ϕ ∈ SForm
(Definition 1) is given by the interpretation function [[·]]s : SForm → P(W)
inductively defined as

[[�]]s � W (1)

[[p]]s � {w ∈ W : w ∈ V (p)} (2)

[[¬ϕ]]s � W \ [[ϕ]]s (3)

[[ϕ ∧ ψ]]s � [[ϕ]]s ∩ [[ψ]]s (4)

[[〈β〉ϕ]]s � {w ∈ W : ∃w′ ∈ W.(w,w′) ∈ S[β] ∧ w′ ∈ [[ϕ]]s} (5)

[[X]]s � s(X) (6)

[[νX.ϕ]]s �
⋃

{W ′ ⊆ W : W ′ ⊆ [[ϕ]]s′} with s′ = s[X �→ W ′] (7)

[[〈n, β〉ϕ]]s � {w ∈ W : n <| {w′ ∈ W : (w,w′) ∈ S[β] ∧ w′ ∈ [[ϕ]]s} |} (8)

[[Eϕ]]s �
{

W if ∃w ∈ W.w ∈ [[ϕ]]s
∅ otherwise

(9)

Modelling and Verifying Smell-Free Architectures 159

[[i]]s � {V (i)} (10)

[[@iϕ]]s �
{

W if V (i) ∈ [[ϕ]]s
∅ otherwise

, (11)

provided that

S[β] =
{R[α] if β = α

R[α]◦ if β = α◦,

fsv(ϕ) ⊆ supp(s), and fsv(ϕ) denotes the free state variables of ϕ.
�
Definition 4 presents the translation that takes structural constraints, built as
described in Fig. 2, and yields a fully enriched μ-calculus formula. A notational
convention adopted to present the translation is to consider non-terminals of
the grammar as sets. For instance, f ∈ F is used to indicate that expression f
is built according non-terminal F . In addition, the substitution of x by i in a
constraint is denoted as [x/i].

Definition 4. Given a constraint c ∈ SConst, consisting of an optional quan-
tifier q ∈ Q, an expression f ∈ F and optional recursion definitions rs ∈ Rec∗,
the translation T : SConst → SForm is defined as follows:

T (q, f, rs) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∧

i∈Nomvar:type

@i T (f,R(rs))[x/i] for q = all x:type
∨

i∈Nomvar:type

@i T (f,R(rs))[x/i] for q = exists x:type
∧

i∈Nomvar

@i T (f,R(rs))[x/i] for q = all x
∨

i∈Nomvar

@i T (f,R(rs))[x/i] for q = exists x

T (f, rs) = T (f,R(rs))

where the translation of the recursion definitions is carried out by function R :
Rec∗ → (ID → SForm) defined as

R(r rs, V) =
{R(rs, V [ID → μ ID.T (f, rs)]) for r = finite ID f

R(rs, V [ID → ν ID.T (f, rs)]) for r = infinite ID f

R([], V) = V

with t ∈ (finite|infinite), f ∈ F , rs ∈ Rec∗, and V ∈ ID → SForm, and
the translation of f ∈ F defined as

T (True, V) = � T (False, V) = ⊥
T (p, V) = p T (not f, V) = ¬T (f, V)

T (f or g, V) = T (f, V) ∨ T (g, V) T (f and g, V) = T (f, V) ∧ T (g, V)
T (f implies g, V) = T (f, V) → T (g, V) T (f iff g, V) = T (f, V) ↔ T (g, V)

T ([m] f, V) = [M(m)] T (f, V) T ([n,m] f, V) = [n,M(m)] T (f, V)

160 A. Sanchez et al.

T (〈m〉f, V) = 〈M(m)〉 T (f, V) T (〈n,m〉f, V) = 〈n,M(m)〉 T (f, V)
T (A f, V) = A T (f, V) T (E f, V) = E T (f, V)
T (id, V) = V (id) T (i, V) = i

T (at i, V) = @i

M(m) = m M(m-) = m◦

where m ∈ Mod .
�
Then, the translation of the constraint in Listing 6 yields formula

A (ElementInstance → ¬([2, prt]⊥ ∧ 〈prt〉In

∧ 〈2, act〉 μFunction.(FuncA ∨ FuncB ∨ FuncC))).

A partial Kripke model for the architecture in Listing 1 is shown in Fig. 3. The
model is partial since worlds representing names and their relationships are omit-
ted. Each node in the graphic represents a world and includes: an identifier in the
first line; the satisfied propositions in the second line; and the satisfied nominals

Fig. 3. Partial Kripke model for the JMS example configuration

Modelling and Verifying Smell-Free Architectures 161

in the third line. A short code is used instead of the actual name of proposi-
tions. The codes are: V (Variable), PI (PatternInstance), EI (ElementInstance),
P (Port), I (In), O (Out), A (Attachment), R (Renaming), PR (PortReference),
Act (Action), Q (Queue), Prd (Producer), and C (Consumer).

The verification of the formula is as follows:

A (ElementInstance → ¬([2, prt]⊥ ∧ 〈prt〉In

∧ 〈2, act〉 μFunction.(FuncA ∨ FuncB ∨ FuncC)))
= { duality and definition of implication }

A (¬ElementInstance ∨ ¬(¬〈2, prt〉¬⊥ ∧ 〈prt〉In

∧ 〈2, act〉 ¬νFunction.(¬(FuncA ∨ FuncB ∨ FuncC))))
= { (2) and duality }

A (¬{w5, w6, w7} ∨ ¬(¬〈2, prt〉� ∧ 〈prt〉{w8, w10, w12}
∧ 〈2, act〉 ¬νFunction.(¬FuncA ∧ ¬FuncB ∧ ¬FuncC)))

= { (1), duality, and (2) }
A ¬({w5, w6, w7} ∧ (¬〈2, prt〉W ∧ 〈prt〉{w8, w10, w12}
∧ 〈2, act〉 ¬νFunction.(¬{w14} ∧ ¬{w15} ∧ ¬{w16})))

= { (3), (4), (7), and (3) again }
A ¬({w5, w6, w7} ∧ (¬〈2, prt〉W ∧ 〈prt〉{w8, w10, w12}
∧ 〈2, act〉 {w14, w15, w16}))

= { duality, (8), (5) and (8) again }
¬E ({w5, w6, w7} ∧ (¬∅ ∧ {w5, w6, w7} ∧ {w7}))

= { (3) and (4) }
¬E ({w7})

= { (9) and (3) }
∅.

Then, the constraint is not satisfied by the architecture in Listing 1, i.e., the
architecture contains an instance of the ambiguous interface smell.

5 Conclusion and Future Work

This paper proposes the usage of the Archery ADL to verify that software
architectures are free of architectural smells found in catalogue [6]. The approach
consists in specifying the absence of smells as constraints, and then verifying
that architectures satisfy them. The constraint language is translated to a fully
enriched μ-calculus, whose syntax and semantics are described. An architectural
smell is detected in an example architecture, by showing that it fails to verify
the corresponding constraint.

Future work includes the extension of the constraint language to cover the
behaviour of instances and of reconfiguration scripts, and the development of a

162 A. Sanchez et al.

verification tool. The application of the language to case studies in Healthcare
and e-Gov is also part of future developments.

Acknowledgment. This work was funded by ERDF - European Regional Develop-
ment Fund, through the COMPETE Programme, and by National Funds through FCT
within project FCOMP-01-0124-FEDER-028923.

References

1. Aberdour, M.: Achieving quality in open-source software. Softw. IEEE 24(1), 58–
64 (2007)

2. Barbosa, L.S., Henriquez, P.R., Sanchez, A.: Towards rigorous analysis of open
source software. In: Proceedings of the 5th International Workshop on Harnessing
Theories for Tool Support in Software, TTSS 2011, University of Oslo (2011)

3. Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched µ-
calculi. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4052, pp. 540–551. Springer, Heidelberg (2006)

4. Bowman, I.T., Holt, R.C., Brewster, N.V.: Linux as a case study: its extracted soft-
ware architecture. In: Proceedings of the 21st International Conference on Software
Engineering, ICSE 1999, pp. 555–563. ACM, New York (1999)

5. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural
bad smells. In: Proceedings of the 2009 European Conference on Software Main-
tenance and Reengineering, CSMR 2009, pp. 255–258. IEEE Computer Society,
Washington, DC (2009)

6. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Toward a catalogue of archi-
tectural bad smells. In: Mirandola, R., Gorton, I., Hofmeister, C. (eds.) QoSA 2009.
LNCS, vol. 5581, pp. 146–162. Springer, Heidelberg (2009)

7. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: Proceedings of the 22Nd International Conference on Software Engi-
neering, ICSE 2000, pp. 178–187. ACM, New York (2000)

8. Sanchez, A., Barbosa, L.S., Riesco, D.: A language for behavioural modelling of
architectural patterns. In: Proceedings of the Third Workshop on Behavioural
Modelling, BM-FA 2011, pp. 17–24. ACM, New York (2011)

9. Sanchez, A., Barbosa, L.S., Riesco, D.: Bigraphical modelling of architectural pat-
terns. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 313–
330. Springer, Heidelberg (2012)

10. Sanchez, A., Barbosa, L.S., Riesco, D.: Verifying bigraphical models of architectural
reconfigurations (short paper). In: Proceedings of the 7th International Symposium
on Theoretical Aspects of Software Engineering, TASE 2013, Birmingham, UK.
IEEE (2013)

11. Sanchez, A., Barbosa, L.S., Riesco, D.: Specifying structural constraints of archi-
tectural patterns in the ARCHERY language. In: Proceedings of the Interna-
tional Conference of Numerical Analysis and Applied Mathematics 2014 (ICNAAM
2014): Symposium on Computer Languages, Implementations and Tools (SCLIT).
AIP Proceedings (2014, to appear)

12. Sanchez, A., Oliveira, N., Barbosa, L.S., Henriques, P.: A perspective on architec-
tural re-engineering. Sci. Comput. Program. 98, 764–784 (2014)

Modelling and Verifying Smell-Free Architectures 163

13. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid datafarm archi-
tecture for petascale data intensive computing. In: 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, May 2002, pp. 102–102 (2002)

14. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley, Chichester (2009)

OntoLiFLOSS: Ontology for Learning Processes
in FLOSS Communities

Patrick Mukala(B), Antonio Cerone, and Franco Turini

Dipartimento di Informatica, University of Pisa, Pisa, Italy
{mukala,cerone,turini}@di.unipi.it

Abstract. Free/Libre Open Source Software (FLOSS) communities are
considered an example of commons-based peer-production models where
groups of participants work together to achieve projects of common pur-
pose. In these settings, many occurring activities can be documented and
have established them as learning environments. As knowledge exchange
is proved to occur in FLOSS, the dynamic and free nature of partici-
pation poses a great challenge in understanding activities pertaining to
Learning Processes.

In this paper we raise this question and propose an ontology (called
OntoLiFLOSS) in order to define terms and concepts that can explain
learning activities taking place in these communities. The objective of
this endeavor is to define in the simplest possible way a common defini-
tion of concepts and activities that can guide the identification of learning
processes taking place among FLOSS members in any of the standard
repositories such as mailing list, SVN, bug trackers and even discussion
forums.

1 Introduction

There is an increasing awareness for FLOSS environments as open participatory
learning ecosystems [1,12,14] Given the structure and the volatile nature of
these settings where people join and leave at any time and the lack of universal
definition of concepts, understanding learning activities faces a big challenge.
Moreover, empirically tracing and even studying these activities would be almost
impossible without a clear understanding of key concepts.

In order to understand and document evidence of learning traces among
participants in FLOSS repositories, we need a sort of guideline indication that
provides a “generic” representation of the structure of information and concep-
tualization of knowledge pertaining to learning processes in these repositories.
This can be achieved by means of ontologies, given their preponderant role in
knowledge representation.

In describing the role of ontologies in computer science, Fonseca [6] supports
that ontology is an engineering artifact that is constituted by a specific vocabu-
lary used for the purpose of describing a specific reality or domain. Ontologies can
also be useful for the validation of conceptual models and conceptual schemas [6].
Wilson [17] adds to this role by suggesting that ontologies “attempt to formulate
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 164–181, 2015.
DOI: 10.1007/978-3-319-15201-1 11

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 165

a thorough and rigorous representation of a domain by specifying all of its con-
cepts, the relationships between them and the conditions and regulations of the
domain”. Furthermore, ontologies play a significant role in software engineering.
Happel and Seedorf [8] advocate the adoption of ontologies to help the commu-
nities of Software Engineering and Knowledge Engineering make use of common
topics and concepts. They claim that during the phase of requirements engineer-
ing, software engineers are seldom domain experts and must, therefore, learn
about the problem domain from the customers. A different understanding of the
concepts involved may lead to an ambiguous, incomplete specification and major
rework after system implementation. Hence, it is important to ensure that all
participants in this process share the same understanding of the requirements.
Furthermore, Happel and Seedorf suggest that the use of a knowledge repre-
sentation format would enable developers to discover sharable domain models
and knowledge bases from internal and external repositories. In addition, the
use of ontologies in various stages of the development lifecycle provides common
grounds and vocabularies given their potential for knowledge representation and
process support [8,9].

In Open Source, the adoption of ontologies is paramount. With millions of
users converging on the same concepts and topics, a lack of common knowl-
edge representation would be chaotic. Few attempts can be observed [10,13,15].
Mirbel [10] introduces and describes OFLOSSC (An Ontology for Supporting
Open Source Development Communities) as an extension to the previous OSDO
(Ontology for Open Source Software Development) [13]. Tifous et al. [15] intro-
duce an ontology that specifies open source software environments as communi-
ties of practice from which Mirbel [10] borrows a few guidelines as well. While
these ontologies describe classes and properties for participants as well as roles
of individuals in Open Source environments, their scope of knowledge represen-
tation describes common concepts that need to be understood from a global
perspective.

In our work instead, the focus is on learning processes in these communities.
Hence, the premise of our task is predicated on the established assumption that
in FLOSS communities, members engage in processes of knowledge exchange
that can be regarded as learning processes. In order to explain how this takes
place, we identify all relevant activities FLOSS members engage in and, on this
basis, develop the ontology.

A number of studies have been critical in this instance [1–3,5,7,12]. Specifi-
cally the works conducted by Cerone [1] as well as Cerone and Sowe [2] provide
ground for the identification of terms and concepts that can be used to explain
learning activities, participants and related classes in FLOSS. Through an iter-
ative process of ontologies design, the objective is to formalise and represent
knowledge structures for the purpose of using them as a roadmap to under-
standing crucial learning resources and concepts that can be found in FLOSS
repositories.

The rest of this paper is structured as follows. In Sect. 2 we discuss the
adopted methodology and tools for the design of our ontology. In Sect. 3 we

166 P. Mukala et al.

detail the elements of the ontology: classes and objects (Sect. 3.1) as well as
properties and instances (Sect. 3.2). Section 4 concludes our paper.

2 Methodology

A wide range of methodologies exist as guidelines for the conceptualization
and design of ontologies [4,11,16] For simplicity and user-friendliness, we have
adopted a short methodology for designing our ontology. Based on the immense
information and resources pertaining to FLOSS environments available in the lit-
erature that we have explored, we have design the ontology following a top-down
approach comprising the following five steps:

1. Information Collection
Our sources of information for the building of the ontologies are mainly studies
on FLOSS environments in the literature [1–3,5,7,12,14] as well as generic
assumptions about learning.

2. Concepts Identification and classes? definition
Based on the availability of a plethora of materials on activities in FLOSS,
we have defined some concepts and relations for the ontology to represent
entities, resources and constraints of learning in FLOSS environments.

3. Definition of Class Taxonomy
This helps in specifying and defining classes with their subclasses.

4. Properties and Labels Definition
Properties give an indication of classes attributes as well as their connectivity.

5. Ontology Formalisation
The language we chose for our ontology formalisation is OWL-DL given its
large-scale semantic web support and the implementation is facilitated by the
use of Protégé and OntVis.

Our ontology is called “OntoLiFLOSS”. This is an acronym for “Ontology of
Learning in FLOSS”. Although we are not able to fully assert that there are
empirical traces of all processes in CVS, mailing archives and bug reports, we
think that the knowledge structural representation in the form of ontology may
trigger further investigations and even additional research directions in FLOSS.
Furthermore, we have chosen two main tools for the implementation and visu-
alization of the ontology: Protégé 4.3 and Knoodl-OntVis. The former previews
main classes as well as their subsequent subclasses while the latter helps in
building graphs with relevant connecting properties between the classes.

The previous studies on FLOSS environments [1–3,5,7,12,14] provide us with
a lot of grounds for the identification of terms and concepts that can be used to
identify learning activities, participants and related classes in FLOSS communi-
ties. Hence, we identified two main learning processes in FLOSS communities,
Undirected Learning and Directed Learning. with Directed Learning unfolding
from 2 perspectives in 4 different formats, thus totaling the number of processes
to 9 (that constitute our instances in the ontology). These processes are:

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 167

Undirected Learning. This process can also be referred to as Peer-2-Peer or
Reflective Learning. This kind of learning is assumed to take place between
any numbers of participants. In this process, any participant can be both
a receiver (Novice) and a sender (Expert). At this level, the assumption is
that learning occurs between mates with a diversified expertise background
who learn from each other.

Directed Learning. This process refers to involvement of more knowledgeable
participants or expert members in helping less expert members to develop
their skills with some level of guidance or supervision. The occurrence of the
process is twofold:
Pulling. This is the process where a participant who is less expert on

any topic would initiate a need to learn by reaching out to the more
advanced participants that can culminate in a supervised or guided learn-
ing process. This can in turn occur according to the four formats as
follow:
Modeling. In this process, the Expert’s activities and actions are sys-

tematically monitored and observed by the Novice. This can happen
as the receiver aims to emulate the sender given the latters reputa-
tion in their FLOSS contribution. An example could be tracking the
senders commits in SVN, comments on mailing lists etc.;

Coaching. As the term explains, this involves giving direct monitoring
and guidance to the requesters and then observing the requester’s
performance;

Scaffolding. In this process, the sender analyses and determines the
receivers level of capacity and allows the receiver’s opportunities
to acquire knowledge accordingly. For example, supplying materi-
als (tutorials etc.) on specific problems and a solution approach etc.
based on the requesters background.

Fading. This process depicts involving a requester in practical execution
of tasks for skills acquisition. However, as the requesters performance
matures, the sender gradually gives the requester autonomy to apply
skills.

Pushing. This is the type of directed learning that occurs when the sender
takes the initiative to make available opportunities of knowledge acqui-
sition for requesters. Just like the pulling, this process can also be under-
stood in 4 formats: Modeling, Coaching, Scaffolding and Fading.

3 OntoLiFLOSS: Main Concepts

Based on the FLOSS information as obtained from the literature and given the
purpose of our study, we have assumed that the ontology for learning processes
in FLOSS called “OntoLiFLOSS” is made up of 138 entities (expandable as
required) and detailed with the following main building blocks:

Classes (80). These classes are representation and classification of information
on learning processes that are supported by a particular FLOSS project

168 P. Mukala et al.

Fig. 1. Protégé snapshot of OntoliFLOSS super classes

Fig. 2. Network graph of OntoliFLOSS super classes as they relate

through performing a certain number of activities referred to as “learning
activities”. Such activities are carried out by participants that can be either
Experts or Novices with regards to their involvement in the learning process
and can be organized into Teams. A number of resources are used to support

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 169

Fig. 3. Network graph of the FLOSSProject Class and related classes

the process that can be tracked through FLOSS repositories, to which inputs
and learning outputs are committed.

Object Properties (38). These are associations or relationships that explain
the link between the different classes/concepts as described above.

Data Properties (5). The data properties are attributes mainly for partici-
pants, whether they are Novices or Experts, that document their competency
level, their experience, level of contributions as well as their skillset.

Annotation Properties (1). This is just a an explanatory comment on the
ontology.

Individuals (9). These are the 9 identified learning processes that are repre-
sented in the Ontology as instances of the Concept/Object learning process.

Datatypes (3). These describe the data type for the 5 data properties.

3.1 Classes

Of the total of 80 classes in OntoLiFLOSS, 10 classes are super classes that
can be expanded to identify subclasses at the appropriate granularity as needed.
We give an abstract representation of these classes as well as their connecting
associations in Figs. 1 and 2. We now give a detailed description of these 10 super
classes as well as their subclasses with regard to the direct links they create with
other classes.

FLOSSProject Class. This class depicts any given project used in the investi-
gation or evaluation of FLOSS environments. The instances of the class can be
typical projects from Sourceforge.net or GitHub or any other FLOSS community
platforms such as KDE, NetBeans or any other project of convenience.

Figure 3 reflects the direct neighbourhood for the FLOSSProject Class, which
comprises 8 other super classes. Figure 3 gives a full visualisation graph of
the neighbourhood for concepts and their related associations (through object
properties).

170 P. Mukala et al.

LearningActivity Class. This class depicts concepts about all activities that
are directly involved with the learning process. Six classes constitute the subnet
or neighbourhood for the Learning Activity class as shown in Fig. 4. The class
also has three subclasses that classify the types of learning activities as depicted
in Fig. 4.

Fig. 4. Network graph of the LearningActivity Class, immediate subclasses and related
classes

The three subclasses represent the following three stages of learning.

Initiation. Two main subclasses characterise and are part of this stage: Obser-
vation and ContactEstablishement as shown in in Fig. 5.

In Observation, it is implied that the learning activity or learning process
spans as a result of some period of observation from either the Novice or
Expert. This class also includes a number of self-explanatory subclasses such
as IdentifyExpert, FormulateQuestion, PostQuestions, ReadMessages, Read-
Post, ReadSourceCode, and CommentPost.

In ContactEstablishment, the focus of the representation is on the steps that
any learning participant (Novice or Expert) undertakes to establish a con-
tact between the actors and initiate the actual learning partnership. This
happens through three activities: ContactExpert, ContactNovice and Send-
DetailedRequest.

Progression. In this stage, the ontology defines three subclasses: Revert, Post
and Apply. Each of them further branches out with several subclasses as
depicted in Fig. 6:
Revert. This activity (class) encompasses all the steps Novice and Expert go

through to provide the required information. Three basic classes or sub-
activities occur here: SendReply, where there is a reaction to any attempt

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 171

Fig. 5. Network graph representation of the Initiation Phase and related concepts

Fig. 6. Network graph representation of the Progression Phase and related concepts

of contact established from either the Novice or Expert; ReviewThread-
Posts refers to the ability to analyse and react as needed to comments
and posts related to a particular content that is the subject of learn-
ing; ReviewThreadCode concerns analysing the code (when applied) and
engaging accordingly for a particular topic of interest.

Post. This is one of the basic activities that express the contributions of
the Novice. It involves three activities: PostQuestions, which refers to

172 P. Mukala et al.

the ability to ask further questions or comments on more advanced top-
ics; ReportBugs, which entails the ability to scrutinize the source code
and run pieces of code to identify potential flaws; SendFeedback, which
refers to replying to questions or comments (including reporting identi-
fied flaws).

Apply. In applying any knowledge or skill as a result of the learning process,
the Novice can perform some activities represented as the subclasses of
this class. These include: AnalyzeSourceCode, for the ability to review the
submitted code and find bugs, especially when the piece of code relates
to the area in which skills have just been acquired; CommentOnCode,
for the ability to comment on the code to show progress or explain the
logic behind that part of the software; ReplyToPost, which refers to the
confidence to be active on the mailing list and reply to questions or
comments pertaining to the same thread or any other topic directly or
indirectly linked to the newly acquired skills; ReportBugs, for the ability
to report bugs for submitted piece of code or any other version release;
RunSourceCode, where, in running a piece of code, the Novice is able to
accomplish all the above activities.

Maturation. This class of activities identifies the last phase of learning process,
which asserts how the Novice has mastered the skills learnt during the learn-
ing process. These activities include as subclasses Analyze, Commit, Develop,
Revert and Review, which in turn contain subsequent child classes as shown
in Fig. 7
Analyze. This activity (class) encompasses all the steps Novice and Expert

go through to provide the required information or perform requested
tasks.

Commit. With skills growing in a specific area, the Novice becomes confident
and can commit some deliverables that can be evaluated and criticised by
the community. These activities can be summarised through: SubmitBu-
gReport, which entails the ability to commit any fix or bug report for the
interest of the entire community; SubmitCode, which implies commit some
code for any piece of software and participate to the project and build
reputation for a possible role transition; SubmitDocumentation, through
which the Novice submits documentation such as requirements elicitation
documents, help document, user manuals, tutorials etc.

Develop. This basic activity summarised a set of tasks that the Novice car-
ries out as a result of the skills learnt with regard to software development
in FLOSS. These include: FixBugs, though which the Novice can iden-
tify possible bugs and fix them; GiveSuggestion, where The Novice can
review peers? works and provide alternatives when needed, for example
what the appropriate function might be to perform a particular task etc.;
PostCommentOnCode refers to the ability to submit comments on the
source code for enlightenment; ReplyToSuggestion, which entails reply
and critique suggestions from other Experts or Novices in an active fash-
ion; WriteSourceCode, through which the Novice can write and submit

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 173

Fig. 7. Network graph representation of the Maturation Phase and related concepts

source code; ModifySourceCode, when the Novice can modify any code
and implement suggestion as requested.

Revert. This is in essence the same activity as in the progress stage. In
this class all activities through which the Novice and Expert exchange
feedback are represented: SendReply, which entails react to any attempt
of contact established from either the Novice or Expert; ReviewThread-
Posts, which implies the ability to analyse and react as needed to com-
ments and posts related to a particular content that is the subject of
learning; ReviewThreadCode, which signifies analysing the code (when
applied) and provide necessary suggestion if required.

Review. The Novice and Expert engage in a set of activities to examine the
maturity of the learning process. These activities include: ReviewCom-
mentContents, in which they actively engage and contribute to com-
ments and posts in the team, about topics in the sphere of the skills
acquired and possibly becoming an Expert to a new Novice; Review-
Posts, which entails actively engaging and reacting as needed to com-
ments and posts related to a particular content that is the subject of
learning; ReviewSourceCode, in which they (Novice/Expert) analyse the
code (when applied) and engage accordingly for a particular topic of
interest.

Resource Class. This class refers to the resources used as part of learning
during development in FLOSS. Such resources include the requirements descrip-
tion documents as well as any documentation needed for the project. Figure 8
depicts the class Resource with its direct neighbours as well as the categories of
three subclasses which are part of the main resources used in FLOSS that can

174 P. Mukala et al.

help identify learning processes. The three subclasses and their child subclasses,
depicted in Fig. 9 are as follows:

Fig. 8. Network graph of the Resource Class, immediate subclasses and related classes

DescriptionDoc. This class contains all the documents that provide the descrip-
tion for any activity or stage of the project in the team. The subclasses rep-
resenting these documents include BugReport, which is a report outlining the
description of a found reported bug in a code or piece of software at run time;
ProjectRequirementsDesc, which encompasses the documents pertaining to
the description of the project, including requirements and all related infor-
mation regarding the project?s operations; UserManuals, which contains the
guidelines for the users of the software.

HelpDoc. This class contains all the documents that provide information for
any required help regarding the functionalities of the repositories and
projects. These are: FAQ, How-To, and Tutorial.

SourceCode. This is the content of the Version Control System that contains
all the coding done behind any application in FLOSS. It is a major resource
of learning as it guides most the basic activities considered above.

Repository Class. This is the main class that represents a particular FLOSS
repository where learning activities can be observed. Figure 10 depicts the class
Repository as well as its neighbours and subclasses. The three subclasses are:
VersionControl, where the source code is housed; BugTracker, which contains
information about bugs, date of release, and description; MailingList, which
represents the contents of interactions and discussions among participants online
in FLOSS.

Team Class. This is the team of participants, the FLOSS community or forums
where participants engage in knowledge exchange. Figure 11 depicts the proper-
ties and direct neighbours.

StandardOfPractice Class. These are rules of engagement that guide the
interaction among participants, the usage and licensing of the deliverables in
the FLOSS communities. Figure 12 shows the direct neighbourhood of classes

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 175

Fig. 9. Network graph of the Resource Class and subclasses

Fig. 10. Network graph of the Repository Class, immediate subclasses and related
classes

as well as the different types of practices that can be subcategorised as follows:
GNULicense, which represents a fundamental licensing guide for Open Source
Software, and PersonalGroundRules, which are rules established and belonging
to a given FLOSS Community.

Participant Class. This class represents the participant of the learning process.
The neighbouring classes are connected through associations as depicted in
Fig. 13. The class has two important subclasses identified as Novice and Expert.
These two concepts are critical in understanding and identifying role playing dur-
ing knowledge exchange activities between FLOSS members. Subclass Novice
represents a knowledge requester. This subclass is represented with its neigh-
bours in Fig. 14.

With the Expert subclass, depicted in Fig. 15, the representation refers to
the relative knowledge provider at any given point in time during interactions
in FLOSS environments.

LearningProcess Class. This class is the main focus and the reason of Onto-
LiFLOSS. To explain the existence of such a process in FLOSS, the rest of the
classes in the ontology complete the need to define its semantic conceptualisa-
tion. Through a set of activities, by means of some resources, the ontology can

176 P. Mukala et al.

Fig. 11. Network graph of the Team Class and related classes

Fig. 12. Network graph of the StandardOfPractice Class, immediate subclasses and
related classes

Fig. 13. Network graph of the Participant Class, immediate subclasses and related
classes

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 177

Fig. 14. Network graph of the Novice Class and related classes

Fig. 15. Network graph of the Expert Class and related classes

express at some extent learning processes taking place between participants. In
our context, we have identified based on some indications of studies in the litera-
ture as reported previously, nine learning processes which are shown as instances
of the main LearningProcess class in Fig. 16. We give a more or less complete
representation graph of the class and its neighbours in Fig. 17. The relationships
between the connecting neighbours are given accordingly.

ProjectRole Class. This subclass represents the basic roles any participants
can be fulfilling in the FLOSS community. We consider the roles identified by

178 P. Mukala et al.

Fig. 16. Graph representation of instances of the LearningProcess Class

Fig. 17. Network graph of the LearningProcess Class and related classes

Cerone [1]: Observer, PassiveUser, ActiveUSer, Developer, and CoreDeveloper.
The relationships between the connecting neighbours forming the network are
given in Fig. 18.

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 179

Fig. 18. Network graph of the ProjectRole Class, subclasses and related classes

Fig. 19. Network graph of the LearningStage Class, subclasses and related classes

LearningStage Class. The objective of this class is to represent the different
stages of learning that participants go through during a learning process. Hence,
the LearningStage class clearly relates the performed activities to the different
stages of learning.. Three stages can be identified relating to three layers of activi-
ties as in the LearningActivity class: Understanding, Practicing and Developing.
Figure 19 depicts a different version of the representation with the subclasses
Understanding, Practicing and Developing being depicted as equivalent classes
of the LearningActivity class subclasses: Initiation, Progression and Maturation,
respectively, with appropriate relationships.

3.2 Properties

Properties are ontology representations of concepts that establish links (relation-
ship) between classes and form networks. Two main types of properties included
in OntoLiFLOSS include Object and Data Properties.

About 38 Object Properties summarise the relationships and links between the
different classes. Five data properties are representative of the main attributes
of Participant (either Novice or Expert) relevant with learning. OntoLiFLOSS
represents concepts for Experience, Skill Set (acquired through contribution),

180 P. Mukala et al.

Contributions (expressed through activities),Competency (built with experience)
and Knowledge (acquired through learning).

4 Conclusion

We introduced and detailed OntoLiFLOSS as a knowledge representation for
understanding learning concepts and activities in FLOSS environments. Details
of classes and properties are provided and, given that the OntoLiFLOSS is specif-
ically developed to guide the understanding of learning process in FLOSS reposi-
tories, it is fit to say that the choice of making these learning processes instances
rather than subclasses is justifiable. Future work on this artifact would be to
refine the ontology while we explore some empirical data in these environments.

References

1. Cerone, A.: Learning and activity patterns in OSS communities and their impact
on software quality. In: Proceedings of the 5th International Workshop on Foun-
dations and Techniques for Open Source Software Certification (OpenCert 2011).
Electronic Communications of the EASST, vol. 48. EASST (2012)

2. Cerone, A., Sowe, S.K.: Using free/libre open source software projects as e-learning
tools. In: Proceedings of the 4th International Workshop on Foundations and Tech-
niques for Open Source Software Certification (OpenCert 2010). Electronic Com-
munications of the EASST, vol. 33. EASST (2010)

3. Fernandes, S., Cerone, A., Barbosa, L.S.: Analysis of FLOSS communities as learn-
ing contexts. In: Counsell, S., Núñez, M. (eds.) SEFM 2013 Collocated Workshops.
LNCS, vol. 8368, pp. 405–416. Springer, Heidelberg (2014)

4. Fernández-López, M.: Overview of methodologies for building ontologies (1999)
5. FLOSSCom Project. Using the principles of informal learning environments

of FLOSScommunities to improve ICT supported formal education. http://
openedworld.flossproject.org/index.php/flosscom-project-2006-to-2008

6. Fonseca, F.: The double role of ontologies in information science research. J. Am.
Soc. Inf. Sci. Technol. 58(6), 786–793 (2007)

7. Glott, R., Meiszner, A., Sowe, S.K.: FLOSSCom Phase 1 Report: Analysis of the
informal learning environment of FLOSS communities. Technical report, FLOSS-
Com Project (2007)

8. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In:
Proceedings of the Workshop on Sematic Web Enabled Software Engineering
(SWESE) on the ISWC, pp. 5–9, November 2006

9. Hesse, W.: Ontologies in the software engineering process. In: Proceedings of the
2nd GI-Workshop on Enterprise Application Integration (EAI 2005) (2005)

10. Mirbel, I.: OFLOSSC, an ontology for supporting open source development com-
munities. In: Proceedings of the 11th International Conference on Enterprise Infor-
mation Systems (ICEIS 2009) (2009)

11. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your
first ontology. Technical report, Stanford University (2001)

12. Rubin, V., Günther, C.W., van der Aalst, W.M.P., Kindler, E., van Dongen,
B.F., Schäfer, W.: Process mining framework for software processes. In: Wang, Q.,
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 169–181. Springer,
Heidelberg (2007)

http://openedworld.flossproject.org/index.php/flosscom-project-2006-to-2008
http://openedworld.flossproject.org/index.php/flosscom-project-2006-to-2008

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 181

13. Simmons, G.L., Dillon, T.S.: Towards an ontology for open source software devel-
opment. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.)
Open Source Systems. IFIP AICT, vol. 203, pp. 65–75. Springer, Boston (2006)

14. Sowe, S.K., Stamelos, I.: Reflection on knowledge sharing in F/OSS projects. In:
Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Devel-
opment, Communities and Quality. IFIP AICT, vol. 275, pp. 351–358. Springer,
Boston (2008)

15. Tifous, A., Ghali, A.E., Dieng-Kuntz, A.E., Christina, A.G.C., Vidou, G.: An ontol-
ogy for supporting communities of practice. In: Proceedings of the 4th International
Conference on Knowledge Capture, pp. 39–46. ACM, October 2007

16. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications.
Knowl. Eng. Rev. 11(02), 93–136 (1996)

17. Wilson, R.: The role of ontologies in teaching and learning. Technical report,
TechWatch (2004)

Process Mining Event Logs from FLOSS Data:
State of the Art and Perspectives

Patrick Mukala(B), Antonio Cerone, and Franco Turini

Dipartimento di Informatica, University of Pisa, Pisa, Italy
{mukala,cerone,turini}@di.unipi.it

Abstract. Free/Libre Open Source Software (FLOSS) is a phenom-
enon that has undoubtedly triggered extensive research endeavors. At
the heart of these initiatives is the ability to mine data from FLOSS
repositories with the hope of revealing empirical evidence to answer
existing questions on the FLOSS development process. In spite of the
success produced with existing mining techniques, emerging questions
about FLOSS data require alternative and more appropriate ways to
explore and analyse such data.

In this paper, we explore a different perspective called process min-
ing. Process mining has been proved to be successful in terms of tracing
and reconstructing process models from data logs (event logs). The chief
objective of our analysis is threefold. We aim to achieve: (1) conformance
to predefined models; (2) discovery of new model patterns; and, finally,
(3) extension to predefined models.

1 Introduction

Since the mid nineties, there has been considerable work in the field of process
mining. A number of techniques and algorithms enable the reenactment and
discovery of process models from event logs (data) [21]. As the field matures
and achieves critical success in process modelling, we suggest applying such
techniques and algorithms to software process modelling in order to document
and explain activities involved in the software development process. Hence, a
practical example would be process mining Software Configuration Manage-
ment (SCM) systems, such as CVS or subversion systems, for the purpose of
modelling software development processes. These systems are popular in the
world of Free/Libre OpenSource Software (FLOSS). FLOSS repositories store
massive volumes of data about the software development activities. Applying
process mining carries a non-negligible potential for understanding patterns in
these data.

However, there have been limited efforts in applying process mining to the
analysis of data in FLOSS environments. The only attempt in our knowledge
consists in combining a number of software repositories in order to generate a log
for process mining and analysis [12]. Such work exemplifies how process mining
can be applied to understand software development processes based on audit
trail documents recorded by the SCM during the development cycle.
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 182–198, 2015.
DOI: 10.1007/978-3-319-15201-1 12

Process Mining Event Logs from FLOSS Data 183

The objective of our work is to open the discussion and possibly pave a way in
introducing and adopting process mining as a viable alternative in analysing and
discovering workflow models from email discussions, code comments, bug reviews
and reports that are widely found in FLOSS environments. Our discussion can be
predicated on the assumption that by looking at some of the existing techniques
in mining software repositories, some benchmarks and guidelines can be defined
to explore similar questions via the use of process mining and possibly assess its
potential in so doing.

In this paper we investigate some of the state of the art techniques and activ-
ities for mining software repositories. We refer the reader to a similar endeavor
by Kagdi, Collard and Maletic [10] for a detailed report in this regard. Their
survey is quite expressive of critical milestones reached as part of mining soft-
ware repositories. Instead, we succinctly select and present some of these mining
perspectives in convergence with the objectives of our endeavor. We consider
these approaches in terms of the type of software repositories to be mined, the
expected results guiding the process of mining as well as the methodology and
techniques used herein.

The reminder of the paper is structured as follows. In Sect. 2 we discuss
some leading factors taken into account while mining repositories. In Sect. 3
selected mining techniques are described. Section 4 gives a condensed overview
of some tools developed over the years to mine software repositories. In Sect. 5
we describe process mining as related to the previous sections. Finally, Sect. 6
concludes our work with the prospects of process mining FLOSS repositories as
well as directions for future related work.

2 Mining Software Repositories: Leading Factors

The analysis of software repositories is driven by a large variety of factors. We
consider four factors outlined by Kagdi, Collard and Maletic [10]: information
sources, the purpose of investigation, the methodology and the quality of the
output.

The first factor, information resources, depicts the repositories storing the
data to be mined. There is a wide literature on mining software repositories
[7,8,13]. Some notable sources include source-control systems, defect-racking
systems and archived communications as the main sources of data utilised while
conducting investigations in FLOSS [7,10]. Source-control systems are repos-
itories for storing and managing source code files in FLOSS. Defect-tracking
systems, as the name suggests, manage bug and changes reporting. Archived
communications encompass message exchanges via email in discussion groups
and forums between FLOSS participants.

The next critical element at the heart of mining software repositories is the
purpose. This is at the start of any research endeavor. It defines the objectives
and produces questions whose answers are sought afterwards, during the inves-
tigation. This aims to determine what the output of process mining should be.
After identifying the sources, determining the purpose, there is still room for

184 P. Mukala et al.

deciding on the methodology for mining data and answering the questions. Due
to the investigative nature of questions, available approaches present in the lit-
erature revolve around setting some metrics that need to be verified against
the extracted data. For example, some metrics for assessing software complexity
such as extensibility and defect density, can be verified on different versions of
submitted software in SVN over a period of time and deduce properties that
explain some form of software evolution.

The last factor paramount to the investigation of FLOSS repositories is eval-
uation. This is the evaluation of hypotheses that have been formulated according
to the objectives of the investigation. In the context of software evolution, two
assessment metrics for evaluation are borrowed from the area of information
retrieval. These include precision and recall on the amount of information used
as well as its relevance. In our case, the plan is to produce some models, process
models primarily, and these models are to be evaluated and validated through a
number of ways we deem appropriate.

3 Mining Techniques: Selected, Relevant Approaches

3.1 Bug Fixing Analysis

The first relevant attempt in mining software repositories pertains to analysing
bug fixing in FLOSS. Śliwerski, Zimmermann and Zeller [18] present some results
on their investigation on how bugs are fixed through introduced changes in
FLOSS. The main repositories they used are CVS and Bugzilla along with the
relevant metadata. While the purpose of their work was to locate changes that
induce bug fixing by coupling a CVS to a BUGZILLA, our interest is to describe
the methodology they used to investigate these repositories. Their methodology
can be summarized in these three steps:

1. Starting with a bug report in the bug database, indicating a fixed problem.
2. Extracting the associated change from the version archive, this indicates the

location of the fix.
3. Determining the earlier change at this location that was applied before the

bug was reported.

Step 1 is to identify fixes. This is done on two levels: syntactic and semantic
levels. At the syntactic level, the objective is to infer links from a CVS log to
a bug report while at the semantic level the goal is to validate a link using the
data from the bug report [18]. In practice, this is carried out as follows.

Syntactically, log messages are split into a stream of tokens in order to identify
the link to Bugzilla. The split generates one of the following items as a token:

– a bug number, if it matches one of the following regular expressions (given in
FLEX syntax1):

1 FLEX syntax is used by Adobe Flex, a tool that generates programs for pattern
matching in text. It receives user-specified input and produces a C source file.

Process Mining Event Logs from FLOSS Data 185

• bug[# \t]*[0-9]+,
• pr[# \t]*[0-9]+,
• show\ bug\.cgi\?id=[0-9]+,
• \[[0-9]+\];

– a plain number, if it is a string of digits [0-9]+;
– a keyword, if it matches the following regular expression:

• fix(e[ds])?|bugs?|defects?|patch;
– a word, if it is a string of alphanumeric characters.

A syntactic confidence syn of zero is assigned to a link and its confidence raised
by one if the number is a bug number and the log message contains a keyword,
or if the log message contains only plain numbers or bug numbers. For example,
the following log messages are considered:

– Fixed bug 53784: .class file missing from jar file export
The link to the bug number 53784 gets a syntactic confidence of 2 because it
matches the regular expression for bug and contains the keyword fixed.

– 52264,51529
The links to bugs 52264 and 51529 have syntactic confidence 1 because the
log message contains only numbers.

Furthermore, the role of the semantic level in Step 1 of the methodology is to
validate a link (t, b) by taking information about its transaction t and check it
against information about its bug report b. A semantic level of confidence is
thus assigned to the link based on the outcome. This is raised accordingly and
incremented by 1 following a number of conditions such as “the bug b has been
resolved as FIXED at least once” or “ the short description of the bug report b
is contained in the log message of the transaction t”. Two examples in ECLIPSE
are as follows:

– Updated copyrights to 2004
The potential bug report number “200” is marked as invalid and thus the
semantic confidence of the link is zero.

– Support expression like (i)+= 3; and new int[] 1[0] + syntax
error improvement
1 and 3 are (mistakenly) interpreted as bug report numbers here. Since the
bug reports 1 and 3 have been fixed, these links both get a semantic confidence
of 1.

The rest of the process (Step 2 and 3) is performed manually. Returned links are
inspected manually in order to eliminate those that do not satisfy the following
condition

sem > 1 ∨ (sem = 1 ∧ syn > 0)

As shown in Fig. 1, the process involves rigorous manual inspection of randomly
selected links that are to be verified based on the above condition.

186 P. Mukala et al.

Fig. 1. Manual inspection of selected links

After applying this concept in ECLIPSE and MOZILLA with respectively
78,954 and 109,658 transactions for changes made until January 20, 2005, the
authors presented their results based on their objectives for 278,010 and 392,972
individual revisions on these projects respectively. Some of these results concern
the average size of transactions for fixes in both projects and the different days
of the week during which most changes are projected to occur, etc.

3.2 Software Evolution Analysis

The second approach was conducted by German [5] to present the characteris-
tics of different types of changes that occur in FLOSS. German used CVS and
its related metadata as information sources. The collective nature of software
development in FLOSS environments allows for incremental changes and modi-
fications to software projects. These progressive changes can be retrieved from
version control systems such as CVS or SVN and parsed for analysis. In his
approach, German investigated changes made to files as well as the developers
that mostly commit these changes over a period of time. His argument also sug-
gests that analysing the changes would provide clarifications on the development
stages of a project in light with addition and update of features [5].

A number of projects considered for this purpose include PostgreSQL,
Apache, Mozilla, GNU gcc, and Evolution. Using a CVS analysis tool called
softChange, CVS logs and metadata were retrieved from these projects for inves-
tigation. A new algorithm called Modification Records (MRs) is proposed by
German, who also claims that the algorithm provides a fine-grained view of the
evolution of a software product. Noticeable from the work is the methodology
used for mining the chosen repositories. The first step was to retrieve the his-
torical files from CVS and rebuild the Modification Records from this info as
they do not appear automatically in CVS. SoftChange, through its component
file revision makes use of sliding window algorithm heuristic (shown in Fig. 2) to
help organize this information.

Process Mining Event Logs from FLOSS Data 187

Fig. 2. Pseudocode for the Modification Records (MRs) algorithm

Briefly explained, the algorithm takes two parameters (δmax and Tmax) as
inputs. Parameter δmax depicts the maximum length of time that an MR can
last while Tmax is the maximum distance in time between two file revisions. The
idea is that a file revision is included in a given MR on the basis of the following
conditions:

– all file revisions in the MR and the candidate file revision were created by the
same author and have the same log (a comment added by the developer when
the file revisions are committed);

– the candidate file revision is at most Tmax seconds apart from at least one file
revision in the MR;

– the addition of the candidate file revision to the MR keeps the MR at most
δmax seconds long.

In order to conduct the analysis, knowledge of the nature and structure of
codeMRs is required. Hence, the investigation is premised on an assumption
that there exist six types of codeMRs reflecting different activities as under-
taken by FLOSS developers. These include modifying code for Functionality
improvement (addition of new features), Defect-fixing, Architectural Evolution
and Refactoring (a major change in APIs or the reorganisation of the code base),

188 P. Mukala et al.

Relocating code, Documentation (reference to changes to the comments within
files) and Branch-merging, e.g. code is merged from a branch or into a branch.

Rysselberghe and Demeyer [17] investigate FLOSS repositories using clone
detection methods In their approach the source code in CVS as well as its meta-
data are investigated in order to analyse frequently occurring changes (FACs) in
source files. The idea is to document changes occurring in FLOSS using a tech-
nique tailored in the similar manner as the standard concept of frequently asked
questions or FAQs. The rationale of FAQs is to gather some basic questions
and answers that are representative of frequent questions and corresponding
answers so as to reduce the continual posting of the same basic questions. Simi-
larly, Rysselberghe and Demeyer consider this concept and apply it to frequent
changes occurring in FLOSS. The objective is to identify frequently applied
changes (FACs) since these changes record general solutions to frequent and
recurring problems. Using proper CVS commands, such as some cvs log and cvs
diff commands, change data can be extracted from CVS. These data include the
difference in code before and after the change, the date and time of the change,
the file involved. Once such information is obtained, the next step is to parse it
and identify FACs. Locating FACs implies locating similar code fragments and
this can be done by applying clone detection techniques.

Clone detection methods are developed to help identify duplicated or cloned
code fragments in a program source code. During this process, a tool called
CCFinder was used to analyze text files containing codes with FACs as retrieved
using clone detection techniques. Based on some threshold values, the study
asserts that high threshold values allow the identification of recurring and
product-specific changes while low threshold values lead to the identification
of frequently applied generic changes. Using Tomcat as a case study, observa-
tions drawn from the initial experiment include for instance that FACs identified
with a high threshold and specific to one product and can be used to study and
understand the motivation and success behind an applied change. Moreover, the
removal of a recently added code fragment may give an indication for the reasons
behind success or failure of changes in general. On the other hand, FACs with a
low threshold can help in deriving low maintenance strategies automatically.

3.3 Identification of Developers Identities

The next case of FLOSS investigations is about the identification of developers
identities in FLOSS repositories. Given the dynamic nature of developers behav-
iors in adopting different identities in distinct FLOSS projects, the task of iden-
tification becomes cumbersome. Nevertheless, one solution in this regards has
been to integrate data from multiple repositories where developers contribute.
Sowe and Cerone [19], using repositories from the FLOSSMetrics project, pro-
posed a methodology to identify developers who make contributions both by
committing code to SVN and posting messages to mailing lists.

Robles and Gonzalez-Barahona [14] conducted a similar study, based on the
application of heuristics, to identify the many identities used by developers.

Process Mining Event Logs from FLOSS Data 189

Their methodology was applied on the GNOME project where 464,953 mes-
sages from 36,399 distinct e-mail addresses were fetched and analysed, 123,739
bug reports from 41,835 reporters, and 382,271 comments from 10,257 posters
were retrieved from the bug tracking system. Around 2,000,000 commits, made
by 1,067 different committers, were found in the CVS repository. The results
showed that 108,170 distinct identities could be extracted and for those identi-
ties, 47,262 matches were found, of which 40,003 were distinct (with the Matches
table containing that number of entries). Using the information in the Matches
table, 34,648 unique persons were identified.

3.4 Source Code Investigation

In his work Yao [25] has the objective to search through source code in CVS and
related metadata to find lines of code in specific files etc. This is done through
a tool called CVSSearch (see Sect. 4). The technique used here to analyse CVS
comments allows to automatically find an explicit mapping of the commit com-
ment and the lines of code that it refers to. This is useful as CVS comments pro-
vide additional information that one cannot find in code comments. For instance,
when a bug is fixed, relevant information is not typically extracted from code
comment but can be found in CVS. Moreover, as part of FLOSS investigation,
one can search for code that is bug-prone or bug-free based on CVS comments
where these lines of code can be referenced.

Hence, Yao’s technique entails searching for lines of code by their CVS com-
ments in producing a mapping between the comments and the lines of code to
which they refer [25]. Unlike the CVS annotate command, which shows only the
last revision of modification for each line, the algorithm used here records all
revisions of modification for each line. The algorithm is highlighted as follows
[25]:

– Consider a file f at version i which is then modified and committed into the
CVS repository yielding version i + 1.

– Also, suppose the user entered a comment C which is associated with the
triple (f, i, i + 1).

– By performing a diff between versions i and i+1 of f , it is possible to deter-
mine lines that have been modified or inserted in version i + 1, the comment
C is thus associated with such lines.

– Additionally, in order to search for the most recent version of each file, a
propagation phase during which the comments associated with version i + 1
of f are “propagated” to the corresponding lines in the most recent version of
f , say j ≥ i + 1. This is done by performing diff on successive versions of f
to track the movement of these lines across versions until version j is reached.

Ying, Wright and Abrams [26] use a different perspective to investigate source
code. Using the source code in CVS, the authors propose an approach to study
communication through source code comments using Eclipse as a case study.
This is premised on a principle of good programming that asserts that com-
ments should “aid the understanding of a program by briefly pointing out salient

190 P. Mukala et al.

details or by providing a larger-scale view of the proceedings” [26]. As part of
understanding FLOSS activities, it has been found that comments in these envi-
ronments are sometimes used for communication purposes. An example of a
comment such as “Joan, please fix this method” addresses a direct message to
other programmers about a piece of code but it is usually located in a separate
archive (e.g. CVS).

3.5 Supporting Developers and Analysing Their Contributions

Another approach to mining FLOSS repositories is about providing adequate
information for new developers in FLOSS. Given the dynamic mode of operations
in FLOSS, it is quite difficult for newcomers who join a project to come up-
to-speed with a large volume of data concerning that project Hence, a new
tool called Hipikat is introduced [2,3] to this end. The idea is that Hipikat can
recommend to newcomers key artifacts from the project archives. Basically, this
tool is assumed to form an implicit group memory from the information stored
in a projects archives and, based on this information, gives a new developer
information that may be related to a task that the newcomer is trying to perform
[3]. The Eclipse open-source project is used as a case study in applying this
approach.

The building blocks of this approach are twofold. Firstly, an implicit group
memory is formed from the artifacts and communications stored in a projects
history. Secondly, the tool presents to the new developer artifacts as selected
from this memory in relevance to the task being performed. A group memory
can be understood as a repository used in a FLOSS work group to solve present
needs based on historical experience. In essence, the purpose of Hipikat is to
allow newcomers to learn from the past by recommending items from the project
memory made of source code, problem reports, newsgroup articles, relevant to
their tasks [2].

This model depicts four types of artifacts that represent four main objects
that can be found in FLOSS projects as shown in Fig. 3: change tasks (tracking
and reporting bugs like in Bugzilla), source file versions (as recorded in CVS),
mailing lists (messages posted on developer forums) and other project documents
like requirements specification and design documents. An additional entity called
Person is included to represent the authors of the artifacts.

Finally, Huang and Liu [9] analyse developer roles and contributions. Similar
to numerous other studies available in the literature, this is based on a quanti-
tative approach to analyse data in FLOSS. Using the CVS as the experimental
repository, a network analysis is performed in order to construct social network
graphs representing links between developers and different parts of a project.
Standard graph properties are computed on the constructed networks and thus
an overview in terms of developers activities is given to explain the fluctuations
between developers with lower and higher degree.

Process Mining Event Logs from FLOSS Data 191

Fig. 3. Hipikat architectural model

4 Tools

Central to the sheer of work done with the purpose of mining software reposito-
ries are tools. A number of tools have been developed throughout this process,
and we look at a few to express what aspects of software repositories can be
mined using such tools.

CVSSearch. Used for mining CVS comments, the tool takes advantages of
two characteristics of CVS comments [25]. Firstly, a CVS comment more
likely describes the lines of code as involved in the commit; and secondly,
the description given in the comment can be used for many more versions
in the future. In other words, CVSSearch allows one to better search the
most recent version of the code by looking at previous versions to better
understand the current version. The tool is actually the implementation of
Yao’s algorithm highlighted in Sect. 3.

CVSgrab. The objective of the tool is to visualise large software projects dur-
ing their evolution. CV query mechanisms are embedded in the tool to access
CVS repositories both locally and over the internet. Using a number a met-
rics, CVSgrab is able to detect and cluster files with similar evolution pat-
terns [23]. One of the key features is its particularity to interactively show
evolutions of huge projects on a single screen, with minimal browsing. The
tools architectural pipeline is given in the Fig. 4. As output, CVSgrab uses
a simple 2D layout where each file is drawn as a horizontal strip, made of

192 P. Mukala et al.

Fig. 4. CVSgrab architectural pipeline

several segments. The x-axis encodes time, so each segment corresponds to
a given version of its file. Colour encodes version attributes such as author,
type, size, release, presence of a given word in the versions CVS comment,
etc. Atop of color, texture may be used to indicate the presence of a specific
attribute for a version. File strips can be sorted along the y-axis in several
ways, thereby addressing various user questions [23].

SoftChange. The purpose of this tool is to help understand the process of soft-
ware evolution. Based on analysing historical data, SoftChange allows one
to query who made a given change to a software project (authorship), when
(chronology) and, whenever available, the reason for the change (rationale).
Three basic repositories are used with SoftChange for analysis: CVS, bug
tracking system (Bugzilla) and the software releases [6].

MLStats. This is a tool used for mailing lists analysis. The purpose of the
tool is to extract details of emails from the repository. Data extracted from
messages vary from senders and receivers to topics of message and time
stamps as associated with the exchanged emails [1,15]. The tool makes use
of the email headers to derive the analysis.

CVSAnalY. This is a CVS and Subversion repository analyser that extracts
information from a repository. Embedded with a web interface, it outputs
the analysis results and figures that can be browsed through the interface
[16]. Specifically, CVSAnalY analyses CVS log entries that represent com-
mitters names, date of commit, the committed file, revision number, lines
added, lines removed and an explanatory comment introduced by the com-
mitter. The tool provides statistical information about the database, com-
pute several inequality and concentration indices and generate graphs for
the evolution in time for parameters such as number of commits, number of
committers etc. as needed.

5 Process Mining for Knowledge Discovery in Event Logs

Process mining is used as a method for reconstructing processes as executed from
event logs [24]. Such logs are generated from process-aware information systems
such as Enterprise Resource Planning (ERP), Workflow Management (WFM),
Customer Relationship Management (CRM), Supply Chain Management (SCM)

Process Mining Event Logs from FLOSS Data 193

and Product Data Management (PDM) [20]. The logs contain records of events
such as activities being executed or messages being exchanged on which process
mining techniques can be applied in order to discover, analyse, diagnose and
improve processes, organisational, social and data structures [4].

Van der Aalst et al. [20] describe the goal of process mining to be the extrac-
tion of information on the process from event logs using a family of a posteriori
analysis techniques. Such techniques enable the identification of sequentially
recorded events where each event refers to an activity and is related to a par-
ticular case (i.e. a process instance). They also can help identify the performer
or originator of the event (i.e. the person/resource executing or initiating the
activity), the timestamp of the event, or data elements recorded with the event.

Current process mining techniques evolved from Weijters and Van der Aalst’s
work [24] where the purpose was to generate a workflow design from recorded
information on workflow processes as they take place. Assuming that from event
logs, each event refers to a task (a well-defined step in the workflow), each task
refers to a case (a workflow instance), and these events are recorded in a certain
order. Weijters and Van der Aalst [24] combine techniques from machine learning
and Workflow nets in order to construct Petri nets that provide a graphical but
formal language for modeling concurrency as seen in Fig. 5.

Fig. 5. Example of a workflow process modeled as a Petri net

The preliminaries of process mining can be explained starting with the fol-
lowing α-algorithm. Let W be a workflow log over T and α(W) be defined as
follows.

1. TW = {t ∈ T | ∃σ ∈ W. t ∈ σ}
2. TI = {t ∈ T | ∃σ ∈ W. t = first(σ)}
3. TO = {t ∈ T | | ∃σ ∈ W. t = last(σ)}
4. XW = {(A,B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a ∈ A ∀b ∈ B. a →W b ∧

∀a1, a2 ∈ A. a1#W a2 ∧ ∀b1, b2 ∈ B. b1#W b2}
5. YW = {(A,B) ∈ X | ∀(A′, B′) ∈ XA ⊆ A′ ∧ B ⊆ B′ =⇒ (A,B) = (A′, B′)}
6. PW = {p(A,B) | (A,B) ∈ YW } ∪ {iW , oW }
7. FW = {(a, p(A,B)) | (A,B) ∈ YW ∧ a ∈ A} ∪

{(p(A,B), b) | (A,B) ∈ YW ∧ b ∈ B} ∪
{(iW , t) | t ∈ TI} ∪ {(t, oW) | t ∈ TO}

8. α(W) = (PW , TW , FW).

194 P. Mukala et al.

The sequence of execution of the α-algorithm goes as follows [4]: the log traces are
examined and the algorithm creates the set of transitions (TW) in the workflow
(Step 1) the set of output transitions (TI) of the source place (Step 2) and the
set of the input transitions (TO) of the sink place (Step 3). Then the algorithm
creates XW (Step 4) and YW (Step 5) used to define the places of the mined
workflow net. In Step 4, it discovers which transitions are causally related. Thus,
for each tuple (A,B) ∈ XW , each transition in set A causally relates to all
transitions in set B, and no transitions in A and in B follow each other in
some ring sequence. Note that the OR-split/join requires the fusion of places. In
Step 5, the algorithm refines set XW by taking only the largest elements with
respect to set inclusion. In fact, Step 5 establishes the exact amount of places the
mined net has (excluding the source place iW and the sink place oW). The places
are created in Step 6 and connected to their respective input/output transitions
in Step 7. The mined workflow net is returned in Step 8 [4].

From a workflow log, four important relations are derived upon which the
algorithm is based. These are >W , →W , #W and ‖W [4].

In order to construct a model such as the one in Fig. 5 on the basis of a
workflow log, the workflow log has to be analysed for causal dependencies [22].
For this purpose, the log-based ordering relation notation is introduced: Let W
be a workflow log over T , i.e. W ∈ P (T∗). Let a, b ∈ T . Then

Fig. 6. A view of modeled activities in order and purchasing processes

Process Mining Event Logs from FLOSS Data 195

Fig. 7. Process model produced as a result of process mining

196 P. Mukala et al.

– a >W b if and only if there are a trace σ = t1t2t3 . . . tn−1 and an integer
i ∈ {1, . . . , n − 2} such that σ ∈ W , ti = a and ti+1 = b;

– a →W b if and only if a >W b and b >W a;
– a#W b if and only if a >W b and b >W a;
– a ‖W b if and only if a >W b and b >W a.

Considering the workflow log W = {ABCD,ACBD,AED}, relation >W

describes which tasks appeared in sequence (one directly following the other):
A >W B, A >W C, A >W E, B >W C, B >W D, C >W B, C >W D and
E > WD. Relation →W can be computed from >W and is referred to as the
(direct) causal relation derived from workflow log W : A →W B, A →W C,
A →W E, B →W D, C →W D and E →W D. Note that B →W C follow from
C >W B. Relation W suggests potential parallelism.

In practice, process mining can produce a visualisation of models, as seen in
Figs. 6 and 7, based on the available data (event logs), the purpose of the investi-
gation as well as the methodology and the expected output. We consider a simple
example of a log about ordering and purchasing operations in an enterprise. The
core advantage is the ability to track the activities as they are performed, the
authors in the execution of these activities, the duration of the activities with
regards to the entire process models. Additional statistical information can also
be provided about the activities in the model as rewired and determined by the
goals of the analysis.

Details of events and activities are given in Fig. 6. Specifically, the user is
presented with a list of activities, the corresponding timestamp as well as the
authors of such activities over a given period of time. The duration of every
single activity is also included in the final report as is the frequency of occur-
rence of these activities. A similar analysis when conducted in FLOSS promises
to uncover hidden patterns or enhance the visibility of predicted occurrences. In
Fig. 7, a graphical representation of the occurrence of flow of activities is con-
structed and can be referred to as a Process Model. This is a reenactment of all
selected activities as they occur according to a particular workflow.

6 Conclusion

FLOSS repositories store a sheer volume of data about participants activities.
A number of these repositories have been mined using some of the techniques
and tools we have discussed in this paper. However, to the date, there has not
been any concrete investigation into how logs from FLOSS repositories can be
process mined for analysis. This maybe attributed partly to two apparent fac-
tors. Firstly, researchers interested in mining software repositories have not come
across process mining and thus its value is unexploited; secondly, the format of
recorded in FLOSS poses a challenge in constructing event logs. Nevertheless,
after reviewing existing mining techniques and the analysis they provide on the
data, one can infer the type of input data, the expected output and thus con-
struct logs that can be used for analysis through any of process mining recognised
tools such as the ProM framework or Disco. The example presented previously

Process Mining Event Logs from FLOSS Data 197

has been carried out using Disco as tool of visualisation. This approach can bring
an additional flair and extensively enrich data analysis and visualisation in the
realm of FLOSS data. In our future work, we plan to produce tangible exam-
ples of process models reconstructed with logs from data representing FLOSS
members daily activities. These logs can be built from Mailing archives, CVS
data as well as Bug reports. Our data source is OpenStack [11]. This is an envi-
ronment that reunites thousands of developers and users as well as more than
180 participating organizations that work together on a number of projects and
components for open source cloud operating systems. We make use of the dumps
of data from this platform to produce empirical evidence of learning processes
using Process Mining techniques. With a clearly defined objective and the type
of data needed, process mining promises to be a powerful technique for empirical
evidence provision in software repositories.

References

1. Bettenburg, N., Shihab, E., Hassan, A.E.: An empirical study on the risks of using
off-the-shelf techniques for processing mailing list data. In: Proceedings of the IEEE
International Conference on Software Maintenance, pp. 539–542. IEEE Computer
Society (September 2009)

2. Cubranic, D., Murphy, G.C.: Hipikat: recommending pertinent software develop-
ment artifacts. In: Proceedings of the 25th International Conference on Software
Engineering, pp. 408–418. IEEE Computer Society (May 2003)

3. Cubranic, D., Murphy, G.C., Singer, J., Booth, K.S.: Hipikat: a project memory
for software development. IEEE Trans. Softw. Eng. 31(6), 446–465 (2005)

4. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.T.: Workflow
mining: current status and future directions. In: Meersman, R., Schmidt, D.C.
(eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 389–
406. Springer, Heidelberg (2003)

5. German, D.M.: An empirical study of fine-grained software modifications. Empir-
ical Softw. Eng. 11(3), 369–393 (2006)

6. German, D.M., Hindle, A.: Visualizing the evolution of software using softchange.
Int. J. Softw. Eng. Knowl. Eng. 16(01), 5–21 (2006)

7. Hassan, A.E.: Mining software repositories to assist developers and support man-
agers. In: Proceedings of the 22nd IEEE International Conference on Software
Maintenance (ICSM’06), pp. 339–342. IEEE Computer Society (September 2006)

8. Hassan, A.E.: The road ahead for mining software repositories. In: Frontiers of Soft-
ware Maintenance (FoSM 2008), pp. 48–57. IEEE Computer Society (September
2008)

9. Huang, S.K., Liu, K.M.: Mining version histories to verify the learning process of
legitimate peripheral participants. ACM SIGSOFT Softw. Eng. Notes 38(4), 1–5
(2005)

10. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. J. Softw. Maint.
Evol. Res. Pract. 19(2), 77–131 (2007)

11. OpenStack. Openstack system usage data. http://www.openstack.org
12. Poncin, W., Serebrenik, A., van den Brand, M.: Process mining software reposi-

tories. In: Proceedings of the 15th European Conference on Software Maintenance
and Reengineering (CSMR 2011), pp. 5–14. IEEE Computer Society (2011)

http://www.openstack.org

198 P. Mukala et al.

13. Robbes, R.: Mining a change-based software repository. In: Proceedings of the
Fourth International Workshop on Mining Software Repositories, p. 15. IEEE Com-
puter Society (2007)

14. Robles, C., Gonzalez-Barahona, J.M.: Developer identification methods for inte-
grated data from various sources. ACM SIGSOFT Softw. Eng. Notes 38(4), 1–5
(2005)

15. Robles, G., Gonzalez-Barahona, J.M., Izquierdo-Cortazar, D., Herraiz, I.: Tools for
the study of the usual data sources found in libre software projects. Int. J. Open
Source Softw. Process. (IJOSSP) 1(1), 24–45 (2009)

16. Robles, G., Koch, S., Gonzalez-Barahona, J.M.: Remote analysis and measurement
of libre software systems by means of the cvsanaly tool. In: Proceedings of the 2nd
Workshop on Remote Analysis and Measurement of Software Systems (2004)

17. Rysselberghe, F.V., Demeyer, S.: Mining version control systems for facs (fre-
quently applied changes). In: Proceedings of the International Workshop on Mining
Software Repositories (MSR’04), pp. 48–52 (May 2004)

18. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? ACM
SIGSOFT Softw. Eng. Notes 38(4), 1–5 (2005)

19. Sowe, S.K., Cerone, A.: Integrating data from multiple repositories to analyze
patterns of contribution in foss projects. In: Proceedings of the 4th International
Workshop on Foundations and Techniques for Open Source Software Certifica-
tion (OpenCert 2010), Electronic Communications of the EASST, vol. 33. EASST
(2010)

20. van der Aalst, W.M., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E.,
Günther, C.W.: Process mining: a two-step approach to balance between underfit-
ting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

21. van der Aalst, W.M., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

22. van der Aalst, W.M., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

23. Voinea, L., Telea, A.: Mining software repositories with CVSgrab. In: Proceedings
of the 2006 International Workshop on Mining Software Repositories, pp. 167–168.
ACM (May 2006)

24. Weijters, A.J.M.M., der Aalst, W.M.P.V.: Process mining: discovering workflow
models from event-based data. In: Proceedings of the 13th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC 2001), pp. 283–290 (October 2001)

25. Yao, A.: Cvssearch: searching through source code using cvs comments. In:
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM’01), p. 364. IEEE Computer Society (November 2001)

26. Ying, A.T., Wright, J.L., Abrams, S.: Source code that talks: an exploration of
eclipse task comments and their implication to repository mining. ACM SIGSOFT
Softw. Eng. Notes 30(4), 1–5 (2005)

MoKMaSD 2014

A Latent Representation Model for Sentiment
Analysis in Heterogeneous Social Networks

Debora Nozza1, Daniele Maccagnola1(B), Vincent Guigue2, Enza Messina1,
and Patrick Gallinari2

1 DISCo, University of Milano-Bicocca, Milano, Italy
Daniele.Maccagnola@disco.unimib.it

2 LIP6, Université Pierre et Marie Curie - UPMC, Paris, France

Abstract. The growing availability of social media platforms, in partic-
ular microblogs such as Twitter, opened new way to people for expressing
their opinions. Sentiment Analysis aims at inferring the polarity of these
opinions, but most of the existing approaches are based only on text,
disregarding information that comes from the relationships among users
and posts. In this paper we consider microblogs as heterogeneous net-
works and we use an approach based on latent representation of nodes
to infer, given a specific topic, the sentiment polarity of posts and users
at the same time. The experimental investigation show that our app-
roach, by taking into account both content and relationship information,
outperforms supervised classifiers based only on textual content.

1 Introduction

“What other people think” has always been an important piece of information
during the decision-making process [1], and this lead to a growing need of meth-
ods that could infer the opinion of people. The field of Sentiment Analysis (SA)
aims to define automatic tools able to extract opinions and sentiments from texts
written in natural language. The growing availability and popularity of social
media platforms, such as online review sites, personal blogs and microblogs,
opened the way to new opportunities for understanding the opinion of people.
Companies, advertisers and political campaigners are seeking ways to analyze
the sentiments of users through social media platform on their products, services
and policies.

Several works in Sentiment Analysis, however, suffer of important limita-
tions. Most prior work on SA applied to social network data has focused on
understanding the sentiments of individual documents (posts) [2–6].

The problem of inferring the sentiment of the users has been only recently
addressed by some authors [7,8]. Smith et al. [9] and Deng et al. [10] study
both post-level and user-level sentiments, assuming that a users sentiment can
be estimated by aggregating the sentiments of all his/her posts. Although the
sentiment of users is correlated with the sentiment expressed in their posts,
such simple aggregation can often produce incorrect results, because sentiment

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 201–213, 2015.
DOI: 10.1007/978-3-319-15201-1 13

202 D. Nozza et al.

extracted from short texts such as tweets (which in Twitter are limited to 140
characters) will generally be very noisy and error prone.

All of these approaches do not consider that microblogs are actually net-
worked environments. Early studies for overcoming this limitation exploit the
principle of homophily [11] for dealing with user connections. This principle
could suggest that users connected by a personal relationship may tend to hold
similar opinions. According to this social principle, friendship relations have been
considered in few recent studies.

In [12], the authors showed that considering friendship connections is a weak
assumption for modelling homophily, as two friends might not share the same
opinion about a given topic. Instead, they proposed to use approval relationships
(e.g. in Twitter represented by “retweets” and in Facebook represented by “like”)
which better represent the sharing of ideas between two users. However, in [12],
the sentiment of the posts is used to infer the sentiment of the users, but not
vice versa.

In order to overcome this limitation, in our approach we consider social net-
work data as a heterogeneous network, whose nodes and edges can be of different
types. Inspired by the work of Jacob et al. [13], who introduced an innovative
method for classifying nodes in heterogeneous networks, we propose an approach
that can infer at the same time the sentiment relative to each post and the sen-
timent relative to each user about a specific topic. This algorithm learns a latent
representation of the network nodes so that all the nodes will share a common
latent space, whatever their type is. This ensures that the sentiment of the posts
can influence the sentiment of the users, and in the same way the sentiment of
the posts is influenced by that of the users.

For each node type, a classification function will be learned together with
the latent representation, which takes as input a latent node representation and
computes the sentiment polarity (positive or negative) for the corresponding
node.

The paper is structured as follows. In Sect. 2 we introduce the basic concepts
that are used in our model, while in Sect. 3 we describe the model and the
learning algorithm. In Sect. 4 we test our approach on a case study, a Twitter
network about the topic ‘Obama’, and finally in Sect. 5 conclusions are drawn.

2 Preliminaries

In this section we introduce some preliminary concepts that will be used in our
model. First, we give a definition of Heterogeneous Approval Network, which
summarizes the structure of a social network and the information we require
to determine the users’ and posts’ sentiment polarity. Then, we give a brief
description of the techniques we use to represent and treat the textual data
available in the posts.

A Latent Representation Model for Sentiment Analysis 203

2.1 Heterogeneous Approval Network

Following the work in [12], we assume that a user who approves a given mes-
sage will share the same opinion with higher probability. Pozzi et al. defined as
“approval network” a network where the nodes represent users of a social net-
work, and a directed arc connects a user who has approved a post to the original
author of that post. The most known example of approval relationship is the
“retweet” feature in Twitter, which allows a user to share another user’s post.

We start from the definition of “approval graph” in order to give a formal
structure to our data.

Definition 1. Given a topic of interest q, a Directed Approval Graph is a
quadruple DAGq = {Vq, E

V V
q ,XV

q ,X
E
q }, where Vq = {v1, . . . , vn} represents the

set of active users; EV V
q = {(vi, vj)|vi, vj ∈ Vq} is the set of approval edges,

meaning that vi approved vj’s posts; XE
q = {ki,j |(vi, vj) ∈ Eq} is the set of

weights assigned to approval edges, where ki,j indicates the number of posts of
vj approved by vi; XV

q = {ci|vi ∈ Vq} is the set of coefficients related to nodes,
where ci represents the total number of posts of vi.

Starting from a DAGq, the weight on the arc can be normalized to better reflect
the importance of an approval.

Definition 2. Given an Approval Graph DAGq = {Vq, E
V V
q ,XV

q ,X
E
q }, a

Normalised Directed Approval Graph is derived as a triple N-DAGq =
{Vq, E

V V
q ,WV V

q }, where WV V
q = {wi,j = ki,j

cj
|ki,j ∈ XE

q , cj ∈ XV
q } is the set of

normalised weights of approval edges.

The N-DAGq represents a network with a single type of node, the users. In
[12], Pozzi et al. defined a heterogeneous graph which could represent both the
user-user and user-post relationships. However, the network they defined does
not consider relationships among posts. In this paper, we extend their Hetero-
geneous Normalized Directed Approval Graph (HN-DAGq) so that post-post
relationships can be taken in account as well (Fig. 1):

Definition 3. Given a N-DAGq = {Vq, E
V V
q ,WV V

q }, let Pq = {p1, · · · , pm} be
the set of nodes representing posts about q and EV P

q = {(vi, pt)|vi ∈ Vq, pt ∈ Pq}
be the set of arcs that connect the user vi and the post pt. Then, let EPP

q =
{(pt1 , pt2)|pt1 , pt2 ∈ Pq} be the set of arcs that connect a post pt1 to another
post pt2 , and WPP

q = {wt1,t2 |(pt1 , pt2) ∈ EPP
q } is the set of weights of the post-

post edges. An Heterogeneous Normalised Directed Approval Graph is a
septuple HN-DAGq = {Vq, Pq, E

V V
q , EV P

q , EPP
q ,WV V

q ,WPP
q }.

2.2 Vector Space Document Representation

The field of Sentiment Analysis requires the analysis of text documents, where
the words occurring in a document are used to determine the opinion expressed in
it. As described in the previous section, our heterogeneous network is composed

204 D. Nozza et al.

Fig. 1. Example of HN-DAG representing users and posts of a social network, con-
nected by user-user (blue), post-post (red) and user-post (green) relationships (Color
figure online).

not only by the users of a social network, but also by the textual posts every
user has emitted.

For this reason, we require a way to model such text documents. The most
common method applied in literature (in particular in the fields of information
retrieval and text mining [14]) is the bag of words representation, where the
words are assumed to appear independently and their order is not considered.

Given the set of posts P that are represented in our heterogeneous network,
let U = {u1, u2, . . . , um} be the set of all the unique words occurring in P . Then,
a post pi can be represented by an m-dimensional vector −→pi . A usual document
encoding for sentiment classification is tf(i, u), which is the frequency of a word
u ∈ U in post pi. Then, the vector representation of the post is:

−→pi = (tf(i, u1), tf(i, u2), . . . , tf(i, um)) (1)

In this work, we define the weights of the post-post edges as the value of
similarity between each couple of posts. With document represented by vectors,
we can measure the degree of similarity of two posts as the correlation between
their corresponding vectors, which can be further quantified as the cosine of
the angle between the two vectors (Cosine Similarity). Let −→pa and −→pb be the
vector representation respectively of posts pa and pb. Their cosine similarity is
computed as follows:

similarity =
−→pa · −→pb

‖−→pa‖‖−→pb‖ =

∑l
j=1 paj × pbj

√

∑l
j=1 (paj)

2
√

∑l
j=1 (pbj)

2
(2)

3 Latent Space Heterogeneous Approval Model

Following the work of Jacob et al. [13], in this paper we propose a model that
can, at the same time, learn the latent representation of the nodes and infer

A Latent Representation Model for Sentiment Analysis 205

their sentiment polarity. Differently from previous works, this model performs
sentiment polarity classification on all the nodes of the network HN-DAG shown
in Sect. 2.1, that means we can infer the polarity for both users and posts simul-
taneously.

Each of the nodes, whatever their type is, is represented by a vector space
model so that all of them will share the same common latent space.

The model we propose will therefore learn the proper representation of each
node, and at the same time it will learn a classification function on the latent
space. This ensures that the sentiment of the posts can influence the sentiment
of the users, and vice versa.

The classification function will take as input a latent node representation in
order to compute the polarity (positive or negative) for the corresponding node.

The proposed approach can be summarized with the following steps:

– Each node is mapped onto a latent representation in a vector space R
Z where

Z is the dimension of this space. This latent representation will define a
metric in the R

Z space such that two connected nodes will tend to have a
close representation, depending on the weight of the connection (smoothness
assumption).
The latent representation for the nodes is initialized randomly.

– A classification function for inferring the polarity of the nodes is learned on
the network starting from the latent representations. Nodes with similar rep-
resentations will tend to have the same sentiment polarity.

In other words, both graph and label dependencies between the different
types of nodes will be captured through this learned mapping onto the latent
space.

In the following we describe in details the components of the proposed app-
roach.

Given the latent representation zi ∈ R
Z of the node xi, we want to predict

the related sentiment yi. We are therefore searching for a linear classification
function fθ, where θ are the parameters of the linear regression. This function is
learned by minimizing the classification loss on the training data:

∑

i∈T
Δ(fθ(zi), yi) (3)

where Δ(fθ(zi), yi) is the loss to predict fθ(zi) instead of the real label yi, and
T is the training set.

In order to make sure that connected nodes have similar representations, we
introduce the other following loss:

∑

i,j:wi,j �=0

wi,j‖zi − zj‖2 (4)

which forces the approach of the latent representation of connected nodes. The
complete loss function is the aggregation of the classification and similarity loss:

L(z, θ) =
∑

i∈T
Δ(fθ(zi), yi) + λ

∑

i,j:wi,j �=0

wi,j‖zi − zj‖2 (5)

206 D. Nozza et al.

This loss will allow us to find the best classification function and, at the same
time, improve the meanings of the latent space.

In the original work of [13], the authors fixed a value of λ for all the pos-
sible edges. In our work, we decided to model the problem with three different
parameters to give different weights to different types of edge, instead of a sin-
gle parameter λ. Three new parameters are introduced: λpp refers to the edges
connecting two posts, λpv refers to the edges connecting a post to a user and
λvv refers to the edges connecting two users.

Following this idea, the loss function in Eq. 5 can be rewritten as follows:

L(z, θ) =
∑

i∈T
Δ(fθ(zi), yi) + λ

vv

∑

i,j:wi,j �=0
i∈V ∧j∈V

wi,j‖zi − zj‖2 (6)

+ λ
pv

∑

i,j:wi,j �=0
i∈V ∧j∈P

wi,j‖zi − zj‖2

+ λ
pp

∑

i,j:wi,j �=0
i∈P∧j∈P

wi,j‖zi − zj‖2

The minimization of the loss function (Eq. 6) is performed by exploiting a
Stochastic Gradient Descent Algorithm (see Algorithm 1). The algorithm first
chooses a pair of connected nodes randomly. After that, if the node is in the
training set T it modifies the parameters of the classification function and the
latent representation according to the classification loss following Eq. 3. Succes-
sively, it updates the latent representation of both the nodes depending on the
difference between the two representation presented in Eq. 4.

Algorithm 1. Learning(x,w, ε,λ)

1: for A fixed number of iterations do
2: Choose (xi, xj) randomly with wi,j > 0
3: if xi ∈ T then
4: θ ←− θ + ε ∇θΔ(fθ(zi), yi)
5: zi ←− zi + ε ∇ziΔ(fθ(zi), yi)
6: end if
7: if xj ∈ T then
8: θ ←− θ + ε ∇θΔ(fθ(zj), yj)
9: zj ←− zj + ε ∇zjΔ(fθ(zj), yj)

10: end if
11: zi ←− zi + ε λ ∇ziwi,j‖zi − zj‖2

12: zj ←− zj + ε λ ∇zjwi,j‖zi − zj‖2

13: end for

A Latent Representation Model for Sentiment Analysis 207

4 Experiments

4.1 Dataset

In order to evaluate the proposed approach, we used a dataset that contains
enough information about users and posts to build a heterogeneous network as
described in Sect. 2.1. Every user and post in the network has been labelled with
its polarity (positive or negative).

We used the ‘Obama’ dataset available in [12], which has been collected from
Twitter and contains the following data:

1. A set of users and their sentiment labels about the topic ‘Obama’ (obtained
by manual tagging);

2. Tweets (posts) written by users about the topic ‘Obama’ with their sentiment
labels (obtained by manual tagging);

3. The users’ retweet network, which represent the approval connections between
users.

This dataset contains 61 nodes and 187 tweets, and a total of 252 arcs rep-
resenting retweet connections.

Starting from this dataset, we built a HN-DAG, where the set of nodes Vq

represent the set of users who posted something about the topic ‘Obama’, and
the set Pq represent the tweets that those users posted about ‘Obama’.

We have three types of arcs connecting the nodes:

– the arcs connecting a user to another user, which weight is determined by the
normalized number of retweets;

– the arcs connecting a user to a post, which in our case have 0/1 weights;
– the arcs connecting a post to another post, whose weight is determined by the

cosine similarity between the two posts, as explained in Sect. 2.2.

4.2 Performance Evaluation and Settings

In order to assess the importance of relationships for determining the senti-
ment polarity of users and posts, we compare our method with two well-known
approaches based only on the analysis of the textual data: a Support Vector
Machine (SVM) and a L2-regularized logistic regression (LR). When only con-
tent is used, the posts are classified as positive or negative based on their content,
while the users are classified based on the total polarity of their posts (the posts
of a single user are merged and considered as a single document for determining
the user’s polarity).

We used the Support Vector Machine package available in LibSVM [15], using
a linear kernel and default settings. The linear regression model was based on
the library for large linear classification LibLinear [16].

We have considered as evaluation measures the well-known Precision(P),
Recall(R) and F1-measure:

P+ =
of instances successfully predicted as positive

of instances predicted as positive
(7)

208 D. Nozza et al.

R+ =
of instances successfully predicted as positive

of instances effectively labelled as positive
(8)

F+
1 =

2 · P+ · R+

P+ + R+
(9)

In the same way it is possible to compute the Precision, Recall and F-Measure
for the negative class (P−, R−, F−

1).
We also measured Accuracy as:

Acc =
of instances successfully predicted

of instances
(10)

The performance of the proposed model can be affected by the randomness of
the learning algorithm, leading to less-than-optimum results. In order to reduce
this effect and improve the robustness of the classification, we used a majority
voting mechanism to label the instances. In particular we performed k = 1, 5,
11, 15, 21 and 101 runs to get k predictions (votes) and we took a majority vote
among the k possible labels for each node. For each k, we performed 100 exper-
iments and considered their average performance. In the following, we report
the results for k = 21, which show a good trade-off between the performance
variability and the computational complexity.

The total number of iterations of the learning algorithm has been set to
4000000, while the gradient step ε have been set to 0.1. The size of the latent
representation has been set to 40.

4.3 Results

Initially, we tested the performance of our approach by considering a case where
66% of the nodes (randomly chosen) are considered as known. The proposed
model is strongly influenced by the parameters λpp, λpv and λvv assigned to
the different types of edges. Therefore, for each λi, where i ∈ {vv, pp, pv}, we
investigated different values varying in the range {0.01, 0.05, 0.1}.

In Tables 1 and 2 we reported the best combinations of λi for classifying posts
and users. The choice of the configuration is, at the current time, an empirical
estimate. For the following experiments, we considered a trade-off between pre-
dicting the users and posts polarity, and therefore we chose as best configuration
λpp = 0.05, λpv = 0.05, λvv = 0.1, as highlighted in the tables.

We compare the results obtained with these settings with the results achieved
by the two textual approaches (see Table 3). The Latent space Heterogeneous
Approval Model (LHAM) outperforms both Support Vector Machine (SVM) and
Linear Regression (LR) when predicting the polarity of the posts (around 5%
improvement), and strongly outperforms them when predicting the polarity of
users (more than 34% of improvement in terms of accuracy).

In order to reduce the bias introduced by empirically choosing the values of
λi, we computed the average performance over all possible combinations in the
range {0.01, 0.05, 0.1}. The results (as reported in the last column of Table 3)
show that our method still outperform the baseline algorithms when predicting

A Latent Representation Model for Sentiment Analysis 209

Table 1. Best configurations of λi for inferring the user polarity. The highlighted line
represents the chosen configuration.

λvv λpp λpv P+ R+ F1+ P- R- F1- Acc

0.01 0.01 0.01 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.01 0.05 0.01 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.05 0.01 0.01 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.05 0.01 0.05 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.05 0.01 0.1 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.05 0.05 0.01 0.905 0.836 0.868 0.89 0.933 0.91 0.895

0.05 0.05 0.05 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.05 0.05 0.1 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.05 0.1 0.05 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.05 0.1 0.1 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.1 0.01 0.05 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.1 0.01 0.1 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.1 0.05 0.01 0.925 0.839 0.878 0.913 0.953 0.932 0.914

0.1 0.05 0.05 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.1 0.05 0.1 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.1 0.1 0.05 0.91 0.841 0.873 0.887 0.93 0.907 0.895

0.1 0.1 0.1 0.91 0.841 0.873 0.887 0.93 0.907 0.895

the polarity of the users, maintaining a 33 % of improvement in terms of accuracy,
while maintaining a comparable performance when predicting the polarity of the
posts.

In order to fully validate our approach, we tested it with different sizes of
training and test sets. Therefore, we randomly split our dataset with different
percentages {20, 33, 50, 66, 80}. Given the small size of the dataset, we perform
a cross-validation by repeating the random split 30 times for each percentage,
and therefore obtain significant results.

Tables 4 and 5 show the results of posts and users classification, performed
by our model and baseline models depending on training set percentage. It is
clear from the tables that our model outperforms other approaches in most of
the cases, in particular when the size of the training set has a larger number of
instances. While the post classification shows a slight improvement by our model
over SVM and Linear Regression, for user classification we are able to achieve
far better results than text-only based approaches.

While our model improves its performance for larger training set sizes, the
other methods do not improve, and their performance can even decrease. The
most probable explanation of this behaviour is that short-text posts are very
noisy: a text-only approach is therefore more affected by the introduction of
more training instances (which are regarded as more noise), while our model is

210 D. Nozza et al.

Table 2. Best configurations of λi for inferring the post polarity. The highlighted line
represents the chosen configuration.

λvv λpp λpv P+ R+ F1+ P- R- F1- Acc

0.01 0.01 0.01 0.673 0.819 0.738 0.763 0.587 0.661 0.705

0.01 0.05 0.01 0.677 0.819 0.74 0.762 0.594 0.666 0.708

0.05 0.01 0.01 0.629 0.806 0.699 0.643 0.477 0.528 0.644

0.05 0.01 0.05 0.677 0.806 0.734 0.755 0.6 0.666 0.705

0.05 0.01 0.1 0.68 0.819 0.741 0.769 0.6 0.671 0.711

0.05 0.05 0.01 0.639 0.863 0.727 0.813 0.465 0.533 0.667

0.05 0.05 0.05 0.678 0.825 0.743 0.772 0.594 0.668 0.711

0.05 0.05 0.1 0.684 0.819 0.743 0.772 0.606 0.675 0.714

0.05 0.1 0.05 0.671 0.813 0.734 0.756 0.587 0.658 0.702

0.05 0.1 0.1 0.678 0.825 0.743 0.772 0.594 0.668 0.711

0.1 0.01 0.05 0.669 0.794 0.724 0.743 0.594 0.657 0.695

0.1 0.01 0.1 0.676 0.806 0.734 0.755 0.6 0.666 0.705

0.1 0.05 0.01 0.606 0.869 0.707 0.826 0.394 0.481 0.635

0.1 0.05 0.05 0.666 0.806 0.728 0.751 0.581 0.652 0.695

0.1 0.05 0.1 0.669 0.806 0.73 0.751 0.587 0.656 0.698

0.1 0.1 0.05 0.673 0.819 0.738 0.761 0.587 0.661 0.705

0.1 0.1 0.1 0.673 0.806 0.732 0.753 0.594 0.661 0.702

Table 3. Accuracy of users and post classification for different algorithms.

LR SVM LHAM (Best λi) LHAM (Average λi)

Users 0.467 0.552 0.895 0.886

Posts 0.66 0.657 0.714 0.680

Table 4. Accuracy of post classification for different sizes of the training set.

% Training set LR SVM LHAM

20 0.613 0.597 0.542

33 0.629 0.620 0.662

50 0.642 0.641 0.718

66 0.679 0.679 0.722

80 0.660 0.669 0.739

A Latent Representation Model for Sentiment Analysis 211

Table 5. Accuracy of user classification for different sizes of the training set

% Training set LR SVM LHAM

20 0.466 0.485 0.570

33 0.494 0.521 0.823

50 0.480 0.512 0.986

66 0.467 0.531 0.982

80 0.447 0.507 0.986

able to face this problem with the help of the additional information carried by
the edges between different nodes.

The lower performance of LHAM for small percentages of the training set
is explained by the behaviour of the Stochastic Gradient Descent Algorithm,
which randomly chooses a pair of connected nodes at each iteration. When the
number of training instances is small, the chance to pick nodes that are not
in the training set will be higher. In this case, the latent representations will
mostly depend on the similarity among connected nodes, and less on the correct
sentiment polarity.

In order to tackle this problem, we modified Algorithm 1 as follows:

– At the beginning, starting from the training instances we create a list of
“allowed” nodes;

– At each iteration, the algorithm must choose a pair of nodes where at least
one of the nodes is in the list of “allowed” nodes;

– At the end of each iteration, if one of the chosen nodes was not in the list, it
is added; if all the existing nodes have been added, the list is again initialized
with the training instances.

Fig. 2. Accuracy of post classification for different sizes of the training set.

212 D. Nozza et al.

Fig. 3. Accuracy of user classification for different sizes of the training set

The corrected algorithm allows to spread the sentiment polarity information
starting from the training nodes, and gradually towards the rest of the network.
This permits to outperform the baseline algorithms even when dealing with small
training sets both on posts and users classification. At the same time, we main-
tain a good performance when the training size gets larger (see Figs. 2 and 3).

5 Conclusions

In this work, we proposed a classification approach that is able to infer the polar-
ity of users and posts in a social network, particularly in the case of microblogs
(such as Twitter).

We have shown that the exploitation of the information obtained from the
heterogeneous network can improve not only the performance of the classifica-
tion of users (as already proven in other works), but also the performance of
the classification of posts. The results clearly show that the proposed model
is promising and worth further investigation. In the future we plan to improve
the robustness of the model by introducing a method for estimating the best
parameter configuration.

Moreover, we want to compare our approach with other user-level polarity
classifiers, and to focus on the development of larger datasets on different topics.

References

1. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr.
2(1–2), 1–135 (2008)

2. Hu, X., Tang, J., Gao, H., Liu, H.: Unsupervised sentiment analysis with emo-
tional signals. In: Proceedings of the 22nd International Conference on World Wide
Web, pp. 607–618. International World Wide Web Conferences Steering Committee
(2013)

A Latent Representation Model for Sentiment Analysis 213

3. Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in twit-
ter: a graph-based hashtag sentiment classification approach. In: Proceedings of the
20th ACM International Conference on Information and Knowledge Management,
pp. 1031–1040. ACM (2011)

4. Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter
hashtags and smileys. In: Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, pp. 241–249. Association for Computational
Linguistics (2010)

5. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant
supervision. Technical report, Stanford (2009)

6. Pozzi, F.A., Fersini, E., Messina, E.: Bayesian model averaging and model selection
for polarity classification. In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V.,
Vadera, S. (eds.) NLDB 2013. LNCS, vol. 7934, pp. 189–200. Springer, Heidelberg
(2013)

7. Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., Li, P.: User-level sentiment analy-
sis incorporating social networks. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2011,
pp. 1397–1405 (2011)

8. Kim, J., Yoo, J., Lim, H., Qiu, H., Kozareva, Z., Galstyan, A.: Sentiment predic-
tion using collaborative filtering. In: Seventh International AAAI Conference on
Weblogs and Social Media (2013)

9. Smith, L.M., Zhu, L., Lerman, K., Kozareva, Z.: The role of social media in the
discussion of controversial topics. In: 2013 International Conference on Social Com-
puting (SocialCom), pp. 236–243. IEEE (2013)

10. Deng, H., Han, J., Ji, H., Li, H., Lu, Y., Wang, H.: Exploring and inferring user-user
pseudo-friendship for sentiment analysis with heterogeneous networks. In: SDM,
pp. 378–386 (2013)

11. Lazarsfeld, P.F., Merton, R.K.: Friendship as a social process: a substantive and
methodological analysis. In: Berger, M., Abel, T., Page, C.H. (eds.) Freedom and
Control in Modern Society, pp. 8–66. Van Nostrand, New York (1954)

12. Pozzi, F.A., Maccagnola, D., Fersini, E., Messina, E.: Enhance user-level senti-
ment analysis on microblogs with approval relations. In: Baldoni, M., Baroglio,
C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 133–144.
Springer, Heidelberg (2013)

13. Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes for
classifying in heterogeneous social networks. In: WSDM, pp. 373–382 (2014)

14. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463.
ACM Press, New York (1999)

15. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

16. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a
library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

Use of Mobile Phone Data
to Estimate Visitors Mobility Flows

Lorenzo Gabrielli, Barbara Furletti, Fosca Giannotti,
Mirco Nanni(B), and Salvatore Rinzivillo

KDDLAB, ISTI CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
{lorenzo.gabrielli,barbara.furletti,fosca.giannotti,

mirco.nanni,salvatore.rinzivillo}@isti.cnr.it

Abstract. Big Data originating from the digital breadcrumbs of human
activities, sensed as by-product of the technologies that we use for our
daily activities, allows us to observe the individual and collective behav-
ior of people at an unprecedented detail. Many dimensions of our social
life have big data “proxies”, such as the mobile calls data for mobility.
In this paper we investigate to what extent data coming from mobile
operators could be a support in producing reliable and timely estimates
of intra-city mobility flows. The idea is to define an estimation method
based on calling data to characterize the mobility habits of visitors at
the level of a single municipality.

Keywords: Big data · Urban population · Inter-city mobility · Data
mining

1 Introduction

Mobile phones today represent an important source of information for studying
people behaviors, for environmental monitoring, transportation, social networks
and business. The interest in the use of the data generated by mobile phones
is growing quite fast, also thanks to the development and the spread of phones
with sophisticated capabilities.

The availability of these data stimulated the research for increasingly sophis-
ticated data mining algorithms customized for studying people habits, mobility
patterns, for environmental monitoring and to identify or predict events. Some
examples include the discovery of social relations studied in [16], where it has
been highlighted the existence of correlations between the similarity of indi-
viduals movements and their proximity in the social network; the inference of
origin-destination tables for feeding transportation models [10]; and, based on
roaming GSM data (users arriving from other countries), the study of how visi-
tors of a large touristic area use the territory, with particular emphasis on visits
to attractions [11]. For data mining purposes, GSM data proved to be significant
in terms of size and representativeness of the sample. In general, having informa-
tion about the localization or the behavior of human or moving entities permits
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 214–226, 2015.
DOI: 10.1007/978-3-319-15201-1 14

Use of Mobile Phone Data to Estimate Visitors Mobility Flows 215

to build support tools for applications in several domains such as healthcare,
coordination of social groups, transportation and tourism.

In this work we propose and experiment an analysis process built on top of
the Sociometer, a data mining tool for classifying users by means of their calling
habits. The calling activities are used to infer the presence of the user and to
construct an aggregated and compact call profile. The first prototype of the
Sociometer has been developed during the project “Tourism Fluxes Observatory
- Pisa”, having the aim of producing a presence indicator of different categories
of people in the city of Pisa [7]. The project, carried out in cooperation with the
Municipality of Pisa, aimed at studying the fluxes of tourists visiting the town
in order to evaluate the overall quality of the reception system on the territory,
and to install a permanent monitor system. The Sociometer has been tested with
positive results on real case studies both in Pisa and Cosenza [8].

In this paper we apply the Sociometer to classify the users moving in the
city of Pisa. In particular, we concentrate in the urban area of the city and focus
only on the sub-population of visitors – which complements previous analyses
performed, mainly focused on residents and commuters, i.e. classes of users vis-
iting the territory on a regular basis. Our objective is to produce statistics that
are capable of estimating the probability of observing visitors moving across
the urban area rather than arriving and staying in a limited zone. Indeed, such
larger-scale visitors represent the group of people that might benefit most from
an improved information about city attractions, navigation assistance and public
transportation services. Therefore, it is crucial to better understand what kind
of mobility (strictly localized vs. over all the city) visitors tend to follow, and in
which measure.

The advantage of having defined the call profiles is that the analysis is no
more based on the original GSM raw (big and privacy sensitive) data, but on
an aggregated privacy-preserving summary of the original data. This allows the
Telco operators to disclose only information that satisfy the required level of
privacy, respecting the laws and preserving their customers. At the same way
the analysts can work with data that are still meaningful. To this aim we also
developed a method to measure and handle the privacy risks involved in the
distribution of individual habits.

2 Related Works

The use of GSM traces for studying the mobility of users is a growing research
area. An increasing number of approaches propose to use GSM data for extract-
ing presence and/or movement patterns and users behavior. We already cited in
Sect. 1 the Sociometer [6] as a method for identifying mobility behavior categories
starting from call profiles, and the possibility to perform number of analysis
about presences and flows of peoples in various cities [7,8]. Among the literature
we can recall a famous experiments on analysing GSM data for studying people
movement have been run on Rome [3] and Graz [4]. GSM data are used to realize
a real-time urban monitoring systems with the aim of realizing a wide range of

216 L. Gabrielli et al.

services for the city such as traffic monitoring and tourists movement analysis.
The authors get detailed real time data by installing additional hardware on top
of the existing antennas to get an improved location of the users in the networks.

A different approach comes from Schlaich et al. [14] where the authors exploit
the GSM handover data - the aggregated number of users flowing between cells -
to perform the reconstruction of vehicles trajectories. The objective is to study
the route-choice-behavior or car drivers in order to determine the impact of
traffic state.

Another use of GSM data is the identification of interesting users places as
in [2], where the authors propose a method for the identification of meaningful
places relative to mobile telephone users, such as home and work points. They
use GSM data (both calls and handovers) collected by the phone operator. The
localization precision is the cell which is the same accuracy level of the identified
interesting points. They distinguish between personal anchor points like home,
work and other person-related places as the locations each user visits regularly,
as for example a gym.

In Pereira et al. [12], the authors exploit cellular phone signaling data1, focus-
ing on the prediction of travel demand for special events. Similar to the previous
approach, their analysis identifies the home location: here is defined as starting
point of people’s trips. However, they observed that mobility data are dependent
on mobile phone usage, and this may bias the results. Therefore they propose
to integrate the GSM dataset with external data (e.g. ticketing statistics or taxi
trips) with the aim of increasing the quantity and the quality of the data, in
particular in term of spatial resolution.

Quercia et al. [13] uses GSM data for recommending social events to city
dwellers. They combine the locations estimated by mobile phone data of users
in the Greater Boston area and the list of social events in the same area. After
extracting the trajectories and stops from GSM calls, they crawl the events from
the web. Then, they divide the area of Boston in cells and locate each events
and each stop in the corresponding cell. Therefore, by crossing the events and
the stops, they identify a set of potential users participating to events.

Mobile phone records are analysed also in [1] where the authors propose a
visual analytics framework to explore spatio-temporal data by means of SOM
(Self-Organizing Map) analysis. They propose a method to cluster the dataset
by either of the two dimension and evaluate the resulting aggregation on the
other one. Although they show the potentialities of using SOM for analysing
mobile phone records, they do not focus on identifying user profiles.

All these approaches, as well others that can be found on the literature, offer
different perspectives on how GSM data can be exploited to study the human
mobility and the huge potentialities of these kinds of data. Differently from these
approaches, the aspect we want to study in this paper are the flows across a city
of the a particular category of people: the visitors.
1 These data consist of location estimations which are generated each time when a
mobile device is connected to the cellular network for calls, messages and Internet
connections.

Use of Mobile Phone Data to Estimate Visitors Mobility Flows 217

3 Objectives and Experimental Setting

The purpose of this work is to demonstrate how the massive and constantly
updated information carried by mobile phone call data records (CDRs) can be
exploited to estimate visitors movements within an urban area and their flows
across the observed territory.

In this section, we will first describe what information CDRs contain and
we will provide details about the dataset used in the experiments. Then, we will
introduce the user categories and the mobility measures we aim at inferring from
CDRs.

3.1 Call Detail Records (CDRs)

GSM is a network that enables the communications between mobile devices.
The GSM protocol is based on a so called cellular network architecture, where
a geographical area is covered by a number of antennas emitting a signal to
be received by mobile devices. Each antenna covers an area called cell. In this
way, the covered area is partitioned into a number of, possibly overlapping, cells,
uniquely identified by the antenna. Cell horizontal radius varies depending on
antenna height, antenna gain, population density and propagation conditions
from a couple of hundred meters to several tens of kilometers.

A Call Detail Record (CDR) is a log data documenting each phone commu-
nication that the TelCo operator stores for billing purposes. The format of the
CDR used in this work contains a subset of information as follows:

< Timestamp,Caller id, d, Cell 1, Cell 2 >

Caller id is the anonymous identifier of the user that called, Timestamp is the
starting time of the call, d is its duration, Cell 1 and Cell 2 are the identifiers
of the cells where the call started and ended (See Fig. 1). Only voice communi-
cations are included in the dataset.

Fig. 1. Exemplification of the cellular network and communication.

218 L. Gabrielli et al.

The dataset used in this work consists of around 7.8 million CDRs collected
from Oct 9th to Nov 9th, 2012. The dataset contains calls corresponding to about
232,200 customers of the Italian TelCo operator Wind SpA, with a mobile phone
contract (no roaming users are included).

It is important to point out that a major limitation of CDRs is the fact that
the localization of individuals occurs only during phone calls, that can lead to
an incomplete view of their mobility. We discuss this point in Sect. 4, where we
introduce a methodology to partially overcome the incompleteness issue.

3.2 Spatial Granularity

The spatial granularity considered in this work takes into account the spatial
resolution of the cells covering the area of study. In the urban area of Pisa, the
coverage of each cell is relatively large, therefore it often does not allow a precise
relationship between a Point of Interest (POI) and the cell itself. This means

Fig. 2. City partitions adopted for the study: (Top) ”Cardinal points” - Four zones
(North, South, East, West); (Bottom) ”City districts” - Nine areas.

Use of Mobile Phone Data to Estimate Visitors Mobility Flows 219

that a cell may contain more than one POI and a POI, if it is large, may belong
to more than one cell. Thus, in this study we use a higher level of granularity,
and we define two types of partitions of the urban area: ”cardinal points” (Fig. 2
top) and ”city districts” (Fig. 2 bottom). In the former case the city is divided
in four areas according to the cardinal points; while in the latter case the city
is divided according to the major districts. Both partitions follow the natural
division provided by the Arno River. To better compare the flows measured over
the two partitions, each area of the first partition is defined as an aggregation
of zones of the second partition.

4 Methodology

The basic idea of the methodology and at the basis of the Sociometer is that the
behavior category of an individual within a specific municipality can be inferred
by the temporal distribution of his/her presence in the area. For example, peo-
ple commuting to a municipality for work will usually appear there only during
working hours and only during working days – obviously with some exceptions,
which however, are expected to be occasional. In this work we are interested
in the movements of visitors, a class of users characterized by a sporadic pres-
ence on the territory, usually appearing only for a short time period (a few
days). As explained in [6], a formal definition of visitors is given by The World
Tourism Organization that identifies them as ”people traveling to and staying in
places outside their usual environment for not more than one consecutive year for
leisure, business and other purposes” [15]. In other words, a person is a visitor in
an area A if his/her home and work place are outside A and the presence inside
the area is limited to a certain period of time Tto that can allow him/her to spend
some activities in the city. In particular the presence has to be concentrated in
a finite temporal interval inside the time window. It should also be occasional
therefore, he/she does not appear anymore during the observation period. It is
also important to point out the distinction that this definition includes not only
the classical tourism as visiting cultural and natural attractions, but also the
activity related to work, visiting relatives, health reasons, etc.

We already mentioned that CDR may describe the movements of users only
partially, since the localization is available only when a user performs a call. For
frequent callers, thus, there is a strict correspondence among movements and
calls. For users that make low use of their phone, instead, sensing their move-
ments may be underestimated. When analyzing visitors movements, it is crucial
to take into account the previous observations. On one hand, the classification
of a user u as visitor is based on a narrow period τ where he/she is observed
performing a call. Thus, the narrower is the period τ the larger is our confi-
dence that u is a visitor. Obviously, there is still some probability that u may
be a local users that uses his/her mobile phone just very seldom, and therefore
his/her calling footprint is wrongly classified as that of a visitor.

On the other hand, once we have identified the sub-population of visitors,
we want to make inferences about their movements within the city. Since the

220 L. Gabrielli et al.

period of activity of user u within the territory is limited, he/she may be able to
perform very few calls, resulting in an underestimation of his/her movements.

In summary, a dependable inference on visitor movements is based on the
dualism between these two dimensions: the period of permanence within the area
and the number of calls performed during that period. In the next sections we
will show how to reason upon these two dimensions to determine the confidence
about our predictions.

In the following we summarize the user classification process, at the basis
of the quantitative mobility analysis proposed in this paper. The process, intro-
duced in [6], performs a form of active transductive learning, i.e., a process that
selects a sample of data to be labeled by the analyst, and exploits that sample to
classify the whole dataset. After introducing the individual call profiles (ICFs)
(Sect. 4.1), we will describe a semi-automatic methodology for classifying call
profiles (Sect. 4.2). In this process, a human expert is asked to manually label a
small number of representative call profiles, which are then used to automatically
label all other call profiles. After the classification step, we associate each ICP
of visitors to the corresponding sequence of CDRs, in order to reconstruct their
movements. From the sequence of CDRs we determine an individual indicator
stating if a user as crossed one or more city areas.

4.1 Individual Call Profiles (ICPs)

ICPs are the set of aggregated spatio-temporal profiles of an analyst computed
by applying spatial and temporal rules on the raw CDRs in order to identify
the presences. The resulting structure is a matrix of the type shown in Fig. 3.
The temporal aggregation is by week, where each day of a given week is grouped
in weekdays and weekend. Given for example a temporal window of 28 days
(4 weeks), the resulting matrix has 8 columns (2 columns for each week, one
for the weekdays and one for the weekend). A further temporal partitioning is
applied to the daily hours. A day is divided in several timeslots, representing
interesting times of the day. This partitioning adds to the matrix new rows. In
the example we have 3 timeslots (t1, t2, t3) so the matrix has 3 rows. Numbers
in the matrix represent the number of events (in this case the presence of the
user) performed by the user in a particular period within a particular timeslot.
For instance, the number 5 in Fig. 3 means that the individual was present in
the area of interest for 5 distinct weekdays during Week1 in timeslot t2 only.

Figure 3 exemplifies the whole process of constructing the ICP from the raw
data: starting from the dataset of the calls, the spatio-temporal aggregation
rules are applied and the corresponding presences are inferred. The matrix is
filled with the number of presences in each time slot. Coloring the slots based on
the presence density, we get a simple representation of the profiles that give an
immediate idea of the category a user belongs to. In the example the profile is of
a resident because the presence is uniform in the whole windows of observation
both in the weekdays and in the weekends.

Use of Mobile Phone Data to Estimate Visitors Mobility Flows 221

Fig. 3. Example of Individual Call Profile: from the calls, the individual presence is
derived

Fig. 4. Visitor flow transitions among cardinal areas according to Fig. 2 (Top).

222 L. Gabrielli et al.

4.2 Profile Classification

The classification method we propose is composed of two parts. First, we extract
representative call profiles, i.e. a relatively small set of synthetic call profiles, each
summarizing an homogeneous set of (real) ICPs. This step reduces the set of sam-
ples to be classified, which can then be handled manually by a human expert,
based on the class definitions given above and his/her own experience and judg-
ment. Finally, the labels assigned to the representative profiles are propagated
to the full set of ICPs.

In the first step the standard K-means algorithm is used, which aims to par-
tition n ICPs into k homogeneous clusters, and the mean values of the ICPs
belonging to each cluster serves as prototype/representative of the cluster. The
algorithm follows an iterative procedure. Initially it creates k random partitions,
then, it calculates the centroid of each group, and it constructs a new partition
by associating each object (ICP) to the cluster whose centroid is closest to it.
Finally the centroids are recalculated for the new cluster, reiterating the proce-
dure until the algorithm reaches a stable configuration (convergence). The sim-
ilarity between two ICPs, which is the key operation of K-means, is computed
through a simple Euclidean distance, i.e. comparing each pair of corresponding
time slots in the two ICPs compared. Also, the centroid of a cluster is simply
obtained by computing, for each time slot, the average of the corresponding
values in the ICPs of the cluster. The choice of the parameter K is made by
performing a wide range of experiments, trying to minimize the intra-cluster
distance and maximizing the inter-cluster distance. The value chosen as most
suitable was K = 100. Once extracted the representatives (RCPs), we asked the
domain experts to label them. The second step, i.e. the propagation of the labels
manually assigned to the RCPs, followed a standard 1-Nearest-Neighbor (1-NN)
classification step. That corresponds to assign to each ICP the label of the clos-
est RCP. Extensions of the solution can be easily achieved by adopting a K-NN
classification, with K > 1, where the majority label is chosen.

4.3 Mobility Indicator

Our basic objective is to determine whether a user has moved across the city
during the period of observation, or not. Since we are dealing with movement
patterns of visitors, we associate each visitor to his/her landing cell, i.e. the cell
where he/she initiated his/her calling activities. This cell might be the airport
when the visitor arrives via plane, or the bus parking at the north of the city if
he/she arrives by bus, etc.

Given the base cells of a user, we define the corresponding Mobility Indicator
as the number of distinct areas visited by the user. Starting from the landing
cell, we can also estimate the Origin-Destination Matrix of visitors within the
city, since the consecutive visit of two areas imply a movement between them –
though the incompleteness issue mentioned in previous sections might lead to
introduce some errors, since some intermediate visits to other areas might be
missed. Figure 4 shows the flows of the visitors among the cardinal areas of our

Use of Mobile Phone Data to Estimate Visitors Mobility Flows 223

partition obtained with the dataset which spans over a period of one month, as
described in Sect. 3.1.

We can appreciate how the incidence of self-loops, i.e. people staying still in
a region, is greater in the southern area, which contains the main transportation
facilities of the city (airport, train and central bus stations) to arrive to the city.
From East and West we cannot appreciate any self loop, suggesting that those
routes are mainly used to cross the city.

If we consider the partition in districts (Fig. 5), it is easier to observe a tran-
sition among two adjacent districts (e.g., airport (Aeroporto) and train station
(Stazione)). It is however difficult to measure large flows across distant districts.

5 Evaluation

In this section we summarize the experimental results obtained by computing
some population and flow statistics over the city of Pisa. After the classification
step, we identify around 90k users classified as visitors. Since our objective is to

Fig. 5. Visitor flow transitions among districts according to Fig. 2 (Bottom).

224 L. Gabrielli et al.

determine the percentage of visitors who cross the city to visit different areas,
we want to establish the percentage of users with a positive Mobility Indica-
tor. To determine such percentage, however, we have to take into account the
limitations about the dualism of precision of the classification and coverage of
movement sensing. Not having the support of external evidences to determine
a dependable threshold for the two dimensions, we derive a Mobility Indicator
Curve, connecting the percentage of mobility to a minimum support threshold
for the observed number of calls for each user.

Fig. 6. Mobility Indicator Curve: relationship between the number of calls performed
by each user and the probability of visiting more than one zone.

Figure 6 shows the resulting Mobility Indicator Curve for the cardinal area
partition (analogous results may be observed for the other partition). If we con-
sider all the visitors with at least one call, the percentage of mobility is very low.
This is mainly due to the low duration of each call, thus preventing a user to cross
too many cells. Even choosing a very permissive threshold of at least two calls,
we can observe that around one third of the population moves across the areas.
This percentage increases when selecting a sub-population within an higher min-
imum call threshold. The curve reaches relatively stable values at around 15 calls
– i.e., the sensitivity of the mobility index with smaller thresholds appears to be
too high, suggesting to require at least 15 calls. At the same time, the red curve
shows an exponential decrement of the number of users for each threshold, thus
adopting a large minimum support threshold would result in selecting just a tiny
and statistically poor sample. Reasonable trade-offs, aimed at keeping at least
some hundreds of users in the sample, should then not exceed 30 calls. Within
this range of choices – between 15 and 30 calls as minimum threshold – we can
see that the mobility index ranges between 80 % and 90 %, thus indicating that
the mobility is apparently quite high.

Use of Mobile Phone Data to Estimate Visitors Mobility Flows 225

The publication of the final results cannot put at risk the individual privacy
because this information is a simple aggregation that does not contain any sensi-
tive information about the single users. This means that an attacker, by accessing
this kind of data, cannot infer any information about a user. The ICP recon-
struction instead, may be more problematic for the individual privacy because
requires to access the CDR data that contain all information about the user
calls. However, since the only information that the analyst needs for performing
the analysis is the set of ICPs, we propose an ”protocol” where, the computation
of the ICPs is delegated to the TelCo operator that sends them to the analyst for
the computation of the other steps. As described in [5], we supply to the TelCo
operator a tool for evaluating the risk of privacy in disclosing ICPs so that it
can decide supply only a subset of data that are compliant to the required level
of privacy.

6 Conclusions

In this work we developed an analytical process to determine the probability of
observing a population of visitors moving across an urban area. The method is
based on a classification step capable of determining the class of mobile phone
users by analyzing their call habits. The population of users tagged as visitors
is further analyzed by reconstructing their respective movements. To overcome
the limitation of partial observation for movements due to individual call habits,
we introduce a methodology to relate the observations available for each user
and the confidence of the prediction of observing a movement. The experimental
results show that visitors have a high tendency of moving across the city, even
for coarser spatial granularities.

Acknowledgments. This work has been partially funded by the European Union
under the FP7-ICT Program: Project DataSim n. FP7-ICT-270833, and Project Petra
n. 609042; and by the MIUR and MISE under the Industria 2015 program: Project
MOTUS grating degree n.0000089 - application code MS01 00015.

References

1. Andrienko, G., Andrienko, N., Bak, P., Bremm, S., Keim, D., von Landesberger,
T., Poelitz, C., Schreck, T.: A framework for using self-organising maps to analyse
spatio-temporal patterns, exemplified by analysis of mobile phone usage. J. Locat.
Based Serv. 4, 3–4 (2010)

2. Ahas, R., Silm, S., Järv, S., Saluveer, E.: Using mobile positioning data to model
locations meaningful to users of mobile phones. J. Urban Technol. 17, 1 (2010)

3. Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-time urban
monitoring using cell phones: a case study in rome. IEEE Trans. Intell. Transp.
Syst. 12, 141–151 (2011)

4. Ratti, C., Sevtsuk, A., Huang, S., Pailer, R.: Mobile Landscapes: Graz in Real
Time. MIT Senseable City Lab, Massachusetts (2005)

226 L. Gabrielli et al.

5. Furletti, B., Gabrielli, L., Monreale, A., Nanni, M., Pratesi, F., Rinzivillo,
S., Giannotti, F., Pedreschi, D.: Assessing the privacy risk in the process of
building call habit models that underlie the sociometer. Technical report. http://
puma.isti.cnr.it/dfdownload.php?ident=/cnr.isti/2014-TR-011&langver=it&
scelta=Metadata

6. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Identifying users profiles from
mobile calls habits. In: The Proceedings of UrbComp (2012)

7. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Turism fluxes observatory:
deriving mobility indicators from GSM calls habits. In: The Book of Abstracts of
NetMob (2013)

8. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Analysis of GSM calls data for
understanding user mobility behavior. In: The Proceedings of Big Data (2013)

9. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S.,
Trasarti, R.: Unveiling the complexity of human mobility by querying and mining
massive trajectory data. VLDB J. 20, 695–719 (2011)

10. Nanni, M., Trasarti, R., Furletti, B., Gabrielli, L., Mede, P.V.D., Bruijn, J.D.,
Romph, E.D., Bruil, G.: MP4-A project: mobility planning for Africa. In: D4D
Challenge @ 3rd Conference on the Analysis of Mobile Phone datasets (NetMob
2013)

11. Oltenau, A.-M., Trasarti, R., Couronne, T., Giannotti, F., Nanni, M., Smoreda,
Z., Ziemlicki, C.: GSM data analysis for tourism application. In: Proceedings of
7th International Symposium on Spatial Data Quality (ISSDQ) (2011)

12. Pereira, F.C., Liu, L., Calabrese, F.: Profiling transport demand for planned special
events: prediction of public home distributions (2010). www.scienceDirect.com

13. Quercia, D., Lathia, N., Calabrese, F., Di Lorenzo, G., Crowcroft, J.: Recommend-
ing social events from mobile phone location data. In: International Conference on
Data Mining, ICDM (2010)

14. Schlaich, J., Otterstätter, T., Friedrich, M.: Generating trajectories from mobile
phone data. In: The Proceedings of the 89th Annual Meeting Compendium of
Papers, Transportation Research Board of the National Academies (2010)

15. Wikipedia. Tourism. http://en.wikipedia.org/wiki/Tourism
16. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobility,

social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD 11. ACM,
New York (2011)

http://puma.isti.cnr.it/dfdownload.php?ident=/cnr.isti/2014-TR-011&langver=it&scelta=Metadata
http://puma.isti.cnr.it/dfdownload.php?ident=/cnr.isti/2014-TR-011&langver=it&scelta=Metadata
http://puma.isti.cnr.it/dfdownload.php?ident=/cnr.isti/2014-TR-011&langver=it&scelta=Metadata
www.scienceDirect.com
http://en.wikipedia.org/wiki/Tourism

An Abstract State Machine (ASM)
Representation of Learning Process

in FLOSS Communities

Patrick Mukala(&), Antonio Cerone, and Franco Turini

Department of Computer Science, University of Pisa, Pisa, Italy
{patrick.mukala,cerone,turini}@di.unipi.it

Abstract. Free/Libre Open Source Software (FLOSS) communities as collab-
orative environments enable the occurrence of learning between participants in
these groups. With the increasing interest research on understanding the
mechanisms and processes through which learning occurs in FLOSS, there is an
imperative to describe these processes. One successful way of doing this is
through specification methods. In this paper, we describe the adoption of
Abstract States Machines (ASMs) as a specification methodology for the
description of learning processes in FLOSS. The goal of this endeavor is to
represent the many possible steps and/or activities FLOSS participants go
through during interactions that can be categorized as learning processes.
Through ASMs, we express learning phases as states while activities that take
place before moving from one state to another are expressed as transitions.

Keywords: Process modeling � Abstract State Machines (ASMs) � FLOSS
communities � Learning processes

1 Introduction

The idea of process definition entails specifying the activities and flow of occurrences
thereof between learning actors within the settings of Free/Libre Open Source Software
(FLOSS) communities. The current literature is endowed with extensive exploration,
critiques and development of specification languages in software engineering and
modeling [1–7]. These languages and associated methods help in simulating and
possibly verifying behaviors and functionalities of computer programs before they are
developed. Specifically, some works [5, 8] draw attention to an important role of
specification methods with regard to producing simulation models. These are models
that depict a representation of some functionality as it is expected to occur in a specific
domain. Furthermore, there has been an increasing interest in the area of specification
languages for process modeling [9–13] and one of them, the Process Specification
Language (PSL), provides a set of concepts and terms used for the description of
process reengineering, process realization, process simulation etc. [9, 10]. Another
specification language that can be used for both software engineering and process
modeling is Abstract State machines (ASM) as suggested by Farahbod, Glässer and
Vajihollahi [14]. In additional reports on this method [15, 16] Börger gives a detailed
annotation of ASM biography since the inception of this area of research.

© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 227–242, 2015.
DOI: 10.1007/978-3-319-15201-1_15

As part of our work, we chose the ASM approach as a way of specifying and
defining learning processes because of its implementation success rate under industrial
constraints for rigorous process modeling, software and hardware development, as
emphasized by Börger, [17] and also because of its practicality and simplicity in
documenting the steps from high-level abstraction of specifications to their decom-
position until the ground models are produced.

Hence, the goal of this paper is to model learning processes from FLOSS reposi-
tories and clearly explain them through ASMs from the initial natural language in
which they have been thus far expressed so as to enhance the understanding of learning
behaviors and patterns through participatory activities in FLOSS communities. The
paper is structured as follows. We briefly discuss Abstract States Machines and their
relevance to our work in Sect. 2. Section 3 gives a general description of ASMs
constructs and requirements as needed in this context. In Sect. 4 we present the
developed ASMs Ground Models and specifications. In Sect. 5 we show how to
validate the ASM specification of FLOSS learning processes by process mining FLOSS
repositories. Finally, Sect. 6 concludes the paper.

2 Abstract State Machines (ASMs): Motivation

ASMs [14–18] can be understood as extensions of FSM (Finite State Machines) where
any desired level of abstraction can be achieved by permitting possibly parameterized
locations to hold values of arbitrary complexity, whether atomic or structured: objects,
sets, lists, tables, trees, graphs, whatever comes natural at the considered level of
abstraction [18]. Contrary to FSM, ASMs represent FSM instructions as control state
rules as depicted in Fig. 1 below.

Figure 1 depicts an automaton where i, j1. , j are internal (control) states, condν, for
1 ≤ ν ≤ n, represent the input condition in = aν (reading input aν) and ruleν, for 1 ≤ ν ≤ n,
represent the output action out := bν (yielding output bν), which go together with the ctl
state update to jν. Simply put, these rules represent actions that need to be taken or
activities carried out in the event of conditions (if any) being true before moving from
one state to another.

The potential of using Abstract States Machines (ASMs) for modeling learning
processes in volatile and dynamic FLOSS environments is twofold. First, the ASM

if ctl state = i then
if cond1 then

rule1
ctl state := j1

・・・
if condn then

rulen
ctl state := jn

Fig. 1. Viewing FSM instructions as control state ASM rules

228 P. Mukala et al.

approach can help elaborate and express information we gather about activities in
FLOSS communities and turn this information into necessary ground models.
Ground Models are defined as functionally complete but abstract descriptions of suf-
ficient but not more than necessary rigor, which can be read and understood as a
representation of the problem to be solved and also contain only what the logic of the
problem requires being modeled [17]. Finally, ASMs allow for the implementation and
verification of the ground models reliably by refining them as needed step by step and
through a hierarchy of intermediate sub-models which represent a major component of
the problem [17]. We refer the reader to Börger’s work [17] for detailed theory and
semantic foundations of this approach.

2.1 Abstract State Machines (ASMs) for Learning Processes
in FLOSS Communities

Modeling learning processes through ASMs grew out of a need to express the flow of
occurrence for processes. A Ground model provides a simple representation of states,
processes and transitions that we believe are fit to explain and give the readers a clear
picture of learning processes in FLOSS communities. A number of studies [19–25]
provide a lot of grounds for the identification of terms and concepts one can use to
identify learning activities, participants and related classes in FLOSS communities.

In the context of our work, we identified two main learning processes in FLOSS
communities (Undirected Learning and Directed Learning), with the second learning
process (Directed Learning) unfolding from 2 perspectives in 4 different formats, thus
totaling the number of processes to 9. These are:

• Undirected Learning: This process can also be referred to as Peer-2-Peer or
Reflective Learning. This kind of learning is assumed to take place between any
numbers of participants. In this process, any participant can be both a receiver
(Novice) and a sender (Expert). At this level, the assumption is that learning occurs
between mates with a diversified expertise background who learn from each other.

• Directed Learning: This process refers to involvement of more knowledgeable
participants or expert members in helping less expert members to develop their
skills with some level of guidance or supervision. The occurrence of the process is
twofold:
– Pulling: This is the process where a participant who is less expert on any topic

would initiate a need to learn by reaching out to the more advanced participants
that can culminate in a supervised or guided learning process. This can in turn
occur according to the four formats as follow:
• Modeling: In this process, the Expert’s activities and actions are systemati-

cally monitored and observed by the Novice. This can happen as the receiver
aims to emulate the sender given the latter’s reputation on their FLOSS
contribution. An example could be tracking the sender’s commits in SVN,
their comments on mailing lists etc.;

• Coaching: As the term explains, this involves giving direct monitoring and
guidance to the requester’s and observing his/her performance;

• Scaffolding: In this process, the sender analyses and determines the recei-
ver’s level of capacity and allows him/her the opportunities to acquire

An Abstract State Machine (ASM) Representation of Learning Process 229

knowledge accordingly. For example, supplying materials (tutorials etc.) on
specific problems and a solution approach etc. based on the requester’s
background.

• Fading: This process depicts involving a requester in practical execution of
tasks for skills acquisition. However, as the requester’s performance matures,
the sender gradually gives them autonomy to apply their skills.

– Pushing: This is the type of directed learning that occurs when the sender takes
the initiative to make available opportunities of knowledge acquisition for
requesters. Just like the pulling, this process can also be understood in 4 formats:
Modeling, Coaching, Scaffolding and Fading.

Therefore, given this classification, one can identify nine learning processes, namely
Undirected/Reflective Learning, Directed-Pulling-Modeling, Directed-Pulling-Coaching,
Directed-Pulling-Scaffolding, Directed-Pulling-Fading, Directed-Pushing-Modeling,
Directed-Pushing-Coaching, Directed-Pushing-Scaffolding and Directed-Pushing-Fading.

3 ASM Requirements and Constructs

In a FLOSS community, the transfer of software engineering skills between partici-
pants occurs in an informal fashion but can be tracked through participants’ activities.
In order to accomplish this, some qualitative works on these activities have helped us
identify and formulate the 9 learning processes introduced in Sect. 2.1 through which
learning for this purpose occurs in FLOSS communities.

The purpose of building the ASMs is to develop models that can express the
occurrence of these learning processes. It is crucial noting that learning in FLOSS for
all processes that we have identified happens in three important phases that corresponds
to three stages of software engineering skills development. Such phases are: initiation,
progression and maturation. For each stage, a number of tasks/activities are carried out
by both the Novice (knowledge requester) and the Expert (knowledge provider).
Details of these activities in each phase or related thereof are graphically represented in
the Ground Models in the next section. While these phases and states apply for all the
identified learning processes, the demarcation thereof can be reflected through
instances of activities for each learning process. This simply means that for all the
identified instances of the learning process, there is a difference in the way the Novice
and the Expert would interact. For instance, with regard to an activity such as Com-
mentOnCode, an Expert in Reflective Learning process will provide an opinion on
improving the commented code or any other observation with an understanding that the
code’s owner is a peer who can agree or disagree with the suggestions. However, when
an explicit relationship has been established like in the context of the Directed-Pulling-
Modeling learning process, an Expert reacts mainly to the Novice’s comments with the
intent to provide guidance with the same CommentOnCode activity. The difference in
the steps undertaken to fulfill the same activity for these two learning processes lies in
the levels of responsibility, role of the Expert and Novice as well as their mutual
consideration for both learning processes. In spite of such differences, all the learning
processes can be considered through three phases, namely initiation, progression and

230 P. Mukala et al.

maturation, which are expanded with related activities respectively in Figs. 2, 3 and 4.
The initiation phase sanctions the start of a learning process as can be seen in Fig. 2
while the completion of a learning process can be demonstrated through the Novice
ability to undertake activities of the maturation phase as depicted in Fig. 4.

Therefore, the ASM Ground Models depicted below are built based on a number of
ASM constructs including states and transitions. Each Ground Model represents a
learning phase, with a number of states and activities. These activities are ASM
transitions and they determine moving from one state to another. In summary, we have
Participants (Novice or Expert) that take part in a learning process (LP) that occurs
through three phases with corresponding states and transitions (activities).

These terms (phases, states and transitions) capture the main constructs that explain
the different phases and activities a Novice goes through during a Learning Process.
The Expert plays a critical role during these phases as a knowledge provider. The three
ASM Ground Models as depicted in Figs. 2, 3 and 4 describe at some extent the
interaction Novice-Expert during the Learning Process in terms of activities they
perform in each respective phase. For clarity purposes, in order to illustrate the control
flow as efficiently as possible, we consider only two participants (one Novice and one
Expert) taking part in a learning process at a time.

We can thus express in ASM notation the basic specification that a phase in a
learning process LP can be any of list as enclosed in the brackets, namely initiation,
progression and maturation. ∃ Phase: LP —> {Initiation, Progression, Maturation}.
We can further express that in the initiation phase, a state can take any of the enclosed
values (Observation or ContactEstablishment): State: Initiation —> {Observation,
ContactEstablishment}. The same applies for the remaining two phases expressed
respectively: State: Progression —> {Revert, Post, Apply} and State: Maturation —>
{Analyze, Commit, Develop, Revert, Review}. Finally, for consistency we can also
express that two types of participants (Expert and Novice) take part in the learning
process as ∃ Participants: Participant ∈ LP —> {Expert, Novice}.

4 ASMs Specifications and Ground Models

A Learning Process (LP) is assumed to take place between any numbers of participants.
In this process, any participant can be either a Novice or an Expert depending on the
level of expertise and participant’s profile. At this level, the assumption is that learning
occurs between mates with a diversified expertise background who learn from each
other. In Sects. 4.1–4.3 we describe the three phases (initiation, progression and mat-
uration) and, for each phase, activities are identified and described phase-dependently.

4.1 Initiation Phase Ground Model

Two main states explain this phase: Observation and ContactEstablishement. This
simply refers to the steps in which the Novice or Expert will attempt to establish some
form of contact between them. As depicted in Fig. 2, in the first state (Observation) of
the state machine, both the Novice and Expert undertake a number of activities. When a
Novice seeks help, he/she can perform activities such as FormulateQuestion, and/or

An Abstract State Machine (ASM) Representation of Learning Process 231

IdentifyExpert and then PostQuestions or CommentPost, whereas the Expert can
provide help after he/she performs either ReadMessages on the mailing lists or
ReadPost from forums or ReadSourceCode as any participant commits code to the
project, or CommentPost. After completing these activities, we move to the second
state (ContactEstablishement).

In the second state (ContactEstablishement) the Novice and/or Expert attempts to
make contact in order to establish collaboration or to provide the required help. Hence,
the Novice at this point, can simply perform ContactExpert. If the Expert responds
positively, he/she can perform SendDetailedRequest, otherwise the cycle is restarted to
identifying an expert. The Expert on the other side, just like the Novice seeking to be
part of some form of knowledge channel, can perform ContactNovice and show interest
in helping or simply perform CommentPost as shown in Fig. 2.

As said above, this phase of learning occurs for all instances of learning processes,
the demarcation lies on two critical factors: the level of the Expert’s involvement and

Fig. 2. Initiation ASM Ground Model

232 P. Mukala et al.

the content of messages and deliverables exchanged. In future, we hope to unmask and
explain these differences as we empirically explore data from sample FLOSS projects.
Nevertheless, at this point one can note that in the context of undirected learning, a
Novice can be seen as a participant with considerable knowledge and skills because the
exchange is assumed to take place between two colleagues. This could be the default
perceptive knowledge exchange in such community environments where participants
learn from each other. However, with the remaining of the learning processes, the
emphasis is on the formal communication channel that exists between the concerned
participants as well as the knowledge gap and disparity between them. This gap makes
it possible for some level of mentorship as it allows for modeling, coaching, and fading
and scaffolding as previously eluded. Hence, the semantics of activities such as Con-
tactExpert, ContactNovice, PostQuestions, and CommentPost will vary accordingly
although this specification is quite representative of the steps that actually take place in
the process of observing occurring activities and possibly establishing these ties.

This description can also be summarized by the following ASM code providing the
specification as graphically represented by the Ground Model in Fig. 2.

Let Lpact = activity occurring in LP phase;
Let P denote Participant in Floss Community in LP and PFloss denotes the total number of
participants;
Let Pe and Pn respectively denote sets of participants that are expert and novice.
The keyword Choose simply denotes a choice to be made from listed options.

If state = observation then
If participant = n then

FORMULATEQUESTION (n)
IDENTIFYEXPERT (n)
Choose Lpact in (POSTQUESTIONS (e),

 COMMENTPOST (e)) do
Lpact

If participant = n then
Choose Lpact in (READMESSAGES (PFloss),
 READPOST (PFloss),
 READSOURCECODE (PFloss),

 COMMENTPOST (PFloss)) do
Lpact

//Move to second state
If state = ContactEstablishment then

If participant = n then
CONTACTEXPERT (n)
If SENDFEEDBACK (e) then

SENDDETAILEDREPORT (e)
Else

 StartInitiationPhase
IDENTIFYEXPERT (n)

If participant = Expert then
Choose Lpact in (CONTACTNOVICE (n),
 COMMENTPOST (n)) do

Lpact

An Abstract State Machine (ASM) Representation of Learning Process 233

4.2 Progression Specification and Ground Model

As with the first phase of the Lp, the enactment steps of these activities are quite similar
with the only demarcation factors being the level of the Expert’s involvement and the
content of messages and deliverables exchanged. In this phase, while the Novice
involved in the learning process starts gradually performing some apparent activities
pertaining either to developing source code, commenting source code and actively
engaging in the community discussions, the Expert’s role shifts towards assessing and
assisting the Novice where needed to ensure that the skills are effectively applied. Like
in the next phase, this role is carried out in almost the same way while unleashing the
Novice’s full autonomous operation.

In this phase, the specifications above and Ground Model provided in Fig. 3 can be
summarized as follows. Three main steps take place for both participants after estab-
lishing contact. These are Revert, Post and Apply and they denote important states
within this phase.

Fig. 3. Progression Phase Ground Model

234 P. Mukala et al.

These activities denote providing some level of feedback after being contacted, then
providing the required help for Novice and implementing new knowledge through a set
of new activities. In Revert, the Expert will then, if she/he accepted the request from the
Novice, attempt to perform ReviewThreadPosts, where questions or need for clarifi-
cation have risen, and ReviewThreadCode, for the purpose of critiquing and fixing as
required if needs be. He/she can also perform SendReply in an attempt to answer any
direct questions and help requests or just reacting to a discussion in a forum. While the
Novice, at this state, can only react to the Expert’s help or feedback and provide
insights on the extent to which the Expert’s input was helpful through ProvideFeed-
back or simply pose more questions through activity PostQuestions. In state Post, both
the Novice and Expert illustrate their activities by performing a number of tasks that
can all be grouped under this state. Some of these tasks include: PostQuestions, Re-
plyPostedQuestions, ReportBugs and SendFeedback. Hence, the flow of occurrence of
these tasks happens as follows: the Novice will, during this state, perform a number of
activities in the context of posting. These activities include PostQuestions, Reply-
PostedQuestions and possibly SendFeedback, when needed, while the expert will
directly or indirectly perform SendFeedback, ReplyPostedQuestions (possibly ques-
tions and requests from novice), PostQuestions, in order to enquire more if there is a
need for clarity, as well as ReportBugs, as a response to Novice’s need to understand
why some piece of code cannot run properly, for example. In the final state, Apply, core
development and practical activities are undertaken from both sides. The Novice can
start exercising the new acquired skills through activities such as AnalyseSourceCode,
when he/she looks at new commits, new pieces of code being posted by community
members and hence, the novice will also be able to perform RunSourceCode on these
pieces of code and comment on them through CommentOnCode and reporting bugs
through ReportBugs.

The expert in turn can monitor the Novice through also a set of almost similar
activities but for the purpose of evaluating the level of skill acquisition. These activities
include RunSourceCode and AnalyseSourceCode, to identify flaws in the Novice’s
works, and, if necessary, ReportBugs, CommentOnCode and also ReplyToPost. Any
more activities in this phase could trigger further states, but we set the limit of the scope
at this point.

4.3 Maturation Specification and Ground Model

To conclude with the last part of the specifications, as with the two previous phases,
most activities here in this phase have gained a certain level of maturation. It means in
this phase, the role of the Expert becomes more or less a sporadic assessor that pro-
gressively considers the Novice as a colleague and member of the same community.
The Novice, on the other hand, can possibly start at some extent new knowledge
exchange channels as an Expert, to transfer the newly acquired skills during partici-
pation in FLOSS environments. The following specification can be easily understood
by looking at the graphical representation in Fig. 4.

An Abstract State Machine (ASM) Representation of Learning Process 235

In this last phase of the learning process, the activities are presented to assert how
the novice has mastered the skills learnt during the learning process. Five main groups
of activities make up this phase of the process as referred to as states. These include
Analyze, Commit, Develop, Review and Revert. In the Analyze state, the Novice or
Expert engage in a set of activities to examine the maturity of the learning process. The
Novice is assumed to have acquired enough skills to be able to undertake a set of
activities, such as AnalyzeDiscussions, in order to actively engage and contribute to
comments and posts in the team about topics in the sphere of the skills acquired and
possibly becoming an Expert to a new Novice. Activity AnalyzeSourceCode consists in
analyzing the code (when applied) in order to understand and critique that piece of
software and, finally, activity AnalyzeThreadProgression is performed in order to be
part of a discussion and exchange a channel that engages on a topic related to a new
skill learnt. The Expert will perform the exact same activities but tracking the Novice’s
progress. Thus, these activities include AnalyzeThreadProgression, AnalyzeSource-
Code and AnalyzeDiscussions.

In the second state (Commit), the assumption is that as the Novice fosters his/her
skills on a specific area, he/she can now commit some deliverables at the repositories
that can be evaluated and criticized by the community. These activities include Sub-
mitBugReport, where the Novice will commit any fix or bug report for the interest of
the entire community, SubmitCode, where the Novice will commit some code for any
piece of software and participate to the project and build reputation for a possible role
transition, and also SubmitDocumentation, where the Novice is able to submit

Fig. 4. Maturation ASM Ground Model

236 P. Mukala et al.

documentation in terms of requirements elicitation documents, help document, user
manuals, tutorials etc. The Expert on the other hand, is assumed to conduct the same
activities for monitoring purposes and give feedback as needed.

During the next state (Develop), the Novice carries out a number of activities that
demonstrate his/her ability to develop. These activities include:

• FixBugs, where he/she attempts to fix any reported bugs in the project;
• GiveSuggestion, as part of reviewing peers’ works, which provide alternatives when

needed (for example what the appropriate function might be to perform a particular
task etc.);

• PostCommentOnCode, in order to make sure that appropriate indicative comments
in the source code are posted for enlightenment;

• ReplyToSuggestion, to reply and critique suggestion from other experts or novices
in an active fashion,

• WriteSourceCode, in order to commit pieces of software;
• ModifySourceCode, to modify any code and implement suggestion as requested.

In turn, the Expert carries out a number of activities as well during the learning
process and can perform RunSourceCode, in order to be able to perform Analyze-
SourceCode, and, if possible, as needed, perform CommentOnCode and ReportBugs to
the benefit of the Novice.

The Revert state in this phase is essentially the same state as in the progress phase.
This contains all feedback activities between the Novice and the Expert. Three classes
or activities occur under this state: ReviewThreadPosts, ReviewThreadCode and
SendReply. The Expert will then, if she/he accepted the request from the Novice,
attempt to perform ReviewThreadPosts, where questions or need for clarification have
risen, ReviewThreadCode, for the purpose of critiquing and fixing as required if needs
be. The Expert could also perform SendReply, in an attempt to answer any direct
questions and help requests or just reacting to a discussion in a forum. The Novice, at
this state, can only react to the Expert’s help or feedback and provide insights on the
extent to which the Expert’s input was helpful through ProvideFeedback or simply
pose more questions through PostQuestions.

In the last state, called Review, the Novice or Expert engage in a set of activities to
examine the maturity of the learning process in reviewing a number of posts and
artifacts according to the level of competency. The Novice can undertake as part of his/
her ability to Review a number of activities that can be assimilated to three main review
activities such as ReviewCommentContents, in order to contribute to comments and
posts in the team about topics in the sphere of the skills acquired and possibly
becoming an expert to a new novice, ReviewPosts, on mailing lists and forums so as to
react as needed to comments and posts related to a particular content that is the subject
of learning, ReviewSourceCode, which explains the ability to analyze the code (when
applied) and identify flaws that can be reported or fixed. The Expert, in this last phase
of the learning process, will be performing the same activities as the Novice, but on
the Novice’s progress work. Hence, he/she will perform ReviewPosts on posts from the
Novice and react as needed to comments and posts related to a particular content that is

An Abstract State Machine (ASM) Representation of Learning Process 237

the subject of learning. The Expert can also perform ReviewSourceCode in order to be
able to perform ReportBugs and also perform ProvideFeedback when necessary.

5 Using Process Mining to Validate the ASM Model

The ASM models as built in this paper form part of the undertaking to identify traces of
learning processes from FLOSS repositories. This evidence-based undertaking can be
accomplished through process mining. Process mining is a method of reconstructing
processes as executed from the event logs [29]. These logs are generated from process-
aware information systems such as Enterprise Resource Planning (ERP), Workflow
Management (WFM), Customer Relationship Management (CRM), Supply Chain
Management (SCM), and Product Data Management (PDM) [28]. The logs contain
records of events such as activities being executed or messages being exchanged on
which process mining techniques can be applied in order to discover, analyze, diagnose
and improve processes, organizational, social and data structures [29]. This can also be
understood as the automated discovery of processes from event logs resulting in a
generation of a process model (e.g., a Petri net or a workflow net) that describes the
causal dependencies between activities [28].

More specifically, the goal of process mining is the extraction of information on the
process from event logs using a family of a posteriori analysis techniques. These
techniques enable the identification of sequentially recorded events where each event
refers to an activity and is related to a particular case (i.e., a process instance) [28]. They
also can help identify the performer or originator of the event (i.e., the person/resource
executing or initiating the activity), the timestamp of the event, or data elements
recorded with the event. Being able to retrieve such information is critical in our
endeavor as we attempt to study the generation and originators of learning patterns from
data recorded in FLOSS repositories. However, in these repositories, the structure of
data files does not correspond to the required format of a log required for process
mining. This can be illustrated by the Process Mining Meta Data Model in Fig. 5 below.

Fig. 5. Process Mining Meta Data Model

238 P. Mukala et al.

The idea as expressed in the model is that a log, an event log that is ready for
process mining should abide by a number of structural properties to facilitate its
processing and analysis. It should contain data organized and clustered in processes;
each of these processes has instances uniquely identifiable with a set of activities.
A process instance can also be referred to as a case instance includes a number of
events that consist of activities being executed at a given point in time. An example
could be a log of an insurance company might contain information about a billing and
refund process. A refund process has a number of process instances uniquely identified
by the claim number. Activities that should be executed in the refund process may
include registering the claim, and checking the insurance policy. An example of an
event is “On Thursday September 23, 2010 Alice checks the insurance policy of the
persons involved in claim 478-12” [26].

However, in Floss repositories, data can be often found in form of statistical details
or email messages exchanged in forums. Therefore, these ASM models will be used to
help construct the logs containing all the information we need to represent the learning
processes. These models can guide in identifying activities in these data as specified in
the model and build an event log on this basis.

Furthermore, the output of process mining plays three important roles. These
include discovery, conformance and extension [28]. In discovery, the idea is that a new
model is discovered from the event log and it provides insights on processes in the
systems. With conformance, there is an a priori model which is used to verify if the
events recorded in the log conform to such model; this is used to detect deviations,
locate and explain them in order to take appropriate actions. The last role of process
mining is extension, where the a priori model is extended or enriched with new aspects,
for example the extension of a process model with performance data.

In our context, we intend to use process mining for the second role, which can be
referred to as conformance. Rozinat and van der Aalst [26] highlight that the question
of conformance arises when there is a need to check for conformity. Given the exis-
tence of predefined models that specify how the processes should (or are expected to)
be executed as our ASM models, conformance helps determine at what extent these
models relate to the actual process models generated as a result of recorded data. For
conformance, two techniques are mainly considered to this end, namely Delta Analysis
and Conformance Testing.

Delta analysis is defined as a way of comparing the discovered model (process
model) with some predefined model while conformance testing attempts to determine
the “fit” between these two models [27]. In our case, delta analysis implies comparing
the obtained process models as a result of process mining FLOSS repositories with our
ASM models. This analysis can help validate the ASM models that describe how
learning occurs or provide new insights that can help enrich this area of research and
probably lead to their realignment if any discrepancies are detected in order to improve
the process as seen in Fig. 6 below.

An Abstract State Machine (ASM) Representation of Learning Process 239

6 Conclusion and Future Work

Mining Software Repositories for any purpose has been and still is the heart of
numerous endeavors aiming at understanding open source software development.
As we set to investigate and understand learning processes in FLOSS communities
using process mining, ASM specifications can provide a detailed guideline in acquiring
and retrieving relevant data. With the specifications at hands, in order to track learning
processes in these environments, one can explore as much as possible data from
repositories such as MailingList archives, Bug reports and CVS in order to understand
patterns and related learning activities.

Our requirements as specified can be traced on these sets of data at an acceptable
level of granularity.

We hope that these ASM specification and Ground Models are enough, at this point
at least, to draw a representational idea as to the degree to which our identified learning
processes occur in FLOSS communities.

As these activities in different phases unfold and are completed, it is critical to note
that the representation of any learning process is enriched with an analysis and
description of the impact of newly acquired skills on the Novice’s contributions pre and
post learning on a given project. In the future, we plan to conduct some empirical
experiments based on these specifications in order to explore and analyze these learning
processes from FLOSS repositories using Process mining techniques.

Fig. 6. ASM Ground Model used for Process Mining

240 P. Mukala et al.

References

1. Fensel, D.: Formal specification languages in knowledge and software engineering. Knowl.
Eng. Rev. 10(4), 361–404 (1995)

2. Tse, T.H., Pong, L.: An examination of requirements specification languages. Comput. J. 34
(2), 143–152 (1991)

3. Shaw, A.C.: Software specification languages based on regular expressions. In: Riddle,
W.E., Fairley, R.E. (eds.) Software Development Tools, pp. 148–175. Springer, Heidelberg
(1980)

4. Harmelen, F.V., Aben, M.: Structure-preserving specification languages for knowledge-
based systems. Int. J. Hum Comput Stud. 44(2), 187–212 (1996)

5. Bjørner, D., Henson, M.C.: Logics of Specification Languages, vol. 18. Springer, Berlin
(2008)

6. Cooke, D., Gates, A., Demirörs, E., Demirörs, O., Tanik, M.M., Krämer, B.: Languages for
the specification of software. J. Syst. Softw. 32(3), 269–308 (1996)

7. Tan, Y.M.: Introduction. In: Tan, Y.M. (ed.) Formal Specification Techniques for
Engineering Modular C Programs, pp. 1–15. Springer, New York (1996)

8. Overstreet, C.M., Nance, R.E., Balci, O., Barger, L.F.: Specification languages:
understanding their role in simulation model development (1987)

9. Gruninger, M., Tissot, F., Valois, J., Lubell, J., Lee, J.: The process specification language
(PSL) overview and version 1.0 specification. US Department of Commerce, Technology
Administration, National Institute of Standards and Technology (2000)

10. Gruninger, M., Menzel, C.: The process specification language (PSL) theory and
applications. AI Mag. 24(3), 63 (2003)

11. Catron, B.A., Ray, S.R.: ALPS: a language for process specification. Int. J. Comput. Integr.
Manuf. 4(2), 105–113 (1991)

12. Schlenoff, C., Knutilla, A., Ray, S.: Unified process specification language: requirements for
modeling process. Interagency Report, 5910 (1996)

13. Schlenoff, C., Ray, S., Polyak, S.T., Tate, A., Cheah, S.C., Anderson, R.C.: Process
specification language: an analysis of existing representations. US Department of
Commerce, Technology Administration, National Institute of Standards and Technology
(1998)

14. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and validation of the business
process execution language for web services. In: Zimmermann, W., Thalheim, B. (eds.)
ASM 2004. LNCS, vol. 3052, pp. 78–94. Springer, Heidelberg (2004)

15. Börger, E., Stärk, R.F.: Abstract State Machines: A Method for High-level System Design
and Analysis (with 19 Tables). Springer, Heidelberg (2003)

16. Börger, E.: The origins and the development of the ASM method for high level system
design and analysis. J. Univ. Comput. Sci. 8(1), 2–74 (2002)

17. Börger, E.: High level system design and analysis using abstract state machines. In: Hutter,
D., Stephan, W., Traverso, P., Ullmann, M. (eds.) FM-Trends 1998. LNCS, vol. 1641,
pp. 1–43. Springer, Heidelberg (1999)

18. Börger, E.: The ASM Method for system design and analysis. a tutorial introduction. In:
Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 264–283. Springer,
Heidelberg (2005)

19. Glott, R., SPI, A.M., Sowe, S.K., Conolly, T., Healy, A., Ghosh, R., West, D.: FLOSSCom -
Using the Principles of Informal Learning Environments of FLOSS Communities to
Improve ICT Supported Formal Education (2011)

An Abstract State Machine (ASM) Representation of Learning Process 241

20. Glott, R., Meiszner, A., Sowe, S.K.: FLOSSCom Phase 1 Report: Analysis of the Informal
Learning Environment of FLOSS Communities. FLOSSCom Project (2007)

21. Cerone, A.K., Sowe, S.K.: Using Free/Libre Open Source Software Projects as E-learning
Tools. Electronic Communications of the EASST, 33 (2010)

22. Fernandes, S., Cerone, A., Barbosa, L.S.: Analysis of FLOSS communities as learning
contexts. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 405–416.
Springer, Heidelberg (2014)

23. Rubin, V., Günther, C.W., van der Aalst, W.M., Kindler, E., van Dongen, B.F., Schäfer, W.:
Process mining framework for software processes. In: Wang, Q., Pfahl, D., Raffo, D.M.
(eds.) ICSP 2007. LNCS, vol. 4470, pp. 169–181. Springer, Heidelberg (2007)

24. Cerone, A.: Learning and Activity Patterns in OSS Communities and their Impact on
Software Quality. ECEASST, 48 (2011)

25. Sowe, S.K., Stamelos, I.: Reflection on Knowledge Sharing in F/OSS Projects. In: Russo,
B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Development,
Communities and Quality. LNCS, vol. 275, pp. 351–358. Springer, New York (2008)

26. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1), 64–95 (2008)

27. van der Aalst, W.M.: Business alignment: using process mining as a tool for Delta analysis
and conformance testing. Requir. Eng. 10(3), 198–211 (2005)

28. van der Aalst, W.M., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,
C.W.: Process mining: a two-step approach to balance between underfitting and overfitting.
Softw. Syst. Model. 9(1), 87–111 (2010)

29. De Weerdt, J., Schupp, A., Vanderloock, A., Baesens, B.: Process mining for the multi-
faceted analysis of business processes—a case study in a financial services organization.
Comput. Ind. 64, 57–67 (2012)

242 P. Mukala et al.

A Mathematical Model for Assessing KRAS
Mutation Effect on Monoclonal Antibody

Treatment of Colorectal Cancer

Sheema Sameen, Roberto Barbuti, Paolo Milazzo(B), and Antonio Cerone

Dipartimento di Informatica, Università di Pisa, Pisa, Italy
{sameen,barbuti,milazzo,cerone}@di.unipi.it

Abstract. The most challenging task in colorectal cancer research
nowadays is to understand the development of acquired resistance to
anti-EGFR drugs. The key reason for this problem is the KRAS muta-
tions produced after the treatment with monoclonal antibodies (mAb).
KRAS screening tests done before the start of the treatment are not very
sensitive to identify minute quantity of the mutated cells, which can pro-
duce resistance to the therapy after the beginning of the treatment. Here
we present a mathematical model for the analysis of KRAS mutations
behavior in colorectal cancer with respect to mAb treatments. To evalu-
ate the drug performance we have developed equations for two types of
tumors cells, i.e. KRAS mutated and KRAS wildtype. Both tumor cell
populations were treated with a combination of mAb and chemotherapy
drugs. It was observed that even the minimal initial concentration of
KRAS mutation before the treatment has the ability to make the tumor
refractory to the treatment. Patient’s immune responses are specifically
taken into considerations and it is found that, in case of KRAS mutations,
the immune strength does not affect medication efficacy. Finally, Cetux-
imab (mAb) and Irinotecan (chemotherapy) drugs are analyzed as first-
line treatment of colorectal cancer with few KRAS mutated cells. Results
show that this combined treatment is only effective for patients with high
immune strengths and it should not be recommended as first-line therapy
for patients with moderate immune strengths or weak immune systems
because of a potential risk of relapse, with KRAS mutant cells acquired
resistance involved with them.

Keywords: Colorectal cancer · Mathematical model · Monoclonal anti-
body resistance · KRAS mutation

1 Introduction

The World Health Organization (WHO) declared colorectal cancer (CRC) as
the second most common cause of cancer mortality in Europe [1]. Monoclonal
antibody (mAb) has been introduced as the most promising treatment to fight
disease. The development of acquired resistance to the mAb drug, due to KRAS
mutations, makes the problem very complex in terms of personalized treatment.
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 243–258, 2015.
DOI: 10.1007/978-3-319-15201-1 16

244 S. Sameen et al.

We have developed a system of non-linear ordinary differential equations (ODEs)
to model the impact of KRAS mutations on the mAb and chemotherapy combi-
nation treatment of colorectal cancer. We have studied the behavior of mAb and
chemotherapy with respect to patient immune responses and we have explored
one mAb drug as a potential candidate for first-line therapy of CRC, in combi-
nation with chemotherapeutic drug.

Colorectal Cancer Therapy and KRAS Mutations. Colorectal cancer is,
in most cases, caused by the overexpression of epidermal growth factor receptor
(EGFR). Monoclonal antibodies are a major breakthrough in CRC therapeutic
research because of their anti-EGFR activity [2,3]. The Food and Drug Admin-
istration (FDA) approved mAb drugs for colorectal cancer including Cetuximab
and Panitumumab [4]. These drugs produce promising results when adminis-
tered in combination with chemotherapeutic drugs [5,6]. They kill tumor cells in
three ways: by directly blocking the EGFR pathway, by enhancing the activity
of chemotherapeutic drugs and by enabling antibody-dependent cellular cyto-
toxicity (ADCC) from natural killer cells.

The emergence of KRAS mutations is the main obstacle to progresses in
tumour treatments by monoclonal antibodies. It has been frequently reported
that patients having KRAS mutations show no significant response to mAb treat-
ment [7,8]. KRAS mutations are found in approximately 35 %–45 % of CRCs
[9–11]. For this reason KRAS mutational status is considered as predictive
marker for determining the efficacy of anti-EGFR therapies, and KRAS screen-
ing tests are prescribed by physicians before the start of treatments [12]. Only
patients having wild type KRAS are eligible for mAb therapy to avoid acquired
resistance to drugs in case of mutant KRAS [13]. Interestingly, some patients
who have initially only KRAS wild type cells before treatment, still remain irre-
sponsive to the medication because of the emergence of KRAS mutations. There
could be two possibilities for this phenomenon: either the mutations are produced
by the drug, or there are initially subpopulations of KRAS mutants present in
the body which are undetectable by conventional screening tests. Most scientists
agree with the second hypothesis because minimal quantities of KRAS mutant
cells cannot be detected by simple sequencing techniques, but can only be found
by using the sensitive pyrosequencing method [14,15].

Previous Models. Various colorectal cancer mathematical models have been
developed for basic tumor cell populations, cell proliferation and for the more
complex pharmacodynamic and pharmacokinetics in colorectal cancer treatment
[16]. These include models of colon crypts [17–21] and models of chemotherapy
for colorectal cancer [22,23]. Recently, DePillis et al. proposed a model which
includes both chemo and immunotherapy along with considerations of patient
specific immunity parameters. This is a comprehensive model which includes
tumor cell and immune cell populations, chemotherapy and monoclonal antibody
treatment. Results show the effect of drugs on chemorefractory tumors [26].

A Mathematical Model for Assessing KRAS Mutation Effect 245

The hypothesis of drug resistance of KRAS mutations in colorectal cancer is
quite recent. Diaz Jr. et al. recently published a paper in which they proved that
pre-existed small number of KRAS mutated cells are responsible for developing
resistance to Panitumumab, a monoclonal antibody drug [24]. Another very
recent paper by Stites describes a mathematical model which evaluates how
different KRAS mutated polymorphisms show different sensitivity to the EGFR
inhibitors [25].

The model presented here studies the impact of KRAS mutations on the
mAb treatment.

2 Extending DePillis’ Model

The purpose of our model is to monitor tumor growth with respect to KRAS
mutational status during and after the mAb therapy. Our model is an extension
of the model developed by DePillis et al. [26]. We extend DePillis’ model by
representing tumor cell populations using two equations, Eq. (1) for tumor cells
with wild type KRAS and Eq. (2) for mutant KRAS tumor cells. All the other
equations for natural killer cells (NK), cytotoxic T lymphocytes (CTL), lympho-
cytes excluding NK cells and CTLs and medications are as in the original model
by DePillis et al. [26]. The model is implemented using the OCTAVE program-
ming environment [27,28]. For detailed information and parameter values of the
model see the DePillis paper [26]. The model includes equations for:

1. wild type tumor cell (Tw) and mutant tumor cell (Tm) populations;
2. patient immune system including, Natural killer cells (N), CD8+ T-Cells (L),

Lymphocytes (C) and Interleukins (I);
3. chemotherapy (M) and monoclonal antibody (A) treatment;
4. patient immune strength (D).

We illustrate these four groups of equations in Sects. 2.1–2.4

2.1 Equations for Tumor Cells

Equation for KRAS Wild-Type Tumor Cells. Tumor cells with KRAS
wildtype nature go through natural clonal expansion process to form a tumor
mass. The only two factors that interrupt the logistic growth of tumor cells are
immune system and therapy. This fact is modeled in Eq. (1).

dTw

dt
= aTw(1 − b(Tw + Tm)) − (c + ξ

A

h1 + A
)NTw

−DTw − (Kt + KatA)
Tw

αTm + Tw
(1 − e−δTM)Tw − ψATw

(1)

Logistic tumor growth is modeled by term aTw(1 − b(Tw + Tm)). The innate
immune system of the body fights tumor cells with the help of natural killer
cells (term −cNTw) and CD8+ T cells (term −DTw). Two other ways by

246 S. Sameen et al.

which tumor cells experience death are chemotherapy (term Kt Tw
αTm+Tw (1 −

e−δTM)Tw) and monoclonal antibody treatment The triple action of monoclonal
antibody, which is valid only for KRAS wildtype tumor cells, includes terms for:

– direct killing (−ψATw);
– killing by enhancement of chemotherapy (KatA Tw

αTm+Tw (1 − e−δTM)Tw);
– killing by assisting natural killer cells (−ξ A

h1+ANTw).

Equation for KRAS Mutant Tumor Cells. KRAS mutant cells behave
differently from the KRAS wildtypes by disturbing the triple action behavior of
monoclonal antibody treatment. The monoclonal antibody is not able to directly
kill KRAS mutant tumor cells and also fails to create chemosensitization in
KRAS mutants. This fact is modeled in Eq. (2).

dTm

dt
= aTm(1 − b(Tw + Tm)) − (c + ξ

A

h1 + A
)NTm

−DTm − (Kt
Tw

αTm + Tw
)(1 − e−δTM)Tm

(2)

Thus Eq. (2) is obtained from Eq. (1) by removing the two terms for mAb induced
tumor death in KRAS wildtype tumor cell equation and mAb-induced tumor
death by enhancing activity of chemotherapy.

2.2 Equations for Immune Response

Natural killer cells, CD8+ T-Cells, other lymphocytes, and interleukins all play
a vital role in creating immediate immune response with the initiation of tumor.
Thus, in order to analyze the effect of immune system response and strength on
the tumor proliferation we introduce four equations.

Natural Killer Cells. Natural Killer (NK) cells are a fundamental part of host
first-line defense system. Their activity is modeled in Eq. (3).

dN

dt
= eC − fN − (p + pa

A

h1 + A
)N(Tw + Tm) +

pnNI

gn + I

−Kn(1 − e−δNM)N
(3)

They are produced from circulating lymphocytes (term eC) and their activ-
ity is stimulated by interleukins (term pnNI

gn+I). NK turnover is modeled by term
fN . In case of tumor cells NK cells exhibit a special killing mechanism known as
“Antibody-dependent cell-mediated cytotoxicity” (ADCC). In this process NK
cells recognize tumor cells by special receptors that identify attached antibodies
on the surface of tumor cells. After recognition, NK cells release some cytotoxic
granules into the tumor cell which consequently cause death. The cytotoxic gran-
ules are actually tumor killing resources of NK cell; in case of exhaustion of these
resources the NK cells die (term (p + pa A

h1+A)N(Tw + Tm)). In addition, NK
cells may die due to chemotherapy toxicity (term −Kn(1 − e−δNM)N).

A Mathematical Model for Assessing KRAS Mutation Effect 247

CD8+ T-Cells. Cytotoxic lymphocytes are part of cell-mediated immunity.
They kill target cells by releasing into them specialized granules that program
them to undergo apoptosis. They are vital for killing tumor cells. Their activity
is modeled in Eq. (4).

dL

dt
=

θmL

θ + I
+ j

Tw + Tm

k + T
L − qL(Tw + Tm) + (r1N + r2C)

(Tw + Tm) − uL2CI

κ + I
− Kl(1 − e−δLM)L +

piLI

gi + I

(4)

CD8+ T cell turnover is modeled by term θmL
θ+I and the breakdown of their

surplus in presence of IL-2 is modeled by term uL2CI
κ+I . CD8+ T cells activity is

stimulated by dead tumor cells, lysed by themselves (term j Tw+Tm
k+T L), NK cells

(term r1N(Tw + Tm)) or the general lymphocyte population (term r2C(Tw +
Tm)). Interleukins also perform stimulating effect on CD8+ T cells (term piLI

gi+I).
CD8+ T cell may die because of exhaustion of these tumor killing resources
(term qL(Tw + Tm)) or due to chemotherapy toxicity (term Kl(1− e−δLM)L).

Lymphocytes. Lymphocyte count is the most important parameter to be con-
sidered while modeling tumors undergoing chemotherapy. Chemotherapy kills
normal cells along with the tumor cells; hence, patients are constantly checked
for their lymphocyte count during treatment. Reduction in lymphocyte count
means weakening of immune system, which makes the body more vulnerable.
Lymphocyte activity is modeled in Eq. (5).

dC

dt
= α − βC − Kc(1 − e−δCM)C (5)

Lymphocytes are synthesized in the bone marrow (term α) and their turnover
is modeled by term βC. In addition, lymphocytes may be killed by chemother-
apeutic drugs (term Kc(1 − e−δCM)C).

Interleukins. Interleukin-2 is a major regulatory factor of immune responses.
It belongs to a immune signaling group of cytokines. Interleukin-2 work as an
immune response system by increasing the activity of cytotoxic T-cells. Their
activity is modeled in Eq. (6).

dI

dt
= −μI + φC +

ωLI

ς + I
(6)

Interleukin-2 is produced in response to activated CD8+ T-cells (term ωLI
ς+I) or by

naive CD8+T cells and CD4+T cells in the body (φC). Its turnover is modeled
by term −μI.

248 S. Sameen et al.

2.3 Equations for Treatments

In order to monitor treatments, separate equations are defined for chemotherapy
(Irinotecan) and monoclonal antibody (Cetuximab). Terms V M(t)andV A(t), in
Eqs. (7) and (8), respectively, describe the amount of drug injected with respect
to time.

Chemotherapy/Irinotecan. The activity of chemotherapy depends on the
concentration of drug present in body at a specific time. This can be understood
by the rate of excretion of drug from body, which is modeled by term −γM .
Chemotherapy using Irinotecan is modeled by Eq. (7)

dM

dt
= −γM + V M(t) (7)

Monoclonal Antibody/Cetuximab. Monoclonal antibodies bind to the epi-
dermal growth factor receptors (EGFRs) present on the surface of tumor cells.
As an average cell contains thousands of EGFRs, many molecules of mAb drug
are consumed in a single tumor cell. The loss of mAb molecules due to their
binding with the tumor (term λT A

h2+A) is an important factor to be considered
while modeling mAb drug treatment to tumor. The rate of excretion of drug
from body is modeled by term −ηA.

dA

dt
= −ηA − λT

A

h2 + A
+ V A(t) (8)

2.4 Patient Immune Strength Formula

Immune strength, i.e. the effectiveness of CD8+ T-cells, is calculated using
Eq. (9). The formula uses the lymphocyte count ′L′ and tumor mass ′T ′ =
(Tw + Tm) along with other parameters to compute immune strength.

D = d
(L/T)l

s + (L/T)l
(9)

Immune strength D is calculated by considering the following parameters:

d = immune strength coefficient;

l = immune-system strength scaling coefficient;

s = ratio of (L/T)l (It tells how quickly CD8+ T-cell respond to the presence of tumor)

In our simulation we varied the parameters to generate three types of immune
strength values: strong, moderate and weak.

A Mathematical Model for Assessing KRAS Mutation Effect 249

2.5 Initial Conditions and Drug Dosages

The initial conditions for the model are taken from DePillis model except the
number of KRAS mutated cells. The initial number of KRAS mutated cells,
which can cause resistance to the treatment, is not available in the literature.
Thus we assumed a small number for KRAS mutated cells, say 35, because even
such a small number of mutated cells is able to cause resistance. The initial
conditions for the model are as follows.

Tw = 4.65928 × 109

Tm = 35
N = 9 × 107

L = 1.8 × 105

C = 9 × 108

M = 0
I = 1173
A = 0

The parameter values in our model are also taken from DePilis except the
rate of chemotherapy induced tumor death, which is reduced to the minimum
level because of KRAS mutations. As DePillis, we assume that patients are
already gone through first-line chemotherapy and are refractory to the treat-
ment. Therefore, the initial tumor is assumed to have a very large number of
cells: 4.65928×109. If tumor size becomes less than 27 cells during the treatment,
it is assumed that the tumor is showing complete response to the therapy. Sim-
ilarly, tumors which remain larger then 27 but do not continue to grow during
the treatment are considered to have partial response.

Treatment comprised individual or combination of monoclonal antibody and
chemotherapeutic drug, Cetuximab and Irniotecan, respectively. The drugs are
administered according to standard FDA approved dosages and timings. For
Irinotecan, a 125 mg/m2 dose is given over 90 min once a week, for 4 weeks. For
Cetuximab, a loading dose of 400 mg/m2 is administered for two hours, followed
by a 250 mg/m2 dose over 60 min given every week for one month.

3 Results

3.1 Monoclonal Antibody Effect on Chemotherapy and Natural
Killer Cell Activity

The enhancement of natural killer cells activity induced by mAb therapy is
the same for both mutated and wildtype cells. This is represented in both equa-
tions by the −ξ A

h1+ANTw term. Chemotherapy has reduced effectiveness against
tumor cells during monoclonal antibody treatment because of mutant cells. This
is represented in the model by −Kt Tw

α(Tm)+Tw . The chemotherapy effectiveness

250 S. Sameen et al.

Fig. 1. α value: 106 shows rapid
decrease in wildtype and increase in
mutant KRAS cells (Red: mutant;
Blue: wildtype) (Colour figure online)

Fig. 2. α: 107 shows gradual decrease
in wildtype and increase in mutant
KRAS cells (Red: mutant; Blue: wild-
type) (Colour figure online)

Fig. 3. Irinotecan monotherapy(Red:
mutant; Blue: wildtype) (Colour figure
online)

Fig. 4. Cetuximab monotherapy(Red:
mutant; Blue: wildtype) (Colour figure
online)

Fig. 5. Cetuximab and Irinotecan
as combination therapy with KRAS
mutant (Red: Mutant; Blue: Wildtype)
(Colour figure online)

Fig. 6. Cetuximab and Irinotecan as
combination therapy without KRAS
mutant (Red: Mutant; Blue: Wildtype)
(Colour figure online)

A Mathematical Model for Assessing KRAS Mutation Effect 251

Table 1. Cetuximab and irinotecan combination therapy

With KRAS Mutation Without KRAS mutation

Strong immunity NR/PR (Fig. 7) CR (Fig. 8)

Moderate immunity NR (Fig. 9) PR (Fig. 10)

Weak immunity NR (Fig. 11) NR (Fig. 12)

Fig. 7. Moderate Immunity response
to KRAS mutation

Fig. 8. Strong Immunity response
without KRAS mutation

decreases with the increase of the number of mutated cells. This term is intro-
duced in both the equations of wildtype and mutant tumour cells for controlling
the rate of chemotherapy induced tumor death. Kt is the maximum rate of
chemotherapy induced tumor death in the absence of KRAS mutant cells. The
above term makes the effectiveness of the chemotherapy dependent on the ratio of
wildtype and total tumor cells. This ratio is controlled by the parameter α in such
a way that, by increasing α, the rate of chemotherapy induced death is decreased
with respect to the increase in the mutant population (Figs. 1 and 2). Similarly,
by increasing the initial number of KRAS mutated cells or by decreasing the
initial number of KRAS wildtype cells, the rate of chemotherapy induced tumor
death becomes much lower. Hence, the function clearly models the phenomenon
of chemotherapy ineffectiveness, in conjunction with monoclonal antibody treat-
ment, in case of presence of KRAS mutant cells. It is hard to find more realistic
values for α as we did not find any clue in the literature about the chemotherapy
ineffectiveness rate due to increase in KRAS mutations. In our simulations we
used the value α = 107 because this shows a gradual decrease in the efficiency
of the chemotherapy as compared to a too rapid reduction experimented with
the smaller value α = 106.

3.2 Treatment Trial Simulations for KRAS Mutated Colorectal
Cancer Tumors

Our model has been evaluated for standard treatments by chemotherapy and
monoclonal antibodies for tumors with KRAS mutations. The KRAS mutated

252 S. Sameen et al.

Fig. 9. Moderate Immunity response
to KRAS mutation

Fig. 10. Moderate Immunity response
without KRAS mutation

Fig. 11. Weak Immunity response with
KRAS mutation

Fig. 12. Weak Immunity response
without KRAS mutation

tumors are treated according to standard dosage of drugs and are evaluated for
both monotherapy and combination therapy.

Cetuximab and Irinotecan Monotherapy. In accordance with the litera-
ture, in our model Cetuximab monotherapy has no impact on colorectal tumors
because of the number of elevated KRAS mutated tumor cells (Fig. 4). Similarly,
Irinotecan monotherapy has no impact on the tumor because of the chemore-
fractory status of tumor. Here, no increase in KRAS mutated cells is noticed
(Fig. 3). Results show that, although both drugs fail as monotherapies, failure of
Cetuximab is specifically caused by an increase in the number of KRAS mutated
cells.

Cetuximab and Irinotecan Combination Therapy. For patients presenting
metastatic colorectal cancer, Cetuximab and Irinotecan are recommended in
combination. We used our model to test the combination of the two drugs. This
allowed us to understand the impact of combined therapy on KRAS mutated
tumor cells (Fig. 5). KRAS mutated cells grow with the passage of time and
KRAS wild type cells start to reduce. However, as the initial number of KRAS
mutated cells is very small, their increase is not clearly visible in the figure.

A Mathematical Model for Assessing KRAS Mutation Effect 253

Anyway, even this very low level of KRAS mutated cells is still able to gradually
reduce the activity of drugs (Fig. 5). The combination therapy is only effective
for KRAS wildtype tumours (Fig. 6).

3.3 Patient Responses to the Therapy

We simulated our model for patients with different immune strengths. Generally,
it is believed that a strong immune system both helps the medication and facil-
itates quick recovery, while patients with weak immunity do not respond well
to the medicine. We analyzed the interaction between patient immune strength
and treatment in case of mutation development during and after medication. The
hypothetical immune strength values are calculated for generating weak, mod-
erate and strong immune responses. These values are generated by the formula
for immune strength (Eq. (9)) by changing the values of its parameters.

Our results are summarized in Table 1. Patients without KRAS mutations
have complete response (CR), partial response (PR) and no response (NR) for
strong, moderate and weak immunity, respectively. With KRAS mutations the
immune strength has no significant impact on the treatment. KRAS mutated
tumours normally show no response to the treatment but sometimes there is a
partial response in presence of a high immune strength. For moderate and weak
immunity there is no response at all.

3.4 Cetuximab and Irinotecan as First-Line Therapy

In this section we explore the possibility of using Cetuximab and Irinotecan as
first-line therapy. Initial conditions are the same as shown in Sect. 2.5. Patients
having weak immunity do not show any significant response to the Cetuximab
and Irinotecan as first-line therapy (Fig. 13). Tumor size reduces significantly in
patients with moderate immunity, but the number of KRAS mutated cells show
a relevant increase (Fig. 14). The response to the therapy is only observed in
patients with strong immunity and very low number of initial KRAS mutated
cells (Fig. 15).

4 Discussion

Emergence of KRAS mutated status is an alarming situation for colorectal can-
cer patients being treated with anti-EGFRs. Presence of KRAS mutations in a
tumor treated with monoclonal antibodies is a sign of becoming refractory to
treatments. In order to understand the phenomenon of developing resistance to
the anti-EGFRs we developed a mathematical model with separate equations
for KRAS mutant and wildtype cells.

A major problem in colorectal cancer is to identify the behavior of mon-
oclonal antibody therapy in presence of KRAS mutations and the impact of
the mutations on other therapies. More specifically, exploring the sensitivity of
monoclonal antibody drugs to the chemotherapy and natural killer cells activity

254 S. Sameen et al.

Fig. 13. Cetuximab and Irinotecan
as first-line therapy: weak immune
response (Red: Mutant; Blue: Wild-
type) (Colour figure online)

Fig. 14. Cetuximab and Irinotecan as
first-line therapy: moderate immune
response (Red: Mutant; blue: Wild-
type) (Colour figure online)

Fig. 15. Cetuximab and Irinotecan as first-line therapy: strong immune response
(Red:Mutant; Blue:Wildtype) (Colour figure online)

in the presence of mutations is another key issue in understanding drug effi-
cacy [29]. In case of natural killer cells, Cetuximab has equal enhancing effect
on both KRAS mutant and wildtype cells. In other words, KRAS mutational
status has no impact on the antibody-dependent cellular cytotoxicity (ADCC)
mediated by the drug [32]. Cetuximab has been frequently reported to increase
chemotherapeutic activity upon combination with Irinotecan drug in tumor cells
[30,31]. Studies show that KRAS mutant cells do not allow Cetuximab to pro-
duce such type of chemosensitization [9,13]. In chemo-refractory colorectal can-
cer with mutated KRAS the chemotherapy failed to induce tumor cell death,
not only for mutated cells but also for wildtype cells. The reason for this lies
in the heterogeneity of KRAS mutations in colorectal tumors [33–35]. In order
to model this phenomenon we have regulated the rate of chemotherapy induced
tumor death. We assumed that the effect of chemotherapy decreases with the
increase in KRAS mutated cells. Therefore, we cannot take any benefit from
the chemosensitization activity of mAb drugs in case of KRAS mutations. The
chemotherapy may work effectively only at the beginning of the treatment but
then, with the increase of KRAS mutant population, starts to loose its strength.

A Mathematical Model for Assessing KRAS Mutation Effect 255

Patient immune responses play a vital role in oncotherapeutic processes and
this role varies from positive to negative with strong to weak immune strength
respectively. The immune strength becomes unimportant for KRAS mutated
patients because the initially strong immunity turns into a weak one due to
the development of secondary KRAS mutations during the treatment [36]. Even
with the highest immune strength, the response to the drugs is only partial
(sometimes). In our simulations tumor size was set to its maximum and it is
considered refractory to the chemotherapy given as first-line to the patients.
The reason for adopting these criteria is because Cetuximab is generally given
as third- or fourth-line treatment to the patients as final rescue [38,39]. Hence it
is proved that there is no correlation between immune strength and combination
treatment for KRAS mutated patients.

The Cetuximab and Irinotecan combination therapy is proved to be very
effective as first-line therapy for colorectal cancer but this is true only for KRAS
wild-type patients [11,37]. Although KRAS screening tests are always performed
before starting monoclonal antibody treatments, there is a risk of minimal quan-
tities of KRAS mutated cells that are not detected by common sequencing
processes of laboratories. In this case critical questions arise about the patient’s
response to Cetuximab and Irinotecan as first-line therapy. Our results show
complete response only in patients with strong immunity. High immune strength
means little number of KRAS mutations, so there is a chance that the drug kills
wild-type cells quickly and chemotherapy also gets the chance to kill mutant
cells. The first-line therapy seems to work also for moderately immune per-
sons but, at the same time, increases the KRAS mutation level, which is a sign
of recurrence of disease. Patient responses are also dependent upon the initial
KRAS mutant cell concentrations. If the initial mutant level is very low then a
complete response can be obtained. However, in case of greater level of initial
KRAS mutants, the response is only partial with decrease in tumor size and sig-
nificant increase in KRAS mutant levels, which doubles the chances of relapse.
The relapse after Cetuximab as first-line therapy will be more lethal because of
acquired resistance to the drugs due to increased KRAS mutant populations.

5 Conclusion and Future Work

In Cetuximab and Irinotecan combination therapy the rapid increase in levels of
KRAS mutations and the partial or no response on the tumor size an indications
of the development of resistance to the drugs. Using our model we could measure
the level of KRAS mutations that can be tolerated to avoid resistance to anti-
EGFRs. This could provide information to stop the anti-EGFR treatment before
reaching the threshold value for KRAS mutant cells. The treatment could be
switched from anti-EGFR to anti-KRAS drugs. We do not know the clinical
perspective about switching treatments, but this could provide a better way to
solve the secondary KRAS mutation problem in colorectal cancers.

Patients with stronger immunity can be highly recommended for Cetuximab
and Irinotecan as first-line therapy but there is no instrument to accurately judge

256 S. Sameen et al.

a person’s immunity. Thus there is a potential risk associated with standard
dosage cycles of drugs. The failure of the treatment will ultimately lead towards
tumor progression with much higher rates. Moreover, the increased number of
KRAS mutations makes the problem even more complex by creating resistance
against the drugs. The co-occurrence of EGFR and KRAS mutations in a colorec-
tal cancer patient is indeed the worst case scenario. The possibilities of Cetux-
imab and Irinotecan drugs as first-line therapy for treatment of KRAS mutated
colorectal cancer can again be explored by varying dosages and timings of the
drugs and also by applying other monoclonal antibodies, e.g. Panitumumab and
Bevacizumab.

As future work, we also aim to develop a stochastic computational model for
KRAS mutations and combine it with the current mathematical model in order
to increase the accuracy of the model.

References

1. WHO/Europe—Colorectal cancer. http://www.euro.who.int/en/health-topics/
noncommunicable-diseases/cancer/news/news/2012/2/early-detection-of-common-
cancers/colorectal-cancer

2. Deschoolmeester, V., Baay, M., Specenier, P., Lardon, F., Vermorken, J.B.: A
review of the most promising biomarkers in colorectal cancer: one step closer to
targeted therapy. Oncologist 15, 699–731 (2010)

3. Repetto, L., Gianni, W., Aglianò, A.M., Gazzaniga, P.: Impact of EGFR expression
on colorectal cancer patient prognosis and survival: a response. Ann. Oncol. 16,
1557 (2005)

4. Gschwind, A., Fischer, O.M., Ullrich, A.: The discovery of receptor tyrosine kinases:
targets for cancer therapy. Nat. Rev. Cancer. 4, 361–370 (2004)

5. Van Cutsem, E., Peeters, M., Siena, S., Humblet, Y., Hendlisz, A., Neyns, B.,
Canon, J.L., Van Laethem, J.L., Maurel, J., Richardson, G., Wolf, M., Amado,
R.G.: Open-label phase III trial of panitumumab plus best supportive care com-
pared with best supportive care alone in patients with chemotherapy-refractory
metastatic colorectal cancer. J. Clin. Oncol. 25, 1658–1664 (2007)

6. Martinelli, E., De Palma, R., Orditura, M., De Vita, F., Ciardiello, F.: Anti-
epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin.
Exp. Immunol. 158, 1–9 (2009)

7. Parsons, B.L., Meng, F.: K-RAS mutation in the screening, prognosis and treat-
ment of cancer. Biomark Med. 3, 757–769 (2009)

8. Bando, H., Yoshino, T., Tsuchihara, K., Ogasawara, N., Fuse, N., Kojima, T.,
Tahara, M., Kojima, M., Kaneko, K., Doi, T., Ochiai, A., Esumi, H., Ohtsu,
A.: KRAS mutations detected by the amplification refractory mutation system-
scorpion assays strongly correlate with therapeutic effect of cetuximab. Br. J.
Cancer 105, 403–406 (2011)

9. Karapetis, C.S., Khambata-Ford, S., Jonker, D.J., O’Callaghan, C.J., Tu, D., Teb-
butt, N.C., Simes, R.J., Chalchal, H., Shapiro, J.D., Robitaille, S., Price, T.J.,
Shepherd, L., Au, H.J., Langer, C., Moore, M.J., Zalcberg, J.R.: K-ras mutations
and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359,
1757–1765 (2008)

http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/news/news/2012/2/early-detection-of-common-cancers/colorectal-cancer
http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/news/news/2012/2/early-detection-of-common-cancers/colorectal-cancer
http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/news/news/2012/2/early-detection-of-common-cancers/colorectal-cancer

A Mathematical Model for Assessing KRAS Mutation Effect 257

10. Amado, R.G., Wolf, M., Peeters, M., Van Cutsem, E., Siena, S., Freeman, D.J.,
Juan, T., Sikorski, R., Suggs, S., Radinsky, R., Patterson, S.D., Chang, D.D.:
Wild-type KRAS is required for panitumumab efficacy in patients with metastatic
colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008)

11. Van Cutsem, E., Köhne, C.H., Hitre, E., Zaluski, J., Chang Chien, C.R., Makhson,
A., D’Haens, G., Pintér, T., Lim, R., Bodoky, G., Roh, J.K., Folprecht, G., Ruff,
P., Stroh, C., Tejpar, S., Schlichting, M., Nippgen, J., Rougier, P.: Cetuximab and
chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J.
Med. 360, 1408–1417 (2009)

12. Fakih, M.M.: KRAS mutation screening in colorectal cancer: from paper to prac-
tice. Clin. Colorectal Cancer 9, 22–30 (2010)

13. De Roock, W., Piessevaux, H., De Schutter, J., Janssens, M., De Hertogh, G.,
Personeni, N., Biesmans, B., Van Laethem, J.L., Peeters, M., Humblet, Y., Van
Cutsem, E., Tejpar, S.: KRAS wild-type state predicts survival and is associated to
early radiological response in metastatic colorectal cancer treated with cetuximab.
Ann. Oncol. 19, 508–515 (2008)

14. Parsons, B.L., Myers, M.B.: KRAS mutant tumor subpopulations can subvert
durable responses to personalized cancer treatments. Pers. Med. 10, 191–199 (2013)

15. Tougeron, D., Lecomte, T., Pagés, J.C., Villalva, C., Collin, C., Ferru, A., Tourani,
J.M., Silvain, C., Levillain, P., Karayan-Tapon, L.: Effect of low-frequency KRAS
mutations on the response to anti-EGFR therapy in metastatic colorectal cancer.
Ann. Oncol. 24, 1267–1273 (2013)

16. Ballesta, A., Clairambault, J.: Physiologically based mathematical models to opti-
mize therapies against metastatic colorectal cancer: a mini-review. Curr. Pharm.
Des. 20, 37–48 (2014)

17. Johnston, M.D., Edwards, C.M., Bodmer, W.F., Maini, P.K., Chapman, S.J.:
Mathematical modeling of cell population dynamics in the colonic crypt and in
colorectal cancer. Proc. Natl. Acad. Sci. U.S.A. 104, 4008–4013 (2007)

18. van Leeuwen, I.M., Byrne, H.M., Jensen, O.E., King, J.R.: Crypt dynamics and
colorectal cancer: advances in mathematical modelling. Cell Prolif. 39, 157–181
(2006)

19. Fletcher, A.G., Breward, C.J.W., Chapman, S.J.: Mathematical modeling of mon-
oclonal conversion in the colonic crypt. J. Theor. Biol. 300, 118–133 (2012)

20. Murray, P.J., Walter, A., Fletcher, A.G., Edwards, C.M., Tindall, M.J., Maini,
P.K.: Comparing a discrete and continuum model of the intestinal crypt. Phys.
Biol. 8, 1478–3975 (2011)

21. Johnston, M.D., Edwards, C.M., Bodmer, W.F., Maini, P.K., Chapman, S.J.:
Mathematical modeling of cell population dynamics in the colonic crypt and in
colorectal cancer. Proc. Natl. Acad. Sci. U.S.A. 104(10), 4008–4013 (2007)

22. Monro, H.C., Gaffney, E.A.: Modelling chemotherapy resistance in palliation and
failed cure. J. Theor. Biol. 257, 292–302 (2009)

23. Boston, E.A.J., Gaffney, E.A.: The influence of toxicity constraints in models of
chemotherapeutic protocol escalation. Math. Med. Biol. 28, 357–384 (2011)

24. Diaz, L.A., Williams, R.T., Wu, J., Kinde, I., Hecht, J.R., Berlin, J., Allen, B.,
Bozic, I., Reiter, J.G., Nowak, M.A., Kinzler, K.W., Oliner, K.S., Vogelstein, B.:
The molecular evolution of acquired resistance to targeted EGFR blockade in col-
orectal cancers. Nature 486, 537–540 (2012)

25. Stites, E.C.: Differences in sensitivity to EGFR inhibitors could be explained by
described biochemical differences between oncogenic Ras mutants. bioRxiv (2014).
http://dx.doi.org/10.1101/005397

http://dx.doi.org/10.1101/005397

258 S. Sameen et al.

26. de Pillis, L.G., Savage, H., Radunskaya, A.E.: Mathematical model of colorectal
cancer with monoclonal antibody treatments. Brit. J. of Med. and Medical Res.
4(16), 3101–3131 (2014)

27. GNU Octave 3.8.1. http://www.gnu.org/software/octave/
28. Eaton, J.W., Bateman, D., Hauberg, S.: GNU Octave version 3.0.1 manual: a high-

level interactive language for numerical computations, CreateSpace Independent
Publishing Platform. ISBN: 1441413006 (2009). http://www.gnu.org/software/
octave/doc/interpreter

29. Arnold, D., Seufferlein, T.: Targeted treatments in colorectal cancer: state of the
art and future perspectives. Gut 59, 838–858 (2010)

30. Prewett, M.C., Hooper, A.T., Bassi, R., Ellis, L.M., Waksal, H.W., Hicklin, D.J.:
Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal
antibody IMC-C225 in combination with irinotecan (CPT-11) against human col-
orectal tumor xenografts. Clin. Cancer Res. 8, 994–1003 (2002)

31. Jonker, D.J., O’Callaghan, C.J., Karapetis, C.S., Zalcberg, J.R., Tu, D., Au, H.J.,
Berry, S.R., Krahn, M., Price, T., Simes, R.J., Tebbutt, N.C., van Hazel, G.,
Wierzbicki, R., Langer, C., Moore, M.J.: Cetuximab for the treatment of colorectal
cancer. N. Engl. J. Med. 357, 2040–2048 (2007)

32. Wu, L., Adams, M., Carter, T., Chen, R., Muller, G., Stirling, D., Schafer, P.,
Bartlett, J.B.: lenalidomide enhances natural killer cell and monocyte-mediated
antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells.
Clin. Cancer Res. 14, 4650–4657 (2008)

33. Vilar, E., Tabernero, J.: Cancer: pinprick diagnostics. Nature 486, 482–483 (2012)
34. Baldus, S.E., Schaefer, K.L., Engers, R., Hartleb, D., Stoecklein, N.H., Gabbert,

H.E.: Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations
in primary colorectal adenocarcinomas and their corresponding metastases. Clin.
Cancer Res. 16, 790–799 (2010)

35. Hasovits, C., Pavlakis, N., Howell, V., Gill, A., Clarke, S.: Resistance to EGFR
targeted antibodies - expansion of clones present from the start of treatment. The
more things change, the more they stay the same (Plus ca change, plus ca ne
change pas!. Transl. Gastrointest. Cancer 2, 44–46 (2013)

36. Smakman, N., Veenendaal, L.M., van Diest, P., Bos, R., Offringa, R., Borel Rinkes,
I.H., Kranenburg, O.: Dual effect of Kras(D12) knockdown on tumorigenesis:
increased immune-mediated tumor clearance and abrogation of tumor malignancy.
Oncogene 24, 8338–8342 (2005)

37. Folprecht, G., Lutz, M.P., Schöffski, P., Seufferlein, T., Nolting, A., Pollert, P.,
Köhne, C.H.: Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combi-
nation for the first-line treatment of patients with epidermal growth factor receptor
expressing metastatic colorectal carcinoma. Ann. Oncol. 17, 450–456 (2006)

38. Pfeiffer, P., Nielsen, D., Bjerregaard, J., Qvortrup, C., Yilmaz, M., Jensen, B.:
Biweekly cetuximab and irinotecan as third-line therapy in patients with advanced
colorectal cancer after failure to irinotecan, oxaliplatin and 5-fluorouracil. Ann.
Oncol. 19, 1141–1145 (2008)

39. Vincenzi, B., Santini, D., Rabitti, C., Coppola, R., Beomonte Zobel, B., Trodella,
L., Tonini, G.: Cetuximab and irinotecan as third-line therapy in advanced col-
orectal cancer patients: a single centre phase II trial. Br. J. Cancer. 94, 792–797
(2006)

http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/doc/interpreter
http://www.gnu.org/software/octave/doc/interpreter

Sea-Scale Agent-Based Simulator of Solea solea
in the Adriatic Sea

Cesar Augusto Nieto Coria1,4, Luca Tesei1,4(B), Giuseppe Scarcella2,
Tommaso Russo3, and Emanuela Merelli1,4

1 School of Science and Technology, University of Camerino, Camerino, Italy
{cesar.nietocoria,luca.tesei,emanuela.merelli}@unicam.it

2 National Research Council - Institute of Marine Sciences Ancona, Ancona, Itlay
giuseppe.scarcella@an.ismar.cnr.it

3 LESA-TVUR - Laboratory of Experimental Ecology and Aquaculture,
Tor Vergata University of Rome, Rome, Italy

tommaso.russo@uniroma2.it
4 CINFAI, Consorzio Interuniversitario Nazionale per la Fisica delle Atmosfere e

delle Idrosfere, Sezione di Camerino, Camerino, Italy

Abstract. DISPAS is an agent-based simulator for fish stock assessment
developed as a decision making support for the sustainable management
of fishery. In this work we enlarge the underlying model of DISPAS allow-
ing it to model and simulate a multi-scale scenario. We retain the cur-
rently available spatial scale, able to represent a limited average region
of the sea, and we introduce a new spatial macro-scale, able to represent
the whole sea. At the macro-scale a single agent represents an area of five
square nautical miles and manages groups of fish in different age classes.
The interactions among the macro agents permit the exchange of indi-
viduals of each class among neighbor areas. A case study regarding the
Solea solea (Linnaeus, 1758; Soleidae) stock of the northern Adriatic Sea
is used to show the intended approach, taking into account the available
data, coming from fishery independent scientific surveys.

Keywords: Modeling and simulation · Agent-based modeling · Ecosys-
tem modeling · Common sole · Adriatic Sea · Multi-scale modeling

1 Introduction

Marine ecosystems are undoubtedly an important environmental resource for
the life they support and, from a more ordinary point of view, as a source of
food through fishing activities, which are a relevant sector of the economy of
mostly all of the coastal Countries. Because of its importance, in the last twenty
years, a global concern about the sustainable management of marine resources
has risen [10]. In particular, as a partial consequence of weak or ineffective fishery
management policies, a rising overfishing in the Mediterranean Sea have been put
forward by scientists [5]. Within this scenario, national and regional management
bodies, with the support of research institutes, are currently cooperating to
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 259–275, 2015.
DOI: 10.1007/978-3-319-15201-1 17

260 C.A. Nieto Coria et al.

study, address and try to minimize the impact of fishery both on target species
and on their environment.

The northern part of the Adriatic Sea, as part of the Mediterranean Sea, is
one area of interest for these studies. Here, flatfish resources are highly vulnera-
ble to certain fishing activities (e.g. rapido trawling [25]) and to anthropogenic
impacts, such as the presence of contaminants and the disruption of sea-floor
integrity (e.g. dredging for beach nourishment). Within the group of flatfish,
the common sole, Solea solea (Linnaeus, 1758), is one of the most commercially
important species in the Adriatic Sea, which contributes for around 23 % to
the overall sole catch of the FAO-GFCM (Food and Agriculture Organization-
General Fisheries Council for the Mediterranean) area (Mediterranean and Black
Sea; FAO-FISHSTAT source). The majority of this contribution is provided by
the northern and central parts of the Adriatic basin, where around 64 % of the
common sole catches come from the Italian rapido trawl fleets, 33 % from the
Italian, Slovenian and Croatian set netters operating mostly within 3 nautical
miles from the coast, and the remaining 3 % from the Italian otter trawlers [9].
In particular, approximately 80 % of sole rapido trawl landings in the area occur
during the fall season [7].

In this scenario, marine biologists are required by management bodies to
monitor the sole fish stock in order to estimate its current size, determine the
impact of the fishing effort and give support for establishing fishing policies to
contrast overfishing. Among other initiatives, the SoleMon project [9] was started
in order to get fishery independent data, from scientific surveys, about soles in the
northern Adriatic Sea. These data are being applied to assess the stock, imple-
menting methodologies typical of the marine ecology sector. As a new promising
way of using the available data and supporting the stock assessment, DISPAS
(Demersal fIsh Stock Probabilistic Agent-based Simulator) [2,22,23] was intro-
duced. DISPAS is an agent-based simulator that was designed, implemented and
validated with the aim of having a tool to simulate how a (demersal) fish stock
would react to different scenarios of fishing efforts, considering also seasonal
and environmental conditions. The current version of the simulator is able to
reproduce an average square kilometer of sea in which each individual fish is
represented by an agent. The behavior of each agent is timed and probabilistic.
At every time step, simulating one month, any individual grows according to a
parametrized growth function. In the same step it is also subject to a natural
mortality probability - modeling interaction with other species (not explicitly
represented in the simulator) and with the environment - and to a probability
of being fished, which can vary at different months and can be set in different
ways to express a range of fishing efforts. In [2,22,23] it is shown that DISPAS
simulations are able to reproduce with a good degree of accuracy the biomass
(total weight of the stock), the abundance (total number of individuals in the
stock, divided by age class) and other indices of the considered stock in the
target period 2005–2011, as they are established by marine biologists [9].

Studies to evaluate existing spatial management regimes and potential new
spatial and temporal closures in the northern and central Adriatic Sea have

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 261

been carried out employing a simple modeling tool [30]. However, a quantita-
tive analysis of spatial management options is quite complicated to perform.
This is mainly due to the fact that information on the spatial dynamics of fleets
and stocks is often unavailable and effective spatial models are difficult to con-
struct [14]. In response to this need, in this work we present the main ideas and
machineries that will enable DISPAS to model and simulate a bigger portion
of a sea. The main motivation of doing this is to develop a spatial simulator
enabling marine biologists to experiment with their hypotheses and data on the
spatial distribution of the common sole stock in the northern Adriatic Sea. Our
solution is mainly guided by the paradigm of Complex Automata [11–13] that
permits the specification of multi-scale simulations in a flexible and general way.
In particular, we define a macro model of simulation at the sea scale that is
essentially a Cellular Automaton [3,32], with specific features, in which each cell
represents an hexagonal area of the sea of approximatively five square nautical
miles. The evolution of the individual soles in each area is simulated through a
“micro” model that corresponds, ideally, to the current DISPAS implementation.
Migration vectors in every possible direction are applied at each time step, which
is kept as one month, in order to accomplish the movement of individuals from
an area to neighbor areas. To obtain a more efficient multi-scale simulation, in
terms of time and space, a strategy for uncoupling of the ideal schema suggested
by the Complex Automata paradigm is proposed. This involves a preliminary
set of simulations, performed with the currently available version of DISPAS, in
order to obtain a “decoupling operator”. This operator is used to perform the
macro simulation as a standalone process.

The paper is organized as follows. Section 2 introduces some biological and
ecological information about the target species (common sole), while Sect. 3
recalls the main features of the current version of DISPAS. In Sect. 4, the para-
digm of Complex Automata is introduced to be then adapted, in Sect. 5, to our
needs and to the context of our case study. Finally, Sect. 6 concludes.

2 Biological and Ecological Background

The common sole belongs to a family of Soleidae and is a demersal fish. Among
other areas, e.g. in the North Sea, it lives in the whole Mediterranean Sea.
However, due to particular environmental conditions, the main concentration of
soles are in the seabeds of the northern and central part of the Adriatic Sea
(FAO GFCM Geographical Sub-Area 17).

Over time, a rising fishing effort has been applied to the sole fish stock; this
situation, together with a weak management of the fishery policies, has led to
an overfishing situation [29]. An example of the fishery policies that have been
applied by the Italian government is the closure of the trawl fishery along the
Italian shore (3 nautical miles from the coast) [1]. Another example of fish-
ery management policy is the fishing ban in the summer period (June, July
and August), or the legal minimum landing size for sole in the Mediterranean
(20 cm; EC reg. n. 1967/2006). Notwithstanding these policies, the fish stock of

262 C.A. Nieto Coria et al.

the common sole in the Adriatic Sea is still overfished and its sustainability is
considered at risk [29].

It is well known that the spatial distribution of individuals in a species are
in general not random, but depends on biological and environmental factors,
e.g. availability of food, climate, temperature and so on. In [9] the data of the
SoleMon project were reported. Data in the period 2005–2011 were used to study
the distribution patterns of the demersal fish species that inhabit the Adriatic
Sea. The results of this work were the determination of the spatial distribution
of the common sole in the Adriatic Sea, differentiated by age classes.

In [30], a spatial management of fishing effort patterns was presented, pre-
cisely for rapido trawling techniques, which is the most important activity tar-
geting the common sole in GSA 17. Two spatial fishing scenarios were proposed:
ban the rapido trawling (i) within 6 and (ii) within 9 nautical miles of the Italian
coast, from October to December. The aim was to study the impact of this fish-
ing technique on the stock, especially on the sole juveniles, and also the collateral
impact on the environment, e.g. habitat degradation by the seabed trawling.

Data from SoleMon (period 2006–2011) and data from Vessel Monitor System
(VMS) [26–28], which are about the fishery activity of 100 rapido trawl vessels
in the northern and central part of the Adriatic Sea, were used to estimate the
spatial pattern of the fleet. It was shown that the bigger fishery effort is applied
on the juveniles of the sole (classes from 0 to 2). A significant contribution of the
work was the idea of a management policy driven by a spatio-temporal restriction
on the fishery zones, especially where the juvenile age classes are concentrated.
The works presented above are the main biological references on which we base
on, in this paper, for introducing the multi-scale model for DISPAS.

3 DISPAS at Work

In this section we briefly summarize the main features of the current version of
DISPAS (Demersal fIsh Stock Probabilistic Agent-based Simulator), underlying
some results already obtained [2,23]. For more details we mainly refer to [22].

DISPAS was developed since the beginning with the aim of studying and sup-
porting fish stock sustainability. The common sole stock of the northern Adriatic
Sea was selected as target case study, given the importance of the stock from an
ecological point of view and the availability of data (see Sects. 1 and 2). Agent-
based modeling [8,15] was selected as the main paradigm of design, given the
vision of introducing in the marine ecology sector a tool using a different app-
roach from the classical ODE- or PDE-based modeling techniques. For modeling
the behavior of a single agent, which should emulate an individual fish (a sole),
we defined a class of automata called EPDTA (Extended Probabilistic Discrete
Timed Automata) [2]. Applying this automaton-based model we can formally
specify the behavior of an individual fish, depending on time. We represent the
interaction with other species and with the marine environment as probabilities
of natural mortality. The fishing effort is also expressed as a probabilities of
being fished. All these probabilities depend on time and on the age of the fish.

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 263

Fig. 1. DISPAS screen shoot.

Fig. 2. Number of Individuals chart, divided by age classes, derived from a DISPAS
execution.

The simulator has been developed, following the agent-based methodology,
on the Repast Simphony suite [19]. DISPAS (see Fig. 1 for a screen shot) is
currently able to manage a virtual space of a square kilometer of sea where the

264 C.A. Nieto Coria et al.

sole agents live1. The discrete time step of the simulation is equal to one month.
Each sole agent has its own attributes, among which an important one is the
length. Assuming a constant growth rate for the period of the simulations, this
attribute determines to which age class the specimens belongs. It is noteworthy
that differences in body size within the same age class and functional groups may
also occur and could reflect changes in climatic conditions (e.g., global warming
and its impacts on phytoplankton [24]) or human pressure (e.g., overfishing;
[20]). Natural and fishing mortality probabilities change on the base of time and
of the sole age class. The longevity of common sole in the Adriatic Sea has been
estimated as 8–10 years [9]. Due to the exploitation pressure, the ages from 5 to
8/10 are not well represented both in the commercial catches and in the survey.
For these reasons, a plus group 5+ has been used, an approach that has also
been used in [30].

The von Bertalanffy growth equation [31] is employed to estimate the sole
length from its age. This is the most widely used growth equation in fisheries
studies. Its growth rate parameter, K, can be considered as an abstraction,
among others, of the interactions of each individual agent with the environment.
For instance, a food abundance can be connected to a larger growth rate. In
the current version of DISPAS the parameter K is constant, but in the follow-
ing versions it will become dependent on time, on space and on environmental
conditions, e.g. temperature.

Data coming from the SoleMon Project [9] are used to estimate other para-
meters, e.g. the ones relating the weight of a sole from its length. Moreover, they
are used as abundance index in analytical models (XSA, SCAA, and so on) to
estimate fishing mortality in the years 2005–2011.

The user of the simulator can easily create different simulation scenarios
or tune the parameters of a simulation in order to first reproduce observed
results, as a validation, and, then, to make predictions varying environmental
conditions and/or fishing effort. The simulation outcomes are the predicted quan-
tities of agents in a month divided by age classes. They are saved for off-line data
analysis and also displayed in charts, with different views on the state of each
agent, during the execution of the simulation. As an example, Fig. 2 shows the
number of individuals divided per age class in the simulated square kilometer,
obtained in one simulation.

The natural mortality probabilities and the fishing probabilities can be spec-
ified in an external text file. It is possible to specify a different value for each
month along the whole simulation time. It is also possible to instruct DISPAS
to create a random value (in a given range) of newborn individuals, which are
introduced along the months of the year in which the species is observed to
offspring. As an alternative, the simulator can take the information about new-
borns from an external file. In this case the values are estimated by the user
analyzing available data. Finally, a list of other parameters can be set on the
GUI of the simulator.

1 The latest version of the simulator can be downloaded from http://giano.cs.unicam.
it.

http://giano.cs.unicam.it
http://giano.cs.unicam.it

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 265

In [22,23] DISPAS was validated using two different methodologies. The first
one was entirely based on SoleMon data. The simulator was instructed to per-
form 50 different runs and the outputted data about abundance and biomass
for each age class were processed offline to determine mean and variance. The
resulting curves were compared with real observed data at survey moments, i.e.
November of each year from 2005 to 2011. The approximation of real data by
the simulated ones was fairly accurate, apart from an overestimation of the stock
made by DISPAS in years 2008 and 2009. For a detailed discussion we refer to
[22]. The second validation methodology was based on SURBA (SURvey-Based
Assessments) [18], a well-established software tool in the context of stock assess-
ment. In particular, SURBA was fed with the simulation outputs of DISPAS
and the results were compared with the ones obtained feeding SURBA with the
SoleMon data. Also in this case the approximation was fairly good with an over-
estimation in years 2008 and 2009. The discrepancies are currently under study
for further tuning the model by introducing more environmental information
(we refer to [22] and to future works for a complete discussion).

4 Cellular and Complex Automata

Different approaches have been introduced in the literature for scaling from a
micro-scale simulation to a macro-scale one. Some references can be found in [21],
in particular for what concerns agent-based models. In this paper we mainly refer
to the strategy suggested by Complex Automata.

Complex Automata (CxA) [11–13] are a computational model in which it is
natural to define multi-scale simulations at different time and space scales. CxA
are based on Cellular Automata (CA) [3], a well known discrete model that has
been applied in several fields: physic, chemistry, theoretical biology, complexity
theory and so on [32]. A CA can be informally thought as a two-dimensional grid
of cells containing variables, which represent the state of each cell. The values of
such variables change over time in discrete steps using a set of rules that depends
on the current state of each cell and on those of its neighbor cells, which can be
identified using different topological patterns. For instance, in a two-dimensional
grid, a typical neighbor topology is defined as the eight surrounding cells of each
cell. In the following we introduce a definition of CAs that is useful for our
objectives. We refer to [3] and to the references therein for a full introduction to
cellular automata.

Definition 1. A Cellular Automaton A is a tuple

〈D(Δx,Δt, L, T),F, Φ, finit, u,O〉

where:

– D is the domain, made of spatial cells of size Δx and spanning a region of
size L;

266 C.A. Nieto Coria et al.

– Δt is the time step and T is the (approximatively) maximal time reached
through the evolution of A; i.e. T/Δt is the maximal number of iteration steps
of execution;

– F denotes the set of possible states; typically an array of states of dimension
L/Δx, one position of the array representing one cell;

– finit ∈ F is the initial state;
– Φ is the update rule according to which every state evolves along time steps;
– u is a function that puts A in communication with external data, i.e. its envi-

ronment; it is called at each iteration on the domain D;
– O, the observable, is a function that specifies a quantity, calculated from the

current state, that is given as an output.

According to the discussion in [4], the update rule Φ is constrained to be in
the form of Φ = P ◦ C ◦ B. This is different from the classical way of describing
the updating of a CA at each step and is mainly inspired from Lattice Boltz-
mann models. As a general description, the Boundary condition B is needed for
the updating of the cells on the border of the domain D, using some strategy,
e.g., in a closed world, the cells on one border are connected to the cells of
another border. Collision C acts locally on every cell changing the state, accord-
ing to information gathered in the neighbor cells. Propagation P propagates the
information calculated during the collision to the neighbor cells. We refer to [4]
for a more detailed description. The behavior of a CA A can be described by
a generic main loop structure, shown in Algorithm 1. Note that EC, meaning
Equilibrium Condition, is a generic predicate on the state indicating that the
CA has reached an intended configuration and can stop.

// Initialization of domain, state and time
D = Dinit; f = finit; t = 0;
while not EC do

t = t + Δt; // time step advances
D = u(D); // domain communicates with external environment
// updating: composition of Boundary, Collision and Propagation:
f = B(f); f = C(f); f = P (f);
Oi(f); // outputs the intermediate state observable

end
Of (f); // outputs the final state observable

Algorithm 1: Main loop of a Cellular Automaton.

The key observation that leads to the definition of CxAs is that it is always
possible to connect any two CAs by a flow of data between a pair of the oper-
ations of the main loop using well-defined coupling templates. Such templates
only depend on the spatio-temporal “positions” of the connected CAs in a Scale
Separation Map (SSM) [13]. An SSM is a two-dimensional map in which tem-
poral and spatial scales can be represented. Consider the SSM shown in the
left part of Fig. 3. On the horizontal axis two temporal scales are represented

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 267

by the pairs (Δt1, T1) and (Δt2, T2), corresponding to two CAs, A1 and A2. On
the vertical axis, two spatial scales are represented by (Δx1, L1) and (Δx2, L2).
The corresponding regions on the plane are separated. In this case, CAs A1 and
A2 can be coupled with the so-called “micro-macro” coupling template, that is
to say, A1 operates on a micro spatial-temporal scale, while A2 operates on a
macro spatial-temporal scale. Their executions are coupled connecting the two
main loops as shown in the right part of Fig. 3.

Fig. 3. A Scale Separation Map (left) showing that the two CAs can be coupled by a
micro-macro Coupling Template (right) [12].

Definition 2. A Complex Automaton S is a graph (V,E), where V is the vertex
set and E is the edge set, such that:

– V = {Ak | Ak is a CA},
– E = {Eh,k | Eh,k is a coupling template between Ah and Ak}.

Informally, the execution of the particular micro-macro coupling template
works in the following way. The macro CA, A2, starts it execution normally.
At each iteration, during the execution of the updating function Φ2, precisely
before the collision step, A2 calculates for each of its L2/Δx2 cells the initial
conditions for starting the execution of the corresponding micro CAs of type A1.
Such data are calculated only from the state of the A2 cells. Each micro CA
of type A1 is executed in parallel with A2, but it immediately stops due to a
blocking receive at the first instruction. This corresponds to the upper arrow of
the right part of Fig. 3, which represents the flow of data among the CAs. In
these flows the receive is always blocking and the send is always non-blocking.
After receiving the initial conditions from A2, each CA of type A1 enters its
main loop and continues the evolution until the equilibrium condition (at most
after time T1) is reached. After that, it sends the results of its whole evolution
back to A2 (lower arrow in Fig. 3). In the meantime, A2 was suspended after its
collision phase due to the blocking receive. Upon receiving the data from all the
micro CAs and adapting the state of each cell accordingly, it restarts performing
its current propagation phase. Then, the cycle is restarted.

268 C.A. Nieto Coria et al.

Note that the whole evolution of all micro cells is performed at every cycle
until the end of the macro execution. Thus, the execution time of the described
coupling template can be estimated as proportional to the total number of micro
steps required for reaching the end of the whole evolution (Nex):

Nex ∼
(

T1

Δt1

(

L2

Δx2

))

T2

Δt2

This means that the execution of a micro-macro multi-scale simulation can
require a very high computational cost, in terms of time, but also of space.

5 Multi-scale DISPAS

In this section we put the basis for the multi-scale version of DISPAS. We mainly
get inspiration from the CxA paradigm presented in Sect. 4. However, the multi-
scale DISPAS cannot be directly an instance of a CxA model. The first fun-
damental observation is that the running model of the current DISPAS, which
is the natural candidate for the “micro” part of the multi-scale simulation, is
a Multi-Agent System (MAS), not a CA. Nevertheless, the Repast Symphony
suite, on which DISPAS is developed, gives the possibility of defining a CA in
a very simple way. Indeed, the sole agents in DISPAS can be easily placed in a
grid of cells, but, as summarized in Sect. 3, their behavior is based on a timed
and probabilistic automaton-based model and the fundamental interaction of the
agents is with the environment. All in all, the current DISPAS version could be
certainly rephrased as a CA, instead of a MAS, but this appears to be an effort
with a low pay off and also does not naturally fit the behavioral assumptions
that we made on the fish individuals.

As far as the macro part of the simulation - the one at the sea level - is con-
cerned, instead, the paradigm of CA fits particularly well. Indeed, it is possible
to divide the area of interest, northern Adriatic Sea, into adjacent cells, each of
which contains a certain number of individual per age class. Such individuals
evolve using a properly parametrized version of the current DISPAS model and,
as a further action, at each step they exchange individuals with neighbor cells
using space-dependent migration vectors (see Sect. 5.2 below).

Before proceeding with the specification of the multi-scale schema, it is impor-
tant to analyze which kind of data are available in the considered scenario, in
order to have design directions towards an effective model that can also be vali-
dated.

5.1 Available SoleMon Data

The SoleMon project [9] has been surveying, from November 2005 each year in
November, sixty seven stations placed in different parts of the Adriatic Sea (see
Fig. 4). In each station, fishing samples are performed with the typical catch tech-
niques used for the common sole. The caught soles are then analyzed for deter-
mining the total length (which in turn determines the age class), the individual

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 269

weight, the sex, the maturity stage and several other biological and toxicological
indicators.

The important data that are needed in our project are the number of individ-
uals, for each age class (from 0 to 5+), estimated to live in each area. Since some
areas of the sea can not be surveyed, in these cases the number of individuals are
estimated by interpolation techniques, in particular the Kriging method [16,17]
will be used.

Fig. 4. SoleMon project stations (dots) and not surveyed areas [30].

SoleMon data have also been integrated within a Geographic Information
System (GIS). As a result, several shapefiles [6] have been created, each of which
maps on the sea the number of individuals (using appropriate ranges), for each
age class (see Fig. 5). The spatial distribution of individuals for each age class
is studied in [30]. This distribution can be considered an emergent behavior,
at the sea level, of the behavior of the common sole in the northern Adriatic
Sea, depending also on environmental, geographical, climatical factors as well
as on the fishing patterns that are applied at each geographical area. This kind
of aggregated data are what we intend to reproduce, as a validation, with the
multi-scale version of DISPAS that we are proposing.

5.2 Macro CA Specification

Let us now specify the CA As representing the macro model, at the sea level,
of the multi-scale DISPAS. Concerning the spatial scale, we consider as Δxs

an hexagonal cell whose area is approximatively 5 square nautical miles (see
Fig. 6), that is we take hexagons with side equal to 1.38726 nautical miles. This
dimension has been chosen on the basis of the haul length of rapido trawlers,

270 C.A. Nieto Coria et al.

Fig. 5. Adriatic Sea with areas showing the distribution of the common sole age classes.

the main fleet exploiting soles in the northern Adriatic Sea, in order to better
standardize their fishing effort in terms of number of hauls and space exploited
per day [30]. Moreover, the area is compatible with the average movement that
a sole has been observed to perform in the chosen temporal time step Δts, which
we take as one month (equal to the one-scale DISPAS time step). In this way, the
neighbor topology for the Propagation phase can be limited to the surrounding
cells of each cell. Finally, the hexagon shape is suitable for representing the
migration among adjacent areas. For each cell there are six possible directions of
migration (outgoing and ingoing): North, North-East, North-West, South-East,
South-West and South.

Fig. 6. Cell representation, with migration directions.

We keep Repast Symphony as the implementation platform, the same on
which the current version of DISPAS is implemented. Using the facilities of
the platform, the macro CA is represented as a MAS in which each agent is a
cell, positioned at certain coordinates, that does not move, and such that all the
positioned cells do not overlap. They cover an area corresponding to the northern
Adriatic Sea, which is the value of the spatial scale parameter Ls in squared
nautical miles. The time scale value of parameter Ts depends on the particular
simulation that is performed; typically a number of years between 5 and 10. The
state of each macro agent/cell contains the number of sole individuals in each

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 271

age class currently present in the hexagon area. Notice that, at the sea scale, we
loose the resolution of individual fish, keeping only the number of individual per
class. These are also the observables Os output by the CA. The function us is
the identity function.

Regarding the update function Φs, let us analyze the three phases one by
one. For the Boundary phase, the cells at the borders, i.e. those in contact with
the coast, do not require any particular management. Simply the migration vec-
tors are null towards the land. The Collision phase must consist in a growth,
during a month, of the individuals of each age class, which possibly can change
class if their new length, through the von Bertalanffy function, make them to get
over the threshold of their current class. Furthermore, each individual should be
subject to the natural mortality and fish mortality probabilities, correctly para-
meterized for the considered geographical area. Indeed, there are areas in which
the fishing effort is greater than the average and others (called sole sanctuaries
in [30]), in which the fishing effort is null.

The Propagation phase acts on the six surrounding cells of each cell. For each
cell hi, it is defined a migration vector Mi representing the outgoing probabilistic
migration rates, i.e. the probability that a given number of individuals migrates
in a certain direction in a considered month. The possible directions are six:

Mi(t, ac) = [N,Nw,Sw,S,Se,Ne]

The migration vector depends, in general, on the time t (a month along the simu-
lation), and on the age class ac. In this way, several scenarios can be represented.
The estimation of the values of the migration vectors will be crucial for the repro-
duction of the distribution of the various age classes observed in [30]. This task
will be based on the available data and performed in strict collaboration with
marine biologists, to exploit biological and environmental information.

At each step, for cell Mi, the number of individuals that are going to migrate,
for each age class, in any direction, is probabilistically calculated. Then, one by
one the values are propagated to the neighbor cells.

5.3 “Uncoupled” Coupling Template

Ideally, every cell hi of As must be associated with a current DISPAS model, say
Ad, adapted to represent five square nautical miles instead of a square kilometer.
This would imply only the changing of the initial number of the individuals for
each class, then the evolution would follow accordingly. Since the temporal scale
of the macro CA As and the MAS Ad is the same (Δt = one month, T =
N years), technically the coupling template is not a micro-macro one. However,
it is very similar, the only difference being the fact that the “micro” execution,
for each macro cell, consists of only one “micro” step. This mitigates the high
computational cost that would be needed to perform the multi-scale simulation.
Nevertheless, the computational cost of representing Ls/Δxs MASs of type Ad

and let all of them to advance of one month would be still very high in our target
scenario.

272 C.A. Nieto Coria et al.

To further simplify, we perform an abstraction by introducing an operator
C(t, h, ac) that should tell, with an appropriate degree of randomness, for each
particular area h, for each month t, how many individuals of age class ac will be
present at time t + 1 in the same class. The operator should take into account
the K growth rate, the natural mortality probability and the fishing probability
typical in the particular area h. In this way, the Collision phase of the macro CA
As corresponds to call, at time step t, the operator C(t, hi, ac) for each cell hi

and for each age class ac and to update accordingly the number of individuals
for each age class in the cell.

The operator C can be obtained by using the current version of DISPAS
to perform a preliminary set of “micro” simulations on each specific 5 square
nautical miles area, with specific values for K, for the natural mortality and for
the fishing mortality probabilities, as well as for other parameters. The means
and variances calculated with these simulations can then be used to define the
operator C in order to perform the macro simulation of As. This configures a
sort of “uncoupled semi-micro-macro” multi-scale simulation, which appears to
be suitable for reaching our objective of reproducing the spatial distribution of
the common sole age classes in the northern Adriatic Sea area.

5.4 Plausible Scenarios of Simulation

We plan to implement the macro CA simulation on the Repast Symphony suite,
developing a new version of DISPAS that retains the current features and adds
the possibility to perform the uncoupled multi-scale simulation suggested above.
Besides the reproduction of the spatial distribution of the soles, this would also
enable the users to set different scenarios of simulation in order to validate the
model and/or to perform predictions varying the settable parameters. A non-
exhaustive list of such possible scenarios follows.

– An interesting scenario would be, as shown in [30], the reproduction of one or
more particular “sanctuary” areas in the Adriatic Sea, i.e. areas in which the
fishing effort is null due to technical difficulties of the rapido trawl on irregular
sea bottom. In this way the impact of this and other possible sanctuary areas
could be evaluated on the stock evolution and on the age class distribution.

– Another possible scenario would be the simulation of fishing bans on particular
areas, e.g. those in which a high number of juveniles has been observed, in
particular periods of the year. This should have an impact on the abundance
of the lower age classes and maybe on the spatial distribution of the higher
age classes.

– Finally, it would be interesting to simulate a permanent or periodical fishing
ban close to the coast line. This is due to the hypothesis that juveniles mainly
stay in this area, at least on the Italian shore below the Po river mouth.

6 Conclusions

We have introduced the basic model for building a new multi-scale version of
the DISPAS simulator. The main motivation for the new features comes from

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 273

the need of studying the spatial distribution of the common sole species in the
northern Adriatic Sea. In particular, the new simulator would allow marine biol-
ogists to test hypotheses on the movements of the individual fish and would
enable the simulation of new sea-scale scenarios to predict the spatial impact of
fishing efforts and/or particular temporal measures (e.g. summer fishing bans)
on the considered fish stock.

As future work, we plan to implement the defined model on the Repast
Symphony agent-based programming suite, retaining the features of DISPAS
already implemented. In particular, the current MAS simulation capabilities
will be used for the execution of a preliminary phase of the defined multi-scale
“uncoupled” coupling template.

Acknowledgments. This work has been supported by the RITMARE Flagship Pro-
ject funded by the Italian Ministry of University and Research (http://www.ritmare.it).

References

1. AdriaMed Technical Documents: AdriaMed, General outline of marine capture
fisheries legislation and regulations in the Adriatic Sea countries. Technical report
14, GCP/RER/010/ITA/ TD14 (rev. 1), (rev. 1), 68 pp., FAO-MiPAF Scientific
Cooperation to Support Responsible Fisheries in the Adriatic Sea (2005)

2. Buti, F., Corradini, F., Merelli, E., Paschini, E., Penna, P., Tesei, L.: An individual-
based probabilistic model for fish stock simulation. Elect. Proc. Theor. Comput.
Sci. 33, 37–55 (2010)

3. Chopard, B., Droz, M.: Cellular Automata Modelling of Physical Systems. Cam-
bridge University Press, Cambridge (1998)

4. Chopard, B., Falcone, J.-L., Razakanirina, R., Hoekstra, A., Caiazzo, A.: On the
collision-propagation and gather-update formulations of a cellular automata rule.
In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.)
ACRI 2008. LNCS, vol. 5191, pp. 144–151. Springer, Heidelberg (2008)

5. Colloca, F., Cardinale, M., Maynou, F., Giannoulaki, M., Scarcella, G., Jenko, K.,
Bellido, J., Fiorentino, F.: Rebuilding mediterranean fisheries: a new paradigm for
ecological sustainability. Fish Fish. 14, 89–109 (2013)

6. ESRI: Shapefile technical description. An ESRI White Paper (1998)
7. Fabi, G., Grati, F., Raicevich, S., Santojanni, A., Scarcella, G., Giovanardi, O.: Val-

utazione dello stock di Solea vulgaris del medio e alto Adriatico e dell’incidenza di
diverse attivita di pesca. Final Report. Technical report, Ministero per le Politiche
Agricole e Forestali. Direzione generale della pesca e dell’acquacoltura. VI Piano
Triennale della pesca marittima e acquacoltura in acque marine e salmastre 1
(tematica c c6). Programma di ricerca 6-a-74 (133 XVII pp.) (2009)

8. Gilbert, N.: Agent-Based Models. Sage, Thousand Oaks (2008)
9. Grati, F., Scarcella, G., Polidori, P., Domenichetti, F., Bolognini, L., et al.: Multi-

annual investigation of the spatial distributions of juvenile and adult sole (solea
solea, l.) in the adriatic sea (northern mediterranean). J. Sea Res. 84, 122–132
(2013)

10. Hilborn, R., Hilborn, U.: Overfishing: What Everyone Needs to Know. Oxford
University Press, Oxford (2012)

http://www.ritmare.it

274 C.A. Nieto Coria et al.

11. Hoekstra, A.G., Caiazzo, A., Lorenz, E., Falcone, J.-L., Chopard, B.: Complex
automata: multi-scale modeling with coupled cellular automata. In: Kroc, J., Sloot,
P.M.A., Hoekstra, A.G. (eds.) Simulating Complex Systems by Cellular Automata,
pp. 29–57. Springer, Heidelberg (2010)

12. Hoekstra, A.G., Falcone, J.-L., Caiazzo, A., Chopard, B.: Multi-scale modeling
with cellular automata: the complex automata approach. In: Umeo, H., Morishita,
S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191,
pp. 192–199. Springer, Heidelberg (2008)

13. Hoekstra, A.G., Lorenz, E., Falcone, J.-L., Chopard, B.: Towards a complex
automata framework for multi-scale modeling: formalism and the scale separa-
tion map. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS
2007, Part I. LNCS, vol. 4487, pp. 922–930. Springer, Heidelberg (2007)

14. Holland, D.: Integrating spatial management measures into traditional fishery man-
agement systems: the case of the georges bank multispecies groundfish fishery. ICES
J. Mar. Sci. 60, 915–929 (2003)

15. Jennings, N., Wooldridge, M.J.: Agent Technology: Foundations, Applications, and
Markets. Springer, Heidelberg (1998)

16. Krige, D.: A statistical approach to some mine valuations and allied problems
at the witwatersrand. Master’s thesis, University of Witwatersrand, South Africa
(1951)

17. Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)
18. Needle, C.: Survey-based assessments with SURBA. Working Document to the

ICES Working Group on Methods of Fish Stock Assessment, Copenhagen (2003)
19. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M.,

Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex
Adapt. Syst. Model. 1(1), 1–26 (2013)

20. Olsen, E.M., Lilly, G.R., Heino, M., Morgan, M.J., Brattey, J., Dieckmann, U.:
Assessing changes in age and size at maturation in collapsing populations of atlantic
cod (gadus morhua). Can. J. Fish. Aquat. Sci. 62(4), 811–823 (2005)

21. Parry, H.R., Bithell, M.: Large scale agent-based modelling: a review and guidelines
for model scaling. In: Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M. (eds.)
Agent-Based Models of Geographical Systems, pp. 271–308. Springer, Heidelberg
(2012)

22. Penna, P.: DISPAS: individual-based modelling and simulation for demersal fish
population dynamics. Ph.D. thesis, School of Advanced Studies, Doctoral course
in Information science and complex systems (XXVI cycle), University of Camerino
(2014)

23. Penna, P., Paoletti, N., Scarcella, G., Tesei, L., Marini, M., Merelli, E.: DISPAS:
an agent-based tool for the management of fishing effort. In: Counsell, S., Núñez,
M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 362–367. Springer, Heidelberg (2014).
Presented at MoKMaSD 2013

24. Peter, K.H., Sommer, U.: Phytoplankton cell size: intra- and interspecific effects
of warming and grazing. PLoS ONE 7(11), e49632 (2012)

25. Pranovi, F., Raicevich, S., Franceschini, G., Farrace, M., Giovanardi, O.: Rapido
trawling in the northern adriatic sea: effects on benthic communities in an experi-
mental area. ICES J. Mar. Sci 57, 517–524 (2000)

26. Russo, T., Parisi, A., Cataudella, S.: Spatial indicators of fishing pressure: prelim-
inary analyses and possible developments. Ecol. Ind. 26, 141–153 (2013)

27. Russo, T., D’Andrea, L., Parisi, A., Cataudella, S.: VMSbase: an R-package for
VMS and logbook data management and analysis in fisheries ecology. PLoS ONE
9(6), e100195 (2014)

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea 275

28. Russo, T., Parisi, A., Garofalo, G., Gristina, M., Cataudella, S., Fiorentino, F.:
SMART: a spatially explicit bio-economic model for assessing and managing dem-
ersal fisheries, with an application to Italian trawlers in the strait of sicily. PLoS
ONE 9(1), e86222 (2014)

29. Scarcella, G., Fabi, G., Grati, F., Polidori, P., Domenichetti, F., et al.: Stock
assessment form of common sole in GSA 17. In: General Fisheries Commission for
the Mediterranean, SAC-SCSA Working Group on Stock Assessment on Demer-
sal Species (2012). http://151.1.154.86/GfcmWebSite/SAC/SCSA/WG Demersal
Species/2012/SAFs/2012 SOL GSA17 CNR-ISMAR ISPRA IZOR FRIS.pdf

30. Scarcella, G., Grati, F., Raicevich, S., Russo, T., Gramolini, R., Scott, R.D., Poli-
dori, P., Domenichetti, F., Bolognini, L., Giovanardi, O., et al.: Common sole in
the northern and central adriatic sea: spatial management scenarios to rebuild the
stock. J. Sea Res. 89, 12–22 (2014)

31. von Bertalanffy, L.: A quantitative theory of organic growth (inquiries on growth
laws II). Hum. Biol. 10(2), 181–213 (1938)

32. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

http://151.1.154.86/GfcmWebSite/SAC/SCSA/WG_Demersal_Species/2012/SAFs/2012_SOL_GSA17_CNR-ISMAR_ISPRA_IZOR_FRIS.pdf
http://151.1.154.86/GfcmWebSite/SAC/SCSA/WG_Demersal_Species/2012/SAFs/2012_SOL_GSA17_CNR-ISMAR_ISPRA_IZOR_FRIS.pdf

Research Challenges in Modelling Ecosystems

Antonio Cerone1(B) and Marco Scotti2

1 Dipartimento di Informatica, University of Pisa, Pisa, Italy
cerone@di.unipi.it

2 GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany
marcoscot@gmail.com

Abstract. Ecosystems and their biodiversity have to be protected and
preserved as sources of services and goods. The human population con-
trols and modifies ecosystems to improve its health conditions and wel-
fare. The consequences of human activities should be carefully monitored
and ecosystems should be managed to protect all of the species and
preserve their functioning. The development of strategies for ecosystem
management benefits from the use of computational techniques to model
the dynamics of species that interact with their abiotic and biotic envi-
ronment. Life scientists and computer scientists need to work together to
define and analyse ecosystem models. However, there is a multifaceted
gap between the approaches used in life science and those used in com-
puter science. Such gap is both cultural and technical, and results in
a number of challenges. In this paper we identify these challenges and
provide technical and cultural proposals for solving them.

1 Introduction

As human activity threatens the functioning of ecological systems by habitat
destruction [26], fragmentation [69], climate change [12], and introduction of
allochthonous species [27,64], we face the problem of understanding and manag-
ing the consequences of these impacts. The goal of environmental policy actions
is to preserve biodiversity and ecosystem services. Then identifying the key fea-
tures responsible for species survival (e.g. absence of a specific pollutant; level of
fragmentation of the landscape network; genetic heterogeneity within the popu-
lation) is the only viable long term solution for managing biodiversity loss.

In population ecology (which deals with the dynamic behaviour of popula-
tions, by focusing on the interactions with other species and the abiotic envi-
ronment), there is a need to combine and coordinate information from different
domains. The behaviour of each individual emerges from the complex inter-
play between social relationships within the population, trophic and non-trophic

We would like to thank Paolo Milazzo for inspiring discussions and for suggesting
Dynamic I/O Automata as a possibly appropriate modelling formalism. Discussions
with Matteo Pedercini contributed to clarify strengths and weaknesses of System
Dynamics (SD). Finally, we also would like to thank the anonymous referees who
provided alternative but equally valuable opinions reported in Sect. 5.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 276–293, 2015.
DOI: 10.1007/978-3-319-15201-1 18

Research Challenges in Modelling Ecosystems 277

interactions (e.g. host-parasite and plant-pollinator) with individuals of other
species and spatial movements (i.e. dispersal in the landscape network). Linking
these organisational levels is still a challenge: an increasing need for hierarchi-
cal thinking is present in ecological stoichiometry (community-level patterns
concerning the ratios of certain elements [30]), and community genetics (how
genetic variance influences ecosystem functioning [38]). Traditional modelling,
focusing on macroscopic patterns and adopting a deterministic approach based
on average population behaviour (i.e. through the application of ordinary dif-
ferential equations), is weak in several respects. The inherent stochasticity and
variability and the large-scale patterns produced by local rules are important
features that should be more thoroughly investigated. Although the importance
of these aspects is recognised, novel approaches should be developed to incor-
porate stochastic dynamics in ecological modelling (e.g. stochastic processes are
often modelled by deterministic equations with added random noise).

New tools should be implemented for better understanding how to preserve
highly endangered species and plan actions of biodiversity conservation in com-
plex ecological communities. There is a need to improve stochastic modelling
for better understanding demographic noise and local interactions, especially in
case of small populations. Stochasticity is not a source of unpredictability and
randomness; rather, it represents a set of processes that are often neglected in
the phase of model design, but that can produce higher-level patterns [23]. Such
new tools would help in modelling the link between local and global processes,
simulating density dependence [17] and dealing with several other challenges of
ecology. Most likely the explicit modelling of hierarchical organisation will be
one of the key contributions to ecological research [47,65]. Ecologists empha-
sised the importance of modelling demographic and environmental stochasticity
in metapopulation dynamics [18], investigated fluctuations affecting the densities
of populations in communities as a consequence of environmental variability [62],
and analysed the effects of random perturbations on cyclic population dynamics
[43]. Actions of conservation biology often aim to protect rare species, which are
characterised by small population size, with individuals showing a highly het-
erogeneous behaviour. For these reasons, we argue that stochastic modelling can
represent a step ahead in the domain of ecological research. Ecosystem man-
agement would benefit from novel computational tools that allow researchers
to extend stochastic-based dynamics towards spatial and temporal simulations.
Results extracted from these analyses could serve for suggesting best strategies
of environmental sustainability and planning actions for biodiversity conserva-
tion [52]. In practice, they might aid in planning systems-based conservation
strategies [15], defining optimum programmes for managing multispecies fish-
eries [71], creating sustainable agroecosystems [58], investigating the functioning
of bio-geochemical cycles [19], predicting risks of secondary extinction [29], and
ranking of conservation priorities [50].

Section 2 reviews the main modelling approaches used in ecosystem science.
Section 3 discusses the multifaceted gap between the individual-based modelling
used in life science and identifies challenges that emerge from such gap. Section 4

278 A. Cerone and M. Scotti

provides technical and cultural proposals for solving the identified challenges and
Sect. 5 concludes with some considerations on opinions of other scientists that
provide possible alternatives to our proposals.

2 State of the Art and Literature Review

2.1 Mathematical Modelling

Mathematical models [33] are essential in making precise theoretical arguments
about the factors affecting observed phenomena. Once validated, mathematical
models can be exploited to make predictions about the future evolutions of the
system under study.

The use of mathematical models in population biology and ecology is nowa-
days common practice. Many books describe the basic concepts and the most
well-established models [36,46,53,60]. Among the most successful modelling
strategies we mention two approaches: age-structured population growth and
spatial spread [36]. The first approach allows predictions concerning long-term
changes in population numbers based on information about the age at which
individuals have offspring and the probabilities of death at different ages. The
second approach allows predictions about the future rate of spread of some pop-
ulations from initial observations. However, the use of mathematical models
has also some limitations: for example, such models are often based either on
differential equations or on recurrence relations describing how the size of a
population changes over time (with continuous or discrete time, respectively).
Since differential equations and recurrence relations are deterministic, they are
not suitable to model systems whose behaviour could be determined by choices
between alternatives associated with probabilities.

Although mathematical models become difficult to be studied analytically
when the complexity of the modelled system grows, a large increase in com-
putational power and the development of high-level modelling methods now
support the simulation of highly complex models. New methods and tools have
been developed to ease the definition of models that are based on differential
equations. One of these methods, System Dynamics (SD), developed at the
Massachusetts Institute of Technology in the early 1960s, provides a powerful
framework to build, simulate and analyse complex models, stressing the rela-
tionship between model structure and behaviour [61]. Moreover, the SD method
enables a multidisciplinary approach to problems [68], and thus supports the
development of comprehensive models for decision-making. Such comprehensive
models can be built in a modular way, to allow for some flexibility and adapt-
ability of model structure to different circumstances.

A fundamental characteristic of these models is that system descriptions are
very high level, with populations represented as a whole and their dynamics
defined top-down in terms of global laws. The internal dynamics is, therefore,
a black box. Thus, models can describe neither biological aspects of individ-
uals nor interactions among individuals that are not reflected in global laws

Research Challenges in Modelling Ecosystems 279

controlling the dynamics of the population. A bottom-up definition of the popu-
lation dynamics, in which population properties emerge through the interaction
of individuals, is not possible using SD or methods based on differential equa-
tions. Although it is possible to play with the parameters of global laws and
identify patterns of changes, such as growth, oscillation and decay, and how
these patterns may respond to human intervention, there is actually no way to
capture the impact of human intervention at a lower level, e.g. at individual
level. For example, imagine that we introduce genetically modified plants that
are resistant to chemical treatments in a natural ecosystem, with the purpose of
using a given herbicide without leading to the death of the genetically modified
individuals, and we know that a side effect (e.g. susceptibility to drought) of this
genetic modification is a change in single individual’s behaviour. Methods based
on differential equations cannot capture the impact of the behavioural changes
in single individuals on the population dynamics, unless such a situation has
been observed in the past, which is not always the case.

2.2 Individual-Based Models Using Formal Notations

The notion of individual-based model in ecological modelling corresponds to the
computer science notion of agent-based model, namely of a model in which
there are multiple active entities (the agents), whose behaviour is governed by
a set of usually simple rules, that are allowed to interact with each other and
move in some virtual environment. A classical example of agent-based modelling
notation is that of Cellular Automata [25,45], which consists in a regular grid
of cells (usually one- or bi-dimensional), where each cell is associated with a
finite number of states and can pass from one state to another depending on the
states of adjacent cells in the grid. In the simplest versions of Cellular Automata
agents are identified with cells, but there exist extensions in which cells represent
positions in the environment, whereas agents are entities that can move from one
cell to another, and behave in accordance with the state of the cell and of other
agents in the same cell.

A class of modelling notations that are well-known in computer science and
can be used to describe populations at the individual level is Petri Nets [59]. Petri
Nets, in their most common formulation, are diagrammatic notations consisting
of places and transitions, which have been defined with the aim of modelling
concurrent systems sharing common resources. Places represent conditions and
transitions represent events that may occur when there are agents that satisfy
certain conditions. Agents are represented by tokens that can move from one
place to another when transitions take place. Petri Nets are one of the sim-
plest and most successful notations of computer science for the description and
analysis of concurrent systems. They have also been applied to the modelling of
ecological systems [66], also in combination with Cellular Automata [34].

Other recent definitions of individual-based models that exploit formal nota-
tions of computer science are based on membrane systems [54]. Membrane
systems are distributed parallel computing devices inspired by the structure
and the functioning of living cells. A membrane system consists of a hierarchy

280 A. Cerone and M. Scotti

of membranes, each of them containing a multiset of objects, representing mole-
cules, a set of evolution rules, representing chemical reactions, and possibly other
membranes. A model of a population of Bearded Vultures based on membrane
systems has been developed using P systems, a formalism belonging to the cat-
egory of membrane system [20].

The individual-based approach [51] is computationally more expensive than
the mathematical modelling approach based on differential equations described
in Sect. 2.1, but allows life scientists to explore how the dynamics of a popula-
tion or of an ecosystem arises from the ways in which individuals interact with
each other and with the environment. Due to this computational cost a pure
individual-based approach can only be used with populations consisting of a
small number of individuals.

2.3 Stochastic Simulation and Individual-Based Models

The limitations of mathematical modelling, the effectiveness of computational
models to deal with stochastic aspects, and the level of performances reached
by computers in the last few years motivate the increase in the application
of computational means in life sciences. In fact, the adjective “computational”
is becoming widely used in life sciences to qualify disciplines such as biology,
ecology, epidemiology, and so on. However, in these disciplines the adjective
“computational” often simply means that stochastic simulation techniques are
exploited in order to study properties of mathematical models of systems of
interest.

Most stochastic simulation techniques usually consider a relatively small
number of classes of individuals, and then use standard probability distribu-
tions (binomial, Poisson, etc.) to generate the number of individuals in each
class, at each successive time step.

The current trend in the study of population dynamics is to enrich individual-
based models with stochasticity, in order to attempt to follow each individual
in the population from its birth, through growth, dispersal and reproduction, to
death [10]. Such an “individual-based” stochastic approach [51] is computation-
ally more expensive than stochastic traditional approaches, which make use of
a small number of aggregate categories, but allows life scientists to explore how
the dynamics of a population or of an ecosystem arises from the ways in which
individuals interact with each other and with the environment. In this individual-
based context, stochastic simulation algorithms such as one of the variants of the
Gillespie Algorithm [31,32] generate statistically correct population evolutions.

3 Identification of Research Challenges

Formal analysis techniques of theoretical computer science, such as static analy-
sis and model checking, can be applied to agent-based models in order to ver-
ify properties of the described systems. These techniques are well-established
in computer science but are practically unknown to life scientists. The rest of

Research Challenges in Modelling Ecosystems 281

this section is organised as follows. In Sect. 3.1 we identify the multifaceted gap
between individual-based modelling and formal analysis techniques. Then in
Sect. 3.2 we illustrate the research challenges that we encounter in order to fill
in this gap.

3.1 A Multifaceted Gap

There is a mutifaceted gap between the individual-based modelling used in life
science and the formal analysis techniques used in computer science. This gap
can be characterised by the following aspects.

A1 — High-level vs. Low-level Descriptions. Life scientists use high-level
notations that represent models in a visual way annotated with natural lan-
guage descriptions. Such notations support an almost direct representation of
biological and ecological processes. However, the semantics of such models is
not formally defined and there is no guarantee that simulations really reflect
the intended behaviour of the model. Formal languages are based on low-
level primitives that are close to machine-readable operators, but have to be
combined in a complex manner to define high-level biological and ecological
processes. Their semantics can be unambiguously defined using mathematical
transformations and tools, which, however, obscure the intuition and require
deep mathematical skills to be used.

A2 — Extensive Simulations vs. Property Verification. Life scientists
perform a large number of simulations of the same model and then use sta-
tistics and/or data mining techniques to extract patterns, oscillations and
tendencies in the population dynamics. Static analysis and model checking
techniques support the characterisation and verification of properties of a
model of population dynamics without explicit recourse to simulations.

A3 — Ecological Problem vs. Mathematical Tool. Life scientists focus
on the ecological problem and see mathematical notations and tools as mere
instruments to solve their problem. Computer scientists normally focus on
mathematical notations and tools and use simplified and often unrealistic ver-
sions of biological and ecological problems to investigate theoretical aspects
of such notations and tools.

A4 — Field Data Collection vs. Ad-hoc Data. Life scientists collect data
in the field and/or use historical data to calibrate their models and run sim-
ulations. Computer scientists often have to cope with the lack of data to be
used for running their models. Thus they are often forced to define ad-hoc
data, which may not be realistic, with the danger of being biased in choosing
data that best illustrate the features and potential of their formal languages
and analysis techniques.

A5 — Realistic Models vs. Abstract Models. Life scientists tend to
include realistic details that facilitate the intuitive understanding of the

282 A. Cerone and M. Scotti

model behaviour and make the model more appealing, but this often increases
the computational complexity of the model itself with a negative impact on
the efficacy of the analysis techniques. Computer scientists define abstract
models that contain only the details needed for the intended analysis, thus
possibly obscuring the understanding of the model behaviour.

A6 — Understand/Control vs. Replication. The final goal of life scien-
tists is to be able to understand the functioning of the ecosystems and test
possible control intervention on components of the ecosystem model, aiming
to perform adjustments to the system behaviour and evaluate the impact of
such intervention on the entire ecosystem. Although the final goal of life sci-
entists has been supported by the mathematical modelling work performed
using the SD approach, the use of formal models has been restricted to the
in-silico replication of the ecosystem evolution without much attention to
the evaluation of human intervention impact. To make it worse, as we have
seen in Aspect A4, since computer scientists typically do not use real data,
the ability of replicating reality is mostly just potential and is seldom docu-
mented in the literature.

3.2 Research Challenges

A lot of efforts have been devoted during the last decade to the attempt of filling
in the gap between individual-based modelling and formal analysis techniques. In
spite of such large efforts there are still no conclusive results in this direction and
a number of challenges have emerged in the process. In this section we illustrate
such challenges and match each of them to the aspects of the gap identified in
Sect. 3.1, by using the same top-level sequential number n for challenges (Cn)
as we used for their corresponding aspects (An).

C1 — Define an Appropriate Common Language. The definition of a
common language that allows life scientists and computer scientists to coop-
erate in the definition and analysis of models requires the selection of basic
biological and ecological processes and their implementation using a formal
language. The main challenges in this task are:
C1.1 — Language Expressiveness. There is a need to define a set of

high-level primitives that is sufficiently expressive for life scientists.
C1.2 — Intuitive Semantics. Each primitive should be associated with a

simple semantics that addresses intuition and can be understood without
a deep mathematical knowledge.

C1.3 — Correctness of the Implementation. There is a need to guar-
antee that the implementation faithfully captures the behaviour resulting
from the selected biological and ecological processes.

C1.4 — Modelling Ease. The use of the primitives in the modelling
process should be facilitated through the use of templates, defined oper-
ators and modelling frameworks.

Research Challenges in Modelling Ecosystems 283

C2 — Limitations of Simulation and Verification
C2.1 — Analysis of Simulations. Simulations provide only a sample of

possible behaviours rather than a characterisation of all possible behav-
iours. Moreover, extracting global information from a set of simulations
is not an easy task and the outcome of this process may vary depending
on the techniques used (i.e. various statistical methods and data mining
techniques) and on the assumptions and choices made in applying such
techniques (choice of simulation parameters and pieces of information to
data mine).

C2.2 — State Space Explosion Problem. The use of verification tech-
niques in a stochastic individual-based approach results in state spaces
that grow exponentially with the size of the population; the use of spa-
tiality makes the exponential growth even faster.

C3 — Right Model for a Given Ecosystem. A cultural challenge is to urge
computer scientists to shift the primary focus of their research investigation
from the mathematical tool to the ecological problem. The challenge for
computer scientists is therefore to be able to define “the right model for
a given ecosystem” rather than “the appropriate ecosystem for their own
model”.

C4 — Data Collection. There is a need to create multidisciplinary research
teams in which life scientists and computer scientists collaborate in all phases
of the research: field work planning, data collection, data analysis, model
design and implementation, in-silico experiments and their interpretation. In
particular, computer scientists cannot use data that have been collected by
life scientists for other purposes, but they have to design new field work for
collecting appropriate data for their research. The challenge here is for life
scientists and computer scientists to define the appropriate form of collab-
oration, in which the field work is planned by a multidisciplinary research
team, is carried out by life scientists and produces data to be analysed by a
multidisciplinary research team.

C5 — Right Level of Abstraction. The model must be defined at an abstrac-
tion level sufficiently informative to keep alive the intuition about the sys-
tem behaviour without including irrelevant details that may have a negative
impact on the computational complexity.

C6 — Addressing Policy Support. The use of formal models to address
policy support is a challenging task. SD has been successful in exploring the
impact of policy implementation on behaviour of ecosystems [68]. In partic-
ular, the use of SD in the T21 modelling framework [1], developed by the
Millennium Institute, integrates economic, social and environmental factors
to support comprehensive and participatory development planning. However,
the T21 approach, and in general any approach based on SD, does not sup-
port the modelling of the impact of policy implementation at individual level.

284 A. Cerone and M. Scotti

The challenge in using a formal approach for individual-based modelling is
the integration of economic, social and environmental factors within the same
model.

4 Addressing Challenges

In this section we address the challenges identified in Sect. 3.2 and propose possi-
ble strategies and research questions to bridge the gap between individual-based
modelling of populations and formal analysis techniques.

The final aim is to develop new theories of population dynamics based on
theoretical computer science means. New theories should be based on well-
established computer science notations, such as rewrite systems, finite state
automata and Petri Nets, adapted and extended to describe population individ-
uals. Moreover, such theories should deal with both deterministic and stochastic
behaviours of individuals and take into account spatial movement and landscape
dispersal.

4.1 Formal Notation (Addressing Challenge C1)

The events in the life of an individual that are usually of interest for the con-
struction of a population model are birth, death and interactions with other
individuals (either conspecific or belonging to different species) and with the
environment. Examples of relevant interaction events are those that have some
influence on the population size (e.g. mating, predation) or on the life-conditions
of the individual itself (e.g. nutrition, migration). All these events are often dis-
crete and may cause new individuals to appear (e.g. to be born, to come from
another population in the neighbourhood), and current individuals to disap-
pear (e.g. to die, to leave the local population) or change their states (e.g. from
“available to mate” to “pregnant”, from “egg” to “larva”).

Rewrite Systems. A possible way to model such events is by using rewrite
systems [11]. In the rewrite systems approach events may be modelled as rewrite
rules, such as egg −→ larva, that is the rule that rewrites a term (egg) into a
new one (larva). In this way the set of rewrite rules of the model of a population
(or a category of individuals in a population) predicts all events that may occur
to that population (or to that category of individuals). For example set {egg −→
larva, egg −→ ε}, where egg −→ ε describes the death of an egg, with ε denoting
the empty term, predicts all possible events that may occur to an egg.

The occurrence of these kinds of events, however, depends not only on the
current state of the individual (e.g. an egg may change to larva, but an adult
cannot) but also on the current state of the environment in which the individual
lives (e.g. an egg dies if the temperature goes below a specific threshold). In
general, in ecological systems we need to deal with a variety of environmental
events, whose cause is often unknown or depends on a very complex combination
of factors, which are external to the system itself. For example the dynamics of

Research Challenges in Modelling Ecosystems 285

a population of a given species depends not only on the interaction with other
species within the same ecosystem, such as predators, prey and competitors, but
also on the occurrence of environmental events such as climatic events (i.e. vari-
ation of temperature and rainfalls) and events related to habitats (i.e. tree clear-
ing, bushfires, desiccation of a water container, pollution, hunting and human
settlement). Therefore, we have to associate a representation of the environment
Env with the current term and include in the rule the representation of the
environmental condition cond(Env) that enables the rule. Thus the rule that
models the death of an egg becomes cond(Env) : [egg]Env −→ [ε]Env. Finally, in
order to introduce stochasticity in an individual-based model defined as a rewrite
system, rewrite rules are associated with a rate k that describes the frequency
with which the rule is used in the computation. Thus the rule that models the
death of an egg becomes cond(Env) : [egg]Env −→k [ε]Env.

In previous work [11] we assume the existence of a list of external events,
with information about the time when these events occur. The occurrence of an
external event may modify some environmental information that affects ecosys-
tem evolution, such as temperature, vegetation density, volume of water, level
of pollution, size of a population, human density. Moreover, the list of external
events may change dynamically. For instance, a bushfire event, which decreases
the vegetation density, will be removed from the list of external events after the
occurrence of a rainfall event, and will be replaced with a new bushfire event
with a later occurrence time. Similarly, a desiccation event, which decreases the
volume of a water container will be removed from the list of external events after
the occurrence of a rainfall event, and will be replaced with a new desiccation
event with a later desiccation time. Lists of external events that contain histor-
ical data or data collected through field work are used to calibrate the model.
Once calibrated, the model is run together with a new list of external events
that describe human intervention and policy implementation.

This approach addresses Challenges C1.1–C1.3: the rule construct is suffi-
ciently expressive to describe relevant high-level events such as birth and death
(C1.1); the semantics of rewriting is quite intuitive even for the stochastic
version in which rules are associated with rates (C1.2); variants of Gillespie
algorithms ensure a correct implementation of the rules (C1.3). However, the
approach does not address Challenge C1.4. This is due to the following two
issues: (1) when the number of the details needed for describing the complexity
of an organism increases, the set of rules associated with the term that describes
a state of that organism also increases and each rule of such set may be affected
by a complex combination of environmental conditions and interactions with
other individuals; (2) the rate of a rule is not constant but often depends on a
complex combination of environmental conditions.

Although the number of different states in which an individual might be is
usually quite small, the large number of rules that describes the state transition
associated with each state and the complexity of functions describing rule rates
make the task of the modeller difficult.

286 A. Cerone and M. Scotti

Automata, Process Algebras and Petri Nets. The fact that the number
of different states in which an individual might be is usually quite small sug-
gests that some extensions of finite state automata and process algebras with
appropriate parallel composition and interaction capabilities could be exploited.

Some interesting work has been carried out in systems biology using mod-
elling languages based on process algebras. Ciocchetta and Hillston developed
Bio-PEPA [22], a language for the modelling and analysis of biochemical net-
works, which is based on PEPA (Performance Evaluation Process Algebra).
Although Bio-PEPA can successfully handle some features of biochemical net-
works, such as stoichiometry and different kinds of kinetic laws, the operators
that describe interactions of reactants, products and enzymes do not address
intuition and, therefore, do not appeal life scientists. Moreover, Bio-PEPA does
not support the modelling of external events, thus lacking an essential feature
for modelling ecosystems. Kahramanoğulları et al. [41,42] developed LIME (Lan-
guage Interface for Modeling Ecology), a language tool for stochastic dynamic
simulation in ecology. LIME supports model definition using a narrative style
that facilitates the analysis of parallel, multiple ecological interactions in meta-
communities. LIME translates the model description into the BlenX program-
ming language for stochastic dynamical simulation [28]. In BlenX, the
propensities of interactions between individual entities can be modelled either as
simple rates or in terms of more complex functions (e.g. Holling’s type functional
responses), and the spatial distribution is described in terms of membership to
discrete locations in space (e.g. landscape patches). This discrete description of
space might impair the chance of modelling individual dynamics for which exact
spatial coordinates need to be known and traced (e.g. fish schooling [48]).

Since births and deaths of individuals must always be described while mod-
elling ecosystems, it would be useful to have a formalism that supports dynamic
creation and destruction of components of a parallel composition. A formalism
that presents this feature is the Dynamic I/O Automata proposed by Attie and
Lynch [4]. An automata-based formalism can be suitably used to build a popula-
tion model by starting from the description of the events that may happen in the
life of each kind of individual. We would need to define an automaton for each
kind of individual and compose in parallel as many copies of such automata
as individuals of the corresponding kind are present in the initial population.
Another important characteristic that makes Dynamic I/O Automata useful in
modelling populations of individuals is the ability to dynamically change the
signature of an automaton, that is, the set of actions in which the automaton
can participate. In this way an automaton describing an individual can change
its signature to mimic the evolution of that individual through its maturation
stages (e.g. from “egg” to “larva” to “adult”). This is definitely more natural
than the destruction of the old term and the creation of a new term that is used
to model maturation with a rewrite system.

We might also think of translating a process algebraic model or a constructed
parallel composition of automata into a Place/Transition Petri Net. Since the
number of kinds of individuals that belong to a population is finite, as well as

Research Challenges in Modelling Ecosystems 287

the number of states of every process/automaton modelling a single individual,
a Petri Net could be constructed by considering one place for each state of each
process/automaton modelling a kind of individual, and one transition for each
transition in any of such process/automaton (by taking into account synchro-
nisations between processes/automata). The translation into Petri Nets would
allow some properties of the population dynamics to be verified statically by
computing the invariants of the obtained net.

In order to be used for modelling ecosystems, formalisms based on automata,
process algebras and Petri nets must be extended aiming to the definition of a
complete modelling framework in which also quantitative [9] and spatial aspects
[7,8] of population dynamics are taken into account. Quantitative aspects of
population dynamics are related with duration, frequency and probability of
the events that may happen in the population. Spatial aspects consist of the
description of the topology of the population environment, the positions of the
individuals in the environment and the movement from one position to another.
Several probabilistic, stochastic, timed and spatial extensions of automata and
Petri Nets have already been defined and are now well-established in computer
science [3,14,44,70]. Similar extensions have also been proposed for other kinds
of formalisms such as process algebras [13,37,40,57] and rewrite systems [6,11,
16,21,55,67].

Automata-based and process algebraic formalisms as well as Petri Nets have
the advantage that verification techniques, such as model checking, can often
be applied easily to them. Moreover, they are usually associated with friendly
graphical notations, which make them immediately understandable also to non-
specialists. These advantages with respect to rewrite systems clearly address
Challenge C1.4. However, up to now, we could not identify any approaches based
on automata, process algebras or Petri nets that address Challenges C1.1–C1.2.

4.2 Analysis Methodologies (Addressing Challenge C2)

Simulation is nowadays one of the most common analysis techniques for models
of biological and ecological systems. Simulators can be implemented quite easily
by following standard approaches (e.g. Monte Carlo simulation and numerical
integration) and can give useful information on the dynamics of the modelled
systems with acceptable computational costs. Moreover, simulators for some
standard ecological models are available to be used by ecologists and wildlife
managers without the need of knowing model details. Furthermore, simulation
may characterise the most probable system behaviours and be used for calibra-
tion purposes, that is, to validate models against available data.

Concerning formal analysis, model checking and abstract interpretations are
well established techniques that can potentially be used to analyse biological and
ecological systems. Efficient probabilistic model checkers, such as PRISM [49],
are the most promising tools in this sense; modelling notations for ecosystem
modelling can be translated into the input language of a model checker. Impor-
tant work in this direction has been carried out by Romero-Campero et al. [63]
and by Philippou, Toro and Antonaki [56].

288 A. Cerone and M. Scotti

However, in order to deal with quantitative and spatial aspects of popula-
tion biology and ecology, formalisms must express notions such as position, age,
probability and duration, which all together could make the translation into
the input language of the model checker not feasible. Consequently, it would
be reasonable to translate into the model checker language only fragments of
the formalism that are suitable to describe particular classes of biological and
ecological systems, whereas new verification techniques should be developed, in
which all the quantitative and spatial notions are handled.

Interesting model checking methodologies for stochastic processes have been
developed in the last decade. Quantitative properties of stochastic systems are
usually specified in logics that explicitly compare the measure of executions sat-
isfying certain temporal properties with thresholds. The model checking problem
for stochastic systems with respect to such logics is typically solved by a numer-
ical approach that iteratively computes (or approximates) the exact measure
of paths satisfying relevant subformulae; the algorithms themselves depend on
the class of systems being analysed as well as the logic used for specifying the
properties. Hansson and Jonsson [35] introduced the Probabilistic Computation
Tree Logic (PCTL) for specifying properties of Discrete-Time Markov Chain
(DTMC) while Baier et al. [5] carried out extensive work on model checking
of Continuous-Time Markov Chains (CTMC), by defining the Continuous Sto-
chastic Logic (CSL) and developing the proofs of theoretical foundations as well
as the model checking algorithms. In general, these model checking approaches,
called numerical model checking, have a number of limitations: (1) numerical
algorithms work only for special systems that have certain structural properties
(e.g. Markov Models); (2) numerical algorithms require a lot of time and space,
thus scaling to large systems is a challenge; (3) the logics for which model check-
ing algorithms exist are extensions of classical temporal logics, which are often
not the most popular among life scientists.

One way to overcome these weaknesses of numerical model checking could
be the search for the right compromise between simulation and model checking.
An interesting approach in this direction is statistical model checking, which
overcomes the disadvantages of numerical model checking at the cost of being less
accurate. In this approach the system is simulated for finitely many runs, using
hypothesis testing to infer whether the samples provide a statistical evidence for
the satisfaction or violation of the specification. Statistical model checking was
first introduced by Younes [72] in 2005. The idea underlying statistical model
checking is to perform the model checking analysis on a sample of the population
rather than the entire population. Although the use of a sample causes a loss in
accuracy, statistical model checking provides a mechanism to calculate the size of
the sample that ensures the satisfaction of the property with a given probability.

The most basic statistical model checking algorithm considers the probability
α of false positive and β of false negative with respect to a given property ϕ.
Then, given a probability p, the algorithm computes two natural numbers, c
and n, such that property ϕ has to be satisfied by c simulations of a Stochastic
Discrete Event System M out of a total of n performed simulations to ensure
that ϕ is satisfied in M with probability p.

Research Challenges in Modelling Ecosystems 289

Interest in statistical model checking has been growing during the last five
years and a workshop explicitly devoted to statistical model checking has been
held for the first time in 2013 [2]. The limited number of applications of statistical
model checking to biological systems that have been carried out up to now
include the verification of temporal properties of rule-based models of cellular
signalling networks [24] and a sophisticated statistical model checking algorithm
that uses Bayesian sequential hypothesis testing. This requires fewer system
simulations and has the ability to incorporate prior biological knowledge about
the model being verified [39].

We believe that statistical model checking has the potential to address Chal-
lenge C2 by realising an optimal compromise between simulation and verifica-
tion. As a model checking technique it supports the verification of a property,
but drastically reduces the number of system simulations, thus overcoming the
state explosion problem (Challenge C2.1).

4.3 Filling in the Cultural Gap (Addressing Challenges C3–C6)

In Sects. 4.1 and 4.2 we have dealt with the most technical Challenges (C1–C2)
in filling the gap between the individual-based modelling used in life science
and the formal analysis techniques used in computer science. In this section
we globally address Challenges C3–C6 using a cultural rather than technical
perspective.

Challenge C3 is the most representative aspect of the cultural gap between
life scientist and computer scientist. Here the need to change culture only involves
computer scientists, who should shift their research focus from mathematical
tools to ecological problems.

Only after this cultural challenge is solved, the other three challenges
(C4–C6) can be properly addressed. Moreover, establishing the technical basis
of a common language (Challenge C1) is the prerequisite that can facilitate the
creation of multidisciplinary research teams and their collaboration through-
out all research phases from field data collection to interpretation of in-silico
experiments (Challenge C4). Throughout this continuous collaboration process,
multidisciplinary teams should be also facilitated in agreeing on the right level
of abstraction for the considered problem (Challenge C5) and on the choice of
the factors to consider in evaluating and comparing policy implementations and
their impact on the ecosystem (Challenge C6).

Finally, we must mention that it is opinion of some researchers from both
computer science and ecology that cultural differences between the two commu-
nities are slowly disappearing. Worldwide there are efforts in proposing mul-
tidisciplinary projects, and universities are developing new multidisciplinary
educational programmes. We can optimistically expect that future generation of
scientists will have the necessary multidisciplinary culture to successfully address
Challenges C1-C6.

290 A. Cerone and M. Scotti

5 Final Considerations

In this paper we have taken an ecology-driven perspective and claimed that it
is essential to address all Challenges C1–C6 in order to be able to define an
effective framework for modelling ecosystem dynamics.

Some computer scientists, instead, have as their main concern the challenge
of designing the appropriate mathematical notations for capturing ecological sys-
tems, while dealing with the state-space explosion problem and other technical
challenges. In this perspective, the main aim is that of refining frameworks in
order to better capture aspects and properties of ecological systems. The use
of simplistic or even unrealistic ad hoc data, therefore, would be justified by a
need to first address Challenges C1–C2, without taking Aspects A3–A6 into
account, with the expectation that, once the theory matures enough, researchers
will naturally turn to address Challenges C3–C6.

In Sect. 4.1 we have surveyed a number of formal notations used in modelling
biological and ecological systems and identified which, in our opinion, may be
appropriately extended to successfully address Challenges C1.1–C1.4.

An alternative approach, which has both computer scientists and life scien-
tists among its supporters, favours the adoption of graphical languages similar to
the ones typically adopted by ecologists. The main challenges of such approach
would be to give a formal semantics to the graphical language and, based on
such a semantics, define a translation to a formal language or tool to be used
for analysis.

References

1. T21. http://www.millennium-institute.org/integrated planning/tools/t21/
2. Workshop on statistical model checking. http://rv2013.gforge.inria.fr/workshop.

html
3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,

183–235 (1994)
4. Attie, P.C., Lynch, N.A.: Dynamic input/output automata: a formal model for

dynamic systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol.
2154, pp. 137–151. Springer, Heidelberg (2001)

5. Baier, C., Haverkort, B., Hermanns, H., Kaoten, J.-P.: Model-checking algorithms
for continuous-time markov chains. IEEE Trans. Softw. Eng. 29(7), 524–541 (2003)

6. Barbuti, R., Cerone, A., Maggiolo-Schettini, A., Milazzo, P., Setiawan, S.: Mod-
elling population dynamics using grid systems. In: Cerone, A., Persico, D.,
Fernandes, S., Garcia-Perez, A., Katsaros, P., Ahmed Shaikh, S., Stamelos, I. (eds.)
SEFM 2012 Satellite Events. LNCS, vol. 7991, pp. 172–189. Springer, Heidelberg
(2014)

7. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, C.: Spatial calculus of
looping sequences. Theor. Comput. Sci. 412(43), 5976–6001 (2011)

8. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, C., Tesei, L.: Spatial P
systems. Nat. Comput. 10(1), 3–16 (2011)

9. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A methodology for the
stochastic modeling and simulation of sympatric speciation by sexual selection. J.
Biol. Syst. 17(3), 349–376 (2009)

http://www.millennium-institute.org/integrated_planning/tools/t21/
http://rv2013.gforge.inria.fr/workshop.html
http://rv2013.gforge.inria.fr/workshop.html

Research Challenges in Modelling Ecosystems 291

10. Barbuti, R., Mautner, S., Carnevale, G., Milazzo, P., Rama, A., Sturmbauer, C.:
Population dynamics with a mixed type of sexual and asexual reproduction in a
fluctuating environment. BMC Evol. Biol. 12(1), 49 (2012)

11. Basuki, T.A., Cerone, A., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Rossi,
R.: Modelling the dynamics of an aedes albopictus population. In: Proceedings of
AMCA-POP 2010. Electronic Proceedings in Theoretical Computer Science, vol.
33, pp. 18–36 (2010)

12. Bawa, K.S., Markham, A.: Climate change and tropical forests. Trends Ecol. Evol.
10, 348–349 (1995)

13. Beaten, J.C.M., Bergstra, J.A.: Real-time process algebra. Formal Aspects Com-
put. 3, 142–188 (1991)

14. Beauquier, D.: On probabilistic timed automata. Theoret. Comput. Sci. 292, 65–84
(2003)

15. Berkes, F.: Rethinking community-based conservation. Conserv. Biol. 96, 5066–
5071 (2004)

16. Bistarelli, S., Cervesato, I., Lenzini, G., Marangoni, R., Martinelli, F.: On repre-
senting biological systems through multiset rewriting. In: Moreno-Dı́az Jr., R.,
Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 415–426. Springer,
Heidelberg (2003)

17. Björnstad, O.N., Fromentin, J.M., Stenseth, N.C., Gjøsæter, J.: Cycles and trends
in cod populations. Proc. Nat. Acad. Sci. U.S.A. 96, 5066–5071 (2009)

18. Bonsall, M.B., Hastings, A.: Demographic and environmental stochasticity in
predator-prey metapopulation dynamics. J. Anim. Ecol. 73, 1043–1055 (2004)

19. Botter, G., Settin, T., Marani, M., Rinaldo, A.: A stochastic model of nitrate
transport and cycling at basin scale. Water Resour. Res. 42, 404–415 (2006)

20. Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J., Sanuy, D., Margalida, A.: Mod-
eling ecosystems using P systems: the bearded vulture, a case study. In: Corne,
D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS,
vol. 5391, pp. 137–156. Springer, Heidelberg (2009)

21. Cavaliere, M., Sburlan, D.: Time–independent P systems. In: Mauri, G., Păun, G.,
Jesús Pérez-J́ımenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS,
vol. 3365, pp. 239–258. Springer, Heidelberg (2005)

22. Ciocchetta, F., Hillston, J.: Bio-pepa: a framework for the modelling and analysis
of biochemical networks. Theoret. Comput. Sci. 410(33–34), 3065–3084 (2009)

23. Clark, J.S.: Beyond neutral science. Trends Ecol. Evol. 24, 8–15 (2009)
24. Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A.:

Statistical model checking in BioLab: applications to the automated analysis of
T-cell receptor signaling pathway. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB
2008. LNCS (LNBI), vol. 5307, pp. 231–250. Springer, Heidelberg (2008)

25. Codd, E.F.: Cellular Automata. Academic Press, New York (1968)
26. Coleman, F.C., Williams, S.L.: Overexploiting marine ecosystem engineers: poten-

tial consequences for biodiversity. Trends Ecol. Evol. 17, 40–44 (2002)
27. Da Silva, J.M.C., Tabarelli, M.: Tree species impoverishment and the future flora

of the Atlantic forest of northeast Brazil. Nature 404(6773), 72–74 (2000)
28. Dematté, L., Priami, C., Romanel, A.: The BlenX language: a tutorial. In:

Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp.
313–365. Springer, Heidelberg (2008)

29. Ebenman, B., Jonsson, T.: Using community viability analysis to identify fragile
systems and keystone species. Trends Ecol. Evol. 20, 568–575 (2005)

292 A. Cerone and M. Scotti

30. Elser, J.J., Sterner, R.W., Gorokhova, E., Fagan, W.F., Markow, T.A., Cotner,
J.B., Harrison, J.F., Hobbie, S.E., Odell, G.M., Weider, L.W.: Biological stoichiom-
etry from genes to ecosystems. Ecol. Lett. 3(6), 540–550 (2000)

31. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

32. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

33. Giordano, F.R., Weir, M.D., Fox, W.P.: A First Course in Mathematical Modeling.
Brooks/Cole, Cengage Learning, Belmont (2009)

34. Gronewold, A., Sonnenschein, M.: Event-based modelling of ecological systems
with asynchronous cellular automata. Ecol. Model. 108, 37–52 (1998)

35. Hansson, H. Jonsson, B.: A logic for reasoning about time and reliability. Research
report SICS/R(0013, SICS) (1994)

36. Hastings, A.: Population Biology: Concepts and Models. Springer, New York (1997)
37. Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117,

221–239 (1995)
38. Hughes, A.R., Inouye, B.D., Johnson, M.T.J., Underwood, N., Vellend, M.: Eco-

logical consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008)
39. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A

bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

40. Jonsson, B., Larsen, K.G., Yi, W.: Probabilistic extensions of process algebras.
In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra.
Elsevier, New York (2001)

41. Kahramanoğulları, O., Jordán, O., Lynch, J.F.: A language interface for stochastic
dynamical modelling in ecology. Environ. Model Softw. 26(5), 685–687 (2011)

42. Kahramanoğulları, O., Lynch, J.F., Priami, C.: Algorithmic systems ecology:
experiments on multiple interaction types and patches. In: Cerone, A., Persico,
D., Fernandes, S., Garcia-Perez, A., Katsaros, P., Ahmed Shaikh, S., Stamelos,
I. (eds.) SEFM 2012 Satellite Events. LNCS, vol. 7991, pp. 154–171. Springer,
Heidelberg (2014)

43. Kaitala, V., Ranta, E., Lindstroem, J.: Cyclic population dynamics and random
perturbations. J. Anim. Ecol. 65, 249–251 (1996)

44. Kartson, D., Balbo, G., Donatelli, S., Franceschini, G., Conte, G.: Modelling with
Generalized Stochastic Petri Net. Wiley, New York (1994)

45. Kier, L.B., Seybold, P.G., Cheng, C.: Modelling Chemical Systems Using Cellular
Automata. Springer, Dordrecht (2005)

46. Kingsland, S.: Modelling Nature: Episodes in the History of Population Ecology.
University of Chicago Press, Chicago (1995)

47. Kolasa, J.: Complexity, system integration, and susceptibility to change: biodiver-
sity connection. Ecol. Complex. 2, 431–442 (2005)

48. Kunz, H., Hemelrijk, C.K.: Artificial fish schools: collective effects of school size,
body size, and body form. Artif. Life 9, 237–253 (2003)

49. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

50. Lande, R., Engen, S., Swether, B.E.: Stochastic Population Dynamics in Ecology
and Conservation. Oxford University Press, Oxford (2003)

51. Lomnicki, A.: Population Ecology of Individuals. Princeton University Press,
Princeton (1988)

Research Challenges in Modelling Ecosystems 293

52. Mace, G.M., Collar, N.J.: Priority setting in species conservation. In: Norris,
K., Pain, D.J. (eds.) Conserving Bird Biodiversity. Cambridge University Press,
Cambridge (2002)

53. McCallum, H.: Population Parameters: Estimation for Ecological Models. Wiley-
Blackwell, New York (2000)

54. Paun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)
55. Pescini, D., Besozzi, B., Mauri, G., Zandron, C.: Dynamical probabilistic P sys-

tems. Int. J. Found. Comput. Sci. 17, 183–204 (2006)
56. Philippou, A., Toro, M., Antonaki, M.: Simulation and verification for a process

calculus for spatially-explicit ecological models. Sci. Ann. Comput. Sci. 23(1), 119–
167 (2013)

57. Priami, C.: Stochastic pi-calculus. Comput. J. 38, 578–589 (1995)
58. Rasmussen, P.E., Goulding, K.W.T., Brown, J.R., Grace, P.R., Janzen, H.H.,

Körschens, M.: Long term agroecosystem experiments: assessing agricultural sus-
tainability and global change. Science 282(5390), 893–896 (1998)

59. Reisig, W.: Petri Nets: An Introduction. Springer, Heidelberg (1985)
60. Renshaw, E.: Modelling Biological Population in Space and Time. Cambridge Uni-

verity Press, Cambridge (1991)
61. Richardson, G.P.: Introduction to System Dynamics Modeling with Dynamo. MIT

Press, Cambridge (1981)
62. Ripa, J., Ives, A.R.: Food web dynamics in correlated and autocorrelated environ-

ments. Theor. Popul. Biol. 64, 369–384 (2003)
63. Romero-Campero, F.J., Gheorghe, M., Bianco, L., Pescini, D., Jesús Pérez-

J́ımenez, M., Ceterchi, R.: Towards probabilistic model checking on P systems
using PRISM. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2006. LNCS, vol. 4361, pp. 477–495. Springer, Heidelberg (2006)

64. Schea, K., Chesson, P.: Community ecology theory as a framework for biological
invasions. Trends Ecol. Evol. 17, 170–176 (2002)

65. Scotti, M., Ciocchetta, F., Jordán, F.: Social and landscape effects on food webs:
a multi-level network simulation model. J. Complex Netw. 1(2), 160–182 (2013)

66. Seppelt, R., Temme, M.M.: Hybrid low level petri nets in environmental modelling
- development platform and case studies. In: Matthies, M., Malchow, H., Kriz,
J. (eds.) Integrative Systems Approach to Natural and Social Science. Springer,
Heidelberg (2002)

67. Setiawan, S., Cerone, A.: Stochastic modelling of seasonal migration using rewriting
systems with spatiality. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol.
8368, pp. 313–328. Springer, Heidelberg (2014)

68. Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex
World. McGraw Hill Higher Education, New York (2000)

69. Tigasa, L.A., Vurena, D.H.V., Sauvajot, R.M.: Behavioral responses of bobcats
and coyotes to habitat fragmentation and corridors in an urban environment. Biol.
Conserv. 108, 299–306 (2002)

70. Wang, J.: Timed Petri Nets: Theory and Applications. Kluwer Academic Publisher,
Boston (1998)

71. Yodzis, P.: Must top predators be culled for the sake of fisheries? Trends Ecol.
Evol. 16, 78–84 (2001)

72. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asynchro-
nous Events. PhD thesis, Carnegie Mellon University (2005)

Retrieving Points of Interest from Human
Systematic Movements

Riccardo Guidotti1,2(B), Anna Monreale1,2, Salvatore Rinzivillo2,
Dino Pedreschi1, and Fosca Giannotti2

1 KDDLab, University of Pisa, Largo B. Pontecorvo, 3, Pisa, Italy
{riccardo.guidotti,anna.monreale,dino.pedreschi}@di.unipi.it

2 KDDLab, ISTI-CNR, Via G. Moruzzi, 1, Pisa, Italy
{salvatore.rinzivillo,fosca.giannotti}@isti.cnr.it

Abstract. Human mobility analysis is emerging as a more and more
fundamental task to deeply understand human behavior. In the last
decade these kind of studies have become feasible thanks to the mas-
sive increase in availability of mobility data. A crucial point, for many
mobility applications and analysis, is to extract interesting locations
for people. In this paper, we propose a novel methodology to retrieve
efficiently significant places of interest from movement data. Using car
drivers’ systematic movements we mine everyday interesting locations,
that is, places around which people life gravitates. The outcomes show
the empirical evidence that these places capture nearly the whole mobil-
ity even though generated only from systematic movements abstractions.

1 Introduction

The study of human mobility can offer insight into human behavior [5,14]. Traces
of human mobility can be collected with a great number of different techniques
such as GPS (Global Positioning System) or GSM (Global System for Mobile
Communications). The result is a huge quantity of data: about tens of thou-
sand people moving along millions of trajectories. Mobility data can provide a
complete description of the places visited and the routes followed by individual
users. There are many potential opportunities, and movement data have been
recognized by private and public institutions as a valuable source of information
to evaluate the habits of people in terms of mobility.

Recent researches in mobility analysis have been extended in order to identify
the behaviors that people constantly follow, such as groups of trajectories with
common routes [13] or popular destinations [2]. Indeed, a central point in these
studies is the concept of place of interest [7] in urban mobility environment, i.e. cer-
tain places or areas attract individual movements due to their importance. It is
worth to point out that people move from one place to another, therefore “places”
are not only static geographical objects, but they are also part of people life. The
way people move towards these places affects the overall mobility of the environ-
ment. Thus, in order to study the relationships between people movements and
the places of interest, it is mandatory to have a method that takes into account
people’s mobility to extract the locations they frequent routinely.
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 294–308, 2015.
DOI: 10.1007/978-3-319-15201-1 19

Retrieving Points of Interest from Human Systematic Movements 295

Online static datasets of places of interest can be easily exploited to ana-
lyze data, and there are plenty of works that enhance their potential. However,
capturing real-time human mobility is challenging and often requires expensive
frameworks and infrastructures. At any rate, places of interest directly extracted
from movement data are more reliable and trustful than those readable from the
Web or from public sources. This happens because the last ones are static, rarely
updated and, overall, usually related to commercial activities such as bars, hotels,
museums and so on.

The method proposed in this paper allows us to extract the places of interest
around which our life gravitates. These places are extracted considering how
people’s everyday systematic mobility is regulated and influenced by them. Using
mobility data as a proxy of human mobility and the idea of mobility profiles [13],
we introduce a new notion of Points of Interest (POIs) explaining how they
can be extracted. We test our method on a real case study considering big
datasets of GPS trajectories. The outcomes show the empirical evidence that
these POIs represent nearly the whole mobility even though they are generated
only from a systematic movement abstraction. Finally, we propose a wide range
of applications for which POIs extracted in such a way can be extremely useful.

The remainder of this paper is organized as follows. Section 2 presents a set
of papers extracting places of interest from mobility data. In Sect. 3 are reported
some basic concepts to understand the methodology presented in the following.
Section 4 illustrates the procedure for the POIs extraction, while in Sect. 5 are
reported the experimental results obtained using real datasets. In Sect. 6 are
illustrated some possible applications for the proposed methodology. Finally,
Sect. 7 concludes the paper.

2 Related Work

In the following are reported some recent works in which the extraction of places
(or regions) of interest is a fundamental point. Each one of them explains its own
extraction method starting from different types of data. In [2] the authors pro-
pose a visual analytic procedure for studying mobility data. Their procedure
extracts relevant places from movement data because, for their aim, there is not
a predefined set of places (e.g. compartments of a territory division) from which
the analyst can select places of interest. In [6,10], the authors generate regions of
interest with the purpose of predicting human movements using mobility pattern
mining. The regions of interest are obtained by discretizing the working space in
a regular grid with cells of small size. Then, the cells not visited are discarded
and, by following a density based principle, the cells conceptually belonging to
the same points are merged. Similarly, since it is impossible to translate a contin-
uous surface into a graph, different authors in [4] and [12] discretize the territory
in cells to apply social network analysis techniques on mobility data. In [8] is pro-
posed an approach based on supervised learning to infer people’s motion models
from their GPS logs. The authors, first analyze different features to understand
the kind of movement performed by the users (car, bus, bike etc.), and then use

296 R. Guidotti et al.

clustering algorithms to detect stopping points areas. To estimate the physical
location of users from traces of mobile devices associated with access points in
a wireless network, the authors in [9] characterize popular regions evaluating
access points paths with GPS traces. Finally, in [15] it is proposed an approach
that is capable of uncovering semantically relevant keywords for describing a
location. Also in this case the locations correspond to the access points areas.

3 Preliminaries

Movements are usually performed by people in specific areas and time instants.
These people are called users or drivers and each movement is composed by a
sequence of spatio-temporal points (x, y, t) where x and y are the coordinates,
while t is the time stamp. We call trajectory the movements of a user described
by a sequence of spatio-temporal points:

Definition 1 (Trajectory). A trajectory m is a sequence of spatio-temporal
points m = {(x1, y1, t1), . . . , (xn, yn, tn)} where the spatial points (xi, yi) are
sorted by increasing time ti, i.e., ∀1 ≤ i ≤ k we have ti < ti+1.

The set of all the trajectories traveled by a user u makes her individual history :

Definition 2 (Individual History). Given a user u, we define the individual
history of u as the set of traveled trajectories denoted by Hu = {m1, . . . , mk}.
Using the above definitions and following the profiling procedure proposed in [13],
we can retrieve the systematic movements of a user u. Thus, we group the trajec-
tories using a density-based clustering (i.e., Optics [3]) equipped with a distance
function defining the concept of trajectory similarity:

Definition 3 (Trajectory Similarity). Given two trajectories m and p, a
trajectory distance function dist and a distance threshold ε, we say that m is
similar to p (m ∼ p) iff dist(m, p) ≤ ε.

The obtained result is a partitioning of the original dataset from which we filter
out the clusters with few trajectories and the one containing noise. Finally we
extract a representative trajectory from each remained cluster. These represen-
tative trajectories are called routines and the set of routines is called mobility
profile. More formally:

Fig. 1. The user individual history (black lines), the clusters identified by the group-
ing function (C1, C2, C3) and the extracted individual routines (r1, r2) forming her
individual mobility profile.

Retrieving Points of Interest from Human Systematic Movements 297

Definition 4 (Routine and Mobility Profile). Let Hu the individual history
of a user u, ms a minimum size threshold, dist a distance function and ε a
distance threshold. Given a mobility profiling function profile(Hu,ms, dist, ε) =
M, such that M = {M1 . . . Mk} where Mi ⊂ Hu, we define a routine ri as the
medoid trajectory of a group Mi. The set of routines extracted from M is called
mobility profile and is denoted by Pu = {r1 . . . rk}.
A mobility profile describes an abstraction in space and time of the systematic
movements: the user’s real movements are represented by a set of trajectories
delineating the generic paths followed. Moreover, the exceptional movements are
completely ignored due to the fact they will be not part of the profile. Figure 1
depicts an example of mobility profile extraction.

4 Mobility Points of Interest Extraction

In mobility data studies, places or regions can be extracted from raw data
through regular territory division. However, relevant places for human mobil-
ity do not have regular shapes. Indeed, they may have arbitrary shapes and
sizes and irregular spatial distribution. They might even overlap in space; hence,
approaches based on dividing the territory into non-overlapping areas (as in [1]
and [10]) are not appropriate.

What we are looking for in our study are places of interest that approximate
as better as possible human mobility and consequently human behavior. Com-
monly, a Point of Interest (POI) is a specific point location that “someone” may
find useful or interesting. Most consumers use the term POIs when referring to
hotels, campsites, fuel stations or any other category used in modern navigation
systems. In fact, the term is widely used in cartography, especially in electronic
variants including GIS, and GPS navigation software. A GPS point of interest
specifies, at minimum, the latitude and longitude of the POI. Digital maps for
modern GPS devices (e.g. TomTom and Garmin) or GPS navigator applications
(e.g. Google Maps and Waze), typically include a basic selection of POIs for
the map area. Moreover, there are websites specialized in the collection, veri-
fication, management and distribution of POIs which end-users can load onto
their devices to replace or supplement the existing POIs. While some of these
websites are generic, and collect and categorize POIs for any interest, others are
more specialized in a particular category (e.g. as speed cameras).

All the aforementioned type of POIs are strictly related with commercial
activities (e.g. bars, restaurants, hotels and shopping centers), public facilitates
(e.g. hospitals, schools and universities), leisure sites (e.g. museums and amuse-
ment parks). These places are useful to organize a holiday trip or to find a place
to spend the evening. At any rate, they do not consider everyday human mobility.
Indeed, people constantly follow the same periodic movement during their work-
ing day with systematic patterns. Thus, people’s visited locations are influenced
by the systematic movements of their everyday life. Looking individually at each
user, everyone has as most visited POIs her own home, her working place, her

298 R. Guidotti et al.

(a) Routines (b) Start-End Points

(c) Individual POIs (d) Clustering

(e) Buffering (f) Collective POIs

Fig. 2. Mobility POIs extraction method.

habitual shopping centers, and maybe her gym and her friends’ homes. These
POIs are the real interesting locations in individuals routinely life. Thus, from
hereafter we will refer to a POI with this latter concept: a POI is a place that
“someone” may find relevant or interesting in her everyday systematic life.

We propose a new method to extract these POIs in order to understand
which are our significant locations and to study how certain places are affected
by human systematic mobility. In the following, we illustrate the mobility data-
driven procedure to extract POIs from trajectory data. Figure 2 depicts in detail
all the steps to retrieve POIs. The systematic behavior of each user can be
modeled with the mobility profiles presented in the previous section. Thus, the
systematic daily mobility of each user is characterized by her routines (Fig. 2-a).
These routines necessarily begin and end somewhere. For profiled users, having

Retrieving Points of Interest from Human Systematic Movements 299

a mobility that gravitates around these locations, it results that these places are
surely very important for them (Fig. 2-b). We identify these places as individual
POIs (Fig. 2-c):

Definition 5 (Individual Point of Interest). Given the mobility profile Pu

of a certain user u, then the individual POIs of u is the set Iu such that

Iu = {p|p = start(r) ∨ p = end(r) ∀r ∈ Pu}
where start(.) and end(.) are two functions that given a routine return its start
point and its end point, respectively.

We remark that, in this paper, a POI has the meaning of “a place frequently
visited by someone” and not the meaning of a public attraction. Therefore, our
extraction method allows us to infer not only typical attraction points (because
surely there is at least someone working there), but also important places for
individual users, such as their home, which are not available in typical public
sources. We are able to capture this information thanks to the fact that the GPS
signal tells us the position of the nearest parking from the location visited by
the user. As we will observe in the following, typically each user frequently visits
two places that are with high probability home and work.

From Definition 5 we can notice that, given two different drivers u and v,
which systematically park their cars close each other, we have that Iu ∩ Iv = ∅,
since each individual POI is represented by GPS coordinates and it is nearly
impossible that there is a perfect correspondence. However, these users are fol-
lowing a similar systematic mobility behavior towards the same location, as a
consequence the two individual POIs should be geographically considered as a
unique collective POI. To this aim, given a set of car drivers and considering
a certain spatial tolerance, we compute a density-based clustering on the indi-
vidual POIs and then, we turn each valid cluster and each noise point into a
buffered convex shape area representing a collective POI.

Definition 6 (Collective Point of Interest). Given a set I of individual
POIs, then the collective POIs set CI is defined as

CI = buffer(convex(clustering(I, ε)), ε′)

In the above definition, ε and ε′ are distance values and clustering(I, ε) is a
density-based clustering function that returns clusters composed of individual
POIs (Fig. 2-d). Note that two points are considered close enough if their distance
is lower than ε. The clusters returned can also be composed of noise points
because each noise point represents an individual POI supported by at least
a routine and thus, it is relevant for at least one user. convex(.) is a function
returning the convex shape of the clusters of the input points. If the cluster
contains only one point, then itself is returned. Lastly, buffer(.) is a function
that applies a spatial buffer of ε′ to the set of input shapes and points (Fig. 2-e).
In the following, for the sake of simplicity, we will call a collective POI simply
POI. In other words, we can think to a POI as a geographical area with a

300 R. Guidotti et al.

Fig. 3. (Left) A sample of the considered trajectories in Pisa province. (Right) Mobility
profiles extracted in Pisa province.

certain extension that is visited frequently by at least one user (Fig. 2-f). Note
that two different POIs a and b could be overlapped because of the buffering
phase. Anyway, ε′ < ε ensures that the center of a is not included in b because
otherwise the clustering algorithm would have put them in the same cluster
because they would have been distant no more than ε.

5 Mobility Case Study

To extract the latent POIs in human systematic mobility we applied the method
described above on large provincial trajectory datasets. First of all, we briefly
report some consideration about the dataset used and the mobility profile extrac-
tion. Then, we describe the study performed to extract reliable POIs and what
they represent on the analyzed area. Finally, we show why the extracted POIs
represent the overall mobility even though they are built starting from the sys-
tematic movements abstractions that are mobility profiles.

5.1 Mobility Dataset

As a proxy of human mobility, we use real GPS traces collected for insurance
purposes by Octo Telematics S.p.A1. This dataset contains 9.8 million car trav-
els performed by about 160, 000 vehicles active in a geographical area focused
on Tuscany in a period from 1st May to 31st May 2011. Figure 3-left depicts a
sample of the considered trajectories. The mobility dataset is geographically and
temporally too various to be used for our purposes. Thus, it was split following
different principles based on time and geography. In real world, different events
may change how people move on the territory. Such events can be unpredictable
or not frequent, like natural disaster, but most of them are not. The most regular
and predictable event is the transition between working days and non-working
days. During Saturday and Sunday, people usually leave their working mobility
routines for different paths. Following this concept we filtered out weekend tra-
jectories, maintaining only weekday ones. Another basic issue is that the mobility
is not the same in every geographical area. Every area has its own type of mobil-
ity with certain characteristics depending on the surface, the topology and the
1 http://www.octotelematics.com/it.

http://www.octotelematics.com/it

Retrieving Points of Interest from Human Systematic Movements 301

Fig. 4. Profile test ε (left) and min size (right).

number of inhabitants. In order to consider this fact, it was made a geograph-
ical filter to split the dataset in provinces by considering for each province all
the trajectories that pass through its administrative borders. In this paper we
present the results obtained for Pisa, Florence, Siena and Grosseto province.

In order to obtain sound routines we perform some test to set the best para-
meter to extract reliable mobility profile. Figure 3-right depicts an example of
profile extracted in Pisa province modeling the users’ systematic movements. The
distance function used in the clustering step is Route Relative Synch described
in [13]. The clustering algorithm used is Optics [3], a density-based algorithm.
We study Optics parameters on a subset of 1, 000 users in Pisa province. Thus,
we vary ε in the range [0.1, 0.3] with step 0.01, Fig. 4-left. The bigger ε is, the
more different trajectories are allowed to be clustered together. The threshold
min size, the minimum number of trajectories that must be in a cluster con-
sidered valid, is varied in the range [4, 12], Fig. 4-right. The aspects we consider
to tune the values are: (a) the dataset coverage, (b) the profile distribution per
user, and (c) the profile stability. From this empirical study we decide to use
middle values because the plots obtained do not lead to a clear setting. Anyway,
in each plot, after the middle values the curves change more rapidly than before
them. We choose ε equal to 0.2, it expresses 80% of similarity between two tra-
jectories and, a reliable value for min size is 8 since a routine is a movement
repeated a sufficient number of time during a month.

Figure 5-left shows the number of routines per users in Pisa province where
each user has almost one or two routines, which, should correspond to the com-
mute to and from work. Indeed, note that the average number of routines per
profile is 2, this is probably due to the home-work-home pattern. In Fig. 5-right
the temporal distribution of the trajectories and routines is shown. Here, we can
see how the profile set has a working-like trend, highlighting the three peeks
during the early morning 5–6, lunchtime 11–12, and late afternoon 17–18. This
confirms the previous assumption: mobility profiles are reliable to model sys-
tematic movement and thus can be exploited to retrieve systematically visited
places.

302 R. Guidotti et al.

Fig. 5. Routine per user (left), trajectories and routines time start (right) distributions.

5.2 Mobility POIs Extraction Analysis

In the following we analyze the mobility POIs extraction method. Two main
issues are considered to build reliable POIs: (a) a significant number of POIs
must be visited by at least two users otherwise they will be useful only as an
individual information in a urban collective scenario, (b) POIs shape cannot
degenerate, i.e. they cannot be too big, nor too long, nor sausage-shaped. Only
two parameters must be considered in POIs extraction process: ε and ε′, and,
since ε′ depends on ε, we study only ε. We tested POIs extraction using the
routines of 1, 000 profiled users in Pisa province with ε ∈ [20, 100] and step 10.
In this case ε in Optics represents the meters of distance between two individual
POIs to be considered close. We recall that every POI is important for someone
because it is generated by a routine. In order to guarantee both (a) and (b)
we perform an accurate analysis. Thus we study the number of POIs extracted
and the average number of users in a POI depicted in Fig. 6-left. We notice
that the number of POIs extracted rapidly decreases while the number of POIs
with more than one user grows slowly. On the contrary, the average number
of user in a POI increases linearly. Moreover, we examined the maximum area
and diameter for the POIs extracted, reported in Fig. 6-right. From these lines
trend we observe that the maximum values, accordingly to the median and
average ones (here not shown), rapidly rise leading to some degenerate POI that
collects conceptually different places. Thus, by looking together at these plots, a
reasonable value suggested for ε appears to be 50 m. Consequently, we set ε′ = 45
to have a remarkable buffer even for individual POIs. In fact, this combination
of parameters leads to a good number of POIs neither too big nor too small
visited on average by at least two users.

For each province, we obtain a POIs distribution per profiled users telling us
that the bigger subset of profiled users stop from 1 to 5 POIs. As it is shown in
Table 1, the average number of profiled users per POI in every province ranges
from 2 to 4 meaning that, on the whole, a collective points is nearly always
visited by at least two users. This happens because, many places (probably
home) are visited only by one user, while other social POIs like hospitals and
shopping centers are visited by many users. For the home-work-home pattern,
the majority of the users visit at least two places. Moreover, still from Table 1,

Retrieving Points of Interest from Human Systematic Movements 303

Table 1. Tuscany mobility POIs statistics. The public source for surface, inhabitants
and density is http://en.wikipedia.org/wiki/Tuscany.

Province Pisa Florence Siena Grosseto

POIs 9, 760 12, 848 7, 299 6, 567

Users 20, 898 41, 724 27, 242 14, 036

Users profiled 21.05 % 11.82 % 15.13 % 33.24%

Avg users per POI 2.14 3.25 3.73 2.14

Routines 7, 383 9, 801 6, 458 7, 281

Surface (km2) 2, 448 3, 514 3, 821 4, 504

Inhabitants 409, 251 983, 073 268, 706 225, 142

Density (inh./km2) 167.2 279.8 81.9 50.0

we note that for every province the number of POIs extracted is not correlated
neither with the number of routines, nor with the number of users profiled, nor
with the surface. On the contrary, it seems to better correlate with the number
of inhabitants.

As final analysis it interesting to observe which are the most visited POIs
in every province. Thus we counted how many trajectories present in the initial
provincial datasets start and end in every POIs. It emerges that for each provin-
cial dataset there are few POIs visited by many people and many POIs visited by
few car drivers, following a long tailed power low distribution. In Fig. 7, depicting
semi-log normalized number of visits distributions, we can notice how, despite
the difference in number of POIs extracted, all the distributions are quite close.
This indicates that the whole mobility is similar with respect to our POIs for
the provinces analyzed. This obviously happens because there are some POIs
with a role of prevalence, that is more visited, with respect to the others. They
are very fascinating places because these POIs are visited both by systematic
drivers working there and by occasional drivers. As an example we can think to
the following. Doctors and salesman, working in hospitals and shopping centers

Fig. 6. POI construction test parameter ε (left) POIs numbers, (right) POIs shape.

http://en.wikipedia.org/wiki/Tuscany

304 R. Guidotti et al.

Fig. 7. POIs number of visits distribution for each provincial dataset.

respectively, stop there systematically, while patients and customers just visit
these places when they need. The former category, systematic drivers, surely
belong some routines that start and end there, that is the reason why they
have been extracted as POIs. On the other hand, the latter category, occasional
drivers, belong just several trajectories starting or ending there. However, due to
the fact that places like hospitals and shopping centers are attractors for many
people, there are many trajectories starting and ending in these places, augment-
ing in this way the visitors count. Conversely, the great majority of less visited
places are POIs for at least a driver by definition, and thus they correspond
to homes or to not very frequented working places. Figure 9 shows the ten most
visited POIs in Pisa, Florence, Siena and Grosseto. As suggested above, they are
mainly big shopping centers, hospitals and car parks close to locations visited
very often by many people. We can notice how for every province there are some
of these popular POIs out of the main town corresponding to car parks close
to big malls. In Fig. 8 is depicted a zoom on the four most visited POIs in Pisa
province. As one can see, the POIs areas bound perfectly the car parks close to
the real point of interest. This demonstrate the good quality and precision of
the mobility POIs extraction method proposed.

5.3 Mobility POIs as Mobility Summary

An important result emerges as a side effect from the POIs extraction process:
the mobility POIs, and thus the mobility profiles, are a good representation of

Fig. 8. The fourth most visited POIs in Pisa.

Retrieving Points of Interest from Human Systematic Movements 305

(a) Pisa (b) Florence

(c) Siena (d) Grosseto

Fig. 9. Ten most visited POIs in Pisa, Florence, Siena and Grosseto.

the overall mobility. Taking into account that this process starts from the rou-
tines and not from all the trajectories, it is interesting to notice that, for every
provincial dataset, about 80% of the trajectories start or end into the POIs
extracted. Detailed statistics about coverage are reported in Table 2. Figure 10
shows all the trajectories starting or ending in a little sample of POIs in Pisa. As
you can see, the map is almost completely covered by the red lines representing
the trajectories. This is a signal that these POIs have an high importance in the
overall mobility because they can capture nearly all the route traveled in the
considered geographical area. This fact visually reinforces the hypothesis that
mobility profiles, that is systematic trajectories, are a good representation of all
the mobility. Consequently, mobility POIs are good to capture human mobility.
As this assumption appears true, then it is a great simplification to use routines
instead of all the trajectories to analyze human mobility. Another confirmation
of the strength brought by mobility profiles emerges from the visual inspection
of the starting and ending points of the trajectories not starting nor ending in
any POIs. It comes out that these places are not really interesting because they
do not correspond to important locations but they are almost all private houses
which are also occasionally visited by their owners.

306 R. Guidotti et al.

Fig. 10. Trajectories stopping in a POIs sample.

Table 2. Tuscany mobility POIs coverage.

Province Pisa Florence Siena Grosseto

POIs 9, 760 12, 848 7, 299 6, 567

Trajectories 476, 267 1, 358, 596 478, 424 661, 116

POIs coverage 80.32% 76.44 % 79.80 % 84.54 %

6 Mobility POIs Applications

There is wide set of mobility applications which need a data driven POIs extrac-
tion method to perform different tasks and solve distinct problems. In the fol-
lowing we illustrate a broad range of mobility task where reliable and functional
POIs are mandatory in order to obtain good results.

A deep study in mobility data relates to mobility flows and patterns. A mobil-
ity pattern represents the regularity of a set of users moving from a place to
another, that is, from a POI to another. Thus, in order to deal with worth pat-
terns, interesting POIs must be considered. As in [10], these patterns can be used
to solve mobility prediction tasks. A mobility prediction is a statement about the
place someone will be in the future, often but not always based on experience or
knowledge. Prediction tasks use previously extracted movement patterns, which
are a concise representation of behaviors of moving users as sequences of places
frequently visited with a typical travel time. A decision tree, is built and eval-
uated with a formal training and test process. Consequently, to produce proper
predictions, it is essential to use a sound set of POIs as those extracted by our
method.

Another typical application to use our POIs is a recommendation system.
A recommendation system is a subclass of information filtering system that
seeks to predict the “rating” or “preference” that user would give to an item.
Recommendation systems have become extremely common in recent years, and
are applied in a variety of applications such as mobility. As an example, a rec-
ommendation system can exploit the correlation between geographical locations
in the space of human behavior, that is, POIs correlation, to suggest new POIs

Retrieving Points of Interest from Human Systematic Movements 307

to visit. In [16], for example, by taking into account users travel experience and
the subsequent locations visited, the authors learn the location correlation from
a large number of user-generated GPS trajectories. Then, by using the POIs cor-
relation, they conduct a personalized location recommendation system, which is
evaluated on the basis of a real-world GPS dataset.

Finally, some possible applications are related to complex network analysis
studies in which the POIs are the nodes of the networks. An example can be
found in [11] where the authors analyze the urban mobility and the POIs trying
to featuring the places in a city according to how people move among them.
Then, they build a POIs network by connecting POIs where trajectories pass.
From such a network they extract the communities finding group of places highly
connected by people mobility. As another example, a possible mobility data
driven analysis could consist in building the bipartite graph of drivers and POIs
to investigate the relationship between how the movements of people are affected
by the POIs, and how the places themselves are characterized and connected to
the mobility of people.

7 Conclusion

One of the most fascinating challenges of our time is to study the global inter-
connected society, especially, to understand the human mobility. The analysis of
movement data and locations of interest has been recently promoted by the wide
diffusion of new techniques and systems for monitoring, collecting and storing
positional data. In this paper we have shown a novel approach to extract people
real POIs from mobility GPS data. We have seen that the procedure is efficient
because it does not need all the trajectories present in the data but just a rep-
resentative abstraction. Moreover, we have observed that the places extracted
with the proposed method capture both famous collective POIs and individually
important POIs. Finally, as a positive side effect of this study, we have shown
that the mobility POIs extracted do not lose in generality even though gener-
ated only from systematic movements. A possible future work related to the POIs
extraction method consists in adjusting the radius used by the clustering algo-
rithm with respect to the population density of the area in which the POIs are
retrieved. Another possible improvements consists in extending the geographical
and systematical information given by our POIs with the static and semantic
knowledge contained in classical points of interest. That is, we could extend the
informative power of our POIs by matching them with common points of interest
information saying for example that they are bars, museum, hospital and so on.

Acknowledgements. This work has been partially supported by the European Com-
mission under the FET-Open Project n. FP7-ICT-284715, ICON, and by the European
Commission under the SMARTCITIES Project n. FP7-ICT-609042, PETRA.

308 R. Guidotti et al.

References

1. Adrienko, N., Adrienko, G.: Spatial generalization and aggregation of massive
movement data. IEEE Trans. Vis. Comput. Graph. 17(2), 205–219 (2011)

2. Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., Wrobel, S.: From move-
ment tracks through events to places: Extracting and characterizing significant
places from mobility data. In: 2011 IEEE Conference on VAST. IEEE (2011)

3. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: Ordering points to
identify the clustering structure. In: ACM SIGMOD Record, vol. 28. ACM (1999)

4. Coscia, M., Rinzivillo, S., Giannotti, F., Pedreschi, D.: Optimal spatial resolution
for the analysis of human mobility. In: 2012 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM). IEEE (2012)

5. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S.,
Trasarti, R.: Unveiling the complexity of human mobility by querying and mining
massive trajectory data. VLDB J. Int. J. Very Large Data Bases 20(5), 695–719
(2011)

6. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM (2007)

7. Hillier, B., Penn, A., Hanson, J., Grajewski, T., Xu, J.: Natural movement-or,
configuration and attraction in urban pedestrian movement. Environ. Plann. B
20(1), 29–66 (1993)

8. Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In:
INFOCOM, vol. 6 (2006)

9. Kostakos, V., Juntunen, T., Goncalves, J., Hosio, S., Ojala, T.: Where am i? loca-
tion archetype keyword extraction from urban mobility patterns. PloS one 8(5),
e6398 (2013)

10. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location pre-
dictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM (2009)

11. Ramalho Brilhante, I., Berlingerio, M., Trasarti, R., Renso, C., de Macedo, J.A.F.,
Casanova, M.A.: Cometogether: discovering communities of places in mobility data.
In: 2012 IEEE 13th International Conference on Mobile Data Management (MDM).
IEEE (2012)

12. Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M.,
Claxton, R., Strogatz, S.H.: Redrawing the map of great britain from a network of
human interactions. PloS One 5(12), e14248 (2010)

13. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for
car pooling. In: Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM (2011)

14. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobil-
ity, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM (2011)

15. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based
on gps data. In: Proceedings of the 10th International Conference on Ubiquitous
Computing. ACM (2008)

16. Zheng, Y., Xie, X.: Learning location correlation from gps trajectories. In: 2010
Eleventh International Conference on Mobile Data Management (MDM). IEEE
(2010)

WS-FMDS 2014

Path-Sensitive Race Detection with Partial
Order Reduced Symbolic Execution

Andreas Ibing(B)

Chair for IT Security, TU München,
Boltzmannstrasse 3, 85748 Garching, Germany

ibing@sec.in.tum.de

Abstract. This paper presents a combination of symbolic execution and
partial order reduction to achieve path-sensitive race detection. The pre-
sented approach limits the complexity of symbolic execution of multi-
threaded code by applying it with a fixed scheduling algorithm only.
Alternative thread interleavings are generated from fixed-scheduling ones
with ample set partial order reduction on an abstraction level of thread
interactions. Races are detected on the abstraction level. The proposed
algorithm is implemented as plug-in extension of Eclipse CDT and eval-
uated by running it on the race condition test cases from the Juliet suite.

1 Introduction

Data race bugs are introduced in multi-threaded software when the developer
forgets to lock a resource which is shared between threads. Races are difficult
to find and debug with conventional testing methods only, because they are
observed only for certain thread interleavings depending on the scheduler’s deci-
sions. Race bugs can only be reproduced in debugging if the scheduling deci-
sions are reproducible, which is why race bugs are sometimes referred to as
“Heisenbugs”.

Static analysis methods are therefore an attractive approach to race detec-
tion. Different static methods offer a trade-off between complexity and accuracy
of bug detections. Symbolic execution [1] is a static analysis method which is
path-sensitive. It treats program input as symbolic variables and translates oper-
ations on them into logic equations. Symbolic execution automatically explores
different paths in software and constructs path constraints. It relies on an auto-
matic theorem prover (constraint solver) to decide branch satisfiability and bug
conditions. Current symbolic execution engines rely on SAT Modulo Theories
(SMT) solvers [2] as logic backend. An overview of symbolic execution tools and
applications is given in [3,4].

The manifestation of race bugs depends on the actual thread interleaving,
where scheduling points may in principle lie between any neighbouring assem-
bly instructions. On the other hand, most thread actions are independent and
commutative, and therefore irrelevant for race conditions. This can be used to
analyze only a small number of representative thread interleavings without loss

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 311–322, 2015.
DOI: 10.1007/978-3-319-15201-1 20

312 A. Ibing

of accuracy [5]. Because the “happens-before” relation is a partial order [6], such
approaches are known as partial order reduction techniques [5].

Interesting properties of bug detection algorithms are soundness (no false neg-
ative detections) and completeness (no false positives). Because a bug checker
cannot be sound and complete and have bounded runtime, in practice bug check-
ers are evaluated with false positive and false negative detections on a sufficiently
large bug test suite. The currently most comprehensive C/C++ bug test suite
for static analyzers is the Juliet suite [7]. Among other common software weak-
nesses [8] it contains race condition test cases. In order to systematically measure
false positives and false negatives, it contains both ‘good’ and ‘bad’ functions
and combines ‘baseline’ bugs with different data and control flow variants.

This paper combines symbolic execution with partial order reduction to
achieve path-sensitive race detection. The proposed algorithm is implemented
as plug-in extension of Eclipse CDT. The implementation builds on [9] and
extends it to support multi-threading software and to find races. The remain-
der of this paper is organized as follows. The next section describes symbolic
execution of multi-threaded code to find satisfiable program paths with a pre-
defined scheduling algorithm which only depends on the thread identity numbers.
Section 3 describes the abstraction of a found path with respect to thread inter-
actions. From abstracted satisfiable paths with fixed scheduling, representatives
for alternative thread interleavings are generated with partial order reduction,
which is described in Sect. 4. Section 5 then shows how races are detected as over-
lapping read-write operations in the abstracted interleaving representatives. The
algorithm is evaluated in Sect. 6 by running it on the race condition test cases
from the Juliet suite. Related work is discussed in Sect. 7, and Sect. 8 discusses
the results.

2 Symbolic Execution with Pre-defined Scheduling
Algorithm

The symbolic execution engine from [9] is extended to support multi-threading,
more specifically Posix threads (pthreads). Symbolic execution is run with a
pre-defined scheduling algorithm, and thread interactions are traced as basis for
path abstraction. Thread interaction tracing includes thread actions on shared
variables.

2.1 Architecture Overview

Starting point is the multi-threaded symbolic execution engine with backtracking
described in [9], which can analyze single-threaded C programs. It performs inter-
procedural analysis and is implemented according to the tree-based interpreter
pattern [10]. It relies on an SMT solver as logic backend and translates C code
into SMTLib [11] logic equations in the logic of arrays, uninterpreted functions
and nonlinear integer and real arithmetic (AUFNIRA).

Path-Sensitive Race Detection 313

Fig. 1. Architecture Overview. The shaded classes are used to support multi-threading
software and to find races.

The architecture is illustrated in Fig. 1. The figure contains the main classes
from [9] and the interface IChecker, which makes the plug-in usable from CDT’s
code analysis framework [12]. Several Workers concurrently explore different
parts of a program’s execution tree. Each worker has an Interpreter together
with a memory system model to store and retrieve symbolic variables (whose
values are logic equations). The translation of control flow graph (CFG) nodes
into SMTlib syntax is performed by the StatementProcessor (which extends
CDT’s abstract syntax tree visitor class) according to the visitor pattern [13].
The BranchValidator detects unsatisfiable branches in a program path with the
help of the SMTSolver. WorkPool is used as synchronization object between the
Workers and the WorkPoolManager.

New classes which have been added to support the analysis of multi-threaded
software are shaded. The first addition is the PThread class, so that each thread
has its own stack object (the heap is shared). The Interpreter interface
IPathObserver is extented to notify about thread interactions. This interface
is implemented by PathAbstractor which is described in detail in Sect. 3. If
a satisfiable path through the analyzed software is detected, its abstraction
is reported to WorkPool for later analysis of alternative thread interleavings
(compare Fig. 1). The partial order reduction is implemented in Interleaving
Generator. Generated interleavings are passed to RaceChecker for race
detection.

2.2 Posix Threads Support

The symbolic execution engine offers the possibility to specify symbolic models
of library functions, which is used both for the C/C++ standard library and for
the operating system (Posix in this case). Function models are accessed by the
Interpreter through the Environment class (compare Fig. 1). Models for Posix
threads library (pthreads) function models are currently available for:

314 A. Ibing

– pthread create()
– pthread exit()
– pthread join()
– pthread mutex init()

– pthread mutex destroy()

– pthread mutex lock()

– pthread mutex unlock()

These models generate event notifications over the Interpreter through
IPathObserver interface, which is in this cased listened to by the Path
Abstractor.

2.3 Finding Program Paths

Symbolic execution is run with a fixed deterministic thread scheduling algorithm
which depends only on the thread identity numbers. The implementation uses
lowest thread-ID first (LTIF) scheduling, i.e. from the active threads the one
with lowest thread-ID is scheduled. A thread blocks (becomes inactive) e.g. by
trying to acquire a lock already held by another thread or with a join call for
a thread which is still alive. The symbolic execution is run with approximate
path coverage which is implemented with depth-first search (backtracking the
symbolic program state and changing a branch decision, compare [9]). It supports
a configurable loop iteration bound and the option to either prune a path when
a loop’s iteration bound is reached, or to skip out of the loop and bypass the
BranchValidator check. In the latter case the loop variables’ equations become
unknown and are therefore cleared.

2.4 Path-Sensitive Tracing of Shared Variables

In addition to pthread library calls, other relevant thread interactions are read
accesses and write accesses to shared variables (usage or definition actions for
variables). Whether or not a variable is shared between threads is in principle
context-sensitive, i.e. depends on the current program path (including the cur-
rent function’s call context). To trace sharing of variables, the Interpreter and
StatementProcessor classes from [9] have been extended. All global variables
are marked as shared when they are first accessed. Then the ‘shared’ property
is inferred over data flow constructs like assignments, references, function call
parameters and return values etc.. Data structures can be passed to a thread
with a pointer at thread creation time (pthread create()). These thread start
arguments are also marked as ‘shared’.

3 Abstracting Thread Interactions

Interesting scheduling points lie after each action of a thread which may be
relevant to another thread. These thread interaction events are:

– shared variable usage
– shared variable definition
– thread creation
– thread join

– thread exit
– mutex lock
– mutex unlock

Path-Sensitive Race Detection 315

These thread events are modelled to implement a joint interface IMTAction,
compare Fig. 1. It is possible that multiple events are generated for one source
code statement or for one CFG node. Thread events are recorded for each sat-
isfiable path with LTIF scheduling by the PathAbstractor. For each satisfi-
able path, the sequence of thread events is reported as path abstraction to the
Workpool for later analysis.

An example is shown in Listing 1.1, taken from the race tests from [7]. In
line 10 the global variable g good is both used and defined in one statement.
The listing is a ‘good’ function, because the access to the shared variable is
guarded with a lock (pthread functions are not directly called in this example,
because [7] uses an abstraction layer over Windows threads and Posix threads.).
A corresponding ‘bad’ function uses the global variable g bad instead of g good
and omits the locking. The abstraction of an interleaving of thread actions with
LTIF scheduling for two threads executing the example function is illustrated in
Fig. 2 as message sequence chart.

Listing 1.1. Example from [7]. A corresponding observable (abstracted) interaction
of three threads, two of them running this functin, is illustrated in Fig. 2.

stat ic void he lper good (void ∗ args) {
int i ;
/∗ FIX : acqu i r e a l ock ∗/

s t d t h r e ad l o c k a c qu i r e (g good lock) ;
for (i = 0 ; i < N ITERS ; i++) {

g good = g good + 1 ;
}
s t d t h r e a d l o c k r e l e a s e (g good lock) ;

}

4 Generating Interleaving Representatives with Partial
Order Reduction

From each satisfiable path found by symbolic execution with fixed scheduling,
all other thread interleavings corresponding to different scheduling decisions can
be generated. They should have the same computation result independent of
scheduling decisions. A race condition means that the program result depends
on the scheduling decisions. The scheduling points which might be relevant to
the program behaviour have been identified by the PathAbstractor. This section
describes the generation of the alternative relevant thread interleavings on the
path abstraction level. The generated set of interleavings should be of minimal
size without degrading the ability to detect races.

The implementation follows partial order reduction with the ample sets app-
roach [14]. The tree of scheduling decisions is traversed on-the-fly, where the
tree nodes are maximal sets of independent actions (ample sets). Use or define
actions from different threads for shared variables are independent if the vari-
able is not the same. The construction of ample sets reduces the width of the

316 A. Ibing

Fig. 2. Example of observable thread interaction with lowest thread-ID first scheduling.

Fig. 3. First levels of ample set scheduling tree for the example in Fig. 2.

scheduling tree and thus the number of generated interleavings. Optimal partial
order reduction generates a minimum number of representatives which corre-
sponds to classes of equivalent thread interleavings. The implemented algorithm
is listed as pseudo code in Algorithm 1. It is based on depth first search. In
each tree node, the enabled actions are divided into ample sets of independent

Path-Sensitive Race Detection 317

actions. Other actions may be blocked (a thread waiting to acquire a lock held by
another thread, or a thread waiting to join another) until they are enabled by
other actions. Each ample set is selected for one child node as action set to
be executed. An interleaving representative is found if in a tree node there are
no more blocked and enabled actions. The representative is generated by back-
tracking the path from the current node recursively through the parent node
(parent ample sets). The first levels of the ample set scheduling tree for the path
abstraction in Fig. 2 are shown as example in Fig. 3.

5 Race Detection with Interleaving Representatives

While concurrency bugs in general can involve any number of threads and vari-
ables, here we are interested in atomicity violations as overlapping read/write
actions to the same variable from different threads. Each interleaving represen-
tative is analyzed individually for atomicity violations. An example is shown
in Fig. 4. This figure shows an interleaving (not lowest thread-ID first) which
corresponds to the ‘bad’ version of Listing 1.1 where the locking and unlocking
operations are omitted. If the analyzed program contains an atomicity violation,
then such an interleaving representative is generated by the partial order reduc-
tion algorithm from a satisfiable LTIF scheduling path. The algorithm to detect
such a race in an interleaving representative is shown as pseudo code in Algo-
rithm2. It simply goes through the interleaving from start to end and checks for
overlapping read/write actions (at least one read and two writes) from different
threads to the same variable.

6 Experiments

The presented approach is implemented as plug-in extension to Eclipse CDT
(extending [9]) and tested with the available race condition bug test cases
(CWE-366) from the Juliet suite [7]:

– CWE366 Race Condition Within Thread global int: races on global vari-
ables.

– CWE366 Race Condition Within Thread int byref: races on variables with
access through pointers.

The races are combined with 19 different data and control flow variants for each
of both sets [7]. These 38 small test programs consist of 5–7 threads each and
contain ‘good’ as well as ‘bad’ thread interaction behaviour. The tests were run
as JUnit plug-in tests with Eclipse 4.2 on a Core 2 Quad CPU Q9550, on 64-bit
Linux kernel 3.2.0.. The symbolic execution engine was configured to run single-
threaded, to unroll loops for a maximum of three iterations, and to skip-out
further iterations (continue the path skipping the loop while clearing the loop
variables’ formulas). The races were detected accurately (no false positives or
false negatives) except for flow variant 18, in which a goto statement leads to an

318 A. Ibing

partialOrderDFS(ThreadStates states in, ActionSet execute, ActionSet
enabled in, ActionSet blocked in) ThreadStates states =
states in.cloneElements()
ActionSet blocked = blocked in.cloneElements()
enabled = performActions(execute, blocked)
enabled.addAll(enabled in)
if enabled.isEmpty() then

// found representative:
interleaving = backtrack(execute)

else
// find ample sets:
Set<ActionSet> ampleSets;
ampleSets[0].add(enabled[0])
enabled.remove[0]
interator it = ampleSets.iterator()
forall the actions a in enabled do

while it.hasNext() do
ActionSet ample = it.next()
if fitsAmple(a,ample) then

ample.add(a)

else
ActionSet newSet
newSet.add(a)
ampleSets.addLast(newSet)

end

end

end
// enter next search level
forall the ActionSet nextExecute : ampleSets do

// enable backtracking:
nextExecute.setParent(execute)
ActionSet nextEnabled
forall the ActionSet other : ampleSets do

if nextExecute != other then
nextEnabled.addAll(other)

end

end
PartialOrderDFS(states, nextExecute, nextEnabled, blocked);

end

end

Algorithm 1. Generating representatives for equivalent interleavings with
ample set partial order reduction.

exception in the control flow graph builder of CDT’s code analysis framework,
and consequently to a false negative detection. The measured runtimes for the
accurately decided tests are shown in Fig. 5. A screenshot of error reporting in
the GUI is shown in Fig. 6.

Path-Sensitive Race Detection 319

Fig. 4. Race condition, overlapping read/write actions on the same variable g bad from
different threads.

forall the actions in interleaving do
if action instanceof UseSharedVar then

openUses.put(action.getThreadnr(), var)

else if action instanceof DefSharedVar then
if openUses.contains(anyOtherThread, var) then

if futureWrite(otherThread, var) then
atomicity violation found!

end

end

end

end

Algorithm 2. Detecting atomicity violations in an interleaving represen-
tative as overlapping read/writes.

7 Related Work

Race detection has been a topic for more than 30 years. Dynamic program analy-
sis methods normally rely on an application-level scheduler to make detected
bugs reproducible. The dynamic approach inherently leads to false negative
detections, since only a subset of program paths and relevant thread interleavings
are observed. Prominent examples of dynamic race detection are [15–17].

320 A. Ibing

Fig. 5. Benchmark with race condition tests (36 programs) from [7].

Fig. 6. Screenshot error reporting.

Different static analysis approaches offer a trade-off between complexity and
accuracy. On the lower complexity side they normally rely on type inference
[18–20]. On the more accurate side there are path-sensitive approaches with
model checking or symbolic execution [21–24]. Qadeer and Rehof [22] limits the
number of generated thread interleavings with a context switch bound. The
closest related approach is [24]. It applies symbolic execution with bit-vector
logic to an intermediate code representation and uses partial order reduction.
It differs from the presented approach in that it does not separate symbolic

Path-Sensitive Race Detection 321

execution from partial order reduced interleaving generation by fixed scheduling
and path abstraction, and it detects races by comparing computation results of
different interleavings.

8 Discussion

The presented approach limits the complexity of symbolic execution of multi-
threaded code by applying it with a fixed scheduling algorithm only. The han-
dling of loops in the current implementation is problematic. Bounded unrolling
misses later bugs after path pruning. The option to skip-out bounded loops
and clearing the loop variables’ formulas is not sound. It can generate unfeasible
paths as feasible and false positive bug detections outside the loop. One improve-
ment might be to add a loop termination check and a live variable analysis to
ensure that loop variables are not read later. Another possibility might be to use
abstract interpretation with the interval domain to avoid further unrolling. In
spite of partial-order reduction the number of generated interleavings currently
grows too fast for the presented approach to be useful for practical program sizes.
Future work might therefore include application of reduced interleaving coverage
criteria (e.g. [25]). This is especially appropriate when only certain concurrency
bugs like atomicity violations are targeted.

Acknowledgement. This work was funded by the German Ministry for Education
and Research (BMBF) under grant 01IS13020.

References

1. King, J.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976)

2. de Moura, L., Bjorner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

3. Cadar, C., et al.: Symbolic execution for software testing in practice - preliminary
assessment. In: International Conference on Software Engineering (2011)

4. Pasareanu, C., Visser, W.: A survey of new trends in symbolic execution for soft-
ware testing and analysis. Int. J. Softw. Tools Technol. Transfer 11, 339–353 (2009)

5. Clarke, E., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial
order techniques. Softw. Tools Technol. Transfer 2(3), 279–287 (1999)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

7. United States National Security Agency, Center for Assured Software: Juliet Test
Suite v1.1 for C/C++, December 2011

8. Martin, R., Barnum, S., Christey, S.: Being explicit about security weaknesses. In:
Blackhat DC (2007)

9. Ibing, A.: Parallel SMT-constrained symbolic execution for eclipse CDT/Codan.
In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254,
pp. 196–206. Springer, Heidelberg (2013)

10. Parr, T.: Language Implementation Patterns. Pragmatic Bookshelf, Lewisville
(2010)

322 A. Ibing

11. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard Version 2.0., December
2010

12. Laskavaia, A.: Codan- C/C++ static analysis framework for CDT. In: EclipseCon
(2011)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, New York (1994)

14. Peled, D.: Combining partial order reduction with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

15. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser:
a dynamic data race detector for multi-threaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

16. Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: A theory of data race detection. In:
PADTAD (2006)

17. Flanagan, C., Freund, S.: FastTrack: efficient and precise dynamic race detection.
In: PLDI (2009)

18. Abadi, M., Flanagan, C., Freund, S.: Types for safe locking: static race detection
for Java. ACM Trans. Program. Lang. Syst. 28(2), 207–255 (2006)

19. Voung, J., Jhala, R., Lerner, S.: RELAY: static race detection on millions of lines
of code. In: ACM Symposium Foundations of Software Engineering (ESEC-FSE)
(2007)

20. Naik, M.: Effective static race detection for Java. Ph.D. thesis, Stanford University
(2008)

21. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: an optimal
symbolic partial order reduction technique. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 398–413. Springer, Heidelberg (2009)

22. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

23. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97.
Springer, Heidelberg (2005)

24. Cordeiro, L.: SMT-based bounded model checking of multi-threaded software in
embedded systems. Ph.D. thesis, University of Southampton (2011)

25. Lu, S., Jiang, W., Zhou, Y.: A study of interleaving coverage criteria. In:
ECEC/FSE (2007)

Phase-Type Approximations for Non-Markovian
Systems: A Case Study

Gabriel Ciobanu(B) and Armand Rotaru

Institute of Computer Science, Romanian Academy,
Blvd. Carol I no. 8, 700505 Iaşi, Romania

gabriel@info.uaic.ro, armand@iit.tuiasi.ro

Abstract. Non-Markovian systems are usually difficult to represent and
analyse using currently available stochastic process calculi. By relying
on a combination between the newly introduced process algebra PHASE
and the probabilistic model checker PRISM, we examine the dynamics
of one such system, which involves a collaborative text review performed
by two manuscript editors, and focus on the derivation of quantitative
performance measures. We find that approximating non-Markovian tran-
sitions through single Markovian transitions is fast, but inaccurate, while
employing more complex phase-type approximations is somewhat slow,
but considerably more precise.

1 Introduction

In general, stochastic systems are divided into Markovian and non-Markovian
systems, based on the temporal properties of their transitions: in the former, the
time after which the system leaves any particular state (i.e., performs a transi-
tion) does not depend on the time already spent in that state, while in the latter,
there is at least one transition between two states which does not satisfy the
aforementioned property. A potential shortcoming of current stochastic process
calculi refers to the fact that almost all of these formalisms were designed for
Markovian systems, which can be expressed in terms of continuous-time Markov
chains (CTMCs), and for which a solid mathematical theory exists [15]. This
body of theory greatly facilitates performance analysis and allows one to easily
derive the exact numerical value of transient, passage time, and steady-state
performance measures. However, a sometimes severe downside of this approach
lies in having to use only exponential distributions for stochastic variables. This
restriction limits the possibility of accurately modelling certain performance vari-
ables, such as job service times or process execution times in software/hardware
systems, which follow heavy tailed distributions [5], or the durations of point-
ing gestures in human-computer interaction systems, which follow log-normal
distributions [6], to name but a few (for additional examples, see [11]). More
specifically, the theory underlying non-Markovian systems is far less developed
than that for Markovian systems, which means that performance measures typ-
ically cannot be derived analytically (but only approximated). The derivation

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 323–334, 2015.
DOI: 10.1007/978-3-319-15201-1 21

324 G. Ciobanu and A. Rotaru

of these measures is usually performed either by employing non-Markovian for-
malisms, which rely on discrete event simulation techniques, or by constructing
a Markovian system which approximates the behaviour of a non-Markovian sys-
tem, and then analysing the Markovian system.

With respect to Markovian approximations, modellers typically apply one
of two approaches. The first option is that of considering phase-type approxi-
mations for transition durations, meaning that non-Markovian transitions are
replaced by Markovian processes (consisting of internal states and transitions).
Phase-type distributions are adequate for such an enterprise given their strong
closure properties (i.e., they are closed under convolution, maximum, minimum
and convex mixture, unlike exponential distributions, which are closed only
under minimum) and the fact that they can approximate any positive-valued dis-
tribution to an arbitrary degree of accuracy [13]. In contrast, the second option
is that of ignoring the non-Markovian nature of transition durations: each non-
Markovian distribution is replaced with a Markovian (exponential) distribution,
such that the means of the two distributions coincide. Preferring one of these
options over the other involves making a trade-off between approximation accu-
racy and size. Phase-type approximations usually produce accurate performance
measures, but the resulting models often have a considerable number of states
and transitions (e.g., in the order of millions), which makes performance analy-
sis trickier and more time-consuming. Simple exponential approximations tend
to generate at least somewhat inaccurate results, but the resulting models are
compact and easy to analyze.

In this context, our intention is to examine the accuracy of certain per-
formance measures derived over exponential approximations of non-Markovian
systems, with the purpose of showing that the relative errors associated with
the performance measures can be quite large, even in situations where simple
exponential approximations are traditionally assumed to be quite accurate (e.g.,
quantitative properties that deal with average case behaviour). The structure
of our paper is as follows. In Sect. 2, we describe the syntax and semantics of a
new Markovian process calculus, called PHASE, for modelling non-Markovian
systems through the use of phase-type distributions. The formalism is parsimo-
nious in terms of syntax and semantics, includes action-based synchronisation,
and can be faithfully translated into the stochastic language of the probabilistic
model checker PRISM [12]. In Sect. 3 we present a case study involving a hypo-
thetical non-Markovian system (i.e., a collaborative text review scenario) and
investigate how well a simple exponential approximation fares against a more
elaborate phase-type approximation, expressed as a PHASE model. We are con-
cerned mainly with the cases where the predictions of the two models diverge to
a considerable degree, and with the pattern of errors for the simple exponential
approximation. We end the paper with conclusions and references.

2 PHASE

In order to allow a better integration of phase-type distributions within stochastic
process calculi, we propose a very simple process calculus, inspired by PEPA [10],

Phase-Type Approximations for Non-Markovian Systems: A Case Study 325

PEPA∞
ph [7] and IMC [9], which employs phase-type distributions [14] for tran-

sition durations. Our formalism does not put forward any theoretical innova-
tion, given that its syntax is derived from that of PEPA∞

ph, while its semantics
largely agrees with that of IMC (under the additional assumption that all actions
are urgent, and that action non-determinism is solved by uniform schedulers).
Instead, the novelty of PHASE lies in the fact that it can be easily implemented
in PRISM, which is one of the most advanced stochastic model checkers cur-
rently available, supporting the derivation/verification of several types of per-
formance measures (including reward properties). A comprehensive account of
how to translate PHASE models into PRISM specifications is given in [4]. For
ease of modelling, we restrict our calculus to phase-type representations whose
probability of starting in state 1 is equal to 1 (i.e., there is a single initial state),
which can therefore be fully specified in terms of their infinitesimal generator
matrix. We denote by PH(A) the phase-type distribution whose generator is A.
The distribution PH(A) describes the time until absorption for a CTMC of
size ord(A) (i.e., the order of A), which we denote by CTMC(A), where state
ord(A) is absorbing, and all the other states are transient. The element A(i, j),
for 1 ≤ i, j ≤ ord(A) and i �= j, represents the rate of a transition from state i
to state j. Furthermore, the element A(i, i), for 1 ≤ i ≤ ord(A), is the negative
sum of the rates of all the transitions originating in state i.

Our calculus includes only three operators, namely the sequential operator,
the choice operator, and the parallel operator. The full syntax of PHASE can be
given as follows, where Pseq is a sequential process, Ppar is a parallel process, α
is an action, (α, PH(A)) is a phase-type transition, {L} is a set of actions, and
n ≥ 2 is a natural number:

Pseq ::= (α, PH(A)).Pseq | (α1, PH(A1)).P 1
seq + . . . + (αn, PH(An)).Pn

seq

Ppar ::= Pseq | P 1
par

��
{L} P 2

par

The sequential expression (α, PH(A)).Pseq indicates that the process performs
the action α, after a delay distributed according to PH(A), and then behaves
like Pseq. The choice expression (α1, PH(A1)).P 1

seq + . . . + (αn, PH(An)).Pn
seq

indicates a race for execution between the transitions (αi, PH(Ai)), with 1 ≤
i ≤ n, such that the first transition to complete (i.e., the transition with the
shortest duration) is selected and performed, while all the other transitions are
halted and discarded. In other words, the choice operator denotes a competi-
tion between processes, via their current transitions, in which the fastest process
wins. The parallel expression P 1

par
��
{L} P 2

par indicates that the processes P 1
par

and P 2
par must synchronize whenever performing an action from the cooperation

set {L}. This means that, for any action α ∈ {L}, if P 1
par finishes a transi-

tion (α, PH(A1)), then P 1
par is afterwards blocked and cannot make any further

transitions until P 2
par completes a corresponding transition (α, PH(A2)), and

vice-versa. The interpretation of this operator is that it forces processes to coop-
erate on certain transitions (whose actions are included in {L}), by waiting for
each other to complete, therefore generating a shared transition. However, the
transitions whose actions are not in {L} can proceed unaffected by cooperation.

326 G. Ciobanu and A. Rotaru

In addition, no associativity rules are defined for the parallel composition of
more than two processes: the order in which the processes are composed must
be made explicit through the use of parentheses.

In order to define the formal operational semantics of PHASE, we first sep-
arate transition durations from the occurrence of actions, and then we express
phase-type distributions in terms of their associated CTMC. More specifically,
we make the distinction between Markovian transitions and action transitions:
Markovian transitions, denoted by 〈r〉 (or r=⇒), indicate a temporal delay drawn
from an exponential distribution with a rate of r, while action transitions,
denoted by α (or α−→), indicate the (immediate) occurrence of action α. Next, we
translate any sequential expression (α, PH(A)).P fin

seq into the following equiva-
lent form, where o = ord(A) and ⊕ denotes an internal choice between Markovian
transitions (as in classical process calculi, such as PEPA):

Int1 = 〈A(1, 1)〉.Int1 ⊕ 〈A(1, 2)〉.Int2 ⊕ . . . ⊕ 〈A(1, o)〉.Into
...
Into−1 = 〈A(o − 1, 1)〉.Int1 ⊕ 〈A(o − 1, 2)〉.Int2 ⊕ . . . ⊕ 〈A(o − 1, o)〉.Into
Into = α.P fin

seq

As a result, P init
seq = (α, PH(A)).P fin

seq becomes P init
seq = Int1, while Pseq =

(α1, PH(A1)).P 1
seq + . . .+(αn, PH(An)).Pn

seq becomes Pseq = Int11 + · · ·+ Intn1 .
The states Int1, . . . , Into correspond to the states of CTMC(A), while the val-
ues A(i, j), with 1 ≤ i, j ≤ o, correspond to the rates of the transitions from
CTMC(A), as described at the beginning of this section. The operational seman-
tics of PHASE, which makes use of both Markovian and action transitions, is
given in Table 1, where the transitions above the line form the necessary condi-
tions for the transitions bellow the line to take place. Since the operators ⊕, +
and ��

{L} are commutative, rules CH1 through PAR5 remain valid when replac-
ing P1 with P2, and vice-versa.

Rules SEQ1 and SEQ2 make explicit the (immediate) occurrence of actions,
in the case of action transitions, and the passage of time, for Markovian tran-
sitions. Rule CH1 describes the usual race between the Markovian transitions
that produce the phase-type distributions in PHASE. Rule CH2 is similar to
CH1, except that now the race takes place not within a phase-type distribu-
tion, but between two (or more) such distributions, as required by the choice
operator in PHASE. Next, rule CH3 specifies the race policy through which the
action associated with the fastest phase-type transition is selected for execution,
while the rest of the phase-type transitions (and their corresponding actions)
are discarded. The remaining rules refer to the parallel composition of PHASE
processes. Firstly, rule PAR1 treats the case in which two processes are engaged
in Markovian transitions, which means that they do not interact with each other.
Secondly, rule PAR2 deals with the parallel composition of an action transition
and a Markovian transition: given that the action in question does not belong to
the cooperation set {L}, its associated action transition gains precedence over
the Markovian transition, due to the immediacy of actions. In contrast, when-
ever the action is included in {L}, as in rule PAR3, the process that contains

Phase-Type Approximations for Non-Markovian Systems: A Case Study 327

Table 1. PHASE Operational Semantics.

the action transition needs to wait for the other process to enable a matching
action transition. Finally, rules PAR4 and PAR5 handle the synchronization
between action transitions: those transitions which are not part of the coopera-
tion set proceed independently, while matching transitions with actions in {L}
are performed simultaneously.

Given that the semantics of PHASE employs both Markovian and action
transitions, it is possible to have instances of action non-determinism during the
evolution of certain PHASE processes. Somewhat surprisingly, this form of non-
determinism is caused by the parallel operator, and not by the choice operator.
As an example of action non-determinism, let us consider the following processes:

P1 = (α, PH(A1)).P1 P2 = (α, PH(A2)).P2 P3 = (α, PH(A3)).P3

P = (P1 ��
∅ P2) ��

{α} P3

Within P , if the duration of transitions tr1 = (α, PH(A1)) and tr2 =
(α, PH(A2)) is shorter than that of transition tr3 = (α, PH(A3)), then tr3
can synchronize with either tr1 or tr2, since both transitions are available for
cooperation once the delay associated with tr3 has elapsed. In order to be able
to derive performance measures over PHASE processes such as P , we need to
resolve all instances of action non-determinism. Our option in this matter is
to assume that the competing alternatives are all equally likely to be chosen

328 G. Ciobanu and A. Rotaru

(i.e., the winning shared action transition is drawn from a uniform distribution
defined over all the competitors)1. In the case of P , this results in tr1 and tr2
each having a probability of 0.5 to be selected for synchronization.

When reasoning about the behaviour of PHASE processes, it is natural to
ignore any intermediate states and transitions, given that their utility is solely
technical. Therefore, when we refer to the states and transitions of a sequential
PHASE process P , we have in mind only transitions of the form (α, PH(A))
and the states that these transitions connect, with respect to P .

3 Case Study

As an illustration of the advantages afforded by using PHASE and PRISM in
the modelling of non-Markovian systems, as well as of the errors that can arise
when ignoring the non-Markovian nature of transition durations, we focus on
a hypothetical instance of collaborative text review. The corresponding system
consists of two human manuscript editors, namely Editor 1 (ED1) and Editor 2
(ED2), who must cooperate in processing a set of documents, with the aid of an
editing Device (DEV). The structure of the system is shown in Fig. 1.

Fig. 1. A collaborative manuscript editing system with non-Markovian dynamics.

Editor 1 first makes adjustments to the graphical elements of the manuscript
(i.e., state 1), then works on an unrelated task (i.e., state 2), and, finally, takes
part in copyediting the manuscript (i.e., state 3). Meanwhile, Editor 2 begins
by dealing with an unrelated assignment (i.e., state 1), then applies certain
modifications to the text of the manuscript (i.e., state 2), after which he/she
contributes to the copyediting of the manuscript (i.e., state 3). Last, the behav-
iour of the editing Device can be divided into an initial, an intermediate and a
final processing phase (i.e., states 1, 2 and 3, respectively). Moreover, the Edi-
tors rely on the Device in order to do their work, meaning that: the first editing
1 If necessary, there are plenty of other solutions for dealing with non-determinism,

which employ priority levels and weights, or more advanced schedulers [2].

Phase-Type Approximations for Non-Markovian Systems: A Case Study 329

phase is completed (i.e., action a is performed) only after the Device has finished
its initial processing and Editor 1 has made the graphical adjustments; the sec-
ond editing phase is done (i.e., action b is performed) as soon as the Device has
finished its intermediate processing and Editor 2 has made the textual adjust-
ments; finally, the third editing phase is concluded (i.e., action c is performed)
once the Device has ended its final processing, and both Editor 1 and 2 have
successfully copyedited the resulting manuscript. Also, once an editing session is
finished, the Editors immediately start working on a new manuscript (i.e., the
system operates in a cyclical manner).

The interactions between the Editors and the Device are implemented through
synchronization over shared actions: Editor 1 and the Device have actions a and
c in common, while Editor 2 and the Device must perform actions b and c
together. The delays for each transition are given by the following distributions:
Unif(LB,UB) is a uniform distribution with a lower bound of LB and an upper
bound of UB; Lnorm(M,SD) is a log-normal distribution with a mean of M
and a standard deviation of SD, on the log scale; Norm(M,SD) is a normal
distribution with a mean of M and a standard deviation of SD; Exp(R) is an
exponential distribution with a rate of R.

Based on the dynamics of the previously described system, we wish to show
the benefits of employing moderately large phase-type approximations for tran-
sition durations, in the form of PHASE processes, instead of simply ignoring
the non-Markovian nature of the system and modelling each transition as if it
were Markovian (i.e., exponentially distributed). To this end, we compare the
behaviour of three different formal models for the system depicted in Fig. 1. The
first model is expressed in the non-Markovian process calculus MODEST [8].
It is meant to provide an exact representation of the system’s evolution, but it
relies on discrete event simulation for the derivation of performance measures.
In contrast, the second and the third model are expressed in PRISM: the second
model implements a PHASE approximation, while the third model is a regular
PRISM specification in which non-Markovian transitions are replaced with single
Markovian transitions, matched in terms of average duration. Unlike in the case
of the first model, performance measures for the last two models can be obtained
through the direct application of Markov theory. However, the accuracy of the
analysis will differ between the elaborate approximation (involving PHASE and
PRISM) and the simple one (involving just PRISM). An extended description
of all the models and performance measures is provided in [4].

Since we wish to obtain accurate approximations, in our PHASE model we
employ moderately large phase-type representations, having either 1, 10, 15, or
20 phases, corresponding to the exponential, log-normal, normal and uniform
distributions, respectively. In order to generate the phase-type distributions, we
opt for the tool EMpht [1], since it allows us to impose the requirement that
there must be a single initial state for each representation, and also, its pre-
specified input distributions already include all the distributions that appear in
our example, which means that the input to the fitting algorithm can be provided
in an effortless manner. We can now proceed to examine the quality of the

330 G. Ciobanu and A. Rotaru

PHASE and simple PRISM approximations. Thus, we compute our performance
measures of interest by using stochastic model checking, for the two PRISM
models, and discrete event simulation, for the MODEST model. More specifically,
we consider four types of quantitative properties supported by PRISM: bounded
path properties, unbounded path properties, steady-state properties, and reward
properties.

Bounded path properties quantify the probability that a certain behaviour
occurs within a particular time interval. In the case of our editing example,
we can use such properties in order to estimate the shapes of the temporal
distributions associated with a set of events. For instance, we can analyse the
duration of the three editing activities of Editor 1, as well as that of a complete
editing session. The results of this analysis are displayed in Fig. 2.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Log−normal(0,0.5)

Time

P
ro

ba
bi

lit
y

Lnorm(0,0.5)
PRISM−PHASE
PRISM−EXP

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Normal(4,1)

Time

P
ro

ba
bi

lit
y

Norm(4,1)
PRISM−PHASE
PRISM−EXP

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Uniform(1.5,2.5)

Time

P
ro

ba
bi

lit
y

Unif(1.5,2.5)
PRISM−PHASE
PRISM−EXP

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Markovian Approximations

Time

P
ro

ba
bi

lit
y

SYS
PRISM−PHASE
PRISM−EXP

Fig. 2. Transition and editing session durations. PRISM-PHASE = distributions for
the PHASE model; PRISM-EXP = distributions for the simple PRISM model.

The figure makes it clear that, although the phase-type representations cho-
sen for the PHASE model are relatively small, they match the initial normal and
log-normal distributions quite closely. The only large discrepancy between the
PHASE and the MODEST model occurs for the uniform distribution, but this is
a direct consequence of the fact that it is difficult for phase-type representations

Phase-Type Approximations for Non-Markovian Systems: A Case Study 331

to produce abrupt local variations in probability (e.g., [16]), such as those that
take place at the lower and upper bound of uniform distributions. On the other
hand, the exponential approximations bear very little resemblance to the any
of the non-Markovian distributions, as expected. This is also true with respect
to the duration of a full editing session: the PHASE and the MODEST model
produce almost identical distributions, whereas the simple PRISM model repro-
duces only the broad shape of the correct distribution (e.g., its mode), while
considerably overestimating the positive skew of the distribution in question.

Next, unbounded path properties are very similar to their bounded coun-
terparts, except for the fact that no temporal constraints are imposed on the
behaviour under investigation. For our editing system, we might be curious with
respect to the probability that the operation of the editing Device leads to lags
in the editing process. These lags appear whenever the Editors have completed
they assigned tasks, but the Device has not yet finished incorporating their input
within the manuscript. The probabilities for the occurrence of lags, in relation
to the action that is delayed by each lag (i.e., actions a, b, and c), are given in
the left half of Fig. 3.

Model P(a lag) P(b lag) P(c lag) S(a lag) S(b lag) S(c lag)
MODEST .376 .386 .234 .060 .087 .062
PHASE .377 .403 .239 .060 .093 .063
EXP .500 .520 .315 .068 .133 .071

Fig. 3. Analysis of lag duration and probability of occurrence.

Like in the case of bounded path properties, the PHASE and the MODEST
model yield roughly the same results, with the PHASE measures falling within
a 10 % range of the MODEST measures. However, the results for the simple
PRISM model are markedly inaccurate, missing the actual values by a relative
error of 25–35 %. Taken together, the previous two findings suggest that even
for very unsophisticated non-Markovian systems such as ours, the use of phase-
type distributions, instead of exponential distributions, can significantly increase
the accuracy of certain performance measures. In addition, large improvements
can be seen even for very basic quantitative properties, such as those measuring
the frequency of lags. If we want to have a better look at the extent to which
the intricacy of the performance measure influences the size of the error, it
is sufficient to calculate the probability that the Editors encounter no lag (of
any kind) during a complete editing session: the MODEST and the PHASE
models output probabilities of 34.1 % and 32.6 %, while the simple PRISM model
predicts a probability of just 16 %. In other words, the relative error is larger
than 100 %!

We now move on to steady-state properties, which reflect the percentage of
time dedicated to a certain behaviour. For our example, we might wish to learn
the relative temporal extent of each type of lag and, more generally, the relative

332 G. Ciobanu and A. Rotaru

amount of time that the Editors and the Device spend in each of their possible
states. The values for the corresponding performance measures are shown in the
right half of Fig. 3 and in Fig. 4, respectively.

Model S(ED1=X) S(DEV=X) S(ED2=X)
1 2 3 1 2 3 1 2 3

MODEST .218 .090 .692 .218 .316 .465 .131 .404 .465
PHASE .219 .090 .691 .219 .312 .469 .120 .411 .469
EXP .204 .077 .719 .204 .313 .483 .112 .405 .483

Fig. 4. Analysis of state residence times in the long run.

Given that steady-state properties rely heavily on the mean duration of tran-
sitions, which are nearly identical for all three of our models, it is not surprising
to discover that the models typically agree with respect to the values of said
measures. Nevertheless, a few non-negligible relative errors for the exponential
approximation can still be detected, namely for the lags, and less pronounced,
for state 2 of Editor 1 and state 1 of Editor 2 (i.e., the states where the Editors
are not occupied with solving the main task). An interesting point to be made
here is that each particular type of lag gives rise to a different pattern of error:
a lag - large error for path measure, moderate error for steady-state measure; b
lag - large errors for both path and steady-state measures; c lag - small errors
for both path and steady-state measures.

Finally, reward properties associate numerical values (rewards) to the states
and transitions that make up a certain behaviour, and then compute the expected
value of the rewards associated with that behaviour. In our editing example, we
can use rewards to determine the average duration of a complete editing session.
Once again, the PHASE and the MODEST model are in tight agreement (i.e.,
12.597 vs 12.629, respectively), while the exponential approximation produces a
value (i.e., 14.712) which is more than 15 % larger than that indicated by the
MODEST model.

4 Conclusion

In this paper we employ the novel process calculus PHASE designed specifi-
cally for operating with phase-type distributions [3], and the probabilistic model
checkers PRISM and MODEST, in order to compare two popular approaches for
representing the dynamics of non-Markovian systems: the first approach involves
approximating non-exponential (non-Markovian) distributions with moderately
elaborate phase-type distributions, in an attempt to capture non-Markovian
behaviour as closely as possible; the second approach replaces non-exponential
distributions with exponential ones, effectively ignoring the non-Markovian nature
of the system. Our intention is to prove that, although the second approach

Phase-Type Approximations for Non-Markovian Systems: A Case Study 333

has undeniable merit (e.g., a simple Markovian model is very easy to under-
stand, implement, and analyze), the accuracy of various performance measures
is significantly better for the first approach. Thus, we turn our attention to a
hypothetical manuscript review system, in which two human manuscript editors
interact with an editing device, with the purpose of formatting and copyediting
a set of manuscripts. For this system, which features non-exponential transition
durations that lead to non-Markovian dynamics, we build and compare three dif-
ferent models: an exact MODEST model, which uses discrete event simulation,
a PHASE model, which relies on phase-type distributions, and a simple PRISM
model, which relies on exponential distributions. Taking the MODEST model as
a reference for the actual behaviour of the system, we examine the accuracy of
the PHASE and of the simple PRISM model, in terms of how closely they match
the predictions of the MODEST model. More specifically, we compute a set of
quantitative measures, in the form of path properties, steady-state properties,
and reward properties. These measures are related to both specific and general
aspects of the system’s evolution, such as the probability of having lags due to
the editing devices, or the average duration of an editing session.

Our findings show that the PHASE model approximates the non-Markovian
behaviour of the MODEST model in a satisfactory manner, based on a relative
error of less than 5–10 % for each of the performance measures being tested.
On the other hand, the performance measures generated by the simple PRISM
model are often imprecise, which translates into relative error rates as high as
15–30 % (or even greater). The most severe errors occur for path properties,
which are known to be quite sensitive to the shapes of the temporal distrib-
utions. Nevertheless, in our analysis we also encountered a few sizeable errors
for steady-state and reward properties, which should be interpreted as an invi-
tation to caution: even though some properties depend mainly on the means
of the temporal distributions, this does not automatically give a modeller the
possibility of ignoring other characteristics of the distributions in question (e.g.,
their skewness), under the assumption that those other characteristics play a
negligible role. Furthermore, our results seem to reveal that, given a particular
behaviour of interest, the quantitative relation between errors for path proper-
ties, on the one hand, and errors for both steady-state and reward properties,
on the other hand, is in no way obvious or trivial to predict. Therefore, when
employing a simple Markovian approximation, the accuracy of path properties
does not immediately guarantee comparable levels of accuracy for steady-state
properties, and vice-versa.

All in all, we acknowledge the limited scope of our case study: our PHASE
model does not include all the available PHASE operators (e.g., the choice oper-
ator), its non-Markovian distributions are of only three types (i.e., uniform, log-
normal, and normal), its states and transitions are relatively few in number, and
the performance measures being derived are not particularly involved. Therefore,
it seems like a natural next step to try to learn how model complexity (expressed
in terms of operator diversity, range of temporal distributions, and model size)
and property complexity (resulting from the length of the time interval over

334 G. Ciobanu and A. Rotaru

which the property is computed, as well as from the type and number of oper-
ators and variables that are part of the property) interact in determining the
accuracy of performance measures, for both phase-type and exponential approx-
imations of non-Markovian systems.

References

1. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the
EM algorithm. Scand. J. Stat. 23(4), 419–441 (1996)

2. Bernardo, M., Gorrieri, R.: Extended Markovian process algebra. In: Montanari,
U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer,
Heidelberg (1996)

3. Ciobanu, G., Rotaru, A.S.: PHASE: a stochastic formalism for phase-type distri-
butions. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 91–106.
Springer, Heidelberg (2014)

4. Ciobanu, G., Rotaru, A.: Phase-type approximations for non-Markovian systems.
Technical report FML-14-01, Formal Methods Laboratory, Iasi, Romania (2014)

5. Crovella, M.E.: Performance evaluation with heavy tailed distributions. In: Feitel-
son, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 1–10. Springer,
Heidelberg (2001)

6. Doherty, G., Massink, M., Faconti, G.: Reasoning about interactive systems with
stochastic models. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220, pp. 144–
163. Springer, Heidelberg (2001)

7. El-Rayes, A., Kwiatkowska, M., Norman, G.: Solving infinite stochastic process
algebra models through matrix-geometric methods. In: Hillston, J., Silva, M.
(eds.) Proceedings of PAPM 1999, pp. 41–62. Prensas Universitarias de Zaragoza,
Zaragoza (1999)

8. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Form. Methods Syst.
Des. 43, 191–232 (2013)

9. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Hei-
delberg (2002)

10. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

11. Katoen, J.-P., D’Argenio, P.R.: General distributions in process algebra. In:
Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS, vol. 2090,
pp. 375–429. Springer, Heidelberg (2001)

12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

13. Nelson, R.: Probability, Stochastic Processes, and Queueing Theory. Springer, New
York (1995)

14. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Dover Publications, New York (1981)

15. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)
16. O’Cinneide, C.A.: Phase-type distributions: open problems and a few properties.

Stoch. Models 15(4), 731–757 (1999)

Quantitative Anonymity Evaluation
of Voting Protocols

Fabrizio Biondi(B) and Axel Legay

INRIA Rennes, Rennes, France
{fabrizio.biondi,axel.legay}@inria.fr

Abstract. In an election, it is imperative that the vote of the sin-
gle voters remain anonymous and undisclosed. Alas, modern anonymity
approaches acknowledge that there is an unavoidable leak of anonymity
just by publishing data related to the secret, like the election’s result.
Information theory is applied to quantify this leak and ascertain that it
remains below an acceptable threshold.

We apply modern quantitative anonymity analysis techniques via the
state-of-the-art QUAIL tool to the voting scenario. We consider different
voting typologies and establish which are more effective in protecting the
voter’s privacy. We further demonstrate the effectiveness of the proto-
cols in protecting the privacy of the single voters, deriving an important
desirable property of protocols depending on composite secrets.

1 Introduction

Voting is the backbone of the democratic process [15]. To be effective, a voting
system must allow the voters to freely express their opinion and elect the public
officials that will represent them in the government. An effective voting system
guarantees that each vote is counted exactly once, that no malicious agent can
tamper with the results of the vote, and that no vote can be traced back to the
voter who cast it.

Various traditional and electronic voting systems have been proposed to
assure such guarantees. The use of cryptography and certification authorities
can guarantee that only eligible voters can vote and that their vote is counted
exactly once, and the production of fake credentials can safeguard voters against
being coerced to reveal their vote [12]. The anonymity of the vote is harder to
guarantee; current proposals include assumptions on the absolute anonymity of
the voting channels [12,14] or expect enterprises and universities to provide pub-
lic proxy servers to hide the IP address of the voter [10]. The problem with these
approaches to anonymity is that the anonymity of a vote is considered a quali-
tative, yes/no property, verifying whether it is possible for an attacker to infer
any amount of information about the identity of the voters; this is known as the
possibilistic approach. The probabilistic approach instead considers anonymity
as a quantity that can be decreased by the attack of an external agent and
by other factor in the voting process including the magnitude of the electoral
seat, the electoral formula used, the results of the elections and the number
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 335–349, 2015.
DOI: 10.1007/978-3-319-15201-1 22

336 F. Biondi and A. Legay

of candidates. Since none of these factors completely compromise anonymity, a
qualitative technique has to either ignore them or consider any voting protocol
unsafe.

Current approaches to anonymity consider a secret, like the identity of the
caster of a vote, as a quantitative amount of information, and use information
theory to quantify how much of this secret information is inferred by a malicious
attacker [8,9]. This amount is called information leakage. The qualitative app-
roach tags as insecure even a negligible amount of loss of information, in practice
considering any real system insecure except under very strong assumptions. On
the other hand, the quantitative approach allows the analyzer to determine a
bound above which a loss of anonymity is considered noteworthy. Quantitative
anonymity analysis has been applied among others to study the trade-off between
anonymity and utility of operations on databases [2] and to define information-
theoretical bounds to differential privacy [4]. To the best of our knowledge, these
techniques have not been applied to voting protocols.

Completely automated tools have been created to quantify information leak-
age for any secret-dependent protocol. Previously we have introduced a the-
oretical framework to model protocols with Markov chains and efficiently and
precisely compute their leakage [5]. We implemented the approach in the QUAIL
tool, the first tool able to perform an arbitrary-precision leakage analysis of a
non-deterministic secret-dependent protocol [7].

In this work we will use QUAIL to analyze different typologies of electoral
formulae. QUAIL considers the combined votes of the voters as a precise amount
of secret bits and quantifies precisely how many of these bits are inferred by an
attacker able to read the published results of the elections, i.e. the informa-
tion leakage. Since these results are public, there is no way to avoid this loss of
anonymity. Consequently any qualitative method that claims to perfectly guar-
antee anonymity of the voters is ignoring this non-negative information leakage.
By quantifying exactly this amount we establish a lower bound on the amount
of anonymity that any implementation or formula can guarantee.

We study two very general typologies of electoral formulae: Single Preference
formulae, where each voter expresses a preference for a candidate, and Preference
Ranking formulae, where each voter ranks all candidates from the best to the
worst. Our results are valid for any electoral formula in the typologies. This clas-
sification is traversal to the common division in proportional and majoritarian
systems, as it depends only on the way the vote is expressed.

We consider that the secret is not a single entity, but a composite of the secret
votes. If we have 10 secrets and each is 2 bits and the leakage of the system is
2 bits, we need to identify whether the leaked information corresponds to the
secret of one of the voters or only to general information about the result of the
vote. The theoretical bases for the study of leakage of composite secrets are very
recent [3], and to the best of our knowledge no large scale study of practical
cases has been published.

Our analysis shows the exact impact of the magnitude of the electoral seat
and the number of candidates on the anonymity of the vote. The results suggest

Quantitative Anonymity Evaluation of Voting Protocols 337

the data from seats of low magnitude, like hospital seats, should be aggregated
before publication to protect the voters’ anonymity. Also we show that the leak-
age on a single voter’s secret is strictly less than the leakage on all secrets divided
by the number of voters, proving that the voting protocols analyzed are effective
in protecting the single voters’ secrets. This is a generally desirable property for
protocols on composite secrets.

The rest of the paper is organized as follows: Sect. 2 introduces common
concepts in probability and information theory and Sect. 3 details the leakage
theory and how it is implemented in the QUAIL analyzer. Section 4 presents
the two typologies of electoral formulae we analyze and in Sect. 5 we discuss the
results obtained. Section 6 explains which problems we are facing in obtaining
more results and what steps we are taking to solve them.

2 Background

We define common concepts in probability theory and information theory that
are used through the paper. We refer to books on the subject [13] for the basic
definitions on probability theory. We call X a discrete random variable and X a
discrete stochastic process, i.e. an indexed infinite sequence of discrete random
variables (X0.X1,X2, ...) ranging over the same sample space S. The index of
the random variables in a stochastic process can be understood as modeling a
concept of discrete time, so Xk is the random variable representing the system
at time unit k.

2.1 Markov Chains

A discrete stochastic process is a Markov chain C = (C0, C1, C2, ...) iff ∀k ∈ N.
P (Ck|Ck−1, ..., C0) = P (Ck|Ck−1). A Markov chain on a sample space S can

also be defined as follows:

Definition 1. A tuple C = (S, s0, P) is a Markov Chain (MC), if S is a finite
set of states, s0∈S is the initial state and P is an |S|× |S| probability transition
matrix, so ∀s, t∈S. Ps,t≥0 and ∀s∈S.

∑

t∈S Ps,t = 1.

We call π(k) the probability distribution vector over S at time k and π
(k)
s the

probability πk(s) of visiting the state s at time k. This means that, considering
a Markov chain C as a time-indexed discrete stochastic process (C0, C1, ...), we
write π(k) for the probability distribution over the random variable Ck. Since we
assume that the chain starts in state s0, then π

(0)
s is 1 if s = s0 and 0 otherwise.

Note that π(k) = π0P
k, where P k is matrix P elevated to power k, and P 0 is

the identity matrix of size |S| × |S|.
A state s ∈ S is absorbing if Ps,s = 1. In the figures we will not draw

the looping transition of the absorbing states, to reduce clutter. We say that a
Markov chain is one-step if all states except the starting state s0 are absorbing.
We will usually refer to one-step Markov chains as C.

338 F. Biondi and A. Legay

Let ξ(s, t) denote the expected residence time in a state t in an execution
starting from state s given by ξ(s, t) =

∑∞
n=0 Pn

s,t. We will write ξs for ξ(s0, s).
We will enrich our Markov chains with a finite set V of natural-valued vari-

ables, and for simplicity we assume that there is a very large finite bit-size M
such that a variable is at most M bit long. We define an assignment function
A : S → [0, 2M − 1]|V| assigning to each state the values of the variables in that
state. We will use the expression v(s) to denote the value of the variable v ∈ V
in the state s ∈ S.

Given a Markov chain C = (S, s0, P) let a discrimination relation R be an
equivalence relation over S. We use discrimination relation to quotient one-step
Markov chains:

Definition 2. Given a one-step Markov chain C = (S, s0, P) and a discrimina-
tion relation R over S, we define the quotient C/R of C over R as the one-step
Markov chain C/R = (S̄, s̄0, P̄) where

– S̄ is the set of equivalence classes of S induced by R;
– s̄0 is the equivalence class of s0;
– for each equivalence class s̄ ∈ S′, P̄s̄0,s̄ =

∑

s∈s̄ Ps0,s and P̄s̄,s̄ = 1.

2.2 Information Theory

The entropy of a probability distribution is a measure of the unpredictability of
the events considered in the distribution [17].

Definition 3. [13] Let X and Y be two random variables with probability mass
functions p(x) and p(y) respectively and joint pmf p(x, y). Then we define the
following non-negative real-valued functions:

– Entropy H(X) = −∑

x∈X p(x) log2 p(x)
– Joint entropy H(X,Y) = −∑

x∈X

∑

y∈Y p(x, y) log2 p(x, y)
– Conditional entropy H(X|Y) = −∑

x∈X

∑

y∈Y p(x, y) log2 p(x|y)
=

∑

y∈Y p(y)H(X|Y = y) =
∑

y∈Y p(y)
∑

x∈X p(x|y) log2 p(x|y)
= H(X,Y) − H(Y) (chain rule)

– Mutual information I(X;Y) =
∑

x∈X

∑

y∈Y p(x, y) log2
(

p(x,y)
p(x)p(y)

)

= H(X) + H(Y) − H(X,Y) ≤ min(H(X),H(Y))

Since every state s in a MC C has a discrete probability distribution over the
successor states we can calculate the entropy of this distribution. We will call it
local entropy, L(s), of s: L(s) = −∑

t∈S Ps,t log2 Ps,t. Note that L(s) ≤ log2(|S|).
As a MC C can be seen as a discrete probability distribution over all of

its possible traces, we can assign a single entropy value H(C) to it. The global
entropy H(C) of C can be computed by considering the local entropy L(s) as
the expected reward of a state s and then computing the expected total reward
of the chain [6]: H(C) =

∑

s∈S L(s)ξs If a Markov chain is one-step its entropy
corresponds to the local entropy of the initial state s0.

Quantitative Anonymity Evaluation of Voting Protocols 339

3 Information Leakage of Markov Chains

3.1 Theoretical Background

We use information theory to compute the amount of bits of a secret variable h
that can be inferred by an attacker able to observe the value of an observable
variable o after the termination of a protocol. We call this amount Shannon
leakage or just leakage, and it corresponds to the mutual information between
the distribution on the secret and the distribution on the observable variable.
This analysis assumes the worst possible attacker: the attacker has access to the
source code of the protocol and to unlimited computational power.

We will model system-attacker scenarios with Markov chains in which to each
state we associate a unique assignment of values to all variables [5]. Then we
define leakage as follows:

Definition 4. Let C be a Markov chain enriched with variable from the set V. Let
h represent the secret variables and O the variables whose value is observable to
the attacker. Then we define the Shannon leakage of C as the mutual information
I(O; h) between the secret and observable variables.

Note that to compute leakage we need to have a prior probability distribution
over the secret, modeling what the attacker knows before observing the observ-
able output of the protocol. We will assume for simplicity that the attacker
knows the possible values of the secret, since he can read the source code and
verify which kind of variable holds it, but has no additional information about it.

The modeling of a system-attacker scenario as a Markov chain starts by
dividing the system’s variables in private and public variables. Private variables,
including the secret variable h, are the ones whose value is not defined at compi-
lation time. In each state of the Markov chain a set of allowed values is assigned
to each private variable. Public variables, including the observable variable o
and the program counter pc, are variable whose value is known to the analyst.
On each state a given value is assigned to each public variable.

Given the source code of the system and a prior distribution over the private
variables, we have enough information to build the Markov chain semantics C of
the protocol, since for each state we can determine its successor states and the
corresponding transition probabilities.

We show a simple example, and refer to [5] for the complete semantics. Let
secret variable h be a secret bit, observable variable o an observable bit and
public variable r a random bit being assigned the value 0 with probability 0.75
and 1 otherwise. We assign to o the result of the exclusive OR between h and
r and terminate. We want to quantify the amount of information about h that
can be inferred by knowing the value of o. The Markov chain semantics C for
the example is shown in Fig. 1a. Each state is enriched with information about
the allowed values of private variables and the values of public variables, e.g. in
state S1 secret variable h can be either 0 or 1 and public variable r is 0.

Subsequently we need to model the fact that the attacker has to wait for
the protocol to terminate to read the observable output. Equivalently, we can

340 F. Biondi and A. Legay

Fig. 1. Bit XOR example: a) Markov chain semantics C. b) Observable reduction C.
c) Joint quotient C|(o,h). d) Secret’s quotient C|h. e) Observer’s quotient C|o.

say that the attacker is not aware of the internal behavior of the system; this is
modeled by hiding in the Markov chain model the internal states, i.e. all states
except the initial state and the absorbing states. We call the resulting Markov
chain the observable reduction C. The observable reduction for the example is
shown in Fig. 1b.

Note that the observable reduction is a one-step Markov chain, so we can
compute quotients on it following Definition 2. To compute the leakage we need
to compute three quotients from the observable reduction:

Joint quotient. The joint quotient process C|(o,h) models the joint behavior of
the secret and observable variables. It is shown in Fig. 1c.

Secret’s quotient. The secret’s quotient process C|h models the behavior of
the secret variable. It is shown in Fig. 1d.

Observer’s quotient. The observer’s quotient process C|o models the behavior
of the observable variable. It is shown in Fig. 1e.

Finally we compute leakage as the mutual information I(O; h), as between
the secret and observable variable, as explained in Definition 4. To compute it
we apply the formula I(X;Y) = H(X) + H(Y) − H(X,Y) from Definition 3,
obtaining

I(o; h) = I(C|o;C|h) = H(C|o) + H(C|h) − H(C|(o,h))

meaning that the leakage can be computed as the sum of the entropies of the
secret and observable quotient minus the entropy of the joint quotient. In our
example we have (C|o) = 1, H(C|h) = 1 and H(C|(o,h)) = 1.8112..., so we
conclude that the program leaks 1 + 1 − 1.8112... ≈ 0.1887 bits, or 18.87 % of
the secret.

Quantitative Anonymity Evaluation of Voting Protocols 341

3.2 QUAIL Implementation

The QUAIL tool quantifies the Shannon leakage of a probabilistic process in a
fully automated way. The user just provides the source code for the process
in the QUAIL imperative language, specifying the size of the variables and
whether each variable is public, private, secret or observable. QUAIL computes
the expected amount of information about the secret variables that an attacker
is able to infer by knowing the values of the observable variables after the pro-
tocol has terminated and produced output, implementing the theory presented
in Sect. 3.1.

The QUAIL language is a WHILE language enriched with for loops, mul-
tidimensional arrays and constant declarations. For simplicity all variables are
integer variables; the bit length of each variable is defined by the coder at dec-
laration time. Also, assignment to private or secret variables is not allowed, and
all variables have to be declared at the beginning of the program. We refer to
[1] for the source code and full semantics of QUAIL.

QUAIL is able to handle secret and private variables with a large number of
possible values. Alas, the representation of arbitrary probability distributions on
such variables on a real machine is untreatable: a probability distribution over a
64-bit variable is composed of 264 ≈ 1/8 ·1019 rational numbers. For this reason
QUAIL does not allow the user to define arbitrary prior distributions over the
secret, and always assumes that the prior distribution is uniform.

Fig. 2. Bit XOR example: source
code.

The QUAIL source code for the bit
XOR example presented in Sect. 3.1 is
shown in Fig. 2. In lines 1 to 3 the vari-
ables are declared, then in line 4 variable
r is assigned value 0 with probability 0.75
and 1 otherwise, and in line 5 variable o is
assigned with the exclusive OR of variables
h and r.

We save the source code in Fig. 2 in a
file bitxor.quail and invoke QUAIL with
the command ./quail bitxor.quail -v

0 -p 5 where -v 0 suppresses all output except for the leakage result and -p 5
specifies that we want 5 significant digits in the answer. QUAIL outputs 0.18872
showing that the program leaks ≈ 0.18872 bits of the secret, in accordance to
what we computed theoretically in Sect. 3.1.

4 Modeling Voting Protocols

In an election, each voter is called to express his preference for the competing
candidates. The voting system defines the way the voters express their preference:
either on paper in a traditional election, or electronically in e-voting. The voting
system also comprehends the additional procedures enforced to guarantee that
the voters can vote freely, that they can verify that their vote has been counted
and that their vote remains confidential.

342 F. Biondi and A. Legay

After the votes have been cast, the results of the vote are published, usually in
an aggregated form to protect the anonymity of the voters. Finally, the winning
candidate or candidates is chosen according to a given electoral formula.

In this section we present two different typologies of voting, representing two
different ways in which the voters can express their preference: in the Single
Preference protocol the voters declare their preference for exactly one of the
candidates, while in the Preference Ranking protocol each voter ranks the can-
didate from his most favorite to his least favorite. Since each protocol we model
is concerned only about how the votes are expressed and counted and what
results are published, each protocol models a number of electoral formulae. For
the same reason, the models are valid both for uninominal and multinominal
elections.

4.1 Single Preference

The Single Preference protocol typology models all electoral formulae in which
each of the N voters expresses one vote for one of the C candidates, including
plurality and majority voting systems and single non-transferable vote [15]. The
votes for each candidate are summed up and only the results are published, thus
hiding information about which voter voted for which candidate. The candidate
or candidates to be elected are decided according to the electoral formula used.

Secret and observable encoding. The secrets and observables are modeled by the
following lines of QUAIL code:

sec ret array [N] of int32 vote :=[0 ,C−1] ;
observable array [C] of int32 r e s u l t ;

The secret is an array of integers with a value for each of the N voters. Each value
is a number from 0 to C − 1, representing a vote for one of the C candidates.
The observable is an array of integers with the votes obtained by each of the C
candidates. The full model for this protocol is shown in the Appendix due to
space constraints.

Formal leakage computation. The protocol is simple, and its information leakage
can be computed formally, as shown by the following lemma:
Lemma 1. The information leakage for the Single Preference protocol with n
voters and c candidates corresponds to

log2 cn − 1
cn

∑

k1+k2+...+kc=n

(

n

k1 + k2 + ... + kc

) (

log2

(

n

k1 + k2 + ... + kc

))

The proof for Lemma 1 is in the Appendix. While the lemma characterizes
the solution computed by QUAIL for this case, it is very hard to find such a
characterization for any process, so in general QUAIL is the best way to obtain a
result. We run QUAIL with the command ./quail single preference.quail
-v 0 -p 5 with the same parameters we used in Sect. 3.2 and obtain 1.8112
showing that the leakage of the Single Preference protocol for 3 voters and 2
candidates is ≈ 1.8112 bits.

Quantitative Anonymity Evaluation of Voting Protocols 343

4.2 Preference Ranking

The Preference Ranking protocol typology models all electoral formulae in which
each of the n voters expresses an order of preference of the c candidates, including
the alternative vote and single transferable vote systems [15]. In the Preferential
Voting protocol the voter does not express a single vote, but rather a ranking of
the candidates; thus if the candidates are A, B, C and D the voter could express
the fact that he prefers B, then D, then C and finally A. Then each candidate
gets c points for each time he appears as first choice, c−1 points for each time he
appears as second choice, and so on. The points of each candidate are summed
up and the results are published.

Secret and observable encoding. The secrets and observables are modeled by the
following lines of QUAIL code:

sec ret array [N] of int32 vote :=[0 ,C! −1] ;
observable array [C] of int32 r e s u l t ;

The secret is an array of integers with a value for each of the N voters. Each
value is a number from 0 to C!-1, representing one of the possible C! rankings of
the C candidates. The observable is an array of integers with the points obtained
by each of the C candidates. The full model for this protocol is shown in the
Appendix due to space constraints.

5 Experimental Results

We discuss some of the initial results we have obtained by analyzing the Single
Preference and Preference Ranking voting protocols.

Leakage comparison. Table 1 shows the leakage amounts for the Single Preference
and Preference Ranking protocols for different numbers of voters and candidates.
We note that the results for 2 candidates are identical, since in this case in both
protocols the voters can vote in only 2 different ways. The table shows that the
leakage for the Preference Ranking protocol is in general lower than the leakage
for the Single Preference protocol. Nonetheless we are comparing protocols with
a different secret size, so it is more appropriate to compare posterior entropies.

Table 1. Voting protocols: leakage tables for Single Preference (on the left) and Pref-
erence Ranking (on the right)

344 F. Biondi and A. Legay

Table 2. Voting protocols: posterior entropy tables for Single Preference (on the left)
and Preference Ranking (on the right)

Posterior entropy comparison. In Table 2 we show the posterior entropies for the
same cases as Table 1. The result confirm that the protocols are identical in case
there are 2 candidates, and Preference Ranking is more efficient in protecting
the anonymity of the votes than Single Preference.

Table 3. Single Preference voting protocol: entropies and leakage on varying the num-
ber of voters, candidates and target voters.

Analysis of Single Preference with variable number of targets. In Table 3 we
give detailed results of the analysis of the Single Preference voting protocol, on
varying the number of voters, candidates and target voters. The code in bold on
the top left corner of a table shows how many voters and candidates are being
considered in the experiment, e.g. 4V-2C means 4 voters and 2 candidates. The

Quantitative Anonymity Evaluation of Voting Protocols 345

column of the left represents the number of target voters for the experiment, i.e.
how many votes is the attacker trying to infer. The table reports the following
values:

HO is the entropy of the observer’s quotient
Hh is the (prior) entropy of the secret’s quotient
HO,h is the entropy of the joint quotient
IO,h = HO + Hh − HO,h is the information leakage
IO,h % = IO,h/Hh is the percentage of the secret that has been leaked
pHh = Hh−IO,h is the (expected) posterior entropy of the secret, i.e. the amount

of secret that has not been leaked

Discussion. Since the posterior entropy measures how hard it would be for an
attacker to learn the secret after observing the results of the voting, we focus
on it as the measure of how confidential the votes are after the attack. Note
that posterior entropy increases less than linearly with the number of targets,
so if we want to learn both the votes of voters Alice and Bob it is more conve-
nient to consider the two votes as a single composite secret than to try to learn
the two votes separately. Note also that the posterior entropy when all voters
are targets is the same as the posterior entropy when all voters except one are.
This is because if all votes except one are known, the last one can be inferred
immediately by checking the election’s results.

It should also be noted that the percentage of information leaked IO,h %
increases with the number of targets, again sublinearly. We argue that this is
a desirable property in a protocol designed to protect a secret composed of
several subsecrets with the same importance. The property ensures that it is not
more convenient for the attacker to try to infer separately every single secret
instead of the whole composed secret, so even if it takes less time to infer the
secret of 1 target out of 3, the time it would take to infer all 3 secrets one by
one is larger than the time required to infer them all at the same time, as we
explained in the paragraph above. This guarantees that the posterior entropies
for multiple targets are in fact sound. This property also forces the attacker to
decide beforehand exactly how many votes he needs to discover to minimize the
time needed for the attack.

6 Challenges

6.1 Problem Size

The examples we analyzed consider only a small number of voters and candi-
dates. The algorithm for the precise computation of information leakage is expo-
nential in the size of the secret and the size of the secret grows with the number
of voters and candidates, thus QUAIL and any other tool are too slow to analyze
large cases. Analyzing the Preference Ranking protocol also requires more time
than analyzing the Single Preference protocol, since the former protocol is more
complex than the latter and has a larger secret size.

346 F. Biondi and A. Legay

To solve this problem we are implementing a statistical analyzer in QUAIL
able to simulate the execution of the protocols a large number of times and to
approximate the information leakage value by analyzing the collected data. The
statistical analyzer is able to solve larger problems than the standard QUAIL
algorithm, since it does not have to analyze the whole space of possible program
executions.

6.2 G-Leakage

Information leakage quantifies the loss of information on the whole secret. We
have analyzed the behavior of leakage when we consider only some of the votes
to be the secret we are interested in, showing how the protocol is efficient in
hiding the secret of the single voters.

Recently an extension of information leakage, called g-leakage [3], has been
proposed exactly to deal with cases in which different subsets of the secret bits
have different values for the attacker, as is the case with composite secrets. g-
leakage is very general, since it allows for any gain function to be used in top
of leakage computation; for this reason it has not yet been implemented in any
leakage analysis tool.

We are working to extend QUAIL with g-leakage computation capabilities,
allowing us to encode more naturally problems with composite secrets like vot-
ing protocols. We expect that the results on the efficiency of the protocols in
protecting the single votes will be coherent with the results presented in this
paper.

6.3 Implementation Analysis

The protocols we analyze model the abstract behavior of voting systems, giving
us theoretical lower bounds on the amount of information leaked by publishing
the results of the elections. It would be interesting to compare these theoretical
results with actual implementations of voting systems, to evaluate how effective
the real systems are in guaranteeing anonymity. Off-the-shelf systems are obvi-
ously not written in QUAIL language, so a tool capable of analyzing C or Java
code like the ones developed by Phan and Malacaria [16] or by Chothia et al.
[11] would have to be used.

A Appendix

Proof (of Lemma 1). Call h the composite secret about the votes of all voters
and O the observable output of the system. Remember that information leakage
corresponds to the difference between the prior entropy on the secret H(h) and
the posterior entropy on the secret after observing the observable output of the
system H(h|O) =

∑

o∈O P (o)H(h|O = o).
The secret h has cn possible values, thus can be encoded in log2 cn bits, thus

the prior entropy H(h) corresponds to log2 cn.

Quantitative Anonymity Evaluation of Voting Protocols 347

Fig. 3. Model for the Single Preference protocol (on the left) and for the Preference
Ranking protocol (on the right).

348 F. Biondi and A. Legay

For the posterior entropy H(h|O), consider that the possible votes on the
candidates form a multinomial distribution, thus the probability P (o) of a given
outcome o ∈ O is 1/cn and the conditional posterior entropy H(h|O = o) where
ki is the amount of votes to candidate 1 ≤ i ≤ c is

(

n
k1+k2+...+kc

)

. We conclude
that

I(O, h) = H(h) −
∑

o∈O

P (o)H(h|O = o)

= log2 cn − 1
cn

∑

k1+k2+...+kc=n

(

n

k1 + k2 + ... + kc

) (

log2

(

n

k1 + k2 + ... + kc

))

Voting Protocol Models

Single Preference. The model for the Single Preference protocol is shown on
Fig. 3 on the left. Constant N represents the number of voters and constant C the
number of candidates. The observable variable result is an array with the total
votes expressed for each candidate, and the secret variable vote is the array
with the preference of each voter. The rest of the code just sums up the votes
for each candidate.

Preference Ranking. The model for the Preference Ranking model is shown
on Fig. 3 on the right. Constant N represents the number of voters and constant
C the number of candidates. The observable variable result is an array with
the total points obtained by each candidate, and the secret variable vote is an
array with the preference ranking of each voter. For each voter the secret has c!
possible different votes, corresponding to the possible complete orderings of the
c candidates. The secret vote of each voter is encoded as a number from 0 to
c! − 1, and then transformed in a preferential order with the algorithm in lines
30–57. The points for each candidate are counted by summing the points given
by the preference ranking of each voter.

References

1. QUAIL. https://project.inria.fr/quail/

2. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Dif-
ferential privacy: on the trade-off between utility and information leakage. In:
Barthe, G., Datta, A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 39–54.
Springer, Heidelberg (2012)

3. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Chong, S. (ed.) CSF, pp. 265–279
(2012)

4. Barthe, G., Köpf, B.: Information-theoretic bounds for differentially private mech-
anisms. In: CSF, pp. 191–204. IEEE Computer Society (2011)

https://project.inria.fr/quail/

Quantitative Anonymity Evaluation of Voting Protocols 349

5. Biondi, F., Legay, A., Malacaria, P., W ↪asowski, A.: Quantifying information leak-
age of randomized protocols. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.)
VMCAI 2013. LNCS, vol. 7737, pp. 68–87. Springer, Heidelberg (2013)

6. Biondi, F., Legay, A., Nielsen, B.F., W ↪asowski, A.: Maximizing entropy over
Markov processes. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013.
LNCS, vol. 7810, pp. 128–140. Springer, Heidelberg (2013)

7. Biondi, F., Legay, A., Traonouez, L.-M., Wasowski, A.: QUAIL: A quantitative
security analyzer for imperative code. In: Sharygina and Veith [18]

8. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. Inf. Comput. 206(2–4), 378–401 (2008)

9. Chen, H., Malacaria, P.: Quantifying maximal loss of anonymity in protocols. In:
Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V. (eds.) ASI-
ACCS, pp. 206–217. ACM (2009)

10. Chen, Y.-Y., ke Jan, J., Chen, C.-L.: The design of a secure anonymous internet
voting system. Comput. Secur. 23(4), 330–337 (2004)

11. Chothia, T., Kawamoto, Y., Novakovic, C.: A tool for estimating information leak-
age. In: Sharygina and Veith [18], pp. 690–695

12. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system. In:
IEEE Symposium on Security and Privacy, pp. 354–368. IEEE Computer Society
(2008)

13. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New
Jersey (2006)

14. Gritzali, D.: Principles and requirements for a secure e-voting system. Comput.
Secur. 21(6), 539–556 (2002)

15. Norris, P.: Electoral Engineering: Voting Rules and Political Behavior. Cambridge
Studies in Comparative Politics. Cambridge University Press, Cambridge (2004)

16. Phan, Q.-S., Malacaria, P.: Abstract model counting: a novel approach for quan-
tification of information leaks. In: Proceedings of the 9th ACM symposium on
Information, computer and communications security, pp. 283–292. ACM (2014)

17. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
379–423 (1948)

18. Sharygina, Natasha, Veith, Helmut (eds.): CAV 2013. LNCS, vol. 8044. Springer,
Heidelberg (2013)

Scalable Verification of Markov
Decision Processes

Axel Legay, Sean Sedwards(B), and Louis-Marie Traonouez

Inria Rennes – Bretagne Atlantique, Rennes, France
sean.sedwards@inria.fr

Abstract. Markov decision processes (MDP) are useful to model con-
current process optimisation problems, but verifying them with numer-
ical methods is often intractable. Existing approximative approaches do
not scale well and are limited to memoryless schedulers. Here we present
the basis of scalable verification for MDPSs, using an O(1) memory rep-
resentation of history-dependent schedulers. We thus facilitate scalable
learning techniques and the use of massively parallel verification.

1 Introduction

Markov decision processes (MDP) describe systems that interleave nondetermin-
istic actions and probabilistic transitions, possibly withrewards or costs assigned
to the actions [3,19]. This model has proved useful in many real optimisation
problems and may also be used to represent concurrent probabilistic programs
(see, e.g., [2,4]). Such models comprise probabilistic subsystems whose transi-
tions depend on the states of the other subsystems, while the order in which
concurrently enabled transitions execute is nondeterministic. This order may
radically affect the expected reward or the probability that a system will satisfy
a given property. It is therefore useful to calculate the upper and lower bounds
of these quantities.

Figure 1 shows a typical fragment of an MDP. Referring in parentheses to the
labels in the figure, the execution semantics are as follows. In a given state (s0),
an action (a1, a2, . . .) is chosen nondeterministically to select a distribution of
probabilistic transitions (p1, p2, . . . or p3, p4, etc.). A probabilistic choice is then
made to select the next state (s1, s2, s3, s4, . . .). To each of the actions may be
associated a reward (r1, r2, . . .), allowing values to be assigned to sequences of
actions.

To calculate the expected total reward or the expected probability of a
sequence of states, it is necessary to define how the nondeterminism in the MDP
will be resolved. In the literature this is often called a strategy, a policy or an
adversary. Here we use the term scheduler and focus on MDPs in the context of
model checking concurrent probabilistic systems. Model checking is an automatic
technique to verify that a system satisfies a property specified in temporal logic
[7]. Probabilistic model checking quantifies the probability that a probabilistic
system will satisfy a property [9]. Classic analysis of MDPs is concerned with
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 350–362, 2015.
DOI: 10.1007/978-3-319-15201-1 23

Scalable Verification of Markov Decision Processes 351

Fig. 1. Fragment of a typical Markov
decision process.

Fig. 2. MDP with different optima
for general and memoryless schedulers
when p1 �= p2.

finding schedulers that maximise or minimise rewards [3,19]. The classic verifica-
tion algorithms for MDPs are concerned with finding schedulers that maximise
or minimise the probability of a property, or deciding the existence of a sched-
uler that ensures the probability of a property is within some bound [4]. Our
techniques can be easily extended to include rewards, but in this work we focus
on probabilities and leave rewards for future consideration.

1.1 Schedulers and State Explosion

The classic algorithms to solve MDPs are policy iteration and value iteration
[19]. Model checking algorithms for MDPs may use value iteration applied to
probabilities [2, Chapter 10] or solve the same problem using linear programming
[4]. All consider history-dependent schedulers. Given an MDP with set of actions
A, having a set of states S that induces a set of sequences of states Ω = S+, a
history-dependent (general) scheduler is a function S : Ω → A. A memoryless
scheduler is a function M : S → A. Intuitively, at each state in the course of
an execution, a history-dependent scheduler (S) chooses an action based on the
sequence of previous states, while a memoryless scheduler (M) chooses an action
based only on the current state. History-dependent schedulers therefore include
memoryless schedulers.

Figure 2 illustrates a simple MDP for which memoryless and history-dependent
schedulers give different optima for logical property X(ψ∧XGt¬ψ) when p1 �= p2
and t > 0. The property makes use of the temporal operators next (X) and glob-
ally (G). Intuitively, the property states that on the next step ψ will be true and,
on the step after that, ¬ψ will be remain true for t+1 time steps. The property is
satisfied by the sequence of states s0s1s0s0 · · · . If p1 > p2, the maximum proba-
bility for s0s1 is achieved with action a2, while the maximum probability for s0s0
is achieved with action a1. Given that both transitions start in the same state, a
memoryless scheduler will not achieve the maximum probability achievable with
a history-dependent scheduler.

The principal challenge of finding optimal schedulers is what has been
described as the ‘curse of dimensionality’ [3] and the ‘state explosion problem’ [7]:

352 A. Legay et al.

the number of states of a system increases exponentially with respect to the
number of interacting components and state variables. This phenomenon has led
to the design of sampling algorithms that find ‘near optimal’ schedulers to max-
imise rewards in discounted MDPs. Probably the best known is the Kearns algo-
rithm [13], which we briefly review in Sect. 2.

The state explosion problem of model checking applied to purely probabilistic
systems has been well addressed by statistical model checking (SMC) [21]. SMC
uses an executable model to approximate the probability that a system satisfies
a specified property by the proportion of simulation traces that individually
satisfy it. SMC algorithms work by constructing an automaton to accept only
traces that satisfy the property. This automaton may then be used to estimate
the probability of the property or to decide an hypothesis about the probability.
Typically, the probability of property ϕ is estimated by 1

N

∑N
i=1 1(ωi |= ϕ),

where ω1, . . . , ωN are N independently generated simulation traces and 1(·) is
an indicator function that corresponds to the output of the automaton: it returns
1 if the trace is accepted and 0 if it is not. N is chosen a priori to give the required
statistical confidence (e.g., using a Chernoff bound [18], see Sect. 4.2). Sequential
hypothesis tests (e.g., Wald’s sequential probability ratio test [20], see Sect. 4.1)
do not define N a priori, but generate simulation traces until an hypothesis can
be accepted or rejected with specified confidence. The state space of the system
is not constructed explicitly–states are generated on the fly during simulation–
hence SMC is efficient for large, possibly infinite state, systems. Moreover, since
the simulations are required to be statistically independent, SMC may be easily
and efficiently divided on parallel computing architectures.

SMC cannot be applied to MDPs without first resolving the nondetermin-
ism. Since nondeterministic and probabilistic choices are interleaved in an MDP,
schedulers are typically of the same order of complexity as the system as a whole
and may be infinite. As a result, existing SMC algorithms for MDPs consider
only memoryless schedulers and have other limitations (see Sect. 2).

1.2 Our Approach

We have created memory-efficient techniques to facilitate Monte Carlo veri-
fication of nondeterministic systems, without storing schedulers explicitly. In
essence, the possibly infinite behaviour of schedulers is fully specified implicitly
by the seed of a pseudo-random number generator. Our techniques therefore
require almost no additional memory over standard SMC. In doing this, we are
the first to provide the basis for a complete lightweight statistical alternative to
the standard numerical verification algorithms for MDPs. A further contribution
is our derivation of the statistical confidence bounds necessary to test multiple
schedulers. These results suggest obvious solutions to problems encountered with
existing algorithms that rely on multiple statistical tests (e.g., [11]).

In this work we demonstrate the core ideas of our approach with simple
SMC algorithms that repeatedly sample from scheduler space. Practical imple-
mentations require more sophisticated algorithms that adopt “smart sampling”

Scalable Verification of Markov Decision Processes 353

(optimal use of simulation budget) and lightweight learning techniques. Some of
our results make use of these ideas, but a full exposition is not possible here.

2 Related Work

The Kearns algorithm [13] is the classic ‘sparse sampling algorithm’ for large,
infinite horizon, discounted MDPs. It constructs a ‘near optimal’ scheduler piece-
wise, by approximating the best action from a current state using a stochastic
depth-first search. Importantly, optimality is with respect to rewards, not prob-
ability (as required by standard model checking tasks). The algorithm can work
with large, potentially infinite state MDPs because it explores a probabilistically
bounded search space. This, however, is exponential in the discount. To find the
action with the greatest expected reward in the current state, the algorithm
recursively estimates the rewards of successive states, up to some maximum
depth defined by the discount and desired error. Actions are enumerated while
probabilistic choices are explored by sampling, with the number of samples set as
a parameter. The error is specified as a maximum difference between consecutive
estimates, allowing the discount to guarantee that the algorithm will eventually
terminate.

There have been several recent attempts to apply SMC to nondetermin-
istc models [5,10,11,16]. In [5,10] the authors present on-the-fly algorithms to
remove ‘spurious’ nondeterminism, so that standard SMC may be used. This
approach is limited to the class of models whose nondeterminism does not affect
the resulting probability of a property–scheduling makes no difference. The algo-
rithms therefore do not attempt to address the standard MDP model checking
problems related to finding optimal schedulers.

In [16] the authors first find a memoryless scheduler that is near optimal with
respect to a reward scheme and discount, using an adaptation of the Kearns
algorithm. This induces a Markov chain whose properties may be verified with
standard SMC. By storing and re-using information about visited states, the
algorithm improves on the performance of the Kearns algorithm, but is thus
limited to memoryless schedulers that fit into memory. The near optimality of
the induced Markov chain is with respect to rewards, not probability, hence [16]
does not address the standard model checking problems of MDPs.

In [11] the authors present an SMC algorithm to decide whether there exists
a memoryless scheduler for a given MDP, such that the probability of a property
is above a given threshold. The algorithm has an inner loop that generates
candidate schedulers by iteratively improving a probabilistic scheduler according
to sample traces that satisfy the property. The algorithm is limited to memoryless
schedulers because the improvement process counts state-action pairs. The outer
loop tests the candidate scheduler against the hypothesis using SMC and is
iterated until an example is found or sufficient attempts have been made. The
inner loop does not in general converge to the true optimum, but the outer loop
randomly explores local maxima. This makes the number of samples used by the
inner loop critical: too many may significantly reduce the scope of the random

354 A. Legay et al.

exploration and thus reduce the probability of finding the global optimum. A
further problem is that the repeated hypothesis tests of the outer loop will
eventually produce erroneous results. We address this phenomenon in Sect. 4.

We conclude that (i) no previous approach is able to provide a complete set
of SMC algorithms for MDPs, (ii) no previous SMC approach considers history-
dependent schedulers and (iii) no previous approach facilitates lightweight sam-
pling from scheduler space.

3 Schedulers as Seeds of Random Number Generators

Storing schedulers as explicit mappings does not scale, so we have devised a
way to represent schedulers using uniform pseudo-random number generators
(PRNG) that are initialised by a seed and iterated to generate the next pseudo-
random value. In general, such PRNGs aim to ensure that arbitrary subsets of
sequences of iterates are uniformly distributed and that consecutive iterates are
statistically independent. PRNGs are commonly used to implement the uniform
probabilistic scheduler, which chooses actions uniformly at random and thus
explores all possible combinations of nondeterministic choices. Executing such an
implementation twice with the same seed will produce identical traces. Executing
the implementation with a different seed will produce an unrelated set of choices.
Individual deterministic schedulers cannot be identified, so it is not possible to
estimate the probability of a property under a specific scheduler.

An apparently plausible solution is to use independent PRNGs to resolve
nondeterministic and probabilistic choices. It is then possible to generate mul-
tiple probabilistic simulation traces per scheduler by keeping the seed of the
PRNG for nondetermistic choices fixed while choosing random seeds for a sepa-
rate PRNG for probabilistic choices. Unfortunately, the schedulers generated by
this approach do not span the full range of general or even memoryless sched-
ulers. Since the sequence of iterates from the PRNG used for nondeterministic
choices will be the same for all instantiations of the PRNG used for probabilistic
choices, the ith iterate of the PRNG for nondeterministic choices will always be
the same, regardless of the state arrived at by the previous probabilistic choices.
The ith chosen action can be neither state nor trace dependent.

3.1 General Schedulers Using Hash Functions

Our solution is to construct a per-step PRNG seed that is a hash of the an
integer identifying a specific scheduler concatenated with an integer representing
the sequence of states up to the present.

We assume that a state of an MDP is an assignment of values to a vector
of system variables vi, i ∈ {1, . . . , n}. Each vi is represented by a number of
bits bi, typically corresponding to a primitive data type (int, float, double, etc.).
The state can thus be represented by the concatenation of the bits of the system
variables, such that a sequence of states may be represented by the concatenation
of the bits of all the states. Without loss of generality, we interpret such a

Scalable Verification of Markov Decision Processes 355

sequence of states as an integer of
∑n

i=1 bi bits, denoted s, and refer to this in
general as the trace vector. A scheduler is denoted by an integer σ, which is
concatenated to s (denoted σ : s) to uniquely identify a trace and a scheduler.
Our approach is to generate a hash code h = H(σ : s) and to use h as the seed
of a PRNG that resolves the next nondeterministic choice.

The hash function H thus maps σ : s to a seed that is deterministically
dependent on the trace and the scheduler. The PRNG maps the seed to a value
that is uniformly distributed but nevertheless deterministically dependent on
the trace and the scheduler. In this way we approximate the scheduler functions
S and M described in Sect. 1.1. Importantly, our technique only relies on the
standard properties of hash functions and PRNGs. Algorithm 1 is the basic
simulation function of our algorithms.

Algorithm 1. Simulate
Input:

M: an MDP with initial state s0
ϕ: a property
σ: an integer identifying a scheduler

Output:
ω: a simulation trace

Let Uprob, Unondet be uniform PRNGs with respective samples rpr, rnd
Let H be a hash function
Let s denote a state, initialised s ← s0
Let ω denote a trace, initialised ω ← s
Let s be the trace vector, initially empty
Set seed of Uprob randomly
while ω |= ϕ is not decided do

s ← s : s
Set seed of Unondet to H(σ : s)
Iterate Unondet to generate rnd and use to resolve nondeterministic choice
Iterate Uprob to generate rpr and use to resolve probabilistic choice
Set s to the next state
ω ← ω : s

3.2 An Efficient Iterative Hash Function

To implement our approach, we have devised an efficient hash function that
constructs seeds incrementally. The function is based on modular division [14,
Chapter 6], such that h = (σ : s)mod m, where m is a suitably large prime.

Since s is a concatenation of states, it is usually very much larger than the
maximum size of integers supported as primitive data types. Hence, to generate
h we use Horner’s method [12,14, Chapter 4]: we set h0 = σ and find h ≡ hn (n
as given in Sect. 3.1) by iterating the recurrence relation

hi = (hi−12bi + vi)mod m. (1)

356 A. Legay et al.

The size of m defines the maximum number of different hash codes. The pre-
cise value of m controls how the hash codes are distributed. To avoid collisions,
a simple heuristic is that m should be a large prime not close to a power of
2 [8, Chapter 11]. Practically, it is an advantage to perform calculations using
primitive data types that are native to the computational platform, so the sum
in (1) should be less than or equal to the maximum permissible value. To achieve
this, given x, y,m ∈ N, we note the following congruences:

(x + y)mod m ≡ (x mod m + y mod m)mod m (2)
(xy)mod m ≡ ((x mod m)(y mod m))mod m (3)

The addition in (1) can thus be re-written in the form of (2), such that each
term has a maximum value of m − 1:

hi = ((hi−12bi)mod m + (vi)mod m)mod m (4)

To prevent overflow, m must be no greater than half the maximum possible
integer. Re-writing the first term of (4) in the form of (3), we see that before
taking the modulus it will have a maximum value of (m− 1)2, which will exceed
the maximum possible integer. To avoid this, we take advantage of the fact that
hi−1 is multiplied by a power of 2 and that m has been chosen to prevent overflow
with addition. We thus apply the following recurrence relation:

(hi−12j)mod m = (hi−12j−1)mod m + (hi−12j−1)mod m (5)

Equation (5) allows our hash function to be implemented using efficient native
arithmetic. Moreover, we infer from (1) that to find the hash code corresponding
to the current state in a trace, we need only know the current state and the hash
code from the previous step. When considering memoryless schedulers we need
only know the current state.

4 Confidence with Multiple Estimates

The Chernoff bound [6,18] and Wald sequential probability ratio test [20] are
commonly used to bound errors of SMC algorithms. Their guarantees are prob-
abilistic, such that with specified non-zero probability they produce an incorrect
result. If such bounds are used on M schedulers, some of whose true probabilities
lie in the interval (0, 1), then as M → ∞ the probability of encountering an error
is a.s. 1. In particular, the maximum and minimum estimates will tend to 1 and
0, respectively, regardless of the true values.

To overcome this phenomenon, in Sects. 4.1 and 4.2 we derive new confidence
bounds to allow SMC algorithms to test multiple schedulers. We illustrate their
use with simple algorithms that sample M schedulers at random, where M
is a parameter. These algorithms are the basis of a technique we call “smart
sampling”, which can exponentially improve convergence. The basic idea is to
assign part of the simulation budget to obtain a coarse estimate of the extremal

Scalable Verification of Markov Decision Processes 357

probabilities and to use this information to generate a set of schedulers that
contains a “good” scheduler with high probability. The remaining budget is
used to refine the set to find the best scheduler. Smart sampling has provided
improvements of several orders of magnitude with the illustrated examples and
is the subject of ongoing development. Lack of space prevents further discussion.

4.1 Sequential Probability Ratio Test for Multiple Schedulers

The sequential probability ratio test (SPRT) of Wald [20] evaluates hypotheses
of the form P(ω |= ϕ) �� p, where ��∈ {≤,≥}. The SPRT distinguishes between
two hypotheses, H0 : P(ω |= ϕ) ≥ p0 and H1 : P(ω |= ϕ) ≤ p1, where p0 > p1.
Hence, to evaluate P(ω |= ϕ) �� p, the SPRT requires a region of indecision
(an ‘indifference region’ [21]) which may be specified by parameter ϑ, such that
p0 = p + ϑ and p1 = p − ϑ. The SPRT also requires parameters α and β, which
specify the maximum acceptable probabilities of errors of the first and second
kind, respectively. An error of the first kind is incorrectly rejecting a true H0; an
error of the second kind is incorrectly accepting a false H0. To choose between
H0 and H1, the SPRT defines the probability ratio

ratio =
n

∏

i=1

(p1)1(ωi|=ϕ)(1 − p1)1(ωi �|=ϕ)

(p0)1(ωi|=ϕ)(1 − p0)1(ωi �|=ϕ)
,

where n is the number of simulation traces ωi, i ∈ {1, . . . , n}, generated so far.
The test proceeds by performing a simulation and calculating ratio until one of
two conditions is satisfied: H1 is accepted if ratio ≥ (1−β)/α and H0 is accepted
if ratio ≤ β/(1 − α).

To decide whether there exists a scheduler such that P(ω |= ϕ) �� p, we
would like to apply the SPRT to multiple (randomly chosen) schedulers. The
idea is to test different schedulers, up to some specified number M , until an
example is found. Since the probability of error with the SPRT applied to mul-
tiple hypotheses is cumulative, we consider the probability of no errors in any of
M tests. Hence, in order to ensure overall error probabilities α and β, we adopt
αM = 1 − M

√
1 − α and βM = 1 − M

√
1 − β in our stopping conditions. H1 is

accepted if ratio ≥ (1 − βM)/αM and H0 is accepted if ratio ≤ βM/(1 − αM).
Algorithm 2 demonstrates the sequential hypothesis test for multiple schedulers.
If the algorithm finds an example, the hypothesis is true with at least the spec-
ified confidence.

4.2 Chernoff Bound for Multiple Schedulers

Given that a system has true probability p of satisfying a property, the Chernoff
bound ensures P(| p̂ − p |≥ ε) ≤ δ, i.e., that the estimate p̂ will be outside the
interval [p − ε, p + ε] with probability less than or equal to δ. Parameter δ is
related to the number of simulations N by δ = 2e−2Nε2

[18], giving

N =
⌈

(ln 2 − ln δ)/(2ε2)
⌉

. (6)

358 A. Legay et al.

Algorithm 2. Hypothesis testing with multiple schedulers
Input:

M, ϕ: the MDP and property of interest
H ∈ {H0, H1}: the hypothesis of interest with threshold p ± ϑ
α, β: the desired error probabilities of H
M : the maximum number of schedulers to test

Output: The result of the hypothesis test

Let p0 = p + ϑ and p1 = p − ϑ be the bounds of H
Let αM = 1 − M

√
1 − α and βM = 1 − M

√
1 − β

Let A = (1 − βM)/αM and B = βM/(1 − αM)
Let Useed be a uniform PRNG and σ be its sample
for i ∈ {1, . . . , M} while H is not accepted do

Iterate Useed to generate σi

Let ratio = 1
while ratio < A ∧ ratio > B do

ω ← Simulate(M, ϕ, σi)

ratio ← (p1)1(ω|=ϕ)(1−p1)1(ω �|=ϕ)

(p0)1(ω|=ϕ)(1−p0)1(ω �|=ϕ) ratio

if ratio ≥ A ∧ H = H0 ∨ ratio ≤ B ∧ H = H1 then
accept H

The user specifies ε and δ and the SMC algorithm calculates N to guarantee the
estimate accordingly. Equation (6) is derived from equations

P(p̂ − p ≥ ε) ≤ e−2Nε2
and P(p − p̂ ≥ ε) ≤ e−2Nε2

, (7)

giving N =
⌈

(ln δ)/(2ε2)
⌉

to satisfy either inequality.
We consider the strategy of sampling M schedulers to estimate the optimum

probability. We thus generate M estimates {p̂1, . . . , p̂M} and take either the
maximum (p̂max) or minimum (p̂min), as required. To overcome the cumulative
probability of error with the standard Chernoff bound, we specify that all esti-
mates p̂i must be within ε of their respective true values pi, ensuring that any
p̂min, p̂max ∈ {p̂1, . . . , p̂M} are within ε of their true value. Given (7) and the
fact that all estimates p̂i are statistically independent, the probability that all
estimates are less than their upper bound is expressed by P(

∧M
i=1 p̂i − pi ≤ ε) ≥

(1 − e−2Nε2
)M . Hence, P(

∨M
i=1 p̂i − pi ≥ ε) ≤ 1 − (1 − e−2Nε2

)M . This leads to
the following expression for N , given parameters M , ε and δ:

N =
⌈

− ln
(

1 − M
√

1 − δ
)

/2ε2
⌉

(8)

Since the case for pmin is symmetrical, (8) also ensures P(pmin − p̂min ≥ ε) ≤ δ.
Hence, to ensure the more usual conditions that P(| pmax − p̂max |≥ ε) ≤ δ and
P(| pmin − p̂min |≥ ε) ≤ δ,

N =
⌈(

ln 2 − ln
(

1 − M
√

1 − δ
))

/(2ε2)
⌉

. (9)

Scalable Verification of Markov Decision Processes 359

N scales logarithmically with M (e.g., for ε = δ = 0.01, N ≈ log1.0002(M) +
26472), making it tractable to consider many schedulers. Algorithm 3 is the
resulting extremal probability estimation algorithm for multiple schedulers.

Algorithm 3. Extremal probability estimation with multiple schedulers
Input:

M, ϕ: the MDP and property of interest
ε, δ: the required confidence bound
M : the number of schedulers to test

Output: Extremal estimates p̂min and p̂max

Let N =
⌈

ln(2/(1 − M
√

1 − δ))/(2ε2)
⌉

be the no. of simulations per
scheduler
Let Useed be a uniform PRNG and σ its sample
Initialise p̂min ← 1 and p̂max ← 0
Set seed of Useed randomly
for i ∈ {1, . . . , M} do

Iterate Useed to generate σi

Let truecount = 0 be the initial number of traces that satisfy ϕ
for j ∈ {1, . . . , N} do

ωj ← Simulate(M, ϕ, σi)
truecount ← truecount + 1(ωj |= ϕ)

Let p̂i = truecount/N
if p̂max < p̂i then

p̂max = p̂i

if p̂i > 0 ∧ p̂min > p̂i then
p̂min = p̂i

if p̂max = 0 then
No schedulers were found to satisfy ϕ

4.3 Experiments

We implemented Algorithms 2 and 3 in our statistical model checking platform
Plasma [1] and performed a number of experiments.

Figure 3 shows the empirical cumulative distribution of schedulers generated
by Algorithm 3 applied to the MDP of Fig. 2, using p1 = 0.9, p2 = 0.5, ϕ = X(ψ∧
XG4¬ψ), ε = 0.01, δ = 0.01 and M = 300. The vertical red and blue lines mark
the true probabilities of ϕ under each of the history-dependent and memoryless
schedulers, respectively. The grey rectangles show the ±ε error bounds, relative
to the true probabilities. There are multiple estimates per scheduler, but all
estimates are within their respective confidence bounds. Note that the confidence
is specified with respect to estimates, not with respect to optimality. Defining
confidence with respect to optimality remains an open problem.

In Fig. 4 we consider a reachability property of the Wireless LAN (WLAN)
protocol model of [15]. The protocol aims to minimise “collisions” between
devices sharing a communication channel. We estimated the probability of the

360 A. Legay et al.

Fig. 3. Empirical cumulative distribu-
tion of estimates from Algorithm 3.

Fig. 4. Max. and min. probabilities of
second collision in WLAN protocol.

second collision at time steps {0, 10, . . . , 100}, using Algorithm 3 with M =
4000 schedulers per point. Maximum and minimum estimated probabilities are
denoted by blue and red circles, respectively. Maximum probabilities calculated
by numerical model checking are denoted by black crosses. The shaded areas
indicate the ±ε error of the estimates (Chernoff bound ε = δ = 0.01) and reveal
that our estimates are very close to the true values.

To demonstrate the scalability of our approach, we consider the choice coor-
dination model of [17] and estimate the minimum probability that a group of
six tourists will meet within T steps. The model has a parameter (BOUND)
that limits the state space. We set BOUND = 100, making the state space of
≈5 × 1016 intractable to numerical model checking. For T = 20 and T = 25 the
true minimum probabilities are respectively 0.5 and 0.75. Using smart sampling
and a Chernoff bound of ε = δ = 0.01, we correctly estimate the probabilities to
be 0.496 and 0.745 in a few tens of minutes on a standard laptop computer.

5 Prospects and Challenges

Our techniques are immediately extensible to continuous time MDPs and other
models that use nondeterminism. It is also seems simple to consider MDPs with
rewards. Although the presented algorithms are not optimised with respect to
simulation budget, in a forthcoming work we introduce the notion of “smart
sampling” to maximise the chance of finding good schedulers with a finite budget.

A limitation of our approach is that the algorithms sample from only a subset
of possible schedulers. It is easy to construct examples where good schedulers
are vanishingly rare and will not be found. Our ongoing focus is therefore to
develop memory-efficient learning techniques that construct schedulers piece-
wise, to improve convergence and consider a much larger set of schedulers.

Acknowledgement. This work was partially supported by the European Union Sev-
enth Framework Programme under grant agreement no. 295261 (MEALS).

Scalable Verification of Markov Decision Processes 361

References

1. PLASMA project web page. https://project.inria.fr/plasma-lab/
2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge

(2008)
3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
4. Bianco, A., De Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026. Springer,
Heidelberg (1995)

5. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order
methods for statistical model checking and simulation. In: Bruni, R., Dingel, J.
(eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 59–74. Springer,
Heidelberg (2011)

6. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Statist. 23(4), 493–507 (1952)

7. Clarke, E., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and
debugging. Commun. ACM 52(11), 74–84 (2009)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, New York (2009)

9. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

10. Hartmanns, A., Timmer, M.: On-the-fly confluence detection for statistical model
checking. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871,
pp. 337–351. Springer, Heidelberg (2013)

11. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical
model checking for Markov decision processes. In: 2012 Ninth International Con-
ference on Quantitative Evaluation of Systems, pp. 84–93. IEEE (2012)

12. Horner, W.G.: A new method of solving numerical equations of all orders, by
continuous approximation. Philos. Trans. R. Soc. Lond. 109, 308–335 (1819)

13. Kearns, M., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Mach. Learn. 49(2–3), 193–208 (2002)

14. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Addison-Wesley, Read-
ing (1998)

15. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of the
IEEE 802.11 wireless local area network protocol. In: Hermanns, H., Segala, R.
(eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and PAPM 2002. LNCS, vol.
2399, pp. 169–187. Springer, Heidelberg (2002)

16. Lassaigne, R., Peyronnet, S.: Approximate planning and verification for large
Markov decision processes. In: Proceddings of 27th Annual ACM Symposium on
Applied Computing, pp. 1314–1319. ACM (2012)

17. Ndukwu, U., McIver, A.: An expectation transformer approach to predicate
abstraction and data independence for probabilistic programs. In: Proceedings of
8th Workshop on Quantitative Aspects of Programming Languages (QAPL’10)
(2010)

18. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10(1), 29–35 (1958)

19. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience, New York (1994)

https://project.inria.fr/plasma-lab/

362 A. Legay et al.

20. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

21. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

Towards Synthesis of Attack Trees
for Supporting Computer-Aided Risk Analysis

Sophie Pinchinat, Mathieu Acher(B), and Didier Vojtisek

Inria, IRISA, University of Rennes 1, Rennes, France
mathieu.acher@irisa.fr

Abstract. Attack trees are widely used in the fields of defense for the
analysis of risks (or threats) against electronics systems, computer con-
trol systems or physical systems. Based on the analysis of attack trees,
practitioners can define actions to engage in order to reduce or annihi-
late risks. A major barrier to support computer-aided risk analysis is
that attack trees can become largely complex and thus hard to specify.
This paper is a first step towards a methodology, formal foundations as
well as automated techniques to synthesize attack trees from a high-level
description of a system. Attacks are expressed as a succession of elemen-
tary actions and high-level actions can be used to abstract and organize
attacks into exploitable attack trees. We describe our tooling support
and identify open challenges for supporting the analysis of risks.

1 Introduction

Ensuring the security of an information system means guaranteeing data avail-
ability, integrity and confidentiality. In this perspective, a preliminary study of
the system and its environment, called risk analysis, is necessary [4,13]. The dis-
cipline of risk analysis aims to identify and evaluate risks that threaten a given
system. Current methods follow mostly the same outline: practitioners decom-
pose the system into subsystems and produce a model, then draw up a list of
feared events, and finally determine the potential reasons of the realization of
these events. The NATO report [11] showed that the current methods are ill-
suited to manage the security of complex systems. Formal methods, well-defined
formalisms, and analysis tools have the potential to eliminate current barriers. In
particular, attack trees are widely used in the fields of defense for the analysis of
risks (also called threats) against electronics systems, computer control systems
or physical systems [1,8,9,12,14,15,18]. Based on the analysis of attack trees,
practitioners can define actions to engage in order to reduce or annihilate risks.

Up to now, the construction of attack trees is made by hand, based on
knowledge and experiences of analysts and technicians. There are construction
and editing tools of attack trees available (e.g., [1,14,15]). This manual effort is
time-consuming and error-prone, especially as the size of attack trees can become
substantial. Our goal is to create an automated process able to assist practition-
ers in fulfilling the modeling task. This paper reports on the first steps towards
a methodology, the formal foundations as well as automated techniques to syn-
thesize attack trees from a high-level description of a system. Though attack
c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 363–375, 2015.
DOI: 10.1007/978-3-319-15201-1 24

364 S. Pinchinat et al.

trees have deserved a lot of attention [6–10,12,18], we are unaware of existing
approaches for (semi-)automatically synthesizing attack trees. Hong et al. [3]
have addressed synthesis of attack trees, but in a setting lacking the precious
hierarchy of actions that enforces the structure of the attack trees. As a result,
there is no control over the outcome: deeply flattened and hard to exploit trees
can be obtained, precluding a further exploitation by risk analysts and domain
experts. For computer system security, Jha et al. [5] and Sheyner et al. [16,17]
proposed an algorithm to automatically generate an attack graph representing
the system under consideration. In our case, attack graphs are generated from
a description of a system (e.g., a military building). Our methodology allows
the user to specify the intended structure through a hierarchy of actions, with
flexibility on the adequate level of abstraction to choose. Moreover we do not
synthesize scenarios graphs but attack trees.

Our proposed methodology consists in (1) describing the system to protect
as an attack graph (AG); (2) extracting the attacks (the solution-paths going
from an initial state to a final/goal state); (3) gathering all attacks into an
attack tree. The exploitation of a high-level specification (e.g., a military build-
ing) raises the level of abstraction – practitioners (experts of a domain) can more
easily express their knowledge and defense objectives. Moreover automating the
approach ensures that the presence of all attacks under study are present in the
attack tree. We notice, though, that a fully automated synthesis is likely to pro-
duce unexploitable (e.g., deeply flatten) trees. Mauw and Oostdijk [9] showed
that numerous structurally different attacks trees can capture the same informa-
tion, out of which a few are readable and meaningful for an expert. An original
and crucial feature of our methodology is the support of high-level actions to
specify how sequences of actions can be abstracted and structured – a high-
level action can be seen as a sub-goal. Likewise experts can control the synthesis
process and obtain attack trees close to what they have in mind. We formalize
hierarchies of actions and use standard pattern-matching techniques to compute
a so-called strategies of the attacks (corresponding to attack suites in [9]), that
provide abstractions of the attack descriptions. The methodology comes with an
environment and a set of languages for generating attacks, specifying high-level
actions, and synthesizing attack trees. We illustrate the synthesis process in the
context of analyzing risks of a military building. We also identify some open
challenges for fully supporting the approach.
Remainder of the Paper. Section 2 introduces a running example in the
context of military defense. Section 3 describes background information and
notations used throughout the paper. Section 4 defines attack graphs before
introducing in Sect. 5 hierarchy of actions, strategies, and attack trees. Section 6
summarizes the paper and describes future works.

2 Motivation and Running Example

To illustrate the motivation of our work, let us consider the example of Fig. 1.
Military experts want to protect an armoury, i.e., they do not want that the

Towards Synthesis of Attack Trees 365

Fig. 1. The plan of the armoury to protect

stored weapons fall into the wrong hands. For the sake of risk analysis, we put
ourselves in the attacker’s shoes and look for the ways to intrude the military
building. The armoury consists of six rooms, including a hall monitored by a
video equipment and the storage room. The building is guarded by defenders:
the attacker (ATK) may meet an agent in one of the rooms, a dog in another. The
goal of the analysis is then to find all the relevant paths to reach the weapons.
Relevant means here that we would like to get the successful attacks that are
realistic (no invisibility cloak) and without loops – we would like to avoid the
cases where the attacker goes from a room (say A) to the next room (say B),
goes back to A, then goes to B, and so on. An example of path, among many
others, is that the attacker can cross the hall to go directly into the storage
room; to make sure he or she has not been seen, the attacker can cut the video
surveillance system. The building of Fig. 1 involves 17 elements (seven doors, five
windows, three agents, one camera and the arsenal). The number is substantial
since numerous paths and attacks can be envisioned. In practice the complexity
can be even higher. The goal of the project we are involved in is to assist military
experts in synthesizing attack trees. Specifically we want to generate attacks
from the description of a system (e.g., military building) and synthesize, with
the help of some directives, a readable attack tree that military experts can
exploit afterwards.

Running Example. In the rest of the paper, we will only consider the end of
the attack, that is, the intrusion in the storage room. In our running example
(Fig. 1), the system consists in a simple room and an attacker who still wants to
intrude to steal the weapons located in a locked cabinet of this room. To describe
the states of the system, we define the following three two-valued variables:
Pos(ATK) ∈ {out., room} (out. stands for outdoor) which gives the position
of the attacker in the system at each moment, room ∈ {opened, closed} which
describes the door status, and cabinet ∈ {opened, closed} which tells whether
the weapons are easy to reach or not.

366 S. Pinchinat et al.

3 Preliminary Notations

For a set X, we let X∗ be the set of finite sequences over X, and we denote by ε
the empty sequence. Given two sequences s1, s2 ∈ X∗, we let s1.s2 ∈ X∗ denote
the concatenation of s1 and s2. For x ∈ X, we will simply write x for the set
{x} ⊆ X∗. Given a sequence s ∈ X∗ and Y ⊆ X∗ a set of sequences over X∗,
we let s.Y denote the sequences s, s′ where s′ ∈ Y and we s−1.Y be the set of
sequences s′ ∈ X∗ such that s.s′ ∈ Y . For two subsets Y and Z of X∗, we let
Y.Z =

⋃

s∈Y s.Z; it is the set of sequences obtained by concatenating a sequence
in Y with a sequence in Z. We now recall trees, labeled trees and forests.

A tree is a finite set T ⊆ N
∗ of nodes such that: t.i ∈ T implies t ∈ T

(prefix-closeness), and t.i ∈ T implies t.j ∈ T , for all 1 ≤ j < i (left-closeness).
A node t ∈ T is a leaf if t.1 /∈ T ; we write leaves(T) ⊆ T the set of leaves of

T . We let deg(t) be the greatest n such that t.n ∈ T . We write children(t) for
the sequence of ordered children of t in T , i.e., the sequence t.1 . . . t.deg(t) ∈ T ∗.
A branch of T is a sequence i1i2 . . . im such that i1i2 . . . im ∈ leaves(T).

Let Γ be a set. A Γ -labeled tree is a structure τ = (T, �) where T is a tree,
and � : T → Γ is the labeling function; Figs. 3(a) and (b) depicts two labeled
trees τ1 and τ2. We write w(τ) ∈ Γ ∗ for the sequence of labels of leaf nodes of τ
ordered from left to right. Given a Γ -labeled tree τ = (T, �) and a node t ∈ T ,
we let τt = (Tt, �t) be the sub-tree of τ rooted at node t defined by Tt = t−1T
and �t(t′) = �(t.t′), for all t′ ∈ Tt.

A Γ -forest is a finite ordered set {τi}i∈I of Γ -labeled trees.

4 Attack Graphs

We use a standard symbolic representation for dynamic systems, where states
are characterized by valuations over a finite set of variables (ranging over a finite
domain) and transitions between states correspond to actions.

Figure 2 describes the system of our running example: each state, although
numbered, is characterized by a valuation of the relevant variables. Initial states
are marked by an ongoing arrow and goal states (those the attacker wants to
reach) by double row. We can navigate in this graph following arrows that realize
actions; label tc/fl means that either action tc or action fl can be chosen.

Definition 1. An Attack Graph (AG) over a set of actions A is a structure
G = (S, f, I,G), where S a finite set of states, f : S×A → S a partial transition
function, I ⊆ S is a set of initial states, and G ⊆ S is a set of goal states.

The AG Gex = (S, f, I,G) of Fig. 2 is formally defined by:

– S = {1, 2, 3, 4, 5, 6, 7, 8}: each state of the system is composed of a combination
of the possibles of the variables.

– I = {1, 5}: the initial sy tates are the states where Pos(ATK) = out. and
room = closed.

Towards Synthesis of Attack Trees 367

Fig. 2. The AG Gex

– G = {7, 8}: the final states are the states where attacker is inside and the
cabinet opened.

– A = {tc, f l, od, cd, goin, goout, uk, lk, ti} is the set of primitive actions, which
respectively means:

Action Meaning

tc type the code (door opener)

fl force the lock

od open the door

cd close the door

goin go inside

goout go outside

uk use a key to open the cabinet

lk lock the cabinet with a key

ti take item (weapon)

– f : S × A → S the partial transition function

ftc ffl fod fcd fgoin fgoout fuk flk fti

1�→ 2 1 �→ 2 4 �→ 3 3 �→ 4 2 �→ 3 3 �→ 2 3 �→ 7 7�→ 3 7 �→ 7

5 �→ 6 5 �→ 6 8 �→ 7 7 �→ 8 6 �→ 7 7 �→ 6 4 �→ 8 8 �→ 4 8 �→ 8

2 �→ 1

6 �→ 5

For example, according to ftc, from the state 1, if we apply the action tc, we
get into the state 2. Similarly, from the state 5, we get into the state 6 after
the application of the same action.

368 S. Pinchinat et al.

In the rest of this section let G = (S, I,G, f) be an AG over A. We define
attacks as sequences of actions from an initial state to a goal state. We first
recall standard notion on labeled graphs.

A path starting from s ∈ S in G is a sequence of states π = s0s1 . . . sn

such that s0 = s and ∃a ∈ A, f(si, a) = si+1, for all 0 ≤ i < n. A path π
reaches the set S′ ⊆ S if sn ∈ S′. A path π = s0 . . . sn is elementary if, for all
0 ≤ i < j ≤ n, si �= sj .

Let a1.an ∈ A
∗ be a sequence of actions and let s0 ∈ S. A path induced

by a1.an ∈ A
∗ is a path π = s0s1 . . . sn such that fai+1(si) = si+1, for all

0 ≤ i < n.

Definition 2. An attack in G is a sequence of actions a1.a2an ∈ A
∗ such

that there exists an elementary path from some initial state induced by a1 . . . an

and which reaches the set G. Let Attack(G) be the set of attacks in G; it is finite.

In Gex, tc.goin, f l.goin.cd.uk.ti is an attack either along path 5, 6, 7 or path
1, 2, 3, 4, 8, 8. Also, tc.goin.cd.ti ∈ Attack(Gex).

5 High-Level Actions and Attack Trees

We first define hierarchies of actions used to describe attacks in a more compre-
hensible way called strategy. Then strategies are gathered into an attack tree.

5.1 Hierarchy of Actions

The paths extracted from the AG are low-level descriptions of attacks by means
of elementary actions. However, sequences of actions may be abstracted as so-
called high-level actions, explaining some behaviors in a more abstract manner.
This abstraction relies on a hierarchy of actions, which may be updated along
an analysis process.

Consider our running example. The set A of elementary actions describe
the lowest level actions of level 0, written H0. “Higher level” actions can be
considered for example if one wishes to introduce action or for “open room”
which may be achieved, or refined, by performing either (elementary) actions tc
(“type the code”), or fl (“force the lock”), or od (“open the door”). In the same
line, one can define the higher-level action cr (“close room”) uniquely refined as
action cd (“close the door”). Since higher-level actions or and cr can be realized
by actions of level 0, they would belong to level 1, that is the set H1. To H1, we
add action oc (“open cabinet”) refined by performing uk, the action cc (“close
cabinet”) refined by performing lk (“lock the cabinet with key”), and tw (“take
weapons”) refined either by ti, or cd.ti, or od.ti, or ti.tw.

Based on a (somewhat arbitrary) choice of abstraction given by an expert, we
get a hierarchy of actions which consists in a set H0 = A of elementary actions,
and a set H1. The latter is formed of actions whose realizations are sequences
of actions of level 0. More generally, we should describe a high-level actions of
level k by at least a sequence of level k − 1, i.e., a sequence containing at least

Towards Synthesis of Attack Trees 369

an action of level k − 1 (no action of level greater than k − 1). We now formalize
the notion of hierarchy of high-level actions.

Definition 3. A hierarchy over a set of actions A is a structure
H = ({Hk}0≤k≤K ,R) where:

– each Hk (0 < k ≤ K) is a finite set of high-level actions (HLA), with HK �= ∅
which forms the top-level actions. K ∈ N is the hierarchy level and H0 = A is
the set of primitive actions. We let H =

⋃

0≤k≤K Hk, whose typical elements
are A,B,A′, A1, A2,

– R ⊆ H × H∗ is the set of the refinement rules which satisfies level(R(A)) ≤
level(A), for all action A ∈ H. In particular, R(A) = A for all A ∈ H0.

We define level : H → {0, . . . , K}, the level function, by level−1(k) = Hk
1. A

hierarchy is strict if for all action A ∈ H, level(R(A)) < level(A).

As explained above, we have equipped the AG Gex with a 2-level hierarchy Hex

over A defined by H0 = {tc, f l, od, cd, goin, goout, uk, lk, ti}, H1 = {or, cr, oc,
cc, tw} and H2 = {er, gr, st} and the following refinement rules, where we write
A � A1 . . . An instead of (A,A1 . . . An) ∈ R, and even use “|” on the right-hand
side of � to mimic standard notations in formal grammar rules; for instance,
expression or � tc | fl | od means that R(or) = {tc, f l, od}.

{

er � goin | or.goin | goin.cr | or.goin.cr
gr � goout | or.goout | goout.cr | or.goout.cr
st � tw | oc.tw | tw.lk | oc.tw.lk

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

or � tc | fl | od
cr � cd
oc � uk
cc � lk
tw � ti | cd.ti | od.ti | ti.tw

with HLAs of level 2 er for “enter room”, gr for “get out of room” and st
for “steal weapon”, and we recall HLAs of level 1: or for “open the room”, cr
for “close room”, oc for “open cabinet”, cc “close cabinet”, and tw for “take
weapons”.

5.2 Strategies

Strategies provide high-level descriptions of attacks in the AG. These objects
are (forests of) labelled trees whose sequences of leaves describe attacks, while
internal nodes of trees are labelled by HLA.

In the rest of this section, we let G = (S, I,G, f) be an AG over a set of
actions H0, H = ({Hk}0≤k≤K , level,R) be a hierarchy.

Definition 4. A strategy over H is an H-forest σ = {τi}i=1...n such that for
each τi = (Ti, �i), and for every t ∈ Ti, �i(t) � �i(t1) . . . �i(tj) is a refinement
rule, where t1, . . . , tj are the children of t in Ti. Given a strategy σ, we will write
w(σ) = w(τ1)w(τ2) . . . w(τn) ∈ H∗

0 for the attack of σ.
A strategy σ is winning whenever w(σ) ∈ Attack(G).

1 We may sometimes display level in the structure.

370 S. Pinchinat et al.

Fig. 3. Trees τ1 (a) and τ2 (b) forming strategy σ1 = {τ1, τ2} such that with w(σ1) =
ti.goin.cd.ti ∈ Attack(Gex). (c) is another strategy σ2 for ti.goin.cd.ti.

The set {τ1, τ2} (see Figs. 3(a) and (b)) represents a winning Hex-strategy
σ1 with two trees, whose attack is tc.goin.cd.ti. In essence, branching nodes of a
strategy have a conjunctive meaning2.

It should be noted that there may be several strategies associated to an
attack. For instance, strategy σ1 formed by Figs. 3(a) and (b), and strategy σ2

of Fig. 3(c) have respectively the same attack tc.goin.cd.ti. This phenomenon is
typical of a hierarchy of actions that is “ambiguous”3.

For w ∈ Attack(G), we let Σ(w) := {σ |w(σ) = w} be the set of strategies
associated with w.

Now that we know how to relate attacks in an AG with strategies that exploit
the hierarchy of actions, we can gather strategies into a kind of “and-or” trees
called an attack tree, in the same line as [6].

5.3 Attack Trees

Strategies σ1 and σ2 and of Fig. 3, although both abstracting attack tc.goin.cd.ti
in Gex, can be distinguished: the former relies on refinement rules er � or.goin.cr,
cr � cd and tw � ti, whereas the latter relies on rules er � or.goin and
tw � cd.ti. These alternatives can be expressed using trees including some
nodes carrying an “or” semantics.

In the rest of this section, we let H = ({Hk}0≤k≤K , level,R) be a hierarchy.
We consider the signature formed of and connectors defined by C = {©∧j |j ∈ N},
where ©∧j has arity j (see Definition 5).

Attack tree nodes can be labeled by HLAs or by connectors or by the spe-
cial symbol win which actually characterizes the root; label win is somehow a
“super” high-level action representing the main goal.

Definition 5. An Attack Tree (AT) over H is a (H ∪ C ∪ {win})-labeled tree
T = (T, �) such that for all t ∈ T , if �(t) ∈ Ck, then t has k children, and
t ∈ leaves(T) iff �(t) ∈ H0. Virtual (resp. true) nodes of T are those nodes
labeled over C ∪ {win} (resp. H).

2 And even a “sequential” one, ı.e. children of the and-node are considered in order
from left to right.

3 As for context-free grammars.

Towards Synthesis of Attack Trees 371

Fig. 4. Attack tree T0

Definition 6. T = (T, �) over H is well-formed if for any branch n1n2 . . . nm of
T , and for any 1 ≤ i < j ≤ m, letting L = �(n1n2 . . . ni) and L′ = �(n1n2 . . . nj),
if L,L′ ∈ H, then level(L) > level(L′).

In well-formed ATs, the level of actions along a branch strictly decreases; Fig. 4
depicts a well-formed AT over Hex

4.

From strategies to ATs. We can embed strategies into ATs. This embedding
consists in (i) explicitly connecting nodes of the trees to the strategy forest,
and in (ii) connecting the roots of all the resulting trees via a“win-then-©∧”
mechanism.

We first start explaining (i). Let σ be a strategy over H, and let τ = (T, �) ∈ σ.
We transform τ into the (H ∪ {©∧j |j ∈ N})-labeled tree τ̂ = (̂T , ̂�) defined by
induction over the height h of τ as follows.

– If h = 0, then τ̂ = τ .
– Otherwise, let τ1 = (T1, �1), . . . , τn = (Tn, �n) be the ordered sub-trees at τ

root (hence with lower height). Then
• ̂T is the least set containing all the sets {1}, 1.1.̂T1,. . . ,1.n.̂Tn, and
• ̂�(ε) = �(ε), ̂�(1) = ©∧ and ̂�(1.i.t) = ̂�i(t).

For example, consider the trees τ1 of Fig. 3(a) and τ2 of Fig. 3(b); the trees
τ̂1 and τ̂2 are depicted in Fig. 5(a).

We can now embed strategies into ATs.

Definition 7. Let σ = {(Ti, �i)}i=1,...,n be a strategy over some hierarchy H.
The canonical AT associated to σ is Tσ = (T, �) over H defined by:

– T is the least set containing all the sets {1}, 1.1.̂T1,. . . , 1.n.̂Tn (a node of T

is then either ε or 1 or of the form 1.i.y where y ∈ ̂Ti).

– �(x) =

⎧

⎨

⎩

win if x = ε
©∧ if x = 1
̂�i(y) if x = 1.i.y

4 In figures, we omit the arity of connectors.

372 S. Pinchinat et al.

Fig. 5. Trees τ1 of Fig. 3(a) and τ2 of Fig. 3(b) transformed before connection and the
resulting attack tree Tσ1

Fig. 6. Strategies included in T0 of Fig. 4

Clearly, Tσ respects Definition 5, hence it is an AT. Note also that if H is
strict, then Tσ is well-formed. Figure 5(b) depicts Tσ1 for strategy σ1 of Fig. 3.

From ATs to Strategies. A given AT T naturally denotes a set Σ(T) of strategies.
Each strategy of Σ(T) is obtained by keeping all nodes of T , but by selecting a
single child in each H-labeled node of T . Due to lack of space we do not formally
define Σ(T). Instead, we provide the clarifying following example.

The AT T0 of Fig. 4 is such that Σ(T0) = {σ2, σ3, σ4, σ5} (where the strategies
are given in Fig. 3(c), Fig. 6(a), (b) and (c) respectively), because in T0 there are
two nodes (with HLAs or and st), with two possible refinements each, hence the
four outcomes for Σ(T0).

Attack Tree Synthesis. We equip ATs with a binary operation ⊕ of merging with
the following guaranteed properties.

– ⊕ is associative: (T1 ⊕ T2) ⊕ T3 = T1 ⊕ (T2 ⊕ T3), for any ATs T1, T2 and T3.
– ⊕ is well-formedness preserving.
– For any two ATs T1 and T2,

Σ(T1 ⊕ T2) ⊇ Σ(T1) ∪ Σ(T2) (1)

It should be noted that Eq. (1) is not an equality. This is illustrated by the
AT Tσ2 ⊕ Tσ3 (for strategies σ2 and σ3 of Figs. 3(c) and 6(a)), which turns out

Towards Synthesis of Attack Trees 373

to correspond to T0 in Fig. 4, and yet Σ(T0) = {σ2, σ3, σ4, σ5}. Actually, the
fact that Eq. (1) is an inclusion instead of an equality is harmless since we claim
that the extra strategies are in general also winning – indeed, returning to the
matter at hand, HLAs would essentially denote sub-goals. Thus, if the main goal
decomposes into HLAs e.g., A then B, and if now A can be refined into either
A1 or A2 and, similarly, if B can be refined into either B1 or B2, the main goal
cannot be achieved following any of the four combinations A1.A2, A1.B2, B1.A2

and B1, B2.
Operation ⊕ is central as it provides the last step for synthesizing an AT:

from a finite set Σ of strategies, the synthesis is the result of computing

T (Σ) = ⊕σ∈ΣTσ

How this operation can be implemented in a scalable manner is left as future
work (see next section).

6 Towards Attack Tree Synthesis

We proposed a mathematical setting to develop procedures that synthesize attack
trees. An original and important aspect of our work is that an expert can par-
ticipate in the synthesis process through the specification of so-called high-level
actions (HLAs). We also sketched an end-to-end tool-supported methodology:
starting from a high-level description of a system (e.g., a military building), prac-
titioners can generate attacks through model-checking techniques, and eventu-
ally exploit HLAs to synthesize readable and well-structured attack trees. We are
implementing ATSyRA5, a tool built on top of Eclipse and upon the mathemat-
ical foundations, to support the synthesis methodology with a set of dedicated
languages. Our work opens avenues for further research and engineering effort
for supporting the analysis of realistic military risks by practitioners.

Interactive Support. The process is likely to be interactive and incremental:
experts obtain an attack tree, add some information, re-synthesize, and so on.
At different steps of the methodology, there are opportunities to parametrize the
synthesis. For instance, experts can typically fine tune the generation of attacks.
Currently, the building specification is transformed into GAL [2] (for Guarded
Action Language) a simple yet expressive formalism to model concurrent sys-
tems. GAL is supported by efficient decision diagrams for model-checking. We
use GAL support to generate attacks. Some predicates can be added to scope the
space in which model checking mechanisms operate over. We can envision the
use of specific languages, independent of GAL and at a higher level of abstrac-
tion, for easing the generation of attacks considered as relevant. Besides, experts
can guide the synthesis of attack trees through HLAs. Re-structuring the hier-
archy or abstracting a set of attacks can arise if the resulting attack tree is not
satisfactory (e.g., in case the tree is too flat and hard to understand). Some
visualisations and suggestions can help an expert for this task.
5 More information about ATSyRA is available online: http://tinyurl.com/ATSyRA.

http://tinyurl.com/ATSyRA

374 S. Pinchinat et al.

Scalability. The number of attacks can be huge, especially if the building spec-
ification contains numerous elements, leading to numerous possible paths for
an attacker. The scalability problem impacts two aspects of the methodology.
First, the synthesis of attack trees: HLA can help to reduce the complexity, since
a hierarchy is pre-defined, guiding a canonical form they should conform. Yet,
implementing the merging operator ⊕ of attack trees faces the very complex
combinatorics induced by pattern-matching-like issues. Heuristics are likely to
be needed both for computing the merge of attack trees and for scaling up. Sec-
ond, we need to only generate relevant attacks. Again, experts can directly tune
GAL to scope the generation: some facilities are needed to ease the task.

Attack Defense. Another step in our work consists in the introduction of the
defender. We aim to study his or her actions and reactions. We plan to consider
game theory and multi-agents systems, keeping close to the clean foundations
proposed by [7].

Acknowledgements. This work is funded by the Direction Générale de l’Armement
(DGA) - Ministère de la Défense, France. We thank Salomé Coavoux and Maël Guilleme
for their insightful comments and development around ATSyRA.

References

1. AttackTree+. http://www.isograph.com/software/attacktree/
2. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Towards distributed soft-

ware model-checking using decision diagrams. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 830–845. Springer, Heidelberg (2013)

3. Hong, J.B., Kim, D.S., Takaoka, T.: Scalable attack representation model using
logic reduction techniques. In: 12th IEEE International Conference on Trust, Secu-
rity and Privacy in Computing and Communications, pp. 404–411 (2013)

4. ISO, Geneva, Switzerland. Norm ISO/IEC 27002 - Information Technology - Secu-
rity Techniques - Code of Practice for Information Security Management, ISO/IEC
27002:2005 edition, Section 9 (2005)

5. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Proceed-
ings of the 15th Computer Security Foundation Workshop, pp. 49–63 (2002)

6. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011)

7. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2014)

8. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees (2013). arXiv preprint
arXiv:1303.7397

9. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

10. Mehta, V., Bartzis, C., Zhu, H., Clarke, E.: Ranking attack graphs. In:
Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 127–144.
Springer, Heidelberg (2006)

http://www.isograph.com/software/attacktree/
http://arxiv.org/abs/1303.7397

Towards Synthesis of Attack Trees 375

11. N. Research and T. O. (RTO). Improving Common Security Risk Analysis. Tech-
nical report AC/323(ISP-049)TP/193, North Atlantic Treaty Organisation, Uni-
versity of California, Berkeley (2008)

12. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. 24, 21–29
(1999)

13. Schultz, E.E.: Risks due to the convergence of physical security and information
technology environments. Inf. Secur. Tech. Rep. 12, 80–84 (2007)

14. Seamonster. http://sourceforge.net/apps/mediawiki/seamonster/
15. SecurITree. http://www.amenaza.com/
16. Sheyner, O., Haines, J., Jha, S., Lippman, R., Wing, J.: Automated generation

and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy, p. 273. IEEE Computer Society (2002)

17. Sheyner, O.: Tools for generating and analyzing attack graphs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188,
pp. 344–371. Springer, Heidelberg (2004)

18. Sheyner, O.M.: Scenario Graphs and Attack Graphs. Ph.D. thesis (2004)

http://sourceforge.net/apps/mediawiki/seamonster/
http://www.amenaza.com/

On Generation of Context-Abstract Plans

�Lukasz Mikulski1(B), Artur Niewiadomski2, Marcin Pi ↪atkowski1,
and Sebastian Smyczyński3

1 Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
lukasz.mikulski@mat.umk.pl

2 Siedlce University, 3-Maja 54, 08-110 Siedlce, Poland
3 Simplito Computer Science Lab, Królowej Jadwigi 7/2, 87-100 Toruń, Poland

Abstract. This paper deals with an intermediate phase of resolving
Web Service Composition Problem (WSCP) provided by Planics. The
abstract planner discovers a set of abstract plans for a WSCP instance.
The proposed algorithm utilizes the combinatorial structure of this set
and, abstracting from object attributes, browses the space of all potential
solutions taking into account only indistinguishable ones. Finally, the
reported results are validated by checking the attributes valuation and
presumed constraints.

1 Introduction

Following [6], the existing solutions of the Web Service Composition Problem
(WSCP) are mostly based on automata theory [11], situation calculus [2], Petri
nets [7], planning graphs [1], and model checking [16]. In the context of this paper
we consider other approaches to WSCP exploiting partial orders or combinatorial
algorithms.

Peer in [14] extends a Partial Ordering Planning (POP) by adding a set of
causal link patterns that must be avoided by the planner. In the combination
with the replanning algorithm, it is used to solve WSCP. Wang et al. in [18]
construct partial order plans from a pool of atomic services described in OWL-S.

Most of combinatorial approaches in the Web Service domain is related to
compositions based on Quality of Service. For example, Yu et al. in [19] model
WSCP as Multiple-Choice Knapsack Problem and present an algorithm which
maximizes the utility function satisfying the constraints, while Zou et al. in [5]
focus on WSCP in multi-cloud environment. Finally, Höfner et al. in [8] present
an algebraic structure of Web Services, assisting users in WS composition.

In this paper we follow the Planics [4] approach. One of its key ideas is to
divide the composition process into several stages. The first phase, called abstract
planning, deals with classes of services, where each class represents a set of real-
world services, while the second works in the space of concrete services. The first
stage produces an abstract plan, which becomes a concrete plan in the second
phase. It reduces dramatically the number of concrete services to be considered.

This research was supported by the National Science Center under the grants No.
2011/01/B/ST6/01477 and No. 2013/09/D/ST6/03928.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 376–388, 2015.
DOI: 10.1007/978-3-319-15201-1 25

On Generation of Context-Abstract Plans 377

The main goal of the abstract planning phase is to find a number of abstract
plans that potentially satisfy a user query. Our planners [12,15] deal with this
problem by finding plans composed of the same service types that belong to dif-
ferent equivalence classes. From the efficiency point of view, the number of such
classes can be exponentially smaller than the number of plans. Each equivalence
class is defined by a multiset of service specifications (Fig. 1).

Fig. 1. Planics architecture

This paper focuses on the next step of the planning process, which consists
in processing the multisets of service types obtained from abstract planners.
The module addressing this issue is called Multiset Explorer. Our goal is to gen-
erate all significantly different Context Abstract Plans (CAPs) composed of the
service types from the explored multiset that belong to different partial orders
and the difference between utilized objects is more complex than a simple inher-
itance extension. The motivation behind this consists in the fact that, typically,
we would like to have a large selection of plans at our disposal, but we do not
want to distinguish between plans, which differ only in the ordering of their
context independent services. This observation is strongly related to the origi-
nal concept of Mazurkiewicz traces [9] – the sets of indistinguishable executions
of sequences of partially ordered actions. In this paper we adapt the notion of
traces to cut the set of all context-abstract plans.

The rest of the paper is structured as follows. We start with presenting some
basic notions which are used in further considerations. In the next section, we
build a bridge between assumptions and notations used in Planics system and
our algorithm. It is followed by the main contribution of the paper – the results
of our studies on the combinatorial structure of context-abstract plans. In the
subsequent section we utilize this to develop an algorithm solving the problem
of searching for the solutions overlooked by the abstract planner. The paper is
summarized by short sections containing results of experiments and conclusions.

378 �L. Mikulski et al.

2 Basic Notions

Throughout the paper we use the standard notions of Set and Formal Languages
Theories. In this section we recall the most important definitions.

By an alphabet we mean a nonempty finite set Σ, the elements of which are
called letters. Finite sequences over Σ are called words. The set of all words
(including the empty word ε) is denoted by Σ∗. Let w = a1 . . . an be a word. By
the alphabet of w we mean alp(w) ⊆ Σ consisting of all letters contained in w.
Namely, alp(w) = {a ∈ Σ | ∃0<i≤n a = ai}. Moreover, by #w(a) we denote
the number of occurrences of a in w. We also introduce the notion of the letter
occurrence. The set occ(w) of letter occurrences in w comprises all pairs 〈a, i〉
with a ∈ alp(w) and 1 ≤ i ≤ #w(a). In what follows we move freely between
sequences of letters and sequences of letter occurrences.

Given R ⊆ X × X, R0 = I and Rn = Rn−1 ◦ R, for all n ≥ 1. Then (i) the
inverse of R is given by R−1 = {〈a, b〉 | 〈b, a〉 ∈ R}; (ii) the symmetric closure
by Rsym = R ∪ R−1; (iii) the reflexive closure of R is defined by R ∪ I; (iv)
the transitive closure by R+ =

⋃

i≥1 Ri; (v) the reflexive transitive closure by
R∗ = I ∪ R+; (vi) the transitive reduction by Rred =

⋂

Q∗=R∗ Q; and (vii) the
largest equivalence relation contained in R∗ by R� = R∗ ∩ (R∗)−1.

A relation R ⊆ X × X is: (i) symmetric if R = R−1; (ii) asymmetric if
R ∩ R−1 ⊆ I; (iii) reflexive if I ⊆ R; (iv) irreflexive if I ∩ R = ∅; (v) transitive
if R ◦ R ⊆ R; and (vi) total if R ∪ R−1 = X × X; (vii) equivalence relation if
it is symmetric, transitive and reflexive. A set of all equivalence classes of R is
denoted by X/R. An equivalence class containing an element x ∈ X is denoted
by [x]R, or simply by [x] if R is clear from the context.

A relation R ⊆ X×X is (i) a (weak) partial order if it is asymmetric, reflexive
and transitive; (ii) a strict partial order if it is irreflexive and R ∪ I is a weak
partial order. A pair PS = 〈X,R〉 is a (strict) partially ordered set (poset in
short). A (strict) poset PS = 〈X,R〉 is called well-founded if there is no infinite
sequence 〈x1, x2, . . .〉 of distinct elements from X such that 〈xi+1, xi〉 ∈ R.

Let R ⊆ X × X be a partial order. F ⊆ X is called a filter if (i) F = ∅,
(ii) x ∈ F and 〈x, y〉 ∈ R implies y ∈ F , and (iii) x, y ∈ F implies existence of
z ∈ F such that 〈z, x〉 ∈ R and 〈z, y〉 ∈ R. A filter F is principal if there exists
a minimal element x ∈ F (called the principal element). Note that if poset is
well-founded, all its filters are principal.

A concurrent alphabet is a pair Ψ = 〈Σ, dep〉, where Σ is an alphabet and
dep ⊆ Σ×Σ is a reflexive and symmetric dependence relation. The corresponding
independence relation is given by ind = (Σ × Σ) \ dep. Ψ defines an equivalence
relation ≡Ψ identifying words which differ only by the order of independent
letters. Equivalence classes of ≡Ψ are called Mazurkiewicz traces.

With every word w = a1 . . . an we can associate a strict poset 〈occ(w),�w〉
induced by the dependence relation over occurrence labels. The relation �w is
defined as the transitive closure of the relation consisting of all pairs 〈ai, aj〉 such
that 〈ai, aj〉 ∈ dep and i < j. Since an induced poset is a constitutive invariant
of a trace, we lift this notion to the level of traces (see [10]).

On Generation of Context-Abstract Plans 379

We emphasize the special case of traces over concurrent alphabets with
dep = I. In this case the only important information constituting a trace are
the numbers of letters contained in it. This gives a natural correspondence with
multisets over Σ and a trace [w] is usually called the Parikh vector (of a word w).

Let X be a finite nonempty set. The relational structure over X is a triple
〈X,ME ,SO〉, where (i) ME ⊆ X × X is a symmetric and irreflexive relation
called mutual exclusion, and (ii) SO ⊆ ME is an asymmetric and irreflexive
relation called skeleton order. A relational structure S = 〈X,ME ,SO〉 is separa-
ble if SO� = I. A strict partial order PO ⊆ X ×X is consistent with a relational
structure RS = 〈X,ME ,SO〉 if SO ⊆ PO and POred ⊆ ME ⊆ POsym. It is
easy to prove that for a given relational structure S = (X,ME ,SO) there exists
a partial order PO consistent with it if and only if S is separable.

Let RS1 = 〈X1,ME 1,SO1〉 and RS2 = 〈X2,ME 2,SO2〉 be relational struc-
tures. We say that RS1 is equivalent by rsm : X1 → X2 to RS2 (denoted by
RS1 ≡rsm RS2) if rsm is a bijective function such that 〈x1, x2〉 ∈ ME1 iff
〈rsm(x1), rsm(x2)〉 ∈ ME 2, and 〈x1, x2〉 ∈ SO1 iff 〈rsm(x1), rsm(x2)〉 ∈ SO2.
We say that RS1 is equivalent to RS2 (denoted by RS1 ≡ RS2) if there exists a
function rsm such that RS1 ≡rsm RS2.

3 PlanICS Specification

The OWL language [13] is used as the Planics ontology format. The concepts
are organized in an inheritance tree of classes, all derived from the base class,
called Thing. There are three descendants of Thing: Artifact, Stamp and Service.

The branch of classes rooted at Artifact is composed of the object types,
which the services operate on. The Stamp class and its descendants define special-
purpose objects, often useful in constructing a user query. Classes derived from
Artifact and Stamp are called the object types. Each class derived from Service,
called the service type, stands for a description of a set of real-world services. It
contains a formalized information about their activities. A service affects a set of
objects (world before), and transforms it into a new set of objects (world after).

In this section we provide all definitions necessary to formalize the problem
of generating CAPs from a multiset. As we operate on types of objects only, in
what follows we abstract from the object attributes and stamps. The validation
of the found CAP (taking into account object attributes and stamps) is done at
the very end. It is realized by calling the external Planics library function.

Types and Objects. Let O, P be nonempty sets of objects and object types,
respectively. Over the set P we define a binary inheritance relation Ext ⊆ P ×P
which is transitive and irreflexive (hence also asymmetric and acyclic). Semanti-
cally 〈p2, p1〉 ∈ Ext means that the type p2 is extended by the type p1 (i.e.
p1 is the subtype of p2). Moreover, we assume that for any triple of types
p1, p2, p3 ∈ P we have that 〈p2, p1〉 ∈ Ext and 〈p3, p1〉 ∈ Ext implies p2 = p3
or 〈p2, p3〉 ∈ Ext or 〈p3, p2〉 ∈ Ext (hence multiple inheritance is excluded). In
the complete Planics semantics, two types are in the relation Ext if the set of
attributes of p2 is a subset of the set of attributes of p1.

380 �L. Mikulski et al.

By an object we mean a labelled instance of a type, namely a pair 〈id, t〉,
where t ∈ P and id is a unique object identifier. Following [4] we define a function
type : O → P such that type(〈id, t〉) = t. In the context of the system state, the
finite set of objects is called a world. The set of all worlds is denoted by W.

For a technical reason we define a function obj : ON → 2O which assigns
to every finite sequence of objects the set of objects that are elements of this
sequence. We extend this function to the sets of sequences of objects, sequences
of sequences of objects, functions with a set of sequences as a codomain and so
on. Intuitively, obj(A) means the set of all objects somehow “occurring” in A.
We use similar constructions for all maps that transform sets of objects.

Let X,Y ⊆ O and A ⊆ X be sets of objects. We say that map : X → Y is
A-invariant if restricted to A it is an identity function.

Services and Their Specifications. An abstract service specification is a
quadruple spec = 〈name, in, inout, out〉, where in, out and inout are multisets
of object types, while name is a service name. Semantically, in is the multiset of
types of read-only objects, inout is the multiset of types of objects whose state
may be changed, while out is the multiset of types of newly created objects. We
also assume that inout and out multisets may not be simultaneously empty. The
set of all service specifications is denoted by S.

For a multiset of object types we define a (partial) context function ctx :
N

P → (ON)P , namely a function that to a given multiset M of types assigns
sequences of objects. For p ∈ P we have ctx (M)(p)(i) = op

i , for 1 ≤ i ≤ M(p),
and undefined otherwise. For every defined value of ctx (M)(p)(i) we require that
〈p, type(op

i)〉 ∈ Ext (i.e. to p we assign a sequence of objects which types are
subtypes of p). Moreover, for i, j ≤ M(p) we assume that i = j implies op

i = op
j .

We extend the definition of ctx to the case of service specifications assigning
to spec = 〈name, in, inout, out〉 a quadruple 〈name, IN, IO,OU〉, where IN =
ctx (in), IO = ctx (inout) and OU = ctx (out). We require that the sets obj(IN),
obj(IO) and obj(OU) are pairwise disjoint. The specified instance of a service
specification is simply called a service. The set of all services is denoted by S̄.

We also define an abstraction function abs : S̄ → S, complementary to the
context function ctx . For a given service s̄ = 〈name, IN, IO,OU〉 it returns
its specification spec = 〈name, in, inout, out〉, where for every p ∈ P in(p) =
|obj(IN(p))|, inout(p) = |obj(IO(p))|, and out(p) = |obj(OU(p))|. As the same
service (with the same specification) may occur many times in a transformation
sequence, we use the notion of a service occurrence.

A service 〈name, IN, IO,OU〉 may be used to transform a world w1 into the
world w2 = w1 ∪ obj(OU) if obj(IN) ∪ obj(IO) ⊆ w1 and obj(OU) ∩ w1 = ∅,
which means that the difference between w1 and w2 is precisely the set of newly
created objects. This formalizes the assumption that function ctx assigns globally
new and unique names to newly created objects. We extend the transforming
operation to sequences of services in a natural way.

Let w1, w2 ∈ W be sets of objects. We say that w1 is compatible by map (or
simply compatible) with w2 if map : w1 → w2 is a bijective function such that

On Generation of Context-Abstract Plans 381

∀o∈w1 〈type(o), type(map(o))〉 ∈ Ext. We say that w1 is subcompatible with w2

if there exists a set of objects w3 ⊆ w2 such that w1 is compatible with w3.

User Queries. In the approach presented in [4] user query specification has
the same structure as a service specification. The core of the user query is a
triple of multisets of types qs = 〈inq, inoutq, outq〉. The interpretation of qs
is a pair q = 〈Winit,Wexp〉, where Winit and Wexp are sets of worlds called the
initial worlds and the expected worlds, respectively. Since we disregard attributes,
Winit and Wexp became singletons winit and wexp, which have to be consistent
with qs, namely winit = obj(ctx (inq) ∪ ctx (inoutq)) and wexp = obj(ctx (inq) ∪
ctx (inoutq) ∪ ctx (outq)).

Let q = 〈winit, wexp〉 be a user query. We say that a transformation sequence
�s satisfies q if �s transforms a world winit into a world wfin and wexp is subcom-
patible with wfin. The definition of subcompatibility is existential, and matching
map used in it may be not unique and each of appropriate substitutions is inter-
esting in terms of the full solution. We have to distinguish between two solutions
obtained by two different matchings. Hence, a transformation sequence �s satis-
fies the user query q = 〈winit, wexp〉 by map : wexp → wfin if �s transforms winit

into wfin and ∀o∈wexp
〈type(o), type(map(o))〉 ∈ Ext.

A solution is presented as a transformation sequence �s, namely a sequence of
services, which transforms winit into wfin. We denote the set of all transforma-
tion sequences which start in winit by �S. Note that all objects used by services
contained in �s must be present in winit or be created before their first use.

4 Partitioning the Solution Domain

In the presented approach, the set of all possible transformation sequences is the
solution domain. In this section we discuss the concept of grouping them into sets
of indistinguishable solutions. The main idea of this partitioning of the solution
domain is depicted on Fig. 2. The components presented there are described in
detail in the rest of this section. We fix the user query q = 〈winit, wexp〉, hence
the set �S of transformation sequences starting from winit is also fixed.

We start from defining two independent notions of indistinguishability of
transformation sequences. Their sources are the partial (not total) ordering of
concurrent computations leading to the same result and the inheritance relation,
which causes the multiplication of a single solution by replacing intermediate
objects by their extended substitutes.

Order Indistinguishability. The first identification is based on the theory of
Mazurkiewicz traces. It requires the proper definition of a dependence relation
on services contained in a given transformation sequence. Let s̄, t̄ be services and
w1 is transformed by s̄t̄ into w2. If s̄ and t̄ operate on disjoint sets of objects the
order of their execution does not matter and so w1 is transformed into w2 also by
t̄s̄. We observe the same behaviour when the objects shared by distinct services
s̄ and t̄ are accessed in read-only mode. In both situations mentioned above, it
is safe to assume that s̄t̄ and t̄s̄ leads to the same change of the values of objects

382 �L. Mikulski et al.

Fig. 2. The partitions of the solution domain.

attributes. This assumption in all other situations is unjustified. Without taking
into account the impact of changes made on the values of object attributes it is
impossible to determine whether we can harmlessly change the order of s̄ and t̄.

Formally, let dep be a dependence relation defined as specified above. Then
Maz = 〈S̄, dep〉 is a concurrent alphabet and ≡Maz⊆ �S × �S is an equivalence
relation. Being a valid transformation sequence is an invariant for equivalence
classes of the relation ≡Maz.

Proposition 1. Let �s, �t ∈ �S. If �s ≡Maz �t and �s satisfies a user query q by map
then �t satisfies q by map.

Filter Indistinguishability. The source of redundant valid solutions is also the
freedom in choosing names of intermediate objects. We say that transformation
sequences �s and �t are indistinguishable if �s arises from �t by one-to-one changing
of the object names; we denote it by �s ∼= �t. In such a case we shall report at
most one transformation sequence. If �s differs from �t not only by objects names
but also objects types (with the inheritance preservation) we shall report the
more general one only. It leads to the definition of the inheritance relation over
transformation sequences.

Let �s and �t be transformation sequences. We say that �s is extended by �t (or �t
inherits from �s) if obj(�s) is compatible by a inh with obj(�t). Recall that formally
it means that ∀o∈obj(�s) 〈type(o), type(inh(o))〉 ∈ Ext. We denote it by �s � �t.

Fact 1. Let �s, �t, �u be three transformation sequences. Then (i) if �s � �t and
�t � �u then �s � �u (relation � is transitive), (ii) if �s ∼= �t then �s � �t, and (iii)
if �s � �t and �t � �s then �s ∼= �t. Hence the relation ∼=⊆ �S × �S is an equivalence
relation.

The above fact justify quotienting the set �S by the relation ∼= and extending �
to the case of equivalence classes of �S/∼= (we keep the notation �). The structure
of �S/∼= helps in reporting only essential transformation sequences that satisfy
user query. Namely, the following hold:

Proposition 2. Let �s,�t be two transformation sequences. If �s ∼= �t and �s satisfies
user query q then �t satisfies user query q.

On Generation of Context-Abstract Plans 383

Theorem 1. Let F ⊆ �S/∼= be a filter with a principal element [�s]. If �s satisfies
user query q then for all [t] ∈ F , t satisfy user query q.

The two methods of clustering indistinguishable solutions presented above
can be combined. As a result we obtain filters of traces (or traces of filters if
we look from the opposite direction). We summarize this facts by the theorem,
which is one of the central points of the presented solution.

Theorem 2. Let �s,�t ∈ �S be transformation sequences.

(i) Let �u ∈ �S be such that �u ≡Maz �s. If �s is extended by �t then there exists �v ∈ �S
such that �v ≡Maz �t and �u is extended by �v.

(ii) Let �v ∈ �S be such that �v ≡Maz �t. If �s is extended by �t then there exists �u ∈ �S
such that �u ≡Maz �s and �u is extended by �v.

Abstract Partitions of �S . In the process of browsing all classes of indistin-
guishable solutions we utilize more abstract partitions of the set of all transfor-
mation sequences. We pay attention to maintain compliance with expected form
of results. In other words, we do not want to partition any filters of traces.

As a first coarse cut we present an abstract topology which can be seen as a
specification for traces. By an abstract topology we mean relations between single
service occurrences, which are determined by their common objects. In contrast
to traces, we would like to leave as much flexibility as possible (indicating the
dependence between two services but leaving their order unspecified).

Formally, we utilize relational structures. We define mutual exclusion relation
ME�s identical as dependence in the case of traces. Two occurrences of services
〈x̄, i〉 and 〈ȳ, j〉 are in ME�s if x̄ = ȳ or (obj(x̄) ∩ obj(ȳ)) = (obj(INx̄) ∩
obj(INȳ)). On the other hand, we specify the order on service occurrences only
if it is invariant for all transformation sequences containing the same sets of
occurrences. Namely, two occurrences of services (x̄, i) and (ȳ, j) are in SO�s if
x̄ = ȳ and i < j or obj(OUTx̄)∩obj(ȳ) = ∅. Note that SO�s � ME�s and all other
conditions (e.g. irreflexivity of ME�s and SO�s) are satisfied.

Proposition 3. Let �s and �t be transformation sequences. If �s is extended by �t
or �s ≡Maz �t then �s and �t (hence a single reported result) have the same topology.

The second coarse cut is based on the Parikh vectors of service specifications.
It is utilized in [4] where a single valid solution found inside a class causes its
exclusion from the further search. Therefore, the cut presented below is very
important and embeds Multiset Explorer inside the Planics project. The algo-
rithm presented in this paper describes a method of browsing such single class.

Two transformation sequences �s and �t are Parikh specification-equivalent if
the abstractions of their alphabets are equal (denoted as �s ≡sPar �t). The relation
≡sPar is reflexive, symmetric and transitive, hence it is an equivalence relation
and we can quotient �S by ≡sPar. The obtained equivalence classes are precisely
the sets of transformation sequences skipped by the approach from [4] (which
may oversight some nontrivially distinct solutions). In what follows we consider
only a single equivalence class from �S/≡sPar

and search it for other possible
solutions. Hereby, the procedure of browsing all solutions became complete.

384 �L. Mikulski et al.

Proposition 4. Let �s,�t ∈ �S. If �s ≡sPar �t then |obj(�s)| = |obj(�t)|.
Parikh Equivalence. To support the last level of partition, we present the
context version of Parikh equivalence, based on the inheritance relation (instead
of service specification only).

Two transformation sequences �s and �t are Parikh equivalent if their topology
is not only the same but also implied in the same way by corresponding sets of
objects. To formalize that, we first define Parikh compatibility of two transfor-
mation sequences. We say that �s is Parikh compatible by pmap with �t if obj(�s)
is compatible by winit-invariant pmap with obj(�t) and occ(�t) = pmap(occ(�s)).
We denote it by �s ≺pmap

Par
�t (or �s ≺Par �t if pmap is not important).

Now we introduce Parikh equivalence of �s,�t ∈ �S as their simultaneous Parikh
compatibility (denote by �s ≡Par �t). We also define Parikh inheritance-equivalence
of �s and �t as an existence of �u Parikh compatible with both �s and �t (denoted
by �s ≡iPar �t). Both ≡Par and ≡iPar are equivalence relations. The elements of
�S/≡iPar

and �S/≡Par
are called process templates and processes respectively.

The elements of �S/≡iPar
are fully compatible with all previously presented

partitionings. Each process template is completely contained both in classes of
≡sPar and classes of transformation sequences with the same topology. Every
filter, trace and process is completely contained in a process template. The fol-
lowing theorem is crucial from the point of view of our algorithm correctness.

Theorem 3. Let �s and �t be transformation sequences.

(i) If �s ≡iPar �t then �s ≡sPar �t, and �s and �t have the same topology.
(ii) If �s ≡Par �t or �s ≡Maz �t then �s ≡iPar �t.
(iii) If �s is extended by �t then �s ≡Par �t.

We utilize Parikh compatibility to equip process templates with the alge-
braic structure. According to Theorem 3, each process template decomposes
into processes. The following facts allows to extend the notion of Parikh com-
patibility to processes and to define a poset on process templates seen as sets of
processes.

Proposition 5. Let p and q be two processes minimal in the sense of ≺Par. If
p and q belong to the same process template then p = q.

Finally, we take into account the expected world wexp and matchings between
wexp and wfin separating distinguishable solutions. Each solution we are inter-
ested in has a form of a filter of traces and is totally contained in a process
template (see Theorem 3). It remains to show that relations � and ≺Par are
consistent. We show that each matching identifies a single filter of processes
inside a process template which decomposes to the set of expected results.

Proposition 6. Let �s,�t ∈ �S. If �s � �t then [�s]≡Par
≺Par [�t]≡Par

, while if �s
satisfies user query q by map and �s ≺pmap

Par
�t then �t satisfies q by pmap ◦ map.

Theorem 4. Let �s,�t, �u ∈ �S be such that �u ≺pm1
Par �s and �u ≺pm2

Par
�t, and �s satisfies

user query q by map. If �t satisfies q by pmap2 ◦ pm−1
1 ◦ map then there exists

�v ∈ �S such that �v ≺pm3
Par �s and �v ≺pm4

Par
�t and �v satisfies q by pm−1

3 ◦ map.

On Generation of Context-Abstract Plans 385

5 Algorithm

The main goal of the procedure developed in this paper is to browse all trans-
formation sequences that satisfy a given user query and have the same Parikh
vector of service specifications. We present a module Multiset Explorer utilizing
the notions presented heretofore. As an input we take the object types from the
ontology, the user query q = (winit, wexp), and a multiset of service names.

Algorithm 1. Multiset Explorer
Input: A CAP cp (context abstract plan)
Output: List of CAPs equivalent with cp

1 Initialize a class scp of ≡sPar with cp;
2 foreach each process template tp do
3 Construct bipartite graph G using obj(tp) and wexp;
4 foreach process p do
5 Use the topology to construct a dependence relation dep;
6 foreach trace τ(p, dep) do
7 report minlex(τ);

Having an element of �S/≡sPar
fixed, we start the partitioning by determin-

ing a single representative for each subclass. In the first step we divide �S into
process templates. The chosen representatives are ≺Par-maximal. Next we fix
the names of the objects produced by the provided services OOU (the objects
from OU’s) and we determine the most abstract types which they may have.
We use those objects, together with winit, to fill all IN’s and IO’s of provided
services respecting the type inheritance (and updating the types of objects from
OOU).

Having the single process template T we take one of its maximal element �s
and winit-invariant matching map of wexp with obj(�s) which can be realized for
one of the elements of T (as in Theorem 4). For each such matching we compute
a filter of processes. Those filters contain transformation sequences which com-
pletely cover the set of context-abstract plans satisfying user query. To browse
all fitting winit invariant matchings which guaranties subcompatibility with wexp

we construct bipartite graph G between objects from wfin \ winit produced by
the chosen representative and wexp\winit. There is an edge E between o1 ∈ wfin

and o2 ∈ wexp if (type(o1), type(o2)) ∈ Exp or (type(o2), type(o1)) ∈ Exp. We
enumerate all maximal matching in the constructed graph using the algorithm
based on [17].

We make some final cuts in the obtained filters of processes FP to report the
solution in the assumed form. We start by computing the relational structure RS
(topology) which is common (by Theorem 3) for all transformation sequences
from FP . Finally, we compute all traces over achieved from RS concurrent
alphabet. They induce strict partial orders consistent with RS. We utilize an

386 �L. Mikulski et al.

algorithm from [10] generating all traces with a given Parikh vector and dispose
those, which are not consistent with RS. Every obtained transformation sequence
(the principal element of a filter of traces) satisfies user query (in a context-
abstract sense) and is a final result of Multiset Explorer. The reported results
are a subject of further verification made by the external procedure provided in
Planics which validates them by attributes valuation.

Experimental Results

We implemented Multiset Explorer as a standalone application and made some
tests using data randomly generated by Ontology Generator provided by Planics.

The experiments have been performed on a computer equipped with 32 GB
RAM and 4-core Intel Xeon 2.9 GHz CPU running CentOS 6.5 system. We used
SMT solver Z3 [3] as an external procedure called by Abstract Planner. In all
experiments we first search for context-abstract plans using Abstract Planner
and SMT solver Z3. We fix the maximal number of reported CAPs to 100. Then
we make use of all of those CAPs to explore the space of transition sequences
Parikh specification-equivalent with solutions found in the first phase.

Table 1. Experiments. In subsequent columns we put a case name, length of solutions
we search for, minimal length of existing solution, number of CAPs (at most 100) found
by AP and all equivalent with them CAPs founded by Multiset Explorer.

k

The results listed in Table 1 allows to conclude that for solutions of minimal
length, Multiset Explorer only confirms their uniqueness. This phenomenon may
be caused by the implementation of Ontology Generator. For longer solutions,
there are additional distinguishable context abstract plans reported by Multiset
Explorer. Their numbers significantly depends on processed ontology. The main
reason of noticed blowup is probably the large number of degrees of freedom in
choosing additional services and objects which are not used in the creation of
expected world. In the case of confirmatory behaviour of Multiset Explorer, the
computation times are significantly better than the times of original procedures.

6 Conclusions

The main contribution of the paper is the partitioning of the solution domain
for the WSCP. It is used in the presented Multiset Explorer (ME) – a module

On Generation of Context-Abstract Plans 387

of Planics. ME fills the gap left by abstract planning, i.e., the first stage of
resolving WSCP.

To join indistinguishable service sequences into equivalence classes we use
the notion of traces. ME utilizes an efficient algorithm for enumeration of all
traces with a given Parikh vector (see [10]). This algorithm generates additional
traces without any interpretation in WSCP. Improving this part of the module
by its full adaptation is one of the straightforward future plans.

Multiset Explorer is intended to be the middle part of Planics. The input is
taken from abstract planner, while the results are passed to the external valida-
tor. Performed tests show that ME has possibilities and limitations comparable
to those of Abstract Planner. While at the moment ME is a standalone applica-
tion, we work on incorporating it into the Planics system. As a first step of this
integration we have implemented wrappers allowing exchange of data between
Abstract Planner and Multiset Explorer.

References

1. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1), 1636–1642 (1995)

2. Chifu, V.R., Salomie, I., St. Chifu, E.: Fluent calculus-based web service composi-
tion - from owl-s to fluent calculus. In: ICCP 2008, pp. 161–168 (2008)

3. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

4. Doliwa, D., et al.: PlanICS - a web service compositon toolset. Fundam. Inform.
112(1), 47–71 (2011)

5. Zou, G., et al.: AI planning and combinatorial optimization for web service com-
position in cloud computing. In: CCV 2010, pp. 1–8 (2010)

6. Li, Z., et al.: Effort-oriented classification matrix of web service composition. In:
ICIV 2010, pp. 357–362 (2010)

7. Gehlot, V., Edupuganti, K.: Use of colored petri nets to model, analyze, and eval-
uate service composition and orchestration. In: HICSS 2009, pp. 1–8 (2009)

8. Höfner, P., Lautenbacher, F.: Algebraic structure of web services. Electron. Notes
Theoret. Comput. Sci. 200(3), 171–187 (2008)

9. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Report PB-78, Aarhus University (1977)

10. Mikulski, �L., Pi ↪atkowski, M., Smyczyński, S.: Algorithmics of posets generated
by words over partially commutative alphabets (extended). Sci. Ann. Comp. Sci.
23(2), 229–249 (2013)

11. Mitra, S., Kumar, R., Basu, S.: Automated choreographer synthesis for web services
composition using I/O automata. In: ICWS 2007, pp. 364–371 (2007)

12. Niewiadomski, A., Penczek, W.: Towards SMT-based abstract planning in PlanICS
ontology. In: KEOD 2013, pp. 123–131 (2013)

13. OWL 2 web ontology language document overview (2009). http://www.w3.org/
TR/owl2-overwiew/

14. Peer, J.: A POP-based replanning agent for automatic web service composition.
In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 47–61.
Springer, Heidelberg (2005)

http://www.w3.org/TR/owl2-overwiew/
http://www.w3.org/TR/owl2-overwiew/

388 �L. Mikulski et al.

15. Skaruz, J., Niewiadomski, A., Penczek, W.: Automated abstract planning with use
of genetic algorithms. In: GECCO 2013, pp. 129–130 (2013)

16. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

17. Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings
in bipartite graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS,
vol. 1350, pp. 92–101. Springer, Heidelberg (1997)

18. Wang, B., Haller, A., Rosenberg, F.: Generating workflow models from owl-s service
descriptions with a partial-order plan construction. In: ICWS 2011, pp. 714–715
(2011)

19. Yu, T., Lin, K.-J.: Service selection algorithms for web services with end-to-end
qos constraints. In: CEC 2004, pp. 129–136. IEEE (2004)

A Coloured Petri Net Approach to Model
and Analyse Stateful Workflows Based

on WS-BPEL and WSRF

José Antonio Mateo, Valent́ın Valero, Hermenegilda Macià,
and Gregorio Dı́az(B)

University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
{JoseAntonio.Mateo,Valentin.Valero,Hermenegilda.Macia,

Gregorio.Diaz}@uclm.es

Abstract. Composite Web services technologies are widely used due
to their ability to provide interoperability among services from differ-
ent companies. Web services are usually stateless, which means that no
state is stored from the clients viewpoint. However, some new applica-
tions and services require to capture the state of some resources after
each computation. Thus, new standards to model Web services states
have emerged e.g. Web Services Resource Framework (WSRF). In this
paper, we present a formal model based on WS-BPEL and WSRF,
and we provide a prioritised-timed coloured Petri net semantics for it.
This semantics captures the main activities of WS-BPEL, but we also
consider other important aspects, both from WS-BPEL and WSRF,
such as fault handling, resource management, time-outs and a publish-
subscribe system.

1 Introduction

The development of software systems is becoming more complex with the appear-
ance of new computational paradigms such as Service-Oriented Computing (SOC),
Grid Computing and Cloud Computing. These systems are characterized by a
dynamic environment due to the heterogeneity and volatility of resources and,
moreover, the service provider needs to ensure some levels of quality and privacy to
the clients in a way that had never been considered. Formal models of concurrency
have been widely used for the description and analysis of concurrent and distrib-
uted systems. It is then required to develop new techniques to benefit from the
advantages of recent approaches such as Web service compositions. In this work,
we use the language Web Services Business Process Execution Language (WS-
BPEL) [1] to model this composition. In WS-BPEL, the behaviour of each partic-
ipant (called orchestrator) is defined in terms of invocations to other services.

Although the Web service definition does not consider the notion of state,
interfaces frequently provide the user with the ability to access and manipu-
late states, that is, data values that persist across, and evolve as a result of

Research partially supported by projects TIN2009-14312-C02-02 and TIN2012-
36812-C02-02.

c© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 389–404, 2015.
DOI: 10.1007/978-3-319-15201-1 26

390 J.A. Mateo et al.

Web service interactions. The messages that the services send and receive imply
(or encourage programmers to infer) the existence of an associated stateful
resource. It is then desirable to define Web service conventions to enable the
discovery of, introspection on, and interaction with stateful resources in stan-
dard and interoperable ways. To this end, a new standard, Web Services Resource
Framework (WSRF) [2,5,10], was defined. In addition, it is required to provide
notification mechanisms (e.g. publish-subscribe systems) so that each service can
be notified about state changes.

The main motivation of this work is to provide a formal semantics for WS-
BPEL+WSRF/WSN to manage stateful Web services workflows by using the
existing machinery in distributed systems, and specifically a well-known formal-
ism, such as coloured Petri nets extended with time and priorities, which are
a graphical model, but they also provide us with the ability to simulate and
analyse the modelled system. Notice that our aim is not to provide just another
WS-BPEL semantics since WS-BPEL has been widely studied. Nevertheless, we
have realised that it is more convenient to introduce a specific semantic model,
which covers properly all the relevant aspects of WSRF/WSN (e.g. notifications
and resource time-outs) instead of reusing some previous model.

WS-BPEL [1], for short BPEL, is an OASIS orchestration language for spec-
ifying actions within Web services business processes. WS-BPEL is therefore an
orchestration language in the sense that it is used to define the composition of
services from a local viewpoint, describing the individual behaviour of each par-
ticipant. More specifically, WS-BPEL is a language for describing the behaviour
of a business process based on interactions between the process and its partners.
At the core of the WS-BPEL process model is the notion of peer-to-peer interac-
tion between services described in Web Services Description Language (WSDL),
both the process and its partners are exposed as WSDL services. Thus, a business
process defines how to coordinate the interactions between a process instance
and its partners through Web Service interfaces, whereas the structure of the
relationship at the interface level is encapsulated in what is called a partnerLink.
These are instances of typed connectors which specify the WSDL port types the
process offers to and requires from a partner at the other end of the partner
link.

In particular, we will define a web service composition as a set of orches-
trators, described by BPEL+WSRF+WSN syntax, which exchange messages
through some communication channels, PartnerLinks. Moreover, WS-BPEL
processes use variables to temporarily store data. Variables are therefore declared
on a process or on a scope within that process. In our case, there will be a single
scope (root), so no nesting is considered in our framework. Besides, for simplicity
again, we will only consider integer variables.

An orchestrator consists of a main activity, representing the normal behav-
iour of this participant. There are also fault activities, which are executed upon
the occurrence of some unexpected events, or due to some execution failures,
respectively. WS-BPEL activities can be basic or structured. Basic activities are
those which describe the elemental steps of the process behaviour, such as the

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 391

assignment of variables (assign), empty action (empty), time delay (wait), invoke
a service (invoke) and receive a message (receive), reply to a client (reply), and
throw an exception (throw). We also have an action to terminate the process
execution at any moment (exit). For technical reasons we have also included an
additional activity reply, which is used when a service invocation expects a reply,
in order to implement the synchronization with the reply action from the server.
On the contrary, structured activities encode control-flow logic in a nested way.
The considered structured activities are the following: a sequence of activities,
separated by a semicolon, the parallel composition, represented by two parallel
bars (‖), the conditional repetitive behaviour (while), and a timed extension of
the receive activity, which allows to receive different types of messages with a
time-out associated (pick).

On the other hand, WSRF [2] is a resource specification language devel-
oped by OASIS and some of the most pioneering computer companies, This
standard consists of a set of specifications that define the representation of a
WS-Resource (web service + associated resource) in the terms that specify the
messages exchanged and the related XML documents. These specifications allow
the programmer to declare and implement the association between a service and
one or more resources. It also includes mechanisms to describe the means to
check the status and the service description of a resource, which together form
the definition of a WS-Resource.

Here, we can see a WS-Resource as a collection of properties P identified
by an address EPR with an associated timeout. This timeout represents the
WS-Resource lifetime. Without loss of generality, we have reduced the resource
properties set to only one allowing us to use the resource identifier EPR as
the representative of this property. In addition, in WS-BPEL, we have taken
into consideration the root scope only, thus avoiding any class of nesting among
scopes, and we have considered fault handling, leaving the other handling types
as future work.

Related Work. WS-BPEL has been extensively studied with many formalisms,
such as Petri nets, Finite State Machines and process algebras, but there are
only a few works considering WS-BPEL enriched with WSRF, and they only
show a description of this union, without a formalization of the model. In [16]
Slomiski uses BPEL4WS in Grid environments and discusses the benefits and
challenges of extensibility in the particular case of OGSI workflows combined
with WSRF-based Grids. Other two works centred around Grid environments
are [8,12]. The first justifies the use of WS-BPEL extensibility to allow the com-
bination of different GRIDs, whereas Ezenwoye et al. [8] share their experience
on WS-BPEL to integrate, create and manage WS-Resources that implement
the factory/instance pattern.

Table 1 shows the comparison of the related works where, the columns show
the BPEL version considered, the coverage degree of the recovery framework,
whether they use WSRF, the formalism they use, the focus area and if the work
is supported by a tool.

392 J.A. Mateo et al.

Table 1. Related works comparison.

Author BPEL Rec. WSRF Formalism Focus Tool

Slomiski [16] 1.0 × � – Extensibility ×
Ezenwoye [8] 1.0 × � – Resource management ×
Ouyang [14] 1.0 Part × Petri nets BPEL analysis �
Lohmann [7] 2.0 � × Petri nets BPEL analysis �
Dragoni [6] 2.0 � × π-calculus BPEL recovery

framework
×

Qiu [15] 1.0 Part × Proc. Algebra Fault and
compensation

×

Farahbod [9] 1.0 Part × Finite State
Machines

BPEL analysis ×

Busi [3] 1.0 Part × Proc. Algebra Conformance Chor. vs
Orch

×

Our work 2.0 Part � Petri nets Resource management �

2 Prioritised-Timed Coloured Petri Nets

Next, we introduce the specific model of prioritised-timed coloured Petri net con-
sidered for the translation. We use prioritised-timed coloured Petri nets, which
are a prioritised-timed extension of coloured Petri nets, the well-known formal-
ism supported by CPNTools [4]. In Definition 1, we recall the formal definition
of coloured Petri nets presented in [11], whereas, in Definition 2, we define the
precise model used in this work. We use the classical notation on Petri nets to
denote the precondition and postcondition of both places and transitions:

∀x ∈ P ∪ T : •x = {y | (y, x) ∈ A} x• = {y | (x, y) ∈ A}
Definition 1. A timed non-hierarchical Coloured Petri Net is a nine-tuple
CPNT = (P, T, A, Σ, V, C, G, E, I) where:

– P is a finite set of places.
– T is a finite set of transitions such that P ∩ T = ∅.
– A ⊆ (P × T) ∪ (T × P) is a set of directed arcs.
– Σ is a finite set of non-empty colour sets. Each colour set is either untimed

or timed.
– V is a finite set of typed variables such that Type[v] ∈ Σ for all variables

v ∈ V .
– C : P → Σ is a colour set function that assigns a colour set to each place. A

place p is timed if C(p) is timed, otherwise p is untimed.
– G : T → EXPRV is a guard function that assigns a guard to each transition

t such that Type[G(t)] = Bool.
– E : A → EXPRV is an arc expression function that assigns an arc expression

to each arc a such that

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 393

• Type[E (a)] = C (p)MS if p is untimed;
• Type[E (a)] = C (p)TMS if p is timed.

Here, p is the place connected to the arc a. Moreover, MS and TMS are
untimed and timed colour sets in Σ, respectively.

– I : P → EXPR∅ is an initialisation function that assigns an initialisation
expression to each place p such that

• Type[I (p)] = C (p)MS if p is untimed;
• Type[I (p)] = C (p)TMS if p is timed.
�
In this work, we define a subclass of CPNT , where three functions have

been added. First, a labelling function is used to label places and transitions.
Transitions can be labelled with either strings or nothing. Places are labelled
as entry places, output places, error places, exit places, internal places, variable
places and resource places, which, respectively, correspond to the following labels:
{in, ok , er , ex , i , v , r}. Second, a delay function to assign a time interval to some
transitions. This time interval is uniformly distributed. This is a shorthand for
adding this time delay inscription to the time delay inscription of each output
arc expression. Finally, the priority function assigns priorities to transitions,
considering only two levels PLOW and PNORMAL(by default).

Definition 2. We define a prioritised-timed coloured Petri net (PTCPN) as a
tuple (CPNT , λ,D, π), where:

– CPNT is a CPN according to Definition 1, with the restrictions indicated
below.

– λ is the labelling function such that
• λ(p) = k, with k ∈ {in, ok , er , ex , i , v , r}, if p ∈ P .
• λ(t) = q, where q is a label with t ∈ T .

– D : T −→ IN × IN is the delay function.
– π : T −→ {PLOW , PNORMAL} is the priority function.
�

In our specific model, a PTCPN will have an only entry place pin with colour
set TUNIT (UNIT colour set with time), such that •pin = ∅, which will be ini-
tially marked with a single token. According to WS-BPEL and WSRF standards,
we can distinguish between two kinds of termination: normal and abnormal. On
the one hand, the normal mode corresponds to the execution of a workflow with-
out faults or without executing any exit activity. Thus, in our net model, there
is an output place pok with colour set TUNIT, such that p•

ok = ∅, which will be
marked with one token when the workflow ends normally. On the other hand, a
workflow can finish abnormally by means of the execution of an explicit activity
(exit or throw) as well as the occurrence of an internal fault in the system. Each
PTCPN has also a single error place per with colour set TUNIT, which will
become marked with one token in the event of a failure, then starting the fault
handling activity. In a similar way, the exit place (with colour set TUNIT) will
be marked when the exit activity is performed by an orchestrator.

Variable places are denoted by pv , to mean that they capture the value of
variable v. They contain a single token, whose colour is the variable value. We

394 J.A. Mateo et al.

assume that the initial value of all variables is zero so that these tokens have ini-
tially value 0. For any resource r in the system we will have two complementary
resource places, pri , pra . The first one will be marked with one token when the
resource has not been instantiated or has been released (due to a time-out expi-
ration), whereas the second one becomes marked when the resource is created,
its token colour being a tuple representing the resource identifier (EPR), lifetime,
and value. All the remaining places will be considered as internal. Markings of
PTCPNs are defined in the same way as in [11]. The interested reader is referred
to [11] for further information.

3 PTCPN Semantics for WSRF/BPEL/WSN

It is worth noting that we have previously presented an operational semantics
for this language in a previous work [13].

3.1 Basic Activities

– Throw, Empty, Assign, Exit and Wait activities:
These are translated as indicated in Fig. 1, by means of a single transition
labelled with the name of the corresponding activity linked with the corre-
sponding terminating place. The time required to execute assign, empty, throw
and exit is negligible, so that the corresponding transitions have a null delay
associated. Notice that for the assign activity translation we use a self loop
between the transition and the place associated with the variable (pv) in order

Fig. 1. Basic activities translation

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 395

to replace its previous value by the new one, being this new value obtained
from an expression (exp) consisting of variables pv1, . . . , pvn and integers. For
the wait activity, we have a time interval [a, b] associated, so the delay is
randomly selected inside this interval.
Notice the use of a “control” place, to abort all possible remaining activities
in the system when either throw or exit are executed. Thus, the idea is that
all transitions in the net must be connected with this place, as the different
illustrations show.

– Communication activities: The model we use is based on the invoke and receive
operations, as well as the reply activity that uses a server to reply to a client.
We have also added a barred version of reply to synchronise with the response
from the client. We have therefore introduced this last activity in our semantics
to deal with the request-response operation mode, so the reply activity is
optional in our syntax.

Fig. 2. Invoke/receive activities translation

Figure 2 shows the translation for both the invoke/receive and the reply/reply
pairs of activities. Part Fig. 2a of the figure corresponds to the invoke/receive
translation, in which the net of the invoke activity is depicted on the

396 J.A. Mateo et al.

left-hand-side part, whereas the receive activity is depicted on the right-hand-
side part. There are two shared places, PLijs and PLijr , which are used
to implement the synchronisation between the invocation and reception of
services. Both places are associated to the partnerlink used for this commu-
nication, denoted here by (i, j), where i and j are the orchestrator identifiers
performing those activities. Notice that the value of a single variable is trans-
mitted, which is obtained from the corresponding variable place, pv. In the
same way, the receive activity stores this value in its own variable. The inter-
pretation of Fig. 2b is analogous.

3.2 Ordering Structures

The set of structured activities in WS-BPEL is not intended to be minimal
[1], so there are cases where the semantics of one activity can be represented
using another activity. Nevertheless, in order to reduce the complexity of our
translation, our approach omits many derived activities only dealing with the
most important ones from the modelling viewpoint, such as sequence, parallel
and choice. For all these cases we provide the translation by only considering
two activities. However, the generalization to a greater number of activities is
straightforward in all of them.

– Parallel: The translation for a parallel activity is depicted in Fig. 3, which
includes two new transitions t1 and t2. The first to fork both parallel activities
and the second to join them when correctly terminated. Transition t1 thus puts
one token on the initial places of both PTCPNs, NA1 and NA2 , in order to
activate them, and also puts one token on a new place, pc, which is used to
stop the execution of one branch when the other has failed or the exit activity
is explicitly executed in one of them. This place is therefore a precondition of
every transition in both PTCPNs, and it is also a postcondition of the non-
failing transitions. However, in the event of a failure or an exit activity, the
corresponding throw or exit transition will not put the token back on pc, thus
halting the other parallel activity.
Notice also that the error places of NA1 and NA2 have been joined in a single
error place (per), which becomes marked with one token on the firing of one
throw transition. In this case, the other activity cannot execute any more
actions (pc is empty), so some dead tokens would remain permanently on
some places in the PTCPN. However, these tokens cannot cause any damage,
since the control flow has been transferred either to the fault handling activity
of the PTCPN, once the place per has become marked, or the whole system
has terminated once the place pex is marked.

– Sequence: A sequence of two activities A1;A2 (with PTCPNs NA1 and NA2 ,
respectively) is translated in a simple way by just collapsing in a single place
(this will be an internal place of the new PTCPN) the output place Pok of
NA1 , and the entry place of NA2 . The entry place of the new PTCPN will
be the entry place of NA1 . The output place of the new PTCPN will be the
output place of NA2 , and we also collapse the exit, error and control places of
both PTCPNs.

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 397

Fig. 3. Parallel activity translation.

– Pick ({(pli, opi, vi, Ai)}ni=1, A, timeout): The <pick> activity waits for the
occurrence of exactly one event from a set of events, also establishing a time-
out for this selection. The translation is depicted in Fig. 4 where a timer is
implemented on the place p a in order to enforce the firing of transition ta
when the timeout has elapsed, thus activating NA. The colour set INT of the
place p a is timed. To illustrate how this construction works, we define the
following example.

Example 1. In this example, there are three actors: two customers and a
seller. The customers contact the seller in order to gather information about
a specific product identified by id1 and id2, respectively. The seller checks
the stock and sends the requested information to the customers. The seller
has established a timeout of 24 h to receive requests. Let the orchestrations
Oc1 = (Ac1, empty), Oc2 = (Ac2, empty) and Os = (As, empty), the BPEL-
RF code for the primary activity of both participants is:

398 J.A. Mateo et al.

Fig. 4. Pick activity translation.

Ac1 = invoke(pl1, info, id1); receive(pl1, inforec1, id3)
Ac2 = invoke(pl1, info, id1); receive(pl2, inforec2, id4)
As = pick({(pl1, info, ids1, reply(pl1, inforec1, id3), (pl2, info, ids2,

reply(pl2, inforec2, id4))}, empty, 24)

Looking at Fig. 4, it can be observed that when Os executes the pick activity
the input place, pin of the net is marked. Next, transition tin is fired in order
to mark the place pa with the value timeout + 1. This timeout is passed as a
parameter in the activity and, in this case, its value is equal to 24. Once this
place is marked, two possibilities can arise. On the one hand, one of the buyers
runs its invoke activity before timeout expiration, putting a token in the
corresponding input place, plijis of the transition ri , i ∈ 1, .., n, and, then, the
behaviour hereafter is the same as in the receive activity (Fig. 2). On the other
hand, if none of the buyers executes an invoke activity, the current time must
be increased by means of the transition tr and the arc inscription @ + 1 . Thus,
after t imeout time units without receiving any request, the alarm transition,
ta is fired executing the activity A passed as parameter. It is worthwhile to
remark that variable x is used as a countdown timer since CPNTools does

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 399

Fig. 5. While activity translation.

not allow to include the time function in guards since its inclusion could pose
side-effects [4].

– While (cond,A): The machinery needed to model this construction is fairly
straightforward since we only must check if the repetition condition holds or
not in order to execute the contained activity or skip it. Figure 5 shows this
translation.

3.3 WSRF-Compliant

Let us now see the WSRF activities, and their corresponding translations.

– CreateResource (EPR,val,timeout,A): EPR is the resource identifier, for which
we have two complementary places in Fig. 6, pri and pra , where the sub-index
represents the state of the resource: i when it is inactive and a when it is
active. The initial value is val, and A is the activity that must be executed
when the time-out indicated as third parameter has elapsed.
We can see in Fig. 6 how the transition createResource removes the token
from the inactive place, and puts a new token on the active place, whose
colour contains the following information: resource identifier (EPR), its life-
time (max), and its value (val). Transition t0 is executed when the lifetime
of the resource has expired, thus removing the token from the active place,
marking again the inactive place, and activating NA. We can also see that
the active place is linked with a number of transitions, which correspond to
the subscribers (we know in advance these possible subscribers from the WS-
BPEL/WSRF document). These transitions can only become enabled if the
corresponding places subsi are marked by performing the corresponding activ-
ity subscribe. The PTCPNs Ncondi are the nets for the activities passed as
parameter in the invocation of a subscribe activity.

– Subscribe (EPR,cond′,A): In this case, an orchestrator subscribes to the
resource EPR, with the associated condition cond′, upon which the activity

400 J.A. Mateo et al.

p_r_i p_r_a

pAin

pAok

xep rep

crcontrol

subs1 subsn

NA
Ncond1 Ncondn

(EPR,max) createResource (EPR,max,val)

(EPR,max,val)

0

pok pin

(EPR,max,val)

 0 0

0

pCond1in

pCond1ok pCondnok

 0
 0

0 0

pCondnin

(EPR,max,val)

[g1] [gn]

0 0

t0

(EPR,max)

0

0

0@+max

Fig. 6. CreateResource activity translation.

Fig. 7. Subscribe activity translation.

A must be performed. Figure 7 shows this translation, where we can observe
that the associated place subsi is marked in order to allow the execution of
the PTCPN for the activity A if the condition gi holds. On the contrary, if
the resource is not active, we will throw the fault handling activity.

– SetProp (EPR,expr): In Fig. 8 it can be observed how the new value is assigned
to the resource. We omit the translation for the activities getProp and SetLife-
Time since they are similar to this activity.

3.4 Orchestration Translation

Once we have defined the translation for the activities, we can now introduce the
definition for the PTCPN at the orchestration level. Notice that all PTCPNs gen-
erated for the different orchestrators cooperate to form the entire system (chore-
ography). Let us call NA and Nf the PTCPNs that are obtained by applying

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 401

Fig. 8. SetProperty activity translation.

Fig. 9. Orchestration translation

the translation to each one of these activities A and Af :

NA = (Pa, Ta, Aa, Σa, Va, Ga, Ea, λa,Da, πa) (PTCPN for A)
Nf = (Pf , Tf , Af , Σf , Vf , Gf , Ef , λf ,Df , πf) (PTCPN for Af)

Let pain
and pfin be the initial places of NA and Nf respectively; paok

and
pfok their correct output places, paer

and pfer their error places and, finally, paex

and pfex their exit places. The PTCPN for the orchestrator is then constructed
as indicated in Fig. 9. This PTCPN is then activated by putting one token 0 on
pain

. However, we can have other marked places, for instance, those associated
with integer variables or resources. The other places are initially unmarked.

4 Case Study: Automatic Management System
for Stock Market Investments

The case study concerns a typical automatic management system for stock mar-
ket investments, which consists of n+1 participants: the online stock market sys-
tem and n investors, Ai, i = 1, . . . , n. The complete and detailed version of this
case study can be obtained in http://www.dsi.uclm.es/retics/bpelrf/casestudies.
htm. Here, the resource will be the stocks of a company that the investors want to

http://www.dsi.uclm.es/retics/bpelrf/casestudies.htm
http://www.dsi.uclm.es/retics/bpelrf/casestudies.htm

402 J.A. Mateo et al.

buy just in case the price falls below an established limit, which the investors fix
previously by means of subscriptions, i.e., an investor subscribes to the resource
(the stocks) with a certain guard (the value of the stocks he/she want to pay
for it). The lifetime lft will be determined by the stock market system and the
resource price will be fluctuating to simulate the rises/drops of the stock. Notice
that we do not take into account the stock buy process since our aim is to model
an investors’ information system. Thus, the participants will be notified when
their bids hold or the resource lifetime expires. Let us consider the choreog-
raphy C = (Osys ,O1 , . . . ,On), where Ok = (Ak ,Af k

), k=sys, 1,..., n; Varsys =
{at, vEPR}, V ari = {vi}, Afk=exit. Variable vEPR serves to temporarily store
the value of the resource property before being sent; vi is the variable used for
the interaction among participants, and, finally, at controls the period of time
in which the auction is active. Note that the value x indicates the resource value
at the beginning, at0 is the time that the “auction” is active, and, finally, xi is
the value of the stocks that he/she wants to pay for. Suppose that the variables
are initially 0:

Asys = assign(x + 1 , vEPR); assign(at0 , at);CreateResource(EPR, lft , x , empty);
while(actualTime() <= at ,Abid)
Abid = getProp(EPR, vEPR); assign(vEPR + bid(), vEPR); setProp(EPR, vEPR);
wait(1 , 2)
Ai = wait(1 , 2); subscribe(Oi ,EPR,EPR < xi ,Acondi);
pick((pli , buy , vi , empty), empty , at0)
Acondi = getProp(EPR, vEPR); invoke(pli , buy , vEPR)

Here, the function bid is used to increase/decrease the stocks value simulating
the fluctuation of the stocks price. Next, we present the analysis part.

CPNTools offers us two forms to check the correctness of our system: formal
verification and simulation. First, the simulation helps designers to understand
how the system exactly works and it is a mean to detect possible errors in early
stages of the development process in order to refine the model according the
clients’ requirements. Besides, formal verification through state space analysis
could be done in order to ensure that our system achieves some formal properties
such as liveness, deadlock-freeness and so on. In this way, Table 2 shows the
results obtained considering 1, 2, 3, 4 or 5 investors. Note that we have considered
the following assumptions:

– The “auction” time at0 is limited to 10 time units.
– The resource is active during 15 time units (lft=15).
– The resource value x is 100 money units.
– The value of subscription of each investor i, xi, is x − (9 + i), that is, if the

system has only one investor its subscription guard will be x < 90, whereas
with 5 investors, the last investor will have a subscription guard of x < 86.

– The function bid will fluctuate the stocks price between -2 and 1 in order to
simulate that the price only can rise 1 and drop 2 at most each time unit.

We will focus on deadlock-freeness to ensure that the system never gets stuck
while the participants have activities to do in their workflow. We have leveraged

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows 403

Table 2. State space analysis results

Properties Number of investors

1 2 3 4 5

State Space Nodes 3561 7569 16983 50350 89879

State Space Arcs 5203 12843 33271 112101 262215

Time (s) 2 7 23 146 1140

Dead Markings 124 244 454 1108 874

the functions offered by CPNTools to demonstrate that in all dead markings of
the system the final place is marked, which leads us to conclude the system has
finished correctly. Let us suppose that the final place of this Petri net is called
Pokfinal0 and this final place is marked by a transition when all the participants
have finished their execution. For the sake of clarity, we have not drawn this place
in each figure. Thus, the next SML code checks when this situation occurs: fun

DesiredTerminal n =((Mark.PetriNet’Pokfinal0 1 n) == 1’true), which returns true
if the place Pokfinal0 is marked. In addition to this, it is necessary to evaluate
the predicate: PredAllNodes DesiredTerminal=ListDeadMarkings(), to check that
the list of dead marking contains the marking of the Pokfinal0 place.

By using CPNTools, we checked that all dead markings hold the predicate
DesiredTerminal, and, therefore, when the system reaches a dead marking is
because system has terminated, which demonstrates the absence of deadlocks in
our case study.

5 Conclusions and Future Work

In this paper, we have integrated two complementary approaches in order to
improve the definition of business processes models on BPEL by adding the capa-
bility of storing their state. We have thus transformed stateless business processes
into stateful business processes. To this end, we have defined a prioritised-timed
coloured Petri net model and presented its corresponding semantics to represent
the constructions of WS-BPEL and the standard selected for the definition of
resources, namely WSRF. Apart from including the notion of state in business
processes, our work also includes a publish-subscribe notification system based
on WS-BaseNotification, presenting a PTCPN model and its semantics. Thus,
an orchestrator can show interest of being notified when a condition holds, e.g.,
the load of a server exceeds a certain limit. Our approach is based on the one
used in CPNTools, allowing us to take advantage of its capability of analysis
and verification systems. Moreover, our work in progress is the development
of a tool (a beta version can be accessed at: http://www.dsi.uclm.es/retics/
bpelrf/) to transform automatically WS-BPEL and WSRF specifications into
CPNTools nets. As future work, we plan to study some interesting properties
such as safeness, soundness and so on. In addition, it is interesting to define a
complete semantics of WS-BPEL and WSRF. Finally, as commented above, we

http://www.dsi.uclm.es/retics/bpelrf/
http://www.dsi.uclm.es/retics/bpelrf/

404 J.A. Mateo et al.

defined an operational semantics in a previous work, so we will demonstrate in
a future work the equivalence between both semantics.

References

1. Andrews, T., et al.: BPEL4WS - Business Process Execution Language for
Web Services, Version 1.1 (2003). http://www.ibm.com/developerworks/library/
specification/ws-bpel/

2. Banks, T.: Web Services Resource Framework (WSRF) - Primer, OASIS (2006)
3. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and

orchestration: a synergic approach for system design. In: Benatallah, B., Casati,
F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Hei-
delberg (2005)

4. CPNTools website. http://cpntools.org/
5. Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling,

D., Tuecke, S., Vambenepe, W.: The WS-Resource Framework Version 1.0 (2004).
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

6. Dragoni, N., Mazzara, M.: A formal semantics for the WS-BPEL recovery frame-
work. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 92–109.
Springer, Heidelberg (2010)

7. Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In:
Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

8. Ezenwoye, O., Sadjadi, S.M., Cary, A., Robinson, M.: Orchestrating WSRF-based
GridServices. Technical report FIU-SCIS-2007-04-01 (2007)

9. Farahbod, R., Glässer, U., Vajihollahi, M.; A formal semantics for the business
process execution language for Web services. In: Joint Workshop on Web Ser-
vices and Model-Driven Enterprise Information Services (WSMDEIS), pp. 122–133
(2005)

10. Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann,
F., Nally, M., Storey, T., Weerawaranna, S.: Modeling Stateful Resources with Web
Services, Globus Alliance (2004)

11. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009)

12. Leyman, F.: Choreography for the grid: towards fitting BPEL to the resource
framework. J. Concurrency Comput. Pract. Exp. 18(10), 1201–1217 (2006)

13. Mateo, J.A., Valero, V., Dı́az, G.: An operational semantics of BPEL orchestrations
integrating Web services resource framework. In: Carbone, M., Petit, J.-M. (eds.)
WS-FM 2011. LNCS, vol. 7176, pp. 79–94. Springer, Heidelberg (2012)

14. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2–3), 162–198 (2007)

15. Qiu, Z., Wang, S.-L., Pu, G., Zhao, X.: Semantics of BPEL4WS-like fault and
compensation handling. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM
2005. LNCS, vol. 3582, pp. 350–365. Springer, Heidelberg (2005)

16. Slomiski, A.: On using BPEL extensibility to implement OGSI and WSRF grid
workflows. J. Concurrency Comput. Pract. Exp. 18, 1229–1241 (2006)

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://cpntools.org/
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

Author Index

Acher, Mathieu 363

Barbosa, Luis S. 147
Barbuti, Roberto 243
Beckert, Bernhard 3
Bernardi, Simona 86
Biondi, Fabrizio 335
Böhl, Florian 3

Cerone, Antonio 164, 182, 227, 243, 276
Ciobanu, Gabriel 323

Díaz, Gregorio 389
Dobrikov, Ivaylo 20
Dranca, Lacramioara 86

Earle, Clara Benac 101
Elorza, Leire Etxeberria 101

Fredlund, Lars-Åke 116
Furletti, Barbara 214

Gabrielli, Lorenzo 214
Gallinari, Patrick 201
Giannotti, Fosca 214, 294
Gómez-Martínez, Elena 101
Grebing, Sarah 3
Guidotti, Riccardo 294
Guigue, Vincent 201

Hanan, Jim 36
Herranz, Ángel 116

Ibing, Andreas 311
Idani, Akram 54

Jacobs, Jaco 71

Ladenberger, Lukas 20
Legay, Axel 335, 350
Leuschel, Michael 20

Maccagnola, Daniele 201
Macià, Hermenegilda 389
Madeira, Alexandre 147

Mariño, Julio 116
Mateo, José Antonio 389
Merelli, Emanuela 259
Merseguer, José 86
Messina, Enza 201
Mikulski, Łukasz 376
Milazzo, Paolo 243
Moeiniyan Bagheri, Shahrzad 36
Monreale, Anna 294
Mukala, Patrick 164, 182, 227

Nanni, Mirco 214
Nieto Coria, Cesar Augusto 259
Niewiadomski, Artur 376
Nozza, Debora 201

Pedreschi, Dino 294
Piątkowski, Marcin 376
Pinchinat, Sophie 363
Provan, Gregory 131

Rezabal, Miren Illarramendi 101
Rinzivillo, Salvatore 214, 294
Rodríguez, Ricardo J. 101
Rotaru, Armand 323
Russo, Tommaso 259

Sameen, Sheema 243
Sanchez, Alejandro 147
Scarcella, Giuseppe 259
Scotti, Marco 276
Sedwards, Sean 350
Simpson, Andrew 71
Smith, Graeme 36
Smyczyński, Sebastian 376
Stouls, Nicolas 54

Tesei, Luca 259
Traonouez, Louis-Marie 350
Turini, Franco 164, 182, 227

Valero, Valentín 389
Vojtisek, Didier 363

	Preface
	HOFM Organizers’ Message
	SaFoMe Organizers’ Message
	OpenCert Organizers’ Message
	WS-FMDS Organizers’ Message
	MoKMaSD Organizers’ Message
	Internet of Things: New Dimensions of Modelling,Usability and Human-Computer Interaction
	Advantages and Pitfalls of Formal or FormalizableGraphic Requirements Models
	Security Certification in the Presence of Evolution:Models vs. Code
	Static Analysis by Abstract Interpretationand Decision Procedures
	Human Behavior and the Spread of Infectious Diseases:A Challenge for Modeling
	Mine First to See Better
	Mu-Calculus Property-Dependent Reductionsfor Divergence-Sensitive Branching Bisimilarity
	Contents
	HOFM 2014
	A Usability Evaluation of Interactive Theorem Provers Using Focus Groups
	1 Introduction
	2 Related Work
	3 Survey Method: Focus Groups
	4 Evaluation of the Focus Groups and Analysis Results
	4.1 The User's and the Tool's Model of the Proof Process
	4.2 The Participants of Our Focus Group Discussions
	4.3 Targets of Evaluation
	4.4 Strengths and Weaknesses of the Targets of Evaluation
	4.5 User Support During the Proof Process
	4.6 State-of-the-Art in User Support
	4.7 Mechanisms Supporting the Comprehension of the Proof State
	4.8 The Ideal Interactive Proof System

	5 Conclusion and Future Work
	References

	An Approach for Creating Domain Specific Visualisations of CSP Models
	1 Introduction and Motivation
	2 The Method
	3 Tool Support
	4 Case Studies
	4.1 The Bully Algorithm
	4.2 Level Crossing Gate

	5 Application of the Approach
	6 Conclusion
	References

	Using Z in the Development and Maintenance of Computational Models of Real-World Systems
	1 Introduction
	2 Overview of NetLogo
	2.1 Agents
	2.2 Procedures
	2.3 Data Structures
	2.4 Operators and Reporters
	2.5 Branching

	3 Translating Z to NetLogo
	3.1 Type Definitions
	3.2 Global Constants
	3.3 State and Initial State Schemas
	3.4 Operation Schemas

	4 Case Study
	4.1 State Definitions
	4.2 Operations

	5 Conclusion
	References

	When a Formal Model Rhymes with a Graphical Notation
	1 Introduction
	2 Case-Study
	3 Under-Approximation Approach
	3.1 Construction Method and Usability Constraints
	3.2 Graph Abstraction Algorithm

	4 Over-Approximation Approach
	4.1 Construction Method and Usability Constraints
	4.2 The GénéSyst Tool

	5 Human Oriented Empirical Study
	6 Conclusion
	References

	SaFoMe 2014
	On a Process Algebraic Representation of Sequence Diagrams
	1 Introduction
	2 Background
	2.1 Communicating Sequential Processes
	2.2 Sequence Diagrams

	3 Formalisation Using CSP
	4 Complex Interactions
	5 Interaction Interpretation
	6 Examples
	7 Related Work
	8 Discussion
	References

	Modelling and Verification of Survivability Requirements for Critical Systems
	1 Introduction
	2 Survivability Assessment Method
	2.1 Identify Essential Services and Service Modes
	2.2 Obtain an Improved Misuse Case Specification
	2.3 Obtain a Survivability Assessment Model
	2.4 Verify Survivability Properties

	3 The C2IS Case Study
	3.1 First Iteration
	3.2 Second Iteration

	4 Related Work
	5 Conclusion
	References

	Model-Based Verification of Safety Contracts
	1 Introduction
	2 Previous Concepts
	3 Case Study: Train Doors Controller
	4 Specification of Safety Contracts as OCL and Petri Nets
	5 Safety Analysis
	6 Related Work
	7 Conclusions and Future Work
	References

	A Testing-Based Approach to Ensure the Safety of Shared Resource Concurrent Systems
	1 Introduction
	2 QuickCheck
	2.1 Erlang
	2.2 QuickCheck State Machines

	3 Case Study
	4 Resources
	4.1 Resource Semantics
	4.2 Implementing a Resource

	5 Testing Resources
	5.1 The State of a Resource
	5.2 Generation of Commands
	5.3 Execution of Commands
	5.4 Computing the Next Model State
	5.5 Checking if the Execution of a Command Was Correct

	6 Testing the Warehouse Resource
	7 Conclusions and Future Work
	References

	A Contracts-Based Framework for Systems Modeling and Embedded Diagnostics
	1 Introduction
	2 Related Work
	3 Running Example: TO/GA System
	3.1 Example

	4 Notation and Model
	4.1 Components and System Composition
	4.2 Model-Based Diagnosis Representation
	4.3 Assume/Guarantee Representation

	5 Assume/Guarantee and MBD Extended Model
	5.1 Formal Model
	5.2 Example

	6 Properties of Extended Model
	6.1 Diagnostic Soundness/Completeness
	6.2 Ambiguity Reduction

	7 Conclusions
	References

	OpenCert 2014
	Modelling and Verifying Smell-Free Architectures with the ARCHERY Language
	1 Introduction
	2 The ARCHERY Language
	2.1 ARCHERY-CORE: Modelling Structure
	2.2 ARCHERY-CONSTRAINT: Describing Structure

	3 Architectural Smells
	3.1 Connector Envy
	3.2 Scattered Parasitic Functionality
	3.3 Ambiguous Interfaces
	3.4 Extraneous Adjacent Connector

	4 Verifying Architectural Constraints
	5 Conclusion and Future Work
	References

	OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities
	1 Introduction
	2 Methodology
	3 OntoLiFLOSS: Main Concepts
	3.1 Classes
	3.2 Properties

	4 Conclusion
	References

	Process Mining Event Logs from FLOSS Data: State of the Art and Perspectives
	1 Introduction
	2 Mining Software Repositories: Leading Factors
	3 Mining Techniques: Selected, Relevant Approaches
	3.1 Bug Fixing Analysis
	3.2 Software Evolution Analysis
	3.3 Identification of Developers Identities
	3.4 Source Code Investigation
	3.5 Supporting Developers and Analysing Their Contributions

	4 Tools
	5 Process Mining for Knowledge Discovery in Event Logs
	6 Conclusion
	References

	MoKMaSD 2014
	A Latent Representation Model for Sentiment Analysis in Heterogeneous Social Networks
	1 Introduction
	2 Preliminaries
	2.1 Heterogeneous Approval Network
	2.2 Vector Space Document Representation

	3 Latent Space Heterogeneous Approval Model
	4 Experiments
	4.1 Dataset
	4.2 Performance Evaluation and Settings
	4.3 Results

	5 Conclusions
	References

	Use of Mobile Phone Data to Estimate Visitors Mobility Flows
	1 Introduction
	2 Related Works
	3 Objectives and Experimental Setting
	3.1 Call Detail Records (CDRs)
	3.2 Spatial Granularity

	4 Methodology
	4.1 Individual Call Profiles (ICPs)
	4.2 Profile Classification
	4.3 Mobility Indicator

	5 Evaluation
	6 Conclusions
	References

	An Abstract State Machine (ASM) Representation of Learning Process in FLOSS Communities
	Abstract
	1 Introduction
	2 Abstract State Machines (ASMs): Motivation
	2.1 Abstract State Machines (ASMs) for Learning Processes in FLOSS Communities

	3 ASM Requirements and Constructs
	4 ASMs Specifications and Ground Models
	4.1 Initiation Phase Ground Model
	4.2 Progression Specification and Ground Model
	4.3 Maturation Specification and Ground Model

	5 Using Process Mining to Validate the ASM Model
	6 Conclusion and Future Work
	References

	A Mathematical Model for Assessing KRAS Mutation Effect on Monoclonal Antibody Treatment of Colorectal Cancer
	1 Introduction
	2 Extending DePillis' Model
	2.1 Equations for Tumor Cells
	2.2 Equations for Immune Response
	2.3 Equations for Treatments
	2.4 Patient Immune Strength Formula
	2.5 Initial Conditions and Drug Dosages

	3 Results
	3.1 Monoclonal Antibody Effect on Chemotherapy and Natural Killer Cell Activity
	3.2 Treatment Trial Simulations for KRAS Mutated Colorectal Cancer Tumors
	3.3 Patient Responses to the Therapy
	3.4 Cetuximab and Irinotecan as First-Line Therapy

	4 Discussion
	5 Conclusion and Future Work
	References

	Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea
	1 Introduction
	2 Biological and Ecological Background
	3 DISPAS at Work
	4 Cellular and Complex Automata
	5 Multi-scale DISPAS
	5.1 Available SoleMon Data
	5.2 Macro CA Specification
	5.3 ``Uncoupled'' Coupling Template
	5.4 Plausible Scenarios of Simulation

	6 Conclusions
	References

	Research Challenges in Modelling Ecosystems
	1 Introduction
	2 State of the Art and Literature Review
	2.1 Mathematical Modelling
	2.2 Individual-Based Models Using Formal Notations
	2.3 Stochastic Simulation and Individual-Based Models

	3 Identification of Research Challenges
	3.1 A Multifaceted Gap
	3.2 Research Challenges

	4 Addressing Challenges
	4.1 Formal Notation (Addressing Challenge C1)
	4.2 Analysis Methodologies (Addressing Challenge C2)
	4.3 Filling in the Cultural Gap (Addressing Challenges C3--C6)

	5 Final Considerations
	References

	Retrieving Points of Interest from Human Systematic Movements
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Mobility Points of Interest Extraction
	5 Mobility Case Study
	5.1 Mobility Dataset
	5.2 Mobility POIs Extraction Analysis
	5.3 Mobility POIs as Mobility Summary

	6 Mobility POIs Applications
	7 Conclusion
	References

	WS-FMDS 2014
	Path-Sensitive Race Detection with Partial Order Reduced Symbolic Execution
	1 Introduction
	2 Symbolic Execution with Pre-defined Scheduling Algorithm
	2.1 Architecture Overview
	2.2 Posix Threads Support
	2.3 Finding Program Paths
	2.4 Path-Sensitive Tracing of Shared Variables

	3 Abstracting Thread Interactions
	4 Generating Interleaving Representatives with Partial Order Reduction
	5 Race Detection with Interleaving Representatives
	6 Experiments
	7 Related Work
	8 Discussion
	References

	Phase-Type Approximations for Non-Markovian Systems: A Case Study
	1 Introduction
	2 PHASE
	3 Case Study
	4 Conclusion
	References

	Quantitative Anonymity Evaluation of Voting Protocols
	1 Introduction
	2 Background
	2.1 Markov Chains
	2.2 Information Theory

	3 Information Leakage of Markov Chains
	3.1 Theoretical Background
	3.2 QUAIL Implementation

	4 Modeling Voting Protocols
	4.1 Single Preference
	4.2 Preference Ranking

	5 Experimental Results
	6 Challenges
	6.1 Problem Size
	6.2 G-Leakage
	6.3 Implementation Analysis

	A Appendix
	References

	Scalable Verification of Markov Decision Processes
	1 Introduction
	1.1 Schedulers and State Explosion
	1.2 Our Approach

	2 Related Work
	3 Schedulers as Seeds of Random Number Generators
	3.1 General Schedulers Using Hash Functions
	3.2 An Efficient Iterative Hash Function

	4 Confidence with Multiple Estimates
	4.1 Sequential Probability Ratio Test for Multiple Schedulers
	4.2 Chernoff Bound for Multiple Schedulers
	4.3 Experiments

	5 Prospects and Challenges
	References

	Towards Synthesis of Attack Trees for Supporting Computer-Aided Risk Analysis
	1 Introduction
	2 Motivation and Running Example
	3 Preliminary Notations
	4 Attack Graphs
	5 High-Level Actions and Attack Trees
	5.1 Hierarchy of Actions
	5.2 Strategies
	5.3 Attack Trees

	6 Towards Attack Tree Synthesis
	References

	On Generation of Context-Abstract Plans
	1 Introduction
	2 Basic Notions
	3 PlanICS Specification
	4 Partitioning the Solution Domain
	5 Algorithm
	6 Conclusions
	References

	A Coloured Petri Net Approach to Model and Analyse Stateful Workflows Based on WS-BPEL and WSRF
	1 Introduction
	2 Prioritised-Timed Coloured Petri Nets
	3 PTCPN Semantics for WSRF/BPEL/WSN
	3.1 Basic Activities
	3.2 Ordering Structures
	3.3 WSRF-Compliant
	3.4 Orchestration Translation

	4 Case Study: Automatic Management System for Stock Market Investments
	5 Conclusions and Future Work
	References

	Author Index

