Carlos Canal
Akram Idani (Eds.)

Software Engineering
and Formal Methods

SEFM 2014 Collocated Workshops: HOFM, SAFOME,
OpenCert, MoKMaSD, WS-FMDS
Grenoble, France, September 1-2, 2014, Revised Selected Papers

LNCS 8938

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Ziirich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

8938

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Carlos Canal - Akram Idani (Eds.)

Software Engineering
and Formal Methods

SEFM 2014 Collocated Workshops: HOFM,
SAFOME, OpenCert, MoKMaSD, WS-FMDS
Grenoble, France, September 1-2, 2014
Revised Selected Papers

@ Springer

Editors

Carlos Canal Akram Idani

University of Malaga LIG Lab

Malaga Saint Martin d’Heres Cedex
Spain France

ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-3-319-15200-4 ISBN 978-3-319-15201-1 (eBook)

DOI 10.1007/978-3-319-15201-1
Library of Congress Control Number: 2014960220
LNCS Sublibrary: SL2 — Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(Www.springer.com)

Preface

This volume contains the technical papers presented in the five high-quality workshops
associated to SEFM 2014 (12th International Conference on Software Engineering and
Formal Methods, held in Grenoble, September 1-5, 2014). SEFM 2014 was organized
by Inria and supported by Grenoble INP, Joseph Fourier University, LIG, and CNRS.

SEFM 2014 brought together practitioners and researchers from academia, industry,
and government to advance the state of the art in formal methods, to facilitate their
uptake in the software industry, and to encourage their integration with practical
engineering methods. Satellite workshops provided further opportunities for collabo-
rating and exchanging ideas about specific topics of Formal Methods and Software
Engineering, from conceptual to practical aspects.

The workshops focused on specific topics in the Software Engineering and Formal
Methods related domains: the First Workshop on Human-Oriented Formal Methods —
From Readability to Automation (HOFM 2014), the Third International Symposium on
Modeling and Knowledge Management Applications — Systems and Domains
(MoKMaSD 2014), the Eighth International Workshop on Foundations and Tech-
niques for Open Source Software Certification (OpenCert 2014), the First Workshop on
Safety and Formal Methods (SaFoMe 2014), and the Fourth Workshop on Formal
Methods in the Development of Software (WS-FMDS 2014). The review and the
selection process was performed rigorously, with each paper being reviewed by at least
three Program Committee (PC) members. A brief description of each workshop
follows, written by their organizers.

For each of the workshops at SEFM 2014, we thank the organizers for these
interesting topics and resulting talks. We also thank the paper contributors to
these workshops and those who attended them. We would like to extend our thanks
to all keynote speakers for their support and excellent presentations, and also, members
of each workshop’s Program Committee.

September 2014 Carlos Canal
Akram Idani

HOFM Organizers’ Message

While designing and applying formal methods, computer scientists have dominantly
focused on two factors only: first, a method must be precise and sound, and secondly,
it must be mathematically concise and aesthetic. Other important characteristics such
as simplicity, learnability, readability, memorability, ease of use and communication
or, even support for integrating tools into larger development tool chains are ignored
too often. These nonfunctional properties, however, are key attributes of usability and
user satisfaction. If usability is compromised, methods are not fit for the purpose of
documenting, reproducing, and communicating key design and realization decisions,
or analysis results, especially when these need to communicate or mediate between
expertise in different disciplines, different tool chains, or across technological or
organizational boundaries. For these reasons, many engineers and practitioners largely
reject formal methods and formal specification languages as “too hard to understand
and use in practice” while admitting that they are powerful and precise.

With increasing computing power and its consequent automation capabilities, the
research and development community, however, is slowly but definitely focusing on
usability in combination with automation. Moreover, practitioners across numerous
domains are increasingly interested in formal domain-specific modeling, simulation,
and validation, whether in application areas of energy, robotics, health, biology,
climate, and sustainable development, or, for specific technologies of importance such
as data analytics and user interface specification for an exponentially growing number
of handheld or wearable devices. While there are many applications of formal
methods to analyze human-machine interaction and to construct user interfaces, the
field of application of human factors to the analysis and to the optimization of formal
methods area is almost unexplored.

The HOFM workshop was held on September 1, 2014 in Grenoble, France. This
international workshop was affiliated to the 12th International Conference on Software
Engineering and Formal Methods (SEFM). The goal of the HOFM (Human-Oriented
Formal Methods) workshop was to bring together researchers, engineers, and
practitioners from academia and industry to baseline the state of the art in this
increasingly important domain. Every submitted paper was reviewed by at least three
Program Committee members, four regular papers were accepted for presentation at
HOFM 2014. An introduction to the first HOFM workshop was given by Maria
Spichkova on “Human-Oriented Formal Methods: Human Factors + Formal
Methods.” The program of the workshop was enriched by two keynote talks:

— Arkady Zaslavsky, CSIRO, Australia, “Internet of Things: New Dimensions of
Modelling, Usability and Human-Computer Interaction”

— Martin Glinz, University of Zurich, Switzerland, “Advantages and Pitfalls of Formal
or Formalizable Graphic Requirements Models”

The HOFM 2014 pre-proceedings, which include all papers presented at the
workshop, are available online at the workshop site http://hofm2014.wordpress.com.

http://hofm2014.wordpress.com

VIII HOFM Organizers’ Message

All authors of the HOFM workshop were invited to submit extended versions of their
papers, taking into account discussions made during the workshop.

We would like to thank all authors who contributed to HOFM 2014 as well as all
attendees to the workshop. We hope that the attendees found the program relevant to
their interests and inspiring. We also thank the Program Committee members for their
support and considered reviews, and the SEFM workshop chairs and local organizers

for their help.

Program Committee

Katherine Blashki
Manfred Broy

Jan Carlson

Pedro Isaas

Lalchandani Jayprakash
Margaret Hamilton
Peter Herrmann

Tim Miller

Srini Ramaswamy
Daniel Ratiu

Bernhard Schitz

Heinz W. Schmidt (Chair)
Carol Smidts

Maria Spichkova (Chair)
Judith Stafford

Maria Spichkova
Heinz W. Schmidt

Noroff University College, Norway
Technical University of Munich, Germany
Mailardalen University, Sweden
Universidade Aberta, Portugal

IIIT Bangalore, India

RMIT University, Australia

NTNU Trondheim, Norway

The University of Melbourne, Australia
ABB Bangalore, India

Siemens AG, Germany

fortiss GmbH, Germany

RMIT University, Australia

Ohio State University, USA

RMIT University, Australia

University of Colorado, USA

SaFoMe Organizers’ Message

The enhancement of quality of service (QoS) and the reduction of the risk of fatalities
and injuries of strategic industrial products is a real need in many domains, including
for instance automotive, avionics, and rail. To achieve this, there is a need for cost-
efficient processes and methods supporting the development and operation of safety
enabling embedded systems.

Among several approaches, Component-Based Development (CBD) has emerged
as suitable to improve both the reuse and maintainability of systems. Many CBD
techniques use the concept of a contract, which describes what a component interface
provides and what it expects from other components. During system composition
contracts are compared to determine system compatibility. The majority of these
works has concentrated on the functional properties of systems. Much less work has
been devoted to apply CBD while dealing with nonfunctional properties, including
dependability properties such as safety, reliability, performance, and availability.

Formal methods have traditionally been advocated for improving the reliability of
safety-relevant systems. The First International Workshop on Safety and Formal
Methods, SaFoMe 2014, which was held in Grenoble, France, on September 1, 2014,
aimed at providing a forum for people from academia and industry to communicate
their latest results on theoretical advances, industrial case studies, and lessons learned
in the application of formal methods to safety certification, verification, and/or
validation in (but not limited to) component-based systems.

Papers submitted to SaFoMe 2014 were carefully reviewed by at least three
members of the Program Committee. From nine submissions, five papers were finally
selected to discuss the following topics: survivability, diagnosis, verification of safety
contracts, and formalization of behavioral patterns and shared resources. Prof. Dr. Jan
Jirgens from TU Dortmund and Fraunhofer ISST gave an invited talk on Security
Certification in the Presence of Evolution: Models vs. Code. A Round Table was held
at the end of the workshop where current challenges in industrial application of
Formal Methods in the safety context were actively discussed by the attendees, which
consisted of people both from academia and industry. The conclusion was that we are
still far from applying formal methods to deal with safety concerns in industrial
contexts, since there are too many modeling languages and tools that partially analyze
safety concerns while considering the evolving requirements.

Several people contributed to the success of SaFoMe 2014. We would like to
express our gratitude to all members of the Program Committee for their efforts and
commitment. The SEFM workshop’s organizers deserve special thanks for their
dedication and good work, which clearly made our organization tasks easier. We also
thank the nSafeCer project (EU ARTEMIS Joint Undertaking under grant agreement
no. 295373) for their support. Finally, thanks to the authors and attendees for their
passion and interest.

X SaFoMe Organizers’ Message

Program Co-chairs

Hans Hansson
Clara Benac Earle

Organization Committee

Elena Gomez-Martinez
Ricardo J. Rodriguez
Catia Trubiani

Program Committee

Clara Benac Earle
Simona Bernardi

Jan Carlson

David Garcia-Rosado
Christophe Gaston
Elena Gomez-Martinez
Hans Hansson

José Merseguer
Sasikumar Punnekkat
Nicolas Rapin

Ricardo J. Rodriguez
Fernando Rosa-Velardo
Stefano Tonetta

Catia Trubiani

Xavier Zeitoun

Universidad Politécnica de Madrid, Spain

Centro Universitario de la Defensa, Universidad

de Zaragoza, Spain
Milardalen University, Sweden
Universidad de Castilla-La Mancha, Spain
Institut CARNOT CEA LIST, France
Universidad Politécnica de Madrid, Spain
Milardalen University, Sweden
Universidad de Zaragoza, Spain
Milardalen University, Sweden
Institut CARNOT CEA LIST, France
Universidad de Ledn, Spain
Universidad Complutense de Madrid, Spain
Fondazione Bruno Kessler, Italy
Gran Sasso Science Institute, Italy
Institut CARNOT CEA LIST, France

OpenCert Organizers’ Message

OpenCert provides for a unique venue advancing the state of the art in the analysis and
assurance of open-source software with an ultimate aim of achieving certification
and standards. The dramatic growth in open-source software over recent years has
provided for a fertile ground for fundamental research and demonstrative case studies.
Over the years, OpenCert has enabled a thriving community, small but focused,
examining issues ranging from certification to security and safety analysis for
applications areas as diverse as railways, aviation, knowledge management, sustain-
able development, and the open-source developers community.

The OpenCert workshop has successfully been held for seven consecutive editions.
The 8th year’s edition was colocated with SEFM 2014, being held in Grenoble,
France. The workshop attracted a total of six papers, out of which three were accepted
(an acceptance rate of 50 %). Each paper was reviewed by two to three reviewers. The
accepted papers offer a diverse range of topics from modeling approaches to learning
processes to state-of-the-art reviews on open-source software development processes.

The organizers are grateful to the Program Committee for their contribution in
terms of reviews and discussions.

Victor Fonte
Siraj Ahmed Shaikh

Program Committee

Bernhard Aichernig
Luis Barbosa
Alessandro Bessani
Peter Breuer
Antonio Cerone
Yannis Dimitriadis
Fabrizio Fabbrini
Jesus Arias Fisteus
Victor Fonte (Co-chair)
Maria Joao Frade
Paddy Krishnan
Imed Hammouda
Alexandre Madeira
Paolo Milazzo
John Noll

Alexander K. Petrenko
Simon Pickin
Miguel Rio

Technical University of Graz, Austria

University of Minho, Portugal

Lisbon, Portugal

Birmingham City University, UK

University of Pisa, Italy

University of Valladolid, Spain

ISTI-CNR, Italy

Carlos III University of Madrid, Spain

University of Minho, Portugal

University of Minho, Portugal

Oracle Labs, Australia

Tampere University of Technology, Finland

HASLab INESC TEC, Portugal

University of Pisa, Italy

Lero — The Irish Software Engineering
Research Centre, Ireland

ISP RAS, Russia

Universidad Complutense de Madrid, Spain

University College London, UK

XII OpenCert Organizers’ Message

Gregorio Robles King Juan Carlos University, Spain

Bruno Rossi Masaryk University, Czech Republic
Alejandro Sanchez Universidad Nacional de San Luis, Argentina
Siraj Ahmed Shaikh (Co-chair) Coventry University, UK

Toannis Stamelos Aristotle University of Thessaloniki, Greece
Ralf Treinen Paris Diderot University, France

Tony Wasserman Carnegie Mellon Silicon Valley, USA

WS-FMDS Organizers’ Message

The Fourth International Workshop on Formal Methods in the Development of
Software, WS-FMDS 2014, was held in Grenoble, France, on September 2, 2014. The
purpose of WS-FMDS is to bring together scientists and practitioners who are active
in the area of formal methods and interested in exchanging their experiences in the
industrial usage of these methods. This workshop also strives to promote research and
development for the improvement of theoretical aspects of formal methods and tools
focused on practical usability for industrial applications.

After a careful reviewing process in which every paper was reviewed by at least
three WS-FMDS PC members and additional reviewers, the Program Committee
accepted seven regular papers, which is around half of the submitted papers. The
program of WS-FMDS 2014 was enriched by the keynote speech of Radu Mateescu,
on “Mu-Calculus Property-Dependant Reductions for Divergence-Sensitive Branch-
ing Bisimilarity.”

Several people contributed to the success of WS-FMDS 2014. We are grateful to the
general chair of the 12th International Conference on Software Engineering and Formal
Methods SEFM 2013, Prof. Radu Mateescu, for his support and help. We also would
like to thank the Program Committee members as well as the additional reviewers for
their work on selecting the papers. The process of reviewing and selecting papers was
significantly simplified using Easy-Chair. We would like to thank the attendees of the
workshop and hope that they found the program useful, interesting, and challenging.

Carlos Gregorio-Rodriguez
Fernando L. Pelayo

Program Committee

Mario Bravetti University of Bologna, Italy
Carlos Gregorio-Rodriguez Universidad Complutense de Madrid, Spain
Raluca Lefticaru University of Bucharest, Romania
Luis LLana University Complutense de Madrid, Spain
Jasen Markovski Eindhoven University of Technology,
The Netherlands
Fernando L. Pelayo Universidad de Castilla-La Mancha, Spain
Pascal Poizat Université Paris Ouest Nanterre La Défense
and LIP6, France
Fernando Rosa-Velardo Universidad Complutense de Madrid, Spain
Franz Wotawa Graz University of Technology, Austria

Fatiha Zadi University of Paris-Sud, France

XIV WS-FMDS Organizers’ Message

Additional Reviewers

Souheib Baarir

M. Emilia Cambronero
Fernando Cuartero
Miguel Palomino
Ismael Rodriguez

Paris-Sorbonne University and LIP6, France
Universidad de Castilla-La Mancha, Spain
Universidad de Castilla-La Mancha, Spain
Universidad Complutense de Madrid, Spain
Universidad Complutense de Madrid, Spain

MoKMaSD Organizers’ Message

The Third International Symposium on Modelling and Knowledge Management
applications: Systems and Domains (MoKMaSD 2014) was held in Grenoble, France,
on September 2, 2014. The aim of the Symposium is to bring together practitioners and
researchers from academia, industry, government, and non-government organizations to
present research results and exchange experiences, ideas, and solutions for modeling and
analyzing complex systems and using knowledge management strategies, technology,
and systems in various domain areas such as ecology, biology, medicine, climate,
governance, education, and social software engineering. In particular, the focus is on
synergistic approaches that integrate modeling and knowledge management/discovery or
exploit knowledge management/discovery to develop/synthesise system models.

After a careful review process, the Program Committee accepted seven papers. The
program of MoKMaSD 2014 was enriched by keynote speeches by Alberto d’Onofrio
entitled “Human Behavior and the Spread of Infectious Diseases: A Challenge for
Modeling” and by Elisa Fromont entitled “Mine First to See Better.”

Several people contributed to the success of MoKMaSD 2014. We are grateful to
Antonio Cerone, who invited us to chair this edition of the Symposium and assisted us
in some organization aspects of the event. We would like to thank the organizers of
SEFM 2014, and in particular the General Chair Radu Mateescu, the Workshop Chairs
Carlos Canal and Akram Idani, and the Program Chair Gwen Salaun. We would also
like to thank the Program Committee and the additional reviewers for their work on
reviewing the papers. The process of reviewing and selecting papers was significantly
simplified using EasyChair.

We welcome all attendees to the symposium and hope that this event will enable
good exchange of ideas and generate new collaborations among attendees.

Paolo Milazzo
Anna Monreale

Program Committee

Orlando Belo University of Minho, Portugal

Paloma Céceres Rey Juan Carlos University, Spain

Giulio Caravagna University of Milano-Bicocca, Italy

Antonio Cerone University of Pisa, Italy

Michele Coscia Harvard Kennedy School, USA

Andrea Esuli ISTI-CNR, Pisa, Italy

Alexeis Garcia-Perez Coventry University, UK

Jane Hillston University of Edinburgh, UK

Joris Hulstijn Delft University of Technology, The Netherlands
Marijn Janssen Delft University of Technology, The Netherlands

Ferenc Jordan COSBI, Italy

XVI MoKMaSD Organizers’ Message

Wei-chung Liu

Donato Malerba

Stan Matwin

Paolo Milazzo (Co-chair)
Anna Monreale (Co-chair)
Siegfried Nijssen

Adegboyega Ojo
Giovanni Pardini
Matteo Pedercini
Nikos Pelekis
Anna Philippou
Marco Scotti
Luca Tesei
Daniel Villatoro

Hui Xiong
Additional Reviewer

Pasquale Bove

Academia Sinica, Taiwan, R.O.C

University of Bari, Italy

University of Ottawa, Canada

University of Pisa, Italy

University of Pisa, Italy

KU Leuven, Belgium and Leiden University,
The Netherlands

DERI, National University of Ireland, Ireland

University of Pisa, Italy

Millennium Institute, USA

University of Piraeus, Greece

University of Cyprus, Cyprus

GEOMAR Centre, Germany

University of Camerino, Italy

IITA-CSIC and Universitat Autonoma de
Barcelona, Spain

Rutgers, The State University of New Jersey, USA

Internet of Things: New Dimensions of Modelling,
Usability and Human-Computer Interaction

Arkady Zaslavsky

CSIRO, Australia

Keynote Speaker of HOFM 2014

The Internet of Things (IoT) is one of the pillars of Future Internet and will connect
billions of “things”, where things include computers, smartphones, sensors, objects
from everyday life with embedded computational and communication capabilities and
the list goes on and on. Each of those things will have their physical and/or virtual
identity, attributes, intelligent and human-oriented interfaces, componentised func-
tionality and standardised communication protocols.

The Internet of Things will be generating massive amounts of data that will have to
be stored, validated, processed and communicated to relevant services, applications
and systems. This means also new dimensions of modelling, usability, and human-
computer interaction.

This talk focuses on the challenges of developing tools, middleware and software
platforms for the IoT, disruptively big data it generates, discovery of things for various
services and applications, representing semantics and enriching [oT data with semantics,
transforming IoT data into context and integrating these into knowledge. The talk will
also present various CSIRO projects in IoT, including EU FP7 OpenloT which
developed open source flexible sensor-based system middleware platform. OpenloT
brings together sensing and cloud computing and is an efficient platform for handling big
IoT data. Another advantage of the platform is human-orientation and usability —
OpenloT offers users zero-programming integrated development environment.

Advantages and Pitfalls of Formal or Formalizable
Graphic Requirements Models

Martin Glinz

University of Zurich, Switzerland

Keynote Speaker of HOFM 2014

Every formal requirements specification needs to be validated by the stakeholders
of the system to be built. This is a major challenge as stakeholders typically have no
training in formal methods, thus making validation of formal requirements specifi-
cations a difficult or even impossible task. Formal or formalizable graphic models of
requirements have the potential of providing a solution to this problem as they are
demonstrative and can be simulated or executed. However, graphic formal models
also have pitfalls and limitations.

In my talk I will first introduce and situate the problem. Then I will take the
audience on a guided tour through some typical formal or formalizable graphic
requirements modeling languages such as statecharts, labeled transition systems, Petri
nets, and UML activity diagrams, highlighting advantages, pitfalls and limitations.

Security Certification in the Presence of Evolution:
Models vs. Code

Jan Jiirjens

Technical University of Dortmund and Fraunhofer Institute for Software
and Systems Technology ISST, Dortmund (Germany)
http://jan.jurjens.de

Keynote Speaker of SaFoMe 2014

Security certification of complex systems requires a high amount of effort. As a
particular challenge, today’s systems are increasingly long-living and subject to
continuous change. After each change of some part of the system, the whole system
needs to be re-certified from scratch (since security properties are not in general
modular), which is usually far too much effort.

We present a tool-supported approach for security certification that minimizes the
amount of effort necessary in the case of re-certification after change. It is based on an
approach for model-based development of secure software which makes use of the
security extension UMLsec of the Unified Modeling Language (UML) [Jur05]. It
allows the user to integrate security requirements such as secure information flow
[JurOO0] and audit security [JurO1] into a system design model and has been applied to
a number of industrial applications such as an electronic purse system [JWOI].

The approach presented is based on results that determine under which conditions
change preserves security properties (for example in the context of structuring
techniques such as refinement or architectural principles such as modularization). The
approach supports an automated difference-based security analysis, at the level of
design models as well as the implementation code (using static security analysis
[AGJ11] or run-time verification). It has been applied e.g. to cryptographic protocols,
distributed security infrastructures, and identity management systems, and there are
empirical results comparing it to classical techniques for security certification. In the
outlook, we briefly present current research directions, such as applying the approach
to the security certification of cloud-based systems.

References

[Jur0O0] Jiirjens, J.: Secure information flow for concurrent processes. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 395-409. Springer, Heidelberg (2000)

[Jur01] Jirjens, J.: Modelling audit security for smart-cart payment schemes with UML-SEC.
In: TFIP TC11 Sixteenth Annual Working Conference on Information Security (IFIP/
Sec’01), pp. 93—-108. Kluwer, Norwell (2001)

[Jur05] Jiirjens, J.: Secure systems development with UML. Springer, Heidelberg (2005)

http://jan.jurjens.de

XX Security Certification in the Presence of Evolution: Models vs. Code

[JWO01] Jirjens, J., Wimmel, G.: Security modelling for electronic commerce: the common
electronic purse specifications. In: Schmid, B., Stanoevska-Slabeva, K., Tschammer,
V. (eds.) Towards the E-Society. IFIP, vol. 74, pp. 489-506. Springer, Heidelberg
(2001)

[AGJ11] Aizatulin, M., Gordon, A.D., Jiirjens, J.: Extracting and verifying cryptographic
models from C protocol code by symbolic execution. In: 18th ACM Conference on
Computer and Communications Security (CCS 2011), pp. 331-340 (2011)

Static Analysis by Abstract Interpretation
and Decision Procedures

Matthieu Moy

Verimag, France
Joint work with Julien Henry and David Monniaux

Keynote Speaker of OpenCert 2014

Abstract interpretation techniques can be made more precise by distinguishing paths
inside loops, at the expense of possibly exponential complexity. SMT-solving
techniques and sparse representations of paths and sets of paths avoid this pitfall.

We improve previously proposed techniques for guided static analysis and the
generation of disjunctive invariants by combining them with techniques for succinct
representations of paths and symbolic representations for transitions based on static
single assignment.

Because of the non-monotonicity of the results of abstract interpretation with
widening operators, it is difficult to conclude that some abstraction is more precise
than another based on theoretical local precision results. We thus conducted extensive
comparisons between our new techniques and previous ones, on a variety of open-
source packages.

Human Behavior and the Spread of Infectious Diseases:
A Challenge for Modeling

Alberto d’Onofrio

International Prevention Research Institute (iPRI), France

Keynote Speaker of MoKMaSD 2014

This talk concerns a fast growing research area: modeling the influence of information-
driven human behavior on the spread and control of infectious diseases. In particular,
we shall focus on two main and inter-related “core” topics: behavioral changes in
response to global (or “perceived global”...) threats, and the pseudo-rational
opposition to vaccines. Indeed, people are likely to change their behavior and their
propensity to vaccinate themselves and their children based on information and, even
more often, rumors about the spread of a disease. This, implicitly, induces a feedback
that can deeply affect the dynamics of epidemics and endemics. In order to make
realistic predictions, modelers must go beyond classical mathematical epidemiology,
where, in anology with systems biology, the individuals are abstracted as particles in
brownian motion.

Mine First to See Better

Elisa Fromont

Université de Lyon, Université de St-Etienne, France

Keynote Speaker of MoKMaSD 2014

I will explain how data mining techniques such as pattern mining or (semi-supervised)
clustering can and should be used to improve fundamental computer vision tasks such
as image classification, image or video retrieval or object tracking in videos. The main
idea is to build on low level vision features such as segmentations or SIFT bag-of-
visual-words to construct more discriminant and invariant “mid-level” descriptors.
I will show examples of success stories that have used this pattern mining phase in the
last years. On the algorithmic point of view, I will focus on a dynamic plane graph
mining algorithm that integrates spatio-temporal constraints and can be used to help
tracking objects in videos in an unsupervised way.

Mu-Calculus Property-Dependent Reductions
for Divergence-Sensitive Branching Bisimilarity

Radu Mateescu

Head of the CONVECS Research Team, INRIA Grenoble, France
Chair of the FMICS working group of ERCIM

Keynote Speaker of WS-FMDS 2014

When analyzing the behavior of finite-state concurrent systems by model checking, one
way of fighting state space explosion is to reduce the model as much as possible whilst
preserving the properties under verification. We consider the framework of action-
based systems, whose behaviors can be represented by labeled transition systems
(LTSs), and whose temporal properties of interest can be formulated in modal mu-
calculus (Lmu). First, we determine, for any Lmu formula, the maximal set of actions
that can be hidden in the LTS without changing the interpretation of the formula. Then,
we define Lmu-dsbr, a fragment of Lmu adequate w.r.t. divergence-sensitive branching
bisimilarity. This enables one to apply the maximal hiding and to reduce the LTS
modulo this relation when verifying any formula of Lmu-dsbr. We show that this
fragment is equally expressive to mu-ACTL, the action-based counterpart of CTL
extended with fixed point operators. The experiments that we performed on various
examples of communication protocols and distributed systems show that this reduction
approach can significantly improve the performance of verification.

Contents

HOFM 2014

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups. . . 3
Bernhard Beckert, Sarah Grebing, and Florian Bohl

An Approach for Creating Domain Specific Visualisations of CSP Models. . . 20
Lukas Ladenberger, Ivaylo Dobrikov, and Michael Leuschel

Using Z in the Development and Maintenance of Computational Models
of Real-World Systems 36
Shahrzad Moeiniyan Bagheri, Graeme Smith, and Jim Hanan

When a Formal Model Rhymes with a Graphical Notation. 54
Akram Idani and Nicolas Stouls

SaFoMe 2014

On a Process Algebraic Representation of Sequence Diagrams 71
Jaco Jacobs and Andrew Simpson

Modelling and Verification of Survivability Requirements for Critical Systems ... 86
Simona Bernardi, Lacramioara Dranca, and José Merseguer

Model-Based Verification of Safety Contracts. 101
Elena Gomez-Martinez, Ricardo J. Rodriguez, Leire Etxeberria Elorza,
Miren Illarramendi Rezabal, and Clara Benac Earle

A Testing-Based Approach to Ensure the Safety of Shared Resource
Concurrent SyStemS.ot 116
Lars-Ake Fredlund, Aﬁgel Herranz, and Julio Maririo

A Contracts-Based Framework for Systems Modeling and Embedded
DiIagnostiCs v e 131
Gregory Provan

OpenCert 2014

Modelling and Verifying Smell-Free Architectures with the ARCHERY Language ... 147
Alejandro Sanchez, Luis S. Barbosa, and Alexandre Madeira

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities . .. 164
Patrick Mukala, Antonio Cerone, and Franco Turini

http://dx.doi.org/10.1007/978-3-319-15201-1_1
http://dx.doi.org/10.1007/978-3-319-15201-1_2
http://dx.doi.org/10.1007/978-3-319-15201-1_3
http://dx.doi.org/10.1007/978-3-319-15201-1_3
http://dx.doi.org/10.1007/978-3-319-15201-1_4
http://dx.doi.org/10.1007/978-3-319-15201-1_5
http://dx.doi.org/10.1007/978-3-319-15201-1_6
http://dx.doi.org/10.1007/978-3-319-15201-1_7
http://dx.doi.org/10.1007/978-3-319-15201-1_8
http://dx.doi.org/10.1007/978-3-319-15201-1_8
http://dx.doi.org/10.1007/978-3-319-15201-1_9
http://dx.doi.org/10.1007/978-3-319-15201-1_9
http://dx.doi.org/10.1007/978-3-319-15201-1_10
http://dx.doi.org/10.1007/978-3-319-15201-1_11

XXVI Contents

Process Mining Event Logs from FLOSS Data: State of the Art
and Perspectives 182
Patrick Mukala, Antonio Cerone, and Franco Turini

MoKMaSD 2014

A Latent Representation Model for Sentiment Analysis in Heterogeneous

Social Networks 201
Debora Nozza, Daniele Maccagnola, Vincent Guigue,
Enza Messina, and Patrick Gallinari

Use of Mobile Phone Data to Estimate Visitors Mobility Flows 214
Lorenzo Gabrielli, Barbara Furletti, Fosca Giannotti,
Mirco Nanni, and Salvatore Rinzivillo

An Abstract State Machine (ASM) Representation of Learning Process
in FLOSS Communities. 227
Patrick Mukala, Antonio Cerone, and Franco Turini

A Mathematical Model for Assessing KRAS Mutation Effect on Monoclonal
Antibody Treatment of Colorectal Cancer. 243
Sheema Sameen, Roberto Barbuti, Paolo Milazzo, and Antonio Cerone

Sea-Scale Agent-Based Simulator of Solea solea in the Adriatic Sea. 259
Cesar Augusto Nieto Coria, Luca Tesei, Giuseppe Scarcella,
Tommaso Russo, and Emanuela Merelli

Research Challenges in Modelling Ecosystems 276
Antonio Cerone and Marco Scotti

Retrieving Points of Interest from Human Systematic Movements. 294
Riccardo Guidotti, Anna Monreale, Salvatore Rinzivillo,
Dino Pedreschi, and Fosca Giannotti

WS-FMDS 2014

Path-Sensitive Race Detection with Partial Order Reduced Symbolic Execution. .. 311
Andreas Ibing

Phase-Type Approximations for Non-Markovian Systems: A Case Study. ... 323
Gabriel Ciobanu and Armand Rotaru

Quantitative Anonymity Evaluation of Voting Protocols. 335
Fabrizio Biondi and Axel Legay

Scalable Verification of Markov Decision Processes 350
Axel Legay, Sean Sedwards, and Louis-Marie Traonouez

http://dx.doi.org/10.1007/978-3-319-15201-1_12
http://dx.doi.org/10.1007/978-3-319-15201-1_12
http://dx.doi.org/10.1007/978-3-319-15201-1_13
http://dx.doi.org/10.1007/978-3-319-15201-1_13
http://dx.doi.org/10.1007/978-3-319-15201-1_14
http://dx.doi.org/10.1007/978-3-319-15201-1_15
http://dx.doi.org/10.1007/978-3-319-15201-1_15
http://dx.doi.org/10.1007/978-3-319-15201-1_16
http://dx.doi.org/10.1007/978-3-319-15201-1_16
http://dx.doi.org/10.1007/978-3-319-15201-1_17
http://dx.doi.org/10.1007/978-3-319-15201-1_18
http://dx.doi.org/10.1007/978-3-319-15201-1_19
http://dx.doi.org/10.1007/978-3-319-15201-1_20
http://dx.doi.org/10.1007/978-3-319-15201-1_21
http://dx.doi.org/10.1007/978-3-319-15201-1_22
http://dx.doi.org/10.1007/978-3-319-15201-1_23

Contents XXVII

Towards Synthesis of Attack Trees for Supporting Computer-Aided
Risk Analysis. 363
Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek

On Generation of Context-Abstract Plans. 376
Lukasz Mikulski, Artur Niewiadomski, Marcin Pigtkowski,
and Sebastian Smyczynski

A Coloured Petri Net Approach to Model and Analyse Stateful Workflows

Based on WS-BPEL and WSRF 389
José Antonio Mateo, Valentin Valero, Hermenegilda Macia,
and Gregorio Diaz

Author Index e 405

http://dx.doi.org/10.1007/978-3-319-15201-1_24
http://dx.doi.org/10.1007/978-3-319-15201-1_24
http://dx.doi.org/10.1007/978-3-319-15201-1_25
http://dx.doi.org/10.1007/978-3-319-15201-1_26
http://dx.doi.org/10.1007/978-3-319-15201-1_26

HOFM 2014

A Usability Evaluation of Interactive Theorem
Provers Using Focus Groups

Bernhard Beckert, Sarah Grebing®™), and Florian Bohl

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,sarah.grebing,boehl}@kit.edu

Abstract. The effectiveness of interactive theorem provers (ITPs)
increased such that the bottleneck in the proof process shifted from effec-
tiveness to efficiency. While in principle large theorems are provable, it
takes much effort for the user to interact with the system. A major
obstacle for the user is to understand the proof state in order to guide
the prover in successfully finding a proof. We conducted two focus groups
to evaluate the usability of ITPs. We wanted to evaluate the impact of
the gap between the user’s model of the proof and the actual proof per-
formed by the provers’ strategies. In addition, our goals are to explore
which mechanisms already exist and to develop, based on the existing
mechanisms, new mechanisms that help the user in bridging this gap.

1 Introduction

Motivation. The degree of automation of interactive theorem provers (ITPs)
has increased to a point where complex theorems over large formalisations for
real-world problems can be proven effectively. But even with a high degree of
automation, user interaction is still required on different levels. On a global level,
users have to find the right formalisation and have to decompose the proof task
by finding useful lemmas. On a local level, when automatic proof search for a
lemma fails, they have to either direct the proof search or understand why no
proof can be constructed and fix the lemma or the underlying formalisation. As
the degree of automation increases, the number of interactions decreases. But
the remaining interactions get more and more complex as ITPs are applied to
more and more complex problems.

When proving theorems, the automated proof search often leads the proof
into a direction that differs from the way a human would conduct the proof. To
interact with the theorem prover in a meaningful way during the proof process,
users have to understand the prover’s strategy and the state of proof construction
and, thus, have to bridge the gap between their own model of the proof search
and the current proof state of the tool. Open goals in partial proofs are the
result of syntactic transformations that may not be intended to make it easy
for humans to understand them. The intention of the transformations is rather

This work is part of the project Usability of Software Verification Systems within the
BMBF-funded Software Campus. Florian B6hl was funded by MWK grant “MoSeS”.
© Springer International Publishing Switzerland 2015

C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 3-19, 2015.
DOI: 10.1007/978-3-319-15201-1-1

4 B. Beckert et al.

to get the automated proof search closer to a complete proof. Therefore, users
need to understand the prover’s strategy and often have to look at intermediate
proof states, resulting from rule applications onto the original proof obligation,
to comprehend the current state.

Although it is easy to accept that there is a gap between a human user’s
model of the proof resp. proof search and the actual automated proof search,
it is rather unclear how large its impact on interactive theorem proving is for
typical proof obligations. Nevertheless, the following is a central hypothesis for
our work, which we wanted to test during the usability evaluation:

Bridging the gap between the user’s model of the proof state and the
state of the theorem prover at interaction points is the paramount and
prominent challenge for efficient and effectively usable general theorem
provers.

In addition, we are interested in evaluating which tools or mechanisms are
already present in today’s provers that help to bridge the gap and how to extend
existing mechanisms to help the user in understanding the proof states.

Our contribution in this work is that we conducted an experiment using the
survey method focus groups to get a first evaluation of whether our hypothesis
is true and to gain answers to our two questions: (a) Which mechanisms of this
kind are already used in theorem provers? (b) What mechanisms are missing?

Survey method. We have carried out two experiments, where we applied the
focus group method [10,16] to two different ITPs: the tactical theorem prover
Isabelle/HOL [18] and the interactive program verification system KeY [7].
Focus groups are a qualitative survey method typically used in an early stage
of the usability engineering process [12,17]. Based on their results, (prototypi-
cal) mechanisms for improving usability can be developed, which can then be
evaluated with methods such as usability testing and user questionnaires to
quantitatively measure increases in usability. While focus groups explore the
subjective experience of users, they are designed to eliminate experimenter-bias
and to provide more objective results. The number of participants required to
get significant results is much smaller than for quantitative evaluations, which
makes focus groups well-suited for the relatively small user base of ITPs.

Background. Our work is part of the BMBF-funded Software Campus pro-
gramme. We apply various methods known from the field of human-computer-
interaction (HCT) to ITPs, including focus group discussions, usability testing,
and user experience questionnaires. Since expertise from both fields (ITP and
HCI) is required, we cooperate with user experience experts from DATEV eG
who are well-versed in the ergonomic evaluation of standard software.

Structure of this paper. Section 2 briefly reviews related work on usability eval-
uations of ITPs. The focus group method is introduced in Sect.3. In Sect. 4
we present the results of the experiments and relate them to our hypothesis.
Section 4.5 presents our results regarding mechanisms and tools for understand-
ing the proof state. We conclude and discuss future work in Sect. 5.

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 5

2 Related Work

The ITP community has noticed the need to evaluate and improve usability, but
so far structured usability evaluation methods have rarely been applied to ITPs.

In previous work [5], we have performed a questionnaire-based evaluation of
the KeY system based on Green and Petre’s Cognitive Dimensions questionnaire
[9] to get a first impression of the user’s perception and to develop first hypothe-
ses about the usability of the KeY system. Beyond that Kadoda et al. [14] evalu-
ated proof systems using Green and Petre’s Cognitive Dimensions questionnaire
to develop a list of desirable features for educational theorem provers.

Aitken and Melham [1-3] evaluated the interactive proof systems Isabelle
and HOL using recordings of user interactions with the systems in collabora-
tion with HCI experts. During the proof process the users were asked to think
aloud and after the recordings the users were interviewed. The goal of this work
was to study the activities performed by users of interactive provers during the
proof process to obtain an interaction model of the users. They propose to use
typical user errors as usability metric and they compared provers w.r.t. these
errors. Also, suggestions for improvements of the systems have been proposed by
the authors based on the evaluation results, including, besides others, improved
search mechanisms and improved access to certain proof-relevant components.

Jackson et al. used co-operative evaluation methods on the CLAM Proof
Planner [13]. Users were asked to perform predefined tasks while using the
“think-aloud technique” to comment on what they were doing.

Vujosevic and Eleftherakis used questionnaires and interviews to explore why
Formal Methods Tools are not used in industry [20]. Their work includes eval-
uations of usability aspects of several formal methods tools, such as the Alloy
Analyzer. For improving the interface of the prover NuPRL, a self-designed ques-
tionnaire was used to evaluate the users’ perceptions of the interface [11].

Similar to our findings, Archer and Heitmeyer [4] also realized the gap between
the prover’s and the user’s model of the proof. They have developed the TAME
interface on top of the prover PVS to reduce the distance between manual proofs
and proofs by automation. TAME is able to prove properties of timed automata
using so called human-style reasoning. Proof steps in TAME are intended to be
close to the large proof steps performed in manual proofs. The authors have devel-
oped strategies on top of the PVS strategies that match more closely the steps per-
formed by humans. The goal is to provide evidence and comprehension of proofs
for domain but not proof experts.

Lowe et al. describe in their work [15] their approach to building a co-operative
theorem prover and describe some undesirable features of ITPs focussing on feed-
back of the system. They have implemented the BARNACLE interface for the
CLAM prover which allows explanations for failing preconditions, which should
make proofs more comprehensible for the users.

Ouimet identified different issues, e.g., large proof size and number of proof
steps, that have to be addressed in order to have a widespread use of theorem
provers in [19] and evaluated the system ESC/Java against these issues. The
issues were identified by examining a large case study conducted at Motorola.

6 B. Beckert et al.

3 Survey Method: Focus Groups

Focus group discussions are a qualitative method to explore opinions of users
about specific topics or products, e.g., in market research. In the field of human-
computer interaction (HCI) they are used to explore user perspectives on soft-
ware systems and their usability in an early stage of the usability engineering
process [12,17]. As already mentioned in the introduction, they provide the sub-
jective experience of the users and require only a small number of participants
(five to ten). The duration of the discussion groups is around one to two hours
and it is guided by a moderator who uses a script to structure the discussion.
Focus groups have three phases: Recruiting participants, performing the discus-
sion and post-processing. In the following we will briefly give an insight into the
script which was used to guide the discussion. The full description of the setup
and script can be found in [6].

Script for the discussions. The main questions and tasks in the script were the
same for both conducted focus groups as we wanted to compare the results.
Adaptations of the questions and presented mock-ups to the specifics of the two
systems were the main differences. As a warm-up task, we asked about typical
application areas of the systems and about their strengths and weaknesses related
to the proof process. In the main part of the discussion, we had two topics: (1)
Support during the proof process and (2) Mechanisms for understanding proof
states. As a cool-down task, we asked the participants to be creative and imagine
their ideal interactive proof system. The full scripts with all questions for our
experiments are available at http://formal.iti.kit.edu/~grebing/SWC.

4 Evaluation of the Focus Groups and Analysis Results

4.1 The User’s and the Tool’s Model of the Proof Process

ITPs are used to aid users in proving complex theorems in many areas of com-
puter science and mathematics. For using such systems, the user needs to have
a certain level of experience in proving theorems. In general, the user has a con-
cept or plan of how to prove the desired theorem. We call this concept user’s
model of the proof. This can either be already a whole proof plan or just first
ideas on the proof process. This model also includes an assumption about the
theorem prover’s strategies as we do not consider the proof plan for a pen and
paper proof as being the user’s model, but the proof plan for how the user would
prove the problem using a theorem prover.

One big difference between the user’s model of the proof and the current
partial proof is that the proof steps in the model are coarser and have an intu-
itive (summing up) semantic for the user (such as “simplification of the proof
obligation”), whereas the prover’s steps are more fine-grained and are a syntac-
tic manipulation of the proof state. While an intuitive semantic for each rule
application exists (as given by the rule’s author), a sequence of consecutive rule
applications in the system may not have a clear intuitive semantic for the user.

http://formal.iti.kit.edu/~grebing/SWC

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 7

In Fig. 1 we have sketched our idea of the rela-
tion between the actual proof performed by the
prover’s search strategy (p) and the user’s proof
P model (u). At the beginning of the proof process
the user’s model is identical with or close to the
.. \Interaction proof obligation in the proof system. However, the
more the automatic strategies of the prover try to
prove the proof obligation (arrow p), the more the
actual proof state in the system differs from the
Fig. 1. Model of the proof user’s model (arrow w). As the user has to guide
process the prover by interacting with it, the user has to

understand the process of the prover and relate the
actual proof state to the user’s model. For this relation the user has to inspect
the current proof state (interaction point) and find a corresponding state in the
own model (anchor point). After the user interacts with the prover, the proof
of the system below the interaction point is proceeding to some extent into the
direction of the user’s model, reducing the gap.

In some cases, no useful anchor point may exist. Then the user has to follow
and understand the automatic proof construction and, in doing so, construct a
new model u that is identical with or an abstraction of p. In contrast, if the user
only applies rules manually and there is no automatic proof search, then p is
identical to u (in case the user fully understands the effect of the applied rules).

In the standard case, however, where there is a gap between v and p, there
should be mechanisms in the systems that help the user in relating the anchor
point with the interaction point (dotted line). In general, we can identify two
parameters which can differ from system to system: the size of the gap between
the actual proof and the user’s model (4), and the mechanisms that help to
relate the user’s model and the current proof state to aid the user in compre-
hending the proof state (dotted line between anchor and interaction point).

Apart from the gap it could be that the user does not have a clear model of
the proof or even none at all. Here the gap, as described is not applicable. In
this case the user uses the automation of the prover without any model in mind
in order to use the resulting proof state to concretize the own fuzzy model and
therefore the user has to comprehend the resulting proof state.

Start

Anchor
point

DNDOORT OO

4.2 The Participants of Our Focus Group Discussions

We conducted two focus groups, one for the Isabelle system and one for the
KeY system. To categorize the participants, we draw a distinction between tool
knowledge and domain knowledge. Most of them were at expert or intermediate
level w.r.t. domain knowledge. With respect to tool expertise, the Isabelle group
consisted of five participants: one less experienced, two intermediate, and two
expert users. The KeY group consisted of seven participants: one less experi-
enced, two intermediate, and four expert users.

8 B. Beckert et al.

4.3 Targets of Evaluation

In the following we will briefly introduce the two systems under evaluation with
the focus on those parts that were mentioned by the participants. Here, we start
with the application areas of the systems as given by the participants.

KeY system. The KeY system is an interactive verification system for programs
written in Java annotated with the Java Modelling Language (JML). As such it
is mostly used for the verification of Java programs w.r.t. a formal specification
(usually a functional specification but also, for example, information-flow prop-
erties). KeY is also used for teaching and demonstrating formal methods, and
as verification condition generator for other systems. KeY has an explicit proof
object, i.e., all intermediate proof states can be inspected by the user. KeY uses
a sequent calculus for Java Dynamic Logic [8]. Its user interface shows proofs
as a tree, the nodes of the tree contain intermediate proof goals (i.e., sequents).
Each node N is annotated with the rule that was applied to some formula in
N’s parent node to construct V.

Isabelle. Isabelle is a theorem prover for higher-order logic. As mentioned by the
participants, it is especially used for the formalization, verification and execution
of algorithms, for proving in general and for the development of formal models.
It has an implicit proof object, i.e., not all intermediate proof states are shown to
the user, only goal-states where the system stops its automatic strategies. These
automatic strategies are called methods, however the participants used the term
tactics, therefore we use this term throughout the paper. Isabelle’ proof tactics
are basically sets of rules or lemmas that can be applied to the goal state. In this
paper, the auto tactic will often be mentioned, which applies a large number of
rule sets automatically, and the simp tactic, which applies rules that simplify
the goal-state. Within Isabelle also different tools can be invoked that generate
counterexamples (e.g., nitpick, quickcheck) or that invoke SMT solvers to find a
(sub-)proof (e.g., sledgehammer).

4.4 Strengths and Weaknesses of the Targets of Evaluation

Here, we discuss the strengths and weaknesses of the systems with respect to the
proof process as mentioned by the participants. Interestingly, some characteris-
tics of the systems that were first named as a strength lead to lively discussions in
later phases, which often brought up negative aspects of the same characteristics.

Strengths. First, we discuss results of the focus groups w.r.t. the strengths of
the systems, which are summarized in Table 1.

KeY System. The group on KeY agreed that the expressiveness of the system is
an important strength. The participants like how the Java Modeling Language
can be used to annotate Java code. They appreciated that a proof with the
KeY system always follows a certain structure, that this structure is visualized

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 9

Table 1. Strengths of the two systems according to the participants. The labels indicate
whether a characteristic is linked to our (M)odel of the proof process (see Sect.4.1) or
rather to (O)ther aspects of interactive theorem proving (the classification is our own

and not the focus group’s).

KeY

Isabelle

- Expressive specification language (O)
- Proof can be inspected in detail (M)
- KeY tries to simplify open goals (M)

- High degree of automation for simple
problems (O)

- All proofs follow a similar structure (M)

- Intuitive presentation of proof by using
macros and proof tree (M)

- Allows user-defined rules (M)
- Support of JML (O)

- Underlying language very intuitive (M)
- Helpful community (O)
- Large public library of theorems (O)

- Automatic tactics and tools ease proof
process (M)

- Proofs can be modularized (M)

- Flexible w.r.t. use of top down or
bottom up approach (O)

- Code export for testing the model (M)
- User-adjustable syntax (M)

in form of the proof tree, and that this tree can be inspected at an arbitrary
level of detail. Macros, which group rules similar to tactics in Isabelle, ease the
interaction process and help to give the proof the direction intended by the user.
According to the participants, the KeY system can solve easy problems without
any or with only very little interaction. Furthermore, KeY supports user-defined
rules. These rules can be of help during the proof process.

Isabelle. The group on Isabelle considers the underlying proof input language
Isar to be one of the system’s main advantages. It allows for proofs to be struc-
tured and presented in a standard textbook style that is very intuitive for
humans. The large user community of Isabelle is considered to be an impor-
tant strength. It provides a growing (and already quite extensive) library of
theorems available to everyone. Furthermore, the community is a good resource
of knowledge and friendly towards beginners. Isabelle provides a variety of tools
that help during the proof process, e.g., sledgehammer and nitpick. The system
can be used for a top-down as well as for a bottom-up proof approach.

Weaknesses. The results of the focus groups w.r.t. weaknesses of the systems,
i.e., room for improvements are shown in Table2. For this brief overview, we
omit some of the more technical remarks by participants that are not related
to the general proof process in our opinion. For example, regarding KeY there
were complaints about an unstable proof loading mechanism and memory leaks.
Some Isabelle users complained about specific features of jEdit — a widespread
editor for Isabelle proofs.

KeY System. Interestingly, several characteristics of KeY that were named as
strengths by the focus group were also identified as areas with potential for

10 B. Beckert et al.

Table 2. Weaknesses of the two systems according to the participants. The labels
indicate whether a characteristic is linked to our (M)odel of the proof process (see
Sect. 4.1) or rather to (O)ther aspects of interactive theorem proving (the classification
is our own and not the focus group’s).

KeY Isabelle

- Necessity of repeated trivial manual - Finding the right tactic for a proof
interactions (M) state is a non-trivial explorative

task (M)

- Not possible to get practically usable - Unexpected inference of types leads
counterexamples (M) to unintuitive errors (M)

- Proof tree too detailed (M) - Bloated formulas (M)

- Interaction on low-level logic formulas - No insight into automatic tactics;
required (M) unintuitive (M)

- Unintuitive mapping between formula and |- Messy downward compatibility for
program (M) older proofs in newer system

versions (O)

- Performance of automatic strategy (O) - No support for proof refactoring (O)

- Practical scalability (O) - Library: important mathematical
foundations are missing (O)

improvement. The proof tree — whose existence was perceived as a strength of
KeY — was considered to be too detailed. Some stated that linking proof states to
Java code would be helpful. Interaction on the low-level logic formulas is neces-
sary, sometimes trivial and tedious. Manual interaction often has to be repeated
in similar situations. There are no useful tools to generate counterexamples.

Isabelle. According to the participants, an important downside of Isabelle is
that the process of choosing the right tactics and tactic parameters to conduct
a proof is not always intuitive. If a tactic cannot be applied successfully in a
situation it is hard to find the reason. A technical problem is that type inference
sometimes leads to very unintuitive errors. Additionally, formulas belonging to
different properties that could be checked (and thus presented) independently
are all combined in a single goal state which increases the size of the formula
(e.g., invariants encoding type information for functions).

An often recurring task when working with Isabelle is to refactor proofs
towards better understandability, however, tools for refactoring are missing.
While the public library of theorems was also mentioned as a strength, a weak-
ness is that some important mathematical foundations are still missing, i.e., in
some theories lemmas are still missing.

Observations and Relation of Results to Our Model. Here, we relate
results of the focus groups to our model of the proof process (Sect.4.1) and to
our hypothesis. We evaluate the characteristics (Tables1 and 2) w.r.t. to three
challenges an I'TP has to solve:

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 11

(A) Keeping the gap small. In general, mechanisms that help to keep the gap
between the tool’s proof state and the user’s mental model small are seen as
strengths of the systems — unintuitive behavior of the tools in the proof process
is often mentioned as a problem. Several strengths of KeY help to keep the gap
small: Proofs follow the same structure, macros help to guide the proof into
the expected direction (similar to tactics which were mentioned as a strength
of Isabelle), and users can introduce new rules that match their intuition (these
rules have to be proven correct). Both tools allow the proof to be modularized
(in Isabelle it can be split up into lemmas, in KeY into contracts) — this allows
structuring the proof as a sequence of statements intuitive for humans. Some KeY
users stated that they use the automatic proof search only if it closes a branch
as otherwise the resulting state is too unintuitive to continue interactively.

(B) Bridging the gap. Understanding a given proof state is an important chal-
lenge for users of both systems during the proof process. Consequently, mecha-
nisms and characteristics of the systems that help the user’s understanding are
considered to be important strengths. Here, Isabelle provides a couple of useful
tools (quickcheck and nitpick to name two). Furthermore, the intuitive structure
of the underlying language Isar is named as an important strength. Correspond-
ingly, the absence of suitable mechanisms for certain situations is an important
weakness. For example, our participants criticized that KeY does not provide
a useful tool to generate counterexamples. Such a tool is necessary to detect
whether the prover is stuck because further user input is needed or the property
does not hold and no proof exists. While there are tools to generate counterex-
amples for Isabelle, the counterexample representation could be improved in the
eyes of some participants in case proof obligations contain functions. Currently
it is difficult to find the part of a proposition that is not provable.

(C) Supporting Interaction. Finally, as soon as users have a sufficient under-
standing of the proof state, they need to interact with the tool in an effective
way. In this area there still seems to be a lot of room for improvement for both
tools. The participants of the KeY focus group criticized that the interaction
often has to be performed not on the annotation level but on low-level logic
formulas. Furthermore, low-level steps have to be repeated by hand in similar
situations. The Isabelle users were unhappy about the tedious task of finding
the correct tactic to continue.

Conclusion. We observe a strong connection between the named strengths and
weaknesses and our model of the proof process from Sect.4.1. More than half
of the mentioned characteristics can be associated with concepts introduced by
the model. Furthermore, the results support our hypothesis that bridging the
gap between the user’s model of the proof and the ITP’s proof state is very
important during the proof process.

12 B. Beckert et al.

4.5 User Support During the Proof Process

We divided the part of the discussion about the proof processes into two parts,
namely the global proof process (finding the right formalization and decomposing
the proof task) and the local proof process (proving a single lemma or theorem).
The participants were asked to describe their typical proof process respectively,
and to name feedback mechanisms that the systems provide. Our expectations
were that existing prover support and mechanisms to aid the user are adapted
to the respective abstraction levels of the two processes.

4.6 State-of-the-Art in User Support

Global proof process. For both, KeY and Isabelle, the participants described a
similar proof process: it starts with the formalization of the system/problem and
its main properties. Users considered the modeling task to be among the most
time-consuming ones. However, system feedback in this phase is restricted to
syntactical and simple consistency tests. Instead, feedback causing the user to
revise the model on the global level results from the local proof process. It is
not surprising that there is only little user support for the global process, as the
tasks often require creativity and depend on the particular problem.

Local proof process. In the local proof process, the users are guided by their
individual impression of the complexity of open goals/proof obligations. If the
user considers the obligation to be“easy enough”, he or she tries a fully auto-
matic strategy. Otherwise, or if the automation fails, the user tries to prove
the obligation interactively. In this case there are two options: structured proofs
(Isar/macros) or proof exploration (manual application of rules resp. tactics).

The case where the problem is considered to be easy and is tried to be proven
automatically fits our model: It is the case where the user’s proof plan has only
one step leading to the proof state “proof complete”. In the other case, proof
exploration corresponds to the user having only a partial proof model, or a set of
different models from which the appropriate one has to be determined. In terms
of Fig. 1, we observe multiple arrows originating from the proof obligation.

Both KeY and Isabelle aid the user by providing search mechanisms or sug-
gestion mechanisms for proof rules resp. lemmas: As stated by the participants,
Isabelle supports the user in finding the right proof technique with a search
mechanism for theorems in the library. KeY offers different search mechanisms
and suggests applicable rules for a user-selected formula.

System feedback for the local process. In the local processes the systems give dif-
ferent kinds of feedback, e.g., counterexamples, open or closed goals, and (partial)
proofs. Some of these are explicit (e.g., message boxes), others are implicit in a
changed proof state.

The main difference between both tools is that KeY provides the full path to
the open goals as proof tree, while no explicit tree is available in Isabelle.

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 13

Which part of the system (e.g., sequent, proof tree, formalization) is inspected
by the user to decide on how to continue the proof depends on the problem, but
we also learned that different users use different information.

From an abstract perspective the approach of inspecting the proof state,
especially in KeY, corresponds to top-down analysis of the proof: the focus
moves from the specification to single goals/sequents. At the beginning of the
proof process, the specification is inspected more often and the shape of the proof
tree plays an important role. Later in the process, the branches in the proof tree
and the sequents in the open goals become more important. Also, problem com-
plexity influences whether the sequents of the open goals are helpful or not.

In Isabelle, the strategy try (that carries out the complexity estimation in a
simple form) and other tools and tactics (e.g., sledgehammer, quickcheck, nitpick,
auto) give feedback about the goal-state. If the tactics cannot find a proof, the
resulting goal-states have to be inspected by the user. However, Isabelle does
not provide information about the used rules or lemmas leading to an open goal.
As stated especially in the Isabelle group, it is a matter of experience to decide
how proof search should proceed.

The comments on the feedback mechanisms of the proof systems support our
hypothesis: the user has to understand the system’s proof. The different proof
artifacts are inspected and the user tries to recognize certain familiar shapes, for
which he or she knows from experience how to continue in the proof process.

Proof granularity in the local process. One part of our hypothesis is that the
granularity of the automatic strategies as presented to the user does not match
the granularity in the user’s proof model.

When the application of automatic strategies and tools does lead to open
goals instead of a closed proof, information about used lemmas or rules is often
missing. An example is the auto tactic: if it finds a proof, showing only a single
proof step is appropriate. If it does not find a proof, it does not provide infor-
mation about the concrete proof rules it applied and the resulting intermediate
states (although this information is available internally). Only the remaining
goal-states are presented to the user. Better feedback is provided by sledgeham-
mer, as it displays the lemmas used in the underlying SMT proof.

Granularity of the proof and feedback of single steps also plays a role when
publishing or refactoring a proof depending on the intended audience. In user-
constructed proofs Isabelle allows different levels of granularity. Often proofs in
Isabelle are more fine grained than proofs on paper.

In KeY, there are three different granularity levels (in this case for proof
construction): (a) each rule application individually, (b) using the full automatic
strategy, and (c) proof macros together with one step-simplification as middle-
course. Proof macros are a preferred way of proving. However, they are not
applicable in every proof situation.

In both systems, the granularity of the proof steps can be too fine-grained or
too coarse, depending on the proof situation (e.g., failed proof attempts) and the
purpose of the proof (e.g., publishing a proof). We conclude that there should
be a compromise between the two extremes, e.g., a mechanism that allows to get

14 B. Beckert et al.

insight into the Isabelle tactics if required. For the KeY system, a mechanism
would be useful that summarizes steps in the proof tree and only unfolds them
on user inspection — extending existing mechanisms that collapse/unfold certain
kind of proof nodes like intermediate steps or closed proof branches.

Time-consuming tasks during the proof process. We suspected that inspecting
open goals resp. finding relations between different proof artifacts would be time-
consuming tasks. To test this, we asked for time-consuming actions in the proof
processes. As mentioned above, in the global process the modelling and specifi-
cation task is time-consuming as well as the proof attempts in the local process.
Additionally, when the user wants to minimize the proof attempts in the local
process, the setup for the automatic strategies is time-consuming in both sys-
tems. Other time-consuming tasks that were mentioned, are the decision when to
reconsider the whole model, proof refactoring (in Isabelle), and model refactoring
(in KeY).

In the local process, the following time-consuming actions are related to
understanding the proof state: analyzing open goals, finding counterexamples,
identifying the cause of a failed proof, as well as systematic proof exploration
(in KeY), and find_theorems and proof exploration by using apply scripts (in
Isabelle). These answers support our hypothesis, as they provide evidence that
understanding the proof state is a laborious task. Also, other costly tasks were
mentioned: automatic proofs (as the user has to wait for the prover) and trivial
repetitive instantiations on different branches (in KeY), as well as redoing a proof
and especially finding the correct point to which to backtrack before correcting
the model or specification. In Isabelle, cleaning up proofs takes time as well.

Conclusion. Our observation is that a lot of answers focused on understanding
the proof state. For example, Isabelle users spend a lot of time cleaning up
their proofs to make them accessible and understandable for other users. The
answers related to the topic “understanding the proof state” in the part about
time-consuming actions also support this observation. To conclude, the answers
support our hypothesis that understanding a proof is a central and important
task in theorem proving. The participants spend time on understanding the
proof state in order to be able to proceed with the proof or find the cause for a
failed proof attempt. Comprehending the proof state is also necessary for proof
exploration, e.g., when the user only has parts of the proof process in mind or
when the user does not know how to start or proceed.

4.7 Mechanisms Supporting the Comprehension of the Proof State

Prior to the discussion, we developed paper mock-ups of mechanisms for both
verification tools which we believe aid the user in understanding the proof (state)
and therefore help to overcome the discrepancy between the proof model of the
user and the actual proof of the system. Implementing these remains for future
work. These mock-ups were presented to the focus groups as a sequence of screen-
shots that show how to invoke the mechanism and the effect of the mechanism

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 15

in a particular proof situation.! Our intention was to gain feedback whether our
developed mechanisms are comprehensible, serve our intended purpose (bridge
or reduce the gap) and are of interest for the participants. The task for the par-
ticipants was to describe the purpose and effect of the mechanism (as they saw
it) and share their opinion about it.

Tracing Terms/formulas/variables. We showed two mock-ups (designs) for
each system for the mechanism of tracing the origin of formulas respectively
variables in an open goal: In Isabelle we showed the parent formula of an open
goal with renamed variables. Additionally, the relation between the original and
the renamed variables was depicted. As a second mock-up we showed a state
with a number of open goals. By clicking on one of the goals, some of the used
lemmas and definitions leading to that goal were shown.

For the KeY system, the starting point for both designs was the same: we
selected one (sub-)formula of the sequent in the open goal. Then, for the first
design, we depicted a new window showing the selected formula and its ancestors
up to the original proof obligation (we summarized some of the intermediate
parent formulas to not clutter up the screen). In addition, the names of the rules
producing the formulas were given. The top-most parent shown was that part of
the specification where the formula had its origin. In the second design we did
not use a new window, instead we highlighted the parents in each inner node of
the proof tree up to the root, which contains the original proof obligation.

When the groups where shown the mock-up of the mechanism for tracing for-
mulas, the first reaction was clearly positive, particularly in the Isabelle group
for the first mock-up. Almost all participants intuitively understood the mech-
anism. One participant reported that he simulates this mechanism by manual
“reverse-renaming” in an external text editor. However, the question came up
whether the additional information may be confusing or clutter the screen. It
was suggested to implement the mechanism carefully, possibly using mouse-over
tags and — in particular for KeY — include it into the existing GUI concept.

Inspired by the second mechanism for Isabelle (showing the used lemmas)
some participants stated that it would be useful to have a mechanism showing
the path or case distinctions leading to selected open goals on demand.

The second design in the KeY group triggered a new idea: some participants
suspected a filtering mechanism and discussed about filtering the sequent and
the proof tree.

What Needs to Be Proven? For the Isabelle system, a mock-up was given,
showing which lemmas and theorems contribute to a proof (depicted as a simple
coloured graph). Unproven lemmas were coloured red, lemmas whose proofs used
unproven lemmas were coloured orange, and fully proven lemmas were coloured
green. The lemmas already proven were depicted with a box with an ellipsis
as description. The red and orange boxes were labelled with the name of the

! The screenshots may be found at http://formal.iti.kit.edu/~grebing/SWC/.

http://formal.iti.kit.edu/~grebing/SWC/

16 B. Beckert et al.

lemma that still needs to be proven resp. uses unproven lemmas. The participants
described the mechanism as separating the used from the unused lemmas and
that it would be useful in combination with, e.g., the automatic strategy simp.

Most of the participants showed a positive reaction to this mechanism. Some
participants would prefer a textual representation of the used and unused lem-
mas. The design of our mock-up can be improved in general. The level of detail
should be chosen carefully in order not to clutter up the screen (e.g., fold proven
lemmas with the option to unfold) and the view should be hierarchic.

What Happened During the Proof Process? For the KeY system, the
mock-up showed a diff mechanism relating two nodes in the proof tree (not
necessarily adjacent nodes). We designed the mock-up such that all unchanged
parts of the sequent were blurred out and the relevant changes were shown
directly above each other. The participants needed some time to understand
the idea and the blurring was found to be confusing, as the presentation of two
different sequent parts can be mistaken as belonging to the same single sequent.

One participant noticed that something similar is implemented in the KeY
system already as string diff mechanism, where the diff between two sequents
is shown in one new window. However, this participant also claimed that the
mechanism needs improvement, which supports our idea that such a functionality
should be implemented in the KeY system.

Already during the discussion, ideas for improvement came up, e.g., that the
diff between two sequents should be shown in two windows adjacent to each
other or above each other. Also, like in a text-diff viewer, the changes should be
marked using colours or typographical presentations. And in the proof tree, the
two nodes which are being compared should be marked.

In conclusion, we suggest to develop a user-configurable diff mechanism which
shows the two sequents being compared in two windows. One window depicts
the old sequent and one depicts the new sequent. In addition, the algorithm
for comparing two sequents has to be chosen carefully and consider the tree-
structure of the sequent. A string diff algorithm is not sufficient for comparing
tree-shaped sequents, as certain differences are recognized in the wrong way. For
example, it is wrong to assume that replacing n by null results from appending
ull to n.

4.8 The Ideal Interactive Proof System

As a cool-down task, we asked the participants to name properties that an ideal
interactive verification system should or should not have. Our goal here was
twofold — we wanted to collect more ideas about desirable features of ITPs and
evaluate our hypothesis at the same time. For the sake of brevity, we can only
present some of the mentioned features here. We decided to omit comments that
were of technical nature (e.g., “It should not have memory leaks.”) as well as
points that have already been mentioned in previous phases.

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 17

Intuitive proof process. Both groups wished that an ideal interactive proof system
would produce proofs “close to what an experienced user would expect.”

This perfectly supports our paradigm of reducing the gap resp. keeping the
gap small between the user’s model of the proof and the ITP’s current proof
state.

Understandable proof states. The focus group on KeY prefers more interaction
in terms of the original proof obligation (e.g., specification and program) while
the Isabelle group wishes for semi-automatic proof steps (instead of the fully
automatic tactics). In our opinion this illustrates that too many as well as too
few details have a negative effect on understandability of the ITP.

Convenient interaction. One important feature that was wished for by both
groups is a good performance of the ITP. The performance can impede usability
if the user has to wait too long between interaction steps.

Concluston. In summary, participants of our focus groups asked for an I'TP that
(i) produces intuitive proofs, (ii) can present proof steps in an understandable
way (and give counterexamples if the proof can not be closed), and (iii) provides
a convenient interface for interaction.

5 Conclusion and Future Work

We conducted two focus group discussions to evaluate the usability of ITPs. Our
goal was to find evidence that a gap between the user’s model of the proof and
the system’s current proof state exists and that this gap is a central problem for
the usability of ITPs. In addition, we have developed mock-ups for mechanisms
that help to bridge this gap or keep it small. We have developed a first model
of the proof process with the focus on the relation between the user’s (partial)
model of the proof process and the current proof state.

In this evaluation we have found evidence that our model of the proof process
is reasonable: the model does not fully represent the complexity of interactive
proof search but captures already a lot of peculiarities. Our findings also indicate
that the gap between the user’s model of the proof and the system’s current proof
state is a central problem in interactive theorem proving.

We have also encountered related topics, such as counterexample generators
and finding the correspondence between the current proof state and the program
(in the KeY system) that clearly show that our model does not capture all the
details of proving yet and therefore for future work this model will be extended.
We have also discovered other usability issues in the systems not related to
our hypothesis. These are often either technical or relate to other topics, e.g.,
performance of the automatic strategies. We believe that attention has to be
drawn to these as well to enhance the user experience for ITPs.

We have presented functionalities that should help to bridge the gap or reduce
the gap concentrated on providing the user insights into what happened dur-
ing the automatic proof search. The participants reacted positively towards the

18 B. Beckert et al.

mechanisms and provided feedback for improvements or new ideas, such as user
defined filter mechanisms for the proof tree in KeY.

For future work we will extend the proposed mechanisms and prototypi-
cally implement them in the KeY system and perform usability tests to evaluate
our solutions. Additionally, we plan to extend the model to take into account
that there are also different proof strategies for one proof and it is often user-
dependent which proof style is used for a proof.

Acknowledgements. We thank the participants of our focus group discussions on
the usability of KeY and of Isabelle and, in particular, the two moderators for their
great work. In addition, we thank our project partners from DATEV eG for sharing
their expertise in how to prepare and analyse focus group discussions.

References

1. Aitken, J.S., Gray, P., Melham, T., Thomas, M.: Interactive theorem proving: an
empirical study of user activity. J. Symb. Comp. 25(2), 263-284 (1998)

2. Aitken, J.S., Melham, T.F.: An analysis of errors in interactive proof attempts.
Interact. Comput. 12(6), 565-586 (2000)

3. Aitken, S., Gray, P., Melham, T., Thomas, M.: A study of user activity in inter-
active theorem proving. In: Task Centred Approaches To Interface Design, pp.
195-218. GIST Technical. Report G95.2, Department of Computing Science (1995)

4. Archer, M., Heitmeyer, C.: Human-style theorem proving using PVS. In: Ait
Mohamed, O., Muoz, C., Tahar, S. (eds.) LNCS. Springer, Heidelberg (1997)

5. Beckert, B., Grebing, S.: Evaluating the usability of interactive verification systems.
In: Proceedings, 1st International Workshop on Comparative Empirical Evalua-
tion of Reasoning Systems (COMPARE), Manchester, UK, June 30, 2012, CEUR
Workshop Proceedings, vol. 873, pp. 3-17. CEUR-WS.org (2012)

6. Beckert, B., Grebing, S., Bohl, F.: How to put usability into focus: using focus
groups to evaluate the usability of interactive theorem provers. In: Benzmiiller,
C., Woltzenlogel Paleo, B. (eds.) Proceedings, Workshop on User Interfaces for
Theorem Provers (UITP), Vienna. EPTCS, July 2014 (to appear)

7. Beckert, B., Hahnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS, vol. 4337. Springer, Heidelberg (2007)

8. Beckert, B., Klebanov, V., Schlager, S.: Dynamic logic. In: Beckert et al. [7], chapter
3, pp 69-175

9. Blackwell, A., Green, T.R.: A cognitive dimensions questionnaire (v. 5.1.1) Feb
2007. www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf

10. Caplan, S.: Using focus group methodology for ergonomic design. Ergonomics
33(5), 527-533 (1990)

11. Cheney, J.: Project report - theorem prover usability. Technical report, 2001.
Report of project COMM 641. http://homepages.inf.ed.ac.uk/jcheney/projects/
tpusability.ps

12. Ferré, X., Juzgado, N.J., Windl, H., Constantine, L..L.: Usability basics for software
developers. IEEE Softw. 18(1), 22-29 (2001)

13. Jackson, M., Ireland, A., Reid, G.: Interactive proof critics. Formal Aspects Com-
put. 11(3), 302-325 (1999)

www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
http://homepages.inf.ed.ac.uk/jcheney/projects/tpusability.ps
http://homepages.inf.ed.ac.uk/jcheney/projects/tpusability.ps

A Usability Evaluation of Interactive Theorem Provers Using Focus Groups 19

14.

15.

16.

17.

18.

19.

20.

Kadoda, G., Stone, R., Diaper, D.: Desirable features of educational theorem
provers: a cognitive dimensions viewpoint. In: Proceedings of the 11th Annual
Workshop of the Psychology of Programming Interest Group (1996)

Lowe, H., Cumming, A., Smyth, M., Varey, A.: Lessons from experience: making
theorem provers more co-operative. In: Proceedings 2nd Workshop User Interfaces
for Theorem Provers (1996)

Morgan, D.L.: Focus groups. Annu. Rev. Sociol. 22(1), 129-152 (1996)

Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco (1993)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

Ouimet, M., Lundqvist, K.: Formal software verification: model checking and the-
orem proving. Technical report, March 2007

Vujosevic, V., Eleftherakis, G.: Improving formal methods’ tools usability. In:
Eleftherakis, G. (ed.) 2nd South-East European Workshop on Formal Methods
(SEEFM 05), Formal Methods: Challenges in the Business World, Ohrid, 18-19
Nov 2005. South-East European Research Centre (SEERC) (2006)

An Approach for Creating Domain Specific
Visualisations of CSP Models

Lukas Ladenberger®) | Ivaylo Dobrikov, and Michael Leuschel

Institut fiir Informatik, Universitat Diisseldorf, Diisseldorf, Germany
{ladenberger,dobrikov,leuschel }@cs.uni-duesseldorf.de

Abstract. A domain specific visualisation can greatly contribute to bet-
ter understanding of formal models. In this work we propose an approach
that supports the user in creating domain specific visualisations of CSP
models. CSP (Communicating Sequential Processes) is a formal language
that is mainly used for specifying concurrent and distributed systems. We
have successfully created various visualisations of CSP models in order
to demonstrate our approach. The visualisations of two case studies are
presented in this paper: the bully algorithm and a level crossing gate.
In addition, we discuss possible applications of our approach.

Keywords: Formal methods + CSP - Domain specific visualisation -
Validation - Method - Tool support - Graphical editor

1 Introduction and Motivation

The feedback from a domain expert is crucial in the process of creating a formal
model since certain types of errors can only be detected by a domain expert.
Moreover, it is very important for the domain expert to make sure that his
expectations are met in the formal model. However, the communication between
the developer of a formal model and the domain expert can be challenging. One
reason for this is the fact that discussing a formal model requires knowledge
about the mathematical background of the respective formalism that the domain
expert might not have. To overcome this challenge, it may be useful to create
domain specific visualisations of formal models.

Inspired by the successful application of domain specific visualisations [1, 6]
of Event-B models [3], we have started an attempt to develop an approach
for creating domain specific visualisations for CSP (Communicating Sequential
Processes). CSP is a notation used mainly for describing concurrent and distrib-
uted systems. There are two major CSP dialects: CSP-M [15] and CSP# [17].
The most popular tools that support model checking of CSP-M specifications
are FDR [19] and PrROB [10]. Support for animating processes of CSP-M spec-
ifications is provided by ProB and ProBE [5]. The more recent CSP# [17] is

The work in this paper is partly funded by ADVANCE, an European Commission
Information and Communication Technologies FP7 project.
© Springer International Publishing Switzerland 2015

C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 20-35, 2015.
DOT: 10.1007/978-3-319-15201-1_2

An Approach for Creating Domain Specific Visualisations of CSP Models 21

supported by the PAT system [18]. In this work, we concentrate on the creation
of domain specific visualisations for CSP-M models.

Some of the tools provide features for visualising some aspects of the formal
CSP model. For instance, PROB, PAT, and FDR can provide visualisations of
counter examples that come in form of graphs. On the other hand, this work
is concerned with creating domain specific visualisations. This means that if
we were modelling, an interlocking system we could create a domain specific
visualisation that shows a track layout with blocks and points as well as signals
and trains. From now on, when we speak about a visualisation we mean a domain
specific visualisation.

In this work we present an approach (method and tool) for visualising CSP-
M models. We describe the method and present an implementation that comes
as an extension for BMotion Studio [8]. BMotion Studio is a visual editor that
supports the user in creating domain specific visualisations for Event-B, a formal
language for state-based modelling and verification of systems.

The difference between our contribution and the original visualisation app-
roach of BMotion Studio is imposed by the specifics of the CSP formal language.
The basic idea of BMotion Studio is to visualise the information that is encoded
in the states of an Event-B model (e.g. the values of variables), where each state
of the model is mapped to a particular visualisation. In contrast to Event-B, in
CSP the states of the modelled system are left uninterpreted and the behaviour
is defined in terms of sequences of events (traces). Thus, the concepts of BMo-
tion Studio are not longer applicable on event-based formalisms as CSP. The
intention of our approach is to visualise the traces of the underlying CSP model.

In order to demonstrate our approach, we have created visualisations for
various CSP-M models that we have found in the literature. In this paper, we
focus on the presentation of the visualisations of the bully algorithm [13] and of
a level crossing gate [14]. We also discuss how our approach can be of use in the
process of analysing and validating CSP specifications.

The paper is organised as follows: Sects. 2 and 3 describe the method and tool
support, respectively. The presentation of the visualisation of both case studies
is given in Sect.4. The discussion of possible applications of our approach is
outlined in Sect.5. Finally, we present our conclusions and compare our work
with related work.

Tool Website. The tool, various case studies, and a tutorial can be found at
http://www.stups.hhu.de/bmotionstudio/index.php/CSP.

2 The Method

The mathematical semantics of CSP are mainly based on traces. A trace is a
sequence of events performed by a process that can communicate and interact
with other processes within the CSP model. The basic idea of our approach
is to visualise the information encoded in the given sequence of events (trace).
However, a process may perform many different traces and thus creating a visu-
alisation manually for each possible trace is an almost impossible task.

http://www.stups.hhu.de/bmotionstudio/index.php/CSP

22 L. Ladenberger et al.

Our method requires the user to set up only one visualisation that may be
capable of representing any possible trace of a CSP process of a particular model.
This is achieved by means of observers that are used to link the visualisation
with the model. Formally, one can describe the method by means of Algorithm 1.

Algorithm 1. Visualising a CSP trace

1 procedure visualiseTrace(trace {e1,ea,...,€,), observers obs)
2 for i=1 to n do

3 foreach o € obs do

4 if member(e;, 0.exp) then

5 trigger(o.acts)

6 end if

7 end foreach

8 end for

9 end proc

For visualising a particular trace tr = (e1,es,...,e,), we sequentially go
through each event e; of tr with ¢ € {1..n} and execute all established observers
obs for e;. Note that by “visualisation of a trace” we mean the visualisation of
the state reached after the sequential execution of the events of a trace.

Each observer o has a user-defined CSP expression o.exp that constitutes
a set of observed events. For instance, the CSP expression {e.x | x «— {0..3}}
will constitute the set of observed events {e.1,e.2,e.3}. In addition, an observer
defines a list of actions o.acts that determine the appearance and the behaviour
of the visualisation. The actions are only triggered when the currently processed
event e; of the given trace is a member of the respective set of observed events
defined by o.exp. More precisely, the actions are triggered (line 5) whenever the
expression member(e;, o.exp) evaluates to true (line 4).

3 Tool Support

Figure 1 shows an overview of the tools and components that are used in this
work, as well as how our contribution fits into this overview (marked with dotted
border).

We implemented the method presented in Sect. 2 as an extension for the new
version! of BMotion Studio [8]. BMotion Studio is a visual editor for creating
domain specific visualisations of formal models. It uses PROB [9] to interact
with the model, to obtain trace information and to evaluate expressions. PROB
is a validation tool for model checking and animating Event-B, Classical-B and
CSP-M models [10], as well as other formalisms (e.g. [7,12]). The current ver-
sion of BMotion Studio supports the user in creating visualisations for Event-B
models [8]. This work extends BMotion Studio to support the creation of visu-
alisations for CSP-M models.

! The new version of BMotion Studio is not officially released yet, but the source code
is available from http://www.stups.hhu.de/bmotionstudio/index.php/Source.

http://www.stups.hhu.de/bmotionstudio/index.php/Source

An Approach for Creating Domain Specific Visualisations of CSP Models 23

CSP-M model
Model Refinement .
Checker Checker Animator
ProB
A
result of
CSP expression
+ query
trace CSP expression
information
A4
E CSP Event Observers '
1 (JSON) .
l actions
Visual Elements
(SVG and CSS)
Visualisation Template
R RN NN NN R R RN NN RN R RN NN N EEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEEE f
E CSP Support [
Graphical Editor
BMotion Studio

Fig. 1. Overview of the components that are used in this work

In BMotion Studio, a visualisation is described by a wvisualisation template
that contains visual elements and observers. Visual elements may be, for instance,
shapes or images that represent some aspects of the model. For example, in case of
modelling a communication protocol, we can use circles for representing the com-
municating entities of the protocol and arrows for the message exchanges between
the entities. The new version of BMotion Studio uses web technologies like Scal-
able Vector Graphics (SVG) [21] and Cascading Style Sheets (CSS) [20] for this
purpose. SVG is an XML-based markup language for describing two-dimensional
vector graphics. It comes with a number of visual elements like shapes, images and
paths. On the other hand, CSS is a language that can be used to describe the style
of SVG visual elements (e.g. the colour or the dimension).

Observers are used to link visual elements with the model. An observer is noti-
fied whenever a model change its state, e.g. an event was executed. In response,
the observer will query the model’s state and triggers actions on the linked visual

24 L. Ladenberger et al.

elements in respect to the new state. BMotion Studio comes with a number of
default observers for creating visualisations for Event-B. For instance, BMotion
Studio provides an observer that takes a user-defined predicate that is to be
evaluated in every state. Depending on the result of the predicate (true or false),
the observer will trigger an action to change the appearance of the linked visual
elements (e.g. the colour of a shape).

We extended BMotion Studio with a new observer type called CSP event
observer in order to support creating visualisations of CSP models. The observer

has the following JSON structure (in BMotion Studio an observer is represented
in JSON [2]):

{ "exp": "<user-defined CSP expression>",
"actions": [
{"selector":"<selector>", "attr":"<attribute>", "value":"<value>" 1},
{...}
11

Each observer has a user-defined CSP expression and a list of actions. The
user-defined expression constitutes a set of observed events, whereas the actions
determine the changes made on visual elements.

An action defines a selector that matches a set of visual elements in the
visualisation (SVG graphic). A selector follows the syntax provided by jQuery?.
For instance, to match the visual element with the ID “elem1” (each element
should have a unique ID in the visualisation) the user can define the selector
“#elem1”. The prefix “#” is used for matching a visual element by its ID in
jQuery. An action also defines an attribute (e.g. “fill” for colouring the interior
of a visual element like a circle shape) and a corresponding value that will be
set as the new value of the attribute when the action is triggered. The actions
of an observer o are triggered when the currently processed event is in the set
of observed events of o.

The user can refer to the information given by the arguments of the currently
processed event within the action fields (selector, attribute and value). This
is achieved by means of the construct “{{aN}}” where aN refers to the N-th
argument of the event. For instance, if the event has two arguments, then the first
and the second one can be obtained with “{{al}}” and “{{a2}}”, respectively.
To illustrate this, consider an event evt.xz with x <« 0..4. One may want to
use the information given by the first argument x of evt within a selector in
order to match visual elements that have an ID of the form “elemz”. This can
be done by defining the selector “#elem{{al}}”. The construct “{{al}}” will
be replaced by the value of the first argument of the currently processed event in
the observer. For instance, if the currently processed event is evt.2, the selector
“#elem{{al}}” will become “#elem2”.

Figure 2 illustrates the function of the CSP event observer on a simple exam-
ple. The visualisation consists of an SVG graphic with a text field element with
the ID “txt” and one CSP event observer. The CSP event observer defines an

2 For more information about jQuery and selectors we refer the reader to the jQuery
API documentation http://api.jquery.com/category /selectors/.

http://api.jquery.com/category/selectors/

An Approach for Creating Domain Specific Visualisations of CSP Models 25

evt.l evt.2 evt.3 evt.4 evt.5 evt.6
> > B — R — »
A P | P | | |
trace
exp| | false exp true exp | |false exp | |true exp | |false
v v v v v

{"exp":" {evtx|x<-1.n&Xx%2=01}"

"actions" : [
{ "selector" : "#txt", "attr" : "text", "value" : "{{al}}" }
1} CSP Event Observer
Set text of elem. Set text of elem.
with ID "txt" to "2" with ID "txt" to "4"
/4
ID: txt

SVG Graphic (Visualisation)

BMotion Studio

Fig. 2. The function of the CSP event observer

expression that constitutes the set of observed events evt = {evt.2, evt.4, evt.6, ..}
and one action actl that changes the value of the attribute “text” to “{{al}}”
of the visual element with the ID “txt” (the text field). According to our method
(see Sect. 2), the observer is executed for each event of a given trace. This means
that, whenever the currently processed event is in the set of observed events
evt, the observer will trigger the defined action actl. For instance, the execution
of the event evt.4 causes the observer to set the value of the text field element
to “4” as demonstrated in Fig. 2.

Creating a Visualisation. BMotion Studio provides a graphical editor with
different views and wizards that supports users in creating visualisations for for-
mal models. Figure3 shows the bully algorithm visualisation template opened
in the graphical editor (the bully algorithm visualisation will be introduced
in Sect.4). The editor consists of a set of tools (1) for creating SVG widgets
(e.g. visual elements as shapes and images), a canvas (2) holding the actual
visual elements, a view (3) for editing observers, and another view (4) for manip-
ulating the attributes of the currently selected visual element in the canvas. The
corresponding JSON file which contains the observers is created by the editor
automatically. We extended the graphical editor of BMotion Studio in order to
support the editing of CSP event observers.

Running a Visualisation. Once a visualisation template is created, it can
be started with BMotion Studio as shown in Fig.4. BMotion Studio uses the
default web browser of the user’s operating system to view the visualisation and
the PROB tool to animate the corresponding CSP-M model.

26 L. Ladenberger et al.

(1) (2) (3) (4)

Edit Object V. Configur:

» Events

H {test.x.y | x <- {0..N-1}, y <-
i " {o.N1}}

Legend
de status Communication
xmapy test.x.y
failed

revh . H .
® revived xmupy) election.x.y i Attribute >
coordinator : Value >>
: b y) ANSWET.X. H
coordinated * Y o

X iy OK.X.Y : Selector

i Selector
s Attribute
Value

x mep(y) COOIdinator.x.y

* 1 Selector >>
11 Attribute
Value

Fig. 3. CSP support within BMotion Studio graphical editor

The user can access the entire function range of PROB. For instance, Fig. 4
shows two views (Events and History) that come from PROB. The first one
(Events) lists all possible events that are available in the current state of the
animation. The second one (History) shows the executed events so far. The left
side of Fig. 4 shows the visualisation of the trace that is displayed in the History
view. If the user executes an event in the Events view, a new trace (the trace
generated so far plus the recently executed event) is provided which is visualised
according to our approach.

4 Case Studies

In order to test our approach, we successfully created various visualisations for
CSP specifications that we have found in the literature. In this work we present the
visualisation of the bully algorithm specification from [13] and of the level crossing
gate specification from [14]. The specifications are written in the machine readable
dialect CSP-M and have not been modified for the visualisation we have created.
Both visualisations were created by means of the built-in graphical editor of BMo-
tion Studio. However, for presentation purposes the observers of the visualisations
are described in the JSON notation in this section.

4.1 The Bully Algorithm

The algorithm represents a method of distributed computing for electing a node
to be the coordinator amongst a group of nodes. Each node has a unique ID
and the algorithm intends to select the node with the highest ID to be the
coordinator. It is assumed that the nodes may fail and revive from time to time
and the communication between the nodes is reliable. Three types of messages

An Approach for Creating Domain Specific Visualisations of CSP Models 27

BMotion Studio ProB
Legend ‘
Node status Communication Q election.1.2 1T
P election.1.3
xm=p(y) test.x.y e R 1@ | |feviver
O failed H coordinator.2.0
o xmmdp(y) OK.X.y i > answer(2, 1) coordinator.2.1
@ revivel xmup(y) election.x.y \ > answer(2, 1) t?th‘ S5
O coordinator \ > fail(0) Hesahes
. Xmusp(y) aNSWer.x.y > fail(1) jrac
(D coordinated > fail(1) rest.2.3
x mep() cOOrdinator.x.y > fail(3) fa”'l
P leader(0, 2) I\T!t?vork
P revive(3)

Fig. 4. The bully algorithm visualisation

are defined within the design of the algorithm: election (announcing an election),
answer (responding to an election message), and coordinator (announcing the
identity of the coordinator).

The specification from [13] defines six additional types of events needed for
the formalisation of the algorithm in CSP: the fail and revive events (for mod-
elling failing and reviving of a node), the test and ok events (for simulating a
test-response communication), the leader events (for indicating the coordinator
of a living node), and the tock event (for modelling timeouts and time).

Visualising the Bully Algorithm. In general, we want to visualise the process
of electing a leader in the network. More precisely, we aim to visualise the
Network process of the CSP specification. As the bully algorithm specifica-
tion in [13] is presented for a network with four nodes, we also intend to create
a visualisation for four nodes (the nodes are enumerated from 0 to 3). Figure 4
demonstrates the visualisation of a particular trace.

There are two major aspects of the specification that we want to visualise:
the nodes and the communication between the nodes. Each node is visualised
by means of a circle in which the respective ID is positioned, whereas the com-
munication between the nodes is illustrated by directed arrows. Each directed
arrow is made up of a line and a corresponding arrowhead.

To each visual element in the visualisation we assign a unique ID referring
to the elements in the CSP specification. Thus, the node with ID x in the CSP
specification is presented by the circle with ID “n-x” in the visualisation. Addi-
tionally, a message transfer from the node with ID z to the node with ID y is
represented by the line with ID “l-x-y” and the arrowhead with ID “p-y” (i.e.
the arrow connecting “n-x” and “n-y”). In this section, both symbols z and y
stand for an integer ranging from 0 to 3.

We can classify all types of events in the specification into the following
groups:

— status: Events that can change the status of a particular node z: fail.z,
revive.x, coordinator.z.y, and leader.z.y.

28 L. Ladenberger et al.

— message: Events illustrating a message transfer from node z to node y:
test.xz.y, ok.x.y, election.z.y, answer.z.y, and coordinator.x.y.
— hidden: Events that are not considered in the visualisation: tock.

Thus, we can infer that there are two general types of observers to define: the
status and the message observers. Note that each coordinator event (coordina-
tor.z.y) has been included in the first two groups above. This is because in the
specification each of the coordinator events intends to identify the coordinator
(z) and at the same time represents a message transfer (to node y).

The status of a node usually changes when one of the status events has been
executed. Each node, except for the node with the lowest ID?, can have the fol-
lowing status: failed, revived, coordinator, or coordinated. A unique fill pat-
tern has been selected for distinguishing each possible status of a node (see legend
in Fig. 4).

In order to associate a status event from the CSP specification with a node
in the visualisation, we use the selector “#n-{{al}}” in the definition of the
respective observer. The construct “{{al}}” is used in the selector for obtaining
the value of the first argument of the respective status event. For example, the
observer for changing a status of a node to failed can be defined as follows:

{ "exp": "{fail.x | x <- {0..N-1}}",
"actions": [{"selector":"#n-{{all}}",
"attr":"fill", "value":"url(#diagonalHatch) "}] }

The observer will fill the respective node with a diagonal hatch pattern whenever
a fail event has been processed. For instance, the node with ID “n-3” will be
filled with a diagonal hatch pattern when the event fail.3 has been processed. In
a similar fashion we have defined the observers for the other node status changes.

For creating the message observers we need to consider both arguments of
the message events. The types of the messages are distinguished by different
stroke patterns (see Fig.4). Thus, each message observer, except for the coordi-
nator observer (this observer has three actions), has two actions: one action for
appearing the arrow (the line and arrowhead constituting the respective arrow
in the visualisation) and one action for changing the stroke pattern of the arrow.
For instance, the observer for visualising the election message can be defined as
follows:

{ "exp": "{election.x.y | x <- {0..N-1}, y <- {0..N-1}}",
"actions": [{ "selector": "#1-{{a1}}-{{a2}}, #p-{{a2}}",
"attr": "class", "value": "visible" },
{ "selector": "#1-{{a1}}-{{a2}}",
"attr": "stroke-dasharray", "value": "5,2,2,2" }] }

To provide a clear visualisation an additional observer has been added to
hide all arrows after performing an arbitrary event. This observer is applied on
the currently processed event before all other defined observers.

3 The node with ID 0 can never be a coordinator as there is no node with a lower ID.

An Approach for Creating Domain Specific Visualisations of CSP Models 29

BMotion Studio ProB
Events x History x
Q enter.4.Trainl T
tock
ﬁ By K 18 @ | frock
. . tock
sensorin : i sensorout > leave(3, Trainl) leave .2 Trainl

P enter(2, Train2) enter.3.Trainl
tock
1 tock

segmentl segment2 segment3 segment4 :] kock
I I sensor.in
leave.0.Train2

enter.1.Train2
leave.l.Trainl
enter.2.Trainl
tock
tock

ol

Fig. 5. The level crossing gate visualisation

The initial state of the specification and the visualisation is the state in
the network where all nodes are alive and the coordinator is the node with the
ID 3 (the node with the greatest ID). Additionally, no message exchanges are
performed.

4.2 Level Crossing Gate

The model of the first case study introduced in [14] specifies a level crossing
gate of a single railway track along which trains move only in one direction. The
track is divided into segments such that each of the segments is at least as long
as any train. There are five track segments considered for the level crossing gate
where one of the track segments represents the outside world.

The track segments are numbered. The input sensor is placed in segment 1
and the crossing and output sensors in segment 4. The outside world segment is
identified by 0. A train enters segment (i+ 1) before it leaves segment i. Entering
and leaving of a segment are specified by the events enter and leave, respectively.
The entering of train t into segment j is described by enter.j.t. Accordingly, the
leaving of train ¢ from segment j is designed by means of the event leave.j.t.

The sensors send control signals to the gate. The gate goes down after a
train enters segment 1 and accordingly the gate goes up after the train leaves
segment 3 and no train is moving along the segments 1 to 2. The control signals
sent by the input and output sensors are specified by the events sensor.in and
sensor.out, respectively. The communication between the controller and the gate
processes is specified by the channel gate which defines four different events. The
events gate.go_down and gate.go_up represent the commands from the controller
to the gate for moving the barriers down or up. And the events gate.down and

30 L. Ladenberger et al.

gate.up denote the confirmations from the gate sensors that the barriers are
down or up, respectively.

In addition, timing constraint are set for the trains moving on the tracks. The
speed of each train is determined by how many units of time a train can spend
per track segment. This additional property is required since the goal of the
system is to guarantee via timing that the gate is up and down at appropriate
moments. In the CSP model the speed of a train per track segment has been
set to three time units. A unit of time is denoted by the tock event in the level
crossing gate specification.

Visualising the Level Crossing Gate. In our visualisation (see Fig.5) we
assume that the trains are moving from left to right. Track segments 1 to 4 are
illustrated by rectangles separated by vertical, dotted lines. Segment 0, which
represents the outside world, can be seen as the space left from track segment
1 and the space right from segment 4. A train leaves the outside world after
entering track segment 1 and a train enters the outside world before leaving track
segment 4. The length of each of the track segments 1-4 in the visualisation is
considered to be 100 pixels.

Since the model from [14] handles two trains, we also intend to visualise
only two trains (these are indicated as Trainl and Train2). Both trains are
represented by two boxes coloured in grey and slate grey, respectively. Moving
of a train along the track is simulated by shifting the respective box from left
to right. In order to simulate a movement along the track segments, we shift the
respective box 50 pixels from left to right. In doing so, entering of a new segment
is represented such that the box is laid half on the new segment and half on
the previous. On the other hand, when the train leaves a track segment, the
box is moved fully on the recently entered segment. Referring to Fig. 5, the grey
box representing Trainl is laid half on segment 4 and half on segment 3 after
executing the event enter.4.Trainl, whereas Train2 (the slate grey box) is moved
fully on segment 1 after performing consecutively the events enter.l.Train2
and leave.0.Train2. We have set each box representing a train to the length of
100 pixels.

For visualising the movement of the trains, we defined two observers that
listen respectively to the events enter.j.t and leave.j.t. Both observers contain
an action that changes the transform attribute [21] of the matched visual ele-
ment. For instance, the leave observer is defined such that by executing an event
leave.j.t the visual element with the ID “train-t” (¢ refers to the second argument
of the leave events) will be moved 50 pixels to right by setting the transform
attribute to the value translate(50,0). Thus, the observer for leaving a track is
defined as follows:

{ "exp": "{leave.j.t | j <- {0..3}, t <- {Trainl,Train2}}",
"actions": [{ "selector":"#train-{{a2}}",
"attr":"transform", "value":"translate(50,0)" }] }

Note that the leave observer does not fire its actions when an event leave.4.t
is executed since in our visualisation the respective box “train-t” is intended to
be moved on the left site of track segment 1 when the event enter.0.t is executed.

An Approach for Creating Domain Specific Visualisations of CSP Models 31

We decided to define the observers in this way because after entering the outside
world (track segment 0) and leaving at last track segment 4, the same train can
enter the crossing gate segments once again.

For the overall visualisation we defined four different observers. The other
two observers are responsible for simulating the up and down movement of the
barriers in the visualisation after proceeding of the events gate.up and gate.down,
respectively. For this, we created for each of the barriers two visual elements that
illustrate accordingly the two possible states of the appropriate barrier: barrier is
up and barrier is down. This means that we have four visual elements illustrating
the different positions of the barriers. When, for example, the event gate.down
is processed, then the go-down observer executes two actions. The first is to
hide all barrier elements and the second action is to display the visual elements
representing that the barriers are down. The hiding and displaying of the barriers
are realised by setting the “opacity” attribute of the visual elements to 0 and
100, respectively. The go-down observer is given as follows:

{ "exp":"{gate.down}",
"actions": [
{ "selector":"gl[id"=gatel", "attr":"opacity", "value":"O" }
{ "selector":"gl[id"=gate-go_down]", "attr":"opacity", "value":"100" }]}

Analogously, we defined the go-up observer. The initial state of the specifi-
cation and its visualisation is the state in which both trains are in the “outside
world” track segment and both barriers are up.

5 Application of the Approach

Using validation tools for performing various consistency checks automatically is
a powerful technique for verifying the correctness of the analysed specification.
A failure of a consistency check is mostly reported by producing of a counterex-
ample (very often presented as a trace leading to an error state). However, trying
to understand the failure behaviour of the model by simply examining the trace
can sometimes be difficult as the error trace may, for example, be the result
of the interaction of various components in the specified system. Thus, using a
visualisation in order to facilitate the effort of understanding the error trace can
be very useful.

In this Section we show how the bully algorithm visualisation introduced in
Sect. 4 may, for example, contribute to the better understanding of an erroneous
behaviour in the models.

For example, the trace of the Network process of the bully algorithm model

(fail.2, fail.3,test.1.3, tock, election.1.3, election.1.2, revive.2, revive.3,
coordinator.3.2, fail.3,test.0.3, tock, coordinator.1.0,leader.2.3)

represents a sequence of events leading to a state in the network in which the
elected leader is not the living node with the greatest ID. In general, the false

32 L. Ladenberger et al.

fail.2, fail.3
test.1.3 tock, election.1.3
_ e R e

coordinator.3.2 revive.3, revive.2

=

‘election. .2

®
&
®

~
@

® @
Q

® @ ® @ O

test.0.3 tock, coordinator.1.0

R E—

o

‘ leader.2.3

®

Fig. 6. A stepwise visualisation of a trace of the bully algorithm model

behaviour that is explicitly discussed in [13] illustrates a problem occurring by
a certain combination of node failures and mixing up various elections.

While examining the given error trace, it is hard for the user to reproduce
and to see the actual problem. In contrast, Fig.6 shows a stepwise graphical
representation of the error trace. The user can see at a glance the erroneous
behaviour that is shown in the last step of the trace (after performing leader.2.3)
in the graphical representation.

6 Conclusion

In this paper, we presented an approach for creating domain specific visualisa-
tions of CSP-M models and an implementation based on BMotion Studio. In
particular, we extended BMotion Studio and the built-in graphical editor with
a new observer type (CSP event observer) that implements the algorithm pre-
sented in Sect. 2.

An Approach for Creating Domain Specific Visualisations of CSP Models 33

The difference between our contribution and the primary approach of BMo-
tion Studio (the domain specific visualisation of Event-B models) is imposed by
the question of what is to be visualised of a model. On the one hand, in CSP each
trace is mapped to a particular visualisation. On the other hand, in Event-B the
information to be visualised is given by the states (e.g. the values of variables)
of an Event-B model, where each state is mapped to an individual visualisation.

We tested our approach by creating visualisations of various CSP-M models.
A demonstration of our approach is given by visualising the bully algorithm
specification from [13] and the level crossing gate specification from [14]. We
also have shown how our approach could be of use in the process of analysing
and validating CSP specifications.

Our tool comes with a graphical editor that can be used to create easily
visualisations. The developer of a visualisation remains in the CSP domain. This
means that only CSP expressions and jQuery selectors (see Sect. 3) are required
for establishing the link between a visualisation and the CSP model. Moreover,
a modification of the CSP model is not necessary to create a visualisation for it.

A domain specific visualisation of a CSP model can be useful in various ways.
For example, the graphical representation of the behaviour of the CSP processes
can be helpful for discussing the specification with non-formal method experts
and for the further development of the specification.

We also believe that our approach may be of use to identify inconsistencies or
unexpected behaviours within the specification. Indeed, in the process of exam-
ining the various case studies, the visualisation helped us to better understand
some of the unexpected behaviours (error traces) discovered by validating the
corresponding specification (see Sect. 5).

Finally, we believe that our approach may be useful for teaching formal meth-
ods, as the execution of a specification with a graphical representation may give
a better idea and overview of the system being modelled. For instance, we used
our approach successfully in our lectures as a way to present formal models to
students and to motivate them to write their own formal models.

Related Work. BMotion Studio was initially developed for creating domain
specific visualisations of Event-B models [8]. Our approach extends BMotion
Studio to permit users to also create visualisations for CSP-M.

The tools presented in [4,16] support the creation of domain specific visuali-
sations for Classical-B. In contrast to our approach, both tools require the user
to set up scripts in order to link the visualisation to the model.

Our approach uses ProB [10] to execute a CSP-M specification. ProB and
other CSP tools [18,19] are capable of displaying graphs of processes and coun-
terexamples. Whereas, the purpose of our work is to provide a tool that allows
the user to create custom visualisations that are specific to a domain.

A central goal of our work is to gain a better understanding of CSP models
by creating domain specific visualisations. A different approach has been taken
by [11], which presents a tool for visualising CSP in UML.

34

L. Ladenberger et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. ADVANCE Deliverable D4.2 (Issue 2). Methods and tools for simulation and test-

ing I, March 2013

. ECMA-404 The JSON Data Interchange Standard. Ecma International, October

2013
Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

. Bendisposto, J., Leuschel, M.: A generic flash-based animation engine for ProB.

In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 266—269.
Springer, Heidelberg (2006)

Formal Systems (Europe) Ltd., Process Behaviour Explorer (ProBE User Manual,
version 1.30). http://www.fsel.com/probe_manual.html

Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66-79. Springer,
Heidelberg (2014)

. Hansen, D., Leuschel, M.: Translating TLA™ to B for validation with ProB. In:

Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321,
pp. 24-38. Springer, Heidelberg (2012)

Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising event-B models with
B-motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009.
LNCS, vol. 5825, pp. 202-204. Springer, Heidelberg (2009)

Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185-203 (2008)

Leuschel, M., Fontaine, M.: Probing the depths of CSP-M: a new FDR-compliant
validation tool. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
278-297. Springer, Heidelberg (2008)

Ng, M.Y., Butler, M.: Tool support for visualizing CSP in UML. In: George, C.W.,
Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 287-298. Springer, Heidelberg
(2002)

Plagge, D., Leuschel, M.: Validating Z specifications using the PROB animator
and model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591,
pp. 480-500. Springer, Heidelberg (2007)

Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer-Verlag New York
Inc., New York (2010)

Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

Scattergood, B., Armstrong, P.: CSP-M: A Reference Manual (2011)

Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand,
J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274-276. Springer,
Heidelberg (2006)

Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for
system modeling and verification. In: Chin, W.-N., Qin, S. (eds.) Proceedings TASE
2009, pp. 127-135. IEEE Computer Society (2009)

Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 709-714. Springer, Heidelberg (2009)

http://www.fsel.com/probe_manual.html

19.

20.

21.

An Approach for Creating Domain Specific Visualisations of CSP Models 35

Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A W.: FDR3 — a
modern refinement checker for CSP. In: Abrahém7 E., Havelund, K. (eds.) TACAS
2014 (ETAPS). LNCS, vol. 8413, pp. 187-201. Springer, Heidelberg (2014)

W3C CSS Working Group. Cascading Style Sheets (CSS) Snapshot 2010. http://
www.w3.org/TR/css-2010/, May 2011

W3C SVG Working Group. Scalable Vector Graphics (SVG) 1.1 (Second Edition),
August 2011. http://www.w3.org/TR/SVG11/

http://www.w3.org/TR/css-2010/
http://www.w3.org/TR/css-2010/
http://www.w3.org/TR/SVG11/

Using Z in the Development and Maintenance
of Computational Models of Real-World Systems

Shahrzad Moeiniyan Bagheri’?(®) Graeme Smith!, and Jim Hanan?

! School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia
2 Queensland Alliance for Agriculture and Food Innovation,
The University of Queensland, Brisbane, Australia
shahrzad.moeiniyanbagheri@uqgconnect.edu.au

Abstract. There are two main challenges in developing computational
models of a real-world phenomena. One is the difficulty in ensuring
clear communication between the scientists, who are the end-users of
the model, and the model developers. This results from the difference in
their backgrounds and terminologies. Another challenge for the develop-
ers is to ensure that the resultant software satisfies all the requirements
accurately. Utilising a formal notation such as Z which is easy to learn,
read, understand and remember can address these issues by (a) act-
ing as a means to unambiguously communicate between scientists and
simulation developers, and (b) providing a basis for systematically pro-
ducing and maintaining simulation code that meets the specification. In
this paper, we describe a translation scheme for producing code for the
widely used agent-based simulation environment NetLogo from Z spec-
ifications. Additionally, we report on the use of the approach on a real
project studying the movement of chyme, i.e. food undergoing digestion,
through a pig’s intestine as a means of understanding the effect of dietary
fibre on human health.

1 Introduction

Studying real-world processes through experimental observation can be techni-
cally difficult. It can also be costly both in time and resources, and in certain
areas ethical issues can arise. A more convenient approach is to develop a compu-
tational model of the system. Such a model allows scientists to uncover patterns
in the studied system and to determine the system parameters and factors that
are the most influential. While the visualisations provided by a computational
model allows scientists to observe macro-level behaviour, this behaviour is only
representative of their understanding of how the system works when that under-
standing has been accurately encoded. Furthermore, such visualisations repre-
sent specific system behaviours, not the general system behaviour. Ensuring an
accurate encoding of the general behaviour can be difficult to achieve, particu-
larly when the developers of the model are not part of the scientific team and are
from different backgrounds. The situation can become even worse if developers
© Springer International Publishing Switzerland 2015

C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 36-53, 2015.
DOT: 10.1007/978-3-319-15201-1_3

Using Z in the Development and Maintenance of Computational Models 37

and scientists have different and even sometimes conflicting terminologies. For
example, they may use different terms for the same concepts, or a single term
for different concepts.

An additional problem is that the scientists’ understanding of the system
may evolve over time and the model needs to be modified to reflect this. Again
it is important that the modifications are an accurate reflection of the required
change. This is facilitated if the model is expressed in terms of constructs that
are easy to learn and remember. The constructs of the implementation language
of a typical simulation environment are too low-level (i.e., too close to program-
ming constructs) to satisfy this criteria for scientists who are not familiar with
programming.

To overcome these issues, two considerations are essential. Firstly, the sys-
tem needs to be specified and the design ideas and decisions documented using
a method that is easy to learn, read, understand and remember by all the peo-
ple involved, both during the development and for future purposes like testing
and maintenance. Such a method should make the communication between the
scientists and developers, and also between the development team members,
more convenient, efficient and well-documented. Secondly, the applied method
for specifying the system should provide a basis for ensuring efficient and accu-
rate implementation of the specified requirements. Not only should this facilitate
the production of the code, but also its maintenance. The changes in the scien-
tists’ understanding of the system, and as a result in the specification, should
be readily incorporated into the code. This reduces the burden of the resultant
model’s integrity assurance and its maintenance on the developers’ shoulders.

To achieve these two goals, formal methods can be utilised. Formal specifi-
cations provide a communication method that does not include the ambiguities
that are found in informal (e.g., natural language) specifications [3]. These meth-
ods also allow the developers to gain a clear understanding of the system, before
starting the implementation process. Moreover, such specifications can form the
basis of a systematic approach for deriving simulation code. This is in contrast
to semi-formal specifications (e.g., UML [2]) that only achieve the first goal.

Recently, we developed simulation software for biologists at the Centre for
Nutrition and Food Sciences (CNAFS), The University of Queensland, who are
examining the effect of dietary fibre on human health. To facilitate the commu-
nication in the development process and future maintenance of the software, we
utilised the formal notation Z [10,13]. Z was chosen due to it being a simple
extension of set theory and first-order predicate logic which is relatively easy
to learn. Since the biologists are not necessarily familiar with programming,
notations supporting program-like constructs (such as B [1]) or program-like
structuring (such as Object-Z [9]) were seen as having more concepts to learn,
and hence being less suitable. It should be noted that in order to achieve the
goal of having a fairly simple and easy to learn notation, the use of Z in this
research was restricted to avoid more complex notations and certain modelling
techniques, such as promotion [13], which are regarded as difficult to understand
for non-computer scientists.

38 S. Moeiniyan Bagheri et al.

For the purpose of implementing this simulator, the NetLogo [11] simulation
environment was chosen. NetLogo is a modelling language and environment that
is widely used for developing agent-based simulation software. The agent-based
approach considers smaller components of the system as autonomous entities
(agents) that can form more complex system-level behaviours while perform-
ing relatively simple interactions with each other and with their environment
[8]. Additionally, a systematic translation scheme from Z to NetLogo code was
defined. This made the implementation much easier and enabled us to ensure
that the simulation software behaved as required and specified.

Mens and Van Gorp [6] argue that even source code can act as the specifica-
tion of a system being studied. As a result, the need for utilising Z for specifying
the system requirements might be questioned in this research, especially when
a 7Z specification block and its equivalent NetLogo code are almost of similar
length. However, what makes a 7 specification a more appropriate means of
communication than NetLogo code is that it is based on first-order predicate
logic. This makes the Z notation easy to learn, read, understand and remem-
ber. On the other hand, in order to understand the logic behind NetLogo source
code, the reader is required to learn quite a large amount of syntax as well.
Consequently, like with many other programming languages, it is not easy and
straightforward to learn NetLogo and more importantly memorise its syntax for
future references, modifications and maintenance.

In this paper, we present an approach for systematically translating 7 speci-
fications to NetLogo code that was developed while working on the CNAFS case
study. We begin in Sect. 2 with an overview of NetLogo syntax. In Sect. 3 we pro-
vide the translation scheme and illustrate its application on part of the CNAFS
case study in Sect.4. We then conclude with a discussion of lessons learnt and
future directions in Sect. 5.

2 Overview of NetLogo

In this section we describe the syntax of NetLogo [11] relevant to the case study
described in Sect.4. A comprehensive documentation of NetLogo can be found
in the NetLogo User Manual [12].

2.1 Agents
NetLogo allows developers to define specific breeds of agents using the syntax

breed[MyDBreeds mybreed]

where MyBreeds is the plural, or agentset, form of the breed name and mybreed
is the singular form.

Each type of breed can have its own properties. These are a set of attributes
that are specific to agents of the breed and, for a given agent, can only be

Using Z in the Development and Maintenance of Computational Models 39

accessed and modified by the agent itself. For example, the following defines
agents of type MyBreeds as having properties z, y and z.

MyBreeds-own|z y 2]

A number of commands exist for creating and accessing agents. For example,

create-MyBreeds 2 [set z 0
set y 100]

creates two agents of type MyBreeds where the brackets enclose a sequence of
tasks which are applied to the agents upon creation. In this case NetLogo’s set
keyword is used to set the agents’ property = to 0 and property y to 100. Note
that when agents are created, a unique non-negative integer is automatically
assigned to them, no matter which agentset they are from. This unique number
is called who number.

In NetLogo, in order to update the property values of an agent, the ask
command, which takes an agent or agentset as its input, is used. Thus, the value
of z can be set to 10 for all existing agents of type MyBreeds as follows.

ask MyBreeds [set z 10]

2.2 Procedures

Procedures in NetLogo enable developers to modularise their code. A procedure
includes a group of statements that aims to perform a particular task on agents,
their environment, interface controls, inputs or outputs to the system. NetLogo
procedures can be defined either as a reporter or as a command procedure. A
reporter procedure is one that reports a value when it is called somewhere in the
code, whereas a command procedure only performs some tasks. Additionally,
both reporter and command procedures can take input variables. When a pro-
cedure, which takes n inputs, is called elsewhere in the code, the first n words
after the procedure name are considered as its inputs.
Procedures of each type can be defined using the syntax

to-report myreporter
report myval
end

to mycommand [myinput]
print myinput
end

where mycommand is a command procedure that takes myinput as its input and,
using the print command, prints its value in the NetLogo Command Center
which is part of NetLogo’s interface. Also, myreporter is a reporter procedure
that uses the report keyword to report the value of the mywval variable. Having
defined these two procedures, the following code prints the value of the myval
variable to the Command Centre

mycommand myreporter

where the value reported by myreporter is passed to mycommand as an input.

40 S. Moeiniyan Bagheri et al.

2.3 Data Structures

NetLogo is an untyped programming language, which allows a variable to take
different types of values whenever required. In order to define a variable, there-
fore, it is not required to identify its data type. This section describes the main
types of data structures that have been used in the case study.

Globals are those types of variables in the system that can be accessed by all
procedures. Such variables can be defined either by using the globals keyword
as follows

globals[mygloball myglobal2)]

or by assigning a name to an interface control such as a slider or switch, which
can then be treated as a global variable throughout the code. It should be noted
that the defined breeds are also accessible globally.

Locals, on the other hand, are the variables that can only be accessed within
the scope of the procedure in which they have been defined. A local can be
defined using the let keyword and is accessible to following statements within
the procedure.

to myprocedure
let mylocal myvalue
; other statements
end

Strings, numbers, booleans and lists are the main data types that exist in
NetLogo. For instance, a string, number and boolean can be defined as follows.

let mystring “my string value”
let mynumber 1000
let myboolean? false

It is common in the NetLogo user community to add a ‘?” to the end of a
boolean variable name, however it is not compulsory.

Lists allow developers to define more complex data structures. Each element
of a list can be a number, string, agent, agentset or a list. A list can be defined
as follows.

let mylist 1ist 1 2 ; a list with the two elements 1 and 2

2.4 Operators and Reporters

NetLogo supports the usual range of arithmetic (e.g., +,—,*, /), comparison
(e.g., <=,>=,=and ! =) and logical operators (e.g., and, or and not). NetLogo
also has a range of built-in reporters that are explained in the rest of this section.

Using Z in the Development and Maintenance of Computational Models 41

The with reporter can be used to report only those agents from an agentset
that satisfy the given conditions as follows

ask MyBreeds with [z = 10] [set z 10]

where z will be set to 10 only for those agents with x = 10. The with reporter
can be used together with all of the following reporters when required.

The one-of reporter can be used to randomly choose a single agent from an
agentset. For example, the following equates to an agent with = 10.

one-of MyBreeds with [z = 10]

The min-one-of reporter can be used to randomly choose an agent with the
minimum value for a given property. For example, the following equates to an
agent with the minimum value of z out of all those agents with x = 10.

min-one-of MyBreeds with [z = 10] [7]

Note that in both the one-of and min-one-of examples, a reserved value
in NetLogo, nobody (representing no agent), is reported in the case where no
mybreed with z = 10 is found.

Additionally, whenever it is required to get the value of any agent’s properties,
the of reporter can be used. For example, the z property of an agent can be
accessed as follows

[z] of mybreed 0

where mybreed 0 refers to the agent of type MyBreeds with who number equal
to 0.

The member? reporter can be used to check that an agent mb (defined, for
example, as a local variable) is a member of the agentset MyBreeds as follows.

member? mb MyBreeds

The all? or any? reporters, which report true or false, can be used to
check conditions on all or any agents in an agentset. For example,

set myboolean? (all? MyBreeds with [color = green] [z = 0])

sets myboolean? to true when all agents of type MyBreeds with color green
have their z property equal to 0, or when there is no green mybreed'. Otherwise,
myboolean? will be set to false. Also,

set myboolean? (any? MyBreeds with [color = green and z = 0])

sets myboolean? to true when at least one agent of type MyBreeds with color
green and z = (exists. Otherwise, myboolean? will be set to false.

! color is a property of all agents, and green is a constant that may be assigned to
color.

42 S. Moeiniyan Bagheri et al.

2.5 Branching

The main branching structures in NetLogo, as in most programming languages,
are the if and ifelse commands. The latter can be used to control the flow of
the program under two opposite conditions as follows.

ifelse mytotal < 1000
[create-MyBreeds 1 [set color green]]
[ask MyBreeds with [color = green] [die]]

In this example, if mytotal is less than 1000, the commands within the first
brackets will be executed and as a result, one agent of type MyBreeds will be
created and its initial color will be set to green. However, if mytotal is greater
than or equal to 1000, then the commands inside the second brackets will be
executed and consequently, all the green MyBreeds will die. The die command
can be applied on all agents of the system and removes the specified agent from
its agentset.

3 Translating Z to NetLogo

The goal of this section is to describe how a Z specification can be systematically
translated into NetLogo code. We adopt the guarded (or blocking) interpretation
of Z [4] in which operations can only occur when their pre-state predicates, i.e.,
their predicates describing the state before the operation, hold. In the traditional
(or non-blocking) interpretation of Z, operations can always occur but have an
undefined effect when their pre-state predicates do not hold.

It should be noted that not all of the Z notation has been investigated in
this work. Rather we have considered a subset of Z that we believe satisfies our
requirements of being easy to learn, read, understand and remember while also
being adequate for modelling the kinds of systems we are targeting. In particular,
all updates of variables are written in the form z’ = e, where e is an expression,
facilitating translation to NetLogo set commands. Similarly, all initialisations
of variables are written z = e. Also, some constructs which are not readily
translated are avoided. For example, nested quantifiers are avoided in operation
guards. Also, use of promotion schemas (used in Z to promote operations on local
state spaces to the global system state) is avoided by specifying all operations
directly on the global system state.

Additionally, as in other programming languages, there are alternative ways
to implement a single task in NetLogo, each of which differs in terms of perfor-
mance, efficiency, readability and other characteristics. Consequently, the trans-
lation examples in this section are not necessarily the best or the most efficient
way to implement a Z specification. Instead, they represent how a Z specification
could be translated into NetLogo code effortlessly. In this section, we use a car
racing game as an example.

Using Z in the Development and Maintenance of Computational Models 43

3.1 Type Definitions

In addition to the predefined types such as N (natural numbers) and Z (integers),
Z also supports definition of other types [10,13], such as free types. Free types
represent the fact that a variable of this type can take a value from the set of
distinct specified constants. For instance,

LicenceClass ::= Car | Lightrigid | Mediumrigid | Heavyrigid

represents a type for specifying different kinds of a driver’s licence.

Schemas in Z can also be used as (record) types. This is useful for expressing
more details regarding the format of a defined type. For instance, the following
schema defines a Driver type

Driver
licence : LicenceClass
age : N

where licence and age represent the driver’s licence type and age respectively.

Since NetLogo does not support type definition, it is the implementer’s
responsibility to ensure that the values of variables of such types satisfy the
specified constraints throughout the program.

3.2 Global Constants

Z supports the definition of global constants which are accessible throughout a
specification. They are defined using an axiomatic definition as follows

| SPEED_LIMIT : N
| SPEED_LIMIT = 200

where SPEED_LIMIT represents the highest speed allowed for cars on a road.
In NetLogo, global constants can be defined like global variables using the
following syntax.

globals[SPEED_LIMIT)

The value of SPEED_LIMIT should then be set in the first procedure that will
be run in the NetLogo code (usually called setup), so that its value can be used
throughout the program. This value should not be changed anywhere else in the
code as it is a constant.

to setup
set SPEED_LIMIT 200
; other tasks, which should be performed in the setup procedure
end

44 S. Moeiniyan Bagheri et al.

3.3 State and Initial State Schemas

As mentioned in Sect. 3.1, schemas can be used as types in Z. State schemas are
also used for specifying the main entities of a system. In our car racing game, cars
are the main entities (agents) of the system and are specified with the following
state schema

— Car
ID : N
fuelAmount : N
speed : N

speed < SPEED_LIMIT

where ID, fuelAmount and speed (in the declaration part of the schema) rep-
resent the car’s unique ID in the race, amount of fuel and speed respectively.
In NetLogo, the main system’s entities can be implemented as breeds of agents
using the following syntax.

breed [Cars Car]
Cars-own [ID fuelAmount speed|

In Z, the invariant part of the Car state schema (speed < SPEED_LIMIT)
is implicitly included in all other schemas in which Car is included. However,
in NetLogo, such invariants need to be implemented explicitly. For example,
whenever the speed variable changes, the programmer needs to check its new
value to ensure that it satisfies the specified constraint.

State schemas are also used to model the entire system of agents. For example,
given the type definition

GameStatus ::= Normal | Dangerous

CarRacingGame is a multi-agent system with a set of cars as the agents of
the system and status as the game status.

CarRacingGame _ InitCarRacingGame
cars - P Car CarRacingGame
status : GameStatus status = Normal
Vc:carse
c.fuelAmount = 100 A c.speed = 0

In NetLogo, the variables of the multi-agent system schema can be defined
as globals (as described in Sect. 2.3).

The InitCarRacingGame specifies that the game status is Normal in the
initial state of the system. This can be implemented by setting the value of the

Using Z in the Development and Maintenance of Computational Models 45

global variable status to Normal at the beginning of the program (usually in
the setup procedure). The next predicate starts with a universal quantifier (V),
where the e symbol reads such that and states that there are some constraints
on the quantified variable ¢. The constraint part of the predicate then specifies
that, in the initial state of the system, each member (¢) of the cars set has a
fuel amount of 100 (c.fuelAmount = 100) and a speed of 0 (c.speed = 0). These
values can be set when the agents are created as described in Sect. 2.1.

3.4 Operation Schemas

In NetLogo, operation schemas of Z can be implemented using procedures. As
an example, consider the following operation schemas on the state space of
CarRacingGame.

Assume that for safety reasons, all moving cars should have a fuel amount
higher than 10. If this is the case, the game status would be Normal; otherwise,
the game status would be Dangerous and one of the unsafe cars is reported.
In Z, a variable followed by ! specifies an output of the operation. Also, the A
symbol represents that one or more variables of the following state schema will
be changed as a result of the operation being performed. Note that the post-state
variables in Z are displayed using the prime symbol (*).

_ GameStatusDangerous
ACarRacingGame
unsafe! : Car

_ GameStatusNormal
ACarRacingGame

Vc: cars e c.speed > 0 = E—
c.fuelAmount > 10 Jec: cars o c.speed > 0 A
c.fuelAmount < 10 A unsafe! = ¢

status’ = Dangerous

status’ = Normal A cars’ = cars

The GameStatusNormal and GameStatusDangerous operation schemas can
be implemented in NetLogo as follows. Note that in translating an operation
no action is required if a variable remains unchanged (e.g., as in the predicate
cars’ = cars).

to game-status-normal
if al11? Cars with [speed > O][fuelAmount > 10]
[set status “Normal”]

end

to-report game-status-dangerous
ifelse any? Cars with [speed > 0 and fuelAmount <= 10]
[report one-of Cars with [speed > 0 and fuelAmount <= 10]
set status “Dangerous”]
[report nobody]

end

46 S. Moeiniyan Bagheri et al.

As can be seen, we use nearly direct translation from the quantified expressions
of the operation schemas in Z to the NetLogo statements inside the procedures.
These expressions are guards of the operations and hence checked using an if
or ifelse statement. The with reporter can be used in the all? statement to
introduce constraints on the quantified variable. Such constraints would appear
in Z as proposition P(z) in predicates of the form Vz : X | P(z) e Q(z) or
Vz: X e P(x) = Q(z). The translation of @(z) comes within the last brackets
in the all? statement. Similar constraints P(z) in Z predicates of the form Jx :
X | P(z) e Q(z) appear in the single set of brackets after the with, combined with
the translation of Q(z) using and. To access an existentially quantified variable,
such as ¢ in GameStatusDangerous, we utilise the one-of reporter. Note that if
the existentially quantified variable is required to have the minimum value for a
given property (as in the case study of Sect.4) we use the min-one-of reporter
instead.

Whenever a Z operation has an output, it needs to be translated as a reporter
procedure in NetLogo. Hence, the game-status-dangerous procedure is defined
as a reporter. The output is nobody in the case where the Z operation’s guard
is false.

In Z such outputs can be used as inputs to other schemas using the piping
operator (>>) [10]. For example, RefuelUnsafe specifies an operation in which
an unsafe car is refuelled. In this operation the output unsafe! of GameStatus
Dangerous is equated with the input unsafe? of Refuel. In Z, a variable followed
by 7 denotes an input to the operation.

__ Refuel
ACarRacingGame
unsafe? : Car

unsafe? € cars
Juc : Car o uc.ID = unsafe?. ID A uc.fuelAmount = 100 A uc.speed = 0
A cars’ = cars \ {unsafe?} U {uc}

RefuelUnsafe = GameStatusDangerous >> Refuel

The 3 quantifier in Refuel is used to define a new car wuc, which has the
same 1D as the unsafe?, fuel amount of 100 and speed of 0. The last part of the
predicate specifies that the new car uc is replaced with the unsafe car unsafe?
in the cars set. The union symbol (U) can be translated into NetLogo code by
creating a new agent. This agent will automatically be added to the agentset.
Also, the set difference symbol (\) is translated by using the die command which
removes the old agent from the agentset. Hence, the above operations can be
translated as

Using Z in the Development and Maintenance of Computational Models 47

to refuel [unsafe]
if (member? unsafe Cars)
[create-Cars 1 [set ID ([ID] of unsafe)
set fuelAmount 100
set speed 0]
ask Cars with [self = unsafe][die]]
end
to refuel-unsafe
if game-status-dangerous!= nobody
[refuel game-status-dangerous]
end

where self is a reporter used to refer to the current agent at each iteration
of the ask command. Note that equality between two agents (=operator) is
checked according to their who numbers. Additionally, in order to access the
state variables of a variable that is of type schema in Z a dot (.) is used. This
dot can be translated using the of reporter in NetLogo, e.g., unsafe?.ID in Z is
translated into [ID] of unsafe.

4 Case Study

In this section, we illustrate the translation scheme on a small part of the CNAFS
case study: a model of movement of chyme, i.e., food undergoing digestion,
through the small intestine of a pig. In their experiments, the researchers con-
sider the small intestine as comprising 6 different intestine segments (SI1-SI6).
One of the main reasons for this segmentation is that the movement rate of
chyme varies in each of these segments. To allow results of the simulation to
be verified against experimental data, most parts of the specification are based
on CNAFS researchers’ hypotheses and their methods of running their experi-
ments. Additional biological details of small intestine functionality are derived
from Guyton and Hall [5]. Using the built-in NetLogo visualisation facilities, the
outcome of this simulation provides the biologists with a visualisation of the
system at each time step and some statistical results, such as total amount of
chyme content and marker content in each intestine segment at each time step.

4.1 State Definitions

All non-schema types used in this section are defined as appropriate global types
in Z. The agents of the system are intestine segments and packets of chyme. The
idea of considering chyme as a collection of discrete packets is derived from
the functionality of the pyloric valve which controls chyme entry to the small
intestine [5].

An intestine segment is specified in terms of its length, the total amount
of chyme content that exists in the segment, and the movement rate of chyme
packets in the segment. Also, each segment can only take up to a certain amount

48 S. Moeiniyan Bagheri et al.

of chyme because of physical limits on its expansion. This value is represented
by contentThreshold. When the total amount of chyme content in a segment
reaches this threshold, the variable entryBlocked of the segment will be set to
Yes to specify that the segment cannot take any more packets. The value of
entryBlocked will be changed back to No whenever the total amount of chyme
content is decreased to a value less than contentThreshold.

__ IntestineSegment
length : NonNegativeReal
total ExistingChymeContent : NonNegativeReal
chymePassageRate : NonNegativeReal
content Threshold : NonNegativeReal
entryBlocked : YesOrNo

totalEzistingChymeContent > contentThreshold < entryBlocked = Yes

A schema Position represents a chyme packet’s current position in the small
intestine. In the Position schema, segNum represents the ID of the segment that
the packet is currently in and posInSeg specifies the packet’s distance from the
beginning of the segment. Each chyme packet contains specific amounts of nutri-
ents, markers and water. Markers are consumable, but non-absorbable materials
used in experiments for different purposes such as calculation of passage rate in
the gastrointestinal tract [7]. All these contents together have a total mass that
is represented by the variable totalContent.

_ Position
segNum : SegmentID
posInSeg : NonNegativeReal

__ ChymePacket
Position
nutrients : P Nutrient
markers : P Marker
waterAmount : NonNegativeReal
totalContent : NonNegativeReal

The (multi-agent) system is a small intestine comprising a sequence of intes-
tine segments and set of chyme packets that have entered, but not left the small
intestine. The variables totalLength, chymeEntryRate and emptyingBlocked rep-
resent the small intestine length, the rate at which the chyme packets enter the
small intestine and whether the packets can leave the small intestine or not,
respectively.

Using Z in the Development and Maintenance of Computational Models 49

—_ Smalllntestine
segments : SegmentID — IntestineSegment
chymePackets : F ChymePacket
totalLength : NonNegativeReal
chymeEntryRate : NonNegativeReal
emptyingBlocked : YesOrNo

Vcl, c2: chymePackets o
cl.segNum = c2.segNum N cl.posInSeg = c2.posInSeg < ¢l = c2
(segments 1).length = (segments 6).length = 1
V segID : SegmentID e segID # 1 A segIlD # 6 =
(segments segID).length = (totalLength — 2) div 4
Y ¢ : chymePackets; seglD : SegmentID e
c.segNum = segID = c.posInSeg < (segments segID).length

The predicate of Smalllntestine states that no chyme packets have the same
position. Additionally, according to the experiments at CNAFS, both the first
and the last segments (SI1 and SI6) of the small intestine are considered to be
1 metre long and the other four segments are each one quarter of the remaining
length of the small intestine. Finally, the position of each chyme packet in each
segment must be less than or equal to the segment length.

When translating a schema such as ChymePacket that includes another
schema, we include the variables of the included schema as properties of the
NetLogo breed. When translating collections of agents such as segments which
are specified in terms of a function, we include the domain value associated with
an agent, as a property of the NetLogo breed. Effectively, we are using the Z
interpretation of the function as a set of ordered pairs of domain and range val-
ues [10]. Hence, the NetLogo translation of the above is as follows. As mentioned
in Sect. 3.3, state invariants need to be implemented explicitly in operations.

breed [IntestineSegments IntestineSegment]

breed [ChymePackets ChymePacket]

IntestineSegments-own [segmentID length chymePassageRate . ..]
ChymePackets-own [segNum posInSeg nutrients markers ...]
globals [totalLength chymeEntryRate emptyingBlocked . ..]

4.2 Operations

This section describes the case in which a chyme packet wants to move through
one intestine segment, but will be blocked by another packet. One of the assump-
tions made in the specification is that chyme packets move through and leave
the small intestine in the same order as they arrive. Therefore, packets cannot
pass each other and sometimes packets may be blocked.

An operation MovingBlocked in the Z specification specifies the movement of
a packet pkt? being blocked by another packet blocking! in the same segment. The
function Min is a predefined global constant in the specification which returns
the minimum of a set of real numbers (defined similarly to Z’s min function for
integers [10]).

50 S. Moeiniyan Bagheri et al.

_ MowingBlocked
= Smalllntestine

pkt? . ChymePacket
blocking! : ChymePacket

pkt? € chymePackets
pkt?.posInSeg +
(segments pkt?.segNum).chymePassageRate x TIMESTEP <
(segments pkt?.segNum).length
dc: chymePackets o
c.segNum = pkt?.segNum A c.posInSeg > pkt?.posInSeg N
c.posInSeg < pkt?.posInSeg +
(segments pkt?.segNum).chymePassageRate x TIMESTEP N
c.posInSeqg = Min({ch : chymePackets | ch.segNum = pkt?.segNum A
ch.posInSeg > pkt?.posInSeg o ch.posInSeg}) N
blocking! = ¢

The first two predicates state that pkt? is a chyme packet in a segment of the
small intestines which, if unblocked, would not leave that segment in the next
time step (TIMESTEP is a global constant representing the time step in our
NetLogo simulation). The final predicate states there exists another packet ¢
which will block pkt?’s movement and assigns that packet to the output variable
blocking!. Following the translation scheme in Sect. 3, the operation is translated
as follows. Note that in order to access agents which are specified in the range
of a function, such as segments, the one-of and with reporters are used, where
the desired domain value comes inside the brackets after with.

to-report MovingBlocked [pkt]
ifelse (member? pkt ChymePackets) and
([posInSeg] of pkt +
([chymePassageRate] of one-of IntestineSegments with
[segmentID = [segNum] of pkt] x TIMESTEP) <=
[length] of one-of IntestineSegments with
[segmentID = [segNum] of pkt]) and
(any? ChymePackets with [(segNum = [segNum] of pkt) and
(posInSeg > [posInSeg| of pkt) and
(posInSeg <= [posInSeq] of pkt +
([chymePassageRate] of one-of IntestineSegments with
[segmentID = [segNum] of pkt] x TIMESTEP))])
[report min-one-of ChymePackets with
[segNum = [segNum] of pkt and
posInSeg > [posInSeq] of pkt] [posInSeq]]
[report nobody]
end

The operation MoveUntilBlocked specifies that a chyme packet pkt? moves to
right behind another packet blocking? which is blocking it.

Using Z in the Development and Maintenance of Computational Models 51

__ MowveUntilBlocked
ASmalllntestine
pkt? : ChymePacket
blocking? : ChymePacket

pkt? € chymePackets A blocking? € chymePackets
JupdPkt : ChymePacket o updPkt.segNum = pkt?.segNum A
((blocking?.posInSeq — PKTSIZE > pkt?.posInSeg =
updPkt.posInSeg = blocking?.posInSeq — PKTSIZFE)
V (blocking?.posInSeqg — PKTSIZE < pkt?.posInSeg =
updPkt.posInSeg = pkt?.posInSeg))
updPkt.nutrients = pkt?.nutrients A\ updPkt.markers = pkt?.markers N\
upd Pkt.waterAmount = pkt?.waterAmount N
updPkt.totalContent = pkt?.totalContent A
chymePackets’ = chymePackets \ {pkt?} U {updPkt}
totalLength’' = totalLength N emptyingBlocked' = emptyingBlocked
segments’ = segments A chymeEntryRate’ = chymeEntryRate

The first predicate of this schema states that pkt? and blocking? are chyme
packets within the small intestine. The second predicate replaces pkt? with a new
chyme packet updPkt which is in the position the blocked packet would move to,
and is otherwise identical to pkt? (PKTSIZFE is a global constant representing
the size of chyme packets in our NetLogo simulation). The remaining predicates
indicate that the small intestine is otherwise unchanged.

MoveUntilBlocked is combined with the operation schema MovingBlocked,
which provides the input blocking?, as follows.

PacketMovelInSegmentBlocked = MovingBlocked => MoveUntilBlocked

This part of the specification is translated into the following NetLogo code.

to MoveUntilBlocked [pkt blocking]
if(member? pkt ChymePackets) and (member? blocking ChymePackets)
[create-ChymePackets 1 |
set segNum ([segNum] of pkt)
ifelse ([posInSeg] of blocking — PKTSIZE) > ([posInSeg] of pkt)
[set posInSeg ([posInSeg] of blocking — PKTSIZE)]
[set posInSeg ([posInSeg| of pkt)]
set nutrients ([nutrients] of pkt)
set markers ([markers] of pkt)
set waterAmount ([waterAmount] of pkt)
set totalContent ([totalContent] of pkt)]
ask ChymePackets with [self = pkt] [die]]
end
to PacketMovelnSegmentBlocked [pkt]
if MowingBlocked pkt!= nobody
[MoveUntilBlocked pkt (MovingBlocked pkt)]
end

52 S. Moeiniyan Bagheri et al.

5 Conclusion

This research combined the use of the Z formal notation with computational
modelling in the NetLogo simulation language. This reduced a large amount
of effort required for the developer of the simulation to firstly understand the
system requirements and functionality clearly, and to secondly efficiently derive
code directly from the specification of these requirements. The approach was tri-
alled on a real project studying digestion in pigs’ intestines. During simulations,
the emergent property of total contents in different segments increased along the
intestine in a manner qualitatively in agreement with the patterns seen in exper-
imental data. Additionally, modifications to the model were readily integrated
into the Z specification and, via translation, into the NetLogo simulation. Over-
all, the application of the approach was successful in the sense that it made the
development process more convenient for all the people involved. This warrants
its ongoing use as well as use in similar projects in the future.

A major lesson learnt is that the usability and effectiveness of formal methods
is influenced by human-factors such as the background of the people involved
in the development process. Consequently, one important step before applying
formal methods is to choose a suitable formal modelling language that makes
the software development process more efficient and convenient for all the people
involved.

Acknowledgements. This project was jointly supported by the Queensland Alliance
for Agriculture and Food Innovation (QAAFI) and Australian Research Council (ARC)
Discovery Grant DP110101211.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1999)

3. Bowen, J.P.: Formal Specification and Documentation Using Z: A Case Study
Approach. International Thomson Computer Press, London (1996)

4. Derrick, J., Boiten, E.: Refinement in Z and Object-Z, Foundations and Advanced
Applications, 2nd edn. Springer, London (2014)

5. Guyton, A.C., Hall, J.E.: Guyton and Hall Textbook of Medical Physiology, 12th
edn. Saunders/Elsevier, Philadelphia (2011)

6. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125-142 (2006)

7. Owens, F.N., Hanson, C.F.: External and internal markers for appraising site and
extent of digestion in ruminants. J. Dairy Sci. 75(9), 2605-2617 (1992)

8. Singh, V.K., Gautam, D., Singh, R.R., Gupta, A.K.: Agent-based computational
modeling of emergent collective intelligence. In: Nguyen, N.T., Kowalczyk, R.,
Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 240-251. Springer, Heidelberg
(2009)

10.

11.

12.

13.

Using Z in the Development and Maintenance of Computational Models 53

Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers,
Dordrecht (2000)

Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
(1992)

Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity.
In: International Conference on Complex Systems, pp. 16-21 (2004)

Wilensky, U.: NetLogo User Manual. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL, 5.0.5 edition
(2013)

Woodcock, J.C.P., Davies, J.: Using Z: Specification, Refinement, and Proof. Pren-
tice Hall, New York (1994)

When a Formal Model Rhymes
with a Graphical Notation

Akram Idanil2®9) and Nicolas Stouls?

! LIG, University of Grenoble Alpes, 38000 Grenoble, France
2 LIG, CNRS, 38000 Grenoble, France
Akram.Idani@imag.fr
3 CITI-INRIA, Université de Lyon, INSA-Lyon, 69621 Lyon, Villeurbanne, France
Nicolas.Stouls@insa-lyon.fr

Abstract. Formal methods are based on mathematical notations which
allow to rigorously reason about a model and ensure its correctness
by proofs and/or model-checking. Unfortunately, these notations are
complex and often difficult to understand from a human point of view
especially for engineers who are not familiar with formal methods. Sev-
eral research works have proposed tools to support formal models using
graphical views. On the one hand, such views are useful to make formal
documents accessible to humans, and on the other hand they ease the
verification of some behavioral properties. However, links between graph-
ical and formal models proposed by these approaches are often difficult
to put into practice and depend on the targeted formal language. In this
paper, we discuss these links from a practical approach and show how
a behavioral description can be computed from a formal model based
on two complementary paradigms: under-approximation (or animation-
based) and over-approximation (or proof-based). We applied these para-
digms in order to produce behavioural state/chart views from B models
and we carried out an empirical study to assess the quality and relevance
of these graphical representations for humans.

Keywords: B method - Symbolic LTS - Animation + Abstraction

1 Introduction

Several research works are devoted to bridge the gap between formal and semi-
formal methods considering their complementary aspects and cross contribu-
tions. Indeed, on the one hand, semi-formal methods (thanks to their support for
graphical notations such as UML) are synthetic, structuring and more intuitive
for humans, and on the other hand, formal methods (thanks to their mathemat-
ical notations) are precise and support automated reasonings. These works were
widely interested by translations from a semi-formal UML model to a formal
specification: from UML to B [15], from UML to Z [10], from UML to Alloy [3],
etc. Their main motivations are to provide precise semantics to UML notations
in order to remedy the lack of tools for formally analyzing UML models.

© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 54-68, 2015.
DOI: 10.1007/978-3-319-15201-1_4

When a Formal Model Rhymes with a Graphical Notation 55

Despite of these numerous tools dedicated to such translation, several com-
panies have an established software development process entirely based on a
formal method. For example, Siemens Transport [7], Clearsy [13], Gemplus [5]
have used the B method as its core development method without any accom-
panying UML model. Indeed, since the targeted formal language is not object
oriented, translations from UML often lead to a complex specification which
is, on the one hand, far from what a developer could write directly, and on
the other hand incomplete for a safety critical system. This motivates other
kind of works to define a formal link between a formal model and its behav-
ioral representation. For example, works of C. Snook and M. Butler [15] ant its
support tool iUML-B [14], provide a graphical front end, used conjointly with
a formal B specification in order to keep the distance between both formal and
graphical models as thin as possible. We can also cite the ProB tool [11] which
is an animator and a model-checker able to draw an accessibility graph after an
exhaustive exploration of the specification state space. However, it considers con-
crete states rather than symbolic ones and the resulting graphical representation
is complex because of the combinatorial explosion problem. In order to remedy
this shortcoming, [12] provides some heuristics to reduce the accessibility graph
size by using a symmetry analysis technique. Furthermore, it was not dedicated
to make the focus on the understanding of some particular properties, since the
abstract state space could not be provided by an expert user.

In this paper, the starting point is a B or Event-B formal model [1,2]. Our
aim is to provide tools able to extract graphical views representing some proper-
ties of the formal model and hence increase its understanding by humans who are
not trained with such a formal notation. We discuss and compare two paradigms:
under-approximation (or animation-based) and over-approximation
(or proof-based). We applied these paradigms in order to produce behavioural
views from B models and then we carried out an empirical study to assess the
quality and relevance of these graphical representations for humans.

In Sect. 2 we give a simple example in order to illustrate contributions of this
paper. Section 3 discusses the under-approximation approach and presents an
algorithm which improves automation of this technique. Section4 describes the
over approximation technique and presents the GénéSysi-tool. Results of our
empirical study are discussed in Sect. 5. Finally, Sect. 6 summarizes our compar-
ative study of both techniques and draws the conclusions and perspectives of
this work.

2 Case-Study

Figure 1 gives a simple scheduler specification taken from [6] and written in B.
It models exclusive access of processes to a unique resource. Variables wait-
ing, ready and active model states of processes managed by the system. The
set of all processes is an abstract set (set PID). An idle process which doesn’t
request access to the unique resource is introduced by the system using the wait-
ing variable. Variable ready is the set of processes that have requested access

56 A. Idani and N. Stouls

to the resource. Finally, variable active contains the active process to which the
resource is assigned. Evolutions of these variables are performed by three events.
Event NEW(pp) creates a new waiting process. Event READY (pp) changes
process pp from the waiting state to the ready state. If there is no active process
it directly activates process pp. Finally, event SWAP puts the active process in
the waiting state and activates non-deterministically some ready process.

sysTeM SCHEDULER
SETS
PID
VARIABLES
active, ready, waiting
INVARIANT
active C PID A ready C PID A waiting C PID A
ready N waiting = @ A active N waiting = 0 A active N ready = 0 A
card(active) < 1 A (active = @) = ready = 0)
INITIALISATION
active, ready, waiting := 0, 0, ()
EVENTS
NEW(pp) = sELECT (pp € PID) A (pp ¢ (ready U waiting U active))
THEN waiting := waiting U {pp}
END;
READY (pp) = SELECT pp € waiting
THEN waiting := (waiting - {pp})||
IF (active = () THEN active := {pp}
ELSE ready := ready U {pp}
END
END;
SWAP = SELECT active # ()
THEN waiting := waiting U active ||
1F (ready = ()) THEN active := ()
ELSE
ANY pPp WHERE pp € ready THEN
active := {pp} || ready := ready - {pp}
END
END

END
END

Fig. 1. Scheduler Specification from [6]

A palette of graphical representations that can be issued from the scheduler
example can be found in [8]. These representations provide a graphical docu-
mentation of the behaviour of B specifications and allow to identify different
viewpoints potentially useful for humans. IFor example, a B analyst may be
interested by a graphical representation of the SCHEDULER that intuitively
show a process life cycle. Hence, the abstract graphical view may deal with

When a Formal Model Rhymes with a Graphical Notation 57

three states corresponding to the fact that a process p; (such that p; € PID) is
in state waiting, ready or active. In other words, states of the abstract view are:
(1) p; € waiting, (2) p; € ready, and (3) p; € active. Figure 2, built manually,
gives an abstract view of the SCHEDULER system based on these three states.

lactive = DJREADY (p;)

SWAP

Fig. 2. Example of an intuitive abstract view of the SCHEDULER system

From a documentation point of view the interest of this representation is to
emphasize graphically some intrinsic properties of the SCHEDULER system, for
example:

— The process equity property, indicating that every process may be activated, is
not verified by the specification. Indeed, Fig. 2 shows that in state p; € ready,
SWAP has a non-deterministic behaviour justified by the existence of two
transitions with the same label. This means that event SWAP can block a
process p; indefinitely in state p; € ready.

— The non-blocking property, indicating that after being active a process does
not stop the system is verified by the specification. Indeed, in Fig. 2 the tran-
sition SWAP is triggered on from the state (p; € active) and always leads to
state (p; € waiting).

This paper shows how these graphical representations can be extracted auto-
matically using two kinds of techniques: under-approximation (or animation-
based) and over-approximation (or proof-based).

3 Under-Approximation Approach

Under-approximation is based on exploration of a useful subset of the state space.
We apply this technique in order to draw a graphical representation which is
useful from a documentation point of view but which may miss some behaviours.

3.1 Construction Method and Usability Constraints

One way to build an under-approximating graphical abstraction is to exhaus-
tively explore the concrete state space of the B specification and then to apply
an abstraction algorithm to group concrete states. For a bounded state space,

58 A. Idani and N. Stouls

animators such as ProB [11] can help to explore all states. In other cases, such as
for the SCHEDULER example, we must start by bounding unbounded elements
(i.e. specifying PID with a bounded set). If we introduce only two processes
p1 and py in the system, we obtain ten accessible states (Fig. 3). If the number
of processes increases, the accessibility graph becomes too large and difficult
to understand. For example, having PID = {p1,ps, p3s} we obtained thirty five
accessible states with numerous transitions.

3.2 Graph Abstraction Algorithm

We note G = (N,T') an accessibility graph issued from a B system, where N
is the set of concrete states of graph G, and T is the set of transitions between
states of N. A concrete state S, (S, € N) gives particular values assigned to
state variables v (v = {v1,...,v,}) of the B system. Consequently, each state s

INITIALISATION

active =)
ready = ()
waiting =)

active = ()
ready = ()
waiting = {p>}

active = ()
ready = ()
waiting = {p1}

READY (p1) READY (p2)

active = {pa}
ready = ()
waiting = ()

active = {p1}
ready = ()
waiting = ()

active = {ps}
ready = ()
waiting = {p1}

active = {p1}
ready = ()
waiting = {p2}

READY (p2) READY (p1)

active = {pa}
ready = {p1}
waiting =)

active = {p1}
ready = {p2}
waiting = ()

Fig. 3. Accessibility Graph of the SCHEDULER for PID = {p1, p2}

When a Formal Model Rhymes with a Graphical Notation 59

can be formally expressed by a predicate P(S,) as the conjunction of equality
predicates that associate to each state variable v; its value in S,:

n
P(S,) & /\(vi = valj)
i=1
Where val; is a value of v; allowed by the invariant. A concrete state S, satisfies
an abstract state Sgpstract (noticed Sy, b Sapstract), defined by a predicate R (e.g.
p1 € ready), if and only if we can prove that P(S,) = R.

Hence, according to an accessibility graph and a set of abstract states, the
following algorithm can produce a symbolic representation by grouping concrete
states satisfying a same abstract state predicate. The inputs are: (i) an acces-
sibility graph G = (N,T) and (ii) a set of abstract state predicates Ngpstract
(Fig. 4).

For each abstract state Sabstract from Ngpstract do

| N:=NU {Sabstract}

| For each concrete state S, such that

| ‘ Sv € N — Napstract N SU = Sabst'r'act

| do

| | For each state S and transition ¢ such that
| \ \ SENANteTAt=8 -2 8,

| | do

| ‘ ‘ t:= (S L) Sabstract)

| | End do

| | For each state S and transition ¢ such that
| \ \ SENALETAt=S8, -5 S

|| o

| ‘ ‘ t:= (Sabstra,ct L> S)

| | End do

|| N=N-{5)

| End do

| Delete redundant transitions

End do

Fig. 4. Under approximation algorithm.

The algorithm checks each concrete state against each abstract state pred-
icate, using the AtelierB prover. If the proof succeeds, then an abstract state
has been found for the concrete state. The next step in the construction of the
abstract state-transition diagram is to identify the transitions. Since each node
of the concrete graph corresponds to a node of the abstract diagram, each tran-
sition of the concrete graph can be translated into a transition in the abstract
diagram. In order to decrease the number of transitions, the tool groups all tran-
sitions which correspond to the same pair of nodes, and to the same B event.

60 A. Idani and N. Stouls

Our algorithm links concrete states to abstract ones, and hence the nodes of
the abstract state-transition diagram are: (a) the abstract state predicates given
by the user, and (b) the concrete nodes which don’t appear in the domain of the
abstraction function. This guarantees that each concrete node will correspond
to a node of the abstract diagram. Furthermore, in order to obtain a relevent
abstract view, two conditions should be verified:

1. abstract state predicates are disjoint, i.e. each concrete state corresponds to
at most one abstract state.

2. abstract state predicates cover all the state space allowed by the invariant, i.e.
the nodes of the abstract diagram only correspond to the abstract predicates.

The abstract view of Fig. 2 respects only the first condition because it misses
all concrete states reached from the initialization. These states can be grouped
in an abstract state p; € (waiting U active U ready) which is reached when
the system is initialized. The left hand side of Fig.6 shows the result of this
technique when applied to accessibility graph of Fig. 3 in which set PID contains
two processes p; and pa.

4 Over-Approximation Approach

The under-approximation technique is useful when the accessibility graph
explores a relevant finite subset of state space from which we can exhibit a useful
abstract view for a documentation purpose. If some interesting behaviours are
not included in the concrete graph, they will not appear in the abstract diagram.
An over-approximation technique is then more interesting because it allows to
produce a symbolic transition system that represent a potentially infinite set of
values. Such tools reason on event enabledness and state reachability properties.

4.1 Construction Method and Usability Constraints

Our objective is to directly compute an abstract view from the B model prop-
erties, rather than to reason on a concrete graph. For instance, if an over-
approximation view shows that a state is not reached by any transition, then
one can conclude that associated concrete valuations could not be reachable by
any execution of the B model.

Our approach tries first to prove, for each event e and each couple of abstract
states S7 and S, that no execution of event e from state S; can reach state Ss.
This goal is a proof obligation (PO) assuming that if state predicate P(S7) is
true then event e establishes the negation of state predicate P(Ss3):

P(S1) = [e]~P(52)

This first step allows to identify by proofs, all uncrossable transitions between
states S7 and Ss. In fact, if the above PO is solved, then we assert that event e
never reaches Sy from Sy. Variations of this PO allow to compute whether S5 is
always or possibly reached by e from Sy:

When a Formal Model Rhymes with a Graphical Notation 61

— Sy always reached from Sy: P(S1) = [e] P(S2)
— Sy possibly reached from Si: P(S1) = —[e]=P(S2).

For example, the following proofs (but not only) should succeed for event
SWAP!:

— it always deactivate an active process: (p; € active) = [SWAP](p; € waiting)
— it never activate a waiting process: (p; € waiting) = [SWAP](p; & active)
— it may activate a ready process: (p; € ready) = —~[SWAP](p; & active)

As for the under-approximation approach, two conditions must be verified:
abstract state predicates are disjoint and cover all the state space allowed by the
invariant. The first condition avoids states overlapping and the second one allows
to have a global view on the complete system. An important proof obligation
is then to establish the completeness of the state predicates according to the
invariant:

I = \n/P(S—U)
i=1

4.2 The GénéSyst Tool

The GénéSyst tool? [4] implements the ideas of this approach. It computes a
Symbolic Labelled Transition System (SLTS) describing all possible behaviours
of a given event-B model, according to a given set of disjoint state predicates.
Generated proof obligations are discharged by means of the AtelierB automatic
prover.

The overall GénéSyst algorithm is presented in Fig. 5, where we distinguish
transitions from the initialization, and transitions associated to other events. In
this algorithm, conditions are written under a negative form (i.e. if =A can not
be established), since a formula that has not been proved is not necessarily true.
In this algorithm, no any information is presented to consider simplification of
the conditions. The reader can refer to [4] for further semantical details.

In order to restrict the undecidability problem of proofs, heuristics are used
to compute the over-approximation graph (the SLTS). One of them is to split
proofs into two parts: enabledness and reachability. In this approach, for each
pair of abstract states S7 and Ss, and each event e, a transition t of the SLTS

is defined by (5 (2:As) S3), where D is the enabledness condition (condition
under which the event e can be triggered from S;) and A is the reachability
condition (condition under which the event e can reach the state S3). We define
enabledness and reachability as follows:

— Enabledness condition D : P(S1) = (D < guard(e))
— Reachability condition A : P(S1) A D = (A < —laction(e)]—P(S2)).

! These properties are not all properties of event SWAP.
2 GénéSyst: http://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=Logiciels.

http://perso.citi.insa-lyon.fr/nstouls/?ZoomSur=Logiciels

62 A. Idani and N. Stouls

// Initialization of the result: set of transitions is empty

T :=0

// Defining states reachable by the initialization

For each state S, except Sinit do

| // Define the condition A under which the initialization reaches S
| A := —[init]-P(S)

| If - A can not be established then

L T =T U (S T)

| End if

End do

// Defining ezisting transitions

For each state Si, except Sinit, and each event e do

//Define the condition D wunder which e can be trigger from Si

D := guard(e)

If (P(S1) = —D) can not be established then

For each state S, except Sinit, do

| // Define the condition A under which event e reaches S
| A := —[action(e)]~P(S2)

| If (P(S1) AD = —A) can not be established then

|| T=Tu{(s P s

| End if

End do

Fig. 5. GénéSyst main algorithm

In the context of the starting state, the enabledness condition D is equivalent
to the B event guard (denoted guard(e)). Technically, the tool asks
AtelierB to prove if D can be reduced to true, by trying to proof the asser-
tion I A P(S1) = guard(e), where I is the invariant. If this proof succeeds, it
concludes that e can always be enabled from S7; otherwise it asks AtelierB to
prove if D can be reduced to false, by trying to proof I A P(S1) = —guard(e). If
this second proof succeeds then the tool concludes that e can’t be enabled from
S1. The same principle is applied for the reachability property. Condition A is
equivalent to —[action(e)]=P(S2) which means that if A is reduced to true, then

e may reach Sp. But if it is reduced to false then e cannot reach Ss. By the way,
a transition (S 2% S5) is said valid if and only if 3z - (P(S1) A D A A).

Right hand side of Fig. 6 is produced by this technique without any bounding
of set PID. It describes all possible behaviours around states focused on a process
life-cycle. The two crossing conditions between brackets represent respectively
conditions D and A, for enabledness and reachability. Empty brackets mean that
the condition is proved true. A cross X on a condition means that this condition
has not been proved neither true, nor false.

When a Formal Model Rhymes with a Graphical Notation 63

NS

initialise_machine

6.a) SLTS produced by the graph 6.b) SLTS Produced by the GénéSyst Tool
abstraction tool for PID = {pi, p2} for PID = {..., P;, ...}

Fig. 6. Results of Under and Over-Approximation Techniques

Compared to the under-approximation diagram produced for two processes,
some transitions exhibited by GénéSyst don’t correspond to any transition of the
concrete representation (New, ready and swap transitions, reflexive on state
P, € Ready). Indeed, limited to two processes for this example the under-
approximation technique didn’t explore a sufficient number of states.

5 Human Oriented Empirical Study

Techniques discussed in the previous sections allow to produce behavioural views
from a formal B specification depending on the abstraction chosen by the ana-
lyst. We have conducted experimentally a qualitative study with students from
a master’s degree specialized on software engineering, and who have finished
a detailed course about the B method. We formed two groups of 17 students
to which we provided two different specifications: the scheduler example dis-
cussed in this paper, and a B specification modelling access control mechanisms
to buildings. We applied our tools to these specifications and produced various

64 A. Idani and N. Stouls

Zone de graphiaue

Wrong answers

70,00%

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0,00%
Q5 Q7 Q11 Q21 Q22 Q23

OWithout diagrams OWith diagrams

Fig. 7. Diagrams reduce significantly error rate for some questions

diagrams in order to graphically document them. Every group had two lists of
questions about two different specifications where only one was supported by
diagrams. Our intension was to evaluate the error rate variations of answers to
quiet simple questions about these specifications when diagrams are provided.
This study allowed to observe an error rate decrease from 26.14 % to 15.60 %
when specifications are documented graphically. A variation about 11 % is inter-
esting, because it hightlights the contribution of diagrams to the understanding
of B specifications, but it may not seem very promising. We believe that the
inverse would be surprising because specifications provided to students are not
complex and should be accessible for them. Indeed, a global error rate near
26 % may be acceptable for persons who are not skilled with formal techniques,
but 15 % is better. More specifically, we observed that diagrams reduce signifi-
cantly the number of wrong answers for several questions. Figure 7 gives wrong
answers proportions with and without diagrams and shows that the error rate
can be divided by three and sometimes it is reduced from around 50 % to zero.

Questions G5-Q23 will be detailed further. 30 % of students to whom we
didn’t provide diagrams, misunderstood the equity property and considered
that a process can’t be bloqued indefinitely in the ready state (question Q11

NEW
INITIALISATION READY
card(active) = 0 card(actlve) =1 card(active) > 1
NEW SWAP SWAP

Fig. 8. State/Transition diagram focused on active processes

When a Formal Model Rhymes with a Graphical Notation 65

Unfavorables Favorables

Fig. 9. Did the diagrams help you to understand specifications?

Self-rated familiarity with B Self-rated familiarity with UML
concepts for unfavorable students concepts for unfavorable students
Low Good
0% 0%

Good
0%

Medium
100%

Fig. 10. Self-rated familiarity with B and UML for unfavourable students

in Fig. 7). However, when the diagram of Fig. 2 is provided, only 10 % gave the
wrong answer. We believe that such a property is somehow difficult to perceive
from a human point of view. Indeed, in order to be verifyied, the equity prop-
erty needs more automated tool analysis or other formal languages, such as LTL,
because it is a kind of behavioural properties not explicit in the B model. Nev-
ertheless, invariant properties can be illustrated graphically using state tran-
sition diagrams. For example, Fig.8, produced by our tools, shows that state
card(active) > 1 is not reached by any transition and hence it is conformant to
invariant card(active) < 1.

Without this diagram, about 40 % of students said that there may be several
active processes at the same time (question Q5 in Fig. 7). Although invariant
card(active) < 1 is clearly mentioned in the scheduler specification, students
were not able to attest that the scheduler operations preserve such a trivial
property. This result emphasizes the interest to document graphically an invari-
ant property for a better human understanding. Indeed, we obtained 100 % of
good answers when Fig. 8 is provided.

An overall appreciation of the graphical views is given in Fig.9 and shows
that two out of three students think that diagrams helped them to understand
specifications and the remaining one third expresses an unfavourable opinion.

66 A. Idani and N. Stouls

Self-rated familiarity with B Self-rated familiarity with UML for favorable
concepts for favorable students students with a medium knowledge of B
Good

Medium
_ 58%

Fig. 11. Self-rated familiarity with B and UML for favourable students

In these two proportions, 13.33 % of students say that diagrams didn’t help
them at all and 13.33% of them have the opposite opinion. In order to refine
these results we asked students to evaluate their knowledge of B and UML nota-
tions (Figs. 10 and 11). A great part of students who disagree with the interest
of diagrams seem to be uncomfortable with UML notations and has a better
familiarity with the formal B notation. Basing on this self-rated familiarity with
B and UML, one may conclude that although graphical views seem to be a
way for making a formal specification more accessible, they can have the inverse
effect because they also require some knowledge. This observation is confirmed
by the proportion of students who appreciated diagrams and who has obviously
a better mastering of graphical UML notations.

6 Conclusion

It is commonly known that formal specifications are complex because of nota-
tions that need a great mathematical background. In this paper, we focused our
interest on a B specification which is based on a verbose notation, close to a
programming language, and which should be more affordable than other formal
notations. Our empirical study showed that the language itself is not the main
reason to be less at ease with a formal method. Obviously, the difficulty for
humans is to have an overall view on the formal model.

This paper has presented two complementary approaches providing a behav-
ioural abstract view from a formal specification, in order to ease its
understanding. Figure 6 shows an example of results issued from under and
over-approximation techniques. We can observe from these diagrams that the
GénéSyst tool associates guards to events in order to describe their enabledness
and reachability properties. However, reflexive transitions SWAP, READY and
NEW in state p; € ready are not possible when the scheduler system deals with
only two processes. For this particular set of processes the graph abstraction tool
produced a more precise diagram. GénéSyst being based on proof techniques,
it suffers the usual limitations of automatic provers: some theorems cannot be
proved automatically and require user interaction. Furthermore, if the under-
approximation approach can be used to verify reachability properties, then the

When a Formal Model Rhymes with a Graphical Notation 67

over-approximation approach is mainly interesting in case of safety properties.
Both techniques have some restrictions such as a limited state space for the first
one and a too large abstraction in case of leak of proof for the second one.

We also measured the computational time of each approach and we noticed
that the graph abstraction tool produced the state/transition diagram of a
process life cycle in 7s for PID = {p1,p2} and 13s for PID = {p1,p2,ps3};
while the GénéSyst tool produced this diagram in 80s for an unbounded state
space. This confirms that under-approximation tools are interesting when the
state space can be reduced to a small finite space. Furthermore, if some interest-
ing behaviours are not included in the concrete graph, they will not appear in
the abstract diagram. Given sets, such as PID, can be turned into enumerated
sets but numerical data structures such as NAT are less easy to address. Over-
approximation tools are much more interesting for such complex data structures
because they may be used to provide more formal evidence on the diagram
transitions.

Over-approximation, can be dedicated to verify safety properties as proposed
in [4] and [16]. It has the advantage to preserve infinite concrete state space
without any constraint, and hence safety properties could be established on the
symbolic transition system. The resulting LTS could also be used like a test
oracle which brings some interesting perspectives [9].

References

1. Abrial, J.-R.: Extending B without changing it (for developing distributed sys-
tems). In: Habrias, H. (ed.) First Conference on the B method, France, pp. 169-190
(1996)

2. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)

3. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: a challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436-450. Springer, Heidelberg (2007)

4. Bert, D., Potet, M.-L., Stouls, N.: GeneSyst: a tool to reason about behavioral
aspects of B event specifications. Application to security properties. In: Treharne,
H., King, S., C. Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
299-318. Springer, Heidelberg (2005)

5. Casset, L.: Development of an embedded verifier for java card byte code using
formal methods. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol.
2391, pp. 290-309. Springer, Heidelberg (2002)

6. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specifications. In: Woodcock, J.C.P., Larsen, P.G. (eds.) FME ’93:
Industrial Strength, Formal Methods. LNCS, vol. 670, pp. 268-284. Springer,
London (1993)

7. Essamé, D., Dollé, D.: B in large-scale projects: the Canarsie line CBTC experience.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252-254.
Springer, Heidelberg (2006)

8. Idani, A., Ledru, Y.: Dynamic graphical UML views from formal B specifications.
Int. J. Inf. Softw.Technol. 48(3), 154-169 (2006). Elsevier

9. Julliand, J., Stouls, N., Bué, P.-C., Masson, P.-A.: B model slicing and predicate
abstraction to generate tests. Softw. Qual. J. 21(1), 127-158 (2013)

68

10.

11.

12.

13.

14.

15.

16.

A. Idani and N. Stouls

Ledru, Y.: Using Jaza to animate RoZ specifications of UML class diagrams. In:
SEW, pp. 253-262. IEEE Computer Society (2006)

Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855-874. Springer, Heidelberg
(2003)

Leuschel, M., Butler, M., Spermann, C., Turner, E.: Symmetry reduction for B by
permutation flooding. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol.
4355, pp. 79-93. Springer, Heidelberg (2007)

Pouzancre, G.: How to diagnose a modern car with a formal B model? In: Bert, D.,
Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 98-100.
Springer, Heidelberg (2003)

Savicks, V., Snook, C.: A framework for diagrammatic modelling extensions in
Rodin. In: Rodin Workshop (2012)

Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Method. (TOSEM) 15(1), 92-122 (2006)

Vu, D-H., Chiba, Y., Yatake, K., Aoki, T.: Model checking conformance of design
model to its formal specification, Research report (2014)

SaFoMe 2014

On a Process Algebraic Representation
of Sequence Diagrams

Jaco Jacobs®) and Andrew Simpson

Department of Computer Science, University of Oxford, Oxford, UK
{jaco.jacobs,andrew.simpson}@cs.ox.ac.uk

Abstract. Sequence diagrams depict the interaction between entities
as a sequence of messages arranged in a temporal order. However, they
lack a formal execution semantics: the Unified Modeling Language (UML)
specification opts to use natural language to describe fundamental con-
cepts such as interaction operators that alter the behaviour of a frag-
ment. Communicating Sequential Processes (CSP) is a process-algebraic
formalism that is suited to modelling patterns of behavioural interaction.
Moreover, the associated refinement checker, Failures-Divergence Refine-
ment (FDR), gives rise to a practical approach that enables us to reason
about these interactions in a formal setting. In this paper, we show how
CSP and FDR have been used to provide a process-algebraic represen-
tation of sequence diagrams that is amenable to refinement-checking.

1 Introduction

Sequence diagrams are used to depict the interactions between entities in a
sequential, temporal order and have been applied in a wide range of contexts,
including: the automatic generation of test cases [1]; the specification of inter-
action protocols in multi-agent systems [2]; and in technical documentation
outlining the specification and design of a product [3]. In this paper, we give
consideration to sequence diagrams within the context of the Systems Modeling
Language (SysML),! an extension of a subset of the Unified Modeling Language.?
The UML specification makes use of meta-models in order to capture the
abstract syntax of a diagram. While the benefits of this approach are signifi-
cant, a drawback is that the execution semantics are expressed using natural
language [4,5]. The lack of sufficient formalism in the specification makes it
problematic to interpret the precise meaning of a complex diagram [5]. In addi-
tion, the use of natural language may lead to ill-defined semantics, or induce
further confusion with regards to how a diagram ought to be interpreted. Thus,
approaches that translate UML diagrams into formal representations are advan-
tageous. Our focus is the process algebra Communicating Sequential Processes
(CSP) [6], with a view to establishing a formal framework that supports the auto-
mated reasoning about patterns of behaviour exhibited by sequence diagrams.

! www.sysml.org.
2 www.uml.org.
© Springer International Publishing Switzerland 2015

C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 71-85, 2015.
DOI: 10.1007/978-3-319-15201-1_5

http://www.sysml.org
http://www.uml.org

72 J. Jacobs and A. Simpson

One notable reference where sequence diagrams are translated into CSP
(via a model-driven engineering approach) is that of Li and Li [7], where the
emphasis is placed on the translation process, which is insightful in terms of a
mechanised implementation approach. In contrast, we direct our efforts towards
the definition of adequate and succinct CSP processes in an implementation-
independent manner. Our objective therefore is to provide concise definitions —
using the process algebra CSP — of the patterns of behaviour represented by the
different interaction operators. This is done in the spirit of work undertaken by
Ng and Butler for state machines [8], and Dong et al. for activity diagrams [9]. We
view the mechanised translation, using, for example, model-driven techniques, as
an implementation of our approach; as such, will address this separately. While
these contributions have their benefits, none of them provide a satisfactory (for
our purposes) behavioural semantics for sequence diagrams in terms of CSP.

2 Background

2.1 Communicating Sequential Processes

Events are at the heart of CSP, with an event being an indivisible communication
or interaction. We denote by X' the set of all possible events for a particular
specification. We can also give consideration to the alphabet of a process — the
events that it can perform. We write a P to denote the alphabet of a process P.

A communication takes place when two or more processes agree on an event.
The communication can either be a primitive event, or can take a more struc-
tured, message-passing form, utilising channels. The message-passing mechanism
is based on the principle of a rendezvous between a sending and a receiving
process: if the communication takes place on channel ¢, and a sending process
wants to output a value e, the receiving process has to allow for this (by inputting
on ¢). Once this has happened, the event is abstracted as c.e.

CSP is compositional in that it provides operators that allow us to define a
process in terms of other, constituent processes. The CSP syntax utilised in this
paper can be defined thus (where P, P; and P,, denote processes, e denotes an
event, X and Y denotes sets of events, and b denotes a Boolean condition):

P = P| Stop| Skip | e — P |
POP|Oe:Xee—P|PMNP|[Ne:Xee— P |
P\X|PgP|ifbthen Pelse P |
PIX|YIPIPIX|P||ie[XIPi| P P|[ieP]

Stop is the deadlocked CSP process: it will refuse to participate in all events.
Skip models successful termination: it performs the special internal event v/,
before behaving like Stop. The process e — P, modelled using the prefizing
operator, performs the event e and subsequently behaves as P.

CSP provides two choice operators: the ezternal or deterministic choice oper-
ator, O, offers the environment the choice between the initial events of its argu-
ment processes; conversely, the internal or nondeterministic choice operator, 1,

On a Process Algebraic Representation of Sequence Diagrams 73

sd Example J Interaction

[Entity 1] [Entity 2] [Entity 3]

Lifeline
Asynchronous Message

]
r Ll Synchronous Message
]

< -----------=—pmeeeee}- Acknowledgement
i
T

Interaction Operator
---I- Combined Fragment
Interaction Operand

Receive Occurrence
Specification
Send Occurrence
Specification

Fig. 1. Relevant constructs of the sequence diagram.

offers no such choice and the observed behaviour may be that of either process.
Indexed versions exist for both operators.

The hiding operator, \, conceals the events of X from the view of the external
environment of P. The process Py § P, represents the sequential composition of
P; and Ps. This process behaves as P; until it terminates successfully, after
which it behaves as P>. A conditional choice construct is available in the form
if b then P; else Py, where a process behaves as P if b is true and P, otherwise.

The process P; [| X |] P2 uses the generalised parallel operator to define an
interface on which P; and P, must synchronise. Events outside X may occur
independently in either process. The process P; [X || Y| P2 denotes alphabetised
parallel, where synchronisation takes place on events in the set X N Y. The
interleaving operator, |||, expresses the unsynchronised concurrent interleaving
of the events of its constituent processes. Indexed forms exist for each.

The refinement checker Failures-Divergence Refinement (FDR) — which uses
the machine-readable dialect of CSP, CSP),; [10] — employs CSP’s theory of
refinement to investigate whether a potential design meets its specification. If
such a test fails, a counter-example is returned to indicate why this is so. We
write P Cp @ when the process @ is a traces-refinement of the process P. While
other forms of refinement exist, traces-refinement is sufficient for our purposes.

2.2 Sequence Diagrams

Sequence diagrams facilitate the modelling of interactions between structural
constructs as sequences of temporal occurrences. These interaction occurrences,
or occurrence observations, can be broadly categorised into three classes: the
sending or receiving of a message; the creation or destruction of an instance;
and the start or end of another behaviour. In the interests of brevity, we restrict
our treatment to the first class of occurrence observations.

Messages can be exchanged either synchronously or asynchronously. If the
communication is synchronous, the sender blocks until the arrival of a response.
Conversely, during an asynchronous exchange, the sender does not block; rather,
it continues execution after sending the message. In SysML, for example, an
interaction executes within the context of its owning block, and specifies the

74 J. Jacobs and A. Simpson

interaction between parts or references [11]. A sequence diagram depicts this
interaction graphically.

Figure 1 shows the notation of interest. On the diagram, lifelines correspond
to the parts (or references). A lifeline is represented as a dashed line with the
name of the reference or part enclosed in a rectangle. A synchronous message
exchange is indicated using a solid line with a filled arrowhead from the sending
lifeline to the receiving lifeline; the return message, unblocking the sender, is
a dashed line with opposite direction. An asynchronous message is represented
using a solid line from the sending lifeline to the receiving lifeline; there is no
associated return message as the interaction does not block. When an interaction
executes, it produces a sequence of interaction occurrences, termed a trace.

Several interaction operators exist. An operator either alters the behaviour
of the prescribed sequence, or alters our interpretation of the trace. Examples
include the optional interaction operator, opt, and the assertion operator, assert.

3 Formalisation Using CSP

An interaction, I, is a quintuple of the form I = (Lr, E;, M7, M, Or), where:

— Ly denotes the set of lifelines of the sequence diagram, I;

— E7 denotes the set of event types (partitioned by disjoint sets for the signals,
EIS, or operations, EIO7 that type messages);

- M IS 2 ID + EIS uniquely identifies the asynchronous messages of an interac-
tion and associates a message with the signal that typed it;

- M IO 2 ID + E[O uniquely identifies the synchronous messages of an interaction
and associates a message with the operation that typed it; and

— 05 C Ly x seq (ID x {snd, rcv, ack}) describes all interaction occurrences as
a set of pairs, with the first element being the lifeline and the second being a
sequence of occurrence observations.

We partition E; into two disjoint sets, £ IS and F IO , representing signal events
and operation events, respectively. An instance of a signal event corresponds to
the sending and receiving of an asynchronous message in the interaction; simi-
larly, an operation event types an operation call and can be either synchronous
or asynchronous. For the purposes of this paper, we will treat all call operations
as synchronous (asynchronous call operations are similar to signals).

To provide each message (we view the acknowledgement message as part of
the synchronous message) with a unique identifier, we require that the domains
of the functions M} and MP be pairwise disjoint: dom (M) N dom (M) = (.

As an additional constraint, we assume that each synchronous message has an
associated acknowledgement (with opposite direction). This acknowledgement is
not a message in the conventional sense — it merely exists in order to unblock
the sender. We can think of the acknowledgement as a rendezvous between the
communicating lifelines in order to unblock the sender. As such, we do not
associate it with its own identifier (it uses that of the corresponding synchronous
message); nor do we associate with it snd or rcv occurrence observations. In order

On a Process Algebraic Representation of Sequence Diagrams 75

for the communicating lifelines to synchronise on this event, both observe it as
an ack.
In addition, we define the following auxiliary functions:

— sd : ID -+ Lj returns, for a message identifier, the sending lifeline;

— rv: ID + Ly returns, for a message identifier, the receiving lifeline; and

— occurrences : Ly -+ seq (ID x {snd, rcv, ack}) denotes the sequence of event
occurrences on the argument lifeline in temporal order.

Interaction occurrences appear in temporal order on a lifeline, with time pro-
gressing downwards. An interaction implicitly imposes an order on the messages
sent between lifelines. This weak sequencing implies that the order of interac-
tion occurrences on a particular lifeline is significant, but that ordering between
occurrences on different lifelines can be interleaved. An additional (and seem-
ingly obvious) constraint is that, for a particular message, the send occurrence
must happen before the receive occurrence. For example, consider again Fig. 1.
Message A (and all other messages) must be sent before it can be received. Addi-
tionally, for entity 2, A must be received before B can be sent. However, there
are no direct constraints between the send occurrences of messages D and F.

Our approach for translating sequence diagrams to CSP is based on mirror-
ing the structure of the corresponding diagram. Broadly, each lifeline is mapped
to a process and each occurrence observation is mapped to a CSP event. The
process then enforces weak sequencing by insisting that the occurrence obser-
vations appear in the temporal order specified on the corresponding lifeline.
The acts of sending and receiving a message are completely detached; as such,
we require an additional constraint process to enforce the fact that a message
cannot be received before it was sent.

We treat the various interaction operators of sequence diagrams using tem-
plate processes that describe their respective patterns of behaviour. These are
defined formally in Sect. 4.

Consider an interaction, I, with a corresponding sequence diagram. Our app-
roach can be outlined as follows.

— With each lifeline, [€ L;, we associate a sequence of events of the same
temporal order. The sequence of events is given by occurrences (1). An element
of this sequence is a pair of the form (id, obs), where id € ID and obs €
{snd, rcv, ack}.

— We model each occurrence observation with a corresponding CSP event. The
unique identifier is communicated as part of the event due to the finer nuances
of weak sequencing semantics. Let obs’ € {snd, rcv}. Recall that for acknowl-
edgements we use the same id as that of the associated synchronous message.
Depending on the observation and the nature of the message, the event takes
the following form:

e for asynchronous messages, msg.asynch.id.obs’.sd(id).rv(id). Ms(zd)
e for synchronous messages, msg.synch.id.obs’.sd(id).rv(id).MP (id)
e for acknowledgements, msg.synch.id.ack.rv(id).sd(id). MP (id)

76 J. Jacobs and A. Simpson

— Each lifeline has a corresponding CSP process that communicates the events
in the required order (defined in the template process).

— For each message in an interaction, we associate a triple, (from, to, name),
where {from,to} C L; and name € Ej.

— Each message has an associated process with send and receive occurrence
events that synchronise with the appropriate sending and receiving lifelines
(defined in the template process).

— Depending on the interaction, we instantiate the correct template process
(as defined in the next section) to describe the behaviour.

— A sequence diagram that consists of more than one interaction operator is sub-
sequently defined as the sequential composition of the CSP template processes
that describe the respective interaction operators.

The approach does not require fixed sized buffers to model asynchrony, as the
sending and receiving lifelines do not synchronise on a message. This allows for a
uniform treatment of synchronous and asynchronous messages: in an asynchro-
nous exchange neither the sending nor the receiving lifelines are blocked; con-
versely, for a synchronous exchange, the sending lifeline blocks until the receiving
lifeline communicates the acknowledgement.

In order to simplify the CSP presented here, we do not model passing argu-
ments for call operations or signals; however, these can be readily incorporated
via the use of CSP channels.

4 Complex Interactions

Combined fragments allow for the description of complex patterns of interaction
in a concise and compact manner. UML (and, therefore, SysML) defines differ-
ent interaction operators, each enabling the specification of different rules with
regards to the ordering of messages (and their associated occurrence observa-
tions). A combined fragment is an interaction operator with associated operands.
Figure1 gives an example of the use of the opt interaction operator.

The operands of an interaction operator is dependant upon the type of the
operator: the alternative and parallel operator each “have multiple horizontal
partitions, separated by dashed lines that correspond to their operands. Others
have just a single partition” [11]. For single partition operators, their operands
correspond to the messages enclosed in the combined fragment. In addition, the
operands of the interaction operators follow weak sequencing semantics (unless
it is the strict operator): “During execution of an interaction, all operands use
weak sequencing semantics on their contents” [11].

The weak sequencing interaction operator, seq, is the default. The operator
imposes a weak sequencing semantics on its operands, with the operands of the
weak sequencing operator being the messages contained within the combined
fragment. The UML specification [4] defines weak sequencing as follows.

1. “The ordering of occurrence specifications within each of the operands
[messages] are maintained in the result.”

On a Process Algebraic Representation of Sequence Diagrams 7

2. “Occurrence specifications on different lifelines from different operands [mes-
sages| may come in any order.”

3. “Occurrence specifications on the same lifeline from different operands [mes-
sages| are ordered such that an occurrence specifications of the first operand
[message] comes before that of the second operand [message].”

Thus: a message needs to be sent before it can be received; occurrence specifi-
cations between different lifelines (also between different messages) impose no
additional ordering constraints upon each other; and the temporal order of the
occurrence specifications on each lifeline must be honoured.

The process Message asserts that the sending of a message necessarily occurs
before its reception, as per condition 1. The parameters type and id correspond
to the type (synchronous or asynchronous) and unique identifier, respectively;
from and to model the sending and receiving lifelines; and name corresponds to
the signal or operation (an instance of an event type).

Message (type, id, from, to, name) =

msg.type.id.snd.from.to.name — msg.type.id.rcv.from.to.name — Skip
o Message (type, id, from, to, name) =

{| msg.type.id.snd.from.to.name, msg.type.id.rcv.from.to.name |}

PrefizComposition, if supplied a sequence as input, is the process that com-
municates the events in order and then behaves as Skip. Given a temporal
sequence of interaction occurrences for a lifeline, we use PrefiztComposition to
enforce condition 3:

PrefizComposition (s) =
if null (s) then Skip else head (s) — PrefiztComposition (tail (s))

The process Lifelines models the parallel composition of a set of lifelines.
The process takes as input a set of sequences, where each sequence describes
occurrence specifications for a lifeline in temporal order. Each lifeline in the
composition synchronises on its entire alphabet. (In the following, the function
set converts a sequence to a set.)

Lifelines (1) = || line : | o [set (line)] PrefitComposition (line)
a Lifelines (1) = |J {line : | o set (line)}

The process Messages is the parallel composition of the Message processes,
with each taking a quintuple of the form (type,id, from, to, name) as input.

Messages (m) =
H(t, id, from,to,n) : m e
[Message (¢, id, from, to, n)| Message (t, id, from, to, n)
o Messages (m) =
U A{(t, id, from, to,n) : m e a Message (t,id, from, to,n)}

We can now model weak sequencing behaviour. By placing Messages and
PrefizComposition in parallel, we restrict the traces to adhere to the behaviours

78 J. Jacobs and A. Simpson

sd Seq J

' D 1

‘
‘
‘
e :
i o | :
<
! ' ! E !
' ' T
: LA :
: ! : :
: S
‘ ‘ s
L e 4 :
e ——

Fig. 2. The default seq operator (adapted from [11]).

imposed by the first and last condition. Condition 2 places no further restrictions
on the behaviour, and, as the interaction occurrences between different lifelines
do not have any shared events in common, we require no process to model this
behaviour. Seq, which models weak sequencing, is defined thus (for brevity, we
write « Lifelines (1) and o Messages (m) as L, and M, respectively):

Seq (I, m) = Lifelines (1) [Lo, || My | Messages (m)

The operands of the strict sequencing operator, strict, are the messages con-
tained within the combined fragment: “the semantics of strict sequencing defines
a strict ordering of the operands [messages|” [4].

Strict sequencing semantics therefore impose an additional constraint upon
weak sequencing, in that the operands (messages) must be sequenced across all
participating lifelines [11]. This implies that, for a particular message, the send
and receive occurrences must occur in strict succession.

We can subsequently define strict sequencing by placing another process
(Enforce) in parallel to constrain the behaviour of weak sequencing.

The process Strict is defined as follows:

Strict (I, m) = (Lifelines (1) | Ly, || My | Messages (m)) [| My, |] Enforce (m)
Enforce (m) = O (msg.m.i.snd.f.t.n) : M, @
msg.m.i.snd.f.t.n — msg.m.i.rcv.f.t.n — Enforce (m)
O Skip

Our approach allows for detecting when the operands of an interaction opera-
tor are not well-defined. For example, when we try and enforce strict semantics on
the sequence of Fig. 2, FDR detects a deadlock and returns a counter-example —
message overtaking is not possible using strict semantics.

The parallel operator, par, designates an interleaving between its operands.
The horizontal partitions (within the combined fragment) correspond to the
operands. The interleaving operator of CSP models this pattern of behaviour
perfectly. We therefore define the par interaction operator as the interleaved
behaviour of sequentially interleaved processes. For readability, the definition
below assumes that there are only two partitions within the combined fragment;

On a Process Algebraic Representation of Sequence Diagrams 79

we can, however, easily extend this to cover more partitions, or even generalise
the definition to cover an arbitrary number of horizontal partitions.

Par (I, my, ko, mg) = Seq (I, my) ||| Seq (l2, mz)

The alternative operator, alt, offers the choice between the behaviours of its
operands, based on the guard associated with each partition. Recall that the hor-
izontal partitions (within the combined fragment) correspond to the operands.
In a scenario in which more than one guard evaluates to true, the choice is non-
deterministic; if none evaluate to true, an optional else partition is selected [11].
We can use the nondeterministic and conditional choice constructs to model this
behaviour. Below we provide a definition for a combined fragment consisting of
two conditionally guarded partitions and one else clause. This definition can be
generalised to handle an arbitrary number of conditional clauses, but a simplified
version is presented here to illustrate the concepts.

Alt (llv my, g1, l27 ma, g2, 131 md) =
if (g1 A g2) then Seq (h, m1) M Seq (b, m2)
elseif g; then Seq (11, mq)
elseif go then Seq (lz, ms) else Seq (I3, mg3)

The operator opt models optional behaviour. The operand (messages con-
tained within the combined fragment) is only executed if the guard condition is
true. This behaviour is precisely that of an alt operator with a single operand.

Opt (I, m, g) =if (g) then Seq (I, m) else Skip

The break interaction operator is used to model a breaking scenario from
another enclosing fragment. The behavioural semantics is such that if the guard
associated with the break evaluates to true, then its operand is executed (rather
than the remainder of the enclosing fragment). For example, consider a break
nested within an enclosing seq fragment, which we model in terms of the process
Break. The first two parameters (I, and my,.) describe the lifelines and mes-
sages of the enclosing fragment preceding the break; the final two parameters
(lpost and myes;) model the remainder of the enclosing behaviour. The [, m and
g parameters correspond to the operands of the break fragment.

Break (lprey Mpre, l, m,g, lposta mpost) =
Seq (lpre, Mpre) g (if g then Seq (I, m) else Seq (Lpost, Mpost))

The loop operator repeats its operand (the messages contained within the
combined fragment) until the termination condition imposed upon it is satisfied.
The semantics of the loop operator allows for the termination condition to be
expressed as either: an iteration bound (of the form (lower, upper) or (ezxact));
a Boolean condition; or a combination of both. (In practice, however, one would
use one or the other, rather than a combination.)

80 J. Jacobs and A. Simpson

The UML specification is ambiguous with regards to the semantics when the
termination condition is expressed as a combination of an iteration bound and
Boolean guard: it is unclear what happens if the Boolean condition evaluates to
false before the minimum number of iterations have executed. This ambiguity
arises as a result the following two quotes from the UML specification: “after
the minimum number of iterations have executed and the Boolean expression is
false the loop will terminate” [4], and “the loop will only continue if that specifi-
cation evaluates to true during execution regardless of the minimum number of
iterations specified in the loop” [4]. As such, we consider in our treatment only
the cases where either an iteration bound or Boolean guard is specified.

The sequencing operator of CSP is used to express behaviour as a sequence
of process executions. We can convey the desired behaviour of the loop operator
through successive application of the sequencing operator (to the CSP process
modelling the behaviour of the operand) in accordance with the stated termina-
tion condition. Consider the case where there is a single integer iteration bound
is specified as the termination condition. The process Loop models this:

Loop (I, m, e) =if (e > 1) then (Seq (I, m) g Loop (I, m, e — 1)) else Skip

5 Interaction Interpretation

The interaction operators described in the previous section allowed us to model
different forms of control flow — alternative or parallel behaviour, for example.
In this section, we introduce the three operators that change our interpretation
of a particular interaction sequence. We discuss these in the context of how they
might possibly be used in a refinement check. In addition, we motivate why it is
inappropriate to define process definitions in the spirit of the preceding section.

The ignore interaction operator provides, as part of the combined frag-
ment, a set of messages that are to be ignored. Consequently, the messages
are not allowed within the interaction fragment. The interpretation is that the
messages are insignificant and irrelevant and are to be ignored if they appear in
the interaction. An alternative interpretation is that the ignored messages can
appear anywhere in a trace and still be considered valid.

It is possible to model this as a template process, where the ignored traces
are interleaved with those of the interaction (assuming we followed the second
interpretation, and ignore contained all the valid observations of the ignored
events between participating lifelines):

Ignore (1, m, ignore) = Seq (I, m) || Run (ignore)
A more elegant solution can be achieved via the hiding operator and the

first interpretation: in a refinement, we simply hide the ignored events from any
behaviour we are comparing against. For example, StateMachines \ ignore C

3 Here, Run (E) =Ue: E o ¢ — Run (E).

On a Process Algebraic Representation of Sequence Diagrams 81

sd Interaction1 J sd Interaction2 J
[Lfeinet | [Lifeine2 | [Lifeline3 | [Tfeine1 | [Lieine2 | [Lieine3 |
v v v I 1 I
! LA : ! boa !
1 — : ,
alt { ! i |]
AL —_—t |
o B . i : D! :
I ———] : | :
i r | i | i
felse] c | : 1 D | 1
B Sam—
! ' I | i
| ‘ |
; ; | ' D | '
loop (3) i — 1
{ |
: o ! : 1 1 1
P — 1
| | '
'
' ' |
| ‘ ‘

Fig. 3. Example 1

Seq (lifelines, messages) would test if an interaction is valid for a pair of com-
municating state machines, StateMachines.

The consider interaction operator specifies a set of messages that are to be
considered as part of this combined fragment; all other messages are ignored.
Consequently, the combined fragment can only contain the considered messages.
The semantics is interpreted to mean that other messages might occur as part
of the interaction, but that these are irrelevant and ought to be ignored. The
consider operator can be defined in terms of ignore: ignore all other messages not
considered. As was the case for ignore, there exists an alternative interpretation,
where all messages that are not considered may appear anywhere in the traces.
(In the interests of brevity, we do not expand further on the consider operator.)

The assertion operator, assert, declares that the interaction fragment models
the only valid continuations; any other eventuality is considered invalid. In this
case, we need the refinement relation to hold in both directions.

6 Examples

Having defined a process-algebraic formal semantics for sequence diagrams, we
can test whether the behaviour of one interaction sequence is contained within
another by considering trace semantics. Consider Fig. 3. If we regard the behav-
iour (in terms of traces) of Iy = Seq (Lg, M3) as the valid behaviours (a safety
specification), and we want to test whether another interaction sequence, I; =
Seq (L117 MH) S Alt (ng, M12, b, L13, Mlg) S LOOp (L14, M14, 3), does not deviate
from this, we can use a traces-refinement (I Cr ;) to confirm this.

As another example, we might want to be sure that interaction diagrams
at different levels of the specification are consistent (see Fig.4). Such vertical
consistency problems are induced by a development process where models are
iteratively refined: we start with an interaction sequence at a higher level and add
more detail as we move closer to the implementation level specification. Assum-
ing Higher = Seq(Ly, Mp) and Lower = Seq(L;, M;), we can check whether

82 J. Jacobs and A. Simpson

sd Higher J sd Lower J
| Lifeline 1 | | Lifeline 2 | | Lifeline 3 | | Lifeline 1 l Lifeline 2 l Lifeline 3 l

| i i i i i
i LA | i LA i
! J] ' -
| D 1 i B i |
i] I | | |
L a— 1 —>x |
| D I i D i i
i i i i i i
- | _— |
) \ |) \ |
i i i i i i
i i i | B i
i i) I i

) I i

| | |

i D i

D — i

] i i

' i '

Fig. 4. Example 2

stm Block1 J stm Block2 J
A A/B,C
B D
'stm Block3 J sd Interaction J
[b1t] [b2] [b3 |
1 A i
= i
i B 1 1
< | i
c/D : } }
I i C i
i —
i 1D i
I S ——
i i i
i i i

Fig. 5. Example 3

Higher CTr Lower \ hidden (where hidden denotes those occurrence observa-
tions present at the lower level, but not at the higher level).

Finally, we might make use of sequence diagrams to check the validity of
communicating state machines, as described in [12,13]. We can, for example,
test whether a particular sequence of events is possible when we consider the
combined behaviour of a set of communicating state machines. We can check
Blocks Cr SEQ, where SEQ = Seq (L, M). Here, Blocks denotes the compo-
sitional process describing the combined behaviour of the communicating state
machines. We would also expect to make use of the CSP renaming operator in
order to consolidate the events of our interaction semantics with the events of
the state machine semantics, as proposed in [13] (Fig. 5).

7 Related Work

State machine diagrams were given a CSP semantics by Ng and Butler in [8];
activity diagrams were formalised by Dong et al. [9]. To the best of our knowl-
edge, there has been no such mapping done in the spirit of the aforementioned

On a Process Algebraic Representation of Sequence Diagrams 83

papers for sequence diagrams. Both [8,9] focus on the provision of a CSP seman-
tics in an implementation-independent fashion; this was our goal for sequence
diagrams. Other examples where state-based graphical models have been given
a formal CSP semantics include [14,15].

Li and Li [7] considered the automatic translation of sequence diagrams to
CSP using a model-driven approach. Sibertin-Blanc et al. [16] showed four possi-
ble semantic interpretations of sequence diagrams, partly due to the semi-formal
nature of the UML specification. Rasch and Wehrheim [17] used sequence dia-
grams to check the validity of scenarios in a UML model. Our work differs, in
that they define a semantics for sequence diagrams in terms of the messages
communicated; in addition, they exclude the interaction operators from their
analysis. Our work considers sequence diagrams in terms of occurrence observa-
tions, rather than messages, and extends to all operators. The checking of the
validity of scenarios, using our semantics as a model of interaction, will be a focus
of future research. Other notable works of reference can be found in [18,19].

8 Discussion

We have introduced patterns of behaviour to model the interaction operators as
per the UML standard. In addition, we have provided a uniform treatment of
synchronous and asynchronous messages. Furthermore, our approach does not
rely on fixed size buffers in order to model asynchronous exchanges. Finally, we
are able to deal with lost and found messages, as well as message overtaking.
The process-algebraic approach suggested enables us to compare the behav-
iour of a sequence of interactions against another interaction in a natural fashion.
This is in contrast to approaches that rely on traditional model checking, such
as the work of Lima et al. [20] — where such comparisons are not possible. Fur-
thermore, the only other formalisation of the semantics of sequence diagrams
that makes use of CSP that we are aware of is that of Li and Li [7]. Our app-
roach differs in that we define our semantics for sequence diagrams in terms of
templates that describe the patterns of behaviour for the various interaction
operators. Additionally, we consider the seq, strict, ignore, consider, and assert
operators. The advantage of our approach is that any implementation of an auto-
mated translation mechanism would only have to instantiate the proposed CSP
processes in order to describe the behaviour of the desired interaction operator.
The work of Li and Li [7] models the sending of a message between lifelines
L; and L, using the channel construct, with the lifelines synchronising on the
message being exchanged. The problem here, from our perspective, is that we
require the sending and receiving of a message to be modelled as two, separate,
detached events (the sending and receiving occurrence specifications related to
the message exchange). However, the suggested approach abstracts them into
a single event. This might have been appropriate, for example, if we were only
concerned with the act of exchanging a message. However, this is not our desire
here. Instead, we wish to decompose the exchange into two separate events. In
doing so, we will be able to operate our CSP models at a finer granularity.

84 J. Jacobs and A. Simpson

Consider making use of sequence diagrams to check the validity of communi-
cating state machines, as described by the present authors in [12,13]. Activities
are used to augment the behaviour of state machines in [21]. Using our model for
sequence diagrams, we would be able to make use of events (like a state machine
sending an asynchronous message) that correspond to interaction occurrences on
the sequence diagram. Of course, the sending of an asynchronous message by one
state machine does not guarantee that the message is received by another. Even
if it is received immediately, it might still be placed in an event queue, so the
receiving state machine might only process it later. If we operated at a coarser
granularity, we would have to be content with only modelling the exchange of
the message, making it impossible to distinguish between when it was sent and
when it was received.

The approach presented here is novel as we give a detailed account of inter-
action operators. Moreover, due to the nature of a process-algebraic formalism
like CSP, where the focus is on describing intricate patterns of behaviour, we
are able to deal with interaction operators that alter our interpretation of an
interaction sequence more naturally that in approaches that rely on traditional
model checking using temporal logics [20]. In addition, the refinement checker,
FDR, which allows the behaviour of one process to be compared against that of
another in terms of a refinement hierarchy, provides a practical means of com-
paring behaviour of one sequence diagram against that of another (incorporating
the operators that alter interaction interpretation, for example).

Possible areas of future work include checking the validity of scenarios.

References

1. Swain, S.K., Mohapatra, D.P., Mall, R.: Test case generation based on use case
and sequence diagram. Int. J. Softw. Eng. 3(2), 21-52 (2010)

2. Odell, J.J., Van Dyke Parunak, H., Bauer, B.: Representing agent interaction pro-
tocols in UML. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol.
1957, pp. 121-140. Springer, Heidelberg (2001)

3. Bist, G., MacKinnon, N., Murphy, S.: Sequence diagram presentation in technical
documentation. In: Proceedings of the 22nd International Conference on Design of
Communication: The Engineering of Quality Documentation, SIGDOC 2004, pp.
128-133. ACM (2004)

4. Object Management Group: Unified Modeling Language Specification, version
2.4.1 (2011)

5. Kim, S.-K., Carrington, D.: A formal model of the UML metamodel: the UML state
machine and its integrity constraints. In: Bert, D., Bowen, J.P., C. Henson, M.,
Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 497-516. Springer, Heidelberg
(2002)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

7. Li, D., Li, D.: An approach to formalize UML sequence diagrams in CSP. Int. Proc.
Comput. Sci. Inf. Technol. 53(2), 109-115 (2010)

8. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Pro-
ceedings of the 1st International Conference on Software Engineering and Formal
Methods, SEFM 2003, pp. 138-147. IEEE (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

On a Process Algebraic Representation of Sequence Diagrams 85

Dong, X., Philbert, N., Zongtian, L., Wei, L.: Towards formalizing UML activity
diagrams in CSP. In: Proceedings of the International Symposium on Computer
Science and Computational Technology, ISCSCT 2008, pp. 450-453. IEEE (2008)
Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River (1997)

Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann Publishers, San Francisco (2008)

Jacobs, J., Simpson, A.C.: A process algebraic approach to decomposition of com-
municating SysML blocks. Int. J. Model. Opt. 3(2), 153-157 (2013)

Jacobs, J.: A Formal Refinement Framework for the Systems Modeling Language.
Department of Computer Science, University of Oxford, Doctor of Philosophy the-
sis (2015)

Yeung, W.L., Leung, K.R.P.H., Dong, W., Wang, J.: Improvements towards for-
malising UML state diagrams in CSP. In: Proceedings of the 12th Asia-Pacific
Software Engineering Conference, APSEC 2005, pp. 176-182. IEEE (2005)
Roscoe, A.W., Chakraborty, S.: Verifying statemate statecharts using CSP and
FDR. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 324—
341. Springer, Heidelberg (2006)

Sibertin-Blanc, C., Hameurlain, N., Tahir, O.: Ambiguity and structural properties
of basic sequence diagrams. Innov. Syst. Softw. Eng. 4(3), 275-284 (2008)

Rasch, H., Wehrheim, H.: Checking the validity of scenarios in UML models. In:
Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 67-82.
Springer, Heidelberg (2005)

Sibertin-Blanc, C., Tahir, O., Cardoso, J.: Interpretation of UML sequence dia-
grams as causality flows. In: Ramos, F.F., Larios Rosillo, V., Unger, H. (eds.)
ISSADS 2005. LNCS, vol. 3563, pp. 126-140. Springer, Heidelberg (2005)
Bernardi, S., Merseguer, J.: Performance evaluation of UML design with stochastic
well-formed nets. J. Syst. Softw. 80(11), 1843-1865 (2007)

Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., Pourzandi, M.: For-
mal verification and validation of UML 2.0 sequence diagrams using source and
destination of messages. Electron. Notes Theor. Comput. Sci. 254, 143-160 (2009)
Jacobs, J., Simpson, A.C.: On the formal interpretation of SysML blocks using
a safety critical case study. In: Proceedings of the 8th Brazilian Symposium on
Software Components, Architectures, and Reuse, SBCARS 2014. IEEE (2014)

Modelling and Verification of Survivability
Requirements for Critical Systems

. 1(X . .
Simona Bernardi' ™ Lacramioara Dranca', and José Merseguer?

! Centro Universitario de la Defensa, Academia General Militar,
Zaragoza, Spain
{simonab,licri}@unizar.es
2 Dpto. Informética e Ing. de Sistemas, Universidad de Zaragoza,
Zaragoza, Spain
jmerse@unizar.es

Abstract. Survivability is a property of systems that guarantees ser-
vices which operate safe and timely. Safety-critical services must survive
despite the presence of faults or attacks. The contribution of the paper is
twofold: construction of a survivability assessment model (SAM) and its
transformation to a model checking problem. Our SAM is automatically
obtained from an improved specification of misuse cases, which encom-
passes essential services, threats and survivability strategies. The SAM
is automatically converted, using model-driven techniques, into a Petri
Net model for verifying survivability properties through model check-
ing. The method has been applied to a military command-and-control
information system.

Keywords: Safety assessment + Survivable services + Petri Nets

1 Introduction

Critical systems offer services that must operate safe and timely, despite the
presence of faults or attacks. This is the case, for example, of military Command
and Control Information Systems (C2IS). For these systems, “essential services”
must survive even when the system is infiltrated, compromised or crashed. Sur-
vivability strategies, resistance, recognition and recovery, are in this case cor-
nerstone system capabilities. In particular, resistance is the capability to repeal
attacks and to mask faults, recognition is the capability to detect attacks and
faults and to evaluate damage and, recovery is the capability to restore services
after intrusions or failures.

We propose a method to obtain a system survivability assessment model
(SAM), which can be formally verified. The method is based on misuse cases [1],
which we enhance with a QoS definition for the essential services and with a
survivability specification. The latter consists of a specification of faults and
attacks, threatening essential services, and of survivable strategies for threats
mitigation. The language used for specification is UML [16] and its extension
© Springer International Publishing Switzerland 2015

C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 86-100, 2015.
DOT: 10.1007/978-3-319-15201-1_6

Modelling and Verification of Survivability Requirements 87

mechanisms. As a byproduct of the improved misuse cases, our method automat-
ically yields a service modes specification, which we call SAM. It comprises full
service and degraded modes and paths that account for threats and survivable
strategies. Special feature of the method is its ability to verify whether fun-
damental properties for survivable systems are considered in the requirements
specification, such as the capability of the system to recover the full service
mode. The method then provides a support for the engineer to identify lacks or
errors in the SAM.

The method primarily focuses on how to represent system requirements for
getting an appropriate SAM, rather than addressing the issues of eliciting and
gathering the requirements, which definitely are in the use case technique [10].
Model-driven techniques are used to derive from the SAM a Petri net model [15],
where model-checking is applied for a system survivable verification.

The paper is organized as follows. Section 2 describes our method. Section 3
illustrates the method using a military C2IS case study. Section 4 reviews the
literature. Conclusions are drawn in Sect. 5.

2 Survivability Assessment Method

We propose a method, as a four steps process, for creating a survivability
assessment model (SAM) and for verifying survivability properties on this SAM.
Figure 1 outlines the method, the first two steps comply with the SNA method [7].
Our method is primarily proposed to be used within iterative and incremental
processes, such as the Rational unified process [12], in the requirements stage. It
is also worth noting that the method resorts to the (mis)use cases technique [1].
Today, most development processes include use cases, being then the method also
practicable in prototype-based or agile processes.

Requirements
} _Stepl . } Step3 Step4
\ Identlfy essential Obtam an 1mproved || Obtain a SAM (conven Verify
| services and misuse case ‘ tional and formal model) survivability
| service modes specification propertles
\ SNA method

No

Verification
succeeds?

Analysis&Design,
Implementation,
Test,
Deployment, ...

Next Iteration

Specification

Fig. 1. Method overview

88 S. Bernardi et al.

2.1 Identify Essential Services and Service Modes

From a use case list the engineer selects those that must not collapse, even when
operating in adverse conditions of fault or attack. Our process supplements a
use case specification as follows:

— Each selected use case is an essential service stereotyped as service.

— The engineer develops a QoS specification for essential services, see Table 2
for an example. She identifies the system service modes, the metrics (e.g.,
availability, response time) and indicators (e.g., confidence level) of interest
and she decides the acceptable metric’s (indicator’s) thresholds.

Regarding service modes, it is expected to have a low number; three or four
different services modes can be reasonable even for large systems. Service modes
in Table 2 describe a paradigmatic case.

2.2 Obtain an Improved Misuse Case Specification

The objective is to develop an improved misuse case specification, which consists
of both a specification of the threats to the system and a set of survivable strate-
gies - resistance, recognition and recovery -. The former is a faults and attacks
specification. Our method supplements the well-known misuse case technique as
follows to get an improved specification.

Sub-step 2.1. Threats Specification. Fault and attack scenarios threatening
each essential service are discovered and represented by misuse cases stereotyped
as misuse. Similarly to use cases, also misuse cases are detailed with informal
descriptions; Table3 shows an example. Each misuse case is annotated with
tagged-values that describe the characteristics of the threat, according to the
classification in [3]. The engineer should specify at least the persistency of the
threat (i.e., transient or permanent), the origin (i.e., malicious, if the threat is
an attack, or not malicious if the threat is a fault), the effect on the threatened
essential services, that is the service failure modes, and the affected QoS (i.e.,
the affected metrics/indicators defined in the QoS specification). In particular,
the service failure modes characterize the incorrect service according to differ-
ent viewpoints: the domain (i.e., content, early or late timing, halt, erratic),
the detectability (i.e., signaled or unsignaled), the consistency (i.e., consistent
or inconsistent) and the consequence on the environment (application-specific
severity levels are normally used which are associated to maximum acceptable
probabilities of occurrence). The misuse case annotations in Figs.4 and 7 show
examples of the threats characterization.

Sub-step 2.2. Survivable Strategies. For each misuse case, survivability
strategies need to be specified to mitigate its effects on the essential services.
A strategy is stereotyped either resistance, recognition or recovery accord-
ing to the classification in [7]. The survivability strategies mitigating a given
misuse case are identified as follows:

Modelling and Verification of Survivability Requirements 89

1

1

! --7 PR v S

' - PR - \ ~

| <<threatens>> - _- e \ R ~ o

1

| % <<m1t1gdtes>> <<m1t1041€s>> <<mmgales>> <<m1t1gdtes>> <<m1l1gdtes>>

1

1 <<recovery>> <<recovery>> <<recogmuon>>
UCl 4 UCI -5 UC] 3

servMode=" Degradecﬁ

servMode=" Degmde&ﬁ

servMode=" FullFuncuonahl)ﬁ

ff

<<serviceMode>>
Full Functionality

,,,,,, <<change>> D
recovery="UCI-5"

[covered]

lf”ii“‘“f“
recognition="UC1-3" <<serviceMode>>

. Degraded
<<serviceMode>>
Degraded

<<change>> AN
i recovery="UC1-4"
(B1) Pattern A (B2) Pattern B

,,,

Fig. 2. Service modes specification patterns.

1. The engineer studies if one or more resistance strategies can be devised, and
creates one use case per strategy. The interpretation is that the resistance
introduced by UC1-1 AND UC1-2, see Fig.2, when applied to MUC1 would
leave the system in full functionality. But it is also possible that the resistance
does not succeed, then the system reaches a degraded service mode. The
reached service mode is specified as a tagged-value associated to the UCs
(servMode in Fig. 2(A)).

2. The engineer studies a strategy for the system to recognize the degraded
service mode induced by the success of the misuse case. If she identifies such
strategy, she creates the corresponding use case (UCI-3 in Fig.2(A)).

3. The engineer identifies one or more strategies to recover the system, and
creates one use case for each strategy. Each use case is annotated with a
tagged value indicating the impact of the strategy. For example, one strategy
could recover the system to full functionality, but other can get less impact
(see Fig.2(A), UCI1-5 and UC1-4 respectively).

Sub-step 2.3. Review the QoS Specification. The improved misuse case
specification -created by Steps 2.1 and 2.2- will help the engineer to review the
QoS specification initially proposed in the first step of the method. So, new
service modes can be added, new metrics can be devised, and modifications in
the thresholds introduced. Again a few experience in QoS is required.

2.3 Obtain a Survivability Assessment Model

Two equivalent survivability assessment models (SAM) are obtained through
two sequential steps. First, a semi-formal SAM is automatically obtained by

90 S. Bernardi et al.

leveraging the improved misuse case specification and QoS specification. Then,
a new SAM is also automatically obtained from the semi-formal SAM. The last
SAM is a formal model, in terms of Petri Nets, where survivability properties of
the system can be verified. Let us detail the obtention of the semi-formal SAM.

The semi-formal SAM is a UML state-machine whose states are the system
service modes in the QoS specification. The transitions are obtained from the
improved misuse case specification. We consider two patterns to obtain the tran-
sitions. For each misuse case we first apply pattern A and then pattern B.

Pattern A (in Fig.2-B1). We create a choice node! whose input is the full
functionality state. The choice has two output transitions. One to full func-
tionality mode to represent that the resistance to the misuse case succeeds. The
other output leads to the degraded mode specified by the servMode tagged-value
associated to the resistance strategies (Fig.2-A). The transition from the full
functionality state to the choice node is labelled change and the tagged-values
specify the mitigated misuse case (threats) as well as the resistance strategy use
cases. The change transition from the choice node to the degraded state specifies
the recognition use case.

Pattern B (in Fig.2-B2). We review the recovery strategies for the misuse
case. For each one we create a transition whose input is the degraded mode
induced by the misuse case and its output the target mode indicated by the strat-
egy (servMode tagged-value). The transition is labelled change to indicate the
recovery use case.

The SAM Petri Net model is derived by applying a model-to-model trans-
formation to the semi-formal SAM.

Figure 3 sketches the mapping: the SAM on the left is actually the one pro-
duced in next section, C2IS case study, for the first iteration (cf. Fig. 5, white
part). The translation approach is quite intuitive: SAM states are mapped to
single PN places, while SAM transitions correspond to sequences of causally
connected PN transitions where the number of the latter depends on the anno-
tations associated to the former. In particular, a change of service mode can
be characterized by a threat causing it (threats tagged-value) and/or by a sur-
vivability strategy aimed at mitigating it (resistance, recognition, recovery). So
each tagged-value, annotated to a change SAM transition, is mapped to a PN
transition with the same name. The causality of the threat occurrence and the
consequent resistance and/or recognition and/or recovery is captured by the
causal connection of the corresponding PN transitions. The choice in the SAM
is translated to a free-choice conflict between two PN transitions: one repre-
senting the successful coverage of the resistance strategy (e.g., coveredUC4) and
the other the unsuccessful case (e.g., notcoveredUCY). Finally there is a unique
marked place (initial marking), which is the one corresponding to the initial
state of the SAM.

! The choice node is graphically represented by the diamond shape.

Modelling and Verification of Survivability Requirements 91

<<change>>
threats="Eavesdropping"
resistance="UC7"

o sam Transformation b) PN

FullFunctionality

<<serviceMode>>
FullFunctionality

<<change>>
threats="Jamming"
resistance="UC4"

[covered]

[notcovered] T X ==l
[covered] ==

<<serviceMode>> —h S | S . = D
Degraded | = rTT T < ar?g.e>>” N '
Confidentiality <<serviceMode>> recognition="UC5 “‘:‘m"e"dcc" L]
Degraded AREY (N -
Performance RS
DegradedConfidentiality

<<change>>
recovery="UC6"

Fig. 3. Model transformation.

DegradedPerformance

Legend
QO place
(®) marked place
[Jtransition

uce

2.4 Verify Survivability Properties

In the last step, the formal SAM, Petri Net model, is used for verifying surviv-
ability properties through model-checking techniques. The step aims at provid-
ing a feedback to the engineer about the completeness and correctness of the
service modes specification. In particular, considering that the SAM represents
the acceptable service modes of the essential services and the change of service
modes due to adverse conditions (attacks or faults), it may be interesting to
check, at least, the following properties of survivability:

P1. The system should always be able to recover to full functionality.

P2. The survivability strategy S is feasible.

P3. As aresponse to the occurrence of an adverse condition C, the system should
be able to carry out the survivability strategy S.

Model checking techniques [8] are state space based techniques that consist
in verifying logical properties on the reachability graph of the PN model. Logical
properties need to be formally specified as queries in order to be processed by a
model checker: there exist different temporal logic languages that can be applied
(e.g., CTL [4], LTL [14]), depending on the type of property to be checked and
on the type of model checking technique. On the other hand, we need to interpret
the survivability properties in terms of logical properties of the PN model, which
will be then expressed as queries on the PN reachability graph using a formal
language.

Table 1 shows the PN properties? (second column) that ensure the satisfia-
bility of the properties P1-P3 and the PN queries (third column) that can be

2 Petri Nets have well-established properties, such as home state, which are usually
defined in terms of place markings and transition firings [15].

92 S. Bernardi et al.

Table 1. Mapping of properties to PN queries.

PN property PN query Logical condition description
P1 |Initial home state Q1: AG(EF (init)) initial PN marking (init)
P2 |Potential firability |Q2: EF (pres) enabling set of s (pres)
P3 |Causal dependence |Q3: G(pre. =F pres) |enabling sets of ¢ and s (prec, pres)

formulated using temporal logic languages. All the queries are characterized by
logical conditions on the PN marking (fourth column).

In particular, the full functionality service mode in the semi-formal SAM is
represented by the initial marking of the PN model. The recoverability of the
former (P1) is ensured if the latter is a home state, that is if it is reachable from
any other reachable marking. The feasibility of a survivability strategy (P2)
corresponds to the potential fireability of the PN transition s representing the
strategy, that is the latter belongs at least to a firing sequence. Finally, the cause-
effect relationship between the occurrence of an adverse condition C' and the
execution of a survivability strategy S (P3) corresponds to the causal dependence
between the PN transitions ¢ and s modeling C' and S, respectively. Observe that,
for a given PN property, different possible queries can be formulated; in Table 1,
Q1 and Q2 are CTL formulas and Q3 is an LTL formula.

Once the PN queries have been defined, they can be executed using a PN
model checker: besides the true/false answer, usually the model checker pro-
duces a counter-example path for queries of universal type (e.g., Q1 and Q3)
and a witness path for queries of existential type (e.g., Q2). For example, using
PROD [17], the query Q1 on the PN model of Fig. 3(b) returns a false value. A
counter-example path is also produced that indicates a path, on the reachability
graph of the PN model, leading to a deadlock marking (i.e., DegradedConfiden-
tiality place marked).

3 The C2IS Case Study

We consider a military Command and Control Information System (C2IS) [6].
Regardless the levels of command at which military C2IS systems are used, they
generally share information to synchronize the Situational Awareness and the
Purpose of the Chief in order to (1) provide timely an accurate view of what
is happening in the theater of operations to the officers in charge and (2) send
timely their orders to subordinates. In particular, they incorporate messaging
capabilities and a map situation.

We exemplify the method application considering two consecutive iterations
within the development process.

3.1 First Iteration

In the first step, three essential services related to information exchange are
identified: send reports, transmit orders and request supplies. Figure 4 (left part)

Modelling and Verification of Survivability Requirements 93

shows use cases (UCs) stereotyped service®. The exchange information func-
tionalities are all characterized by QoS requirements, that are considered in the
definition of the system service modes (see Table2): full functionality defines
the required QoS under normal condition, i.e., assuming no threats affecting
the essential services. The other two modes define the required QoS under
degraded conditions, either considering degraded performance or degraded confi-
dentiality. The QoS metrics of interest are the steady state availability (ssAvail)
and response time (respTime), while confidentiality is a qualitative indicator
(confLevel) that enables to restrict the information exchange depending on the
NATO clearance levels (i.e., top secret, secret, confidential, restricted). For exam-
ple, a high confidence level indicates that the information can be exchanged at
all clearance levels, while a medium one limits the exchange of confidential and
restricted information. Finally, metric (indicator) threshold values are assigned
to the essential services: an exemplification is provided in Table 2.

c2is

objective="malicious";

persistency="transient";

<<threatens>> effect=(domain="lateTiming");
affectedNFR=(ssAvail,respTime);

et
) <<misuse>>\- - - - -
/ servMode="DegradedPerformance’ ﬁ Jamming
/
E e

T f
| ' .
I I<<mitigates>>

Subordinate

<<resistance>>
Use spread spectrum
ommunication (UC4

<<recovery>>

comm. (UC6)

<<recognition>> i
Detect absence of i
comm. (UC5) |

Choose alternative

<<recovery>>
Restore original
comm. (UC9)

servMode="FullFunctionality" [\

<<service>>
end report (UC

servMode="DegradedPerformance"%

objective="malicious"; Attacker
persistency="transient";
effect=(detectability="unsignalled");

affectedNFR=(confLevel);

i
<<resistance>> <<resistance>>
ncrypt data (UCZ, Apply Tempest shielded equipment (UC8!

servMode="DegradedConfidentiality” %

Officer

servMode="FullFunctionality" [\

Fig. 4. Misuse case diagram (Iteration 1)

In the second step a vulnerability analysis is carried out first, to identify
potential threats affecting essential services. Two types of attacks are consid-
ered specifically: sending radio signals to disrupt communication (jamming) and
accessing to the information exchanged between officers and subordinates (eaves-
dropping). The attacks are represented by misuse cases (see Fig.4), they are
described in natural language using templates (see Table 3) and classified using
the taxonomy in [3]. The result of such classification is specified in the diagram

3 To avoid cluttering, the figure shows only the essential services considered in this
iteration.

94 S. Bernardi et al.

Table 2. Specification of QoS for each service mode

Full Functionality UcC1 uc2 ucs

ssAvail 99% 99% 99%
respTime (10,sec,max) (10,sec,max) (100,sec,max)
confLevel high high high
Degraded Performance |UC1 uc2 ucs

ssAvail 95% 95% 95%
respTime (100,sec,max) (100,sec,max) (1000,sec,max)
confLevel high high high
Degraded Confidentiality | UC1 uc2 ucs

ssAvail 99% 99% 99%
respTime (10,sec,max) (10,sec,max) (100,sec,max)
confLevel medium medium medium

using tagged-values associated to the misuse cases: e.g., a jamming attack is a
malicious transient fault that causes delays in the information exchange (late-
Timing), in particular it affects the QoS (ssAvail, respTime).

Table 3. Detailed description of the jamming attack.

MUC Name Jamming
Scope C2IS
Level Service goal

Main Misusers Attacker

Success guarantee| The information is not delivered timely

Main scenario The Attacker identifies the messaging system as a target:
1. The Attacker identifies the features of the communication
link in use

2. The Attacker sends an interference signal

3. Communication is interrupted

Once threats affecting essential services have been identified, survival strate-
gies to mitigate them are devised. Several strategies are required to mitigate
a jamming attack (Fig.4, white UCs): use of spread spectrum communica-
tion (resistance strategy that may not provide a 100 % threat coverability),
detection of absence of communication in case the resistance does not succeed
(recognition) and consequent reconfiguration with an alternative communica-
tion mean (recovery). Both the above resistance and the recovery strategies
should guarantee an acceptable degraded performance service mode (servMode
tagged value). On the other hand, to mitigate an eavesdropping attack only data
encryption is required (resistance) that may lead to a degraded confidentiality
service mode in case of successful intrusion.

Modelling and Verification of Survivability Requirements 95

In the third step, the SAM shown in Fig.5 (white portion) is automatically
obtained from Fig. 4, by applying the patterns described in the previous section.
In particular, the states (serviceMode) represent the system service modes of
Table 2, the transitions (change) model changes of service mode due to threat
occurrence and consequent survivability strategies execution. Observe that the
tagged values associated to change transitions refer to (mis)use cases of Fig. 4.

<<change>>
threats="Eavesdropping"
resistance=(Encrypt data (UC7),

Apply Tempest shielded equipment (UC8))

<<change>>
threats="Jamming"

resistance="Use spread spectrum communication (UC4)"
T

<<serviceMode>>

<<change>> Full Functionality '
threats="Eavesdropping" , - ; <<Charlqe>> .
resistance="Encrypt data (UC?7)" [P recovery="Restore original comm. (UC9)’
[covere
[covered]
<<change>>
[not ¢overed] [nof ’cage’rga] ””” recognition="Detect absence of comm. (UC5)"

<<serviceMode>> <<serviceMode>>
Degraded Confidentiality Degraded Performance

<<change>>
recovery="Choose alternative comm. (UC6)"

Fig. 5. SAM state-machine (Iteration 1)

In the fourth step, the Petri Net of Fig. 3(b) is used as a SAM formal model
to verify properties as described in Sect. 2.4. The formal SAM was derived from
the semi-formal SAM in Fig.3(a), the same as in Fig.5 (white portion). It is
used to verify, through model-checking techniques, whether the system require-
ments specification satisfies the survivability properties described in Sect. 2.4. In
particular, the recoverability property P1 is not satisfied. As counterexample
the model checker found that, once reached the Degraded Confidentiality mode
is not still possible to recover to the Full Functionality. This result suggests to
require a stronger resistance strategy to eavesdropping attacks, and the engineer
decides to apply Tempest shielded equipment that together with data encryp-
tion should guarantee a 100 % of coverage. The misuse case diagram is updated
accordingly by adding a new use case (UCS8 in Fig.4) and new SAMs -semi-
formal and formal- are generated. Property P1 is newly checked and, again, a
new counterexample is found since it is not possible to leave from a Degraded
Performance mode. Then, the engineer needs to introduce a new recovery strat-
egy to restore the original communication once a jamming attack disappears*
(UCY in Fig. 4). The resulting semi-formal SAM is the one in Fig. 5 with the grey
transitions and where the transition path from Full Functionality to Degraded

4 Observe that attack is a transient fault.

96 S. Bernardi et al.

Confidentiality is removed. All the survivability properties are satisfied in this
SAM version, so the final misuse case specification can be used as input artifact
for the design phase in this iteration.

3.2 Second Iteration

The application of the method in a next iteration restarts identifying new essen-
tial services. An essential service related to the coordination of land/sea/air
operations (UC10 in Fig.7) and two other related to map management (UC11
and UC12 in Fig. 7) are identified in the first step of the method. All of them are
stereotyped service and their associated QoS requirements identified. Specifi-
cally, the considered functionalities are characterized by performance and con-
fidentiality (QoS requirements shared with the functionalities analyzed in the
previous iteration) and some of them by integrity (a new QoS requirement).
The integrity metric of interest is a qualitative indicator (integLevel). A high
integrity level would grant writing permissions to those processes that exchange
critical, essential and routine information. The engineer considers the new metric
in the scope of the service modes already defined and identifies a new degraded
service mode degraded integrity. Initial threshold values are specified for each
new essential service with respect to all service modes and metrics (see Fig. 6).
Obviously, for metrics studied in previous iterations, its values remain the same
for the service modes already considered.

In the second step threats to new essential services are identified. The threats
analyzed in the previous iteration (jamming and eavesdropping) affect also some
of the essential services considered in the running iteration and the relationship
is reflected in the diagram in Fig.7. Two new types of threats are considered:
destroying a communication node (destroy node) and manipulation of the data
sent by sensors or officers when updating the common situation map (manipulate
information). Each of them is specified in the diagram with the QoS metrics
affected, e.g., the latter attack is a malicious transient fault that affects the
content of the information exchanged (content), and consequently the QoS of
the confidence and integrity metrics (confLevel, integLevel).

Also in the second step survivable strategies are devised for the new threats in
this iteration. First, the engineer specifies a resistance strategy (Apply redun-
dancy - UC13 in Fig.7) and a recognition strategy (Monitor node status -
UC14 in Fig.7) to mitigate the destruction of a communication node, these
strategies should guarantee a 100 % of coverage. Next, a control access is required
as resistance strategy to a manipulate information attack that may lead to a
degraded integrity service mode in case the resistance fails. A recognition strat-
egy (monitoring data quality) and recovery strategy (restore original mode)
should eventually bring the system back to full functionality mode.

In the third step, a new semi-formal SAM is obtained considering the new
essential services only. It is used further to automatically build a formal SAM -
Petri Net-. In the fourth step, the verification of survivability properties on
this model gives useful feedback to the engineer. Specifically, the recognition
strategy UC14 does not satisfy the feasibility property P2 (see Sub-sect.2.4).

Modelling and Verification of Survivability Requirements 97

The engineer corrects the specification (Fig. 7, grey part), so that the resistance
strategy Apply redundancy may lead to a degraded performance service mode
and she adds a new recovery strategy (Reconfigure - UC18) that should even-
tually bring the system back to full functionality mode.

Full Functionality Uucit ucz2 UcC3 UC10 UC11 Uuciz
ssAvail 99% 99% 99%
respTime (10,sec,max) (10,sec,max) (20,sec,max),
confLevel high high high
integLevel high —_— high

Degraded Performance
ssAvail 95% 95% 95%
respTime 100,sec,max)(100,sec,max) (100,sec,max
confLevel high high high
integLevel i high —_— high

Degraded Confidentiality
ssAvail 99% 99% 99%
respTime (10,sec,max) (10,sec,max) (20,sec,max)
confLevel medium medium medium
integLevel high - high

Degraded Integrity
ssAvail
respTime
confLevel
integLevel

First Iteration Second Iteration

Fig. 6. Specification of QoS for each service mode (Iteration 2).

4 Related Work

Survivability has always been an important requirement in the military context
for platforms, communication systems, and nowadays more generally to mis-
sions. It has also been a concern of those civil system domains (e.g., information
systems and critical infrastructures) where it is crucial to guarantee certain QoS
levels despite a set of pre-specified threats.

Ellison et al. [7] proposed a method (SNA) for survivability assessment of dis-
tributed software systems at architectural level, however we place our method
in the requirements stage. The first two steps of our method comply with SNA
and we have introduced a new survivability assessment model, based on (mis)use
cases and QoS specifications, that is leveraged through model-checking for veri-
fication.

Knight and Strunk [11] proposed a formal definition for acceptable levels of
service offered by a survivable system under different environment conditions.

98 S. Bernardi et al.

C2Is
________ <<threatens>> <<misuse>>
<<service>> Eavesdropping

Coordinate land/sea/air -
operations (UC10)

- <<misuse>>"

e Jamming
<<threatens>/> - -

_ -~ “<<threatens>> " Attacker

P P objective="malicious";
e - persistency="permanent";
P effect=(domain="halt");
- affectedNFR=(ssAvail,respTime);

pdate map (UCL

ullFunction servMode = servMode =
Sensor g "DegradedPerformance"Iﬁ ”FullFunc(lonall%"Iﬁ
. <<threatens>>
e lTTTTTTIIIIITIIIIIIIIIIIILLY <<misuse>>
<<threatens>> Manipulate information
servMode <<resistance>> << ates>> _ - =
"Degradedinte | \Control access (UCI5Y - - - - - - - -,

Officer = n
'
Sttt it <<misuse>>
' Destroy node
I .
' <<mitigates>>
_ ! (mmmmmm—mm--—-----—--- e
' : : Power outage
| '
: —<resistance>> onitor node status (UC14.
Subordinate 1 Mpply redundancy (UC13{ e
1 M Reconfigure (UC18
. '
7 <<service>> H
I
I
I
'
'

objective="malicious";
persistency="transient";

- l

<<reccgmtion>>(<<recovery>> _ P
Monitor data quality fer\‘/ll;/tode = AN R Restore original 2::3e_c::(;:(n—az;n;fenvt:lmir:t'egLevel)
(ucie) unctional mode (UC17) - ’ '

Fig. 7. Misuse case diagram (Iteration 2)

Each level is quantified by relative values (as perceived by the users) and can
be expressed in terms of QoS requirements. The survivability specification is
a graph, where the nodes represent the acceptable levels of service offered by
the system and the edges model the change of levels when certain environment
conditions are met. We have also used a graph representation for the different
system service modes. Our work goes one step further by supporting the formal
verification of the survivability properties.

Several approaches have been proposed in the literature to collect QoS requi-
rements related to survivability. Mustafiz et al. [13] define a requirement engi-
neering process to elicit reliability /safety requirements and degraded services.
Similar to our proposal, use cases are profiled to model undesired situations
that can interrupt the normal behavior of the system and handlers to guaran-
tee reliable and safe services. In [5], a framework (UMD) has been proposed
for eliciting and modeling dependability requirements that is designed around a
basic modeling language defined by the authors. As in our proposal, UMD can
be used to identify and define measurable dependability requirements and prop-
erties of the system. Allenby and Kelly [2] integrate use case and hazard iden-
tification techniques for safety requirements elicitation in aerospace application
domain. The work in [9] inherits from [2] the use case specification and applies
Practical Formal Specification to specify safety requirements and to verify them
for completeness and consistency.

Modelling and Verification of Survivability Requirements 99

5 Conclusion

To the best of our knowledge, the task of verifying survivability requirements is
an important issue not yet addressed in the literature. In particular, the deriva-
tion of service modes specification from the requirements and its formal verifi-
cation are novel contributions of this work.

Reproducibility. Our method has been conceived to be easily reproduced
in different software development processes (iterative and incremental, agile or
prototype-based) through the use of the (mis)use case technique. In particular,
Stepl and Step2 clearly identify how to supplement (mis)use cases, while Step3
and Step4 should be accomplished automatically. We are currently developing a
framework based on the Eclipse platform as a support of the method.

Scalability. This is a strong point for the method. At this regard the main
issue should be the model checking analysis of the SAM due to state space
explosion. However, the number of states always remain low since they just
indicate service modes, as previously discussed. Moreover, each new iteration
gets a new SAM automatically, where only new essential services and new misuse
cases are considered and consequently analyzed. For large systems the number
of misuse cases could be large, however they only impact in the number of
transitions, which is not a problem for the analysis. A large number of use cases
does not hamper the method since they are not represented in the SAM for
analysis. In our case study, the analyses carried out by PROD lasted for a few
minutes.

Acknowledgements. Special thanks to the Lieutenant Colonel Félix Borque Pérez
of the CASIOPEA centre at CENAD “San Gregorio” (Zaragoza, Spain) for his help
in gathering the C2IS requirements. This work has been supported by the Spanish
projects TIN2011-24932 and TIN2013-46238-C4-1-R of the Ministerio de Economia y
Competitividad, and by the Distributed Computation (DisCo) research group of the
Aragonese Government (Ref. T94).

References

1. Alexander, I.: Misuse cases: use cases with hostile intent. IEEE Softw. 20(1), 58-66
(2003)

2. Allenby, K., Kelly, K.: Deriving safety requirements using scenarios. In: Interna-
tional Conference on Requirements Engineering, pp. 228-235. IEEE Computer
Society (2001)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 01(1), 11-33 (2004)

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244-263 (1986)

5. Dongzelli, P.; Basili, V.: A practical framework for eliciting and modeling system
dependability requirements: experience from the NASA high dependability com-
puting project. J. Syst. Softw. 79, 107-119 (2006)

100

10.

11.

12.

13.

14.

15.

16.

17.

S. Bernardi et al.

Diedrichsen, L.D.: Command & Control operational requirements and system
implementation. Inf. Secur. Int. J. 5, 23-40 (2000)

Ellison, R.J., Linger, R.C., Longstaff, T., Mead, N.R.: Survivable network system
analysis: a case study. IEEE Softw. 16(4), 70-77 (1999)

Girault, C., Valle, R. (eds.): System Engineering: A Petri Net Based Approach to
Modelling, Verification and Implementation, Chapter: State Space Based Methods
and Model Checking, pp. 171-190. KRONOS (1998)

Iwu, F., Galloway, A., McDermid, J., Toyn, J.: Integrating safety and formal analy-
ses using UML and PFS. Reliab. Eng. Syst. Saf. 92(2), 156-170 (2007)

Jacobson, L., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison Wesley, Reading (1999)

Knight, J.C., Strunk, E.A.: Achieving critical system survivability through software
architectures. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting
Dependable Systems II. LNCS, vol. 3069, pp. 51-78. Springer, Heidelberg (2004)
Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
Longman Publishing, Boston (2003)

Mustafiz, S., Kienzle, J., Berlizev, A.: Addressing degraded service outcomes and
exceptional modes of operation in behavioural models. In: Proceedings of the
RISE/EFTS Joint International Workshop on Software Engineering for Resilient
Systems, SERENE 2008, pp. 19-28. ACM, New York (2008)

Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13(1), 45-60 (1981)

Reisig, W.: Petri Nets. An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1985)

Rumbaugh, J., Jacobson, 1., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison Wesley, Reading (2004)

Varpaaniemi, K., Heljanko, K., Lilius, J.: PROD 3.2 — an advanced tool for effi-
cient reachability analysis. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 472-475. Springer, Heidelberg (1997)

Model-Based Verification of Safety Contracts

Elena Gémez-Martinez', Ricardo J. Rodriguez! ™), Leire Etxeberria Elorza?,
Miren Illarramendi Rezabal?, and Clara Benac Earle!

! Babel Group, Universidad Politécnica de Madrid, Madrid, Spain
{egomez,rjrodriguez, cbenac}@babel.ls.fi.upm.es
2 Embedded Systems Research Group, Mondragon Goi Eskola Politeknikoa (MGEP),
Arrasate-Mondragoén, Spain
{letxeberria,millarramendi}@mondragon.edu

Abstract. The verification of safety becomes crucial in critical systems
where human lives depend on the correct functioning of such systems.
Formal methods have often been advocated as necessary to ensure the
reliability of software systems, albeit with a considerable effort. In any
case, such an effort is cost-effective when verifying safety-critical sys-
tems. Safety requirements are usually expressed using safety contracts,
in terms of assumptions and guarantees. To facilitate the adoption of for-
mal methods in the safety-critical software industry, we propose the use
of well-known modelling languages, such as UML, to model a software
system, and the use of OCL to express the system safety contracts within
UML. A UML model enriched with OCL constraints is then transformed
to a Petri net model that enables to formally verify such safety contracts.
We apply our approach to an industrial case study that models a train
doors controller in charge of the opening and closing of train doors. Our
approach allows to perform an early safety verification, which increases
the confidence of software engineers while designing the system.

Keywords: Safety contracts -+ Model-based - Verification - Petri nets

1 Introduction

With the growing adoption of software in safety-critical systems, safety assess-
ment has become a crucial software engineering task as it has been recognised by
several initiatives, for instance, the ARTEMIS JU nSafeCer project [1]. More-
over, software system safety engineering must be incorporated early in the soft-
ware design process and be part of the development and operational lifecycle of
the system.

Contract-based design is a popular approach for the design of complex
component-based systems where safety properties are difficult to guarantee [2,3].
A key benefit of using contracts is that they follow the principle of separation

The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement n°® 295373 (project nSafeCer) and from National
funding.

© Springer International Publishing Switzerland 2015

C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 101-115, 2015.
DOI: 10.1007/978-3-319-15201-1_7

102 E. Gémez-Martinez et al.

of concerns [4], separating assumptions that the environment of a component
obeys from what a component guarantees under such an environment.

The Unified Modelling Language (UML) [5] is widely adopted to model the
design of a system. By providing the means to include safety requirements in
UML, the integration of safety activities in the normal software lifecycle is facili-
tated. For safety specification, two approaches have been proposed: (i) to use the
Object Constraint Language (OCL) [6] which is a well-known language among
modelisation engineering community, or (ii) to use specific UML profiles [7]. In
previous work [8], we have proposed a technique that combines both approaches.
In this paper, in contrast, we focus on the representation of safety contracts as
OCL constraints.

For the verification of safety contracts, several formal verification techniques
have been proposed, for instance [3], which uses model checking. Our proposal is
to translate UML to Petri Nets and perform the analysis by computing probabil-
ities using the GreatSPN tool [9]. By combining standard engineering practice,
i.e., UML, with formal verification techniques, i.e. Petri nets, we provide a rig-
orous safety analysis available for software engineers.

Our approach has been used to verify a set of safety contracts on an industrial
case study where the UML model of a train doors controller has been analysed.
The train doors controller is the component in charge of opening and closing train
doors. The CAF Power & Automation company' develops these train compo-
nents. Thus, components like the train doors controller are modelled in UML
previous to their implementation.

In summary, the contributions of the work presented in this paper are the
following:

— a formal definition of the proposed transformation of a safety contract into an
OCL constraint.

— an (informal) transformation of OCL constraints into Petri nets by means of
the case-study.

— a (partly automatic/partly manual) translation of the case-study UML dia-
grams annotated with OCL to Petri Nets.

— the safety analysis of the case-sudy.

The rest of the paper contains the following sections. Firstly, Sect. 2 outlines
the basic concepts. Section3 details the train doors controller. Then, Sect.4
describes a proposal of safety contract specification in OCL, and its transforma-
tion to Petri nets. It also introduces the safety contracts of the case study, which
are analysed in Sect.5. Finally, Sect.6 covers related work and Sect.7 states
some conclusions.

2 Previous Concepts

UML [5,10] is a semi formal general-purpose visual modelling language used
for specifying software systems. UML can be tailored for specific purposes by

! http://www.cafpower.com/es/.

http://www.cafpower.com/es/

Model-Based Verification of Safety Contracts 103

profiling. A UML profile is a UML extension to enrich UML model semantics
defined in terms of: stereotypes (concepts in the target domain), tagged values
(attributes of the stereotypes) and constraints (formulae that apply to stereo-
types and UML elements to extend their semantics). Numerous UML profiles can
be found in the literature targeting different specific domains and non-functional
properties system analysis (e.g., performance, dependability, security, etc.). For
instance, MARTE (Modeling and Analysis of Real-Time and Embedded sys-
tems) profile [11] provides support for schedulability and performance analysis in
real-time and embedded systems, while DAM (Dependability Analysis and Mod-
elling) profile [12] supports dependability analysis and SecAM (Security Analysis
and Modelling) profile [13] focuses on security aspects. In this paper, we use the
MARTE profile to indicate the duration of activities in a UML model. The stereo-
type provided by MARTE to this goal is gaStep (hostDemand tagged value),
within the MARTE analysis framework called Generic Quantitative Analysis
Model (GQAM).

Another extension to enrich UML semantics is the Object Constraint Lan-
guage (OCL) [6]. OCL is a pure expression language for describing constraints
that apply to UML models. When an OCL expression is evaluated, it simply
returns a value without further effects in the model. OCL allows to specify
invariants (on classes and types), to describe pre- and post-conditions (on oper-
ations and methods), guards or either constraints (on operations). Note that
although an OCL expression can be used to specify a state change (e.g., by
means of a post-condition), the state of the system will never effectively change
because of the evaluation of an OCL expression (that is, OCL only provides
textual description).

Unfortunately, a UML model annotated with OCL and a profile that provides
support for non-functional properties specification is not a suitable model to
quantitatively or qualitatively evaluate such properties. For this aim, formal
methods may help. In this paper, we consider Petri nets [14] as the formal
modelling language. More precisely, we translate the annotated UML diagrams
into Generalized Stochastic Petri Nets (GSPNs [15]), following the guidelines
proposed in [16].

A GSPN is a graphical and mathematical formalism used for the modelling of
concurrent and distributed systems. A gentle introduction to GSPN can be found
in [15]. Informally, a GSPN is a bipartite graph of places and transitions joined
by arcs (graphically represented by circles, bars and arrows respectively). They
describe the flow of the system with concurrency and synchronous capabilities.
Places can hold tokens, which represent system resources or system workload,
while transitions represent system activities. The firing of transitions represents a
change in the system state. When a transition fires, tokens from input places are
placed in output places. A GSPN distinguishes two kind of transitions: immedi-
ate transitions, which fire at zero time (i.e. its firing does not consume any time);
and timed transitions, which may follow different firing distributions such as uni-
form, deterministic or exponential distributions. In this paper, we consider timed
transitions with exponentially distributed random firings. Immediate transitions,

104 E. Gémez-Martinez et al.

depicted as thin black bars, can have also associated probabilities to represent
the system routing alternatives. Exponential transitions, drawn as white boxes,
account for the time that takes an activity to complete.

3 Case Study: Train Doors Controller

As a case study in this paper, we consider the door control management per-
formed by a Train Control and Monitoring System (TCMS). The TCMS is a
complex distributed (along the train) system that controls many subsystems. It
contains several Input/Output (I0) modules that gather data and send it to a
PLC (Programmable Logic Controller) via a communication bus. Each of the
IO modules has a CPU, digital/analogical inputs and outputs and is connected
to the communication bus. The logic of the TCMS is performed in the PLC.

The system level requirements concerning the operation of opening and clos-
ing of doors are satisfied by the following components:

— the TCMS component that decides whether to enable or disable the doors. Doors
must be enabled before they can be opened and disabled before closing;

— the Door component that effectively controls the opening or closing of a door;

— the Traction component that controls the train movement; and

— the MVB (Multifunction Vehicle Bus) component that communicates the com-
ponents among them.

Figure 1 shows the composite diagram of the system. The subcomponents of
the Door component, i.e., the controller (in the following we will refer to this
component as the Door Controller), the limit sensors, the obstacle sensor, and
a button for opening doors, are also depicted in the diagram.

In this paper, we focus on the control of doors. The case study presented here
concerns a real system where some simplifications have been made. Namely, the
interaction with other components of the TCMS and the dependencies with other
subcomponents, and their communication has been omitted. Besides, concerning
the closing of doors, in the original design there were different versions of the
existence of obstacles, while here we have chosen only one of them.

In the following, we present the UML Sequence Diagrams (UML-SD) for the
opening and closing of doors. Figure 2(a) depicts the UML-SD for opening the
door. When a train driver requests the opening of doors, first the TCMS checks
whether the train status is suitable for opening the doors without risk, checking
that the train is really stopped before sending the “enable door” order to the
Door Controller component. Thus, the TCMS system sends the “enable door”
command request to the Door Controller component only when the train is in
a safe condition (e.g. speed is zero) to perform the request properly and without
risk for passengers. The Door Controller component opens the door only if it
is enabled, i.e., it has received the “enable door” order from the TCMS and if
some passenger has request the opening of a door (“open request”) using any of
the buttons (interior or exterior) of the door.

Model-Based Verification of Safety Contracts 105

Train System

measured_speed: tems: TCMS out_doorStatus:

measured_speed:
Continous Door_Status

Continous
door_status: Door_Status
open_door:

out_traction_on:
Event = -

driver_requests_door_opening: Boolean

Event close_door b ction_on: Boolean

out_doorEnablement:
Event o

Door_Enablement
driver_requests_door_closing

Event or_enablement: Door_Enablement

enable_door: in_doorStatus In_doorEnablement: enableT ractionin_traction_ontraction_speed:
Boolean Door_Status Door_Enablement Boolean Boolean Integer
1 — 1 1
LT LT Lt Lt Lt

. s bus: MVB out_traction_speed:|
in_enable_door. out_doorStatus: o4 goorEnablement: in_enabled_traction: out_traction_on: Integer
Boolean Door_Status Door_Enablement Boolean Boolean
out_enable_door: in_doorStatus: in_doorEnablement: out_enabled_traction: in_traction_on: in_traction_speed
Boolean Door_Status Door_Enablement Boolean Boolean Integer
— — — —
7_1 i
X traction: Traction
enaple_door: doorSfatus: doort: Door 4, oreyablement: bleT raction: :m‘cﬂen, jeed
Boolean Door_Btatus Door_Exablement enableTraction: switched_on: Integer
Boolean Boolean
[[
enable_opening: controller: Controller goorEnablement:

Boolean doorStatus: Door_Status Door_Enablement

openLimitReached: closedLimitReaghed
Event open:Event obstacle: Event Event
1 1

—
openLimitReached: ~ open:|Event
openLimit: b: Button
LimitSwitchS ens or|

Fig. 1. The Composite diagram of the system.

closedLimitReached:
Event

obstacle: Event

obstacleSensor:

closeLimit:

The door closing operation is depicted in Fig.2(b). When the driver com-
mands doors closing, the TCMS system sends the “not enable door” command
to the Door component. The Door component disables the door and closes the
door if it is safe, i.e. there is no detected obstacle. When there is an obstacle,
the door is opened and closed once such an obstacle has disappeared.

In order to enable an incremental certification process and to demonstrate the
benefits of reusability, this case study adopts the methodology of contract-based
design. In contract-based design each safety critical component of the system and
non-critical components are seen as separate components [17] which interact with
their environment. As we formally explain in the next section, we associate to
each safety critical component C a safety contract, i.e. an abstract specification
in the form of a tuple S¢ = (A, G), where A represents the assumptions on the
environment of the component, and G represents what the component guarantees
under these assumptions. A contract is intended to expose enough information
about the component, but not more than necessary. We say that a component
implements its contract if it satisfies the guarantees when the environment meets
the assumptions.

In the following section we introduce a framework for safety contract speci-
fication and the transformation to OCL constraints, which will be later used for
formal safety assessment using Petri nets.

106 E. Gémez-Martinez et al.

4 Specification of Safety Contracts as OCL
and Petri Nets

In a component-based system a contract defines the obligations to be met by a
certain component and its dependencies [18]. As it is claimed in [19], a safety
contract is similar to a (software) contract but instead of pre/post-conditions
contains assumptions and guarantees that endorse a certain level of integrity of
functional properties depending on the component’s environment.

In this paper, we adhere to the definition of a Safety Contract Fragment
(SCF) given in [19]. A SCF conforms a safety contract as a set of assumptions —
what it is expected to be met by the component’s environment — and a set of
guarantees, which specify the behaviour of a component under such an environ-
ment. In a previous work we have explored the idea of transforming an SCF to
an OCL invariant within UML models [8]. In this work, we revise and formalise
our model-based transformation approach. In the sequel, we formally define a
SCF and the transformation from an SCF to an OCL invariant.

Let us assume a system composed of a set of components that interact
between them. Let C = (Z,O) be a component of such a system having a set
Z of input ports and a set O of output ports. Let S¢ = (A, G) be a SCF [19]
defined over a component C, where A = AT | JA* is a superset of disjoint sets
AT, A* of OR and AND safety constraints, respectively, and G = G JG* is a
superset of disjoint sets G*,G* of OR and AND guarantees®. A safety contract
assumption A is a proposition that relates one or more of the input ports of a
component. Similarly, a safety contract guarantee G is a proposition that relates
one or more of the output ports of a component.

Recall that OCL is a UML extension to express constraints into UML models.
An OCL constraint is defined over a context that describes where such a con-
straint is acting. As it is introduced in Sect. 2, OCL defines different constructs,
such as inv to define invariants, which state conditions that must always be
met by all instances of a context type, pre to state a condition that must be
true when an operation starts its execution, or post to state a condition that
must be true when an operation ends its execution. In this paper, we consider
only OCL invariants. An OCL constraint can be formally defined as follows. Let
R = (X,V) be an OCL constraint defined over a context X’ and having an invari-
ant formula V = (Is,rs). An invariant formula is conformed by two propositions
ls,rs joined by a boolean or implies operator. Note that the right-hand side of
an invariant formula can be empty.

As it has been previously mentioned, an OCL constraint is defined over a
context that describes where such a constraint is acting. In the proposed trans-
lation, a SCF corresponds to an OCL constraint. Since a SCF is specified over
a component, it is reasonable to match the context of the corresponding OCL
constraint to such a component as well. Thus, a transformation from SCF to
OCL invariant can be straightforwardly defined as follows:

2 As in [8], we restrict the logic of SCF assumptions and guarantees to AND and OR
logic operators.

107

Model-Based Verification of Safety Contracts

‘sureierp souenbes TN Sutso 1oop (q) pue Suruado 100(7 (%) *g *SLq

AS-TINN Sutsop 100((q)

!
!
!
L
J
|

aumO:_uvm:umu,mwm:mcu

[payoeay

!
!
!
L
J
|
!
|
!
!
h
!
|

4
!
|

[pa31293903[2LISq0 pUE PaYIESYY

1

1 T

J
Po1221909[2L1Sq0; PUE Paydeayl
| |

! | m --
| ?.woOmmo_u

{(3se=adinos’‘uesw=pie3s
‘Swi=3lun‘T)=puewagisoy}

” a3g

010)smerg

<<dayseb>>

{(3se=8d21nos‘uesw=03e3s
‘Sw=3lun‘y9)=puewaglIsoy}
<<dayseb>>

{(3s®=921n0s'ueaw=pie3s
‘SWw=}|un‘9T)=puewadgisoy}
<<dayseb>>

{(3se=sdunos‘ueaw=ie3s
SW=3|un‘9T)=pueWaq}soy}
<<doyseb>>

ONISO1D == Snie3s'p [jun]
%mEMm%_E:m,

I1

{(1s9=921n0S 'URBBWI=EIS
‘Sw=)1un‘y9)=puewagisoy}

<<da15e6>>

[l
!
!
|
|
!
!
t t
| |
| |
! !
! !
!
|
|
!
Il

e

|
“'NISOTD)gNIeISabURYS L]
I J

(DNISO1D)sn3e|

{(3s9=921n05 'UBBWI=01EIS
‘Swi=31un‘y9)=puewagisoy

<<dsyseb>>

wm 1v4)J00ga|fpu. {(3se=a24n0s‘uesw=pie1S
| K [s160(e 40}] ‘SW=3jun‘T)=puewaqgisoy}
1 W dooy | <<dayseb>>
{(3sa=22in0s‘ueBW=D€3S | "
‘Sw=)lun‘T)=puewaqisoy} ” ” :m_oonmmc_u__
<<daseb>> | | ()azysams|
| |
| | | |
| | | | ssaid 5Rg
10SU353|DRISA0 JoSuasSHWIT
: J0SUDS5qO"P : Josuasaso'p| | Joog : p SWOL:1 uonngiaAug : gp

ds-TNN Sutuedo 100 (®)

(Joogbuisod PS

i
pll
(NFdoysmersiodp
{@se=021n0s ueaw=0rErs
“SW=)IuNn’g)=puewaqisoy}
N ﬁ “““ {(359=221n05'UBBLI=01EIS
L= SW=31un‘T)=puUeLIACISOU}
R <<da15e6>>
(uado | "
1
e
> L]
) = <<dajgeb>>
[ONINIdO == smeisap jnun :

(ONINId

(ORE IS

(ONINIJO)FMEISI00p

e

(Juado

{ase=a2nos Ueawi=01m1s
“SW=Iun‘T)=puewaqisoy}
<<darseb>>

{(1s9=021n0s 'URBW=1)}S
‘SW=IUn'9T)=puEWIAAISO}

{(s9=02un0 BB W=0rE1S
‘Sw=yun'T)=put
<<daysel

6>>

ewamsoy}

{@as9=a2:n05 ueBLI=D4EIS

“Sw=3|un’T)=puewagisoy} (H0)gFIMS

<<daigeb>>

{(ase=ann0s ucaw=0rers |
‘sw=yun'D)=puewaaisoy ﬁ

,

_|’V ﬁnﬁﬂ:ﬁ a3g0

=]
(a3 LLPOARITEE 0s1 {100qus=das}
. . <<daiseb>>
~ ‘dooy
{(1s9=adin0s uRBW=D3E}S
“sw=yun'
(poods <<d15Wwwode6>>
{(1s9=a2un0s uBaWI=0rers (a5T4)u0 uonIen
‘SW=)UN‘T"0)=pueWIaqISOu}
<<daseb>> _|’V

{(359=224n05"UBIW=03E3S
‘SW=3jun‘T)=puewagisoy}

(@58vsia f

{(a59=02un0s uRaW=01mS
SW=)1un‘p9)=puewaqisou}
<<daisgb>>

<<da)5eb>>
R R
{(3s9=921n0s UBBW=01EYS 1)s100a3|qeus)
‘SW=)uNn‘Z6T)=puewagisou} ”
{(ase= =033
SW=3UN‘T)=PUCWAISOY} [T -~ -~ - -
<<daigeb>> iprazums
I a U U
| ! ! | 559 apumssed sona
Josuagpaads Josuaswr uonngiooq uonngsaLa

(foogbuadoPs

108 E. Gémez-Martinez et al.

Proposition 1. Let C be a component of a system on which a Safety Contract
Fragment § = (A,G) has been defined. Thus, an OCL R = (X,V) can be built
considering X =C and V = (A,G).

As it can be seen, the component C defines the context X of the OCL constraint,
while the content of such an OCL constraint (the invariant) is defined by the
assumptions and guarantees of the Safety Contract Fragment S defined on C.

Let us describe how our transformation approach works by means of the case
study described in Sect. 3. Consider the following safety requirements given by
the engineers designing the system:

SR1. The door opening is not enabled when the traction is on or the train speed
is distinct than zero.

SR2. The door must be closed but remains open when some obstacle has been
detected.

SR3. The door is closed when the door opening is enabled and the close event
is received.

The above safety requirements can be expressed in terms of Safety Con-
tract Fragments, considering the component-based system depicted in Fig. 1, as
follows:

- 81 = ((traction OR (tractionSpeed # 0)), (NOT enableOpening)), defined
on the TCMS component.

— Sy = (obstacle, door Status = opening). In this case, the component on which
this SCF is defined is DoorController.

— 83 = ((enableOpening AND close), doorStatus = isClosed). This SCF is
defined on the component Door.

Note that the assumptions and guarantees of the former SCF's relate, respec-
tively, input and output ports of the components where they are defined.

Following the Proposition (1), the above SCF's can be straightforwardly con-
verted to OCL invariants as it is listed in Code 1.1. Here, the task of a require-
ment engineer is to interpret the safety requirements in terms of SFC. This task
is accomplished by matching the safety requirements to the UML component-
based design. This task is surely a difficult one but once this task has been
performed the transformation to OCL invariants becomes trivial. Recall that
these OCL invariants that express safety requirements allow to perform safety
assessment in a system, as shown in the following section.

Code 1.1. OCL constraints obtained from SCF transformation.

context TCMS_SR1
inv: (traction or tractionSpeed <> 0)
implies not enableOpening

context DoorController_.SR2
inv: obstacle

Model-Based Verification of Safety Contracts 109
implies (doorStatus = opening)

context Door_SR3
inv: (enableOpening and close)
implies doorStatus = isClosed

Let us show how this OCL invariants can be transformed to Petri nets. Note
that we use only the implies binary operator (—) within the OCL invariant.
Recall that in classical logic the implies binary operator can be transformed to
an equivalent form using or and not operators, i.e., p — ¢ is logically equivalent
to —p V q. If we consider each proposition of OCL invariant as Petri net places,
and transform the invariant to its logically equivalent, we obtain the Petri net
models depicted in Fig. 3 for each safety contracts considered for the case under
study?®.

The sink places (without output transitions) of each Petri net representa-
tion depicted in Fig.3(a), (b) and (c¢) allow us to compute the probability of
having a marking in such a place (post-condition) greater than zero, indicating
that preconditions are fulfilled. Note that this solution does not provide us with
information regarding the event order or any other kind of temporal informa-
tion. This is an interesting issue that deserves further study, as discussed in the
following section.

5 Safety Analysis

We describe the safety analysis we propose by means of the case study. In order to
analyse the safety scenarios, i.e. the opening and closing of doors, the correspond-
ing UML-SD diagrams annotated with OCL, respectively depicted in Fig.2(a)
and (b), are translated into GSPNs using the ArgoSPE tool [20] according to
the algorithms proposed in [16]. The resulting GSPN is shown in Fig.4. The
left-hand side of the figure represents the door opening and the left-hand side,
the door closing. Even though part of the translation is done automatically using
the ArgoSPE tool some simple manual modifications to the GSPN are needed to
represent OCL constraints. In particular, modifying this GSPN with the Great-
SPN [9] tool, we have manually modelled the obstacle detection event as a place,
named p_Obstacle, since it has associated an OCL constraint, as we explain in
the following paragraph. Moreover, we have modelled the Traction operation
without considering human interaction, thus, our system automatically speeds
up after closing the door and it brakes when the traction receives a traction stop
signal.

Since the OCL constraints are interpreted in a GSPN, they are equivalent
to compute the probability of a condition. Each condition is represented by a
place of the GSPN. For instance, the place p_-door OPFEN represents the status
in which a door is open and the place p_switch_.ON represents when the door
button is switched on. The probability of (eventually) reaching a condition is

3 1. Sljivo, personal communication, April 1, 2014.

110 E. Gémez-Martinez et al.

tractionSpeedZero NOTenableOpening

O NOTobstacle doorClosing
NOTtraction
| | | |

O

[
OO0
- O 1-O

SRl SRQ
(a) OCL constraint TCMS_SR1 (b) OCL constraint DoorController_SR2

NOTenableOpening NOTclose doorClosed

OO

SR3
(¢) OCL constraint Door_SR3

Fig. 3. Petri net representation of OCL constraints of the case study.

represented as a place being (eventually) marked. Note that a place eventually
marked does not necessary mean a place eventually always marked.

The Petri nets representing the safety contracts, depicted in Fig.3 can now
be composed with the Petri net of the system depicted in Fig. 4. Both nets are
merged using the transitions that create tokens in places representing the same
issue, i.e., places NOTtraction and tractionSpeedZero in Fig.3 represent the
same state than p_traction_.on FALSE and p_traction_.STOP, respectively, in
Fig. 4. The connection to places representing safety contracts have been high-
lighted (grey colour) in Fig.4.

Finally, we use the GreatSPN tool [9] to compute the steady-state probability
of places SRy, SR, SR3 having a marking greater than zero (i.e. the place is
eventually marked), which will indicate that the OCL constraints TCMS_SR1,

Model-Based Verification of Safety Contracts 111

@%@%% e

112 E. Gémez-Martinez et al.

DoorController_SR2 and Door_SR3 are fulfilled. A simulation of the net with
GreatSPN returns a positive value for these probabilities, thus safety contracts
are fulfilled in the system model.

Although the UML models that we use are enriched with MARTE profile
annotations, we do not currently use such an information for the safety analysis
even though it can be necessary for verifying some safety properties [18]. For this
aim, we may use OCL/RT [21], an extension of native OCL to specify time issues,
in conjunction with the MARTE profile, and translate such an information into
the GSPN models. We consider this an interesting issue which deserves further
study.

6 Related Work

Many formalisms have been proposed to express contracts, such as the Require-
ments Specification Language (RSL) [2], the Othello language [3], which is based
on Linear Temporal Logic, or Modal Transmission Systems [22]. Unlike OCL,
these languages are more expressive but OCL is a well-known language among
modelisation engineering community. However, a major drawback of these for-
malisms is that the requirement engineers need to learn a new formalism each
time they need to write contracts in a specific domain. In contrast, OCL is a
well-known language in industry. Besides, to the best of our knowledge some of
the proposed formalisms lack the means to verify that a component model fulfils
their contracts [2,22], or only focus on verification of functional properties [3].
In this work, we have shown that OCL contracts can be used to perform safety
assessment by translating the UML models to Petri nets. Although currently we
also focus on functional properties, the use of UML profiles enables to analyse
other non-functional properties that can affect to safety, such as performance,
dependability or security.

Representing safety contracts using OCL has been previously proposed in [18].
The novelty of our work is that we propose a translation from safety contracts
in the form of assumptions and guarantees to OCL. Our work complements the
work of OTHELLO language [3] and OCRA [23]. In particular, the analysis
of non-functional properties can complement the work on verifying functional
properties in OCRA [23]. Other work similar to ours is [24], where UML/OCL is
used to express system invariants, transformed to Place/Transition nets (with-
out time) and to LTL logic for the verification. In contrast to their work, we
formalise the safety contracts, and, moreover, our Petri net models capture the
timing information.

Some works refine safety contract assumptions in strong and weak assump-
tions [2,25]. Strong assumptions specify what always is fulfilled by the
environment, context-independently, while weak assumptions provide additional
information about the context where a component could operate (e.g.,
the expected timing between input signals). In this paper, we consider the defi-
nition of safety contract as given in [19], having only strong assumptions. In our
case, the weak assumptions can be implicitly described by UML annotations.

Model-Based Verification of Safety Contracts 113

As future work, we aim at extending our safety contract specification to explic-
itly express timing issues.

7 Conclusions and Future Work

Safety assessment is a crucial software engineering activity in critical systems,
since people integrity, and even their lives may depend on it. In the last years,
contract-based design has emerged as a promising approach for designing safe
systems, where contracts describe the expected behaviour of a component.

In this paper, we propose a specification of safety contracts as assumptions
and guarantees based on the input and output ports of a component, and then
translate these contracts to OCL in the UML context. Finally, these UML models
are transformed into a formal model, in terms of Generalized Stochastic Petri
nets (GSPN), to verify that safety contracts are fulfilled. As a case study, we have
analysed three safety contracts on a train door controller designed by CAF Power
& Automation. The most challenging tasks regarding the case study were the
formalisation of safety contracts and the translation of UML models to GSPN.
In the latter, although some automation exists, the complexity of some aspects
of the case study (for instance, the existence of obstacles) required a manual
translation to GSPN.

The specification of safety contracts in terms of OCL within UML models
allows to recap safety requirements and system description in a single picture.
Besides, the adoption of formal models, obtained after the transformation of
UML/OCL models to Petri nets, are facilitated as UML/OCL are languages
familiar to the industry engineers. The result is that we have sacrificed expres-
sion power to keep safety contracts expressed with OCL easier to understand
than contracts written in more expressive languages like, for instance, Linear
Temporal Logic (LTL). This issue can be overcome in the future by extending
the native OCL with more operators.

As for further work, our aim is to keep on formalising more complex contracts
expressed in OCL, as well as exploring how to provide the event order or any
other kind of temporal information (or other non-functional property). Improv-
ing the automatic translation from the UML models to GSPN deserves also
further study. In addition, we also plan to propose a well-established methodol-
ogy to assess safety and to develop a tool that implements this methodology.

References

1. nSafeCer project: Safety Certification of Software-Intensive Systems with Reusable
Components. Project Grant Agreement n® 295373. More information at: http://
safecer.eu/

2. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture
design. In: Proceedings of the Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1-6, March 2011

http://safecer.eu/
http://safecer.eu/

114

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

E. Gémez-Martinez et al.

Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.
In: Proceedings of the 38th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 21-28, September 2012

Kath, O., Schreiner, R., Favaro, J.: Safety, security, and software reuse: a model-
based approach. In: Proceedings of the Fourth International Workshop in Software
Reuse and Safety (2009)

OMG: Unified Modeling Language (UML). Version 2.4.1, August 2011. Specifica-
tion available at: http://www.omg.org/spec/UML/2.4.1/

OMG: Object Constraint Language (OCL). Object Management Group, v2.2,
formal/2010-02-01, February 2010

OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms (QoS & FT). Version 1.1 (2008). Specification available
at: http://www.omg.org/spec/QFTP/

Rodriguez, R.J., Gémez-Martinez, E.: Model-based safety assessment using OCL
and Petri Nets. In: Proceedings of the 40th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 56-59 (2014)

Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., Franceschinis,
G.: The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev.
36(4), 4-9 (2009)

ISO/IEC: 19505-1:2012-Information technology-Object Management Group Uni-
fied Modeling Language (OMG UML)-Part 1: Infrastructure (2012)

OMG: A UML profile for Modeling and Analysis of Real Time Embedded Systems
(MARTE). Version 1.1 (2011). Specification available at: http://www.omgmarte.
org/

Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of
software systems specified with UML. ACM Comput. Surv. 45(1), 2 (2012)
Rodriguez, R.J., Merseguer, J., Bernardi, S.: Modelling and analysing resilience as
a security issue within UML. In: Proceedings of the 2nd International Workshop
on Software Engineering for Resilient Systems, SERENE 2010, pp. 42-51. ACM,
New York (2010)

Murata, T.: Petri Nets: properties, analysis and applications. Proc. IEEE 77(4),
541-580 (1989)

Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley Series in Parallel Com-
puting, Chichester (1995)

Bernardi, S., Merseguer, J.: Performance evaluation of UML design with Stochastic
Well-formed Nets. J. Syst. Softw. 80(11), 1843-1865 (2007)
Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein:
contract-based design for cyber-physical systems. Eur. J. Control 18(3), 217-238
(2012)

Bate, I., Hawkins, R., McDermid, J.: A contract-based approach to designing safe
systems. In: Proceedings of the 8th Australian Workshop on Safety Critical Systems
and Software, SCS 2003, vol. 33, pp. 25-36. Australian Computer Society, Inc.
(2003)

Soderberg, A., Johansson, R.: Safety contract based design of software components.
In: IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), pp. 365-370 (2013)

Gémez-Martinez, E., Merseguer, J.: ArgoSPE: model-based software performance
engineering. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol.
4024, pp. 401-410. Springer, Heidelberg (2006)

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/QFTP/
http://www.omgmarte.org/
http://www.omgmarte.org/

21.

22.

23.

24.

25.

Model-Based Verification of Safety Contracts 115

Cengarle, M.V., Knapp, A.: Towards OCL/RT. In: Eriksson, L.-H., Lindsay, P.A.
(eds.) FME 2002. LNCS, vol. 2391, pp. 390-409. Springer, Heidelberg (2002)
Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman,
U., Wasowski, A.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43-58.
Springer, Heidelberg (2012)

Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement of
temporal contracts. In: 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 702-705. IEEE (2013)

Bouabana-Tebibel, T., Belmesk, M.: Integration of the association ends within
UML state diagrams. Int. Arab. J. Inf. Technol. 5(1), 7-15 (2008)

Sljivo, I., Gallina, B., Carlson, J., Hansson, H.: Strong and weak contract formalism
for third-party component reuse. In: IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 359-364, November 2013

A Testing-Based Approach to Ensure the Safety
of Shared Resource Concurrent Systems

Lars-Ake Fredlund, Angel Herranz, and Julio Marino®™

Babel Group, Universidad Politécnica de Madrid, Madrid, Spain
{1fredlund,aherranz, jmarino}@fi.upm.es

Abstract. The paper describes an approach to testing a class of safety-
critical concurrent systems implemented using shared resources.

Shared resources are characterized using a declarative specification,
from which both an efficient implementation can be derived, and which
serves as the first approximation of the state-based test model used for
testing an implementation of the resource.

In this article the methodology is illustrated by applying it to the task
of testing the safety-critical software that controls an automated shipping
plant, specified as a shared resource, which serves shipping orders using
a set of autonomous robots. The operations of the robots are governed
by a set of rules limiting the weight of robots, and their cargo, to ensure
safe operations.

1 Introduction

Developing reliable safety-critical software for concurrent systems is notoriously
difficult, with subtle race conditions often going unnoticed by programmers and
test personnel until disaster strikes.

Apart from the inherent complexity of the task, the situation can be made
worse by the choice of an unsuitable programming language (or library). A case
in point is Java. Programming safety-critical applications in Java is tempting
(except if the targeted system has hard real-time constraints due to the e.g.
presence of automatic garbage collection) since there is a large body of Java
programmers available. However, the language and its libraries provide a large
number of different concurrency primitives, and their limitations are often not
well understood. Moreover, the Java concurrency primitives are generally low-
level constructs, primarily targeting efficient execution rather than safe execu-
tion, thus constituting poor choices for implementing safety-critical systems.

In this work we attempt to improve the situation in two ways. First, we intro-
duce a higher-level concurrency construct called shared resources [6]. Essentially
a shared resource is a process (or thread) protecting some shared resource, and
providing controlled methods for accessing the shared resource. The behaviour
of a shared resource is specified declaratively, defining a set of operations whose
behaviour is characterised using post/pre-conditions. To handle concurrency a
new type of precondition is added: the concurrency precondition. These are pre-
conditions expressing restrictions not only on the arguments of an operation,

© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 116-130, 2015.
DOI: 10.1007/978-3-319-15201-1_8

A Testing-Based Approach to Ensure the Safety 117

but on the combination of the arguments of an operation and the resource state.
Failing to satisfy a concurrency precondition does not imply that the operation
fails (as is the case for normal preconditions), rather its execution is postponed
until a time when the resource state changes leading the concurrency precondi-
tion to become true.

Still, even if the safety-critical problem has been structured well using a
shared resource, if we wish to use Java to implement the resource we still have
to use the somewhat inadequate language primitives and libraries in its imple-
mentation, and typical programmers commit many errors using such concurrency
primitives, as we shall see in Sect. 6. Clearly we must at least test, systematically,
the resulting implementation.

The second component of the methodology is thus the extensive use of
property-based testing to automatically generate test cases (using the declara-
tive specification as a base), and to automatically decide whether test execution
is successful (again using the declarative specification as a base). The testing tool
we use, Quvigq QuickCheck [2], a variant of the well-known QuickCheck tool [4],
has excellent support for testing stateful code. Essentially we build a model of
the system under test (the shared resource), and use the model both to derive
tests, and to judge the correctness of the execution of the system under test by
comparing it with the execution of the system model.

To evaluate the efficacy of the approach, we apply it to the task of specify-
ing and verifying a prototypical concurrent safety-critical system, a warehouse
complex where autonomous robots move around fulfilling shipping orders. The
safety-critical aspect we consider here is that the weight of the robots, in any
given warehouse, should never exceed a certain maximum weight. To evaluate
the usefulness of automatic testing, we proceed to test a large number of imple-
mentations of the warehouse control system by undergraduate students at the
Polytechnic University of Madrid.

In Sect.2 we introduce the QuickCheck property-based testing tool. Next
the warehouse case study is described in Sect.3. The shared resource formal-
ism is introduced in Sect.4, and Sect.5 describes how shared resources based
safety-critical systems are tested using our approach. The testing methodology
is evaluated by applying to a number of implementations of the warehouse con-
trol system in Sect. 6. Finally, Sect.7 draws conclusions from the work realised
so far, and details issues for future work.

2 QuickCheck

The basic functionality of QuickCheck is simple: when supplied with a data
term that encodes a boolean property, which may contain universally quantified
variables, QuickCheck generates a random instantiation of the variables, and
checks that the resulting boolean property is true. This procedure is by default
repeated at most 100 times. If for some instantiation the property returns false,
or a runtime exception occurs, an error has been found and testing terminates.

118 L.-A Fredlund et al.

2.1 Erlang

Quviq QuickCheck uses the Erlang functional programming language [1,3] to
express correctness properties and test models. This does not mean that the
tested software must be written in Erlang; a good interface library for C code
has e.g. permitted the testing of AUTOSAR components and infrastructure on
a commercial basis [7]. In this article we focus on testing control systems written
in Java using the JavaErlang interface library!.

2.2 QuickCheck State Machines

For checking “stateful” code, QuickCheck provides a state machine library. Here
the tested “object” is not a simple boolean property, but rather a sequence of
function calls each with an associated post condition that determines whether
the execution of a call was successful or not. A QuickCheck state machine has a
state, obviously, which can be understood as the model state of the system under
test. Given a model state, the library generates a suitable next API command,
and proceeds to execute the call, checking after the call has completed whether
the result was the expected one given the model state of the state machine.
Next, a new model state is computed, and the generation of commands and
their execution is repeated, until a test sequence of sufficient length has been
generated and tested. In other words, the QuickCheck state machine acts as a
model for the program under test.

To use the state machine library a user has to supply a “callback” Erlang
module providing a set of functions with predefined names. The functions defined
in the callback module are called by QuickCheck during test generation and test
execution. The functions that should be implemented by a tester are enumerated
below.

initial_state ()

command (State)
precondition(State,Call)
next_state(State,Result,Call)
postcondition(State,Call,Result)

The model state is initialized by the initial_state function, and is updated
by next_state. API calls are generated by the function command, which returns
symbolic calls of the form {call,ModuleName,Function,Args}, which are then
executed. The postcondition function checks that the return value of a call is
correct, considering the current model test state.

3 Case Study

The case study used in the paper is the control system for a warehouse complex
serviced by a set of autonomous robots. An example warehouse complex, with
robots, is depicted in Fig. 1.

! https://github.com/fredlund /JavaErlang.git.

https://github.com/fredlund/JavaErlang.git

A Testing-Based Approach to Ensure the Safety 119

A robot must first enter warehouse 0, then it may load an item, and next it
exits warehouse 0 and enters the corridor between warehouse 0 and warehouse
1. Then, it enters warehouse 1, etc., until it finally exits the warehouse complex
by exiting the last warehouse (warehouse 2in the figure).

Each robot has a weight, and the total weight of a robot and its cargo
increases monotonically as it moves around in the warehouse complex.

A warehouse can admit any number of robots, but to ensure safe opera-
tions the total weight of robots and their cargo cannot exceed the constant
MAX_WEIGHT_IN.-WAREHOUSE when a new robot enters the warehouse.
It is permitted that the total weight in a warehouse is temporarily above the
limit, due to loading operations, but then no more robots can be admitted to
the warehouse (until a robot leaves). A corridor has place for a single robot.

In Fig. 1, the constant MAX_ WEIGHT _IN_WAREHOUSE is set to 1000 kg,
and thus, for example, we can see that since the total weight in warehouse 0 is
500 + 200 + 200 = 900 the robots with weights 200 and 300 that want to enter
should be blocked, while the robot with weight 100 can be permitted to enter.
Moreover, as the corridor between warehouse 1 and 2 is occupied, the robots
inside warehouse 1 should be blocked from exiting it, until the robot occupying
the corridor enters warehouse 2.

. 5‘:5;% :ﬁ i"//2 :‘\b‘//z
< S

300

300

i S
— — Sy = iy
&4 aof b 200 _,‘\l'l/‘_, 4 /_,“Jl/‘_,

:‘\le’/A :‘\34/4 300 oy’ 300
cannot ext

100 200 = 400
cannot - &y cannot ———
enter o™ ‘A enter 4 /

— ~ oy ‘A
7 3
o
5\\5‘/& 100

200

MAX_WEIGHT_IN_WAREHOUSE == 1000

Fig. 1. Warehouses and robot movements

4 Resources

One commonly used mechanism for controlling interactions between concurrent
processes is to impose some form of central control, to serialize potentially con-
flicting requests.

The shared resources introduced in [6] is one such centralized mechanism, and
we will explain its syntax and semantics using the robot warehouse example.
Figure 2 contains the specification of the control part of the robot warehouse
example.

120 L.-A Fredlund et al.

C-DAT WarehouseAccessControl
OPERATIONS
ACTION enterWarehouse: Warehouse[i] x Weight
ACTION exitWarehouse: Warehouse[i] x Weight

BEHAVIOUR
DOMAIN:
TYPE: WarehouseAccessControl = (weight: Warehouse — Weight X occupied:
Warehouse — B)
Warehouse = 0.. N_-WAREHOUSES - 1
Weight = 0.. MAX_WEIGHT_WAREHOUSE

INITIAL: V1 € Warehouse o self.weight(n) = 0 A —self.occupied(n)
INVARIANT: V n € Warehouse o self.weight(n) < MAX_WEIGHT _WAREHOUSE

CPRE: p + self.weight(n) < MAX_WEIGHT_WAREHOUSE
enter Warehouse(n,p)
POST: self.weight = self?"°.weight ® {n — self’"®.weight(n) + p}
A (n > 0 = self.occupied = self’"®.occupied @ {n — False})
A (n = 0 = self.occupied = self’"°.occupied})

CPRE: n = N_-WAREHOUSES — 1 V —self.occupied(n + 1)
exitWarehouse(n,p)
POST: self.weight = self?"®.weight @ {n — self?"*.weight(n) — p}
A (n < N.-WAREHOUSES—1 = self.occupied = self?".occupied®
{n+ 1 True})
A (n = N_WAREHOUSES — 1 = self.occupied = self?".occupied)

Fig. 2. Specification of the robot controller.

The resource specification details two operations that can be used to coordi-
nate movements between warehouses:

enterWarehouse(n,w) — A request for permission for a robot to enter ware-
house n carrying weight w.

exitWarehouse(n,w)] — A request for permission for a robot to exit a ware-
house n towards a corridor carrying weight w.

The state of the resource has two fields: weight, a map from a warehouse to
weight (a natural number), and occupied, a map from a warehouse to a boolean.
Intuitively, weight should correspond to the accumulated weight in the ware-
house, and occupied/n/ is true if there is a robot present in the corridor n leading
from the warehouse.

Initially, as specified in the INITTAL clause, the weight in all warehouses
is zero, and no robot is present in any corridor. The resource has an invariant

A Testing-Based Approach to Ensure the Safety 121

over the state, as specified by the INVARIANT clause, i.e., that the weight
in a warehouse should always be less than or equal to the maximum weight
MAX_WEIGHT_-WAREHOUSE.

A robot that wants to enter warehouse n with weight w should first call
enterWarehouse(n,w) to ask the resource (controller) for permission to do
so. It is the task of the (implemented) resource to ensure that the call does not
return (i.e., that it blocks) until it is safe for the robot to enter the warehouse.
The concurrency precondition CPRE specifies when access is safe, i.e., when the
accumulated weight of the robots already in the warehouse plus the weight of
the new robot is less than or equal to the allowed maximum weight. The POST
condition specifies the change on the resource state provoked by the completion
of a call. Tt is possible to provide preconditions (PRE) for operations too, which
specify requirements on the arguments to an operation that every call must
satisfy.

Similarly, a robot should always call the operation exitWarehouse(n,p) to
ask for permission to leave a warehouse. The CPRE condition of the resource
specification ensures that the call does not return until the corridor leading
away from the warehouse is free from robots. A restriction on the caller to
these operations is that the weight w provided as argument to the operation
exitWarehouse(n,w) when asking for permission for leaving a warehouse,
must be identical to the weight provided when asking for permission to enter
the warehouse, i.e., enterWarehouse(n,w). That is, the exit weight should
not reflect any cargo loaded in the warehouse, instead, the weight increase
should be factored into the next call to enterWarehouse, e.g., enterWare-
house(n+1,w+cargoWeight).

4.1 Resource Semantics

Conceptually a resource implements a recursive behaviour, serializing state
updates. Below we depict the symbolic behaviour of a generic resource, as a
recursive function RESOURCE(state, Calls). We let Calls be the set of calls made
to the resource, initially the empty set, and state is the state of the resource, its
initial value provided by the INITIAL clause. The notation CPRE(call, state)
is used to denote the calculation of the concurrency precondition of a call, given
the current state of the resource, and POST (pcall,state) is the post condition
function that given a call and the current state returns a new state.
RESOURCE(state, Calls) =

1. If a new call is pending add it to Clalls

Calls' = Calls U {call}

2. Pick a call € Calls’ such that its concurrency precondition CPRE(call, state)
is true, and remove it from Calls’, i.e.,

Calls" = Calls' — {call}

122 L.-A Fredlund et al.

@

If there is no such call, call RESOURCE(state, Calls') recursively.
4. Otherwise modify the resource state according to the postcondition (POST)
of the selected operation (and call parameters):

state’ = POST(call, state)

5. Signal to the caller that call has terminated.
6. Call RESOURCE(state', Calls") recursively.

4.2 Implementing a Resource

A correct implementation of a shared resource ensures that its operations are
executed only when the concurrency precondition (CPRE) so permits, and in
isolation. However, there may also be additional requirements on the order in
which different calls are served which are not expressed by the resource specifi-
cation. For instance, we may stipulate that calls (that meet the CPRE) should
be served in a strictly first-come-first-served order (thus refining step 2 above).
A resource specification can be implemented in different languages, using dif-
ferent concurrency language primitives. We can implement a resource in Java,
for instance, using e.g. the Locks and Condition classes provided by the
java.util.concurrent package. As an example, Fig.3 provides a (sketched)
Java class that can serve as a starting point for a complete implementation.
Note that the class is rather incomplete. It does for instance not address the
special role of the last and first warehouses, i.e., that there is no corridor before
the first warehouse, and the absence of a corridor after the last warehouse.
The exitWarehouse(n,w) method begins by acquiring a lock, ensuring
that no other call executes simultaneously. Then, the concurrency precondition
(CPRE) is continuously evaluated. If CPRE does not hold, because the corri-
dor is not empty, the thread executing the method will wait on the condition
freedCorridor [n+1] until another thread signals it (in enterWarehouse (n,w)).
Once the CPRE is established, the POST condition is established by mod-
ifying the state of the resource (not shown in the code excerpt). Then, finally,
the method signals any other thread, corresponding to a robot waiting to enter
warehouse n which the robot executing exitWarehouse(n,w) just left.

5 Testing Resources

There are different aspects of a system implemented using shared resources that
we can test. We can for instance focus on testing the specification itself, to vali-
date that the specification is internally consistent, and that it faithfully expresses
the informal requirements an implemented system should satisfy. An example of
a consistency property is that all post conditions should preserve the resource
invariant.

Here, instead, we mainly focus on the task of verifying that an implemented
system faithfully conforms to the resource specification on which it is based.

A Testing-Based Approach to Ensure the Safety

public class WarehouseResource {
// Resource state
private int weight[];
private boolean occupied[];

// Handling concurrency

private Lock lock;

private Condition freedWarehousel[];
private Condition freedCorridor[];

public WarehouseResource () {

// initialize state and create monitors and conditions

public void enterWarehouse (int n, int w) {

lock.lock();
// Check CPR —-—- coded in Java —- until it becomes true
while (!CPRE(...)) freedWarehouse[n].await ();

// CPRE holds here, update resource state (POST)
//

// Signal waiters that the robot has left the corridor

freedCorridor[n].signal();

lock.unlock () ;

public void exitWarehouse (int n, int w) {

lock.lock();
// Check CPR —-- coded in Java —- until it becomes true
while (!CPRE(...)) freedCorridor[n+1].await ();

// CPRE holds here, update resource state (POST)
//

123

// Signal waiters that the robot has left the warehouse

freedWarehouse[n] .signal () ;

lock.unlock () ;

Fig. 3. An implementation sketch of the warehouse resource

124 L.-A Fredlund et al.

However, we also test other aspects of the system which are not expressible in
the resource specification, i.e., that the order in which the implemented system
services the calls whose concurrency preconditions (CPREs) hold, conforms to
stated requirements.

For the warehouse example, there is just a single requirement on servicing
calls, to enforce progress:

if the set of calls with true concurrency preconditions is non-empty, the
system must eventually select a call to execute.

We can illustrate the semantics of this requirement by an example, assuming
that the maximum weight permitted in warehouse 0 is 1000 kg:

enterWarehouse (0,900) -- does not block
enterWarehouse (0,200) -- blocks
enterWarehouse (0,100) -- must not block

We assume that calls are made sequentially. The first call does not block, as
900 < 1000. The second call blocks, as 900 + 200 > 1000. The third call is
permitted by the concurrency precondition as 900 + 100 < 1000, and can thus
not be blocked for infinitely long.

We will test a shared resource by developing a model for the behaviour of the
resource as a Quviq QuickCheck [2] state machine. In the following we assume
that the system is implemented using Java, although this is not crucial to the
approach.

A first question to ask is what errors can we expect programmers to commit.
We can separate the errors into three classes:

e1: the evaluation of the concurrency precondition and postcondition, of different
calls, are interleaved, although the precondition and postcondition of a given
call should be evaluated in sequence. These errors are likely due to basic
misunderstandings with regards to using Java concurrency primitives. To
find such errors we must issue simultaneous calls to the controller.

eq: either the CPRE or POST function is incorrectly implemented. To catch
such errors issuing a sequence of sequential calls is sufficient.

es: the programmer may have made mistakes in the selection of a call candidate
eligible to enter the resource; this can be a difficult task due to ordering
constraints and the manner in which blocked tasks must be woken up. Cor-
rectly programming this functionality in Java is not an easy task, and we can
expect to see many errors committed here. To detect such errors we must
be able to observe which pending calls were unblocked by the execution of a
non-blocking call. That is, if the concurrency preconditions for all pending
calls in a shared resource are false, and a new call ¢; arrives whose precondi-
tion is true, we should observe which pending calls cs, ..., ¢, are unblocked
due to the execution of ¢;.

Unfortunately we can in general not observe the exact order in which the
calls ca, ..., ¢, in errors of class eg are unblocked (we consider black-box testing

A Testing-Based Approach to Ensure the Safety 125

only, i.e., we do not have access to the source code of the implementation of the
resource).

In the following we consider the specific problem of testing the warehouse
resource, but take care in pointing out what parts of the test model are generic,
and what parts are specific to the task of testing the warehouse resource.

To develop a QuickCheck state machine for testing the system we have to
decide on a model state, to decide which command to generate in a particular
model state (i.e., implement the command function). Moreover we have to be able
to decide whether the execution of a command was successful or not (i.e., imple-
ment the postcondition function), and to compute a next model state after a
command has finished executing (i.e., implement the next_state function),

Using these functions, the QuickCheck state machine library repeatedly gen-
erates a test sequence of modest length composed of commands, where each
individual command is generated by one call to the command function, executes
the command sequence, and determines whether the execution revealed an error
or not.

5.1 The State of a Resource

To produce more comprehensible tests we introduce the notion of a robot iden-
tifier, which is simply a natural number. In the model we extend the ware-
house operations with a robot identifier as a first argument, i.e., a call is now
enterWarehouse (r,n,w) where r is the robot identifier, n is the warehouse iden-
tifier, and w is the weight. However, before actually issuing the call to the imple-
mented resource, the robot identifier is stripped. Thus robot identifiers are used
only internally in the QuickCheck state model, and the resource specification
need not change.

The state of a resource is represented as a record with fields warehouses
and corridor which corresponds to the resource state; num_enters counts the
number of robots that have entered warehouse 0, and blocked_jobs is a list with
information about the currently blocked jobs (i.e., calls to the resource which
have not completed yet).

The blocked_jobs field will be a component of any shared resource test
model, whereas the other fields are specific to the warehouse example.

5.2 Generation of Commands

Clearly not all commands can be invoked in all situations, and thus test sequences
must be generated that respect such restrictions. In the following we abbreviate
enterWarehouse as enter and exitWarehouse as exit.

For instance, a test sequence containing only the test exit (0,0,350) is not
very sensible, as there is no prior call in which robot 0 actually entered warehouse
0. Since robots are expected to move sequentially through the warehouse com-
plex, entering warehouse 0, exiting warehouse 0, entering warehouse 1, etc., the
test command sequences we generate should respect such sequential behaviour.

126 L.-A Fredlund et al.

Similarly, if a call enter (0,0,350) blocks, it does not make sense to issue a
call to exit(1,0,350) until the prior call is unblocked. Moreover, as commented
earlier, it is expected that a call to exit (n,w) has the same weight parameter as
the earlier call to enter the warehouse. Finally, the weight parameter w2 in a call
to enter(r,n+1,w2) should be greater than or equal to the weight parameter
wl in a prior call exit(r,n,w1) (if any). Note that such restrictions are not
inferrible from the warehouse resource specification in Fig. 2.

The actual command to generate in a model state is chosen randomly between
all possible commands. As an example, we show below a QuickCheck generator
that is capable of generating exit commands exit(r,n,w), using the current
model state:

1 eqc_gen:oneof

2 ([{call,warehouse,exit,[R,N,W]1} ||

3 N <- warehouses (),

4 {R,W} <- warehouse(N,State),

5 not (lists:member (R,blocked(State)))
6 1.

A symbolic command calling the exit function (in the software module
warehouse) is represented as {call,warehouse,exit, [R,N,P]} where [R,N,W]
are the function arguments (robot identifier, warehouse identifier, and weight).

Such a command can be generated if N is a warchouse identifier (line 3), and
R,W and the robot with identifier R and weight W is in warehouse N in the model
state (line 4), and no call concerning robot R is currently blocked (line 5, also
checked using the model state).

There may be several robots that are able to exit a warehouse at any given
time, and the above generator chooses randomly between all such possible com-
mands (line 1).

The full command generator also generates enter commands; we cut down
on the number of possible commands by enforcing that robots enter warehouse
0 with sequentially increasing robot identifiers, starting with 0, and up to some
small maximum (10). To increase the possibility that the sum of weights in a
warehouse sum exactly to the maximum weight in a warehouse (normally 1000),
starting weights for robots are chosen randomly using the QuickCheck gener-
ator? ?LET(X,eqc_gen:choose(1,11),X%100), i.e., the generator first chooses
a random integer between 1 and 11, and multiplies it with 100. Thus possible
weights are 100, 200, ..., 1100.

A call to the command function to generate a command actually does not
return a single command, but rather a small number of commands that should
be invoked concurrently (to be able to detect errors of type e; above). The
exact number of concurrent commands is chosen randomly. However, care must
be taken that such concurrent calls are non-interfering, in the sense that the

2 A QuickCheck generator is a function that is capable of, according to some prob-
ability distribution, generating an infinite number of elements for some type. The
generator int (), for example, can generate random integers, and list(int()) gen-
erates lists of random length, containing random integers.

A Testing-Based Approach to Ensure the Safety 127

execution of one command cannot render another command non-executable (due
to the restrictions above). In the case of the warehouse this corresponds to
ensuring that concurrent calls concern distinct robots.

As an example, the following set of (concurrent) calls could be generated from
the initial model state: {enter (0,0,300),enter(1,0,700),enter(2,0,300) }.
Note that the concurrent calls concern different robots to prevent interference.

5.3 Execution of Commands

Commands are executed simply by invoking, in parallel, the Java methods corre-
sponding to the resource operations, taking care to first strip the robot identifier.
Next, the test code waits for a small interval of time, and checks which calls have
completed. The result of executing the set of concurrent calls is a set of tuples
(call, result) denoting a call call that has finished with some result (a normal
return value, or a Java exception). The concurrent calls that have not yet com-
pleted are considered blocked.

Note that there may be more completed calls than the number of concurrent
calls invoked, as a call may unblock calls blocked earlier in the execution of the
test sequence.

Moreover, note also that there is no way to detect in which order the calls
completed.

5.4 Computing the Next Model State

To compute the next model state, given the result of the execution of a set of
concurrent calls, we must calculate a “feasible” ordering of the finished calls
that permits all calls to execute, considering the restrictions enforced by the
concurrency precondition CPRE.

Given the current model state s, and a set of finished calls cq,...,c,, we
explore all possible interleavings of these calls. That is, beginning with ¢, if
¢ should still block in the model state (according to the CPRE) it cannot
have been the first call to terminate, and thus no interleavings beginning with
c1 needs to be considered further. If on the other hand ¢; should not block,
we compute a new model state s = POST(cq, s), and explore all interleavings
of the remaining commands co,...,c,. Similarly, we explore all interleavings
beginning with cs, etc. The successful interleavings are those which succeeded
in executing (without blocking) all completed calls ¢y, .. ., ¢,, and the successful
new model states are the final new model states.

In general there may be more than one successful interleaving, e.g., consider
the example with generated commands above. A potential execution result is
that the two calls enter (0,0,300) and enter(0,0,700) finished (all three calls
cannot finish). Clearly both possible interleavings of these calls are successful.
However, the final model states are identical.

In fact, in this article we focus on a subclass of shared resource specifications,
to permit “deterministic testing”, where the following property holds:

128 L.-A Fredlund et al.

given an execution Sgp,...,s from the initial model state sp and ending in
model state s, and a set of concurrent calls Calls generated from model state
s, suppose that the concurrent execution of Calls causes the set of calls Calls;
to finish, then the final model states computed from s and Calls; must all be
identical.

This property holds of the warehouse example, but it is easy to construct
a resource specification where the property does not hold. For instance, we can
stipulate two operations a and b, where if a executes first the final model state
is a (the execution of b has no effect, but does not block), and vice versa if b
executes first the final model state is b.

This restriction can be lifted by generalizing a model state as a set of possible
“simple” model states, corresponding to all possible final model states. However,
we are then faced with the problem of generating commands that are permitted
in all simple model states.

Note that if there exists no interleaving of the completed calls that is per-
mitted according to the concurrency precondition, we have found a bug in the
implementation of the shared resource.

The computation of all possible interleavings is done in a lazy manner, taking
care not to generate all interleavings at once, but rather in a stepwise manner,
discarding failed interleavings at once, and merging identical interleavings (i.e.,
whose model states are the same, and with the same remaining calls to consider)
as soon as possible, to improve analysis efficiency. Nevertheless, in the worst
case there may be an exponential number of interleavings to explore, although
potential slow-downs caused by this are mitigated by the fact that we explore
only tests of a limited size, and where the number of concurrent calls are severely
limited by design. In practice we have so far not experienced any problems due
to this potential inefficiency.

5.5 Checking if the Execution of a Command Was Correct

To check that the execution of a command was as predicted by the current
model state, we compute the next model state s, given the current one and
the completed calls (as explained in the previous section).

Again, if there is no possible interleaving of the calls such that the concur-
rency precondition holds for all calls, we have found a bug in the implementation
and testing can finish. Moreover, we examine the return values for all completed
calls; if any call raised an exception we have found a bug in the implementation.

Finally, we consider all calls that have not completed but remain blocked.
If, in the new model state, any of these calls can be completed, i.e., there exists
a call ¢, € blocked(spew). CPRE(cy, Spew), they should have already finished
(due to the requirement on progress), and thus we have found a bug in the
implementation.

A Testing-Based Approach to Ensure the Safety 129

6 Testing the Warehouse Resource

To validate the approach we developed a QuickCheck state machine according to
the principles explained in the previous section, and used it to test 98 Java-based
implementations of the Warehouse shared resource.

These implementations were written by undergraduate students attending a
course on concurrency at the Polytechnic University of Madrid. The students
were required to use a particular concurrency construct [5], which is an improve-
ment on the lock and condition solution seen in Fig. 3, in that it is not needed
to test the concurrency precondition using a while loop.

Before we ran the QuickCheck based test on the student programs, the stu-
dents had already successfully tested their solutions on a small set of manually
developed jUNIT test cases. Moreover, the students had a strong incentive in
handing in good solutions, as the warehouse implementations were graded, and
these grades were factored into the final course grade.

Although the task may not appear overly difficult, the results of our testing
using QuickCheck are somewhat discouraging. Of the 98 solutions tested, we
found errors in 33 of them, i.e., 34 % of the solutions handed contained at least
one error. The following is a typical error report produced:

Test failed with reason {postcondition,false}

Generated test sequence:

<< enter(0,0,1000) >> -- unblocks O
<< enter (1,0,600) >>
<< exit (0,0,1000),
enter (2,0,500) >> -- unblocks O,unblocks 1
<< enter (0,1,1000),
enter (3,0,600),
exit (1,0,600) >> -- unblocks O,unblocks 1,
unblocks 3,unblocks 2

In the error report we can see that robot tries to enter warehouse 0, carry-
ing weight 1000 (the maximum allowed), and succeeds. Next, robot 1 tries to
enter with weight 600, and blocks (correctly). Next two commands are executed
concurrently, robot 0 exiting warehouse 0 to the following corridor, and robot 2
entering warehouse 0 with weight 500. The result is that the exiting operation
succeed, and the previous request from robot 1 to enter warehouse 0 also suc-
ceeded. Finally, three commands are run in parallel, a request from robot 0 to
enter warehouse 1, a request from robot 1 to exit warehouse 0, and a request
from 3 to enter warehouse 0 with weight 600. All requests are successful, as well
as the previous request of robot 2 to enter warehouse 0. Thus, both robot 2
and 3 have received permission to enter the warehouse, but the total weight of
robots in the warehouse would then be 600 4+ 500 which exceeds the permitted
maximum of 1000; a safety critical bug!

130 L.-A Fredlund et al.

7 Conclusions and Future Work

We have provided a methodology for developing and testing concurrent safety-
critical systems, based on the use of a high-level concurrency mechanism: shared
resources. The methodology was tested in a case study, and was found to be able
to detect a large number of concurrency errors in a prototypical safety-critical
system.

Items for future work includes providing the functionality of deriving indi-
vidual test cases (and indeed entire test suites). This can be already achieved
using the approach explained here, except the execution of a generated test case
need not be deterministic, but instead depend on the particular implementa-
tion. Thus such a “pre-generated” test case may have to be aborted in mid-run
because an invoked operation may be nonsensical (e.g., if a robot desires to exit
a warehouse before it has been given permission to do so). In contrast, using the
approach adopted in this article we do not have to abort test cases in mid-run,
as the test case generation is steered by the actual implementation being tested.

References

1. Armstrong, J., Virding, R., Wikstrém, C., Williams, M.: Concurrent Programming
in Erlang. Prentice-Hall, Englewood Cliffs (1996)

2. Arts, T., Hughes, J., Johansson, J., Wiger, U.T.: Testing telecoms software with
quviq QuickCheck. In: Proceedings of the 2006 ACM SIGPLAN Workshop on
Erlang, Portland, Oregon, USA, pp. 2-10 (2006)

3. Cesarini, F., Thompson, S.: Erlang Programming - A Concurrent Approach to Soft-
ware Development. O’Reilly Media, Sebastopol (2009)

4. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of haskell
programs. In: Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming, ICFP 2000, pp. 268-279. ACM, New York (2000)

5. Herranz, A., Marifio, J.: A verified implementation of priority monitors in Java. In:
Beckert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp.
160-177. Springer, Heidelberg (2012)

6. Herranz, A., Marifo, J., Carro, M., Moreno Navarro, J.J.: Modeling concurrent
systems with shared resources. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS
2009. LNCS, vol. 5825, pp. 102-116. Springer, Heidelberg (2009)

7. Svenningsson, R., Johansson, R., Arts, T., Norell, U.: Testing AUTOSAR basic
software models with quickcheck. In: Pavese, F., Bar, M., Filtz, J.-R., Forbes, A.B.,
Pendrill, L., Shirono, K. (eds.) Advanced Mathematical And Computational Tools
In Metrology And Testing IX, pp. 391-395. World Scientific, Singapore (2012)

A Contracts-Based Framework for Systems
Modeling and Embedded Diagnostics

Gregory Provan®™)

Department of Computer Science, University College Cork, Cork, Ireland
g.provan@cs.ucc.ie

Abstract. Two key impediments for the commercial success of model-
based diagnosis (MBD) include (a) a failure to integrate diagnostics mod-
eling within the requirements and design phase, and (b) a high degree
of diagnostic ambiguity during run-time. This article addresses both
of these impediments by providing a formal framework that integrates
requirements-based design with MBD modeling. The proposed frame-
work extends the consistency-based theory of MBD with a requirements-
based design theory based on contracts.

Keywords: Contracts - Model-based diagnostics - Systems modeling

1 Introduction

Model-based design has proven to be very effective for a range of systems. How-
ever, most companies still generate diagnostics models and simulation/control
models independently, even though these models have significant overlap. For
example, design models of autopilot systems incorporate many safety require-
ments, yet embedded autopilot diagnostics systems typically are designed and
implemented independent of the simulation models. This approach creates mul-
tiple problems, such as conflicts between embedded diagnostics and control, and
wasted resources during the design/implementation phases.

In this article, we address certain problems arising in on-board model-based
diagnosis (MBD) software, which aims to isolate the components that are faulty
during run-time. This differs from safety analysis, e.g., [13], which typically aims
to identify, a priori, if unsafe states can be entered.

A problem with model-based diagnosis (MBD) is that there is no notion
of “acceptable” inputs to a system/component. Hence the problem of cascaded
faults occurs when an upstream fault in component C' causes inconsistent data
to be transmitted to components downstream of the original fault, which results
in downstream components all signalling faults, when in fact only C is faulty.
To circumvent such problems, we extend an MBD model with an A/G model,
which explicitly rules out inconsistent input data as failing to fulfil the compo-
nent /system model.

This article presents a formal framework that extends the consistency-based
theory of MBD [17] with a component-based requirements/design theory based

Gregory Provan—Supported by SFI grant 12/RC/1189.

© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 131-143, 2015.
DOI: 10.1007/978-3-319-15201-1_9

132 G. Provan

on contracts [9]. This assume/guarantee theory defines a system @ in terms of
an inter-connected collection of “rich” components [1], each of which must fulfil
a contract (e.g., based on design requirements) given assumptions in which the
component operates. Given a contract-based specification for @, one can prove
properties about fulfilment of the design requirements. Contracts have been used
for hardware design optimization [20], and also for software analysis during run-
time [10]. Moreover, based on observations and the possibility of stochastic (or
non-deterministic faults), one can then diagnose the reasons for the contracts
violated during operation of @ [18,21].

This approach offers a formal methodology not only to integrate requirements
specification within diagnostics models, but also to significantly reduce the inci-
dence of two challenging classes of ambiguous or “spurious” fault, commonly
known as No-Fault-Found (NFF) and cascaded fault-reports. During run-time,
many ambiguous diagnoses can arise due to inability to define models that ade-
quately distinguish “local” faults from exogenous influences. For example, the
No-Fault-Found is a common diagnosis that causes problems in many domains,
particularly avionics: it is a fault that is isolated during device operation, but
when the “faulty” component is replaced, the fault cannot be duplicated during
testing of the component. In many cases, this fault occurs when the component
is operated outside of its design intent. For example, fighter jets have many actu-
ator faults that occur when the jets are operated outside of design specifications.

Cascaded faults are another difficult situation that arise in typical FDD sit-
uations: in avionics, for example, an upstream module will compute some faulty
data, and then all downstream modules that process this faulty data will issue
(erroneous) fault reports, when in fact downstream modules do not have hard-
ware faults, but issue fault reports due to the incoming corrupted data. In this
case, the failure to identify exogenous anomalies properly leads to many erro-
neous diagnoses.

Assume-guarantee reasoning considers components not in isolation, but in
conjunction with assumptions about their context. Hence, the assume/guarantee
(A/G) approach focuses on reasoning about a component in terms of the assump-
tions about its environment, and by proving that these assumptions are satis-
fied by the environment, establishing a set of system obligations, the contract.
This approach has been use for (a) validating the requirements of a design (and
thereby reducing the design-space that must be searched during design optimiza-
tion [20]), and (b) during run-time for system-level verification [4].

The contributions of the article are as follows:

— We generalize the consistency-based theory of MBD to a contract-based theory
that enables design models, with their environment-based requirements, to be
integrated with an MBD model.

— We show how we can use the existing MBD inference to compute not only
faults, but also operating-condition violations, and thereby rule out faults
based on incorrect component inputs.

— We illustrate how our new approach can distinguish faults and assumption
violations with a running example.

A Contracts-Based Framework for Systems Modeling 133

2 Related Work

This article synthesizes the notion of contracts with that of fault diagnosis of
DESs, thereby extending both.

Previous work has been done on using LTL for model-based diagnostics
[11,12]. This research has focused on mapping LTL specifications into propo-
sitional clauses that are amenable to MBD inference directly. In particular, [12]
creates a structure-preserving SAT encoding for an LTL specification, such that
inference based on Reiter’s diagnosis theory [16] can be efficiently applied. In
contrast, we do not focus on computationally efficient solutions, but rather aim
towards eztending Reiter’s diagnosis theory with contracts. In future work we
hope to explore the computational speedups possible within this MBD frame-
work, using a tool-kit described in [14].

Sampath et al. [17] first proposed the framework for failure diagnosis of qual-
itative behaviors of discrete-event systems (DESs). They defined a DES execut-
ing a faulty event as diagnosable if it must be eventually diagnosed within a
bounded number of state-transitions/events. To compute a diagnosis they define
an automaton for that purpose, called a diagnoser, and showed necessary and
sufficient conditions for diagnosability in terms of certain properties of the diag-
noser. Subsequently, several researchers extended this work, e.g.,

In this paper, we adopt the failure diagnosis specification using linear-time
temporal logic (LTL) [7]. Given a DES to be diagnosed, we use an LTL formula @
for specifying a fault as follows: an infinite state-trace of the system is said to be
faulty if it violates @. Thus for example, we can declare an infinite state-trace to
be faulty if it visits a faulty state, which may be faulty by itself (as in [2] [24, 25,
45]), or may be a state introduced for representing a transition labeled by a faulty
event (as in [4-6,11] [32, 35-37]). We can also have more general specifications
for non-faulty state-traces in our setting such as a certain set of states should be
visited infinitely often, or a certain set of states should be eventually invariant.
Thus properties such as “invariance”, “recurrence”, “stability”, etc. can be used
to specify (non)-faulty behavior in our setting.

3 Running Example: TO/GA System

3.1 Example

This section introduces a simple example that we use throughout the article.
The Take-off/Go Around (TO/GA) system is an autopilot sub-system that acti-
vates take-off or go-around thrust. During take-off, pressing the TO/GA switch
causes the engines to increase their RPM to their computed take off power, as
computed from parameters such as runway length, wind speed, temperature, and
the weight of the aircraft. The go-around mode is engaged on approach to land,
and switches the plane from autopilot approach mode by engaging the thrust
levers until they reach the position go-around thrust.

Most commercial aircraft use some form of hardware/software redundancy
to ensure high reliability of autopilot systems. For example, this may be a

134 G. Provan

I

TOGA

l,

s
H Vo L sFR
B2, s

secpndary

Fig. 1. Dual-dual autopilot TOGA sub-system, with TO/GA signals I, > sent to
primary and secondary AFDC computers.

dual-redundant or a triply-redundant approach, as in the Boeing 777 aircraft’s
TO/GA architecture. In this article we study a TO/GA System with a dual-dual
redundant approach, as shown in Fig. 1. In such systems, the TO/GA commands
are replicated and sent to two autopilot flight director control (AFDC) comput-
ers, which compute thrust levels in each of the AFDC computers. The AFDC
outputs are sent to the engines, and any anomalies are sent to fault-report moni-
tors. Each TO/GA signal is tagged with a time stamp, to ensure that the signals
being compared are closely-spaced temporally and thus represent the same com-
putation done in different downstream components.

We represent a state at time 7 using the tuple (I3, I, 14, Op, Og), where I
and Iy are the two TO/GA inputs, p = |17, — 71,| is the input time difference,
and Op and Og are the primary and secondary outputs, respectively.!

The aim of embedded diagnostics is to compute the primary and secondary
fault reports, denoted FFRp and F Rg, respectively. The AFDC has primary
and secondary computers; the primary AFDC is engaged as long as no possible
data corruption is detected. If a signal mis-compare occurs, the primary AFDC
issues a fault report and the secondary AFDC is also engaged. If the secondary
AFDC does not detect a mis-compare, it is now used as the primary unit. If
the secondary AFDC also detects a mis-compare, it also issues a fault report
and a pilot-warning, which notifies the cockpit of TO/GA problems, with a
recommendation to switch to manual TO/GA procedures.

Environment-Based Requirements Specification. This section defines two
TOGA system signal requirements as propositions (R, R), in order to fit in with
the MBD language. The requirements for the AFDC are that it must test signal
equality for two asynchronous signals (R;), which must be generated within a
time difference p no greater than a fixed constant § (Rz). We formalise the two
requirements as follows:

R, the time-difference between the AFDC input signals I; and Iy must be such
that |77, — 71,| < 9, when p = t; else u = f;

! Note that we suppress temporal indexing to simplify the notation.

A Contracts-Based Framework for Systems Modeling 135

Table 1. Set of states for dual-dual comparator, with state name z;, inputs (I1, I2),
time-difference p for inputs, and outputs O, and O

state | (I1,I2) | | Op | Os
z (6t) 6t |t
T2 | (tt) 6 f |t
s (6t) [t [f |f
T4 (£,f) tit |t
w5 (6 ff f
ze | (Lt) £t |f
| (tt) £ f |f

Ry if the TOGA outputs are both ¢, set the input flag I = ¢; else [= f.
This is given by (I N I2) < 1.

Hence, for this sub-system, we can define the requirements specification as
R = pu A I. We assume that the requirements are consistent.

A typical “run” of this system will consist of a sequence of states. For exam-
ple, consider a state sequence S = {x1,x9,x3,x3,x3, 24}, as shown in Tablel.
We can classify states as satisfying the requirements or not. For example, if
we examine the input-equality and timing requirements for S, we see that x4
through x7 satisfy these requirements, and the other states do not.

4 Notation and Model

4.1 Components and System Composition

We adopt a component-based framework for systems. A component is an entity
that represents a base-level unit of design. We create systems (hierarchically)
by connecting components together such that connected components share and
agree on the values of the connected ports and variables.

The environment of a component consists of a set of states over time (a trace
or behaviour) external to the component. A system (or component) accepts as
input a subset of exogenous traces (from its environment) and modifies these to
produce an output trace.

We formalise a component using the notion of an interface and a set of
behaviours over the interface. The interface is represented by a set P of input
and output ports, which specify allowable values for the ports. The behaviour is
characterised by sets of traces.

Definition 1 (Component). A component C is a tuple (P, 77,70, Tops) in
which: P is the set of ports; Ty and To are disjoint sets referred to as inputs
and outputs, respectively, (the union of which is denoted by T); Tops C T is the
subset of observable traces.

136 G. Provan

A component modifies the input 77 to create the output 7o, and we use a
model @ to characterise this process. In the following we will specify models for
diagnosis and for contracts.

In this article we focus on integrating a diagnosis and A/G model. We assume
the well-known concepts of component composition to create a system model,
and refer to articles such as [2,15,20] for details of model composition.

4.2 Model-Based Diagnosis Representation

This section described our fault model for discrete-event systems (DESs). Our
work extends DES diagnosis by adding in the concept of contracts to rule out
anomalous inputs that violate a contract. The research on DES diagnosis has
a long history. Sampath et al. [17] first proposed a framework for failure diag-
nosis of qualitative behaviours of DESs. They defined a DES executing a faulty
event as diagnosable if it can be diagnosed within a bounded number of state-
transitions/events. They define an automaton, called a diagnoser, to compute
a diagnosis, and show necessary and sufficient conditions for diagnosability in
terms of properties of the diagnoser. Subsequently, several researchers extended
this work, e.g., more general frameworks, as in timed systems in [5] and decentral-
ized diagnosis [3], and improvements in efficiency from exponential-complexity
diagnosability inference [17] to poly-time [6].

In this paper, we adopt the linear-time temporal logic (LTL) [19] failure
diagnosis specification of [7]. In brief, LTL is built up from a finite set of propo-
sitional variables AP, the logical operators A, V, = and =, and the temporal
modal operators O (next), O (always), ¢ (eventually), U (until) and R (release).
Formally, the set of LTL formulas over AP is inductively defined as follows:

— if p € AP then p is a LTL formula;
— if ¢ and £ are LTL formulas then -, ¢ V£, (Y, and ¢ ¢ £ are LTL formulas.

Given a DES to be diagnosed, we use an LTL formula & for specifying a fault
as follows: an infinite state-trace of the system is faulty if it violates @. In other
words, a fault is inconsistent with the model ®.

We represent a system as accepting as input a trace 7; and creates as output
a trace Tp; our specification (model) of the system by @4, an LTL formula that
specifies the nominal (non-faulty) behavior of the system.

We formalise the model as follows:

Definition 2 (Model ®). A model ¢ is defined by the tuple (X, X, R, Xo,&, A),
where

— X is the set of states;

— X is a finite set of event labels;

- R: X x (X Ue) x X is a transition relation;
- Xo C X 1is the initial set of states;

— £ is a finite set of proposition symbols;

~ A: X — 2% is a labelling function.

A Contracts-Based Framework for Systems Modeling 137

This model is capable of generating a trace as follows:

Definition 3 (Trace 7). A system S generates a finite or infinite state-trace
T = (21, ..., Tm) given as input xg € Xo, such that Vi > 0 there exists a o; €
Y U{e} such that (z;—1,04, ;) € R.

A finite or infinite state-trace 7 = (xg,21,...0) over X' U {¢} is associated
with a event-trace o = (eg, e1,...) if Vi > 0, (x;-1,€;,x;) € R.

If we represent a behaviour as 7 = 7; U 7o, a fault occurs if the behaviour
is inconsistent with the diagnosis model @ A:

Definition 4. Let S be a system, ®a be a LTL specification for S, and T be an
infinite observed state-trace generated by S, then T is called a faulty state-trace
if T = Pa.

Given an anomalous observation 74, we aim to compute the failure state
of the system that is the “cause” of 7a. A key aspect for MBD is to take an
observed event sequence (called an observation) and identify the fault status of
the system based on the observation. Observations of events executed by system
S are filtered through an observation mask m : X U{e} — I'U{e} with m(e) =€,
where I is the set of observed symbols.

Assume that system S has a set F = {Fy,..., F},} failures that can occur.
We assume, using [17], that a failure event X', precedes failure F;. Hence, our
task thus consists of isolating the failure events when an anomalous observation
occurs. An anomalous observation is a faulty state-trace which is observable.

We can classify the states as being either faulty Xz or nominal (not faulty)
Xn. Using the mapping from state-trace to event-trace, each faulty state-trace
must be associated with one or more failure events. Further, based on [17], we
associate to every failure event 'y one or more observable indicator events.

Definition 5. Let S be a system and T be a finite state-trace generated by S, T
is called an indicator if all its infinite extensions in S are faulty. We use Indg
to denote the set of all indicators in S.

Example: In our TO/GA example, we use the F'R (fault-report) variable as our
observable variable, i.e., we emit an observable signal to indicate the detection
of a fault.

We can model each AFDC in our TO/GA example using the following:

(FR = fault) = o[-0;] (2)

Equation 1 states that F'R indicating it is OK means that the inputs should
agree with output ¢, i.e., Op and Og. Equation 2 states that F'R indicating it is
faulty means that eventually we should obtain a false output.

The diagnosis model automaton shown in Fig. 2(a) depicts a transition rela-
tion that, starting from the nominal state (where FR = OK), constrains the
system to continue in the nominal state or to move to a fault state (where
FR = fault).

The two main inference techniques used for diagnostic state estimation are a
diagnoser [6,17] or a diagnostics search engine built on top of a theorem prover

(e.g., [8]).

138 G. Provan

ZNAZ
(c) Integrated
automaton
Contract R
s Contract
violation P AL

—-&, violation

NaZ

T AT ¢

N

Fig. 2. Automata for diagnosis (a), and integrated (b), models

4.3 Assume/Guarantee Representation

This section describes a model @ 44 that specifies the notion of a contract for a
component. This can be extended to a system contract, as described in [2].

An AG specification consists of two (prefix-closed) sets of traces referred to
as the assumption A and guarantee G. The assumption specifies the environ-
ment’s allowable interaction sequences, while the guarantee is a constraint on
the component’s behaviour.

A component may include both implementations and contracts. An imple-
mentation M is an instantiation of a component and consists of a set P of ports
and of a set of behaviours, or runs, also denoted by M, which assign a history of
“values” to ports. Given an A /G specification @ o for S, with assumption A and
guarantee GG, we informally characterize how a component S satisfies a contract
as follows [2]. S satisfies §4¢ if for any interaction between S and the environ-
ment characterised by a trace 7, if 7 € A, then 7 € A, and 7 cannot become
inconsistent in S without further inputs from the environment. Components can
thus be thought of as implementations of /AG specifications.

Given an MBD model &4, an A/G model @44 is defined over the same
observable state-space, i.e., observations for the system and its sensors are the
same. The A/G model is different in that it uses a model that constrains the
transition relation to identify certain transitions as not fulfilling the contract.
Hence, we must identify two classes of event label: events that satisfy the contract
Yc and events that violate the contract X, where these two classes form a
partition of Y. There is a corresponding partition of the complete state-space:
X = X¢ U Xg. Figure 2(b) shows the automaton for this extended model.

In this new framework, an assumption that violates the contract is defined
as follows:

A Contracts-Based Framework for Systems Modeling 139

Definition 6. Given a system S, an A/G LTL specification @ ac for S, and an
assumption A, i.e., an infinite state-trace, we say that A wviolates the contract

for guarantee G if A}~ Pag.

Example: In our TO/GA example, we can model each AFDC using

(FR=O0K)=0[A= 0] (3)
(FR = C) = o[~0,] (4)

Equation 3 means that when the contract is satisfied the output O; is assigned
t. Equation4 means that failure to satisfy the contract entails the output O;
eventually being assigned f.

The A/G model automaton shown in Fig.2(b) depicts a transition relation
that, starting from the nominal state (where FR = OK), constrains the system
to continue in the nominal state or to move to a Contract Violation state (where
FR=-C).

5 Assume/Guarantee and MBD Extended Model

This section describes how we extend our MBD model to incorporate A/G
models.

5.1 Formal Model

In our framework, we assume a model @ that accepts as input a trace 7; and
creates as output a trace 7p. If we represent a behaviour as 7 = 7; U7p, a fault
occurs if the behaviour is inconsistent with the model @, i.e., 7 [~ .

Within the MBD framework, we model a system/component using an LTL
model @4 (see Definition 2). Given an anomalous observation ma, we aim to
compute the failure state of the system that is the “cause” of 7wx.

To extend @4, we must define an A/G model @4¢, and then specify the
extended model as @ = P U D 4.

The extended model thus has the following partition of the state set: X =
XA X Xug = (XN UXG) X (XC U‘XC*«)7 which gives X = XyXc U XNX@ @]
XrXc UXpXe. The extended model has the following analogous partition of
the event label set: X = X4 X Yyq.

5.2 Example

We now describe how our running example covers this extended model.

The integrated diagnosis and A/G model automaton shown in Fig.2(c)
depicts a transition relation that, starting from the nominal state (where FR =
OK), constrains the system to continue in the nominal state or to move to a
fault state (where FR = fault), a Contract Violation state (where FR = —(C),
or a state where a fault exists and the contract is violated.

140 G. Provan

Table 2. Diagnostics and contract status for dual-dual comparator, with state name
zi, 1 =1,...,7, inputs (I1, I2), time-difference p for inputs, and outputs O, and O,

state | (I, 12) || Op | Os | Pa | Pac | Prne
x1 (6t bttt - - -
x2 (t,t) t | f ot v - fault
x3 (t,t) t|[f |f |- |V |fault
T4 (£1) tit |t |- - -
zs ((GF) ff f v v | =C
we |(ft) £ f |f v v |-C
zr | (tt) £ f f |v |v | fault A-C
We can model each AFDC using
(FR=O0K)=U0A= 0, (5)
(FR = fault) = o[-0;] (6)
(FR = C) = o[-0} (7)
(FR = fault A C) = o[-0 (8)

Table 2 depicts what can be computed from a given state x; (assuming x; is

preceded by a nominal state sequence) by the different models: ®a, P4, and
@1t Note that v/ denotes that the particular model identifies either a fault or
a contract violation. As examples of the computed results:

6

State x4 presents a fault in output Op, and that is properly identified by ®A.
State x3 presents a fault in outputs Op and Og, and that is properly identified
by ¢A-

State x5 presents a contract violation in the inputs (which are ¢ and f rather
than ¢, t) which (correctly) produces a f output in Op and Og. However,
that output is incorrectly identified as a fault by ®. The combined model
can rule out this as a fault, identifying this as a contract violation.

State x¢ presents another example of a contract violation in the inputs (which
are f and ¢ rather than ¢, t); this (correctly) produces a f output in Op
and Og. However, that output is incorrectly identified as a fault by @ . The
combined model can rule out this as a fault, but identifies it as a contract
violation.

Properties of Extended Model

6.1 Diagnostic Soundness/Completeness

We can show that an A/G model @4 can preserve all local component faults
while excluding faults that the diagnosis model @,; incorrectly identifies based

on contract violations.

2

2 The proof is provided in the supplementary material.

A Contracts-Based Framework for Systems Modeling 141

Theorem 1. Given a diagnosis model @, a corresponding integrated model
Drnt, and an observation o, Prne is sound and complete with respect to the local
component faults of P .

Proof:

Sound: Since we are using a monotonic logic, adding extra clauses to any
formula F' will reduce the number of logical models (diagnoses) of F. If 2(® A, «)
and 2(Prne,) denote the set of diagnoses given the diagnosis and integrated
models, respectively, then 2(®PA,a) 2 (P,). Hence for a local component
diagnosis w, there is no w € (P, @) such that w & (P,).

Complete: Let f)(@;nt, «) as the local component diagnoses, i.e., diagnoses
with value bad. If Jw € Q(@Im,a) such that w ¢ Q(@M,a), then we must
have 2(Pa,a) 2 2(Prnt,), which is a contradiction. Hence we must have
completeness of the local component faults of ®@,,; with respect to @,;. O

6.2 Ambiguity Reduction

We now show that, by using @ 4, we can reduce the number of ambiguous faults
that arise during the fault isolation process without losing any true faults.

A complete test vector @ = {ay, - any} for a fault w and model 4 is a
sequence of observations such that #4 U a Uw L and there is no other fault
w’ # w such that PAo Ua U’ EL.

We now define the notion of fault ambiguity. Given a complete test a =
{a1, - am}, a “true” fault w* is such that &4 U a Uw* ~L. An ambiguous
fault is some w # w* such that w is entailed by some observation a € a;, i.e.,
PprUaUw L, but not for a superset test of «, i.e., dJa’ DO « such that
PArU' Uw)ZJ_.

Given these definitions, we now prove that the strengthened model does not
exclude any true faults.

Lemma 1. Given an MBD model ® o and any observation vector o, Awg such
that (Pac UPa)UaUwr L unless PaUaUwpg EL.

Proof: We perform a proof by contradiction. Assume that there exists some wg
such that (P4 UPA)UaUwg =L and $Pa U Uwg L. In this case it must
be that @4 =L, i.e., the A/G model is inconsistent, which is a contradiction.

7 Conclusions

This article has extended MBD to include contracts. This enables a diagnostic
system to avoid false-positive faults to be signalled when contracts for com-
ponents are being violated. It also indicates when poor requirements lead to
excessive fault reporting even though contracts are not violated.

In future work we plan to examine more efficient LTL encoding, e.g., using [11],
and to examine the impact of contract-based diagnostics on larger systems.

142

G. Provan

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,

C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 200-225. Springer, Heidelberg (2008)

Chilton, C., Jonsson, B., Kwiatkowska, M.: Compositional assume-guarantee rea-
soning for input/output component theories. Sci. Comput. Program. 91, 115-137
(2014)

Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for
failure diagnosis of discrete event systems. Discrete Event Dyn. Syst. 10(1-2),
33-86 (2000)

Giese, H., Henkler, S., Hirsch, M.: A multi-paradigm approach supporting the
modular execution of reconfigurable hybrid systems. In: Transactions of the Society
for Modeling and Simulation International (2010)

Hashtrudi Zad, S., Kwong, R., Wonham, W.: Fault diagnosis in timed discrete-
event systems. In: Proceedings of the 38th IEEE Conference on Decision and Con-
trol, vol. 2, pp. 1756-1761. IEEE (1999)

Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing
diagnosability of discrete-event systems. IEEE Trans. Autom. Control 46(8), 1318—
1321 (2001)

Jiang, S., Kumar, R.: Failure diagnosis of discrete-event systems with linear-time
temporal logic specifications. IEEE Trans. Autom. Control 49(6), 934-945 (2004)
Jobstmann, B.; Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults.
J. Comput. Syst. Sci. 78(2), 441-460 (2012)

Martin, A., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15, 73-132 (1993)

Meyer, B., Fiva, A., Ciupa, 1., Leitner, A., Wei, Y., Stapf, E.: Programs that test
themselves. Computer 42(9), 46-55 (2009)

Pill, I., Quaritsch, T.: An 1tl sat encoding for behavioral diagnosis. In: International
Workshop on the Principles of Diagnosis, pp. 67-74 (2012)

Pill; 1., Quaritsch, T.: Behavioral diagnosis of 1tl specifications at operator level.
In: Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, pp. 1053-1059. AAAT Press (2013)

Prokhorova, Y., Troubitsyna, E.: A survey of safety-oriented model-driven and
formal development approaches. Int. J. Crit. Comput.-Based Syst. 4(2), 93-118
(2013)

Quaritsch, T., Pill, I.: Pymbd: A library of mbd algorithms and a light-weight
evaluation platform. In: Proceedings of Dx-2014 (2014)

Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundamenta Informaticae
108(1), 119-149 (2011)

Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57-95
(1987)

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.C.:
Failure diagnosis using discrete-event models. IEEE Trans. Control Syst. Technol.
4(2), 105-124 (1996)

Slatten, V.: Model-Driven Engineering of Dependable Systems. In: 2010 Third
International Conference on Software Testing, Verification and Validation, pp. 359—
362. IEEE (2010)

19.
20.

21.

A Contracts-Based Framework for Systems Modeling 143

Stirling, C.: Modal and temporal logics (1991)

Sun, X., Nuzzo, P., Wu, C., Sangiovanni-Vincentelli, A.: Contract-based system-
level composition of analog circuits. In: Proceedings of the 46th Annual Design
Automation Conference, pp. 605-610. ACM (2009)

Zulkernine, M., Seviora, R.: Towards automatic monitoring of component-based
software systems. J. Syst. Softw. 74(1), 15-24 (2005)

OpenCert 2014

Modelling and Verifying Smell-Free
Architectures with the ARCHERY Language

Alejandro Sanchez!2, Luis S. Barbosa?, and Alexandre Madeira?(®)

! Departamento de Informética, Universidad Nacional de San Luis,
Ejército de los Andes 950, D5700HHW San Luis, Argentina
asanchez@unsl.edu.ar
2 HASLab INESC TEC and Universidade Do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
{asanchez, 1sb,madeira}@di.uminho.pt

Abstract. Architectural (bad) smells are design decisions found in soft-
ware architectures that degrade the ability of systems to evolve. This
paper presents an approach to verify that a software architecture is smell-
free using the ARCHERY architectural description language. The language
provides a core for modelling software architectures and an extension
for specifying constraints. The approach consists in precisely specify-
ing architectural smells as constraints, and then verifying that software
architectures do not satisfy any of them. The constraint language is based
on a propositional modal logic with recursion that includes: a converse
operator for relations among architectural concepts, graded modalities
for describing the cardinality in such relations, and nominals referencing
architectural elements. Four architectural smells illustrate the approach.

1 Introduction

Software systems evolve to cope with contextual change. This change compro-
mises the value a system delivers as it might come, for instance, from the market
or legislation in which the system is embedded. The principal design decisions
governing a system, i.e., the software architecture [14], play a fundamental role
in its ability to evolve and address change.

Architectural (bad) smells are recurrent architectural decisions that have a
negative impact on the ability of a system to evolve [5]. A catalogue is pre-
sented in [6], where they are characterized in terms of the basic building blocks
that architectural description languages (ADL) offer, i.e., components, connec-
tors, interfaces, and configurations. These design decisions may not constitute
an error or fault, but violate engineering principles such as isolation of change
and separation of concerns. They affect the ability to evolve since they difficult
understanding, testing, maintaining, extending and reusing parts of a system.

In the context of open source software (OSS), architectural smells acquire
further relevance. This is because one of the most important success factors is
the voluntary contribution of OSS community members [1]. Thus, the easier the
system is to understand, test, maintain, extend and reuse, the greater the chances

© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 147-163, 2015.
DOI: 10.1007/978-3-319-15201-1-10

148 A. Sanchez et al.

of involving volunteers. Formal approaches enabling the automatic verification of
smell-freeness of architectures will have a positive impact in both the quality of
OSS projects and in the health of the involved community [2].

The work reported in this paper aims toward such end. The approach consists
in using the ARCHERY language [8,9], an ADL with formal semantics, to verify
constraints specifying the absence of architectural smells in software architec-
tures. It does not aim at replacing existing practices in OSS communities, but
to complement them, as suggested by the proposal discussed in [2]. ARCHERY
is organized as a basic language, named ARCHERY-CORE, and extensions built
on top of it. ARCHERY-CORE allows modelling the structure and behaviour of
software architectures in terms of architectural patterns, and the extensions are
for specifying reconfiguration scripts and constraints.

ARCHERY-CONSTRAINT is the extension for specifying constraints upon either
structure, behaviour or reconfiguration processes of architectures. The specifica-
tion language is based on a propositional modal logic. As a consequence, con-
straints become formulze of a modal logic, interpreted over Kripke structures
obtained from ARCHERY’s specifications (see [10] for reconfiguration and [11]
for structure). Since the proposed approach focuses on structural constraints,
modalities allow inspecting the Kripke structure obtained from an architecture,
by regarding the configuration constituents and their relationships as the Kripke
structure’s worlds and relationships, respectively.

The underlying logic is a fully enriched p-calculus [3]. It includes fixed points,
a converse operator, two graded modalities and hybrid features. Fixed points are
for specifying recursive formulse, and thus liveness and safety conditions. The
converse operator allows exploring the converse of relations, and graded modal-
ities allow describing their cardinalities. Hybrid features consist of a mechanism
to explicitly refer to specific worlds through nominals, elementary propositions,
each of which is only true at the world it identifies, and a reference operator
which asserts that a formula is satisfied at the world named by a specific nomi-
nal. These features make possible, for instance, to express the equality between
two worlds, to denote that a world is accessible through a relation from another
world, or to assert the irreflexivity of a relation. Moreover, they make possible
to describe acyclic structures when included in recursive constraints [11].

The approach can be used upon recovery techniques are applied to obtain an
ARCHERY model. In fact, techniques were applied in [12] to recover an ARCHERY
model for an existing software system, and subsequent model-based analysis and
modifications were carried out. It is worth noting that the unrestricted access to
source code renders OSS systems a natural target for the presented approach.

Architectural smells described in [6], and architectures of actual software sys-
tems illustrate the approach. The architectures were either documented during
development, or recovered from source code, and are described in references also
available in [6]. Observe that one of the example architectures was recovered
from Linux [4], an open source operating systems widely adopted.

The obtained constraints correspond to decidable fragments of the underlying
logic. The fully enriched p-calculus is known to be not decidable, however, the

Modelling and Verifying Smell-Free Architectures 149

fragments obtained by omitting one of either the converse operator, the graded
modality operators, or the hybrid features, is [3]. None of the constraints that
characterize the smells requires recursion, and three of them exclude either the
converse operator, the graded modality operators, or the hybrid features.

The contribution of the paper is two fold. First, the constraint language pre-
sented in [11] is extended by including graded modalities. Second, the extended
language is applied to precisely model architectural bad smells, which enables
formally verifying the absence of these violations to design principles.

The rest of the paper is structured as follows: Sect.2 briefly describes the
ARCHERY language; Sect.3 characterizes the smells as structural constraints;
Sect. 4 describes the fully enriched p-calculus, the translation of structural con-
straints to it, and illustrates how a constraint is verified; Sect.5 summarizes
results and describes future work.

2 The ArcHERY Language

This section describes ARCHERY-CORE in a brief and partial way (detailed
descriptions can be found in [8,9]), and extends the structural part of ARCHERY-
CONSTRAINT presented in [11]. The language is illustrated with an architectural
pattern inspired in the Java Messaging Service (JMS). It prescribes three archi-
tectural elements: queues, where messages are kept in a specific order; producers,
that send messages to the queue; and consumers, that receive messages from the
queue. In the example pattern, a consumer provides one of three possible ser-
vices, depending on the received message.

2.1 ARCHERY-CORE: Modelling Structure

An ARCHERY-CORE specification comprises one or more (architectural) pat-
terns, a variable that references the main architecture, and global data specifi-
cations (not part of the examples in this paper). A pattern defines one or more
(architectural) elements (connectors and components), such as the JMS pattern
and the Queue, Producer and Consumer elements shown in Listing 1.

1 pattern JMS ()

2 element Queue() interface in rcvMsg; out dlvr;

3 element Producer () interface in start; out sndMsg;
4 element Consumer () interface in onMsg; out func;
5 act funch, funcB, funcC;

¢ end

7 Jjms:JMS = architecture JMS ()

s instances

9 g:Queue () ;

10 p:Producer=Producer (); c:Consumer=Consumer () ;
11 attachments

12 from p.sndMsg to g.rcvMsg;

13 from g.dlvr to c.onMsg;

150 A. Sanchez et al.

14 interface p.start as produce; c.func as consume;
15 end

Listing 1. JMS Pattern and architecture

Each element includes an interface that contains one or more ports. A port
is defined by a polarity, either in or out and a name. For instance, the interface
of Queue defines two ports in line 2. An element can optionally include a set
of actions, and a set of process descriptions expressed in a subset of the mCRL2
process algebra. An action represents an event that is not a port activation, e.g.,
see line 5. Process descriptions are not considered in the sequel.

A variable (see line 7) has an identifier and a type that must match an element
or pattern name. Allowed values are instances of a type (element or pattern),
that do not necessarily need to match the variable’s own type.

An architecture describes the configuration a set of instances adopt. It con-
tains a token that must match a pattern name, a set of variables, an optional set
of attachments, and an optional interface. The type of each variable in the set is
limited to an element in the pattern the architecture is instance of, such as in line
10. Each attachment includes port references to an output and an input port.
A port reference is an ordered pair of identifiers: the first one matching a variable
identifier, and the second matching a port of the variable’s instance. Then, an
attachment indicates which output port communicates with which input port —
see e.g. p.sndMsg with gq.rcvMsg in line 13. The architecture interface is a set
of one or more port renamings. Each port renaming contains a port reference
and a token with the external name of the port. An example interface is shown
in line 14. Ports not included in this set are not visible from the outside.

2.2 ARCHERY-CONSTRAINT: Describing Structure

Structural constraints are verified over Kripke models obtained from ARCHERY-
CORE specifications. Each model includes a set W of worlds and a family R of
binary relations among them, with Mod a set of relation labels. The meta-model
of ARCHERY’s architectures is shown in Fig. 1. The worlds are the constituents:
instances, ports, actions, variables, port references, attachments, names, and
renamings. The relationships among constituents conform the family R of rela-
tions. The labels of relationships in Fig.1 become the modality symbols m €
Mod. For convenience, modality symbols attd and evt are included. The for-
mer names the relationship that relates two worlds representing variables con-
nected through an attachment. It is obtained as R[vref]® o R[strt]® o R[end] o
Rlvref], where R° denotes the converse of a relation. The latter is obtained as
Rlprt] U R[act].

Propositions test if a specific condition is present at a (world) w. They are
classified in: (a) Naming propositions exist for each action and port name, and
hold when evaluated at a world representing the corresponding action or port.
(b) Meta-type propositions hold when w belongs to a specific participant set, e.g.,
PatternInstance. (¢) Emptiness is checked by a single proposition, namely
Empty, which holds when w is a variable with no associated instance. (d) Type

Modelling and Verifying Smell-Free Architectures 151

name
} Port Renaming ‘
act @ vref pref rend

strt end

Instan(e

att

Attachment

‘ ElementInstance PatternInst "mcc

ren

Fig. 1. Relations and roles in spatial specifications

propositions depend on the pattern definition. They test if w is an instance or
a variable of a type. For example, the JMS pattern generates four proposition
symbols: JMS, Queue, Producer and Consumer.

Each variable in a specification defines a nominal in the set Nomyg,. In
addition, depending on the variable’s type, they are also included in a subset
Nomyaerry pEID- Then, each nominal holds exactly at the world that represents
the corresponding variable.

Structural constraints are associated to a pattern or to a pattern instance.
They allow precisely describing design decisions that characterize architectural
patterns [11], and the absence of smells, as it is shown in this paper.

Pat = pattern THeader Elem+ SConsts? end
PatInst ::= architecture [Header ABody SConsts? end
SConsts ::= structural constraints SConst+

SConst ::= const ID Q7 F; Rec* end

Q — (all | exists) ID (: TYPEID)? .

Rec ::= (finite | infinite) ID = F;

F ::= True | False | PROP |not F | For F'| F and F
| F implies F | F iff F
| [M]F | <M>F |[(Nat,)?M|F | <(Nat,)?M >F
| AF|EF|ID|NOM |at NOM F

M == MOD | MOD-

Fig. 2. Grammar of structural constraints

A well-formed constraint is either a propositional formula, a modal formula,
a converse formula, a graded modality formula, a recursive formula, or a hybrid
formula (see grammar in Fig.2). In a modal formula, a (#)F indicates that
there exists a relationship M (named by expression M) between the present
world and another world satisfying (formula) F, whereas a [M]F indicates that
any relationship M leads to a world satisfying F. An M non-terminal describes
either a modal symbol Mod, that names a relation R[Mod] in the Kripke model,

152 A. Sanchez et al.

or the converse R[Mod]° indicated with Mod-. Graded modality formus, <n, M>F
and [n,M]F, describe a world where F holds in at least n+1 M-related worlds,
and a world where F holds in all but at most n M-related worlds, respectively. In
recursive formulae, an ID designates a formula, and it is indicated if the recursion
is expected to be finite or infinite. Hybrid formulee are built of a nominal Nom,
that is satisfied if the current world is the unique world referenced by such Nom,
and of a reference operator at Nom F, which is satisfied if at the world named
by Nom, F is. Global modality formulee EF and AF are also included in the logic,
as they allow defining duals for the reference operator. They are as (M)F and
[M]F but with W x W as the underlying relation.

The quantifiers all and exists can only occur in the beginning of a
constraint and have as domain the variables of the configuration. The mean-
ing of an all x:TYPEID F is the conjunction of formule at i F, for each
1 € NomygrTy pEID. The meaning of an exists x:TYPEID F, is a disjunction
of formulee at ¢ F, for each i € Nomya,. Ty PEID-

3 Architectural Smells

In this section, the ARCHERY language is used to characterize the architectural
smells in [6]: connector envy, scattered parasitic functionality, ambiguous inter-
faces, and extraneous adjacent conmnector. The smells are illustrated using the
same examples used in [6], which are specified and then verified using ARCHERY.
The examples do not aim at including an exact model of the software architec-
ture, but to cover the fragment which is relevant to the smell.

3.1 Connector Envy

Components with connector envy assume responsibilities that a connector typ-
ically assumes. These responsibilities supporting interaction are classified as
either concerning communication, coordination, conversion, or facilitation [7].
Communication and coordination services carry out the transfer of data and
control, respectively. Conversion services address mismatches between required
and provided interactions. Facilitation services cover streamlining and optimiza-
tion needs in interactions.

The filesystem daemon of the Grid Datafarm [13] is an instance of connector
envy [6]. The Grid Datafarm is a framework for petabyte scale data-intensive
computing. It offers a filesystem distributed over the nodes of a PC cluster, where
the operations in each node are facilitated by a daemon. The smell emerges as
each daemon incorporates, besides its domain specific functionality, coordination
behaviour that relies in a private remote procedure call (RPC) mechanism to
interact with other daemons.

Listing 2 shows the specification of the pattern fragment and an instance. It
only includes the daemon element GFSD, which has ports to coordinate work with
peers through RPC (sndRpcCoord and rcvRpcCoord), and to allow accessing
its functionality (sndResFun and rcvRegFun). The architecture consists of two
instances of the daemon connected through the ports for RPC coordination.

Modelling and Verifying Smell-Free Architectures 153

1 pattern GDatafarm()

2 element GFSD()

3 interface

4 in rcvRegFun, rcvRpcCoord; out sndResFun, sndRpcCoord;
5 end

¢ df:GDhatafarm = architecture GDatafarm/()

7 instances dl1:GFSD=GFSD(); d2:GFSD=GFSD() ;

8 attachments

9 from dl.sndRpcCoord to d2.rcvRpcCoord;
10 from d2.sndRpcCoord to dl.rcvRpcCoord;
11 end

Listing 2. Fragment of Grid Datafarm pattern and example architecture

The constraint that verifies that an architecture does not suffer of connector
envy is shown in Listing 3. It is divided in two parts, one that is generic and
another that is specific to the pattern. The generic part comprises lines 1 to 4.
It states that if a world represents an element instance, then it is not possible to
access to a world that represent domain functionality and to a world that repre-
sent interaction (communication, coordination, conversion, or facilitation) from
it. The specific part, line 4-8, establishes the worlds that represent functionality
and interaction by indicating the propositions that hold in such worlds.

1 const ConnEnvy

2 A (ElementInstance implies

3 not (<evt> Function and <evt> Interaction));

4 finite Interaction = Comm or Coord or Conv or Fac;
5 finite Function = rcvRegFun or sndResFun;

6 finite Comm = False;

7 finite Coord = rcvRpcCoord or sndRpcCoord

8 finite Conv = False; finite Fac = False;

9 end

Listing 3. Specification of connector envy for Grid Datafarm

3.2 Scattered Parasitic Functionality

The scattered parasitic functionality is found when a set of architectural elements
share a concern while at the same time, some of them individually address an
additional unrelated concern. Thus, the principle of separation of concerns is
violated in two different ways: by scattering a concern among a set of elements,
and by making a single element responsible of two concerns.

This smell is found in the Linux kernel architecture [6] as recovered in [4].
The PROC file system contains status information about the kernel, including
its executing processes. However, it relies on other kernel subsystems to report
their own status. As a result, the Process Scheduler and the Network Interface
subsystems depend on the PROC file system.

154 A. Sanchez et al.

Listing 4 shows an ARCHERY’s specification for a fragment of the recov-
ered architecture of the Linux kernel. The pattern includes a ProcFS element
that receives status reports in port rcvStatus. It also includes the elements
NetInterface and ProcScheduler that share a port sndStatus and an
action statusChk, as their instances send a status report to an instance of
ProfFS. These two elements also have unshared functionality, modelled by other
actions. The architecture contains an instance of each element, and connects the
other two with the ProcF§S instance.

1 pattern Kernel ()

2 element ProcFS() interface in rcvStatus;

3 element NetInterface() interface out sndStatus;
4 act connect, access, statusChk;

5 element ProcScheduler () interface out sndStatus;
6 act schedule, statusChk;

7 end

8 k:Kernel = architecture Kernel ()
9 instances

10 prc:ProcFS=ProcFS(); sch:ProcScheduler=ProcScheduler () ;
11 net:NetInterface=NetInterface() ;

12 attachments

13 from sch.sndStatus to prc.rcvStatus;

14 from net.sndStatus to prc.rcvStatus;

15 end

Listing 4. Fragment of Linux kernel architecture

The constraint specifying the absence of the scattered parasitic function-
ality is shown in Listing 5. It requires that for each instance in an architec-
ture, referenced by a nominal x, if there is a name that corresponds to an
action of (the instance referenced by) x, then, it is not possible to find two
actions with that name that belong to instances in the same architecture as x,
which also have at least another action. The meaning of some of the expres-
sions is as follows: <name-><act->x describes a name that corresponds to an
action of x; <name-><2,act-> holds in a name shared by at least two actions;
<comp-><comp>x holds in an instance placed in the same architecture as x;
and <2, act>True holds in an instance with at least two actions.

1 comnst ScatteredParasiticFunc

2 all x. A ((Name and <name-><act->x) implies not
(<name-><2,act->(<comp-><comp>x and <2,act>True)) ;
4+ end

w

Listing 5. Specification of scattered parasitic functionality

Modelling and Verifying Smell-Free Architectures 155

3.3 Ambiguous Interfaces

An ambiguous interface offers a single entry point into an architectural element
that offers multiple services. Instance of this smell are found in the JMS pattern,
as reported in [6]. The example pattern is described in Sect. 2.

Listing 1 shows the specification that corresponds to a fragment of the JMS
pattern and a software architecture. The smell is present in consumer instances
that receive messages in port onMsg, but can perform any of three functionalities
represented by actions FuncA, FuncB and FunccC.

The absence of cases of this smell is specified for the JMS example in Listing 6.
The constraint detects the cases in which there is a single entry point, but
multiple services are offered. The constraint holds if whenever there is an element
instance, it is not the case that it has a number of ports less or equal to two, with
one having inward direction, and it also has at least two actions that correspond
to specific functionality. Note that the expressions [2,prt]False holds at
worlds that represent instances that have at most two ports.

const AmbInt
A (ElementInstance implies not
([2,prt]False and <prt>In and <2,act>Function) ;
finite Function = FuncA or FuncB or FuncC
end

oA W N =

Listing 6. Specification of ambiguous interfaces for JMS architectures

3.4 Extraneous Adjacent Connector

This smell occurs when two architectural elements interact through two different
connector types. The presence of an extra connector type may cause a cancella-
tion of the benefits that each of them offers individually.

The MIDAS System shows an instance of extraneous adjacent connector as
reported in [6]. Communication in the system is mainly supported by event-
based connectors, which are used by all high-level services. An exception is the
service discovery engine that accesses the service registry using procedure calls.
Then, the two components interact through two different connector types, which
constitutes an instance of the extraneous adjacent connector.

The specification in Listing 7 characterizes a fragment of the pattern of the
MIDAS system, and an architecture where the smell is found. It includes four
elements: two connector types, and two component types. The former represent
the event-based connector type Channel and the procedure call connector type
PC. The component types are ServiceDiscovery and ServiceRegistry.
The architecture includes an instance of each of the elements, and connects
the two components using two connectors of different types. This configuration
constitutes an instance of the extraneous adjacent connector.

156 A. Sanchez et al.

1 pattern MIDAS ()
2 element Channel () interface in rcvEvnt; out sndNtf;
3 element PC() interface in rcvPcComm; out sndPcComm;
4+ element ServiceDiscovery ()
interface in rcvNtf; out sndEvnt, sndPc;
element ServiceRegistry()
interface in rcvNtf, rcvPc; out sndEvnt;
end
m:MIDAS = architecture MIDAS()
10 instances c:Channel=Channel (); pc:PC=PC ()
11 sd:ServiceDiscovery = ServiceDiscovery() ;
12 sr:ServiceRegistry = ServiceRegistry();
13 attachments

o

© w N o

14 from sd.sndEvnt to c.rcvEvnt;

15 from sr.sndEvnt to c.rcvEvnt;

16 from c.sndNtf to sd.rcvNtf; from c.sndNtf to c.rcvNtf;
17 from sd.sndPc to pc.rcvPcComm;

18 from pc.sndPcComm to sr.rcvPc;

19 end

Listing 7. Fragment of MIDAS Pattern and architecture

The constraint in Listing 8 specifies the absence of a case of extraneous adja-
cent connector. The constraint holds if whenever there is an element instance,
it is not attached to connectors of different type. It is formulated in a very spe-
cific way, as it only considers the connector types of the pattern. If the pattern
includes different connector types, the conjunction of the constraint needs to be
reformulated, to consider all different pairs.

1 const ExtAdjConn

2 A (ElementInstance implies not
3 (<attd>PC and <attd>Channel)) ;
4+ end

Listing 8. Specification of extraneous adjacent connector for MIDAS

4 Verifying Architectural Constraints

This section describes the syntax and semantics of the fully enriched p-calculus
[3], provides a translation that takes a constraint and yields a formula in such
logic, establishes the fragment of the logic used to characterize each architectural
smell, and illustrates the logic with a manual verification of the formula that
corresponds to the absence of the ambiguous interface smell on the model for
the JMS example architecture.

The syntax of the fully enriched p-calculus is shown in Definition 1.

Modelling and Verifying Smell-Free Architectures 157

Definition 1. Let Prop be a set of propositional symbols, Mod a set of atomic
modal symbols, XVar a set of states wvariables, and Nom a set of nominals.
A modal symbol g is either

(a) an atomic modal symbol «, or
(b) the converse of an atomic modal symbol (denoted as) a°.

Then, the set SForm of well-formed state formule of the fully enriched p-calculus
is the smallest set such that a state formula is either

) the top constant T,
) a proposition p,

) a negation -,

) a conjunction @ A 1),
)

)

)

(c

d

(e

(f

g) a possibly operator (),

h) a state variable X,

(i) a maximal fixed point formula v X.p, with every free X in ¢ occurring pos-
itively, 4.e., within the scope of an even number of negations,

(j) an at least graded modality (n, 8)¢ with n € N,

(k) a global possibly operator E¢,

(1) a nominal 3,

(m) a formula satisfaction operator @;p

(
(
(

where p € Prop, {¢,¢} C SForm, X € XVar, and i € Nom. O

Derived constants and operators are obtained as follows:

L=-T PV P =(=p A1)
poh=-pVy pov=p—oyPpAp—oop
Ble = ~(B)~p =(n, B)p = [n, B]~p
Ap=-E-p pX.p = —wX.—p[X/-X],

where ¢[X/-X] denotes a formula ¢ with all occurrences of X replaced with
occurrences of —.X.

Table 1. Fragments of the fully enriched p-calculus

Logic Clauses Constraint (listing)

Fully enriched p-calculus | (a)—(m) Scattered parasitic func. (5)

Full graded p-calculus

Full hybrid p-calculus

¢)—(m) Ambiguous interfaces (6)

Graded p-calculus

(
(a)
(a)
Hybrid graded p-calculus | (a),
(a)
(a)

Hybrid p-calculus ¢)—(i), (k)~(m) | Extraneous adjacent conn. (8),

Connector envy (3)

158 A. Sanchez et al.

Restricted groups of clauses define less expressive, but useful logics. Five
of these logics and the specific clauses that define them are shown in Table 1.
The third column indicates which logic is required to specify each of the four
architectural smells. Note that an actual recursion is not required by any of the
four constraints, which may allow defining them in a less expressive logic. The
translation in Definition 4 provides the correspondence between the structural
constraint extension and the logic, which is used to classify the smells.

Fully enriched p-calculus formulae are interpreted over Kripke models.

Definition 2. A Kripke model for the fully enriched p-calculus is a triple 9t =
(W, R, V) where

— W is a non-empty set of worlds, also called states or points;

— R : Mod — W xW is a relation function that yields, for a given atomic modal
symbol «, a binary relation on W; and

-V =V:Propw Nom — P(W) is a valuation function that returns the set of
worlds where a given propositional symbol or nominal holds. a

The interpretation of formulae is described relying on the notation as follows:
the expression m[d — 7] denotes a map m’ in which m’(d’) = m(d’) for all d’ # d
and m'(d) = r otherwise; the set of values in the domain mapped by m is called
its support, and is denoted as supp(m).

The meaning of a state formula is defined in terms of sets of W, as it is
described in Definition 3.

Definition 3. Let 91 be a Kripke structure for the fully enriched p-calculus,
and s : XVar — P(W) be a state environment that yields a set of worlds for a
given state variable. The set of worlds that satisfy a state formula ¢ € SForm
(Definition 1) is given by the interpretation function [-]s : SForm — P(W)
inductively defined as

[Tl & W (1)

[pls £ {weW :weV(p)} (2)
[-¢ls £ W [els (3)
[oAyls = [els 0[] (4)
[(B)¢ls & {weW: 3w e W.(w,w) e S[B]Aw' € [¢]s} (5)
[X]s = s(X) (6)
[vX.ols = [J{W CW: W C[g]o} with 8" = s[X — W] (7)
[(n,B)els 2{we W n<|{w eW: (w,w)eSBIAw €[pls} [} (8)

A W if FweWw e [¢]s
[Eel. = {@ otherwise ()

Modelling and Verifying Smell-Free Architectures 159

[= {V()} (10)

S LA a

provided that

>

[Rle) iff=«
SlB) = {R[a]o it 8= a°,
fsv(p) C supp(s), and fsv(p) denotes the free state variables of . O

Definition 4 presents the translation that takes structural constraints, built as
described in Fig. 2, and yields a fully enriched p-calculus formula. A notational
convention adopted to present the translation is to consider non-terminals of
the grammar as sets. For instance, f € F' is used to indicate that expression f
is built according non-terminal F. In addition, the substitution of x by i in a
constraint is denoted as [#/i].

Definition 4. Given a constraint ¢ € SConst, consisting of an optional quan-
tifier ¢ € @, an expression f € F and optional recursion definitions rs € Recx,
the translation 7 : SConst — SForm is defined as follows:

| A @; T(f, R(rs))[z/i] for ¢ = all x:type
Y @ T RS for g = exiss xitype

T(q, f.rs) = fENX"“”“@gj}(£ R(s))[/d for g = all x
iii}mm@i T(f,R(rs))[=/] for q = exists x

T(f,rs) = T(f,R(rs))

where the translation of the recursion definitions is carried out by function R :
Recx — (ID — SForm) defined as

R(V) = R(rs,VIID — p ID.T(f,rs)]) for r = finite ID
rrev)= R(rs,VIID — v ID.T(f,rs)]) for r = infinite ID f
R(LV)=V

witht € (finite|infinite), f € F, rs € Recx, and V € ID — SForm, and
the translation of f € F' defined as

T (True, V) = 7 (False, V) =

T, V)= T(not f,V) = —\T(f V)
T(forg V)= T(VIVT(gV) T(fandgV)=T(EV)AT(g,V)
7 (f implies g, V') = T (V)=
T(m] £,V) =) =

T(V)—T(gV) T(fiffg, T(V) < T(gV)
[M(m)] T (V) T ([nm] £,V) = [n, M(m)] T(£,V)

160 A. Sanchez et al.

T()E V) = (M(m)) T(V) T(mm)E,V) = (o, M(m)) T(E,V)
TALV)=AT({V) TELV)=ET{V)
7(id, V) = V(id) T, V)=1
T(ati,V) = @Q
M(m) =m M(m-) = m°
where m € Mod. O

Then, the translation of the constraint in Listing 6 yields formula

A (ElementInstance — —([2,prt]L A (prt)In
A {2, act) pFunction.(FuncA VvV FuncB V Func(C))).

A partial Kripke model for the architecture in Listing 1 is shown in Fig. 3. The
model is partial since worlds representing names and their relationships are omit-
ted. Each node in the graphic represents a world and includes: an identifier in the
first line; the satisfied propositions in the second line; and the satisfied nominals

wWo
V,JMS
jms
prt hlds prt
w23 ren w1 ren W24
R,P comp PLJMS comp R,P
rend rend
was w26
PR 18 PR
f
vre on d vref
w2 w w wa
V,Prd 21 22
p c
hlds vref hlds
pref pref
ws £ we wr
EI,Prd pre ELQ ELC
prt /\prt P prt Tt
act

ws Wy w11 w12 w13
P.Istart | | P,O,sndMsg P,I,rcvMbg P,O,dlvr P,I,onMsg P O, func

w14 w15 w16
Act,FuncA | | Act, FuncB Act, FuncC

Fig. 3. Partial Kripke model for the JMS example configuration

Modelling and Verifying Smell-Free Architectures 161

in the third line. A short code is used instead of the actual name of proposi-
tions. The codes are: V (Variable), PI (PatternInstance), EI (ElementInstance),
P (Port), I (In), O (Out), A (Attachment), R (Renaming), PR (PortReference),
Act (Action), Q (Queue), Prd (Producer), and C (Consumer).

The verification of the formula is as follows:

A (ElementInstance — —([2,prt]L A (prt)In
A (2, act) pFunction.(FuncA V FuncB V Func(C)))
= { duality and definition of implication }
A (=ElementInstance V =(=(2,prt)—L A (prt)In
A (2, act) —vFunction.(—(FuncA V FuncB V FuncC))))
= { (2) and duality }
A (~{ws,we, w7} V = (=(2,prt) T A (prty{ws, wip, w1z}
A (2, act) =vFunction.(~FuncA A =FuncB N ~Func(C)))
= { (1), duality, and (2) }
A —({ws, we, w7} A (=2, prt)yW A (prt){ws, w19, w12}
A (2, act) ~vFunction.(~{w1a} N ~{wis} A ~{wie})))
— {(3),(4),(7), and (3) again }
A —({ws, we, w7} A (=(2, prt)yW A {prty{ws, wig, w12}
A (2, act) {w1q, w15, w16}))
= { duality, (8), (5) and (8) again }
E ({ws, we, wr} A (=0 A {ws, we, wr} A {wr}))
= {(B)and(4)}
E ({wr})
= {(©and(3)}
0.

Then, the constraint is not satisfied by the architecture in Listing 1, i.e., the
architecture contains an instance of the ambiguous interface smell.

5 Conclusion and Future Work

This paper proposes the usage of the ARCHERY ADL to verify that software
architectures are free of architectural smells found in catalogue [6]. The approach
consists in specifying the absence of smells as constraints, and then verifying
that architectures satisfy them. The constraint language is translated to a fully
enriched p-calculus, whose syntax and semantics are described. An architectural
smell is detected in an example architecture, by showing that it fails to verify
the corresponding constraint.

Future work includes the extension of the constraint language to cover the
behaviour of instances and of reconfiguration scripts, and the development of a

162 A. Sanchez et al.

verification tool. The application of the language to case studies in Healthcare
and e-Gov is also part of future developments.

Acknowledgment. This work was funded by ERDF - European Regional Develop-
ment Fund, through the COMPETE Programme, and by National Funds through FCT
within project FCOMP-01-0124-FEDER-028923.

References

1. Aberdour, M.: Achieving quality in open-source software. Softw. IEEE 24(1), 58—
64 (2007)

2. Barbosa, L.S., Henriquez, P.R., Sanchez, A.: Towards rigorous analysis of open
source software. In: Proceedings of the 5th International Workshop on Harnessing
Theories for Tool Support in Software, TTSS 2011, University of Oslo (2011)

3. Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched pu-
calculi. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, 1. (eds.) ICALP 2006.
LNCS, vol. 4052, pp. 540-551. Springer, Heidelberg (2006)

4. Bowman, [.T., Holt, R.C., Brewster, N.V.: Linux as a case study: its extracted soft-
ware architecture. In: Proceedings of the 21st International Conference on Software
Engineering, ICSE 1999, pp. 555-563. ACM, New York (1999)

5. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural
bad smells. In: Proceedings of the 2009 European Conference on Software Main-
tenance and Reengineering, CSMR 2009, pp. 255—258. IEEE Computer Society,
Washington, DC (2009)

6. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Toward a catalogue of archi-
tectural bad smells. In: Mirandola, R., Gorton, I., Hofmeister, C. (eds.) QoSA 2009.
LNCS, vol. 5581, pp. 146-162. Springer, Heidelberg (2009)

7. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: Proceedings of the 22Nd International Conference on Software Engi-
neering, ICSE 2000, pp. 178-187. ACM, New York (2000)

8. Sanchez, A., Barbosa, L.S., Riesco, D.: A language for behavioural modelling of
architectural patterns. In: Proceedings of the Third Workshop on Behavioural
Modelling, BM-FA 2011, pp. 17-24. ACM, New York (2011)

9. Sanchez, A., Barbosa, L.S., Riesco, D.: Bigraphical modelling of architectural pat-
terns. In: Arbab, F., Olveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 313—
330. Springer, Heidelberg (2012)

10. Sanchez, A., Barbosa, L.S., Riesco, D.: Verifying bigraphical models of architectural
reconfigurations (short paper). In: Proceedings of the 7th International Symposium
on Theoretical Aspects of Software Engineering, TASE 2013, Birmingham, UK.
IEEE (2013)

11. Sanchez, A., Barbosa, L.S., Riesco, D.: Specifying structural constraints of archi-
tectural patterns in the ARCHERY language. In: Proceedings of the Interna-
tional Conference of Numerical Analysis and Applied Mathematics 2014 (ICNAAM
2014): Symposium on Computer Languages, Implementations and Tools (SCLIT).
AIP Proceedings (2014, to appear)

12. Sanchez, A., Oliveira, N., Barbosa, L.S., Henriques, P.: A perspective on architec-
tural re-engineering. Sci. Comput. Program. 98, 764-784 (2014)

Modelling and Verifying Smell-Free Architectures 163

13. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid datafarm archi-
tecture for petascale data intensive computing. In: 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, May 2002, pp. 102-102 (2002)

14. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley, Chichester (2009)

OntoLiFLOSS: Ontology for Learning Processes
in FLOSS Communities

Patrick Mukala®™®, Antonio Cerone, and Franco Turini

Dipartimento di Informatica, University of Pisa, Pisa, Italy
{mukala,cerone,turini}@di.unipi.it

Abstract. Free/Libre Open Source Software (FLOSS) communities are
considered an example of commons-based peer-production models where
groups of participants work together to achieve projects of common pur-
pose. In these settings, many occurring activities can be documented and
have established them as learning environments. As knowledge exchange
is proved to occur in FLOSS, the dynamic and free nature of partici-
pation poses a great challenge in understanding activities pertaining to
Learning Processes.

In this paper we raise this question and propose an ontology (called
OntoLiFLOSS) in order to define terms and concepts that can explain
learning activities taking place in these communities. The objective of
this endeavor is to define in the simplest possible way a common defini-
tion of concepts and activities that can guide the identification of learning
processes taking place among FLOSS members in any of the standard
repositories such as mailing list, SVN, bug trackers and even discussion
forums.

1 Introduction

There is an increasing awareness for FLOSS environments as open participatory
learning ecosystems [1,12,14] Given the structure and the volatile nature of
these settings where people join and leave at any time and the lack of universal
definition of concepts, understanding learning activities faces a big challenge.
Moreover, empirically tracing and even studying these activities would be almost
impossible without a clear understanding of key concepts.

In order to understand and document evidence of learning traces among
participants in FLOSS repositories, we need a sort of guideline indication that
provides a “generic” representation of the structure of information and concep-
tualization of knowledge pertaining to learning processes in these repositories.
This can be achieved by means of ontologies, given their preponderant role in
knowledge representation.

In describing the role of ontologies in computer science, Fonseca [6] supports
that ontology is an engineering artifact that is constituted by a specific vocabu-
lary used for the purpose of describing a specific reality or domain. Ontologies can
also be useful for the validation of conceptual models and conceptual schemas [6].
Wilson [17] adds to this role by suggesting that ontologies “attempt to formulate

© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 164-181, 2015.
DOI: 10.1007/978-3-319-15201-1-11

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 165

a thorough and rigorous representation of a domain by specifying all of its con-
cepts, the relationships between them and the conditions and regulations of the
domain”. Furthermore, ontologies play a significant role in software engineering.
Happel and Seedorf [8] advocate the adoption of ontologies to help the commu-
nities of Software Engineering and Knowledge Engineering make use of common
topics and concepts. They claim that during the phase of requirements engineer-
ing, software engineers are seldom domain experts and must, therefore, learn
about the problem domain from the customers. A different understanding of the
concepts involved may lead to an ambiguous, incomplete specification and major
rework after system implementation. Hence, it is important to ensure that all
participants in this process share the same understanding of the requirements.
Furthermore, Happel and Seedorf suggest that the use of a knowledge repre-
sentation format would enable developers to discover sharable domain models
and knowledge bases from internal and external repositories. In addition, the
use of ontologies in various stages of the development lifecycle provides common
grounds and vocabularies given their potential for knowledge representation and
process support [8,9].

In Open Source, the adoption of ontologies is paramount. With millions of
users converging on the same concepts and topics, a lack of common knowl-
edge representation would be chaotic. Few attempts can be observed [10,13,15].
Mirbel [10] introduces and describes OFLOSSC (An Ontology for Supporting
Open Source Development Communities) as an extension to the previous OSDO
(Ontology for Open Source Software Development) [13]. Tifous et al. [15] intro-
duce an ontology that specifies open source software environments as communi-
ties of practice from which Mirbel [10] borrows a few guidelines as well. While
these ontologies describe classes and properties for participants as well as roles
of individuals in Open Source environments, their scope of knowledge represen-
tation describes common concepts that need to be understood from a global
perspective.

In our work instead, the focus is on learning processes in these communities.
Hence, the premise of our task is predicated on the established assumption that
in FLOSS communities, members engage in processes of knowledge exchange
that can be regarded as learning processes. In order to explain how this takes
place, we identify all relevant activities FLOSS members engage in and, on this
basis, develop the ontology.

A number of studies have been critical in this instance [1-3,5,7,12]. Specifi-
cally the works conducted by Cerone [1] as well as Cerone and Sowe [2] provide
ground for the identification of terms and concepts that can be used to explain
learning activities, participants and related classes in FLOSS. Through an iter-
ative process of ontologies design, the objective is to formalise and represent
knowledge structures for the purpose of using them as a roadmap to under-
standing crucial learning resources and concepts that can be found in FLOSS
repositories.

The rest of this paper is structured as follows. In Sect.2 we discuss the
adopted methodology and tools for the design of our ontology. In Sect.3 we

166 P. Mukala et al.

detail the elements of the ontology: classes and objects (Sect.3.1) as well as
properties and instances (Sect. 3.2). Section 4 concludes our paper.

2 Methodology

A wide range of methodologies exist as guidelines for the conceptualization
and design of ontologies [4,11,16] For simplicity and user-friendliness, we have
adopted a short methodology for designing our ontology. Based on the immense
information and resources pertaining to FLOSS environments available in the lit-
erature that we have explored, we have design the ontology following a top-down
approach comprising the following five steps:

1. Information Collection
Our sources of information for the building of the ontologies are mainly studies
on FLOSS environments in the literature [1-3,5,7,12,14] as well as generic
assumptions about learning.

2. Concepts Identification and classes? definition
Based on the availability of a plethora of materials on activities in FLOSS,
we have defined some concepts and relations for the ontology to represent
entities, resources and constraints of learning in FLOSS environments.

3. Definition of Class Taxonomy
This helps in specifying and defining classes with their subclasses.

4. Properties and Labels Definition
Properties give an indication of classes attributes as well as their connectivity.

5. Ontology Formalisation
The language we chose for our ontology formalisation is OWL-DL given its
large-scale semantic web support and the implementation is facilitated by the
use of Protégé and OntVis.

Our ontology is called “OntoLiFLOSS”. This is an acronym for “Ontology of
Learning in FLOSS”. Although we are not able to fully assert that there are
empirical traces of all processes in CVS, mailing archives and bug reports, we
think that the knowledge structural representation in the form of ontology may
trigger further investigations and even additional research directions in FLOSS.
Furthermore, we have chosen two main tools for the implementation and visu-
alization of the ontology: Protégé 4.3 and Knoodl-OntVis. The former previews
main classes as well as their subsequent subclasses while the latter helps in
building graphs with relevant connecting properties between the classes.

The previous studies on FLOSS environments [1-3,5,7,12,14] provide us with
a lot of grounds for the identification of terms and concepts that can be used to
identify learning activities, participants and related classes in FLOSS communi-
ties. Hence, we identified two main learning processes in FLOSS communities,
Undirected Learning and Directed Learning. with Directed Learning unfolding
from 2 perspectives in 4 different formats, thus totaling the number of processes
to 9 (that constitute our instances in the ontology). These processes are:

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 167

Undirected Learning. This process can also be referred to as Peer-2-Peer or
Reflective Learning. This kind of learning is assumed to take place between
any numbers of participants. In this process, any participant can be both
a receiver (Novice) and a sender (Expert). At this level, the assumption is
that learning occurs between mates with a diversified expertise background
who learn from each other.

Directed Learning. This process refers to involvement of more knowledgeable
participants or expert members in helping less expert members to develop
their skills with some level of guidance or supervision. The occurrence of the
process is twofold:

Pulling. This is the process where a participant who is less expert on
any topic would initiate a need to learn by reaching out to the more
advanced participants that can culminate in a supervised or guided learn-
ing process. This can in turn occur according to the four formats as
follow:

Modeling. In this process, the Expert’s activities and actions are sys-
tematically monitored and observed by the Novice. This can happen
as the receiver aims to emulate the sender given the latters reputa-
tion in their FLOSS contribution. An example could be tracking the
senders commits in SVN, comments on mailing lists etc.;

Coaching. As the term explains, this involves giving direct monitoring
and guidance to the requesters and then observing the requester’s
performance;

Scaffolding. In this process, the sender analyses and determines the
receivers level of capacity and allows the receiver’s opportunities
to acquire knowledge accordingly. For example, supplying materi-
als (tutorials etc.) on specific problems and a solution approach etc.
based on the requesters background.

Fading. This process depicts involving a requester in practical execution
of tasks for skills acquisition. However, as the requesters performance
matures, the sender gradually gives the requester autonomy to apply
skills.

Pushing. This is the type of directed learning that occurs when the sender
takes the initiative to make available opportunities of knowledge acqui-
sition for requesters. Just like the pulling, this process can also be under-
stood in 4 formats: Modeling, Coaching, Scaffolding and Fading.

3 OntoLiFLOSS: Main Concepts

Based on the FLOSS information as obtained from the literature and given the
purpose of our study, we have assumed that the ontology for learning processes
in FLOSS called “OntoLiFLOSS” is made up of 138 entities (expandable as
required) and detailed with the following main building blocks:

Classes (80). These classes are representation and classification of information
on learning processes that are supported by a particular FLOSS project

168 P. Mukala et al.

erties | Data Prope

oo RSy, e

(CIus hierarchy K I
%o | 8| | X
- @ FlossProject
- LearningActivity
@ LearningProcess
> LearningStage
> @ Participant
> @ ProjectRole
> Repository
> Resource
> StandardsOfPractice
~ @ Team

Fig. 1. Protégé snapshot of OntoliFLOSS super classes

'® LearningActivit
Yy
* @ StandardsOfPrac s // '!\\ Y
tice v 4 " =
7) g *® Learnings
7 g = 5 Al \ ngStaga
4{ M \/4\\/ 0'1 \‘ N
] g /\\,k/* e gl ™
5 Sa ! ’<s\ B
S~
A A Farsmm
[\ /\\\\\\ 17 /'/‘/ \\ \\ ,/"-‘ "/// :
b \/ ~ Eac, L0 S N e /
A ~ / e \ - |
" 74 \\ ‘/_,Z'ft \ \ //
| / \R “1&’ / TSR B il 1%
I Moot 7/ ¥, “\ l
ST o - / 7~\ - \ \\ |
\

Fig. 2. Network graph of OntoliFLOSS super classes as they relate

through performing a certain number of activities referred to as “learning
activities”. Such activities are carried out by participants that can be either
Experts or Novices with regards to their involvement in the learning process
and can be organized into Teams. A number of resources are used to support

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 169

Resource
Repository
StandardsOfPractice rd—\

hasResource

isDevelopmentToolFor
isGuidedBy

Participant }'workSOn_’ FlossProject

LearningProcess '

e
isEnabledBy

isPlayedin

isDoneln gjmulates ProjectRole ’
L \+ Leamingactivty)

Fig. 3. Network graph of the FLOSSProject Class and related classes

the process that can be tracked through FLOSS repositories, to which inputs
and learning outputs are committed.

Object Properties (38). These are associations or relationships that explain
the link between the different classes/concepts as described above.

Data Properties (5). The data properties are attributes mainly for partici-
pants, whether they are Novices or Experts, that document their competency
level, their experience, level of contributions as well as their skillset.

Annotation Properties (1). This is just a an explanatory comment on the
ontology.

Individuals (9). These are the 9 identified learning processes that are repre-
sented in the Ontology as instances of the Concept/Object learning process.

Datatypes (3). These describe the data type for the 5 data properties.

3.1 Classes

Of the total of 80 classes in OntoLiFLOSS, 10 classes are super classes that
can be expanded to identify subclasses at the appropriate granularity as needed.
We give an abstract representation of these classes as well as their connecting
associations in Figs. 1 and 2. We now give a detailed description of these 10 super
classes as well as their subclasses with regard to the direct links they create with
other classes.

FLOSSProject Class. This class depicts any given project used in the investi-
gation or evaluation of FLOSS environments. The instances of the class can be
typical projects from Sourceforge.net or GitHub or any other FLOSS community
platforms such as KDE, NetBeans or any other project of convenience.

Figure 3 reflects the direct neighbourhood for the FLOSSProject Class, which
comprises 8 other super classes. Figure3 gives a full visualisation graph of
the neighbourhood for concepts and their related associations (through object
properties).

170 P. Mukala et al.

LearningActivity Class. This class depicts concepts about all activities that
are directly involved with the learning process. Six classes constitute the subnet
or neighbourhood for the Learning Activity class as shown in Fig.4. The class
also has three subclasses that classify the types of learning activities as depicted

in Fig. 4.
Resource
Repository f _)
|sAccompan|edB\; Progression |
FlossProject . documents —
- 53

simulates :
LearnlngActlvw):_ ~ 15—
nitiation
- undertakes isa —)
Team ') It -
carriesOutaducedThrough Maturation '

/

Participant) LearningProcess)

Fig. 4. Network graph of the LearningActivity Class, immediate subclasses and related
classes

The three subclasses represent the following three stages of learning.

Initiation. Two main subclasses characterise and are part of this stage: Obser-
vation and ContactEstablishement as shown in in Fig. 5.

In Observation, it is implied that the learning activity or learning process
spans as a result of some period of observation from either the Novice or
Expert. This class also includes a number of self-explanatory subclasses such
as IdentifyEzpert, FormulateQuestion, PostQuestions, ReadMessages, Read-
Post, ReadSourceCode, and CommentPost.

In ContactEstablishment, the focus of the representation is on the steps that
any learning participant (Novice or Expert) undertakes to establish a con-
tact between the actors and initiate the actual learning partnership. This
happens through three activities: ContactEzpert, ContactNovice and Send-
DetailedRequest.

Progression. In this stage, the ontology defines three subclasses: Revert, Post
and Apply. Each of them further branches out with several subclasses as
depicted in Fig. 6:

Revert. This activity (class) encompasses all the steps Novice and Expert go
through to provide the required information. Three basic classes or sub-
activities occur here: SendReply, where there is a reaction to any attempt

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 171

* @ LearningActivit
y

.

.
.

; |
v N
> y \
| M

7 i 3 e
)}./
/7 4

[+ : ‘ ContactEstablis
m

= N
i I\

9 Send)elmledReq
ues

@ IdentifyExpert v

@ FormulateQuesti
on

*® PostQuestions

\ .ComaclExperl
|| @ CommentPost

[@ ReadMessages J

Fig. 5. Network graph representation of the Initiation Phase and related concepts

*® LeamingActivit
y

/x =
A & AN

™)
L]
<

@ ReplyToPost
@ CommentOnCode

@ AnalyseSoureeCo

/

y

o Bl G
@ ReporlBuss /.‘: q *® PostQuestions
/, \

@ RunSourceCode) Y P
\

/ \

rrr—. . ReviewThreadCod
9 sordheel)
@ ReviewThreadPos
ts

Fig. 6. Network graph representation of the Progression Phase and related concepts

of contact established from either the Novice or Expert; ReviewThread-
Posts refers to the ability to analyse and react as needed to comments
and posts related to a particular content that is the subject of learn-
ing; ReviewThreadCode concerns analysing the code (when applied) and
engaging accordingly for a particular topic of interest.

Post. This is one of the basic activities that express the contributions of
the Novice. It involves three activities: PostQuestions, which refers to

172

P. Mukala et al.

the ability to ask further questions or comments on more advanced top-
ics; ReportBugs, which entails the ability to scrutinize the source code
and run pieces of code to identify potential flaws; SendFeedback, which

refers to replying to questions or comments (including reporting identi-
fied flaws).

Apply. In applying any knowledge or skill as a result of the learning process,

the Novice can perform some activities represented as the subclasses of
this class. These include: AnalyzeSourceCode, for the ability to review the
submitted code and find bugs, especially when the piece of code relates
to the area in which skills have just been acquired; CommentOnCode,
for the ability to comment on the code to show progress or explain the
logic behind that part of the software; ReplyToPost, which refers to the
confidence to be active on the mailing list and reply to questions or
comments pertaining to the same thread or any other topic directly or
indirectly linked to the newly acquired skills; ReportBugs, for the ability
to report bugs for submitted piece of code or any other version release;
RunSourceCode, where, in running a piece of code, the Novice is able to
accomplish all the above activities.

Maturation. This class of activities identifies the last phase of learning process,

which asserts how the Novice has mastered the skills learnt during the learn-
ing process. These activities include as subclasses Analyze, Commit, Develop,
Revert and Review, which in turn contain subsequent child classes as shown
in Fig. 7

Analyze. This activity (class) encompasses all the steps Novice and Expert

go through to provide the required information or perform requested
tasks.

Commit. With skills growing in a specific area, the Novice becomes confident

and can commit some deliverables that can be evaluated and criticised by
the community. These activities can be summarised through: SubmitBu-
gReport, which entails the ability to commit any fix or bug report for the
interest of the entire community; SubmitCode, which implies commit some
code for any piece of software and participate to the project and build
reputation for a possible role transition; SubmitDocumentation, through
which the Novice submits documentation such as requirements elicitation
documents, help document, user manuals, tutorials etc.

Develop. This basic activity summarised a set of tasks that the Novice car-

ries out as a result of the skills learnt with regard to software development
in FLOSS. These include: FizBugs, though which the Novice can iden-
tify possible bugs and fix them; GiveSuggestion, where The Novice can
review peers? works and provide alternatives when needed, for example
what the appropriate function might be to perform a particular task etc.;
PostCommentOnCode refers to the ability to submit comments on the
source code for enlightenment; ReplyToSuggestion, which entails reply
and critique suggestions from other Experts or Novices in an active fash-
ion; WriteSourceCode, through which the Novice can write and submit

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 173

@ FixBugs

[® witesowcecode |

@ PostCommentOnCo
| =
[@ matmtion }——{ ® Dovaop |

® ReviewTh
s

® ReplyToSuggesti
_.) =
| . b 8
'

@ ReviewThreadCod
e

H
g

Fig. 7. Network graph representation of the Maturation Phase and related concepts

readPos
© AnalyzeThreadPr
ogression
o
de
~ons

source code; ModifySourceCode, when the Novice can modify any code
and implement suggestion as requested.

Revert. This is in essence the same activity as in the progress stage. In
this class all activities through which the Novice and Expert exchange
feedback are represented: SendReply, which entails react to any attempt
of contact established from either the Novice or Expert; ReviewThread-
Posts, which implies the ability to analyse and react as needed to com-
ments and posts related to a particular content that is the subject of
learning; ReviewThreadCode, which signifies analysing the code (when
applied) and provide necessary suggestion if required.

Review. The Novice and Expert engage in a set of activities to examine the
maturity of the learning process. These activities include: ReviewCom-
mentContents, in which they actively engage and contribute to com-
ments and posts in the team, about topics in the sphere of the skills
acquired and possibly becoming an Expert to a new Novice; Review-
Posts, which entails actively engaging and reacting as needed to com-
ments and posts related to a particular content that is the subject of
learning; ReviewSourceCode, in which they (Novice/Expert) analyse the
code (when applied) and engage accordingly for a particular topic of
interest.

Resource Class. This class refers to the resources used as part of learning
during development in FLOSS. Such resources include the requirements descrip-
tion documents as well as any documentation needed for the project. Figure 8
depicts the class Resource with its direct neighbours as well as the categories of
three subclasses which are part of the main resources used in FLOSS that can

174 P. Mukala et al.

help identify learning processes. The three subclasses and their child subclasses,
depicted in Fig. 9 are as follows:

isSupportedBy

Repository |
isAccompaniedBy

provndesGmdelmesOn

Participant
Pant k- workswith Resource)\‘ hasResource(FlossProject)

isa isa isa
DescriptionDoc J HelpDoc J SourceCode J

LearningProcess
LearningActivity ’

Fig. 8. Network graph of the Resource Class, immediate subclasses and related classes

DescriptionDoc. This class contains all the documents that provide the descrip-
tion for any activity or stage of the project in the team. The subclasses rep-
resenting these documents include BugReport, which is a report outlining the
description of a found reported bug in a code or piece of software at run time;
ProjectRequirementsDesc, which encompasses the documents pertaining to
the description of the project, including requirements and all related infor-
mation regarding the project?s operations; UserManuals, which contains the
guidelines for the users of the software.

HelpDoc. This class contains all the documents that provide information for
any required help regarding the functionalities of the repositories and
projects. These are: FAQ, How-To, and Tutorial.

SourceCode. This is the content of the Version Control System that contains
all the coding done behind any application in FLOSS. It is a major resource
of learning as it guides most the basic activities considered above.

Repository Class. This is the main class that represents a particular FLOSS
repository where learning activities can be observed. Figure 10 depicts the class
Repository as well as its neighbours and subclasses. The three subclasses are:
VersionControl, where the source code is housed; BugTracker, which contains
information about bugs, date of release, and description; MailingList, which
represents the contents of interactions and discussions among participants online
in FLOSS.

Team Class. This is the team of participants, the FLOSS community or forums
where participants engage in knowledge exchange. Figure 11 depicts the proper-
ties and direct neighbours.

StandardOfPractice Class. These are rules of engagement that guide the
interaction among participants, the usage and licensing of the deliverables in
the FLOSS communities. Figure 12 shows the direct neighbourhood of classes

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 175

@ ProjectRequirem
entsDesc . :
<[® pescrptionboc (@ HepDec

® FA] ® How- @ Tutorial
& BugReports I Q I #® How-To I | utori

Fig. 9. Network graph of the Resource Class and subclasses

FlossProject
LearningProcess
Pamclpant
or

|sDevelopmentToolF

isSupportedBy
operateswlth Resource '

- Reposntory provndesGmdelmesOn

LearningActivity F—keepsTrackOf 3)
isa isa isa OCUMENtS —_ g LearningActivity '
/ | \

BugTracker) MailingList) VersionControl)

Fig. 10. Network graph of the Repository Class, immediate subclasses and related
classes

as well as the different types of practices that can be subcategorised as follows:
GNULicense, which represents a fundamental licensing guide for Open Source
Software, and PersonalGroundRules, which are rules established and belonging
to a given FLOSS Community.

Participant Class. This class represents the participant of the learning process.
The neighbouring classes are connected through associations as depicted in
Fig. 13. The class has two important subclasses identified as Novice and Ezpert.
These two concepts are critical in understanding and identifying role playing dur-
ing knowledge exchange activities between FLOSS members. Subclass Novice
represents a knowledge requester. This subclass is represented with its neigh-
bours in Fig. 14.

With the Ezxpert subclass, depicted in Fig. 15, the representation refers to
the relative knowledge provider at any given point in time during interactions
in FLOSS environments.

LearningProcess Class. This class is the main focus and the reason of Onto-
LiFLOSS. To explain the existence of such a process in FLOSS, the rest of the
classes in the ontology complete the need to define its semantic conceptualisa-
tion. Through a set of activities, by means of some resources, the ontology can

176 P. Mukala et al.

FlossProject

isDoneln

Participant ¥ jspartor
undertakes LearningActivity
fosters

LearningProcess

Fig. 11. Network graph of the Team Class and related classes

LearningProcess

isSupportedBy

StandardsOfPractice

isa isa

FlossProject isGuidedBy mustAdhereBy 1 Participant

\
(‘oNuLicense |} (PersonalGroundRules)

Fig.12. Network graph of the StandardOfPractice Class, immediate subclasses and
related classes

Team

BugTracker = LearningActivity '
isPartof sirlng [xsd:]

reportsAt carriesOut
PrujectRoIe
SklIISet string [xsd:]
canPIayA
Knowledge
Participant | double [xsd:]
VersionControl commitsin - Experience
Cor@etency string [xsd:]
IEkresin Contributions
ProjectRole postsAt

mustAdhereBy

operatesWith \,
goesThrough
MailingList sa worksOn Repository
rksWith

akesPartin LearningStage
ell Novice '

Resource
Fig. 13. Network graph of the Participant Class, immediate subclasses and related
classes

StandardsOfPractice

LearningProcess

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 177
(Observation)
'wp initiatesLearningThrough S
3 /—H SendDetailedRequest)

isa i)
'a communicatesThrough
Y

[Expert) ("Novice

applySkillsThrough _ /_Developing ~

leamsThrough

reachesOutThrough \,(Practising '

(ContactExpert

Fig. 14. Network graph of the Novice Class and related classes

(Patticipant |

makesContactTo

e . k/.i.
(sendDetailedRequest)4\ isa /—H Novice)
communicatesThrough /
~

(Expert - —
initiatesLearningThrough —m Observation

) reachesOutToNoviceThrough

(" contactNovice P —
) [Maturation
monitorsNoviceThrough

isa

p
/ [Progression '
(isa ™

Revert

isa isa isa
e \ ~

(ReviewThreadCode | (ReviewThreadPosts | (SendReply)

Fig. 15. Network graph of the Ezpert Class and related classes

express at some extent learning processes taking place between participants. In
our context, we have identified based on some indications of studies in the litera-
ture as reported previously, nine learning processes which are shown as instances
of the main LearningProcess class in Fig.16. We give a more or less complete
representation graph of the class and its neighbours in Fig. 17. The relationships
between the connecting neighbours are given accordingly.

ProjectRole Class. This subclass represents the basic roles any participants
can be fulfilling in the FLOSS community. We consider the roles identified by

178 P. Mukala et al.

@ DireciedPuliing
CoachingLearnin...

*® LearningActivit
y
N\,
\\
\ @ DirectedPuling
k. S
5 R

:
A ing
i, }

— Modeli min...
M 4
tice - \ ~\,
gy

-
<2 N\ —
P 4 FadingLearning
A% 4
". Resource { %
(-1
/ @ DirectedPuling
T ModelingLeamin...
o |
[+ l’ l’
§ Fuiticesnt &] # DirectedPushing
,’ I ScaffoldingLear...
|

@ DirectedPushing
CoachingLearnin...

Fig. 16. Graph representation of instances of the LearningProcess Class

Repository
LeamingStage

-‘\ assessedThrough

producedThrough
occursThrough

isSupportedBy

takesPartin
Repository

providesGuidelinesOn

fosters

Fig. 17. Network graph of the LearningProcess Class and related classes

Cerone [1]: Observer, PassiveUser, ActiveUSer, Developer, and CoreDeveloper.

The relationships between the connecting neighbours forming the network are
given in Fig. 18.

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 179

FlossProject iy

isPlayedin

isa
\ - 153

/_> iojeciRole —isa——{ Developer)
canPlayA isa
v .': T

Participant) isa\ CoreDeveloper)
ActiveUser '

PassiveUser

Ohserver

Fig. 18. Network graph of the ProjectRole Class, subclasses and related classes

LearningProcess
Understanding ! Initiation '

occursThrough / isa)
| Practising l
LearningStage C isa

goesThrough isa~—___ J— Progression)

/ Developing
Participant ’
Jf Maturation)

Fig. 19. Network graph of the LearningStage Class, subclasses and related classes

LearningStage Class. The objective of this class is to represent the different
stages of learning that participants go through during a learning process. Hence,
the LearningStage class clearly relates the performed activities to the different
stages of learning.. Three stages can be identified relating to three layers of activi-
ties as in the LearningActivity class: Understanding, Practicing and Developing.
Figure 19 depicts a different version of the representation with the subclasses
Understanding, Practicing and Developing being depicted as equivalent classes
of the LearningActivity class subclasses: Initiation, Progression and Maturation,
respectively, with appropriate relationships.

3.2 Properties

Properties are ontology representations of concepts that establish links (relation-
ship) between classes and form networks. Two main types of properties included
in OntoLiFLOSS include Object and Data Properties.

About 38 Object Properties summarise the relationships and links between the
different classes. Five data properties are representative of the main attributes
of Participant (either Novice or Expert) relevant with learning. OntoLiFLOSS
represents concepts for Experience, Skill Set (acquired through contribution),

180 P. Mukala et al.

Contributions (expressed through activities), Competency (built with experience)
and Knowledge (acquired through learning).

4 Conclusion

We introduced and detailed OntoLiFLOSS as a knowledge representation for
understanding learning concepts and activities in FLOSS environments. Details
of classes and properties are provided and, given that the OntoLiFLOSS is specif-
ically developed to guide the understanding of learning process in FLOSS reposi-
tories, it is fit to say that the choice of making these learning processes instances
rather than subclasses is justifiable. Future work on this artifact would be to
refine the ontology while we explore some empirical data in these environments.

References

1. Cerone, A.: Learning and activity patterns in OSS communities and their impact
on software quality. In: Proceedings of the 5th International Workshop on Foun-
dations and Techniques for Open Source Software Certification (OpenCert 2011).
Electronic Communications of the EASST, vol. 48. EASST (2012)

2. Cerone, A., Sowe, S.K.: Using free/libre open source software projects as e-learning
tools. In: Proceedings of the 4th International Workshop on Foundations and Tech-
niques for Open Source Software Certification (OpenCert 2010). Electronic Com-
munications of the EASST, vol. 33. EASST (2010)

3. Fernandes, S., Cerone, A., Barbosa, L.S.: Analysis of FLOSS communities as learn-
ing contexts. In: Counsell, S., Niifiez, M. (eds.) SEFM 2013 Collocated Workshops.
LNCS, vol. 8368, pp. 405-416. Springer, Heidelberg (2014)

4. Ferndndez-Loépez, M.: Overview of methodologies for building ontologies (1999)

5. FLOSSCom Project. Using the principles of informal learning environments
of FLOSScommunities to improve ICT supported formal education. http://
openedworld.flossproject.org/index.php/flosscom-project-2006-to-2008

6. Fonseca, F.: The double role of ontologies in information science research. J. Am.
Soc. Inf. Sci. Technol. 58(6), 786-793 (2007)

7. Glott, R., Meiszner, A., Sowe, S.K.: FLOSSCom Phase 1 Report: Analysis of the
informal learning environment of FLOSS communities. Technical report, FLOSS-
Com Project (2007)

8. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In:
Proceedings of the Workshop on Sematic Web Enabled Software Engineering
(SWESE) on the ISWC, pp. 5-9, November 2006

9. Hesse, W.: Ontologies in the software engineering process. In: Proceedings of the
2nd GI-Workshop on Enterprise Application Integration (EAI 2005) (2005)

10. Mirbel, I.: OFLOSSC, an ontology for supporting open source development com-
munities. In: Proceedings of the 11th International Conference on Enterprise Infor-
mation Systems (ICEIS 2009) (2009)

11. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your
first ontology. Technical report, Stanford University (2001)

12. Rubin, V., Giinther, C.W., van der Aalst, W.M.P., Kindler, E., van Dongen,
B.F., Schéfer, W.: Process mining framework for software processes. In: Wang, Q.,
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 169-181. Springer,
Heidelberg (2007)

http://openedworld.flossproject.org/index.php/flosscom-project-2006-to-2008
http://openedworld.flossproject.org/index.php/flosscom-project-2006-to-2008

13.

14.

15.

16.

17.

OntoLiFLOSS: Ontology for Learning Processes in FLOSS Communities 181

Simmons, G.L., Dillon, T.S.: Towards an ontology for open source software devel-
opment. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.)
Open Source Systems. IFIP AICT, vol. 203, pp. 65-75. Springer, Boston (2006)
Sowe, S.K., Stamelos, I.: Reflection on knowledge sharing in F/OSS projects. In:
Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Devel-
opment, Communities and Quality. IFIP AICT, vol. 275, pp. 351-358. Springer,
Boston (2008)

Tifous, A., Ghali, A.E., Dieng-Kuntz, A.E., Christina, A.G.C., Vidou, G.: An ontol-
ogy for supporting communities of practice. In: Proceedings of the 4th International
Conference on Knowledge Capture, pp. 39-46. ACM, October 2007

Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications.
Knowl. Eng. Rev. 11(02), 93-136 (1996)

Wilson, R.: The role of ontologies in teaching and learning. Technical report,
TechWatch (2004)

Process Mining Event Logs from FLOSS Data:
State of the Art and Perspectives

Patrick Mukala®™®, Antonio Cerone, and Franco Turini

Dipartimento di Informatica, University of Pisa, Pisa, Italy
{mukala,cerone,turini}@di.unipi.it

Abstract. Free/Libre Open Source Software (FLOSS) is a phenom-
enon that has undoubtedly triggered extensive research endeavors. At
the heart of these initiatives is the ability to mine data from FLOSS
repositories with the hope of revealing empirical evidence to answer
existing questions on the FLOSS development process. In spite of the
success produced with existing mining techniques, emerging questions
about FLOSS data require alternative and more appropriate ways to
explore and analyse such data.

In this paper, we explore a different perspective called process min-
ing. Process mining has been proved to be successful in terms of tracing
and reconstructing process models from data logs (event logs). The chief
objective of our analysis is threefold. We aim to achieve: (1) conformance
to predefined models; (2) discovery of new model patterns; and, finally,
(3) extension to predefined models.

1 Introduction

Since the mid nineties, there has been considerable work in the field of process
mining. A number of techniques and algorithms enable the reenactment and
discovery of process models from event logs (data) [21]. As the field matures
and achieves critical success in process modelling, we suggest applying such
techniques and algorithms to software process modelling in order to document
and explain activities involved in the software development process. Hence, a
practical example would be process mining Software Configuration Manage-
ment (SCM) systems, such as CVS or subversion systems, for the purpose of
modelling software development processes. These systems are popular in the
world of Free/Libre OpenSource Software (FLOSS). FLOSS repositories store
massive volumes of data about the software development activities. Applying
process mining carries a non-negligible potential for understanding patterns in
these data.

However, there have been limited efforts in applying process mining to the
analysis of data in FLOSS environments. The only attempt in our knowledge
consists in combining a number of software repositories in order to generate a log
for process mining and analysis [12]. Such work exemplifies how process mining
can be applied to understand software development processes based on audit
trail documents recorded by the SCM during the development cycle.

© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 182-198, 2015.
DOI: 10.1007/978-3-319-15201-1-12

Process Mining Event Logs from FLOSS Data 183

The objective of our work is to open the discussion and possibly pave a way in
introducing and adopting process mining as a viable alternative in analysing and
discovering workflow models from email discussions, code comments, bug reviews
and reports that are widely found in FLOSS environments. Our discussion can be
predicated on the assumption that by looking at some of the existing techniques
in mining software repositories, some benchmarks and guidelines can be defined
to explore similar questions via the use of process mining and possibly assess its
potential in so doing.

In this paper we investigate some of the state of the art techniques and activ-
ities for mining software repositories. We refer the reader to a similar endeavor
by Kagdi, Collard and Maletic [10] for a detailed report in this regard. Their
survey is quite expressive of critical milestones reached as part of mining soft-
ware repositories. Instead, we succinctly select and present some of these mining
perspectives in convergence with the objectives of our endeavor. We consider
these approaches in terms of the type of software repositories to be mined, the
expected results guiding the process of mining as well as the methodology and
techniques used herein.

The reminder of the paper is structured as follows. In Sect.2 we discuss
some leading factors taken into account while mining repositories. In Sect. 3
selected mining techniques are described. Section4 gives a condensed overview
of some tools developed over the years to mine software repositories. In Sect. b
we describe process mining as related to the previous sections. Finally, Sect. 6
concludes our work with the prospects of process mining FLOSS repositories as
well as directions for future related work.

2 Mining Software Repositories: Leading Factors

The analysis of software repositories is driven by a large variety of factors. We
consider four factors outlined by Kagdi, Collard and Maletic [10]: information
sources, the purpose of investigation, the methodology and the quality of the
output.

The first factor, information resources, depicts the repositories storing the
data to be mined. There is a wide literature on mining software repositories
[7,8,13]. Some notable sources include source-control systems, defect-racking
systems and archived communications as the main sources of data utilised while
conducting investigations in FLOSS [7,10]. Source-control systems are repos-
itories for storing and managing source code files in FLOSS. Defect-tracking
systems, as the name suggests, manage bug and changes reporting. Archived
communications encompass message exchanges via email in discussion groups
and forums between FLOSS participants.

The next critical element at the heart of mining software repositories is the
purpose. This is at the start of any research endeavor. It defines the objectives
and produces questions whose answers are sought afterwards, during the inves-
tigation. This aims to determine what the output of process mining should be.
After identifying the sources, determining the purpose, there is still room for

184 P. Mukala et al.

deciding on the methodology for mining data and answering the questions. Due
to the investigative nature of questions, available approaches present in the lit-
erature revolve around setting some metrics that need to be verified against
the extracted data. For example, some metrics for assessing software complexity
such as extensibility and defect density, can be verified on different versions of
submitted software in SVN over a period of time and deduce properties that
explain some form of software evolution.

The last factor paramount to the investigation of FLOSS repositories is eval-
uation. This is the evaluation of hypotheses that have been formulated according
to the objectives of the investigation. In the context of software evolution, two
assessment metrics for evaluation are borrowed from the area of information
retrieval. These include precision and recall on the amount of information used
as well as its relevance. In our case, the plan is to produce some models, process
models primarily, and these models are to be evaluated and validated through a
number of ways we deem appropriate.

3 Mining Techniques: Selected, Relevant Approaches

3.1 Bug Fixing Analysis

The first relevant attempt in mining software repositories pertains to analysing
bug fixing in FLOSS. gliwerski, Zimmermann and Zeller [18] present some results
on their investigation on how bugs are fixed through introduced changes in
FLOSS. The main repositories they used are CVS and Bugzilla along with the
relevant metadata. While the purpose of their work was to locate changes that
induce bug fixing by coupling a CVS to a BUGZILLA, our interest is to describe
the methodology they used to investigate these repositories. Their methodology
can be summarized in these three steps:

1. Starting with a bug report in the bug database, indicating a fixed problem.

2. Extracting the associated change from the version archive, this indicates the
location of the fix.

3. Determining the earlier change at this location that was applied before the
bug was reported.

Step 1 is to identify fixes. This is done on two levels: syntactic and semantic
levels. At the syntactic level, the objective is to infer links from a CVS log to
a bug report while at the semantic level the goal is to validate a link using the
data from the bug report [18]. In practice, this is carried out as follows.
Syntactically, log messages are split into a stream of tokens in order to identify
the link to Bugzilla. The split generates one of the following items as a token:

— a bug number, if it matches one of the following regular expressions (given in
FLEX syntax!):

! FLEX syntax is used by Adobe Flex, a tool that generates programs for pattern
matching in text. It receives user-specified input and produces a C source file.

Process Mining Event Logs from FLOSS Data 185

bug [# \t]*[0-9]+,

pr[# \t]*[0-9]+,

show_bug\.cgi\?7id=[0-9]+,

\[[0-9]+\1;

— a plain number, if it is a string of digits [0-9]+;

— a keyword, if it matches the following regular expression:
e fix(e[ds])?|bugs?|defects?|patch;

— a word, if it is a string of alphanumeric characters.

A syntactic confidence syn of zero is assigned to a link and its confidence raised
by one if the number is a bug number and the log message contains a keyword,
or if the log message contains only plain numbers or bug numbers. For example,
the following log messages are considered:

— Fixed bug 53784: .class file missing from jar file export
The link to the bug number 53784 gets a syntactic confidence of 2 because it
matches the regular expression for bug and contains the keyword fixed.

— 52264,51529
The links to bugs 52264 and 51529 have syntactic confidence 1 because the
log message contains only numbers.

Furthermore, the role of the semantic level in Step 1 of the methodology is to
validate a link (¢,b) by taking information about its transaction ¢ and check it
against information about its bug report b. A semantic level of confidence is
thus assigned to the link based on the outcome. This is raised accordingly and
incremented by 1 following a number of conditions such as “the bug b has been
resolved as FIXED at least once” or “ the short description of the bug report b
is contained in the log message of the transaction t”. Two examples in ECLIPSE
are as follows:

— Updated copyrights to 2004
The potential bug report number “200” is marked as invalid and thus the
semantic confidence of the link is zero.

— Support expression like (i)+= 3; and new int[] 1[0] + syntax
error improvement
1 and 3 are (mistakenly) interpreted as bug report numbers here. Since the
bug reports 1 and 3 have been fixed, these links both get a semantic confidence
of 1.

The rest of the process (Step 2 and 3) is performed manually. Returned links are
inspected manually in order to eliminate those that do not satisfy the following
condition

sem > 1V (sem = 1A syn > 0)

As shown in Fig. 1, the process involves rigorous manual inspection of randomly
selected links that are to be verified based on the above condition.

186 P. Mukala et al.

3-Apr-03

e

b() was

changed changed 42233
23May03 10Jun03

12-Feb-03

Fig. 1. Manual inspection of selected links

After applying this concept in ECLIPSE and MOZILLA with respectively
78,954 and 109,658 transactions for changes made until January 20, 2005, the
authors presented their results based on their objectives for 278,010 and 392,972
individual revisions on these projects respectively. Some of these results concern
the average size of transactions for fixes in both projects and the different days
of the week during which most changes are projected to occur, etc.

3.2 Software Evolution Analysis

The second approach was conducted by German [5] to present the characteris-
tics of different types of changes that occur in FLOSS. German used CVS and
its related metadata as information sources. The collective nature of software
development in FLOSS environments allows for incremental changes and modi-
fications to software projects. These progressive changes can be retrieved from
version control systems such as CVS or SVN and parsed for analysis. In his
approach, German investigated changes made to files as well as the developers
that mostly commit these changes over a period of time. His argument also sug-
gests that analysing the changes would provide clarifications on the development
stages of a project in light with addition and update of features [5].

A number of projects considered for this purpose include PostgreSQL,
Apache, Mozilla, GNU gcc, and Evolution. Using a CVS analysis tool called
softChange, CVS logs and metadata were retrieved from these projects for inves-
tigation. A new algorithm called Modification Records (MRs) is proposed by
German, who also claims that the algorithm provides a fine-grained view of the
evolution of a software product. Noticeable from the work is the methodology
used for mining the chosen repositories. The first step was to retrieve the his-
torical files from CVS and rebuild the Modification Records from this info as
they do not appear automatically in CVS. SoftChange, through its component
file revision makes use of sliding window algorithm heuristic (shown in Fig. 2) to
help organize this information.

Process Mining Event Logs from FLOSS Data 187

// front(List) removes the front of the list
// top(List) and last(List)
// query the corresponding elements of the list
// Initialize set of all MRs to empty
MRS =0
for each A in Authors do
List = Revisions by A ordered by date
do
MR.list = {front(List)}
M R.sTime = time(M R.list,)
while first(List).time — M R.sTime < 00\
first(List).time—
last(M R.list).time < Trmaz/A
first(List).log = last(M R.list).logA
first(List).file ¢ MR.list do
gqueue(M R.list, front(List))
od
MRS = MRS|J {MR}
until List # 0
od

Fig. 2. Pseudocode for the Modification Records (MRs) algorithm

Briefly explained, the algorithm takes two parameters (04, and Trnaz) as
inputs. Parameter §,,,, depicts the maximum length of time that an MR can
last while T},,,. is the maximum distance in time between two file revisions. The
idea is that a file revision is included in a given MR on the basis of the following
conditions:

— all file revisions in the MR and the candidate file revision were created by the
same author and have the same log (a comment added by the developer when
the file revisions are committed);

— the candidate file revision is at most Tp,4, seconds apart from at least one file
revision in the MR;

— the addition of the candidate file revision to the MR keeps the MR at most
Omag Seconds long.

In order to conduct the analysis, knowledge of the nature and structure of
codeMRs is required. Hence, the investigation is premised on an assumption
that there exist six types of codeMRs reflecting different activities as under-
taken by FLOSS developers. These include modifying code for Functionality
improvement (addition of new features), Defect-fixing, Architectural Evolution
and Refactoring (a major change in APIs or the reorganisation of the code base),

188 P. Mukala et al.

Relocating code, Documentation (reference to changes to the comments within
files) and Branch-merging, e.g. code is merged from a branch or into a branch.

Rysselberghe and Demeyer [17] investigate FLOSS repositories using clone
detection methods In their approach the source code in CVS as well as its meta-
data are investigated in order to analyse frequently occurring changes (FACs) in
source files. The idea is to document changes occurring in FLOSS using a tech-
nique tailored in the similar manner as the standard concept of frequently asked
questions or FAQs. The rationale of FAQs is to gather some basic questions
and answers that are representative of frequent questions and corresponding
answers so as to reduce the continual posting of the same basic questions. Simi-
larly, Rysselberghe and Demeyer consider this concept and apply it to frequent
changes occurring in FLOSS. The objective is to identify frequently applied
changes (FACs) since these changes record general solutions to frequent and
recurring problems. Using proper CVS commands, such as some cvs log and cvs
diff commands, change data can be extracted from CVS. These data include the
difference in code before and after the change, the date and time of the change,
the file involved. Once such information is obtained, the next step is to parse it
and identify FACs. Locating FACs implies locating similar code fragments and
this can be done by applying clone detection techniques.

Clone detection methods are developed to help identify duplicated or cloned
code fragments in a program source code. During this process, a tool called
CCFinder was used to analyze text files containing codes with FACs as retrieved
using clone detection techniques. Based on some threshold values, the study
asserts that high threshold values allow the identification of recurring and
product-specific changes while low threshold values lead to the identification
of frequently applied generic changes. Using Tomcat as a case study, observa-
tions drawn from the initial experiment include for instance that FACs identified
with a high threshold and specific to one product and can be used to study and
understand the motivation and success behind an applied change. Moreover, the
removal of a recently added code fragment may give an indication for the reasons
behind success or failure of changes in general. On the other hand, FACs with a
low threshold can help in deriving low maintenance strategies automatically.

3.3 Identification of Developers Identities

The next case of FLOSS investigations is about the identification of developers
identities in FLOSS repositories. Given the dynamic nature of developers behav-
iors in adopting different identities in distinct FLOSS projects, the task of iden-
tification becomes cumbersome. Nevertheless, one solution in this regards has
been to integrate data from multiple repositories where developers contribute.
Sowe and Cerone [19], using repositories from the FLOSSMetrics project, pro-
posed a methodology to identify developers who make contributions both by
committing code to SVN and posting messages to mailing lists.

Robles and Gonzalez-Barahona [14] conducted a similar study, based on the
application of heuristics, to identify the many identities used by developers.

Process Mining Event Logs from FLOSS Data 189

Their methodology was applied on the GNOME project where 464,953 mes-
sages from 36,399 distinct e-mail addresses were fetched and analysed, 123,739
bug reports from 41,835 reporters, and 382,271 comments from 10,257 posters
were retrieved from the bug tracking system. Around 2,000,000 commits, made
by 1,067 different committers, were found in the CVS repository. The results
showed that 108,170 distinct identities could be extracted and for those identi-
ties, 47,262 matches were found, of which 40,003 were distinct (with the Matches
table containing that number of entries). Using the information in the Matches
table, 34,648 unique persons were identified.

3.4 Source Code Investigation

In his work Yao [25] has the objective to search through source code in CVS and
related metadata to find lines of code in specific files etc. This is done through
a tool called CVSSearch (see Sect.4). The technique used here to analyse CVS
comments allows to automatically find an explicit mapping of the commit com-
ment and the lines of code that it refers to. This is useful as CVS comments pro-
vide additional information that one cannot find in code comments. For instance,
when a bug is fixed, relevant information is not typically extracted from code
comment but can be found in CVS. Moreover, as part of FLOSS investigation,
one can search for code that is bug-prone or bug-free based on CVS comments
where these lines of code can be referenced.

Hence, Yao’s technique entails searching for lines of code by their CVS com-
ments in producing a mapping between the comments and the lines of code to
which they refer [25]. Unlike the CVS annotate command, which shows only the
last revision of modification for each line, the algorithm used here records all
revisions of modification for each line. The algorithm is highlighted as follows
[25]:

— Consider a file f at version ¢ which is then modified and committed into the
CVS repository yielding version ¢ + 1.

— Also, suppose the user entered a comment C which is associated with the
triple (f,4,7+ 1).

— By performing a diff between versions ¢ and i+ 1 of f, it is possible to deter-
mine lines that have been modified or inserted in version i 4+ 1, the comment
C is thus associated with such lines.

— Additionally, in order to search for the most recent version of each file, a
propagation phase during which the comments associated with version ¢ + 1
of f are “propagated” to the corresponding lines in the most recent version of
f,say 7 > i+ 1. This is done by performing diff on successive versions of f
to track the movement of these lines across versions until version j is reached.

Ying, Wright and Abrams [26] use a different perspective to investigate source
code. Using the source code in CVS, the authors propose an approach to study
communication through source code comments using Eclipse as a case study.
This is premised on a principle of good programming that asserts that com-
ments should “aid the understanding of a program by briefly pointing out salient

190 P. Mukala et al.

details or by providing a larger-scale view of the proceedings” [26]. As part of
understanding FLOSS activities, it has been found that comments in these envi-
ronments are sometimes used for communication purposes. An example of a
comment such as “Joan, please fix this method” addresses a direct message to
other programmers about a piece of code but it is usually located in a separate
archive (e.g. CVS).

3.5 Supporting Developers and Analysing Their Contributions

Another approach to mining FLOSS repositories is about providing adequate
information for new developers in FLOSS. Given the dynamic mode of operations
in FLOSS, it is quite difficult for newcomers who join a project to come up-
to-speed with a large volume of data concerning that project Hence, a new
tool called Hipikat is introduced [2,3] to this end. The idea is that Hipikat can
recommend to newcomers key artifacts from the project archives. Basically, this
tool is assumed to form an implicit group memory from the information stored
in a projects archives and, based on this information, gives a new developer
information that may be related to a task that the newcomer is trying to perform
[3]. The Eclipse open-source project is used as a case study in applying this
approach.

The building blocks of this approach are twofold. Firstly, an implicit group
memory is formed from the artifacts and communications stored in a projects
history. Secondly, the tool presents to the new developer artifacts as selected
from this memory in relevance to the task being performed. A group memory
can be understood as a repository used in a FLOSS work group to solve present
needs based on historical experience. In essence, the purpose of Hipikat is to
allow newcomers to learn from the past by recommending items from the project
memory made of source code, problem reports, newsgroup articles, relevant to
their tasks [2].

This model depicts four types of artifacts that represent four main objects
that can be found in FLOSS projects as shown in Fig. 3: change tasks (tracking
and reporting bugs like in Bugzilla), source file versions (as recorded in CVS),
mailing lists (messages posted on developer forums) and other project documents
like requirements specification and design documents. An additional entity called
Person is included to represent the authors of the artifacts.

Finally, Huang and Liu [9] analyse developer roles and contributions. Similar
to numerous other studies available in the literature, this is based on a quanti-
tative approach to analyse data in FLOSS. Using the CVS as the experimental
repository, a network analysis is performed in order to construct social network
graphs representing links between developers and different parts of a project.
Standard graph properties are computed on the constructed networks and thus
an overview in terms of developers activities is given to explain the fluctuations
between developers with lower and higher degree.

Process Mining Event Logs from FLOSS Data 191

check—in package

Ccvs

File [
version

o implements o
similar to similar to reply to

www Bugzilla y Usenet, Mail

| Change [~
documents task about

Document Message

A A

Hipikat | works on

posts

writes

Person

writes

Fig. 3. Hipikat architectural model

4 Tools

Central to the sheer of work done with the purpose of mining software reposito-
ries are tools. A number of tools have been developed throughout this process,
and we look at a few to express what aspects of software repositories can be
mined using such tools.

CVSSearch. Used for mining CVS comments, the tool takes advantages of
two characteristics of CVS comments [25]. Firstly, a CVS comment more
likely describes the lines of code as involved in the commit; and secondly,
the description given in the comment can be used for many more versions
in the future. In other words, CVSSearch allows one to better search the
most recent version of the code by looking at previous versions to better
understand the current version. The tool is actually the implementation of
Yao’s algorithm highlighted in Sect. 3.

CVSgrab. The objective of the tool is to visualise large software projects dur-
ing their evolution. CV query mechanisms are embedded in the tool to access
CVS repositories both locally and over the internet. Using a number a met-
rics, CVSgrab is able to detect and cluster files with similar evolution pat-
terns [23]. One of the key features is its particularity to interactively show
evolutions of huge projects on a single screen, with minimal browsing. The
tools architectural pipeline is given in the Fig.4. As output, CVSgrab uses
a simple 2D layout where each file is drawn as a horizontal strip, made of

192 P. Mukala et al.

Cvsgrab
Internet
~ai . cvs
— —>
cvs //\«—u Input parser Evolution 2D
Repository B u B analyzer visuallzation
. \g:ache:]‘—

Fig. 4. CVSgrab architectural pipeline

several segments. The x-axis encodes time, so each segment corresponds to
a given version of its file. Colour encodes version attributes such as author,
type, size, release, presence of a given word in the versions CVS comment,
etc. Atop of color, texture may be used to indicate the presence of a specific
attribute for a version. File strips can be sorted along the y-axis in several
ways, thereby addressing various user questions [23].

SoftChange. The purpose of this tool is to help understand the process of soft-
ware evolution. Based on analysing historical data, SoftChange allows one
to query who made a given change to a software project (authorship), when
(chronology) and, whenever available, the reason for the change (rationale).
Three basic repositories are used with SoftChange for analysis: CVS, bug
tracking system (Bugzilla) and the software releases [6].

MLStats. This is a tool used for mailing lists analysis. The purpose of the
tool is to extract details of emails from the repository. Data extracted from
messages vary from senders and receivers to topics of message and time
stamps as associated with the exchanged emails [1,15]. The tool makes use
of the email headers to derive the analysis.

CVSAnalY. This is a CVS and Subversion repository analyser that extracts
information from a repository. Embedded with a web interface, it outputs
the analysis results and figures that can be browsed through the interface
[16]. Specifically, CVSAnalY analyses CVS log entries that represent com-
mitters names, date of commit, the committed file, revision number, lines
added, lines removed and an explanatory comment introduced by the com-
mitter. The tool provides statistical information about the database, com-
pute several inequality and concentration indices and generate graphs for
the evolution in time for parameters such as number of commits, number of
committers etc. as needed.

5 Process Mining for Knowledge Discovery in Event Logs

Process mining is used as a method for reconstructing processes as executed from
event logs [24]. Such logs are generated from process-aware information systems
such as Enterprise Resource Planning (ERP), Workflow Management (WFM),
Customer Relationship Management (CRM), Supply Chain Management (SCM)

Process Mining Event Logs from FLOSS Data 193

and Product Data Management (PDM) [20]. The logs contain records of events
such as activities being executed or messages being exchanged on which process
mining techniques can be applied in order to discover, analyse, diagnose and
improve processes, organisational, social and data structures [4].

Van der Aalst et al. [20] describe the goal of process mining to be the extrac-
tion of information on the process from event logs using a family of a posteriori
analysis techniques. Such techniques enable the identification of sequentially
recorded events where each event refers to an activity and is related to a par-
ticular case (i.e. a process instance). They also can help identify the performer
or originator of the event (i.e. the person/resource executing or initiating the
activity), the timestamp of the event, or data elements recorded with the event.

Current process mining techniques evolved from Weijters and Van der Aalst’s
work [24] where the purpose was to generate a workflow design from recorded
information on workflow processes as they take place. Assuming that from event
logs, each event refers to a task (a well-defined step in the workflow), each task
refers to a case (a workflow instance), and these events are recorded in a certain
order. Weijters and Van der Aalst [24] combine techniques from machine learning
and Workflow nets in order to construct Petri nets that provide a graphical but
formal language for modeling concurrency as seen in Fig. 5.

DT DT

Fig. 5. Example of a workflow process modeled as a Petri net

The preliminaries of process mining can be explained starting with the fol-
lowing a-algorithm. Let W be a workflow log over T' and «(W) be defined as
follows.

1. Tw={teT|JoecW.tco}
2. Ty ={teT|JoeW.t= first(o)}
3. To={teT||30 € W. t = last(o)}
4. Xw={(A,B)|ACTw AN BCTwAVac AVbe B.a —w b A
Val,ag c A. al#wa2 AN Vbl,bg c B. bl#WbQ}
5. Yir = {(A,B) € X |V(A",B') € XoC A A BC B — (A,B) = (A, B)}
6. Pw ={p,p) | (4 B) € Yw} U {iw,ow}

7. Fy = {(a,p(AB)) | (A,B) EYw AN a€ A} @]
{(p(A,B)ab) | (A7B) cYw N be B} U
{(iw,t> | te T]} @] {(t,Ow) | te To}
8. Oé(W) = (Pw,Tw,Fw)

194 P. Mukala et al.

The sequence of execution of the a-algorithm goes as follows [4]: the log traces are
examined and the algorithm creates the set of transitions (Ty) in the workflow
(Step 1) the set of output transitions (77) of the source place (Step 2) and the
set of the input transitions (Tp) of the sink place (Step 3). Then the algorithm
creates Xy (Step 4) and Yy (Step 5) used to define the places of the mined
workflow net. In Step 4, it discovers which transitions are causally related. Thus,
for each tuple (A, B) € Xy, each transition in set A causally relates to all
transitions in set B, and no transitions in A and in B follow each other in
some ring sequence. Note that the OR-split/join requires the fusion of places. In
Step 5, the algorithm refines set Xy, by taking only the largest elements with
respect to set inclusion. In fact, Step 5 establishes the exact amount of places the
mined net has (excluding the source place iy and the sink place oy). The places
are created in Step 6 and connected to their respective input/output transitions
in Step 7. The mined workflow net is returned in Step 8 [4].

From a workflow log, four important relations are derived upon which the
algorithm is based. These are >w, —w, #w and ||w [4].

In order to construct a model such as the one in Fig.5 on the basis of a
workflow log, the workflow log has to be analysed for causal dependencies [22].
For this purpose, the log-based ordering relation notation is introduced: Let W
be a workflow log over T, i.e. W € P(T*). Let a,b € T. Then

Activity
Activity event classes

2
L Minimal frequency 6
Mean duration
T — Median frequency 7592
Aggregate duration Mean frequency 92.26

Maximal frequency 394
Frequency std. deviation 8146
EECOM Firstin case (1) | Lastincase (2 }

Activity | A Frequency | Relative treguenﬂ | Median duration | Mean duration | Duration range

Analyze Request for Quotation 394 18.57 % 23 mins, 40 secs 23 mins 50 mins

Amend Request for Quotation Requester 269 1268 % 9 mins, 30 secs 9 mins, 46 secs 10 mins

Create Purchase Requisition 92 434% [HE 30 mins, 23 secs | 30 mins, 22 secs | 51 mins

Release Purchase Order 89 419% [N 1min 1min 0 millis

Send Request for Quotation to Supplier 83 391% N 23 mins, 9 secs 22 mins, 44 secs 43 mins |

Create Quotation comparison Map 83 3o1% N 3hours, 23 mins |l 3hours, 17 mins [l 5hours, 18 mins [

Analyze Quotation comparison Map 83 391% [N 20 mins, 56 secs 20 mins, 15 secs 28 mins |

Choose best option 83 3o1% [N 0 millis 0 millis 0 millis |

Settle conditions with supplier 83 391% 8 hours, 44 mins 8 hours, 56 mins [l 10 hours, 26 mins

Create Purchase Order 83 391% [N 9 mins, 41 secs 9 mins, 29 secs 7 mins |

Confirm Purchase Order 83 391% 19 mins, 33 secs 19 mins, 26 secs 30 mins

Deliver Goods Services 83 301% N 1day,3hours [N 1day,2hours [N 1 day, 21 hours — |

Approve Purchase Order for payment 83 391% § 1 min 1 min 0 millis |

Send invoice 83 391% 0 millis 0 millis 0 millis

Release Supplier's Invoice 83 391% 4 mins, 29 secs 4 mins, 32 secs 5 mins

Authorize Supplier's Invoice payment 83 391% HH 0 millis 0 millis 0 millis

Pay invoice 83 3o1% N 9 mins, 1sec 9 mins, 44 secs 11 mins

Analyze Purchase Requisition 50 236% M 6 mins, 15 secs 6 mins, 27 secs 5 mins

Create Request for Quotation Requester ... 50 236% 1 min, 59 secs 2mins, 1sec 2 mins

Create Request for Quotation Requester 42 198% M 9 mins, 56 secs 10 mins, 22 secs 11 mins.

Amend Request for Quotation Requester... 33 156% W 19 mins, 7 secs 19 mins, 18 secs 15 mins

Settle dispute with supplier Financial Man... 18 085% Il 18 mins, 58 secs 22 mins, 20 secs 19 mins

Settle dispute with supplier PurchasingA.. 6 028% | 9 hours, 12 mins [9 hours, 23 mins [1 hour, 23 mins

Fig. 6. A view of modeled activities in order and purchasing processes

Process Mining Event Logs from FLOSS Data

®

Croate Purchase Reuisiton
304 mins

Analyze Purchase Requistion
85mins

Create Request for Guatation Requester
104 mins

5.7 mins

‘Analyze Request for Quotation
28 mins

/155 hrs 16hr

(
(s] | = (e

Create Guatation comparison Mop
33hrs

‘Analyze Guotation comparison Map
203 mins

Choose best option

‘Settle conditions with supplier
89hrs

Croat Purchase Order
95mins.

‘Confim Purchase Order
19.4 mins

f 5.4 hrs 72hr 7.6hrs
b
I o] | T
41d

36.9 mins.

Fig. 7. Process model produced as a result of process mining

195

196 P. Mukala et al.

— a >w b if and only if there are a trace 0 = tytst3...t,—1 and an integer
1€{l,...,n—2} such that o € W, ¢; = a and t;4; = b;

— a —w bifand only if a >w b and b >w a;

— aftwb if and only if @ >w b and b >w a;

— a||lw bif and only if @ >w b and b >w a.

Considering the workflow log W = {ABCD,ACBD,AED}, relation >y
describes which tasks appeared in sequence (one directly following the other):
A>y B A>yw C,A>w E, B>y C, B>y D, C >y B, C >y D and
E > WD. Relation —y can be computed from >y, and is referred to as the
(direct) causal relation derived from workflow log W: A —w B, A —w C,
A—w E,B—w D,C —w D and E —y D. Note that B —y, C follow from
C >w B. Relation W suggests potential parallelism.

In practice, process mining can produce a visualisation of models, as seen in
Figs. 6 and 7, based on the available data (event logs), the purpose of the investi-
gation as well as the methodology and the expected output. We consider a simple
example of a log about ordering and purchasing operations in an enterprise. The
core advantage is the ability to track the activities as they are performed, the
authors in the execution of these activities, the duration of the activities with
regards to the entire process models. Additional statistical information can also
be provided about the activities in the model as rewired and determined by the
goals of the analysis.

Details of events and activities are given in Fig. 6. Specifically, the user is
presented with a list of activities, the corresponding timestamp as well as the
authors of such activities over a given period of time. The duration of every
single activity is also included in the final report as is the frequency of occur-
rence of these activities. A similar analysis when conducted in FLOSS promises
to uncover hidden patterns or enhance the visibility of predicted occurrences. In
Fig. 7, a graphical representation of the occurrence of flow of activities is con-
structed and can be referred to as a Process Model. This is a reenactment of all
selected activities as they occur according to a particular workflow.

6 Conclusion

FLOSS repositories store a sheer volume of data about participants activities.
A number of these repositories have been mined using some of the techniques
and tools we have discussed in this paper. However, to the date, there has not
been any concrete investigation into how logs from FLOSS repositories can be
process mined for analysis. This maybe attributed partly to two apparent fac-
tors. Firstly, researchers interested in mining software repositories have not come
across process mining and thus its value is unexploited; secondly, the format of
recorded in FLOSS poses a challenge in constructing event logs. Nevertheless,
after reviewing existing mining techniques and the analysis they provide on the
data, one can infer the type of input data, the expected output and thus con-
struct logs that can be used for analysis through any of process mining recognised
tools such as the ProM framework or Disco. The example presented previously

Process Mining Event Logs from FLOSS Data 197

has been carried out using Disco as tool of visualisation. This approach can bring
an additional flair and extensively enrich data analysis and visualisation in the
realm of FLOSS data. In our future work, we plan to produce tangible exam-
ples of process models reconstructed with logs from data representing FLOSS
members daily activities. These logs can be built from Mailing archives, CVS
data as well as Bug reports. Our data source is OpenStack [11]. This is an envi-
ronment that reunites thousands of developers and users as well as more than
180 participating organizations that work together on a number of projects and
components for open source cloud operating systems. We make use of the dumps
of data from this platform to produce empirical evidence of learning processes
using Process Mining techniques. With a clearly defined objective and the type
of data needed, process mining promises to be a powerful technique for empirical
evidence provision in software repositories.

References

1. Bettenburg, N., Shihab, E., Hassan, A.E.: An empirical study on the risks of using
off-the-shelf techniques for processing mailing list data. In: Proceedings of the IEEE
International Conference on Software Maintenance, pp. 539-542. IEEE Computer
Society (September 2009)

2. Cubranic, D., Murphy, G.C.: Hipikat: recommending pertinent software develop-
ment artifacts. In: Proceedings of the 25th International Conference on Software
Engineering, pp. 408-418. IEEE Computer Society (May 2003)

3. Cubranic, D., Murphy, G.C., Singer, J., Booth, K.S.: Hipikat: a project memory
for software development. IEEE Trans. Softw. Eng. 31(6), 446-465 (2005)

4. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.T.: Workflow
mining: current status and future directions. In: Meersman, R., Schmidt, D.C.
(eds.) CooplIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 389—
406. Springer, Heidelberg (2003)

5. German, D.M.: An empirical study of fine-grained software modifications. Empir-
ical Softw. Eng. 11(3), 369-393 (2006)

6. German, D.M., Hindle, A.: Visualizing the evolution of software using softchange.
Int. J. Softw. Eng. Knowl. Eng. 16(01), 5-21 (2006)

7. Hassan, A.E.: Mining software repositories to assist developers and support man-
agers. In: Proceedings of the 22nd IEEE International Conference on Software
Maintenance (ICSM’06), pp. 339-342. IEEE Computer Society (September 2006)

8. Hassan, A.E.: The road ahead for mining software repositories. In: Frontiers of Soft-
ware Maintenance (FoSM 2008), pp. 48-57. IEEE Computer Society (September
2008)

9. Huang, S.K., Liu, K.M.: Mining version histories to verify the learning process of
legitimate peripheral participants. ACM SIGSOFT Softw. Eng. Notes 38(4), 1-5
(2005)

10. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. J. Softw. Maint.
Evol. Res. Pract. 19(2), 77-131 (2007)

11. OpenStack. Openstack system usage data. http://www.openstack.org

12. Poncin, W., Serebrenik, A., van den Brand, M.: Process mining software reposi-
tories. In: Proceedings of the 15th European Conference on Software Maintenance
and Reengineering (CSMR 2011), pp. 5-14. IEEE Computer Society (2011)

http://www.openstack.org

198

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. Mukala et al.

Robbes, R.: Mining a change-based software repository. In: Proceedings of the
Fourth International Workshop on Mining Software Repositories, p. 15. IEEE Com-
puter Society (2007)

Robles, C., Gonzalez-Barahona, J.M.: Developer identification methods for inte-
grated data from various sources. ACM SIGSOFT Softw. Eng. Notes 38(4), 1-5
(2005)

Robles, G., Gonzalez-Barahona, J.M., Izquierdo-Cortazar, D., Herraiz, I.: Tools for
the study of the usual data sources found in libre software projects. Int. J. Open
Source Softw. Process. (IJOSSP) 1(1), 2445 (2009)

Robles, G., Koch, S., Gonzalez-Barahona, J.M.: Remote analysis and measurement
of libre software systems by means of the cvsanaly tool. In: Proceedings of the 2nd
Workshop on Remote Analysis and Measurement of Software Systems (2004)
Rysselberghe, F.V., Demeyer, S.: Mining version control systems for facs (fre-
quently applied changes). In: Proceedings of the International Workshop on Mining
Software Repositories (MSR’04), pp. 48-52 (May 2004)

Sliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? ACM
SIGSOFT Softw. Eng. Notes 38(4), 1-5 (2005)

Sowe, S.K., Cerone, A.: Integrating data from multiple repositories to analyze
patterns of contribution in foss projects. In: Proceedings of the 4th International
Workshop on Foundations and Techniques for Open Source Software Certifica-
tion (OpenCert 2010), Electronic Communications of the EASST, vol. 33. EASST
(2010)

van der Aalst, W.M., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E.,
Gilnther, C.W.: Process mining: a two-step approach to balance between underfit-
ting and overfitting. Softw. Syst. Model. 9(1), 87-111 (2010)

van der Aalst, W.M., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47(2), 237-267 (2003)

van der Aalst, W.M., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128-1142
(2004)

Voinea, L., Telea, A.: Mining software repositories with CVSgrab. In: Proceedings
of the 2006 International Workshop on Mining Software Repositories, pp. 167-168.
ACM (May 2006)

Weijters, A.J.M.M., der Aalst, W.M.P.V.: Process mining: discovering workflow
models from event-based data. In: Proceedings of the 13th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC 2001), pp. 283-290 (October 2001)
Yao, A.: Cvssearch: searching through source code using cvs comments. In:
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM’01), p. 364. IEEE Computer Society (November 2001)

Ying, A.T., Wright, J.L., Abrams, S.: Source code that talks: an exploration of
eclipse task comments and their implication to repository mining. ACM SIGSOFT
Softw. Eng. Notes 30(4), 1-5 (2005)

MoKMaSD 2014

A Latent Representation Model for Sentiment
Analysis in Heterogeneous Social Networks

Debora Nozza!, Daniele Maccagnola! ™) | Vincent Guigue?, Enza Messina',

and Patrick Gallinari?

1 DISCo, University of Milano-Bicocca, Milano, Italy
Daniele.Maccagnola@disco.unimib.it
2 LIP6, Université Pierre et Marie Curie - UPMC, Paris, France

Abstract. The growing availability of social media platforms, in partic-
ular microblogs such as Twitter, opened new way to people for expressing
their opinions. Sentiment Analysis aims at inferring the polarity of these
opinions, but most of the existing approaches are based only on text,
disregarding information that comes from the relationships among users
and posts. In this paper we consider microblogs as heterogeneous net-
works and we use an approach based on latent representation of nodes
to infer, given a specific topic, the sentiment polarity of posts and users
at the same time. The experimental investigation show that our app-
roach, by taking into account both content and relationship information,
outperforms supervised classifiers based only on textual content.

1 Introduction

“What other people think” has always been an important piece of information
during the decision-making process [1], and this lead to a growing need of meth-
ods that could infer the opinion of people. The field of Sentiment Analysis (SA)
aims to define automatic tools able to extract opinions and sentiments from texts
written in natural language. The growing availability and popularity of social
media platforms, such as online review sites, personal blogs and microblogs,
opened the way to new opportunities for understanding the opinion of people.
Companies, advertisers and political campaigners are seeking ways to analyze
the sentiments of users through social media platform on their products, services
and policies.

Several works in Sentiment Analysis, however, suffer of important limita-
tions. Most prior work on SA applied to social network data has focused on
understanding the sentiments of individual documents (posts) [2-6].

The problem of inferring the sentiment of the users has been only recently
addressed by some authors [7,8]. Smith et al. [9] and Deng et al. [10] study
both post-level and user-level sentiments, assuming that a users sentiment can
be estimated by aggregating the sentiments of all his/her posts. Although the
sentiment of users is correlated with the sentiment expressed in their posts,
such simple aggregation can often produce incorrect results, because sentiment

© Springer International Publishing Switzerland 2015
C. Canal and A. Idani (Eds.): SEFM 2014 Workshops, LNCS 8938, pp. 201-213, 2015.
DOI: 10.1007/978-3-319-15201-1-13

202 D. Nozza et al.

extracted from short texts such as tweets (which in Twitter are limited to 140
characters) will generally be very noisy and error prone.

All of these approaches do not consider that microblogs are actually net-
worked environments. Early studies for overcoming this limitation exploit the
principle of homophily [11] for dealing with user connections. This principle
could suggest that users connected by a personal relationship may tend to hold
similar opinions. According to this social principle, friendship relations have been
considered in few recent studies.

In [12], the authors showed that considering friendship connections is a weak
assumption for modelling homophily, as two friends might not share the same
opinion about a given topic. Instead, they proposed to use approval relationships
(e.g. in Twitter represented by “retweets” and in Facebook represented by “like”)
which better represent the sharing of ideas between two users. However, in [12],
the sentiment of the posts is used to infer the sentiment of the users, but not
vice versa.

In order to overcome this limitation, in our approach we consider social net-
work data as a heterogeneous network, whose nodes and edges can be of different
types. Inspired by the work of Jacob et al. [13], who introduced an innovative
method for classifying nodes in heterogeneous networks, we propose an approach
that can infer at the same time the sentiment relative to each post and the sen-
timent relative to each user about a specific topic. This algorithm learns a latent
representation of the network nodes so that all the nodes will share a common
latent space, whatever their type is. This ensures that the sentiment of the posts
can influence the sentiment of the users, and in the same way the sentiment of
the posts is influenced by that of the users.

For each node type, a classification function will be learned together with
the latent representation, which takes as input a latent node representation and
computes the sentiment polarity (positive or negative) for the corresponding
node.

The paper is structured as follows. In Sect. 2 we introduce the basic concepts
that are used in our model, while in Sect.3 we describe the model and the
learning algorithm. In Sect.4 we test our approach on a case study, a Twitter
network about the topic ‘Obama’, and finally in Sect. 5 conclusions are drawn.

2 Preliminaries

In this section we introduce some preliminary concepts that will be used in our
model. First, we give a definition of Heterogeneous Approval Network, which
summarizes the structure of a social network and the information we require
to determine the users’ and posts’ sentiment polarity. Then, we give a brief
description of the techniques we use to represent and treat the textual data
available in the posts.

A Latent Representation Model for Sentiment Analysis 203

2.1 Heterogeneous Approval Network

Following the work in [12], we assume that a user who approves a given mes-
sage will share the same opinion with higher probability. Pozzi et al. defined as
“approval network” a network where the nodes represent users of a social net-
work, and a directed arc connects a user who has approved a post to the original
author of that post. The most known example of approval relationship is the
“retweet” feature in Twitter, which allows a user to share another user’s post.

We start from the definition of “approval graph” in order to give a formal
structure to our data.

Definition 1. Given a topic of interest q, a Directed Approval Graph is a
quadruple DAG, = {Vq,E;/V,XZ‘I/,XqE}, where Vg = {v1,...,v,} represents the
set of active users; E;/V = {(vi,vj)|vi,v; € Vg} is the set of approval edges,
meaning that v; approved v;’s posts; Xf = {kijl(vi,v;) € E4} is the set of
weights assigned to approval edges, where k; ; indicates the number of posts of
v; approved by v;; X}I/ = {¢;|vi € V,} is the set of coefficients related to nodes,
where ¢; represents the total number of posts of v;.

Starting from a DAG,, the weight on the arc can be normalized to better reflect
the importance of an approval.

Definition 2. Given an Approval Graph DAG, = {Vq,EC}/V,XqV,XqE}, a
Normalised Directed Approval Graph is derived as a triple N-DAG, =
{%,E(‘I/V,W;/V}, where W,‘J/V ={w,;; = k:—]’|k” € XqE,cj € X(‘;} is the set of
normalised weights of approval edges.

The N-DAG, represents a network with a single type of node, the users. In
[12], Pozzi et al. defined a heterogeneous graph which could represent both the
user-user and user-post relationships. However, the network they defined does
not consider relationships among posts. In this paper, we extend their Hetero-
geneous Normalized Directed Approval Graph (HN-DAG,) so that post-post
relationships can be taken in account as well (Fig. 1):

Definition 3. Given a N-DAG,; = {Vq,E;/V,W}Z/V}, let Py ={p1, - ,pm} be
the set of nodes representing posts about q and E(YP = {(vi,pe)|vi € Vg, p1 € Py}
be the set of arcs that connect the user v; and the post p;. Then, let Efp =
{(Pty, Pts) Pty s Prs € Py} be the set of arcs that connect a post py, to another
post pr,, and WET ={wy, 4,(pr,,pr,) € EET} is the set of weights of the post-
post edges. An Heterogeneous Normalised Directed Approval Graph is a
septuple HN-DAG, = {Vq,Pq7E;/V7E;/P,E5P,W(I‘/V,W(IPP}.

2.2 Vector Space Document Representation

The field of Sentiment Analysis requires the analysis of text documents, where
the words occurring in a document are used to determine the opinion expressed in
it. As described in the previous section, our heterogeneous network is composed

204 D. Nozza et al.

w__w
L/
Y%

Fig. 1. Example of HN-DAG representing users and posts of a social network, con-
nected by user-user (blue), post-post (red) and user-post (green) relationships (Color
figure online).

not only by the users of a social network, but also by the textual posts every
user has emitted.

For this reason, we require a way to model such text documents. The most
common method applied in literature (in particular in the fields of information
retrieval and text mining [14]) is the bag of words representation, where the
words are assumed to appear independently and their order is not considered.

Given the set of posts P that are represented in our heterogeneous network,
let U = {uy,us,...,un} be the set of all the unique words occurring in P. Then,
a post p; can be represented by an m-dimensional vector p;. A usual document
encoding for sentiment classification is tf(¢, v), which is the frequency of a word
u € U in post p;. Then, the vector representation of the post is:

pi = (4603, u1), tF(i, uz), . . ., tF(i, um)) (1)

In this work, we define the weights of the post-post edges as the value of
similarity between each couple of posts. With document represented by vectors,
we can measure the degree of similarity of two posts as the correlation between
their corresponding vectors, which can be further quantified as the cosine of
the angle between the two vectors (Cosine Similarity). Let p, and p; be the
vector representation respectively of posts p, and p,. Their cosine similarity is
computed as follows:

— — l
. i—1 Paj X Pbj
similarity = Pa Db _ 2j=1Poi J (2)

IpalllEsl S a? L (on)?

3 Latent Space Heterogeneous Approval Model

Following the work of Jacob et al. [13], in this paper we propose a model that
can, at the same time, learn the latent representation of the nodes and infer

A Latent Representation Model for Sentiment Analysis 205

their sentiment polarity. Differently from previous works, this model performs
sentiment polarity classification on all the nodes of the network HN-DAG shown
in Sect. 2.1, that means we can infer the polarity for both users and posts simul-
taneously.

Each of the nodes, whatever their type is, is represented by a vector space
model so that all of them will share the same common latent space.

The model we propose will therefore learn the proper representation of each
node, and at the same time it will learn a classification function on the latent
space. This ensures that the sentiment of the posts can influence the sentiment
of the users, and vice versa.

The classification function will take as input a latent node representation in
order to compute the polarity (positive or negative) for the corresponding node.

The proposed approach can be summarized with the following steps:

— Each node is mapped onto a latent representation in a vector space R? where
Z is the dimension of this space. This latent representation will define a
metric in the RZ space such that two connected nodes will tend to have a
close representation, depending on the weight of the connection (smoothness
assumption).

The latent representation for the nodes is initialized randomly.

— A classification function for inferring the polarity of the nodes is learned on
the network starting from the latent representations. Nodes with similar rep-
resentations will tend to have the same sentiment polarity.

In other words, both graph and label dependencies between the different
types of nodes will be captured through this learned mapping onto the latent
space.

In the following we describe in details the components of the proposed app-
roach.

Given the latent representation z; € RZ of the node z;, we want to predict
the related sentiment y;. We are therefore searching for a linear classification
function fy, where § are the parameters of the linear regression. This function is
learned by minimizing the classification loss on the training data:

ZA(fe(Zi)ayi) (3)
€T
where A(fy(2;),y;) is the loss to predict fy(z;) instead of the real label y;, and
T is the training set.

In order to make sure that connected nodes have similar representations, we
introduce the other following loss:

> wigllz—) (4)

i,j:w;, ;70
which forces the approach of the latent representation of connected nodes. The
complete loss function is the aggregation of the classification and similarity loss:

L(2,0) = > Alfolzi)yi) +2 > wijllzi — 2] (5)

€T i,j:w;, ;70

206 D. Nozza et al.

This loss will allow us to find the best classification function and, at the same
time, improve the meanings of the latent space.

In the original work of [13], the authors fixed a value of \ for all the pos-
sible edges. In our work, we decided to model the problem with three different
parameters to give different weights to different types of edge, instead of a sin-
gle parameter \. Three new parameters are introduced: \p, refers to the edges
connecting two posts, \p, refers to the edges connecting a post to a user and
hup Tefers to the edges connecting two users.

Following this idea, the loss function in Eq. 5 can be rewritten as follows:

L(Zae):ZA(fe(Zi)ayi)+3;} Z wi 5z — z* (6)

€T i,j:wiyﬁéo
ieVAJEV
+a Y wiglla— P
pv . .
i,J:w;, j #0
i€EVAJEP
+o > wiglla =z
P igiw ;70
i€PAEP

The minimization of the loss function (Eq.6) is performed by exploiting a
Stochastic Gradient Descent Algorithm (see Algorithm 1). The algorithm first
chooses a pair of connected nodes randomly. After that, if the node is in the
training set 7 it modifies the parameters of the classification function and the
latent representation according to the classification loss following Eq. 3. Succes-
sively, it updates the latent representation of both the nodes depending on the
difference between the two representation presented in Eq. 4.

Algorithm 1. Learning(z, w, €, \)

1: for A fixed number of iterations do
2: Choose (z,x;) randomly with w; ; > 0
3 if z; € 7 then

4: 6 0+eVoA(fo(2i), vi)

5: 2 —— zi + eV, A(fo(2:), y:)

6 end if

7. if z; € 7 then

8 6 — 0+eVoA(fs(z5),v5)

9: zj 2 + €V A(fo(2)), y5)
10: end if

11 2z e 2z + eV, wi |z — 2]
12: Zj<—Zj+8)\vzjwi7j|Zi—Zj||2
13: end for

A Latent Representation Model for Sentiment Analysis 207

4 Experiments

4.1 Dataset

In order to evaluate the proposed approach, we used a dataset that contains
enough information about users and posts to build a heterogeneous network as
described in Sect. 2.1. Every user and post in the network has been labelled with
its polarity (positive or negative).

We used the ‘Obama’ dataset available in [12], which has been collected from
Twitter and contains the following data:

1. A set of users and their sentiment labels about the topic ‘Obama’ (obtained
by manual tagging);

2. Tweets (posts) written by users about the topic ‘Obama’ with their sentiment
labels (obtained by manual tagging);

3. The users’ retweet network, which represent the approval connections between
users.

This dataset contains 61 nodes and 187 tweets, and a total of 252 arcs rep-
resenting retweet connections.

Starting from this dataset, we built a HN-DAG, where the set of nodes V
represent the set of users who posted something about the topic ‘Obama’, and
the set P, represent the tweets that those users posted about ‘Obama’.

We have three types of arcs connecting the nodes:

— the arcs connecting a user to another user, which weight is determined by the
normalized number of retweets;

— the arcs connecting a user to a post, which in our case have 0/1 weights;

— the arcs connecting a post to another post, whose weight is determined by the
cosine similarity between the two posts, as explained in Sect. 2.2.

4.2 Performance Evaluation and Settings

In order to assess the importance of relationships for determining the senti-
ment polarity of users and posts, we compare our method with two well-known
approaches based only on the analysis of the textual data: a Support Vector
Machine (SVM) and a L2-regularized logistic regression (LR). When only con-
tent is used, the posts are classified as positive or negative based on their content,
while the users are classified based on the total polarity of their posts (the posts
of a single user are merged and considered as a single document for determining
the user’s polarity).

We used the Support Vector Machine package available in LibSVM [15], using
a linear kernel and default settings. The linear regression model was based on
the library for large linear classification LibLinear [16].

We have considered as evaluation measures the well-known Precision(P),
Recall(R) and Fj-measure:

p+_ # of instances successfully predicted as positive M)

of instances predicted as positive

208 D. Nozza et al.

_ # of instances successfully predicted as positive

Rt — (8)
of instances effectively labelled as positive
2.Pt. R
+ _
=5 + Rt ©

In the same way it is possible to compute the Precision, Recall and F-Measure
for the negative class (P~, R~, F]).
We also measured Accuracy as:

A # of instances successfully predicted
cc=

of instances (10)

The performance of the proposed model can be affected by the randomness of
the learning algorithm, leading to less-than-optimum results. In order to reduce
this effect and improve the robustness of the classification, we used a majority
voting mechanism to label the instances. In particular we performed k = 1, 5,
11, 15, 21 and 101 runs to get k predictions (votes) and we took a majority vote
among the k possible labels for each node. For each k, we performed 100 exper-
iments and considered their average performance. In the following, we report
the results for £ = 21, which show a good trade-off between the performance
variability and the computational complexity.

The total number of iterations of the learning algorithm has been set to
4000000, while the gradient step € have been set to 0.1. The size of the latent
representation has been set to 40.

4.3 Results

Initially, we tested the performance of our approach by considering a case where
66 % of the nodes (randomly chosen) are considered as known. The proposed
model is strongly influenced by the parameters \pp, Ap, and L, assigned to
the different types of edges. Therefore, for each);, where i € {vv, pp,pv}, we
investigated different values varying in the range {0.01,0.05,0.1}.

In Tables 1 and 2 we reported the best combinations of); for classifying posts
and users. The choice of the configuration is, at the current time, an empirical
estimate. For the following experiments, we considered a trade-off between pre-
dicting the users and posts polarity, and therefore we chose as best configuration
App = 0.05, Apy = 0.05, Ny = 0.1, as highlighted in the tables.

We compare the results obtained with these settings with the results achieved
by the two textual approaches (see Table3). The Latent space Heterogeneous
Approval Model (LHAM) outperforms both Support Vector Machine (SVM) and
Linear Regression (LR) when predicting the polarity of the posts (around 5%
improvement), and strongly outperforms them when predicting the polarity of
users (more than 34 % of improvement in terms of accuracy).

In order to reduce the bias introduced by empirically choosing the values of
i, we computed the average performance over all possible combinations in the
range {0.01,0.05,0.1}. The results (as reported in the last column of Table 3)
show that our method still outperform the baseline algorithms when predicting

A Latent Representation Model for Sentiment Analysis 209

Table 1. Best configurations of ; for inferring the user polarity. The highlighted line
represents the chosen configuration.

Moo | dpp |Ape P+ |R+ |F1+ |P- R- F1- | Acc
0.01 10.01 |0.01 0.91 |0.841 0.873 |0.887 0.93 |0.907 | 0.895
0.01 10.05 0.01 0.91 |0.841 0.873 |0.887 |0.93 |0.907 | 0.895
0.05 0.01 |0.01 0.91 |0.841 0.873 |0.887 |0.93 |0.907 | 0.895
0.05 0.01 0.05 0.91 |0.841 0.873 |0.887 0.93 |0.907 | 0.895
0.05 0.01 0.1 0.91 |0.841 0.873 0.887 0.93 |0.907 | 0.895
0.05 1 0.05 |0.01 0.905|0.836 0.868 |0.89 |0.933]0.91 | 0.895
0.05 1 0.05 0.05 0.91 |0.841 0.873 |0.887 |0.93 |0.907 | 0.895
0.05 0.05 0.1 0.91 0.841 0.873 0.887 0.93 0.907 0.895
0.05 0.1 |0.05 0.91 |0.841 0.873 |0.887 |0.93 |0.907 | 0.895
0.05 0.1 |0.1 091 |0.841 0.873 0.887 0.93 |0.907 | 0.895
0.1 0.01 0.05 091 |0.841 0.873 0.887 0.93 |0.907 | 0.895
0.1 0.01 0.1 091 |0.841 0.873 0.887 0.93 |0.907 | 0.895
0.1 0.05 0.01 0.925 0.839 0.878 |0.913 0.953 0.932 |0.914
0.1 0.05 0.05 0.91 |0.841 0.873 0.887 0.93 |0.907 | 0.895
0.1 10.05 0.1 091 |0.841 0.873 0.887 0.93 |0.907 | 0.895
0.1 0.1 |0.05 091 |0.841 0.873 0.887 0.93 |0.907 | 0.895
0.1 0.1 |01 091 |0.841 0.873 0.887 0.93 |0.907 | 0.895

the polarity of the users, maintaining a 33 % of improvement in terms of accuracy,
while maintaining a comparable performance when predicting the polarity of the
posts.

In order to fully validate our approach, we tested it with different sizes of
training and test sets. Therefore, we randomly split our dataset with different
percentages {20, 33,50, 66,80}. Given the small size of the dataset, we perform
a cross-validation by repeating the random split 30 times for each percentage,
and therefore obtain significant results.

Tables4 and 5 show the results of posts and users classification, performed
by our model and baseline models depending on training set percentage. It is
clear from the tables that our model outperforms other approaches in most of
the cases, in particular when the size of the training set has a larger number of
instances. While the post classification shows a slight improvement by our model
over SVM and Linear Regression, for user classification we are able to achieve
far better results than text-only based approaches.

While our model improves its performance for larger training set sizes, the
other methods do not improve, and their performance can even decrease. The
most probable explanation of this behaviour is that short-text posts are very
noisy: a text-only approach is therefore more affected by the introduction of
more training instances (which are regarded as more noise), while our model is

210 D. Nozza et al.

Table 2. Best configurations of)\; for inferring the post polarity. The highlighted line
represents the chosen configuration.

hov | App | Apv | P+ R+ F14+ | P- R- F1- Acc
