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1 Introduction

In this chapter, a new architecture, called “nonvolatile logic-in-memory (NV-LIM)

architecture,” is presented, where the NV-LIM architecture could overcome per-

formance wall and power wall due to the present CMOS-only-based logic-LSI

processors [1–3]. Figure 1a shows a conventional logic-LSI architecture, where

logic and memory modules are separately implemented together and these modules

are connected each other through global interconnections. Even if the device

feature size is scaled down in accordance with the semiconductor technology

roadmap, the global interconnections are not shorten, rather than are getting longer,

which resulting in longer delay and higher power dissipation due to inside wires. In

addition, since on-chip memory modules are “volatile”, they always consume the

static power to maintain the stored data.

On the other hand, several emerging storage devices are getting developed to

overcome the weak points of conventional semiconductor memories; dynamic

random-access memory (DRAM) and static random-access memory (SRAM).

Especially, magnetoresistive random-access memory (MRAM) that has already

undergone a few incarnations, is now converging on a scheme for upending the

memory business. Spin-transfer torque (STT) MRAM promises speed and reliabil-

ity comparable to that of SRAM, where SRAM is the quick-access memory

embedded inside microprocessors, along with the “nonvolatility” of flash, the

storage of smartphones and other portables. Since magnetic tunnel junction

(MTJ) device, the key element of MRAM, is easily distributed over a logic-circuit

plane by using a three-dimensional (3D) stack structure as shown in Fig. 1b,

performance degradation due to intra-chip global wires could be drastically
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mitigated, which leads to a high- performance, ultra-low-power and highly reliable

(or highly resilient) logic LSI.

One of the most useful methods to cut off the leakage power is to use power

gating. Figure 2a shows a time chart of power dissipation in conventional logic LSI

without power gating. If you apply the power gating in the conventional logic LSI, a

part of standby power can be eliminated, but two additional operations, “back-up”

and “boost-up” procedures, must be performed before and after applying the power

gating, which may discourage to apply the power-gating technique as shown in

Fig. 2b. In contrast, non-volatility is a good combination of applying the power

gating, which ideally eliminates the wasted power dissipation as shown in Fig. 2c.

Figure 3a shows nonvolatile VLSI processor architecture, where a high-density

and high-speed MRAMs and nonvolatile flip-flops are used to simply realize a

nonvolatile logic LSI [4, 5]. When you could merge a part of nonvolatile on-chip

memory into logic-circuit modules as shown in Fig. 3b, it would be possible to

improve the performance of the nonvolatile logic LSI. In the following description,

some concrete design examples using MTJ-based nonvolatile NV-LIM architecture

such as nonvolatile field programmable gate array (FPGA) [6–14], nonvolatile

ternary content-addressable memory (TCAM) [15–22], and nonvolatile random-

access logic-LSI unit (MCU) [23, 24] are demonstrated and their usefulness is

discussed.

Fig. 1 Comparison of

logic-LSI architectures;

(a) conventional,
(b) nonvolatile logic-in-
memory
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2 Design Example of NV-LIM-Based FPGA

Field programmable gate array (FPGA) is a key device to quickly realize

prototyping systems, where their specification and function are directly program-

mable by users, while power consumption as well as hardware cost is a serious

problem in expanding application fields of FPGAs, especially in the field of mobile

and portable applications [25]. The use of MTJ devices could solve the power-

dissipation problem. Figure 4 shows the overall structure of a nonvolatile FPGA,

where each lookup table (LUT) circuit in the configuration logic block (CLB) stores

logical configuration data into MTJ devices. Therefore, whenever an LUT circuit is

in a standby mode, its power supply could be shut down, which completely

eliminates the wasted standby power dissipation.

Although the use of MTJ devices makes the LUT circuit nonvolatile, its hardware

cost is rather than increased when you simply replaces conventional SRAM-cell-

based volatile storage elements with nonvolatile ones, because every MTJ-based

nonvolatile storage element generally requires sense amplifier (SA) as shown in

Fig. 5a. In order to reduce the hardware overhead, MTJ devices are merged into

the combinational logic circuit as shown in Fig. 5b, where the technique is the circuit-

level NV-LIM architecture [6]. As a result, the LUT circuit becomes compact

because only a single SA is required in the proposed LUT circuit. Figure 6a shows

the circuit diagram of the MTJ-based two-input nonvolatile LUT circuit, and Fig. 6b

shows a fabricated two-input nonvolatile LUT-circuit test chip and its features.

The immediate wakeup behavior of the nonvolatile LUT circuit has been confirmed

by the measured waveforms as shown in Fig. 7.
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Fig. 3 Configuration of nonvolatile logic LSIs; (a) 1st-generation nonvolatile logic-LSI architec-

ture, (b) 2nd-generation nonvolatile logic-LSI architecture
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In the practical FPGA, the number of input variables in the LUT function must

be four or more, while the variation of the resistance values of MTJs devices

becomes critical, because multi-input LUT circuit requires many MTJ devices

and MOS transistors, where they are connected serially. For the stable and reliable
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Fig. 7 Immediate wakeup behavior of the 2-input nonvolatile LUT circuit
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operation of the multi-input LUT circuit, we insert “redundant” MTJ devices to

adjust the operating point of the LUT circuit. Figure 8 shows a design example of

the multi-input nonvolatile LUT circuit, where both twice number of MTJs and

three additional MTJs are inserted into the LUT-selection tree and the LUT-

reference tree, respectively [7, 8]. Figure 9 summarizes the comparison of multi-

input LUT circuits. It is clearly demonstrated that the proposed the NV-LIM-based

NV-LUT circuit is implemented.

Not only LUT circuit but also other components, switch block (SB) and con-

nection block (CB), in FPGA chip are efficiently implemented by using the circuit-

level NV-LIM architecture. Since the write-current characteristic of MTJ device is

left-right asymmetric as shown in Fig. 10a, only a single MOS transistor with a

large width is shared by every NV latch, while each NV latch has only MOS

transistors with a small width as shown in Fig. 10b, which greatly reduces the

effective chip area of routers [9]. Figure 11 shows a fabricated nonvolatile FPGA

chip, where almost 1,000 tiles (each tile consists of LE, CB and SB, that is, the

minimum set of basic components in FPGA chip) are integrated in the area of

3.4� 2.0 mm2 under 90 nm CMOS/perpendicular-MTJ technologies. This high-

density integration of nonvolatile FPGA chip has firstly succeeded by using the

SA

LUT-
reference

tree

IF IREF

Z Z’

6
X

M
T

J

M
T

J

M
T

J

M
T

J

LUT-
selection

tree

M
T

J

R0

R64

R1

R65

R63

R127

Rref

Rr1 Rr2 Rr3

Redundant MTJs

Fig. 8 Resistance-variation compensation technique using redundant MTJ devices
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NV-LIM architecture [10, 11]. As a future prospect, it is also important to design

nonvolatile logic LSI using three-terminal MTJ (3T-MTJ) device [12–14], because

write current path is separated from read current path in the 3T-MTJ device

[26, 27], which greatly mitigates the circuit-design restricts of nonvolatile logic

LSIs. Figure 12 shows a 3-T MTJ-based nonvolatile LE. The use of 3-T MTJ

devices makes the LE compact and improved the switching speed, because read-

current level could be appropriately determined independent of write-current level.
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3 Design Example of NV-LIM-Based TCAM

As a typical nonvolatile special-purpose logic-LSI example using NV-LIM struc-

ture, MTJ-based non-volatile ternary content-addressable memories (TCAM) have

been designed and fabricated [15–22]. TCAM is a functional memory for high-
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Fig. 11 Resistance-variation compensation technique using redundant MTJ devices
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speed data retrieval that performs a fully parallel search and fully parallel compar-

ison between an input key and stored words. Currently, its high bit cost and high

power dissipation, higher than those of standard semiconductor memories such as

static random access memory limits the fields to which TCAM can be applied.

Figure 13 shows the truth table of a TCAM cell function. Its rich functionality

makes data search powerful and flexible but with conventional CMOS realization

there is an associated cost of a complicated logic circuit with two-bit storage

elements. Figure 14 shows the design philosophy of realizing the TCAM cell circuit
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Fig. 14 Design philosophy of making a compact TCAM cell circuit; (a) conventional TCAM cell

structure, (b) conventional NV-TCAM cell structure, (c) MTJ device merging storage and logic

functions, (d) proposed NV-TCAM cell structure
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compactly with a non-volatile storage capability. In the case of both conventional

volatile TCAM cell structure and conventional non-volatile TCAM cell structure

without using LIM architecture shown in Fig. 14a, b, respectively, the bit cost is

high. In contrast, when two-bit storage elements are merged into a logic-circuit part

by using the LIM architecture as shown in Fig. 14c, the proposed TCAM cell

structure becomes compact and non-volatile as in Fig. 14d. Figure 15a, b compare a

conventional volatile TCAM cell circuit and the proposed non-volatile one, respec-

tively. The conventional CMOS-based volatile TCAM cell circuit consumes

12 MOS transistors (12T-TCAM circuit structure) while the proposed one takes

just 4 MOS transistors with two MTJ devices (4T-2MTJ circuit structure) [15–20].

Note that MTJs do not affect the total TCAM cell-circuit one, because MTJs are

fabricated onto the CMOS plane. Compact realization due to NV-LIM architecture

has the advantage of improving the performance of the circuit by inserting a driver

as shown in Fig. 15c. Figure 16 summarizes the comparison of TCAMword circuits

with 144 cells. By the appropriate division of the TCAMword circuit, the activation

ratio of the TCAM can be minimized. Figure 17 shows the variety of the segment-

based TCAM word-circuit structures. In the case of the 3-segment-based

NV-TCAM word-circuit structure, where the first segment, the second-segment

and the rest consist of 3-bit, 7-bit and 134-bit cells respectively, its average

activation ratio becomes as low as 2.8 %, which indicates that 97 % or more

TCAM cells can be in standby mode on average by the fine-grained power gating
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[15–20]. Figure 18 shows the fabricated non-volatile TCAM test chip under 90-nm

CMOS/MTJ technologies, which is used as a high-speed index search engine [17].

Robustness against soft error due to particle strike is getting an important factor

in the practical applications. MTJ device stores one-bit information as a resistance

whose value is robust against alpha particle and atmosphere neutron strikes, which

significantly lower the probability of single-event upsets (SEUs). The TCAM also

becomes robust against delay variations caused by single event transients (SETs) as

it is designed based on four-phase dual-rail encoding realized using complementary

NAND and NOR-type word circuits as shown in Fig. 19 [21, 22]. The dual-rail
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Fig. 19 Design of Asynchronous dual-rail nonvolatile TCAM word circuit with soft-error
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TCAM cell is compactly designed using 20 transistors (20T) and 4 MTJ devices

stacked on a CMOS layer as opposed to a single-rail 24T TCAM cell that consists of

soft-error tolerant storage elements. In addition, soft errors can be detected using

the dual-rail signals. As a design example, a 256-word� 64-bit TCAM is designed

under a 90-nm CMOS/MTJ technology and is evaluated with a collected charge

caused by a particle strike, which induces the SET and hence the delay variation.

Figure 20 summarizes the performance comparison of TCAMs. The proposed

TCAM properly operates under the delay variation, while achieving comparable

performance to a synchronous single-rail TCAM in which an up to 25 % timing

error occurs.

4 Design Example of Nonvolatile Random-Access
Logic LSI

In order to design and implement MTJ-based nonvolatile random-access logic

circuit, we must make a basic gate family using NV-LIM architecture. We have

employed a nonvolatile full adder circuit to demonstrate a circuit based on logic-in-

memory architecture [28]. Figure 21 shows the circuit diagram of the full adder. It

consists of SUM-circuit and CARRY-circuit parts, where the symbols A (A0; the
complement of A) and Ci (Ci0) are the external inputs and the symbol B (B0) is a
stored input. The use of a dynamic logic style [29] (where pre-charged sense

amplifier [30] has been also presented as a high-speed, highly stable and low-

power logic style of nonvolatile logic) controlled by clock signals, CLK and CLK0,
cuts off the steady current flow from the supply voltage VDD to GND, which

reduces the dynamic power dissipation of the circuit. The stored data is

programmed by controlling external signals. Complementary stored inputs, B and

B0, are programmed by using individual current-flow path, which is selectable by
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the word lines, WL1, WL2, WL3, and WL4, and the bit lines, BL and BL0. For
example, in the case of storing B¼ 0 into the corresponding MTJ in the SUM

circuit, the word line WL1 is set to the supply voltage VDD, and BL and BL0 are set
to GND and VDD, respectively, which makes the current-flow path through the

MTJ set up as shown in Fig. 21. All the external inputs and the complementary

clock signals are turned off during the above write operation.

Figure 22 shows the measured waveforms of the SUM circuit chip, where the

stored inputs, B and B0, are fixed to “0” and “1”, respectively and periodic 1.0-V-

peak-to-peak voltage signals are applied to CLK, CLK0, A, A0, Ci, and Ci0,
respectively, under periodic turn on and off of VDD¼ 1.0 V. It can be clearly

seen in the traces of Fig. 22 that the output Safter (S right after power-on) is the same

as Sbefore (S just before power-off), which means that stored data remain intact even

if VDD is shut down and is turned on again. It should be noted that nonvolatile

storage function of the present circuit is realized without employing complex

reload/write-back from/into an off-chip nonvolatile storage device.

In order to design practical-scale MTJ-based NV-LIM LSIs, it is important to

establish an (semi-)automated design flow. We have developed this flow by com-

bining de facto standard engineering design automation (EDA) tools and new

supplementary design tools for precise simulation of MTJ device characteristics

as shown in Fig. 23 [31]. By using the proposed flow, various MTJ-based NV-LIM

circuits can be designed by using HDL, and the corresponding layout including

MOS and MTJ/MOS-hybrid cells can be automatically synthesized, as shown in

Fig. 24, where its layout validity can be completely verified through DRC and LVS.

As a typical example of nonvolatile random-access logic LSI, we have devel-

oped the motion-vector prediction unit [23, 24]. Figure 25 shows a test-chip
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Fig. 21 Circuit diagram of a nonvolatile full adder with MTJ-based logic-in-memory architecture
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photomicrograph of the motion-vector prediction unit using 90 nm MTJ/MOS

process made on a 300 mm wafer fabrication line. Twenty-five processing elements

(Pes) are arranged in a 5� 5 grid, which reduces the dissipation to one-fourth.

The number of MOS transistors is about 0.5 million and that of MTJ devices is

about 13,000.
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Fig. 24 Layout-design example of an NV-LIM-based random logic circuit
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