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Abstract In this paperwepresent a parametric formulationof interval approximation
of fuzzy numbers. It is based on a more complex version of generalized Trutschnig
et al. distance. General conclusions are showed and particular cases are studied in
details.
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1 Introduction

The problem to approximate a fuzzy set has been studied by several authors. Some
of them use an interval approximation [1, 4–11], others use triangular or trapezoidal
approximation. This idea is bornwith the aimof simplifying complicated calculations
that appear in modeling and processing fuzzy optimization and control problems. In
all these cases, even if we start with data described by fuzzy numbers of the easier
forms like triangular and trapezoidal, the fuzzy outputs we meet are complicated and
may have lost all the peculiarity of the starting sets. It is sufficient to look to a usual
fuzzy control system output that may be neither normal nor convex.

In this paper we propose to substitute a given fuzzy number with an interval which
has some properties like to be the nearest in some sense we describe. The results we
present start from a paper of Grzegorzewski [10] in which he proposes the nearest
interval to the original fuzzy number with respect to several distances. In particular
we have focused on the distance introduced by Trutschnig et al. [13]. This distance
depends on two parameters, a constant θ and a function f (α) that depends on the
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variable that individualizes the α-cuts of a fuzzy set. We propose to consider even θ

as a function of α. This simple variation generates interesting results and connection
with other important intervals connected with the initial fuzzy number defined in
previous researches.

In Sect. 2 we give basic definitions and notations. In Sect. 3 we present an interval
approximation for a fuzzy number obtained by minimizing a suitable functional.
In Sects. 4 and 5 we study some properties of the approximation interval we have
proposed. Finally, in Sect. 6 we apply our method to the interval approximation of
trapezoidal fuzzy numbers.

2 Preliminaries and Notation

Let X denote a universe of discourse. A fuzzy set A in X is defined by a membership
functionμA : X → [0, 1]which assigns to each element of X , a grade ofmembership
to the set A. The height of A is h A = height A = supx∈X μA(x). The support and the
core of A are defined, respectively, as the crisp sets supp(A) = {x ∈ X;μA(x) > 0}
and core(A) = {x ∈ X;μA(x) = 1}. A fuzzy set A is normal if its core is nonempty.
A fuzzy number A is a fuzzy set of the real line R with a normal, fuzzy convex and
upper-semicontinuous membership function of bounded support (see, e.g., [2]). In
accordance with the definition given above there exist four numbers a1, a2, a3, a4 ∈
R, with a1 ≤ a2 ≤ a3 ≤ a4, and two functions lA, rA : R → [0, 1] called the left side
and the right side of A, respectively, where lA is nondecreasing and right-continuous
and rA is nonincreasing and left-continuous, such that

μA(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x < a1
lA(x) a1 ≤ x < a2
1 a2 ≤ x ≤ a3
rA(x) a3 < x ≤ a4
0 x > a4 .

The α-cut of a fuzzy set A, 0 ≤ α ≤ 1, is defined as the crisp set Aα =
{x ∈ X;μA(x) ≥ α} if 0 < α ≤ 1 and as the closure of the support if α = 0. Every
α-cut of a fuzzy number is a closed interval Aα = [aL(α), aR(α)], for 0 ≤ α ≤ 1,
where aL(α) = inf Aα and aR(α) = sup Aα .
In the following we will employ the mid-spread representation of intervals. The mid-
dle point and the spread of the interval I = [a, b] will be denoted, respectively, by
mid(I ) = (a + b)/2 and spr(I ) = (b − a)/2.
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3 Interval Approximation of Fuzzy Numbers

Our proposal starts from the Grzegorzewski papers in which the author defines and
finds an interval approximation of a fuzzy number. Starting from a distance between
two fuzzy numbers and observing that any closed interval is a fuzzy number, the
author defines the approximating interval of a fuzzy number as the interval of min-
imum distance. The distance he uses is based on the distance between two closed
intervals I and J introduced by Trutschnig et al. [13] defined by

dθ̄ (I, J ) =
√

(mid(I ) − mid(J ))2 + θ̄ (spr(I ) − spr(J ))2

where the mid-spread representation of the involved intervals is employed. The para-
meter θ̄ ∈ ]0, 1] indicates the relative importance of the spreads against the mids [10,
13]. The distance dθ̄ is extended to the space of all fuzzy number F(R) by defining
Dθ̄ : F(R) × F(R) → [0,+∞[ such that for two arbitrary fuzzy numbers A and B

D2
f,θ̄

(A, B) = 1
∫ 1
0 f (α) dα

∫ 1

0
d2
θ̄
(Aα, Bα) f (α) dα

where the weighting function f :]0, 1] → [0,+∞[ is such that
∫ 1
0 f (α) dα > 0.

In this paper we extend Grzegorzewski’s idea by considering the parameter θ as
a function of α having in mind that the relative importance of the spreads against
the mids may depend on the level of uncertainty. This hypothesis leads to interesting
results.

Definition 1 We say that C∗(A) = [c∗
L , c∗

R] is an approximation interval of the
fuzzy number A with respect to the pair ( f, θ) if it minimizes the weighted mean of
the squared distances

D(2)
f,θ (C; A) = 1

∫ 1
0 f (α) dα

∫ 1

0
d2
θ(α)(C, Aα) f (α) dα

= 1
∫ 1
0 f (α) dα

∫ 1

0

[
(mid(C) − mid(Aα))2 + θ(α) (spr(C) − spr(Aα))2

]

× f (α)dα

among all the intervals C = [cL , cR], where the weight function f : [0, 1] →
[0,+∞[ is such that

∫ 1
0 f (α) dα > 0 and θ : [0, 1] → ]0, 1] is a function that

indicates the relative importance of the spreads against the mids [10, 13].
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Theorem 1 The approximation interval C∗(A) = C∗(A; f, θ) = [c∗
L , c∗

R] of the
fuzzy number A with respect to ( f, θ) is given by

c∗
L =

∫ 1
0 mid(Aα) f (α) dα

∫ 1
0 f (α) dα

−
∫ 1
0 spr(Aα) f (α) θ(α) dα

∫ 1
0 f (α) θ(α) dα

c∗
R =

∫ 1
0 mid(Aα) f (α) dα

∫ 1
0 f (α) dα

+
∫ 1
0 spr(Aα) f (α) θ(α) dα

∫ 1
0 f (α) θ(α) dα

.
(1)

Proof We have to minimize the function

g(cL , cR) =
∫ 1

0

(
cL + cR

2
− aL(α) + aR(α)

2

)2

f (α)dα

+
∫ 1

0
θ(α)

(
cR − cL

2
− aR(α) − aL(α)

2

)2

f (α)dα

with respect to cL and cR . We obtain

∂g

∂cL
(cL , cR) =

∫ 1

0
(mid(C) − mid(Aα)) f (α)dα

−
∫ 1

0
θ(α) (spr(C) − spr(Aα)) f (α)dα

∂g

∂cR
(cL , cR) =

∫ 1

0
(mid(C) − mid(Aα)) f (α)dα

+
∫ 1

0
θ(α) (spr(C) − spr(Aα)) f (α)dα .

By solving

{
∂g
∂cL

(cL , cR) = 0
∂g
∂cR

(cL , cR) = 0

we obtain that the solution C∗ = C∗(A) = [c∗
L , c∗

R] satisfies

mid(C∗) =
∫ 1
0 mid(Aα) f (α) dα

∫ 1
0 f (α) dα

, spr(C∗) =
∫ 1
0 spr(Aα) f (α) θ(α) dα

∫ 1
0 f (α) θ(α) dα

and thus, since c∗
L = mid(C∗)− spr(C∗) and c∗

R = mid(C∗)+ spr(C∗), we obtain
(1). Moreover, by calculation, we get

∂2g

∂c2L
(cL , cR) = ∂2g

∂c2R
(cL , cR) = 1

2

(∫ 1

0
f (α) dα +

∫ 1

0
f (α) θ(α) dα

)
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and

∂2g

∂cR∂cL
(cL , cR) = ∂2g

∂cL∂cR
(cL , cR) = 1

2

(∫ 1

0
f (α) dα −

∫ 1

0
f (α) θ(α) dα

)

and thus

det

⎡

⎣

∂2g
∂c2L

(cL , cR)
∂2g

∂cR∂cL
(cL , cR)

∂2g
∂cL∂cR

(cL , cR)
∂2g
∂c2R

(cL , cR)

⎤

⎦ =
(∫ 1

0
f (α) dα

) (∫ 1

0
f (α) θ(α) dα

)

> 0

and ∂2g
∂c2L

(cL , cR) > 0. Then (c∗
L , c∗

R) minimizes g(cL , cR).

Remark 1 The previous theorem still holds if θ > 0 almost everywhere in [0, 1].

4 Properties

In this section we study some properties of the approximation interval.

Proposition 1 The approximation interval

C∗(A) = C∗(A; f, θ) = [c∗
L(A; f, θ), c∗

R(A; f, θ)]

given by (1) satisfies the following properties:

(i) invariance under translations, that is

C∗(A + z; f, θ) = C∗(A; f, θ) + z ∀z ∈ R ;

(ii) scale invariance, that is

C∗(z · A; f, θ) = z · C∗(A; f, θ) ∀ z ∈ R\{0} .

Proof Let us prove (i). Since

mid((A + z)α) = 1

2
(aL(α) + z + aR(α) + z) = mid(Aα) + z

and

spr((A + z)α) = 1

2
(aR(α) + z − aL(α) − z) = spr(Aα)

from (1) we obtain
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c∗
L(A + z; f, θ) =

∫ 1
0 mid((A + z)α) f (α) dα

∫ 1
0 f (α) dα

−
∫ 1
0 spr((A + z)α) f (α) θ(α) dα

∫ 1
0 f (α) θ(α) dα

=
∫ 1
0 mid(Aα

i ) pi (α) f (α) dα
∫ 1
0 f (α) dα

−
∫ 1
0 spr(Aα

i ) f (α) θ(α) dα
∫ 1
0 f (α) θ(α) dα

+ z

= c∗
L(A; f, θ) + z .

In a similarway,we get c∗
R(A+z; f, θ) = c∗

R(A; f, θ)+z and thusC∗(A+z; f, θ) =
C∗(A; f, θ) + z.
Let us prove (ii). First, we consider the case z > 0. We have

(z · A)α = [z · aL(α), z · aR(α)]

and thus

mid((z · A)α) = 1

2
(z · aL(α) + z · aR(α)) = z · mid(Aα)

and

spr((z · A)α) = 1

2
(z · aR(α) − z · aL(α)) = z · spr(Aα) .

So from (1) we get

c∗
L(z · A; f, θ) = z · c∗

L(A; f, θ) , c∗
R(z · A; f, θ) = z · c∗

R(A; f, θ)

and thus
C∗(z · A; f, θ) = z · C∗(A; f, θ) .

If z < 0 we have
(z · A)α = [z · aR(α), z · aL(α)]

and thus

mid((z · A)α) = z · mid(Aα) , spr((z · A)α) = (−z) · spr(Aα) .

Then from (1) we obtain

c∗
L(z · A; f, θ) =

∫ 1
0 mid((z · A)α) f (α) dα

∫ 1
0 f (α) dα

−
∫ 1
0 spr((z · A)α) f (α) θ(α) dα

∫ 1
0 f (α) θ(α) dα

= z

∫ 1
0 mid(Aα) f (α) dα

∫ 1
0 f (α) dα

+ z

∫ 1
0 spr(Aα) f (α) θ(α) dα

∫ 1
0 f (α) θ(α) dα

= z c∗
R(A; f, θ) .
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In the similar way, we get c∗
R(z · A; f, θ) = z c∗

L(A; f, θ). Then, taking into account
that z < 0, we have

C∗(z · A; f, θ) = [c∗
L(z · A; f, θ), c∗

R(z · A; f, θ)] = [z c∗
R(A; f, θ), z c∗

L(A; f, θ)]
= z · [c∗

L(A; f, θ), c∗
R(A; f, θ)] = z · C∗(A; f, θ) .

5 Relation to Expected Interval and Interval-Valued
Possibilistic Mean

Some important intervals connected with a fuzzy number are often utilized to have
its view. We pertain to the expected interval E I (A) of a fuzzy number A, introduced
by Dubois and Prade [6] and Heilpern [11]

E I (A) =
[∫ 1

0
aL(α) dα,

∫ 1

0
aR(α) dα

]

,

the interval-valued possibilistic mean introduced by Carlsson and Fullér [3]

M(A) =
[

2
∫ 1

0
aL(α)α dα, 2

∫ 1

0
aR(α)α dα

]

,

and the f -weighted interval-valued possibilistic mean proposed by Fullér and
Majlender [8] for monotonic increasing weighting functions and by Liu [12] without
the monotonic increasing assumption

M f (A) =
[∫ 1

0 aL(α) f (α) dα
∫ 1
0 f (α) dα

,

∫ 1
0 aR(α) f (α) dα

∫ 1
0 f (α) dα

]

which is a generalization of the previous ones. It is interesting to see that there is
an important connection between M f (A) and the approximation interval C∗

f,θ (A) =
C∗(A; f, θ) we have introduced before. As

mid(M f (A)) =
∫ 1
0 mid(Aα) f (α) dα

∫ 1
0 f (α) dα

, spr(M f (A)) =
∫ 1
0 spr(Aα) f (α) dα

∫ 1
0 f (α) dα

,

(2)
and observed that from (1) we have
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mid(C∗
f,θ (A)) =

∫ 1
0 mid(Aα) f (α) dα

∫ 1
0 f (α) dα

,

spr(C∗
f,θ (A)) =

∫ 1
0 spr(Aα) f (α) θ(α) dα

∫ 1
0 f (α) θ(α) dα

(3)

we get

mid(C∗
f,θ (A)) =

∫ 1
0 mid(Aα) f (α) dα

∫ 1
0 f (α) dα

= mid(M f (A)) (4)

and thus M f (A) and C∗
f,θ (A) have the same middle point independently of the

choice of θ . Obviously, they may differ in their spreads. Thus, for a given weighting
functions f , they are all intervals centered at the same point but with different sizes.
Maywe say something about these sizes? The following considerations reply to some
questions.
To this aim, we consider the preference index value of the weighting function f

e f =
∫ 1
0 α f (α) dα
∫ 1
0 f (α) dα

(5)

introduced in [12]. Similarly, we define the preference index value of the function
θ · f as

k f,θ =
∫ 1
0 α θ(α) f (α) dα
∫ 1
0 θ(α) f (α) dα

(6)

and
ε f (θ) = e f − k f,θ . (7)

First, we prove the following lemma.

Lemma 1 Let f̃ , g̃ : [0, 1] → [0,+∞[ such that
∫ 1
0 f̃ (α) dα = 1,

∫ 1
0 g̃(α) dα = 1

and
∀α, γ ∈ [0, 1] α ≥ γ =⇒ f̃ (α)g̃(γ ) − f̃ (γ )g̃(α) ≥ 0 . (8)

Then if h is an increasing function we have

∫ 1

0
h(α) f̃ (α) dα −

∫ 1

0
h(α)g̃(α) dα ≥ 0;

if h is a decreasing function we have

∫ 1

0
h(α) f̃ (α) dα −

∫ 1

0
h(α)g̃(α) dα ≤ 0 .
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Proof We have

∫ 1

0
h(α) f̃ (α) dα −

∫ 1

0
h(α)g̃(α) dα

=
∫ 1

0
h(α) f̃ (α) dα

∫ 1

0
g̃(γ ) dγ −

∫ 1

0
h(γ )g̃(γ ) dα

∫ 1

0
f̃ (α) dα

=
∫ 1

0

∫ 1

0
(h(α) − h(γ )) f̃ (α)g̃(γ ) dα dγ

=
∫ 1

0
dα

∫ α

0
(h(α) − h(γ )) f̃ (α)g̃(γ ) dγ +

∫ 1

0
dα

∫ 1

α

(h(α) − h(γ )) f̃ (α)g̃(γ ) dγ

=
∫ 1

0
dα

∫ α

0
(h(α) − h(γ )) f̃ (α)g̃(γ ) dγ +

∫ 1

0
dγ

∫ γ

0
(h(α) − h(γ )) f̃ (α)g̃(γ ) dα

=
∫ 1

0
dα

∫ α

0
(h(α) − h(γ )) f̃ (α)g̃(γ ) dγ +

∫ 1

0
dα

∫ α

0
(h(γ ) − h(α)) f̃ (γ )g̃(α) dγ

=
∫ 1

0
dα

∫ α

0
(h(α) − h(γ ))[ f̃ (α)g̃(γ ) − f̃ (γ )g̃(α)] dγ .

The assertions follow from (8).

Proposition 2 Let θ1, θ2 : [0, 1] →]0, 1] such that

∀α, γ ∈ [0, 1] α ≥ γ =⇒ θ1(α)θ2(γ ) − θ1(γ )θ2(α) ≥ 0 . (9)

Then
ε f (θ2) ≥ ε f (θ1)

and
C∗

f,θ2(A) ⊇ C∗
f,θ1(A) .

Proof If we choose

f̃ (α) = θ1(α) f (α)
∫ 1
0 θ1(α) f (α) dα

g̃(α) = θ2(α) f (α)
∫ 1
0 θ2(α) f (α) dα

we obtain

ε f (θ2) − ε f (θ1) =
∫ 1

0
α f̃ (α) dα −

∫ 1

0
αg̃(α) dα .

It is trivial to see that as θ1 and θ2 verify (9) then even relation (8) is true. If in
Lemma 1 we choose the increasing function h(α) = α we obtain

ε f (θ2) − ε f (θ1) ≥ 0.
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Moreover, if we choose the decreasing function h(α) = spr(Aα) from Lemma 1
we get

spr(C∗
f,θ1(A))−spr(C∗

f,θ2(A)) =
∫ 1

0
spr(Aα) f̃ (α) dα−

∫ 1

0
spr(Aα)g̃(α) dα ≤ 0 .

Since mid(C∗
f,θ1

(A)) = mid(C∗
f,θ2

(A)) we have C∗
f,θ1

(A) ⊆ C∗
f,θ2

(A).

Property (9) means that for α ≥ γ we have θ1(α)
θ1(γ )

≥ θ2(α)
θ2(γ )

. Thus, if θ1 increases faster
than θ2, the approximation interval will have a smaller spread.

Corollary 1 (i) If θ is constant then ε f (θ) = 0 and C∗
f,θ (A) = M f (A);

(ii) if θ is a decreasing function then ε f (θ) ≥ 0 and C∗
f,θ (A) ⊇ M f (A);

(iii) if θ is an increasing function then ε f (θ) ≤ 0 and C∗
f,θ (A) ⊆ M f (A).

Proof Assertion (i) follows by observing that if θ1 = θ̄ is constant, with θ̄ ∈ [0, 1],
then ε f (θ̄) = 0 and C∗

f,θ̄
(A) = M f (A). To prove (ii), assume that θ is decreasing.

The functions θ1 = θ̄ (constant) and θ2 = θ satisfy the property (8). Thus, from
Proposition 2 we have

ε f (θ) ≥ ε f (θ̄) = 0

and
C∗

f,θ (A) ⊇ C∗
f,θ̄

(A) = M f (A) .

Assertion (iii) follows in a similar way, assuming θ increasing and applying
Proposition 2 to the functions θ1 = θ and θ2 = θ̄ .

6 Trapezoidal Fuzzy Numbers

In this section we are interested in showing some results for a nonmonotonic θ to
have a more evident connection between ε f (θ) and the approximation interval size.
Starting with the particular case of a trapezoidal fuzzy number to reach our aims we
present a particular parametric representation of θ(α) that includes the increasing,
decreasing, and nonmonotonic case.
For a trapezoidal fuzzy number A the α-cuts are

Aα = [a1 + α(a2 − a1), a4 − α(a4 − a3))] 0 ≤ α ≤ 1 .

Observing that

mid(Aα) = a1 + a4
2

+ a2 − a1 + a3 − a4
2

α

spr(Aα) = a4 − a1
2

− a4 − a3 + a2 − a1
2

α
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we obtain from (2)

mid(M f (A)) = a1 + a4
2

+ a2 − a1 + a3 − a4
2

e f

spr(M f (A)) = a4 − a1
2

− a4 − a3 + a2 − a1
2

e f

where e f is defined in (5). Note that the f -weighted interval-valued possibilistic
mean of a trapezoidal fuzzy number is the α-cut at the level of the preference index
value e f , that is M f (A) = Ae f = [aL(e f ), aR(e f )]. The approximation interval
C∗

f,θ (A) is given by
mid(C∗

f,θ (A)) = mid(M f (A)) (10)

and, from (3),

spr(C∗
f,θ (A)) = a4 − a1

2
− a4 − a3 + a2 − a1

2
k f,θ

where k f,θ is defined in (6). Observe that mid(C∗
f,θ (A)) = mid(Ae f ) and spr(C∗

f,θ
(A)) = spr(Ak f,θ ). Furthermore, the larger k f,θ is, the smaller the spread of approx-
imation will be. We have from (7)

spr(C∗
f,θ (A)) − spr(M f (A)) = a4 − a3 + a2 − a1

2
ε f (θ) . (11)

From (10) and (11) we obtain the following general result for trapezoidal fuzzy
numbers

Proposition 3 (i) If ε f (θ) = 0 then C∗
f,θ (A) = M f (A);

(ii) if ε f (θ) > 0 then C∗
f,θ (A) ⊃ M f (A);

(iii) if ε f (θ) < 0 then C∗
f,θ (A) ⊂ M f (A).

6.1 Example

Let us consider for 0 < β < 1, n > 0

θ(α) =
⎧
⎨

⎩

(
β−α

β

)n
α < β

(
α−β
1−β

)n
α ≥ β

α ∈ [0, 1]

Note that if β = 1/2 we have θ(α) = |1 − 2α|n .
Furthermore, we may consider the limit cases β = 0 corresponding to the increasing
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function θ(α) = αn , and β = 1 corresponding to the decreasing function θ(α) =
(1 − α)n . In the following we will denote ε f (n, β) = ε f (θ).

6.2 Case f (α) = 1

In the case f (α) = 1 we have M f (A) = E I (A) where E I (A) is the expected
interval. We obtain

e f =
∫ 1
0 α dα
∫ 1
0 dα

= 1

2
, k f,θ =

∫ 1
0 α θ(α) dα
∫ 1
0 θ(α) dα

= (1 − β)n + 1

n + 2
.

If C∗(A) = C∗(A; f, n, β) is the approximation interval, when n → 0 we have
C∗(A) → E I (A). From Proposition 3 we obtain by computation

(i) β = 1/2 =⇒ ε f (n, β) = 0 (for all n > 0) =⇒ C∗(A) = E I (A),
(ii) β > 1/2 =⇒ ε f (n, β) > 0 (for all n > 0) =⇒ C∗(A) ⊃ E I (A),
(iii) β < 1/2 =⇒ ε f (n, β) < 0 (for all n > 0) =⇒ C∗(A) ⊂ E I (A).

Numerical example. To show how the interval approximation proposed works, we
consider the symmetric trapezoidal fuzzy number A = (1, 2, 4, 5) shown in Fig. 1
and compute the approximation interval of A for different values of parameters β

and n when f (α) = 1. By computation we obtain E I (A) = [ 32 , 9
2 ], C∗(A) =

C∗(A; f, n, β) = [c∗
L , c∗

R] =
[

(2−β)n+3
n+2 ,

(4+β)n+9
n+2

]
and that the smaller β is, the

smaller C∗(A) will be. Fig. 2a shows the approximation interval, in the case n = 1,
for each level β. When β = 0.5 we have C∗(A) = E I (A). In Fig. 2b we have
represented the interval approximation if n = 0 (continuous line), n = 1 (dashed
line), n = 2 (dotted line), n = ∞ (dashed–dotted line). Note that when n = 0 we
have C∗(A) = E I (A) and when n → +∞ we have C∗(A) → [2 − β, 4 + β].
Furthermore, n can be interpreted as an intensification parameter because when
n → +∞ we have C∗(A) ↘ if β < 1/2 and C∗(A) ↗ if β > 1/2.

Fig. 1 Trapezoidal fuzzy
number
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Fig. 2 Interval approximation

6.3 Case f (α) = α

In the case f (α) = α we have M f (A) = M(A) where M(A) is the interval-valued
possibilistic mean. We get

e f =
∫ 1
0 α2 dα
∫ 1
0 α dα

= 2

3

k f,θ =
∫ 1
0 α2 θ(α) dα
∫ 1
0 α θ(α) dα

= (1 − β)n2 + (3 − β − 2β2)n + 2

(1 − β)n2 + (4 − 3β)n + 3
.

By computation we obtain that, for n > 0 fixed, the equation ε f (n, β) = 0 has a
unique solution in the interval (0, 1) given by

β∗(n) = 1

4
+

√
n2 + 18n + 33 − n

12
.

The solution β∗(n) is increasing with respect to n, limn→+∞ β∗(n) = 1 and

lim
n→0

β∗(n) = 1

4
+

√
33

12
.

From Proposition 3 we obtain

(i) β = β∗(n) =⇒ ε f (n, β) = 0 =⇒ C∗(A) = M(A),
(ii) β > β∗(n) =⇒ ε f (n, β) > 0 =⇒ C∗(A) ⊃ M(A),
(iii) β < β∗(n) =⇒ ε f (n, β) < 0 =⇒ C∗(A) ⊂ M(A).

Remark 2 Note that for β = 1/2 in the case f (α) = 1 we have C∗(A) = E I (A)

and in the case f (α) = α we have C∗(A) ⊂ M(A).
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7 Conclusion

In this paper we have seen a new generalization of the Trutschnig et al. distance
to evaluate the nearest interval to a fuzzy number. We conclude that the classical
interval connected with a fuzzy number as M f (A) has the same middle point of the
approximation interval we propose. So if we want to have the average value of a
fuzzy number we may use the two methods indifferently. But if we want to have
information on its ambiguity or other quantities connected with its spread, we obtain
a different evaluation by working with the method we propose.
We are working in the direction to apply this result to the triangular and trapezoidal
approximation of a fuzzy number.
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