
TRACO Parallelizing Compiler

Marek Palkowski and Wlodzimierz Bielecki

Abstract This paper presents a source-to-source compiler, TRACO, for automatic
extraction of both coarse- and fine-grained parallelism available in C/C++ loops.
Parallelization techniques, implemented in TRACO, are based on the transitive clo-
sure of a relation describing all the dependences in a loop. Coarse- and fine-grained
parallelism is represented with synchronization-free slices (space partitions) and a
legal loop statement instance schedule (time partitions), respectively. On its output,
TRACO produces compilable parallel OpenMP C/C++ and/or OpenACC C/C++
code. The effectiveness of TRACO and efficiency of parallel code produced by
TRACO are evaluated by means of the NAS Parallel Benchmark and Polyhedral
Benchmark suites.

Keywords Source-to-source parallelizing compiler · Fine- and coarse-grained
parallelism · Free scheduling · Transitive closure

1 Introduction

Parallel computer programs are more difficult to write than sequential ones. Expos-
ing parallelism in serial programs and writing parallel programs without applying
parallelizing compilers decrease the productivity of programmers and increase the
time and cost of producing parallel programs. Because for many applications, most
computations are contained in program loops, automatic extraction of parallelism
available in loops is extremely important for multicore systems.

M. Palkowski (B) · W. Bielecki
Faculty of Computer Science and Information Systems, West Pomeranian University
of Technology, Zolnierska 49, 71210 Szczecin, Poland
e-mail: mpalkowski@wi.zut.edu.pl
URL: http://www.wi.zut.edu.pl

W. Bielecki
e-mail: wbielecki@wi.zut.edu.pl

© Springer International Publishing Switzerland 2015
A. Wiliński et al. (eds.), Soft Computing in Computer and Information Science,
Advances in Intelligent Systems and Computing 342,
DOI 10.1007/978-3-319-15147-2_34

409



410 M. Palkowski and W. Bielecki

The goal of this paper is to present an open source parallelizing compiler, TRACO,
implementing loop parallelization approaches based on transitive closure.

The input of TRACO is a C program, while the output is an OpenMP C/C++ or
OpenACC C/C++ program. TRACO extracts both coarse- and fine-grained paral-
lelism. It also uses variable privatization and parallel reduction techniques to reduce
the number of dependence relations; this leads to reducing parallelization time and
extending the scope of the TRACO applicability. The compiler includes a pre-
processor of the C program, data dependence analyzer, parallelization engine, code
generator, and postprocessor. To the best of our knowledge, there are no source-to-
source compilers based on the transitive closure of dependence relation graphs.

Results of a comparative analysis of TRACO features and those demonstrated by
Pluto, Par4all, Cetus, and ICC have been discussed.

2 Background

In this paper, we deal with affine loop nests where, for given loop indices, lower
and upper bounds as well as array subscripts and conditionals are affine functions of
surrounding loop indices and possibly of structure parameters (defining loop indices
bounds), and the loop steps are known constants.

Algorithms implemented in TRACO require an exact representation of loop-
carried dependences and consequently an exact dependence analysis which detects
a dependence if and only if it actually exists. To describe and implement paralleliza-
tion algorithms, we chose the dependence analysis proposed by Pugh andWonnacott
[18], where dependences are represented with dependence relations.

A dependence relation is a tuple relation of the form [input list]→[output list]:
formula, where input list and output list are the lists of variables and/or expres-
sions used to describe input and output tuples and formula describes the constraints
imposed upon input list and output list and it is a Presburger formula built of con-
straints represented with algebraic expressions and using logical and existential
operators [18].

Standard operations on relations and sets are used, such as intersection (∩), union
(∪), difference (−), domain (dom R), range (ran R), and relation application (S′=
R(S): e′∈S′iff exists e s.t. e→e′∈R, e∈S). In detail, the description of these operations
is presented in [11, 18].

The positive transitive closure for a given relation R, R+, is defined as follows
[11]:

R+ = {e → e′ : e → e′ ∈ R ∨ ∃e′′s.t. e → e′′ ∈ R ∧ e′′ → e′ ∈ R+}. (1)

It describes which vertices e′ in a dependence graph (represented by relation R) are
connected directly or transitively with vertex e.



TRACO Parallelizing Compiler 411

Transitive closure, R∗, is defined as follows [12]: R∗ = R+ ∪ I , where I
is the identity relation. It describes the same connections in a dependence graph
(represented by R) that R+ does plus connections of each vertex with itself.

To facilitate the exposition and implementation of TRACO algorithms, we have
to preprocess dependence relations making their input and output tuples to be of
the same dimension and to contain the identifiers of statements responsible for the
source and destination of each dependence. The preprocessing algorithm is presented
in paper [3].

Given a relation R, found as the union of all (preprocessed) dependence relations
extracted for a loop, the iteration space, SDEP, including dependent statement
instances is formed as domain(R) ∪ range(R). A set, SIND, comprising indepen-
dent statement instances is calculated as the difference between the set of all
statement instances, SSI , and the set of all dependent statement instances, SDEP,
i.e., SIND = SSI − SDEP. To scan elements of sets SDEP and SIND in the lexicographic
order, we can apply any well-known code generation technique [2, 11].

3 Coarse-Grained Parallelism Extraction Using Iteration
Space Slicing

Algorithms presented in paper [3] are based on transitive closure and allow us to
generate parallel code representing synchronization-free slices or slices requiring
occasional synchronization.

Definition 1 Given a dependence graph defined by a set of dependence relations, a
slice S is a weakly connected component of this graph.

Definition 2 An ultimate dependence source is a source that is not the destination
of another dependence. Ultimate dependence sources represented by relation R can
be found by means of the following calculations: domain(R)—range(R). The set of
ultimate dependence sources of a slice forms the set of its sources.

Definition 3 The representative source of a slice is its lexicographically minimal
source.

An approach to extract synchronization-free slices implemented in TRACO takes
two steps [3]. First, for each slice, a representative statement instance is defined (it
is the lexicographically minimal statement instance from all the sources of a slice).
Next, slices are reconstructed from their representatives and code scanning these
slices is generated.

Given a dependence relation R describing all the dependences in a loop, a set
of statement instances, SUDS , are calculated. It describes all ultimate dependence
sources of slices as

SUDS = domain(R) − range(R). (2)



412 M. Palkowski and W. Bielecki

In order to find elements of SUDS that are representatives of slices, we build a relation,
RUSC , that describes all pairs of the ultimate dependence sources being transitively
connected in a slice, as follows:

RUSC = {[e] → [e′] : e, e′ ∈ SUDS, e ≺ e′, (R∗(e) ∩ R∗(e′))}. (3)

The condition (e ≺ e′) in the constraints of relation RUSC above means that e is
lexicographically smaller than e′. The intersection (R∗(e)∩ R∗(e′)) in the constraints
of RU SC guarantees that vertices e and e′are transitively connected, i.e., they are the
sources of the same slice.

Next, set Srepr containing representatives of each slice is found as Srepr = SUDS—
range(RUSC). Each element e of set Srepr is the lexicographically minimal statement
instance of a synchronization-free slice. If e is the representative of a slice with mul-
tiple sources, then the remaining sources of this slice can be found applying relation
(RUSC)* to e, i.e., (RUSC)∗(e). If a slice has the only source, then (RUSC)∗(e) = e.
The elements of a slice represented with e can be found applying relation R* to the
set of sources of this slice:

Sslice = R∗((RUSC)∗(e)). (4)

Any tool to generate code for scanning polyhedra can be applied to produce
parallel pseudocode, for example, the CLOOG library [2] or the codegen function
of the Omega project [11].

4 Variable Privatization and Parallel Reduction

TRACO automatically recognizes loop variables that can be safely privatized and/or
can be used for parallel reduction. Applying this technique permits us to reduce the
number of dependence relations.

Privatization is a technique that allows each concurrent thread to allocate a variable
in its private storage such that each thread accesses a distinct instance of a variable.

Definition 4 A scalar variable x defined within a loop is said to be privatizable with
respect to that loop if and only if every path from the beginning of the loop body to
a use of x within that body must pass through a definition of x before reaching that
use [13].

Definition 5 Given n inputs x1, x2, . . . , xn and an associative operation⊗, a parallel
reduction algorithm computes the output x1 ⊗ x2 ⊗ · · · ⊗ xn [16].

The idea of recognizingvariables to be privatized and/or used for parallel reduction
and being implemented in TRACO is the following. The first step is to search for
scalar or one-dimensional array variables for privatization. A variable can be priva-
tized if the lexicographically first statement in the loop body referring to this variable
does not read its value, i.e., the first access to this variable is a write operation [13].



TRACO Parallelizing Compiler 413

Next, we seek for variables that are involved in reduction dependences only (they
cannot be involved in other types of dependences). Thenwe checkwhether there exist
dependence relations refereeing to variables which cannot be privatized or used for
parallel reduction. If no, this means that privatization and parallel reduction eliminate
all the dependences in the loop, thus its parallelization is trivial. Otherwise, we form
a set including: (i) dependence relations not being eliminated by means of variable
privatization and reduction and (ii) dependence relations describing dependences
not carried by loops and referring to variables to be privatized. Finally, we generate
output code using the set mentioned above and a set including variables to be used
for parallel reduction.

5 Finding (Free) Scheduling for Parameterized Loops

The algorithm, presented in our paper [4], allows us to generate fine-grained parallel
code based on the free schedule representing time partitions; all statement instances
of a time partition can be executed in parallel,while partitions are enumerated sequen-
tially. The free schedule function is defined as follows:

Definition 6 ([8]) The free schedule is the function that assigns discrete time of
execution to each loop statement instance as soon as its operands are available, that
is, it is mapping σ :LD→ Z such that

σ(p) =
⎧
⎨

⎩

0 i f there is no p1 ∈ L D s.t. p1 → p
1 + max(σ (p1), σ (p2), . . . , σ (pn)); p, p1, p2, . . . , pn ∈ L D;
p1 → p, p2 → p, . . . , pn → p,

(5)

where p, p1, p2, . . . , pn are loop statement instances, LD is the loop domain, p1 →
p, p2 → p, . . . , pn → p mean that the pairs p1 and p, p2 and p, . . . , pn and p are
dependent, p represents the destination while p1, p2, . . . , pn represent the sources
of dependences, n is the number of operands of statement instance p (the number of
dependences whose destination is statement instance p).

The free schedule is the fastest legal schedule [8].
The idea of the algorithm to extract time partitions applying transitive closure

is as follows [4]. Given preprocessed relations R1, R2, . . . , Rm , we first calculate

R =
m⋃

i=1
Ri . Next, we create a relation R′ by inserting variables k and k + 1 into the

first position of the input and output tuples of relation R; variable k is to present the
time of a partition (a set of statement instances to be executed at time k). Next, we
calculate the transitive closure of relation R′, R′*, and form the following relation:

F S = {[X ] → [k, Y ] :X ∈ U DS(R) ∧ (k, Y ) ∈ Range((R′)∗ \ {[0, X ]}∧
¬(∃k′ > k s.t. (k′, Y ) ∈ Range(R′)+ \ {[0, X ]})}, (6)



414 M. Palkowski and W. Bielecki

where UDS(R) is a set of ultimate dependence sources calculated as Domain(R)-
Range(R); (R′)∗\{[0, X]} means that the domain of relation R′* is restricted to the
set including ultimate dependences sources only (elements of this set belong to the
first time partition); the constraint ¬(∃ k′> k s.t. (k′, Y ) ∈ Range(R′)+\{[0, X]})
guarantees that partition k includes only those statement instances whose operands
are available, i.e., each statement instance will belong to one time partition only.

It isworth to note that the first element of the tuple, representing the set Range(FS),
points out the time of a partition while the last element of that exposes the identifier
of the statement whose instance(iteration) is defined by the tuple elements 2 to n−1,
where n is the number of the tuple elements of a preprocessed relation. Taking the
above consideration into account and provided that the constraints of relation FS are
affine, the set Range(FS) is used to generate parallel code applying any well-known
technique to scan its elements in the lexicographic order, for example, the techniques
presented in papers [2, 11].

The outermost sequential loop of such code scans values of variable k (represent-
ing the time of partitions) while inner parallel loops scan independent instances of
partition k.

Finally, we expose independent statement instances, that is, those that do not
belong to any dependence and generate code enumerating them. According to the
free schedule, they are to be executed at time k = 0.

6 Implementation

Figure1 shows the details of the TRACO implementation. Currently, it supports
C/C++ programs on its input. A preprocessor, written in the Python language, recog-
nizes loops in a source program and converts them to the format acceptable by
the Omega dependence analyzer, Petit, that returns a set of dependence relations
representing all the dependences in a loop. Then TRACO recognizes variables to be
privatized and/or used for parallel reduction. If privatization and/or reduction remove
all dependence relations, parallelization is trivial, all loops can be made parallel. For
such a case, TRACO makes the outermost loop to be parallel while the remaining
loops to be serial to produce coarse-grained code.

When a set of dependence relations after applying privatization and/or parallel
reduction is not empty, the number of synchronization-free slices is calculated. If this
number is not equal to one, then data necessary for generating pseudocode represent-
ing slices are calculated and forwarded to a pseudocode generator. Otherwise, data
necessary for extracting (free) scheduling are prepared anddirected to the pseudocode
generator. A postprocessor generates parallel code in OpenMP/OpenACC C/C++.
Below, we present some details concerned code generation.

Input for the pseudocode generator is a set representing slices or scheduling. For
the first case, the first element of the set states for slice representatives, all the fol-
lowing elements, but the last one, describe statement instances of a parametrized
slice, and the last one represents a statement identifier, which may be skipped when



TRACO Parallelizing Compiler 415

preprocessor
Petit

dependence
analyzer

Loop
sequence

Input C/C++ 
program 

Coarse- or fine-
grained parallelism 

extractor

Dependence 
relations

CLOOG /
Omega

Codegen

sets for 
pseudo-code 
generation

postprocessor

pseudocodeCompilable 
targer code

OpenMP
C/C++

OpenACC
C/C++

Fig. 1 TRACO organization

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2 Code generation details: a–c synchronization-free slices; d–f free scheduling

all dependent statement instances are originated from the same statement. An exam-
ple set is illustrated in Fig. 2a. In this set, the first element is responsible for slice
representatives while the second one together with the first one presents statement
instances of a slice. There is no element describing a statement identifier.

Taking such a set as input,CLOOGgenerates pseudocodeFig. 2b,where bydefault
the outermost loop is to scan slice representatives (this loop is parallel), while the
inner loop (serial) enumerates statement instances of the slice with a representative
presented by the outermost loop.

Any other code generator, permitting for scanning set elements in the lexico-
graphic order, can be applied in TRACO, for example, the codegen function of
Omega or Omega+ [7].

When a set S represents scheduling, then the first element of the set is responsible
for the time partition representation, all the following elements, but the last one,
describe statement instances of a parameterized time partition, and the last one rep-
resents a statement identifier, which may be skipped when all statement instances are
originated from the same statement. An example set is given in Fig. 2d, where the first



416 M. Palkowski and W. Bielecki

element represents time partitions, while the second and third ones are to enumerate
statement instances of a particular time partition defined by the first element.

Taking such a set as input,CLOOGgenerates pseudocodeFig. 2e,where bydefault
the outermost loop scans times (this loop is serial), while the remaining loops (par-
allel) enumerate statement instances of the time partition for a time represented by
the outermost loop.

Compilable OpenMP/OpenACC C/C++ code is produced by means of the post-
processor written in Python. It inserts source loop statements with proper index
expressions into pseudocode. Original index variables are replaced with variables
represented with the tuple elements of a set representing polyhedra taking into
account the role of particular tuple elements. For example, provided that the set S on
Fig. 2a is associated with the statement a[i][j] = a[i][j− 1], in the pseudo statement
s1(c0, c1) on Fig. 2b, variables c0, c1 correspond to variables i, j which are substituted
for c0, c1 in the source statement Fig. 2c.

Given the set S in Fig. 2d is associated with the source statement
a[i][j] = a[i][j+1]+a[i+1][j], the code generator recognizes that in the pseudocode
on Fig. 2e c0 states for time of partitions, c1 corresponds to variable i, while c0 −
c1 + 2 corresponds to variable j. So it generates the following statement in the output
loop (see Fig. 2f a[c1][c0−c1+2] = a[c0][c0−c1+2+1]+a[c0+1][c0−c1+2]).

Depending on whether pseudocode represents slices or scheduling, the post-
processor inserts proper OpenMP pragmas such as Parallel, For, Critical and proper
clauses to define private and/or reduction variable or OpenACC pragmas such as
Kernel, Data, Loop.

The source repository of the TRACO compiler is available on the website
http://traco.sourceforge.net.

7 Related Work

Different source-to-source compilers have been developed to extract
coarse-grained parallelism available in loops. To choose compilers to be compared
withTRACO,wehave applied the following criteria: it has to (i) be a source-to-source
compiler; (ii) support theC language; (iii) produce compilable code inOpenMP/ACC
C/C++. The following compilers were chosen to be compared with TRACO: ICC,
Pluto, Cetus, and Par4All.

ICC [10]. The Intel Compilers enable threading through automatic paral-
lelization andOpenMP support.With automatic parallelization, the com-
pilers detect loops that can be safely and efficiently executed in parallel
and generate multithreaded code.

Pluto [5]. An automatic parallelization tool is based on the polyhedral model
[6]. Pluto transforms C programs from source to source for coarse- or
fine-grained parallelism and data locality simultaneously. The core trans-
formation framework mainly works to find affine transformations for

http://traco.sourceforge.net


TRACO Parallelizing Compiler 417

efficient tiling and fusion, but not limited to those [6]. Pluto does not
support variable privatization and reduction recognition.

Par4All [14]. A tool is composed of different components: the PIPS tool [1],
the Polylib library [17], and internal parsers. Program transformations
available by the compiler include loop distribution, scalar and array pri-
vatization, atomizers (reduction of statements to a three-address form),
loop unrolling (partial and full), stripmining, loop interchanging, and
others.

Cetus [9]. It provides an infrastructure for research on multicore compiler opti-
mizations that emphasizes automatic parallelization by means of the
Java API. The compiler targets C programs and supports source-to-
source transformations. The tool is limited only to basic transformations:
induction variable substitution, reduction recognition, array privatiza-
tion, pointers, alias, and range analysis.

The compilers,mentioned above, do not based on the transitive closure of dependence
graphs.

8 Experimental Study

The goals of experiments were to evaluate such features of TRACO as: effectiveness,
the kind of parallelism extracted (coarse- or fine-grained), and efficiency of parallel
loops produced. Another goal was to compare these features of TRACO with those
demonstrated by the compilers classified for comparison (see Sect. 7). To evaluate
the effectiveness of TRACO, we have experimented with NAS Parallel Benchmarks
3.3 (NPB) [15] and Polyhedral Benchmarks 3.2 (PolyBench) [19].

Table1 presents techniques used by TRACO which acts as follows. First of all, it
tries to extract coarse-grained parallelism by applying privatization only, for 39 NAS
loops, variable privatization eliminates all dependences, hence loop parallelization
is trivial. Next to the remanding benchmarks, the technique presented in Sect. 4 is
applied, this results in parallelization of 70 NAS loops. Finally, for the remaining
benchmarks, techniques extracting (free) scheduling are applied that yield 22 NAS
loops representing fine-grained parallelism. TRACO fails to extract parallelism for
the three loops for which each iteration (except the first one) depends on the previous
one: CG_cg_6, CG_cg_8, and MG_mg_4.

For the Polybench suite, there exist 48 loops exposing dependences. TRACO is
able to parallelize 45 (94%) loops. One of the LU decomposition loops (ludcmp_3)
is serial (each iteration depends on the previous one). For the Seidel-2D and Floyd–
Warshall loops, TRACO fails to extract any parallelism because all known to us
tools permitting for calculating the transitive closure of a dependence representing
all the dependences in a loop [12, 20] are not able to produce transitive closure
for these loops. There exists a strong need in improving existing algorithms for
calculating transitive closure to enhance their effectiveness. 30 PolyBench loops



418 M. Palkowski and W. Bielecki

Table 1 Techniques of loop parallelization

Technique No. of NAS loops No. of Polybench loops

Privatization only 39 0

Slicing with privatization and reduction 70 30

Free scheduling 22 15

Loop parallelized 131 45

All loops 134 48

were parallelized by applying algorithms of synchronization-free slices extraction
[3]. For 15 PolyBench loops, fine-grained parallelism was found only (the outermost
loop is serial).

To check the performance of coarse-grained parallel code, produced with
TRACO, we have selected the following four computative heavy NAS loops:
BT_rhs_1 (Block Tridiagonal Benchmark), FT_auxfnct.f2p_2 (Fast Fourier Trans-
form Benchmark), LU_HP_rhs_1 (Lower–Upper symmetric Gauss–Seidel Bench-
mark), linebreak UA_diffuse_5 (Unstructured Adaptive Benchmark) and the three
PolyBench loops: fdtd-2d-apml (FDTDusingAnisotropic PerfectlyMatched Layer),
symm (Symmetric Matrix multiply), and syr2k (Symmetric Rank-2k Operations).

For each loop qualified for experiments, we have measured execution time, then
speedup is calculated. Speedup is a ratio of sequential time and parallel time, S =
T (1)/T (P), where P is the number of processors. Experiments were carried out
on an Intel Xeon Processor E5645, 12 Threads, 2.4GHz, 12MB Cache, and 16GB
RAM.

Figure3 illustrates code execution times(in seconds) in a graphical way.
To check the performance of fine-grained parallel code, we have selected the

two NBP loops: CG_cg_4 (Conjugate Gradient Benchmark), LU_pintgr_4 (Lower–
Upper symmetric Gauss–Seidel Benchmark) and the three PolyBench loops: adi
(Alternating Direction Implicit solver), jacobi-2D (2-D Jacobi stencil computation),
and reg-detect (2-D Image processing).

Figure4 presents parallel code speedups. There exist log2N, log2(N2 − N1),
6*TSTEPS, 2*STEPS, and 4*ITER synchronization points for the fine-grained ver-
sions of the CG_cg_4, LU_pintgr_4, adi, jacobi-2D, and reg-detect benchmarks,
respectively. But despite numerous synchronization points, for studied parallel fine-
grained loops, positive speedup is achieved (S > 1).

Next, we present the comparison of TRACO features with those of the compilers
classified for comparison (see Sect. 7). Table2 presents the effectivenesses of the
studied compilers. TRACO is able to parallelize 131 NAS loops and 45 PolyBench
loops. Pluto exposes parallelism for 42 NAS and 39 Polybench loops, it does not
support variable privatization and parallel reduction, whereas Cetus and Par4All
support these transformations and parallelize more NAS loops. ICC parallelizes 56
NAS loops only. Table2 shows also what kind of parallelism the compilers extract.



TRACO Parallelizing Compiler 419

Fig. 3 Times (in seconds) of program loops execution for various numbers of CPUs

Fig. 4 Speedup of loops representing fine-grained parallelism for various numbers of CUDA cores
and loop upper bounds

Table 2 Number of NPB and Polybench loops parallelized by various compilers

Benchmark Parallelism TRACO Pluto Par4All Cetus ICC

NAS Synchronization-free 109 35 79 107 45

Fine-grained 22 7 25 19 9

Total 131 42 104 126 56

Polybench Synchronization-free 30 29 30 29 28

Fine-grained 15 10 10 8 9

Total 45 39 39 38 37



420 M. Palkowski and W. Bielecki

9 Conclusion

We have presented a source-to-source compiler, TRACO, permitting for extracting
both coarse- and fine-grained parallelism available in loops represented in the C/C++
language. It implements parallelization algorithms based on the transitive closure of
a relation describing all the dependences in a loop and produces compilable parallel
OpenMP C/C++ or OpenACC C/C++ code. It is the first compiler that applies the
transitive closure of a dependence relation to extract loopparallelism, this enlarges the
scope of loop nests which can be parallelized in comparison with existing compilers.

References

1. Amini, M., et al.: PIPS Is not (just) Polyhedral Software. In: International Workshop on Poly-
hedral Compilation Techniques (IMPACT’11). Chamonix, France April 2011

2. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In: PACT’13
IEEE International Conference on Parallel Architecture andCompilation Techniques. pp. 7–16.
Juan-les-Pins September 2004

3. Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., Siedlecki, K.: Coarse-grained loop par-
allelization: Iteration space slicing vs affine transformations. Parallel Comput. 37, 479–497
(2011)

4. Bielecki, W., Palkowski, M.: Using free scheduling for programming graphic cards. In: Keller,
R.,Kramer,D.,Weiss, J.P. (eds.) Facing theMulticore -Challenge II. LectureNotes inComputer
Science, LNCS 7174, pp. 72–83. Springer, Berlin (2012)

5. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic polyhedral
parallelizer and locality optimizer. In: Proceedings of SIGPLAN Not. 43(6), 101–113 (June
2008), http://pluto-compiler.sourceforge.net

6. Bondhugula, U., et al.: Automatic transformations for communication-minimized paralleliza-
tion and locality optimization in the polyhedral model. In: Hendren, L. (ed.) Compiler Con-
structure. Lecture Notes in Computer Science, LNCS 4959, pp. 132–146. Springer, Heidelberg
(2008)

7. Chen, C.: Omega+ library. School of Computing University of Utah, (February 2011), http://
www.cs.utah.edu/chunchen/omega/

8. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization. Birkhauser, Boston
(2000)

9. Dave, C., Bae, H., Min, S.J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: A source-to-source
compiler infrastructure for multicores. Computer 42, 36–42 (2009)

10. Intel ® Compilers (2013), http://software.intel.com/en-us/intel-compilers
11. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The omega library

interface guide. Technical report, College Park (1995)
12. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs and its

applications. Int. J. Parallel Program. 24(6), 579–598 (1996)
13. Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: a dependence-based

approach. Morgan Kaufmann Publishers Inc., CA (2002)
14. Mehdi, A.: Par4All User Guide (2012), http://www.par4all.org
15. NAS benchmarks suite. http://www.nas.nasa.gov
16. Padua, D.A. (ed.): Encyclopedia of Parallel Computing. Springer (2011)
17. Polylib - a library of polyhedral functions, http://icps.u-strasbg.fr/polylib
18. Pugh,W.,Wonnacott, D.: An exact method for analysis of value-based array data dependences.

In: SixthAnnualWorkshop onProgrammingLanguages andCompilers for Parallel Computing.
Springer, Berlin (1993)

http://pluto-compiler.sourceforge.net
http://www.cs.utah.edu/chunchen/omega/
http://www.cs.utah.edu/chunchen/omega/
http://software.intel.com/en-us/intel-compilers
http://www.par4all.org
http://www.nas.nasa.gov
http://icps.u-strasbg.fr/polylib


TRACO Parallelizing Compiler 421

19. The Polyhedral Benchmark suite (2012), http://www.cse.ohio-state.edu/pouchet/software/
polybench/

20. Verdoolaege, S., Cohen, A., Beletska, A.: Transitive closures of affine integer tuple relations
and their overapproximations. In: Proceedings of the 18th international conference on Static
analysis, SAS’11. pp. 216–232. Springer, Berlin (2011)

http://www.cse.ohio-state.edu/pouchet/software/polybench/
http://www.cse.ohio-state.edu/pouchet/software/polybench/

	TRACO Parallelizing Compiler
	1 Introduction
	2 Background
	3 Coarse-Grained Parallelism Extraction Using Iteration Space Slicing
	4 Variable Privatization and Parallel Reduction
	5 Finding (Free) Scheduling for Parameterized Loops
	6 Implementation
	7 Related Work
	8 Experimental Study
	9 Conclusion
	References


