Toward Generalization of Mutant
Clustering Results in Mutation Testing

Anna Derezinska

Abstract Mutation testing is effectively used for evaluation of test case quality but
suffers from high cost required for its realization. Mutated programs are injected with
program changes specified by various mutation operators. One of the methods applied
to the reduction of mutant number is mutant clustering. Instead of using all gener-
ated mutants, special mutant groups are distinguished and group representatives are
used in further evaluation of tests. Mutant clustering gave some promising results for
C programs. In case of object-oriented programs with standard and object-oriented
operators the results were positive but not superior to other cost reduction techniques.
An open issue is interpretation of mutant clustering results and their generalization to
other projects in terms of used mutation operators. In this paper, three metrics are pro-
posed to comprehend mutation clustering. Experimental results are analyzed toward
usefulness of mutants created by various operators, their frequency, and dependency.
The evaluation result confirms applicability of the metrics, and the practical guide-
lines about the mutation operators are concluded from the experimental data.

Keywords Mutation testing - Mutant clustering - Mutation operators + C#

1 Introduction

Mutation testing is a method for evaluating a quality of a test case suite and/or creating
a set of test cases [1]. The main idea originates from the fault injection techniques.
A change is introduced to a program under test. The change represents typically a
possible mistake made by a programmer. It is assumed that the change could not be
revealed by a simple program compilation. A changed program is called a mutant.
The main obstacle in application of a mutation testing process is its high cost.
Therefore there are many approaches to its cost reduction [1, 2]. Some of them

A. Dereziniska (<)

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

e-mail: A.Derezinska@ii.pw.edu.pl

© Springer International Publishing Switzerland 2015 395
A. Wilinski et al. (eds.), Soft Computing in Computer and Information Science,

Advances in Intelligent Systems and Computing 342,

DOI 10.1007/978-3-319-15147-2_33

396 A. Dereziriska

are based on lowering of the number of generated mutants and/or the number of
performed test cases. Mutant clustering is one of the cost reduction methods that was
considered for the mutation testing process [3, 4].

The first results on mutant clustering for object-oriented programs were reported
in [5]. A general experimental scenario was proposed for evaluation of the tradeoff
between mutation score accuracy and the complexity of a mutation testing process
expressed in a number of generated mutants and a number of test cases. The sce-
nario was adapted to three cost reduction techniques: selection of mutants, mutant
sampling, and clustering. The detailed results of mutant clustering experiments for
C# programs, the experimental scenario, and evaluation of a quality metric are
given in [6].

This paper addresses another problem of mutant clustering. It is a question of
how we can generalize the results of experiments on mutant clustering, which might
be useful for other projects. Especially, it is interesting how to evaluate relations
of mutants generated by different mutation operators. Therefore, three new metrics
were developed, dealing with usefulness of mutants generated by a given operator,
their frequency, and dependency among mutants. Based on these metrics and data
gathered in our previous experiments [5, 6] the approach was applied. We could
examine in a quantitative way the differences between standard and object-oriented
operators, distinguish a pair of complementary operators, and classify operators that
cannot be omitted in order to preserve the mutation result accuracy.

The paper is organized as follows: Sect.2 describes briefly the basic notion of
mutation testing and mutant clustering method. In Sect.3 metrics used for analysis
of mutant clustering results are introduced and illustrated by an example. Section4
presents an experiment overview and results of the conducted experiments. Finally,
Sect. 5 concludes the work.

2 Background

In this section basic concepts of mutation testing as well as an idea of mutant clus-
tering and related works related to it are discussed.

2.1 Mutation Testing

In mutation testing, a program change is specified by a mutation program operator
and introduced in an automatic way using a mutation tool. Standard, or so-called
traditional, mutation operators deal with the common programming features, typi-
cal to all programming languages, like arithmetic, logical and relational operators,
assignment statements, constant usage, etc. Different specialized programming fea-
tures are also covered by the devoted mutation operators. Features characteristic to
object-oriented languages (OO in short) are handled by object-oriented mutation

Toward Generalization of Mutant Clustering ... 397

operators proposed, for example, for Java [7] or C# [8, 9]. If a mutation operator is
applied only once and in one place of a program, we speak about first order mutation.

Evaluation of a test suite is performed in a mutation testing process. For a given
program and a set of selected mutation operators, a set of mutants is created. The
mutants are run against tests from a test suite under concern. If a mutant behavior is
different from the behavior of the original program, the mutant is said to be killed.
Tests that are able to kill mutants should be good at revealing mistakes represented
by the mutation operators. A mutation testing result, called a mutation score (MS),
is calculated as a ratio of the number of all killed mutants over the number of all
nonequivalent mutants. A mutant is equivalent if its behavior cannot be distinguished
from the original program by any test. In many practical cases, instead of an exact
mutation score, its approximate value is calculated, because it is not possible to
classify exactly all equivalent mutants in an automatic way.

2.2 Mutant Clustering

There are many approaches to reduction of mutation testing costs based on lowering
of considered mutants and therefore reducing also the number of test runs [1, 2].
One such analyzed solution was mutant clustering [3, 4].

The main idea of the mutant clustering originates on the concept of equivalence
partitioning. A set of all mutants of a program is divided into groups, called clusters.
The division is realized in the context of a given test set, similarly as in mutation score
evaluation. Each group is characterized by the similar ability of being killed by the
same subset of tests. Allocation of a mutant to a group can be realized by a clustering
algorithm such as agglomerative hierarchical or K-means clustering [3, 10].

The mutant clustering is specified for a given set of mutants of a program under test,
and a given set of tests. A threshold K denotes a resemblance between mutant groups.
Two groups are said to be similar with K degree, if the number of tests that kill at least
one mutant from one group and kill none mutant from the former group equals K.

Next, in the mutation testing process, instead of all mutants, only one mutant
for each group is used. This mutant represents the group (cluster) that should have
the comparable features, as far as the subset of tests associated with this group
is concerned. Usage of a reduced number of mutants lowers the mutation costs.
However, the accuracy of the mutation score can be declined.

2.3 Related Works

Primary experiments on mutant clustering in mutation testing were conducted for C
programs [3]. They reported considerable potential benefits, for example, usage of
13 % of all mutants and 8 % of tests gave a mutation score of a high accuracy (99 %).
However, this result referred to a simple, not object-oriented programming language
and only standard mutation operators, which usually are more redundant.

398 A. Dereziriska

The above-mentioned result was based on full data, i.e., all mutants run against all
tests. The practical solution to mutation clustering based on a static domain analysis
was presented in [4]. The proof of concept was illustrated by a small Java program,
for which satisfactory results were obtained, namely after running 25 % of mutants
with 62 % of tests the mutation score was equal to 94 % of the exact mutation score.

Mutant clustering in the context of object-oriented operators was studied for the
first time in the experimental process for comparing of different cost reduction tech-
niques [5]. The detailed analysis of mutant clustering was discussed in [6]. The quan-
titative data of this experiment is recalled in Sect.4.1. This paper provides further
methods of clustering data analysis in order to generalize the results to other projects.

The research on cost reduction methods applied to C# programs was performed
only by the author of [5, 6]. Most of the other work on object-oriented programs was
done for Java programs [11-13], but the clustering method was not considered.

3 Metrics for Generalization of Clustering Results

Cluster of mutants includes mutants generated by various mutation operators. Many
mutants created with the same mutation operator (Op) can contribute to the same
cluster {Opl, Op2,...}. Therefore, there can exist clusters that are mainly consti-
tuted by mutants of selected mutation operators. These mutants are the most probable
representative of these clusters.

Mutants of the same operator can also be met in many clusters. Some pairs of
operators can be associated and encounter in the same clusters. In such case it could
be possible to omit one of the operators.

In order to quantitatively evaluate such phenomena the following metrics were
used.

3.1 Metric Definitions

Three additional metrics were proposed in order to evaluate and compare the clus-
tering results. Each metric is calculated for a mutation operator (Op).

The first metric is usefulness of mutants (UM). It calculates how big a subset of
mutants is that are useful in the context of a given operator.

NG(Op)

UMOP) = Yycop

(D

where

N G(Op)—the number of groups, in which at least one mutant exists that was
created using the Op mutation operator,
N M (O p)—the number of all mutants generated using the Op mutation operator.

Toward Generalization of Mutant Clustering ... 399

The second metric, so-called frequency (FR), examines frequency of an operator
occurrence. It calculates the amount of groups, which includes at least one mutant
designed by the operator in relation to all group number.

NG(O
FR(Op) = ﬁ)

where NG(Op)—as above, and NG 4;;—number of all groups.
The third metric is called dependency (DEP). It evaluates dependency of an
ordered pair of mutation operators.

NPM(Opi, Opo)
DEP(Opy, Opy) = W 3)

where
NM(Op1)—anumber of all mutants generated using the Op; mutation operator.
NPM(Op1, Opy)—a number of occurrences of mutant pairs created with Op
and O p, operators. This value is calculated as a sum of all other groups of a minimum
of two numbers: a number of mutants of a given group created using Op1, and an
analogous number of mutants created by the second operator Op;.

NPM(Op1, Ops) = > min(NM(g,0p1), NM(g, Op2)) “)
geG

where

NM(g, Op1)—a number of mutants from the group g that were generated using
the Op; mutation operator.

It should be noticed, that the operator dependency metric is not symmetric, i.e.
DEP(Op1, Opz) # DEP(Op2, Opy).

3.2 Example

The metrics will be illustrated with a simple example. Three mutation operators were
used for generation of mutants: EOC, IOP, and EXS. (The full operator names are
listed in Table 1). Using EOC operator five mutants were created. Four mutants were
generated with IOP operator and one mutant with EXS.

After performing an algorithm of mutant clustering four groups of mutants were
specified. The result groups consist of the following mutants:

G1 = {EOC1, EOC2, IOP1, [OP2)
G2 = (EOC4, EOCS, IOP4)

G3 = (EOC3}

G4 = {IOP3, EXS1)

400

A. Dereziriska

Table 1 Standard and object-oriented mutation operators (C# supported by CREAM v.3)

No | Operator type Abbr. | Name of mutation operator

1 Standard ABS Absolute value insertion

2 Standard AOR Arithmetic operator replacement (+, —, %, /, %)

3 Standard ASR | Assignment operator replacement (=, + =, — =, / =, x =)
4 Standard LCR Logical connector replacement (&&, ||)

5 Standard LOR | Logical operator replacement (&, |,”)

6 Standard ROR Relational operator replacement (<, <=, >, >=, ==, | =)
7 Standard Uol Unary operator insertion (+, —, !, ~

8 Standard UOR | Unary operator replacement (++, ——)

1 Object-oriented | DMC | Delegated method change

2 Object-oriented | EHR | Exception handler removal

3 Object-oriented | EOA | Reference assignment and content assignment replacement

4 Object-oriented | EOC | Reference comparison and content comparison replacement
5 Object-oriented | EXS Exception swallowing

6 Object-oriented | IHD Hiding variable deletion

7 Object-oriented | IHI Hiding variable insertion

8 Object-oriented | IOD Overriding method deletion

9 Object-oriented | IOK Overriding method substitution

10 | Object-oriented | IOP Overriding method calling position change

11 Object-oriented | IPC Explicit call of a parent’s constructor deletion

12 | Object-oriented | ISK Base keyword deletion

13 | Object-oriented | JID Ember variable initialization deletion

14 | Object-oriented |JTD This keyword deletion

15 | Object-oriented | OAO | Argument order change

16 | Object-oriented | OMR | Overloading method contents change

17 | Object-oriented |PRM | Property replacement with member field

18 | Object-oriented | PRV Reference assignment with other compatible type

The usefulness metric UM was calculated for each operator in the following way:

umEoc) = YOEOO _ 3 _ 6
NM(EOC) ~ 5

UM(IOP) = NGUoP) _ 3 _ 0.75 (5)
NM(IOP) 4

um(EXS) = YOEXSH 1,
NM(EXS) 1

The calculated values can be interpreted as a useful part of mutants. For exam-
ple, 60 % of mutants could be selected for the EOC operator and still in each group
there would be at least one mutant created by this operator. However, all mutants

Toward Generalization of Mutant Clustering ... 401

(100 %) generated by the EXS operator are indispensable in order to ensure the same
condition.

The frequency metric calculated for the example mutants gives the following
values:

NG(EOC 3
FR(EOC) = ¥ =-=0.75
NG Ay 4
NG(IOP) 3
FR(IOP) = ——— = - =0.75 (6)
NGy 4
NG(EXS 1
FR(EXS) = # =-=0.25
NG a1 4

For a given operator, the metric assesses the frequency of mutants belonging to
groups. For example, the metric of EOC is equal to 0.75. It means that 75 % of all
groups include at least one mutant created using this operator.

Finally, the dependency metric is calculated for any ordered pair of mutation
operators. We choose for example two operators EOC and IOP. Because the metric
is not symmetric, two ordered pairs are considered: (EOC, IOP) and (IOP, EOC).

NPM(EOC, IOP) 3
DEP(EOC,IOP) = —————_"""" _~ _ 06 7)
NM(EOC) 5
NPM(IOP,EOC) 3
DEP(IOP,EOC) = ———— """ — ~ —0.75
NM(IOP) 4

Based on the first value (0.6) we can deduce that 60 % of mutants created by EOC
can be substituted by IOP mutants. In the opposite case the value is different and is
equal to 0.75. This means that 75 % of IOP mutants have a pair of EOC mutants in
a group. Comparing both values of the metric, we can conclude that in this example
it is better to substitute operator IOP by EOC (0.75) than vice versa (0.6).

4 Experiments on Mutation Clustering

Evaluation of the approach will be presented on experimental data. The metrics were
applied to the analysis of mutation clustering results gathered in the experiments on
standard and object-oriented mutation of C# programs [5, 6].

4.1 Experiment Setup

Data for the mutant clustering and evaluation of the metrics were collected in exper-
iments carried out with the CREAM v3 tool. CREAM is a mutation testing tool
for C# programs [14]. It was the first tool that supported object-oriented mutation

402 A. Dereziriska

operators for C# programs [15, 16]. Its third version was enhanced with an extension
for efficient performing and evaluation experiments on cost reduction techniques:
selection of mutants, mutant sampling, and clustering [5]. The tool supports 18
object-oriented operators and eight standard ones (Table 1).

The experiments were conducted on three commonly used open-source programs,
Enterprise Logging (http://entlib.codeplex.com), Castle (http://www.castleproject.
org) and Mono-Gendarme (http://www.mono-project.com/Gendarme). All first order
mutants were generated for the mutation operators given in Table 1. Additionally,
only mutants covered by tests from a given test suite were considered, as not covered
mutants were not able to be killed by tests. Then all mutants were run against all test
cases. The collected results were stored and used in the evaluation process of the cost
reduction techniques [5]. For different cost reduction method the appropriate quality
measures were calculated that allow to express the tradeoff between mutation score
and the number of mutants and the number of tests.

The detailed results of the basic quality analysis of the mutation clustering
approach are presented in [6]. For all mutants the agglomerative clustering algo-
rithm was applied. Mutants generated by standard mutation operators and by object-
oriented ones (in short—standard and OO mutants) were analyzed separately. The
groups of mutants were formulated for the K degree of the clustering algorithm vary-
ing from O to 19. According to the quality analysis the best results were obtained,
for K = 1 in case of object-oriented operators and K = 2 in case of the standard
operators, assuming that the mutation score adequacy contributes of 60 % to the
overall quality, whereas number of mutants and number of tests of 20 % each. The
experiments showed that it was possible to use 32% of OO mutants and 18 % of
tests to obtain the mutation score of 97 % close to the original one (i.e. calculated
using all OO mutants and all test). The analogues data for the best results of standard
mutation was 19 % of mutants, 22 % of tests and 91 % of mutation score accuracy.

4.2 Evaluation of Mutation Clustering Results

Mutation data from the above-mentioned experiments were used in the further eval-
uation of mutation clustering results addressing the generalization problem. The
evaluation was based on the metrics specified in Sect.3. The results were analyzed
separately for standard and object-oriented mutations. The metrics were calculated
in respect to all mutation operators used in experiments.

Results of two metrics, usefulness of mutants and frequency, calculated for the sub-
jectprograms and their average values are shown in Table 2. The upper part of the table
includes values of standard operators, whereas the lower part gives data for OO oper-
ators. Empty places, denoted by ‘—’ character, correspond to cases when no mutant
was generated from a given program (column) using this kind of operator (row).

Analyzing the first metric for object-oriented operators, we can observe that in
most of the cases the value of usefulness of mutants is relatively high. A value

http://entlib.codeplex.com
http://www.castleproject.org
http://www.castleproject.org
http://www.mono-project.com/Gendarme

Toward Generalization of Mutant Clustering ... 403

Table 2 Usefulness of mutants (UM) and frequency (FR) metrics for standard and object-oriented
mutation operators

Oper. Usefulness of mutants metric (UM) Frequency metric (FR)
Logging | Castle | Gendarme Average | Logging | Castle | Gendarme | Average

ABS |0.57 0.89 |1.00 0.82 0.01 0.01 |0.00 0.01
AOR |0.11 042 033 0.29 0.10 0.01 0.02 0.04
ASR |0.42 0.53 056 0.50 0.12 0.03 0.03 0.06
LCR |0.93 082 |0.73 0.83 0.07 0.17 |0.18 0.14
LOR |- - 0.64 0.64 - - 0.01 0.01
ROR |0.54 033 033 0.40 0.22 021 |0.18 0.20
Uuol 0.50 0.61 |0.46 0.52 0.76 0.75 0.81 0.77
UOR |0.40 042 042 0.41 0.02 0.08 |0.04 0.05
DMC |- - - - - - - -
EHR |1.00 1.00 | 0.60 0.87 0.02 0.01 |0.01 0.01
EOA |- 1.00 | 1.00 1.00 - 0.01 |0.01 0.01
EOC 0.98 0.62 |0.65 0.75 0.14 034 037 0.28
EXS |1.00 1.00 |- 1.00 0.00 0.01 |- 0.01
IHD |- - - - - - - -
HI |- - - - - - - -
10D |1.00 1.00 |0.78 0.93 0.07 0.03 |0.02 0.04
IOK |1.00 1.00 | 0.75 0.92 0.06 0.02 |0.02 0.04
Iop |0.43 1.00 | 1.00 0.81 0.01 0.01 |0.08 0.03
IPC |0.97 045 |- 0.71 0.12 0.04 |- 0.08
ISK 0.81 0.64 | 1.00 0.82 0.09 0.02 |0.11 0.07
JID |0.66 0.67 |0.65 0.66 0.07 0.18 0.31 0.19
JTD (092 1.00 |- 0.96 0.16 010 |- 0.13
OAO |0.46 0.63 048 0.53 0.18 0.19]0.11 0.16
OMR |0.56 0.84 |- 0.70 0.03 011 |- 0.07
PRM |0.64 0.83 090 0.79 0.02 0.03 |0.03 0.03
PRV 0.24 037 034 0.32 0.14 0.09 |0.04 0.09

can be counted as high if it is bigger than 0.8 for at least one program. Eight OO
operators have at least one 1.0 (100 %) value, which means that for this program all
mutants generated by this operator contribute as group representatives and could not
be omitted in the mutation score analysis.

However, we can observe the PRV operator (Reference Assignment with other
Compatible Type) for which this metric is low, i.e., about 0.3 for each program.
Generating only about 32 % of all PRV mutants it is possible to create the same groups
considering their member operators. Moreover, analyzing the frequency metric for
PRV we have found that in average 9 % of groups includes at least one PRV mutant.
This result is medium high in comparison to other operators but not negligible.

404 A. Dereziriska

In conclusion, it is worthwhile to limit the number of PRV mutants, as it is possible to
reduce the mutant number considerably without loss of the mutation score accuracy.

Comparing results of the usefulness metric for object-oriented and standard oper-
ators we can observe that in general the values of standard operators are lower than
the object-oriented ones. Only two standard operators (ABS and LCR) have a high
value of the first metric. This confirms the other results [5, 11, 17] that among stan-
dard mutants can be more surplus (redundant) mutants than in the object-oriented
mutants. It should be noted that this effect is visible although the set of standard oper-
ators of CREAM and therefore used in this experiment was very limited. It was based
mainly on the operators classified as selective in the standard operator analysis [17].

Analogues reasoning for the PRV operator can be performed for selected standard
operates, in particular ROR and UOR. In case of these operators, according to the
first metric at least 40 % of mutants should be generated for each operator.

Results of the third metric—dependency are shown in Table 3 for standard muta-
tion operators and in Table4 for object-oriented ones. The tables include values
averaged over all three programs examined in experiments. Operators DMC, IHD
were omitted as no mutants were generated by them in the considered programs.

Analyzing the object-oriented operators, we can see that the maximum values
0.87 and 0.79 are calculated for two operators IOK and IOD. This result denotes
that most mutants generated using the IOK operator (87 %) are in the same group
as mutants created by IOD operator. The opposite dependency is satisfied in 79 %.
Therefore, we can assume that resigning one such operator can reduce the mutation
testing cost without considerable loss of the mutation score accuracy, because they
are complementary, i.e., mutants of one operator can be substituted by mutants of the
second operator. The slightly better choice is selection of IOK, because DEP(IOK,
I0D) > DEP(IOD, IOK).

The dependency metric calculated for other pairs of object-oriented operators
give in most cases very low results (about few %) or for several pairs results about
10-20 %. Therefore we cannot point at any other pair of object-oriented operators as
being dependent in general.

Considering the third metric for standard mutation operators (Table3), we can
find more results above 50 % than for the object-oriented operators. Five standard

Table 3 Dependency metric for standard operators
ABS AOR ASR LCR LOR ROR [8[0)1 UOR Sum

ABS - 0.11 0.19 0.15 0.33 0.48 0.75 0.19 22

AOR 0.00 - 0.06 0.04 0.03 0.33 0.51 0.22 1.19
ASR 0.02 0.10 - 0.07 0.04 0.25 0.60 0.09 1.17
LCR 0.00 0.02 0.04 - 0.00 0.15 0.37 0.05 0.63
LOR 0.07 0.14 0.14 0.07 0.64 0.57 0.36 1.99

ROR 0.00 0.05 0.04 0.05 0.02 - 0.49 0.10 0.75
[8[0)1 0.01 0.09 0.05 0.05 0.00 0.17 - 0.04 0.41
UOR 0.01 0.12 0.07 0.08 0.05 0.44 0.53 - 1.3

405

Toward Generalization of Mutant Clustering ...

<o - €00 100 €00 0| 200 0 0 0 0 0 - 0 €00 0 0 Add
se0| 610 - 0 €00| 00| €00 0 0| €00 0 0 - 0 €00 0 0| INdd
610 100 0 - 0| 2¢00| v00| ¢€00| 100 0| T100| 100 - 0 900 0 0| dNO
SI'o| <00 0 0 —| ¢0| <Co| 100 0| 100| 100, 100 - 0 700 0 100 OVO
€0 0 10°0 €00 90°0 —| 800 0| 100 0| 100| 100 - 0 01°0 0 0 daLr
90| 00 0 200 100 %00 —| 100 0| 100| €00 €00 - 0 L0'0 0 0 arr
0 0 0 00 ¥0°0 0 900 - 0| <00 0 0 - 0 €00 0 0 JISI
1'0 0 0 200 00| <T00 0 0 - 0| 100| 100 - 0 00 0 0 OdI
SLO 0 200 0 9T0 0| IT0| 920 0 - 0 0 - 0 0 0 0 dOI
6¢'1 00 0 900 010 90| II0 0| €00 0 —| L8O - 0 10 0 0 p:(0)1
SEl| C00 0 S0'0 Iro| <so00| vI0 0| €00 0| 6L0 - - 0 91’0 0 0 daol
0 - - - - - - - - - - - - - - - - IHI
LT°0 0 0 0 0 0 0 0 0 0 0 0 - - LT°0 0 0 SXd
9I'0| 100 0 10°0 00| ¥00| €00 0 0 0| 100| <00 - 0 - 0 0 204
§T0 0 0 0 0 0 0 0 0 0 0 0 - 0 ST - 0 vOod
€0 0 0 0 0 0| II'0 0 0 0 0 0 - 0 0 0 - dHH
NWNS| Add| IWdd| dNO| OVO | dLf armr| S| OdI| dOI| MOI| dOI| IHI| SXd| DOd| VOd| YHH

s101e12do pAjuaLIn-199[qo Joj ounowr Aouspuadaq ¢ dqeL

406 A. Dereziriska

operators, namely ABS, AOR, ASR, LOR, and UOR can be partially substituted by
the UOI operator. On the other hand the dependency is in the range of 50-60 % (only
for ABS equal 75 %). Therefore the dependency is not as definite as in the case of
the pair of IOD-IOK operators.

The last column in the tables with dependency metric includes the sum of the
numbers in the corresponding row. This sum represents information about to what
extent mutants created by the row operator can be substituted by any combination of
the remaining operators. The lower the sum, the more reasonable it is to retain this
operator in the mutation testing process.

Analyzing this sum of object-oriented operators, we can see that the highest values
are for operators IOD, IOK (already recognized as complementary ones) and the [OP
operator. Therefore the remaining object-oriented operators should be applied, i.e.,
the majority of OO operators. This evaluation confirms the fact that OO operators
correspond to various advanced programming features and need more specific tests.

For the standard operators the sums are in general higher than for OO operators.
Operators LCR, ROR, and UOI turned out to be the most applicable as they have the
sum below zero. This result is consistent with the findings on the selective mutation
in C# programs [5].

5 Conclusions

This paper presents a study on the result evaluation of mutation clustering. It copes
with the question: How can the clustering results be generalized and associated with
the selection of mutation operators. The problem was examined with three new met-
rics about mutant usefulness, frequency, and dependency in terms of mutation oper-
ators used for the mutant generation. The metrics were applied to mutant clustering
results on three real-world C# programs mutated with standard and object-oriented
operators.

Combining the results of usefulness and frequency metrics, we can observe that
reducing the number of generated PRV mutants gives noticeable mutant cost reduc-
tion without a loss of the mutation score accuracy. It is also worthwhile to select only
one operator among IOK and IOD operators. The lessons learned point at different
characteristics between structural and object-oriented mutation operators. In general,
less OO mutation operators can be omitted if an adequate mutation result has to be
assured. This fact can be caused by the higher specialization of the OO mutation
operators than the standard ones. For the standard mutation operators, even basing
of a preliminary reduced set of operators (including all selective according to [17]),
we can still reduce the number of generated mutants. Among standard operators the
most useful were LCR, ROR, and UOI, which corresponds to the results on selective
mutation in OO programs based on other methodologies [5, 11].

Acknowledgments I am thankful to M. Rudnik for his contribution to the CREAM tool develop-
ment and for performing mutation testing experiments.

Toward Generalization of Mutant Clustering ... 407

References

12.

13.

14.

15.

16.

17.

. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE

Trans. Softw. Eng. 37(5), 649-678 (2011)

Usaola, M.P., Mateo, P.R.: Mutation testing cost reduction techniques: a survey. IEEE Softw.
27(3), 80-86 (2010)

Hussain, S.: Mutation Clustering. Master’s Thesis. King’s College London, Strand, London
(2008)

Ji, C., Chen, Z.Y., Xu, B.W,, Zhao, Z.H.: A novel method of mutation clustering based on
domain analysis. In: Proceedings of 21st International Conference on Software Engineering &
Knowledge Engineering 422425 (2009)

Dereziniska, A., Rudnik, M.: Quality evaluation of object-oriented and standard mutation oper-
ators applied to C# programs. In: Furia, C.A., Nanz, S. (eds.) TOOLS Europe. LNCS, vol.
7304, pp. 42-57. Springer, Berlin (2012)

Derezifiska, A.: A quality estimation of mutation clustering in C# programs. In: Zamojski,
W. (ed.) New Results in Dependability & Computer Systems. AISC, vol. 224, pp. 119-129.
Springer, Switzerland (2013)

Ma, Y.-S., Kwon, Y.-R., Offut, A.J.: Inter-class mutation operators for Java. In: Proceedings
of 13-th International Symposium on Software Reliability Engineering, pp. 352-363. IEEE
Computer Society (2002)

Derezinska, A.: Advanced mutation operators applicable in C# programs. In: Sacha, K. (ed.)
Software Engineering Techniques: Design for Quality. IFIP, vol. 227, pp. 283-288. Springer,
Boston (2006)

Derezinska, A.: Quality Assessment of Mutation Operators Dedicated for C# Programs. In: 6th
International Conference on Quality Software, QSIC’06, Beijing, China, pp. 227-234, IEEE
Computer Society Press, California (2006)

Jain, A.K., Murty, M.N., Flynn, PJ.: Data clustering: a review. ACM Comput. Surv. 31(3),
264-323 (1999)

. Hu, J,, Li, N., Offutt, J.: An analysis of OO mutation operators. In: Proceedings of 4th Inter-

national Conference Software Testing Verification and Validation Workshops, pp. 334-341
(2011)

Zhang, L., Gligoric, M., Marinov, D., Khurshid, S.: Operator-based and random mutant selec-
tion: better together. In: 28th IEEE/ACM Conference on Automated Software Engineering
(ASE 2013), pp. 92-102. Palo Alto (2013)

Bluemke, 1., Kulesza, K.: Reduction in mutation testing of Java classes. In: Proceedings of
International Joint Conference on Software Technologies (ICSOFT). Vienna (2014)
CREAM, http://galera.ii.pw.edu.pl/~adt/CREAM/

Derezifiska, A., Szustek, A.: Tool-supported mutation approach for verification of C# programs.
In: Zamojski, W., et al. (eds.) Proceedings of International Conference on Dependability of
Computer Systems, DepCoS-RELCOMEX’08, pp. 261-268 (2008)

Derezinska, A., Szustek, A.: Object-oriented testing capabilities and performance evaluation
of the C# mutation system, In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.) CEE-SET 2009.
LNCS, vol. 7054, pp. 229-242 (2012)

Offut, J., Rothermel, G., Zapf, C.: An experimental evaluation of selective mutation. In: Pro-
ceedings of 15th International Conference on Software Engineering, pp. 100-107 (1993)

http://galera.ii.pw.edu.pl/~adr/CREAM/

	Toward Generalization of Mutant Clustering Results in Mutation Testing
	1 Introduction
	2 Background
	2.1 Mutation Testing
	2.2 Mutant Clustering
	2.3 Related Works

	3 Metrics for Generalization of Clustering Results
	3.1 Metric Definitions
	3.2 Example

	4 Experiments on Mutation Clustering
	4.1 Experiment Setup
	4.2 Evaluation of Mutation Clustering Results

	5 Conclusions
	References

