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Abstract We present a new approach to construction of pseudo-random binary
sequences (PRBS) generators for the purpose of cryptographic data protection,
secured from the perpetrator’s attacks, caused by generation of masses of hardware
errors and faults. The newmethod is based on the use of linear polynomial arithmetic
for the realization of systems of boolean characteristic functions of pseudo-random
sequences (PRS) generators. “Arithmetization” of systems of logic formulas has
allowed to apply mathematical apparatus of residue systems for multisequencing of
the process of PRS generation and organizing control of computing errors, caused by
hardware faults. This has guaranteed high security of PRS generator’s functioning
and, consequently, security of tools for cryptographic data protection based on those
PRSs.

Keywords Cryptographic data protection · Pseudo-random binary sequences ·
Residue number systems

1 Introduction

Pseudo-random linear sequences generators play an important role in building of
communication with cryptographic data protection [1, 2]. From the list of known
attacks on information security is important type of attacks, based on the genera-
tion of hardware errors and functioning of the nodes forming the binary PRS [3].
To ensure the required level of interference and fault tolerance of digital devices
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developedmanymethods, themost common of which are backupmethods andmeth-
ods of error-correcting coding [4]. However, allocation methods do not provide the
required levels of fault tolerance for restrictions on hardware costs, and methods of
error-correcting coding is not adapted to the specifics of construction and operation
means of data protection (MDP), in particular, the generators of the PRS.

2 Analysis of Attacks Based on Hardware Faults Generation

Currently, the following types of attacks on sites of formation of binary PRS are
considered (attack on) [5]:

• Analysis of results of power consumption measurements;
• Analysis of results of operations performance duration;
• Analysis of accidental hardware faults;
• Analysis of intentionally generated hardware faults, etc.

The last two types of faults are not investigated enough currently and thus are
threatening to the information security of the functioning of modern and perspective
MDP. The origin of those attacks lies in the use of thermal, high frequency, ionizing,
and other types of external influences ontoMDP for the purpose of creation ofmasses
of faults in hardware functioning by initializing of computing errors.

Hardware attacks can be divided into two classes:

1. Direct hardware attacks The consequences of those attacks are failures of data
protection tools. There is a method of analysis of the consequences of those
failures. These types of attacks mean that in distortion in the certain places of
algorithm of transformation, which results in computing errors. Those errors can
lead, for example, to repeated generation of the elements of PRS or in generation
of faulty elements of PRS, which is unacceptable.

2. Attacks on postfailure recovery means Some systems do not recovery means.
If the system protection is destroyed, it is impossible to restore the operational
mode. That is why such systems need to have means of protection against attacks
of the malefactor and to support the possibility of updating the security system
without stopping the program running.

Attacks, based on errors generation by means of external influence are highly
efficient for themajority of currently knownandused algorithmsofPRSgeneration. It
is known that probability of error generation is proportional to the time corresponding
registers has been affected by the radiation, if the registers are in favorable condition
for error occurrence, and to the quantity of bits, in which the error occurrence is
expected. The most widely used and proven means of creating PRS are algorithms
and structures—Linear feedback shift register (LFSR)—of PRS generation, based
on the use of feedback functions of logic [1, 2].
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Fig. 1 Example of operation of the LFSR when an error occurs (¬x—logical inversion x)
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The structure of LFSR is determined by the forming polynomial:

D(χ) = χτ + χtl + · · · + χt2 + χt1 + 1,

where τ , ti ∈ N and characteristic equation based on it:

x p+τ = x p ⊕ x p+t1 ⊕ x p+t2 ⊕ · · · ⊕ x p+tl

= c0x p ⊕ c1x p+1 ⊕ · · · ⊕ cτ−2x p+τ−2 ⊕ cτ−1x p+τ−1, (1)

where x p, ci ∈ {0, 1}; p ∈ N ; i = 0, 1, . . . , τ − 1; ci∈{0,t1,t2,...,tl } = 1.
In linear algebra the next element of PRS x p+τ is calculated as the following

multiplication:
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When the described attack is performed the conditions arise for PRSmodification
or its repeated generation. The effect of repeated generation of a site of PRS is
explained by means of Fig. 1 (the forming polynomial: D(χ) = χ4 + χ + 1; the
characteristic equation: x p+4 = x p+1⊕x p; the initial conditions: x p = 1, x p+1 = 0,
x p+2 = 1, x p+3 = 0).

Thus, those attacks, which are based on creating the conditions under which mass
hardware errors occur, are threatening for MDP. One of the ways of solving this
problem is development of methods for increasing the reliability of the functioning
of sites of data protection tools, mostly subjected to attacks of the described type, in
particular the sites of forming of the encryption algorithm (cipher), based on PRS
generation.

3 Analysis of Methods for Reliable Binary PRS Generation

Currently, the required level of functional reliability of the sites of binary PRS
generation is reached both by using excessive devices (reservation) and timely access
by various repetitions of the calculations. In digital schemotechnics there are solu-
tions known based on the use of methods of error-correction coding [4]. In order to
use those methods for PRS generators it is necessary preliminary to solve the issue
multisequencing the process of PRS calculations. The solution is based on the use
of classic parallel algorithms of recursion [6].
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For example, for the characteristic equation:

x p+τ = x p+t ⊕ x p, (2)

corresponding to treen D(χ) = χτ + χt + 1, it is possible to build a system of
characteristic equations:

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xq,τ−1 = xq−1,τ−1 ⊕ xq−1,τ+t−1,

xq,τ−2 = xq−1,τ−2 ⊕ xq−1,τ+t−2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xq,1 = xq−1,1 ⊕ xq−1,t+1,

xq,0 = xq−1,0 ⊕ xq−1,t .

Similarly, for the general Eq. (1):

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xq,τ−1 = c(τ−1)
0 xq−1,0 ⊕ c(τ−1)

1 xq−1,1 ⊕ · · · ⊕ c(τ−1)
τ−2 xq−1,τ−2 ⊕ c(τ−1)

τ−1 xq−1,τ−1,

xq,τ−2 = c(τ−2)
0 xq−1, 0 ⊕ c(τ−2)

1 xq−1,1 ⊕ · · · ⊕ c(τ−2)
τ−2 xq−1,τ−2 ⊕ c(τ−2)

τ−1 xq−1,τ−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xq,1 = c(1)

0 xq−1,0 ⊕ c(1)
1 xq−1,1 ⊕ · · · ⊕ c(1)

τ−2xq−1,τ−2 ⊕ c(1)
τ−1xq−1,τ−1,

xq,0 = c(0)
0 xq−1,0 ⊕ c(0)

1 xq−1,1 ⊕ · · · ⊕ c(0)
τ−2xq−1,τ−2 ⊕ c(0)

τ−1xq−1,τ−1,

(3)

where c( j)
i ∈ {0, 1} (i, j = 0, 1, . . . , τ −1). The principle of parallel lasing elements

PRS based on (3) is illustrated by a graph (see Fig. 2).

Fig. 2 Graph generating elements parallel PRS based on (3)
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System (3) forms an information matrix:

GInf =
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Thus we obtain the qth block of the PRS:

Xq = GInf · Xq−1,

where

Xq = [

xq,τ−1 xq,τ−2 . . . xq,1 xq,0
]�

,

Xq−1 = [

xq−1,τ−1 xq−1,τ−2 . . . xq−1,1 xq−1,0
]�

.

Adding to the system (3) checking the equations: GGen, consisting of the infor-
mation and the check matrix by adding (3) validation expressions:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xq,τ−1 = c(τ−1)
0 xq−1,0 ⊕ c(τ−1)

1 xq−1,1 ⊕ · · · ⊕ c(τ−1)
τ−2 xq−1,τ−2 ⊕ c(τ−1)

τ−1 xq−1,τ−1,

xq,τ−2 = c(τ−2)
0 xq−1, 0 ⊕ c(τ−2)

1 xq−1,1 ⊕ · · · ⊕ c(τ−2)
τ−2 xq−1,τ−2 ⊕ c(τ−2)

τ−1 xq−1,τ−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xq,1 = c(1)

0 xq−1,0 ⊕ c(1)
1 xq−1,1 ⊕ · · · ⊕ c(1)

τ−2xq−1,τ−2 ⊕ c(1)
τ−1xq−1,τ−1,

xq,0 = c(0)
0 xq−1,0 ⊕ c(0)

1 xq−1,1 ⊕ · · · ⊕ c(0)
τ−2xq−1,τ−2 ⊕ c(0)

τ−1xq−1,τ−1,

x∗
q,r−1 = a(r−1)

0 xq−1,0 ⊕ a(r−1)
1 xq−1,1 ⊕ · · · ⊕ a(r−1)

τ−2 xq−1,τ−2 ⊕ a(r−1)
τ−1 xq−1,r−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x∗

q,0 = a(0)
0 xq−1,0 ⊕ a(0)

1 xq−1,1 ⊕ · · · ⊕ a(0)
τ−2xq−1,τ−2 ⊕ a(0)

τ−1xq−1,τ−1,

where r—the number of redundant symbols used linear code, a( j)
i ∈ {0, 1} (i =

0, 1, . . . , τ − 1; j = 0, . . . , r − 1).
A generator matrix takes the form:

GGen =
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. . . . . . . . . . .

a(0)
0 a(0)

1 · · · · · · a(0)
τ−2 a(0)

τ−1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

�

.

Then the qth block of the PRS with the control numbers (linear block code):



Secure Pseudo-Random Linear Binary Sequences Generators … 285

Fig. 3 Example graph parallel generation elements PRS (the characteristic equation: x p+4 =
x p+1 ⊕ x p) error control computations (parity control)

X∗
q = [

xq,τ−1 xq,τ−2 · · · xq,1 xq,0 x∗
q,r−1 · · · x∗

q,0
]�

is calculated by:

X∗
q = GGen · Xq−1.

Procedure error-correcting decoding is performed using the known rules [4]. The
application of linear redundant codes and methods “hot” standby is not the only
option for the implementation of functional diagnostics and fault tolerance of digital
devices. Example graph parallel generation elements PRS error control computations
is shown in Fig. 3.

Important advantages for these purposes have redundant arithmetic codes, in
particular, so-called AN -codes and residue number systems (RNS) codes. The
application of these codes to monitor logical data types and fault tolerance imple-
menting devices became possible with the introduction of logical operations arith-
metic expressions [7], in particular linear numerical polynomials (LNP) andmodular
forms [8].

4 Error Control Operation of the PRS Generators, Based
on “Arithmetization” Logical Account

At the end of the last century there was formed a new direction parallel logic
computation by the arithmetic (numeric) polynomials [7]. In particular received
position “Modular arithmetic parallel logic computation” of the unification of the
theoretical foundations of RNS [9–11] and theoretical foundations of parallel logic
computation by the arithmetic of polynomials. The objective of the association is
to use advantages of RNS, i.e., parallelization arithmetic, error control calculations
[12] in real time and ensure high availability of computing equipment in the field of
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parallel logical account. In the following, these provisions were developed in various
aspects, in particular, toward the implementation of cryptographic functions [13, 14].
In particular, it was considered parallel generators PRS based, in general, nonlinear
(canonical) arithmetic polynomials. Use of LNP proposed by Prof. V.D. Malyugin
[7] for the construction of parallel generators PRS possible to reduce the maximum
length of realizing polynomial to a value of n +1, where n—number of arguments of
a Boolean function implemented [14]. In this paper, this method is used as the basis
for the construction of safe (self-checking, fault-tolerant) generators on the basis of
the excess bandwidth RNS.

It is known [15] that the qth block of land PRS can be represented by a single LNP.
The system of characteristic Eq. (3) must submit, as a system of Boolean functions,
which in turn must be converted into a system:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Lτ−1(Xq−1) = g(τ−1)
1 xq−1,0 + g(τ−1)

2 xq−1,1 + · · · + g(τ−1)
τ xq−1,τ−1,

Lτ−2(Xq−1) = g(τ−2)
1 xq−1,0 + g(τ−2)

2 xq−1,1 + · · · + g(τ−2)
τ xq−1,τ−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
L0(Xq−1) = g(0)

1 xq−1,0 + g(0)
2 xq−1,1 + · · · + g(0)

τ xq−1,τ−1,

where g(i)
j (here and then) takes the value “0” or “1” depending on the entry in the

i th LNP xq−1, j ; i, j = 0, 1, . . . , τ − 1.
The result of the calculation of i-LNP system appears to be a binary word of

length li = �log(
0∑

j=τ−1
g(i)

j )� + 1, where �a�—the largest integer. Calculated total

LNP:

L(Xq−1) = Lτ−1(Xq−1) + 2γ1 Lτ−2(Xq−1) + · · · + 2γτ−1 L0(Xq−1)

= g(τ−1)
1 xq−1,0 + g(τ−1)

2 xq−1,1 + · · · + g(τ−1)
τ xq−1,τ−1

+ 2γ1(g(τ−2)
1 xq−1,0 + g(τ−2)

2 xq−1,1 + · · · + g(τ−2)
τ xq−1,τ−1)

+ · · · + 2γτ−1(g(0)
1 xq−1,0 + g(0)

2 xq−1,1 + · · · + g(0)
τ xq−1,τ−1)

= h1xq−1,0 + h2xq−1,1 + · · · + hτ xq−1,τ−1,

where γk = ∑k−1
i=0 (li + 1), k = 1, 2, . . . , τ − 1; h j ∈ Z , or

L(Xq−1) =
τ

∑

i=1

hi xq−1,i−1. (4)

The final result is formed by implementing operator masking �ϕ{U }, which
is used to determine the values of the ϕth Boolean function representation U =
(bv . . . bϕ . . . b2b1)2 (record (. . .)2 means representing a nonnegative U in a binary
number), that is, �ϕ{U } = bϕ.
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In RNS a nonnegative coefficient LNP (4) h j is uniquely represented by a set
of residues on the grounds RNS (m1, m2, . . . , mn < mn+1 < · · · < mk—pairwise
simple):

h j = (α1,α2, . . . ,αn,αn+1, . . . ,αk)MA, (5)

where αt = |h j |mt ; t = 1, 2, . . . , n, . . . , k; | � |m—the smallest nonnegative deduc-
tion number � on the modulo m. Operating range Mn = m1m2 . . . mn must meet
Mn > 2s , where s = ∑

1≤ε≤τ lε—the number of binary bits required to represent
the result of a calculation LNP (4).

The remains α1,α2, . . . ,αn are informational, and αn+1, . . . ,αk—are control.
RNS in this case is called the extended and covers the complete set of states
represented all k residues. This area is full range RNS [0, Mk), where Mk =
m1m2 . . . mnmn+1 . . . mk , and consists of the operating range [0, Mn), defined infor-
mation bases RNS, and range identified redundant bases [Mn, Mk), unacceptable
region for the results of a calculation. This means that operations on numbers h j are
in the range [0, Mk). Therefore, if the result of the operation RNS beyond Mn , it
should output error calculation.

Consider RNS specified grounds m1, m2, . . . , mn, mn+1. Each coefficient LNP
h j can be written as (5) and get redundant code RNS represented by the LNP system:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (1) = L(1)(Xq−1) = α
(1)
1 xq−1,0 + α

(1)
2 xq−1,1 + · · · + α

(1)
τ xq−1,τ−1,

U (2) = L(2)(Xq−1) = α
(2)
1 xq−1,0 + α

(2)
2 xq−1,1 + · · · + α

(2)
τ xq−1,τ−1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
U (n) = L(n)(Xq−1) = α(n)

1 xq−1,0 + α(n)
2 xq−1,1 + · · · + α(n)

τ xq−1,τ−1,

U (n+1) = L(n+1)(Xq−1) = α(n+1)
1 xq−1,0 + α(n+1)

2 xq−1,1 + · · ·
+α(n+1)

τ xq−1,τ−1.

(6)

Substituting in (6) values of RNS residue on the appropriate grounds for each
coefficient (4) and the values of the variables xq−1,0, . . . , xq−1,τ−1, get the values
of LNP system (6), where U (1), U (2), . . . , U (n), U (n+1)—nonnegative integer. In
accordance with the Chinese remainder theorem solve the system of equations:

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U∗ = |U (1)|m1,

U∗ = |U (2)|m2 ,

. . . . . . . . . . . . . . . . . .

U∗ = |U (n)|mn ,

U∗ = |U (n+1)|mn+1 .

(7)

Since m1, m2, . . . , mn, mn+1 are pairwise prime, then the only solution of (7)
gives the expression:
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Fig. 4 Graph of parallel generation PRS based on the Chinese remainder theorem (CRT)

U∗ =
∣
∣
∣
∣

n+1
∑

s=1

Ms,n+1μs,n+1U (s)
∣
∣
∣
∣
Mn+1

, (8)

where Ms,n+1 = Mn+1

ms
,μs,n+1 = |M−1

s,n+1|ms , Mn+1 = ∏n+1
s=1 ms .

Graph parallel generation PRS based on (8) is shown in Fig. 4. The occurrence of
the result of the calculation (8) in the range (control expression):

0 ≤ U∗ < Mn,

means the absence of detectable errors of calculations.

5 Reconfiguration of Equipment

Restore reliable operation of the generator of the PRS in the case of long-term
failure is possible by correcting an error or reconfiguration of equipment generator
(active redundancy). The first option is unacceptable because it does not guarantee
no penetration of undetectable errors in the result of the encryption. By methods of
modular redundant coding is made possible to apply a variant of the reconfiguration
of the equipment by excluding from the operation of the failed equipment.
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Table 1 Calculation table orthogonally bases and modules RNS

j B1, j B2, j · · · Bn+2, j M j

1 0
M1μ2,1

m2
· · · M1μn+2,1

mn+2
m2m3 . . . mn+2

2
M2μ1,2

m1
0 · · · M2μn+2,2

mn+2
m1m3 . . . mn+2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
n + 2

Mn+2μ1,n+2

m1

Mn+2μ2,n+2

m2
· · · 0 m1m2 . . . mn+1

After localization of the faulty equipment—for example—a single channel oper-
ation RNS, the reconfiguration operation is performed by the calculation U∗ from
the system:

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U∗ = |Ũ (1)|m1,

. . . . . . . . . . . . . . . . . .

U∗ = |Ũ (n)|mn ,

U∗ = |Ũ (n+1)|mn+1 ,

U∗ = |Ũ (n+2)|mn+2

on the modules corresponding to the serviceable equipment of the computer:

U∗ = |Ũ (1)B1, j + Ũ (2)B2, j + · · · + Ũ (n+2)Bn+2, j |M j ,

where Ũ (i)—are numbers that may contain errors; Bi, j—orthogonal bases; i, j =
1, 2, . . . , n + 2; i 	= j ; Bi, j = M jμi, j

mi
; M j = Mn+2

m j
; μi, j is calculated from the

comparison:
M jμi, j

mi
≡ 1 (mod mi ). Compiled Table1 contains the values of the

orthogonal bases and modules of the system for the occurrence of a single error for
each base RNS.

6 Conclusion

It is known that the use of RNS already with two redundant bases allows us to
provide a level of fault tolerance modular transmitter that exceeds the tolerance
provided by the method of rorovana equipment. These redundant hardware costs are
reduced from 200% (triple) up to 30–40% (when using RNS) [16]. At the same
time it should be noted that the amount of hardware, PRS generator operating in
accordance obtained by themethod, may exceed the hardware failover LFSR, built in
accordancewith traditional solutions. So you shouldmake a fundamentally new level
of functional flexibility of the designed generator PRS able to implement many other
cryptographic functions, which are time-varying, without rebuilding the structure.
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This allows for the implementation of the device not only in programmable logic
integrated circuit, but also high-tech large custom integrated circuits, in particular
used for the implementation of number theoretic transformations in the field of digital
signal processing.

The implementation of the PRS generators using LNP and redundant RNS allows
to obtain a new class of solutions aimed at the safe implementation of the logical
cryptographic functions, in particular parallel generators PRS. This is provided as
a functional control equipment (in real time), and its fault tolerance through recon-
figuration of the structure of the evaluator in the process of its degradation. Classic
LFSR considered in the present work, is the basis and more complex, for example,
combining generators PRS. Use of the implementation of the PRS generator mod-
ular arithmetic provides the possibility of applying the proposed solutions in the
hybrid cryptosystems (including asymmetric) [14]. When this arithmetic calculator
that supports the implementation of asymmetric cryptographic algorithms may be
used to implement systems of Boolean functions (elements PRS).
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