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1 Introduction

Taurine, 2-aminoethanesulfonic acid was first isolated more than 150 years ago
from ox bile in 1827 by German scientists Friedrich Tiedemann and Leopold
Gmelin (Tiedemann and Gmelin 1827). Taurine has been implicated in neuro-
degenerative disease, antioxidant property, atherosclerosis and coronary heart dis-
ease (Olive 2002; Green et al. 1991; Zhang et al. 2004; Choi et al. 2006).
Nevertheless, there aren’t many reports on anti-cancer property of taurine (Kirk and
Kirk 1993; Yanagita et al. 2008; Chatzakos et al. 2012).

Prostate cancer is the most frequent malignancy in men reaching $8 billion in
expenses with an average cost of $81,658 per patient, from diagnosis till death in the
US alone (Racioppi et al. 2012; Klein and Thompson 2012) with ~350,000 new
cases diagnosed annually in Europe (Siegel et al. 2012; Jemal et al. 2009). Prostate
cancer is also the most common cancer in developed world with increasing rates in
the developing world (Baade et al. 2009). Over the last 25 years, the number of men
diagnosed with prostate cancer each year has increased by 30 % (Wingo et al. 2003).
Therefore, a number of agents are currently being investigated for the prevention of
prostate cancer (Klein and Thompson 2012).

Prostate specific antigen (PSA), an enzyme of 30 kDa grouped in the kalli-
krein family and also known as kallikrein-related peptidase 3 (KLK3) is synthe-
sized to high levels by normal and malignant prostate epithelial cells. Therefore,
it is the key biomarker currently applied for early diagnosis of prostate cancer
(Luigi et al. 2014). The ability of PSA to process a number of growth regulatory
proteins that are important in cancer growth and survival (such as insulin-like
growth factor binding protein, parathyroid hormone-related protein, latent trans-
forming growth factor-beta 2 as well as extracellular matrix components, like
fibronectin and laminin) (Cohen et al. 1992; Iwamura et al. 1996), indeed PSA
can facilitate tumor growth and metastasis dissemination (Williams et al. 2007,
Webber et al. 1995).

The tumor metastasis is associated with a multigene and multistep process
with the participation of various metastasis-related genes. Degradation of the j
matrix (ECM) by MMPs is an essential mechanism in tumor metastasis. Studies
have revealed that MMPs are the common and crucial target effectors for many
oncogenes and tumor suppressor genes facilitating tumor metastasis (Shuman
Moss et al. 2012). MMP9, a key member of the MMPs, plays a vital role in
cancer metastasis process. In addition, angiogenesis is also required for forma-
tion of tumor metastasis. Tumors that have become neovascularized often
express increased levels of proangiogenic proteins, such as VEGF. However, to
the best of our knowledge, there is no scientific report for PSA, MMP9 and
VEGEF. In the present study, therefore, we investigated the effects of taurine on
PSA, MMPs and VEGF expression in vitro using human prostate cancer cells,
LNCaP and PC-3.
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2 Methods

2.1 Materials

LNCaP, androgen-dependent human prostate cancer cells were obtained from
Korean Cell Line Bank (Seoul, Korea; KCLB numbers: 21740). Taurine and DHT
(dihydrotestosterone) were purchased from Sigma (St. Louis, MO, USA). Antibodies
for primary antibodies and the peroxidase-conjugated secondary antibodies were
purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).

2.2 Cell Culture

The human prostate cancer cell line, LNCaP and PC-3 were cultured in RPMI 1640
medium, supplemented with 10 % FBS, 1 % penicillin/streptomycin in a 5 % CO,
atm at 37 °C. The cells were seeded at a density of 3.5x 10° cells well in a 13 cm
well culture dish. After 24 h, the cells were treated with 0.125, 0.250, 0.500, and
1.000 mM of taurine in medium. Cells were treated with taurine for 24 h and then
harvested.

2.3 Cell Viability

Cell viability was determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-
tetrazolium bromide (MTT) assay in 96-well plates as previously described. Cells
were incubated with various concentrations of taurine for 48 h followed by MTT for
4 h, and then 100 pL of isopropanol (in 0.04 N-hydrochloric acid) was added to dis-
solve the formazan crystals. The absorbance was read at 570 nm using the Anthos
2010 spectrophotometer (Salzburg, Austria). Cell viability was calculated as being
the relative absorbance compared to control (Kim et al. 2002).

2.4 Gap Closure Cell Migration Assay

Radius™ 24-well cell migration assay originated from Cell Biolabs, Inc (San Diego,
USA). To determine which wells would be assayed, 500 pl of Radius™ gel pretreat-
ment solution was slowly added to each well by careful pipetting down the wall of
the well. The plate was covered and incubated at room temperature for 20 min.
Radius™ gel pretreatment solution was carefully aspirated from the wells, 500 pl of
Radius™ wash solution was added to each well. The cells were harvested and resus-
pended in culture medium at 0.2 x 10° cell/ml. Radius™ wash solution was carefully
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aspirated from the wells, 500 pl of the cell suspension was added to each well by
careful pipetting down the wall of the well. The plate was transferred the to a cell
culture incubator for 24 h to allow firm attachment. After 24 h, the media from each
well were aspirated and washed three times with 0.5 ml of fresh medium. Sufficient
1x Radius™ gel removal solution was prepared for all wells by diluting the stock
1:100 in culture medium. The media were aspirated from the wells and 0.5 ml of 1x
Radius™ gel removal solution was added to each well and washed three times with
0.5 ml of fresh medium. After the final washing was complete, 1 ml of complete
medium and taurine were added to each well, and a photo was taken on O h, 8 h, 24
h and 48 h, respectively. To compare the differences in migratory gap, images were
captured at the same size, and gap closure was determined after the indicated times
(0, 8, 24 and 48 h) using CellProfiler™ software (Broad Institute, MA, USA).

2.5 Western Blot

After the indicated treatments, cells were harvested in PBS and lysed in RIPA buffer
(150 mM NaCl, 0.5 % deoxycholate, 0.1 % nonidet P-40, 0.1 % SDS and 50 mM
Tris) containing protease inhibitors (50 mg/ml phenylmethylsulfonyl fluoride, 10
mg/ml aprotinin, 5 mg/ml leupeptin, 0.1 mg/ml NaF, ] mM DTT, 0.1 mM sodium
orthovanadate and 0.1 mM b-glycerophosphate). Total cellular proteins were quan-
tified by the Bradford procedure and equal amounts of proteins were mixed with
loading buffer (25 % glycerol, 0.075 % SDS, 1.25 ml of 14.4 M 2-mercaptoethanol,
10 % bromophenol blue and 3.13 % stacking gel buffer) and fractionated by gel
electrophoresis on gradient gels (Novex, CA, USA). Rainbow marker (Novex, CA,
USA) was used as the molecular weight standard. Proteins were transferred to nitro-
cellulose membranes (Novex, CA, USA) and blocked for 1.5 h with clear milk
(Thermo Scientific, IL, USA). Blots were subsequently incubated with primary
antibodies in 1x TBST for 1.5 h. Goat anti-rabbit or goat anti-mouse horseradish
peroxidase conjugated secondary antibodies (Santa Cruz Biotechnology, TX, USA)
were used at 1:5,000 dilution in 1x TBST. Blots were treated with Western Lightning
Western Blot Chemiluminescence Reagent (Advansta, CA, USA) and the proteins
were detected by autoradiography (Fujifilm, Japan). Equal protein loading was
ascertained by p-actin bodies.

2.6 Statistical Analysis

All data are presented using the mean+SE and the data sourced from at least three
experiments. Statistical analyses were performed using SAS statistical software
(SAS Institute, Cary, NC, USA). Treatment effects were analyzed using one-way
analysis of variance, followed by Dunnett’s multiple range tests. For the results
p<0.05 was used to indicate significance.
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3 Results

3.1 The Effect of Taurine on Viability of Human Prostate
Cancer Cells

The antiproliferative activity of taurine was evaluated using MTT assay. As shown
in Fig. 1, taurine significantly stimulated prostate cancer cells death in a dose-
dependent manner at concentrations of 0.125-1.0 mM. We omitted 1.0 mM from
the results, which showed 30 % below cell viability from the next experiments.

3.2 The Effect of Taurine on Human Prostate Cancer Cells
Migration

To examine the effect of taurine on cell migration, we performed gap closure assay
using a Radius™ 24 well. To compare the differences in migratory gap, images
were captured at the same size, and gap closure was determined after the indicated
times (0, 8, 24 and 48 h) compared to control and DHT group. In LNCaP cells, after
48 h, the gap was closed in approximately 50 % in DHT-treated cells (Fig. 2a). In
addition, in PC-3 cells, after 8 h, the gap was closed in approximately 60 % in DHT-
treated cells (Fig. 2b). As shown in Fig. 2, taurine significantly reduced cell motility,
compared with DHT alone-treated cells in both LNCaP and PC-3 cells.

3.3 The Effect of Taurine on the Expression of PSA
and Migration-Related Genes

First, protein expression of PSA was investigated by Western blot after treatment
with DHT (1 nM) for 48 h. Treatment of LNCaP cells with taurine significantly
decreased PSA expression (Fig. 3a, b). Treatment of PC-3 cells with taurine signifi-
cantly decreased PSA expression (Fig. 3f, g). In addition, migration related genes
were also estimated. As shown in Fig. 3a—c, taurine significantly suppressed protein
expression of MMP-9 in a dose-dependent fashion in LNCaP cells. Moreover,
TIMP-1 and TIMP-2 which are naturally occurring inhibitors of MMP-9, signifi-
cantly and dose-dependently increased the protein expressions in taurine-treated
cells in LNCaP (Fig. 3a, d, e). These data suggest that taurine suppresses the migra-
tory condition by regulating the levels of TIMP-1 and TIMP-2 in androgen-dependent
human prostate cancer cells, LNCaP. In addition, Treatment of PC-3 cells with tau-
rine significantly decreased PSA expression (Fig. 3f, g). Moreover, VEGF which is
considered to be the main factor promoting angiogenesis was significantly and dose-
dependently attenuating the protein expressions in taurine-treated cells (Fig. 3f, h).
These data suggest that taurine suppresses the migratory condition by regulating the
levels of VEGF in androgen-resistant human prostate cancer cells, PC-3.
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Fig. 1 Cell viability analysis of taurine on human prostate cancer cells, LNCaP (a) and PC-3 (b).
Prostate cancer cells were incubated with various concentrations of taurine for 48 h followed by
MTT for 4 h, and then 100 pl of isopropanol was added to dissolve the formazan crystals. Each
value represents the mean+SEM. Values not sharing a common letter are significantly different at
P<0.05 by Dunnett’s multiple range tests

4 Discussion

The sulfur-containing -amino acid, taurine, is the most plentiful free amino acid in
cardiac and skeletal muscle. Recently, several studies have investigated that tau-
rine exhibits anti-proliferative and antineoplastic effects in prostate cancer cells
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Fig. 2 The effect of taurine on the gap closure ability in human prostate cancer cells, LNCaP (a)
and LNCaP (b). Allowed to grow for indicated time in the presence or absence of DHT and differ-
ent concentrations of taurine. The gap covered by the cells was measured by CellProfiler™. The
gap represents the mean of three individual experiments performed in triplicate. “P<0.05, statisti-
cal significance compared with DHT alone-treated cells
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Fig. 3 The effect of taurine on PSA and migration-related genes in human prostate cancer cells,
LNCaP (a—e) and PC-3 (f-h). Cells were treated with or without DHA and various concentrations
of taurine for 48 h. The protein levels from whole-cell lysates were analyzed by Western blot.
[B-actin was used as a loading control. The blot represents the mean of three individual experiments
performed in triplicate. "P<0.05, statistical significance compared with DHT alone-treated cells



Effect of Taurine on Prostate-Specific Antigen Level and Migration in Human... 211

(Chatzakos et al. 2012; Darnowski et al. 2004; Zhang et al. 2008). The regulation
of cell growth is a homeostatic balance between stimulatory and inhibitory signals.
The negative growth control by tumor suppressor genes, differentiation factors, and
programmed cell death (apoptosis) is commonly targeted mechanism exploited for
strategies in the treatment of malignancies and other diseases. Among them, apopto-
sis is a highly attractive and widely studied area to search for more effective agents
for treatment of human cancers. A wide variety of in vivo and in vitro studies pub-
lished in recent years suggested that many chemotherapeutic agents could induce
apoptotic cell death in different cancer cells (McCloskey et al. 1996). For this rea-
son, the anticancer activity of taurine was evaluated for apoptosis using MTT assay.
As shown in Fig. 1, taurine stimulated apoptosis in a dose-dependent manner. From
the results, we decided upon the concentrations of taurine for the next experiments.

Cellular adhesion and migration are important features of cancer progression and
therefore a potential target for cancer interception (Elgass et al. 2014). In this study
we have examined the in vitro effect of taurine on these processes. The migratory
potential was assessed using gap closure assay. As shown in Fig. 2, taurine signifi-
cantly suppressed the migratory movement of human prostate cancer cells, LNCaP
at 48 h and PC-3 at 8 h, respectively.

Meanwhile, there is no scientific report for PSA and migration-related genes.
Therefore, we also elucidated the effect of taurine on the expression of PSA and
migration-related genes such as MMP-9, TIMP-1, TIMP-2, and VEGF. Prostate
cancer can increase the amount of PSA released into the blood stream. Notably,
PSA present in the extracellular fluid, surrounding prostate epithelial cells, has been
reported to be enzymatically active, suggesting that its proteolytic activity plays a
role in the physiopathology of prostate cancer (Tomao et al. 2014; Denmeade et al.
2001). MMPs are essential for extracellular matrix remodelling and may contribute
to the development of endometriosis (Osteen et al. 2003). It is known that MMP-2
and MMP-9 play important roles in the ectopic adhesion, invasion, and implantation
and neovascularisation of the endometrium (Chen et al. 2009). Firstly, we conducted
gap closure assay, and found that taurine significantly suppressed the movement of
androgen-dependent human prostate cancer cell (Fig. 2). Western blot for the esti-
mation of protein expression of PSA, MMP-2, MMP-9, TIMP-1, TIMP-2, and
VEGF was also performed. As shown in Fig. 3, we proved taurine attenuated PSA,
MMP-9, and VEGF. However we didn’t obtain any evidence of the effect of taurine
on MMP-2 protein level in LNCaP and PC-3 cells (data not shown).

There are several reports describing MMP-9 and its specific inhibitor, TIMPs,
that are closely correlated with physiological and pathological processes by degra-
dation and accumulation of the ECM (Roderfeld et al. 2007; Goldberg et al. 1989).
With the exception of neutrophil granulocytes, MMP-9 is usually secreted together
with variable amounts of its specific inhibitor, TIMP-1 and TIMP-2 (Van den Steen
et al. 2002). Interestingly, TIMP-1 has been found not only in separated localiza-
tion, but also in co-localization with pro-MMP-9 in neutrophil organelles, which
resemble secretory vesicles (Price et al. 2000). Accordingly, we ascertained the pro-
tein level of TIMP-1 and TIMP-2. Figure 3a, d, e show taurine enhance the protein
level of TIMP-1 and TIMP-2 in a dose-dependent fashion. Meanwhile, VEGF
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induces endothelial cell proliferation, promotes cell migration, and inhibits apoptosis
(Neufeld et al. 1999). Accordingly, the VEGF expression was also assessed by
Western blot. Figure 3e—g showed that taurine suppressed the expression of VEGF,
as well as the expression of PSA which is a marker for prostate cancer.

These results of the present study suggest that taurine has a beneficial effect on
the cell death and the expression of PSA, MMP-9, TIMP-1, and TIMP-2 in LNCaP,
androgen-dependent human prostate cancer cells.

5 Conclusion

In the present study, taurine improved the apoptosis, the expression of PSA and
modulated migration related genes. Although the mechanism for inducing apoptosis
and PSA in tumor cells needs further investigation, taurine presents a potential che-
motherapy agent.
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