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1             Introduction 

 Apoptosis is the process of programmed cell death and dysregulated apoptosis is 
involved in a variety of diseases such as cancer and neurodegenerative diseases. 
Agents that suppress the proliferation of malignant cells, and even cause apopto-
sis, have the potential to both prevent and treat cancer (Parra et al.  2011 ). Taurine 
(2-aminoethanesulfonic acid) is a sulfur-containing β-amino acid that is present 
widely in mammals. It is one of the end-products of cysteine metabolism in mam-
mals and is renally excreted. Taurine exhibits pharmacological actions and various 

mailto:parkpj@kku.ac.kr


168

benefi cial physiological functions. These benefi ts have encouraged the consumption 
of seafood containing high concentrations of taurine and the use of taurine in infant 
formulas, nutritional supplements, and energy drinks (Matsuda and Asano  2012 ). 
Moreover, taurine has signifi cant anti-infl ammatory properties (Marcinkiewicz 
 2009 ) and participates in different physiological processes as it stabilizes cell 
membranes (Condron et al.  2010 ) and regulates fatty tissue metabolism (Ueki 
and Stipanuk  2009 ) and levels of calcium ions in blood (Ribeiro et al.  2010 ). The 
nonmetabolizable β-amino acid taurine suppresses infl ammation (Marcinkiewicz 
and Kontny  2014 ) and reduces hepatic lipid oxidative stress (Balkan et al.  2002 ), 
protecting liver function during ethanol metabolism (Kerai et al.  1998 ; Yang et al. 
 2010 ). Because it is nonmetabolizable, the protective mechanism of taurine is not 
yet known, but its anti-infl ammatory and antioxidative activities (Marcinkiewicz 
and Kontny  2014 ) primarily result from its sequestration of HOCl and HOBr (Weiss 
et al.  1982 ). Taurine has a protective effect in murine hepatocytes against oxida-
tive stress-induced apoptosis by tert-butyl hydroperoxide (Roy and Sil  2012 ), exerts 
a hypoglycemic effect, and suppresses mitochondria-dependent apoptosis in renal 
and cardiac tissues of alloxan-induced diabetic rats (Das and Sil  2012 ; Das et al. 
 2012 ). There is an increasing interest in studying the additive or synergistic effect 
of taurine in various diseases including cancer. However, the anticancer activity 
of taurine in melanoma cells has not been suffi ciently studied. In this study, it was 
determined whether taurine exhibits an anticancer activity that targets proliferation 
and apoptosis of B16F10 cells.  

2     Materials and Methods 

2.1     Materials 

 Taurine, MTT, neutral red, and propidium iodide (PI) were purchased from Sigma 
Chemical Co. (St. Louis, MO, USA). Antibodies were purchased from Santa Cruz 
Biotechnology (Delaware, CA, USA). β-actin antibody was purchased from Cell 
Signaling Technology Inc. (Beverly, MA, USA). All other reagents were of the 
highest grade commercially available.  

2.2     Cell Culture 

 The murine melanoma B16F10 cell line was obtained from the American Type 
Culture Collection (Rockville, MD) and maintained in Dulbeco’s Modifi ed Eagle’s 
Medium (DMEM) (Gibco, Grand Island, NY) supplemented with 10 % heat- 
inactivated fetal bovine serum (FBS) (Gibco), penicillin (100 U/mL), and strepto-
mycin (100 μg/mL) under 5 % CO 2  in a humidifi ed incubator at 37 °C.  
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2.3     MTT Assay 

 The anti-proliferation assay was performed according to a well-established MTT 
method with slight modifi cations (Carmichael et al.  1989 ). Briefl y, B16F10 cells 
(2.0 × 10 4  cells/well) were seeded in 96-well culture plates. Cells were treated with 
samples for 24 h, MTT solution was added into each well, and cells were incubated 
for 3 h. The medium was discarded and the intracellular formazan product dissolved 
in 150 μL dimethyl sulfoxide (DMSO) under continuous shaking for 10 min. The 
absorbance was measured at 540 nm using a microplate reader (Tecan, Austria). 
Cell viability was expressed as a percentage of the control.  

2.4     Neutral Red Assay 

 The neutral red assay is based on the incorporation of neutral red (3-amino-7- 
dimethylamino-2-methylphenazine hydrochloride) into the lysosomes of viable cells. 
Briefl y, B16F10 cells (2.0 × 10 4  cells/well) were seeded in 96-well culture plates. Cells 
were treated with taurine (5, 10, and 20 mM) for 24 h, 200 μL of prepared neutral red 
solution was added to each well, and the cells were incubated at 37 °C for 24 h. 
Subsequently, the cells were rapidly washed with a solution of 0.1 % calcium chloride 
and 0.5 % formaldehyde. To extract the dye from the intact and viable cell, a solubili-
zation solution of 1 % acetic acid and 50 % ethanol was added to the cells. Following 
10 min incubation at room temperature, the absorbance (OD) was measured by spec-
trophotometry at 540 nm. Results were expressed as percentages of the control.  

2.5     Cell Cycle Analysis 

 Cellular DNA content was measured using fl ow cytometry. Briefl y, the cells (1.0 × 10 5 ) 
were seeded in 6-well plates and allowed to adhere overnight. Cells were treated with vari-
ous concentrations of taurine (5, 10, and 20 mM) for 24 h. The cells were harvested by 
trypsin treatment, washed with cold phosphate-buffered saline (PBS, pH 7.4), and stained 
with PI solution (50 μg/mL of propidium iodide, 10 μg/mL RNase, and 0.5 % Tween-
20 in PBS). Cell cycle phase distribution and DNA histograms of the stained cells were 
determined by fl ow cytometry (FACSCalibur, BD Bioscience). Data from 1.0 × 10 3  cells 
per sample were collected and analyzed with CellQuest software (Becton Dickinson).  

2.6     Determination of Morphologic Changes 

 B16F10 cells were seeded in 6-well plates (1.0 × 10 5  cells/well) and incubated in 
DMEM at 37 °C under 5 % CO 2  for 24 h. Following a 24 h incubation with taurine 
(5, 10, and 20 mM), cellular morphology was assessed using a phase-contrast 
microscope (Nikon, Japan). Images were taken at 200× magnifi cation.  
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2.7     Hoechst 33342 Staining 

 B16F10 cells were plated in 6-well plates and treated with taurine (5, 10, and 20 
mM) for 24 h, fi xed in PBS containing 4 % formaldehyde for 30 min at room tem-
perature. Fixed cells were washed with PBS containing 0.02 % Tween-20 and 
stained with 1 μg/mL Hoechst 33342 (Sigma, St. Louis, MO, USA) for 20 min at 
room temperature. The cells were subsequently washed twice with PBS and visual-
ized and photographed using a fl uorescence microscope.  

2.8     Western Blot Analysis 

 Equal amounts of total protein (20 μg) were separated by sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (SDS–PAGE). Separated proteins were 
transferred electrophoretically onto polyvinylidene difl uoride membranes 
(PVDF) and blocked with 5 % skimmed milk in TBS-T for 2 h. Blots were incu-
bated with specifi c primary antibodies and the immune complexes detected using 
appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies. 
Incubation with the secondary antibody was followed by triplicate washes with 
TBS-T and the blots were processed for visualization using an enhanced-chemi-
luminescence (ECL) detection kit and a Luminescent Image Analyzer (LAS-
3000, Fujifi lm, Tokyo, Japan).  

2.9     Statistical Analysis 

 The data are expressed as the mean ± standard deviation (SD). Statistical analyses 
were assessed by Student’s  t -test for paired data and one-way analysis of variance 
(ANOVA) followed by Duncan’s post-hoc multiple range test. Graph Pad Prism 
software version 4.00 (Graph Pad Software Inc., San Diego, CA) was used. Results 
were considered signifi cant at p < 0.05.   

3     Results 

3.1     Effect of Taurine on Cell Viability of B16F10 Cells 

 B16F10 cells were treated with various concentrations of taurine (5, 10, and 20 
mM) and the percentage of surviving cells was assessed using both a MTT and 
neutral red assay. After treatment with taurine, cell viability of B16F10 cells was 
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signifi cantly decreased (Fig.  1 ). Cell viability upon treatment with 5, 10, and 20 
mM of taurine was 85.4, 83.3, and 81.9 %, respectively as measured using the 
MTT assay and 95.9, 92.3, and 84.1 %, respectively as determined with neutral red 
detection. Treatment of cells with doxorubicin (500 nM) was used as a positive 
control with cell viability found to be 61.9 and 57.4 % for the MTT and neutral red 
assay, respectively. Both the MTT and neutral red assay showed that taurine treat-
ment resulted in decreased cell viability in a dose-dependent manner (Fig.  2 ).    

3.2     Effects of Taurine on the Cell Cycle Distribution 
of B16F10 Cells 

 Table  1  shows the representative histograms of the relative percentage of B16F10 cells 
in each phase of the cell cycle after incubation in the absence and presence (5, 10, and 
20 mM) of taurine for 24 h. As determined by PI staining, the sub-G1 peak of B16F10 
cells increased in a dose-dependent manner. Apoptosis was induced with 5.48, 3.90, 
and 1.66 % after treatment with 5, 10, and 20 mM taurine, respectively (Fig.  3 ).

  Fig. 1    Effect of taurine on cell viability in the MTT assay. B16F10 cells were treated with taurine 
for 24 h. Results are expressed as mean ± SD from three independent experiments. One-way 
ANOVA was used for comparisons of multiple group means followed by Dunnett’s  t -test 
(*** p  < 0.001, ** p  < 0.01 compared with control)       
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3.3         Apoptotic Effects and Morphological Changes 
in B16F10 Cells  

 Morphological changes and cell death in B16F10 cells were observed using an 
inverted microscope. The morphological changes observed after 24 h exposure to 
increasing concentrations of taurine are shown in Fig.  4 . Control cells were not 
affected in their proliferation and showed normal cell morphology. However, treat-
ment with taurine caused cell death and decreased cell density. In addition, changes 
in nuclear morphology were detected by the Hoechst 33342 nuclear staining. 

   Table 1    Effects of taurine on the cell cycle distribution of B16F10 cells   

 Group 

 Number of cell (%) 

 Sub G1  G1  S  G2/M 

 Control  1.47 ± 0.21  52.69 ± 2.52  8.85 ± 1.02  28.91 ± 2.13 
 Taurine (5 mM)  1.66 ± 0.12  51.98 ± 2.29  10.49 ± 1.13  28.90 ± 2.25 
 Taurine (10 mM)  3.90 ± 0.24  50.11 ± 3.26  10.24 ± 1.05  27.94 ± 2.19 
 Taurine (20 mM)  5.48 ± 0.15  45.73 ± 2.11  10.24 ± 1.23  28.68 ± 2.31 
 Doxorubicin (500 nM)  25.51 ± 2.22  30.04 ± 1.58  10.49 ± 1.21  28.64 ± 2.17 

  Cells were treated with the indicated concentration of samples for 24 h and stained with PI for fl ow 
cytometry analysis. The percentages of cells in each phase of three independent experiments are given  

  Fig. 2    Effect of taurine on cell viability in the neutral red assay. Results are expressed as mean ± SD 
from three independent experiments. One-way ANOVA was used for comparisons of multiple 
group means followed by Dunnett’s  t -test (*** p  < 0.001, ** p  < 0.01 compared with control)       
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  Fig. 3    Cell cycle analysis by fl ow cytometry. ( a ) Control, ( b ) 5 mM taurine, ( c ) 10 mM taurine, 
( d ) 20 mM taurine, ( e ) 500 nM doxorubicin       

  Fig. 4    Morphological changes in B16F10 cells. Cells were incubated with samples for 24 h and 
photographs were taken using an inverted microscope. Scale bar: 10 μm. ( a ) control, ( b ) 5 mM 
taurine, ( c ) 10 mM taurine, ( d ) 20 mM taurine, ( e ) 500 nM doxorubicin       
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  Fig. 5    Nuclear morphological changes in B16F10 cells. Cells were incubated with samples for 24 
h, fi xed with 4 % paraformaldehyde, and stained with Hoechst 33342. Photographs were taken 
using a fl uorescent microscope (200× magnifi cation). ( a ) Control, ( b ) 5 mM taurine, ( c ) 10 mM 
taurine, ( d ) 20 mM taurine, ( e ) 500 nM doxorubicin       

As shown in Fig.  5 , the nuclei in the control group were stained as weak homoge-
nous blue, while bright chromatin condensation and nuclear fragmentation were 
observed in the taurine-treated groups.    

3.4     Western Blot Analysis 

 To confi rm apoptosis in response to taurine treatment, the expression levels of Bcl-2 
and Bax, an antiapoptotic and proapoptotic protein, respectively, were evaluated by 
western blot analysis. The expression level of Bcl-2 decreased gradually with 
increasing taurine concentrations. In contrast, that of Bax did not change (Fig.  6 ).    

4     Discussion 

 As with many cancers, the development of melanoma is associated with immune 
suppression (D’Agostini et al.  2005 ). The capacity to elicit effective T- and B-cell 
immunity, including anti-tumor cell activity, is ultimately related to stimulation of 
lymphocyte proliferation and the upregulation of the activity of both NK and CTL 
cells (Marciani et al.  2000 ; Zhang et al.  2005 ). Taurine, one of the most abundant 
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free amino acids presents in mammalian tissues, regulates many cellular functions 
including infl ammatory processes (Choi et al.  2006 ). Beside metabolic regulation, 
taurine also plays an important role in innate immunity (Nagl et al.  2000 ) and is 
directly related to antioxidant properties in clinical (Zulli  2011 ; Shivananjappa and 
Muralidhara  2012 ), toxicological (Turna et al.  2011 ; Yildirim and Kilic  2011 ; Shao 
et al.  2012 ), and oncological studies (Henderson et al.  2001 ; Gottardi and Nagl 
 2010 ; Shalby et al.  2011 ). Apoptosis is a regulated process involving changes in the 
expression of distinct genes. The Bcl-2 family of proteins (e.g., Bcl-2 and Bcl-xL) 
is a regulator of the apoptotic pathway. Bcl-2 and Bcl-xL are upstream molecules in 
this pathway and potent suppressors of apoptosis (Hockenbery et al.  1993 ). These 
Bcl-2 family genes mainly act in the mitochondrion and are involved in the survival/
death pathway, where Bcl-xL and Bcl-2 are responsible for survival and Bak, Bax, 
and Bad for apoptosis (Basu and Haldar  1998 ). In this study, we found that taurine 
inhibits the proliferation of murine melanoma B16F10 cells via apoptosis. Taurine 
can block melanoma cell proliferation and induce apoptosis through a mitochon-
drial pathway. In summary, the antiproliferative effect of taurine on B16F10 mela-
noma cells was investigated. Cell viability was studied using the MTT and neutral 
red uptake test assays. Moreover, cell cycle analysis and protein expression upon 
taurine treatment were examined using western blotting and fl ow cytometry, respec-
tively. These results indicate that taurine suppresses the proliferation of murine 
melanoma B16F10 cells.     
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