
Chapter 4
Models and Applications

Abstract In this section, we discuss the different multicomponent and multiscale
models, which are later applied in simulations. We focus on the coupling of micro-
scopic and macroscopic models, while the microscopic model is related on finer
spatial and time scales and the macroscopic model is related to the coarser spatial
and time scales. We discuss exemplary engineering problems in the field of electronic
application and transport reaction applications in Plasma models. Here, the models
and their underlying multiscale and multicomponent methods are discussed. Based
on the aligned methods, we see the data flow between the disparate scales and can
estimate the accuracy in each micro- and macroscopic model, such that we obtained
truly working multiscale and multicomponent approaches.

We deal with the following characterization based on the different spatial and time
scales of the models, where we decompose the models into the following, see [1]:

• Microscopic Models: Multicomponent Kinetics (discrete treatment) and
• Macroscopic Models: Multicomponent Fluids (continuous treatment).

Further, we deal with multiscale models, which covered the different microscopic
and macroscopic scales and applied methods to overcome the large-scale differences,
see [2].

Remark 4.1 We concentrate on multiscale models, which describes different models
—e.g. a microscopic and macroscopic model—and also only macroscopic models
but with embedded microscopic scales to resolve material properties—e.g. electro-
magnetic behaviour of a magnetizable fluid, see [3, 4].

4.1 Multicomponent Fluids

Abstract In this section, we discuss the models and applications based on the different
multicomponent fluid models. Here, we assume to have a macroscopic scale, i.e. we
can upscale the microscopic behaviour into the macroscopic scales. We deal with
a continuum description and discuss some models based on the multicomponent
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72 4 Models and Applications

fluid problems. Here, standard splitting and multiscale methods are modified with
respect to the requirements of the applications. Then, we can close the gap between
pure theoretical treatment of numerical methods and their numerical analysis and the
necessary adaptation of such standard numerical schemes to engineering applications
with the relation to the model problems.

4.1.1 Multicomponent Transport Model for Atmospheric
Plasma: Modelling, Simulation and Application

4.1.1.1 Introduction

In the following, we discuss a multicomponent transport model for atmospheric
(normal pressure) plasma applications.

In such models, it is important to take into account the mixture of the plasma
species.

We are motivated to understand atmospheric plasmas within non-thermal equi-
librium, which are applied in etching, deposition and sterilization applications, see
[5, 6]), and further in emission filtering processes.

We deal with weakly ionized gas mixtures and chemical reactions in room tem-
perature. Each behaviour of a single species and the mixture is complex and needs
additional mixture terms that extend the standard models, see [7–10].

Furthermore, the motivation arose of different applications in the so-called jet
stream plasma apparatus, for example [11–13]. In such applications, the understand-
ing of the flow and reaction of the species are important.

We assume to deal with a modelling in a time- and spatial- scale, which we
can decompose into heavy particles (molecules, atoms, ions) and light particles
(electrons)—i.e. we have K n � 1.0 where K n, Knudsen number, is the ratio of
the molecular mean free path length to a representative physical length scale—e.g.
length of the apparatus, and therefore, we can apply a macroscopic model.

In the following, we discuss the so-called macroscopic models, also called fluid
models, for the plasma model, which is discussed in [14, 15].

We present the special models with respect to their benefits, starting from a two-
component fluid model till a multicomponent fluid model with Stefan–Maxwell
equation for the mixture of the species. With such a complex model, we achieve an
optimal mixture model, which represents the individual single heavy particle.

The underlying conservation laws result in the equations of mass, momentum and
energy and additional with conditions related to the Stefan–Maxwell equation, e.g.
summation of the mass rates is 1 (

∑
i=1 wi = 1) and summation of the mass fluxes

is 0 (
∑

i=1 ji = 0).
Such equations with additional conditions are quasilinear, strong coupled par-

abolic differential equations, see [16].
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Such equations need a larger computational amount based on the nonlinearities
in the diffusion part. Standard models, based on the Fickian’s approach, compared
the ideas in [17], are much more simpler to solve and the extended model has taken
into account singularities and nonlinear behaviours, see [16, 18, 19].

In the following, we discuss step-by-step approach of the novel models and the
development of the underlying solver methods.

4.1.1.2 Introduction and Overview

Since recent years, the application in normal pressure plasmas arose important and
therefore the understanding of the reactive chemical species in the plasma and during
its mixture is necessary. For such delicate problems, the standard models which are
known in the literature have to be extended by the reactive parts of the mixture.
Such an important detail can be modelled by the diffusion operator, and the Stefan–
Maxwell equation is a possibility to take into account such mixture behaviours,
see [16].

In such reactive plasmas, we obtain due to the typical known processes, as ion-
ization and collision, and additional processes, the so-called chemical reactions.

Such chemical processes are dominant for normal pressure plasmas and they are
used in the plasma medicine technology.

While they applied air as a plasma background, we have the highly reactive ele-
ments oxygen O2 and nitrogen N 2 in the complex gas mixtures.

Therefore, it is important to extend the standard modelling and simulation tech-
niques, see [20, 21], and embed the nonlinear structures of the Stefan–Maxwell
approach.

The diffusive processes are modelled by the so-called multicomponent diffu-
sion, which are more and more studied in the Stefan–Maxwell approaches in fluid-
dynamical models, see [22].

We obtain an improvement of the so-called binary diffusion processes in the
transport reaction models, if we have no dominant species, e.g. only minor at species,
which means we do not have a dominant background matrix. Such observations made
it necessary to deal with a more detailed modelling, see [17, 23–25].

In comparison to pure fluid-dynamical models, see porous media models [26]
or elementary modelling [27], or so-called neutral fluids, in macroscopical plasma
models, we have additional terms, for example electric fields. We assume additional
to deal with weak-ionized particles that such weak-ionized heavy particles can be
modelled by a multicomponent fluid model, vgl. [14].

In modelling plasmas, we deal with a so-called scaling, which allows to distin-
guish between macroscopic plasma models and microscopic plasma models, confer
Table 4.1 and Fig. 4.1.
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Table 4.1 Parameters for the macro- and microplasma and their applications

Mean free path length electrons Pressure Temperature Length of the reactor

Plasma Neutral gas

MacroPlasma (CCP, ICP: Etching and Deposition)

0.01–1 (cm) 1–100 (Pa) 300–500 (K) ≈10 (cm) ≈100 (cm)

MicroPlasma (Plasmajets, DBD: Deposition and Sterilization)

1 (µm) 105 (Pa) 300–500 (K) 0.1–1 (mm) 1–10 (cm)

Both plasmas have the same characteristics in the Knudsen number, i.e. K n � 1 and can be treated
and simulated as macroscopic models

mμ

apparatur length

free path length 
= Kn << 1

Multicomponent−transport−model

(Fluid−model)

Macroplasma Microplasma

free path length: [ cm ] 
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)erutarepmet−moor(lacimreht−non)]K[005(lacimreht

free path length  :   [       ] 
Apparatus length:  [cm]

Normal−Pressure  (1.0 [bar])

Macroscopic Model:

Multi−component−Transport−Model with Stefan−Maxwell Approach

Fig. 4.1 Macroscopic plasma models

We discuss the following steps in the next sections:

• In Sect. 4.1.1.3, we discuss the derivation of the multicomponent transport models.
We begin with a simple model (two-component fluid model) and end up with a
delicate multicomponent transport model (multifluid flow model).

• In Sect. 4.1.1.4, we discuss the mathematical classification and the numerical treat-
ment of such delicate transport models with embedded Stefan–Maxwell approxi-
mations.

• The conclusions are discussed in Sect. 4.1.1.5.
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4.1.1.3 Discussion of the Multicomponent Transport Models
for Normal Pressure Plasmas

We deal in the following with the so-called hierarchical model equations, see
[28, 29], which approximate the behaviour of the normal pressure plasmas.

For the first start, we can simply deal with a two-fluid formulation, where we
decouple heavy particles (ions, molecules, atoms) into light particles (electrons).
Furthermore, a more appropriate model is done with the multifluid formulation,
where we can apply for each heavy particle species (e.g. we distinguish between the
different ions and atoms of O, N , . . .) and apply an individual distribution function.

Furthermore, we extend the transport equations with the Stefan–Maxwell equa-
tion, see the ideas in [25].

As a start point to derive the hierarchical equations with heavy and light particles
in the plasma bulk, we use the Boltzmann equation:

∂

∂t
f + v · ∇x f + q

m
(E + v × B) · ∇v f = 〈 f 〉, (4.1)

• f : Density function of the a general particle species;
• v: General velocity in the bulk;
• q: Particle charge in general;
• m: Mass of the species;
• 〈 f 〉: Collision term in general;
• E: Electrical field vector; and
• B: Magnetical field vector.

For the heavy particle in general and electrons, we derive the fluid model with the
help of the velocity moments to obtain the macroscopic quantities, see [30].

Two-Component Fluid Model
In the following, we assume a simple description of the all heavy particles i (i.e. all
ions and neutrons) and all electrons e.

We have the following Assumption 4.1:

Assumption 4.1 • We concentrate on the density function of the heavy particles
(we neglect the electrons, based on their relative small mass compared to the ions
and neutrons).

• We assume that we do not have mixture of the different species and we only have
to model the pure transport of one particle species.

• An exact distribution function is not necessary for such regimes, while we do not
consider a kinetic behaviour.

• The extension between electrons and heavy particles (e.g. scattering) is sufficient
by a approximated collision term, see also [15].

By applying the velocity momentums, we obtain the conservation equations of the
heavy particles i and the electrons e, in the following equation with α = {i, e}, see
also [14]:
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∂ρα

∂t
+ ∇x · (ραu) = mα Q(α)

n , (4.2)

∂

∂t
ραuα + ∇x · (ραuαuα + nT I − τ ∗)

= qαnα(E + uα × B) − Qe
m, (4.3)

∂

∂t
E∗

total + ∇x · (E∗
totalu + q∗ + nT u − τ ∗ · u

)

= qαnαE − Q(e)
ε , (4.4)

• ρα: Mass density of the species α;
• uα: Averaged velocity of the species α;
• Qα

n , Qe
m, Qe

ε: Collision integral based on the mass, momentum and energy con-
servation;

• qα: Heat flow of the species α;
• nα: Density of species α;
• E: Electrical field vector;
• B: Magnetical field vector; and
• E∗

total : Total energy of all species.

Furthermore, we have to add the Maxwell equations for the electro-magnetic field,
see [15].

Multicomponent Fluid Model with Fickian’s Approach without Stefan–Maxwell
Approach)
In the following, we apply a first multicomponent model based on the work of [9,
14], where all the heavy particles are described. The Fickian’s approach is used and
we assume to have dominant species, e.g. majorant species, which can be applied as
a matrix background such that binary diffusion is sufficient, see [25].

We have therefore the following Assumption 4.2.

Assumption 4.2 The assumptions for the Fickian’s approach are given as follows:

• Each heavy particle species is described with an individual density function.
• We apply only a simple summation of the transport parameters, which results in a

phenomenological result (not the derivation with Stefan–Maxwell equations).
• The electrons are modelled in the same manner as in the two-component fluid

model, see [15].

We have the following notation and constraints of the heavy particle.
The notation for the multicomponent formulation is given as follows:

• N : Number of species;
• ns : Particle density of species s, s = 1, . . . , N ;
• n =∑N

s=1 ni : Total particle density;
• T : Particle energy of all heavy particles, e.g. T = kB Tgas ;
• ρ =∑N

s=1 ρs : Mass density of all particles with ρs as the mass particle density of
species s;
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• ρs = msns , ns , ms : Mass of species s;
• cs = us − u, cs : Difference or diffusion velocity of species s;
• us : Drift velocity of species s; and
• u: Drift velocity of the total system and given as u = 1

ρ

∑N
s=1 ρsus .

The model equation with the binary diffusion coefficients, see in the paper of
Senega/Brinkmann [14], is given for the heavy particles s ∈ {1, . . . , N }:

∂

∂t
ns + ∇x · (nsus + nscs) = Q(s)

n , (4.5)

∂

∂t
ρu + ∇x · (ρuu + nT I − τ ∗) =

N∑

s=1

qsns〈E〉, (4.6)

∂

∂t
E∗

total + ∇x · (E∗
totalu + q∗ + nT u − τ ∗ · u

)

=
N∑

s=1

qsns(u + cs) · 〈E〉 − Q(e)
inel,ST , (4.7)

where

E∗
total =

N∑

s=1

1

2
ρsc2

s + 1

2
ρu2 + 3

2
nT +

N∑

s=1

ρsΔh0
f,s, (4.8)

see also in paper [14].
An improvement of the standard derivation of such models is obtained with the

individual density functions for all different heavy particle species, such that we
obtain the following representation for the values cs , q∗ and τ ∗ with

cs = −d(s)
T ∇xT −

N∑

α=1

D(α,s)
n

1

ns
∇xnα, (4.9)

q∗ = λE 〈E〉 − λ∇xT −
N∑

s=1

N∑

α=1

λ(α,s)
n

1

ns
∇xnα, (4.10)

τ ∗ = −η

(

∇xu + (∇xu)T − 2

3
(∇x · u)I

)

. (4.11)

The production terms (e.g. collision terms, reaction terms) are approximated in
the following operators:
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Q(e)
n =

∫

vs

〈 fs〉d3vs =
∑

r

asign,r kα,r nαnr , (4.12)

Q(s)
n =

∫

vs

〈 fs〉d3vs =
∑

r

asign,r kα,r nαnr , (4.13)

where kα,r is the parameter of the averaged collision rates, see [14] and asign,r is the
signum function, asign,r = 1 is a source term and asign,r = −1 is a sink term.

Multicomponent Fluid Model with Stefan–Maxwell Equation
In the following, we discuss the extended multicomponent description, which is
generalized via the Stefan–Maxwell approach.

The Stefan–Maxwell equation allows a systematical derivation of the diffusion
processes, where the mixture of the different species is considered, such that we can
also discuss counter diffusion, which is possible in ternary diffusion processes. Also,
the thermodynamical behaviour is discussed accurately without heuristic assump-
tions as in the Fickian’s approach.

We discuss in the following the extension of the transport parameters with respect
to the Stefan–Maxwell equation, see [16].

We assume the following:

• Each heavy particle species can be described with an individual density function.

Our notations are used as in the section “Multicomponent Fluid model with
Stefan–Maxwell Equation”.

We apply the transport equation:

∂

∂t
ns + ∇x · (nsus + nscs) = Q(s)

n , (4.14)

with the diffusion velocity:

cs = −d(s)
T ∇xT −

N∑

α=1

D(α,s)
n

1

ns
∇xnα, (4.15)

which is extended in the following with the Stefan–Maxwell equation.
We decompose into two fluxes:

cs = cs,1 + cs,2, (4.16)

where cs,1 is the thermal flux and cs,2 is the diffusive flux

cs,1 = −d(s)
T ∇xT, (4.17)

cs,2 = js, (4.18)

where js is the so-called driving force of the species s.
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In our case, we restrict us to the chemical potential as driving force:

js = ns∇xμs, (4.19)

where μs = log(γsns) and γs is the so-called activation constant (γs > 0) and we
obtain

js = ∇xns, (4.20)

where
∑N

s=1 js = 0, i.e. the sum of all fluxes is equal to 0 and the also the sum of
the mass rates is zero

N∑

s=1

ys = 0, (4.21)

where ys = ρs
ρ

.
The Stefan–Maxwell equation is given as

js =
⎛

⎝
N∑

j=1

1

D̃s j
(ys j j − y j js)

⎞

⎠. (4.22)

We can compute the flux matrix j = ( j1, . . . , jN )T ∈ IRN×N , where j s is the
column vector of j with M = diag(ms), e = [1, . . . , 1]T , P(y) = I − y ⊗ e =
I − (·, |e)y (where ⊗ is the dyadic product), and we obtain the equation

⎧
⎨

⎩

B(y) jα = P(y)M−1∂xα y, α = 1, . . . , n,

B(y) = [bi j (y)], bi j (y) = fi j yi ,

fur i 
= j, bii (y) = −∑N
l=1 fil yl , i, j = 1, . . . , N ,

(4.23)

furthermore, D̃i j = fi j , i, j = 1, . . . , N is the multidiffusion coefficient and n is
the number of spatial dimensions, e.g. n = 2 or n = 3, see [19].

4.1.1.4 Solver Ideas for the Multicomponent System
with the Stefan–Maxwell Equation

We can apply different numerical schemes to solve the multicomponent system with
Stefan–Maxwell equation. Some are discussed in the following:

• Implicit Ideas: Solve the coupled nonlinear transport equation with relaxation
methods.

• Explicit Ideas: Direct solving of Stefan–Maxwell equations, where we apply the
overdetermined equation system and solve analytically the parameters (such a
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analytical method is very delicate and only applicable to binary or ternary diffusion
operators, see [31]).

• Variational formulations: We apply an additional Poisson’s equation to solve the
constraint of the Stefan–Maxwell equation. We obtain a saddle point problem,
which can be solved by standard mixed finite element methods.

Implicit Method

We apply an implicit method with iteration scheme and rewrite the full equation
system into a quasilinear, strong coupled parabolic differential equation, where we
consider for simplicity only the mass conservation:

ρ
∂

∂t
y + Divx (A(y)P(y)M−1[∇x y]T )) = Qn, in Ω, t > 0, (4.24)

∂

∂n
y = 0, auf ∂Ω, t > 0, (4.25)

y(0) = y0, in Ω, (4.26)

y = (y1, . . . , yN ) and Qn = ρ(m1, Q1
n, . . . , m N , QN

n ). Furthermore, we have
A(y) = (B(y)|Ext ), where the matrix B is extended to an invertable matrix. We
have ∇x y = [∂α y j ] ∈ IRn×N and Divx is the divergence in each row of the matrix.

We can show, under some conditions, that we have a existing solution, see [19].
Based on the existing solution, we can apply the following iterative scheme, for

the time intervals n = 0, . . . , N and iterative steps i = 0, . . . , I :

U ′
i+1 = A1(Ui )Ui+1 + A2(Ui )Ui , t ∈ [tn, tn+1], (4.27)

Ui (t
n) = U (tn), (4.28)

where U (tn) is the approximated solution of the last iterative cycle and U0(t) is
an estimated initial or starting solution for the next cycle, e.g. U0(t) = U (tn). The
stopping criterion is given as ||Ui+1(tn+1) − Ui (tn+1)|| ≤ err or the limit of the
number of iterative steps i = I . Furthermore, the operator A1 is the convection part
and A2 is the diffusion part of the transport equation.

The iterative method is convergent with the assumption of the existence of the
solution and boundedness of the operators, see [20, 21].

Explicit Method

Here, we have the benefit of a fast and direct solver for small systems, e.g. binary or
ternary systems.

A main drawback is the application to larger systems of quarternary or higher
mixtures, while it is hard to find the explicit equations.
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We show the method based on a three-component system, given as

∂tξi + ∇ · Ni = 0, 1 ≤ i ≤ 3, (4.29)
3∑

j=1

N j = 0, (4.30)

ξ2 N1 − ξ1 N2

D12
+ ξ3 N1 − ξ1 N3

D13
= −∇ξ1, (4.31)

ξ1 N2 − ξ2 N1

D12
+ ξ3 N2 − ξ2 N3

D23
= −∇ξ2, (4.32)

where we have Ω ∈ IRd , d ∈ N
+ mit ξi ∈ C2.

We can simplify to

∂tξi + ∇ · Ni = 0, 1 ≤ i ≤ 2, (4.33)
1

D13
N1 + αN1ξ2 − αN2ξ1 = −∇ξ1, (4.34)

1

D23
N2 − βN1ξ2 + βN2ξ1 = −∇ξ2, (4.35)

where α =
(

1
D12

− 1
D13

)
, β =

(
1

D12
− 1

D23

)
.

We obtain the explicit solvable Stefan–Maxwell equation with the multidiffusion
coefficients:

D12 = D̃12

[

1 +
w3
M3

( M3
M2

D̃13 − D̃12)

w1
D1

D̃23 + w2
D2

D̃13
+ w3

D3
D̃12

]

, (4.36)

where D̃i j are the binary diffusion coefficients, Mi is the molar mass of the species i
and wi is the mass rate of the species i , see also the derivation in the paper [18, 32].

Variational Formulation

Here, we can apply standard software codes, which are done in the direction of the
Poisson’s equation.

A drawback of the method is that we have to solve a saddle point problem, which
needs iterative solver methods, which are expensive and apply special solver schemes,
e.g. Lagrangian multipliers.

Formulation with respect to the Poisson’s equation is

−Δu = r, in Ω, (4.37)

u = f, auf ∂Ω, (4.38)

where ∂Ω is the boundary of the domain Ω .
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A solution of the problem equation is given via a mixed formulation as a saddle
point problem:

p − ∇u = 0, in Ω, (4.39)

∇ · p = r, in Ω, (4.40)

which means that we find a solution for the mixed formulation of (p, u) ∈ Q × V :

∫

Ω

(pq + u∇ · q) =
∫

∂Ω

f q · nds, (4.41)
∫

Ω

v∇ · pdx = −
∫

Ω

rvdx, (4.42)

where n is the outer normal vector of ∂Ω .
The variational formulation of the Stefan–Maxwell equation is given as

∫

Ω

(−∇ξi qi )dx =
∫

Ω

1

ctot

(
N∑

i=1

αi j (ξi J j qi − ξ j Ji qi )

)

dx, (4.43)

∫

Ω

vi∇ · Ji dx =
∫

Ω

ri vi dx, (4.44)

where ri is the reaction rate (e.g. collision term), Ji is the flux, and ξi is the molar
rate of species i . ctot is the total concentration of the mixture.

Regularization Method: Regularization of the Transport Model with Stefan–
Maxwell Equation

There exist several more methods; a well-known idea is the regularization method.
We start with the macroscopic model and extend the Stefan–Maxwell equation to

a regular and solvable system.
The flux term is given as

cs = 1

ρs
∇ js, (4.45)

where js are the mass flux densities with the following constraints:

• ∑N
s=1 js = 0 (i.e. all fluxes are zero), and

• ∑N
s=1 ws = 1 (i.e. all mass rates are 1),

where xs = ws
M̃
Ms

and xs are the molar rates, Ms is the molar mass of species s, M̃
is the molar mass of the mixture and further the density of the mixture is given as
ρ̃ = (1 −∑N−1

s=1 ws)ρN +∑N−1
s=1 wsρs .
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The Stefan–Maxwell approach is the equibalance of the molar rates for each
individual diffusive flux:

−∇xs = M̃

ρ̃

⎛

⎝
N∑

j=1

1

D̃s j

(

xs
j j

M j
− x j

js
Ms

)
⎞

⎠, (4.46)

and we obtain the equation system

FV = −d, (4.47)

where d = (∇x1, . . . ,∇xM )t , V = ( j1, . . . , jM )t and F is a singular matrix of the
equation system (4.46).

The next step is the regularization of the singular equation system and we obtain
the novel diffusion matrix:

F̃ = F + αy ⊗ y, (4.48)

where y = (n1, . . . , nM )t , α is a parameter for the solver method and ⊗ is the dyadic
product.

Based on this regularisation, we can apply a standard iterative method and solve
the Stefan-Maxwell equation and also the heavy-particle equations together in a
large linear equation system. Such a combination allows to apply fast linear equation
solvers, e.g. SuperILU solvers.

4.1.1.5 Conclusion

The extension of the known standard heavy particle model with an improved diffusion
part can be done with the Stefan–Maxwell equation.

The former summation approach is replaced by the balance approach, see [16,
18, 19], which is done with the Stefan–Maxwell equation.

The former modelling approaches are extended and the solver methods can be
applied. But we have to extend also the analytical or numerical methods for the
singular perturbed novel equation system.

Therefore, we have to modify the simulation packages with respect to the novel
diffusion part.

While explicit methods to solve the Stefan–Maxwell equations are fast and sim-
ple to implement, they lack with larger systems and larger species in the mixture.
Implicit methods are more flexible and also resolve higher mixtures but are more
time-consuming in the computations, while we apply iterative schemes.

At the end, it is an approach how large the systems and the mixtures are, while for
small systems, we apply an explicit method and for large systems we have to apply
an implicit approach.
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4.1.2 Multicomponent Fluid Transport Model
for Groundwater Flow

We concentrate on such models, which deal with the transport behaviour of fluids in
the porous media, see [26].

Such models arose of the background to understand flow of water in aquifers,
transport of pollutants in aquifers or underlying rocks and propagation of stresses,
see [26, 33].

We concentrate on introducing the mathematical models, see also [34–36] and
discuss possible solver methods to simulate such models.

4.1.2.1 Introduction and Mathematical Model

We consider a steady-state groundwater flow that is described by a given velocity
field v = v(x) for x ∈ Ω ⊂ Rd for d = 2 or d = 3. In the groundwater, several
radionuclides (or some other chemical species) are dissolved.

We suppose that these nuclides take part in irreversible, first-order chemical reac-
tions. Particularly, each nuclide (a “mother”) can decay only to a single component
(to a “daughter”), but each nuclide can be produced by several reactions, i.e. each
daughter can have several mothers, see [34].

Moreover, the radionuclides can be adsorbed to the soil matrix. If equilibrium
linear sorption is assumed with different sorption constants for each component,
the advective–dispersive transport of each component is slowed down by a different
retardation factor.

Summarizing, the mathematical model can be written in the form [33, 34]

R(i)φ
(
∂t c

(i) + λ(i j)c(i)
)

+ ∇ ·
(

vc(i) − D(i)∇c(i)
)

=
∑

k

R(k)φ λ(ki)c(k), (4.49)

where i = 1, . . . , Ic. The integer Ic denotes the total number of involved radionu-
clides. A stationary groundwater is supposed by considering only divergence-free
velocity field, i.e.

∇ · v(x) = 0, x ∈ Ω. (4.50)

The unknown functions c(i) = c(i)(t, x) denote the concentrations of radionu-
clides, where the space and time variables (t, x) are considered as t ≥ 0 and x ∈ Ω .
The constant reaction rate λ(i j) ≥ 0 determines the decay (sink) term λ(i j)c(i) for
the concentration c(i) and the production (source) term for the concentration c( j).
In general, the j th radionuclide need not to be included in the system (4.49), i.e.
j > Ic. The indices k in the right- hand side of (4.49) run through all mothers of the
i th radionuclide.
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The remaining parameters in (4.49) include the diffusion–dispersion tensors
D(i) = D(i)(x, v) [33], the retardation factors R(i) = R(i)(x) ≥ 1 and the porosity
of medium φ = φ(x) > 0.

For the modelling of processes on the boundary ∂Ω of the domain Ω , we
apply standard inflow and outflow boundary conditions. Particularly, we neglect
the diffusive–dispersive flux at the outflow (and “noflow”) boundary ∂outΩ := {x ∈
∂Ω, n · v ≥ 0},

n · D(i)∇c(i)(t, γ ) = 0, t > 0, γ ∈ ∂Ω, (4.51)

where n is the normal unit vector with respect to ∂Ω . For the case of inflow boundary
∂ inΩ := {x ∈ ∂Ω, n · v < 0}, we assume that the concentrations are prescribed by
Dirichlet boundary conditions:

c(i)(t, γ ) = C (i)(t, γ ), t > 0, γ ∈ ∂ inΩ. (4.52)

The functions C (i) can describe decay reactions in a waste site (e.g. a nuclear waste
repository), and, in such a way, they shall be related to each other, see, e.g. [37].

The initial conditions are considered in a general form:

c(i)(0, x) = C (i)(0, x), x ∈ Ω. (4.53)

4.1.2.2 Solver Ideas for the Multicomponent Fluid Transport Model

If we assume simple domains, e.g. one-dimensional problems and special boundary
and initial conditions, for the problem (4.49), we could derive analytical solutions,
see for example [37].

Such analytical solutions solve the multicomponent behaviour analytically in an
explicit equation.

For more general applications, e.g. multidimensions and general boundary and
initial conditions, it is necessary to deal with a discretized equation.

Here, we have the following methods to discretize the spatial operators, for
example:

• Finite element methods, see [38] and
• Finite-volume methods, see [39].

We concentrate on the finite-volume scheme, which allow to deal with the con-
servation equation and apply geometrically the derivation of the convection and
diffusion term, see [40].

The finite-volume discretization method, see [42], allows to deal with a general
velocity v = v(x) and general boundary and initial conditions (4.51)–(4.53).
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We have the following ideas:

• We apply analytical solutions for locally one-dimensional advection-reaction prob-
lems on boundaries between two finite volumes, see also Godunov algorithm [40];
and

• We split the diffusion part of (4.49) using operator splitting procedure and apply
finite-volume method, see [41].

If we have nonlinearities, we apply a linearization method, e.g. fixpoint scheme
or Newton’s method. Based on the linearized equations in (4.49), linear splitting
schemes can be applied and decoupled to several simpler problems. Applying after-
wards the principle of superposition, one can obtain the solution of (4.49) by summing
the solutions of such simpler problems.

4.1.2.3 Splitting Method for the Multicomponent Fluid Transport Model

We decompose the multicomponent fluid transport equation into a convection-
reaction part and a diffusion part.

While the convection-reaction part is solved exactly with one-dimensional solu-
tions and Godunov’s scheme is applied, the diffusion part is solved in the spatial
operators with finite-volume discretization scheme and in the time operator with
implicit time discretization.

Convection-Reaction Part

We apply the following convection-reaction equation:

∂t

(
R(l)φu(l)

)
+ ∇ ·

(
vu(l)

)
+ λ(l) R(l)φu(l) = λ(l−1) R(l−1)φu(l−1). (4.54)

We apply the Godunov’s method which means the solution of the one-dimensional
convection-reaction equations, which are embedded as mass transfer to the finite-
volume scheme, see [42].

So we solve for each underlying one-dimensional Ωi and the mass concentration
to the out-flowing cell j ∈ out (i), a one-dimensional convection-reaction equations
for each species l = 1, . . . , I :

R(l)
i φi∂t u

(l)
i + vi j ∂x u(l)

i + λ(l) R(l)
i φi u

(l)
i = λ(l−1) R(l−1)

i φi u
(l−1)
i . (4.55)

We transform to a directly solvable convection-reaction system, with the follow-
ing as

c(l)
i := R(l)

i φi u
(l)
i , ṽi j = vi j

R(l)
i φi

, (4.56)

and we obtain

∂t c
(l)
i + ṽi j ∂x c(l)

i + λ(l)c(l)
i = λ(l−1)c(l−1)

i . (4.57)
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For each cell, we compute the total outflow fluxes

τl,i = Vi R(l)

νi
, νi = vi j , j = out (i).

Based on the restriction of the local time, we have the minimum over all possible
cell time steps:

τ n ≤ min
l=1,...,m
i=1,...,I

τl,i ,

and we obtain a velocity of the finite-volume cell:

vl,i = 1

τl,i
.

Then, we can calculate the mass, which is important to embed into the FV discretiza-
tion:

m(l),n
i j,rest = m(l),n

1 (a, b, τ n, v1,i , . . . , vl,i , R(1), . . . , R(l), λ(1), . . . , λ(l)),

m(l),n
i j,out = m(l)

2 (a, b, τ n, v1,i , . . . , vl,i , R(1), . . . , R(l), λ(1), . . . , λ(l)),

where a = Vi R(l)(c(l),n
i j − c(l),n

i j ′ ), b = Vi R(l)c(l),n
i j ′ and m(l),n

i = Vi R(l)c(l),n
i are the

parameters and j = out (i), j ′ = in(i).
The discretization with the embedded analytical mass is given by

m(l),n+1
i = m(l),n

i j,rest + m(l),n
j ′i,out ,

where m(l),n
i j,rest = m(l),n

i − m(l),n
i j,out is rest mass coming from the total mass and the

outflown mass, see [42].

Diffusion Part

We discretize the diffusion part with the finite-volume methods. We can concentrate
on the following equation:

∂t R c − ∇ · (D∇c) = 0, (4.58)

where c = c(x, t) with x ∈ Ω and t ≥ 0. The diffusion is given as D ∈ IR+ and the
retardation factor is R > 0.0.

The equation is integrated over time and space (implicit time and mass averaging
in space):
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∫

Ω j

∫ tn+1

tn
∂t R(c) dt dx =

∫

Ω j

∫ tn+1

tn
∇ · (D∇c) dt dx . (4.59)

After applying Green’s formula and the approximation in the finite cells (i.e. Γ j is
the boundary of the finite-volume cell Ω j ), we have for one finite cell

Vj R(cn+1
j ) − Vj R(cn

j ) = τ n
∑

e∈� j

∑

k∈�e
j

|Γ e
jk |ne

jk · De
jk∇ce,n+1

jk , (4.60)

where |Γ e
jk | is the length of the boundary element Γ e

jk .
We calculate the gradients via piecewise finite element function φl and obtain

∇ce,n+1
jk =

∑

l∈�e

cn+1
l ∇φl(xe

jk). (4.61)

Then, we obtain the finite-volume discretization for the diffusion part:

Vj R(cn+1
j ) − Vj R(cn

j )

= τ n
∑

e∈� j

∑

l∈�e\{ j}

( ∑

k∈�e
j

|Γ e
jk |ne

jk · De
jk∇φl(xe

jk)
)
(cn+1

j − cn+1
l ), (4.62)

where the finite cells are given as j = 1, . . . , m.
For such a discretization, we can embed the convection-reaction part via a splitting

approach, which is given in the following.

Coupling Part

The different parts of the full equations are coupled via a operator splitting method.
We apply the following splitting approach:

c∗(tn+1) = c(tn) + τn Ac(tn) (4.63)

c∗∗(tn+1) = c∗(tn+1) + τn Bc∗∗(tn+1), (4.64)

where the time step is τ n = tn+1 − tn and n = 1, . . . , N are the number of time
steps. The operator A is the convection-reaction operator, which can be resolved in
the equation analytically. The operator B is the diffusion operator, which is solved
via FV methods and implicit Euler method.

Based on the analytical resolution of the convection-reaction part, we have the
following splitting approach:

c∗∗(tn+1) = (I − τn B)−1 c∗(tn+1), (4.65)

where c∗(tn+1) is the analytical solution of the convection-reaction part.
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The splitting error is of the first order based on the non-commuting operators,
see [42].

Remark 4.2 Based on the analytical embedding of the convection-reaction equation,
we can speed up the solver scheme and concentrate on solving the diffusion part.
Here, based on the first-order splitting scheme, we can see the method as following:
The diffusion equation is only perturbed by a convection-reaction part, see [43].

4.1.3 Conclusion

For the multicomponent fluid transport model, it is important to decompose into sim-
pler and faster solvable equation-parts. Each equation-part, e.g. convection-reaction
part or diffusion part, can be solved with more adequate schemes, which are more
effective and faster as a full equation solver. We have applied fast solver methods for
the convection-reaction part, e.g. modified Godunov’s method embedded to finite
volume schemes, and for the diffusion part, e.g. finite volume schemes to discretize
the spatial operators. The parts are coupled with fast operator splitting schemes,
which allow to concentrate on the diffusion solver, while the convection-reaction
part can be embedded as on explicit solved part. Such effective methods allow to
solve the multicomponent fluid transport model with high accuracy and accelera-
tion. In future, an extension of multicomponent fluid transport models with respect
to additional equation-parts, e.g. multiphase parts or growth parts, are possible and
the splitting schemes can be modified to such additional parts.

4.2 Multicomponent Kinetics

Abstract In this section, we discuss the models and applications based on the different
multicomponent kinetic models. Here, we assume to have a microscopic scale, i.e.
we deal with the fine resolution in the atomic scale. So we have a discrete description
and discuss some models based on the multicomponent kinetics problems.

4.2.1 Multicomponent Langevin-Like Equations

The idea is to apply an alternative model based on the Coulomb collision in plasma
to reduce the computational in particle simulations.

The alternative models are based on Langevin equations, which are coupled non-
linear stochastic differential equations, see [44].

Historically, we have two ideas for algorithms for Coulomb collisions in particle
simulations:
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Fig. 4.2 Screen Coulomb
collision in the
Fokker–Planck limit

Collision Algorithm

 Corresponding

of higher order

in Fokker−Planck limits

Corresponding

Ito−Langevin equation 
with collision operator

equations

 discretized equations

splitting schemes
Euler schemes

Screen Coulomb collision

• Binary algorithm: Particles in a finite cell, see particle in cell, are organized into
discrete pairs (therefore binary algorithm) of interacting particles. The collision is
based on oulomb collision of two particles, see [45].

• Test particle algorithm: The collisions are modelled by defining a dual particles
(test particles) and primary particles (field particles). The velocity of the test parti-
cle is modelled by Langevin equation, which is deposited on the space mesh [46].

The idea of the alternative approach is given in Fig. 4.2.
The main contribution to deal with the stochastic model is based on the following

Remark 4.3 of the Coulomb collision approach:

Remark 4.3 Coulomb collisions can be approximated via defining test and field
particles. The test particle velocity is subjected to drag and diffusion in three velocity
dimensions using Langevin equations, see [47].
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4.2.2 Introduction to the Model Equations

We are motivated to develop fast algorithms to solve Fokker–Planck equation with
Coulomb collisions in plasma simulations.

The Fokker–Planck equations are given as

∂ f

∂t
+ v

∂ f

∂x
− E(x)

∂ f

∂v
= ∂

∂v

(

−γ v f + β−1γ
∂ f

∂v

)

, (4.66)

where we could decouple such a FP equation into the PIC (particle in cell) part and
the SDE part.

• PIC part
∂ f

∂t
+ v

∂ f

∂x
− E(x)

∂ f

∂v
= 0, (4.67)

• SDE part

∂ f

∂t
= ∂

∂v

(

−γ v f + β−1γ
∂ f

∂v

)

, (4.68)

where we solve the characteristics.

• PIC part
dx

dt
= v, (4.69)

dv

dt
= −E(x) = ∂U

∂x
, (4.70)

where U is the potential.
• SDE part

dx

dt
= 0, (4.71)

dv = −γ vdt +
√

2β−1γ dW. (4.72)

We apply the following nonlinear SDE problem:

dx

dt
= v, (4.73)

dv(t) = ∂

∂x
U (x) − γ vdt +

√

2β−1γ dW, (4.74)

where W is a Wiener process, γ is the thermostat parameter and β is the inverse
temperature.

A long solution to the SDE is distributed according to a probability measure with
density π satisfying
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π(x, v) = C−1 exp
(
−β
(

v2

2 + U (x)
))

, (4.75)

where x > 0.0, v ∈ IR.

4.2.3 Analytical Methods for Mixed Deterministic–Stochastic
Ordinary Differential Equations

In the following, we present an algorithm, which is based on solving the mixture of
deterministic and stochastic ordinary differential equations.

The idea is based on the deterministic variation of constants to embed perturbed
right-hand sides.

We deal with the following equations:

d X

dt
= V, (4.76)

dV = −E(x)dt − AV dt + BdW,

with X (0) = X0, V (0) = V0, (4.77)

where W is a Wiener process with the N (0,
√

Δ) distributed.
We rewrite to a linear operator and a nonlinear and stochastic function.

dX
dt

= ÃX + E(X) + dW
dt

,

with X0 = (X0, V0)
t , (4.78)

where X = (X, V )t is the solution vector, X0 = (X0, V0)
t is the initial vector,

the matrix is Ã =
(

0 1
0 −A

)

, the nonlinear function is E =
(

0
−E(X)

)

and the

stochastic function is dW
dt =

(
0

B dW
dt

)

.

The analytical solution is given with the exact integration of the exp( Ãs) (variation
of constants):

X(tn+1) = exp( ÃΔt)X0 +
∫ tn+1

tn
exp( Ã(tn+1 − s)) E(X(s)) ds

+
∫ tn+1

tn
exp( Ã(tn+1 − s)) dWs, (4.79)

X(tn+1) = exp( ÃΔt)X0 + Ẽ(X0) + W̃(X0),

where is the electric field integral is computed with a higher order exponential Runge–
Kutta method.
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Integration of the E-field function with fourth-order Runge–Kutta method is as
follows:

k1 = ΔtE(Xn), (4.80)

k2 = Δt (E(exp( ÃΔt/2)Xn + 1

2
exp( ÃΔt/2)k1)), (4.81)

k3 = Δt (E(exp( ÃΔt/2)Xn + 1

2
k2)), (4.82)

k4 = Δt (E(exp( ÃΔt)Xn + exp( ÃΔt/2)k2)), (4.83)

Ẽ(Xn) = 1

6

(
exp( ÃΔt)k1 + 2 exp( ÃΔt/2)(k2 + k3) + k4)

)
, (4.84)

and the stochastic integral is computed as

W̃(Xn) =
∫ tn+1

tn
exp( Ã(tn+1 − s)dWs

=
N−1∑

j=0

exp

(

Ã

(
tn, j + tn, j+1

2

))

(W(tn, j+1) − W(tn, j )), (4.85)

Δt = (tn+1 − tn)/N , tn, j = Δt + tn, j−1, tn,0 = tn . (4.86)

Remark 4.4 Based on the perturbation and finer time scales, the stochastic integral is
resolved with finer time steps as the non-stochastic parts. Therefore, we have applied
an adaptive numerical integration method that allows to apply additional smaller time
intervals with more integration points. We obtained more accurate numerical results
of the stochastic integral and reduce the numerical error of the full scheme.

4.2.4 Conclusion

For the multicomponent kinetics, we have additional stochastic equation-parts.
Therefore, it is important to resolve such stochastic parts with high accurate stochas-
tic solvers. We have highly perturbed and finer time scale to resolve such multiscale
parts. In our case, we proposed analytical methods, which solved the stoachstic part
with semi-analytical methods and embedded directly the results to the deterministic
(non-stochastic) part. Here, we obtain high accurate results, while we could concen-
trate on the deterministic solver parts. In the future, an extension of multicomponent
kinetics to many particle applications, e.g. plasma dynamics, is important and we can
apply the idea of the analytical embedding of the stochastic part to the deterministic
parts to reduce the computational time.
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4.3 Additive Operator Splitting with Finite-Difference
Time-Domain Method: Multiscale Algorithms

Abstract We discuss numerical methods based on additive operator splitting schemes,
which are used to solve Maxwell equations, see [48]. The discretization schemes are
given with Finite-Difference Time-Domain (FDTD) methods, which apply finite
differences in time and space and allow to conserve the physical behaviour of the
equations, see [49]. Because of the 3D Maxwell equations, we result into large semi-
discretized equation systems, i.e. we have to deal with large systems of ordinary
differential equations. Therefore, we are motivated to optimize 3D computations of
electro-magnetic fields with decomposition methods, which decompose into differ-
ent time and spatial scales. Here, we discuss additive operator splitting schemes,
which allow to decompose into several independent solvable smaller equation sys-
tems, see [2]. We embed the FDTD schemes into the additive splitting and result into
a multiscale approach into each spatial dimension.

4.3.1 Introduction

We are motivated to split large semi-discretized equation systems, e.g. resulted from
FDTD schemes, see [3], with additive operator splitting schemes, which allow to
concentrate on each individual dimension and each time and spatial scale of the
underlying reduced equation systems, see [2].

In Fig. 4.3, we present the multiscale splitting with the FDTD discretization
scheme and the AOS (additive operator splitting scheme) as a multiscale splitting
approach.

While explicit time-discretization schemes have restriction with respect to their
CFL (Courant–Friedrichs–Lewy) condition, we also discuss implicit time-discreti-
zation schemes based on modified FDTD and AOS schemes, which overcome such
restrictions, see [50, 51].

4.3.2 Introduction FDTD Schemes

One of the simplest FDTD schemes is the Yee’s algorithm, see [49]. The ideas are
given in the following:

• We combine time and space discretization on a time–space grid. Using central
difference schemes for both time and space, we obtain second-order methods with
respect to the CFL condition of the discretization schemes.

• A staggered grid is necessary to obtain for both time and space second-order
schemes and obtain a stable discretization scheme, see [49].
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In the following, we present the so-called Yee’s cells in 2D and 3D, see Figs. 4.5
and 4.4.

Such cells are applied with respect to the time and spatial discretization and their
staggered behaviours allow to achieve a second-order scheme.

In the following example, we discuss a first-order FDTD method, see Example 4.1.

Example 4.1 We have the following preparations to achieve the higher order scheme:

• We discretize both time and spackle with a central difference, which is a second-
order scheme.

• We decompose into a primary and dual grid, i.e. we apply a staggered grid for the
magnetic and electric field equations.

• We step forward in time.

We start with the following 1D equations:

∂ Ex

∂t
= − 1

ε0

∂ Hy

∂z
, (4.87)

∂ Hy

∂t
= − 1

μ0

∂ Ex

∂z
, (4.88)

where we have an initial condition of the impulse and adsorbing boundary conditions.
We deal with a wave-front solution in the z direction.

We apply the 1D FDTD method as follows:



96 4 Models and Applications

Fig. 4.4 Staggered grid: 2D

Fig. 4.5 Staggered Grid für
FDTD Methden für 3D

• The simplest 1D FDTD Schema is the Yee’s method.
• We stagger Ex and Hy in time and space with a half-time and half-spatial step.
• We apply the central difference scheme for the time and space coordinates.

We obtain the 1D equation as

En+1/2
x (k) − En−1/2

x (k)

Δt
= − 1

ε0

Hn
y (k + 1/2) − Hn

y (k − 1/2)

Δz
, (4.89)

Hn+1
y (k + 1/2) − Hn

y (k − 1/2)

Δt
= − 1

μ0

En+1/2
x (k + 1) − En+1/2

x (k)

Δz
, (4.90)

where we have a so-called leap-frog algorithm, i.e. first we apply En+1/2
x for all

spatial points and then we apply Hn+1
y for all spatial points. We step forward in time.

For the discretization points of a 1D Yee’s algorithm, see Fig. 4.6.
Based on the explicit method, i.e. we step forward in time, we have restrictions for

the stability in the time step. The CFL condition for the simple 1D Maxwell equation
is given as
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Fig. 4.6 Staggered grid: 1D

Δt ≤ Δz

c0
(4.91)

where c0 is the light speed.

Remark 4.5 For the explicit higher dimensional FDTD methods, we have also the
same restriction as for the 1D methods. We have also to restrict our time step in 2D
and 3D, as follows, see also [49, 52]:

Δt ≤ min3
i=1{Δxi }
c0

√
d

(4.92)

where Δxi , i = 1, . . . , d are the spatial steps, and c0 is the light speed and
d = 2, 3.

4.3.3 Additive Operator Splitting Schemes

The additive operator splitting scheme can be applied with respect to the different
spatial dimensions. Based on their different scales, we can also apply the AOS scheme
as a multiscale approach, see [2].

In the following, we discuss additive operator splitting schemes, see also [3].
We describe traditional operator splitting methods and focus our attention to the

case of two linear operators, i.e. we consider the Cauchy problem,

∂t c(t) =
m∑

i=1

Am(c) t ∈ (0, T ); c(0) = c0 (4.93)

whereby the initial function c0 is given, and A1, . . . , Am are assumed to be bounded
nonlinear operators. (In many applications, they denote the spatially discretized oper-
ators, e.g. they correspond to the discretized in space convection and diffusion oper-
ators (matrices). Hence, they can be considered as bounded operators.)

We discuss the following schemes:
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• AOS (explicit):

cn+1 =
(

I + t
m∑

i=1

Ai (c
n)

)

cn, (4.94)

while the method is closely related to the idea of the multiplicative splitting (A–B
Splitting) in the explicit form:

exp((A1(c
n) + · · · + Am(cn))t) = exp(A1(c

n)t) · · · · · exp(Am(cn)t), (4.95)

if one apply the explicit Euler to Eq. (4.93) and scheme, you neglect the second-
order term O(t2).
The scheme can be additively applied as

cn+1
i = Bi (c

n)cn, i = 1, . . . , m, (4.96)

cn+1 = cn +
m∑

i=1

cn+1
i , (4.97)

with the operators Bi (cn) := t Ai (cn)).
• AOS (semi-implicit):

cn+1 =
(

I − t
m∑

i=1

Ai (c
n)

)−1

cn, (4.98)

and further

cn+1 = 1

m

(
m∑

i=1

(I − m t Ai (c
n)

)−1

)cn, (4.99)

with the operators Bi (cn) := 1
m (I − m t Ai (cn))

The scheme can be additively applied as

cn+1
i = Bi (c

n)−1cn, i = 1, . . . , m, (4.100)

cn+1 =
m∑

i=1

cn+1
i . (4.101)
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4.3.4 Application to the Maxwell Equations

We have the following Maxwell equation:

∂ E
∂t

= 1

ε
∇ × H − 1

ε
σ E, (4.102)

∂ H
∂t

= − 1

μ
∇ × E, (4.103)

where the operators are c = E, v = H and we have the abstract formulation:

∂c
∂t

= A c + A4c, (4.104)

with c = (c, v)t , A = A1 + A2 + A3 =
(

0 1
ε

A
− 1

μ
A∗ 0

)

, A4 =
(−σ

ε
I3×3 03×3

03×3 03×3

)

,

where we have A ,A1,A2,A3,A4 ∈ IR6×6 and A, A1, A2, A3, I3×3, 03×3 ∈ IR3×3

with I3×3 as the identity matrix and 03×3 as the zero matrix.
The decomposition is given in the following steps. Each full A = A1 + A2 + A3

is divided into a single dimension as

A1 =
⎛

⎝
0 0 0
0 0 − ∂

∂x
0 ∂

∂x 0

⎞

⎠, A2 =
⎛

⎜
⎝

0 0 ∂
∂y

0 0 0
− ∂

∂y 0 0

⎞

⎟
⎠, A3 =

⎛

⎝
0 − ∂

∂z 0
∂
∂z 0 0
0 0 0

⎞

⎠,

Here, we have to apply an AOS scheme with four operators.
The full version is given as

∂c
∂t

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−σ
ε

0 0 0 − ∂
∂z

∂
∂y

0 −σ
ε

0 1
ε

∂
∂z 0 − 1

ε
∂
∂x

0 0 −σ
ε

− 1
ε

∂
∂y

1
ε

∂
∂x 0

0 1
μ

∂
∂z − 1

μ
∂
∂y 0 0 0

− 1
μ

∂
∂z 0 1

μ
∂
∂x 0 0 0

1
μ

∂
∂y − 1

μ
∂
∂x 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

c, (4.105)

based on the equations, and when we apply AOS, we split into the following six
matrices:
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A11 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−σ
ε

0 0 0 0 0

0 0 0 1
ε

∂
∂z 0 0

0 0 0 − 1
ε

∂
∂y 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.106)

A21 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 ∂
∂y

0 −σ
ε

0 0 0 0

0 0 0 0 1
ε

∂
∂x 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.107)

A31 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 ∂
∂y

0 0 0 0 0 − 1
ε

∂
∂x

0 0 −σ
ε

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.108)

A12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− 1
μ

∂
∂z 0 0 0 0 0

1
μ

∂
∂y 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.109)

A22 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1

μ
∂
∂z 0 0 0 0

0 0 0 0 0 0
0 − 1

μ
∂
∂x 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.110)
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A32 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 − 1

μ
∂
∂y 0 0 0

0 0 1
μ

∂
∂x 0 0 0

0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.111)

The splitting is based as follows:

cn+1 = 1

6

⎛

⎝
3∑

i=1

2∑

j=1

(I − 6 Δt Ai, j )
−1

⎞

⎠ cn, (4.112)

for example, the first operator is given as

cn+1
1 = 1

6
(I − 6 Δt A11)

−1 cn . (4.113)

If we apply the finite difference discretization of a structured grid, we obtain the
following matrices:

• We assume to have N × N × N grid points, i.e. Hx , Hy, Hz, Ex , Ey, Ez ∈ Ω ∈
IRN × IRN × IRN = IRN 3

.
• The matrices are given as Ai, j ∈ 6IRN 3 × 6IRN 3

, where i = 1, 2, 3 and j = 1, 2.
• For the discretization, we apply the following submatrices: I ∈ IRN × IRN is the

identity matrix, 0 ∈ IRN × IRN is the zero matrix and M ∈ IRN × IRN which is
needed for the difference matrices and given as

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . . . . 0
−1 0 0 . . . 0
0 −1 0 . . . 0
...

. . .
. . .

...

0 . . . 0 −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

• The difference matrices for Mx , My, Mz ∈ IRN 3 × IRN 3
are given as

Mx = 1
Δx

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I + M 0 . . . . . . 0
0 I + M 0 . . . 0
0 0 I + M . . . 0
...

. . .
. . .

...

0 . . . 0 0 I + M

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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My = 1
Δy

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0 . . . . . . 0
M I 0 . . . 0
0 M I . . . 0
...

. . .
. . .

...

0 . . . 0 M I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Mz = 1
Δz

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ĩ 0 . . . . . . 0
M̃ Ĩ 0 . . . 0
0 M̃ Ĩ . . . 0
...

. . .
. . .

...

0 . . . 0 M̃ Ĩ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where Ĩ ∈ IRN 2 × IRN 2
is the identity matrix and M̃ ∈ IRN 2 × IRN 2

is given as

M̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

M 0 . . . . . . 0
0 M 0 . . . 0
0 0 M . . . 0
...

. . .
. . .

...

0 . . . 0 0 M

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Then for example the first operator is discretized as

Cn+1
1 = 1

6
(IDisc − 6 Δt A11,Disc)

−1 Cn, (4.114)

where IA ∈ IRN 3 × IRN 3
is the identity matrix, 0A ∈ IRN 3 × IRN 3

is the zero matrix
and we have

IDisc =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

IA 0A 0A 0A 0A 0A
0A IA 0A 0A 0A 0A
0A 0A IA 0A 0A 0A
0A 0A 0A IA 0A 0A
0A 0A 0A 0A IA 0A
0A 0A 0A 0A 0A IA

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.115)

A11,Disc =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ
ε

IA 0A 0A 0A 0A 0A
0A 0A 0A

1
ε

Mz 0A 0A
0A 0A 0A − 1

ε
My 0A 0A

0A 0A 0A 0A 0A 0A
0A 0A 0A 0A 0A 0A
0A 0A 0A 0A 0A 0A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.116)

furthermore, we have Cn+1 = (Ex,disc, Ey,disc, Ez,disc, Hx,disc, Hy,disc, Hz,disc)
T

and all Ex,disc, Ey,disc, Ez,disc, Hx,disc, Hy,disc, Hz,disc ∈ IRN 3
.
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Remark 4.6 Here, we have an application of a semi-implicit AOS scheme, while the
nonlinearity in Eq. (4.93), i.e. Ai (cn+1), is approximated via Ai (cn), which means
that we restrict us to the linearization of the previous time point tn and therefore, we
embed also a CFL condition.

4.3.5 Practical Formulation of the 3D-FDTD Method

For more practical reasons, we consider on a simpler scheme based on the staggered
time step method, such that we apply semi-implicit schemes.

Maxwell’s equations in lossy and frequency independent materials are given as

∇ × E = −μ
∂ H
∂t

, (4.117)

∇ × H = ∂ D
∂t

, (4.118)

∂ D
∂t

= σ E + ε0εr
∂ E
∂t

(4.119)

where σ is the conductivity, μ is the permeability, ε0 is the vacuum permittivity, εr

is the relative permittivity, E is the electric field, D is the electric flux density and
H is the magnetic field. Equation (4.118) is Maxwell–Ampere equation without free
currents.

We apply the operator ∇× to the equations

∇ × E =
(

∂ Ez

∂y
− ∂ Ey

∂z

)

i x +
(

∂ Ex

∂z
− ∂ Ez

∂x

)

i y +
(

∂ Ey

∂x
− ∂ Ex

∂y

)

i z

= −μ
∂(Hx i x + Hy i y + Hz i z)

∂t
, (4.120)

∇ × H =
(

∂ Hz

∂y
− ∂ Hy

∂z

)

i x +
(

∂ Hx

∂z
− ∂ Hz

∂x

)

i y +
(

∂ Hy

∂x
− ∂ Hx

∂y

)

i z

= ∂(Dx i x + Dy i y + Dz i z)

∂t
, (4.121)

∂ D
∂t

= ∂(Dx i x + Dy i y + Dz i z)

∂t

= σ(Ex i x + Ey i y + Ez i z) + ε0εr
∂(Ex i x + Ey i y + Ez i z)

∂t
. (4.122)

where i x , i y and i z are the unit vectors in x , y and z directions. Then Eqs. (4.120),
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(4.121) and (4.122) are expressed in a scalar manner as

∂ Ez

∂y
− ∂ Ey

∂z
= −μ

∂ Hx

∂t
, (4.123)

∂ Ex

∂z
− ∂ Ez

∂x
= −μ

∂ Hy

∂t
, (4.124)

∂ Ey

∂x
− ∂ Ex

∂y
= −μ

∂ Hz

∂t
, (4.125)

∂ Hz

∂y
− ∂ Hy

∂z
= ∂ Dx

∂t
, (4.126)

∂ Hx

∂z
− ∂ Hz

∂x
= ∂ Dy

∂t
, (4.127)

∂ Hy

∂x
− ∂ Hx

∂y
= ∂ Dz

∂t
, (4.128)

∂ Dx

∂t
= σ Ex + ε0εr

∂ Ex

∂t
, (4.129)

∂ Dy

∂t
= σ Ey + ε0εr

∂ Ey

∂t
, (4.130)

∂ Dz

∂t
= σ Ez + ε0εr

∂ Ez

∂t
. (4.131)

In the following, we apply the semi-implicit version of an additive splitting
approach to our equation.

4.3.6 Explicit Discretization

Here, the time and space derivatives are discretized by centred differences and the
fields affected by the curl operators and staggered in time.

First, we discretize the conductivity term:

Dn+1/2
x (i, j, k) − Dn−1/2

x (i, j, k)

Δt
= σ En+1/2

x (i, j, k) + ε0εr
En+1/2

x (i, j, k) − En−1/2
x (i, j, k)

Δt
,

(4.132)

Dn+1/2
y (i, j, k) − Dn−1/2

y (i, j, k)

Δt
= σ En+1/2

y (i, j, k) + ε0εr
En+1/2

y (i, j, k) − En−1/2
y (i, j, k)

Δt
,

(4.133)

Dn+3/2
z (i, j, k) − Dn+1/2

z (i, j, k)

Δt
= σ En+1/2

z (i, j, k) + ε0εr
En+1/2

z (i, j, k) − En−1/2
z (i, j, k)

Δt
.

(4.134)
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Then we discretize the magnetic part:

{
Hn

z (i, j, k) − Hn
z (i, j − 1, k)

Δy
− Hn

y (i, j, k) − Hn
y (i, j, k − 1)

Δz

}

= Dn+1/2
x (i, j, k) − Dn−1/2

x (i, j, k)

Δt
, (4.135)

{
Hn

x (i, j, k) − Hn
x (i, j, k − 1)

Δz
− Hn

z (i, j, k) − Hn
z (i − 1, j, k)

Δx

}

= Dn+1/2
y (i, j, k) − Dn−1/2

y (i, j, k)

Δt
, (4.136)

{
Hn

y (i, j, k) − Hn
y (i − 1, j, k)

Δx
− Hn

x (i, j, k) − Hn
x (i, j − 1, k)

Δy

}

= Dn+1/2
z (i, j, k) − Dn−1/2

z (i, j, k)

Δt
. (4.137)

The last step is to discretize the electric part of the equation:

{
En+1/2

z (i, j + 1, k) − En+1/2
z (i, j, k)

Δy
− En+1/2

y (i, j, k + 1) − En+1/2
y (i, j, k)

Δz

}

= −μ
Hn+1

x (i, j, k) − Hn
x (i, j, k)

Δt
, (4.138)

{
En+1/2

x (i, j, k + 1) − En+1/2
x (i, j, k)

Δz
− En+1/2

z (i + 1, j, k) − En+1/2
z (i, j, k)

Δx

}

= −μ
Hn+1

y (i, j, k) − Hn
y (i, j, k)

Δt
, (4.139)

{
En+1/2

y (i + 1, j, k) − En+1/2
y (i, j, k)

Δx
− En+1/2

x (i, j + 1, k) − En+1/2
x (i, j, k)

Δy

}

= −μ
Hn+1

z (i, j, k) − Hn
z (i, j, k)

Δt
, (4.140)
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Remark 4.7 We follow forward stepping Hn → En+1/2 → Hn+1. Based on the
staggered grid, we can follow such a forward staggering in time and space.

Furthermore, the spatial parts of the equations can be splitted by applying the
explicit AOS scheme.

4.3.7 Combination: Discretization and Splitting

In the following, we discuss the combination of discretization and splitting. For
example, (4.138) is split into the y direction part and the z direction part.

Therefore, we can apply the additive operator splitting scheme, where we decom-
pose the electric field into a z- and y-part.

We have

− μ
∂ Hx

∂t
= ∂ Ez

∂y
− ∂ Ey

∂z
, Hn

x = Hx (t
n), Δt = tn+1 − tn, (4.141)

and split into the two steps

− μ
∂ H1

x

∂t
= ∂ Ez

∂y
, Hn,1

x = Hx (t
n), Δt = tn+1 − tn, (4.142)

−μ
∂ Hx

∂t
= −∂ Ey

∂z
, Hn

x = Hn+1,1
x = H1

x (tn+1), Δt = tn+1 − tn, (4.143)

where the initial condition of the second equation is coupled by the solution of the
first equation, see also A–B splitting, see [53].

The discretized version of the two steps is given as

En+1/2
z (i, J + 1, K ) − En+1/2

z (i, j, k)

Δy

= −μ
Hn+1,1

x (i, j, k) − Hn,1
x (i, j, k)

Δt
(4.144)

where Hn,1
x (i, j, k) = Hn

x (i, j, k), and the z direction part is

− En+1/2
y (i, j, k + 1) − En+1/2

y (i, j, k)

Δz
)

= −μ
Hn+1

x (i, j, k) − Hn+1,1
x (i, j, k)

Δt
. (4.145)
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Remark 4.8 Here, we have an explicit AOS splitting scheme combined with a FDTD
method. The discretization scheme is based on the staggered grid idea, while the
splitting method is an explicit version.

4.3.8 Practical Formulation of the 3D-AOS-FDTD Method

For more practical reasons, we formulate Eq. (4.99) as

Bi (c
n)cn+1

i = cn, i = 1, . . . , m, (4.146)

cn+1 =
m∑

i=1

cn+1
i . (4.147)

The Maxwell’s equation is given as in Eqs. (4.117)–(4.119). Furthermore, the
operator ∇× is applied to the equations and we obtain Eqs. (4.120)–(4.122). The
equations can be presented in the scalar notation, which is given as in Eqs. (4.123)–
(4.131).

In the following, we apply the additive splitting approach to our magnetic field
equation, which are derived in the AOS scheme as follows:

• For the scalar field Hx , we have

∂ Ez

∂y
− ∂ Ey

∂z
= −μ

∂ Hx

∂t
, (4.148)

and the AOS scheme is given as

∂ Hx
∗

∂t
= − 1

μ

∂ Ez

∂y
, Hx

∗(tn) = Hx (t
n), (4.149)

∂ Hx
∗∗

∂t
= 1

μ

∂ Ey

∂z
, Hx

∗∗(tn) = Hx
∗(tn+1), (4.150)

where Hx (tn+1) = Hx
∗∗(tn+1).

• For the scalar field Hy , we have

∂ Ex

∂z
− ∂ Ez

∂x
= −μ

∂ Hy

∂t
, (4.151)

and the AOS scheme is given as
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∂ Hy
∗

∂t
= − 1

μ

∂ Ex

∂y
, Hy

∗(tn) = Hy(t
n), (4.152)

∂ Hy
∗∗

∂t
= 1

μ

∂ Ez

∂z
, Hy

∗∗(tn) = Hy
∗(tn+1), (4.153)

where Hy(tn+1) = Hy
∗∗(tn+1).

• For the scalar field Hz , we have

∂ Ey

∂x
− ∂ Ex

∂y
= −μ

∂ Hz

∂t
, (4.154)

and the AOS scheme is given as

∂ Hz
∗

∂t
= − 1

μ

∂ Ey

∂y
, Hz

∗(tn) = Hz(t
n), (4.155)

∂ Hx
∗∗

∂t
= 1

μ

∂ Ex

∂z
, Hz

∗∗(tn) = Hz
∗(tn+1), (4.156)

where Hz(tn+1) = Hz
∗∗(tn+1).

4.3.9 Discretization of the Equations with the AOS

Here, the time and space derivatives are discretized by centred differences and the
fields affected by the curl operators are averaged in time. We apply θ -schemes, i.e.
the combination of an explicit and implicit time discretization, and can apply such a
scheme to the AOS.

For example, we apply AOS Eqs. (4.149)–(4.150) and we have

θ
En+1

z (i, j + 1, k) − En+1
z (i, j, k)

Δy
+ (1 − θ)

En
z (i, j + 1, k) − En

z (i, j, k)

Δy

= −μ
H∗,n+1

x (i, j, k) − Hn
x (i, j, k)

Δt
, (4.157)

−θ
En+1

y (i, j, k + 1) − En+1
y (i, j, k)

Δz
− (1 − θ)

En
y (i, j, k + 1) − En

y (i, j, k)

Δz

= −μ
H∗∗,n+1

x (i, j, k) − H∗,n+1
x (i, j, k)

Δt
, (4.158)

where the results are given as Hn+1
x (i, j, k) = H∗∗,n+1

x (i, j, k).
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For all Eqs. (4.123)–(4.131) applied to the AOS and the θ -scheme, we have the
discretized equations as

θ

{
En+1

z (i, j + 1, k) − En+1
z (i, j, k)

Δy
− En+1

y (i, j, k + 1) − En+1
y (i, j, k)

Δz

}

+ (1 − θ)

{
En

z (i, j + 1, k) − En
z (i, j, k)

Δy
− En

y (i, j, k + 1) − En
y (i, j, k)

Δz

}

= −μ
Hn+1

x (i, j, k) − Hn
x (i, j, k)

Δt
, (4.159)

θ

{
En+1

x (i, j, k + 1) − En+1
x (i, j, k)

Δz
− En+1

z (i + 1, j, k) − En+1
z (i, j, k)

Δx

}

+ (1 − θ)

{
En

x (i, j, k + 1) − En
x (i, j, k)

Δz
− En

z (i + 1, j, k) − En
z (i, j, k)

Δx

}

= −μ
Hn+1

y (i, j, k) − Hn
y (i, j, k)

Δt
, (4.160)

θ

{
En+1

y (i + 1, j, k) − En+1
y (i, j, k)

Δx
− En+1

x (i, j + 1, k) − En+1
x (i, j, k)

Δy

}

+ (1 − θ)

{
En

y (i + 1, j, k) − En
y (i, j, k)

Δx
− En

x (i, j + 1, k) − En
x (i, j, k)

Δy

}

= −μ
Hn+1

z (i, j, k) − Hn
z (i, j, k)

Δt
, (4.161)

θ

{
Hn+1

z (i, j, k) − Hn+1
z (i, j − 1, k)

Δy
− Hn+1

y (i, j, k) − Hn+1
y (i, j, k − 1)

Δz

}

+ (1 − θ)

{
Hn

z (i, j, k) − Hn
z (i, j − 1, k)

Δy
− Hn

y (i, j, k) − Hn
y (i, j, k − 1)

Δz

}

= Dn+1
x (i, j, k) − Dn

x (i, j, k)

Δt
, (4.162)
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θ

{
Hn+1

x (i, j, k) − Hn+1
x (i, j, k − 1)

Δz
− Hn+1

z (i, j, k) − Hn+1
z (i − 1, j, k)

Δx

}

+ (1 − θ)

{
Hn

x (i, j, k) − Hn
x (i, j, k − 1)

Δz
− Hn

z (i, j, k) − Hn
z (i − 1, j, k)

Δx

}

= Dn+1
y (i, j, k) − Dn

y (i, j, k)

Δt
, (4.163)

θ

{
Hn+1

y (i, j, k) − Hn+1
y (i − 1, j, k)

Δx
− Hn+1

x (i, j, k) − Hn+1
x (i, j − 1, k)

Δy

}

+ (1 − θ)

{
Hn

y (i, j, k) − Hn
y (i − 1, j, k)

Δx
− Hn

x (i, j, k) − Hn
x (i, j − 1, k)

Δy

}

= Dn+1
z (i, j, k) − Dn

z (i, j, k)

Δt
, (4.164)

where θ = [0, 1].
Remark 4.9 If we apply the conductivity as an operator, we have taken into account
the averaging of the electric field E term. Such an idea is done by θ method and
afterwards, we can apply the additive operator splitting.

Further, we discretize Eqs. (4.129), (4.130) and (4.131), while the conductivity
term and E term are averaged in time.

We apply then

Dn+1
x (i, j, k) − Dn

x (i, j, k)

Δt

= σ(θ En+1
x (i, j, k) + (1 − θ)En

x (i, j, k)) + ε0εr
En+1

x (i, j, k) − En
x (i, j, k)

Δt
, (4.165)

Dn+1
y (i, j, k) − Dn

y (i, j, k)

Δt

= σ(θ En+1
y (i, j, k) + (1 − θ)En

y (i, j, k)) + ε0εr
En+1

y (i, j, k) − En
y (i, j, k)

Δt
, (4.166)

Dn+1
z (i, j, k) − Dn

z (i, j, k)

Δt

= σ(θ En+1
z (i, j, k) + (1 − θ)En

z (i, j, k)) + ε0εr
En+1

z (i, j, k) − En
z (i, j, k)

Δt
, (4.167)

where θ ∈ [0, 1], i.e. θ = 1 is implicit, θ = 0 is explicit and θ = 1/2 is semi-implicit
Then, (4.159)–(4.170) were split into the three direction parts.
For the pure implicit version, which conform with the AOS method, we have

θ = 1 and obtain
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Dn+1
x (i, j, k) − Dn

x (i, j, k)

Δt
= σ En+1

x (i, j, k) + ε0εr
En+1

x (i, j, k) − En
x (i, j, k)

Δt
, (4.168)

Dn+1
y (i, j, k) − Dn

y (i, j, k)

Δt
= σ En+1

y (i, j, k) + ε0εr
En+1

y (i, j, k) − En
y (i, j, k)

Δt
, (4.169)

Dn+1
z (i, j, k) − Dn

z (i, j, k)

Δt
= σ En+1

z (i, j, k) + ε0εr
En+1

z (i, j, k) − En
z (i, j, k)

Δt
. (4.170)

Also this part can be splitted by applying the AOS scheme for the two operators.

Remark 4.10 At least, the AOS scheme is flexible and we could extend to the implicit
version, i.e. θ = 1. Here, we have to deal additional with inversion of the underlying
equation system, which is more delicate, but we can skip the CFL conditions as time
step conditions. Further additional steps are necessary and are computed implicitly.

4.3.10 Transport Equation Coupled with an Electro-magnetic
Field Equations

The following example is discussed in [3], and concluded some of the important
multiscale results.

We deal with the two-dimensional advection–diffusion equation and electric field
equation:

∂t u = −vx (Ez(x, y))
∂u

∂x
− vy

∂u

∂y
+ D

∂2u

∂x2 + D
∂2u

∂y2 , (4.171)

(x, y, t) ∈ Ω × (0, T ),

u(x, y, t0) = u0(x, y), (4.172)
∂ Hx (x, y)

∂t
= −∂ Ez

∂y
, (x, y, t) ∈ Ω × (0, T ), (4.173)

∂ Hy(x, y)

∂t
= ∂ Ez

∂x
, (x, y, t) ∈ Ω × (0, T ), (4.174)

∂ Ez(x, y)

∂t
= 1

ε

(
∂ Hy

∂x
− ∂ Hx

∂y

)

− Jsource, (x, y, t) ∈ Ω × (0, T ), (4.175)

where we have the initial function:

u(x, t0) = ua(x, t0) = 1

t0
exp

(

− (x − vt0)2

4Dt0

)

,

where x = (x, y)t and v = (vx , vy)
t , and we have
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{
vx (Ez(x, y)) = 1, vy = 1.0, for t ∈ (0, t0),
vx (Ez(x, y)) = αEz(x, y), vy = 0.0, for t ≥ t0,

(4.176)

with α = 0.001, t0 = 10.0. The spatial domain is given as Ω = [0, 1] × [0, 1].
The electric field Ez(x, y) has the following line source:
Jsource(x, y) = sin(t) where x = 0, y ∈ (0, 100).
The control of the particle transport is given by the electric field shown in Fig. 4.7.
In the following, we have the line sources with the results given in Fig. 4.8:

Fig. 4.7 Electric field in the
apparatus

gas− chamber
Particle concentration in theelectric field

Line source for the

 Target or source to be deposited

Transport direction
to the source

Fig. 4.8 Line source of the
electric field in the apparatus
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Numerically, we solve the equation, as in the following explicit AOS Algo-
rithm 4.3:

Algorithm 4.3 We have coupled the equations by the following algorithm:
(1) Initialize convection–diffusion equation, till t0.
(2) Solve the electric field equation with tstart and obtain Ez(x, y) for t0
(3) Solve convection–diffusion equation with t0 + Δt and use Ez(x, y) for tstart

for the unknown.
(4) Do t0 = t0 + Δt and go to (2) till t0 = tend

The following Figs. 4.9 and 4.10 show the developing concentration under the
influence of the electric field, where α = 0.07, tstart = 0.5 and vy = 0 for t ≥ tstart .

Remark 4.11 For spatial and time discretization, it is important to balance such
schemes. If we apply an explicit AOS method and assume to have finite difference
schemes in time and space, we have taken into account the CFL (Courant-Friedrichs-
Levy) condition.

The condition for the explicit scheme is given as

√
εΔx ≥ Δt, (4.177)

where Δx and Δt are the spatial and time steps.

Fig. 4.9 Concentration density of the plasma specie, influenced by the electromagnetic field, in
the apparatus at time t = 1.483 (the concentration flows from the left lower corner to the center)
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Fig. 4.10 Electric field in
the apparatus at time
t = 1.483

Remark 4.12 Another idea is based on the following implicit AOS Algorithm 4.4,
while Eqs. (4.171)–(4.175) are discretized as

un+1(i, j) = un(i, j)

+ Δt

(

−vx (En+1
z (i, j))

u(n)(i + 1, j) − un(i, j)

Δx
− vy

un(i, j + 1) − un(i, j)

Δy

+ D
un(i + 1, j) − 2un(i, j) + un(i − 1, j)

Δx2 + D
un(i, j + 1) − 2un(i, j) + un(i, j − 1)

Δy2

)

,

(4.178)

Hn+1
x (i, j) − Hn

x (i, j)

Δt
= − En+1

z (i, j + 1) − En+1
z (i, j)

Δy
, (4.179)

Hn+1
y (i, j) − Hn

y (i, j)

Δt
= En+1

z (i + 1, j) − En+1
z (i, j)

Δx
, (4.180)

En+1,∗
z (i, j) − En

z (i, j)

Δt
= 1

ε
(

Hn+1
y (i + 1, j) − Hn+1

y (i, j)

Δx
) − 0.5Jsource(i, j), (4.181)

En+1
z (i, j) − En+1,∗

z (i, j)

Δt
= 1

ε
(− Hn+1

x (i, j + 1) − Hn+1
x (i, j)

Δy
) − 0.5Jsource(i, j),

(4.182)

where i, j = 1, . . . , I are the spatial discretization points with Δx , and Δy are
the spatial steps. Furthermore, Δt is the time step with n = 0, 1, . . . , N , which are
the time points.
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Then the equation system is given as

U n+1 = (I − Δt A)−1U n, (4.183)

U n+1 = U n + Δt B(vx (E
n
z ), vy, D)U n, (4.184)

where U n+1 = (un+1(1, 1), . . . , un+1(I, I ))t is the discretized solution of the trans-
port system, U n+1 = (H n+1

x ,H n+1
y ,E n+1

z )t is the discretized solution of the
electro-magnetic field, with H n+1

x = (Hn+1
x (1, 1), . . . , Hn+1

x (I, I ))t , H n+1
y =

(Hn+1
y (1, 1), . . . , Hn+1

y (I, I ))t and E n+1
z = (En+1

z (1, 1), . . . , En+1
z (I, I ))t . Fur-

thermore, the matrices A ∈ IRI×I and B ∈ IR3I×3I are given and have embedded
the boundary conditions.

The algorithmic idea 4.4 is given as follows.

Algorithm 4.4 We have coupled the equations by the following algorithm:
(1) Initialize convection–diffusion equation, till t0 and n = 0.
(2) Solve implicitly the electro-magnetic field equation with the time step Δt and

obtain E n+1
z for tn+1.

(3) Solve explicitly the convection–diffusion equation with Δt and use E n+1
z for

tn+1 for the unknown and obtain U n+1.
(4) Do tn+1 = tn + Δt and go to (2) till tn+1 = tend .

Here, we have the benefit that we are not restricted to the time step of the electro-
magnetic field and we could apply the large time step, which is also applied for the
convection–diffusion equation.

4.4 Extensions of Particle in Cell Methods for Nonuniform
Grids: Multiscale Ideas and Algorithms

Abstract In this section, we discuss ideas to extend uniform particle in cell (PIC)
method to nonuniform PIC methods. The ideas are based to modify the so-called PIC
cycle parts, which decouple grid-free (particle methods), grid-based (field methods)
and couple the parts with interpolation methods. The methodological idea of the PIC
method can be seen as a multiscale method, while we deal with different underlying
modelling scales, e.g. micro- and macroscopic scale. The different parts of the PIC
method can be applied in different scales, e.g. a microscale (particle solver) and
a macroscale (field solver). So we have a multiscale behaviour, while the transfer
between the micro- and macro-model is done via interpolation or restriction, which is
applied in the PIC method as spline approximations, see [54]. Another aspect results
of the physical constraints mean that we have to fulfil the mass, momentum and
energy conservation of the problem, see [54]. Such a problem can only be fulfilled
for a uniform grid steps, while we deal with a primary grid. A modification to an
adaptive or nonuniform grid needs to extend the freedom degrees of the underlying
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grid, and therefore we have to deal with an additional so-called dual grid. On dual grid
or in the logical space, we can extend the uniform grid into an adaptive grid and such a
modification allows us to conserve the constraints, e.g. mass, momentum and energy
conservation, see also [55, 56]. Both interpolation schemes (particle to grid and grid
to particle) and solver methods (macrosolver: Poisson solver and microsolver: time
integrator) have to be combined such that the physical constraints are fulfilled and
the numerical errors are at least second order, see [57]. Here, we discuss the ideas to
develop step-by-step multiscale extension of the PIC cycle. We modify shape function
to adaptive shape functions and fit them to the adaptive discretization schemes such
that the interpolations are of the same order as in the uniform case. Furthermore, we
present some extensions to 2D and deal with simple 1D examples.

4.4.1 Introduction of the Problem

The motivation of the modification arose of a practical application in a propulsion
problem. While in the inner or ion thruster part we deal with high density of particle
and the outer or plume region, it has only a very low density of particles, see [58].

If we apply uniform PIC methods, we have taken into one spatial step for the full
region, i.e. the very small spatial step of the inner region, and we have the problem
of very long computational times.

In Fig. 4.11, we present the different spatial scales of the motivation.

Remark 4.13 The multiscale problem is given by the restriction of the time and
spatial steps for a fine resolution of the inner part (restriction by the Debye length λD ,
where Δx ≤ λD and Δx is the spatial step size of the uniform grid. The Debye length
is the distance scale over which significant charge densities can spontaneously exist,

Inner Region
(high density)

[cm] .... [m] region
[nsec]....[msec] region Spatial−scale

Time−scale

Outer Region
(low density)

Density ρ

[m] .... [km] region
[sec]....[h] region

Fig. 4.11 The model problem with inner and outer region of different spatial and time scales
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see [30]. It is therefore the largest scale, which can be resolved by the PIC method,
see [54]. Moreover, if we deal with the multiscale problem of the test problem, we
have to obtain very small spatial step sizes.

4.4.2 Introduction of the Extended Particle in Cell Method

The Particle in Cell (PIC) method is the well-known method over the last decades. The
concept of coupling grid and grid-free methods are applied to accelerate the solver
process. While parts of the equations are solved on a grid, e.g. Poisson equation, the
transport of particles is done grid-free by computing the trajectories with fast time
integrators, see [54, 59].

In recent applications, the flexibility of PIC schemes, with respect to higher order
schemes and nonuniform grids, is important (Fig. 4.12).

In the following, we discussed a possible flexibilization of the PIC cycles based
on improving all parts of the cycle, see Fig. 4.2.

The following three parts of the PIC can be improved:

• Shape function (higher order spline functions, which fulfil the constraints, e.g.
TSC or higher, see [54]).

higher order

Solver:
FD or FV
methods of 

Pusher:
symplectic time−
integrator of 
higher order

higher order
splines
(fulfilled the constraints)

Interpolation (particle −> grid):
higher order
splines
(fulfilled the constraints)

Interpolation (grid −> particle):

Extended PIC scheme for adaptive Problems

Fig. 4.12 Improved PIC cycles for adaptive PIC



118 4 Models and Applications

• Solver (higher order discretization schemes, e.g. fourth-order finite difference
schemes, see [60]).

• Pusher (higher order symplectic time integrators, e.g. fourth-order symplectic
schemes, see [61]).

Remark 4.14 Before improving one part of the PIC cycle, we have to be careful to
fulfil the physical constraints of the problem, such that it might be possible, which we
have to update all the parts of the PIC cycle for such an extension, see the discussion
of an adaptive PIC code in [62].

4.4.3 Mathematical Model

In the following, we discuss the mathematical model, which is based on the Vlasov–
Poisson equation, which describe an ideal plasma model.

The Vlasov equation describes the electron distribution f

∂ f

∂t
+ v · ∂ f

∂x
+ F

m
· ∂ f

∂v
= 0, (4.185)

and the Poisson equation describes the potential to the electrons in the electric field E:

∇2φ = −ρ

ε
, (4.186)

F = qE = −q∇φ, (4.187)

The positive ions are used as a fixed, neutralizing, background charge density ρ0
and the total charge density ρ is given as

ρ(x) = q
∫

f dv + ρ0, (4.188)

We apply the following assumption to the model in the linear case:

• Plasma frequency: ωP =
√

nq2

ε0me
.

• Debye length: λD =
√

ε0kB T
nq2 .

These lengths are important for the explicit numerical schemes, i.e. we have
restrictions of the time and spatial step sizes:

• Time step size Δt � 2
ωP

.
• Spatial step size: Δx ≤ λD .
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Furthermore, we have some more conditions:

• Restriction to the length of apparatus L: λD � L .
• Number of particle: NPλD � L ,

such that we have a sufficient large length of the test apparatus and also to fulfil the
number of particle per Debye length which is sufficiently large, where we have from
the statistical point of view sufficient dates for the methods, see [54].

4.4.4 Discretization of the Model

To compute the model, we have to apply the idea of a super particle, which allows
to decouple into an equation of motion (transport of the particles) and the potential
equation (forces to the particles).

We assume that the x −v phase space is divided into a regular array of infinitesimal
cells of volume dτ = dxdv, where dτ is sufficiently small so that only one electron
is in it. Then f (x, v, t)dτ gives the probability that the cell at (x, v) is occupied at
time t . We assume that the electron is then shifted to time t ′ to the cell (x ′, v′). Due
to this assumption, it is also used in the characteristics schemes, see [63].

We have to solve the equation of motions:

dx

dt
= v, (4.189)

dv

dt
= q E

m
, (4.190)

and in the time integral form

x ′ = x +
∫ t ′

t
vdt, (4.191)

v′ = v +
∫ t ′

t

q E

m
dt, (4.192)

and we can show in general for such a shift: f (x ′, v′, t ′) = f (x, v, t).
To speed up the computations, we take a sample of points (super particle)

{xi , vi , i = 1, . . . , Ns} and an element i of the phase fluid is corresponding to

Ns =
∫

i
f dxdv, (4.193)
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The characteristics to the phase space of the super particle points are given by

dxi

dt
= vi , (4.194)

dvi

dt
= F(xi )

M
, (4.195)

M = Nsme and me is the electron mass.
In the following, we discuss the different extensions to the adaptive PIC methods.

4.4.4.1 1D Adaptive PIC

To understand the parts of the adaptive PIC method, we discuss in the first steps the
one-dimensional case. In the following, we describe the different tools for the 1D
adaptive PIC:

• 1 D adaptive finite difference (FD) method,
• 1 D adaptive Shape function, and
• Fitting scheme at the interface.

While the 1D FD methods are applied to the micro- and macro-model, we apply
also adaptive interpolation/restriction methods, i.e. shape functions, to apply the
data transfer between the different scales. Furthermore, we have to deal with a fitting
scheme at the interface to fulfil the constraints of the scheme, e.g. conserve the first
moments of the shape functions, see [62].

1D Adaptive Finite Difference Discretization for the Poisson Equation

In the following, we have the adaptive scheme, which are based on weighting the
central difference scheme for the underlying model problem, i.e. here the Poisson’s
equation.

We discuss the adaptive grid of finite difference schemes, see [64], for the Poisson
equation in one dimension:

d2φ

dx2 = − 1

ε0
ρ(xi ), xi ∈ [0, L], (4.196)

φ(0) = 0, φ(L) = 0, (4.197)

where xi give the coordinates of a super particle i .
The finite difference scheme after Shortly and Weller [65], which is given with a

three-point stencil, see also [66], and the difference quotient are given as
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−D2
Δxφ = 2

Δx2

[
1

sr (sr + sl)
φ(x + srΔx) + 1

sl(sr + sl)
φ(x − slΔx) − 1

sr sl
φ(x)

]

,

(4.198)

where Δx is the mesh size of the grid and sr , sl ∈ (0, 1] are the scaled factors of the
finer grid. Furthermore, D2

Δx = ∂+
sr Δx∂

−
slΔx is the difference quotient with

∂+
slΔxφ = φ(x) − φ(x − slΔx)

slΔx
, (4.199)

∂−
sr Δxφ = φ(x + srΔx) − φ(x)

srΔx
. (4.200)

The consistency error is given for the boundary points also as a second-order
method, see [66]:

||φ(x) − φΔx (x)|| ≤ Δx2
(

1

48
d2||φ||C3,1(Ω) + 2

3
||φ||C2,1(Ω)

)

, (4.201)

where d ≤ Δx .

Remark 4.15 For a different notation, we apply

DΔx DΔx̃φ = − 2

Δx(Δx + Δx̃)
φ(x + Δx) + 2

Δx Δx̃
φ(x)

− 2

Δx̃(Δx + Δx̃)
φ(x − Δx̃), (4.202)

while Δx is the grid size on the left-hand side and Δx̃ is the grid size on the right-
hand side.

Adaptive Shape Functions

In the following, we derive adaptive higher order shape functions.
We have the following underlying steps for the construction:

1. 1D Interpolation and Shape functions.
2. 1D uniform shape functions.
3. Adaptive Linear Splines (adaptive CIC).
4. Construction of higher order Splines.

The steps are discussed in the following outlined points.

1. 1D Interpolation and Shape functions:

In the following, we discuss the shape functions that are need to map the charge
densities on a grid.



122 4 Models and Applications

We deal with CIC (Cloud in Cell) shape functions, see [54], which are the linear
shape functions S(xi −X j ), where X j implements the grid point and xi is the position
of the particle i .
The density at the grid point of the particles is weighted by the weighting function:

ρ j =
N∑

i=1

qi S(xi − X j ), (4.203)

where qi is the i th charge.
In standard application, this function is symmetry and fulfils the isotropy of space,

charge conservation and condition to avoid self forces, see [54, 67].
For the consistency of the uniform and nonuniform shape functions, we have the

following restriction:
N∑

i=1

S(x − Xi ) = 1, (4.204)

where all the weights are qi = 1 and x is the position of the particle and Xi the grid
point at position i .

In the following, we see the construction on a non-symmetric mesh, see Fig. 4.13.

2. 1D uniform shape function

We deal with the following uniform shape functions:

• NGP: nearest grid point and
• CIC: Cloud in Cell.

The NGP uniform shape functions is given as

S(x − X) =
{

1, when |x − X | ≤ Δx
2 ,

0, else,
(4.205)

where we have a uniform grid size of Δx in the domain Ω = [0, L].
The CIC uniform shape functions is given as

S(x − X) =
{

1 − |x−X |
Δx , when |x − X | < Δx,

0, else,
(4.206)

where we have a uniform grid size of Δx in the domain Ω = [0, L].
For the uniform mesh function, we have to fulfil the consistency (mass conserva-

tion) (4.204).

Theorem 4.5 For the uniform shape function (4.206), we fulfil the consistency
(4.204).
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Δ x Δ x~

Δ x Δ x

Δ x

Uniform Shape Function

Adaptive Shape Function

0

0

shift

Fig. 4.13 Adaptive shape function

Proof It is sufficient to proof the function for the following situation for one particle
x and the two grid points X and X − Δx , based on the symmetry, and one can do it
for all particles:

1 − x − (X − Δx)

Δx
+ 1 − (X − x)

Δx
= 1, (4.207)

2 − x

Δx
− X

Δx
− 1 − X

Δx
+ x

Δx
= 1, (4.208)

this is fulfilled.

3. Adaptive Linear Splines (adaptive CIC)

In the following, we discuss the adaptive shape functions.
We assume the domain Ω = [0, L] and Δx is operating in the domain [0, L1],

while Δx̃ is operating in the domain [L1, L].
The grid point X is not at the boundary L1, i.e. x < L1 − Δx or x > L1 + Δx̃ :
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S(x − X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − |x−X |
Δx , when |x − X | < Δx, and x ∈ [0, L1],

1 − |x−X |
Δx̃ , when |x − X | < Δx̃, and x ∈ [L1, L],

0, else,

(4.209)

where we assume to have a nonuniform grid size, while of Δx is the domain Ω =
[0, L1] and Δx̃ is the domain Ω = [L1, L].

For the nonuniform mesh function, we have to fulfil the consistency (mass con-
servation) (4.204).

Theorem 4.6 For the nonuniform shape function (4.285), we fulfil the consistency
(4.204).

Proof It is sufficient to prove that the shape functions based on each different domain
fulfil the condition.

For domain Ω1 = [0, L1], we have

1 − x − (X − Δx)

Δx
+ 1 − (X − x)

Δx
= 1, (4.210)

and when it is fulfilled also for domain Ω2 = [L1, L], we have

1 − x − (X − Δx̃)

Δx̃
+ 1 − (X − x)

Δx̃
= 1. (4.211)

Remark 4.16 The idea of the adaptive shape functions can also be extended to higher
order shape functions, e.g. [54]. An example is given in the appendix.

4. Construction of the higher order Spline

We have the following situation of the shape functions, see in Fig. 4.14.
Following [54], we have the following constraints to derive the higher shape

functions:

x3

xΔ  = Η 2
~Δ 1x = H

xx2

Nonuniform Fractions

x1

Fig. 4.14 Nonuniform fractions for the shape functions (nonuniform TSC function)
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m∑

p=1

Wp(x) = 1, (4.212)

m∑

p=1

Wp(x)(x − x p)
n = const. (4.213)

The additional obtained freedom degrees can be used to approximate to the correct
potential φc.

We improve the interpolation by the fact that

φ(x ′) = G(x ′ − x) + C

2

d2G(x ′ − x)

dx2 + O(Δ3), (4.214)

where G is the Greens function and φ(x ′) is the correct potential at x ′.
Later, we could apply the freedom degree with C to the spline fitting of the adaptive

grids.
Due to the fact that φ and G are even functions, we have the following restriction

of our constraint:

m∑

p=1

Wp(x)(x − x p)
n =

{
0 n odd

const, n even
, (4.215)

where

Wp = 0, p 
= 1, 2, . . . , n. (4.216)

Furthermore, the displacement invariance property is given as

Wp(x) = W (x − x p). (4.217)

Example 4.2 In the following, we derive the uniform and nonuniform shape
functions.

1. Uniform Case

We derive the case of n = 2 and n = 3.
For n = 2, we have three constraint equations:

W1 + W2 + W3 = 1, (4.218)

W1x1 + W2x2 + W3x3 = x, (4.219)

W1x2
1 + W2x2

2 + W3x2
3 = C + x2, (4.220)

Wp = 0 for p 
= 1, 2, 3, (4.221)

additional, we have to apply to derive the constant C :
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φ(x ′) = G(x ′ − x) + C

2

d2G(x ′ − x)

dx2 + O(Δ3), (4.222)

where G is the Greens function and φ(x ′) is the correct potential at x ′.
For solving the linear equation system, we applied program-code Maxima [68] and
we obtain

W1 = C + (x2 − x) x3 − x x2 + x2

(x2 − x1) x3 − x1 x2 + x1
2 , (4.223)

W2 = −C + (x1 − x) x3 − x x1 + x2

(x2 − x1) x3 − x2
2 + x1 x2

, (4.224)

W3 = C + (x1 − x) x2 − x x1 + x2

x3
2 + (−x2 − x1) x3 + x1 x2

. (4.225)

Using the displacement invariance property (4.217) and Eq. (4.216), we obtain

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2+3 H x+2 H2+C
2H2 , − 3

2 H ≤ x < − 1
2 H,

1− (x2+C)

H2 , − 1
2 H ≤ x < 1

2 H,

x2−3 H x+2 H2+C
2H2 , H

2 < x < 3H
2 ,

0, else.

(4.226)

2. For n = 3, we have three constraint equations:

W1 + W2 + W3 + W4 = 1, (4.227)

W1x1 + W2x2 + W3x3 + W4x4 = x, (4.228)

W1x2
1 + W2x2

2 + W3x2
3 + W4x2

4 = C + x2, (4.229)

W1x3
1 + W2x3

2 + W3x3
3 + W4x3

4 = 3xC + x3, (4.230)

Wp = 0 for p 
= 1, 2, 3, 4, (4.231)

additionally, we have to apply to derive the constant C :

φ(x ′) = G(x ′ − x) + C

2

d2G(x ′ − x)

dx2 + O(Δ3), (4.232)

where G is the Greens function and φ(x ′) is the correct potential at x ′.
For solving the linear equation system, we applied program-code Maxima [68]

and we obtain
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W1 = x4
(
C + (x2 − x) x3 − x x2 + x2

)+ x3
(
C − x x2 + x2

)+ x2
(
C + x2

)− 3 x C − x3

(
(x2 − x1) x3 − x1 x2 + x1

2
)

x4 + (x1
2 − x1 x2

)
x3 + x1

2 x2 − x1
3

,

W2 = − x4
(
C + (x1 − x) x3 − x x1 + x2

)+ x3
(
C − x x1 + x2

)+ x1
(
C + x2

)− 3 x C − x3

(
(x2 − x1) x3 − x2

2 + x1 x2
)

x4 + (x1 x2 − x2
2
)

x3 + x2
3 − x1 x2

2
,

W3 = x4
(
C + (x1 − x) x2 − x x1 + x2

)+ x2
(
C − x x1 + x2

)+ x1
(
C + x2

)− 3 x C − x3

(
x3

2 + (−x2 − x1) x3 + x1 x2
)

x4 − x3
3 + (x2 + x1) x3

2 − x1 x2 x3
,

W4 = − x3
(
C + (x1 − x) x2 − x x1 + x2

)+ x2
(
C − x x1 + x2

)+ x1
(
C + x2

)− 3 x C − x3

x4
3 + (−x3 − x2 − x1) x4

2 + ((x2 + x1) x3 + x1 x2) x4 − x1 x2 x3
.

Using the displacement invariance property (4.217) and Eq. (4.216), we obtain

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x3+6 H(x2+C)−11H2x−3Cx+6H3

6H3 , −2H ≤ x < −H,

x3−2H(x2+C)−H2x+3Cx+2H3

2H3 , −H ≤ x < 0,

−x3−2H(x2+C)+H2x−3Cx+2H3

2H3 , 0 ≤ x < H,

x3+6 H(x2+C)+11H2x+3Cx+6H3

6H3 , H ≤ x < 2H,

0, else.

(4.233)

A simpler notation because of the symmetry is given as

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−|x |3−2H(x2+C)+H2|x |−3C|x |+2H3

2H3 , |x | < H,

|x |3+6 H(x2+C)+11H2|x |+3C|x |+6H3

6H3 , H ≤ |x | < 2H,

0, else.

(4.234)

Such shape function can be applied for the higher order interpolations between
grid-free (pusher) and grid parts (solver).

2. Nonuniform Case

We derive the cases for n = 2, and the same idea is also applied for n = 3.
For n = 2, we have three constraint equations:



128 4 Models and Applications

W1 + W2 + W3 = 1, (4.235)

W1x1 + W2x2 + W3x3 = x, (4.236)

W1x2
1 + W2x2

2 + W3x2
3 = C + x2, (4.237)

Wp = 0 for p 
= 1, 2, 3, (4.238)

additionally, we have to apply to derive the constant C :

φ(x ′) = G(x ′ − x) + C

2

d2G(x ′ − x)

dxdx̃
+ O(Δ3), (4.239)

where G is the Greens function and φ(x ′) is the correct potential at x ′. The adaptive
Laplacian is given as d2

dxdx̃ , as given in Eq. (4.202).
We deal with the discussion of the smoothness constraint, which we have as an

upper bound of our C . For the uniform grid, the discussion is done in [54].
The effects of the charge assignment are given as

φp = 1

8

2H1

H1 + H2
G p+H2 + 3

4
G p + 1

8

2H2

H1 + H2
G p−H1 , (4.240)

and we obtain

φp = G p + H1 H2

8

(
2H2

H1 + H2
G p+H2 − 2

H1 H2
G p + 2H1

H1 + H2
G p−H1

)

,

φp = G p + C

2

d

dx

d

dx̃
G p, (4.241)

and we obtain C = H1 H2
4 .

Next, we solve the linear equation system that we applied program-code Maxima
[68] and we obtain

W1 = C + (x2 − x) x3 − x x2 + x2

(x2 − x1) x3 − x1 x2 + x1
2 , (4.242)

W2 = −C + (x1 − x) x3 − x x1 + x2

(x2 − x1) x3 − x2
2 + x1 x2

, (4.243)

W3 = C + (x1 − x) x2 − x x1 + x2

x3
2 + (−x2 − x1) x3 + x1 x2

. (4.244)

Using the displacement invariance property (4.217) and Eq. (4.216), we obtain
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W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2−2H1x+H2(H1−x)+H2
1 +C

H1(H1+H2)
, − 3H1

2 < x < − H1
2 ,

−x2+H2(x+H1)−H1x−C
H1 H2

, − H1
2 < x < − H2

2 ,

x2+2H2x+H1(H2+x)+H2
2 +C

H2(H1+H2)
, H2

2 < x < 3H2
2 ,

0, else,

(4.245)

where H1 = x2 − x1, H2 = x3 − x2, H1 + H2 = x3 − x1 and C ∈ [0, H1 H2
4 ]. So we

deal with an adaptive interface with grid lengths H1 and H2.

4.4.4.2 Correction of the Shape Function

For the physical constraints, it has to be fulfilled in the shape functions, and therefore
we have additional algorithms to correct the derived shape functions:

• Algorithm 1 (Multigrid idea) for corrected shape function,
• Algorithm 2 (Fixpoint idea) for corrected shape function,
• Improved Pusher: Velocity Verlet,
• Momentum conserved constraint, and
• Spline fitting to fulfil the momentum conservation.

Algorithm 1 (Multigrid Idea) for Corrected Shape Function

In the following, we present the algorithm of the corrected shape function. This is
an initialization process, which we have to do first one and afterwards we have at the
interface such a corrected shape function.

Algorithm 4.7 (1) Compute the corrected potential at the interface with the fine
grid:

φ f ine(x ′) = W2, f ine(x)G(x ′ − x), (4.246)

where G is the Greens function (which is given locally in 2D or 3D) and ρ(x) = 1,
i.e. we assume W2, f ine(x) = 1.

(2) Compute the uncorrelated potential at the interface with the coarse-grid local
(quadratic spline with an assumed C = Cuncorrelated , e.g. Cuncorrelated = (Δx/2)2.)

φcoarse,uncorrelated(x ′) = W2,coarse(x)G(x ′ − x), (4.247)

where G is the Greens function (which is given locally in 2D or 3D) and ρ(x) = 1,
but we have a different shape function based on the adaptation W2,coarse(x) 
=
W2, f ine(x) = 1.
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(3) Compute the corrected adaptive shape function (compute the parameter C):

φcoarse,correlated = C

2
W2,coarse(x)

∂

∂x

∂

∂ x̃
G + W2,coarse(x)G

= C

2
W2,coarse(x)

∂

∂x

∂

∂ x̃
G + φcoarse,uncorrelated(x ′)

= φ f ine(x ′), (4.248)

and we have

C = 2
φ f ine(x ′) − φcoarse,uncorrelated(x ′)

W2,coarse(x) ∂
∂x

∂
∂ x̃

. (4.249)

For the initialization of the interface, we have first computed this corrected shape
function, and if we do not change the interface afterwards, we could use the fitted
spline for all the particles.

In the following, we describe the spline fitting algorithm in Fig. 4.15.

x32x =xx1 x’

Interface

x32x =xx1 x’

Interface

x32x =xx1 x’

Interface

Spline−Fitting

1.) Computation at Interface with fine shape function (red: correct Potential)

3.) Computation at Interface with corrected coarse shape function (green: correlated Potential)

2.) Computation at Interface with coarse shape function (blue: uncorrelated Potential)

Fig. 4.15 Spline fitting: fine-coarse interface at interface point x
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Δ x Δ x~xp−1
xp xp+1

S 2,uncorr.

Δ x Δ x~xp−1
xp xp+1

S 2,corr.

Correlation shape function and discretization

Correlation shape function with respect to

the adaptive grid

Fig. 4.16 Correlated shape functions to the adaptive discretization scheme (adapted TSC function)

In Fig. 4.16, we present the correlated shape function with respect to the adaptive
discretization scheme.

Algorithm 2 (Fixpoint Idea) for Corrected Shape function

In the following, we present an alternative algorithm of the corrected shape func-
tion based on forward and backward computations at the interface, which can be
formulated to a fixpoint scheme.

The algorithm is given as follows.

Algorithm 4.8 We start with known xn
i , x p, vn−1/2

i and C0 = 0
(1) Forward PIC algorithm starting with xn

i and +q (positive charge)

xn
i → ρn

p → φn
p → En

p → Fn
i → vn+1/2

i → xn+1
i (4.250)

(2) Backward PIC algorithm starting with xn+1
i and −q (negative charge)

xn+1
i → −ρn+1

p → −φn+1
p → −En+1

p → −Fn+1
i → −ṽn+1/2

i → x̃n
i (4.251)
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xp−1
xp p+1xxi

n

Δ x

x
n~
i

Δ x~

xi
n+1

Iterative PIC scheme at Interface
Forward PIC (+q)

Backward PIC   (−q)

Fig. 4.17 Iterative PIC (forward and backward computations with PIC at the interface)

(3) Difference Forward PIC and Backward PIC algorithm

Δxi = xn
i − x̃n

i , (4.252)

(4) Adaptation of parameter C j

We compute the error of the schemes (forward, backward)

|W (xn
i − x p, C j−1) − W (x̃n

i − x p, C j−1)| = δW, (4.253)

if ΔW ≤ error , we are done and C j−1 is our novel parameter for the shape function
else we compute C j with

W (xn
i − x p, C j ) − W (x̃n

i − x p, C j−1) = 0, (4.254)

and go to step (1)

In Fig. 4.17, we see the idea of the iterative forward and backward PIC scheme.

Improved Pusher: Velocity Verlet

For the backward PIC, we have a problem in computing the backward velocity ṽn+1/2
i ,

with the simple leap-frog algorithm, see [69, 70], and we have to apply vn+3/2
i which

is not given.
Here, an improved second-order scheme to compute also backward a PIC

algorithm.
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We have to apply the velocity Verlet, which is given as a forward scheme xn →
xn+1 (xn, vn is known)

vn+1/2 = vn + 1

2
Δt F(xn), (4.255)

xn+1 = xn + Δt vn+1/2, (4.256)

vn+1 = vn+1/2 + 1

2
Δt F(xn+1), (4.257)

or a backward scheme x̃n+1 → x̃n (x̃n+1, ṽn+1 is known):

ṽn+1/2 = ṽn+1 − 1

2
Δt F(x̃n+1), (4.258)

xn = x̃n+1 − Δt ṽn+1/2, (4.259)

ṽn = ṽn+1/2 − 1

2
Δt F(x̃n). (4.260)

Remark 4.17 Higher order schemes with respect to magnetic and electric field can
be obtained by extrapolation schemes [71] or cyclotronic integrators [61].

Momentum Conserved Constraint

Idea of spline fitting, see [54], reduces the spatially localized errors based on the
adaption at the interface.

We are motivated to embed higher order shape and discretization functions to
reduce the local error at the interface of the adaptation.

In book of Hockney [54], the higher order shape functions are introduced to fit at
the long-range constraints, and we apply them as a freedom degree to the adaptive
grids, see Fig. 4.18.

The full PIC cycle is given as follows (discrete model):
(1) Charge assignment (Method: Spline functions):

ρn
p = q

H

Np∑

i=1

W (xi − x p) (4.261)

Δ x Δ x~
xp−1

xp

xp

xp+1

Adaptive Interface in grid point

Fig. 4.18 Adaptive interface
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(2) Field equation (Method: Solver)
We have to solve

∇2φp = −ρp

ε0
(4.262)

We obtain the notation with the Greens function:

φp,h =
∑

j

ρp′,hGh,H (p, p′) (4.263)

while we have a discrete Greens function, see the idea of the composite grids, [54].
The discrete analogue of the Greens function to the adaptive finite difference

scheme is given as

Gh,H (·, eΓ ∗
h
) = A−1

h,H eΓ ∗
h

(4.264)

where Γ ∗
h = Γ − h.

If we have not a translation invariant matrix, we have also a non-translation invari-
ant inverse matrix, and therefore also the discrete Greens function is not translation
invariant.

The we discretize the electric field with

E p,h =
∑

s

as(φp+s,h − φp−s,h) (4.265)

where as is the coefficient for the finite difference discretization.
(3) Force interpolation (Method: Spline functions)

F(xi ) =
∑

p

W (xi − x p)Fp (4.266)

(4) Equation of motion (Method: Pusher)

vi+1/2 = vi−1/2 + δt

2
F(xi ), (4.267)

xi+1 = xi + δt vi+1/2, (4.268)

vi+1 = vi+1/2 + δt

2
F(xi+1). (4.269)

Based on the PIC cycle, we fulfil the following constraints and conserve the
momentum.

Based on the ideas of [54, 57], the conditions

• Identical charge assignment, and
• Correctly space-centred finite difference approximations, while we have the con-

dition
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d(x p; x p′) = −d(x p′ , x p) (4.270)

are sufficient to fulfil the self-force and inter-particle force, and therefore the momen-
tum constraint.

While we deal with adaptive grids, the constraint 2 (4.270) is only fulfilled with
uniform grids.

We propose the following constraint, which is a combination of constraints 1 and 2,
while we balance between the freedom degree of the shape functions:

d(x p − x p′)W (x p − x p′ , Copt ) = −d(x p′ − x p)W (x p′ − x p, Copt ) (4.271)

Copt ∈ [0, H2/4].
Then the momentum conservation is given with respect to the self-force and inter-

particle force.

Spline Fitting to Fulfil the Momentum Conservation

We obtain the following approach to the Greens function:

G p
ex,q = G p

q + C1,exactΔG p
q φ(x ′)

= G p−ed hl

q−ed hl
+ C2,exactΔG p−ed hl

q−ed hl
= G p−ed hl

ex,q−ed hl
, (4.272)

where C1,exact = |p − q|/2, C2,exact = |(p − ed hl) − (q − ed hl)|/2.

To obtain the translation invariant G p
ex,q == G p−ed hl

ex,q−ed hl
, we have to fit

G p
q + C1ΔG p

q φ(x ′) = G p−ed hl

q−ed hl
+ C2ΔG p−ed hl

q−ed hl
, (4.273)

G p−ed hl

q−ed hl
= G p

q + C1ΔG p
q φ(x ′) − C2ΔG p−ed hl

q−ed hl
(4.274)

and we can fit C1 and C2 to have a translation invariant function G p
q . Furthermore,

C1 and C2 have fulfilled the adaptive higher order discretization scheme.

Remark 4.18 Here, we apply the similar ideas as in [72] for AMR (adaptive mesh
refinement). While we are only approaching to one interface and we deal with higher
order shape functions, we are more flexible to derive the constants C1 and C2.

4.4.5 2D Adaptive PIC

In the following, we discuss the extension to the two-dimensional particle in cell
method based on adaptive schemes. Here, we have the influence of the higher dimen-
sions to the discretization and shape functions.
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In the following, we describe the different tools for the 2d adaptive PIC:

• 2D discretization scheme based on finite difference methods for the different equa-
tions (e.g. Maxwell and Newton equation),

• Shape functions:

– 2D Shape functions (general introduction),
– 2D adaptive Shape function (linear functions), and
– 2D adaptive Shape function (quadratic functions).

Remark 4.19 The discretization and solver schemes are similar to the 1D problem.
Based on the FD method, we have only to increase the standard method to a two-
dimensional scheme, see [64], and apply the linear equation systems to the solver
methods, see [54]. More important are the modifications related to the shape func-
tions, which connect the different models (microscopic and macroscopic model).

In the following, we concentrate on the 2D shape functions.

2D Shape Functions (General Introduction)

In the following, we describe higher order shape function for 2D problems.
We can extend the idea of the derivation of the shape function to higher dimensions,

in the following, we discuss the 2D shape functions.
Constraints for the two-dimensional shape functions nth order
For nth order, we have n + 1 constraint equations:

∑

P

WP = 1, charge conservation, (4.275)

∑

P

WPΔi = 0, first order, (4.276)

∑

P

WPΔiΔ j = C1δi j , second order, (4.277)

∑

P

WPΔiΔ jΔk = 0, third order, (4.278)

∑

P

WPΔi1Δi2Δi3Δi4 = C2δi1,i2,i3,i4 , fourth order, (4.279)

..., (4.280)
∑

P

WPΔi1Δi2 . . . Δin = 0, nth order (n odd), (4.281)

∑

P

WPΔi1Δi2 . . . Δin = Cn/2δi1,i2,...,in , nth order (n even), (4.282)

where p = (p1, p2) is a pair labelling the mesh point p at position xp. The expansion
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of the additional constant C is given as

φ(x′) =
∑

P

WP(x)

∞∑

r,s=0

Δr
1Δ

s
2

r ! s!
∂r+s G

∂xr∂ys
, (4.283)

where G is the Greens function and φ(x ′) is the correct potential at x ′.

2D Adaptive Shape Function (Linear Function), Linear Spline n = 1, CIC
Adaptive for 2D

In the following, we discuss the two ideas to create 2D shape functions for the
two-dimensional case:

• Local one-dimensional (splitting in the locally dimensions).
• Full two-dimensional (non-splitting of the locally dimensions).

We discuss the different approximations.

• One-dimensional Local
In the following, we discuss the adaptive shape functions.

Assumption 4.9 We assume that the dimensions can be separated and the shape
functions can be constructed as locally one-dimensional problems:

W (x, y) = P(x)P(y) (4.284)

We assume a four-point stencil for the adaptive finite difference scheme.

We assume the domain Ω = [0, L1] × [0, L2]. In the adaptive grid, we assume
that Δx is operating in the domain [0, L1,1] × [0, L2], while Δx̃ is operating in the
domain [L1,1, L1] × [0, L2]. Furthermore, we assume that Δy is operating in the
domain [0, L1]×[0, L2,1], while Δỹ is operating in the domain [0, L1]×[L2,1, L2].
We have the following shape function:

S(x − X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − |x−X |

Δx

) (
1 − |y−Y |

Δy

)
, when |x − X | < Δx, |y − Y | < Δy

and (x, y) ∈ [0, L1,1] × [0, L2,1],
(

1 − |x−X |
Δx̃

) (
1 − |y−Y |

Δy

)
, when |x − X | < Δx̃, |y − Y | < Δy

and (x, y) ∈ [L1,1, L1] × [0, L2,1],
(

1 − |x−X |
Δx

) (
1 − |y−Y |

Δỹ

)
, when |x − X | < Δx, |y − Y | < Δỹ

and (x, y) ∈ [0, L1,1] × [L2,1, L2],

(
1 − |x−X |

Δx̃

) (
1 − |y−Y |

Δỹ

)
, when |x − X | < Δx̃, |y − Y | < Δỹ

and (x, y) ∈ [L1,1, L1] × [L2,1, L2],

0, else,

, (4.285)
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where we have x = (x, y)t .
For the nonuniform mesh function, we have to fulfil the consistency (mass con-

servation) (4.204).

Theorem 4.10 For the nonuniform shape function (4.285), we fulfil the consistency
(4.204).

Proof It is sufficient to prove that the shape functions based on each different domain
fulfil the condition.

While we can separate to local one-dimensional problem and each dimension is
fulfil, see Sect. 4.4.4.1 and we are done.

• Two-dimensional

For n = 1, we have three constraint equations:

∑

P

WP = 1, (4.286)

∑

P

WPΔi = 0, (4.287)

where p = (p1, p2) is a pair labelling the mesh point p at position xp.
We have the following equations:

W1 + W2 + W3 = 1, (4.288)

W1x1 + W2x2 + W3x3 = x, (4.289)

W1 y1 + W2 y2 + W3 y3 = y. (4.290)

By solving Eqs. (4.317)–(4.320), we obtain (using program-code Maxima [68])

W1 = x (y3 − y2) + x2 (y − y3) + x3 (y2 − y)

x1 (y3 − y2) + x2 (y1 − y3) + x3 (y2 − y1)
, (4.291)

W2 = − x (y3 − y1) + x1 (y − y3) + x3 (y1 − y)

x1 (y3 − y2) + x2 (y1 − y3) + x3 (y2 − y1)
, (4.292)

W3 = x (y2 − y1) + x1 (y − y2) + x2 (y1 − y)

x1 (y3 − y2) + x2 (y1 − y3) + x3 (y2 − y1)
, (4.293)

for − H2

2
≤ x ≤ H1. (4.294)

where x = (x, y)t , H1 = (H11, H12)
t and H2 = (H21, H22)

t .
Using the displacement invariance property (4.217) and Eq. (4.216), we obtain
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W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − x
H11

− y
H21

, 0 < x <
H11
2 , 0 < y <

H21
2 ,

1 − x
H11

+ y
H22

, 0 < x <
H11
2 , − H22

2 < y < 0,

1 + x
H12

− y
H21

, − H12
2 < x < 0, 0 < y <

H21
2 ,

1 + x
H12

+ y
H22

, − H12
2 < x < 0, − H22

2 < y < 0,

1 − x
H11

,
H11
2 < x <

3H11
2 , 0 < y <

H21
2 ,

1 − x
H11

,
H11
2 < x <

3H11
2 , − H22

2 < y < 0,

1 + x
H12

, − 3H12
2 < x < − H12

2 , 0 < y <
H21
2 ,

1 + x
H12

, − 3H12
2 < x < − H12

2 , − H22
2 < y < 0,

1 − y
H21

, 0 < x <
H11
2 ,

H21
2 < y <

3H21
2 ,

1 − y
H21

, − H12
2 < x < 0,

H21
2 < y <

3H21
2 ,

1 + y
H22

, 0 < x < − H11
2 , − 3H22

2 < y < − H22
2 ,

1 + y
H22

, − H12
2 < x < 0, − 3H22

2 < y < − H22
2 ,

0, else,

(4.295)

where H1 = (H11, H21)
t and H2 = (H21, H22)

t . We deal with an adaptive interface
with grid lengths H1 and H2, given in Fig. 4.19.

2D Adaptive Shape Function (Quadratic Function), Quadratic Splines n = 2,
CIC Adaptive for 2D

In the following, we discuss the adaptive shape functions.

Assumption 4.11 We assume that the dimensions can be separated and the shape
functions can be constructed as locally one-dimensional problems:

W (x, y) = P(x)P(y). (4.296)

We assume the domain Ω = [0, L1] × [0, L2]. In the adaptive grid, we assume
that Δx is operating in the domain [0, L1,1] × [0, L2], while Δx̃ is operating in the
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Fig. 4.19 Two-dimensional
adaptive five-point
charge-sharing scheme
assigns charge to the nearest
grid point (labelled 1) and
the next-nearest grid points
in the east–west direction
(labelled 2 and 2′) and in the
north–south direction
(labelled 3 and 3′)

21H   /2

22H   /2

12H   /2 11H   /2

2

3

3’

1
2’

Adaptive 2D Charge−Sharing Scheme
for Finite Difference Methods

domain [L1,1, L1] × [0, L2]. Furthermore, we assume that Δy is operating in the
domain [0, L1]×[0, L2,1], while Δỹ is operating in the domain [0, L1]×[L2,1, L2].

We have the following pair of equation for the shape functions.
We have the following equations:

P1,x + P2,x + P3,x = 1, (4.297)

P1,x x1 + P2,x x2 + P3,x x3 = x, (4.298)

P1,x x2
1 + P2,x x2

2 + P3,x x2
3 = x2 + Cx , (4.299)

and

P1,y + P2,y + P3,y = 1, (4.300)

P1,y y1 + P2,y y2 + P3,y y3 = y, (4.301)

P1,y y2
1 + P2,y y2

2 + P3,y y2
3 = y2 + Cy . (4.302)

The locally one-dimensional shape functions are given as

Px (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Px,1(x) = x2−2H12x+H11(H12−x)+H2
12+Cx

H12(H12+H11)
, − 3H12

2 < x < − H12
2 ,

Px,2(x) = −x2+H11(x+H12)−H12x−Cx
H12 H11

, − H12
2 < x < − H11

2 ,

Px,3(x) = x2+2H11x+H12(H11+x)+H2
11+Cx

H11(H12+H11)
, H11

2 < x < 3H11
2 ,

Px,4(x) = 0, else
(4.303)
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where H12 = x2 − x1, H11 = x3 − x2, H11 + H12 = x3 − x1 and Cx ∈ [0, H12 H11
4 ].

So we deal with an adaptive interface in x direction with grid length H11 and H12,
see also Fig. 4.20. Furthermore, we have

Py(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Py,1(y) = y2−2H22 y+H21(H22−y)+H2
22+Cy

H22(H22+H21)
, − 3H22

2 < y < − H22
2 ,

Py,2(y) = −y2+H21(y+H22)−H22 y−Cy
H22 H21

, − H22
2 < y < − H21

2 ,

Py,3(y) = y2+2H21 y+H22(H21+y)+H2
21+Cy

H21(H22+H21)
, H21

2 < y < 3H21
2 ,

Py,4(y) = 0, else
(4.304)

where H22 = y2 − y5, H21 = y4 − y2, H21 + H22 = y4 − y5 and Cy ∈ [0, H21 H22
4 ].

So we deal with an adaptive interface in y direction with grid length H21 and H22,
see also Fig. 4.20.

H22

H21

H11H12

Adaptive 2D Charge−Sharing Scheme
for quadratic splines and Finite Difference Methods

4

5

3
2

1

Fig. 4.20 Two-dimensional adaptive five-point charge-sharing scheme assigns charge to the nearest
and the next-nearest grid points
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Finally, we obtain the 2D shape function with locally one-dimensional shape
functions:

W (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Px,1(x)Py,1(y),

Px,2(x)Py,1(y),

Px,3(x)Py,1(y),

Px,4(x)Py,1(y),

Px,1(x)Py,2(y),

Px,2(x)Py,2(y),

Px,3(x)Py,2(y),

Px,4(x)Py,2(y),

Px,1(x)Py,3(y),

Px,2(x)Py,3(y),

Px,3(x)Py,3(y),

Px,4(x)Py,3(y),

Px,1(x)Py,4(y),

Px,2(x)Py,4(y),

Px,3(x)Py,4(y),

Px,4(x)Py,4(y).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.305)

For the nonuniform mesh function, we have to fulfil the consistency (mass con-
servation) (4.204).

Theorem 4.12 For the nonuniform shape function (4.285), we fulfil the consistency
(4.204).

Proof It is sufficient to prove that the shape functions based on each different domain
fulfil the condition.

While we can separate to local one-dimensional problem and each dimension is
fulfil, see Sect. 4.4.4.1 and we are done.

4.4.6 Application: Multidimensional Finite Difference Method

In the following, we discuss the multidimensional discretization of the Poisson and
electric field equation.

The Poisson equations is given as

Δφ(Xi, j,k) = − 1
ε0

ρ(Xi, j,k), Xi, j,k ∈ [0, L]3 = Ω, (4.306)

φ(Xi, j,k) = 0, Xi, j,k ∈ ∂Ω, (4.307)

where Xi, j,k = (xi , y j , zk)
t is the three-dimensional coordinate of the particle

(i, j, k).
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The electric field is given as

Ei, j,k = −∇φ(Xi, j,k), (4.308)

where Ei, j,k is the electric field in grid point Xi, j,k .
The multidimensional finite difference equations are given as

φi+1, j,k − 2φi, j,k + φi−1, j,k

Δx2 + φi, j+1,k − 2φi, j,k + φi, j−1,k

Δy2

+ φi, j,k+1 − 2φi, j,k + φi, j,k−1

Δz2 = − 1

ε0
ρi, j,k ∈ [0, L], (4.309)

φ(0, 0, 0) = 0, φ(L , 0, 0) = 0, φ(0, L , 0), . . . , φ(L , L , L) = 0, (4.310)

where φ(xi , y j , zk) = φi, j,k

The electric fields are given as

Ei+1/2, j,k = −φi, j,k − φi+1, j,k

Δx
, (4.311)

Ei, j+1/2,k = −φi, j,k − φi, j+1,k

Δy
, (4.312)

Ei, j,k+1/2 = −φi, j,k − φi, j,k+1

Δz
, (4.313)

where we called such a discretization “staggered grids”, see [64].

4.4.7 Application: Shape Functions for the Multidimensional
Finite Difference Method

In the following subsection, we modify the shape functions to the previous introduced
multidimensional finite difference method.

For n = 1, we have three constraint equations (additional we need one constraint
for the second momentum):

∑

P

WP = 1, (4.314)

∑

P

WPΔi = 0, (4.315)

∑

P

WPx p yp = xy, (4.316)

where p = (p1, p2) is a pair labelling the mesh point p at position xp.
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We have the following equations:

W1 + W2 + W3 + W4 = 1, (4.317)

W1x1 + W2x2 + W3x3 + W4x4 = x, (4.318)

W1 y1 + W2 y2 + W3 y3 + W4 y4 = y, (4.319)

W1x1 y1 + W2x2 y2 + W3x3 y3 + W4x4 y4 = xy. (4.320)

By solving Eqs. (4.317)–(4.320), we obtain (using program-code Maxima [68])

W1 = W11

W12
, (4.321)

W11 = x3 (x2 ((y3 − y2) y4 − y y3 + y y2) + x ((y − y3) y4 + y2 y3 − y y2))

+ x4 (x ((y3 − y2) y4 − y y3 + y y2) + x2 ((y − y3) y4 + y2 y3 − y y2)

+ x3 ((y2 − y) y4 + (y − y2) y3)) + x x2 ((y2 − y) y4 + (y − y2) y3), (4.322)

W12 = x3 (x2 ((y3 − y2) y4 − y1 y3 + y1 y2) + x1 ((y1 − y3) y4 + y2 y3 − y1 y2))

+ x4 (x1 ((y3 − y2) y4 − y1 y3 + y1 y2) + x2 ((y1 − y3) y4 + y2 y3 − y1 y2)

+ x3 ((y2 − y1) y4 + (y1 − y2) y3)) + x1 x2 ((y2 − y1) y4 + (y1 − y2) y3),

(4.323)

W2 = − W21

W22
, (4.324)

W21 = x3 (x1 ((y3 − y1) y4 − y y3 + y y1) + x ((y − y3) y4 + y1 y3 − y y1))

+ x4 (x ((y3 − y1) y4 − y y3 + y y1) + x1 ((y − y3) y4 + y1 y3 − y y1)

+ x3 ((y1 − y) y4 + (y − y1) y3)) + x x1 ((y1 − y) y4 + (y − y1) y3) (4.325)

W22 = x3 (x2 ((y3 − y2) y4 − y1 y3 + y1 y2) + x1 ((y1 − y3) y4 + y2 y3 − y1 y2))

+ x4 (x1 ((y3 − y2) y4 − y1 y3 + y1 y2) + x2 ((y1 − y3) y4 + y2 y3 − y1 y2)

+ x3 ((y2 − y1) y4 + (y1 − y2) y3)) + x1 x2 ((y2 − y1) y4 + (y1 − y2) y3),

(4.326)

W3 = W31

W32
(4.327)

W31 = x2 (x1 ((y2 − y1) y4 − y y2 + y y1) + x ((y − y2) y4 + y1 y2 − y y1))

+ x4 (x ((y2 − y1) y4 − y y2 + y y1) + x1 ((y − y2) y4 + y1 y2 − y y1)

+ x2 ((y1 − y) y4 + (y − y1) y2)) + x x1 ((y1 − y) y4 + (y − y1) y2) (4.328)

W32 = x3 (x2 ((y3 − y2) y4 − y1 y3 + y1 y2) + x1 ((y1 − y3) y4 + y2 y3 − y1 y2))

+ x4 (x1 ((y3 − y2) y4 − y1 y3 + y1 y2) + x2 ((y1 − y3) y4 + y2 y3 − y1 y2)

+ x3 ((y2 − y1) y4 + (y1 − y2) y3)) + x1 x2 ((y2 − y1) y4 + (y1 − y2) y3),

(4.329)

W4 = − W41

W42
, (4.330)

W41 = x2 (x1 ((y2 − y1) y3 − y y2 + y y1) + x ((y − y2) y3 + y1 y2 − y y1))

+ x3 (x ((y2 − y1) y3 − y y2 + y y1) + x1 ((y − y2) y3 + y1 y2 − y y1)

+ x2 ((y1 − y) y3 + (y − y1) y2)) + x x1 ((y1 − y) y3 + (y − y1) y2) (4.331)
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W42 = x3 (x2 ((y3 − y2) y4 − y1 y3 + y1 y2) + x1 ((y1 − y3) y4 + y2 y3 − y1 y2))

+ x4 (x1 ((y3 − y2) y4 − y1 y3 + y1 y2) + x2 ((y1 − y3) y4 + y2 y3 − y1 y2)

+ x3 ((y2 − y1) y4 + (y1 − y2) y3)) + x1 x2 ((y2 − y1) y4 + (y1 − y2) y3),

(4.332)

for − H
2

≤ x ≤ H
2

. (4.333)

where x = (x, y)t , H = (Hx , Hy)
t .

Using the displacement invariance property (4.217) and Eq. (4.216), we obtain

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3 Hx +3 |x |) Hy−3 |y| Hx −8 |x | |y|
3 Hx Hy

, −H
2 < x < H

2 ,

−3 Hx |y|+2 |x | |y|+(3 Hx −2 |x |) Hy
3 Hx Hy

, − Hx
2 < x <

Hx
2 ,

Hy
2 < |y| <

3 Hy
2 ,

− 6 Hx |y|+x (2 Hy−4 |y|)−3 Hx Hy
3 Hx Hy

,
Hx
2 < x <

3Hx
2 , − Hy

2 < y <
Hy
2 ,

− 6 Hx y+x (2 Hy−4 y)−3 Hx Hy
3 Hx Hy

,
Hx
2 < x <

3Hx
2 ,

Hy
2 < y <

3Hy
2 ,

Hy (x+Hx )−2 |y| x−2 |y| Hx
Hx Hy

, − 3Hx
2 < x < − Hx

2 , − Hy
2 < y <

Hy
2 ,

0, else,
(4.334)

where y2−y1 = Hy , x3−x1 = 3
2 Hx , x4−x1 = −Hx , y3−y1 = 1

2 Hy , y2−y1 = Hy .
We deal with an adaptive interface with grid length H = (Hx , Hy)

t and Hcoarse =
2H = (2Hx , 2Hy)

t , given in Fig. 4.21.

4.4.8 Simple Test Example: Plume Computation of Ion
Thruster with 1D PIC Code

In the following, we present a real-life experiment of an ion thruster with plume
computations in 1D, see also the work in [55, 56].

In the following, we present a many particle experiment, which is closer to real
numerical applications. The experiment is a simplified thruster model in one space
dimension and three velocity dimensions, including the channel and the plume region.
Referred to [73], we took the following physics parameters:
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2 H x

2 H y

Hx

Hy

3

4

2’

1

2

for Finite Volume Methods
Adaptive 2D Charge−Sharing Scheme

Fig. 4.21 Two-dimensional adaptive five-point charge-sharing scheme assigns charge to the nearest
grid point (labelled 1) and the next-nearest grid points in the east–west direction (labelled 2 and 2′)
and the further north–south direction (labelled 3 and 4)

• Potential at the thruster anode was �A = 400 V , while the potential at the simu-
lated plume end was taken as zero.

• A static neutral background (here Argon), exponentially decaying in space, was
taken for the channel region, with a total density of nn = 5.0 × 1018m3.

• An electron gun was placed in front of the channel exit (x ∈ [300λDe; 320λDe])
with an injection flux of fe = 2.82 × 1011 s1. The injected particles had an
Gaussian-distributed velocity, due to the thermal velocity vth,e = 1.03 × 10+6 m/s.
The initial electron temperature was taken as Te = 6 eV.

• The implemented reactions are as follows: ionization of Ar with Ar + e →
Ar+ + 2e and elastic collisions of electrons and neutrals.

In the 1D model as well as in the real-life thruster, the emitted electrons are getting
accelerated by the potential of the anode. These electrons are ionizing the Argon
neutrals in the channel, and a plasma is building up, as can be seen in Fig. 4.22.
In the real thruster, a configuration of the magnetic field over the whole domain,
as well as the resulting in particle–wall interaction, is keeping the plasma in the
channel and producing a flat potential, which has a steep decrease at the thruster
exit, which accelerates the ions and gives the thrust. While our model is only one
dimension, we adapted the magnetic field to the simplified model and took a weak
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Fig. 4.22 Stable situation in the plume region with potential, electrical field, particle density and
particle velocity plotted over the spatial grid length L

magnetic field in the thruster exit region, perpendicular to our space axis x . In this
region (x ∈ [150λDe; 20λDe]), the electron velocity in x direction gets weakened,
so that electrons can only pass via collisions. With this configuration, we were able
to simulate a simple 1D thruster model, which gets steady state after about 1.5 ×
106 P I Csteps = 5.3 × 106 s, as can be seen in Fig. 4.23.

More computation parameters and the steady-state particle parameters are given
in Table 4.2.

Remark 4.20 The test results are produced with uniform and nonuniform grids. In
both results, we could achieve the same one-dimensional behaviours. At least, the
numerical results validate the behaviour of the steep gradient on the potential, see
Fig. 4.22, that decouples the inner and outer part of the ion thruster.
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Fig. 4.23 Averaged species in the domain over the computed time

Table 4.2 Parameters for the plume computation

Electrons Te = 6.00 eV(69627 K)

Superparticles (electrons, PIC) Ndb × Nsp = 100 × 6.04 × 101 = 6.038 × 103

ne = 1.0 × 1012 cm−3(1.0 × 1018 m−3)

vth,e = 1.027274 e + 06 m/s

Scaling factors ωpe = 5.64146 × 1010 Hz

λDe = 1.820937 × 10−5 m

Ions (Ar+) vth,Ar = 8.474025 × 102 m/s

Neutrals (Ar) nn = 5.000000e + 18 m−3

Output of the computations

Time step dt = 3.545181 × 10−12 s

Averaging time 3.545 × 10−3ns−0.0 ns

Spatial length Lsystem = 1.274656 × 101 mm
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4.4.9 Conclusion

We have derived an extension of uniform particle in cell method to nonuniform grids
for 1D and 2D equations. The multiscale method, which is given with the parts
pusher (microscopic level), solver (macroscopic level) and interpolation/Restriction
(complying microscopic and macroscopic level), can be extended with respect to an
adaptive scheme. The extensions have been done for the solver, pusher and interpo-
lation functions, which coupled the microscopic and macroscopic model equations.
The problem is to modify all parts of the cycle to achieve an extension of the adaptive
or nonuniform grids. At least, we can accelerate a simple real-life problem, which has
a gap between the high-density (apparatus) and low-density (plume) area, such that
adaptive schemes can overcome the uniform step sizes and modify to each disparate
spatial and time scales, see [56, 74].
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