
Chapter 3
Algorithmic Part

Abstract In this chapter, we discuss the algorithmic parts with respect to the
different methods we applied in the application part.

3.1 Introduction

In the following, we discuss different methods based on iterative and additive ideas
to decompose scale-dependent equations.

Based on the different scale-dependent operators of the equations, we deal with
the ideas of decomposing into simpler and faster computable equations.

Basic idea is that to decompose the operator with respect to their spatial and time
scales into different scale-dependent operators, e.g. we decompose the operator

A = Amacro + Amicro, (3.1)

where the operators are given as

• Amacro (macroscopic operator) has larger in order entries, and then
• Amicro (microscopic operator) has smaller in order entries,

while |Amicro,i j | ≤ ε |Amacro,i j |, ∀i, j ∈ I, 0 < ε � 1, i.e. we decompose the
different scales of two operators.

To solve the evolution equation,

∂c

∂t
= Amacro(c)c + Amicro(c)c, (3.2)

where c(0) = c0 is the initial condition and we assume that the semi-discretized
operator A has included the boundary conditions.

Two different solver ideas are discussed:

• Iterative Scheme: Based on iterative cycles, we solve the underlying decomposed
equations based on the successive approximation or fixpoint scheme.

• Additive Scheme: Based on decomposing into tridiagonal matrices, we solve
sequentially simpler equations.
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3.2 Iterative Methods

This model is reformulated by the semi-discretization of the spatial operators to the
following Cauchy problem, while c is now in the following vectorial function:

∂c(t)

∂t
= Ac(t) + f (t) (3.3)

= A1c(t) + A2c(t) + f (t),with t ∈ [0, T ], c(0) = c0, (3.4)

where the initial function c0 is given. A1 and A2 are assumed to be bounded, constant,
linear operators in an appropriate Banach space X with A1, A2 : X → X with an
appropriate vector and matrix norm || · ||.

In the following, we deal with the following definition of the stiff operators, see
also [1, 2].

Definition 3.1 We consider the stiffness in the following sense: A1 is supposed to
be stiff and A2 non-stiff. Stiffness means that τ A1 is huge in norm for the range of
step size τ , see [3]. Here, the step size represents a splitting step size. So we assume

||τ A1|| � 1, ||τ A2|| = O(τ ). (3.5)

For the notation of the eigenvalues, we have

Re(τλ) � −1, |τμ| = O(τ ), (3.6)

where λ is a stiff eigenvalue of A1 and μ a non-stiff eigenvalue of A2.

In the next subsection, we present the iterative schemes.

3.2.1 Iterative Schemes

We then consider the following forms of the iterative splitting schemes to solve the
linear model equation:
1. Iterative splitting with respect to a diagonal matrix part (Jacobi Scheme):

∂ci (t)

∂t
= A1ci (t) + A2ci−1(t) + f (t),with ci (t

n) = cn (3.7)

∂ci+1(t)

∂t
= A1ci−2(t) + A2ci+1(t) + f (t), with ci+1(t

n) = cn, (3.8)

i = 1, 3, . . . , 2m + 1,

c0(t) = 0 and c−1(t) = 0, after each iterative step we update i = i + 1.
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2. Iterative splitting with respect to a full matrix part (Gauss–Seidel Scheme):

∂ci (t)

∂t
= A1ci (t) + A2ci−1(t) + f (t),with ci (t

n) = cn (3.9)

∂ci+1(t)

∂t
= A1ci (t) + A2ci+1(t) + f (t),with ci+1(t

n) = cn, (3.10)

i = 1, 3, . . . , 2m + 1,

3. Unsymmetrical weighted iterative splitting (JOR, Jacobian Overrelaxation
Scheme):

∂ci (t)

∂t
= 1

ω
A1ci (t) + A2ci−1 +

(
1 − 1

ω

)
A1ci−2(t) + f (t), (3.11)

with ci (t
n) = cn

∂ci+1(t)

∂t
= A1ci−2(t) + 1

ω
A2ci+1(t) +

(
1 − 1

ω

)
A2ci−1(t) + f (t), (3.12)

with ci+1(t
n) = cn,

i = 1, 3, . . . , 2m + 1,

where ω ∈ (0, 1].
4. Symmetrical weighted iterative splitting (SOR: Successive Overrelaxation
Scheme):

∂ci (t)

∂t
= 1

ω
A1ci (t) + A2ci−1 +

(
1 − 1

ω

)
A1ci−2(t) + f (t),with ci (t

n) = cn (3.13)

∂ci+1(t)

∂t
= A1ci (t) + 1

ω
A2ci+1(t) +

(
1 − 1

ω

)
A2ci−1(t) + f (t), with ci+1(t

n) = cn,

i = 1, 3, . . . , 2m + 1, (3.14)

where ω ∈ (0, 1].
Remark 3.1 For all schemes, we assume that the operator A1 has a large time scale
and A2 has a small time scale. In addition, the initialization is given as c0(t) = 0,
c−1(t) = 0, while cn is the known split approximation at the time level t = tn . The
split approximation at the time level t = tn+1 is defined as cn+1 = c2m+1(tn+1),
with n = 1, . . . , N − 1 and the final time is given as T = N τ .

3.2.2 Reformulation to Waveform Relaxation Scheme

In the following, we reformulate in the notation of the waveform relaxation scheme.
We obtain the following schemes, see also [4, 5]:
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dUĩ

dt
= PUĩ + QUĩ−1 + F, (3.15)

Uĩ (t
n) = U (tn), (3.16)

ĩ = 1, 2, . . . , m, (3.17)

where Uĩ−1 = (ci−2, ci−1)
t , Uĩ = (ci , ci+1)

t and the initialization U0(t) = (0, 0)t

is given with the zero vectors. Furthermore, we define thatP andQ are the diagonal
and outerdiagonal matrices of the underlying splitting methods given in Sect. 3.2.1
and A = P + Q is the full matrix.

We embed the iterative splitting schemes in the following waveform relaxation
schemes:

(1) Jacobian:

P =
(

A1 0
0 A2

)
,Q =

(
0 A2
A1 0

)
, F =

(
f
f

)
. (3.18)

(2) Gauss–Seidel:

P =
(

A1 0
A1 A2

)
,Q =

(
0 A2
0 0

)
, F =

(
f
f

)
. (3.19)

(3) JOR:

P = 1

ω

(
A1 0
0 A2

)
,Q =

(
1 − 1

ω

)(
A1 0
0 A2

)
+

(
0 A2
A1 0

)
, F =

(
f
f

)
. (3.20)

(4) SOR:

P = 1

ω

(
A1 0
0 A2

)
+

(
0 0
A1 0

)
, (3.21)

Q =
(
1 − 1

ω

) (
A1 0
0 A2

)
+

(
0 A2
0 0

)
, F =

(
f
f

)
.

Remark 3.2 We have also extended the application to non-autonomous differential
equations, by adding the right-hand side term.
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3.3 Additive Methods

The idea of the additive methods is to decompose in an additive manner the
different operators of the differential equation. We concentrate on solving such
semi-discretized linear evolution equations and the notation for such a differential
equation is

B∂t u = Au, u(0) = u0, (3.22)

where A and B can be unbounded operators. We obtain large-scale differential equa-
tion, which are delicate to solve with standard solvers.

The evolution equation (3.22) is solved with the following underlying splitting
schemes:

• Additive Splitting schemes and
• Iterative Splitting schemes.

3.3.1 Additive Splitting Schemes

We deal with the following equation:

p∑
β=1

Bαβ∂t uβ =
p∑

β=1

Aαβuβ + fα, α = 1, 2, . . . , p, (3.23)

uα(0) = uα,0, α = 1, 2, . . . , p. (3.24)

Furthermore, we assume that A and B are self-adjoint.
We apply the discretization with the schemes of weights and obtain

B
un+1 − un

τ
− A

(
σun+1 + (1 − σ)un

)
= f

(
σ tn+1 + (1 − σ)tn

)
, (3.25)

By the transition to a new time level, we require

(B − Aστ)un+1 = φn, (3.26)

while φn = (1 − σ)τ Aun + Bun + f (σ tn+1 + (1 − σ)tn).
With the idea of splitting this into two problems, the original problem can be

transformed to

p∑
β=1

(Bαβ − Aαβστ)un+1
β = φn

α, α = 1, 2, . . . , p, (3.27)
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where (B̃ − Aστ) = (B − A1στ)B−1(B − A2στ) and σ ∈ (0, 1).
We have to solve the following pair of linear equations:

(B − A1στ)ψn = φn, (3.28)

(B − A2στ)un+1 = ψn . (3.29)

By a change to a sequence of simpler problems, we have

(
Bαα − 1

2
Aααστ

)
un+1/2

β = ψ̃n
α , α = 1, 2, . . . , p, (3.30)

(
Bαα − 1

2
Aααστ

)
un+1

β = ψ̂n
α , α = 1, 2, . . . , p. (3.31)

Here, we have the benefit of needing to invert only the diagonal parts of the
matrices and use the idea of solving the triangular splitting of the operator A =
A1 + A2.

The second-order algorithm is given as a two-step method, see Algorithm3.1.

Algorithm 3.1 (1) Compute
ψ̃n+1 = (ψ̃n+1

1 , . . . , ψ̃n+1
p )T with φn = (φn+1

1 , . . . , φn+1
p )T

ψ̃n+1
1 =

(
I − 1

2
A11B−1

11 στ

)−1

φn
1 (3.32)

ψ̃n+1
2 =

(
I − 1

2
A11B−1

11 στ

)−1 (
φn
2 + A21στ B−1

11 ψ̃n+1
1

)
(3.33)

. . . (3.34)

ψ̃n+1
p =

(
I − 1

2
App B−1

pp στ

)−1
⎛
⎝φn

p +
p−1∑
i=1

Apiστ B−1
i i ψ̃n+1

i

⎞
⎠, (3.35)

while φn = (1 − σ)τ Aun + Bun + f (σ tn+1 + (1 − σ)tn).
(2) Compute un+1 = (un+1

1 , . . . , un+1
p )T with ψ̃n+1 = (ψ̃n+1

1 , . . . , ψ̃n+1
p )T

un+1
p =

(
Bpp − 1

2
Appστ

)−1

ψ̃n
p (3.36)

un+1
p−1 =

(
Bp−1p−1 − 1

2
Ap−1p−1στ

)−1 (
ψ̃n

p−1 + Ap−1pστun+1
p

)
(3.37)

. . . (3.38)

un+1
1 =

(
B11 − 1

2
A11στ

)−1
(

ψ̃n
1 +

p∑
i=2

A1iστun+1
i

)
. (3.39)
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Theorem 3.2 If we choose σ ≥ 1
2 , then the splitting scheme (3.30) and (3.31) is

absolutely stable in an appropriate Hilbert space.

Proof The outline of the proof is given in [6].

Example 3.1 We have 2n × 2n matrices.
The algorithm is as follows:
(1) Compute ψ̃n+1 = (ψ̃n+1

1 , ψ̃n+1
2 )T with φn = (φn

1 , φn
2 )T

ψ̃n+1
1 =

(
I − 1

2
A11B−1

11 στ

)−1

φn
1 (3.40)

ψ̃n+1
2 =

(
I − 1

2
A22B−1

22 στ

)−1 (
φn
2 + A21στ B−1

11 ψ̃n+1
1

)
, (3.41)

while φn = (1 − σ)τ Aun + Bun + f (σ tn+1 + (1 − σ)tn).

(2) Compute un+1 = (un+1
1 , un+1

2 )T with ψ̃n+1 = (ψ̃n+1
1 , ψ̃n+1

2 )T

un+1
2 =

(
B22 − 1

2
A22στ

)−1

ψ̃n
2 (3.42)

un+1
1 =

(
B11 − 1

2
A11στ

)−1 (
ψ̃n
1 + A12στun+1

2

)
, (3.43)

3.3.2 Higher Order Additive Splitting Method

The drawback of the standard additive splitting method is the restriction to a second-
order scheme.

To overcome this limitation, an extension can be made in the direction of the
higher order Crank–Nicolson scheme, see [7].

The higher order Crank–Nicolsonmethod can be derived as follows (see also [7]):

u(tn+1) = u(tn) + h
du

dt
(tn)

+h2

2!
d2u

dt2
(tn) + h3

3!
d3u

dt3
(tn) + h4

4!
d4u

dt4
(tn) . . . , (3.44)

u(tn) = u(tn+1) − h
du

dt
(tn+1)

+h2

2!
d2u

dt2
(tn+1) − h3

3!
d3u

dt3
(tn+1) + h4

4!
d4u

dt4
(tn+1) . . . , (3.45)
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subtracting the two equations and applying it to Eq. (5.534) in the form ∂t u =
B−1Au = Ãu,

u(tn+1) − u(tn) = h

2

(
Ãu(tn+1) + Ãu(tn)

)

+ h2

2 2!
(
− Ã2u(tn+1) + Ã2u(tn)

)

+ h3

2 3!
(

Ã3u(tn+1) + Ã3u(tn)
)

. . . , (3.46)

we obtain

(
I − h

2
Ã + h2

2 2! Ã2
)

u(tn+1) =
(

I + h

2
Ã + h2

2 2! Ã2
)

u(tn), (3.47)

which is a third-order scheme.
The same can be obtained by the fractional step scheme

(
I − σh Ã + σ h2

2! Ã2
)

u(tn+1)

=
(

I + (1 − σ) h Ã + (1 − σ) h2

2! Ã2
)

u(tn), (3.48)

which is a third-order scheme for σ = 1
2 .

There is a decomposition idea based on a splitting into tridiagonal matrices.
The higher order additive splitting algorithm is given in the following scheme:

(
I − σh Ã + σ

h2

2! Ã2
)

=
(

I − σh Ã1 + σ
h2

2! Ã2
1

)

·
(

I − σh Ã2 + σ
h2

2! Ã2
2

)
+ σ

h2

2! [ Ã2, Ã1] + O(h3), (3.49)

where Ã = B−1A and A = A1 + A2 where A1 = At
2.

The commutator is [A2, A1] = A2A1 − A1A2.
By the transition to a new time level, we require

(
I − σh Ã1 + σ

h2

2! Ã2
1

)(
I − σh Ã2 + σ

h2

2! Ã2
2

)
u(tn+1) = φn, (3.50)

where φn =
(

I + (1 − σ) h Ã + (1 − σ) h2
2! Ã2 − σ h2

2! [ Ã2, Ã1]
)

u(tn).

http://dx.doi.org/10.1007/978-3-319-15117-5_5
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We have to solve the following pair of linear equations:

(
I − σh Ã1 + σ

h2

2! Ã2
1

)
ψn+1 = φn, (3.51)

(
I − σh Ã2 + σ

h2

2! Ã2
2

)
un+1 = ψn+1, (3.52)

where the ψn+1 are the intermediate solutions of the scheme.
The third-order algorithm is given as a three-step method, presented in the fol-

lowing Algorithm3.3.

Algorithm 3.3 (1) Compute ψn+1 = (ψn+1
1 , . . . , ψn+1

p )T with φn = (φn+1
1 , . . . ,

φn+1
p )T

ψn+1
1 =

(
I − 1

2
A11σh +

(
1

2
A11

)2

σ
h2

2!

)−1

φn
1 (3.53)

ψn+1
2 =

(
I − 1

2
A22σh +

(
1

2
A22

)2

σ
h2

2!

)−1 (
φn
2 +

(
A21σh − {A1 A1}21 σ

h2

2!
)

ψn+1
1

)
(3.54)

. . . (3.55)

ψn+1
p =

(
I − 1

2
Appσh +

(
1

2
App

)2

σ
h2

2!

)−1
⎛
⎝φn

p +
p−1∑
i=1

(
Api σh − {A1 A1}pi σ

h2

2!
)

ψn+1
i

⎞
⎠, (3.56)

whileφn =
(

I + (1 − σ) h A + (1 − σ) h2
2! A2 − σ h2

2! [A2, A1]
)

u(tn) and thematrix

multiplication {A1A1}i j = ∑p
k=1 A1,ik A1,k j , where p is the rank of the matrix A1

and A1,i j is the i, j th element of the matrix A1.
(2) Compute un+1 = (un+1

1 , . . . , un+1
p )T with ψn+1 = (ψn+1

1 , . . . , ψn+1
p )T

un+1
p =

(
I − 1

2
Appσh +

(
1

2
App

)2

σ
h2

2!

)−1

ψn
p (3.57)

un+1
p−1 =

(
I − 1

2
Ap−1p−1σh +

(
1

2
Ap−1p−1

)2

σ
h2

2!

)−1

·
(

ψn
p−1 +

(
Ap−1pσh − {A2A2}p−1p σ

h2

2!
)

un+1
p

)
(3.58)

. . . (3.59)

un+1
1 =

(
I − 1

2
A11σ

h

2
+

(
1

2
A11

)2

σ
h2

2!

)−1

·
(

ψn
1 +

p∑
i=2

(
A1iσh − {A2A2}1i σ

h2

2!
)

un+1
i

)
, (3.60)
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and the matrix multiplication {A2A2}i j = ∑p
k=1 A2,ik A2,k j , where p is the rank of

the matrix A2 and A2,i j is the i, j th element of the matrix A2.

Theorem 3.4 If we choose σ ≥ 1
2 , then the splitting scheme (3.51) and (3.52) is

absolutely stable in an appropriate Hilbert space.

Proof The outline of the proof is given in [6].

3.3.3 Iterative Splitting Method

The following algorithm is based on an iteration with a fixed splitting discretization
step size τ , namely, on the time interval [tn, tn+1], we solve the following sub-
problems consecutively for i = 0, 2, . . . 2m (cf. [8, 9]):

∂ci (t)

∂t
= A1ci (t) + A2ci−1(t), with ci (t

n) = cn (3.61)

and c0(t
n) = cn, c−1 = 0.0,

∂ci+1(t)

∂t
= A1ci (t) + A2ci+1(t), (3.62)

with ci+1(t
n) = cn,

where cn is the known split approximation at the time level t = tn . The split approx-
imation at the time level t = tn+1 is defined as cn+1 = c2m+1(tn+1). (Clearly, the
function ci+1(t) depends on the interval [tn, tn+1], too, but, for the sake of simplicity,
in our notation, we omit the dependence on n.)

In the following, we will analyse the convergence and the rate of convergence of
the method (3.61) and (3.62) as m tends to infinity for the linear operators A1, A2 :
X → X, where we assume that these operators and their sum are generators of C0
semi-groups. We emphasize that these operators are not necessarily bounded, so the
convergence is examined in a general Banach space setting.

The novelty of the convergence results are the reformulation in integral notation.
Based on this, we can assume that we have bounded integral operators which can be
estimated and given in a recursive form. Such formulations are known in the work
of [10, 11], and estimations of the kernel part with the exponential operators are
sufficient to estimate the recursive formulations.
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3.4 Parallelization

The parallelization is important to accelerate the solver methods.
We distinguish between three different parallelization areas:

• Parallelization in Time, e.g. Parareal method: Decomposition of large time inter-
vals to smaller time intervals

• Parallelization in Operators, e.g. Parallel operator splitting method
• Parallelization in Space, e.g. Schwartz waveform relaxation, Domain decomposi-
tion algorithms

The application of the different parallel methods are discussed in the following:

• Time parallelization: The large time interval is decomposed into smaller time
intervals (time decomposition). The full equations can be handled in one processor,
such that the memory effect is not too important. But the duration of the full time
interval is very large such that it will take too long for one processor. Therefore,
we decompose it to smaller time intervals and parallelize the large time interval,
i.e. each time slot can be handled independently by one processor, see [12].

• Operator splitting methods or parallelization of the different operators: The prob-
lem is based on storing the full operator of the differential equation in one proces-
sor (this was the motivation of the earliest splitting schemes [13]). Therefore, we
decompose the full operator into simpler operators and distribute the simpler oper-
ators, which can be stored into one processor, to various processors. The operators
are coupled via the operator splitting scheme and can be computed in parallel.
Such ideas allow to deal with modular coupling of program codes, e.g. different
specialized codes for an E- and B-field (e.g. Maxwell equation) and a transport
field (e.g. particle code), which can be computed on different PC clusters.

Example 3.2 Reduction of the computational time via time parallelization.
We assume to have an effective parallel algorithm with about 20–50%, see [12].
Therefore, we reduce the computational time for one processor, for example, of

48 [h], with 128 processors and an efficiency of about 20% to 2–3 [h].

3.4.1 Time Parallelization: Parareal Algorithm as an Iterative
Solver

The original algorithm was introduced by [14]. The idea is to partition the time
domain ΩN = [0, T ], which is large, into N time subdomains:

Ωn [Tn−1, Tn], n = 1, . . . , N , (3.63)
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furthermore, we define the following solvers:

• coarse solver (coarse propagator): G(Tn, Tn−1, x) and
• fine solver (fine propagator): F(Tn, Tn−1, x)

with both, we can approximate the underlying differential equation:

U ′(t) = f (t, U (t)), U (Tn−1) = x . (3.64)

Here, we assume the following:

1. The coarse integrator is computationally much faster, i.e. a lower order scheme,
than the fine integrator.

2. The fine integrator is much more accurate, i.e. a higher order scheme, and much
more time consuming, and therefore we need the benefit of parallelization.

We have the following steps:

• In the first iteration, we use the coarse integrator in a serial fashion to provide
initial conditions to each time slice Ωn :

U 1
n = G(Tn, Tn−1, U 1

n−1), n = 1, 2, . . . , N .

• In the second step, we use the fine propagator and integrate independently (i.e. in
parallel) N initial value problems F(Tn, Tn−1, U k

n−1) (n = 1, 2, . . . , N ), yielding
new approximations for the initial conditions on the following time slices.

• In each iteration k, the corrections are then again quickly propagated using the
coarse integrator:

U k+1
n = F(Tn, Tn−1, U k

n−1) + G(Tn, Tn−1, U k+1
n−1 ) − G(Tn, Tn−1, U k

n−1), (3.65)

Example 3.3 We deal with a differential equation,

U ′ = AU + BU, U (0) = u(0), (3.66)

with two operators A and B.
We assume to have F as a fine integrator and choose the iterative splitting method

as a more accurate propagator. Further, we assume to have G as a coarse integrator
and choose the A–B splitting scheme as a lower order accurate propagator, see the
example in [15].

Themethod can be compared be the so-calledMultiple Shooting Method, see [16].
While we repeat each time slot with an improved approximation and if the error is
small enough, we go on to the next time intervals, see also Fig. 3.1.
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tn t t tt t tn+4 n+7 n+11 n+15 n+19

Fig. 3.1 Parallelization with Parareal, windowing of the parallel process

Fig. 3.2 First initialization step in the algorithm

In the following, we discuss the different steps.
Step 1:
Coarse computation of one processor of the full interval with a fast-and low-order

solver method, e.g. forward Euler scheme, see Fig. 3.2.
We propagate in the coarse method with

U 1
0 = u0, (3.67)

U 1
n = G(Tn, Tn−1, U 1

n−1), n = 1, . . . , N . (3.68)

Step 2:
The next step is a fine propagatorwith n-processors, for each smaller time interval.

The methods for the smaller time intervals are of higher order and expensive in time,
see Fig. 3.3.

We propagate with the fine propagator, while the initial conditions are given for
each subdomain Ωn :

U 1
f ine,n = F

(
Tn, Tn−1, U 1

n−1

)
, n = 1, . . . , N . (3.69)
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Fig. 3.3 Second step of a
fine propagator step done in
parallel

Fig. 3.4 The third step is the
corrector step, which coupled
the coarse and fine step and
go on with the initialization
of the next timeframe

Step 3:
The next step is the corrector step to couple the coarse and fine steps together (cou-

pling process). One processor computes the corrections between each time interval.
Such time intervals which fit of the accuracy are finished and we step forward. The
other intervals are computed via the first step and so on, see Fig. 3.4.

We apply the improved initial guess and propagate coarsely in a correction:

U k+1
n = F

(
Tn, Tn−1, U k

n−1

)
+ G

(
Tn, Tn−1, U k+1

n−1

)
− G

(
Tn, Tn−1, U k

n−1

)
. (3.70)

If the error in the time slot is sufficient small, we shift the window to the next time
slot and start with the step 1, till we are done. Otherwise, we go on with the next
iterative step k = k + 1.

3.4.2 Operator Parallelization: Operator Splitting Method

We deal with large operators in a differential equation, which is given as

dc(t)

dt
= Afullc(t), for t ∈ (tn, T ), (3.71)

dc(t)

dt
=

m∑
i=1

Ai c(t), for t ∈ (tn, T ), (3.72)

c(0) = c0, Initial-conditions, (3.73)

where we have the time intervals t1, t2, . . . , tN .
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We assume that the full operator A f ull is partitioned into different smaller oper-
ators A j , j = 1, . . . , m. Furthermore, we have an appropriate Banach space with a
vector and induced matrix norm || · ||, where c ∈ X and also the operators are given
in A j ∈ X2 for j = 1, . . . , m.

We also assume that the operators include the boundary conditions and are derived
of semi-discretizations, e.g. Finite Difference or Finite Element Methods. Based
on their problems, they might have different physical behaviours, e.g. diffusion,
convection or reaction operators, if we deal with a fluid flow problem, see [17].

We deal with the following problems:

• The full operator A f ull cannot be stored into one processor, and therefore we have
to partition the problem to A j , j = 1, . . . , m smaller operators.

• The physical problem allows to deal with different program codes, e.g. we have
a code for the diffusion problem, a code for the reaction problem and so on. We
only like to couple such problems via the splitting approach.

3.4.3 Sequential Operator Splitting Method

Such a scheme can be applied to couple the different operators to the full operator
equations (3.71). We deal with a successive computation of each operator in each
time slot and couple via the initial conditions of each step, see [18].

We solve m subproblem sequentially on the subintervals [tn, tn+1], where n =
0, 1, . . . , N − 1, t0 = 0 and t N = T .

The subproblems are given in the following and coupled via the initial conditions:

∂c1(t)

∂t
= A1c1(t), with c1(t

n) = c(tn), (3.74)

∂c2(t)

∂t
= A2c2(t), with c2(t

n) = c1(t
n+1), (3.75)

... (3.76)
∂cm(t)

∂t
= Amcm(t), with cm(tn) = cm−1(t

n+1), (3.77)

for n = 0, 1, . . . , N − 1 and τ = tn+1 − tn , where c(tn+1) = cm(tm+1) is the
approximated solution at the time point tn+1.

The local splitting error of the sequential scheme isO(τ 2) and the global splitting
error of the sequential scheme is O(τ ), if we assume non-commutable operators.
Otherwise, we are exact.

Here, we have to wait for the next initial condition, while we are dependent on the
result of the previous step, such that the scheme is only interested to couple different
codes, see [18].
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3.4.4 Parallel Operator Splitting Method: Version 1

The following first parallel operator splitting method is also called splitting-up
method, see [19, 20].

We also deal with m sub-problems, which can be solved independently, i.e. par-
allel, while the initial conditions are given at time point tn for each sub-problem and
independent of other sub-problems, see [21].

We have the subintervals [tn, tn+1], where n = 0, 1, . . . , N − 1, t0 = 0 and
t N = T . We deal with m parallel sub-problem given as follows:

∂c1(t)

∂t
= A1c1(t), with c1(t

n) = c(tn), (3.78)

∂c2(t)

∂t
= A2c2(t), with c2(t

n) = c(tn), (3.79)

... (3.80)
∂cm(t)

∂t
= Amcm(t), with cm(tn) = c(tn), (3.81)

and result in one additive step that couples the independent sub-steps:

c(tn+1) = c(tn) +
m∑

i=1

(
ci (t

n+1) − c(tn)
)
,

n = 1, 2, . . . , N , where c(0) = c0.

The local splitting error of the parallel scheme is O(τ ) if we deal with non-
commutable operators. Otherwise, we are exact.

Based on the low-order scheme, we introduce in the following a second-order
scheme, which can also be applied in parallel, see [21].

3.4.5 Parallel Operator-Splitting Method: Version 2

The following second parallel operator-splitting method is also weighted sequential
splitting method, see [21].

We obtain a second-order scheme, like the Strang splitting scheme, see [13], while
we apply sequential splitting in both directions, i.e., A1 → A2 → · · · ,→ Am and
Am → Am−1 → · · · ,→ A1.

Wealso dealwith two sequential splitting problems,which canbehandled parallel,
while each splitting problem hasm sub-problems. These sub-problems are dependent
and are done sequentially, see [21].

We have the two independentm sequential problems in the subintervals [tn, tn+1],
where n = 0, 1, . . . , N − 1, t0 = 0 and t N = T .
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We deal with the first m sequential sub-problem given as

∂c1(t)

∂t
= A1c1(t), with c1(t

n) = c(tn), (3.82)

∂c2(t)

∂t
= A2c2(t), with c2(t

n) = c1(t
n+1), (3.83)

... (3.84)
∂cm(t)

∂t
= Amcm(t), with cm(tn) = cm−1(t

n+1), (3.85)

and the second m sequential sub-problem given as

∂v1(t)

∂t
= Amv1(t), with v1(t

n) = c(tn), (3.86)

∂v2(t)

∂t
= Am−1v2(t), with v2(t

n) = v1(t
n+1), (3.87)

... (3.88)
∂vm(t)

∂t
= A1vm(t), with vm(tn) = vm−1(t

n+1). (3.89)

We result in one additive step that couples the independent sub-problems:

c(tn+1) = 1

2
cm(tn+1) + 1

2
vm(tn+1).

The local splitting error of the parallel scheme is O(τ 2), and the global splitting
error of the parallel scheme is O(τ ), if we deal with non-commutable operators.
Otherwise, we are exact.

In the next subsection, we present an iterative splitting scheme, which deals with
a parallelization of the exp-operators.

3.4.6 Iterative Splitting Scheme

The iterative splitting scheme is based on a relaxation idea, see [18].
Here, we deal with exp-operators, which can also be applied independently. Based

on the idea to relax only to the so-called dominant operators, see [18], we only apply
multiplications via the non-dominant operators, see [22].

We assume that we are partitioned into two operators and deal with the following
algorithm. The time interval is given as [tn, tn+1] and we solve the following sub-
problems with the iterative steps i = 1, 2, . . . , I :

dci (t)

dt
= Aci (t) + Bci−1(t), with ci (t

n) = cn
sp, (3.90)

where c0(t) is an initialization for the iterative scheme, e.g. c0(t) = 0.
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The iterative schemes are solved in the following manner:

c1(t) = exp(At)c(tn), (3.91)

c2(t) = c1(t) + c1(t)
∫ t

0
[B, exp(s A)]ds, (3.92)

where [·, ·] is the commutator.
Based on the exp(At) operators, we can decouple into A and B dependent terms,

see [22].

Remark 3.3 The iterative splitting schemes have the benefit of their modularization,
i.e. we could add relaxed operators to the scheme. A drawback is the strong cou-
pling in each iterative step, which means that the parallelization is more delicate,
and compare also the waveform relaxation methods with Jacobian or Gauss–Seidel
Schemes, see [4].

3.4.7 Spatial Parallelization Techniques

Domain Decomposition

Traditional domain decomposition schemes, e.g. Schwarz waveform relaxation
schemes, motivate with a different idea to decompose the domains into subdomains,
such that the operator is only defined in subdomains.

Example 3.4 We start to decompose the operator A into operators defined at each
subdomain. We have Ω = Ω1 ∪ Ω2; here, we obtain an artificial boundary with
Ω1 ∩ Ω2, which is not considered in an iterative operator splitting scheme.

The main advantage of such decomposition is the two decoupled independent
equations on each domain:

A|Ω1u|Ω1 = f |Ω1 (3.93)

A|Ω2u|Ω2 = f |Ω2 (3.94)

where we assume that the boundary condition at the boundary ∂Ω ∩ Ω1 is included
in A1 and the boundary condition ∂Ω ∩ Ω2 is included in A2.

To couple the two separate equations, we have to apply waveform relaxation
methods with the artificial boundary condition, which can be given as

A|Ω1ui |Ω1 = f |Ω1 (3.95)

B|Ω1∩Ω2ui |Ω1∩Ω2 = B|Ω2∩Ω1 ûi−1|Ω1∩Ω2 (3.96)

A|Ω2ui |Ω2 = f |Ω2 (3.97)

B|Ω2∩Ω1 ûi |Ω1∩Ω2 = B|Ω1∩Ω2ui |Ω1∩Ω2 , (3.98)

where i = 1, 2, . . . , I and we start from an initial guess of u0|Ω2 .
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Here, we iterate via the two decoupled equations and achieve ui |Ω1∩Ω2 =
ûi |Ω1∩Ω2 for i sufficient large.

At least we have to double the variables at the artificial boundary.

3.4.7.1 Domain Decomposition Methods: Discussion

The motivation of domain decomposition methods arose to the fact of decomposing
into smaller and simpler calculatable domains. We want to apply a standard solver
code for each domain, based on the same model equations, see [23].

We can classify the following techniques:

• Non-iterative methods, e.g. FETI methods, Mortar element methods, [24, 25],
• Iterative methods, e.g. Schwarz waveform relaxation methods, see [26].

3.4.7.2 Iterative Method: Schwarz Waveform Relaxation Method

The Schwarz waveform relaxation method deals with the idea to iterate over the
decoupled domains. The model equation, the decomposition methods and the under-
lying software codes are discussed in the manuscript [27].

We deal with the following equations as

−∂2u

∂x2
+ ηu = f, in Ω = [0, 1], (3.99)

u(0) = gg, u(1) = gd , (3.100)

and then separate them into the following equations and apply the iterative steps:

−∂2un+1
1

∂x2
+ ηun+1

1 = f, in Ω1 = [0, β], (3.101)

un+1
1 (0) = gg,

un+1
1 (β) = un

2(β),

−∂2un+1
2

∂x2
+ ηun+1

2 = f, in Ω2 = [α, 1], (3.102)

un+1
2 (0) = gd ,

un+1
2 (α) = un+1

1 (α).

We can deal with the different ideas to partition the domains, e.g. overlapping or
non-overlapping, see Fig. 3.5.
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Fig. 3.5 Domain
decomposition with respect
to overlapping and
non-overlapping domains

Further, we discretize our decomposed equation and we deal with the following
discretized equations as

− u j+1 − 2u j + u j−1

h2 + ηu j = f j , 1 ≤ j ≤ J, (3.103)

and then decompose into

− (un+1
1 ) j+1 − 2(un+1

1 ) j + (un+1
1 ) j−1

h2 + η(un+1
1 ) j = f j ,

1 ≤ j ≤ b − 1, (un+1
1 )b = (un

2)b, (3.104)

− (un+1
2 ) j+1 − 2(un+1

2 ) j + (un+1
2 ) j−1

h2 + η(un+1
2 ) j = f j ,

a + 1 ≤ j ≤ J, (un+1
2 )a = (un+1

1 )a . (3.105)
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Fig. 3.6 We start with the initialization (0th iteration, upper left figure), then we have the first
iteration (upper right figure), then we conclude with the second iteration (lower left figure) and at
least the third iteration (lower right figure) of the Schwartz waveform relaxation method

Then, we have the following Schwartz waveform iterative steps, where the exact
solution of the decomposed equation is also in the different iterative solutions. The
iterative steps are given in Fig. 3.6.

Remark 3.4 Some ideas and motivations for using non-iterative or iterative domain
decomposition methods are discussed below:

1. Iterative Method:

a. Benefit: Simple to implement, and an inversion of a matrix is not necessary,
b. Drawback: We deal with an iteration method, i.e. we need relaxation-steps

to obtain the correct solution (additional time).

2. Non-iterative Method:

a. Benefit: We obtain a direct solution, we have only one step.
b. Drawback: Often delicate solver methods for the solutions are needed, e.g.,

Schur-complementmethods for the coupledmatrices (to solve such systems,
it is necessary to apply iterative solvers).
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Remark 3.5 The benefits and drawbacks of the overlapping or non-overlapping
decomposition methods are discussed below. Here are some ideas:

1. Overlapping Domain Decomposition:

a. Benefit: Stronger coupling of the equation-parts, i.e. we achieve more stable
methods, which converge faster.

b. Drawback: Higher computational amount and more delicate to parallelize.

2. Non-overlapping Domain Decomposition:

a. Benefit: Simpler to parallelize (it is stronger decoupled).
b. Drawback: Solver amount is higher, while we need additional iterative steps

to couple the equation parts. Often, we have a slower convergence of the
method.

In the following Example3.5, we explain an application of the Schwarz waveform
relaxation method.

Example 3.5 Application to Convection-Diffusion-Reaction Equations
The example is given in the author’s paper [28]. Here, we conclude with some

ideas and aspects of the decomposition method.
We consider the convection-diffusion-reaction equation, given by

ut = Duxx − νux − λu, (3.106)

defined on the domain Ω × T , where Ω = [0, L] and T = [T0, T f ], with the
following boundary and initial conditions:

u(0, t) = f1(t), u(L , t) = f2(t), u(x, T0) = u0.

To solve the model problem using overlapping Schwarz waveform relaxation
method, we subdivide the domainΩ into two overlapping subdomainsΩ1 = [0, L2]
and Ω2 = [L1, L], where L1 < L2 and Ω1

⋂
Ω2 = [L1, L2] are the overlapping

regions for Ω1 and Ω2, respectively.
To start the waveform relaxation algorithm, we consider first the solution of the

model problem (3.106) over Ω1 and Ω2 as follows:

vt = Dvxx − νvx − λv over Ω1, t ∈ [T0, T f ]
v(0, t) = f1(t), t ∈ [T0, T f ]
v(L2, t) = w(L2, t), t ∈ [T0, T f ]
v(x, T0) = u0 x ∈ Ω1,

(3.107)

wt = Dwxx − νwx − λw over Ω2, t ∈ [T0, T f ]
w(L1, t) = v(L1, t), t ∈ [T0, T f ]
w(L , t) = f2(t), t ∈ [T0, T f ]
w(x, T0) = u0 x ∈ Ω2,

(3.108)

where v(x, t) = u(x, t)|Ω1 and w(x, t) = u(x, t)|Ω2 .
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Then the Schwarz waveform relaxation is given by

vk+1
t = Dvk+1

xx − νvk+1
x − λvk+1 over Ω1, t ∈ [T0, T f ]

vk+1(0, t) = f1(t), t ∈ [T0, T f ]
vk+1(L2, t) = wk(L2, t), t ∈ [T0, T f ]
vk+1(x, T0) = u0 x ∈ Ω1,

(3.109)

wk+1
t = Dwk+1

xx − νwk+1
x − λwk+1 over Ω2, t ∈ [T0, T f ]

wk+1(L1, t) = vk(L1, t), t ∈ [T0, T f ]
wk+1(L , t) = f2(t), t ∈ [T0, T f ]
wk+1(x, T0) = u0 x ∈ Ω2.

(3.110)

We are interested in estimating the decay of the error of the solution over the
overlapping subdomains obtainedwith the overlappingSchwarzwaveform relaxation
method over long time interval.

Let us assume that ek+1(x, t) = u(x, t) − vk+1(x, t) and dk+1(x, t) = u(x, t) −
wk+1(x, t) are the errors of (3.109) and (3.110) over Ω1 and Ω2, respectively. The
corresponding differential equations satisfied by ek+1(x, t) and dk+1(x, t) are

ek+1
t = Dek+1

xx − νek+1
x − λek+1over Ω1, t ∈ [T0, T f ]

ek+1(0, t) = 0, t ∈ [T0, T f ]
ek+1(L2, t) = dk(L2, t), t ∈ [T0, T f ]
ek+1(x, T0) = 0 x ∈ Ω1,

(3.111)

dk+1
t = Ddk+1

xx − νdk+1
x − λdk+1over Ω2, t ∈ [T0, T f ]

dk+1(L1, t) = ek(L1, t), t ∈ [T0, T f ]
dk+1(L , t) = 0, t ∈ [T0, T f ]
dk+1(x, T0) = 0, x ∈ Ω2.

(3.112)

We define for bounded functions h(x, t) : Ω × [T0, T f ] → R the norm

||h(., .)||∞ := sup
x∈Ω,t∈[T0,T f ]

|h(x, t)|.

The theory behind our error estimates is based on the positivity lemma by Pao (or
the maximum principle theorem), which is introduced as follows.

Lemma 3.1 Let u ∈ C(ΩT ) ∩ C1,2(ΩT ), where ΩT = Ω × (0, T ] and ∂ΩT =
∂Ω × (0, T ], be such that

ut − D uxx + ν ux + c u ≥ 0, in ΩT (3.113)

α0 ∂u∂ν + β0 u ≥ 0, on ∂ΩT (3.114)

u(x, 0) ≥ 0, in Ω (3.115)
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where α0 ≥ 0, β0 ≥ 0, α0 + β0 > 0 on ∂ΩT , and c ≡ c(x, t) is a bounded function
in ΩT , Then u(x, t) ≥ 0 in ΩT .

The convergence and error estimates of ek+1 and dk+1 given by (3.111) and
(3.112), respectively, are presented in the following theorem.

Theorem 3.5 Let ek+1 and dk+1 be the errors from the solution of the sub-problems
(3.107) and (3.108) by Schwarz waveform relaxation over Ω1 and Ω2, respectively,
then

||ek+2(L1, t)||∞ ≤ γ ||ek(L1, t)||∞,

and
||dk+2(L2, t)||∞ ≤ γ ||dk(L1, t)||∞,

where

γ = sinh(βL1)

sinh(βL2)

sinh(β(L2 − L))

sinh(β(L1 − L))
< 1,

with β =
√

ν2+4Dλ
2D .

Proof The proof is given in [28].
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