
Chapter 2
Theoretical Part: Functional Splitting

Abstract We describe a general method, which is based on a splitting approach and
the knowledge of the exact solutions of some sub-problems. Such additional informa-
tion is taken into account and has an important role in accelerating the computations.
We apply a functional splitting idea to decompose the initial problem into several
sub-problems where some of them are known with the analytical solutions. The
sub-problems with unknown solutions are solved numerically by standard numerical
methods, e.g. finite volume methods. This paper can be divided into four parts. In
the first part, we introduce the model and its application. In the second part, we dis-
cuss the analytical solutions of coupled systems of convection-reaction equations.
Functional splitting methods are developed in the third part.

2.1 Ideas of the Functional Splitting

The ideas of functional splitting are applied in different areas of decomposing mul-
ticomponent flow problems, see [1, 2].

The motivation is to reduce the problems of solving reacting flows whose com-
plexity comes from the fact of a wide range of timescales.

Such complexity leads to numerical difficulties related, e.g. to stiffness of the
reaction terms.

Here, the idea is to split themodel equations additively into flow terms (e.g. advec-
tive transport, diffusive transport) and reaction terms (e.g. chemical transformations).

In the following, we discuss the different splitting techniques, that are applied in
multi-component flow problem, see [3].

2.1.1 Flow Equations

We deal with a system of flow equations, which are coupled by the different flow
operators, e.g. advection, diffusion, dispersion, etc. Here themain ideas are to decom-
pose such delicate multi-operator equation into simpler one-operator equations.
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34 2 Theoretical Part: Functional Splitting

Therefore, we can treat each simpler one-operator equation with more adequate
solver and discretization schemes and optimize their computational time. Splitting
techniques allow to decompose the operators and couple the results of each simpler
operator equation together to the full result, e.g. with overlaps in the initialization of
each simpler operator equation (initial condition coupling).

2.1.1.1 Splitting of Physical Processes

So one splitting technique is based on the idea to decompose the discretized operator

∂u

∂t
+ Au = f, t ∈ [0, T ], (2.1)

where A = ∑I
j=1 A j , A j ≥ 0 (A j is positive definite) and f = ∑I

j=1 fi and
i = 1, 2, . . . , I .

The solution of the simpler equations are given as:

u j+1/I − u j

Δt
+ A1(αu j+1/I + (1 − αu j )) = f1, t ∈ [0, T ], (2.2)

u j+2/I − u j+1/I

Δt
+ A1(αu j+2/I + (1 − αu j+1/I )) = f2, t ∈ [0, T ], (2.3)

... (2.4)

u j+1 − u j+(I−1)/I

Δt
+ A1(αu j+1 + (1 − αu j+(I−1)/I )) = f I , t ∈ [0, T ], (2.5)

where for α = 1 is an implicit scheme of first order, α = 0 is an explicit scheme
of first order and for α = 1/2 we have a Crank–Nicolson scheme of second order,
see [4].

2.1.1.2 Splitting of Physical Processes and Solution Components

Another splitting idea is based on splitting the components of the solutions with
respect to their different scales, e.g. vertical and horizontal velocity in ocean circu-
lation or decompose the velocity field into a time average motion and a turbulent
fluctuation (Reynolds-averaging idea, see [5]).

The idea is based on two different velocity scales, i.e. a fast scale (turbulent
fluctuation) and a slow scale (averaged motion), see Fig. 2.1.

We decompose the velocity into:

u = u − u′, (2.6)

where u = 1
Δt

∫ tn+1

tn u(s) ds and Δt = tn+1 − tn .
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Fig. 2.1 Splitting approach to convection-diffusion-reaction equations

Example 2.1 Decompositionof a turbulent flow into an averagedflowandfluctuation
flow. Such an application is known in the Navier–Stokes simulations, see [6].

We apply a flow-equation given with two flow variables u, v and have:

∂u

∂t
+ ∂

∂x
(uv) = Qu, (2.7)

where Qu is a source of u and we have the following decomposition:

u = u + u′, (2.8)

v = v + v′, (2.9)

Su = Su + S′
u, (2.10)

and we decompose into

∂(u + u′)
∂t

+ ∂

∂x
((u + u′)(v + v′)) = Qu + Q′

u, (2.11)

and we have:

∂(u + u′)
∂t

+ ∂

∂x
((uv + uv′ + u′v + u′v′)) = Qu + Q′

u, (2.12)

we apply the averaging operator and have:

∂(u + u′)
∂t

+ ∂

∂x
((uv + uv′ + u′v + u′v′)) = Qu + Q′

u, (2.13)
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then, we skip the fast perturbations means u′ = 0, S′
u and obtain:

∂u

∂t
+ ∂

∂x
((uv + uv′ + u′v + u′v′)) = Qu, (2.14)

then based on the continuity equation we have ∂u
∂x = 0 and ∂v

∂x = 0 such that we can
skip the mixed terms and we obtain:

∂u

∂t
+ ∂

∂x
(uv + u′v′) = Qu, (2.15)

and by applying the operator parts of the equations, which splits the flow-field and
the source-term (reaction part), we have:

∂u

∂t
= Qu, (2.16)

and

∂u

∂t
+ ∂

∂x
(uv + u′v′) = 0, (2.17)

Example 2.2 A next example in ocean modelling, here we have also different scales
(horizontal and vertical velocities).

We assume the following linearized model, see [7], while we choose the adjust-
ment equation given in a linearized form:

∂u

∂t
− f v = −Px ,

∂v

∂t
+ f u = −Py, (2.18)

where f is a function depending on time and space, p = (Px , Py)
t is the pressure

vector.Wefirst decompose into the different physical processes (reaction andpressure
part) and we have:

∂u

∂t
= −Px ,

∂v

∂t
= −Py, (2.19)

and the second part:
∂u

∂t
− f v = 0,

∂v

∂t
+ f u = 0, (2.20)

is further decomposed into:

u = u + u′, (2.21)

v = v + v′, (2.22)
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and we get
∂(u + u′)

∂t
− f (v + v′) = 0, (2.23)

∂(v + v′)
∂t

+ f (u + u′) = 0, (2.24)

and we apply the averaging and obtain:

∂u

∂t
− f v = 0, (2.25)

∂v

∂t
+ f u = 0. (2.26)

Further, we can also solve the fluctuations or so-called inertia adjustments:

∂u′

∂t
− f v′ = 0, (2.27)

∂v′

∂t
+ f u′ = 0. (2.28)

Here, we have decoupled the fast and slow velocities and also taken into account
the different physical behaviours of the equation parts.

2.1.2 Decomposition of Convection-Diffusion-Reaction
Problems

The motivation of decomposing convection-diffusion-reaction (CDR) problems are
important, while time-consuming standard numerical approaches, e.g. Runge–Kutta
methods for the the whole equation parts, have their drawbacks in resolving the
finest scales. More and more complexities of coupling all the equations parts need to
apply novel methods, that can overcome the restriction to time- and spatial steps, see
[8]. Nowadays CDR problems are used to simulate delicate transport and reaction
processes in engineering applications, e.g. chemical reactors [9], combustion flames
[10], and bioremediation [11, 12].

Because of the drawback of losing accuracy or dealing with numerical artefacts
with large time-steps to classical discretization and splitting schemes, we propose
the following splitting strategies for global multiphase convection-diffusion-reaction
equation, see [13].

• Time Splitting: Decoupling of convection-reaction and diffusion equation to solve
them separately
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• Dimensional Splitting: Exact solving of the 1D time-dependent systems of the
convection-reaction equations

• Functional Splitting: Laplace transformation of the 1D time-dependent systems
of convection-reaction equations and solving analytically the resulting systems of
ordinary differential equations

• Iterative Splitting: Fix-point schemes, which couple the sub-problems of the global
problem, which are then solved in advance independently using an analytical
approach.

The technique called functional splitting has been tried as a means of solving decom-
posable problems, see [2]. Functional splitting is implemented in a splitting approach,
where the knowledge of the exact solutions of some sub-problems has an impor-
tant role in obtaining a-priori test-functions for solving the systems of differential
equations. The solutions can be used as test-functions to improve the discretization
schemes, e.g. finite volume schemes, or to solve analytically sub-problems which
are coupled in the splitting approach, see [3].

Here are the Assumptions2.1 of Functional Splitting approaches.

Assumption 2.1 In the following, we assume that our underlying problem has the
following characteristics:

• Each sub-problem can be solved analytical or semi-analytical.
• The sub-problems can be coupled via splitting approaches, e.g. additive, multi-
plicative or iterative splitting methods.

• The underlying spatial discretization scheme, e.g. finite difference or finite volume
method, can embed the one-dimensional analytical or semi-analytical solutions
with a small splitting error, see Godunov’s method [14, 15].

• Multiscalemethods, e.g.multiscale expansionmethods, can be applied and decom-
pose to fine and coarse parts of the full model and apply multiscale splitting
approaches, see [16].

In the following Fig. 2.2, we present the ideas of the this functional splitting
approach to a coupled multiphase convection-diffusion-reaction (MCDR) equation.
We start from theMCDRequation,while eachparts,means the convection-, reaction-,
diffusion- and multiphase- part (mobile and immobile parts) have their different
spatial and time scales. In the step of the decomposition, we collect the different
scales of equal or nearly equal part, so here in the Fig. 2.2, we can combine the
convection and reaction part, immobile part. Now, we can concentrate on the four
different model problems, e.g. convection-reaction equation, diffusion equation and
mobile–immobile equations. In the next step,we apply the so-called Functional Split-
ting approach, see the Assumptions2.1. Means, we can reconstruct one-dimensional
solutions of each sub-problem, that has a highly accuracy, e.g., analytical or semi-
analytical solution, and that the underlying spatial discretization scheme can embed
such dimensional-splitted solutions. Further, we can concentrate on each simpler
equation and apply multiscale approaches. In the final step, we couple the results of
each sub-problem and apply the coupling approaches of the different splitting meth-
ods, see [17]. The errors of the applied methods, e.g. dimensional splitting error, time
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Fig. 2.2 Splitting approach to convection-diffusion-reaction equations

splitting error, can be reduced by applying higher order schemes of each underlying
method.

Such splitting approaches allow of accelerating the solver process, so one can
employ larger time-steps. Taking into account the different scales of these multiscale
problems, one solves each singlescale problem with its optimal accuracy, see [8].

Our contribution is to derive the framework of a splitting approach to solve time-
dependent coupled transport and reaction equations with different splitting schemes
producing analytically solvable one-dimensional equations, whose solutions are then
used as test-function. This framework is more economical since it uses only standard
approaches such as finite volume schemes.

Remark 2.1 Furthermore, one could, hence, use more delicate chemical reaction
terms and embed the semi-analytical solutions of their coupled convection-reaction
systems into the schemes, or use iterative approaches to couple mixed mobile and
immobile sub-models, which are delicate, to say the least, to solve only semi-
analytical, see [17].

2.1.3 Functional Splitting with Respect to the Multiscale
Approach

Often it is necessary to dealwith amultiscalemodelwith different underlyingmodels,
e.g., microscopic and macroscopic model.



40 2 Theoretical Part: Functional Splitting

Numerically, we deal with a multiscale method, that solves each individual model
and couple the datatransfer between the different models, see [18].

Then, we deal with a hierarchical Decomposition of the underlying different
models, means in each hierarchy, e.g. microscopic part or macroscopic part, we deal
with different decomposition methods.

In the following Fig. 2.3, we present some recipes to apply a hierarchical splitting
approach. Here, we apply in the different model hierarchies the optimal splitting
approaches. Such that we can minimize the underlying splitting error and reduce
optimal the computational time.

In the following example, we deal with a multi-flow problem based on a macro-
scopic and microscopic convection-diffusion-reaction equation, see Example2.3.

Fig. 2.3 Hierarchical splitting approach (Coupling of micro–macro and macro–micro)
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Example 2.3 Wehave the followingmulti-flowproblem,which is a coupled problem
of fine- and coarse-scale CDR equations.

1. Macroscopic Equation:

dumacro

dt
= F1(umacro, umicro) + F2(umacro, umicro). (2.29)

where F1 is the convection-reaction operator and F2 is diffusion operator.
2. Microscopic Equation:

dumicro

dt
= −1

ε
(F̃1(umicro) + F̃2(umicro) − φ(umacro)). (2.30)

where F̃1 is the convection-reaction operator and F̃2 is diffusion operator. Further
umacro is the slow time-dependent and umicro is the fast time-dependent variable.

In the following, we apply the HMM and the splitting of the different scale-
dependent-equations in Algorithm2.2.

Algorithm 2.2 We first apply the HMM algorithm.

• We solve the microscopic equation:

un,m+1
micro = un,m

micro − δt

ε
((F̃1umicro + F̃2un,m

micro) − φ(un
macro)), (2.31)

where m = 0, 1, . . . , M −1, z.B. δt ≤ Δt/M is applied as microscopic time-step.
• We apply the operator splitting method with respect to the microscopic equation:

un,m+1
micro,1 = un,m

micro,1 − δt

ε
(F̃1umicro − 0.5φ(un

macro)),with un,m
micro,1 = un,m

micro,

(2.32)

un,m+1
micro,2 = un,m+1

micro,1 − δt

ε
(F̃2un,m

micro − 0.5φ(un
macro)),with un,m

micro,2 = un,m+1
micro,1,

(2.33)

where m = 0, 1, . . . , M −1, z.B. δt ≤ Δt/M is applied as microscopic time-step
and next intermediate solution is given as un,m+1

micro = un,m+1
micro,2.• Equilibration of the Microscopic operators (reconstruction):

F̃n = 1

M

M∑

m=1

(F1(u
n
macro, un,m

micro) + F2(u
n
macro, un,m

micro)). (2.34)
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• Solving of the Macroscopic Equation:

un+1
macro = un

macro − Δt (F̃n
1 + F̃n

2 ). (2.35)

with Δt as macroscopic time-step.
• We apply the operator splitting method with respect to the macroscopic equation:

un+1
macro,1 = un

macro − Δt F̃n
1 ,with un

macro,1 = un
macro, (2.36)

un+1
macro,2 = un+1

macro,1 − Δt F̃n
2 ,with un

micro,2 = un+1
macro,1, (2.37)

where the next intermediate solution is given as un+1
macro = un+1

macro,2.• We apply the next microscopic step, till we have resolved the full time interval.

Remark 2.2 Here, we can apply the discrete macroscopic time-steps with respect
to a fast splitting approach. Further also with the microscopic equation. The benefit
is also to resolve only parts of the microscopic time interval such that we can also
accelerate the multiscale computation.
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