
Juergen Geiser

Multicomponent
and Multiscale
Systems
Theory, Methods, and Applications in
Engineering

Multicomponent and Multiscale Systems

Juergen Geiser

Multicomponent
and Multiscale Systems
Theory, Methods, and Applications
in Engineering

123

Juergen Geiser
Department of Electrical Engineering
Ruhr University of Bochum
Bochum
Germany

ISBN 978-3-319-15116-8 ISBN 978-3-319-15117-5 (eBook)
DOI 10.1007/978-3-319-15117-5

Library of Congress Control Number: 2015947793

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

First, I am grateful to my colleagues
at the Ernst-Moritz Arndt University
of Greifswald, Germany,
and Ruhr-University of Bochum, Germany,
for their support and ideas on modelling
and computational sciences. Next,
I have to thank my supporters
and mentors in all modelling problems
and splitting ideas. They helped me
to be open and to be sensitive
to rigorous analysis of the numerical
methods, modelling of engineering
problems and their applications.

My special thanks go to my wife
Andrea and my daughter Lilli
who have always supported
and encouraged me.

Preface

I am glad to introduce Multicomponent and Multiscale Systems: Theory, Methods
and Applications in Engineering.

When I started this book project, I proposed to write a book about my recent
advances in mathematical modelling problems to multicomponent and multiscale
systems. I considered the upcoming areas in material modelling, which include
transport and reaction flow simulations and also electronic applications with elec-
tromagnetic fields.

I organized this book in combining theoretical and also application to practical
problems. While multicomponent and multiscale systems are very new problems,
the early stage of such a field needs such a book to explain in a theoretical and also
a practical manner the tools and methods to solve such problems.

I have tried to fill the gap between numerical methods and the applications to
real problems. I present rigorously the fundamental aspects of the numerical
methods with their underlying analysis and applying such schemes to real-life.

This monograph is in the field of technical and physical simulation problems in
engineering and sciences. Based on the theoretical framework in methods and
structures of applied mathematics, it concludes with numerical approximations of
multi-component and multi-scale problem. A main motivation of the book came
from students and researchers in different lectures and research projects.

In this monograph, we describe the theoretical and practical aspects of solving
complicated and multi-component and multi-scale systems, which are applied in
engineering models and problems.

In the book, we are motivated to describe numerical receipts, based on different
multi-scale and multi-component methods, that allow to apply truly working
multi-scale and multi-component approaches. Nowadays, one of the main problems
in multi-scale and multi-component systems is the gap between several models
based on different time- and spatial-scales. Often the drawback of applying standard
numerical methods, e.g. explicit time-discretization schemes, instead of working
multi-scale approaches, e.g. multi-scale expansion methods, is, that we have a
dramatic limiting factor, e.g. very small time- or spatial steps (due to resolving the

vii

finest scale). Such limiting factors did not allow to solve engineering complexity
and industrial advancement is impossible to obtain. Here, we fill the gap between
numerical methods and their applications to engineering complexities of real-life
problems.

Such engineering complexities are delicate and need extraordinary treatment
with special solver and tools to overcome the difficulties and restrictions of time-
and spatial steps.

Therefore, we discuss the ideas of solving such multi-component and multi-scale
systems with the help of non-iterative and iterative methods. Often such methods
can be related to splitting multi-scale methods to be taken into account to
decompose such problems to simpler ones. Such decomposition allows to treat the
complex systems in simpler ones and skip the restriction of the finest scale to the
solver methods, while we can apply individual scale to the decomposed system.

We discuss analytical and numerical methods in time and space for evolution
equations and also nonlinear evolution equations with respect to their linearization
and relaxation schemes.

All problems are related to engineering problems and their applications. I have
started from reactive flow and transport models, which are related to bioremedia-
tion, combustion and various CFD applications, to delicate electronic models,
which are related to plasma transport and flow processes in technical apparatus.

The main motivation is to embed novel multiscale approaches to complex
engineering problems such that it is possible to apply a model-reduction. Thus, it is
possible that parts of the model can be reduced or for those based on multiscale or
multicomponent approaches, the data-transfer between fine and coarse grid is done,
in a way that each scale is considered.

The outline of the monograph is given as:

1. Introduction (outline of the book)
2. General principles for multi-component and multiscale systems

a. Multi-component Analysis (separating of components)
b. Multiscale analysis (separating of scales)
c. Mathematical methods

3. Theoretical part: functional splitting:

a. Decomposition of a global multi-component problem
b. Decomposition of a global multiscale problem

4. Algorithmic part

a. Iterative methods
b. Additive methods
c. Parallelization

viii Preface

5. Models and applications

a. Multicomponent applications

i. Application of multicomponent fluids
ii. Application of multicomponent kinetics
iii. Analytical methods for a multicomponent transport model

b. Multiscale applications

i. Additive splitting method for Maxwell-equations
ii. Nonuniform grids for particle in cell methods

6. Engineering applications (real-life models)

a. Multicomponent applications

i. Application of a multicomponent model in a plasma-mixture problem
ii. Application of a multicomponent model in a biological problem

(glycolysis)

b. Multiscale applications

i. Application of a multiscale model in a stochastic problem
ii. Application of a multiscale model in a code-coupling problem
iii. Application of a multiscale model in a dynamical problem
iv. Application of a multiscale model in a particle transport problem
v. Application of a multiscale model in plasma applications
vi. Application of a multiscale model in complex fluids

7. Conclusion (fields of application and future ideas)

Based on the outline of the book, we hope that we could increase the attention of
both industry and scientists; theoretical and practical aspects are illustrated and
considered in an equal way.

Dallgow-Doeberitz Juergen Geiser
June 2015

Preface ix

Acknowledgments

I would like to thank Th. Zacher for programming MULTI-OPERA software and
his help in the numerical experiments. I would also like to acknowledge my col-
leagues and students who helped me to write such a book and gave me hints with
numerical and experimental results.

xi

Contents

1 General Principles . 1
1.1 Multicomponent Systems . 1

1.1.1 Multicomponent Flows . 1
1.1.2 Multicomponent Transport. 2
1.1.3 Application of Operator Splitting Methods

to Multicomponent Flow and Transport Problems. 3
1.2 Multiscale Systems. 4

1.2.1 Multiscale Modelling . 4
1.2.2 Multiscale Methods . 5
1.2.3 Application of Different Multiscale Methods

to Multiscale Problems . 5
1.3 Multicomponent Analysis . 9

1.3.1 Additive and Multiplicative Splitting Methods 9
1.3.2 Iterative Splitting Methods . 11
1.3.3 Application of the Operator Splitting Methods

to Multiscale Problems . 12
1.4 Multiscale Analysis . 15

1.4.1 Analytical Methods . 16
1.4.2 Multiscale Averaging . 17
1.4.3 Perturbation Methods . 17
1.4.4 Computational Singular Perturbation Method 20
1.4.5 Alternative Modern Systematic Model Reduction

Methods of Multiscale Systems 21
1.4.6 Multiscale Expansion (Embedding of the Fast Scales). . . 24

References . 28

xiii

http://dx.doi.org/10.1007/978-3-319-15117-5_1
http://dx.doi.org/10.1007/978-3-319-15117-5_1
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec13
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec13
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec16
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec16
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec17
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec17
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec18
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec18
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec20
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec20
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec21
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec21
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec21
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec22
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Sec22
http://dx.doi.org/10.1007/978-3-319-15117-5_1#Bib1

2 Theoretical Part: Functional Splitting . 33
2.1 Ideas of the Functional Splitting. 33

2.1.1 Flow Equations . 33
2.1.2 Decomposition of Convection-Diffusion-Reaction

Problems. 37
2.1.3 Functional Splitting with Respect

to the Multiscale Approach . 39
References . 42

3 Algorithmic Part . 45
3.1 Introduction. 45
3.2 Iterative Methods . 46

3.2.1 Iterative Schemes . 46
3.2.2 Reformulation to Waveform Relaxation Scheme. 47

3.3 Additive Methods. 49
3.3.1 Additive Splitting Schemes . 49
3.3.2 Higher Order Additive Splitting Method 51
3.3.3 Iterative Splitting Method . 54

3.4 Parallelization . 55
3.4.1 Time Parallelization: Parareal Algorithm

as an Iterative Solver . 55
3.4.2 Operator Parallelization: Operator Splitting Method 58
3.4.3 Sequential Operator Splitting Method 59
3.4.4 Parallel Operator Splitting Method: Version 1 60
3.4.5 Parallel Operator-Splitting Method: Version 2 60
3.4.6 Iterative Splitting Scheme . 61
3.4.7 Spatial Parallelization Techniques. 62

References . 68

4 Models and Applications . 71
4.1 Multicomponent Fluids . 71

4.1.1 Multicomponent Transport Model for Atmospheric
Plasma: Modelling, Simulation and Application 72

4.1.2 Multicomponent Fluid Transport Model
for Groundwater Flow . 84

4.1.3 Conclusion . 89
4.2 Multicomponent Kinetics . 89

4.2.1 Multicomponent Langevin-Like Equations. 89
4.2.2 Introduction to the Model Equations 91
4.2.3 Analytical Methods for Mixed Deterministic–Stochastic

Ordinary Differential Equations 92
4.2.4 Conclusion . 93

4.3 Additive Operator Splitting with Finite-Difference Time-Domain
Method: Multiscale Algorithms . 94

xiv Contents

http://dx.doi.org/10.1007/978-3-319-15117-5_2
http://dx.doi.org/10.1007/978-3-319-15117-5_2
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_2#Bib1
http://dx.doi.org/10.1007/978-3-319-15117-5_3
http://dx.doi.org/10.1007/978-3-319-15117-5_3
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec11
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec11
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec12
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec12
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec13
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec13
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec16
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Sec16
http://dx.doi.org/10.1007/978-3-319-15117-5_3#Bib1
http://dx.doi.org/10.1007/978-3-319-15117-5_4
http://dx.doi.org/10.1007/978-3-319-15117-5_4
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec13
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec13
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec16
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec16
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec17
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec17
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec17
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec18
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec18
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec19
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec19
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec19

4.3.1 Introduction. 94
4.3.2 Introduction FDTD Schemes . 94
4.3.3 Additive Operator Splitting Schemes 97
4.3.4 Application to the Maxwell Equations 99
4.3.5 Practical Formulation of the 3D-FDTD Method 103
4.3.6 Explicit Discretization. 104
4.3.7 Combination: Discretization and Splitting 106
4.3.8 Practical Formulation of the 3D-AOS-FDTD Method . . . 107
4.3.9 Discretization of the Equations with the AOS 108
4.3.10 Transport Equation Coupled with an Electro-magnetic

Field Equations . 111
4.4 Extensions of Particle in Cell Methods for Nonuniform Grids:

Multiscale Ideas and Algorithms . 115
4.4.1 Introduction of the Problem. 116
4.4.2 Introduction of the Extended Particle in Cell Method . . . 117
4.4.3 Mathematical Model . 118
4.4.4 Discretization of the Model . 119
4.4.5 2D Adaptive PIC . 135
4.4.6 Application: Multidimensional Finite

Difference Method . 142
4.4.7 Application: Shape Functions for the Multidimensional

Finite Difference Method . 143
4.4.8 Simple Test Example: Plume Computation of Ion

Thruster with 1D PIC Code. 145
4.4.9 Conclusion . 149

References . 149

5 Engineering Applications . 153
5.1 Multiscale Methods for Langevin-Like Equations 153

5.1.1 Introduction of the Problem. 154
5.1.2 Introduction of the 1D Model Equations 158
5.1.3 Analytical Methods for Mixed

Deterministic–Stochastic Ordinary
Differential Equations . 159

5.1.4 A–B Splitting with Analytical Methods for Mixed
Deterministic–Stochastic Ordinary
Differential Equations . 161

5.1.5 Improved A–B Splitting Scheme: Predictor–Correction
Idea . 162

5.1.6 Improved Explicit Scheme Based
on the Predictor–Correction Idea 163

5.1.7 CFL Condition for the Explicit Schemes 164
5.1.8 Numerical Examples. 165
5.1.9 Conclusion . 174

Contents xv

http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec20
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec20
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec21
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec21
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec22
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec22
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec23
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec23
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec24
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec24
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec25
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec25
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec26
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec26
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec27
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec27
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec28
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec28
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec29
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec29
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec29
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec30
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec30
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec30
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec31
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec31
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec32
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec32
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec33
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec33
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec34
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec34
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec37
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec37
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec38
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec38
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec38
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec39
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec39
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec39
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec40
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec40
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec40
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec41
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Sec41
http://dx.doi.org/10.1007/978-3-319-15117-5_4#Bib1
http://dx.doi.org/10.1007/978-3-319-15117-5_5
http://dx.doi.org/10.1007/978-3-319-15117-5_5
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec3
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec4
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec5
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec6
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec7
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec7
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec7
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec8
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec8
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec9
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec10
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec10

5.2 Multiscale Problem in Code Coupling: Coupling Methods
for the Aura Fluid Package . 175
5.2.1 Introduction. 175
5.2.2 Mathematical Model . 176
5.2.3 Splitting Methods. 177
5.2.4 Modified A–B Splitting Method: Only One

Exchange to Operator B . 179
5.2.5 Coupling of Initial Dates and Multiscale Approach. 181
5.2.6 Error Estimates . 181
5.2.7 A Priori Error Estimates for the Splitting Scheme. 182
5.2.8 A Posteriori Error Estimates for the Splitting Scheme . . . 183
5.2.9 Optimization for the Heat- and Radiation Equation:

Newton’s Method for Solving the Fixpoint Problem 184
5.2.10 The Modified Jacobian Newton Methods

and Fixpoint Iteration Methods 185
5.2.11 Parallelization: Parareal . 190
5.2.12 Test Example: Simple Car Body 191
5.2.13 Conclusion . 193

5.3 Multiscale Methods for Levitron Problem: Iterative Implicit
Euler Methods as Multiscale Solvers . 193
5.3.1 Introduction. 194
5.3.2 Unconstraint Hamiltonian of the Levitron Problem 195
5.3.3 Integrator for Unconstraint Hamiltonian 196
5.3.4 Integrator with Lagrangian Multiplier

(Constraint Hamiltonian) . 199
5.3.5 Numerical Experiments . 200
5.3.6 Conclusions and Discussions . 201

5.4 Particle Method as Multiscale Problem: Adaptive Particle
in Cell with Numerical and Physical Error Estimates 202
5.4.1 Introduction. 203
5.4.2 Mathematical Model . 204
5.4.3 Numerical Errors . 206
5.4.4 Absolute Error Based on the Initialization

and Right-Hand Side . 217
5.4.5 Error Reduction with Respect to SPDE

(Stochastic Partial Differential Equations) 219
5.4.6 Algorithmic Ideas to Overcome

the Self-Force Problems . 220
5.4.7 Absolute and Statistical Errors 224
5.4.8 Scaling of the Error and Analytical Error 226
5.4.9 Numerical Results . 228
5.4.10 Conclusion . 229

xvi Contents

http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec11
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec11
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec11
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec12
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec12
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec13
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec13
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec14
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec15
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec16
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec16
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec17
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec17
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec18
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec18
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec19
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec19
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec20
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec20
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec20
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec21
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec21
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec21
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec22
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec22
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec23
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec23
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec24
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec24
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec25
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec25
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec25
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec26
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec26
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec27
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec27
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec28
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec28
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec29
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec29
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec29
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec30
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec30
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec31
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec31
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec32
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec32
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec32
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec33
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec33
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec34
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec34
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec35
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec35
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec40
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec40
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec40
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec41
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec41
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec41
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec43
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec43
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec43
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec45
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec45
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec46
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec46
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec48
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec48
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec49
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec49

5.5 A Multicomponent Transport Model for Plasma
and Particle Transport: Multicomponent Mixture 230
5.5.1 Introduction. 230
5.5.2 Mathematical Model for Plasma Mixture Problem 231
5.5.3 Numerical Experiments . 235
5.5.4 Iterative Scheme in Time (Global Linearization,

Matrix Method) . 237
5.5.5 Conclusions and Discussions . 243

5.6 Multicomponent Model of a Full-Scale Model of Glycolysis
in Saccharomyces cerevisiae: Theory and Splitting Schemes 243
5.6.1 Introduction. 244
5.6.2 Introduction to the Pathway Model for the Glycolysis

in Saccharomyces cerevisiae . 245
5.6.3 Model for Hynne Glycolysis . 246
5.6.4 Splitting Schemes for Partitioned

Multicomponent Equations . 250
5.6.5 Splitting Errors and Time Step Control 251
5.6.6 Splitting Based on Separation of Eigenvectors

(Assumption: Linearized Jacobian Matrix) 253
5.6.7 Splitting Based on Fast and Slow Dynamics

Based on the Idea of the CSP
(Computational Singular Perturbation)
(Assumption: Linear Jacobian) 254

5.6.8 Strategies for the Decomposition 255
5.6.9 Numerical Examples. 258
5.6.10 Conclusion . 260

5.7 Splitting Approach for a Plasma Resonance Spectroscopy 263
5.7.1 Introduction. 263
5.7.2 Modelling . 264
5.7.3 Splitting Schemes. 265
5.7.4 Ideas of Numerical Examples of the Splitting

Approaches . 269
5.7.5 Conclusions and Discussions . 270

5.8 Multiscale Approach with Adaptive and Equation-Free
Methods for Transport Problems with Electric Fields 270
5.8.1 Introduction. 270
5.8.2 Numerical Methods . 272
5.8.3 Full Explicit Scheme: With One Timescale Δt 273
5.8.4 Adaptive Explicit Scheme:

With Two Timescales δt;Δt . 274
5.8.5 Equation-Free Explicit Scheme:

With Two Timescale δt;Δt . 277
5.8.6 Conclusions and Discussions . 278

Contents xvii

http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec50
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec50
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec50
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec51
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec51
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec52
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec52
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec56
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec56
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec57
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec57
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec57
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec58
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec58
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec59
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec59
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec59
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec60
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec60
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec61
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec61
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec61
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec62
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec62
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec63
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec63
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec63
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec64
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec64
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec65
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec65
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec65
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec66
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec66
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec66
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec66
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec66
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec67
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec67
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec71
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec71
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec72
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec72
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec73
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec73
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec74
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec74
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec75
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec75
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec76
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec76
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec79
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec79
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec79
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec80
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec80
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec81
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec81
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec81
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec82
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec82
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec83
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec83
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec84
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec84
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec85
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec85
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec85
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec86
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec86
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec86
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec87
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec87

5.9 Multiscale Approach for Complex Fluids: Applications
in Non-Newtonian Fluids . 279
5.9.1 Introduction. 279
5.9.2 Non-Newtonian Fluid: Influence of the Microscopic

Model. 279
5.9.3 Non-Newtonian Fluid: Influence of the at the Boundary

Flow at the Channel . 282
References . 285

Conclusions . 291

Appendix . 295

Glossary . 305

Bibliography . 307

Index . 321

xviii Contents

http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec88
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec88
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec88
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec89
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec89
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec90
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec90
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec90
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec91
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec91
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Sec91
http://dx.doi.org/10.1007/978-3-319-15117-5_5#Bib1

Acronyms

BCH Baker-Campbell-Hausdorff formula
BDF Backward differentiation formula
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy condition
CIC Cloud-in-Cell function (see [1] and [2])
CVD Chemical vapor deposition
CSP Computational Singular Perturbation Method (see [3])
DD Domain decomposition methods
FDTD Finite Difference Finite Time method (see [4])
EFM Equation Free Method (see [5])
HIPIMS High Power Impulse Magnetron Sputtering
HMM Heterogeneous Multiscale Method (see [6])
HPM Homotopy Perturbation Method (see [7])
ICE-PIC Invariant Constrained-equilibrium Edge Pre-Image Curve

(see [8])
ILDM Intrinsic Low Dimensional Manifold approach (see [9])
IOS Iterative operator splitting methods
MAX-phase Special material with metallic and ceramic behavior; see [10]
MD Molecular dynamics
MIG Method of Invariant Grid (see [11])
MIM Method of Invariant Manifold
MISM Multiscale Iterative Splitting Method (see [12])
MQ Multiquadric bases functions (see [13])

xix

MULTI-OPERA Software package based on MATLAB, which solves multiscale
problems with splitting methods

ODE Ordinary differential equation
OFELI Object finite element library
PDE Partial differential equation
PECVD Plasma-enhanced chemical vapor deposition
PIC Particle in Cell (see [1])
PID Proportional integral derivative controller
PM Particle Method (see [1])
PVD Physical vapor deposition
RBF Radial basis function
REDIMs Reaction–Diffusion Manifolds approach (see [14])
RRM Relaxation Redistribution Method (see [15])
R3T Radioactive-reaction-retardation-transport software toolbox,

done with the software package UG (unstructured grids)
SiC Silicon carbide
Ti3SiC2 Special material used for thin-layer deposition; see [10]
SIM Slow Invariant Manifold
SDE Stochastic Differential Equation
SODE Stochastic Ordinary Differential Equation
SPDE Stochastic Partial differential equation
UG Unstructured grid (software package; see [16])

Symbols

λ Eigenvalue
A In the following A is a matrix in R

m � R
m, m 2 N

þ is the
rank

λi i-th eigenvalue of A
ρðAÞ Spectral radius of A
ei i-th eigenvector of matrix A
σðAÞ Spectrum of A
ReðλiÞ i-th real eigenvalue of λ
ut ¼ ou

ot
First-order partial time derivative of c

utt ¼ o2u
ot2

Second-order partial time derivative of c

uttt ¼ o3u
ot3

Third-order partial time derivative of u

utttt ¼ o4u
ot4

Fourth-order partial time derivative of u

u0 ¼ du
dt

First-order time derivative of u

u00 ¼ d2u
dt2

Second-order time derivative of u

τ ¼ τn ¼ tnþ1 � tn Time step

xx Acronyms

un Approximated solution of u at time tn

oþt u ¼ unþ1�un
τn

Forward finite difference of u in time

o�t u ¼ un�un�1

τn
Backward finite difference of u in time

o0t u ¼ unþ1�un�1

2τn
Central finite difference of u in time

o2t u ¼ oþt o
�
t u Second-order finite difference of u in time

ru Gradient of u
Δuðx; tÞ Laplace operator of u
r � u Divergence of u (where u is a vector function)
nm Outer normal vector to Ωm

oþx u Forward finite difference of u in space dimension x
o�x u Backward finite difference of u in space dimension x
o0xu Central finite difference of u in space dimension x

o2xu Second-order finite difference of u in space dimension x

oþy u Forward finite difference of u in space dimension y

o�y u Backward finite difference of u in space dimension y

o0yu Central finite difference of u in space dimension y

o2yu Second-order finite difference of u in space dimension y

eiðtÞ :¼ uðtÞ � uiðtÞ Local error function with approximated solution uiðtÞ
errlocal Local error
errglobal Global error
A;B½ � ¼ AB� BA Commutator of operators A and B

References

1. R. Hockney, J. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton,
1985)

2. M.E. Innocenti, G. Lapenta, S. Markidis, A. Beck, A. Vapirev, A multi level multi domain
method for particle in cell plasma simulations. J. Comput. Phys. 238, 115–140 (2013)

3. S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26,
461–486 (1994)

4. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method
(Artech House Inc., Boston, 1995)

5. I.G. Kevrekidis, G. Samaey, Equation-free multiscale computation: algorithms and applica-
tions. Annu. Rev. Phys. Chem. 60, 321–344 (2009)

6. E. Weiman Principle of Multiscale Modelling (Cambridge University Press, Cambridge,
2010)

7. S.J. Liao, On the homotopy analysis method for nonlinear problems. Appl. Math. Comput.
147, 499–513 (2004)

8. Z. Ren, St. B. Pope, A. Vladimirsky, J.M. Guckenheimer, Application of the ICE-PIC method
for the dimension reduction of chemical kinetics coupled with transport. Proc. Combust. Inst.
31, 473–481 (2007)

Acronyms xxi

9. U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in
composition space. Combust. Flame 88, 239–264 (1992)

10. M.W. Barsoum, T. El-Raghy, Synthesis and characterization of a remarkable ceramic:
Ti3SiC2. J. Am. Ceram. Soc. 79(1), 1953–1956 (1996)

11. E. Chiavazzo, I.V. Karlin, K. Boulouchos, Method of invariant grid for model reduction of
hydrogen combustion. Proc. Combust. Inst. 32(1), 519–526 (2009)

12. J. Geiser, Recent advances in splitting methods for multiphysics and multiscale: theory and
applications. J. Algorithms Comput. Technol., Multi-Sci., Brentwood, Essex, UK, accepted
August 2014 (to be published second issue 2015)

13. R.L. Hardy, Multiquadric equations of topography and other irregular surfaces. J. Geophys.
Res. 76(8), 1905–1915 (1971)

14. V. Bykov, U. Maas, Problem adapted reduced models based on reaction diffusion manifolds
(REDIMs). Institut für Technische Thermodynamik, Karlsruhe University, Kaiserstraßse 12,
D-76128 Karlsruhe, Germany, Proceedings of the Combustion Institute 01/2009 (2009)

15. E. Chiavazzo, I. Karlin, Adaptive simplification of complex multiscale systems. Phys. Rev.
E 83, 036706 (2011)

16. P. Bastian, K. Birken, K. Eckstein, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, UG—
a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1(1),
27–40 (1997)

xxii Acronyms

Introduction

While engineering applications are becoming increasingly complicate, the under-
lying modelling problems are becoming more related with multi-modelling aspects.
Such complexities arise due to multiscale and multicomponent approaches in the
modelling-equations, which need rigorous numerical analysis for the underlying
schemes. The main problems are the disparate time- and spatial scales, which have
to be included into the models and their underlying numerical approaches.

In the next chapters, we like to solve such delicate problems with numerical
schemes, which are improved multi-scale and multi-component methods.

We discuss the following items:

• General principles for multi-component and multiscale systems,
• Multi-component analysis (separating of components),
• Multiscale analysis (separating of scales),
• Mathematical and numerical methods.

While we start with classical multicomponent and multiscale methods, e.g.
homogenization and asymptotic matching, we discuss their limits and application
background. Such limits allow us to take into account the design of structure and
algorithmical methods, which overcome the restriction of disparate scales and
modify such methods to apply engineering problems with delicate complexities.

Here the main topic is related to splitting methods, which are nowadays applied
to multi-scale and multi-component problems, while they are flexible in coupling
different spatial and time scales.

We discuss additive and iterative methods, which can be embedded to standard
discretization and solver schemes, such that the multiscales are respected in their
modelling structures. Practical and theoretical tools are extended with scientific
simulations of their underlying models, which allows revealing the deeper struc-
tures, for example multi-component and multi-scale structures, which are coupled
in different time and spatial scales.

xxiii

Based on the upcoming areas of multi-scale approaches for material modelling,
see the framework of Horizon 2020,1 it is important to link different models, e.g.,

• Multi-scaling: Different time- or spatial scales of the phenomena are modelled in
different entities (e.g., micro- or macro model) and their results are transferred
from one model to another.

• Multi-Modelling: Different physics and chemistry are coupled at the same scale,
which means the models are applied to the same time- and spatial scale.

Such new modelling areas are nowadays important and we take into account the
modification of our proposed multi-scale and multi-component methods to cus-
tomize for practical engineering problems. One of the key motivation is to bridge
the gap between the engineering application and the development of multi-scale
methods for theoretical test applications, such that it is possible to adapt the the-
oretical tested schemes to real problems.

Here in our book, we concentrate on multi-scaling, which means, we can apply
our models and methods to such problems, that different models (microscopic
model or macroscopic model) are coupled via a method and therefore, we transfer
the results from one to the other model.

We consider the following multi-scaling:

• Multi-scaling: Different time- or spatial scales of the phenomena are modelled in
different entities (e.g., micro- or macro model) and their results are transferred
from one model to another.

• Multi-Modelling: Different physics and chemistry is coupled at the same scale,
which means the models are applied to the same time- and spatial scale.

Based on the first interpretation, we have in the book the following examples:

• Langevin-like equations (micro- and macro-time scale), see Sect. 5.1,
• Levitron Problem (micro- and macro-spatial scale), see Sect. 5.3,
• Glycolysis Problem (micro- and macro-time scale), see Sect. 5.6.

In Fig. 1, we present the first interpretation (same physics model to different
spatial and time scales).

In Fig. 2, we present the second interpretation (linking models with different
physics). Based on the second interpretation, we have in the book the following
examples:

• Code-coupling (fluid dynamical and heat-transfer model), see Sect. 5.2,
• Adaptive Particle in Cell (molecular dynamical model and continuum model),

see Sect. 5.4,
• Multicomponent Plasma (kinetic model and continuum model), see Sect. 5.5.

1European Commission, Research & Innovation-Key Enabling Technologies, Modelling Material,
http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html.

xxiv Introduction

http://dx.doi.org/10.1007/978-3-319-15117-5_5
http://dx.doi.org/10.1007/978-3-319-15117-5_5
http://dx.doi.org/10.1007/978-3-319-15117-5_5
http://dx.doi.org/10.1007/978-3-319-15117-5_5
http://dx.doi.org/10.1007/978-3-319-15117-5_5
http://dx.doi.org/10.1007/978-3-319-15117-5_5
http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html

Fig. 2 Second interpretation of multi-scaling (in modern material engineering applied)

Fig. 1 First interpretation of multi-scaling (often in classical material engineering applied)

Introduction xxv

In the book, we try to close the gap between several available models, e.g. in
material modelling, due to disparate time and spatial scales, and the possibility to
apply multi-scale and multi-component methods to couple such scales.

The use of such truly working multi-scale approaches is important in the case of
engineering complexity; in the book, we present such approaches. Nowadays, if
such methods are not considered or well-studied in the applications, it is a dramatic
limiting factor for today’s industrial advancement, see [1].

Reference

1. L. Rosso, A.F. de Baas, Review of Materials Modelling: What makes a material function? Let
me compute the ways … European Commission, General for Research and Innovation
Directorate, Industrial Technologies, Unit G3 Materials (2014). http://ec.europa.eu/research/
industrial_technologies/modelling-materials_en.html

xxvi Introduction

http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html
http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html

Chapter 1
General Principles

Abstract In the general principle, we give an overview of the recently usedmethods
and schemes to solve multicomponent and multiscale systems. While multicompo-
nent systems are evolution equations based on each single species, which are coupled
with the other species, e.g. with reaction-, diffusion-processes, multiscale systems
are evolution equations based on different scales for each species, e.g. macroscopic-
or microscopic scale. We give the general criteria for practically performing the
different splitting and multiscale methods, such that a modification to practical ap-
plications of the splitting schemes to a real-life problem can be done.

1.1 Multicomponent Systems

In the following, we deal with multicomponent systems. Multicomponent systems
concentrate on disparate components in the underlying multiscale models, while
they can be coupled by linear or nonlinear functions or differential systems, e.g.
reactions or transport phenomena.Often, also different scales are important to resolve
to understand the interactions of the different components. Here, we have to apply
multicomponent schemes that are also related to disparate spatial and timescales to
resolve such complexities, see algorithmic ideas of multicomponent problems in [1].

In the following sections, we concentrate on modelling or algorithmical aspects
of multicomponent systems for the following applications:

• Multicomponent flows, see [2, 3].
• Multicomponent transport, see [1, 4].

We simulate the flow and transport systems based on their interactions with the
different components. Hence, we allow to study weakly or strongly coupled compo-
nents in the underlying modelling equation systems.

1.1.1 Multicomponent Flows

The class of multicomponent flows can be defined as a mixture of different chemical
species on amolecular level, which are flownwith the same velocity and temperature,

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5_1

1

2 1 General Principles

see [5]. The chemical species are interacting by chemical reactions and such a result
is a multicomponent reactive flow.

The modelling of such behaviours is important in engineering, e.g. reactor de-
sign (Chemical vapour deposition reactors, see [6]) in chemical engineering. Such
processes are very complex, while different physical processes occur, e.g. injection,
heating, mixturing, homogeneous and heterogeneous chemistry and further, see [7].

In the following, we present some typical problems in multicomponent flow prob-
lems:

• Ionized Species, e.g. plasma problems, see [4].
• Combustion of oil, coal or natural gas, see [8].
• Chemical reaction processes in chemical engineering, see [6, 9, 10].
• Atmospheric pollution, see [11].

Remark 1.1 In the different applications, the term multiphase flow is often used.
Here, we define multiphase flows where the phases are immiscible and not chemi-
cally related, see [2, 12]. So each phase has a separately defined volume fraction and
velocity field. Therefore, also the conservation equations for the flow of each species
and their interchange between the phases are different from themulticomponent flow.
Here, one is taken into account to define a common pressure field, while each phase
is related to the gradient of this field and its volume fraction, see [13]. The applica-
tions are two-phase flow problems, Buckley Leverett problems and multiphase heat
transfer, see [2].

1.1.2 Multicomponent Transport

We define the multicomponent transport in the direction of a computational aspect.
If we deal in our description with multicomponent flow model, e.g. multicomponent
plasma, multicomponent fluid, the interest is related in this item to the transport
properties, e.g. of the chemical mixture.

The algorithmical aspect is important to deal with multicomponent systems; here
often the idea of splitting into simpler and faster equation parts is important, e.g.:

• Multicomponent splitting of multicomponent flow problem, e.g. ocean modelling
[14].

• Multicomponent transport algorithms, e.g. fluid modelling [4].
• Multicomponent transport modelling, e.g. plasma modelling [15].

All ideas are related to decompose themulticomponent model into simpler single-
component models and solve them separately.

1.1 Multicomponent Systems 3

1.1.3 Application of Operator Splitting Methods
to Multicomponent Flow and Transport Problems

The general criteria for a practical performing of the operator splitting methods to
multicomponent systems are motivated by decomposing into simpler systems, which
can be solved independently or with less computational amount, see [16, 17].

One of the main advantages of decoupling operators in multicomponent systems
is the computational efficiency, while we decompose the operators in their different
temporal and spatial scales. Such a decomposition allows to apply the most accurate
discretization and solver methods.

A classical receipt of such a decomposition for multicomponent systems is given
in Fig. 1.1.

Example 1.1 As an example, we deal with a multicomponent transport problem, a
multi-diffusion-reaction equation. Such a multi-diffusion operator is decomposed
into simpler diffusion operators. Each operator part can be solved with its accurate
method (e.g. implicit time discretization for the fastest diffusion part to allow large
time steps and higher order explicit Runge–Kutta methods for slowest diffusion part
to obtain accurate results), see [18].

Fig. 1.1 Multicomponent systems and an operator splitting approach

4 1 General Principles

1.2 Multiscale Systems

Multiscale systems deal with modelling equations of different time- and spatial be-
haviours. While different scale lengths, e.g. microscopic or macroscopic scales, in
time and space are important, also the different models of the problem, e.g. micro-
scopic or macroscopic model, are important to understand the complexity of the
underlying system. Different hierarchies of models are important to see in each dif-
ferent time- or spatial scale the influence to the model problem or the influence to a
lower or upper hierarchical model, see [19, 20].

We have to understand the related multiscale models, e.g. different scales or
different models, and also the application of different multiscale methods, e.g. top–
down or bottom–up methods, see [21].

In the following, we deal with multiscale systems and their modelling and algo-
rithmical aspects.

We discuss the following topics:

• Multiscale Modelling, see [2, 3].
• Multiscale Methods, see [1, 4].

We take into account the different modelling types, type A and type B, and the
practical implementation to adequate multiscale methods to close the gap between
the influence of disparate time- and spatial schemes. We can accelerate the com-
putational time while we solve upscaled microscopic equation into fast perform-
ing macroscopic equations or concentrate on embedding microscopic performance
to important time- or spatial windows of the macroscopic equations, e.g. updating
macroscopic parameters with microscopic computations.

1.2.1 Multiscale Modelling

In the past years, in many engineering applications, multiscale systems are important
tools for solving engineering models which have multiple scales, e.g. spatial and/or
temporal scales of different, see [22].

Themodelling aspects concentrate on resolving the properties or systembehaviour
on each important level (e.g. microscale, mesoscale, macroscale) by using additional
information from the other levels or scales (e.g. lower or higher levels).

While each level has its own specific behaviour, e.g. conservation or constraints,
such a behaviour is important for a detailed description of the full system with all
the levels.

Multiscalemodelling is therefore important to understand the detailed information
of an engineering model, e.g. the material and system behaviours. Such a detailed
analysis allows to forecast the material or system behaviours.

1.2 Multiscale Systems 5

1.2.2 Multiscale Methods

There are several different methods to solve multiscale problems.
Often, it is sufficient to deal with analytical methods, e.g. method of multiple-

timescales (MMTS) see [23]. The next larger group is numerical methods, where we
distinguish between different types of algorithms:

• Top–down.
• Bottom–up.

Further, we distinguish between classical and modern numerical schemes, while
the classical schemes, e.g. multiscale methods, multiresolution methods, have linear
scaling and modern schemes, e.g. heterogeneous multiscale method (HMM), equa-
tion freemethod (EFM), iterativemultiscale methods (IMSM) have sublinear scaling
of the computational time, see [22].

1.2.3 Application of Different Multiscale Methods
to Multiscale Problems

In the following, we discuss three recipes of practical application of the following
multiscale methods:

• HMM (Heterogeneous Multiscale Method), see [24].
• EFM (Equation free method), see [25].
• MISM (Multiscale Iterative Splitting Method), see [26].

For multiscale problems, a main motivation is also to reduce the computational
amount, see [22].

To have a general criteria to apply to a real model, we can classify a multiscale
problem into two types and apply each type to the appropriate method, see [20, 26].

• Multiscale Problem of Type A (top–down)
The micro-model is only used for the regions where the microscopic laws are
important, e.g. local defects or singularities, boundary-layers or interfaces. For
all other regions it is sufficient to apply the macro-model (i.e. the macroscopic
equations). Here, the examples are fluid–solidmodels or plasma-boundarymodels.

• Multiscale Problem of Type B (bottom–up)
The microscale model is necessary for all the regions (e.g. globally) to derive the
parameters for the macroscopic laws. The macroscopic model is extrapolated by
the microscopic model, i.e. we reconstruct the macroscopic equations.

6 1 General Principles

The methods for the different types are given in the following:

HMM: Top–down-method

Here, we have the HMM (Heterogeneous Multiscale Method), which embeds the
microscale model into the macroscopic model. That is, the macroscopic model is
extended by the information of the microscopic model.

We have the following steps of the HMM algorithm, see Algorithm1.1.
We deal with the following multiscale equation:

dy

dt
= 1

ε
(y − φ(x)), (1.1)

dx

dt
= f (x, y), (1.2)

where y is the fast and x is the slow variable. Further, we assume ε � 1 and f, φ
are nonlinear functions and t ∈ [0, T], where T is the end-time point.

Algorithm 1.1 • We solve the microscopic equation:

yn,m+1 = yn,m − δt

ε
(yn,m − φ(xn)), (1.3)

with m = 0, 1, . . . , M − 1, e.g. δt ≤ Δt/M as microscopic time-steps.
• We reconstruct or equilibrate the microscale operator:

Fn = 1

M

M∑

m=1

f (xn, yn,m). (1.4)

• We solve the macroscopic equation, with respect to the improved operator Fn :

xn+1 = xn − Δt Fn . (1.5)

with the macroscopic time-step Δt .

Remark 1.2 Wesolve only a fewmicroscopic time-steps around amacroscopic time-
point, such that we do not resolve the full macroscopic time-step, therefore we can
reduce the microscopic computations.

MISM: Top–down-method

Here, we have a next top–downmethod, which deals with an underlyingmacroscopic
equation with A as the macroscopic operator and the coarse timescale τ . Further, we
assume a microscopic equation (e.g. material law) with the microscopic operator B
and the fine timescale δτ .

The different scales and the method is illustrated in Fig. 1.2.

1.2 Multiscale Systems 7

tΔ

t

Restriction Interpolation

Fig. 1.2 Illustration of the MISM method

The idea is to embed the results of the microscopic equations around the macro-
scopic time-points, i.e. smaller time frame of microscopic steps as the full macro-
scopic time-step, such that we can save computational time. The finer scale is em-
bedded into the coarser scale and it is sufficient to update a smaller time interval
around the coarser time-steps to concentrate on the macroscopic equations, which
can be solved much more efficiently than the microscopic equation.

The Algorithm1.2 is given in the following.

Algorithm 1.2 We have the following parameters:

• The coarse time-step is τ .
• The fine time-step is δτ ≤ τ/M , where M is the number of small time-steps
around the coarse time-step.

• The macroscopic time interval is given as [tn, tn+1].
The algorithm is given in the next steps:

• Initialization: c0(tn) = cn , I is the number of iteration steps and we have N time
intervals.

• We solve the macroscopic equation with one time-step τ :

∂ci (t)

∂t
= A(ci (t)) + R(B(ci−1(t)). (1.6)

• Then we apply the interpolation, i.e. operator A is resolved in the finer scale, so
we couple into the microscopic equation

I (A(ci)(t)) = A(c(tn)) + ∂ A(c)

∂c

ci (t) − c(tn)

ci (tn+1) − c(tn)
, t ∈ [tn, tn+1]. (1.7)

I (A(ci)(t)) = A(c(tn))

+ A(ci (tn+1)) − A(c(tn))

ci (tn+1) − c(tn)
(ci (t) − c(tn)), t ∈ [tn, tn+1]. (1.8)

8 1 General Principles

• We apply M small time-steps (δτ) in the microscopic equation:

∂ci+1(t)

∂t
= I (A(ci (t))) + B(ci+1(t)). (1.9)

• Then we apply the restriction, i.e. the operator B is coupled to the macroscopic
equation.

R(B(c j)(t
n+1)) = 1

M

M∑

k=1

B(c j,k(t
n+1)). (1.10)

• We apply the next macroscopic step.

Remark 1.3 Such a method can be applied by the model where we can distinguish
the different operators (e.g. coarse timescale of operator A and fine time scales of
operator B).While themethod is very near to a standard operator splitting scheme, the
modifications are only to embed the different interpolation and restriction operators,
see [26]. The benefit is in reducing the computational amount, which is from the
microscopic equation (e.g. molecular dynamical computations for large time frames)
to shift the model via embedding of the microscopic results to the macroscopic
equation, e.g. updated macroscopic parameters (diffusion or stress tensors), see [24].

EFM: Bottom–up-method

Here, we have the EFM (equation free method), which extrapolates the macroscale
model. Vice versa, we have given the microscopic model and resolve the unknown
macroscopic model.

We have the following steps of the HMM algorithm, see Algorithm1.3.

Algorithm 1.3 • We initialize the microscopic equation (Lifting):

u(x, t) = μ(U (x, t)). (1.11)

• We solve the microscopic equation (Evolving):

u(x, t + Δt) = s M (u(x, t), δt), (1.12)

where Δt = M δt is the macroscopic time-step.
• We extrapolate the macroscopic equation (Restriction):

U (x, t) = M (u(x, t)). (1.13)

• We reconstruct via the operators the macroscopic equation:

U (x, t + Δt) = S(U (x, t),Δt) = M (sM (μ(U (x, t)), δt)). (1.14)

1.2 Multiscale Systems 9

Remark 1.4 The EFMhas the advantage tomodel ab initio problems, e.g. inmaterial
modelling, it is important to start from a very fine scale and reconstruct the higher
macroscopic models, see [27]. Here, we have the benefit that we can reconstruct the
macroscopic behaviour, while for example a macroscopic equation is not a priori
known. Based on extrapolation ideas we extend the microscopic scales and construct
larger time- and spatial scales to transfer the model into the macroscopic scales,
see [25, 28]. Such a reconstruction is important to understand ab initio material
processes, see [29].

1.3 Multicomponent Analysis

In the following section, we deal with the multicomponent analysis, which is in our
case related to the ideas of separating the components.

Therefore, we deal with multicomponent methods to separate and decouple the
components, where we deal with the following ideas:

• Additive and multiplicative splitting methods.
• Iterative splitting methods.

The different splitting schemes are used as kernel methods and we can extend and
modify such basic methods to the underlying engineering complexities, see [26].

1.3.1 Additive and Multiplicative Splitting Methods

For the decomposition of partial differential equations, there exists different splitting
techniques, e.g. splitting in different dimensions, splitting in different operators, etc.

We briefly introduce the most common ideas to decompose a multicomponent
equation into different components or operators.

We deal with a linear ordinary differential equation with constant coefficients
given as

du(t)

dt
= Afull u(t), t ∈ (0, T), (1.15)

du(t)

dt
= (A1 + · · · + AM) u(t), t ∈ (0, T), (1.16)

where Afull, A1, . . . , AM : IRm → IRm are matrices, u = (u1, . . . , um)T is the
solution vector, andm is a given positive number,where M is the number of operators.
The initial conditions are given as u(t = 0) = u0, while u0 is a given constant vector.

10 1 General Principles

1.3.1.1 Additive Splitting Scheme

The idea of additive splitting schemes are to decompose into a additive series of
operators.

We solve M subproblems sequentially on subintervals [tn, tn+1], where n =
0, 1, . . . , N − 1, t0 = 0 and t N = T .

So if we deal with a first-order scheme, we can decompose Eq. (3.71) into a series
of explicit schemes:

u(tn+1) =
(

I + τ

M∑

i=1

Ai

)
u(tn), (1.17)

or for the implicit scheme, it is simpler if we choose the approximation:

u(tn+1) =
(

I − τ

M∑

i=1

Ai

)−1

u(tn), (1.18)

where we modify the implicit additive scheme as follows:

u(tn+1) = 1

M

M∑

i=1

(I − Mτ Ai)
−1u(tn). (1.19)

The local splitting error of the simple explicit additive splitting method can be
derived as

errlocal(τn) =
(
exp

(
τn

M∑

i=1

Ai

)
−

(
I + τ

M∑

i=1

Ai

))
un
sp

= 1

2
τ 2n ||(A1 + · · · + AM)2 un

sp|| + O(τ 3n), (1.20)

where the operators A1, . . . , AM are assumed to be bounded operators.

1.3.1.2 Multiplicative Splitting Scheme

The idea of multiplicative splitting schemes are to decompose into a multiplicative
series of operators.

So if we deal with a first-order scheme, we can decompose Eq. (3.71) into a
series of

u(t) = Π M
i=1 exp(t Ai)u(0), t ∈ (0, T), (1.21)

http://dx.doi.org/10.1007/978-3-319-15117-5_3
http://dx.doi.org/10.1007/978-3-319-15117-5_3

1.3 Multicomponent Analysis 11

or simpler, if we choose the approximation:

u(t) = Π M
i=1(I + t Ai)u(0), t ∈ (0, T). (1.22)

Algorithmically, we can describe the simplest splitting scheme as follows:

∂u1(t)

∂t
= A1u1(t), t ∈ (tn, tn+1), with u1(t

n) = un
sp, (1.23)

· · · (1.24)
∂uM (t)

∂t
= AM uM (t), t ∈ (tn, tn+1), with uM (tn) = uM−1(t

n+1), (1.25)

for n = 0, 1, . . . , N − 1, where u0
sp = u0 is given from (5.454). The approximate

split solution at the point t = tn+1 is defined as un+1
sp = uM (tn+1).

The local splitting error of the simple multiplicative splitting method can
be derived as

errlocal(τn) =
(
exp

(
τn

M∑

i=1

Ai

)
− Π M

i=1 exp(τn Ai)

)
un
sp,

≤ 1

2
τ 2n max

j=1,...,M
max

i = 1, . . . , M
i �= j

||[Ai , A j] un
sp|| + O(τ 3n), (1.26)

where the operators A1, . . . , AM are assumed to be bounded operators. The splitting
time step is defined as τn = tn+1 − tn . We define [Ai , A j] := Ai A j − A j Ai as the
commutator.

1.3.2 Iterative Splitting Methods

Iterative splitting method underlies the iterative methods used to solve coupled op-
erators using a fixed-point iteration. These algorithms integrate each underlying
equation with respect to the last iterated solution. Therefore, the starting solution in
each iterative equation is important in order to guarantee fast convergence or a higher
order method. The last iterative solution should at least have a local error of O(τ i

n)

(i th order in time), where i is the number of iteration steps to obtain the next higher
order.

One of the main motivations to apply iterative splitting method is to reach higher
accuracy based on the iterated solutions, see [30]. Further, such scheme can relax
nonlinearities based on the smoothing behaviour of fix-point approaches or succes-
sive approximation schemes, see [31, 32].

http://dx.doi.org/10.1007/978-3-319-15117-5_5

12 1 General Principles

In the following sections, we concentrate on a basic so-called iterative splitting
method, which is discussed in [30].

The algorithm is based on the iteration of a fixed sequential splitting discretization
with step size τn . On the time interval [tn, tn+1], we solve the following subproblems
consecutively for i = 1, 3, 5, · · · 2m + 1.

dui (t)

dt
= Aui (t) + Bui−1(t),

t ∈ (tn, tn+1), with ui (t
n) = un

sp, (1.27)

dui+1(t)

dt
= Aui (t) + Bui+1(t),

t ∈ (tn, tn+1), with ui+1(t
n) = un

sp, (1.28)

where u0(t) is any fixed function for each iteration. The initial solution can be given
as

• u0(t) = 0 (we initialize with zero),
• u0(t) = u(tn) (we initialize with the old solution at time tn).

The iteration (1.27) and (1.28) for i = 1, 3, . . . , 2m + 1 is consistent with an
order of consistency O(τ 2m+1

n), see [30].

1.3.3 Application of the Operator Splitting Methods
to Multiscale Problems

For the practical performing of the operator splitting methods, we have different
criteria for a real problem.

In the following, we discuss two recipes of a practical application of different
operator splitting methods, based on different assumptions to our real problems.

1. Physical Decomposition, see [16]: The real problem is derived and given as a
model-equation based on a system of PDEs. Here, we consider only the model
equations and are known of the physical background, e.g. transport parts of the
model equations, etc.

2. MathematicalDecomposition, see [16]: The real problem is only given as a system
of ODEs and we do not have the background, neither, e.g. semi-discretized PDEs,
nor the physical background, e.g. equations based on reaction mechanics, etc.

Physical decomposition

In the physical decomposition, we decompose the multiscale problems based on
the knowledge and information about the physical contributions (e.g. material laws,
conservation laws, different physical behaviours of the equation operators), see [16].

1.3 Multicomponent Analysis 13

Here, we can deal with two possibilities:

1. Direct Decoupling of the Multiscale equation:
Here, we assume that we have a good overview and a good knowledge of all the
parameters of the multiscale equation. That is, we assume directly the splitting
into different operators, e.g. transport and reaction operators, strong anisotropy
operator and isotropy operator, etc. Typical examples are of course the parabolic
transport equations where we have the different operators of the transport part
and the different operators of the reaction parts. We decompose with respect to
these operators, see [33].

2. Indirect Decoupling of the Multiscale equation with respect to the underlying
numerical methods:
Here, the multiscale equations with their operators are not so obviously related
to the physical behaviours, e.g. the coupling of each operator is strong and it is
not obvious how to decompose them. In that case, we apply the discretization in
time and space. Based on the underlying discretization methods, we are restricted
to stability conditions, which are important to obtain stable solutions, see [34].
These additional conditions based on the schemes allow to couple the discretized
operators to their physical parameters and we have a possible decomposition idea
for the splitting schemes.One such important condition is theCourant-Friedrichs-
Lewy [CFL] condition, see [35],which is important for all finite schemes to couple
the time- and spatial-step with the underlying physical parameters. For explicit
time-discretization schemes, we have an estimation of the next time step for
stable numerical results. For implicit time-discretizations, we can limit ourselves
to such a restriction to reduce numerical artefacts, which occur if we apply to
large time-steps for implicit schemes, see [36].

Example 1.2 For example, we deal with the transport-reaction equation:

∂c

∂t
= v

∂c

∂x
+ λc, for x ∈ Ω, t ∈ [0, T], (1.29)

c(x, 0) = c0(x), for x ∈ Ω, (1.30)

c(x, t) = g(x, t), for x ∈ ∂Ω, t ∈ [0, T], (1.31)

where the velocity parameter is given as v ∈ IR+, the reaction parameter is given as
λ ∈ IR+. After the space and time discretization with finite difference methods in
time and space, we obtain the CFL conditions:

CFL = |v τflow

Δx
| ≤ 1, CFL = |λ τreact| ≤ 1, (1.32)

where τflow is the time step for the flow and τreact is the time step for the reaction.
If we assume, for example,

τflow � τreact, (1.33)

14 1 General Principles

we decompose the flow and the reaction part into different operators and can apply
the splitting schemes, see [37].

Mathematical decomposition

In the mathematical decomposition method, we have only the information about the
ODEs, i.e. we concentrate on the underlying operator.

Here, an indicator for a decomposition is the different eigenvalues of the operator.
Based on the different eigenvalues we can decompose the full operator in different

operators with the same spectrum of the eigenvalues, see [33].
Here we can deal with different ideas:

1. Decomposition with respect to the maximal eigenvalues
In this method, we assume an ordinary differential equation with different oper-
ators that are given by matrices.
For each matrix Ai , i = 1, . . . , n, we can estimate the spectral radius of a matrix
ρ(Ai).
Based on the spectrum of the matrices, we derive the different operators for the
splitting scheme.

Example 1.3 For example, we assume to derive two operatorswherewe define aρstiff

and can separate the stiff and non-stiff parts of the operators to the new operators:

Ã1 =
∑

i∈I1

Ai ,where i ∈ I1 with ρ(Ai) ≤ ρstiff, (1.34)

Ã2 =
∑

i∈I2

Ai ,where i ∈ I2 with ρ(Ai) ≥ ρstiff, (1.35)

where I1 ∪ I2 = {1, . . . , n}.
Remark 1.5 Often, it is important to decompose into stiff and non-stiff operators,
while the stiff scales are finer than the non-stiff scales. The decomposition allows to
havemore appropriate time-steps for each operator and therefore saves computational
time with respect to larger time steps.

2. Decomposition based on different norms of the operators
Often, it makes sense to deal with different norms, e.g. maximum norm, L2-norm
of the operators and therefore give a classification of the underlying operators.
Here, the idea is to select the operators with the same norm-behaviours and derive
new operators for the splitting scheme, see [33].

Remark 1.6 The mathematical decomposition can also be applied to one operator.
Here, we split the full operator into sub-operators based on their different spectrums
or norms, see [38].

1.4 Multiscale Analysis 15

1.4 Multiscale Analysis

In the following section, we deal with the multiscale analysis, which is in our case
related to the ideas of separating the scales.

Therefore, we deal with multiscale methods to separate and decouple the scales,
where we deal with the following ideas:

• Averaging (first-order perturbation theory, see [39]).
• Homogenization (second-order perturbation theory, see [39]).

Averaging and homogenization methods are often used with respect to oscillatory
problems, while we could average or homogenize the high oscillations with respect
to the slow scale.

Example 1.4 We deal with the following modified example, see also the ideas
in [20]:

dx

dt
= 1

ε
f1(y) + f2(x, y), (1.36)

dy

dt
= g(x, y), (1.37)

where x is the fast and y is the slow variable. Further, we assume f2 and g are periodic
with respect to y, with period [−π, π].

The approximated solutions are given as

y(t) ≈ y0(τ) + εy1(τ, t), (1.38)

x(t) ≈ x0(t) + εx1(τ, t), (1.39)

where τ = t
ε
.

The leading terms are x0 and y0 and we have to assume that if τ → ∞, we have

y1(τ, t)

τ
→ 0, (1.40)

x1(τ, t)

τ
→ 0. (1.41)

We apply the approximated solutions to our differential equations and obtain the first
leading-order equations O(1

ε
) and O(1):

dx0
dτ

(τ) − f1(y0(t)) = 0, (1.42)

dy0
dt

(t) + ∂y1
∂τ

(τ, t) − g(x0(τ), y0(t)) = 0, (1.43)

where we have for Eq. (1.45):

16 1 General Principles

x0(τ) = τ f1(y0) + x̂0, (1.44)

where x̂0 is an initial condition. The second Eq. (1.43) is averaged over a large time
interval [0, τ], with τ → ∞

dy0
dt

(t) = lim
τ→∞

∫ τ

0
g(x0(τ

′), y0(t)) dτ ′ =
∫ π

−π

g(x0(τ
′), y0(t)) dτ ′, (1.45)

and we have the averaged system of the slow variable y0.

Remark 1.7 The multiscale analysis in our consideration is based on averaging and
homogenizing the disparate scales and upscale microscopic behaviours to the macro-
scopic model. Here are multiple timescale techniques, see [39, 40], important to
recover a macroscopic model.

1.4.1 Analytical Methods

One of the analytical methods is the method of multiple timescales, which is impor-
tant to solve simultaneously different scales, see [23, 41].

The single time variable t is replaced by a sequence of independent timescales
εt, ε2t, · · · and allows freedom degrees to solve multiscale problems.

We assume to have two different timescaled operators A and B, while ||A|| �
||B|| ≈ ε → 0.

∂U (t)

∂t
= AU(t) + BU(t), with U (tn) = U n, (1.46)

We derive a solution U (t, ε) and apply:

U (t, ε) = U0(t) + εU1(t) + ε2U2(t) + · · · + εJ UJ (t), (1.47)

with the initial conditions U (0, ε) = U (0) and J ∈ N
+ is a fixed iteration number.

Then the hierarchical equations are given as

∂U0(t)

∂t
= AU0(t), (1.48)

∂U1(t)

∂t
= AU1(t) + BU0(t), (1.49)

...
∂UI (t)

∂t
= AUJ (t) + BUJ−1, (1.50)

and we have also to expand the initial conditions toU0(0) = U (0) andU j (0) = 0,
∀ j = 1, . . . , J .

1.4 Multiscale Analysis 17

1.4.2 Multiscale Averaging

The multiscale averaging idea is based on the assumption that we can decouple the
full model into two sub-models:

• Microscopic model (fast scales).
• Macroscopic model (slow scales).

The averaging method concentrates on two different scales:

• a set of fast variables (microscopic model),
• a set of slow variables (macroscopic model);

such separations allow to construct a more effective model for the slower scales by
averaging the original or full model over the fast scales (or apply statistics for the
fast variables).

Remark 1.8 Here, we apply different techniques to average small time- or spatial
scale and to embed into a model with larger time- or spatial scales, see [39].

1.4.3 Perturbation Methods

In the following,we discuss some ideas of perturbation problems that can also applied
to multiscale problems.

• Homotopy perturbation method (HPM),
• Computational singular perturbation (CSP) method.

1.4.3.1 Homotopy Perturbation Method

Perturbation methods are widely applied to solve nonlinear problems. The idea is
to apply a homotopy technique, which means we could deform in a topology two
continuous functions from one topological space to another. The deformation is
called a homotopy between the two functions. Here, we apply a homotopy with an
embedding of a small parameter p ∈ [0, 1] and the method is called a homotopy
perturbation method, see [42–44].

We deal with the following nonlinear differential, which can be decoupled into a
linear and nonlinear part:

L(u) + N (u) − f (x) = 0, x ∈ Ω, (1.51)

G(u,
∂u

∂n
) = 0, x ∈ ∂Ω, (1.52)

where L is the linear operator (e.g. differential operator) and N is the nonlinear
operator, f is a right-hand side, G is a boundary operator.

18 1 General Principles

In the following,we briefly introduce the homotopy technique proposed byLiao in
[45], we can construct the following homotopy of Eq. (1.51) v(x, p) : Ω × [0, 1] →
IR which satisfies:

H (v, p) = (1 − p)(L(v) − L(u0)) + p(L(v) + N (v) − f (x)) = 0,

(x, p) ∈ Ω × [0, 1], (1.53)

or

H (v, p) = L(v) − L(u0) + pL(u0) + p(N (v) − f (x)) = 0,

(x, p) ∈ Ω × [0, 1], (1.54)

where p is the embedded parameter and u0 is an initial approximation that satisfies
the boundary conditions.

Further we have the results:

H (v, 0) = L(v) − L(u0), (1.55)

H (v, 1) = L(v) + N (v) − f (x) = 0, (1.56)

that result in a multiscale solution, see [46], if we apply p = ε, and we have

v = v0 + pv1 + p2v2 + · · · , (1.57)

where the approximation of the solution of (1.51) is given as

u = lim
p→1

v = v0 + v1 + v2 + · · · . (1.58)

We have the following first examples:

Example 1.5 We deal with

y′ + yn = 0, x ≥ 0, x ∈ Ω ⊂ IR, y(0) = 1, (1.59)

we apply the homotopy:

Y ′ − y′
0 + py′

0 + pY n = 0, (x, p) ∈ Ω × [0, 1], (1.60)

and we have the solution

Y = Y0 + pY1 + p2Y2 + · · · , (1.61)

we derive the hierarchical equations as

1.4 Multiscale Analysis 19

p0 : Y ′
0 = y′

0, (1.62)

p1 : Y ′
1 + y′

0 + Y n
0 = 0, Y1(0) = 0, (1.63)

p2 : Y ′
2 + nY n−1

0 Y1 = 0, Y2(0) = 0, (1.64)

and we have Y0 = y0 = 1. Then we obtain Y1 = −x and Y2 = n
2 x2. The second-

order approximation is given as

y = Y0 + pY1 + p2Y2 = 1 − px + p2
n

2
x2, (1.65)

and for p = 1, we obtain

y = Y0 + pY1 + p2Y2 = 1 − x + n

2
x2. (1.66)

The next example is related to a fast-slow dynamics.

Example 1.6 We deal with

y′ − y + y2 = 0, x ≥ 0, x ∈ Ω ⊂ IR, y(0) = 2, (1.67)

we apply the homotopy:

Y ′ − Y − y′
0 + y0 + py′

0 − py0 + pY 2 = 0, (x, p) ∈ Ω × [0, 1], (1.68)

and we have the solution

Y = Y0 + pY1 + p2Y2 + · · · , (1.69)

we derive the hierarchical equations as

p0 : Y ′
0 − Y0 − y′

0 + y0 = 0, (1.70)

p1 : Y ′
1 + y′

0 − y0 + Y 2
0 = 0, Y1(0) = 0, (1.71)

p2 : Y ′
2 + 2Y0Y1 = 0, Y2(0) = 0, (1.72)

and for simplicity we have Y0 = y0 = 2 exp(−x) (solution of y′
0− y0 = 0). Then we

obtain Y1 = 2 exp(−2x) and Y2 = 8
3 exp(−3x). The second-order approximation is

given as

y = Y0 + pY1 + p2Y2 = 2 exp(−x) + p2 exp(−2x) + p2
8

3
exp(−3x), (1.73)

and for p = 1, we obtain the approximation of the nonlinear differential equa-
tion (1.67).

Remark 1.9 If we apply the perturbation of a fast-slow dynamics and we assume

y′ − y + εy2 = 0, x ≥ 0, x ∈ Ω ⊂ IR, y(0) = 2, (1.74)

20 1 General Principles

for 0 < ε � 1, we obtain the solution based on the homotopy perturbation method
(1.73) and we apply p = ε. Here the nonlinearity y2 is the slow part of the equation.

1.4.4 Computational Singular Perturbation Method

The computational singular perturbation (CSP)method developed by Lam andGous-
sis [47] is an iterative method to reduce the dimensionality of differential equations
with multiple timescales, see [48].

The idea is to decouple slow and fast scales and relax the fast scales to the slow
scales, see [48].

We deal with a reaction system with N species and R reactions. The chemical
kinetics equation is given as

dy
dt

= g(y), (1.75)

where g is the global reaction rate, y = [y1, . . . , yN]T is the vector of the concen-
trations and the elementary reactions are given as

g(y) =
R∑

r=1

Sr Fr , (1.76)

where Sr is the stochiometric vector and Fr is the reaction rate of the r th reactions.
The idea of the CSP method is to derive an ideal set of basis vectors for the

derivation of the simplified models, e.g. decomposition into a slow and fast part of
the reaction equations for example g = (gslow, gfast)

T .
One has to find a fixed basis A ∈ IRN with the relation:

g = A f , (1.77)

and

f = B g, (1.78)

with B A = I ∈ IRN×N .
Then we can focus on the dynamics of

d f
dt

= λ f , (1.79)

where Λ is a linear operator which is given as Λ = B(Dg)A − B(DA)g = B[A, g]
and Dg is the Jacobian of g.

1.4 Multiscale Analysis 21

Based on the decomposition into slow and fast parts, we have:

Λ =
(

Λ1,1 Λ1,2

Λ2,1 Λ2,2

)
(1.80)

=
(

B1[A1, g] B1[A2, g]
B2[A1, g] B2[A2, g]

)
, (1.81)

and due to CSP algorithm, we compute a block-orthogonalization and we obtain the
decomposed matrix:

Λ =
(

Bs,⊥[A f , g] Bs,⊥[As, g]
B f,⊥[A f , g] B f,⊥[As, g]

)
(1.82)

=
(

Bs[A f , g] 0
0 B f [As, g]

)
. (1.83)

Now we have a decomposition into a slow and fast regime:

d f slow

dt
= Λ1,1 f slow, (1.84)

d f fast

dt
= Λ1,1 f fast, (1.85)

the detailed ideas of the algorithm are given in [47].

Remark 1.10 We can compare the perturbation method with the averaging and ho-
mogenization method. While the averaging method is a first-order perturbation and
the homogenizationmethod is a second-order perturbation, see [39], the singular per-
turbation method is constructed to take into account the different oscillatory scales
and separate them into different operators (matrices). Such different matrices can be
applied or skipped in the computations, see [47].

Remark 1.11 In general, the CSP method is only one method for automatic model
reduction (slow-fast decomposition) of dynamical systems. We have also other alter-
native model reduction methods of multiscale systems. In the following, we present
some of the recent publications of such methods.

1.4.5 Alternative Modern Systematic Model Reduction
Methods of Multiscale Systems

In the past years, many modern systematic model reduction methods of multiscale
systems were developed.

In the following,we give a small overviewof such alternativemethodswith respect
to the discussed CSP method:

22 1 General Principles

1. The Intrinsic Low-Dimensional Manifold (ILDM) (see the seminal paper [49]);
here the idea is based on simplifying chemical kinetics based on the dynamical
systems approach. The variables to the procedure are the detailed kinetics mech-
anism and the number of degrees of freedom required in the simplified scheme.
The dynamical system approach is used to develop a scheme that reduces the
state space of a reaction system globally in such a way that it can be tabulated for
subsequent use in turbulent combustion calculations.

2. The Reaction–Diffusion Manifolds (REDIMs) approach, see the ideas Bykov
and Maas [50] and more details are discussed in the papers [51–54]. The idea
of the method is based on the decomposition of timescales. They assume an
existence of invariant slow manifolds in the thermo-chemical composition space
(state space) of a reacting flow, such that they can predict a detailed dynamical
system. A manifold of the reduced model can be approximated by applying an
invariance condition together with repeated integrations of the reduced model in
an iterative way. At the end, they can derive a full stationary system dynamics
governed by detailed chemical kinetics and the molecular transport in the case of
a one-dimensional reduced model, which is also the limiting case, see [50].

3. The relaxation redistributionmethod (RRM), which is discussed in the papers and
books of Chiavazzo et al., see [55–59], is based on the construction of accurate
discrete approximations of slow invariant manifolds.
The ideas are based on two steps:

• Method of Invariant Manifold (MIM), see [60], where we have given a
autonomous system:

dφ

dt
= f (φ), (1.86)

where φ ∈ U is the state, U is the phase space and f is the reaction mecha-
nism. The MIM is based on the idea to reconstruct a slow invariant manifold
Ω , which is embedded in U and we have a function F(ξ), which maps the
macroscopic state into the microscopic state. The SIM (slow invariant mani-
fold) is seen as a stable fixpoint of the film equation:

d F(ξ)

dt
= f (F(ξ)) − P(f (F(ξ))), (1.87)

where P is the projection onto the tangent space of the manifold Ω .
• Relaxation method based on the RRM (Relaxation Redistribution Method):
The reconstruction of a macro-state ξ into a micro-state F(ξ), i.e. the practical
application of Eq. (1.87), is based on a grid-refinement of two steps:
a. Relaxation: The grid nodes are relaxed to the slow invariant manifold.
b. Redistribution: The relaxed states are redistributed on a grid related to the

parameter ξ .
The idea of the algorithm is presented in Fig. 1.3.

1.4 Multiscale Analysis 23

state)
(macroscopic

ξ

(microscopic
state)

ξ

i=1 i=2 i=3

f f

relaxation
node redistributed

node

Fig. 1.3 Grid approximation of the relaxation redistribution method

4. The G-scheme, which is discussed in [61], the main idea is based on resolving
only a range of active time scales and neglect very-slow and very-fast timescales.
Therefore, a general idea of the numerical solution is obtained using practical error
tolerances, by which a numerical solution is approximating an exact solution. The
algorithm is based on applying an adaptive coordinate transformation, such that
it is possible to consider the modes (eigenvalues) of the solutions which, within a
threshold criterion, can be frozen or are given in an equilibrium. The G-scheme
applies such a transformation and deals only with the extracted reduced active
system.

5. The method of Invariant Grid (MIG), which is discussed in [62, 63], is based
on the model reduction concept of slow manifolds (SIM). The MIG algorithm is
based on the idea to approximate the SIM by a set of grid nodes in the invariant
grid (concentration space). The MIG can be used as a computational realization
of the method of Invariant Manifolds (MIM), given in Eq. (1.87) for the SIM.

6. The Invariant Constrained-equilibrium Edge Pre-Image Curve (ICE-PIC)
approach is discussed by S. Pope et al., see [64]. It is a method to simplify
chemical kinetics based on dimension-reduction ideas. The dimension-reduction
method is based on the idea to construct a low-dimensional manifold (explicitly
or implicitly) in the full composition space. Here, the ICE-PIC method employed
the low-dimensional manifold an invariant, trajectory-generated manifold. In ad-
dition, the ICE-PIC method applies the species reconstruction locally on the
low-dimensional invariant manifold. Such a technique allows a more detailed
reconstruction and the invariant manifold exists and is continuous.

7. The various variational approaches by D. Lebiedz, see [65], are also automatic
procedures to replace higher dimensional dynamics by lower dimensional ap-
proximation with given error estimates to the original solution. The variational
approach applies the idea to minimalize the entropy production. That is, one can

24 1 General Principles

concentrate on a remaining system dynamics, while the other species concen-
trations of the system are close to the attractor and are maximally relaxed. This
relaxation can be given as a minimal entropy production for the single reaction
steps along their phase space trajectories.

1.4.6 Multiscale Expansion (Embedding of the Fast Scales)

Here the motivation arose to modify and reduce a multiscale equation with respect
to its fast scale to an averaged or homogenized equation, see [39]. These techniques
allow to embed the fast scale, while for long times such fast scales are averaged
or homogenized and can be embedded to the slow scales. That is, we can reduce
the delicate multiscale equations to simpler scale equations, taking into account
averaging and centering ideas.

In the following, we start with a simple example to show the ideas of such schemes
and at the end we present some recipes to apply such schemes to parabolic PDEs.

Example 1.7 We deal with a advection-diffusion equation, given as

∂u

∂t
= a∇u + DΔu, for (x, t) ∈ IRd × IR+, (1.88)

u(x, 0) = f (εx), (1.89)

with 0 < ε ≤ 1, where a(x) is assumed to be smooth and periodic in space with
period 1. We assume to see only a slow behaviour in the solution related to the
convection or diffusion term andwe therefore embed the fast solutions to a simplified
equation.

• We deal first with diffusion-dominant scaling (diffusion scaling) and assume to
skip the advection term by a centering condition.
We apply the rescaling: x → ε−1x and t → ε−2t .
Hence,we have themultiscale expansion given as uε(x) = u0+εu1(x, x

ε
)+O(ε2),

and we obtain

∂uε

∂t
= 1

ε
aε∇uε + DΔuε, for (x, t) ∈ IRd × IR+, (1.90)

uε(x, 0) = f (εx). (1.91)

Further we assume that the fast scale aε = a(x
ε
).

We define the operator as

L0 = a(y) · ∇y + DΔy, (1.92)

with the periodic boundary conditions [0, 1]d and can refer to the characteristics
of the equation where the operator L0 is the generator of the Markov process y(t)
and we have

1.4 Multiscale Analysis 25

dy

dt
= a(y) + √

2D
dW

dt
, (1.93)

with periodic boundary conditions and W (t) is a standard Brownian motion and
solved on the unit torus Td .
Here, we can define the invariant distribution ξ(y), see [39], as a stationary solution
to the adjoint equation:

L∗
0ξ = 0. (1.94)

Weassume that the vector fielda(y) satisfies the centering condition to the invariant
distribution: ∫

Td
a(y)ξ(y) dy = 0, (1.95)

such that it is averaged out. At least, we only see the diffusive behaviour.

The simplified equation in a first order is given as

∂u

∂t
= D∇x∇x u, for (x, t) ∈ IRd × IR+, (1.96)

u(x, 0) = f. (1.97)

Here, we have assumed that we can average out the advection term.
• Next, we deal with the advection-dominant scaling (diffusion scaling) and assume
to deal with a pure advection equation, while we can neglect the influence of the
diffusion term, e.g. for the divergence-free flows, see [39].
We apply the rescaling: x → ε−1x and t → ε−1t .
Hence,we have themultiscale expansion given as uε(x) = u0+εu1(x, x

ε
)+O(ε2),

and we obtain
∂uε

∂t
= aε∇uε + εDΔuε, for (x, t) ∈ IRd × IR+, (1.98)

uε(x, 0) = f (εx). (1.99)

Further we assume that the fast scale aε = a(x
ε
).

We define the operator as for the previous diffusion dominant scaling

L0 = a(y) · ∇y + DΔy, (1.100)

with the periodic boundary conditions.
Further, we can define the invariant distribution ξ(y) to the adjoint equation as

L∗
0ξ = 0, (1.101)

and we assume that the vector field a(y) is not averaged out and we have

26 1 General Principles

ã =
∫

Td
a(y)ξ(y) dy. (1.102)

The simplified equation in a first order is given as

∂u

∂t
= ã · ∇x u, (1.103)

u(x, 0) = f. (1.104)

Here, we deal with a dominant advection part and we have a linear transport
equation.

We apply a next problem given in the impact oscillator problem, see [66].

Example 1.8 The Fokker-Planck equations are given as

∂ f

∂t
+ v

∂ f

∂x
− E(x)

∂ f

∂v
= ∂

∂v

(
−γ v f + β−1γ

∂ f

∂v

)
, (1.105)

where we could decouple such an FP equation into the PIC (particle in cell) part and
the SDE part.

• PIC part
∂ f

∂t
+ v

∂ f

∂x
− E(x)

∂ f

∂v
= 0, (1.106)

• SDE part

∂ f

∂t
= ∂

∂v

(
−γ v f + β−1γ

∂ f

∂v

)
, (1.107)

where we solve the characteristics:

• PIC part

dx

dt
= v, (1.108)

dv

dt
= −E(x) = ∂U

∂x
, (1.109)

where U is the potential.
• SDE part

dx

dt
= 0, (1.110)

dv = −γ vdt +
√
2β−1γ dW, (1.111)

where we assume γ = 1
ε
and β−1γ ≈ const.

1.4 Multiscale Analysis 27

When we apply the rescaling: v → v/ε and t → t/ε2,
then the SDE part is

dv = −1

ε
vdt + √

2DdW, (1.112)

and our Eq. (1.111) has at least a diffusive behaviour:

dv = √
2DdW. (1.113)

Remark 1.12 The benefit of multiscale expansion is to decompose the full equa-
tions into simpler equations, while for the rescaling, we can neglect some parts of
the equations. Such a rescaling ormultiscale expansion allows to derive simpler equa-
tions, which fulfil for the assumption (e.g. splitting, averaging or homogenization)
the dominant behaviour of the full equations.

In Figs. 1.4 and 1.5, we present some methods to apply such multi-expansion
methods.

A1

A1

A2

A2

An

An

...

...

...

Fig. 1.4 Application of splitting methods

28 1 General Principles

zero)

behaviour

Fig. 1.5 Application of averaging and homogenization methods

Remark 1.13 For all methods it is important to extract some dominances of the mul-
tiscale equations, while the multiscale expansion can give some hints to these parts.
While in splitting methods often the physical background motivates to decompose
the parts of the multiscale equations, the averaging and homogenization methods are
motivated to deal with the underlying microscopic problem and embed that part into
the upscaled equations. Both methods have at least some neglections and we derive
a reduced multiscale equation which extracts the dominant solutions of the slower
scales.

References

1. A. Ern,V.Giovangigli,Multicomponent Transport Algorithms. LectureNotes in PhysicsMono-
graphs, vol. M24 (1994)

2. C. Crowe, Multiphase Flow Handbook (CRC Press, Boca Raton, 2005)
3. V. Giovangigli, Multicomponent Flow Modeling (Birkhäuser, Boston, 1999)
4. V.M.Zhdanov,Transport Processes in Multicomponent Plasma (CRCPress, BocaRaton, 2002)
5. V. Giovangigli, Multicomponent flow. Scholarpedia 9(4), 11930 (2014). http://www.

scholarpedia.org/article/Multicomponent_Flow
6. K.R. Westerterp, W.P.M. Van Swaaij, A.A.C.M. Beenackers, Chemical Reactor Design and

Operation (Wiley, New York, 1988)

http://www.scholarpedia.org/article/Multicomponent_Flow
http://www.scholarpedia.org/article/Multicomponent_Flow

References 29

7. E.S. Oran, J.P. Boris, Numerical Simulation of Reactive Flow (Cambridge University Press,
Cambridge, 2000)

8. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (R.T. Edwards Inc.,
Philadelphia, 2005)

9. J. Geiser, Models and Simulation of Deposition Processes with CVD Apparatus. Monograph,
Series: Groundwater Modelling, Management and Contamination (Nova Science Publishers,
New York, 2009)

10. J. Geiser, M. Arab, Simulation of Deposition Processes with PECVD Apparatus (Nova Science
Publishers, Inc., Huntington, 2012)

11. Z. Zlatev, Computer Treatment of Large Air Pollution Models (Kluwer Academic Publishers,
Dordrecht, 1995)

12. C. Brennen, Fundamentals of Multiphase Flow (Cambridge University Press, Cambridge,
2005)

13. Wikipedia Reference: Multiphase Flow. http://en.wikipedia.org/wiki/Multiphase_flow.
Wikipedia, June 2014

14. V.B. Zalesny, G.I. Marchuk, V.I. Agoshkov, A.V. Bagno, A.V. Gusev, N.A. Diansky, S.N.
Moshonkin, R. Tamsalu, E.M. Volodin, Numerical simulation of large-scale ocean circulation
based on the multicomponent splitting method. Russ. J. Numer. Anal. Math. Model. 25(6),
581–609 (2010)

15. J. Geiser, Multiscale splitting method for the Boltzmann-Poisson equation: application to the
dynamics of electrons. Int. J. Differ. Equ. 2014, Article ID 178625, 8 pp. (2014)

16. J. Geiser, in Decomposition Methods for Partial Differential Equations: Theory and Applica-
tions in Multiphysics Problems. Numerical Analysis and Scientific Computing Series, ed. by
F. Magoules, F. Lai (CRC Press, Chapman & Hall/CRC, Boca Raton, 2009)

17. R.I. McLachlan, G.R.W. Quispel, Splitting methods. Acta Numer. 11, 341–434 (2002)
18. J. Geiser, Numerical methods of the Maxwell-Stefan diffusion equations and applications in

plasma and particle transport. Preprint, arxiv:1501.05792, January 2015
19. N. Antonic, C.J. van Duijn, W. Jäger, A. Mikelic, Multiscale problems in science and technol-

ogy: challenges to mathematical analysis and perspectives in Proceedings of the Conference
on Multiscale Problems in Science and Technology, Dubrovnik, Croatia, 3–9 September 2000,
ed. by N. Antonic, C.J. van Duijn, W. Jäger, A. Mikelic (Springer, Berlin, 2002)

20. W.E. Principle of Multiscale Modelling (Cambridge University Press, Cambridge, 2010)
21. J. Geiser, Iterative splitting methods for multiscale problems, in Distributed Computing and

Applications to Business, Engineering Science (DCABES) 2–4 September 2013, London, UK
(2013), pp. 3–6

22. J. Geiser, in Coupled Systems: Theory, Models and Applications in Engineering. Numerical
Analysis and Scientific Computing Series, ed. by F. Magoules, F. Lai (CRC Press, Chapman
& Hall/CRC, Boca Raton, 2014)

23. R.S. Johnson, Singular Perturbation Theory (Springer, New York, 2005)
24. W.E.B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden, Heterogeneous multiscale methods: a

review. Commun. Comput. Phys. 2(3), 367–450 (2007)
25. I.G. Kevrekidis, G. Samaey, Equation-free multiscale computation: algorithms and applica-

tions. Annu. Rev. Phys. Chem. 60, 321–344 (2009)
26. J. Geiser, Recent advances in splitting methods for multiphysics and multiscale: theory and

applications. J. Algorithms Comput. Technol., Multi-Sci., Brentwood, Essex, UK, accepted
August 2014 (to be published second issue 2015)

27. L. Rosso, A.F de Baas, Review of materials modelling: what makes a material function?
Let me compute the ways ... European Commision, General for Research and Innovation
Directorate, Industrial Technologies, Unit G3 Materials (2014) http://ec.europa.eu/research/
industrial_technologies/modelling-materials_en.html

28. C.W. Gear, J.M. Hyman, P.G. Kevrekidid, I.G. Kevrekidis, O. Runborg, C. Theodoropoulos,
Equation-free, coarse-grainedmultiscale computation: enablingmicroscopic simulators to per-
form system-level analysis. Commun. Math. Sci. 1(4), 715–762 (2003)

http://en.wikipedia.org/wiki/Multiphase_flow.
http://arxiv.org/abs/arxiv:1501.05792
http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html
http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html

30 1 General Principles

29. H. Kim, Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-Systems.
Springer Theses (Springer, Heidelberg, 2011)

30. J. Geiser, in Iterative Splitting Methods for Differential Equations. Numerical Analysis and
Scientific Computing Series, ed. by F. Magoules, F. Lai (Chapman & Hall/CRC, Boca Raton,
2011)

31. O. Nevanlinna, Remarks on Picard-Lindelöf iteration, part I. BIT 29, 328–346 (1989)
32. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAMFrontiers in Applied

Mathematics, vol. 16. SIAM, Philadelphia (1995)
33. J. Geiser, Discretization methods with analytical characteristic methods and applications.

M2AN EDP Sci. Fr. 43(6), 1157–1183 (2009)
34. A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations. Springer

Series in Computational Mathematics (Springer, Berlin, 1997)
35. R. Courant, K.O. Friedrichs, H. Lewy Collatz, Über die partiellen Differenzengleichungen der

mathematischen Physik. Math. Ann. 100, 32–74 (1928)
36. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-dependent Advection-diffusion-

Reaction Equations (Springer, Berlin, 2003)
37. A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations.

Series: Numerical Mathematics and Scientific Computation (Clarendon Press, Oxford, 1999)
38. L.N.Trefethen,M.Embree,Spectra and Pseudospectra: The Behaviour of Nonnormal Matrices

and Operators (Princeton University Press, Princeton, 2005)
39. G.A. Pavliotis, A.M. Stuart, Multiscale Methods: Averaging and Homogenization (Springer,

Heidelberg, 2008)
40. J. Cronin, R.E.O’Malley,AnalyzingMultiscale PhenomenaUsing Singular PerturbationMeth-

ods. American Mathematical Society Short Course, 5–6 January, 1998, Baltimore, Maryland,
ed. by J. Cronin, R.E. O’Malley (1999)

41. P. Jakobsen, Introduction to the method of multiple scales (2014). arXiv:1312.3651
42. S.J. Liao,Anoptimal homotopy-analysis approach for strongly nonlinear differential equations.

Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)
43. S.J. Liao, On the homotopy analysis method for nonlinear problems. Appl. Math. Comput.

147, 499–513 (2004)
44. J.-H. He, Homotopy perturbation method: a new nonlinear analytical technique. J. Appl. Math.

Comput. 135(1), 73–79 (2003)
45. S.J. Liao, An approximate solution technique which does not depend upon small parameters:

a special example. Int. J. Non-Linear Mech. 30, 371–380 (1995)
46. J. Kevorkian, J.D. Cole, Multiple Scale and Singular Perturbation Methods (Springer, New

York, 1996)
47. S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26,

461–486 (1994)
48. A. Zagaris, H.G. Kaper, T.J. Kaper, Fast and slow dynamics for the computational singular

perturbation method. Multiscale Model. Simul. 2(4), 613–638 (2004)
49. U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in

composition space. Combust. Flame 88, 239–264 (1992)
50. V. Bykov, U. Maas, Problem adapted reduced models based on Reaction Diffusion Manifolds

(REDIMs). Institut für Technische Thermodynamik, Karlsruhe University, Kaiserstra”se 12,
D-76128 Karlsruhe, Germany, Proceedings of the Combustion Institute 01/2009 (2009)

51. U. Maas, V. Bykov, The extension of the reaction/diffusion manifold concept to systems with
detailed transport models, in Proceedings of The Combustion Institute—PROC COMBUST
INST 01/2011 (2011)

52. V. Bykov, A. Neagos, U. Maas, On transient behavior of non-premixed counter-flow diffusion
flames within the REDIM basedmodel reduction concept. Proc. Combust. Inst. 34(1), 197–203
(2013)

53. V. Bykov, U. Maas, The extension of the ILDM concept to reaction diffusion manifolds. Com-
bust. Theory Model. 11(6), 839–862 (2007)

http://arxiv.org/abs/1312.3651

References 31

54. K. König, V. Bykov, U. Maas, Investigation of the dynamical response of methane-air counter-
flow flames to inflowmixture composition and flow field perturbations. Flow Turbul. Combust.
83(1), 105–129 (2009)

55. E. Chiavazzo, I. Karlin, Adaptive simplification of complex multiscale systems. Phys. Rev. E
83, 036706 (2011)

56. E. Chiavazzo, Approximation of slow and fast dynamics in multiscale dynamical systems by
the linearized Relaxation Redistribution Method. J. Comput. Phys. 231(4), 1751–1765 (2012)

57. E. Chiavazzo, P. Asinari, F. Visconti, Fast computation of multi-scale combustion systems.
Philos. Trans. R. Soc. A 369, 2396–2404 (2011)

58. E. Chiavazzo, I.V. Karlin, Adaptive simplification of complex systems: a review of the relax-
ation redistribution approach, inCoping with Complexity: Model Reduction and Data Analysis,
ed. by A. Gorban, D. Roose (Springer, Berlin, 2011), pp. 231–240

59. M. Kooshkbaghi, C.E. Frouzakis, E. Chiavazzo, K. Boulouchos, I.V. Karlin, The global relax-
ation redistribution method for reduction of combustion kinetics. J. Chem. Phys. 141, 044102
(2014)

60. A.N. Gorban, I.V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics. Lecturer
Notes in Physics, vol. 660, (Springer, Berlin, 2005)

61. M.Valorani, S. Paolucci, TheG-scheme: a framework formulti-scale adaptivemodel reduction.
J. Comput. Phys. 228(13), 4665–4701 (2009)

62. E. Chiavazzo, I.V. Karlin, K. Boulouchos, Method of invariant grid for model reduction of
hydrogen combustion. Proc. Combust. Inst. 32(1), 519–526 (2009)

63. E. Chiavazzo, I.V. Karlin, A.N. Gorban, K. Boulouchos, Coupling of the model reduction
technique with the lattice Boltzmann method for combustion simulations. Combust. Flame
157(10), 1833–1849 (2010)

64. Z. Ren, S.B. Pope, A. Vladimirsky, J.M. Guckenheimer, Application of the ICE-PIC method
for the dimension reduction of chemical kinetics coupled with transport. Proc. Combust. Inst.
31, 473–481 (2007)

65. D. Lebiedz, Computing minimal entropy production trajectories—an approach to model re-
duction in chemical kinetics. J. Chem. Phys. 120, 6890 (2004)

66. N. Bou-Rabee, E. Vanden-Eijnden, A patch that imparts unconditional stability to explicit
integrators for Langevin-like equations. J. Comput. Phys. 231, 2565–2580 (2012)

Chapter 2
Theoretical Part: Functional Splitting

Abstract We describe a general method, which is based on a splitting approach and
the knowledge of the exact solutions of some sub-problems. Such additional informa-
tion is taken into account and has an important role in accelerating the computations.
We apply a functional splitting idea to decompose the initial problem into several
sub-problems where some of them are known with the analytical solutions. The
sub-problems with unknown solutions are solved numerically by standard numerical
methods, e.g. finite volume methods. This paper can be divided into four parts. In
the first part, we introduce the model and its application. In the second part, we dis-
cuss the analytical solutions of coupled systems of convection-reaction equations.
Functional splitting methods are developed in the third part.

2.1 Ideas of the Functional Splitting

The ideas of functional splitting are applied in different areas of decomposing mul-
ticomponent flow problems, see [1, 2].

The motivation is to reduce the problems of solving reacting flows whose com-
plexity comes from the fact of a wide range of timescales.

Such complexity leads to numerical difficulties related, e.g. to stiffness of the
reaction terms.

Here, the idea is to split themodel equations additively into flow terms (e.g. advec-
tive transport, diffusive transport) and reaction terms (e.g. chemical transformations).

In the following, we discuss the different splitting techniques, that are applied in
multi-component flow problem, see [3].

2.1.1 Flow Equations

We deal with a system of flow equations, which are coupled by the different flow
operators, e.g. advection, diffusion, dispersion, etc. Here themain ideas are to decom-
pose such delicate multi-operator equation into simpler one-operator equations.

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5_2

33

34 2 Theoretical Part: Functional Splitting

Therefore, we can treat each simpler one-operator equation with more adequate
solver and discretization schemes and optimize their computational time. Splitting
techniques allow to decompose the operators and couple the results of each simpler
operator equation together to the full result, e.g. with overlaps in the initialization of
each simpler operator equation (initial condition coupling).

2.1.1.1 Splitting of Physical Processes

So one splitting technique is based on the idea to decompose the discretized operator

∂u

∂t
+ Au = f, t ∈ [0, T], (2.1)

where A = ∑I
j=1 A j , A j ≥ 0 (A j is positive definite) and f = ∑I

j=1 fi and
i = 1, 2, . . . , I .

The solution of the simpler equations are given as:

u j+1/I − u j

Δt
+ A1(αu j+1/I + (1 − αu j)) = f1, t ∈ [0, T], (2.2)

u j+2/I − u j+1/I

Δt
+ A1(αu j+2/I + (1 − αu j+1/I)) = f2, t ∈ [0, T], (2.3)

... (2.4)

u j+1 − u j+(I−1)/I

Δt
+ A1(αu j+1 + (1 − αu j+(I−1)/I)) = f I , t ∈ [0, T], (2.5)

where for α = 1 is an implicit scheme of first order, α = 0 is an explicit scheme
of first order and for α = 1/2 we have a Crank–Nicolson scheme of second order,
see [4].

2.1.1.2 Splitting of Physical Processes and Solution Components

Another splitting idea is based on splitting the components of the solutions with
respect to their different scales, e.g. vertical and horizontal velocity in ocean circu-
lation or decompose the velocity field into a time average motion and a turbulent
fluctuation (Reynolds-averaging idea, see [5]).

The idea is based on two different velocity scales, i.e. a fast scale (turbulent
fluctuation) and a slow scale (averaged motion), see Fig. 2.1.

We decompose the velocity into:

u = u − u′, (2.6)

where u = 1
Δt

∫ tn+1

tn u(s) ds and Δt = tn+1 − tn .

2.1 Ideas of the Functional Splitting 35

Fluctuation

time

velocity

mean
velocity

Fig. 2.1 Splitting approach to convection-diffusion-reaction equations

Example 2.1 Decompositionof a turbulent flow into an averagedflowandfluctuation
flow. Such an application is known in the Navier–Stokes simulations, see [6].

We apply a flow-equation given with two flow variables u, v and have:

∂u

∂t
+ ∂

∂x
(uv) = Qu, (2.7)

where Qu is a source of u and we have the following decomposition:

u = u + u′, (2.8)

v = v + v′, (2.9)

Su = Su + S′
u, (2.10)

and we decompose into

∂(u + u′)
∂t

+ ∂

∂x
((u + u′)(v + v′)) = Qu + Q′

u, (2.11)

and we have:

∂(u + u′)
∂t

+ ∂

∂x
((uv + uv′ + u′v + u′v′)) = Qu + Q′

u, (2.12)

we apply the averaging operator and have:

∂(u + u′)
∂t

+ ∂

∂x
((uv + uv′ + u′v + u′v′)) = Qu + Q′

u, (2.13)

36 2 Theoretical Part: Functional Splitting

then, we skip the fast perturbations means u′ = 0, S′
u and obtain:

∂u

∂t
+ ∂

∂x
((uv + uv′ + u′v + u′v′)) = Qu, (2.14)

then based on the continuity equation we have ∂u
∂x = 0 and ∂v

∂x = 0 such that we can
skip the mixed terms and we obtain:

∂u

∂t
+ ∂

∂x
(uv + u′v′) = Qu, (2.15)

and by applying the operator parts of the equations, which splits the flow-field and
the source-term (reaction part), we have:

∂u

∂t
= Qu, (2.16)

and

∂u

∂t
+ ∂

∂x
(uv + u′v′) = 0, (2.17)

Example 2.2 A next example in ocean modelling, here we have also different scales
(horizontal and vertical velocities).

We assume the following linearized model, see [7], while we choose the adjust-
ment equation given in a linearized form:

∂u

∂t
− f v = −Px ,

∂v

∂t
+ f u = −Py, (2.18)

where f is a function depending on time and space, p = (Px , Py)
t is the pressure

vector.Wefirst decompose into the different physical processes (reaction andpressure
part) and we have:

∂u

∂t
= −Px ,

∂v

∂t
= −Py, (2.19)

and the second part:
∂u

∂t
− f v = 0,

∂v

∂t
+ f u = 0, (2.20)

is further decomposed into:

u = u + u′, (2.21)

v = v + v′, (2.22)

2.1 Ideas of the Functional Splitting 37

and we get
∂(u + u′)

∂t
− f (v + v′) = 0, (2.23)

∂(v + v′)
∂t

+ f (u + u′) = 0, (2.24)

and we apply the averaging and obtain:

∂u

∂t
− f v = 0, (2.25)

∂v

∂t
+ f u = 0. (2.26)

Further, we can also solve the fluctuations or so-called inertia adjustments:

∂u′

∂t
− f v′ = 0, (2.27)

∂v′

∂t
+ f u′ = 0. (2.28)

Here, we have decoupled the fast and slow velocities and also taken into account
the different physical behaviours of the equation parts.

2.1.2 Decomposition of Convection-Diffusion-Reaction
Problems

The motivation of decomposing convection-diffusion-reaction (CDR) problems are
important, while time-consuming standard numerical approaches, e.g. Runge–Kutta
methods for the the whole equation parts, have their drawbacks in resolving the
finest scales. More and more complexities of coupling all the equations parts need to
apply novel methods, that can overcome the restriction to time- and spatial steps, see
[8]. Nowadays CDR problems are used to simulate delicate transport and reaction
processes in engineering applications, e.g. chemical reactors [9], combustion flames
[10], and bioremediation [11, 12].

Because of the drawback of losing accuracy or dealing with numerical artefacts
with large time-steps to classical discretization and splitting schemes, we propose
the following splitting strategies for global multiphase convection-diffusion-reaction
equation, see [13].

• Time Splitting: Decoupling of convection-reaction and diffusion equation to solve
them separately

38 2 Theoretical Part: Functional Splitting

• Dimensional Splitting: Exact solving of the 1D time-dependent systems of the
convection-reaction equations

• Functional Splitting: Laplace transformation of the 1D time-dependent systems
of convection-reaction equations and solving analytically the resulting systems of
ordinary differential equations

• Iterative Splitting: Fix-point schemes, which couple the sub-problems of the global
problem, which are then solved in advance independently using an analytical
approach.

The technique called functional splitting has been tried as a means of solving decom-
posable problems, see [2]. Functional splitting is implemented in a splitting approach,
where the knowledge of the exact solutions of some sub-problems has an impor-
tant role in obtaining a-priori test-functions for solving the systems of differential
equations. The solutions can be used as test-functions to improve the discretization
schemes, e.g. finite volume schemes, or to solve analytically sub-problems which
are coupled in the splitting approach, see [3].

Here are the Assumptions2.1 of Functional Splitting approaches.

Assumption 2.1 In the following, we assume that our underlying problem has the
following characteristics:

• Each sub-problem can be solved analytical or semi-analytical.
• The sub-problems can be coupled via splitting approaches, e.g. additive, multi-
plicative or iterative splitting methods.

• The underlying spatial discretization scheme, e.g. finite difference or finite volume
method, can embed the one-dimensional analytical or semi-analytical solutions
with a small splitting error, see Godunov’s method [14, 15].

• Multiscalemethods, e.g.multiscale expansionmethods, can be applied and decom-
pose to fine and coarse parts of the full model and apply multiscale splitting
approaches, see [16].

In the following Fig. 2.2, we present the ideas of the this functional splitting
approach to a coupled multiphase convection-diffusion-reaction (MCDR) equation.
We start from theMCDRequation,while eachparts,means the convection-, reaction-,
diffusion- and multiphase- part (mobile and immobile parts) have their different
spatial and time scales. In the step of the decomposition, we collect the different
scales of equal or nearly equal part, so here in the Fig. 2.2, we can combine the
convection and reaction part, immobile part. Now, we can concentrate on the four
different model problems, e.g. convection-reaction equation, diffusion equation and
mobile–immobile equations. In the next step,we apply the so-called Functional Split-
ting approach, see the Assumptions2.1. Means, we can reconstruct one-dimensional
solutions of each sub-problem, that has a highly accuracy, e.g., analytical or semi-
analytical solution, and that the underlying spatial discretization scheme can embed
such dimensional-splitted solutions. Further, we can concentrate on each simpler
equation and apply multiscale approaches. In the final step, we couple the results of
each sub-problem and apply the coupling approaches of the different splitting meth-
ods, see [17]. The errors of the applied methods, e.g. dimensional splitting error, time

2.1 Ideas of the Functional Splitting 39

Fig. 2.2 Splitting approach to convection-diffusion-reaction equations

splitting error, can be reduced by applying higher order schemes of each underlying
method.

Such splitting approaches allow of accelerating the solver process, so one can
employ larger time-steps. Taking into account the different scales of these multiscale
problems, one solves each singlescale problem with its optimal accuracy, see [8].

Our contribution is to derive the framework of a splitting approach to solve time-
dependent coupled transport and reaction equations with different splitting schemes
producing analytically solvable one-dimensional equations, whose solutions are then
used as test-function. This framework is more economical since it uses only standard
approaches such as finite volume schemes.

Remark 2.1 Furthermore, one could, hence, use more delicate chemical reaction
terms and embed the semi-analytical solutions of their coupled convection-reaction
systems into the schemes, or use iterative approaches to couple mixed mobile and
immobile sub-models, which are delicate, to say the least, to solve only semi-
analytical, see [17].

2.1.3 Functional Splitting with Respect to the Multiscale
Approach

Often it is necessary to dealwith amultiscalemodelwith different underlyingmodels,
e.g., microscopic and macroscopic model.

40 2 Theoretical Part: Functional Splitting

Numerically, we deal with a multiscale method, that solves each individual model
and couple the datatransfer between the different models, see [18].

Then, we deal with a hierarchical Decomposition of the underlying different
models, means in each hierarchy, e.g. microscopic part or macroscopic part, we deal
with different decomposition methods.

In the following Fig. 2.3, we present some recipes to apply a hierarchical splitting
approach. Here, we apply in the different model hierarchies the optimal splitting
approaches. Such that we can minimize the underlying splitting error and reduce
optimal the computational time.

In the following example, we deal with a multi-flow problem based on a macro-
scopic and microscopic convection-diffusion-reaction equation, see Example2.3.

Fig. 2.3 Hierarchical splitting approach (Coupling of micro–macro and macro–micro)

2.1 Ideas of the Functional Splitting 41

Example 2.3 Wehave the followingmulti-flowproblem,which is a coupled problem
of fine- and coarse-scale CDR equations.

1. Macroscopic Equation:

dumacro

dt
= F1(umacro, umicro) + F2(umacro, umicro). (2.29)

where F1 is the convection-reaction operator and F2 is diffusion operator.
2. Microscopic Equation:

dumicro

dt
= −1

ε
(F̃1(umicro) + F̃2(umicro) − φ(umacro)). (2.30)

where F̃1 is the convection-reaction operator and F̃2 is diffusion operator. Further
umacro is the slow time-dependent and umicro is the fast time-dependent variable.

In the following, we apply the HMM and the splitting of the different scale-
dependent-equations in Algorithm2.2.

Algorithm 2.2 We first apply the HMM algorithm.

• We solve the microscopic equation:

un,m+1
micro = un,m

micro − δt

ε
((F̃1umicro + F̃2un,m

micro) − φ(un
macro)), (2.31)

where m = 0, 1, . . . , M −1, z.B. δt ≤ Δt/M is applied as microscopic time-step.
• We apply the operator splitting method with respect to the microscopic equation:

un,m+1
micro,1 = un,m

micro,1 − δt

ε
(F̃1umicro − 0.5φ(un

macro)),with un,m
micro,1 = un,m

micro,

(2.32)

un,m+1
micro,2 = un,m+1

micro,1 − δt

ε
(F̃2un,m

micro − 0.5φ(un
macro)),with un,m

micro,2 = un,m+1
micro,1,

(2.33)

where m = 0, 1, . . . , M −1, z.B. δt ≤ Δt/M is applied as microscopic time-step
and next intermediate solution is given as un,m+1

micro = un,m+1
micro,2.• Equilibration of the Microscopic operators (reconstruction):

F̃n = 1

M

M∑

m=1

(F1(u
n
macro, un,m

micro) + F2(u
n
macro, un,m

micro)). (2.34)

42 2 Theoretical Part: Functional Splitting

• Solving of the Macroscopic Equation:

un+1
macro = un

macro − Δt (F̃n
1 + F̃n

2). (2.35)

with Δt as macroscopic time-step.
• We apply the operator splitting method with respect to the macroscopic equation:

un+1
macro,1 = un

macro − Δt F̃n
1 ,with un

macro,1 = un
macro, (2.36)

un+1
macro,2 = un+1

macro,1 − Δt F̃n
2 ,with un

micro,2 = un+1
macro,1, (2.37)

where the next intermediate solution is given as un+1
macro = un+1

macro,2.• We apply the next microscopic step, till we have resolved the full time interval.

Remark 2.2 Here, we can apply the discrete macroscopic time-steps with respect
to a fast splitting approach. Further also with the microscopic equation. The benefit
is also to resolve only parts of the microscopic time interval such that we can also
accelerate the multiscale computation.

References

1. A. Araujo, J.A. Ferreira, P. de Oliveira, F. Patricio, P. Rosa, The use of splitting methods in the
numerical simulation of reacting flows. Comput. Vis. Sci. 6(2–3), 59–66 (2004)

2. L. Reifschneider, Solving inflow–outflow problems with functional splitting, in Proceedings
of the American Institute of Aeronautics and Astronautics, 22nd Meeting of the Aerospace
Sciences, Reno, NV, USA, 9–12, 1984

3. J. Geiser, in Decomposition Methods for Partial Differential Equations: Theory and Applica-
tions in Multiphysics Problems. Numerical Analysis and Scientific Computing Series, ed. by
F. Magoules C.-H. Lai (CRC Press, Chapman & Hall/CRC, Boca Raton, 2009)

4. E.J. Davison, Ahigh order Crank-Nicholson technique for solving differential equations. Com-
put. J. 10(2), 195–197 (1967)

5. P. Müller, The Equations of Oceanic Motions (Cambridge University Press, Cambridge, 2006)
6. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)
7. V.B. Zalesny, G.I. Marchuk, V.I. Agoshkov, A.V. Bagno, A.V. Gusev, N.A. Diansky, S.N.

Moshonkin, R. Tamsalu, E.M. Volodin, Numerical simulation of large-scale ocean circulation
based on the multicomponent splitting method. Russ. J. Numer. Anal. Math. Model. 25(6),
581–609 (2010)

8. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations (Springer, Berlin, 2003)

9. H.A. Jakobsen, Chemical Reactor Modeling: Multiphase Reactive Flows (Springer, Berlin,
2008)

10. R.P. Fox, Computational Models for Turbulent Reacting Flows (Cambridge University Press,
Cambridge, 2003)

11. J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media
(Kluwer Academic Publishers, Dordrecht, 1991)

12. R.E. Ewing, Up-scaling of biological processes and multiphase flow in porous media.IIMA
Volumes in Mathematics and its Applications (Springer, Berlin, 2002), pp. 195–215

13. J. Geiser, Discretizationmethods with analytical solutions for convection-diffusion-dispersion-
reaction-equations and applications. J. Eng. Math. 57(1), 79–98 (2007)

References 43

14. S. Godunov, Difference methods for the numerical calculations of discontinuous solutions of
the equations of fluid dynamics. Mat. Sb. 47, 271–306 (1959)

15. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin,
1999)

16. J. Geiser, Recent advances in splitting methods for multiphysics and multiscale: theory and
applications. J. AlgorithmsComput. Technol.,Multi-Sci., Brentwood, Essex, UK, acceptedAu-
gust 2014 (to be published second issue 2015)

17. J. Geiser, in Iterative Splitting Methods for Differential Equations, Numerical Analysis and
Scientific Computing Series, ed. by F. Magoules, C.-H. Lai. (Chapman & Hall/CRC, Boca
Raton 2011)

18. W.E.B. Engquist, X. Li, W. Ren, E. Vanden-Eijnden, Heterogeneous multiscale methods: a
review. Commun. Comput. Phys. 2(3), 367–450 (2007)

Chapter 3
Algorithmic Part

Abstract In this chapter, we discuss the algorithmic parts with respect to the
different methods we applied in the application part.

3.1 Introduction

In the following, we discuss different methods based on iterative and additive ideas
to decompose scale-dependent equations.

Based on the different scale-dependent operators of the equations, we deal with
the ideas of decomposing into simpler and faster computable equations.

Basic idea is that to decompose the operator with respect to their spatial and time
scales into different scale-dependent operators, e.g. we decompose the operator

A = Amacro + Amicro, (3.1)

where the operators are given as

• Amacro (macroscopic operator) has larger in order entries, and then
• Amicro (microscopic operator) has smaller in order entries,

while |Amicro,i j | ≤ ε |Amacro,i j |, ∀i, j ∈ I, 0 < ε � 1, i.e. we decompose the
different scales of two operators.

To solve the evolution equation,

∂c

∂t
= Amacro(c)c + Amicro(c)c, (3.2)

where c(0) = c0 is the initial condition and we assume that the semi-discretized
operator A has included the boundary conditions.

Two different solver ideas are discussed:

• Iterative Scheme: Based on iterative cycles, we solve the underlying decomposed
equations based on the successive approximation or fixpoint scheme.

• Additive Scheme: Based on decomposing into tridiagonal matrices, we solve
sequentially simpler equations.

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5_3

45

46 3 Algorithmic Part

3.2 Iterative Methods

This model is reformulated by the semi-discretization of the spatial operators to the
following Cauchy problem, while c is now in the following vectorial function:

∂c(t)

∂t
= Ac(t) + f (t) (3.3)

= A1c(t) + A2c(t) + f (t),with t ∈ [0, T], c(0) = c0, (3.4)

where the initial function c0 is given. A1 and A2 are assumed to be bounded, constant,
linear operators in an appropriate Banach space X with A1, A2 : X → X with an
appropriate vector and matrix norm || · ||.

In the following, we deal with the following definition of the stiff operators, see
also [1, 2].

Definition 3.1 We consider the stiffness in the following sense: A1 is supposed to
be stiff and A2 non-stiff. Stiffness means that τ A1 is huge in norm for the range of
step size τ , see [3]. Here, the step size represents a splitting step size. So we assume

||τ A1|| � 1, ||τ A2|| = O(τ). (3.5)

For the notation of the eigenvalues, we have

Re(τλ) � −1, |τμ| = O(τ), (3.6)

where λ is a stiff eigenvalue of A1 and μ a non-stiff eigenvalue of A2.

In the next subsection, we present the iterative schemes.

3.2.1 Iterative Schemes

We then consider the following forms of the iterative splitting schemes to solve the
linear model equation:
1. Iterative splitting with respect to a diagonal matrix part (Jacobi Scheme):

∂ci (t)

∂t
= A1ci (t) + A2ci−1(t) + f (t),with ci (t

n) = cn (3.7)

∂ci+1(t)

∂t
= A1ci−2(t) + A2ci+1(t) + f (t), with ci+1(t

n) = cn, (3.8)

i = 1, 3, . . . , 2m + 1,

c0(t) = 0 and c−1(t) = 0, after each iterative step we update i = i + 1.

3.2 Iterative Methods 47

2. Iterative splitting with respect to a full matrix part (Gauss–Seidel Scheme):

∂ci (t)

∂t
= A1ci (t) + A2ci−1(t) + f (t),with ci (t

n) = cn (3.9)

∂ci+1(t)

∂t
= A1ci (t) + A2ci+1(t) + f (t),with ci+1(t

n) = cn, (3.10)

i = 1, 3, . . . , 2m + 1,

3. Unsymmetrical weighted iterative splitting (JOR, Jacobian Overrelaxation
Scheme):

∂ci (t)

∂t
= 1

ω
A1ci (t) + A2ci−1 +

(
1 − 1

ω

)
A1ci−2(t) + f (t), (3.11)

with ci (t
n) = cn

∂ci+1(t)

∂t
= A1ci−2(t) + 1

ω
A2ci+1(t) +

(
1 − 1

ω

)
A2ci−1(t) + f (t), (3.12)

with ci+1(t
n) = cn,

i = 1, 3, . . . , 2m + 1,

where ω ∈ (0, 1].
4. Symmetrical weighted iterative splitting (SOR: Successive Overrelaxation
Scheme):

∂ci (t)

∂t
= 1

ω
A1ci (t) + A2ci−1 +

(
1 − 1

ω

)
A1ci−2(t) + f (t),with ci (t

n) = cn (3.13)

∂ci+1(t)

∂t
= A1ci (t) + 1

ω
A2ci+1(t) +

(
1 − 1

ω

)
A2ci−1(t) + f (t), with ci+1(t

n) = cn,

i = 1, 3, . . . , 2m + 1, (3.14)

where ω ∈ (0, 1].
Remark 3.1 For all schemes, we assume that the operator A1 has a large time scale
and A2 has a small time scale. In addition, the initialization is given as c0(t) = 0,
c−1(t) = 0, while cn is the known split approximation at the time level t = tn . The
split approximation at the time level t = tn+1 is defined as cn+1 = c2m+1(tn+1),
with n = 1, . . . , N − 1 and the final time is given as T = N τ .

3.2.2 Reformulation to Waveform Relaxation Scheme

In the following, we reformulate in the notation of the waveform relaxation scheme.
We obtain the following schemes, see also [4, 5]:

48 3 Algorithmic Part

dUĩ

dt
= PUĩ + QUĩ−1 + F, (3.15)

Uĩ (t
n) = U (tn), (3.16)

ĩ = 1, 2, . . . , m, (3.17)

where Uĩ−1 = (ci−2, ci−1)
t , Uĩ = (ci , ci+1)

t and the initialization U0(t) = (0, 0)t

is given with the zero vectors. Furthermore, we define thatP andQ are the diagonal
and outerdiagonal matrices of the underlying splitting methods given in Sect. 3.2.1
and A = P + Q is the full matrix.

We embed the iterative splitting schemes in the following waveform relaxation
schemes:

(1) Jacobian:

P =
(

A1 0
0 A2

)
,Q =

(
0 A2
A1 0

)
, F =

(
f
f

)
. (3.18)

(2) Gauss–Seidel:

P =
(

A1 0
A1 A2

)
,Q =

(
0 A2
0 0

)
, F =

(
f
f

)
. (3.19)

(3) JOR:

P = 1

ω

(
A1 0
0 A2

)
,Q =

(
1 − 1

ω

)(
A1 0
0 A2

)
+

(
0 A2
A1 0

)
, F =

(
f
f

)
. (3.20)

(4) SOR:

P = 1

ω

(
A1 0
0 A2

)
+

(
0 0
A1 0

)
, (3.21)

Q =
(
1 − 1

ω

) (
A1 0
0 A2

)
+

(
0 A2
0 0

)
, F =

(
f
f

)
.

Remark 3.2 We have also extended the application to non-autonomous differential
equations, by adding the right-hand side term.

3.3 Additive Methods 49

3.3 Additive Methods

The idea of the additive methods is to decompose in an additive manner the
different operators of the differential equation. We concentrate on solving such
semi-discretized linear evolution equations and the notation for such a differential
equation is

B∂t u = Au, u(0) = u0, (3.22)

where A and B can be unbounded operators. We obtain large-scale differential equa-
tion, which are delicate to solve with standard solvers.

The evolution equation (3.22) is solved with the following underlying splitting
schemes:

• Additive Splitting schemes and
• Iterative Splitting schemes.

3.3.1 Additive Splitting Schemes

We deal with the following equation:

p∑

β=1

Bαβ∂t uβ =
p∑

β=1

Aαβuβ + fα, α = 1, 2, . . . , p, (3.23)

uα(0) = uα,0, α = 1, 2, . . . , p. (3.24)

Furthermore, we assume that A and B are self-adjoint.
We apply the discretization with the schemes of weights and obtain

B
un+1 − un

τ
− A

(
σun+1 + (1 − σ)un

)
= f

(
σ tn+1 + (1 − σ)tn

)
, (3.25)

By the transition to a new time level, we require

(B − Aστ)un+1 = φn, (3.26)

while φn = (1 − σ)τ Aun + Bun + f (σ tn+1 + (1 − σ)tn).
With the idea of splitting this into two problems, the original problem can be

transformed to

p∑

β=1

(Bαβ − Aαβστ)un+1
β = φn

α, α = 1, 2, . . . , p, (3.27)

50 3 Algorithmic Part

where (B̃ − Aστ) = (B − A1στ)B−1(B − A2στ) and σ ∈ (0, 1).
We have to solve the following pair of linear equations:

(B − A1στ)ψn = φn, (3.28)

(B − A2στ)un+1 = ψn . (3.29)

By a change to a sequence of simpler problems, we have

(
Bαα − 1

2
Aααστ

)
un+1/2

β = ψ̃n
α , α = 1, 2, . . . , p, (3.30)

(
Bαα − 1

2
Aααστ

)
un+1

β = ψ̂n
α , α = 1, 2, . . . , p. (3.31)

Here, we have the benefit of needing to invert only the diagonal parts of the
matrices and use the idea of solving the triangular splitting of the operator A =
A1 + A2.

The second-order algorithm is given as a two-step method, see Algorithm3.1.

Algorithm 3.1 (1) Compute
ψ̃n+1 = (ψ̃n+1

1 , . . . , ψ̃n+1
p)T with φn = (φn+1

1 , . . . , φn+1
p)T

ψ̃n+1
1 =

(
I − 1

2
A11B−1

11 στ

)−1

φn
1 (3.32)

ψ̃n+1
2 =

(
I − 1

2
A11B−1

11 στ

)−1 (
φn
2 + A21στ B−1

11 ψ̃n+1
1

)
(3.33)

. . . (3.34)

ψ̃n+1
p =

(
I − 1

2
App B−1

pp στ

)−1
⎛

⎝φn
p +

p−1∑

i=1

Apiστ B−1
i i ψ̃n+1

i

⎞

⎠, (3.35)

while φn = (1 − σ)τ Aun + Bun + f (σ tn+1 + (1 − σ)tn).
(2) Compute un+1 = (un+1

1 , . . . , un+1
p)T with ψ̃n+1 = (ψ̃n+1

1 , . . . , ψ̃n+1
p)T

un+1
p =

(
Bpp − 1

2
Appστ

)−1

ψ̃n
p (3.36)

un+1
p−1 =

(
Bp−1p−1 − 1

2
Ap−1p−1στ

)−1 (
ψ̃n

p−1 + Ap−1pστun+1
p

)
(3.37)

. . . (3.38)

un+1
1 =

(
B11 − 1

2
A11στ

)−1
(

ψ̃n
1 +

p∑

i=2

A1iστun+1
i

)
. (3.39)

3.3 Additive Methods 51

Theorem 3.2 If we choose σ ≥ 1
2 , then the splitting scheme (3.30) and (3.31) is

absolutely stable in an appropriate Hilbert space.

Proof The outline of the proof is given in [6].

Example 3.1 We have 2n × 2n matrices.
The algorithm is as follows:
(1) Compute ψ̃n+1 = (ψ̃n+1

1 , ψ̃n+1
2)T with φn = (φn

1 , φn
2)T

ψ̃n+1
1 =

(
I − 1

2
A11B−1

11 στ

)−1

φn
1 (3.40)

ψ̃n+1
2 =

(
I − 1

2
A22B−1

22 στ

)−1 (
φn
2 + A21στ B−1

11 ψ̃n+1
1

)
, (3.41)

while φn = (1 − σ)τ Aun + Bun + f (σ tn+1 + (1 − σ)tn).

(2) Compute un+1 = (un+1
1 , un+1

2)T with ψ̃n+1 = (ψ̃n+1
1 , ψ̃n+1

2)T

un+1
2 =

(
B22 − 1

2
A22στ

)−1

ψ̃n
2 (3.42)

un+1
1 =

(
B11 − 1

2
A11στ

)−1 (
ψ̃n
1 + A12στun+1

2

)
, (3.43)

3.3.2 Higher Order Additive Splitting Method

The drawback of the standard additive splitting method is the restriction to a second-
order scheme.

To overcome this limitation, an extension can be made in the direction of the
higher order Crank–Nicolson scheme, see [7].

The higher order Crank–Nicolsonmethod can be derived as follows (see also [7]):

u(tn+1) = u(tn) + h
du

dt
(tn)

+h2

2!
d2u

dt2
(tn) + h3

3!
d3u

dt3
(tn) + h4

4!
d4u

dt4
(tn) . . . , (3.44)

u(tn) = u(tn+1) − h
du

dt
(tn+1)

+h2

2!
d2u

dt2
(tn+1) − h3

3!
d3u

dt3
(tn+1) + h4

4!
d4u

dt4
(tn+1) . . . , (3.45)

52 3 Algorithmic Part

subtracting the two equations and applying it to Eq. (5.534) in the form ∂t u =
B−1Au = Ãu,

u(tn+1) − u(tn) = h

2

(
Ãu(tn+1) + Ãu(tn)

)

+ h2

2 2!
(
− Ã2u(tn+1) + Ã2u(tn)

)

+ h3

2 3!
(

Ã3u(tn+1) + Ã3u(tn)
)

. . . , (3.46)

we obtain

(
I − h

2
Ã + h2

2 2! Ã2
)

u(tn+1) =
(

I + h

2
Ã + h2

2 2! Ã2
)

u(tn), (3.47)

which is a third-order scheme.
The same can be obtained by the fractional step scheme

(
I − σh Ã + σ h2

2! Ã2
)

u(tn+1)

=
(

I + (1 − σ) h Ã + (1 − σ) h2

2! Ã2
)

u(tn), (3.48)

which is a third-order scheme for σ = 1
2 .

There is a decomposition idea based on a splitting into tridiagonal matrices.
The higher order additive splitting algorithm is given in the following scheme:

(
I − σh Ã + σ

h2

2! Ã2
)

=
(

I − σh Ã1 + σ
h2

2! Ã2
1

)

·
(

I − σh Ã2 + σ
h2

2! Ã2
2

)
+ σ

h2

2! [Ã2, Ã1] + O(h3), (3.49)

where Ã = B−1A and A = A1 + A2 where A1 = At
2.

The commutator is [A2, A1] = A2A1 − A1A2.
By the transition to a new time level, we require

(
I − σh Ã1 + σ

h2

2! Ã2
1

)(
I − σh Ã2 + σ

h2

2! Ã2
2

)
u(tn+1) = φn, (3.50)

where φn =
(

I + (1 − σ) h Ã + (1 − σ) h2
2! Ã2 − σ h2

2! [Ã2, Ã1]
)

u(tn).

http://dx.doi.org/10.1007/978-3-319-15117-5_5

3.3 Additive Methods 53

We have to solve the following pair of linear equations:

(
I − σh Ã1 + σ

h2

2! Ã2
1

)
ψn+1 = φn, (3.51)

(
I − σh Ã2 + σ

h2

2! Ã2
2

)
un+1 = ψn+1, (3.52)

where the ψn+1 are the intermediate solutions of the scheme.
The third-order algorithm is given as a three-step method, presented in the fol-

lowing Algorithm3.3.

Algorithm 3.3 (1) Compute ψn+1 = (ψn+1
1 , . . . , ψn+1

p)T with φn = (φn+1
1 , . . . ,

φn+1
p)T

ψn+1
1 =

(
I − 1

2
A11σh +

(
1

2
A11

)2

σ
h2

2!

)−1

φn
1 (3.53)

ψn+1
2 =

(
I − 1

2
A22σh +

(
1

2
A22

)2

σ
h2

2!

)−1 (
φn
2 +

(
A21σh − {A1 A1}21 σ

h2

2!
)

ψn+1
1

)
(3.54)

. . . (3.55)

ψn+1
p =

(
I − 1

2
Appσh +

(
1

2
App

)2

σ
h2

2!

)−1
⎛

⎝φn
p +

p−1∑

i=1

(
Api σh − {A1 A1}pi σ

h2

2!
)

ψn+1
i

⎞

⎠, (3.56)

whileφn =
(

I + (1 − σ) h A + (1 − σ) h2
2! A2 − σ h2

2! [A2, A1]
)

u(tn) and thematrix

multiplication {A1A1}i j = ∑p
k=1 A1,ik A1,k j , where p is the rank of the matrix A1

and A1,i j is the i, j th element of the matrix A1.
(2) Compute un+1 = (un+1

1 , . . . , un+1
p)T with ψn+1 = (ψn+1

1 , . . . , ψn+1
p)T

un+1
p =

(
I − 1

2
Appσh +

(
1

2
App

)2

σ
h2

2!

)−1

ψn
p (3.57)

un+1
p−1 =

(
I − 1

2
Ap−1p−1σh +

(
1

2
Ap−1p−1

)2

σ
h2

2!

)−1

·
(

ψn
p−1 +

(
Ap−1pσh − {A2A2}p−1p σ

h2

2!
)

un+1
p

)
(3.58)

. . . (3.59)

un+1
1 =

(
I − 1

2
A11σ

h

2
+

(
1

2
A11

)2

σ
h2

2!

)−1

·
(

ψn
1 +

p∑

i=2

(
A1iσh − {A2A2}1i σ

h2

2!
)

un+1
i

)
, (3.60)

54 3 Algorithmic Part

and the matrix multiplication {A2A2}i j = ∑p
k=1 A2,ik A2,k j , where p is the rank of

the matrix A2 and A2,i j is the i, j th element of the matrix A2.

Theorem 3.4 If we choose σ ≥ 1
2 , then the splitting scheme (3.51) and (3.52) is

absolutely stable in an appropriate Hilbert space.

Proof The outline of the proof is given in [6].

3.3.3 Iterative Splitting Method

The following algorithm is based on an iteration with a fixed splitting discretization
step size τ , namely, on the time interval [tn, tn+1], we solve the following sub-
problems consecutively for i = 0, 2, . . . 2m (cf. [8, 9]):

∂ci (t)

∂t
= A1ci (t) + A2ci−1(t), with ci (t

n) = cn (3.61)

and c0(t
n) = cn, c−1 = 0.0,

∂ci+1(t)

∂t
= A1ci (t) + A2ci+1(t), (3.62)

with ci+1(t
n) = cn,

where cn is the known split approximation at the time level t = tn . The split approx-
imation at the time level t = tn+1 is defined as cn+1 = c2m+1(tn+1). (Clearly, the
function ci+1(t) depends on the interval [tn, tn+1], too, but, for the sake of simplicity,
in our notation, we omit the dependence on n.)

In the following, we will analyse the convergence and the rate of convergence of
the method (3.61) and (3.62) as m tends to infinity for the linear operators A1, A2 :
X → X, where we assume that these operators and their sum are generators of C0
semi-groups. We emphasize that these operators are not necessarily bounded, so the
convergence is examined in a general Banach space setting.

The novelty of the convergence results are the reformulation in integral notation.
Based on this, we can assume that we have bounded integral operators which can be
estimated and given in a recursive form. Such formulations are known in the work
of [10, 11], and estimations of the kernel part with the exponential operators are
sufficient to estimate the recursive formulations.

3.4 Parallelization 55

3.4 Parallelization

The parallelization is important to accelerate the solver methods.
We distinguish between three different parallelization areas:

• Parallelization in Time, e.g. Parareal method: Decomposition of large time inter-
vals to smaller time intervals

• Parallelization in Operators, e.g. Parallel operator splitting method
• Parallelization in Space, e.g. Schwartz waveform relaxation, Domain decomposi-
tion algorithms

The application of the different parallel methods are discussed in the following:

• Time parallelization: The large time interval is decomposed into smaller time
intervals (time decomposition). The full equations can be handled in one processor,
such that the memory effect is not too important. But the duration of the full time
interval is very large such that it will take too long for one processor. Therefore,
we decompose it to smaller time intervals and parallelize the large time interval,
i.e. each time slot can be handled independently by one processor, see [12].

• Operator splitting methods or parallelization of the different operators: The prob-
lem is based on storing the full operator of the differential equation in one proces-
sor (this was the motivation of the earliest splitting schemes [13]). Therefore, we
decompose the full operator into simpler operators and distribute the simpler oper-
ators, which can be stored into one processor, to various processors. The operators
are coupled via the operator splitting scheme and can be computed in parallel.
Such ideas allow to deal with modular coupling of program codes, e.g. different
specialized codes for an E- and B-field (e.g. Maxwell equation) and a transport
field (e.g. particle code), which can be computed on different PC clusters.

Example 3.2 Reduction of the computational time via time parallelization.
We assume to have an effective parallel algorithm with about 20–50%, see [12].
Therefore, we reduce the computational time for one processor, for example, of

48 [h], with 128 processors and an efficiency of about 20% to 2–3 [h].

3.4.1 Time Parallelization: Parareal Algorithm as an Iterative
Solver

The original algorithm was introduced by [14]. The idea is to partition the time
domain ΩN = [0, T], which is large, into N time subdomains:

Ωn [Tn−1, Tn], n = 1, . . . , N , (3.63)

56 3 Algorithmic Part

furthermore, we define the following solvers:

• coarse solver (coarse propagator): G(Tn, Tn−1, x) and
• fine solver (fine propagator): F(Tn, Tn−1, x)

with both, we can approximate the underlying differential equation:

U ′(t) = f (t, U (t)), U (Tn−1) = x . (3.64)

Here, we assume the following:

1. The coarse integrator is computationally much faster, i.e. a lower order scheme,
than the fine integrator.

2. The fine integrator is much more accurate, i.e. a higher order scheme, and much
more time consuming, and therefore we need the benefit of parallelization.

We have the following steps:

• In the first iteration, we use the coarse integrator in a serial fashion to provide
initial conditions to each time slice Ωn :

U 1
n = G(Tn, Tn−1, U 1

n−1), n = 1, 2, . . . , N .

• In the second step, we use the fine propagator and integrate independently (i.e. in
parallel) N initial value problems F(Tn, Tn−1, U k

n−1) (n = 1, 2, . . . , N), yielding
new approximations for the initial conditions on the following time slices.

• In each iteration k, the corrections are then again quickly propagated using the
coarse integrator:

U k+1
n = F(Tn, Tn−1, U k

n−1) + G(Tn, Tn−1, U k+1
n−1) − G(Tn, Tn−1, U k

n−1), (3.65)

Example 3.3 We deal with a differential equation,

U ′ = AU + BU, U (0) = u(0), (3.66)

with two operators A and B.
We assume to have F as a fine integrator and choose the iterative splitting method

as a more accurate propagator. Further, we assume to have G as a coarse integrator
and choose the A–B splitting scheme as a lower order accurate propagator, see the
example in [15].

Themethod can be compared be the so-calledMultiple Shooting Method, see [16].
While we repeat each time slot with an improved approximation and if the error is
small enough, we go on to the next time intervals, see also Fig. 3.1.

3.4 Parallelization 57

tn t t tt t tn+4 n+7 n+11 n+15 n+19

Fig. 3.1 Parallelization with Parareal, windowing of the parallel process

Fig. 3.2 First initialization step in the algorithm

In the following, we discuss the different steps.
Step 1:
Coarse computation of one processor of the full interval with a fast-and low-order

solver method, e.g. forward Euler scheme, see Fig. 3.2.
We propagate in the coarse method with

U 1
0 = u0, (3.67)

U 1
n = G(Tn, Tn−1, U 1

n−1), n = 1, . . . , N . (3.68)

Step 2:
The next step is a fine propagatorwith n-processors, for each smaller time interval.

The methods for the smaller time intervals are of higher order and expensive in time,
see Fig. 3.3.

We propagate with the fine propagator, while the initial conditions are given for
each subdomain Ωn :

U 1
f ine,n = F

(
Tn, Tn−1, U 1

n−1

)
, n = 1, . . . , N . (3.69)

58 3 Algorithmic Part

Fig. 3.3 Second step of a
fine propagator step done in
parallel

Fig. 3.4 The third step is the
corrector step, which coupled
the coarse and fine step and
go on with the initialization
of the next timeframe

Step 3:
The next step is the corrector step to couple the coarse and fine steps together (cou-

pling process). One processor computes the corrections between each time interval.
Such time intervals which fit of the accuracy are finished and we step forward. The
other intervals are computed via the first step and so on, see Fig. 3.4.

We apply the improved initial guess and propagate coarsely in a correction:

U k+1
n = F

(
Tn, Tn−1, U k

n−1

)
+ G

(
Tn, Tn−1, U k+1

n−1

)
− G

(
Tn, Tn−1, U k

n−1

)
. (3.70)

If the error in the time slot is sufficient small, we shift the window to the next time
slot and start with the step 1, till we are done. Otherwise, we go on with the next
iterative step k = k + 1.

3.4.2 Operator Parallelization: Operator Splitting Method

We deal with large operators in a differential equation, which is given as

dc(t)

dt
= Afullc(t), for t ∈ (tn, T), (3.71)

dc(t)

dt
=

m∑

i=1

Ai c(t), for t ∈ (tn, T), (3.72)

c(0) = c0, Initial-conditions, (3.73)

where we have the time intervals t1, t2, . . . , tN .

3.4 Parallelization 59

We assume that the full operator A f ull is partitioned into different smaller oper-
ators A j , j = 1, . . . , m. Furthermore, we have an appropriate Banach space with a
vector and induced matrix norm || · ||, where c ∈ X and also the operators are given
in A j ∈ X2 for j = 1, . . . , m.

We also assume that the operators include the boundary conditions and are derived
of semi-discretizations, e.g. Finite Difference or Finite Element Methods. Based
on their problems, they might have different physical behaviours, e.g. diffusion,
convection or reaction operators, if we deal with a fluid flow problem, see [17].

We deal with the following problems:

• The full operator A f ull cannot be stored into one processor, and therefore we have
to partition the problem to A j , j = 1, . . . , m smaller operators.

• The physical problem allows to deal with different program codes, e.g. we have
a code for the diffusion problem, a code for the reaction problem and so on. We
only like to couple such problems via the splitting approach.

3.4.3 Sequential Operator Splitting Method

Such a scheme can be applied to couple the different operators to the full operator
equations (3.71). We deal with a successive computation of each operator in each
time slot and couple via the initial conditions of each step, see [18].

We solve m subproblem sequentially on the subintervals [tn, tn+1], where n =
0, 1, . . . , N − 1, t0 = 0 and t N = T .

The subproblems are given in the following and coupled via the initial conditions:

∂c1(t)

∂t
= A1c1(t), with c1(t

n) = c(tn), (3.74)

∂c2(t)

∂t
= A2c2(t), with c2(t

n) = c1(t
n+1), (3.75)

... (3.76)
∂cm(t)

∂t
= Amcm(t), with cm(tn) = cm−1(t

n+1), (3.77)

for n = 0, 1, . . . , N − 1 and τ = tn+1 − tn , where c(tn+1) = cm(tm+1) is the
approximated solution at the time point tn+1.

The local splitting error of the sequential scheme isO(τ 2) and the global splitting
error of the sequential scheme is O(τ), if we assume non-commutable operators.
Otherwise, we are exact.

Here, we have to wait for the next initial condition, while we are dependent on the
result of the previous step, such that the scheme is only interested to couple different
codes, see [18].

60 3 Algorithmic Part

3.4.4 Parallel Operator Splitting Method: Version 1

The following first parallel operator splitting method is also called splitting-up
method, see [19, 20].

We also deal with m sub-problems, which can be solved independently, i.e. par-
allel, while the initial conditions are given at time point tn for each sub-problem and
independent of other sub-problems, see [21].

We have the subintervals [tn, tn+1], where n = 0, 1, . . . , N − 1, t0 = 0 and
t N = T . We deal with m parallel sub-problem given as follows:

∂c1(t)

∂t
= A1c1(t), with c1(t

n) = c(tn), (3.78)

∂c2(t)

∂t
= A2c2(t), with c2(t

n) = c(tn), (3.79)

... (3.80)
∂cm(t)

∂t
= Amcm(t), with cm(tn) = c(tn), (3.81)

and result in one additive step that couples the independent sub-steps:

c(tn+1) = c(tn) +
m∑

i=1

(
ci (t

n+1) − c(tn)
)
,

n = 1, 2, . . . , N , where c(0) = c0.

The local splitting error of the parallel scheme is O(τ) if we deal with non-
commutable operators. Otherwise, we are exact.

Based on the low-order scheme, we introduce in the following a second-order
scheme, which can also be applied in parallel, see [21].

3.4.5 Parallel Operator-Splitting Method: Version 2

The following second parallel operator-splitting method is also weighted sequential
splitting method, see [21].

We obtain a second-order scheme, like the Strang splitting scheme, see [13], while
we apply sequential splitting in both directions, i.e., A1 → A2 → · · · ,→ Am and
Am → Am−1 → · · · ,→ A1.

Wealso dealwith two sequential splitting problems,which canbehandled parallel,
while each splitting problem hasm sub-problems. These sub-problems are dependent
and are done sequentially, see [21].

We have the two independentm sequential problems in the subintervals [tn, tn+1],
where n = 0, 1, . . . , N − 1, t0 = 0 and t N = T .

3.4 Parallelization 61

We deal with the first m sequential sub-problem given as

∂c1(t)

∂t
= A1c1(t), with c1(t

n) = c(tn), (3.82)

∂c2(t)

∂t
= A2c2(t), with c2(t

n) = c1(t
n+1), (3.83)

... (3.84)
∂cm(t)

∂t
= Amcm(t), with cm(tn) = cm−1(t

n+1), (3.85)

and the second m sequential sub-problem given as

∂v1(t)

∂t
= Amv1(t), with v1(t

n) = c(tn), (3.86)

∂v2(t)

∂t
= Am−1v2(t), with v2(t

n) = v1(t
n+1), (3.87)

... (3.88)
∂vm(t)

∂t
= A1vm(t), with vm(tn) = vm−1(t

n+1). (3.89)

We result in one additive step that couples the independent sub-problems:

c(tn+1) = 1

2
cm(tn+1) + 1

2
vm(tn+1).

The local splitting error of the parallel scheme is O(τ 2), and the global splitting
error of the parallel scheme is O(τ), if we deal with non-commutable operators.
Otherwise, we are exact.

In the next subsection, we present an iterative splitting scheme, which deals with
a parallelization of the exp-operators.

3.4.6 Iterative Splitting Scheme

The iterative splitting scheme is based on a relaxation idea, see [18].
Here, we deal with exp-operators, which can also be applied independently. Based

on the idea to relax only to the so-called dominant operators, see [18], we only apply
multiplications via the non-dominant operators, see [22].

We assume that we are partitioned into two operators and deal with the following
algorithm. The time interval is given as [tn, tn+1] and we solve the following sub-
problems with the iterative steps i = 1, 2, . . . , I :

dci (t)

dt
= Aci (t) + Bci−1(t), with ci (t

n) = cn
sp, (3.90)

where c0(t) is an initialization for the iterative scheme, e.g. c0(t) = 0.

62 3 Algorithmic Part

The iterative schemes are solved in the following manner:

c1(t) = exp(At)c(tn), (3.91)

c2(t) = c1(t) + c1(t)
∫ t

0
[B, exp(s A)]ds, (3.92)

where [·, ·] is the commutator.
Based on the exp(At) operators, we can decouple into A and B dependent terms,

see [22].

Remark 3.3 The iterative splitting schemes have the benefit of their modularization,
i.e. we could add relaxed operators to the scheme. A drawback is the strong cou-
pling in each iterative step, which means that the parallelization is more delicate,
and compare also the waveform relaxation methods with Jacobian or Gauss–Seidel
Schemes, see [4].

3.4.7 Spatial Parallelization Techniques

Domain Decomposition

Traditional domain decomposition schemes, e.g. Schwarz waveform relaxation
schemes, motivate with a different idea to decompose the domains into subdomains,
such that the operator is only defined in subdomains.

Example 3.4 We start to decompose the operator A into operators defined at each
subdomain. We have Ω = Ω1 ∪ Ω2; here, we obtain an artificial boundary with
Ω1 ∩ Ω2, which is not considered in an iterative operator splitting scheme.

The main advantage of such decomposition is the two decoupled independent
equations on each domain:

A|Ω1u|Ω1 = f |Ω1 (3.93)

A|Ω2u|Ω2 = f |Ω2 (3.94)

where we assume that the boundary condition at the boundary ∂Ω ∩ Ω1 is included
in A1 and the boundary condition ∂Ω ∩ Ω2 is included in A2.

To couple the two separate equations, we have to apply waveform relaxation
methods with the artificial boundary condition, which can be given as

A|Ω1ui |Ω1 = f |Ω1 (3.95)

B|Ω1∩Ω2ui |Ω1∩Ω2 = B|Ω2∩Ω1 ûi−1|Ω1∩Ω2 (3.96)

A|Ω2ui |Ω2 = f |Ω2 (3.97)

B|Ω2∩Ω1 ûi |Ω1∩Ω2 = B|Ω1∩Ω2ui |Ω1∩Ω2 , (3.98)

where i = 1, 2, . . . , I and we start from an initial guess of u0|Ω2 .

3.4 Parallelization 63

Here, we iterate via the two decoupled equations and achieve ui |Ω1∩Ω2 =
ûi |Ω1∩Ω2 for i sufficient large.

At least we have to double the variables at the artificial boundary.

3.4.7.1 Domain Decomposition Methods: Discussion

The motivation of domain decomposition methods arose to the fact of decomposing
into smaller and simpler calculatable domains. We want to apply a standard solver
code for each domain, based on the same model equations, see [23].

We can classify the following techniques:

• Non-iterative methods, e.g. FETI methods, Mortar element methods, [24, 25],
• Iterative methods, e.g. Schwarz waveform relaxation methods, see [26].

3.4.7.2 Iterative Method: Schwarz Waveform Relaxation Method

The Schwarz waveform relaxation method deals with the idea to iterate over the
decoupled domains. The model equation, the decomposition methods and the under-
lying software codes are discussed in the manuscript [27].

We deal with the following equations as

−∂2u

∂x2
+ ηu = f, in Ω = [0, 1], (3.99)

u(0) = gg, u(1) = gd , (3.100)

and then separate them into the following equations and apply the iterative steps:

−∂2un+1
1

∂x2
+ ηun+1

1 = f, in Ω1 = [0, β], (3.101)

un+1
1 (0) = gg,

un+1
1 (β) = un

2(β),

−∂2un+1
2

∂x2
+ ηun+1

2 = f, in Ω2 = [α, 1], (3.102)

un+1
2 (0) = gd ,

un+1
2 (α) = un+1

1 (α).

We can deal with the different ideas to partition the domains, e.g. overlapping or
non-overlapping, see Fig. 3.5.

64 3 Algorithmic Part

Fig. 3.5 Domain
decomposition with respect
to overlapping and
non-overlapping domains

Further, we discretize our decomposed equation and we deal with the following
discretized equations as

− u j+1 − 2u j + u j−1

h2 + ηu j = f j , 1 ≤ j ≤ J, (3.103)

and then decompose into

− (un+1
1) j+1 − 2(un+1

1) j + (un+1
1) j−1

h2 + η(un+1
1) j = f j ,

1 ≤ j ≤ b − 1, (un+1
1)b = (un

2)b, (3.104)

− (un+1
2) j+1 − 2(un+1

2) j + (un+1
2) j−1

h2 + η(un+1
2) j = f j ,

a + 1 ≤ j ≤ J, (un+1
2)a = (un+1

1)a . (3.105)

3.4 Parallelization 65

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

Al
te

rn
at

in
g

Sc
hw

ar
z

ite
ra

te
s

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

Al
te

rn
at

in
g

Sc
hw

ar
z

ite
ra

te
s

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

Al
te

rn
at

in
g

Sc
hw

ar
z

ite
ra

te
s

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

Al
te

rn
at

in
g

Sc
hw

ar
z

ite
ra

te
s

Fig. 3.6 We start with the initialization (0th iteration, upper left figure), then we have the first
iteration (upper right figure), then we conclude with the second iteration (lower left figure) and at
least the third iteration (lower right figure) of the Schwartz waveform relaxation method

Then, we have the following Schwartz waveform iterative steps, where the exact
solution of the decomposed equation is also in the different iterative solutions. The
iterative steps are given in Fig. 3.6.

Remark 3.4 Some ideas and motivations for using non-iterative or iterative domain
decomposition methods are discussed below:

1. Iterative Method:

a. Benefit: Simple to implement, and an inversion of a matrix is not necessary,
b. Drawback: We deal with an iteration method, i.e. we need relaxation-steps

to obtain the correct solution (additional time).

2. Non-iterative Method:

a. Benefit: We obtain a direct solution, we have only one step.
b. Drawback: Often delicate solver methods for the solutions are needed, e.g.,

Schur-complementmethods for the coupledmatrices (to solve such systems,
it is necessary to apply iterative solvers).

66 3 Algorithmic Part

Remark 3.5 The benefits and drawbacks of the overlapping or non-overlapping
decomposition methods are discussed below. Here are some ideas:

1. Overlapping Domain Decomposition:

a. Benefit: Stronger coupling of the equation-parts, i.e. we achieve more stable
methods, which converge faster.

b. Drawback: Higher computational amount and more delicate to parallelize.

2. Non-overlapping Domain Decomposition:

a. Benefit: Simpler to parallelize (it is stronger decoupled).
b. Drawback: Solver amount is higher, while we need additional iterative steps

to couple the equation parts. Often, we have a slower convergence of the
method.

In the following Example3.5, we explain an application of the Schwarz waveform
relaxation method.

Example 3.5 Application to Convection-Diffusion-Reaction Equations
The example is given in the author’s paper [28]. Here, we conclude with some

ideas and aspects of the decomposition method.
We consider the convection-diffusion-reaction equation, given by

ut = Duxx − νux − λu, (3.106)

defined on the domain Ω × T , where Ω = [0, L] and T = [T0, T f], with the
following boundary and initial conditions:

u(0, t) = f1(t), u(L , t) = f2(t), u(x, T0) = u0.

To solve the model problem using overlapping Schwarz waveform relaxation
method, we subdivide the domainΩ into two overlapping subdomainsΩ1 = [0, L2]
and Ω2 = [L1, L], where L1 < L2 and Ω1

⋂
Ω2 = [L1, L2] are the overlapping

regions for Ω1 and Ω2, respectively.
To start the waveform relaxation algorithm, we consider first the solution of the

model problem (3.106) over Ω1 and Ω2 as follows:

vt = Dvxx − νvx − λv over Ω1, t ∈ [T0, T f]
v(0, t) = f1(t), t ∈ [T0, T f]
v(L2, t) = w(L2, t), t ∈ [T0, T f]
v(x, T0) = u0 x ∈ Ω1,

(3.107)

wt = Dwxx − νwx − λw over Ω2, t ∈ [T0, T f]
w(L1, t) = v(L1, t), t ∈ [T0, T f]
w(L , t) = f2(t), t ∈ [T0, T f]
w(x, T0) = u0 x ∈ Ω2,

(3.108)

where v(x, t) = u(x, t)|Ω1 and w(x, t) = u(x, t)|Ω2 .

3.4 Parallelization 67

Then the Schwarz waveform relaxation is given by

vk+1
t = Dvk+1

xx − νvk+1
x − λvk+1 over Ω1, t ∈ [T0, T f]

vk+1(0, t) = f1(t), t ∈ [T0, T f]
vk+1(L2, t) = wk(L2, t), t ∈ [T0, T f]
vk+1(x, T0) = u0 x ∈ Ω1,

(3.109)

wk+1
t = Dwk+1

xx − νwk+1
x − λwk+1 over Ω2, t ∈ [T0, T f]

wk+1(L1, t) = vk(L1, t), t ∈ [T0, T f]
wk+1(L , t) = f2(t), t ∈ [T0, T f]
wk+1(x, T0) = u0 x ∈ Ω2.

(3.110)

We are interested in estimating the decay of the error of the solution over the
overlapping subdomains obtainedwith the overlappingSchwarzwaveform relaxation
method over long time interval.

Let us assume that ek+1(x, t) = u(x, t) − vk+1(x, t) and dk+1(x, t) = u(x, t) −
wk+1(x, t) are the errors of (3.109) and (3.110) over Ω1 and Ω2, respectively. The
corresponding differential equations satisfied by ek+1(x, t) and dk+1(x, t) are

ek+1
t = Dek+1

xx − νek+1
x − λek+1over Ω1, t ∈ [T0, T f]

ek+1(0, t) = 0, t ∈ [T0, T f]
ek+1(L2, t) = dk(L2, t), t ∈ [T0, T f]
ek+1(x, T0) = 0 x ∈ Ω1,

(3.111)

dk+1
t = Ddk+1

xx − νdk+1
x − λdk+1over Ω2, t ∈ [T0, T f]

dk+1(L1, t) = ek(L1, t), t ∈ [T0, T f]
dk+1(L , t) = 0, t ∈ [T0, T f]
dk+1(x, T0) = 0, x ∈ Ω2.

(3.112)

We define for bounded functions h(x, t) : Ω × [T0, T f] → R the norm

||h(., .)||∞ := sup
x∈Ω,t∈[T0,T f]

|h(x, t)|.

The theory behind our error estimates is based on the positivity lemma by Pao (or
the maximum principle theorem), which is introduced as follows.

Lemma 3.1 Let u ∈ C(ΩT) ∩ C1,2(ΩT), where ΩT = Ω × (0, T] and ∂ΩT =
∂Ω × (0, T], be such that

ut − D uxx + ν ux + c u ≥ 0, in ΩT (3.113)

α0 ∂u∂ν + β0 u ≥ 0, on ∂ΩT (3.114)

u(x, 0) ≥ 0, in Ω (3.115)

68 3 Algorithmic Part

where α0 ≥ 0, β0 ≥ 0, α0 + β0 > 0 on ∂ΩT , and c ≡ c(x, t) is a bounded function
in ΩT , Then u(x, t) ≥ 0 in ΩT .

The convergence and error estimates of ek+1 and dk+1 given by (3.111) and
(3.112), respectively, are presented in the following theorem.

Theorem 3.5 Let ek+1 and dk+1 be the errors from the solution of the sub-problems
(3.107) and (3.108) by Schwarz waveform relaxation over Ω1 and Ω2, respectively,
then

||ek+2(L1, t)||∞ ≤ γ ||ek(L1, t)||∞,

and
||dk+2(L2, t)||∞ ≤ γ ||dk(L1, t)||∞,

where

γ = sinh(βL1)

sinh(βL2)

sinh(β(L2 − L))

sinh(β(L1 − L))
< 1,

with β =
√

ν2+4Dλ
2D .

Proof The proof is given in [28].

References

1. K. Dekker, J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential
Equations (North-Holland Elsevier Science Publishers, Amsterdam, 1984)

2. B. Sportisse, An analysis of operator splitting techniques in the stiff case. J. Comput. Phys.
161, 140–168 (2000)

3. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II., SCM, vol. 14 (Springer,
Heidelberg, 1996)

4. S. Vandewalle, Parallel Multigrid Waveform Relaxation for Parabolic Problems (B.G. Teubner
Stuttgart, Teubner Skripten zur Numerik, 1993)

5. M.J. Gander, A.M. Stuart, Space-time continuous analysis of waveform relaxation for the heat
equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)

6. P. Vabishchevich, Additive schemes (splitting schemes) for some systems of evolutionary equa-
tions. Math. Comput. 83(290), 2787–2797 (2014)

7. E.J. Davison, A high order Crank-Nicholson technique for solving differential equations. Com-
put. J. 10(2), 195–197 (1967)

8. R. Glowinski, in Numerical Methods for Fluids. Handbook of Numerical Analysis, vol. IX, ed.
by P.G. Ciarlet, J. Lions (North-Holland Elsevier, Amsterdam, 2003)

9. J.Kanney,C.Miller, C.T.Kelley, Convergence of iterative split-operator approaches for approx-
imating nonlinear reactive transport problems. Adv. Water Res. 26, 247–261 (2003)

10. E. Hansen, A. Ostermann, Exponential splitting for unbounded operators. Math. Comput. 78,
1485–1496 (2009)

11. T. Jahnke, C. Lubich, Error bounds for exponential operator splittings. BIT Numer. Math.
40(4), 735–745 (2000)

12. M.J. Gander, S. Vanderwalle, Analysis of the parareal time-parallel time-integration method.
SIAM J. Sci. Comput. 29(2), 556–578 (2007)

References 69

13. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal.
5, 506–517 (1968)

14. J.L. Lions, Y. Maday, G. Turincini, A “parareal” in time discretization of PDEs. C. R. Acad.
Sci. Paris Sér. I Math. 332, 661–668 (2001)

15. J. Geiser, St. Guettel, Coupling methods for heat-transfer and heat-flow: operator splitting and
the parareal algorithm. J. Math. Anal. Appl. 388(2), 873–887 (2012)

16. H.G. Bock, K.J. Plitt, A multiple shooting algorithm for direct solution of optimal control
problems, in Proceedings 9th IFAC World Congress Budapest (Pergamon Press, 1984), pp.
243–247

17. J. Geiser, in Coupled Systems: Theory, Models and Applications in Engineering. Numerical
Analysis and Scientific Computing Series, ed. by F. Magoules, C.H. Lai (CRC Press, Boca
Raton, 2014)

18. J. Geiser, in Iterative Splitting Methods for Differential Equations. Numerical Analysis and
ScientificComputing Series, ed. by F.Magoules, C.H. Lai (Chapman&Hall/CRC,BocaRaton,
2011)

19. A.R. Gourlay, Proc. Conf. Univ. York, Splitting methods for time-dependent partial differential
equations, The state of art in numerical analysis (Academic Press, London, 1976). Heslington
1997

20. T. Lu, P. Neittaanmaki, X.-C. Tai, A parallel splitting-up method for partial differential equa-
tions and its applications to Navier-Stokes equations. RAIRO Model. Math. Anal. Numer. 26,
673–708 (1992)

21. P. Csomós, I. Faragó, A. Havasi, Weighted sequential splittings and their analysis. Comput.
Math. Appl. 50(7), 1017–1031 (2005)

22. J. Geiser, Computing exponential for iterative splitting methods. J. Appl. Math. Hindawi Pub-
lishing Corp., New York, Article ID 193781, 27 pp. (2011)

23. A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations,
Series: Numerical Mathematics and Scientific Computation (Clarendon Press, Oxford, 1999)

24. A. Toselli, O. Widlund, Domain Decomposition Methods-Algorithms and Theory. Springer
Series in Computational Mathematics, vol. 34 (Springer, Berlin, 2004)

25. C. Farhat, J. Mandel, F.-X. Roux, Optimal convergence properties of the FETI domain decom-
position method. Comput. Methods Appl. Mech. Eng. 115, 365–385 (1994)

26. M.J. Gander, Y.-L. Jiang, R.-J. Li, Parareal Schwarz Waveform Relaxation methods. Domain
Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational
Science and Engineering, vol. 91 (Springer, New York, 2013), pp. 451–458

27. M.J. Gander, L. Halpern, Methodes de decomposition de domainess. Lecture Notes, Section
de Mathematiques, Universite de Geneve, Switzerland, 26, April 2012

28. D. Daoud, J. Geiser, Overlapping Schwarz wave form relaxation for the solution of coupled
and decoupled system of convection diffusion reaction equation. Appl. Math. Comput. 190(1),
946–964 (2007)

Chapter 4
Models and Applications

Abstract In this section, we discuss the different multicomponent and multiscale
models, which are later applied in simulations. We focus on the coupling of micro-
scopic and macroscopic models, while the microscopic model is related on finer
spatial and time scales and the macroscopic model is related to the coarser spatial
and time scales. We discuss exemplary engineering problems in the field of electronic
application and transport reaction applications in Plasma models. Here, the models
and their underlying multiscale and multicomponent methods are discussed. Based
on the aligned methods, we see the data flow between the disparate scales and can
estimate the accuracy in each micro- and macroscopic model, such that we obtained
truly working multiscale and multicomponent approaches.

We deal with the following characterization based on the different spatial and time
scales of the models, where we decompose the models into the following, see [1]:

• Microscopic Models: Multicomponent Kinetics (discrete treatment) and
• Macroscopic Models: Multicomponent Fluids (continuous treatment).

Further, we deal with multiscale models, which covered the different microscopic
and macroscopic scales and applied methods to overcome the large-scale differences,
see [2].

Remark 4.1 We concentrate on multiscale models, which describes different models
—e.g. a microscopic and macroscopic model—and also only macroscopic models
but with embedded microscopic scales to resolve material properties—e.g. electro-
magnetic behaviour of a magnetizable fluid, see [3, 4].

4.1 Multicomponent Fluids

Abstract In this section, we discuss the models and applications based on the different
multicomponent fluid models. Here, we assume to have a macroscopic scale, i.e. we
can upscale the microscopic behaviour into the macroscopic scales. We deal with
a continuum description and discuss some models based on the multicomponent

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5_4

71

72 4 Models and Applications

fluid problems. Here, standard splitting and multiscale methods are modified with
respect to the requirements of the applications. Then, we can close the gap between
pure theoretical treatment of numerical methods and their numerical analysis and the
necessary adaptation of such standard numerical schemes to engineering applications
with the relation to the model problems.

4.1.1 Multicomponent Transport Model for Atmospheric
Plasma: Modelling, Simulation and Application

4.1.1.1 Introduction

In the following, we discuss a multicomponent transport model for atmospheric
(normal pressure) plasma applications.

In such models, it is important to take into account the mixture of the plasma
species.

We are motivated to understand atmospheric plasmas within non-thermal equi-
librium, which are applied in etching, deposition and sterilization applications, see
[5, 6]), and further in emission filtering processes.

We deal with weakly ionized gas mixtures and chemical reactions in room tem-
perature. Each behaviour of a single species and the mixture is complex and needs
additional mixture terms that extend the standard models, see [7–10].

Furthermore, the motivation arose of different applications in the so-called jet
stream plasma apparatus, for example [11–13]. In such applications, the understand-
ing of the flow and reaction of the species are important.

We assume to deal with a modelling in a time- and spatial- scale, which we
can decompose into heavy particles (molecules, atoms, ions) and light particles
(electrons)—i.e. we have K n � 1.0 where K n, Knudsen number, is the ratio of
the molecular mean free path length to a representative physical length scale—e.g.
length of the apparatus, and therefore, we can apply a macroscopic model.

In the following, we discuss the so-called macroscopic models, also called fluid
models, for the plasma model, which is discussed in [14, 15].

We present the special models with respect to their benefits, starting from a two-
component fluid model till a multicomponent fluid model with Stefan–Maxwell
equation for the mixture of the species. With such a complex model, we achieve an
optimal mixture model, which represents the individual single heavy particle.

The underlying conservation laws result in the equations of mass, momentum and
energy and additional with conditions related to the Stefan–Maxwell equation, e.g.
summation of the mass rates is 1 (

∑
i=1 wi = 1) and summation of the mass fluxes

is 0 (
∑

i=1 ji = 0).
Such equations with additional conditions are quasilinear, strong coupled par-

abolic differential equations, see [16].

4.1 Multicomponent Fluids 73

Such equations need a larger computational amount based on the nonlinearities
in the diffusion part. Standard models, based on the Fickian’s approach, compared
the ideas in [17], are much more simpler to solve and the extended model has taken
into account singularities and nonlinear behaviours, see [16, 18, 19].

In the following, we discuss step-by-step approach of the novel models and the
development of the underlying solver methods.

4.1.1.2 Introduction and Overview

Since recent years, the application in normal pressure plasmas arose important and
therefore the understanding of the reactive chemical species in the plasma and during
its mixture is necessary. For such delicate problems, the standard models which are
known in the literature have to be extended by the reactive parts of the mixture.
Such an important detail can be modelled by the diffusion operator, and the Stefan–
Maxwell equation is a possibility to take into account such mixture behaviours,
see [16].

In such reactive plasmas, we obtain due to the typical known processes, as ion-
ization and collision, and additional processes, the so-called chemical reactions.

Such chemical processes are dominant for normal pressure plasmas and they are
used in the plasma medicine technology.

While they applied air as a plasma background, we have the highly reactive ele-
ments oxygen O2 and nitrogen N 2 in the complex gas mixtures.

Therefore, it is important to extend the standard modelling and simulation tech-
niques, see [20, 21], and embed the nonlinear structures of the Stefan–Maxwell
approach.

The diffusive processes are modelled by the so-called multicomponent diffu-
sion, which are more and more studied in the Stefan–Maxwell approaches in fluid-
dynamical models, see [22].

We obtain an improvement of the so-called binary diffusion processes in the
transport reaction models, if we have no dominant species, e.g. only minor at species,
which means we do not have a dominant background matrix. Such observations made
it necessary to deal with a more detailed modelling, see [17, 23–25].

In comparison to pure fluid-dynamical models, see porous media models [26]
or elementary modelling [27], or so-called neutral fluids, in macroscopical plasma
models, we have additional terms, for example electric fields. We assume additional
to deal with weak-ionized particles that such weak-ionized heavy particles can be
modelled by a multicomponent fluid model, vgl. [14].

In modelling plasmas, we deal with a so-called scaling, which allows to distin-
guish between macroscopic plasma models and microscopic plasma models, confer
Table 4.1 and Fig. 4.1.

74 4 Models and Applications

Table 4.1 Parameters for the macro- and microplasma and their applications

Mean free path length electrons Pressure Temperature Length of the reactor

Plasma Neutral gas

MacroPlasma (CCP, ICP: Etching and Deposition)

0.01–1 (cm) 1–100 (Pa) 300–500 (K) ≈10 (cm) ≈100 (cm)

MicroPlasma (Plasmajets, DBD: Deposition and Sterilization)

1 (µm) 105 (Pa) 300–500 (K) 0.1–1 (mm) 1–10 (cm)

Both plasmas have the same characteristics in the Knudsen number, i.e. K n � 1 and can be treated
and simulated as macroscopic models

mμ

apparatur length

free path length
= Kn << 1

Multicomponent−transport−model

(Fluid−model)

Macroplasma Microplasma

free path length: [cm]
apparatur length: [m]

Low−Pressure (1.0E−3 [mbar])

)erutarepmet−moor(lacimreht−non)]K[005(lacimreht

free path length : []
Apparatus length: [cm]

Normal−Pressure (1.0 [bar])

Macroscopic Model:

Multi−component−Transport−Model with Stefan−Maxwell Approach

Fig. 4.1 Macroscopic plasma models

We discuss the following steps in the next sections:

• In Sect. 4.1.1.3, we discuss the derivation of the multicomponent transport models.
We begin with a simple model (two-component fluid model) and end up with a
delicate multicomponent transport model (multifluid flow model).

• In Sect. 4.1.1.4, we discuss the mathematical classification and the numerical treat-
ment of such delicate transport models with embedded Stefan–Maxwell approxi-
mations.

• The conclusions are discussed in Sect. 4.1.1.5.

4.1 Multicomponent Fluids 75

4.1.1.3 Discussion of the Multicomponent Transport Models
for Normal Pressure Plasmas

We deal in the following with the so-called hierarchical model equations, see
[28, 29], which approximate the behaviour of the normal pressure plasmas.

For the first start, we can simply deal with a two-fluid formulation, where we
decouple heavy particles (ions, molecules, atoms) into light particles (electrons).
Furthermore, a more appropriate model is done with the multifluid formulation,
where we can apply for each heavy particle species (e.g. we distinguish between the
different ions and atoms of O, N , . . .) and apply an individual distribution function.

Furthermore, we extend the transport equations with the Stefan–Maxwell equa-
tion, see the ideas in [25].

As a start point to derive the hierarchical equations with heavy and light particles
in the plasma bulk, we use the Boltzmann equation:

∂

∂t
f + v · ∇x f + q

m
(E + v × B) · ∇v f = 〈 f 〉, (4.1)

• f : Density function of the a general particle species;
• v: General velocity in the bulk;
• q: Particle charge in general;
• m: Mass of the species;
• 〈 f 〉: Collision term in general;
• E: Electrical field vector; and
• B: Magnetical field vector.

For the heavy particle in general and electrons, we derive the fluid model with the
help of the velocity moments to obtain the macroscopic quantities, see [30].

Two-Component Fluid Model
In the following, we assume a simple description of the all heavy particles i (i.e. all
ions and neutrons) and all electrons e.

We have the following Assumption 4.1:

Assumption 4.1 • We concentrate on the density function of the heavy particles
(we neglect the electrons, based on their relative small mass compared to the ions
and neutrons).

• We assume that we do not have mixture of the different species and we only have
to model the pure transport of one particle species.

• An exact distribution function is not necessary for such regimes, while we do not
consider a kinetic behaviour.

• The extension between electrons and heavy particles (e.g. scattering) is sufficient
by a approximated collision term, see also [15].

By applying the velocity momentums, we obtain the conservation equations of the
heavy particles i and the electrons e, in the following equation with α = {i, e}, see
also [14]:

76 4 Models and Applications

∂ρα

∂t
+ ∇x · (ραu) = mα Q(α)

n , (4.2)

∂

∂t
ραuα + ∇x · (ραuαuα + nT I − τ ∗)

= qαnα(E + uα × B) − Qe
m, (4.3)

∂

∂t
E∗

total + ∇x · (E∗
totalu + q∗ + nT u − τ ∗ · u

)

= qαnαE − Q(e)
ε , (4.4)

• ρα: Mass density of the species α;
• uα: Averaged velocity of the species α;
• Qα

n , Qe
m, Qe

ε: Collision integral based on the mass, momentum and energy con-
servation;

• qα: Heat flow of the species α;
• nα: Density of species α;
• E: Electrical field vector;
• B: Magnetical field vector; and
• E∗

total : Total energy of all species.

Furthermore, we have to add the Maxwell equations for the electro-magnetic field,
see [15].

Multicomponent Fluid Model with Fickian’s Approach without Stefan–Maxwell
Approach)
In the following, we apply a first multicomponent model based on the work of [9,
14], where all the heavy particles are described. The Fickian’s approach is used and
we assume to have dominant species, e.g. majorant species, which can be applied as
a matrix background such that binary diffusion is sufficient, see [25].

We have therefore the following Assumption 4.2.

Assumption 4.2 The assumptions for the Fickian’s approach are given as follows:

• Each heavy particle species is described with an individual density function.
• We apply only a simple summation of the transport parameters, which results in a

phenomenological result (not the derivation with Stefan–Maxwell equations).
• The electrons are modelled in the same manner as in the two-component fluid

model, see [15].

We have the following notation and constraints of the heavy particle.
The notation for the multicomponent formulation is given as follows:

• N : Number of species;
• ns : Particle density of species s, s = 1, . . . , N ;
• n =∑N

s=1 ni : Total particle density;
• T : Particle energy of all heavy particles, e.g. T = kB Tgas ;
• ρ =∑N

s=1 ρs : Mass density of all particles with ρs as the mass particle density of
species s;

4.1 Multicomponent Fluids 77

• ρs = msns , ns , ms : Mass of species s;
• cs = us − u, cs : Difference or diffusion velocity of species s;
• us : Drift velocity of species s; and
• u: Drift velocity of the total system and given as u = 1

ρ

∑N
s=1 ρsus .

The model equation with the binary diffusion coefficients, see in the paper of
Senega/Brinkmann [14], is given for the heavy particles s ∈ {1, . . . , N }:

∂

∂t
ns + ∇x · (nsus + nscs) = Q(s)

n , (4.5)

∂

∂t
ρu + ∇x · (ρuu + nT I − τ ∗) =

N∑

s=1

qsns〈E〉, (4.6)

∂

∂t
E∗

total + ∇x · (E∗
totalu + q∗ + nT u − τ ∗ · u

)

=
N∑

s=1

qsns(u + cs) · 〈E〉 − Q(e)
inel,ST , (4.7)

where

E∗
total =

N∑

s=1

1

2
ρsc2

s + 1

2
ρu2 + 3

2
nT +

N∑

s=1

ρsΔh0
f,s, (4.8)

see also in paper [14].
An improvement of the standard derivation of such models is obtained with the

individual density functions for all different heavy particle species, such that we
obtain the following representation for the values cs , q∗ and τ ∗ with

cs = −d(s)
T ∇xT −

N∑

α=1

D(α,s)
n

1

ns
∇xnα, (4.9)

q∗ = λE 〈E〉 − λ∇xT −
N∑

s=1

N∑

α=1

λ(α,s)
n

1

ns
∇xnα, (4.10)

τ ∗ = −η

(
∇xu + (∇xu)T − 2

3
(∇x · u)I

)
. (4.11)

The production terms (e.g. collision terms, reaction terms) are approximated in
the following operators:

78 4 Models and Applications

Q(e)
n =

∫

vs

〈 fs〉d3vs =
∑

r

asign,r kα,r nαnr , (4.12)

Q(s)
n =

∫

vs

〈 fs〉d3vs =
∑

r

asign,r kα,r nαnr , (4.13)

where kα,r is the parameter of the averaged collision rates, see [14] and asign,r is the
signum function, asign,r = 1 is a source term and asign,r = −1 is a sink term.

Multicomponent Fluid Model with Stefan–Maxwell Equation
In the following, we discuss the extended multicomponent description, which is
generalized via the Stefan–Maxwell approach.

The Stefan–Maxwell equation allows a systematical derivation of the diffusion
processes, where the mixture of the different species is considered, such that we can
also discuss counter diffusion, which is possible in ternary diffusion processes. Also,
the thermodynamical behaviour is discussed accurately without heuristic assump-
tions as in the Fickian’s approach.

We discuss in the following the extension of the transport parameters with respect
to the Stefan–Maxwell equation, see [16].

We assume the following:

• Each heavy particle species can be described with an individual density function.

Our notations are used as in the section “Multicomponent Fluid model with
Stefan–Maxwell Equation”.

We apply the transport equation:

∂

∂t
ns + ∇x · (nsus + nscs) = Q(s)

n , (4.14)

with the diffusion velocity:

cs = −d(s)
T ∇xT −

N∑

α=1

D(α,s)
n

1

ns
∇xnα, (4.15)

which is extended in the following with the Stefan–Maxwell equation.
We decompose into two fluxes:

cs = cs,1 + cs,2, (4.16)

where cs,1 is the thermal flux and cs,2 is the diffusive flux

cs,1 = −d(s)
T ∇xT, (4.17)

cs,2 = js, (4.18)

where js is the so-called driving force of the species s.

4.1 Multicomponent Fluids 79

In our case, we restrict us to the chemical potential as driving force:

js = ns∇xμs, (4.19)

where μs = log(γsns) and γs is the so-called activation constant (γs > 0) and we
obtain

js = ∇xns, (4.20)

where
∑N

s=1 js = 0, i.e. the sum of all fluxes is equal to 0 and the also the sum of
the mass rates is zero

N∑

s=1

ys = 0, (4.21)

where ys = ρs
ρ

.
The Stefan–Maxwell equation is given as

js =
⎛

⎝
N∑

j=1

1

D̃s j
(ys j j − y j js)

⎞

⎠. (4.22)

We can compute the flux matrix j = (j1, . . . , jN)T ∈ IRN×N , where j s is the
column vector of j with M = diag(ms), e = [1, . . . , 1]T , P(y) = I − y ⊗ e =
I − (·, |e)y (where ⊗ is the dyadic product), and we obtain the equation

⎧
⎨

⎩

B(y) jα = P(y)M−1∂xα y, α = 1, . . . , n,

B(y) = [bi j (y)], bi j (y) = fi j yi ,

fur i
= j, bii (y) = −∑N
l=1 fil yl , i, j = 1, . . . , N ,

(4.23)

furthermore, D̃i j = fi j , i, j = 1, . . . , N is the multidiffusion coefficient and n is
the number of spatial dimensions, e.g. n = 2 or n = 3, see [19].

4.1.1.4 Solver Ideas for the Multicomponent System
with the Stefan–Maxwell Equation

We can apply different numerical schemes to solve the multicomponent system with
Stefan–Maxwell equation. Some are discussed in the following:

• Implicit Ideas: Solve the coupled nonlinear transport equation with relaxation
methods.

• Explicit Ideas: Direct solving of Stefan–Maxwell equations, where we apply the
overdetermined equation system and solve analytically the parameters (such a

80 4 Models and Applications

analytical method is very delicate and only applicable to binary or ternary diffusion
operators, see [31]).

• Variational formulations: We apply an additional Poisson’s equation to solve the
constraint of the Stefan–Maxwell equation. We obtain a saddle point problem,
which can be solved by standard mixed finite element methods.

Implicit Method

We apply an implicit method with iteration scheme and rewrite the full equation
system into a quasilinear, strong coupled parabolic differential equation, where we
consider for simplicity only the mass conservation:

ρ
∂

∂t
y + Divx (A(y)P(y)M−1[∇x y]T)) = Qn, in Ω, t > 0, (4.24)

∂

∂n
y = 0, auf ∂Ω, t > 0, (4.25)

y(0) = y0, in Ω, (4.26)

y = (y1, . . . , yN) and Qn = ρ(m1, Q1
n, . . . , m N , QN

n). Furthermore, we have
A(y) = (B(y)|Ext), where the matrix B is extended to an invertable matrix. We
have ∇x y = [∂α y j] ∈ IRn×N and Divx is the divergence in each row of the matrix.

We can show, under some conditions, that we have a existing solution, see [19].
Based on the existing solution, we can apply the following iterative scheme, for

the time intervals n = 0, . . . , N and iterative steps i = 0, . . . , I :

U ′
i+1 = A1(Ui)Ui+1 + A2(Ui)Ui , t ∈ [tn, tn+1], (4.27)

Ui (t
n) = U (tn), (4.28)

where U (tn) is the approximated solution of the last iterative cycle and U0(t) is
an estimated initial or starting solution for the next cycle, e.g. U0(t) = U (tn). The
stopping criterion is given as ||Ui+1(tn+1) − Ui (tn+1)|| ≤ err or the limit of the
number of iterative steps i = I . Furthermore, the operator A1 is the convection part
and A2 is the diffusion part of the transport equation.

The iterative method is convergent with the assumption of the existence of the
solution and boundedness of the operators, see [20, 21].

Explicit Method

Here, we have the benefit of a fast and direct solver for small systems, e.g. binary or
ternary systems.

A main drawback is the application to larger systems of quarternary or higher
mixtures, while it is hard to find the explicit equations.

4.1 Multicomponent Fluids 81

We show the method based on a three-component system, given as

∂tξi + ∇ · Ni = 0, 1 ≤ i ≤ 3, (4.29)
3∑

j=1

N j = 0, (4.30)

ξ2 N1 − ξ1 N2

D12
+ ξ3 N1 − ξ1 N3

D13
= −∇ξ1, (4.31)

ξ1 N2 − ξ2 N1

D12
+ ξ3 N2 − ξ2 N3

D23
= −∇ξ2, (4.32)

where we have Ω ∈ IRd , d ∈ N
+ mit ξi ∈ C2.

We can simplify to

∂tξi + ∇ · Ni = 0, 1 ≤ i ≤ 2, (4.33)
1

D13
N1 + αN1ξ2 − αN2ξ1 = −∇ξ1, (4.34)

1

D23
N2 − βN1ξ2 + βN2ξ1 = −∇ξ2, (4.35)

where α =
(

1
D12

− 1
D13

)
, β =

(
1

D12
− 1

D23

)
.

We obtain the explicit solvable Stefan–Maxwell equation with the multidiffusion
coefficients:

D12 = D̃12

[
1 +

w3
M3

(M3
M2

D̃13 − D̃12)

w1
D1

D̃23 + w2
D2

D̃13
+ w3

D3
D̃12

]
, (4.36)

where D̃i j are the binary diffusion coefficients, Mi is the molar mass of the species i
and wi is the mass rate of the species i , see also the derivation in the paper [18, 32].

Variational Formulation

Here, we can apply standard software codes, which are done in the direction of the
Poisson’s equation.

A drawback of the method is that we have to solve a saddle point problem, which
needs iterative solver methods, which are expensive and apply special solver schemes,
e.g. Lagrangian multipliers.

Formulation with respect to the Poisson’s equation is

−Δu = r, in Ω, (4.37)

u = f, auf ∂Ω, (4.38)

where ∂Ω is the boundary of the domain Ω .

82 4 Models and Applications

A solution of the problem equation is given via a mixed formulation as a saddle
point problem:

p − ∇u = 0, in Ω, (4.39)

∇ · p = r, in Ω, (4.40)

which means that we find a solution for the mixed formulation of (p, u) ∈ Q × V :

∫

Ω

(pq + u∇ · q) =
∫

∂Ω

f q · nds, (4.41)
∫

Ω

v∇ · pdx = −
∫

Ω

rvdx, (4.42)

where n is the outer normal vector of ∂Ω .
The variational formulation of the Stefan–Maxwell equation is given as

∫

Ω

(−∇ξi qi)dx =
∫

Ω

1

ctot

(
N∑

i=1

αi j (ξi J j qi − ξ j Ji qi)

)
dx, (4.43)

∫

Ω

vi∇ · Ji dx =
∫

Ω

ri vi dx, (4.44)

where ri is the reaction rate (e.g. collision term), Ji is the flux, and ξi is the molar
rate of species i . ctot is the total concentration of the mixture.

Regularization Method: Regularization of the Transport Model with Stefan–
Maxwell Equation

There exist several more methods; a well-known idea is the regularization method.
We start with the macroscopic model and extend the Stefan–Maxwell equation to

a regular and solvable system.
The flux term is given as

cs = 1

ρs
∇ js, (4.45)

where js are the mass flux densities with the following constraints:

• ∑N
s=1 js = 0 (i.e. all fluxes are zero), and

• ∑N
s=1 ws = 1 (i.e. all mass rates are 1),

where xs = ws
M̃
Ms

and xs are the molar rates, Ms is the molar mass of species s, M̃
is the molar mass of the mixture and further the density of the mixture is given as
ρ̃ = (1 −∑N−1

s=1 ws)ρN +∑N−1
s=1 wsρs .

4.1 Multicomponent Fluids 83

The Stefan–Maxwell approach is the equibalance of the molar rates for each
individual diffusive flux:

−∇xs = M̃

ρ̃

⎛

⎝
N∑

j=1

1

D̃s j

(
xs

j j

M j
− x j

js
Ms

)⎞

⎠, (4.46)

and we obtain the equation system

FV = −d, (4.47)

where d = (∇x1, . . . ,∇xM)t , V = (j1, . . . , jM)t and F is a singular matrix of the
equation system (4.46).

The next step is the regularization of the singular equation system and we obtain
the novel diffusion matrix:

F̃ = F + αy ⊗ y, (4.48)

where y = (n1, . . . , nM)t , α is a parameter for the solver method and ⊗ is the dyadic
product.

Based on this regularisation, we can apply a standard iterative method and solve
the Stefan-Maxwell equation and also the heavy-particle equations together in a
large linear equation system. Such a combination allows to apply fast linear equation
solvers, e.g. SuperILU solvers.

4.1.1.5 Conclusion

The extension of the known standard heavy particle model with an improved diffusion
part can be done with the Stefan–Maxwell equation.

The former summation approach is replaced by the balance approach, see [16,
18, 19], which is done with the Stefan–Maxwell equation.

The former modelling approaches are extended and the solver methods can be
applied. But we have to extend also the analytical or numerical methods for the
singular perturbed novel equation system.

Therefore, we have to modify the simulation packages with respect to the novel
diffusion part.

While explicit methods to solve the Stefan–Maxwell equations are fast and sim-
ple to implement, they lack with larger systems and larger species in the mixture.
Implicit methods are more flexible and also resolve higher mixtures but are more
time-consuming in the computations, while we apply iterative schemes.

At the end, it is an approach how large the systems and the mixtures are, while for
small systems, we apply an explicit method and for large systems we have to apply
an implicit approach.

84 4 Models and Applications

4.1.2 Multicomponent Fluid Transport Model
for Groundwater Flow

We concentrate on such models, which deal with the transport behaviour of fluids in
the porous media, see [26].

Such models arose of the background to understand flow of water in aquifers,
transport of pollutants in aquifers or underlying rocks and propagation of stresses,
see [26, 33].

We concentrate on introducing the mathematical models, see also [34–36] and
discuss possible solver methods to simulate such models.

4.1.2.1 Introduction and Mathematical Model

We consider a steady-state groundwater flow that is described by a given velocity
field v = v(x) for x ∈ Ω ⊂ Rd for d = 2 or d = 3. In the groundwater, several
radionuclides (or some other chemical species) are dissolved.

We suppose that these nuclides take part in irreversible, first-order chemical reac-
tions. Particularly, each nuclide (a “mother”) can decay only to a single component
(to a “daughter”), but each nuclide can be produced by several reactions, i.e. each
daughter can have several mothers, see [34].

Moreover, the radionuclides can be adsorbed to the soil matrix. If equilibrium
linear sorption is assumed with different sorption constants for each component,
the advective–dispersive transport of each component is slowed down by a different
retardation factor.

Summarizing, the mathematical model can be written in the form [33, 34]

R(i)φ
(
∂t c

(i) + λ(i j)c(i)
)

+ ∇ ·
(

vc(i) − D(i)∇c(i)
)

=
∑

k

R(k)φ λ(ki)c(k), (4.49)

where i = 1, . . . , Ic. The integer Ic denotes the total number of involved radionu-
clides. A stationary groundwater is supposed by considering only divergence-free
velocity field, i.e.

∇ · v(x) = 0, x ∈ Ω. (4.50)

The unknown functions c(i) = c(i)(t, x) denote the concentrations of radionu-
clides, where the space and time variables (t, x) are considered as t ≥ 0 and x ∈ Ω .
The constant reaction rate λ(i j) ≥ 0 determines the decay (sink) term λ(i j)c(i) for
the concentration c(i) and the production (source) term for the concentration c(j).
In general, the j th radionuclide need not to be included in the system (4.49), i.e.
j > Ic. The indices k in the right- hand side of (4.49) run through all mothers of the
i th radionuclide.

4.1 Multicomponent Fluids 85

The remaining parameters in (4.49) include the diffusion–dispersion tensors
D(i) = D(i)(x, v) [33], the retardation factors R(i) = R(i)(x) ≥ 1 and the porosity
of medium φ = φ(x) > 0.

For the modelling of processes on the boundary ∂Ω of the domain Ω , we
apply standard inflow and outflow boundary conditions. Particularly, we neglect
the diffusive–dispersive flux at the outflow (and “noflow”) boundary ∂outΩ := {x ∈
∂Ω, n · v ≥ 0},

n · D(i)∇c(i)(t, γ) = 0, t > 0, γ ∈ ∂Ω, (4.51)

where n is the normal unit vector with respect to ∂Ω . For the case of inflow boundary
∂ inΩ := {x ∈ ∂Ω, n · v < 0}, we assume that the concentrations are prescribed by
Dirichlet boundary conditions:

c(i)(t, γ) = C (i)(t, γ), t > 0, γ ∈ ∂ inΩ. (4.52)

The functions C (i) can describe decay reactions in a waste site (e.g. a nuclear waste
repository), and, in such a way, they shall be related to each other, see, e.g. [37].

The initial conditions are considered in a general form:

c(i)(0, x) = C (i)(0, x), x ∈ Ω. (4.53)

4.1.2.2 Solver Ideas for the Multicomponent Fluid Transport Model

If we assume simple domains, e.g. one-dimensional problems and special boundary
and initial conditions, for the problem (4.49), we could derive analytical solutions,
see for example [37].

Such analytical solutions solve the multicomponent behaviour analytically in an
explicit equation.

For more general applications, e.g. multidimensions and general boundary and
initial conditions, it is necessary to deal with a discretized equation.

Here, we have the following methods to discretize the spatial operators, for
example:

• Finite element methods, see [38] and
• Finite-volume methods, see [39].

We concentrate on the finite-volume scheme, which allow to deal with the con-
servation equation and apply geometrically the derivation of the convection and
diffusion term, see [40].

The finite-volume discretization method, see [42], allows to deal with a general
velocity v = v(x) and general boundary and initial conditions (4.51)–(4.53).

86 4 Models and Applications

We have the following ideas:

• We apply analytical solutions for locally one-dimensional advection-reaction prob-
lems on boundaries between two finite volumes, see also Godunov algorithm [40];
and

• We split the diffusion part of (4.49) using operator splitting procedure and apply
finite-volume method, see [41].

If we have nonlinearities, we apply a linearization method, e.g. fixpoint scheme
or Newton’s method. Based on the linearized equations in (4.49), linear splitting
schemes can be applied and decoupled to several simpler problems. Applying after-
wards the principle of superposition, one can obtain the solution of (4.49) by summing
the solutions of such simpler problems.

4.1.2.3 Splitting Method for the Multicomponent Fluid Transport Model

We decompose the multicomponent fluid transport equation into a convection-
reaction part and a diffusion part.

While the convection-reaction part is solved exactly with one-dimensional solu-
tions and Godunov’s scheme is applied, the diffusion part is solved in the spatial
operators with finite-volume discretization scheme and in the time operator with
implicit time discretization.

Convection-Reaction Part

We apply the following convection-reaction equation:

∂t

(
R(l)φu(l)

)
+ ∇ ·

(
vu(l)

)
+ λ(l) R(l)φu(l) = λ(l−1) R(l−1)φu(l−1). (4.54)

We apply the Godunov’s method which means the solution of the one-dimensional
convection-reaction equations, which are embedded as mass transfer to the finite-
volume scheme, see [42].

So we solve for each underlying one-dimensional Ωi and the mass concentration
to the out-flowing cell j ∈ out (i), a one-dimensional convection-reaction equations
for each species l = 1, . . . , I :

R(l)
i φi∂t u

(l)
i + vi j ∂x u(l)

i + λ(l) R(l)
i φi u

(l)
i = λ(l−1) R(l−1)

i φi u
(l−1)
i . (4.55)

We transform to a directly solvable convection-reaction system, with the follow-
ing as

c(l)
i := R(l)

i φi u
(l)
i , ṽi j = vi j

R(l)
i φi

, (4.56)

and we obtain

∂t c
(l)
i + ṽi j ∂x c(l)

i + λ(l)c(l)
i = λ(l−1)c(l−1)

i . (4.57)

4.1 Multicomponent Fluids 87

For each cell, we compute the total outflow fluxes

τl,i = Vi R(l)

νi
, νi = vi j , j = out (i).

Based on the restriction of the local time, we have the minimum over all possible
cell time steps:

τ n ≤ min
l=1,...,m
i=1,...,I

τl,i ,

and we obtain a velocity of the finite-volume cell:

vl,i = 1

τl,i
.

Then, we can calculate the mass, which is important to embed into the FV discretiza-
tion:

m(l),n
i j,rest = m(l),n

1 (a, b, τ n, v1,i , . . . , vl,i , R(1), . . . , R(l), λ(1), . . . , λ(l)),

m(l),n
i j,out = m(l)

2 (a, b, τ n, v1,i , . . . , vl,i , R(1), . . . , R(l), λ(1), . . . , λ(l)),

where a = Vi R(l)(c(l),n
i j − c(l),n

i j ′), b = Vi R(l)c(l),n
i j ′ and m(l),n

i = Vi R(l)c(l),n
i are the

parameters and j = out (i), j ′ = in(i).
The discretization with the embedded analytical mass is given by

m(l),n+1
i = m(l),n

i j,rest + m(l),n
j ′i,out ,

where m(l),n
i j,rest = m(l),n

i − m(l),n
i j,out is rest mass coming from the total mass and the

outflown mass, see [42].

Diffusion Part

We discretize the diffusion part with the finite-volume methods. We can concentrate
on the following equation:

∂t R c − ∇ · (D∇c) = 0, (4.58)

where c = c(x, t) with x ∈ Ω and t ≥ 0. The diffusion is given as D ∈ IR+ and the
retardation factor is R > 0.0.

The equation is integrated over time and space (implicit time and mass averaging
in space):

88 4 Models and Applications

∫

Ω j

∫ tn+1

tn
∂t R(c) dt dx =

∫

Ω j

∫ tn+1

tn
∇ · (D∇c) dt dx . (4.59)

After applying Green’s formula and the approximation in the finite cells (i.e. Γ j is
the boundary of the finite-volume cell Ω j), we have for one finite cell

Vj R(cn+1
j) − Vj R(cn

j) = τ n
∑

e∈� j

∑

k∈�e
j

|Γ e
jk |ne

jk · De
jk∇ce,n+1

jk , (4.60)

where |Γ e
jk | is the length of the boundary element Γ e

jk .
We calculate the gradients via piecewise finite element function φl and obtain

∇ce,n+1
jk =

∑

l∈�e

cn+1
l ∇φl(xe

jk). (4.61)

Then, we obtain the finite-volume discretization for the diffusion part:

Vj R(cn+1
j) − Vj R(cn

j)

= τ n
∑

e∈� j

∑

l∈�e\{ j}

(∑

k∈�e
j

|Γ e
jk |ne

jk · De
jk∇φl(xe

jk)
)
(cn+1

j − cn+1
l), (4.62)

where the finite cells are given as j = 1, . . . , m.
For such a discretization, we can embed the convection-reaction part via a splitting

approach, which is given in the following.

Coupling Part

The different parts of the full equations are coupled via a operator splitting method.
We apply the following splitting approach:

c∗(tn+1) = c(tn) + τn Ac(tn) (4.63)

c∗∗(tn+1) = c∗(tn+1) + τn Bc∗∗(tn+1), (4.64)

where the time step is τ n = tn+1 − tn and n = 1, . . . , N are the number of time
steps. The operator A is the convection-reaction operator, which can be resolved in
the equation analytically. The operator B is the diffusion operator, which is solved
via FV methods and implicit Euler method.

Based on the analytical resolution of the convection-reaction part, we have the
following splitting approach:

c∗∗(tn+1) = (I − τn B)−1 c∗(tn+1), (4.65)

where c∗(tn+1) is the analytical solution of the convection-reaction part.

4.1 Multicomponent Fluids 89

The splitting error is of the first order based on the non-commuting operators,
see [42].

Remark 4.2 Based on the analytical embedding of the convection-reaction equation,
we can speed up the solver scheme and concentrate on solving the diffusion part.
Here, based on the first-order splitting scheme, we can see the method as following:
The diffusion equation is only perturbed by a convection-reaction part, see [43].

4.1.3 Conclusion

For the multicomponent fluid transport model, it is important to decompose into sim-
pler and faster solvable equation-parts. Each equation-part, e.g. convection-reaction
part or diffusion part, can be solved with more adequate schemes, which are more
effective and faster as a full equation solver. We have applied fast solver methods for
the convection-reaction part, e.g. modified Godunov’s method embedded to finite
volume schemes, and for the diffusion part, e.g. finite volume schemes to discretize
the spatial operators. The parts are coupled with fast operator splitting schemes,
which allow to concentrate on the diffusion solver, while the convection-reaction
part can be embedded as on explicit solved part. Such effective methods allow to
solve the multicomponent fluid transport model with high accuracy and accelera-
tion. In future, an extension of multicomponent fluid transport models with respect
to additional equation-parts, e.g. multiphase parts or growth parts, are possible and
the splitting schemes can be modified to such additional parts.

4.2 Multicomponent Kinetics

Abstract In this section, we discuss the models and applications based on the different
multicomponent kinetic models. Here, we assume to have a microscopic scale, i.e.
we deal with the fine resolution in the atomic scale. So we have a discrete description
and discuss some models based on the multicomponent kinetics problems.

4.2.1 Multicomponent Langevin-Like Equations

The idea is to apply an alternative model based on the Coulomb collision in plasma
to reduce the computational in particle simulations.

The alternative models are based on Langevin equations, which are coupled non-
linear stochastic differential equations, see [44].

Historically, we have two ideas for algorithms for Coulomb collisions in particle
simulations:

90 4 Models and Applications

Fig. 4.2 Screen Coulomb
collision in the
Fokker–Planck limit

Collision Algorithm

 Corresponding

of higher order

in Fokker−Planck limits

Corresponding

Ito−Langevin equation
with collision operator

equations

 discretized equations

splitting schemes
Euler schemes

Screen Coulomb collision

• Binary algorithm: Particles in a finite cell, see particle in cell, are organized into
discrete pairs (therefore binary algorithm) of interacting particles. The collision is
based on oulomb collision of two particles, see [45].

• Test particle algorithm: The collisions are modelled by defining a dual particles
(test particles) and primary particles (field particles). The velocity of the test parti-
cle is modelled by Langevin equation, which is deposited on the space mesh [46].

The idea of the alternative approach is given in Fig. 4.2.
The main contribution to deal with the stochastic model is based on the following

Remark 4.3 of the Coulomb collision approach:

Remark 4.3 Coulomb collisions can be approximated via defining test and field
particles. The test particle velocity is subjected to drag and diffusion in three velocity
dimensions using Langevin equations, see [47].

4.2 Multicomponent Kinetics 91

4.2.2 Introduction to the Model Equations

We are motivated to develop fast algorithms to solve Fokker–Planck equation with
Coulomb collisions in plasma simulations.

The Fokker–Planck equations are given as

∂ f

∂t
+ v

∂ f

∂x
− E(x)

∂ f

∂v
= ∂

∂v

(
−γ v f + β−1γ

∂ f

∂v

)
, (4.66)

where we could decouple such a FP equation into the PIC (particle in cell) part and
the SDE part.

• PIC part
∂ f

∂t
+ v

∂ f

∂x
− E(x)

∂ f

∂v
= 0, (4.67)

• SDE part

∂ f

∂t
= ∂

∂v

(
−γ v f + β−1γ

∂ f

∂v

)
, (4.68)

where we solve the characteristics.

• PIC part
dx

dt
= v, (4.69)

dv

dt
= −E(x) = ∂U

∂x
, (4.70)

where U is the potential.
• SDE part

dx

dt
= 0, (4.71)

dv = −γ vdt +
√

2β−1γ dW. (4.72)

We apply the following nonlinear SDE problem:

dx

dt
= v, (4.73)

dv(t) = ∂

∂x
U (x) − γ vdt +

√
2β−1γ dW, (4.74)

where W is a Wiener process, γ is the thermostat parameter and β is the inverse
temperature.

A long solution to the SDE is distributed according to a probability measure with
density π satisfying

92 4 Models and Applications

π(x, v) = C−1 exp
(
−β
(

v2

2 + U (x)
))

, (4.75)

where x > 0.0, v ∈ IR.

4.2.3 Analytical Methods for Mixed Deterministic–Stochastic
Ordinary Differential Equations

In the following, we present an algorithm, which is based on solving the mixture of
deterministic and stochastic ordinary differential equations.

The idea is based on the deterministic variation of constants to embed perturbed
right-hand sides.

We deal with the following equations:

d X

dt
= V, (4.76)

dV = −E(x)dt − AV dt + BdW,

with X (0) = X0, V (0) = V0, (4.77)

where W is a Wiener process with the N (0,
√

Δ) distributed.
We rewrite to a linear operator and a nonlinear and stochastic function.

dX
dt

= ÃX + E(X) + dW
dt

,

with X0 = (X0, V0)
t , (4.78)

where X = (X, V)t is the solution vector, X0 = (X0, V0)
t is the initial vector,

the matrix is Ã =
(

0 1
0 −A

)
, the nonlinear function is E =

(
0

−E(X)

)
and the

stochastic function is dW
dt =

(
0

B dW
dt

)
.

The analytical solution is given with the exact integration of the exp(Ãs) (variation
of constants):

X(tn+1) = exp(ÃΔt)X0 +
∫ tn+1

tn
exp(Ã(tn+1 − s)) E(X(s)) ds

+
∫ tn+1

tn
exp(Ã(tn+1 − s)) dWs, (4.79)

X(tn+1) = exp(ÃΔt)X0 + Ẽ(X0) + W̃(X0),

where is the electric field integral is computed with a higher order exponential Runge–
Kutta method.

4.2 Multicomponent Kinetics 93

Integration of the E-field function with fourth-order Runge–Kutta method is as
follows:

k1 = ΔtE(Xn), (4.80)

k2 = Δt (E(exp(ÃΔt/2)Xn + 1

2
exp(ÃΔt/2)k1)), (4.81)

k3 = Δt (E(exp(ÃΔt/2)Xn + 1

2
k2)), (4.82)

k4 = Δt (E(exp(ÃΔt)Xn + exp(ÃΔt/2)k2)), (4.83)

Ẽ(Xn) = 1

6

(
exp(ÃΔt)k1 + 2 exp(ÃΔt/2)(k2 + k3) + k4)

)
, (4.84)

and the stochastic integral is computed as

W̃(Xn) =
∫ tn+1

tn
exp(Ã(tn+1 − s)dWs

=
N−1∑

j=0

exp

(
Ã

(
tn, j + tn, j+1

2

))
(W(tn, j+1) − W(tn, j)), (4.85)

Δt = (tn+1 − tn)/N , tn, j = Δt + tn, j−1, tn,0 = tn . (4.86)

Remark 4.4 Based on the perturbation and finer time scales, the stochastic integral is
resolved with finer time steps as the non-stochastic parts. Therefore, we have applied
an adaptive numerical integration method that allows to apply additional smaller time
intervals with more integration points. We obtained more accurate numerical results
of the stochastic integral and reduce the numerical error of the full scheme.

4.2.4 Conclusion

For the multicomponent kinetics, we have additional stochastic equation-parts.
Therefore, it is important to resolve such stochastic parts with high accurate stochas-
tic solvers. We have highly perturbed and finer time scale to resolve such multiscale
parts. In our case, we proposed analytical methods, which solved the stoachstic part
with semi-analytical methods and embedded directly the results to the deterministic
(non-stochastic) part. Here, we obtain high accurate results, while we could concen-
trate on the deterministic solver parts. In the future, an extension of multicomponent
kinetics to many particle applications, e.g. plasma dynamics, is important and we can
apply the idea of the analytical embedding of the stochastic part to the deterministic
parts to reduce the computational time.

94 4 Models and Applications

4.3 Additive Operator Splitting with Finite-Difference
Time-Domain Method: Multiscale Algorithms

Abstract We discuss numerical methods based on additive operator splitting schemes,
which are used to solve Maxwell equations, see [48]. The discretization schemes are
given with Finite-Difference Time-Domain (FDTD) methods, which apply finite
differences in time and space and allow to conserve the physical behaviour of the
equations, see [49]. Because of the 3D Maxwell equations, we result into large semi-
discretized equation systems, i.e. we have to deal with large systems of ordinary
differential equations. Therefore, we are motivated to optimize 3D computations of
electro-magnetic fields with decomposition methods, which decompose into differ-
ent time and spatial scales. Here, we discuss additive operator splitting schemes,
which allow to decompose into several independent solvable smaller equation sys-
tems, see [2]. We embed the FDTD schemes into the additive splitting and result into
a multiscale approach into each spatial dimension.

4.3.1 Introduction

We are motivated to split large semi-discretized equation systems, e.g. resulted from
FDTD schemes, see [3], with additive operator splitting schemes, which allow to
concentrate on each individual dimension and each time and spatial scale of the
underlying reduced equation systems, see [2].

In Fig. 4.3, we present the multiscale splitting with the FDTD discretization
scheme and the AOS (additive operator splitting scheme) as a multiscale splitting
approach.

While explicit time-discretization schemes have restriction with respect to their
CFL (Courant–Friedrichs–Lewy) condition, we also discuss implicit time-discreti-
zation schemes based on modified FDTD and AOS schemes, which overcome such
restrictions, see [50, 51].

4.3.2 Introduction FDTD Schemes

One of the simplest FDTD schemes is the Yee’s algorithm, see [49]. The ideas are
given in the following:

• We combine time and space discretization on a time–space grid. Using central
difference schemes for both time and space, we obtain second-order methods with
respect to the CFL condition of the discretization schemes.

• A staggered grid is necessary to obtain for both time and space second-order
schemes and obtain a stable discretization scheme, see [49].

4.3 Additive Operator Splitting with Finite-Difference … 95

Fig. 4.3 Splitting approach
based on an FDTD
discretized Maxwell
equation

3D Maxwell−equationModel−equation

Coupled via
an additive
step

FDTD MethodDiscretization
Scheme

Additive

Fast solvers
for the decoupled
equation systems,
e.g., in parallel

Discrete results

of the 3D Maxwell equation

Semi−Discretization

Splitting and
time−discretization

Decoupled
one−dimensional
equations based
on the scales

Operator−Splitting

In the following, we present the so-called Yee’s cells in 2D and 3D, see Figs. 4.5
and 4.4.

Such cells are applied with respect to the time and spatial discretization and their
staggered behaviours allow to achieve a second-order scheme.

In the following example, we discuss a first-order FDTD method, see Example 4.1.

Example 4.1 We have the following preparations to achieve the higher order scheme:

• We discretize both time and spackle with a central difference, which is a second-
order scheme.

• We decompose into a primary and dual grid, i.e. we apply a staggered grid for the
magnetic and electric field equations.

• We step forward in time.

We start with the following 1D equations:

∂ Ex

∂t
= − 1

ε0

∂ Hy

∂z
, (4.87)

∂ Hy

∂t
= − 1

μ0

∂ Ex

∂z
, (4.88)

where we have an initial condition of the impulse and adsorbing boundary conditions.
We deal with a wave-front solution in the z direction.

We apply the 1D FDTD method as follows:

96 4 Models and Applications

Fig. 4.4 Staggered grid: 2D

Fig. 4.5 Staggered Grid für
FDTD Methden für 3D

• The simplest 1D FDTD Schema is the Yee’s method.
• We stagger Ex and Hy in time and space with a half-time and half-spatial step.
• We apply the central difference scheme for the time and space coordinates.

We obtain the 1D equation as

En+1/2
x (k) − En−1/2

x (k)

Δt
= − 1

ε0

Hn
y (k + 1/2) − Hn

y (k − 1/2)

Δz
, (4.89)

Hn+1
y (k + 1/2) − Hn

y (k − 1/2)

Δt
= − 1

μ0

En+1/2
x (k + 1) − En+1/2

x (k)

Δz
, (4.90)

where we have a so-called leap-frog algorithm, i.e. first we apply En+1/2
x for all

spatial points and then we apply Hn+1
y for all spatial points. We step forward in time.

For the discretization points of a 1D Yee’s algorithm, see Fig. 4.6.
Based on the explicit method, i.e. we step forward in time, we have restrictions for

the stability in the time step. The CFL condition for the simple 1D Maxwell equation
is given as

4.3 Additive Operator Splitting with Finite-Difference … 97

Fig. 4.6 Staggered grid: 1D

Δt ≤ Δz

c0
(4.91)

where c0 is the light speed.

Remark 4.5 For the explicit higher dimensional FDTD methods, we have also the
same restriction as for the 1D methods. We have also to restrict our time step in 2D
and 3D, as follows, see also [49, 52]:

Δt ≤ min3
i=1{Δxi }
c0

√
d

(4.92)

where Δxi , i = 1, . . . , d are the spatial steps, and c0 is the light speed and
d = 2, 3.

4.3.3 Additive Operator Splitting Schemes

The additive operator splitting scheme can be applied with respect to the different
spatial dimensions. Based on their different scales, we can also apply the AOS scheme
as a multiscale approach, see [2].

In the following, we discuss additive operator splitting schemes, see also [3].
We describe traditional operator splitting methods and focus our attention to the

case of two linear operators, i.e. we consider the Cauchy problem,

∂t c(t) =
m∑

i=1

Am(c) t ∈ (0, T); c(0) = c0 (4.93)

whereby the initial function c0 is given, and A1, . . . , Am are assumed to be bounded
nonlinear operators. (In many applications, they denote the spatially discretized oper-
ators, e.g. they correspond to the discretized in space convection and diffusion oper-
ators (matrices). Hence, they can be considered as bounded operators.)

We discuss the following schemes:

98 4 Models and Applications

• AOS (explicit):

cn+1 =
(

I + t
m∑

i=1

Ai (c
n)

)
cn, (4.94)

while the method is closely related to the idea of the multiplicative splitting (A–B
Splitting) in the explicit form:

exp((A1(c
n) + · · · + Am(cn))t) = exp(A1(c

n)t) · · · · · exp(Am(cn)t), (4.95)

if one apply the explicit Euler to Eq. (4.93) and scheme, you neglect the second-
order term O(t2).
The scheme can be additively applied as

cn+1
i = Bi (c

n)cn, i = 1, . . . , m, (4.96)

cn+1 = cn +
m∑

i=1

cn+1
i , (4.97)

with the operators Bi (cn) := t Ai (cn)).
• AOS (semi-implicit):

cn+1 =
(

I − t
m∑

i=1

Ai (c
n)

)−1

cn, (4.98)

and further

cn+1 = 1

m

(
m∑

i=1

(I − m t Ai (c
n)

)−1

)cn, (4.99)

with the operators Bi (cn) := 1
m (I − m t Ai (cn))

The scheme can be additively applied as

cn+1
i = Bi (c

n)−1cn, i = 1, . . . , m, (4.100)

cn+1 =
m∑

i=1

cn+1
i . (4.101)

4.3 Additive Operator Splitting with Finite-Difference … 99

4.3.4 Application to the Maxwell Equations

We have the following Maxwell equation:

∂ E
∂t

= 1

ε
∇ × H − 1

ε
σ E, (4.102)

∂ H
∂t

= − 1

μ
∇ × E, (4.103)

where the operators are c = E, v = H and we have the abstract formulation:

∂c
∂t

= A c + A4c, (4.104)

with c = (c, v)t , A = A1 + A2 + A3 =
(

0 1
ε

A
− 1

μ
A∗ 0

)
, A4 =

(−σ
ε

I3×3 03×3
03×3 03×3

)
,

where we have A ,A1,A2,A3,A4 ∈ IR6×6 and A, A1, A2, A3, I3×3, 03×3 ∈ IR3×3

with I3×3 as the identity matrix and 03×3 as the zero matrix.
The decomposition is given in the following steps. Each full A = A1 + A2 + A3

is divided into a single dimension as

A1 =
⎛

⎝
0 0 0
0 0 − ∂

∂x
0 ∂

∂x 0

⎞

⎠, A2 =
⎛

⎜⎝
0 0 ∂

∂y
0 0 0

− ∂
∂y 0 0

⎞

⎟⎠, A3 =
⎛

⎝
0 − ∂

∂z 0
∂
∂z 0 0
0 0 0

⎞

⎠,

Here, we have to apply an AOS scheme with four operators.
The full version is given as

∂c
∂t

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ
ε

0 0 0 − ∂
∂z

∂
∂y

0 −σ
ε

0 1
ε

∂
∂z 0 − 1

ε
∂
∂x

0 0 −σ
ε

− 1
ε

∂
∂y

1
ε

∂
∂x 0

0 1
μ

∂
∂z − 1

μ
∂
∂y 0 0 0

− 1
μ

∂
∂z 0 1

μ
∂
∂x 0 0 0

1
μ

∂
∂y − 1

μ
∂
∂x 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

c, (4.105)

based on the equations, and when we apply AOS, we split into the following six
matrices:

100 4 Models and Applications

A11 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ
ε

0 0 0 0 0

0 0 0 1
ε

∂
∂z 0 0

0 0 0 − 1
ε

∂
∂y 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.106)

A21 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ∂
∂y

0 −σ
ε

0 0 0 0

0 0 0 0 1
ε

∂
∂x 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.107)

A31 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ∂
∂y

0 0 0 0 0 − 1
ε

∂
∂x

0 0 −σ
ε

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.108)

A12 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− 1
μ

∂
∂z 0 0 0 0 0

1
μ

∂
∂y 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (4.109)

A22 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1

μ
∂
∂z 0 0 0 0

0 0 0 0 0 0
0 − 1

μ
∂
∂x 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.110)

4.3 Additive Operator Splitting with Finite-Difference … 101

A32 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 − 1

μ
∂
∂y 0 0 0

0 0 1
μ

∂
∂x 0 0 0

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (4.111)

The splitting is based as follows:

cn+1 = 1

6

⎛

⎝
3∑

i=1

2∑

j=1

(I − 6 Δt Ai, j)
−1

⎞

⎠ cn, (4.112)

for example, the first operator is given as

cn+1
1 = 1

6
(I − 6 Δt A11)

−1 cn . (4.113)

If we apply the finite difference discretization of a structured grid, we obtain the
following matrices:

• We assume to have N × N × N grid points, i.e. Hx , Hy, Hz, Ex , Ey, Ez ∈ Ω ∈
IRN × IRN × IRN = IRN 3

.
• The matrices are given as Ai, j ∈ 6IRN 3 × 6IRN 3

, where i = 1, 2, 3 and j = 1, 2.
• For the discretization, we apply the following submatrices: I ∈ IRN × IRN is the

identity matrix, 0 ∈ IRN × IRN is the zero matrix and M ∈ IRN × IRN which is
needed for the difference matrices and given as

M =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0
−1 0 0 . . . 0
0 −1 0 . . . 0
...

. . .
. . .

...

0 . . . 0 −1 0

⎞

⎟⎟⎟⎟⎟⎠
,

• The difference matrices for Mx , My, Mz ∈ IRN 3 × IRN 3
are given as

Mx = 1
Δx

⎛

⎜⎜⎜⎜⎜⎝

I + M 0 0
0 I + M 0 . . . 0
0 0 I + M . . . 0
...

. . .
. . .

...

0 . . . 0 0 I + M

⎞

⎟⎟⎟⎟⎟⎠
,

102 4 Models and Applications

My = 1
Δy

⎛

⎜⎜⎜⎜⎜⎝

I 0 0
M I 0 . . . 0
0 M I . . . 0
...

. . .
. . .

...

0 . . . 0 M I

⎞

⎟⎟⎟⎟⎟⎠
,

Mz = 1
Δz

⎛

⎜⎜⎜⎜⎜⎝

Ĩ 0 0
M̃ Ĩ 0 . . . 0
0 M̃ Ĩ . . . 0
...

. . .
. . .

...

0 . . . 0 M̃ Ĩ

⎞

⎟⎟⎟⎟⎟⎠
,

where Ĩ ∈ IRN 2 × IRN 2
is the identity matrix and M̃ ∈ IRN 2 × IRN 2

is given as

M̃ =

⎛

⎜⎜⎜⎜⎜⎝

M 0 0
0 M 0 . . . 0
0 0 M . . . 0
...

. . .
. . .

...

0 . . . 0 0 M

⎞

⎟⎟⎟⎟⎟⎠
.

Then for example the first operator is discretized as

Cn+1
1 = 1

6
(IDisc − 6 Δt A11,Disc)

−1 Cn, (4.114)

where IA ∈ IRN 3 × IRN 3
is the identity matrix, 0A ∈ IRN 3 × IRN 3

is the zero matrix
and we have

IDisc =

⎛

⎜⎜⎜⎜⎜⎜⎝

IA 0A 0A 0A 0A 0A
0A IA 0A 0A 0A 0A
0A 0A IA 0A 0A 0A
0A 0A 0A IA 0A 0A
0A 0A 0A 0A IA 0A
0A 0A 0A 0A 0A IA

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.115)

A11,Disc =

⎛

⎜⎜⎜⎜⎜⎜⎝

σ
ε

IA 0A 0A 0A 0A 0A
0A 0A 0A

1
ε

Mz 0A 0A
0A 0A 0A − 1

ε
My 0A 0A

0A 0A 0A 0A 0A 0A
0A 0A 0A 0A 0A 0A
0A 0A 0A 0A 0A 0A

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.116)

furthermore, we have Cn+1 = (Ex,disc, Ey,disc, Ez,disc, Hx,disc, Hy,disc, Hz,disc)
T

and all Ex,disc, Ey,disc, Ez,disc, Hx,disc, Hy,disc, Hz,disc ∈ IRN 3
.

4.3 Additive Operator Splitting with Finite-Difference … 103

Remark 4.6 Here, we have an application of a semi-implicit AOS scheme, while the
nonlinearity in Eq. (4.93), i.e. Ai (cn+1), is approximated via Ai (cn), which means
that we restrict us to the linearization of the previous time point tn and therefore, we
embed also a CFL condition.

4.3.5 Practical Formulation of the 3D-FDTD Method

For more practical reasons, we consider on a simpler scheme based on the staggered
time step method, such that we apply semi-implicit schemes.

Maxwell’s equations in lossy and frequency independent materials are given as

∇ × E = −μ
∂ H
∂t

, (4.117)

∇ × H = ∂ D
∂t

, (4.118)

∂ D
∂t

= σ E + ε0εr
∂ E
∂t

(4.119)

where σ is the conductivity, μ is the permeability, ε0 is the vacuum permittivity, εr

is the relative permittivity, E is the electric field, D is the electric flux density and
H is the magnetic field. Equation (4.118) is Maxwell–Ampere equation without free
currents.

We apply the operator ∇× to the equations

∇ × E =
(

∂ Ez

∂y
− ∂ Ey

∂z

)
i x +

(
∂ Ex

∂z
− ∂ Ez

∂x

)
i y +

(
∂ Ey

∂x
− ∂ Ex

∂y

)
i z

= −μ
∂(Hx i x + Hy i y + Hz i z)

∂t
, (4.120)

∇ × H =
(

∂ Hz

∂y
− ∂ Hy

∂z

)
i x +

(
∂ Hx

∂z
− ∂ Hz

∂x

)
i y +

(
∂ Hy

∂x
− ∂ Hx

∂y

)
i z

= ∂(Dx i x + Dy i y + Dz i z)

∂t
, (4.121)

∂ D
∂t

= ∂(Dx i x + Dy i y + Dz i z)

∂t

= σ(Ex i x + Ey i y + Ez i z) + ε0εr
∂(Ex i x + Ey i y + Ez i z)

∂t
. (4.122)

where i x , i y and i z are the unit vectors in x , y and z directions. Then Eqs. (4.120),

104 4 Models and Applications

(4.121) and (4.122) are expressed in a scalar manner as

∂ Ez

∂y
− ∂ Ey

∂z
= −μ

∂ Hx

∂t
, (4.123)

∂ Ex

∂z
− ∂ Ez

∂x
= −μ

∂ Hy

∂t
, (4.124)

∂ Ey

∂x
− ∂ Ex

∂y
= −μ

∂ Hz

∂t
, (4.125)

∂ Hz

∂y
− ∂ Hy

∂z
= ∂ Dx

∂t
, (4.126)

∂ Hx

∂z
− ∂ Hz

∂x
= ∂ Dy

∂t
, (4.127)

∂ Hy

∂x
− ∂ Hx

∂y
= ∂ Dz

∂t
, (4.128)

∂ Dx

∂t
= σ Ex + ε0εr

∂ Ex

∂t
, (4.129)

∂ Dy

∂t
= σ Ey + ε0εr

∂ Ey

∂t
, (4.130)

∂ Dz

∂t
= σ Ez + ε0εr

∂ Ez

∂t
. (4.131)

In the following, we apply the semi-implicit version of an additive splitting
approach to our equation.

4.3.6 Explicit Discretization

Here, the time and space derivatives are discretized by centred differences and the
fields affected by the curl operators and staggered in time.

First, we discretize the conductivity term:

Dn+1/2
x (i, j, k) − Dn−1/2

x (i, j, k)

Δt
= σ En+1/2

x (i, j, k) + ε0εr
En+1/2

x (i, j, k) − En−1/2
x (i, j, k)

Δt
,

(4.132)

Dn+1/2
y (i, j, k) − Dn−1/2

y (i, j, k)

Δt
= σ En+1/2

y (i, j, k) + ε0εr
En+1/2

y (i, j, k) − En−1/2
y (i, j, k)

Δt
,

(4.133)

Dn+3/2
z (i, j, k) − Dn+1/2

z (i, j, k)

Δt
= σ En+1/2

z (i, j, k) + ε0εr
En+1/2

z (i, j, k) − En−1/2
z (i, j, k)

Δt
.

(4.134)

4.3 Additive Operator Splitting with Finite-Difference … 105

Then we discretize the magnetic part:

{
Hn

z (i, j, k) − Hn
z (i, j − 1, k)

Δy
− Hn

y (i, j, k) − Hn
y (i, j, k − 1)

Δz

}

= Dn+1/2
x (i, j, k) − Dn−1/2

x (i, j, k)

Δt
, (4.135)

{
Hn

x (i, j, k) − Hn
x (i, j, k − 1)

Δz
− Hn

z (i, j, k) − Hn
z (i − 1, j, k)

Δx

}

= Dn+1/2
y (i, j, k) − Dn−1/2

y (i, j, k)

Δt
, (4.136)

{
Hn

y (i, j, k) − Hn
y (i − 1, j, k)

Δx
− Hn

x (i, j, k) − Hn
x (i, j − 1, k)

Δy

}

= Dn+1/2
z (i, j, k) − Dn−1/2

z (i, j, k)

Δt
. (4.137)

The last step is to discretize the electric part of the equation:

{
En+1/2

z (i, j + 1, k) − En+1/2
z (i, j, k)

Δy
− En+1/2

y (i, j, k + 1) − En+1/2
y (i, j, k)

Δz

}

= −μ
Hn+1

x (i, j, k) − Hn
x (i, j, k)

Δt
, (4.138)

{
En+1/2

x (i, j, k + 1) − En+1/2
x (i, j, k)

Δz
− En+1/2

z (i + 1, j, k) − En+1/2
z (i, j, k)

Δx

}

= −μ
Hn+1

y (i, j, k) − Hn
y (i, j, k)

Δt
, (4.139)

{
En+1/2

y (i + 1, j, k) − En+1/2
y (i, j, k)

Δx
− En+1/2

x (i, j + 1, k) − En+1/2
x (i, j, k)

Δy

}

= −μ
Hn+1

z (i, j, k) − Hn
z (i, j, k)

Δt
, (4.140)

106 4 Models and Applications

Remark 4.7 We follow forward stepping Hn → En+1/2 → Hn+1. Based on the
staggered grid, we can follow such a forward staggering in time and space.

Furthermore, the spatial parts of the equations can be splitted by applying the
explicit AOS scheme.

4.3.7 Combination: Discretization and Splitting

In the following, we discuss the combination of discretization and splitting. For
example, (4.138) is split into the y direction part and the z direction part.

Therefore, we can apply the additive operator splitting scheme, where we decom-
pose the electric field into a z- and y-part.

We have

− μ
∂ Hx

∂t
= ∂ Ez

∂y
− ∂ Ey

∂z
, Hn

x = Hx (t
n), Δt = tn+1 − tn, (4.141)

and split into the two steps

− μ
∂ H1

x

∂t
= ∂ Ez

∂y
, Hn,1

x = Hx (t
n), Δt = tn+1 − tn, (4.142)

−μ
∂ Hx

∂t
= −∂ Ey

∂z
, Hn

x = Hn+1,1
x = H1

x (tn+1), Δt = tn+1 − tn, (4.143)

where the initial condition of the second equation is coupled by the solution of the
first equation, see also A–B splitting, see [53].

The discretized version of the two steps is given as

En+1/2
z (i, J + 1, K) − En+1/2

z (i, j, k)

Δy

= −μ
Hn+1,1

x (i, j, k) − Hn,1
x (i, j, k)

Δt
(4.144)

where Hn,1
x (i, j, k) = Hn

x (i, j, k), and the z direction part is

− En+1/2
y (i, j, k + 1) − En+1/2

y (i, j, k)

Δz
)

= −μ
Hn+1

x (i, j, k) − Hn+1,1
x (i, j, k)

Δt
. (4.145)

4.3 Additive Operator Splitting with Finite-Difference … 107

Remark 4.8 Here, we have an explicit AOS splitting scheme combined with a FDTD
method. The discretization scheme is based on the staggered grid idea, while the
splitting method is an explicit version.

4.3.8 Practical Formulation of the 3D-AOS-FDTD Method

For more practical reasons, we formulate Eq. (4.99) as

Bi (c
n)cn+1

i = cn, i = 1, . . . , m, (4.146)

cn+1 =
m∑

i=1

cn+1
i . (4.147)

The Maxwell’s equation is given as in Eqs. (4.117)–(4.119). Furthermore, the
operator ∇× is applied to the equations and we obtain Eqs. (4.120)–(4.122). The
equations can be presented in the scalar notation, which is given as in Eqs. (4.123)–
(4.131).

In the following, we apply the additive splitting approach to our magnetic field
equation, which are derived in the AOS scheme as follows:

• For the scalar field Hx , we have

∂ Ez

∂y
− ∂ Ey

∂z
= −μ

∂ Hx

∂t
, (4.148)

and the AOS scheme is given as

∂ Hx
∗

∂t
= − 1

μ

∂ Ez

∂y
, Hx

∗(tn) = Hx (t
n), (4.149)

∂ Hx
∗∗

∂t
= 1

μ

∂ Ey

∂z
, Hx

∗∗(tn) = Hx
∗(tn+1), (4.150)

where Hx (tn+1) = Hx
∗∗(tn+1).

• For the scalar field Hy , we have

∂ Ex

∂z
− ∂ Ez

∂x
= −μ

∂ Hy

∂t
, (4.151)

and the AOS scheme is given as

108 4 Models and Applications

∂ Hy
∗

∂t
= − 1

μ

∂ Ex

∂y
, Hy

∗(tn) = Hy(t
n), (4.152)

∂ Hy
∗∗

∂t
= 1

μ

∂ Ez

∂z
, Hy

∗∗(tn) = Hy
∗(tn+1), (4.153)

where Hy(tn+1) = Hy
∗∗(tn+1).

• For the scalar field Hz , we have

∂ Ey

∂x
− ∂ Ex

∂y
= −μ

∂ Hz

∂t
, (4.154)

and the AOS scheme is given as

∂ Hz
∗

∂t
= − 1

μ

∂ Ey

∂y
, Hz

∗(tn) = Hz(t
n), (4.155)

∂ Hx
∗∗

∂t
= 1

μ

∂ Ex

∂z
, Hz

∗∗(tn) = Hz
∗(tn+1), (4.156)

where Hz(tn+1) = Hz
∗∗(tn+1).

4.3.9 Discretization of the Equations with the AOS

Here, the time and space derivatives are discretized by centred differences and the
fields affected by the curl operators are averaged in time. We apply θ -schemes, i.e.
the combination of an explicit and implicit time discretization, and can apply such a
scheme to the AOS.

For example, we apply AOS Eqs. (4.149)–(4.150) and we have

θ
En+1

z (i, j + 1, k) − En+1
z (i, j, k)

Δy
+ (1 − θ)

En
z (i, j + 1, k) − En

z (i, j, k)

Δy

= −μ
H∗,n+1

x (i, j, k) − Hn
x (i, j, k)

Δt
, (4.157)

−θ
En+1

y (i, j, k + 1) − En+1
y (i, j, k)

Δz
− (1 − θ)

En
y (i, j, k + 1) − En

y (i, j, k)

Δz

= −μ
H∗∗,n+1

x (i, j, k) − H∗,n+1
x (i, j, k)

Δt
, (4.158)

where the results are given as Hn+1
x (i, j, k) = H∗∗,n+1

x (i, j, k).

4.3 Additive Operator Splitting with Finite-Difference … 109

For all Eqs. (4.123)–(4.131) applied to the AOS and the θ -scheme, we have the
discretized equations as

θ

{
En+1

z (i, j + 1, k) − En+1
z (i, j, k)

Δy
− En+1

y (i, j, k + 1) − En+1
y (i, j, k)

Δz

}

+ (1 − θ)

{
En

z (i, j + 1, k) − En
z (i, j, k)

Δy
− En

y (i, j, k + 1) − En
y (i, j, k)

Δz

}

= −μ
Hn+1

x (i, j, k) − Hn
x (i, j, k)

Δt
, (4.159)

θ

{
En+1

x (i, j, k + 1) − En+1
x (i, j, k)

Δz
− En+1

z (i + 1, j, k) − En+1
z (i, j, k)

Δx

}

+ (1 − θ)

{
En

x (i, j, k + 1) − En
x (i, j, k)

Δz
− En

z (i + 1, j, k) − En
z (i, j, k)

Δx

}

= −μ
Hn+1

y (i, j, k) − Hn
y (i, j, k)

Δt
, (4.160)

θ

{
En+1

y (i + 1, j, k) − En+1
y (i, j, k)

Δx
− En+1

x (i, j + 1, k) − En+1
x (i, j, k)

Δy

}

+ (1 − θ)

{
En

y (i + 1, j, k) − En
y (i, j, k)

Δx
− En

x (i, j + 1, k) − En
x (i, j, k)

Δy

}

= −μ
Hn+1

z (i, j, k) − Hn
z (i, j, k)

Δt
, (4.161)

θ

{
Hn+1

z (i, j, k) − Hn+1
z (i, j − 1, k)

Δy
− Hn+1

y (i, j, k) − Hn+1
y (i, j, k − 1)

Δz

}

+ (1 − θ)

{
Hn

z (i, j, k) − Hn
z (i, j − 1, k)

Δy
− Hn

y (i, j, k) − Hn
y (i, j, k − 1)

Δz

}

= Dn+1
x (i, j, k) − Dn

x (i, j, k)

Δt
, (4.162)

110 4 Models and Applications

θ

{
Hn+1

x (i, j, k) − Hn+1
x (i, j, k − 1)

Δz
− Hn+1

z (i, j, k) − Hn+1
z (i − 1, j, k)

Δx

}

+ (1 − θ)

{
Hn

x (i, j, k) − Hn
x (i, j, k − 1)

Δz
− Hn

z (i, j, k) − Hn
z (i − 1, j, k)

Δx

}

= Dn+1
y (i, j, k) − Dn

y (i, j, k)

Δt
, (4.163)

θ

{
Hn+1

y (i, j, k) − Hn+1
y (i − 1, j, k)

Δx
− Hn+1

x (i, j, k) − Hn+1
x (i, j − 1, k)

Δy

}

+ (1 − θ)

{
Hn

y (i, j, k) − Hn
y (i − 1, j, k)

Δx
− Hn

x (i, j, k) − Hn
x (i, j − 1, k)

Δy

}

= Dn+1
z (i, j, k) − Dn

z (i, j, k)

Δt
, (4.164)

where θ = [0, 1].
Remark 4.9 If we apply the conductivity as an operator, we have taken into account
the averaging of the electric field E term. Such an idea is done by θ method and
afterwards, we can apply the additive operator splitting.

Further, we discretize Eqs. (4.129), (4.130) and (4.131), while the conductivity
term and E term are averaged in time.

We apply then

Dn+1
x (i, j, k) − Dn

x (i, j, k)

Δt

= σ(θ En+1
x (i, j, k) + (1 − θ)En

x (i, j, k)) + ε0εr
En+1

x (i, j, k) − En
x (i, j, k)

Δt
, (4.165)

Dn+1
y (i, j, k) − Dn

y (i, j, k)

Δt

= σ(θ En+1
y (i, j, k) + (1 − θ)En

y (i, j, k)) + ε0εr
En+1

y (i, j, k) − En
y (i, j, k)

Δt
, (4.166)

Dn+1
z (i, j, k) − Dn

z (i, j, k)

Δt

= σ(θ En+1
z (i, j, k) + (1 − θ)En

z (i, j, k)) + ε0εr
En+1

z (i, j, k) − En
z (i, j, k)

Δt
, (4.167)

where θ ∈ [0, 1], i.e. θ = 1 is implicit, θ = 0 is explicit and θ = 1/2 is semi-implicit
Then, (4.159)–(4.170) were split into the three direction parts.
For the pure implicit version, which conform with the AOS method, we have

θ = 1 and obtain

4.3 Additive Operator Splitting with Finite-Difference … 111

Dn+1
x (i, j, k) − Dn

x (i, j, k)

Δt
= σ En+1

x (i, j, k) + ε0εr
En+1

x (i, j, k) − En
x (i, j, k)

Δt
, (4.168)

Dn+1
y (i, j, k) − Dn

y (i, j, k)

Δt
= σ En+1

y (i, j, k) + ε0εr
En+1

y (i, j, k) − En
y (i, j, k)

Δt
, (4.169)

Dn+1
z (i, j, k) − Dn

z (i, j, k)

Δt
= σ En+1

z (i, j, k) + ε0εr
En+1

z (i, j, k) − En
z (i, j, k)

Δt
. (4.170)

Also this part can be splitted by applying the AOS scheme for the two operators.

Remark 4.10 At least, the AOS scheme is flexible and we could extend to the implicit
version, i.e. θ = 1. Here, we have to deal additional with inversion of the underlying
equation system, which is more delicate, but we can skip the CFL conditions as time
step conditions. Further additional steps are necessary and are computed implicitly.

4.3.10 Transport Equation Coupled with an Electro-magnetic
Field Equations

The following example is discussed in [3], and concluded some of the important
multiscale results.

We deal with the two-dimensional advection–diffusion equation and electric field
equation:

∂t u = −vx (Ez(x, y))
∂u

∂x
− vy

∂u

∂y
+ D

∂2u

∂x2 + D
∂2u

∂y2 , (4.171)

(x, y, t) ∈ Ω × (0, T),

u(x, y, t0) = u0(x, y), (4.172)
∂ Hx (x, y)

∂t
= −∂ Ez

∂y
, (x, y, t) ∈ Ω × (0, T), (4.173)

∂ Hy(x, y)

∂t
= ∂ Ez

∂x
, (x, y, t) ∈ Ω × (0, T), (4.174)

∂ Ez(x, y)

∂t
= 1

ε

(
∂ Hy

∂x
− ∂ Hx

∂y

)
− Jsource, (x, y, t) ∈ Ω × (0, T), (4.175)

where we have the initial function:

u(x, t0) = ua(x, t0) = 1

t0
exp

(
− (x − vt0)2

4Dt0

)
,

where x = (x, y)t and v = (vx , vy)
t , and we have

112 4 Models and Applications

{
vx (Ez(x, y)) = 1, vy = 1.0, for t ∈ (0, t0),
vx (Ez(x, y)) = αEz(x, y), vy = 0.0, for t ≥ t0,

(4.176)

with α = 0.001, t0 = 10.0. The spatial domain is given as Ω = [0, 1] × [0, 1].
The electric field Ez(x, y) has the following line source:
Jsource(x, y) = sin(t) where x = 0, y ∈ (0, 100).
The control of the particle transport is given by the electric field shown in Fig. 4.7.
In the following, we have the line sources with the results given in Fig. 4.8:

Fig. 4.7 Electric field in the
apparatus

gas− chamber
Particle concentration in theelectric field

Line source for the

 Target or source to be deposited

Transport direction
to the source

Fig. 4.8 Line source of the
electric field in the apparatus

4.3 Additive Operator Splitting with Finite-Difference … 113

Numerically, we solve the equation, as in the following explicit AOS Algo-
rithm 4.3:

Algorithm 4.3 We have coupled the equations by the following algorithm:
(1) Initialize convection–diffusion equation, till t0.
(2) Solve the electric field equation with tstart and obtain Ez(x, y) for t0
(3) Solve convection–diffusion equation with t0 + Δt and use Ez(x, y) for tstart

for the unknown.
(4) Do t0 = t0 + Δt and go to (2) till t0 = tend

The following Figs. 4.9 and 4.10 show the developing concentration under the
influence of the electric field, where α = 0.07, tstart = 0.5 and vy = 0 for t ≥ tstart .

Remark 4.11 For spatial and time discretization, it is important to balance such
schemes. If we apply an explicit AOS method and assume to have finite difference
schemes in time and space, we have taken into account the CFL (Courant-Friedrichs-
Levy) condition.

The condition for the explicit scheme is given as

√
εΔx ≥ Δt, (4.177)

where Δx and Δt are the spatial and time steps.

Fig. 4.9 Concentration density of the plasma specie, influenced by the electromagnetic field, in
the apparatus at time t = 1.483 (the concentration flows from the left lower corner to the center)

114 4 Models and Applications

Fig. 4.10 Electric field in
the apparatus at time
t = 1.483

Remark 4.12 Another idea is based on the following implicit AOS Algorithm 4.4,
while Eqs. (4.171)–(4.175) are discretized as

un+1(i, j) = un(i, j)

+ Δt

(
−vx (En+1

z (i, j))
u(n)(i + 1, j) − un(i, j)

Δx
− vy

un(i, j + 1) − un(i, j)

Δy

+ D
un(i + 1, j) − 2un(i, j) + un(i − 1, j)

Δx2 + D
un(i, j + 1) − 2un(i, j) + un(i, j − 1)

Δy2

)
,

(4.178)

Hn+1
x (i, j) − Hn

x (i, j)

Δt
= − En+1

z (i, j + 1) − En+1
z (i, j)

Δy
, (4.179)

Hn+1
y (i, j) − Hn

y (i, j)

Δt
= En+1

z (i + 1, j) − En+1
z (i, j)

Δx
, (4.180)

En+1,∗
z (i, j) − En

z (i, j)

Δt
= 1

ε
(

Hn+1
y (i + 1, j) − Hn+1

y (i, j)

Δx
) − 0.5Jsource(i, j), (4.181)

En+1
z (i, j) − En+1,∗

z (i, j)

Δt
= 1

ε
(− Hn+1

x (i, j + 1) − Hn+1
x (i, j)

Δy
) − 0.5Jsource(i, j),

(4.182)

where i, j = 1, . . . , I are the spatial discretization points with Δx , and Δy are
the spatial steps. Furthermore, Δt is the time step with n = 0, 1, . . . , N , which are
the time points.

4.3 Additive Operator Splitting with Finite-Difference … 115

Then the equation system is given as

U n+1 = (I − Δt A)−1U n, (4.183)

U n+1 = U n + Δt B(vx (E
n
z), vy, D)U n, (4.184)

where U n+1 = (un+1(1, 1), . . . , un+1(I, I))t is the discretized solution of the trans-
port system, U n+1 = (H n+1

x ,H n+1
y ,E n+1

z)t is the discretized solution of the
electro-magnetic field, with H n+1

x = (Hn+1
x (1, 1), . . . , Hn+1

x (I, I))t , H n+1
y =

(Hn+1
y (1, 1), . . . , Hn+1

y (I, I))t and E n+1
z = (En+1

z (1, 1), . . . , En+1
z (I, I))t . Fur-

thermore, the matrices A ∈ IRI×I and B ∈ IR3I×3I are given and have embedded
the boundary conditions.

The algorithmic idea 4.4 is given as follows.

Algorithm 4.4 We have coupled the equations by the following algorithm:
(1) Initialize convection–diffusion equation, till t0 and n = 0.
(2) Solve implicitly the electro-magnetic field equation with the time step Δt and

obtain E n+1
z for tn+1.

(3) Solve explicitly the convection–diffusion equation with Δt and use E n+1
z for

tn+1 for the unknown and obtain U n+1.
(4) Do tn+1 = tn + Δt and go to (2) till tn+1 = tend .

Here, we have the benefit that we are not restricted to the time step of the electro-
magnetic field and we could apply the large time step, which is also applied for the
convection–diffusion equation.

4.4 Extensions of Particle in Cell Methods for Nonuniform
Grids: Multiscale Ideas and Algorithms

Abstract In this section, we discuss ideas to extend uniform particle in cell (PIC)
method to nonuniform PIC methods. The ideas are based to modify the so-called PIC
cycle parts, which decouple grid-free (particle methods), grid-based (field methods)
and couple the parts with interpolation methods. The methodological idea of the PIC
method can be seen as a multiscale method, while we deal with different underlying
modelling scales, e.g. micro- and macroscopic scale. The different parts of the PIC
method can be applied in different scales, e.g. a microscale (particle solver) and
a macroscale (field solver). So we have a multiscale behaviour, while the transfer
between the micro- and macro-model is done via interpolation or restriction, which is
applied in the PIC method as spline approximations, see [54]. Another aspect results
of the physical constraints mean that we have to fulfil the mass, momentum and
energy conservation of the problem, see [54]. Such a problem can only be fulfilled
for a uniform grid steps, while we deal with a primary grid. A modification to an
adaptive or nonuniform grid needs to extend the freedom degrees of the underlying

116 4 Models and Applications

grid, and therefore we have to deal with an additional so-called dual grid. On dual grid
or in the logical space, we can extend the uniform grid into an adaptive grid and such a
modification allows us to conserve the constraints, e.g. mass, momentum and energy
conservation, see also [55, 56]. Both interpolation schemes (particle to grid and grid
to particle) and solver methods (macrosolver: Poisson solver and microsolver: time
integrator) have to be combined such that the physical constraints are fulfilled and
the numerical errors are at least second order, see [57]. Here, we discuss the ideas to
develop step-by-step multiscale extension of the PIC cycle. We modify shape function
to adaptive shape functions and fit them to the adaptive discretization schemes such
that the interpolations are of the same order as in the uniform case. Furthermore, we
present some extensions to 2D and deal with simple 1D examples.

4.4.1 Introduction of the Problem

The motivation of the modification arose of a practical application in a propulsion
problem. While in the inner or ion thruster part we deal with high density of particle
and the outer or plume region, it has only a very low density of particles, see [58].

If we apply uniform PIC methods, we have taken into one spatial step for the full
region, i.e. the very small spatial step of the inner region, and we have the problem
of very long computational times.

In Fig. 4.11, we present the different spatial scales of the motivation.

Remark 4.13 The multiscale problem is given by the restriction of the time and
spatial steps for a fine resolution of the inner part (restriction by the Debye length λD ,
where Δx ≤ λD and Δx is the spatial step size of the uniform grid. The Debye length
is the distance scale over which significant charge densities can spontaneously exist,

Inner Region
(high density)

[cm] [m] region
[nsec]....[msec] region Spatial−scale

Time−scale

Outer Region
(low density)

Density ρ

[m] [km] region
[sec]....[h] region

Fig. 4.11 The model problem with inner and outer region of different spatial and time scales

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 117

see [30]. It is therefore the largest scale, which can be resolved by the PIC method,
see [54]. Moreover, if we deal with the multiscale problem of the test problem, we
have to obtain very small spatial step sizes.

4.4.2 Introduction of the Extended Particle in Cell Method

The Particle in Cell (PIC) method is the well-known method over the last decades. The
concept of coupling grid and grid-free methods are applied to accelerate the solver
process. While parts of the equations are solved on a grid, e.g. Poisson equation, the
transport of particles is done grid-free by computing the trajectories with fast time
integrators, see [54, 59].

In recent applications, the flexibility of PIC schemes, with respect to higher order
schemes and nonuniform grids, is important (Fig. 4.12).

In the following, we discussed a possible flexibilization of the PIC cycles based
on improving all parts of the cycle, see Fig. 4.2.

The following three parts of the PIC can be improved:

• Shape function (higher order spline functions, which fulfil the constraints, e.g.
TSC or higher, see [54]).

higher order

Solver:
FD or FV
methods of

Pusher:
symplectic time−
integrator of
higher order

higher order
splines
(fulfilled the constraints)

Interpolation (particle −> grid):
higher order
splines
(fulfilled the constraints)

Interpolation (grid −> particle):

Extended PIC scheme for adaptive Problems

Fig. 4.12 Improved PIC cycles for adaptive PIC

118 4 Models and Applications

• Solver (higher order discretization schemes, e.g. fourth-order finite difference
schemes, see [60]).

• Pusher (higher order symplectic time integrators, e.g. fourth-order symplectic
schemes, see [61]).

Remark 4.14 Before improving one part of the PIC cycle, we have to be careful to
fulfil the physical constraints of the problem, such that it might be possible, which we
have to update all the parts of the PIC cycle for such an extension, see the discussion
of an adaptive PIC code in [62].

4.4.3 Mathematical Model

In the following, we discuss the mathematical model, which is based on the Vlasov–
Poisson equation, which describe an ideal plasma model.

The Vlasov equation describes the electron distribution f

∂ f

∂t
+ v · ∂ f

∂x
+ F

m
· ∂ f

∂v
= 0, (4.185)

and the Poisson equation describes the potential to the electrons in the electric field E:

∇2φ = −ρ

ε
, (4.186)

F = qE = −q∇φ, (4.187)

The positive ions are used as a fixed, neutralizing, background charge density ρ0
and the total charge density ρ is given as

ρ(x) = q
∫

f dv + ρ0, (4.188)

We apply the following assumption to the model in the linear case:

• Plasma frequency: ωP =
√

nq2

ε0me
.

• Debye length: λD =
√

ε0kB T
nq2 .

These lengths are important for the explicit numerical schemes, i.e. we have
restrictions of the time and spatial step sizes:

• Time step size Δt � 2
ωP

.
• Spatial step size: Δx ≤ λD .

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 119

Furthermore, we have some more conditions:

• Restriction to the length of apparatus L: λD � L .
• Number of particle: NPλD � L ,

such that we have a sufficient large length of the test apparatus and also to fulfil the
number of particle per Debye length which is sufficiently large, where we have from
the statistical point of view sufficient dates for the methods, see [54].

4.4.4 Discretization of the Model

To compute the model, we have to apply the idea of a super particle, which allows
to decouple into an equation of motion (transport of the particles) and the potential
equation (forces to the particles).

We assume that the x −v phase space is divided into a regular array of infinitesimal
cells of volume dτ = dxdv, where dτ is sufficiently small so that only one electron
is in it. Then f (x, v, t)dτ gives the probability that the cell at (x, v) is occupied at
time t . We assume that the electron is then shifted to time t ′ to the cell (x ′, v′). Due
to this assumption, it is also used in the characteristics schemes, see [63].

We have to solve the equation of motions:

dx

dt
= v, (4.189)

dv

dt
= q E

m
, (4.190)

and in the time integral form

x ′ = x +
∫ t ′

t
vdt, (4.191)

v′ = v +
∫ t ′

t

q E

m
dt, (4.192)

and we can show in general for such a shift: f (x ′, v′, t ′) = f (x, v, t).
To speed up the computations, we take a sample of points (super particle)

{xi , vi , i = 1, . . . , Ns} and an element i of the phase fluid is corresponding to

Ns =
∫

i
f dxdv, (4.193)

120 4 Models and Applications

The characteristics to the phase space of the super particle points are given by

dxi

dt
= vi , (4.194)

dvi

dt
= F(xi)

M
, (4.195)

M = Nsme and me is the electron mass.
In the following, we discuss the different extensions to the adaptive PIC methods.

4.4.4.1 1D Adaptive PIC

To understand the parts of the adaptive PIC method, we discuss in the first steps the
one-dimensional case. In the following, we describe the different tools for the 1D
adaptive PIC:

• 1 D adaptive finite difference (FD) method,
• 1 D adaptive Shape function, and
• Fitting scheme at the interface.

While the 1D FD methods are applied to the micro- and macro-model, we apply
also adaptive interpolation/restriction methods, i.e. shape functions, to apply the
data transfer between the different scales. Furthermore, we have to deal with a fitting
scheme at the interface to fulfil the constraints of the scheme, e.g. conserve the first
moments of the shape functions, see [62].

1D Adaptive Finite Difference Discretization for the Poisson Equation

In the following, we have the adaptive scheme, which are based on weighting the
central difference scheme for the underlying model problem, i.e. here the Poisson’s
equation.

We discuss the adaptive grid of finite difference schemes, see [64], for the Poisson
equation in one dimension:

d2φ

dx2 = − 1

ε0
ρ(xi), xi ∈ [0, L], (4.196)

φ(0) = 0, φ(L) = 0, (4.197)

where xi give the coordinates of a super particle i .
The finite difference scheme after Shortly and Weller [65], which is given with a

three-point stencil, see also [66], and the difference quotient are given as

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 121

−D2
Δxφ = 2

Δx2

[
1

sr (sr + sl)
φ(x + srΔx) + 1

sl(sr + sl)
φ(x − slΔx) − 1

sr sl
φ(x)

]
,

(4.198)

where Δx is the mesh size of the grid and sr , sl ∈ (0, 1] are the scaled factors of the
finer grid. Furthermore, D2

Δx = ∂+
sr Δx∂

−
slΔx is the difference quotient with

∂+
slΔxφ = φ(x) − φ(x − slΔx)

slΔx
, (4.199)

∂−
sr Δxφ = φ(x + srΔx) − φ(x)

srΔx
. (4.200)

The consistency error is given for the boundary points also as a second-order
method, see [66]:

||φ(x) − φΔx (x)|| ≤ Δx2
(

1

48
d2||φ||C3,1(Ω) + 2

3
||φ||C2,1(Ω)

)
, (4.201)

where d ≤ Δx .

Remark 4.15 For a different notation, we apply

DΔx DΔx̃φ = − 2

Δx(Δx + Δx̃)
φ(x + Δx) + 2

Δx Δx̃
φ(x)

− 2

Δx̃(Δx + Δx̃)
φ(x − Δx̃), (4.202)

while Δx is the grid size on the left-hand side and Δx̃ is the grid size on the right-
hand side.

Adaptive Shape Functions

In the following, we derive adaptive higher order shape functions.
We have the following underlying steps for the construction:

1. 1D Interpolation and Shape functions.
2. 1D uniform shape functions.
3. Adaptive Linear Splines (adaptive CIC).
4. Construction of higher order Splines.

The steps are discussed in the following outlined points.

1. 1D Interpolation and Shape functions:

In the following, we discuss the shape functions that are need to map the charge
densities on a grid.

122 4 Models and Applications

We deal with CIC (Cloud in Cell) shape functions, see [54], which are the linear
shape functions S(xi −X j), where X j implements the grid point and xi is the position
of the particle i .
The density at the grid point of the particles is weighted by the weighting function:

ρ j =
N∑

i=1

qi S(xi − X j), (4.203)

where qi is the i th charge.
In standard application, this function is symmetry and fulfils the isotropy of space,

charge conservation and condition to avoid self forces, see [54, 67].
For the consistency of the uniform and nonuniform shape functions, we have the

following restriction:
N∑

i=1

S(x − Xi) = 1, (4.204)

where all the weights are qi = 1 and x is the position of the particle and Xi the grid
point at position i .

In the following, we see the construction on a non-symmetric mesh, see Fig. 4.13.

2. 1D uniform shape function

We deal with the following uniform shape functions:

• NGP: nearest grid point and
• CIC: Cloud in Cell.

The NGP uniform shape functions is given as

S(x − X) =
{

1, when |x − X | ≤ Δx
2 ,

0, else,
(4.205)

where we have a uniform grid size of Δx in the domain Ω = [0, L].
The CIC uniform shape functions is given as

S(x − X) =
{

1 − |x−X |
Δx , when |x − X | < Δx,

0, else,
(4.206)

where we have a uniform grid size of Δx in the domain Ω = [0, L].
For the uniform mesh function, we have to fulfil the consistency (mass conserva-

tion) (4.204).

Theorem 4.5 For the uniform shape function (4.206), we fulfil the consistency
(4.204).

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 123

Δ x Δ x~

Δ x Δ x

Δ x

Uniform Shape Function

Adaptive Shape Function

0

0

shift

Fig. 4.13 Adaptive shape function

Proof It is sufficient to proof the function for the following situation for one particle
x and the two grid points X and X − Δx , based on the symmetry, and one can do it
for all particles:

1 − x − (X − Δx)

Δx
+ 1 − (X − x)

Δx
= 1, (4.207)

2 − x

Δx
− X

Δx
− 1 − X

Δx
+ x

Δx
= 1, (4.208)

this is fulfilled.

3. Adaptive Linear Splines (adaptive CIC)

In the following, we discuss the adaptive shape functions.
We assume the domain Ω = [0, L] and Δx is operating in the domain [0, L1],

while Δx̃ is operating in the domain [L1, L].
The grid point X is not at the boundary L1, i.e. x < L1 − Δx or x > L1 + Δx̃ :

124 4 Models and Applications

S(x − X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − |x−X |
Δx , when |x − X | < Δx, and x ∈ [0, L1],

1 − |x−X |
Δx̃ , when |x − X | < Δx̃, and x ∈ [L1, L],

0, else,

(4.209)

where we assume to have a nonuniform grid size, while of Δx is the domain Ω =
[0, L1] and Δx̃ is the domain Ω = [L1, L].

For the nonuniform mesh function, we have to fulfil the consistency (mass con-
servation) (4.204).

Theorem 4.6 For the nonuniform shape function (4.285), we fulfil the consistency
(4.204).

Proof It is sufficient to prove that the shape functions based on each different domain
fulfil the condition.

For domain Ω1 = [0, L1], we have

1 − x − (X − Δx)

Δx
+ 1 − (X − x)

Δx
= 1, (4.210)

and when it is fulfilled also for domain Ω2 = [L1, L], we have

1 − x − (X − Δx̃)

Δx̃
+ 1 − (X − x)

Δx̃
= 1. (4.211)

Remark 4.16 The idea of the adaptive shape functions can also be extended to higher
order shape functions, e.g. [54]. An example is given in the appendix.

4. Construction of the higher order Spline

We have the following situation of the shape functions, see in Fig. 4.14.
Following [54], we have the following constraints to derive the higher shape

functions:

x3

xΔ = Η 2
~Δ 1x = H

xx2

Nonuniform Fractions

x1

Fig. 4.14 Nonuniform fractions for the shape functions (nonuniform TSC function)

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 125

m∑

p=1

Wp(x) = 1, (4.212)

m∑

p=1

Wp(x)(x − x p)
n = const. (4.213)

The additional obtained freedom degrees can be used to approximate to the correct
potential φc.

We improve the interpolation by the fact that

φ(x ′) = G(x ′ − x) + C

2

d2G(x ′ − x)

dx2 + O(Δ3), (4.214)

where G is the Greens function and φ(x ′) is the correct potential at x ′.
Later, we could apply the freedom degree with C to the spline fitting of the adaptive

grids.
Due to the fact that φ and G are even functions, we have the following restriction

of our constraint:

m∑

p=1

Wp(x)(x − x p)
n =

{
0 n odd

const, n even
, (4.215)

where

Wp = 0, p
= 1, 2, . . . , n. (4.216)

Furthermore, the displacement invariance property is given as

Wp(x) = W (x − x p). (4.217)

Example 4.2 In the following, we derive the uniform and nonuniform shape
functions.

1. Uniform Case

We derive the case of n = 2 and n = 3.
For n = 2, we have three constraint equations:

W1 + W2 + W3 = 1, (4.218)

W1x1 + W2x2 + W3x3 = x, (4.219)

W1x2
1 + W2x2

2 + W3x2
3 = C + x2, (4.220)

Wp = 0 for p
= 1, 2, 3, (4.221)

additional, we have to apply to derive the constant C :

126 4 Models and Applications

φ(x ′) = G(x ′ − x) + C

2

d2G(x ′ − x)

dx2 + O(Δ3), (4.222)

where G is the Greens function and φ(x ′) is the correct potential at x ′.
For solving the linear equation system, we applied program-code Maxima [68] and
we obtain

W1 = C + (x2 − x) x3 − x x2 + x2

(x2 − x1) x3 − x1 x2 + x1
2 , (4.223)

W2 = −C + (x1 − x) x3 − x x1 + x2

(x2 − x1) x3 − x2
2 + x1 x2

, (4.224)

W3 = C + (x1 − x) x2 − x x1 + x2

x3
2 + (−x2 − x1) x3 + x1 x2

. (4.225)

Using the displacement invariance property (4.217) and Eq. (4.216), we obtain

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2+3 H x+2 H2+C
2H2 , − 3

2 H ≤ x < − 1
2 H,

1− (x2+C)

H2 , − 1
2 H ≤ x < 1

2 H,

x2−3 H x+2 H2+C
2H2 , H

2 < x < 3H
2 ,

0, else.

(4.226)

2. For n = 3, we have three constraint equations:

W1 + W2 + W3 + W4 = 1, (4.227)

W1x1 + W2x2 + W3x3 + W4x4 = x, (4.228)

W1x2
1 + W2x2

2 + W3x2
3 + W4x2

4 = C + x2, (4.229)

W1x3
1 + W2x3

2 + W3x3
3 + W4x3

4 = 3xC + x3, (4.230)

Wp = 0 for p
= 1, 2, 3, 4, (4.231)

additionally, we have to apply to derive the constant C :

φ(x ′) = G(x ′ − x) + C

2

d2G(x ′ − x)

dx2 + O(Δ3), (4.232)

where G is the Greens function and φ(x ′) is the correct potential at x ′.
For solving the linear equation system, we applied program-code Maxima [68]

and we obtain

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 127

W1 = x4
(
C + (x2 − x) x3 − x x2 + x2

)+ x3
(
C − x x2 + x2

)+ x2
(
C + x2

)− 3 x C − x3

(
(x2 − x1) x3 − x1 x2 + x1

2
)

x4 + (x1
2 − x1 x2

)
x3 + x1

2 x2 − x1
3

,

W2 = − x4
(
C + (x1 − x) x3 − x x1 + x2

)+ x3
(
C − x x1 + x2

)+ x1
(
C + x2

)− 3 x C − x3

(
(x2 − x1) x3 − x2

2 + x1 x2
)

x4 + (x1 x2 − x2
2
)

x3 + x2
3 − x1 x2

2
,

W3 = x4
(
C + (x1 − x) x2 − x x1 + x2

)+ x2
(
C − x x1 + x2

)+ x1
(
C + x2

)− 3 x C − x3

(
x3

2 + (−x2 − x1) x3 + x1 x2
)

x4 − x3
3 + (x2 + x1) x3

2 − x1 x2 x3
,

W4 = − x3
(
C + (x1 − x) x2 − x x1 + x2

)+ x2
(
C − x x1 + x2

)+ x1
(
C + x2

)− 3 x C − x3

x4
3 + (−x3 − x2 − x1) x4

2 + ((x2 + x1) x3 + x1 x2) x4 − x1 x2 x3
.

Using the displacement invariance property (4.217) and Eq. (4.216), we obtain

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x3+6 H(x2+C)−11H2x−3Cx+6H3

6H3 , −2H ≤ x < −H,

x3−2H(x2+C)−H2x+3Cx+2H3

2H3 , −H ≤ x < 0,

−x3−2H(x2+C)+H2x−3Cx+2H3

2H3 , 0 ≤ x < H,

x3+6 H(x2+C)+11H2x+3Cx+6H3

6H3 , H ≤ x < 2H,

0, else.

(4.233)

A simpler notation because of the symmetry is given as

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−|x |3−2H(x2+C)+H2|x |−3C|x |+2H3

2H3 , |x | < H,

|x |3+6 H(x2+C)+11H2|x |+3C|x |+6H3

6H3 , H ≤ |x | < 2H,

0, else.

(4.234)

Such shape function can be applied for the higher order interpolations between
grid-free (pusher) and grid parts (solver).

2. Nonuniform Case

We derive the cases for n = 2, and the same idea is also applied for n = 3.
For n = 2, we have three constraint equations:

128 4 Models and Applications

W1 + W2 + W3 = 1, (4.235)

W1x1 + W2x2 + W3x3 = x, (4.236)

W1x2
1 + W2x2

2 + W3x2
3 = C + x2, (4.237)

Wp = 0 for p
= 1, 2, 3, (4.238)

additionally, we have to apply to derive the constant C :

φ(x ′) = G(x ′ − x) + C

2

d2G(x ′ − x)

dxdx̃
+ O(Δ3), (4.239)

where G is the Greens function and φ(x ′) is the correct potential at x ′. The adaptive
Laplacian is given as d2

dxdx̃ , as given in Eq. (4.202).
We deal with the discussion of the smoothness constraint, which we have as an

upper bound of our C . For the uniform grid, the discussion is done in [54].
The effects of the charge assignment are given as

φp = 1

8

2H1

H1 + H2
G p+H2 + 3

4
G p + 1

8

2H2

H1 + H2
G p−H1 , (4.240)

and we obtain

φp = G p + H1 H2

8

(
2H2

H1 + H2
G p+H2 − 2

H1 H2
G p + 2H1

H1 + H2
G p−H1

)
,

φp = G p + C

2

d

dx

d

dx̃
G p, (4.241)

and we obtain C = H1 H2
4 .

Next, we solve the linear equation system that we applied program-code Maxima
[68] and we obtain

W1 = C + (x2 − x) x3 − x x2 + x2

(x2 − x1) x3 − x1 x2 + x1
2 , (4.242)

W2 = −C + (x1 − x) x3 − x x1 + x2

(x2 − x1) x3 − x2
2 + x1 x2

, (4.243)

W3 = C + (x1 − x) x2 − x x1 + x2

x3
2 + (−x2 − x1) x3 + x1 x2

. (4.244)

Using the displacement invariance property (4.217) and Eq. (4.216), we obtain

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 129

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2−2H1x+H2(H1−x)+H2
1 +C

H1(H1+H2)
, − 3H1

2 < x < − H1
2 ,

−x2+H2(x+H1)−H1x−C
H1 H2

, − H1
2 < x < − H2

2 ,

x2+2H2x+H1(H2+x)+H2
2 +C

H2(H1+H2)
, H2

2 < x < 3H2
2 ,

0, else,

(4.245)

where H1 = x2 − x1, H2 = x3 − x2, H1 + H2 = x3 − x1 and C ∈ [0, H1 H2
4]. So we

deal with an adaptive interface with grid lengths H1 and H2.

4.4.4.2 Correction of the Shape Function

For the physical constraints, it has to be fulfilled in the shape functions, and therefore
we have additional algorithms to correct the derived shape functions:

• Algorithm 1 (Multigrid idea) for corrected shape function,
• Algorithm 2 (Fixpoint idea) for corrected shape function,
• Improved Pusher: Velocity Verlet,
• Momentum conserved constraint, and
• Spline fitting to fulfil the momentum conservation.

Algorithm 1 (Multigrid Idea) for Corrected Shape Function

In the following, we present the algorithm of the corrected shape function. This is
an initialization process, which we have to do first one and afterwards we have at the
interface such a corrected shape function.

Algorithm 4.7 (1) Compute the corrected potential at the interface with the fine
grid:

φ f ine(x ′) = W2, f ine(x)G(x ′ − x), (4.246)

where G is the Greens function (which is given locally in 2D or 3D) and ρ(x) = 1,
i.e. we assume W2, f ine(x) = 1.

(2) Compute the uncorrelated potential at the interface with the coarse-grid local
(quadratic spline with an assumed C = Cuncorrelated , e.g. Cuncorrelated = (Δx/2)2.)

φcoarse,uncorrelated(x ′) = W2,coarse(x)G(x ′ − x), (4.247)

where G is the Greens function (which is given locally in 2D or 3D) and ρ(x) = 1,
but we have a different shape function based on the adaptation W2,coarse(x)
=
W2, f ine(x) = 1.

130 4 Models and Applications

(3) Compute the corrected adaptive shape function (compute the parameter C):

φcoarse,correlated = C

2
W2,coarse(x)

∂

∂x

∂

∂ x̃
G + W2,coarse(x)G

= C

2
W2,coarse(x)

∂

∂x

∂

∂ x̃
G + φcoarse,uncorrelated(x ′)

= φ f ine(x ′), (4.248)

and we have

C = 2
φ f ine(x ′) − φcoarse,uncorrelated(x ′)

W2,coarse(x) ∂
∂x

∂
∂ x̃

. (4.249)

For the initialization of the interface, we have first computed this corrected shape
function, and if we do not change the interface afterwards, we could use the fitted
spline for all the particles.

In the following, we describe the spline fitting algorithm in Fig. 4.15.

x32x =xx1 x’

Interface

x32x =xx1 x’

Interface

x32x =xx1 x’

Interface

Spline−Fitting

1.) Computation at Interface with fine shape function (red: correct Potential)

3.) Computation at Interface with corrected coarse shape function (green: correlated Potential)

2.) Computation at Interface with coarse shape function (blue: uncorrelated Potential)

Fig. 4.15 Spline fitting: fine-coarse interface at interface point x

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 131

Δ x Δ x~xp−1
xp xp+1

S 2,uncorr.

Δ x Δ x~xp−1
xp xp+1

S 2,corr.

Correlation shape function and discretization

Correlation shape function with respect to

the adaptive grid

Fig. 4.16 Correlated shape functions to the adaptive discretization scheme (adapted TSC function)

In Fig. 4.16, we present the correlated shape function with respect to the adaptive
discretization scheme.

Algorithm 2 (Fixpoint Idea) for Corrected Shape function

In the following, we present an alternative algorithm of the corrected shape func-
tion based on forward and backward computations at the interface, which can be
formulated to a fixpoint scheme.

The algorithm is given as follows.

Algorithm 4.8 We start with known xn
i , x p, vn−1/2

i and C0 = 0
(1) Forward PIC algorithm starting with xn

i and +q (positive charge)

xn
i → ρn

p → φn
p → En

p → Fn
i → vn+1/2

i → xn+1
i (4.250)

(2) Backward PIC algorithm starting with xn+1
i and −q (negative charge)

xn+1
i → −ρn+1

p → −φn+1
p → −En+1

p → −Fn+1
i → −ṽn+1/2

i → x̃n
i (4.251)

132 4 Models and Applications

xp−1
xp p+1xxi

n

Δ x

x
n~
i

Δ x~

xi
n+1

Iterative PIC scheme at Interface
Forward PIC (+q)

Backward PIC (−q)

Fig. 4.17 Iterative PIC (forward and backward computations with PIC at the interface)

(3) Difference Forward PIC and Backward PIC algorithm

Δxi = xn
i − x̃n

i , (4.252)

(4) Adaptation of parameter C j

We compute the error of the schemes (forward, backward)

|W (xn
i − x p, C j−1) − W (x̃n

i − x p, C j−1)| = δW, (4.253)

if ΔW ≤ error , we are done and C j−1 is our novel parameter for the shape function
else we compute C j with

W (xn
i − x p, C j) − W (x̃n

i − x p, C j−1) = 0, (4.254)

and go to step (1)

In Fig. 4.17, we see the idea of the iterative forward and backward PIC scheme.

Improved Pusher: Velocity Verlet

For the backward PIC, we have a problem in computing the backward velocity ṽn+1/2
i ,

with the simple leap-frog algorithm, see [69, 70], and we have to apply vn+3/2
i which

is not given.
Here, an improved second-order scheme to compute also backward a PIC

algorithm.

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 133

We have to apply the velocity Verlet, which is given as a forward scheme xn →
xn+1 (xn, vn is known)

vn+1/2 = vn + 1

2
Δt F(xn), (4.255)

xn+1 = xn + Δt vn+1/2, (4.256)

vn+1 = vn+1/2 + 1

2
Δt F(xn+1), (4.257)

or a backward scheme x̃n+1 → x̃n (x̃n+1, ṽn+1 is known):

ṽn+1/2 = ṽn+1 − 1

2
Δt F(x̃n+1), (4.258)

xn = x̃n+1 − Δt ṽn+1/2, (4.259)

ṽn = ṽn+1/2 − 1

2
Δt F(x̃n). (4.260)

Remark 4.17 Higher order schemes with respect to magnetic and electric field can
be obtained by extrapolation schemes [71] or cyclotronic integrators [61].

Momentum Conserved Constraint

Idea of spline fitting, see [54], reduces the spatially localized errors based on the
adaption at the interface.

We are motivated to embed higher order shape and discretization functions to
reduce the local error at the interface of the adaptation.

In book of Hockney [54], the higher order shape functions are introduced to fit at
the long-range constraints, and we apply them as a freedom degree to the adaptive
grids, see Fig. 4.18.

The full PIC cycle is given as follows (discrete model):
(1) Charge assignment (Method: Spline functions):

ρn
p = q

H

Np∑

i=1

W (xi − x p) (4.261)

Δ x Δ x~
xp−1

xp

xp

xp+1

Adaptive Interface in grid point

Fig. 4.18 Adaptive interface

134 4 Models and Applications

(2) Field equation (Method: Solver)
We have to solve

∇2φp = −ρp

ε0
(4.262)

We obtain the notation with the Greens function:

φp,h =
∑

j

ρp′,hGh,H (p, p′) (4.263)

while we have a discrete Greens function, see the idea of the composite grids, [54].
The discrete analogue of the Greens function to the adaptive finite difference

scheme is given as

Gh,H (·, eΓ ∗
h
) = A−1

h,H eΓ ∗
h

(4.264)

where Γ ∗
h = Γ − h.

If we have not a translation invariant matrix, we have also a non-translation invari-
ant inverse matrix, and therefore also the discrete Greens function is not translation
invariant.

The we discretize the electric field with

E p,h =
∑

s

as(φp+s,h − φp−s,h) (4.265)

where as is the coefficient for the finite difference discretization.
(3) Force interpolation (Method: Spline functions)

F(xi) =
∑

p

W (xi − x p)Fp (4.266)

(4) Equation of motion (Method: Pusher)

vi+1/2 = vi−1/2 + δt

2
F(xi), (4.267)

xi+1 = xi + δt vi+1/2, (4.268)

vi+1 = vi+1/2 + δt

2
F(xi+1). (4.269)

Based on the PIC cycle, we fulfil the following constraints and conserve the
momentum.

Based on the ideas of [54, 57], the conditions

• Identical charge assignment, and
• Correctly space-centred finite difference approximations, while we have the con-

dition

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 135

d(x p; x p′) = −d(x p′ , x p) (4.270)

are sufficient to fulfil the self-force and inter-particle force, and therefore the momen-
tum constraint.

While we deal with adaptive grids, the constraint 2 (4.270) is only fulfilled with
uniform grids.

We propose the following constraint, which is a combination of constraints 1 and 2,
while we balance between the freedom degree of the shape functions:

d(x p − x p′)W (x p − x p′ , Copt) = −d(x p′ − x p)W (x p′ − x p, Copt) (4.271)

Copt ∈ [0, H2/4].
Then the momentum conservation is given with respect to the self-force and inter-

particle force.

Spline Fitting to Fulfil the Momentum Conservation

We obtain the following approach to the Greens function:

G p
ex,q = G p

q + C1,exactΔG p
q φ(x ′)

= G p−ed hl

q−ed hl
+ C2,exactΔG p−ed hl

q−ed hl
= G p−ed hl

ex,q−ed hl
, (4.272)

where C1,exact = |p − q|/2, C2,exact = |(p − ed hl) − (q − ed hl)|/2.

To obtain the translation invariant G p
ex,q == G p−ed hl

ex,q−ed hl
, we have to fit

G p
q + C1ΔG p

q φ(x ′) = G p−ed hl

q−ed hl
+ C2ΔG p−ed hl

q−ed hl
, (4.273)

G p−ed hl

q−ed hl
= G p

q + C1ΔG p
q φ(x ′) − C2ΔG p−ed hl

q−ed hl
(4.274)

and we can fit C1 and C2 to have a translation invariant function G p
q . Furthermore,

C1 and C2 have fulfilled the adaptive higher order discretization scheme.

Remark 4.18 Here, we apply the similar ideas as in [72] for AMR (adaptive mesh
refinement). While we are only approaching to one interface and we deal with higher
order shape functions, we are more flexible to derive the constants C1 and C2.

4.4.5 2D Adaptive PIC

In the following, we discuss the extension to the two-dimensional particle in cell
method based on adaptive schemes. Here, we have the influence of the higher dimen-
sions to the discretization and shape functions.

136 4 Models and Applications

In the following, we describe the different tools for the 2d adaptive PIC:

• 2D discretization scheme based on finite difference methods for the different equa-
tions (e.g. Maxwell and Newton equation),

• Shape functions:

– 2D Shape functions (general introduction),
– 2D adaptive Shape function (linear functions), and
– 2D adaptive Shape function (quadratic functions).

Remark 4.19 The discretization and solver schemes are similar to the 1D problem.
Based on the FD method, we have only to increase the standard method to a two-
dimensional scheme, see [64], and apply the linear equation systems to the solver
methods, see [54]. More important are the modifications related to the shape func-
tions, which connect the different models (microscopic and macroscopic model).

In the following, we concentrate on the 2D shape functions.

2D Shape Functions (General Introduction)

In the following, we describe higher order shape function for 2D problems.
We can extend the idea of the derivation of the shape function to higher dimensions,

in the following, we discuss the 2D shape functions.
Constraints for the two-dimensional shape functions nth order
For nth order, we have n + 1 constraint equations:

∑

P

WP = 1, charge conservation, (4.275)

∑

P

WPΔi = 0, first order, (4.276)

∑

P

WPΔiΔ j = C1δi j , second order, (4.277)

∑

P

WPΔiΔ jΔk = 0, third order, (4.278)

∑

P

WPΔi1Δi2Δi3Δi4 = C2δi1,i2,i3,i4 , fourth order, (4.279)

..., (4.280)∑

P

WPΔi1Δi2 . . . Δin = 0, nth order (n odd), (4.281)

∑

P

WPΔi1Δi2 . . . Δin = Cn/2δi1,i2,...,in , nth order (n even), (4.282)

where p = (p1, p2) is a pair labelling the mesh point p at position xp. The expansion

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 137

of the additional constant C is given as

φ(x′) =
∑

P

WP(x)

∞∑

r,s=0

Δr
1Δ

s
2

r ! s!
∂r+s G

∂xr∂ys
, (4.283)

where G is the Greens function and φ(x ′) is the correct potential at x ′.

2D Adaptive Shape Function (Linear Function), Linear Spline n = 1, CIC
Adaptive for 2D

In the following, we discuss the two ideas to create 2D shape functions for the
two-dimensional case:

• Local one-dimensional (splitting in the locally dimensions).
• Full two-dimensional (non-splitting of the locally dimensions).

We discuss the different approximations.

• One-dimensional Local
In the following, we discuss the adaptive shape functions.

Assumption 4.9 We assume that the dimensions can be separated and the shape
functions can be constructed as locally one-dimensional problems:

W (x, y) = P(x)P(y) (4.284)

We assume a four-point stencil for the adaptive finite difference scheme.

We assume the domain Ω = [0, L1] × [0, L2]. In the adaptive grid, we assume
that Δx is operating in the domain [0, L1,1] × [0, L2], while Δx̃ is operating in the
domain [L1,1, L1] × [0, L2]. Furthermore, we assume that Δy is operating in the
domain [0, L1]×[0, L2,1], while Δỹ is operating in the domain [0, L1]×[L2,1, L2].
We have the following shape function:

S(x − X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − |x−X |

Δx

) (
1 − |y−Y |

Δy

)
, when |x − X | < Δx, |y − Y | < Δy

and (x, y) ∈ [0, L1,1] × [0, L2,1],
(

1 − |x−X |
Δx̃

) (
1 − |y−Y |

Δy

)
, when |x − X | < Δx̃, |y − Y | < Δy

and (x, y) ∈ [L1,1, L1] × [0, L2,1],
(

1 − |x−X |
Δx

) (
1 − |y−Y |

Δỹ

)
, when |x − X | < Δx, |y − Y | < Δỹ

and (x, y) ∈ [0, L1,1] × [L2,1, L2],

(
1 − |x−X |

Δx̃

) (
1 − |y−Y |

Δỹ

)
, when |x − X | < Δx̃, |y − Y | < Δỹ

and (x, y) ∈ [L1,1, L1] × [L2,1, L2],

0, else,

, (4.285)

138 4 Models and Applications

where we have x = (x, y)t .
For the nonuniform mesh function, we have to fulfil the consistency (mass con-

servation) (4.204).

Theorem 4.10 For the nonuniform shape function (4.285), we fulfil the consistency
(4.204).

Proof It is sufficient to prove that the shape functions based on each different domain
fulfil the condition.

While we can separate to local one-dimensional problem and each dimension is
fulfil, see Sect. 4.4.4.1 and we are done.

• Two-dimensional

For n = 1, we have three constraint equations:

∑

P

WP = 1, (4.286)

∑

P

WPΔi = 0, (4.287)

where p = (p1, p2) is a pair labelling the mesh point p at position xp.
We have the following equations:

W1 + W2 + W3 = 1, (4.288)

W1x1 + W2x2 + W3x3 = x, (4.289)

W1 y1 + W2 y2 + W3 y3 = y. (4.290)

By solving Eqs. (4.317)–(4.320), we obtain (using program-code Maxima [68])

W1 = x (y3 − y2) + x2 (y − y3) + x3 (y2 − y)

x1 (y3 − y2) + x2 (y1 − y3) + x3 (y2 − y1)
, (4.291)

W2 = − x (y3 − y1) + x1 (y − y3) + x3 (y1 − y)

x1 (y3 − y2) + x2 (y1 − y3) + x3 (y2 − y1)
, (4.292)

W3 = x (y2 − y1) + x1 (y − y2) + x2 (y1 − y)

x1 (y3 − y2) + x2 (y1 − y3) + x3 (y2 − y1)
, (4.293)

for − H2

2
≤ x ≤ H1. (4.294)

where x = (x, y)t , H1 = (H11, H12)
t and H2 = (H21, H22)

t .
Using the displacement invariance property (4.217) and Eq. (4.216), we obtain

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 139

W (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − x
H11

− y
H21

, 0 < x <
H11
2 , 0 < y <

H21
2 ,

1 − x
H11

+ y
H22

, 0 < x <
H11
2 , − H22

2 < y < 0,

1 + x
H12

− y
H21

, − H12
2 < x < 0, 0 < y <

H21
2 ,

1 + x
H12

+ y
H22

, − H12
2 < x < 0, − H22

2 < y < 0,

1 − x
H11

,
H11
2 < x <

3H11
2 , 0 < y <

H21
2 ,

1 − x
H11

,
H11
2 < x <

3H11
2 , − H22

2 < y < 0,

1 + x
H12

, − 3H12
2 < x < − H12

2 , 0 < y <
H21
2 ,

1 + x
H12

, − 3H12
2 < x < − H12

2 , − H22
2 < y < 0,

1 − y
H21

, 0 < x <
H11
2 ,

H21
2 < y <

3H21
2 ,

1 − y
H21

, − H12
2 < x < 0,

H21
2 < y <

3H21
2 ,

1 + y
H22

, 0 < x < − H11
2 , − 3H22

2 < y < − H22
2 ,

1 + y
H22

, − H12
2 < x < 0, − 3H22

2 < y < − H22
2 ,

0, else,

(4.295)

where H1 = (H11, H21)
t and H2 = (H21, H22)

t . We deal with an adaptive interface
with grid lengths H1 and H2, given in Fig. 4.19.

2D Adaptive Shape Function (Quadratic Function), Quadratic Splines n = 2,
CIC Adaptive for 2D

In the following, we discuss the adaptive shape functions.

Assumption 4.11 We assume that the dimensions can be separated and the shape
functions can be constructed as locally one-dimensional problems:

W (x, y) = P(x)P(y). (4.296)

We assume the domain Ω = [0, L1] × [0, L2]. In the adaptive grid, we assume
that Δx is operating in the domain [0, L1,1] × [0, L2], while Δx̃ is operating in the

140 4 Models and Applications

Fig. 4.19 Two-dimensional
adaptive five-point
charge-sharing scheme
assigns charge to the nearest
grid point (labelled 1) and
the next-nearest grid points
in the east–west direction
(labelled 2 and 2′) and in the
north–south direction
(labelled 3 and 3′)

21H /2

22H /2

12H /2 11H /2

2

3

3’

1
2’

Adaptive 2D Charge−Sharing Scheme
for Finite Difference Methods

domain [L1,1, L1] × [0, L2]. Furthermore, we assume that Δy is operating in the
domain [0, L1]×[0, L2,1], while Δỹ is operating in the domain [0, L1]×[L2,1, L2].

We have the following pair of equation for the shape functions.
We have the following equations:

P1,x + P2,x + P3,x = 1, (4.297)

P1,x x1 + P2,x x2 + P3,x x3 = x, (4.298)

P1,x x2
1 + P2,x x2

2 + P3,x x2
3 = x2 + Cx , (4.299)

and

P1,y + P2,y + P3,y = 1, (4.300)

P1,y y1 + P2,y y2 + P3,y y3 = y, (4.301)

P1,y y2
1 + P2,y y2

2 + P3,y y2
3 = y2 + Cy . (4.302)

The locally one-dimensional shape functions are given as

Px (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Px,1(x) = x2−2H12x+H11(H12−x)+H2
12+Cx

H12(H12+H11)
, − 3H12

2 < x < − H12
2 ,

Px,2(x) = −x2+H11(x+H12)−H12x−Cx
H12 H11

, − H12
2 < x < − H11

2 ,

Px,3(x) = x2+2H11x+H12(H11+x)+H2
11+Cx

H11(H12+H11)
, H11

2 < x < 3H11
2 ,

Px,4(x) = 0, else
(4.303)

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 141

where H12 = x2 − x1, H11 = x3 − x2, H11 + H12 = x3 − x1 and Cx ∈ [0, H12 H11
4].

So we deal with an adaptive interface in x direction with grid length H11 and H12,
see also Fig. 4.20. Furthermore, we have

Py(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Py,1(y) = y2−2H22 y+H21(H22−y)+H2
22+Cy

H22(H22+H21)
, − 3H22

2 < y < − H22
2 ,

Py,2(y) = −y2+H21(y+H22)−H22 y−Cy
H22 H21

, − H22
2 < y < − H21

2 ,

Py,3(y) = y2+2H21 y+H22(H21+y)+H2
21+Cy

H21(H22+H21)
, H21

2 < y < 3H21
2 ,

Py,4(y) = 0, else
(4.304)

where H22 = y2 − y5, H21 = y4 − y2, H21 + H22 = y4 − y5 and Cy ∈ [0, H21 H22
4].

So we deal with an adaptive interface in y direction with grid length H21 and H22,
see also Fig. 4.20.

H22

H21

H11H12

Adaptive 2D Charge−Sharing Scheme
for quadratic splines and Finite Difference Methods

4

5

3
2

1

Fig. 4.20 Two-dimensional adaptive five-point charge-sharing scheme assigns charge to the nearest
and the next-nearest grid points

142 4 Models and Applications

Finally, we obtain the 2D shape function with locally one-dimensional shape
functions:

W (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Px,1(x)Py,1(y),

Px,2(x)Py,1(y),

Px,3(x)Py,1(y),

Px,4(x)Py,1(y),

Px,1(x)Py,2(y),

Px,2(x)Py,2(y),

Px,3(x)Py,2(y),

Px,4(x)Py,2(y),

Px,1(x)Py,3(y),

Px,2(x)Py,3(y),

Px,3(x)Py,3(y),

Px,4(x)Py,3(y),

Px,1(x)Py,4(y),

Px,2(x)Py,4(y),

Px,3(x)Py,4(y),

Px,4(x)Py,4(y).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.305)

For the nonuniform mesh function, we have to fulfil the consistency (mass con-
servation) (4.204).

Theorem 4.12 For the nonuniform shape function (4.285), we fulfil the consistency
(4.204).

Proof It is sufficient to prove that the shape functions based on each different domain
fulfil the condition.

While we can separate to local one-dimensional problem and each dimension is
fulfil, see Sect. 4.4.4.1 and we are done.

4.4.6 Application: Multidimensional Finite Difference Method

In the following, we discuss the multidimensional discretization of the Poisson and
electric field equation.

The Poisson equations is given as

Δφ(Xi, j,k) = − 1
ε0

ρ(Xi, j,k), Xi, j,k ∈ [0, L]3 = Ω, (4.306)

φ(Xi, j,k) = 0, Xi, j,k ∈ ∂Ω, (4.307)

where Xi, j,k = (xi , y j , zk)
t is the three-dimensional coordinate of the particle

(i, j, k).

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 143

The electric field is given as

Ei, j,k = −∇φ(Xi, j,k), (4.308)

where Ei, j,k is the electric field in grid point Xi, j,k .
The multidimensional finite difference equations are given as

φi+1, j,k − 2φi, j,k + φi−1, j,k

Δx2 + φi, j+1,k − 2φi, j,k + φi, j−1,k

Δy2

+ φi, j,k+1 − 2φi, j,k + φi, j,k−1

Δz2 = − 1

ε0
ρi, j,k ∈ [0, L], (4.309)

φ(0, 0, 0) = 0, φ(L , 0, 0) = 0, φ(0, L , 0), . . . , φ(L , L , L) = 0, (4.310)

where φ(xi , y j , zk) = φi, j,k

The electric fields are given as

Ei+1/2, j,k = −φi, j,k − φi+1, j,k

Δx
, (4.311)

Ei, j+1/2,k = −φi, j,k − φi, j+1,k

Δy
, (4.312)

Ei, j,k+1/2 = −φi, j,k − φi, j,k+1

Δz
, (4.313)

where we called such a discretization “staggered grids”, see [64].

4.4.7 Application: Shape Functions for the Multidimensional
Finite Difference Method

In the following subsection, we modify the shape functions to the previous introduced
multidimensional finite difference method.

For n = 1, we have three constraint equations (additional we need one constraint
for the second momentum):

∑

P

WP = 1, (4.314)

∑

P

WPΔi = 0, (4.315)

∑

P

WPx p yp = xy, (4.316)

where p = (p1, p2) is a pair labelling the mesh point p at position xp.

144 4 Models and Applications

We have the following equations:

W1 + W2 + W3 + W4 = 1, (4.317)

W1x1 + W2x2 + W3x3 + W4x4 = x, (4.318)

W1 y1 + W2 y2 + W3 y3 + W4 y4 = y, (4.319)

W1x1 y1 + W2x2 y2 + W3x3 y3 + W4x4 y4 = xy. (4.320)

By solving Eqs. (4.317)–(4.320), we obtain (using program-code Maxima [68])

W1 = W11

W12
, (4.321)

W11 = x3 (x2 ((y3 − y2) y4 − y y3 + y y2) + x ((y − y3) y4 + y2 y3 − y y2))

+ x4 (x ((y3 − y2) y4 − y y3 + y y2) + x2 ((y − y3) y4 + y2 y3 − y y2)

+ x3 ((y2 − y) y4 + (y − y2) y3)) + x x2 ((y2 − y) y4 + (y − y2) y3), (4.322)

W12 = x3 (x2 ((y3 − y2) y4 − y1 y3 + y1 y2) + x1 ((y1 − y3) y4 + y2 y3 − y1 y2))

+ x4 (x1 ((y3 − y2) y4 − y1 y3 + y1 y2) + x2 ((y1 − y3) y4 + y2 y3 − y1 y2)

+ x3 ((y2 − y1) y4 + (y1 − y2) y3)) + x1 x2 ((y2 − y1) y4 + (y1 − y2) y3),

(4.323)

W2 = − W21

W22
, (4.324)

W21 = x3 (x1 ((y3 − y1) y4 − y y3 + y y1) + x ((y − y3) y4 + y1 y3 − y y1))

+ x4 (x ((y3 − y1) y4 − y y3 + y y1) + x1 ((y − y3) y4 + y1 y3 − y y1)

+ x3 ((y1 − y) y4 + (y − y1) y3)) + x x1 ((y1 − y) y4 + (y − y1) y3) (4.325)

W22 = x3 (x2 ((y3 − y2) y4 − y1 y3 + y1 y2) + x1 ((y1 − y3) y4 + y2 y3 − y1 y2))

+ x4 (x1 ((y3 − y2) y4 − y1 y3 + y1 y2) + x2 ((y1 − y3) y4 + y2 y3 − y1 y2)

+ x3 ((y2 − y1) y4 + (y1 − y2) y3)) + x1 x2 ((y2 − y1) y4 + (y1 − y2) y3),

(4.326)

W3 = W31

W32
(4.327)

W31 = x2 (x1 ((y2 − y1) y4 − y y2 + y y1) + x ((y − y2) y4 + y1 y2 − y y1))

+ x4 (x ((y2 − y1) y4 − y y2 + y y1) + x1 ((y − y2) y4 + y1 y2 − y y1)

+ x2 ((y1 − y) y4 + (y − y1) y2)) + x x1 ((y1 − y) y4 + (y − y1) y2) (4.328)

W32 = x3 (x2 ((y3 − y2) y4 − y1 y3 + y1 y2) + x1 ((y1 − y3) y4 + y2 y3 − y1 y2))

+ x4 (x1 ((y3 − y2) y4 − y1 y3 + y1 y2) + x2 ((y1 − y3) y4 + y2 y3 − y1 y2)

+ x3 ((y2 − y1) y4 + (y1 − y2) y3)) + x1 x2 ((y2 − y1) y4 + (y1 − y2) y3),

(4.329)

W4 = − W41

W42
, (4.330)

W41 = x2 (x1 ((y2 − y1) y3 − y y2 + y y1) + x ((y − y2) y3 + y1 y2 − y y1))

+ x3 (x ((y2 − y1) y3 − y y2 + y y1) + x1 ((y − y2) y3 + y1 y2 − y y1)

+ x2 ((y1 − y) y3 + (y − y1) y2)) + x x1 ((y1 − y) y3 + (y − y1) y2) (4.331)

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 145

W42 = x3 (x2 ((y3 − y2) y4 − y1 y3 + y1 y2) + x1 ((y1 − y3) y4 + y2 y3 − y1 y2))

+ x4 (x1 ((y3 − y2) y4 − y1 y3 + y1 y2) + x2 ((y1 − y3) y4 + y2 y3 − y1 y2)

+ x3 ((y2 − y1) y4 + (y1 − y2) y3)) + x1 x2 ((y2 − y1) y4 + (y1 − y2) y3),

(4.332)

for − H
2

≤ x ≤ H
2

. (4.333)

where x = (x, y)t , H = (Hx , Hy)
t .

Using the displacement invariance property (4.217) and Eq. (4.216), we obtain

W (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3 Hx +3 |x |) Hy−3 |y| Hx −8 |x | |y|
3 Hx Hy

, −H
2 < x < H

2 ,

−3 Hx |y|+2 |x | |y|+(3 Hx −2 |x |) Hy
3 Hx Hy

, − Hx
2 < x <

Hx
2 ,

Hy
2 < |y| <

3 Hy
2 ,

− 6 Hx |y|+x (2 Hy−4 |y|)−3 Hx Hy
3 Hx Hy

,
Hx
2 < x <

3Hx
2 , − Hy

2 < y <
Hy
2 ,

− 6 Hx y+x (2 Hy−4 y)−3 Hx Hy
3 Hx Hy

,
Hx
2 < x <

3Hx
2 ,

Hy
2 < y <

3Hy
2 ,

Hy (x+Hx)−2 |y| x−2 |y| Hx
Hx Hy

, − 3Hx
2 < x < − Hx

2 , − Hy
2 < y <

Hy
2 ,

0, else,
(4.334)

where y2−y1 = Hy , x3−x1 = 3
2 Hx , x4−x1 = −Hx , y3−y1 = 1

2 Hy , y2−y1 = Hy .
We deal with an adaptive interface with grid length H = (Hx , Hy)

t and Hcoarse =
2H = (2Hx , 2Hy)

t , given in Fig. 4.21.

4.4.8 Simple Test Example: Plume Computation of Ion
Thruster with 1D PIC Code

In the following, we present a real-life experiment of an ion thruster with plume
computations in 1D, see also the work in [55, 56].

In the following, we present a many particle experiment, which is closer to real
numerical applications. The experiment is a simplified thruster model in one space
dimension and three velocity dimensions, including the channel and the plume region.
Referred to [73], we took the following physics parameters:

146 4 Models and Applications

2 H x

2 H y

Hx

Hy

3

4

2’

1

2

for Finite Volume Methods
Adaptive 2D Charge−Sharing Scheme

Fig. 4.21 Two-dimensional adaptive five-point charge-sharing scheme assigns charge to the nearest
grid point (labelled 1) and the next-nearest grid points in the east–west direction (labelled 2 and 2′)
and the further north–south direction (labelled 3 and 4)

• Potential at the thruster anode was �A = 400 V , while the potential at the simu-
lated plume end was taken as zero.

• A static neutral background (here Argon), exponentially decaying in space, was
taken for the channel region, with a total density of nn = 5.0 × 1018m3.

• An electron gun was placed in front of the channel exit (x ∈ [300λDe; 320λDe])
with an injection flux of fe = 2.82 × 1011 s1. The injected particles had an
Gaussian-distributed velocity, due to the thermal velocity vth,e = 1.03 × 10+6 m/s.
The initial electron temperature was taken as Te = 6 eV.

• The implemented reactions are as follows: ionization of Ar with Ar + e →
Ar+ + 2e and elastic collisions of electrons and neutrals.

In the 1D model as well as in the real-life thruster, the emitted electrons are getting
accelerated by the potential of the anode. These electrons are ionizing the Argon
neutrals in the channel, and a plasma is building up, as can be seen in Fig. 4.22.
In the real thruster, a configuration of the magnetic field over the whole domain,
as well as the resulting in particle–wall interaction, is keeping the plasma in the
channel and producing a flat potential, which has a steep decrease at the thruster
exit, which accelerates the ions and gives the thrust. While our model is only one
dimension, we adapted the magnetic field to the simplified model and took a weak

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 147

Fig. 4.22 Stable situation in the plume region with potential, electrical field, particle density and
particle velocity plotted over the spatial grid length L

magnetic field in the thruster exit region, perpendicular to our space axis x . In this
region (x ∈ [150λDe; 20λDe]), the electron velocity in x direction gets weakened,
so that electrons can only pass via collisions. With this configuration, we were able
to simulate a simple 1D thruster model, which gets steady state after about 1.5 ×
106 P I Csteps = 5.3 × 106 s, as can be seen in Fig. 4.23.

More computation parameters and the steady-state particle parameters are given
in Table 4.2.

Remark 4.20 The test results are produced with uniform and nonuniform grids. In
both results, we could achieve the same one-dimensional behaviours. At least, the
numerical results validate the behaviour of the steep gradient on the potential, see
Fig. 4.22, that decouples the inner and outer part of the ion thruster.

148 4 Models and Applications

Fig. 4.23 Averaged species in the domain over the computed time

Table 4.2 Parameters for the plume computation

Electrons Te = 6.00 eV(69627 K)

Superparticles (electrons, PIC) Ndb × Nsp = 100 × 6.04 × 101 = 6.038 × 103

ne = 1.0 × 1012 cm−3(1.0 × 1018 m−3)

vth,e = 1.027274 e + 06 m/s

Scaling factors ωpe = 5.64146 × 1010 Hz

λDe = 1.820937 × 10−5 m

Ions (Ar+) vth,Ar = 8.474025 × 102 m/s

Neutrals (Ar) nn = 5.000000e + 18 m−3

Output of the computations

Time step dt = 3.545181 × 10−12 s

Averaging time 3.545 × 10−3ns−0.0 ns

Spatial length Lsystem = 1.274656 × 101 mm

4.4 Extensions of Particle in Cell Methods for Nonuniform Grids … 149

4.4.9 Conclusion

We have derived an extension of uniform particle in cell method to nonuniform grids
for 1D and 2D equations. The multiscale method, which is given with the parts
pusher (microscopic level), solver (macroscopic level) and interpolation/Restriction
(complying microscopic and macroscopic level), can be extended with respect to an
adaptive scheme. The extensions have been done for the solver, pusher and interpo-
lation functions, which coupled the microscopic and macroscopic model equations.
The problem is to modify all parts of the cycle to achieve an extension of the adaptive
or nonuniform grids. At least, we can accelerate a simple real-life problem, which has
a gap between the high-density (apparatus) and low-density (plume) area, such that
adaptive schemes can overcome the uniform step sizes and modify to each disparate
spatial and time scales, see [56, 74].

References

1. E. Weinan, Principle of Multiscale Modelling (Cambridge University Press, Cambridge, 2010)
2. J. Geiser, in Coupled Systems: Theory, Models and Applications in Engineering. Numerical

Analysis and Scientific Computing Series, ed. by F. Magoules, C.H. Lai (CRC Press, Chapman
& Hall/CRC, 2014)

3. J. Geiser, Operator splitting method for coupled problems: transport and Maxwell equations.
Am. J. Comput. Math. Sci. Res. Publ. USA 1, 163–175 (2011)

4. H. Kim, Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-systems.
Springer Theses (Springer, Heidelberg, 2011)

5. J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J.L. Zimmermann, T. Shimizu, S.
Karrer, Plasma medicine: possible applications in dermatology. JDDG, J. Ger. Soc. Dermatol.
(2010). ISSN 1610-0379

6. J. Liebmann, J. Scherer, N. Bibinov, P. Rajasekaran, R. Kovacs, R. Gesche, P. Awakowicz,
V. Kolb-Bachofen, Biological effects of nitric oxide generated by an atmospheric pressure
gas-plasma on human skin cells. Nitric Oxide 24(1), 8–16 (2011)

7. K.H. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker, Non-Equilibrium Air Plasmas at
Atmospheric Pressure. Series in Plasma Physics (Taylor and Francis, London, 2004)

8. J. Meichsner, M. Schmidt, R. Schneider, H.-E. Wagner, Nonthermal Plasma Chemistry and
Physics (CRC Press, Taylor and Francis, Boca Raton, 2012)

9. T.K. Senega, R.P. Brinkmann, Generalized transport coefficients of multicomponent low-
temperature plasmas. IEEE Trans. Plasma Sci. 35(5), 1196–1203 (2007)

10. T.K. Senega, Schwerteilchen-Transport in Niedertemperatur-Plasmen: Modellierung Tech-
nisch Relevanter Plasmen (Logos, Berlin, 2007)

11. W. Dobrygin, Modelling and Simulation of a Plasmajet. Diplomarbeit, Theoretische Elek-
trotechnik (Ruhr-Universität Bochum, 2014)

12. W. Dobrygin, J. Trischmann, T. Hemke, R.P. Brinkmann, Simulation und Modellierung der
Strömungsdynamik eines nicht-thermischen Plasmajets in Atmosphärendruck. Vortrag, Theo-
retische Elektrotechnik (Ruhr-Universität Bochum, Bochum, 2014)

13. J. Schäfer, F. Sigeneger, R. Foest, D. Loffhagen, K.-D. Weltmann, On plasma parameters of a
self-organized plasma jet at atmospheric pressure. Eur. Phys. J. D 60, 531–538 (2010)

14. T.K. Senega, R.P. Brinkmann, A multi-component transport model for non-equilibrium low-
temperature low-pressure plasmas. J. Phys. D: Appl. Phys. 39, 1606–1618 (2006)

15. K.-H. Spatschek, Theoretische Plasmaphysik (Teubner Studienbücher, 1990)

150 4 Models and Applications

16. D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion. Parabol. Probl. Progr.
Nonlinear Differ. Equ. Appl. 80, 81–93 (2011)

17. J.A. Wesselingh, R. Krishna, Mass Transfer in Multicomponent Mixtures. VSSD, 1st edn.
(Delft, The Netherland, 2000–2006)

18. K. Böttcher, Numerical solution of a multi-component species transport problem combining
diffusion and fluid flow as engineering benchmark. Int. J. Heat Mass Transf. 53, 231–240
(2010)

19. M. Herberg, M. Meyries, J. Prüss, M. Wilke, Reaction-diffusion systems of Maxwell-Stefan
type with reversible mass-action kinetics. Preprint, eprint arXiv:1310.4723 (2013)

20. J. Geiser, in Iterative Splitting Methods for Differential Equations. Numerical Analysis and
Scientific Computing Series, ed. by F. Magoules, C.H. Lai (Chapman & Hall/CRC, 2011)

21. J. Geiser, in Modelling and Simulation in Engineering with Multi-physics and Multiscale Meth-
ods: Theory and Application. Numerical Analysis and Scientific Computing Series, ed. by F.
Magoules, C.H. Lai (Chapman & Hall/CRC, 2014)

22. D. Fang, M. Hieber, R. Zi, Global existence results for Oldroyd-B fluids in exterior domains:
the case of non-small coupling parameters. Mathematische Annalen 357(2), 687–709 (2013)

23. V. Giovangigli, Multicomponent Flow Modeling (Birkhäuser, Basel, 1999)
24. R. Krishna, R. Taylor, Multicomponent mass transfer theory and applications, in Handbook

for Heat and Mass Transfer, vol. 2, Chap. 7, ed. by N. Cheremisinoff (Gulf, Houston, 1986)
25. R. Krishna, J. Wesselingh, The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci.

52, 861911 (1997)
26. J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media

(Kluwer Academic Publishers, Dordrecht, 1991)
27. D.J. Acheson, Elementary Fluid Dynamics. Oxford Applied Mathematics & Computing Sci-

ence Series (2002)
28. R. Balescu, Transport Processes in Plasma: Classical Transport, vol. 1 (North Holland Pub-

lishing, Amsterdam, 1988)
29. B.V. Alexeev, Generalized Boltzmann Physical Kinetics, 1st edn. (Elsevier Science, Amster-

dam, 2004)
30. M.A. Lieberman, A.J. Lichtenberg, Principle of Plasma Discharges and Materials Processing,

2nd edn. (Wiley, New York, 2005)
31. K.N. Kulkarni, Multicomponent diffusion in ternary and quaternary diffusion couples and in

multilayered assemblies. Ph.D. thesis, Purdue University, 2008
32. A. Spille-Kohoff, E. Preus, K. Böttcher, Numerical solution of multi-component species trans-

port in gases at any total number of components. Int. J. Heat Mass Transf. 55, 5373–5377
(2012)

33. J. Bear, Dynamics of Fluids in Porous Media (American Elsevier, New York, 1972)
34. J. Geiser, Discretization and Simulation of Systems for Convection-Diffusion-Dispersion Reac-

tions with Applications in Groundwater Contamination. Monograph, Series: Groundwater
Modelling, Management and Contamination (Nova Science Publishers, Inc., New York, 2008)

35. R.E. Ewing, Up-scaling of biological processes and multiphase flow in porous media. IIMA
Volumes in Mathematics and its Applications, vol. 295 (Springer, New York, 2002), pp. 195–
215

36. E. Fein, Software package r3t : model for transport and retention in porous media. Final report,
GRS-192, Braunschweig (2004)

37. M. Genuchten, Convective-dispersive transport of solutes involved in sequential first-order
decay reactions. Comput. Geosci. 11(2), 129–147 (1985)

38. S. Larsson, V. Thomee, Partial Differential Equations with Numerical Methods. Text in Applied
Mathematics, vol. 45 (Springer, Heidelberg, 2003)

39. P. Knabner, L. Angerman, Numerical Methods for Elliptic and Parabolic Partial Differential
Equations: An Applications-oriented Introduction. Texts in Applied Mathematics (Springer,
Heidelberg, 2003)

40. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied
Mathematics (Cambridge University Press, Cambridge, 2002)

http://arxiv.org/abs/1310.4723

References 151

41. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor and Francis, 1980)
42. J. Geiser, Discretization methods with analytical solutions for convection-diffusion dispersion-

reaction equations and applications. J. Eng. Math. 57(1), 79–98 (2007)
43. J. Geiser, Iterative operator-splitting methods with higher order time-integration methods and

applications for parabolic partial differential equations. J. Comput. Appl. Math. Elsevier, Ams-
terdam, The Netherlands 217, 227–242 (2008)

44. J. Geiser, Recent advances in splitting methods for multiphysics and multiscale: theory and
applications. J. Algorithms Comput. Technol. Multi-Sci. Brentwood, Essex, UK, accepted
August 2014 (to be published second issue 2015)

45. K. Nanbu, Theory of cumulative small-angle collisions in plasmas. Phys. Rev. E Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top. 55(4), 4642–4652 (1997)

46. B.I. Cohen, L. Divol, A.B. Langdon, E.A. Williams, Effects of ion-ion collisions and inho-
mogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering.
Phys. Plasmas 13(2), 022705 (2006)

47. B.I. Cohen, A.M. Dimits, A. Friedman, R.E. Caflisch, Time-step considerations in particle
simulation algorithms for coulomb collisions in plasmas. IEEE Trans. Plasma Sci. 38(9), 2394–
2406 (2010)

48. P. Vabishchevich, Additive Operator-difference Schemes: Splitting Schemes (De Gruyter,
Berlin, 2014)

49. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd edn. (Artech House, Norwood, 2005)

50. Y. Yang, R.S. Chen, E.K.N. Yung, The unconditionally stable Crank Nicolson FDTD method
for three-dimensional Maxwell’s equations. Microw. Opt. Technol. Lett. 48(8), 1619–1622
(2006)

51. J. Shibayama, M. Muraki, J. Yamauchi, H. Nakano, Efficient implicit FDTD algorithm based
on locally one-dimensional scheme. Electron. Lett. 41(19) (2005)

52. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method
(Artech House Inc., Boston, 1995)

53. R.I. McLachlan, G.R.W. Quispel, Splitting methods. Acta Numerica 341–434 (2002)
54. R. Hockney, J. Eastwood, Computer Simulation Using Particles (CRC Press, 1985)
55. J. Duras, K. Matyash, D. Tskhakaya, O. Kalentev, R. Schneider, Self-force in 1D electrostatic

particle-in-cell codes for non-equidistant grids. Contrib. Plasma Phys. 54(8), 697–711 (2014)
56. K. Lueskow, J. Duras, O. Kalentev, K. Matyash, J. Geiser, R. Schneider, D. Tskhakaya. Non-

equidistant particle-in-cell for ion thruster plumes, in Proceedings of the 33rd IEPC, October,
2013, Washington, DC, USA, IEPC-2013-067 (2013)

57. D. Tskhakaya, K. Matyash, R. Schneider, F. Taccogna, The particle-in-cell method. Contrib.
Plasma Phys. 47(8–9), 563–594 (2007)

58. O. Kalentev, K. Matyash, J. Duras, K. Lueskow, R. Schneider, N. Koch, M. Schirra, Electrostatic
ion thrusters—towards predictive modeling. Contrib. Plasma Phys. 54(2), 235–248 (2014)

59. F.H. Harlow, The particle-in-cell method for numerical solution of problems in fluid dynamics.
Methods Comput. Phys. 319–343 (1964)

60. P. Colella, M.R. Dorr, J.A.F. Hittinger, D.F. Martin, High-order, finite-volume methods in
mapped coordinates. J. Comput. Phys. 230(8), 2952–2976 (2011)

61. L. Patacchini, I.H. Hutchinson, Explicit time-reversible orbit integration in particle in cell codes
with static homogeneous magnetic field. J. Comput. Phys. 228(7), 2604–2615 (2009)

62. G. Lapenta, DEMOCRITUS: an adaptive particle in cell (PIC) code for object-plasma interac-
tions. J. Comput. Phys. 230(12), 4679–4695 (2011)

63. J. Geiser, M. Arab, Modelling, optimzation and simulation for a chemical vapor deposition. J.
Porous Media, Begell House Inc., Redding, USA 12(9), 847–867 (2009)

64. B. Gustafsson, High Order Difference Methods for Time dependent PDE. Springer Series in
Computational Mathematics, vol. 38 (Springer, Heidelberg, 2007)

65. G.H. Shortly, R. Weller, Numerical solutions of Laplace’s equation. J. Appl. Phys. 9, 334–348
(1938)

152 4 Models and Applications

66. Chr. Grossmann, H.G. Roos, M. Stynes, Numerical Treatment of Partial Differential Equations.
Universitext, 1st edn. (Springer, New York, 2007)

67. F. Taccogna, S. Longo, M. Capitelli et al., Particle-in-cell simulation of stationary plasma
thruster. Contrib. Plasma Phys. 47(8–9), 635–656 (2007)

68. Maxima verison 5.26.0. Maxima: A Computer Algebra System. Online software resource:
http://maxima.sourceforge.net/ (2011)

69. I.P. Omelyana, I.M. Mrygloda, R. Folk, Optimized Forest-Ruth- and Suzuki-like algorithms
for integration of motion in many-body systems. Comput. Phys. Commun. 146(2), 188–202
(2002)

70. E. Forest, R.D. Ruth, Fourth-order symplectic integration. Phys. D: Nonlinear Phenom. 43(1),
105–117 (1990)

71. S.A. Chin, J. Geiser, Multi-product operator splitting as a general method of solving
autonomous and non-autonomous equations. IMA J. Numer. Anal. 31(4), 1552–1577 (2011)

72. P. Colella, P.C. Norgaard, Controlling self-force errors at refinement boundaries for AMR-PIC.
J. Comput. Phys. 229, 947–957 (2010)

73. K. Matyash, O. Kalentev, R. Schneider, Kinetic simulation of the stationary HEMP thruster
including the near-field plume region, in Presented at the 31st International Electric Populsion
Conference (IEPC), IEPC-2009-110 (2009)

74. J. Geiser, F. Riedel, Comparison of integrators for electromagnetic particle in cell methods:
algorithms and applications, in Proceedings, arXiv:1411.0816, November 2014

http://maxima.sourceforge.net/
http://arxiv.org/abs/1411.0816

Chapter 5
Engineering Applications

Abstract In this chapter, we discuss the different engineering applications related
to multicomponent and multiscale models, that occur in different categories (micro-
scopic, mesoscopic and macroscopic). As we have described in the Introduction on
p. xxv. That such models can be used as basic model to couple to more complicate
models, describing materials, interfaces, etc., see Rosso and de Baas (Review of
materials modelling: what makes a material function? Let me compute the ways,
2014, [1]).

We deal with the following engineering applications with the two classified multi-
scaling approaches, see also the Introduction on p. xxv and in Fig. 5.1:

• Different time- or spatial scales of same model (mono model or basic model).
• Linking of different models (different models or multimodel).

One of the main contributions to link the different scales and models together
are the coupling techniques. In our motivation, such coupling of different time- and
spatial scales or coupling of different models, need the suggested methods, e.g. mul-
tiscale methods, multicomponent methods, that allow a data transfer between the
different scales and models. Such methods, we have introduced in the previous sec-
tions and now, we will close the gap between the theoretical discussions of methods
and their applications to engineering problems. In such a stage, we have to adapt
the numerical schemes with respect to the real-life properties and we obtain truly
working multiscale approaches, that we solve the engineering complexities, see [1].

Based on the real-life applications, we could study such helpful coupling of differ-
ent scales or different models. Therefore, we overcome the gap of the recent problem
in linking different scales of complicated engineering models in the industrial appli-
cations.

5.1 Multiscale Methods for Langevin-Like Equations

Abstract In this section, we discuss multiscale methods, that solve Langevin-like
equations, see [2]. The underlying ideas are to split into a deterministic and sto-
chastic part of the Langevin equation, see [3]. The splitting methods are based on

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5_5

153

154 5 Engineering Applications

Fig. 5.1 Engineering models of multiscaling with one model and different models

additive and iterative schemes, which are discussed with respect of their benefits and
drawbacks, see [4]. We are motivated to reduce computational time for Coulomb col-
lisions in plasma done in particle simulations. We extend splitting schemes, which
are well-known in deterministic applications, to stochastic applications and modify
the methods with respect to the stochastic terms. Such an idea allows to solve the
multiscale behaviour of the coarse deterministic and fine stochastic timescales in an
adequate computational time.

5.1.1 Introduction of the Problem

In the underlying problem, we are motivated to develop fast algorithms to solve the
Coulomb collisions in plasma simulations, see [5].

Recently in the literature, we can find two main ideas to deal with the Coulomb
collisions in particle simulations. Here we have the following two ideas:

• Binary algorithm: Particles in a finite cell selected into binary pairs. The collision
is computed by the scattered velocities by an underlying angle whose statistical
variance is modelled by the theory of Coulomb collisions, see [6, 7].

• Test particle algorithm: We deal with a dual idea to present the collisions by
defining test and field particles. The velocity in the dual space of the test particle
is computed by a Langevin equations with the drag and the diffusion coefficients.
This dual space is influenced by the moments of the primary space the field-particle
velocity distribution, which are deposited on the primary space mesh [8–12].

The second idea is scratched in the following Fig. 5.2.

5.1 Multiscale Methods for Langevin-Like Equations 155

We have the following contributions based on the multiscale approximation, which
is done by splitting methods:

• Reduction of the numerical error: Each splitting method has a numerical error
(splitting error). To reduce the error, we apply adaptivity or higher order splitting
schemes for the deterministic and also stochastic part.

• Conservation of the underlying physics: for example, particle transport problems
need long-term evolutions, means conservation of the dynamics, e.g. symplecticity
of the schemes.

The following characterization is given to the underlying model problem:

• Microscopic model (each particle is treated via an individual equation (transport
and collision operators)).

• Plasma simulations are done with particle transport models, where ionized particles
are transported via an electromagnetic field and particles can be collide.

Another classification is given to the solver process of the plasma simulation, here
we distinguish to two different solver processes and different problems to solve such
an equation:

• Forward problem: All parameters of the model equation (e.g. stochastic differential
equation) are known, e.g. physical laws, heuristics etc.

Fig. 5.2 Fokker–Planck and collision equation solved with their characteristics as Newton’s and
Langevin equations

156 5 Engineering Applications

• Backward problem: An experimental data set of the particles are given and we
reconstruct the parameters, e.g. drag, diffusion, potential, etc., of the underlying
model equation (e.g. ambit stochastics, inverse modelling).

For our contribution, we deal with the first-model approach, means we assume to
have all underlying parameters of the stochastic differential equation (SDE).

We have the following Assumption 5.1 to our model problem for which we can
apply the underlying Langevin equations.

Assumption 5.1 Coulomb collisions can be approximated via defining test and
field particles. The test particle velocity is subjected to drag and diffusion and can
be derived as a stochastic differential equations for the three velocity dimensions
(v, μ, φ) by using Langevin equations, see [8].

A first example of the underlying results are given in Fig. 5.3, we see the particle
velocities in a 2D and 3D presentation.

From Fokker–Planck to Langevin Equations

In the following, we discuss the modification from Fokker–Planck to Langevin equa-
tion. We deal with the Fokker–Planck equation with collision operator given as

∂fα
∂t

+ v · ∂fα
∂x

+ qα

mα

(E + v × B) · ∂f

∂v
= ∂fα

∂t
|coll, (5.1)

where fα(x, v) is the phase-space distribution function (density) of a charged plasma
species α submitted to electromagnetic field (E, B).

Further the Landau’s collision term is given as

∂fα
∂t

|coll = ∂

∂v
·
⎛

⎝π q2
α λ

∑

β

q2
β

∫ (
fα

∂f ′
β

∂v′ − f ′
β

∂fα
∂v′

)
u2I − uu

u3

⎞

⎠ d3v′, (5.2)

where the sum is over the index β of the plasma charged particle species, qβ is the
charge of species β, fβ(x, v′), u = v − v′, u = |u| and λ is the Coulomb logarithm.

From Langevin Equation to the Coulomb Scattering Test Particle Problem

We apply Eq. (5.2) with respect to a consistent test particle, isotropic Maxwellian
background reduction, see [13].

We obtain the following test particle equation:

∂ft
∂t

|coll = − ∂

∂v
(FD(v)ft) + ∂2

∂v2 (Dv(v)ft)

+ ∂

∂μ
(2Da(v)μft) + ∂2

∂μ2 (Da(v)(1 − μ2)ft) + ∂2

∂φ2

(
Da(v)

(1 − μ2)
ft

)
(5.3)

where v is the speed, μ = cos(θ), with θ is the angle of the axial direction and φ is
the azimuthal angle.

5.1 Multiscale Methods for Langevin-Like Equations 157

Fig. 5.3 Velocity v of a particle and 3D presentation of the velocity components for one underlying
particle, see [3]

The SDE system of the Coulomb scattering test particle problem is given in the
following form:

dv(t) = FD(v)dt +√
2Dv(v)dWv(t), (5.4)

158 5 Engineering Applications

dμ(t) = −2Da(v)μ dt +
√

2Da(v)(1 − μ2)dWμ(t), (5.5)

dφ(t) =
√

Da(v)

(1 − μ2)
dWφ(t). (5.6)

Remark 5.1 The SDE system is strongly coupled and also nonlinear, therefore, we
have taken into account linearization techniques, e.g. fixpoint or Newton’s schemes,
see also [14, 15], or derive higher order methods, e.g. Mitstein schemes, as discussed
in [13].

For a detailed understanding, we discuss in the following 1D problem.

5.1.2 Introduction of the 1D Model Equations

We are motivated to develop fast algorithms to solve Fokker–Planck equation with
Coulomb collisions in plasma simulations.

The Fokker–Planck equations are given as

∂f

∂t
+ v

∂f

∂x
− E(x)

∂f

∂v
= ∂

∂v

(
−γ vf + β−1γ

∂f

∂v

)
, (5.7)

where we could decouple such a FP equation into the PIC (particle in cell) part and
the SDE part.

• PIC-part

∂f

∂t
+ v

∂f

∂x
− E(x)

∂f

∂v
= 0, (5.8)

• SDE part

∂f

∂t
= ∂

∂v

(
−γ vf + β−1γ

∂f

∂v

)
, (5.9)

where we solve the characteristics:

• PIC-part

dx

dt
= v, (5.10)

dv

dt
= −E(x) = ∂U

∂x
, (5.11)

where U is the potential.

5.1 Multiscale Methods for Langevin-Like Equations 159

• SDE part

dx

dt
= 0, (5.12)

dv = −γ vdt +
√

2β−1γ dW, (5.13)

We apply the following nonlinear SDE problem:

dx

dt
= v, (5.14)

dv(t) = ∂

∂x
U(x) − γ vdt +

√
2β−1γ dW, (5.15)

where W is a Wiener process, γ is the thermostat parameter, β the inverse Temper-
ature.

A long solution to the SDE is distributed according to a probability measure with
density π satisfying:

π(x, v) = C−1 exp

(
−β

(
v2

2
+ U(x)

))
, (5.16)

where x > 0.0, v ∈ IR.

5.1.3 Analytical Methods for Mixed Deterministic–Stochastic
Ordinary Differential Equations

The following, we present an algorithm, which is based on solving the mixture of
deterministic and stochastic ordinary differential equations.

The idea is based on the deterministic variation of constants to embed perturbed
right-hand sides.

We deal with the following equations:

dX

dt
= V, (5.17)

dV = −E(x)dt − AV dt + BdW,

with X(0) = X0, V (0) = V0, (5.18)

where W is a Wiener process with the N(0,
√

Δ) distributed.
We rewrite to a linear operator and a nonlinear and stochastic function.

dX
dt

= ÃX + E(X) + dW
dt

,

with X0 = (X0, V0)
t , (5.19)

160 5 Engineering Applications

where X = (X, V)t is the solution vector, X0 = (X0, V0)
t is the initial vector, the

matrix is Ã =
(

0 1
0 −A

)
, the nonlinear function is E =

(
0

−E(X)

)
and the stochastic

function is dW
dt =

(
0

B dW
dt

)
.

The analytical solution is given with the exact integration of the exp(Ãs)(variation
of constants):

X(tn+1) = exp(ÃΔt)X0 +
∫ tn+1

tn
exp(Ã(tn+1 − s)) E(X(s)) ds

+
∫ tn+1

tn
exp(Ã(tn+1 − s)) dWs,

X(tn+1) = exp(ÃΔt)X0 + Ẽ(X0) + W̃(X0), (5.20)

where the electric field integral is computed with a higher order exponential Runge–
Kutta method, see:

Integration of the E-field function with fourth-order Runge–Kutta method:

k1 = ΔtE(Xn), (5.21)

k2 = Δt

(
E
(

exp(ÃΔt/2)Xn + 1

2
exp(ÃΔt/2)k1

))
, (5.22)

k3 = Δt

(
E
(

exp(ÃΔt/2)Xn + 1

2
k2

))
, (5.23)

k4 = Δt (E(exp(ÃΔt)Xn + exp(ÃΔt/2)k2)), (5.24)

Ẽ(Xn) = 1

6

(
exp(ÃΔt)k1 + 2 exp(ÃΔt/2)(k2 + k3) + k4)

)
, (5.25)

and the stochastic integral is computed as

W̃(Xn) =
∫ tn+1

tn
exp(Ã(tn+1 − s))dWs

=
N−1∑

j=0

exp

(
Ã

(
tn,j + tn,j+1

2

))
(W(tn,j+1) − W(tn,j)), (5.26)

Δt = (tn+1 − tn)/N, tn,j = Δt + tn,j−1, tn,0 = tn, (5.27)

where we can decide the accuracy based on the number of intermediate time steps
Δt = (tn+1 − tn)/N and N is the number of the finer time points in the coarse time
step Δtcoarse = tn+1 − tn.

5.1 Multiscale Methods for Langevin-Like Equations 161

5.1.4 A–B Splitting with Analytical Methods for Mixed
Deterministic–Stochastic Ordinary Differential
Equations

We deal with the following equations:

dX

dt
= V, (5.28)

dV = −E(x)dt − AV dt + BdW,

with X(0) = X0, V (0) = V0, (5.29)

where W is a Wiener process with the N(0,
√

Δt) distributed.
We propose the following A–B splitting scheme of Eq. (5.29):

dX

dt
= V, X(tn) = Xn, t ∈ [tn, tn+1], (5.30)

dV1 = −AV dt + BdW, V1(t
n) = Vn, t ∈ [tn, tn+1], (5.31)

dV2 = −E(X)dt, V2(t
n) = V1(t

n+1), X(tn) = Xn, t ∈ [tn, tn+1], (5.32)

where W is a Wiener process with N(0,
√

Δt) distributed.
We apply the analytical solutions in the different A–B splitting steps and they are

given as:

X(tn+1) = X(tn) +
∫ tn+1

tn
V (s) ds, (5.33)

V1(t
n+1) = E (t)V (tn) +

∫ tn+1

tn
E (tn+1 − s)B dWs (5.34)

V2(t
n+1) = V1(t

n+1) +
∫ tn+1

tn
(−E(X(s))) ds, (5.35)

where the operator E (t) is given as

E (t) = exp(−At). (5.36)

Remark 5.2 The simple A–B splitting scheme did not preserve the symplectic behav-
iour and cannot be applied for large-scale computations. Such a problem can be solved
by adding more steps and correct the previous solutions of the A–B splitting method.
Therefore we discuss in the next subsection the modification to a predictor–corrector
A–B splitting scheme.

162 5 Engineering Applications

5.1.5 Improved A–B Splitting Scheme:
Predictor–Correction Idea

In the following, we present an implicit AB scheme, which is related to symplectic
Störmer–Verlet methods, see [16].

We deal with the following approach:

X1(t
n+1) = X(tn) +

∫ tn+1

tn
V (s) ds, (5.37)

V1(t
n+1) = E (t)V (tn) +

∫ tn+1

tn
E (tn+1 − s)B dWs (5.38)

V2(t
n+1) = V1(t

n+1) +
∫ tn+1

tn
(−E(X1(s))) ds, (5.39)

X2(t
n+1) = X(tn) +

∫ tn+1

tn
V2(s) ds, (5.40)

where the fourth step of the algorithm is of the idea to add to semi-implicit Euler
schemes together and obtain a symplectic A–B splitting scheme or also known in
the context of the Strörmer–Verlet method.

Remark 5.3 We deal with a weak first-order scheme which has a symplectic behav-
iour.

Originally the idea to develop such schemes was based on the midpoint scheme,
which is an implicit scheme. Then, we have the freedom degree to transform the
numerical scheme to a symplectic scheme.

The midpoint rule is given as

y(tn+1) = y(tn) + hJ−1∇H

(
yn + yn+1

2

)
, (5.41)

which can be approximated as a simple A–B splitting:

ỹ(tn+1) = y(tn) + hJ−1∇H

(
yn

2

)
, (5.42)

y(tn+1) = y(tn+1) + hJ−1∇H

(
ỹn+1

2

)
, (5.43)

for sufficient small Δt and large n, we achieve ||y(tn+1) − ỹ(tn+1)|| → 0.

Proof As a first-order approximation the improved A–B splitting can be written as
an improved Euler–Mayurama scheme. Therefore we have a sympectic scheme of
first order.

5.1 Multiscale Methods for Langevin-Like Equations 163

5.1.6 Improved Explicit Scheme Based
on the Predictor–Correction Idea

The ideas are based on the Predictor–Corrector methods, first predict a solution of X
and later correct the solution of X, like the staggered grid idea in the Verlet algorithm.

As for the A–B splitting scheme, we can also modify the Euler–Maruyama and
the Milstein scheme as shown in the following.

Predictor–Corrector Euler–Maruyama and Milstein Schemes

With an additional time step, we could improve the explicit schemes to symplectic
preserving schemes.

• The Euler–Maruyama scheme is given as

X(tn+1) = X(tn) + Δt V (tn), (5.44)

V (tn+1) = V (tn) − Δt E(X(tn)) − Δt AV (tn) + BΔW, (5.45)

X(tn+1) = X(tn) + Δt V (tn+1), (5.46)

where ΔW = W (tn+1 − W (tn)) = rand
√

Δt and rand is the Gaussian normal
distribution N(0, 1).

• The Milstein scheme is given as

X(tn+1) = X(tn) + Δt V (tn), (5.47)

V (tn+1) = V (tn) − Δt E(X(tn)) − Δt AV (tn)

+ BΔW + 1

2
BBt ((ΔW)2 − Δt), (5.48)

X(tn+1) = X(tn) + Δt V (tn+1), (5.49)

where ΔW = W (tn+1 − W (tn)) = rand
√

Δt and rand is the Gaussian normal
distribution N(0, 1).

Theorem 5.2 The predictor–corrector Euler–Maruyama scheme is symplectic,
which means

dxn+1 ∧ dyn+1 = dxn ∧ dyn. (5.50)

Proof The predictor–corrector Euler–Maruyama scheme is given as

x(tn+1) = x(tn) + Δt y(tn), (5.51)

y(tn+1) = y(tn) − Δt x(tn) + σΔW, (5.52)

x(tn+1) = x(tn) + Δt y(tn+1), (5.53)

164 5 Engineering Applications

and we have

x(tn+1) = (1 − (Δt)2)x(tn) + Δt y(tn) + ΔtσΔW, (5.54)

y(tn+1) = y(tn) − Δt x(tn) + σΔW, (5.55)

and the algorithm is given as

(
x(tn+1)

y(tn+1)

)
=
(

(1 − (Δt)2) Δt
−Δt 1

)(
x(tn)

y(tn)

)
+
(

rn

sn

)
ΔW, (5.56)

where an = (1 − Δt2), bn = Δt, cn = −Δt, dn = 1 and rn = Δtσ, sn = σ .
Based on the symplecticity, we have

dxn+1 ∧ dyn+1 = (andn − bncn)dxn ∧ dyn, (5.57)

dxn+1 ∧ dyn+1 = ((1 − (Δt)2) − (Δt)2)xn ∧ dyn, (5.58)

dxn+1 ∧ dyn+1 = xn ∧ dyn, (5.59)

and it is independent based on the time step Δt .

Remark 5.4 The same proof idea can be applied to the Milstein scheme.

5.1.7 CFL Condition for the Explicit Schemes

We apply explicit schemes and also our semi-analytical scheme is embedded to
explicit schemes, therefore we have CFL conditions, which restrict our time steps.

We deal with the following equations:

dX

dt
= V, (5.60)

dV = −E(x)dt − AV dt + BdW,

with X(0) = X0, V (0) = V0, (5.61)

or

d2X

dt2 = −E(x) − A
dX

dt
+ BdW,

with X(0) = X0,
dX(0)

dt
= V0. (5.62)

In Eq. (5.62), we have the CFL condition for the term A dX
dt as

Δt ≤ 1

||A|| , (5.63)

5.1 Multiscale Methods for Langevin-Like Equations 165

where we assume || · || is an appropriate norm for the matrices, e.g. maximum norm.
Further for the second part −E(x) of the Eq. (5.62), we have the CFL condition:

Δt2 ≤ |Xn|
|E(Xn)| , (5.64)

where Xn = X(tn) is the solution of X to the old time point tn and | · | is the equivalent
norm for the vectors, e.g. maximum vector norm.

Example 5.1 If we apply the delicate singular electric field E(X) = 2
X3 − 2X, we

have the following CFL condition:

Δt ≤
√

1
1

(|Xn|)4 + 1
, (5.65)

where for small |Xn| < 1, we have

Δt ≤ √|Xn|. (5.66)

Remark 5.5 For the scheme, we have prepared the additional conditions, here the
CFL condition and the symplecticity. Now, we fulfil the criterion of a stable and
long-term preserving method, which can be applied to our engineering problems.

5.1.8 Numerical Examples

We deal with the Coulomb test particle problem with the following 1D Langevin
equations, which is given in the following nonlinear SDE problem:

dx

dt
= v, (5.67)

dv(t) = ∂

∂x
U(x) − γ vdt +

√
2β−1γ dW, (5.68)

where W is a Wiener process, γ is the thermostat parameter, β the inverse tempera-
ture.

A long solution to the SDE is distributed according to a probability measure with
density π satisfying:

π(x, v) = C−1 exp

(
−β

(
v2

2
+ U(x)

))
, (5.69)

where x > 0.0, v ∈ IR.

166 5 Engineering Applications

We test the following methods:

• Verlet Integrator,
• Analytical Solution as discussed in Sect. 5.1.4,
• A–B Splitting method,
• Predictor–Corrector A–B Splitting method as discussed in Sect. 5.1.5,
• Improved Explicit schemes (Euler–Maruyama and Milstein scheme) as discussed

in Sect. 5.1.5.

We test the following oscillators:

1. The harmonic oscillator U(x) = 1
2 x2, E(x) = −x.

2. The unharmonic oscillator U(x) = 1
3 x3, E(x) = −x2.

3. The trigonometric oscillator U(x) = − cos(x), E(x) = − sin(x).
4. The impact oscillator U(x) = 1

x2 + x2, E(x) = 2 1
x3 − 2x.

We discuss in the following paragraphs the different oscillators solved with our
proposed methods:

1. The harmonic oscillator U(x) = 1
2 x2, E(x) = −x is presented in Fig. 5.4.

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

time

po
si

tio
n

analytical
Euler−Maruyama
Verlet
Milstein
AB

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

time

ve
lo

ci
ty

analytical
Euler−Maruyama
Verlet
Milstein
AB

Fig. 5.4 We apply U(x) = 1
2 x2, E(x) = −x. The upper figures present the contours of the Hamil-

tonian with the Verlet algorithm (left figure) and the analytical algorithm (right figure), the lower
figures presents the x and v solutions of the Verlet algorithm

5.1 Multiscale Methods for Langevin-Like Equations 167

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

 0

 1

 2

 3

 4

 0

 0.2

 1

%e-(3.2*(x2/2+v2/2))

x

vz
 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

 0
 1

 2
 3

 4

 0

 0.2

 0.4

 0.6

 0.8

 1

z

%e-(3.2*(x2/2+v2/2))

x
v

Fig. 5.5 The distribution of the harmonic oscillator U(x) = 1
2 x2 with β = 3.2, where A = 0.1, B =

0.25

0 5 10 15 20 25 30 35 40 45
−1.5

−1

−0.5

0

0.5

1

1.5

time

po
si

tio
n

analytical
Euler−Maruyama
Verlet
Milstein
AB

0 5 10 15 20 25 30 35 40 45
−1.5

−1

−0.5

0

0.5

1

time

ve
lo

ci
ty

analytical
Euler−Maruyama
Verlet
Milstein
AB

Fig. 5.6 We apply U(x) = 1
3 x3, E(x) = −x2. The upper figures present the contours of the

Hamiltonian with the Verlet algorithm (left figure) and the analytical algorithm (right figure), the
lower figures presents the x (left) and v (right) solutions of the Verlet algorithm

The distribution of the harmonic oscillator is given in Fig. 5.5.
2. The unharmonic oscillator U(x) = 1

3 x3, E(x) = −x2 is presented in Fig. 5.6.
The distribution of the unharmonic oscillator is given in Fig. 5.7.

3. The trigonometric oscillator U(x) = − cos(x), E(x) = − sin(x) is presented in
Fig. 5.8.

168 5 Engineering Applications

-1 -0.5 0 0.5 1
-1

-0.5

 0

 0.5

 1

 0

 0.5

 1

 2

 3

z

%e-(3.2*(x3/3+v2/2))

x

v

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1
-0.5

 0
 0.5

 1 -1

-0.5

 0

 0.5

 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

z

%e-(3.2*(x3/3+v2/2))

x
v

Fig. 5.7 The distribution of the unharmonic oscillator U(x) = 1
3 x3 with β = 3.2, where A =

0.1, B = 0.25

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

time

po
si

tio
n

analytical
Euler−Maruyama
Verlet
Milstein
AB

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

time

ve
lo

ci
ty

analytical
Euler−Maruyama
Verlet
Milstein
AB

Fig. 5.8 We apply U(x) = − cos(x), E(x) = − sin(x). The upper figures present the contours of
the Hamiltonian with the Verlet algorithm (left figure) and the analytical algorithm (right figure),
the lower figures presents the x (left) and v (right) solutions of the Verlet algorithm, where A =
0.1, B = 0.25

The distribution of the trigonometric oscillator is given in Fig. 5.9.
4. The impact oscillator U(x) = 1

x2 + x2, E(x) = 2 1
x3 −2x is presented in Fig. 5.10.

We discuss the equilibrium distribution of the impact oscillator, which is given
with

5.1 Multiscale Methods for Langevin-Like Equations 169

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

 0

 1

 2

 3

 4

 0

 5

 10

 15

 20

 25

z

%e-(3.2*(v2/2-cos(x)))

x

z

 0

 5

 10

 15

 20

 25

-4 -3 -2 -1 0 1 2 3 4-4
-3

-2
-1

 0
 1

 2
 3

 4

 0

 5

 10

 15

 20

 25

%e-(3.2*(v2/2-cos(x)))

x

v

z

Fig. 5.9 The distribution of the trigonometric oscillator U(x) = − cos(x) with β = 3.2, where
A = 0.1, B = 0.25

0 5 10 15 20 25 30 35 40 45
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000

time

po
si

tio
n

analytical
Euler−Maruyama
Verlet
Milstein
AB

0 5 10 15 20 25 30 35 40 45
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

time

ve
lo

ci
ty

analytical
Euler−Maruyama
Verlet
Milstein
AB

Fig. 5.10 We apply U(x) = 1
x2 +x2, E(x) = 2 1

x3 −2x and the starting points (x, v)t = (1.0, 1.0)t .
The upper figures present the contours of the Hamiltonian with the Verlet algorithm (left figure) and
the analytical algorithm (right figure), the lower figures present the x (left) and v (right) solutions
of the Verlet algorithm, where A = 0.1, B = 0.25

170 5 Engineering Applications

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

 0

 1

 2

 3

 4

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001

 0.0012
 0.0014
 0.0016
 0.0018

%e-(3.2*(x2+1/x2+v2/2))

x

z

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001
 0.0012
 0.0014
 0.0016
 0.0018

-4 -3 -2 -1 0 1 2 3 4-4
-3

-2
-1

 0
 1

 2
 3

 4

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001

 0.0012
 0.0014
 0.0016

z

%e-(3.2*(x42+1/x42+v2/2))

x4

v

z

Fig. 5.11 The distribution of the impact oscillator U(x) = 1
x2 + x2 with β = 3.2, where A =

0.1, B = 0.25

Fig. 5.12 The graph of the
fine resolution of the impact
oscillator U(x) = 1

x2 + x2

π(β, x, v) = exp

(
−β

(
v2

2

)
+ U(x)

)
, (5.70)

where β = 3.2 and U(x) = 1
x2 + x2.

The distribution of the impact oscillator is given in Fig. 5.11.
In the following, we see the blow up around 0.1 < x ≤ 0.1 in Fig. 5.12.

Critical Points of the Impact Oscillator

Based on the blow up in (x, v)t = (0.5, 0.5)t we compare the different integrators:
The impact oscillator U(x) = 1

x2 + x2, E(x) = 2 1
x3 − 2x is presented in Fig. 5.13.

We apply the CFL conditions:

5.1 Multiscale Methods for Langevin-Like Equations 171

0 5 10 15 20 25 30 35 40 45
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000

time

po
si

tio
n

analytical
Euler−Maruyama
Verlet
Milstein
AB

0 5 10 15 20 25 30 35 40 45
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

time

ve
lo

ci
ty

analytical
Euler−Maruyama
Verlet
Milstein
AB

Fig. 5.13 We apply U(x) = 1
x2 +x2, E(x) = 2 1

x3 −2x and the starting points (x, v)t = (0.5, 0.5)t .
The upper figures present the contours of the Hamiltonian with the Verlet algorithm (left figure),
the analytical algorithm (middle figure) and the improved A–B splitting (left figure), the middle
figures presents the improved EM scheme (right figure) and the improved Milstein scheme (left
figure), the lower figures present the x (left) and v (right) solutions of the Verlet algorithm, where
A = 0.1, B = 0.25

Δt ≤
√

1
1

(|Xn|)4 + 1
, (5.71)

where for small |Xn| < 1, we have

Δt ≤ √|Xn|. (5.72)

Remark 5.6 The Verlet algorithm is only stable for dominant symplectic equations,
means in our case for dominant deterministic parts. The analytical algorithm is stable
also for the stochastic dominant parts.

172 5 Engineering Applications

Remark 5.7 We see that the semi-analytical scheme resolves optimal the contours,
while the Verlet algorithm could not resolve the problem. Here, we have to apply
higher order schemes to take into account the singularity.

Symplectic or Non-symplectic A–B Splitting

We present the influence of the symplecticity with respect to the harmonic oscillator
at (x, v)t = (1.0, 1.0)t .

We have U(x) = x2

2 , E(x) = −x is presented in Fig. 5.14.

Remark 5.8 For a symplectic problem, it is important to improve the integrators
with respect to their conservation of the symplecticity. We see the improvement of
the symplectic A–B splitting scheme.

0 2 4 6 8 1010−4

10−3

10−2

10−1

100

101

102

time

po
si

tio
n

2−
no

rm

Δt
Δt/2
Δt/4
Δt/8

0 2 4 6 8 1010−3

10−2

10−1

100

101

102

time

ve
lo

ci
ty

 2
−n

or
m

Δt
Δt/2
Δt/4
Δt/8

0 2 4 6 8 10−4

−2

0

2

4

6

8

10

12

14

time

po
si

tio
n

symplectic
non−symplectic

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

time

ve
lo

ci
ty

symplectic
non−symplectic

Fig. 5.14 We apply U(x) = x2

2 , E(x) = −x and the starting points (x, v)t = (1.0, 1.0)t with the
parameters A = 0.1, B = 0.25. The upper figures present the logarithmic L2-error contours of
the symplectic and non-symplectic A–B splitting scheme where x (left figure) and v (right figure)
The lower figures present the solutions of the symplectic and non-symplectic A–B splitting scheme
where x (left figure) and v (right figure)

5.1 Multiscale Methods for Langevin-Like Equations 173

Accuracy of the Symplectic Splitting Schemes

We present the influence of the symplecticity with respect to the harmonic oscillator
at (x, v)t = (1.0, 1.0)t .

We have U(x) = x3

3 , E(x) = −x2 is presented in Figs. 5.15 and 5.16.

Remark 5.9 For the accuracy of the schemes, here we tested the unharmonic oscil-
lator (symplecticity), we achieve the best results with the higher order schemes. That
means the Verlet algorithm which is of a second-order scheme is optimal for such
problems.

Remark 5.10 For all the schemes, we see the problems based on the different
timescales in the impact oscillator, while the other oscillators have nearly uniform
time steps. Here, we see the benefits of restricting to an adaptive version, which taken
into account the CFL condition to each scheme.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

time

A
B

 p
os

iti
on

 2
−

no
rm

Δt
Δt/2
Δt/4
Δt/8

Δt
Δt/2
Δt/4
Δt/8

Δt
Δt/2
Δt/4
Δt/8

Δt
Δt/2
Δt/4
Δt/8

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

V
er

le
t p

os
iti

on
 2

−
no

rm

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

time

E
ul

er
−

M
ar

uy
am

a
po

si
tio

n
2−

no
rm

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

time

M
ils

te
in

 p
os

iti
on

 2
−

no
rm

Fig. 5.15 We apply U(x) = x3

3 , E(x) = −x2 and the starting points (x, v)t = (1.0, 1.0)t with the
parameters A = 0.1, B = 0.25. The upper figures present the L2-error of the position (reference
is the analytical solution) where the A–B splitting scheme (left figure) and Verlet algorithm (right
figure). The lower figures present the L2-error of the position (reference is the analytical solution)
where the EM scheme (left figure) and Milstein scheme (right figure)

174 5 Engineering Applications

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
AB

 v
el

oc
ity

 2
−n

or
m

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ve
rle

t v
el

oc
ity

 2
−n

or
m

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

time

Eu
le

r−
M

ar
uy

am
a

ve
lo

ci
ty

 2
−n

or
m Δt

Δt/2
Δt/4
Δt/8

Δt
Δt/2
Δt/4
Δt/8

Δt
Δt/2
Δt/4
Δt/8

Δt
Δt/2
Δt/4
Δt/8

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

time

0 5 10 15 20 25 30 35 40
time

0 5 10 15 20 25 30 35 40
time

M
ils

te
in

 v
el

oc
ity

 2
−n

or
m

Fig. 5.16 We apply U(x) = x3

3 , E(x) = −x2 and the starting points (x, v)t = (1.0, 1.0)t with the
parameters A = 0.1, B = 0.25. The upper figures present the L2-error of the velocity (reference
is the analytical solution) where the A–B splitting scheme (left figure) and Verlet algorithm (right
figure). The lower figures present the L2-error of the velocity (reference is the analytical solution)
where the EM scheme (left figure) and Milstein scheme (right figure)

5.1.9 Conclusion

We discuss the multiscale problems of the Langevin equation, which can be solved
by splitting of the deterministic and stochastic part. Here, the numerical stability
of explicit integrators for stochastic differential equations (SDEs) are important
to obtain long-time behaviours. Such problems arose of the stochastic part of the
Langevin-like equations.

We can modify the explicit integrators by adding additional step of corrections
and fulfil a long-time behaviour. We also taken into account the special potential
energy functions, which has an impact and is more delicate to solve.

Real-life problems in the plasma flusion applications have such behaviours and
can be studied with such modifications of the solvers.

5.2 Multiscale Problem in Code Coupling: Coupling … 175

5.2 Multiscale Problem in Code Coupling: Coupling
Methods for the Aura Fluid Package

Abstract In this section, we discuss a real-life problem arose from coupling to differ-
ent codes, while each code is responsible of solving a partial differential equation and
we have different spatial and timescale to couple. Such a problem can also be seen
as multiscale or multicomponent problem, while different scales (time and space) or
different components are coupled to one large equation system and we have to be
careful to resolve all the different scale or embed finer scale to the coarser scales, see
[17, 18]. We deal with the following problem:

• Decoupled partial differential equations are solved with different codes, e.g. Aura-
Solver: radiation, Fluid-solver: heat transfer.

• Each software package has their independent spatial and timescales, while the
different physical problems have various scales (multiscale problem).

• A rewriting of a full coupled code is too expensive, a novel idea based on coupling
the different codes, e.g. via splitting methods is important.

• We have taken into account the coupling of the boundary conditions and coupling
via the initial problems, see [19, 20].

5.2.1 Introduction

The Aura Fluid software package is known as a heat transfer and radiation software
for large-scale computations of heat and radiation problems, see [21]. The model
problem is to simulate the influence of solar heat in car bodies, while radiation and
heat flow transfer is important.

So we deal with two software packages and two physical problems:

• Aura Software: Heat transfer and Radiation Model (modelling the heat transfer:
fine scales),

• Fluid Software: Flow field (modelling the flow field of the problem: coarse scales).

Based on that huge amount of computational time, if we directly couple such
codes, we have taken into account a fine and coarse scale computation.

Here, we deal with a splitting idea in the following manner, see Fig. 5.17:
Such a coupling can be done by operator splitting methods and also with parallel

interfaces. We discuss the idea of applying splitting methods with Parareal, see [22]
and [21], which is a parallel method for time-parallelization problems. We can apply
such ideas for parabolic problems and as a speedup for such problems. We combine
the splitting schemes as a time-splitting method and accelerate the large time intervals
with Parareal as a time-parallelization method.

176 5 Engineering Applications

Fig. 5.17 Multiscale A–B
Splitting scheme

5.2.2 Mathematical Model

In the following, we have delicate models of coupled heat transfer and radiation mod-
els. While the heat transfer and radiation is solved with the Aura software package,
the flow field of the temperature is done with a flow-field solver, e.g. Openfoam or
Vectis, see [23, 24]. The idea is to obtain a speedup with fast coupling schemes and
parallel time schemes.

We deal with the following equations, which are simulated with the different
software packages:

1. Heat equation:

∂t T (x, t) = H (T (x, t))

= A T (x, t) + B(T (x, t)), (x, t) ∈ Ω × [0, T], (5.73)

T (x, 0) = T0(x), x ∈ Ω, (5.74)

where the unknown temperature is T , A is the heat transfer operator and B
the nonlinear boundary operator and we assume that the full operator H can be
decoupled into the two operators. T0(x) is the initial temperature.

2. Flow-field equation:

∂t αfl = C (αfl), (x, t) ∈ Ω × [0, T], (5.75)

αfl(x, 0) = αfl,0(x), x ∈ Ω, (5.76)

where C is the nonlinear flow operator and αfl the unknown flow field. αfl,0(x) is
the initial flux.

3. Coupling of the fluid- and heat transfer equation is done by the boundary condition
to the heat radiation equation:

B(T (x, t)) = −λ
∂

∂n
T (x, t) = αfl(x, t) (T (x, t) − Tfl(x, t)) + qrad(T, x),

(5.77)

5.2 Multiscale Problem in Code Coupling: Coupling … 177

for all x ∈ ∂Ω , qrad(T, x) is the heat transfer of the radiation.
Further Tfl(x, t) is a given temperature of the heat transfer, e.g. temperature of the
initialization.

Remark 5.11 The modelling problem was motivated by a realistic engineering prob-
lem in simulating warming in the vehicle interior, when we have a worst-case sce-
nario, that the cooling system is malfunctioned, see [25] and [2]. Here, we deal with
different scales, based on the flow and radiation model, that have to be coupled via
a boundary condition, between the radiation and flow domains, see [21].

5.2.3 Splitting Methods

The different codes are coupled by splitting methods that are discussed in the fol-
lowing:

We assume that the boundary conditions are embedded into the spatial discretized
matrices and that we deal with ordinary differential equations, see [26].

1. Lie–Trotter or A–B Splitting method
The standard implemented scheme is the well-known A–B splitting method.
A–B splitting:

∂T (t)

∂t
= H(T (t), t),

with tn ≤ t ≤ tn+1, T (tn) = cn, (5.78)
∂αfl(t)

∂t
= C(αfl(t)),

with tn ≤ t ≤ tn+1, αfl(tn) = T (tn+1), (5.79)

where cn is the known initial value of the previous solution and c(tn+1) =
αfl(tn+1) is the approximated solution of the full equation.
We have a global splitting error of O(Δt), where Δt is the time step.

2. Strang Splitting method
The standard Strang Splitting is given in the following 3-step algorithm:

∂T (t)

∂t
= H(T (t), t),

with tn ≤ t ≤ tn+1/2, T (tn) = cn, (5.80)
∂αfl(t)

∂t
= C(αfl(t)),

with tn ≤ t ≤ tn+1, αfl(tn) = T (tn+1/2), (5.81)

∂T (t)

∂t
= H(T (t), t),

with tn+1/2 ≤ t ≤ tn+1, T (tn+1/2) = αfl(tn+1), (5.82)

178 5 Engineering Applications

where cn is the known initial value of the previous solution and c(tn+1) =
αfl(tn+1) is the approximated solution of the full equation.
Here we achieve a coupling method, which is one order higher than the previous
one. We obtain O(Δt2).

Remark 5.12 With such improved methods, we obtain higher accuracy and faster
computations.

3. Non-iterative splitting method: Richardson Extrapolation
We deal with the following semi-discretized method. Our operators are derived
by space-discretization methods.
The considered systems of ordinary differential equations are given as:

ut + (A1 + A2)u = 0,

u(0) = u0, (initial condition). (5.83)

The fourth-order splitting method based on the Richardson extrapolation, as dis-
cussed in [27, 28], is given as

D4(Δt) = 4/3 S2(Δt/2) S2(Δt/2) − 1/3 S2(Δt), (5.84)

where S2(Δt) = exp(A2Δt) exp(A12Δt) exp(A2Δt) is the Strang splitting oper-
ator [29].
The higher order is reached after applying three times the Strang splitting method
in a proper way.
The fifth-order splitting method based on the Richardson extrapolation, as dis-
cussed in [27, 28], is given as:

D5(Δt) = 16/15 S4(Δt/2) S4(Δt/2) − 1/15 S4(Δt), (5.85)

4. Iterative splitting method
The following algorithm is based on the iteration with fixed splitting discretization
step size τ . On the time interval [tn, tn+1] we solve the following sub-problems
consecutively for i = 0, 2, . . . 2m.
The iterative method is given as, see also [30],

∂ci(t)

∂t
= Aci(t) + Bci−1(t),

with ci(t
n) = cn, c0(t

n) = cn, c−1 = 0.0,

and ci(t) = ci−1(t) = c1, on (0, T), (5.86)

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t),

with ci+1(t
n) = cn

and ci(t) = ci−1(t) = c1, on (0, T), (5.87)

5.2 Multiscale Problem in Code Coupling: Coupling … 179

where cn is the known split approximation at time level t = tn [1].
The higher order is obtained by applying recursively the fixed-point iteration to
reconstruct the analytical solution of the coupled operators, see [31].

Remark 5.13 If we do not iterative over the several operators, means we have only
i = 1, we define a 0-iterative scheme. Such a scheme is highly parallel, but is not
stable, while the iteration process is not finished. We obtain only a 0 order scheme.

The improved iterative schemes deal with i = 2, 3, 4 steps and we stop after we
reach a final criterion:

||ci(t) − ci−1|| ≤ err, (5.88)

err ∈ IR+ is a given error tolerance e.g. 10−4.

In the real-life application, the computation of the operator B is delicate and
the exchange is only forward. Means, we could only apply initial and boundary
conditions to the software code and the results of the computations. An intermediate
exchange like in the Strang Splitting ABA is impossible only ideas like ABB or AAB
are possible. Therefore, we have to develop some new modified splitting schemes.

Such one-step ideas are discussed in the next subsection.

5.2.4 Modified A–B Splitting Method: Only One Exchange
to Operator B

We assume to be restricted by the operator B, means we can only change one time
in a cycle to operator B, but we cannot change back to operator A.

That means, we have to deal with splitting ideas of the form: AB, AAB, ABB,
etc., means we are restricted to one-sided splitting schemes and assume that also the
commutator deal with such a behaviour, see idea of a fourth-order scheme, which
assume some special behaviour of the commutators [32].

The idea is to apply t/2 time steps with respect to operator A and B, to start with
operator A, but restricted to change only one time to operator B.

The idea of the algorithm with the restriction of the evaluation of operator B is
given in Fig. 5.18:

The following algorithm is based on the modified A–B Splitting:

c̃1(t) = exp(At/2) exp(Bt/2) exp(Bt/2)c(tn), (5.89)

c̃2(t) = exp(At/2) exp(At/2) exp(Bt/2)c(tn), (5.90)

c̃(t) = 2/3c̃1(t) + 2/3c̃2(t) − 1/3c(tn), (5.91)

t ∈ [tn, tn+1], (5.92)

where c(tn) = cn is the known split approximation at time level t = tn and c̃(t) is
the next approximated solution to time t .

180 5 Engineering Applications

Fig. 5.18 Modified A–B
splitting scheme, means AAB
and ABB evaluations

0 t/2 t

Theorem 5.3 The modified A–B splitting scheme, given in Fig.5.18, has the order
O(τ).

Proof We have

c̃(t) = ac̃1(t) + bc̃2(t) + cc(tn), (5.93)

where c̃1(t) is given in (5.89) and c̃2(t) is given in (5.90), a, b, c are real numbers
and t = tn+1 − tn is the time step, with the time-discretization tn, n = 0, . . . , N
and tN+1 = T .

The exact solution of the ODE is given as

c(t) = exp((A + B)t)c(tn). (5.94)

We deal with the following error:

||c(t) − c̃(t)|| ≤ 1 + (A + B)t + t2/2(A + B)2

− a(1 + A/2 t + A2/4 t2/2)(1 + B/2 t + B2/4 t2/2)(1 + B/2 t + B2/4 t2/2)

− b(1 + A/2 t + A2/4 t2/2)(1 + A/2 t + A2/4 t2/2)(1 + B/2 t + B2/4 t2/2)

− c + O((t/2)3). (5.95)

Further by comparison of the coefficients we obtain for the first order, while the
reconstruction of higher terms is not possible:

a = 2/3, b = 2/3, c = −1/3.
We have a second-order term given as 1

6 ||A2 +2(AB +BA)+B2||, while the A–B
splitting has an term belonging to the commutator ||[A, B]|| = ||AB − BA||. So, we
benefit of the idea ||(A + B)2|| ≤ 5[A, B], means if the commutator is dominant in
the scheme, we might have some reduction of the local error.

For higher orders it is impossible to skip the terms and without stepping again to
A as, for example with Strang- or Iterative-splitting it is impossible to obtain a higher
order.

5.2 Multiscale Problem in Code Coupling: Coupling … 181

Remark 5.14 With the modified A–B splitting, we gain locally benefits and could
reduce locally the error for the scheme. At least, we have an A–B splitting of a
global order 1. The benefit is given with the reduction, if we deal with a very large
commutator error, then it might sense and the modified version is of lower local error.

5.2.5 Coupling of Initial Dates and Multiscale Approach

The initialization is very important for the splitting schemes and also the connection
via the boundary conditions.

While we deal with separate software code, which compute the different model
equations, an update in the starting procedure is important to synchronize the
processes. On the one hand, we have a macroscopic model (heat transfer model),
where we can apply large time and spatial steps, while on the other hand, we have
a microscopic model (radiation model), where we have taken into account the small
time and spatial steps. A efficient coupling, while each code can be applied inde-
pendently, is done via the Strang splitting, where we couple the models via their
initial conditions, means the solution, that is necessary for the next time step. Here
we apply the macroscopic step, while the synchronization step (embedding of the
microsteps) is done with the small time steps and we couple via an iterative scheme
(e.g. successive approximation or fixpoint scheme) the two models.

In the following, we explain the coupling of the Aura and Foam code. At the
beginning, we have to exchange their initial values at t = 0. Such that the starting
step is important and synchronize via iterative steps the starting conditions of the
codes, see Fig. 5.19. The next steps is based on the macroscopic time step and we
apply the next time frame of the simulation, e.g. from t = 0 to t = 1.0 (where the
time step Δt = 1.0 [min]). Then we apply the synchronization or microscopic time
step to embed the microscopic model (where the time step Δmicro = 1.0 [s]) and we
apply, for example Nmicro = 10–15 microscopic time steps and iterate the models
via a fixpoint scheme, see Fig. 5.19.

Remark 5.15 The benefit of such an initial value coupling is independent codes,
while the microscopic solver is based on an iterative solver, that couples the models
only between the intermediate solutions. Such a weakly coupling allows to speed up
the codes and only interfaces are needed to couple the codes.

In the next subsection, we deal with the error estimates.

5.2.6 Error Estimates

For the coupling of such micro- and macroscopic models by a splitting scheme,
we have to be sure about the underlying splitting error and control them in the
simulations.

182 5 Engineering Applications

Fig. 5.19 Initialization, solver-steps, coupling and synchronization of the codes

Here, we deal with the two error estimates of the weakly coupled models:

• A priori error estimate (An assumed error, which can be estimated before the
computations),

• A posteriori error estimate (a corrected error, which can be computed after the
computations or compared with a grid resolution).

While the a priori error estimates give a time step before the computation, the a
posteriori error estimates give an optimal time step after the computation.

5.2.7 A Priori Error Estimates for the Splitting Scheme

We deal with the two software codes that are coupled via the ODE.
We have the following operators (related to the program codes)

• A: Aura Program,
• B: Openfoam.

The A–B Splitting error estimates is given as

τn ≤= 1
1
2 ||[A, B]|| , (5.96)

We compute the commutator [A, B]. In practice, we compute one time step with
Aura-Openfoam and one time step with Openfoam-Aura, based on this we con opti-
mize the time step.

We assume we have the result previously.

5.2 Multiscale Problem in Code Coupling: Coupling … 183

The Strang Splitting error estimates is given as

τn ≤= 1
1

24 ||([B, [B, A]] − 2[A, [A, B]])|| , (5.97)

we compute the commutator [A, [A, B]] and [B, [B, A]]. In practice, we compute one
time step with 1/2 Aura—Openfoam—1/2 Aura and with 1/2 Openfoam-Aura—1/2
Openfoam. The inverse of the differences are the optimal time step.

5.2.8 A Posteriori Error Estimates for the Splitting Scheme

We define a next error estimator to compare and reduce the given error in one cycle
of the computation.

To have an a posteriori error estimates, means an error after the computation, we
deal with splitting methods of different orders and compare their results.

Based on the relative error between the methods, we could define a next error
bound to decide, if we should reduce the time step for our computations.

While the A–B splitting method, has a time step of Δt , the Strang splitting halfen
the time step to Δt/2, so we have one order of accuracy more with the Strang
Splitting.

We define the following a posteriori error:
The maximal error at time t is given as

errmax,�t = |cStrang − cA−B|max = p
max
j=1

|cStrang(xj, yj, t) − cA−B(xj, yj, t)|,

the numerical convergence rate is given as

ρmax = log(errmax,�t/2/errmax,�t)/ log(0.5).

The L1 error at time t is given as

errL1,�t = |cStrang − cA−B|L1 =
p∑

j=1

Δt |cStrang(xj, yj, t) − cA−B(xj, yj, t)|,

the numerical convergence rate is given as

ρL1 = log(errL1,�t/2/errL1,�t)/ log(0.5),

where Δt and Δ/2 are time steps.

184 5 Engineering Applications

Fig. 5.20 Error estimates
for the splitting scheme tn

tn+1

tn+1/2

A/2

A/2

B

B

A

A−B splitting Strang splitting

The L2 error at time t is given as

errL2,�t = |cStrang − cA−B|L2 =
√√√√

p∑

j=1

Δt (uStrang(xj, yj, t) − uA−B(xj, yj, t))2,

the numerical convergence rate is given as

ρL2 = log(errL2,�t/2/errL2,�t)/ log(0.5),

where Δt and Δ/2 are time steps.
Figure 5.20 presents error estimates of the different splitting schemes in one cycle.

Remark 5.16 Here, we can control the error of the different methods and if the error
bound is not fulfilled, we redo the computations with a smaller time step. So, we also
obtain with different time steps Δt,Δt/2,Δt/4, . . . the numerical errors between
the scheme and the resulting convergence rate. Here, we could switch on and off the
higher order scheme, if the error bound and convergence rates are given. At least, we
should have one order more, when comparing the two methods.

5.2.9 Optimization for the Heat- and Radiation Equation:
Newton’s Method for Solving the Fixpoint Problem

We could optimize the solver process of the multiscale problem by including more
accurate solvers with respect to the underling nonlinear problem of the equations.

A nonlinear solver reduce the approximation error of the previous applied simpler
linear methods, see [33].

The Heat- and radiation equation is given as

ρc∂t T = ∇λ · ∇T, (5.98)

5.2 Multiscale Problem in Code Coupling: Coupling … 185

∂T

∂n
(s) = (T − Tf)s + qrad, (5.99)

where qrad = (I − ρK)−1T 4(s) is the radiation term.
The spatial discretized equations are given as

∂t T = AΩ T + B∂Ω(T 4), (5.100)

then we apply implicit Euler time-discretization and we obtain a nonlinear ODE
system

(M − Δt A)Tn+1 = fn + B∂Ω(D(T)Tn+1) (5.101)

where for the D(T) = T 3, while we can choose and explicit or implicit version:

1. D(Tn) = T 3
n and we obtain a quasi Newton’s method (explicit version),

2. D(Tn+1) = T 3
n+1 and we obtain a Newton’s method (implicit version).

In the following we discuss the iterative splitting scheme with embedded New-
ton’s method, that couples the micro- and macroscopic model in our multiscale
approximation.

5.2.10 The Modified Jacobian Newton Methods and Fixpoint
Iteration Methods

In this section we describe the modified Jacobian Newton methods and fixpoint
iteration methods. We propose for weak nonlinearities, e.g. quadratic nonlinearity,
the fixpoint iteration method. We apply the iterative operator splitting method as
an example for a fixpoint method, see [34]. For stronger nonlinearities, e.g. cubic or
higher order polynomial nonlinearities, the iterative splitting methods with embedded
modified Jacobian Newton method can be adopted. The benefit from embedding
Newton’s method into the splitting methods is to decouple the equation system into
simpler equations, which can be solved with the scalar Newton methods.

The Sequential Splitting Method with Embedded Altered Jacobian Newton
Iterative Method

We restrict our attention to time-dependent operator differential equations of the
form

dc

dt
= A(c(t))c(t) + B(c(t))c(t), with c(tn) = cn, (5.102)

where A(c), B(c) are matrices, whose entries are dependent on the solution c =
(c1, . . . , cm)t , and m is the number of spatial discretization points. We assume the

186 5 Engineering Applications

operators to be linear and densely defined in the real Banach space X and that they
are obtained only from spatial derivatives of c, see [35]. We assume also that we have
weak nonlinear operators which can be bounded with respect to some norms, e.g.
||A(c)c|| ≤ λ1||c|| and ||B(c)c|| ≤ λ2||c||, where λ1 and λ2 are constant factors.

In the following we discuss the embedding of Newton’s method into the sequen-
tial splitting method. In general, in order to solve an equation of the form F(c) =
dc
dt − A(c(t))c(t) − B(c(t))c(t) = 0 we can apply Newton’s method and compute
c(k+1) = c(k) − D(F(c(k)))−1F(c(k)), where D(F(c)) is the Jacobian matrix and
k = 0, 1, We stop the iterations when we obtain |c(k+1) − c(k)| ≤ err, with err
being a sufficiently small error bound, e.g. err = 10−4.

We assume the spatial discretization, with m spatial grid points, and obtain the
differential equation system

F(c) =

⎛

⎜⎜⎜⎝

F(c1)

F(c2)
...

F(cm)

⎞

⎟⎟⎟⎠ . (5.103)

The Jacobian matrix for this system is given as

DF(c) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F(c1)
∂c1

∂F(c1)
∂c2

. . .
∂F(c1)
∂cm

∂F(c2)
∂c1

∂F(c2)
∂c2

. . .
∂F(c2)
∂cm

...

∂F(cm)
∂c1

∂F(cm)
∂c2

. . .
∂F(cm)

∂cm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The modified Jacobian is

DF(c) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F(c1)
∂c1

+ F(c1)
∂F(c1)

∂c2
. . .

∂F(c1)
∂cm

∂F(c2)
∂c1

∂F(c2)
∂c2

+ F(c2) . . .
∂F(c2)
∂cm

...

∂F(cm)
∂c1

∂F(cm)
∂c2

. . .
∂F(cm)

∂cm
+ F(cm)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark 5.17 For an ordinary differential equation, we have at least one scalar entry
in the Jacobian matrix, while for the assumed spatial discretized PDEs, we deal with
the above defined Jacobian matrix.

5.2 Multiscale Problem in Code Coupling: Coupling … 187

By considering the sequential splitting method we obtain the following algorithm.
We decouple Eq. (5.102) into two equation systems

F1(u1) = ∂t u1 − A(u1)u1 = 0 with u1(t
n) = cn, (5.104)

F2(u2) = ∂t u2 − B(u2)u2 = 0 with u2(t
n) = u1(t

n+1), (5.105)

where the results of the methods are given by u2(tn+1) and u1 = (u11, . . . , u1m),
u2 = (u21, . . . , u2m).

Thus we have to apply Newton’s method twice, each in one equation system.
Here, the contribution is the reduction of the Jacobian matrix with outer-diagonal
entries, into an approximated Jacobian matrix with less or without outer-diagonal
entries, e.g. with a weighted Newton method, see [33]. The splitting method with
embedded Newton’s method is given for the continuous method as

u(k+1)
1 = u(k)

1 − D
(

F1

(
u(k)

1

))−1 (
∂t u

(k)
1 − A

(
u(k)

1

)
u(k)

1

)
,

with D
(

F1

(
u(k)

1

))
= ∂

∂u(k)
1

⎛

⎝∂t u
(k)
1 − A

(
u(k)

1

)
−

∂A
(

u(k)
1

)

∂u(k)
1

u(k)
1

⎞

⎠ ,

u(k)
1 (tn) = cn and k = 0, 1, 2, . . . , K, (5.106)

u(l+1)
2 = u(l)

2 − D
(

F2

(
u(l)

2

))−1 (
∂t u

(l)
2 − B

(
u(l)

2

)
u(l)

2

)
,

with D
(

F2

(
u(l)

2

))
= ∂

∂u(k)
1

⎛

⎝∂t u
(k)
2 − B

(
u(l)

2

)
−

∂B
(

u(l)
2

)

∂u(l)
2

u(l)
2

⎞

⎠ ,

u(l)
2 (tn) = uK

1 (tn+1) and l = 0, 1, 2, . . . , L. (5.107)

For an improvement, we can apply the weighted Newton’s method. We try to skip
the delicate outer diagonals in the Jacobian matrix and apply

u(k+1)
1 = u(k)

1 −
(

D
(

F1

(
u(k)

1

))
+ δ1

(
u(k)

1

))−1 (
F1

(
u(k)

1

)
+ ε u(k)

1

)
, (5.108)

where the function δ can be applied as a scalar, e.g. δ = 10−6, also the same with ε.
It is important to be sure that δ is small enough to preserve the convergence.

Discretizing Eqs. (5.104) and (5.105) with Backward Euler method leads to

F1(u1(t
n+1)) = u1(t

n+1) − u1(t
n) − ΔtA(u1(t

n+1))u1(t
n+1) = 0

with u1(t
n) = cn, (5.109)

F2(u2(t
n+1) = u2(t

n+1) − u2(t
n) − ΔtB(u2(t

n+1))u2(t
n+1) = 0

with u2(t
n) = u1(t

n+1), (5.110)

188 5 Engineering Applications

then we obtain the derivations D(F1(u1(tn+1))) and D(F2(u2(tn+1))) which are
given as

D(F1(u1(tn+1))) = I − Δt (A(u1(tn+1)) + ∂A(u1(tn+1))

∂u1(tn+1)
u1(tn+1)), (5.111)

D(F2(u2(tn+1)) = I − Δt (B(u2(tn+1)) + ∂B(u2(tn+1))

∂u2(tn+1)
u2(tn+1)), (5.112)

where we have the vectorial solutions u1(tn+1) = (u11(tn+1) . . . , u1m(tn+1))t and
u2(tn+1) = (u21(tn+1) . . . , u2m(tn+1))t .

The matrix A(u1(tn+1)) is defined by

A(u1(t
n+1)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11(u1(tn+1)) A12(u1(tn+1)) . . . A1m(u1(tn+1))

A21(u1(tn+1)) A22(u1(tn+1)) . . . A2m(u1(tn+1))

...
...

. . .
...

Am1(u1(tn+1)) Am2(u1(tn+1)) . . . Amm(u1(tn+1))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we have the functions A11, . . . , Amm : Rn → R.
We obtain the derivations of the matrix as

∂A(u1(tn+1))

∂u1(tn+1)
u1(t

n+1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A11(u1)
∂u11

u11
∂A12(u1)

∂u12
u12 . . .

∂A1m(u1)
∂u1m

u1m

∂A21(u1)
∂u11

u11
∂A22(u1)

∂u12
u12 . . .

∂A2m(u1)
∂u1m

u1m

...
...

. . .
...

∂Am1(u1)
∂u11

u11
∂Am1(u1)

∂u12
u12 . . .

∂Amm(u1)
∂u1m

u1m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

where u1(tn+1) = (u11(tn+1), . . . , u1m(tn+1))t and have derived the derivatives over
this vector.

The same structure of matrices can be also obtained for B(u2(tn+1)). For the scalar
case u1(tn+1) = u11(tn+1) and we obtain only a scalar Jacobian, the same also for
u2(tn+1). Equation (5.108) is applied analogously for u(l+1)

2 .

Iterative Operator Splitting Method as Fixpoint Scheme

The iterative operator splitting method is used as a fixpoint scheme to linearize the
nonlinear operators, see [31, 34].

We restrict our attention again to time-dependent partial differential equations of
the form (5.102). A(u), B(u) are matrices with nonlinear entries and densely defined,
where we assume that the entries involve the spatial derivatives of c, see [35]. In the

5.2 Multiscale Problem in Code Coupling: Coupling … 189

following we discuss the standard iterative operator splitting method as a fixpoint
iteration method to linearize the operators.

We split our nonlinear differential equation (5.102) by applying

dui(t)
dt = A(ui−1(t))ui(t) + B(ui−1(t))ui−1(t), with ui(tn) = cn,

dui+1(t)
dt = A(ui−1(t))ui(t) + B(ui−1(t))ui+1(t), with ui+1(tn) = cn,

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1.
u0(t) = cn is the starting solution, where we assume that the solution cn+1 is near
cn, or u0(t) = 0. So we have to solve the local fixpoint problem. cn is the known
split approximation at the time level t = tn.

The split approximation at time level t = tn+1 is defined as cn+1 = u2m+2(tn+1).
We assume that the operators A(ui−1(tn+1)), B(ui−1(tn+1)) are constant defined for
i = 1, 3, . . . , 2m+1. Here the linearization is done with respect to the iterations, such
that A(ui−1), B(ui−1) are at least non-dependent operators in the iterative equations,
and we can apply the linear theory. For the linearization we assume at least in the first
equation A(ui−1(t)) ≈ A(ui(t)), and in the second equation B(ui−1(t)) ≈ B(ui+1(t))
for small t .

We assume to estimate the error of the nonlinear operator as

||A(ui−1(t
n+1))ui(t

n+1) − A(un+1)u(tn+1)|| ≤ ε, (5.113)

between the discrete approach A(ui−1(tn+1))ui(tn+1) and the analytical solution
A(un+1)u(tn+1), such that there exists an iteration index ĩ ≥ i with i ∈ {1, 3, . . . , 2m+
1}, that fulfils the Eq. (5.113).

Remark 5.18 The linearization with the fixpoint scheme can be used for smooth or
weak nonlinear operators, otherwise we lose the convergence behaviour, while we
did not converge to the local fixpoint, see [34].

Operator Splitting Method with Embedded Jacobian Newton Iterative Method

The Newton’s method is used to solve the nonlinear parts of the iterative operator
splitting method, see the linearization techniques in [34, 36]. We apply the iterative
operator splitting method and obtain:

F1(ui) = ∂t ui − A(ui)ui − B(ui−1)ui−1 = 0,

with ui(t
n) = cn,

F2(ui+1) = ∂t ui+1 − A(ui)ui − B(ui+1)ui+1 = 0,

with ui+1(t
n) = cn,

where the time step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1.
c0(t) = 0 is the starting solution and cn is the known split approximation at the time

190 5 Engineering Applications

level t = tn. The results of the methods are c(tn+1) = u2m+2(tn+1). The splitting
method with embedded Newton’s method is given as

u(k+1)
i = u(k)

i − D
(

F1

(
u(k)

i

))−1 (
∂t u

(k)
i − A

(
u(k)

i

)
u(k)

i − B
(

u(k)
i−1

)
u(k)

i−1

)
,

with D
(

F1

(
u(k)

i

))
= −

⎛

⎝A
(

u(k)
i

)
+

∂A
(

u(k)
i

)

∂u(k)
i

u(k)
i

⎞

⎠,

and k = 0, 1, 2, . . . , K,

with ui(t
n) = cn,

u(l+1)
i+1 = u(l)

i+1 − D
(

F2

(
u(l)

i+1

))−1 (
∂t u

(l)
i+1 − A

(
u(k)

i

)
u(k)

i − B
(

u(k)
i+1

)
u(k)

i+1

)
,

with D
(

F2

(
u(l)

i+1

))
= −

⎛

⎝B
(

u(l)
i+1

)
+

∂B
(

u(l)
i+1

)

∂u(l)
i+1

u(l)
i+1

⎞

⎠,

and l = 0, 1, 2, . . . , L,

with ui+1(t
n) = cn.

Remark 5.19 For the iterative operator splitting method with Newton’s method we
have two iteration procedures. The first iteration is Newton’s method for computing
the solution of the nonlinear equations, the second iteration is the iterative splitting
method, which computes the resulting solution of the coupled equation systems. The
embedded method is used for strong nonlinearities.

5.2.11 Parallelization: Parareal

The Parareal algorithm can be given as a multiple shooting method.
We assume to have a partitioning in time ΩT = [0, T] divided into N sub-

domains:

Ωn = [Tn−1, Tn], n = 1, 2, . . . , N . (5.114)

We define the following solvers:

(1) Coarse propagator G(Tn, Tn1, x), (coarse solver)
(2) Fine propagator F(Tn, Tn−1, x), (fine solver)

where we obtain an approximation Un of the equation

dU

dt
= f (t, U(t)), with U(Tn−1) = x. (5.115)

5.2 Multiscale Problem in Code Coupling: Coupling … 191

tn t t tt t tn+4 n+7 n+11 n+15 n+19

Fig. 5.21 Parallelization with Parareal, windowing of the parallel process

Here we apply fine and coarse propagators, while fine propagators are expensive and
coarse propagator cheap to compute.

The corrections are done with respect to the improved computation of the finer
propagator.

Uk+1
n = F(Tn, Tn−1, Uk

n−1) + G(Tn, Tn−1, Uk+1
n−1) − G(Tn, Tn−1, Uk

n−1), (5.116)

where the initial guesses are Uk
n−1 and the coarse propagator is G, while the fine

propagator is F. k is the iteration index.

Example 5.2 We assume to have F as the iterative splitting propagator and G as the
A–B splitting propagator.

Further the iterative splitting scheme include additionally a fixpoint scheme for
nonlinear problems.

So we step by each window to the next time interval, see Fig. 5.21.

5.2.12 Test Example: Simple Car Body

We start with a simple test example for the coupling between a heat equation with
convection term and a fluid flow given by a convection equation, see also the results
in [21]

∂t T = ∇ · (K∇T) − ∇ · vT, (5.117)

∂t v = −(v · ∇)v − ∇p, (5.118)

T (x, t0) = T0(x), (5.119)

v(x, t0) = v0(x), (5.120)

where the unknown temperature is T , v is the flow field of the temperature and
p is a given pressure. We assume to have Neumann conditions at the boundaries.
The spacial domain of this problem is the interval [0, 1] with thermal conductivity
K = 0.01, which we discretize by finite differences at n + 1 equidistant nodes
xj = j/n (j = 0, 1, . . . , n). This results in the following system

192 5 Engineering Applications

0 5 10

10
−15

10
−10

10
−5

10
0

error of temperature T

parareal iteration k
0 5 10

10
−15

10
−10

10
−5

10
0

error of velocity v

parareal iteration k

Fig. 5.22 Convergence of parareal for the test problem

∂t T = D2T − D1(T ◦ v) + b (5.121)

∂t v = −v ◦ D1v − D1p, (5.122)

where the matrices D1, D2 discretize first and second order differential operators and
b is a vector representing the boundary data. In a real-world problem the pressure
vector p will depend on the temperature vector T. The whole problem is integrated
over the time domain ΩT = [0, 1], which we have divided into 10 subdomains of
equal length.

The convergence of parareal is depicted in Fig. 5.22. Each convergence curve
corresponds to the error of the computed temperature T (left plot) and velocity v
(right plot) measure at each of the 11 coarse time points T0, T1, . . . , TN , where the
abscissae indicate the parareal iteration index k. Note that after k = 11 iterations
the algorithm reaches the accuracy of the fine propagator, the result of which was
also used as the reference solution for computing the error. We also note that the
convergence for the velocity field is much more rapid than for the temperature, see
Fig. 5.22.

In Fig. 5.23 we see the convergence behaviour between AB and Strang splitting
schemes.

Remark 5.20 An efficient combination of different splitting schemes and higher
order time-integrators allows to optimize the application of a parallel time-propagator.
While we achieve fast solvers, that are decoupled for each different systems A or B,
we achieve realistic time-accelerations.

5.2 Multiscale Problem in Code Coupling: Coupling … 193

Fig. 5.23 Convergence of parareal wit AB and Strang splitting scheme

5.2.13 Conclusion

We have discussed a multiscale problem based on two different physical problems,
where we have an equation dealing with the heat transport and a next equation based
on the flow field. For the technical realization of the problem, e.g. in car body heating,
we have to couple two codes with different spatial- and time steps. We could solve
such a problem by an improvement of existing coupling methods with higher order
splitting schemes and parallelization methods. A numerical test example presents the
effectivity of the higher order schemes in a parallel realization. While producing more
accurate solutions with larger time steps, it helps to achieve realistic computational
times.

5.3 Multiscale Methods for Levitron Problem: Iterative
Implicit Euler Methods as Multiscale Solvers

Abstract We describe a multiscale problem related to a control problem of a gyro-
scope that circulates in a static magnetic field about the horizontal and vertical
axis, also called Levitron, see [37]. While the perturbations of the Levitron in
x- and y-directions are very small (fine scale), the perturbations in z-direction is
much more larger (coarse scale), such that we have to deal with a multiscale prob-
lem, see [38]. Based on the model, we have two modelling options of the asymmetric
levitron model:

194 5 Engineering Applications

1. constraint Hamiltonian (full coordinates of the rotationmatrix, i.e. 6 angles), or
2. unconstraint Hamiltonian (minimal coordinates of the rotationmatrix, i.e. 3

angles).

For the minimal coordinates, we substitute the constraint and deal with a non-
constraint Hamiltonian. While with full coordinates, we have the constraint given
as Qt Q − I = 0, which means the motion of the orientation of the body lies in
Q ∈ SO(3) is important. Non-constraint methods solve the non-constraint Hamil-
tonian and add the constraint via the stability conditions, see [39, 40]. We discuss
semi-implicit methods, that embed the fine scale resolutions into the coarser scales,
e.g. semi-implicit Euler methods.

5.3.1 Introduction

Nonlinear dynamical systems with non-separable Hamiltonians are delicate to solve
and standard integrators fail, see [39, 41–43]. Based on their multiscale behaviour, we
have to integrate via fine and coarse timescales. Therefore, one of the main challenges
is to design integrators, which can cover such different scales. Such integrators, which
have to be cheap in computational costs and should also fulfil the physical constraints
of energy conservation, see [16]. Here, we discuss the two main ideas:

• Explicit Methods: All scales are resolved, but the finest scales are responsible to
the time step, means that we have to reduce the model and upscale such a problem
or we have taken into account very fast explicit solvers.

• Implicit Methods: Only the coaser scales are resolved, while the finer scales are
averaged based on the implicit smoothening. Means we have covered the finer
scales, via the implicit or backward scheme in the model problem, but resolve
only the coarser scale. Such an idea allows to apply larger time steps and reduce
computational time, see [18].

We discuss and compare such explicit and implicit methods for nonlinear dynam-
ical systems, see [38, 44], and use the Levitron as a test case, while we have a
multiscale problem, see [41]. The Levitron is a gyroscope that circulates in a static
magnetic field about the horizontal and vertical axis, see [37]. Only dynamical sta-
bility exists according to the theorem of Earnshaw [45] based on the spinning with
angular velocity about its symmetry axis, see [37, 46, 47]. Such stability studies
require long-term stability of the integrators.

To overcome the restrictions of standard explicit integrators, we discuss a novel
class of integrators using an implicit Euler scheme embedded to a Waveform Relax-
ation, called iterative Euler scheme, see [48].

We present their effective computational costs and energy conservation properties.
Because we deal with a nonlinear and non-separable Hamiltonian, the standard sym-
plectic schemes fails and we have to design integrators which resolve the nonlinearity
and approach energy conservation as good as possible, see [16]. A combination of

5.3 Multiscale Methods for Levitron Problem: Iterative Implicit … 195

Fig. 5.24 Trajectory for a Levitron with initial point (x = 1 mm, y = 0 mm, z = 31.3 mm)

coloured in blue

an implicit Euler method embedded to a Waveform-relaxation scheme allows to gain
such properties of a computationally cheap and asymptotic symplectic scheme. The
test case is a trajectories approach of a stable attractor, which can be computed, see
[38]. In Fig. 5.24, we show the trajectory of such a Levitron for a time of about 20 h.
The starting point is marked as a blue dot. Obviously, long-time stable integrators
are needed for stability studies, otherwise one would fail to reach a stable attractor
[38, 46].

5.3.2 Unconstraint Hamiltonian of the Levitron Problem

We deal with an asymmetric levitron problem, that is derived in the literature, see [46].
We begin with the kinetic energy equation

T = 1

2

[
m
(

ẋ2 + ẏ2 + ż2
)

+ A
(
θ̇2 + φ̇2 sin2 θ

)
+ C

(
ψ̇ + φ̇ cos θ

)2]
, (5.123)

and the potential energy equation:

U = mgz − μ

[
sin ψ sin θ

∂V

∂x
+ cos ψ sin θ

∂V

∂y
+ cos(θ)

∂V

∂z

]
, (5.124)

with μ as the magnetic moment of the top and A and C as the principal moments of
inertia.

Therefore the Hamiltonian is given as

H = 1

2m

(
p2

x + p2
y + p2

z

)
+ p2

θ

2A
+ p2

ψ

2C
+ (pφ − pψ sin θ)2

2A cos2 θ

+ mgz − μ

(
1

2
Φ2(z)(x sin θ + y cos θ sin φ)

+(−Φ1(z) + 1

4
(x2 + y2)Φ3(z)) cos θ cos φ

)
. (5.125)

196 5 Engineering Applications

The equations of motions are extended with the Lagrange multiplier: we obtain a
non-separable Hamiltonian of (5.125) given as

q̇ = ∂H

∂p
(p, q)

=
(

px

m
,

py

m
,

py

m
,

pθ

A
,

pψ

C
− pφ sin θ − pψ sin2 θ

A cos2 θ
,

pφ − pψ sin θ

A cos2 θ

)
,(5.126)

and

ṗ = −∂H

∂q
(p, q) (5.127)

=
(

μρ

[
1

2
Φ2(z) sin θ + 1

2
xΦ3(z) cos θ cos φ

]
,

μρ

[
1

2
Φ2(z) cos θ sin φ + 1

2
yΦ3(z) cos θ cos φ

]
,

μρ

[
1

2
Φ3(z) (x sin θ + y cos θ sin φ)+

(
−Φ2(z) + 1

4
(x2 + y2)Φ4(z)

)
cos θ cos φ

]
− mg,

− 2pψ(pφ − pψ sin θ)

cos θ
− 2 sin θ(pφ − pψ sin θ)2

cos3 θ

+ μρ

[
1

2
Φ2(z)(x cos θ − y sin θ sin φ)

−
(

−Φ1(z) + 1

4
(x2 + y2)Φ3(z)

)
sin θ cos φ

]
, 0,

μρ

[
1

2
Φ2(z)y cos θ cos φ

−
(

−Φ1(z) + 1

4
(x2 + y2)Φ3(z)

)
cos θ sin φ

])
. (5.128)

5.3.3 Integrator for Unconstraint Hamiltonian

To circumvent the expensive computations of implicit methods, we use the property
of the Hamiltonian, that the nonlinear function depends only on the recent variable
in the function producing a decoupling with respect to Picard’s-fixpoint schemes.

5.3 Multiscale Methods for Levitron Problem: Iterative Implicit … 197

The initial value of (5.126) and (5.127) is rewritten in the following form:

u′ = f(u, u, t), u(0) = u0, (5.129)

where we have the special structure of the Hamiltonian problem

u =
(

p
q

)
, f(u, u, t) =

(
f1(p, q)

f2(p, q)

)
=
(

− ∂H
∂q (p, q)

∂H
∂p (p, q)

)
. (5.130)

The well-known Picard or Waveform-relaxation scheme, see [49], for system (5.129)
has the form

u′i+1 = f(ui+1, ui, t), ui+1(0) = u0, (5.131)

where x0(t) is an initial iteration and the nonlinear splitting function
f : (IRm)2 × [0, T] → IRm.

• The semi-implicit Euler scheme, see [16], is applied with the difference approxi-
mation and is given as

un+1 = un + Δt f(un+1, un, tn). (5.132)

The exact integrator is given as

(Ju′)(t) = u(0) +
∫ t

0
u′(s) ds. (5.133)

The semi-implicit Euler integrator, with respect to the Hamiltonian structure is
given as

(Jimplicit Euleru′)(t) = tu(t). (5.134)

• The semi-implicit Lobatto IIIA-IIIB pairs scheme is applied with the difference
approximation and is given as

ki+1
1 = f1

(
pn, qn + Δt

6

(
li1 − li2

))
, (5.135)

ki+1
2 = f1

(
pn + Δt

24

(
5ki

1 + 8ki
2 − ki

3

)
, qn + Δt

6

(
li1 + 2li2

))
, (5.136)

ki+1
3 = f1

(
pn + Δt

6

(
ki

1 + 4ki
2 + ki

3

)
, qn + Δt

6

(
li1 + 5li2

))
, (5.137)

li+1
1 = f2

(
pn, qn + Δt

6

(
li1 − li2

))
, (5.138)

li+1
2 = f2

(
pn + Δt

24

(
5ki

1 + 8ki
2 − ki

3

)
, qn + Δt

6

(
li1 + 2li2

))
, (5.139)

198 5 Engineering Applications

li+1
3 = f2

(
pn + Δt

6

(
ki

1 + 4ki
2 + ki

3

)
, qn + Δt

6

(
li1 + 5li2

))
, (5.140)

pn+1,i+1 = pn + Δt

6

(
ki

1 + 4ki
2 + ki

3

)
, (5.141)

qn+1,i+1 = qn + Δt

6

(
li1 + 4li2 + li3

)
. (5.142)

where k0
1 = k0

2 = k0
3 = pn and l0

1 = l0
2 = l0

3 = qn.

Corollary 5.1 The system (5.129) has a unique solution u′∗ and the sequence {ui}
applied by the algorithm (5.131) converge to u∗, where u∗ = Ju′∗ is the unique
solution of (5.129).

Proof The proof is following [50].

The iterative Lobatto III A method is given in Algorithm 5.4. The same idea can
be done with the Lobatto III B method.

Algorithm 5.4 We compute the time steps n = 1, 2, 3, . . . , N and the starting point
is un+1

0 = un, the time step is given with Δt , error bound: ε = 10−5.

1. Initialization i = 0

ui(tn+1) = u(tn), (5.143)

2. Iterative Steps

ui,n+1 = un + Δt

6

(
f(un, tn) + f(ui−1,n+1, tn)

)

+ 2Δt

3
f
(

1

2
(un + ui−1,n+1)

+ Δt

8

(
f(un, tn) − f(ui−1,n+1, tn+1)

)
, tn+1/2

)
. (5.144)

3. Stopping Criterion: If i = I or the error is given as

||ui,n+1 − ui−1,n+1|| ≤ ε, (5.145)

we have un+1 = ui,n+1.
Else Goto step 1.

Remark 5.21 The combination of the Labatto III A and Lobatto III B method allows
to achieve a symplectic scheme, see [44]. Based on the iterative embedding, we
could accelerate the schemes, while we apply explicitly computed informations of
the previous steps.

5.3 Multiscale Methods for Levitron Problem: Iterative Implicit … 199

An alternative approach is given in the following by the constraint Hamiltonian
formulation of the problem.

5.3.4 Integrator with Lagrangian Multiplier (Constraint
Hamiltonian)

We have the following equation, see the paper [51]:

H(q, p) = 1

2
pt M−1p + U(q), (5.146)

where the constraint is given as M = {(q, p); g(q) = 0, G(q)M−1p = 0}.
To solve this system, we apply the Rattle algorithm:

pn+1/2 = pn − Δt

2
(∇U(qn) + G(qn)

tλ1,n), (5.147)

qn+1 = qn + Δt M−1pn+1/2, (5.148)

0 = g(qn+1), (5.149)

pn+1 = pn+1/2 − Δt

2
(∇U(qn+1) + G(qn+1)

tλ2,n+1), (5.150)

0 = G(qn+1)M
−1pn+1. (5.151)

Further we have to solve the Lagrangian multipliers as

Λl+1 = Λl − J−1
σ σ (tn + Δt), (5.152)

where Λ = (λ1, λ2)
t , Jσ is the Jacobian of the equations σ = (

g(q), G(q)M−1p
)

J =
(

∂σ1
∂λ1

∂σ1
∂λ2

∂σ2
∂λ1

∂σ2
∂λ2

)
. (5.153)

Remark 5.22 We solve the Rattle algorithm in the following manner:

(1) We set Eq. (5.147) in Eq. (5.148). Then Eq. (5.148) in Eq. (5.149) and we obtain
a nonlinear equation for λ1,n. Such an equation, we can solve via a Newton or
Newton-like method.

(2) The we set Eq. (5.150) in Eq. (5.151).We obtain a linear equation for λ2,n+1,
which we can solve directly.

200 5 Engineering Applications

5.3.5 Numerical Experiments

The model equations are the following [48]:

H = 1

2m

(
p2

x + p2
y + p2

z

)
+ p2

θ

2A
+ p2

ψ

2C
+ (pφ − pψ sin θ)2

2A cos2 θ

+ mgz − μρ

(
1

2
Φ2(z)(x sin θ + y cos θ sin φ)

+ (−Φ1(z) + 1

4
(x2 + y2)Φ3(z)) cos θ cos φ)

)
. (5.154)

where the higher order Φi(z) are defined as Φi(z) = ∂Φi−1(z)
∂z .

We resolve the nonlinearity of the Hamiltonian with asymptotic symplecticity,
due to the fact of the symplectic kernel.

While shorter times in the range of 20 ≤ t ≤ 80 s can be reached with sufficient
energy conservation by explicit schemes (e.g. Runge–Kutta fourth-order schemes),
the overall benefit of the novel schemes are long-time conservations, see Fig. 5.25. For
long-time studies, the Levitron moved into the stable attractor x = 0, y = 0, z = zs,
which is the stable point and we see only small perturbations.

For moderate time intervals, the improvement of the explicit integrators can be
done by iterative or extrapolated algorithms, see [52]. The computational time of

Fig. 5.25 Long energy computations with semi-implicit methods in the time interval t = [0, 100] s
(106 timesteps)

5.3 Multiscale Methods for Levitron Problem: Iterative Implicit … 201

Table 5.1 Computational time for 106 time steps of explicit and implicit schemes

Explicit
schemes

Comput. time
in s

Extrapol.
Verlet
schemes

Comput. time
in s

Semi-implicit
schemes

Comput. time
in s

Euler 12.5 Ord. 4 66.8 it. Euler i = 1 12.6

RK4 53.6 Ord. 6 112.4 it. Euler i = 5 62.65

Verlet 24.9 Ord. 8 177.6 it. Euler
i = 10

124.6

Time dep.
Verlet

62 Ord. 10 249.4

such schemes is increased, see Table 5.1, such that an application of the iterative
implicit Euler is more efficient.

In summary, the iterative implicit Euler schemes are more effective, because they
can resolve the nonlinear Hamiltonian structure and gain asymptotic symplecticity
with at least 5–10 iterations. We overcome the restrictions of the small time steps as
known for the explicit schemes, e.g. Courant–Friedrichs–Levy condition. Compared
with the fourth-order Runge–Kutta scheme only twice computational time is needed.
In fact the method is computationally even more efficient, see also Table 5.1, because
to obtain results with the same small error in energy conservation for explicit schemes
a very large number of iterations with very small time steps are needed.

In general applications, the choice of the integrator will be determined by the
question to be addressed: if the problem does not require long times to be studied
a relatively simple integrator can be the most efficient, because it requires very
little computational effort. For long-time analysis like the stability problem of the
Levitron a necessary prerequisite for a correct solution is a very small error in energy
conservation for this system. Therefore, only the more complex iterative solver is a
good choice for this. Systems where conservation of energy or momentum are not
guaranteed analytically, e.g. systems with viscous forces, will not benefit from the
higher order schemes and simpler integrators can be used.

5.3.6 Conclusions and Discussions

We discussed the explicit and implicit time integrators for nonlinear problems with
non-separable Hamiltonians. As a test problem the Levitron is used to deal with
a multiscale problem. Explicit methods are fast but reach results with small errors
in energy conservation for time intervals of about t ≤ 50 s. In contrast, implicit
methods are more expensive due to their additional iterative cycles, but approach
asymptotic symplecticity and therefore preserves the energy with quite small errors.
An iterative implicit Euler scheme, which is long-time stable and efficient in the
iterative cycles, was constructed. We avoid expensive inversion of matrices, which
is necessary for fully implicit methods, by using waveform relaxation schemes. This
new class of semi-implicit Euler schemes was able to demonstrate long-time stability
of about 20 h for one test trajectory with only twice the computational effort compared

202 5 Engineering Applications

with standard fourth-order Runge–Kutta. This approach allows to design also higher
order schemes and overcome the multiscale behaviour of such nonlinear dynamical
systems.

5.4 Particle Method as Multiscale Problem: Adaptive
Particle in Cell with Numerical and Physical Error
Estimates

Abstract Particle methods are in general multiscale methods, while dealing with dif-
ferent spatial- and timescales. In this section, we discuss an adaptive particle in cell
method based on multidimensional problems. Here, we concentrate on discussing
the numerical and physical errors of this method. The motivation arose to the fact,
that the reduction of computational time of particle methods is important and only
modified methods, combining grid-based and grid-free methods with adaptive exten-
sion can overcome such problems, see [53, 54]. Form a multiscale viewpoint, we
deal with different scales, e.g. near- and fare-field problems, means microscopic
problems related to the particles and macroscopic problems related to the underlying
electromagnetic fields, see [55]. The idea is to accelerate the solver processes with
respect to the adaptivity and resolve coarser grids, while the finer scales are averaged
via such larger scales, e.g. with implicit schemes or we neglect such no important
scales. The main problem of the adaptive or nonuniform grids are errors in the numer-
ical schemes and also errors in the physical setting. We consider a multiscale error
analysis of particle in cell (PIC), while we couple to different scales:

• partial differential equations of the field, e.g. Maxwell’s equation or Poisson’s
equation,

• ordinary differential equations of the particles, e.g. Newton’s equation of motion
for each particles,

• collision equations of the particles, e.g. Stochastic equations or binary collision
equations, see ideas in [5].

We concentrate on the first two equations. Both equations can influence the error
of each other systems. While the parts are coupled via interpolation functions, e.g.
spline functions, we have taken into account a full cycle of PIC to localize the errors.
In this section, we taken into account to the numerical and physical error of the
PIC method with respect to an adaptation of the schemes. Based on the statistical
influence of the scheme, while averaging and variances are important to obtain nearly
stationary solutions, we also consider expectations and variances of the multiple runs
of the scheme.

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 203

5.4.1 Introduction

We are motivated to estimate the errors of a PIC schemes with different spatial grids.
In the following, we discussed the improved PIC cycles based on improving all

parts of the cycle, see Fig. 5.26.
The following three parts of the PIC scheme are involved to the error estimates:

• Pusher (scheme to solve the mesh-free equation of motions).
• Solver (scheme to solve the mesh-based potential equations).
• Interpolation (approximation schemes to couple the mesh-free parameters with

the mesh parameters)

First all three parts are important and we have to deal with their numerical
approximation. Second, the physical constraints, as conservation of mass, momen-
tum and energy are important to the physical experiments and should be conserved
by the underlying schemes.

By the way it is not enough to couple higher order schemes of all the three parts
together and resume to have a higher order computation of the cycle, while the
combination of the parts did not conserve the physical constraints.

In this paper, we discuss the error estimates for different schemes and their relation
to the conservation constraints.

Fig. 5.26 Improved PIC cycles for adaptive PIC

204 5 Engineering Applications

Based on the discretization schemes, we have the following assumptions:

Assumption 5.5 Assumptions based on the one-dimensional discretization schemes,
see [55]:

• Δx ≤ λD,
• ωpΔt ≤ 2,
• L ≥ λD,
• NpλD ≥ L,

where L is the domain length, ωp is the plasma frequency, λD is the Debye length,
Δx is uniform the spatial grid length and Δt is the time step.

5.4.2 Mathematical Model

In the following, we derive the mathematical model, while starting form a collision
less system, which is related to the Vlasov equation, to a particle model based on
superparticles (superposition of particles), see Fig. 5.27.

Fig. 5.27 From Vlasov
equation to PIC cycles

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 205

The governed equation is the Vlasov equation

df

dt
= ∂f

∂t
+ v · ∂f

∂x
+ F

m
· ∂f

∂v
= 0 (5.155)

where F = q E = −q∇φ,
Further the electric field in the electrostatic limit is described by the Poisson’s

equation

∇ · ∇φ = − ρ

ε0
, (5.156)

where the net charge density is computed from the distribution function as

ρ(x, t) =
∑

s

qs

∫
f (x, v, t) dv, (5.157)

The numerical approach to PIC is given as

f (x, v, t) =
Np∑

p=1

fp(x, v, t), (5.158)

while the distribution function of each species is given as a superposition of several
elements

fp(x, v, t) = NpSx(x − xp(t))Sv(v − vp(t)) (5.159)

Sx and Sv are shape functions (e.g. B-splines) for the compuational particles.

Moments of the Vlasov Equation

We have the following moments of the Vlasov equation, which are the underlying
equation of motion for our PIC cycles:

• 0-Moment :
dNp
dt = 0,

(conservation of the number of physical particles),

• 1x-Moment:
dxp
dt = vp,

1v-Moment:
dvp
dt = q

m Ep,
(equation of motions for the physical particles)

We assume the following shape functions (interpolation), which map between
grid to particles and fields to grid:

Sv(v − vp) = δ(v − vp), (5.160)

Sx(x − xp) = 1

Δp
Bl

(
v − vp

Δp

)
, (5.161)

206 5 Engineering Applications

where Bl is a B-spline of order l, e.g. l = 1 is the known CIC shape function. Further
Δp is the scale length of the support of the compuational particle.

PIC-cycle:

• Approximation (Grid to Particle):

Ep =
∑

i

EiW (xi − xp) (5.162)

W (xi − xp) = ∫
Sx(x − xp)Bl

(
x−xp
Δx

)
,

• Equation of motion:

dxp

dt
= vp, (5.163)

dvp

dt
= − qs

ms
Ep, (5.164)

• Approximation (Particle to Grid)

ρi =
∑

p

qp

Δx
W (xi − xp), (5.165)

• Field equation:

Δhφi = −ρi

ε0
, (5.166)

Ei = −∇hφi, (5.167)

where Δh is the discrete second-order spatial operator and ∇h is the discrete first
order spatial operator.

5.4.3 Numerical Errors

In the following, we discuss the numerical approximation errors, which is given by
the numerical schemes:

• Finite Difference method or Finite-Volume Method,
• Direct solvers or iterative solvers,
• Adaptive Discretization (adaptive error of the finite difference or finite volume

methods).

Error Estimates for the Full PIC Cycle (Uniform Grid)

We have to discuss the following elements of the cycle an estimate their errors.

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 207

Parts of the cycle:

(1) Pusher

dxp

dt
= vp,

dvp

dt
= Fp = ep

mp
E(xp), (5.168)

with p = 1, . . . , P are the particles in the cycle and qp = ep
mp

is the charge of the
particle p.
The numerical scheme is given as a second order in time for one particle to time
tk+1:

xk+1 = xk + Δt vk+1/2, (5.169)

vk+1/2 = vk−1/2 + 2Δt q Ek, (5.170)

with p = 1, . . . , P are the particles in the cycle.
(2) Interpolation I (particle position to grid)

ρi =
J∑

j=1

qjS(xi − xj(tk+1)), (5.171)

where xj(tk+1) and qj(tk+1) are the position and charges of particle j to time tk+1.
(3) Solver and Interpolation II (grid to particle position)

E(x(tk+1)) =
I∑

i=1

EiS(xi − x(tk+1)), (5.172)

and

E(x(tk+1)) =
I∑

i=1

(
K∑

k=1

gikρk

)
S(xi − x(tk+1)), (5.173)

E(x(tk+1)) =
I∑

i=1

⎛

⎝
K∑

k=1

gik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))S(xi − x(tk+1))

⎞

⎠ . (5.174)

Theorem 5.6 For one PIC cycle, with CIC as Interpolation and second order in
space for the solver and second order in time for the pusher, we assume

• Local Error of the Interpolation I:

||E(x) − E(xi)|| ≤ O(Δx), (5.175)

208 5 Engineering Applications

• Local Error of the Solver scheme:

||gexact − gi,k || ≤ O(Δx2), (5.176)

• Local Error of the Interpolation II:

||ρ(x) − ρ(xi)|| ≤ O(Δx), (5.177)

• Local Error of the Pusher scheme (Time-integrator):

||E(x(tk+1)) − E(x, tk+1)|| ≤ O(Δt2), (5.178)

||Eint (x(tk+1)) − Eint (x, tk+1)||
+ ||Eext (x(tk+1)) − Eext (x, tk+1)|| ≤ O(Δt2), (5.179)

where E = Eint + Eext and Eint is the internal and Eext is the external component.
Then the local error estimates is given as

errlocal,PIC = ||E − Enum|| ≤ O(Δx) + O(Δt2), (5.180)

where E is the exact electrical field and Enum the numerical approximated electrical
field with Δx as spatial grid size and Δt as time step.

Proof We deal with the following time and space error estimates:

||E(x(tk+1)) − E(x, tk+1) + E(x, tk+1) − E(xi, tk+1)|| (5.181)

≤ ||E(x(tk+1)) − E(x, tk+1)|| + ||E(x, tk+1) − E(xi, tk+1)||. (5.182)

The first part of the error estimates is the approximation error in time, while the
second part is the approximation in space.

The first part is estimated based on the assumption of a second-order time-
integration scheme:

||E(x(tk+1)) − E(x, tk+1)|| ≤ O(Δt2). (5.183)

The second part is given as

||E(xapprox, tk+1) − E(xi, tk+1)||

= ||
⎛

⎝
K∑

k=1

g,exact,ik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))

⎞

⎠

−
⎛

⎝
K∑

k=1

gik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))

⎞

⎠ || ≤ O(Δx2). (5.184)

||E(x, tk+1) − E(xapprox, tk+1)|| ≤ O(Δx). (5.185)

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 209

We combine all the results and obtain the local error estimates as

errlocal,PIC = ||E − Enum|| ≤ O(Δx) + O(Δt2). (5.186)

Remark 5.23 The numerical error of the uniform PIC cycle is a combination of the
spatial- and time-approximations. Means the higher the numerical approaches of
each individual element of the cycle, the higher approach is also the underlying full
error of the cycle, see further ideas of adaptation and their underlying errors [56].

Error Estimates for Adaptive Grids

In the following, we discuss the numerical errors for the adaptive grids.
For the adaptive grids, we have the following errors:

• Numerical errors (approximation errors to the numerical schemes).
• Physical errors (approximation errors to the physical constraints, e.g. self-force,

inter-particle forces).

Numerical Error for Adaptive Schemes Based on Physical Constraints

In the literature there exists different example to improve standard PIC to adaptive
PIC.

Here the problem are often that simple coupling ideas without deriving correct
error estimates lacked.

In the following, we proof that only standard coupling of uniform discretization
and standard shape functions, will produce large errors when concerning large time
steps, e.g. 108.

We have the following outline of the errors due to the PIC method:
Mathematical errors:

• Spatial symmetry is not correct
• Interpolation error of the standard CIC shape functions

Spatial Symmetry is Neglected

In the following, we derive the error of the neglected spatial symmetry without a
corrected discretization

Theorem 5.7 The error of the self-forces for non-balanced nonuniform discretisa-
tion is given with

err ≤ O(αmax − αmin), (5.187)

while αmax is the maximum length of a grid cell and αmin is the minimum length of
a grid cell.

210 5 Engineering Applications

Proof Based on the idea to proof the D. Tskhakaya et al., we have the error of the
self-force given as:

err = e2

Vg

∑

i,k

gi,kS(xi − x)S(xk − x)

− e2

Vg

∑

i,k

gk,iS(xk − x)S(xi − x) (5.188)

≤ e2

Vg
|
∑

i,k

(gi,k − gk,i)| (5.189)

≤ e2

Vg
2Ng

(
Ng

max
i

αi −
Ng

min
k

αk

)
(5.190)

≤ C O(αmax − αmin), (5.191)

where we assume gi,k
= gk,i and ||S(xi − x)|| ≤ 1, αmax = max
Ng
i αi and αmin =

min
Ng
i αi.

Remark 5.24 • The most delicate case is given if the maximum and minimum length
of a cell are very different:
αmax � αmin,
then the error is given with the scale of the largest cell:
err ≤ O(αmax).

• A further delicate case is given if we try to smooth the error over a long spatial
scale, means the maximum and minimum of the scales are “nearly” the same:
αmax ≈ αmin,
but here we have to taken into account the long-time stability:

Example 5.3 We assume that the difference between the two scales are given as:
diff = αmax − αmin,
further we have about NG = 106 cells and Nr = 1010 runs (repetition of the method),
then the difference between the cells have to be:

diff ≤ 1

NgNr
, (5.192)

≤ 10−16, (5.193)

so we have to deal with a very small difference and the smoothing zone is very large.

• The optimal case is given if the maximum and minimum length of a cell are the
same if we only use standard discretization schemes:
αmax = αmin,
then the error is zero:
err = 0.

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 211

Without any correction, the self-force is going to infinity with very spatial scales,
it means if we do not balance the discretization schemes and shape function, we have
large errors in the computations.

The same can also be proved with two particle interaction forces.

5.4.3.1 Higher Order Error Estimates with Adaptive Schemes

In the following, we discuss the adaptive PIC based on:

• Balanced discretization methods
• Weighted shape functions

Based on the balanced discretization method, we could show, that the self-force
and inter-particle force are fulfilled, therefore, we also fulfil the momentum conser-
vation, see [57].

The error estimates are only given with respect to the discretization error and
interpolation errors.

Theorem 5.8 The error estimates is therefore given with respect to the discretization
error and the interpolation error.

errdisc = ||E − Enum|| ≤ O((Δx)k1), (5.194)

where k1 is the order of the discretization scheme and Δx is the maximal grid step.

errdisc = ||ρ − ρinter || ≤ O((Δx)k2), (5.195)

where k2 is the order of the interpolation scheme Sk, while k = 0 is the NGP, k = 1
is the CIC and k = 2 is the quadratic B-spline shape function.

Proof Based on the balanced discretization and the weighted shape functions, the
self-forces and inter-particle forces are fulfilled.

5.4.3.2 Error Estimates for the Full PIC Cycle for Adaptive Schemes

We assume to have the following approximation errors for our underlying numerical
schemes:

• Pusher: O(Δt2)

• Solver: O(Δx2
max), where Δxmax = maxI

i=1(Δxi).
• Interpolation (adaptive CIC): O(Δxmax), where Δxmax = maxI

i=1(Δxi).

212 5 Engineering Applications

The Parts of the PIC Cycle, Like in the Uniform Case

Parts of the cycle:

(1) Pusher

dxp

dt
= vp,

dvp

dt
= Fp = ep

mp
E(xp), (5.196)

with p = 1, . . . , P are the particles in the cycle and qp = ep
mp

is the charge of the
particle p.
The numerical scheme is given as a second order in time for one particle to time
tk+1:

xk+1 = xk + Δt vk+1/2, (5.197)

vk+1/2 = vk−1/2 + 2Δt q Ek, (5.198)

with p = 1, . . . , P are the particles in the cycle.
(2) Interpolation I (particle position to grid)

ρi =
J∑

j=1

qjS(xi − xj(tk+1)), (5.199)

where xj(tk+1) and qj(tk+1) are the position and charges of particle j to time tk+1.
(3) Solver and Interpolation II (grid to particle position)

E(x(tk+1)) =
I∑

i=1

EiS(xi − x(tk+1)), (5.200)

and

E(x(tk+1)) =
I∑

i=1

(
K∑

k=1

gikρk

)
S(xi − x(tk+1)), (5.201)

E(x(tk+1)) =
I∑

i=1

⎛

⎝
K∑

k=1

gik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))S(xi − x(tk+1))

⎞

⎠ . (5.202)

Theorem 5.9 For one PIC cycle, with CIC as Interpolation and second order in
space for the solver and second order in time for the pusher, we assume:

• Local Error of the Interpolation I:

||E(x) − E(xi)|| ≤ O(Δxmax), (5.203)

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 213

• Local Error of the Solver scheme:

||gexact − gi,k || ≤ O(Δx2
max), (5.204)

• Local Error of the Interpolation II:

||ρ(x) − ρ(xi)|| ≤ O(Δxmax), (5.205)

• Local Error of the Pusher scheme (Time-integrator):

||E(x(tk+1)) − E(x, tk+1)|| ≤ O(Δt2), (5.206)

where Δxmax is the maximal grid size of the adaptive grid.
Then the local error estimates is given as

errlocal,PIC = ||E − Enum|| ≤ O(Δxmax) + O(Δt2), (5.207)

where E is the exact electrical field and Enum the numerical approximated electrical
field with Δx as spatial grid size and Δt as time step.

Proof We use the same arguments as for the uniform case and deal with the following
time and space error estimates:

||E(x(tk+1)) − E(xapprox, tk+1) + E(xapprox, tk+1) − E(xi, tk+1)||
≤ ||E(x(tk+1)) − E(xapprox, tk+1)|| + ||E(xapprox, tk+1) − E(xi, tk+1)||. (5.208)

The first part of the error estimates is the approximation error in time, while the
second part is the approximation in space.

The first part is estimated based on the assumption of a second-order time-
integration scheme:

||E(x(tk+1)) − E(x, tk+1)|| ≤ O(Δt2). (5.209)

The second part is given as:

||E(xapprox, tk+1) − E(xi, tk+1)||

= ||
⎛

⎝
K∑

k=1

g,exact,ik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))

⎞

⎠

−
⎛

⎝
K∑

k=1

gik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))

⎞

⎠ || ≤ O(Δx2
max). (5.210)

||E(x, tk+1) − E(xapprox, tk+1)|| ≤ O(Δxmax). (5.211)

214 5 Engineering Applications

We combine all the results and obtain the local error estimates as

errlocal,PIC = ||E − Enum|| ≤ O(Δxmax) + O(Δt2), (5.212)

In the next subsection, we taken into account the underlying errors, if we consider
the constraints of the self-forces, means that we should not have additional forces
from the numerical scheme, see [58].

5.4.3.3 Error Estimates for the Self-force in a Full PIC Cycle
for Adaptive Schemes

We have the following theorem for the error estimates of the self-forces:

Theorem 5.10 For one PIC cycle, with CIC as Interpolation and second order in
space for the solver and second order in time for the pusher, we assume

Then the local error estimates is given as

errlocal,PIC,self −force = ||Fself − Fself ,num||
≤ O(Δxmax) + O(αmax − αmin) + O(Δt2), (5.213)

where Fself is the exact electrical field for the self-force and Fself ,num is the numerical
approximated electrical field for the self-force with Δxmax as spatial grid size and
Δt as time step.

The error of the numerical scheme related to the non-translation invariant solver
scheme (used as a constraint to the self-force) is given as

||gik,adapt − gki,adapt || ≤ O(αmax − αmin). (5.214)

Proof We use the same arguments as for the uniform case and deal with the following
time and space error estimates:

||Fself ,exact (x(tk+1)) − Fself ,corrected(x, tk+1)

+ Fself ,corrected(x, tk+1) − Fself ,num(xi, tk+1)||
≤ ||Fself ,exact (x(tk+1)) − Fself ,corrected(x, tk+1)||

+ ||Fself ,corrected(x, tk+1) − Fself ,num(xi, tk+1)||. (5.215)

The first part of the error estimates is the approximation error in time, while the
second part is the approximation in space.

The first part is estimated based on an assumed correct gik,correct such that the
error is only related to the numerical errors of the spatial grid

||Fself ,exact (x(tk+1)) − Fself ,corrected(x, tk+1)||
||eEexact (x(tk+1)) − eEcorrected(x, tk+1)|| ≤ O(Δt2) + O(Δxmax).

(5.216)

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 215

The second part is given as the self-force error, while the approximated numerical
solution

||Fself ,corrected(x, tk+1) − Fself ,num(xi, tk+1)||
= ||eEcorrected(x, tk+1) − eEnum(xi, tk+1)|| ≤ O(αmax − αmin). (5.217)

We combine all the results and obtain the local error estimates as

errself ,local,PIC = ||Fself − Fself ,num||
≤ O(Δxmax) + O(Δt2) + O(αmax − αmin). (5.218)

Remark 5.25 The error is splitted into two parts:

• Numerical approximation errors of the underlying PIC schemes, e.g. Solver,
Pusher, Interpolation scheme. Such error can be reduced by applying higher order
schemes, e.g. fourth-order discretization scheme for the solver.

• Constraint approximation errors (errors from the physical constraints), e.g. self-
force constraint. Such errors are related to an invariance of the underlying scheme,
e.g. translation invariance to the solver, see [55]. Such constraints are only ful-
filled for equidistant grids and using adaptive grids neglect such invariances. To
overcome such constraint errors, we have to optimize or embed the constraints to
our PIC schemes, see ideas in [59, 60].

5.4.3.4 Finite Difference Error Estimates for the Nonuniform Grid

Based on the nonuniform grid, we have to estimate the difference between the uniform
and nonuniform error of the finite difference schemes.

The field equation is given as

∇2φp = −ρp

ε0
(5.219)

with Dirichlet conditions.
The optimal error estimates for the uniform grid is given for the finite difference

scheme:
We have the discrete solution φp,Δx = L−1

Δx
ρp,Δx

ε0
while φ∗

p,Δx = RΔxu is the

restriction of the exact solution φp = L−1 ρp
ε0

(related to the shape functions)

φp,Δx − φ∗
p,Δx = L−1

Δx
ρp,Δx

ε0
− RΔxφp, (5.220)

= L−1
Δx

(
ρp,Δx

ε0
− R̃Δx

ρp

ε0

)
− L−1

Δx

(
LΔxRΔx − R̃ΔxL

) ρp

ε0
. (5.221)

216 5 Engineering Applications

Theorem 5.11 We have (φp ∈ H2(Ω) for the solution of Lφp = ρp
ε0

. The right-hand

side of the equation LΔxφp,Δx = ρp,Δx
ε0

is chosen with:

|
(

ρp,Δx

ε0
− R̃Δx

ρp

ε0

)
|0 ≤ Cf Δxm, (5.222)

while m is the order of the shape function.

Proof The approximation of the right-hand side to the grid is given as

|ρp,Δx −
J∑

j=1

qjS(xi − xj)|0 ≤ O(Δxm), (5.223)

where m is the order of the shape function, e.g. m = 1 for a CIC approximation.

The consistency of the uniform grid is given as

|LhRΔx − R̃ΔxL|−2←2 ≤ CΔxn, (5.224)

where n = 2 an the order of the discretization schemes.

Error Between a Fine and Coarse Grid

The error estimates between the adaptive solutions are given as

Theorem 5.12 We have two difference schemes given with the solutions of the equa-
tions LΔxφp,Δx = ρp,Δx

ε0
and LΔx̃φp,Δx̃ = ρp,Δx̃

ε0
the error estimates is given as

||φp,Δx − φp,Δx̃||0 ≤ max{Δx,Δx̃}
I∑

i=1

∥∥∥∥
∂φp,Δx,i

∂x
|Δx − ∂φp,Δx̃,i

∂x
|Δx̃

∥∥∥∥
0

≤ C max{Δx,Δx̃}2||φp,min{Δx,Δx̃}||0, (5.225)

while I is the number of the grid cells in the coarse discretization.

Proof We apply the idea of the finer grid as a reference solution. The difference to
the coarse grid is given with respect to the consistency and right hand side error, see
also [61].

Remark 5.26 To apply the error estimates at the adaptive interface, we have to
assume an error bound ε and compute:

I∑

i=1

∥∥∥∥
∂φp,Δx,i

∂x
|Δx − ∂φp,Δx̃,i

∂x
|Δx̃

∥∥∥∥
0

≤ E, (5.226)

if E ≤ ε, then we are in the tolerance of the error estimates, if E ≥ ε, then we have
to deal with a finer discretization.

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 217

Remark 5.27 To apply such an error estimates, we have to assume an error bound,
e.g. err = 106.

Then, we accept the coarsening,
if we have

max{Δx,Δx̃}
I∑

i=1

∥∥∥∥
∂φp,Δx,i

∂x
|Δx − ∂φp,Δx̃,i

∂x
|Δx̃

∥∥∥∥
0

≤ err, (5.227)

else we apply the finer grids.

5.4.4 Absolute Error Based on the Initialization
and Right-Hand Side

The absolute errors are given with respect to the initialization and right-hand side
values.

Theorem 5.13 For one PIC cycle, with CIC as Interpolation and second order in
space for the solver and second order in time for the pusher, we assume:

• Local Error of the Interpolation I:

||E(x) − E(xi)|| ≤ C4Δxmax||Einit ||, (5.228)

• Local Error of the Solver scheme:

||gexact − gi,k || ≤ C3Δx2
max||ρinit ||, (5.229)

• Local Error of the Interpolation II:

||ρ(x) − ρ(xi)|| ≤ C3Δxmax||ρinit ||, (5.230)

• Absolute Error of the Pusher scheme (Time-integrator):

||E(x(tk+1)) − E(x, tk+1)|| ≤ C2Δt2)||E(x(t0))||, (5.231)

where Δt is the local time step and t0 is the starting time, we have tk = kΔt + t0.
Then the local error estimates is given as

errlocal,PIC = ||E − Enum|| ≤ C1Δxρinit + C2Δt2E(x(t0)), (5.232)

where ρ(x, t0) is initial charge density and the exact electrical field and Enum the
numerical approximated electrical field with Δx as spatial grid size and Δt as time
step.

218 5 Engineering Applications

Proof We use the same arguments as for the uniform case and deal with the following
time and space error estimates:

||E(x(tk+1)) − E(xapprox, tk+1) + E(xapprox, tk+1) − E(x, tk+1)||
≤ ||E(x(tk+1)) − E(xapprox, tk+1)|| + ||E(xapprox, tk+1) − E(x, tk+1)||. (5.233)

The first part of the error estimates is the approximation error in time, while the
second part is the approximation in space.

The first part is estimated based on the assumption of a second-order time-
integration scheme:

||E(x(tk+1)) − E(x, tk+1)||
= ||Dexact E(x(tk)) − DnumE(x, tk)||

= ||
k∑

ν=1

Dk−ν
exact (Dexact − Dnum)E(x(t0))|| ≤ CΔt2||E(x(t0))||, (5.234)

where Dexact is the exact time-integrator and Dnum is the numerical time-integrator
and the convergence is given as ||Dexact − Dnum|| ≤ O(Δt2).

The second part is given as

||E(xapprox, tk+1) − E(xi, tk+1) + E(xi, tk+1) − E(x, tk+1)||

= ||
⎛

⎝
K∑

k=1

g,exact,ik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))

⎞

⎠

−
⎛

⎝
K∑

k=1

gik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))

⎞

⎠

+
⎛

⎝
K∑

k=1

gik

J∑

ĩ=1

qjS(xĩ − xj(tk+1))

⎞

⎠

−
(

K∑

k=1

gikρi

)
|| ≤ (C2Δx2

max + C3Δxmax)ρinit , (5.235)

where ρinit = ρ(xi, tk+1) for all i ∈ I .

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 219

5.4.5 Error Reduction with Respect to SPDE (Stochastic
Partial Differential Equations)

Based on the perturbations and statistical influence of the fields with respect to the
densities, the PIC algorithm, based on the Pusher, Solver and Approximation parts,
can be rewritten to stochastic partial differential equations.

We can obtain in a first approximation the method as a stochastic heat equation
(or in the stationary case as a elliptic stochastic equation)

dX − ΔXdt = dW, in Ω × IR+, (5.236)

X = 0, on ∂Ω × IR+, (5.237)

X(·, 0) = X0, in Ω, (5.238)

where Ω ⊂ IRd is a convex polygonal domain and Δ = ∑d
k=1

∂
∂xk

is the Laplace
operator. We have H = L2(Ω) with the usual norm || · || and scalar product 〈·, ·〉.
Further W is a Q-Wiener process or a Gaussian white noise.

For all convergence studies the approximation of the white noise and the necessary
regularity have to be done, see

ηi = 1√
Δx

∫ xi+1

xi

dW (x, t), i = 1, . . . , N, (5.239)

i.e. ηi ≈ N(0, 1)

Example for a finite difference scheme (e.g. Method of lines with second-order
two for the diffusion operator), we obtain an error estimates (only for the spatial
discretized operators), see [62]:

⎛

⎝E

⎡

⎣ 1

N

N∑

j=1

(û(xj) − ûj)
2)

⎤

⎦

⎞

⎠
1/2

≤ C

1 − λ2
N

Δx ≈ O(
√

Δx), (5.240)

where 1
1−λ2

N
≈ √

Δx (approximation with respect to the regularity of the white

noise).

5.4.5.1 Reduction of the Error Estimates for the Local PIC

The influence of the statistical error based on the reformulated model problem as
stochastic partial differential operator reduce also the error estimates of the local PIC.

220 5 Engineering Applications

Theorem 5.14 For PIC cycle, we apply the underlying model of a stochastic PDE.
Therefore the influence to the solver scheme is given as
Local Error of the Solver scheme:

||E(gexact − gi,k)|| ≤ O((Δx)1−β), (5.241)

where β ∈ (0, 1].
Then the local error estimates is given as

errlocal,PIC ≤ O((Δx)1−β) + O

(
Δt2

(Δx)β

)
, (5.242)

where for the standard finite difference scheme β = 1/2.

Proof The proof for the elliptic SPDE can be found in [62]. At least we reduce the
error estimates with respect to the regularity of the Wiener process dW .

5.4.6 Algorithmic Ideas to Overcome the Self-Force Problems

In the adaptive grids, we cannot fulfil the invariance of the discretization schemes
and have the following issues problems:

• Exact Potential, Self-force not zero: We compute with the exact Greens function
or with the exact adaptive discretization schemes, but then we have an error in the
self-forces: ||Gi,j−Gi−s,j−s|| ≤ O(αmax−αmin). That means the error corresponds
to the difference of the maximal and minimal grid size.

• Non-Exact Potential, Self-force zero: We correct the exact Greens function or
exact adaptive democratization schemes with the underlying shape functions and
obtain an invariance of the discretization schemes (means Self-force is zero), but
then we have an error between the exact and corrected Greens function or dis-
cretization scheme: ||Gi,j − Gcorrect,i,j|| ≤ O(max(Δx,Δx̃)), where Δx and Δx̃
are the different grid sizes.

We propose the following balanced scheme, between small self-forces and small
error in the approximated discretization schemes.

Based on the work of Tskhakaya [57], we have the following potential generated
by some particles located at X:

φ(x) = e
m∑

i=1

S(xi − X)G(x − xi), (5.243)

where G(x − X) is the Greens function.

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 221

We expand G(x − xi) near x − X

φ(x) = e
m∑

i=1

S(xi − X)G(x − X) + e
m∑

i=1

S(xi − X)

∞∑

n=1

(X − xi)
n

n!
∂nG(x − X)

∂xn
,

= eG(x − X) + δφ(x),

= φexact (x) + δφ(x), (5.244)

while the first term represents the correct physical potential, the second term is an
unphysical part based on the weighting. The term gets as small as possible for higher
order shape functions which fulfils

m∑

i=1

S(xi − X)(xi − X)n = 0, (5.245)

Based on the adaptive discretization schemes, we have the problem of the invari-
ance of the Greens function, see [55].

The following problem is given:

E0
d = E0

adapt,d + E0
adapt,unphysical, (5.246)

while the second term goes to zero for n → ∞, means with higher order shape
functions, we have the problem of the not fulfilled invariance of the Greens function:

Gi,j
= Gi−Δx,j−Δx̃, (5.247)

while Δx
= Δx̃.
To fulfil the invariance of the discretization, we perturb the Greens function, such

that we have

Gcorrect,i,j = Gcorrect,i−Δx,j−Δx̃, (5.248)

while Δx
= Δx̃.
Therefore, we have the following corrections:

E0
d = E0

adapt,d + E0
adapt,correct,d − E0

adapt,correct,d + E0
adapt,unphysical, (5.249)

while of E0
adapt,d + E0

adapt,correct,d it correspond the perturbed Greens function
Gcorrect,i,j.

Here we have to optimize the perturbation of the approximated Greens function
via a variational minimization problem, see [63–67].

222 5 Engineering Applications

We have to minimize the error based on the energy norm:

||E||20 =
∫

Ωi

(Qx) dx ≤ err, (5.250)

where Qx = ∂E
∂x and E = Gi,j − Gcorrect,i,j.

Gi,j is the exact Greens function and Gcorrect,i,j is the approximated and corrected
Greens function.

5.4.6.1 Balance of the Adaptive Errors

In the following, we discuss the minimization problem in the following steps:

• Uniform Grid,
• Adaptive Grid,
• Correction and Minimization of the adaptive grid errors.

Uniform Grid

In the uniform grid, we have the following case for the potential, when applying
discrete schemes and shape functions:

φuniform(x) = φexact (x) + δφuniform(x), (5.251)

while δφuniform(x) are the unphysical potential due to the numerical schemes and we
assume

δφuniform(x) → 0, (5.252)

if we apply higher order discretization schemes and higher momentum shape func-
tions.

Further for uniform discretization schemes, we have fulfilled the invariance of the
solver (here especially for the Greens function):

gi,j = gi−Δx,j−Δx, (5.253)

while based on this constraint, the self-forces are zero, see [55].

Adaptive Grid

In the adaptive grid, we have for the potential the same idea as for the uniform case,
when applying discrete schemes and shape functions

φadaptive(x) = φexact (x) + δφadaptive(x), (5.254)

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 223

while δφadaptive(x) are the unphysical potential due to the numerical schemes of the
adaptive errors and we assume

δφadaptive(x) → 0, (5.255)

if we apply higher order discretization schemes and higher momentum shape func-
tions.

Further for adaptive discretization schemes, we have an additional error, while
we deal with solver schemes applied to non-symmetric grids (here especially for the
Greens function):

gi,j = gi−Δix,j−Δjx, (5.256)

and Δix
= Δjx, and therefore based on this constraint, the self-forces are not zero,
see [55] and the error is given as

||gi,j − gi−Δix,j−Δjx|| ≤ O(max
i=1,...,I

(αi)), (5.257)

while Δix = αiΔx and αi ∈ IR+, i = 1, . . . , I , I are the number of cells and Δx is
the uniform grid size.

Minimization of the Adaptive Grid Errors

To minimize the adaptive grid errors with respect to the self-force constrain, we have
to balance with the shape functions.

gi,j = gi−Δix,j−Δjx + O

(
∂m

∂xm
gi,j

)
, (5.258)

and are derivatives of the Greens functions ∂m

∂xm gi,j, while m = 2, 4, . . . is an even
number.

For this case, we can fulfil the constraint to be zero.
To apply such we have to correct the potential as

φadaptive(x) = φexact (x) + δφcorrect (x) − δφcorrect (x) + δφadaptive(x), (5.259)

while δφcorrect (x) is used to fulfil the constraints and we assume δφadaptive(x) → 0
for higher order discretization schemes and shape functions.

By the way, now we have to deal with minimization problem:

• Minimization of the unphysical potential: ||δφcorrect (x)|| → 0.
• Minimization of the error in the invariance of the solver ||gi,j −gi−Δix,j−Δjx|| → 0.

The idea is to shift the error to higher order moments of the shape functions, e.g.
m = 2, 4, . . . and apply higher order shape functions. With the higher order shape
functions, we can correct the potential and fulfil the self-forces.

224 5 Engineering Applications

By the way, we have to be sure, that a balance of the errors are necessary and that
we obtain an average of the errors in long-term computations (statistical averaging).

Such ideas to smear out the error in the statistical manner is discussed in the next
subsection.

5.4.7 Absolute and Statistical Errors

In the following, we contribute an absolute error based on the idea to deal with
uniform and nonuniform grids.

While the error of the uniform grid are socalled reference solutions, the adaptive
or nonuniform grids are the numerical solutions.

Based on the fact, that we have statistical errors, we have to define expected values
E and their variance V ar. The

√
V ar is assumed to be the error of the expected values.

Proposition 5.1 We assume to have a series of discrete computed the potential φ

and electric field E:
φ1

1 , . . . , φn
m

and
E1

1 , . . . , En
m

Then the statistical error is given as

δφ̃ ≤
m∑

i=1

√
V ar(φ̃i), (5.260)

δẼ ≤ m

minm
i=1(Δxi)

m
max
i=1

(

√
V ar(φ̃i)). (5.261)

Proof We have the following numerical dates for discrete computed the potential
phi:

φ1
1 , . . . , φn

m
while i = 1, . . . , m are the spatial coordinates and j = 1, . . . , n are the time coordi-
nates.

The expected value is given as

E(φ̃i) =
n∑

j=1

1

n
φ

j
i , (5.262)

we assume the same probability of 1
n .

So that the variance is given as

V ar(φ̃i) =
n∑

j=1

1

n
(φ

j
i)

2 − (E(φ̃i))
2, (5.263)

we assume to have independent random variables φ
j
i .

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 225

The statistical error is given as:

δφ̃i =
√

V ar(φ̃i). (5.264)

Further we have the following numerical dates for discrete computed the E-field
E:

E1
1 , . . . , En

m
while i = 1, . . . , m are the spatial coordinates and j = 1, . . . , n are the time coordi-
nates.

The expected value is given as

E(Ẽi) =
n∑

j=1

1

n
Ej

i , (5.265)

we assume the same probability of 1
n and E = f (φ) in the discrete notations, the

function f is given as

Ej
i = φ

j
i+1−φ

j
i−1

2Δx for uniform grids

Ej
i = φ

j̃
i+1−φ

j
i−1

2Δxi−1
and φ

j̃
i+1 = Δxi−Δxi−1

Δxi
φ

j
i + Δxi−1

Δxi
φ

j
i+1 for corrected adaptive inter-

faces

Ej
i = φ

j̃
i+1−φ

j
i−1

Δxi−1+Δxi+1
for uncorrected adaptive interfaces

So that the variance is given as

V ar(Ẽi) = V ar(f (φ̃i)) ≤ m

minm
i=1(Δxi)

m
max
i=1

(V ar(φ̃i)), (5.266)

The statistical error is given as

δẼi =
√

V ar(Ẽi), (5.267)

The statistical a posteriori error estimates are given as

Proposition 5.2 We assume to have a two different series of discrete computed the
potential φuniform, φadaptive and electric field Euniform, Eadaptive, where we have the
spatial and time coordinates

φuniform = (φ1
uniform,1, . . . , φ

1
uniform,m, . . . , φn

uniform,1, . . . , φ
n
uniform,m)t ,

φadaptive = (φadaptive,1, . . . , φadaptive,m, . . . , φadaptive,1, . . . , φadaptive,m)t ,

226 5 Engineering Applications

and

Euniform = (E1
uniform,1, . . . , E1

uniform,m, . . . , E1
uniform,1, . . . , E1

uniform,m)t ,

Eadaptive = (E1
adaptive,1, . . . , E1

adaptive,m, . . . , En
adaptive,1, . . . , En

adaptive,m)t .

Then the statistical a posteriori error estimates is given as

δ(φ̃uniform − φ̃adaptive)

≤
m∑

i=1

√
V ar(φ̃uniform,i − V ar(φ̃adaptive,i), (5.268)

δ(Ẽuniform − Ẽadaptive)

≤ m

minm
i=1(Δxi)

m
max
i=1

(

√
V ar(φ̃uniform,i − V ar(φ̃adaptive,i)). (5.269)

Proof See the ideas in the proof of Proposition 5.1 with respect to the additivity of
the expected values and variances.

Remark 5.28 The expectation E(φuni − φadapt) is the underlying sensitivity, which
relates the adaptive solution to the uniform (reference) solution.

For E(φuni − φadaptiv) ≈ 0 we have only small derivations and the errors are
small.

For E(φuni − φadaptiv) � 0 the derivations are large and the errors to the uniform
grid high.

For larger computations it is often not possible to compute an uniform (reference)
solution. Here, we compare adaptive solutions, with different fine gridsΔx,Δx/2, . . . ,
such that we allow to derive an numerical error rate to the used adaptive grids.

If the error is strongly variating from one to another grid, we assume that we did
not reach a convergent solution and refine more in the underlying regions, since our
error is small enough.

5.4.8 Scaling of the Error and Analytical Error

In the last section, we have derived the statistical errors of the uniform and adaptive
solutions.

We apply the statistical error estimate

δẼk,uniform = 1

2Δx
(φ̃k+1,uniform + φ̃k−1,uniform) (5.270)

δẼk,no−corr,adaptive = 1

Δxk−1 + Δxk+1
(φ̃k+1,adaptive + φ̃k−1,adaptive) (5.271)

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 227

δẼk,corr,adaptive = Δxk − Δxk−1

2Δxk−1Δxk
φ̃k,adaptive

+ 1

2Δxk
φ̃k+1,adaptive

1

2Δxk−1
φ̃k−1,adaptive, (5.272)

Further we assume based on the discretization and solver schemes that the dis-
cretization is scaled quadratic (quadratical error) O(Δx2) and the solver is linear
scaled (linear error) O(Δx). Based on the consecutive application of discretization
and solver schemes, the errors are scaled linear O(Δx).

Assumption 5.15 The potential errors are linear:

|φ̃k,adaptive| ≤ O(Δx), (5.273)

|φ̃k,uniform| ≤ O(Δx), (5.274)

where the different grid-scales are given as Δxk = Δxαk , and αk ∈ (0, 1]. Δx is the
uniform grid-scale.

Proposition 5.3 The errors between the uniform and adaptive solutions are scales
with O(Δαmax) and Δαmax = maxK

k=1 αk − 1, while 1, . . . , K are the grid points.

Proof We have to estimate the error of the different grids:

|δẼk,uniform − δẼk,no−corr,adaptive|
≤ | 1

Δx
− 1

Δxk−1 + Δxk+1
|O(Δxmax),

≤ O(Δαmax), (5.275)

where Δαmax = maxK
k=1 αk − 1.

The same can be done with the corrected adaptive version.

5.4.8.1 Analytical Errors

The analytical error is based on a 1D solution at the interface of the different grids.
We assume different grids for the solver, which can be estimated as errors based

on the statistical variance.
The pusher can be reformulated as oscillator of the errors of the solved Poisson’s

equation:

∂2ε

∂t2 = −ω2ε (5.276)

228 5 Engineering Applications

while ω is the frequency of the oscillator and εk = xk −Xk , where xk is the analytical
and Xk the numerical solution of the pusher at the grid point k.

By deriving the truncation error of the pusher, we have the Taylor expansion of
the underlying scheme

− e

m
E(Xk + εk) − E(Xk) = − e

m
εk

∂E

∂x
|Xk+Δx) ≈ − e

m
εk |∂E

∂x
|max (5.277)

Such an estimation of the maximum of the divergence of the E-field is the Lapla-
cian of the potential, means the maximum errors of the potential.

∂2ε

∂t2 = −ω2ε (5.278)

where ω2 = e
m | ∂E

∂x |max.
While the solution of the oscillator is given as

ε = cos(ωΔt) ≈= 1 − (ωΔt)2

2
, (5.279)

Now we compare the different grids of the Poisson’s equation

Proposition 5.4 The errors uniform and adaptive solutions are given as
| ∂E
∂x |max,uniform and | ∂E

∂x |max,adaptive,
then the analytical error of the different oscillator grids are given as:

Δε = | (ωuniformΔt)2

2
− (ωadaptiveΔt)2

2
|, (5.280)

where ω2
uniform = e

m | ∂E
∂x |max,uniform and ω2

adaptive = e
m | ∂E

∂x |max,adaptive.

Proof The results of the different error estimates are inserted into the oscillator.

5.4.9 Numerical Results

In the following, we discuss a microscopic Test problem of one particle to see the
error for the different methods.

Therefore, we separate dominant errors, e.g. energy error of non-conservation,
which arose of many particle systems. Here, we carefully discuss the single error for
smaller systems:

• 1 Electron : We test only the self-force (should be zero)
• 1 Electron and 1 Ion: We test the self-force and inter-particle force (all the error

should be skipped)

5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell … 229

Table 5.2 Experimental setup of the one-particle problem

Domain Ω Total domain length = 100λDe

Fine grid size Δx1 = 0.1λDe

Interface (domain cut) xinter = 50λDe

Coarsening Δx1 → 50Δx1 = Δx2

Time step Δt = 0.002

End point tmax = 30

Averaging tstart = 10, out = 0.2 , Δtion = 1

Boundary conditions Φ(0) = 0, Φ(L) = Φanalytic(xe)

Initialization El. starts at x = 50λDe, v0 = 0 ∗ Vth,e

Table 5.3 Numerical errors of the adaptive grid without corrections

Δx2/Δx1 erruncorr errcorr abserruncorr abserrcorr

x-Coordinate y-Coordinate y-Coordinate y-Coordinate y-Coordinate

1 0 0 0 0

2 −2.683191 3.572447e-13 2.683191 3.572447e-13

4 −4.874832 0 4.874832 0

6 −5.826364 0 5.826364 0

10 −6.697762 −1.786227e-12 6.697762 1.786227e-12

20 −7.428628 −3.572447e-13 7.428628 3.572447e-13

50 −7.903834 3.572447e-13 7.903834 3.572447e-13

Here we have the following experimental setup, see Table 5.2.
The one-particle problem is done with 1 electron with v = 0 is placed at cut-

gridpoint (fine–coarse grid interface) and we have a wrong E-Field, based on the
standard discretization. Later we switch to the correction and apply a logical uniform
grid to correct the wrong E-field.

In the following, we present the relative and absolute errors of the one-particle
experiment with standard FD and corrected FD schemes, see Table 5.3.

Remark 5.29 Based on the uncorrected scheme (standard Finite Difference scheme),
we have the problem of reduction of the suggested convergence order of O(h2β) to a
lower order of O(hβ log(h)), where 0 < β ≤ 1. For example we will obtain β = 1

2
at the interface for deterministic PDEs. Here we deal with stochastic PDEs, therefore
we lose convergence order, see [68, 69].

5.4.10 Conclusion

We discuss the multiscale problems of using adaptive grids for Particle in Cell meth-
ods. While the PIC methods are constructed for uniform meshes based on the correct

230 5 Engineering Applications

spatial symmetry of the field solvers, see [55, 57], we perturbed the symmetry with
adaptive meshes and apply non-symmetric schemes (or adaptive schemes). We derive
error estimates to see the errors in the adaptive scheme, e.g. error in the self-force.
Taken into account the physical assumption in the decreasing charge density, we
can reduce and nearly circumvent such errors. In the numerical examples, we could
present the advantages of the adaptive schemes and reduce the computational costs. A
detailed study of a so-called microscopic problem with one and two particles allows
a more precise analysis of the errors. Such that we can apply many particle problems
and understand their different errors.

5.5 A Multicomponent Transport Model for Plasma
and Particle Transport: Multicomponent Mixture

Abstract In this paper we present a model based on a multicomponent transport
regime. Such models can be applied in plasma simulations, e.g. a local thermo-
dynamic equilibrium, weakly ionized plasma mixture. Such plasma mixtures are
applied in medical sterilization and technical etching processes, see [70]. A further
application of multicomponent models are applications in complex fluid problem,
e.g. viscoelasticity equations (based on the Oldroyd B constitutive equation) related
with multicomponent fluid flow, see [71]. While the most classical description of the
diffusion phenomenon is based on the Fickian’s approach, see [72, 73], we discuss
here the more detailed Maxwell–Stefan model, which covers the binary reciprocal
interactions of the gas molecules, see [74, 75]. Such a more detailed description
resolves into a system of coupled nonlinear partial differential equations and the dif-
fusion is more complex as in the Fickian’s approach. Here, we present a ternary gas
mixture and study the problems of the numerical approaches. We present a explicit
solver methods and discuss more improved results of the mixtures.

5.5.1 Introduction

Multicomponent transport models are nowadays important to understand complex
fluid mixtures, e.g. plasma transport, multiscale modelling of fluids, population
dynamics, complex fluids, etc., see [76, 77]. While diffusion is a time-dependent
process, which has his origin by the motion of the species that spread in space, the
understanding of such process is important for the modelling. We assume to have
diffusion driven processes such that classical description, like Fickian’s approach
failed.

The Fickian’s approach has the underlying idea, that fluxes from regions with
high concentrations go to regions of low concentrations, while their magnitude is
proportional to the gradients, see [72, 73]. Such a direct relation between flux and

5.5 A Multicomponent Transport Model for Plasma … 231

concentration gradient is some models sufficient but failed by more delicate multi-
component mixtures, see [78, 79]. The more extended model is the Maxwell–Stefan
approach, see [74, 75], which allow to model the advanced phenomenas, e.g. cross-
diffusion model. The idea is to see the processes as binary reciprocal interactions
of the gas molecules and results in more complex coupled equation systems as the
phenomenological approach with Fickian’s law.

Because of a nonlinear coupled differential equation system, it is more delicate to
solver such evolution equations, see [80]. We have to overcome additional constraints,
e.g. total sum of the diffusive fluxes are zero. This additional contribution results have
taken into account by the inversion of the flux–force relation. Here, we can extend and
stabilize the inversion and obtain a well-posedness of the Stefan–Maxwell equations,
see [80].

In smaller mixture regimes, e.g. 3 or 4 species, we could also reformulate the
problem into an equation system of 2 or 3 species. Here, we apply the condition
of the summation of the mole fractions

∑n
i=1 ξi = 1 to the equation system and

reformulate into a smaller system of (n−1)-species without the constraints, see also
[81].

For the numerical schemes, we deal with such a reformulation in a lower dimen-
sional coupled nonlinear equation system and apply the discretization and linearisa-
tion schemes.

In the following, we discuss a complicate plasma model, which can be applied
for plasma mixture problems.

5.5.2 Mathematical Model for Plasma Mixture Problem

In the following, we discuss a multicomponent transport model, which can be applied
in plasma simulations. The model is motivated in the literature for multicomponent
simulation models, see [82, 83].

Often in the modelling, we discuss the different scale regimes. We consider the
Knudsen Number, which is the ratio of the mean free path λ over the typical domain
size L.

We have the different model regimes:

• For small Knudsen Numbers Kn ≈ 0.01 we deal with a Navier–Stokes equation,
• and for large Knudsen Numbers Kn ≥ 1.0 we deal with the Boltzmann equations.

In the first section we describe the modelling of the plasma, where we use the
velocity in the impulse conservation for the transport of the species.

5.5.2.1 Plasma Model for Atmospheric Regimes

The model assumes that the neutral particles can be described as fluid-dynamical
model, where the elastic collision define the dynamics and few inelastic collisions
are, among other reasons, responsible for the chemical reactions.

232 5 Engineering Applications

To describe the individual mass densities, as well as the global momentum and the
global energy as the dynamical conservation quantities of the system, corresponding
conservation equations are derived from Boltzmann equations.

The individual character of each species is considered by mass conservation equa-
tions and the so-called difference equations.

The extension of the non-mixtured multicomponent transport model, [82] is done
with respect to the collision integrals related to the right-hand side sources of the
conservation laws.

The conservation laws of the neutral elements are given as

∂

∂t
ρs + ∂

∂r
· ρsus = msQ

(s)
n ,

∂

∂t
ρu + ∂

∂r
·
(

P∗ + ρuu
)

= −Q(e)
m ,

∂

∂t
E ∗

tot + ∂

∂r
·
(
E ∗

totu + q∗ + P∗ · u
)

= −Q(e)
E ,

where ρs is the density of species i, with the total density ρ = ∑N
i=1 ρi and u is the

velocity. Further E ∗
tot is the total energy of the neutral particles.

Further the variable Q(s)
n is the collisional term of the mass conservation equation,

Q(e)
m is the collisional term of the momentum conservation equation and Q(e)

E is the
collisional term of the energy conservation equation.

We derive the collisional term with respect to the Chapmen–Enskog method, see
[84], and achieve for the first derivates the following results:

msQ
(s)
n = −∇ ·

⎛

⎝ρi

∑

j=0

Vj
i

⎞

⎠ , (5.281)

Q(e)
m = −

ns∑

i=1

ρiFi, (5.282)

Q(e)
E = −

ns∑

i=1

ρiρFi

⎛

⎝u +
∑

j=0

V (j)
i

⎞

⎠ , (5.283)

where i = 1, . . . , ns, Fi is an external force per unit mass (see Boltzmann equation),
further the diffusion velocity is given as

V0
i = 0, (5.284)

V1
i = −

N∑

j=1

Dij

(
dj + kTj

ΔT

T

)
, (5.285)

where
∑N

i=1 di = 0,

5.5 A Multicomponent Transport Model for Plasma … 233

di = ∇xi + xi
∇p

p
− ρi

ρ
Fi, (5.286)

di = di − yi

∑

j

d∗
j , (5.287)

where xi = ns
n is the molar fraction of species i.

We have an additional constraint based on the mass fraction of each species

∂

∂t
yi + ∇yi = Ri(y1, . . . , yN), (5.288)

where yi is the mass fraction of species i, Ri is the net production rate of species i
due to his reactions.

Remark 5.30 The model problem contains conservation equations and constraints
related to the material properties, e.g. mass fraction which chanced by the reactions.
Both equation parts, means conservation equation (which are related to macroscopic
scales) and the constraint equation (which are related to microscopic scales) result
into the multiscale model.

5.5.2.2 Simplified Model of a Ternary Mixture Based
on the Maxwell–Stefan Diffusion Equation

We simplified the delicate plasma model to a three-component gas mixture, e.g.
hydrogen H2 (species 1), nitrogen N2 (species 2) and carbon oxide CO2 (species 3),
see also [85, 86]. We could also modify such a model equation to the multicomponent
flow problem of an etching process of a reactive plasma, e.g. with oxygen O2, chloride
Cl and nitrogen N2, or other gaseous species.

We concentrate on the three-component system, which are first introduced, and
solve such a system as a linear optimal problem (General Linear Optimal Problem).
We deal with:

∂tξi + ∇ · Ni = 0, 1 ≤ i ≤ 3, (5.289)
3∑

j=1

Nj = 0, (5.290)

ξ2N1 − ξ1N2

D12
+ ξ3N1 − ξ1N3

D13
= −∇ξ1, (5.291)

ξ1N2 − ξ2N1

D12
+ ξ3N2 − ξ2N3

D23
= −∇ξ2, (5.292)

where the domain is given as Ω ∈ IRd, d ∈ N
+ with ξi ∈ C2.

234 5 Engineering Applications

We could reduce to a simpler model problem as

∂tξi + ∇ · Ni = 0, 1 ≤ i ≤ 2, (5.293)
1

D13
N1 + αN1ξ2 − αN2ξ1 = −∇ξ1, (5.294)

1

D23
N2 − βN1ξ2 + βN2ξ1 = −∇ξ2, (5.295)

where α =
(

1
D12

− 1
D13

)
, β =

(
1

D12
− 1

D23

)
.

5.5.2.3 Maxwell–Stefan Diffusion Equation as an Optimal Control
Problem

From the mathematical point of view, the coupled equation system (5.293)–(5.295)
can be seen as an optimal control problem. We rewrite the model equation (5.293)–
(5.295) to a set of s linearized states U0, U1, . . . , Us by the linear system:

U ′
i+1 = Ji(t)Ui+1 + B̂(t)v, (5.296)

where Ji is the Jacobian of B(U, t) and given in (5.296), the control operator is
B̂(t) = B̃(t) − Ji, and the system input is v = Ui.

Then, we can now apply the idea of a GLCS (general linear control system), see
[87], using the following notations: u = Ui+1, v = Ui, A1(t) = Ji(t), A2(t) = B̃(t).

The GLCS is given as

du

dt
= A1(t)u + A2(t)v, (5.297)

ũ = C(t)u + D(t)v, (5.298)

u(0) = u0, (5.299)

where the time-dependent operators are A(t) ∈ Xn × Xn, B(t) ∈ Xn × Xm, C(t) ∈
Xp × Xn, D(t) ∈ Xp × Xm, v : X → Xm denotes the system input, ũ : X → Xp

is the system output and u : X → Xn denotes the state vector. Furthermore, X is
an appropriate Banach space, e.g. U, a space of continuous or piecewise continuous
functions.

The analytical solution of (5.297) and (5.298) is

u(t) = exp

(∫ t

0
A1(s)ds

)
u0 +

∫ t

0
exp

(∫ t

s
A1(s̃)ds̃

)
A2(s)v(s)ds, (5.300)

ũ(t) = C(t) exp

(∫ t

0
A1(s)ds

)
u0

+ C(t)
∫ t

0
exp

(∫ t

s
A1(s̃)ds̃

)
A2(s)v(s)ds + D(t)v(t), (5.301)

5.5 A Multicomponent Transport Model for Plasma … 235

where we apply the fast computation of the exponential integral matrices via the
Magnus expansion, see [88–90], and discussed in the following.

Remark 5.31 The rewriting into a control system can be important for large equation
systems. Here, we concentrate on studying a ternary system and apply direct method
as for example explicit or implicit time-discretization schemes.

5.5.3 Numerical Experiments

In the following, we deal with a ternary mixture, see [85], which simulates the mixture
of three gaseous species.

We concentrate on the three component system:

∂tξi + ∂xNi = 0, 1 ≤ i ≤ 3, (5.302)
3∑

j=1

Nj = 0, (5.303)

ξ2N1 − ξ1N2

D12
+ ξ3N1 − ξ1N3

D13
= −∂xξ1, (5.304)

ξ1N2 − ξ2N1

D12
+ ξ3N2 − ξ2N3

D23
= −∂xξ2, (5.305)

where the spatial domain is given as Ω ∈ IRd, d ∈ N
+, the time domain is given

as [0, T] ∈ IR+
0 , while the solution is given in a sufficient smooth space, e.g. with

ξi ∈ C2(Ω × [0, T]).

The parameters and the initial and boundary conditions are given as

• D12 = D13 = 0.833 (means α = 0) and D23 = 0.168 (Uphill diffusion, semi-
degenerated Duncan and Toor experiment)

• D12 = 0.0833, D13 = 0.680 and D23 = 0.168 (asymptotic behaviour, Duncan
and Toor experiment)

• J = 140 (spatial grid points)

• The time step restriction for the explicit method is given as Δt ≤ (Δx)2

2 max{D12,D13,D23}• The spatial domain is Ω = [0, 1], the time domain [0, T] = [0, 1]
• The initial conditions are:

1. Uphill example

ξ in
1 (x) =

⎧
⎨

⎩

0.8 if 0 ≤ x < 0.25
1.6(0.75 − x) if 0.25 ≤ x < 0.75
0.0 if 0.75 ≤ x ≤ 1.0

, (5.306)

ξ in
2 (x) = 0.2, for all x ∈ Ω = [0, 1], (5.307)

236 5 Engineering Applications

2. Diffusion example (Asymptotic behaviour)

ξ in
1 (x) =

{
0.8 if 0 ≤ x ∈ 0.5
0.0 else

, (5.308)

ξ in
2 (x) = 0.2, for all x ∈ Ω = [0, 1]. (5.309)

• The boundary conditions are of no-flux type:

N1 = N2 = N3 = 0, on ∂Ω × [0, 1], (5.310)

We could reduce to a simpler model problem as

∂tξi + ∂x · Ni = 0, 1 ≤ i ≤ 2, (5.311)
1

D13
N1 + αN1ξ2 − αN2ξ1 = −∂xξ1, (5.312)

1

D23
N2 − βN1ξ2 + βN2ξ1 = −∂xξ2, (5.313)

where α =
(

1
D12

− 1
D13

)
, β =

(
1

D12
− 1

D23

)
.

We rewrite into:

∂tξ1 + ∂x · N1 = 0, (5.314)

∂tξ2 + ∂x · N2 = 0, (5.315)(
1

D13
+ αξ2 −αξ1

−βξ2
1

D23
+ βξ1

)(
N1
N2

)
=
(−∂xξ1

−∂xξ2

)
, (5.316)

and we have

∂t ξ1 + ∂x · N1 = 0, (5.317)
∂t ξ2 + ∂x · N2 = 0, (5.318)

(
N1
N2

)
= D13D23

1 + αD13ξ2 + βD23ξ1

(
1

D23
+ βξ1 αξ1

βξ2
1

D13
+ αξ2

)(−∂xξ1
−∂xξ2

)
. (5.319)

The next step is to apply the semi-discretization of the partial differential operator
∂
∂x .

We apply the first differential operator in Eqs. (5.317) and (5.318) as an forward
upwind scheme given as

5.5 A Multicomponent Transport Model for Plasma … 237

∂

∂x
= D+ = 1

Δx
·

⎛

⎜⎜⎜⎜⎜⎝

−1 0 . . . 0
1 −1 0 . . . 0
...

. . .
. . .

. . .
...

0 1 −1 0
0 . . . 0 1 −1

⎞

⎟⎟⎟⎟⎟⎠
∈ IR(J+1)×(J+1), (5.320)

and the second differential operator in Eq. (5.319) as an backward upwind scheme
given as

∂

∂x
= D− = 1

Δx
·

⎛

⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0
0 −1 1 0 . . .
...

. . .
. . .

. . .
. . .

0 . . . 0 −1 1
0 . . . 0 −1

⎞

⎟⎟⎟⎟⎟⎠
∈ IR(J+1)×(J+1). (5.321)

Remark 5.32 We decided to apply finite difference scheme for the spatial discretiza-
tion. One could also apply a variational formulation, e.g. finite element or finite vol-
ume schemes, see for example [91, 92]. Such a notation allows to apply the finite
matrices D+ and D− as abstract operators for the next step in the time-discretization
schemes.

5.5.4 Iterative Scheme in Time (Global Linearization,
Matrix Method)

We propose a iterative scheme to resolve the nonlinearity of the equation system with
respect to the local time step. Means, we linearize the equation system with respect to
the small time step. Based on the explicit time discretization (explicit Euler method),
we are restricted by the CFL condition and therefore small time step approaches are
necessary such that we overcome the nonlinear behaviour, see [14]. We solve the
iterative scheme:

ξn+1
1 = ξn

1 − Δt D+Nn
1 , (5.322)

ξn+1
2 = ξn

2 − Δt D+Nn
2 , (5.323)

(
A B
C D

)(
Nn+1

1
Nn+1

2

)
=
(−D−ξn+1

1
−D−ξn+1

2

)
, (5.324)

238 5 Engineering Applications

for j = 0, . . . , J , where ξn
1 = (ξn

1,0, . . . , ξ
n
1,J)

T , ξn
2 = (ξn

2,0, . . . , ξ
n
2,J)

T and IJ ∈
IRJ+1 × IRJ+1, Nn

1 = (Nn
1,0, . . . , Nn

1,J)
T , Nn

2 = (Nn
2,0, . . . , Nn

2,J)
T and IJ ∈ IRJ+1 ×

IRJ+1, where n = 0, 1, 2, . . . , Nend and Nend are the number of time steps, i.d.
Nend = T/Δt .

The matrices are given as

A, B, C, D ∈ IRJ+1 × IRJ+1, (5.325)

Aj,j = 1

D13
+ αξ2,j, j = 0 . . . , J, (5.326)

Bj,j = −αξ1,j, j = 0 . . . , J, (5.327)

Cj,j = −βξ2,j, j = 0 . . . , J, (5.328)

Dj,j = 1

D23
+ βξ1,j, j = 0 . . . , J, (5.329)

Ai,j = Bi,j = Ci,j = Di,j = 0, i, j = 0 . . . , J, i
= J, (5.330)

means the diagonal entries given as for the scale case in Eq. (5.319) and the outer-
diagonal entries are zero.

The explicit form with the time-discretization is given as:

Algorithm 5.16 (1) Initialization n = 0:

(
N0

1

N0
2

)
=
(

Ã B̃
C̃ D̃

)(−D−ξ0
1

−D−ξ0
2

)
, (5.331)

where ξ0
1 = (ξ0

1,0, . . . , ξ
0
1,J)

T , ξ0
2 = (ξ0

2,0, . . . , ξ
0
2,J)

T and ξ0
1,j = ξ in

1 (jΔx),

ξ0
2,j = ξ in

2 (jΔx), j = 0, . . . , J and given as for the different intializations, we
have

(1.1) Uphill example

ξ in
1 (x) =

⎧
⎨

⎩

0.8 if 0 ≤ x < 0.25
1.6(0.75 − x) if 0.25 ≤ x < 0.75
0.0 if 0.75 ≤ x ≤ 1.0

, (5.332)

ξ in
2 (x) = 0.2, for all x ∈ Ω = [0, 1], (5.333)

(1.2) Diffusion example (Asymptotic behaviour)

ξ in
1 (x) =

{
0.8 if 0 ≤ x ∈ 0.5,

0.0 else,
(5.334)

ξ in
2 (x) = 0.2, for all x ∈ Ω = [0, 1], (5.335)

5.5 A Multicomponent Transport Model for Plasma … 239

The inverse matrices are given as

Ã, B̃, C̃, D̃ ∈ IRJ+1 × IRJ+1, (5.336)

Ãj,j = γj

(
1

D23
+ βξ0

1,j

)
, j = 0 . . . , J, (5.337)

Bj,j = γj αξ0
1,j, j = 0 . . . , J, (5.338)

Cj,j = γj βξ0
2,j, j = 0 . . . , J, (5.339)

Dj,j = γj

(
1

D13
+ αξ0

2,j

)
, j = 0 . . . , J, (5.340)

γj = D13D23

1 + αD13ξ
0
2,j + βD23ξ

0
1,j

, j = 0 . . . , J, (5.341)

Ãi,j = B̃i,j = C̃i,j = D̃i,j = 0, i, j = 0 . . . , J, i
= J, (5.342)

Further the values of the first and the last grid points of N are zero,
means N0

1,0 = N0
1,J = N0

2,0 = N0
2,J = 0 (boundary condition).

(2) Next timesteps (till n = Nend):

(2.1) Computation of ξn+1
1 and ξn+1

2

ξn+1
1 = ξn

1 − Δt D+Nn
1 , (5.343)

ξn+1
2 = ξn

2 − Δt D+Nn
2 , (5.344)

(2.2) Computation of Nn+1
1 and Nn+1

2

(
Nn+1

1
Nn+1

2

)
=
(

Ã B̃
C̃ D̃

)(−D−ξn+1
1

−D−ξn+1
2

)
, (5.345)

where ξn
1 = (ξn

1,0, . . . , ξ
n
1,J)

T , ξn
2 = (ξn

2,0, . . . , ξ
n
2,J)

T and the inverse matri-
ces are given as

Ã, B̃, C̃, D̃ ∈ IRJ+1 × IRJ+1, (5.346)

Ãj,j = γj

(
1

D23
+ βξn+1

1,j

)
, j = 0 . . . , J, (5.347)

Bj,j = γj αξn+1
1,j , j = 0 . . . , J, (5.348)

Cj,j = γj βξn+1
2,j , j = 0 . . . , J, (5.349)

Dj,j = γj

(
1

D13
+ αξn+1

2,j

)
, j = 0 . . . , J, (5.350)

240 5 Engineering Applications

γj = D13D23

1 + αD13ξ
n+1
2,j + βD23ξ

n+1
1,j

, j = 0 . . . , J, (5.351)

Ãi,j = B̃i,j = C̃i,j = D̃i,j = 0, i, j = 0 . . . , J, i
= J. (5.352)

Further the values of the first and the last grid points of N are zero,
means Nn

1,0 = Nn
1,J = Nn

2,0 = Nn
2,J = 0 (boundary condition).

(3) Do n = n + 1 and goto (2)

We have the following examples:

• Uphill example,
• Diffusion example (Asymptotic behaviour),

and discuss their results in different figures.
The iterative scheme is tested and we obtain convergent results with sufficient

small time steps. The results of the concentrations of the three species is shown in
Fig. 5.28.

Remark 5.33 In Fig. 5.28, the concentration of the species 2 shows, that we obtain
a so-called reciprocal interaction with the other species. Means the mixture induce a
temporary decay of the quantity and after some time, the density tends to the expected
asymptotic quantity.

The concentration and their fluxes are given in Fig. 5.29.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

ξ

x=0.72

ξ1
ξ2
ξ3

Fig. 5.28 The figures present the results of the concentration c1, c2 and c3

5.5 A Multicomponent Transport Model for Plasma … 241

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

N
1

x=0.72

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

−
∂ xξ

1

x=0.72

0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

t

N
2

x=0.72

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

t

−
∂ xξ

2

x=0.72

Fig. 5.29 The upper figures present the results of the concentration c1 and −∂xξ1. The lower figures
presents the results of c2 and −∂xξ2

Remark 5.34 In Fig. 5.29, we see in detail, the reciprocal interaction between the
species in their concentration and their fluxes. We only achieve a stationary behaviour
after some time, while in the initialization, we see also fluctuations between the
species 1 and 2.

The full plots in time and space of the concentrations and their fluxes are given
in Fig. 5.30.

Remark 5.35 In Fig. 5.30, we see all details in a 3D plot in the time- and spatial-
scale. After the initialization, we see a convergent concentration and flux of the
species 1 and 2. Such a mixture or reciprocal behaviour can also be resolved by the
Maxwell–Stefan’s approach, while we allow to interact the gaseous species in the
mixture, see [79, 93].

The space-time regions where (−N2∂xξ2) ≥ 0 for the uphill diffusion and
asymptotic diffusion, given in Fig. 5.31.

242 5 Engineering Applications

0
0.1

0.2
0.3

0.4

0.2
0.4

0.6
0.8

1
0

0.5

1

1.5

tx

N 1

0
0.1

0.2
0.3

0.4

0.2
0.4

0.6
0.8

1
0

0.5

1

1.5

2

tx

− ∂
xξ

1

0
0.1

0.2
0.3

0.4

0.2
0.4

0.6
0.8

1
−0.6

−0.4

−0.2

0

0.2

tx

N
2

0
0.1

0.2
0.3

0.4

0.2
0.4

0.6
0.8

1
−0.2

−0.1

0

0.1

0.2

0.3

tx

− ∂
xξ

2

Fig. 5.30 The figures present the results of the 3D plots in time and space. The upper figures present
the results of the concentration c1 and −∂xξ1. The lower figures presents the results of c2 and −∂xξ2

x

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

x

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 5.31 The figures present the asymptotic diffusion (left-hand side) and uphill diffusion (right-
hand side) in the space-time region

Remark 5.36 In Fig. 5.31, we present the behaviour of the asymptotic and uphill
diffusion in a space-time region with (−N2 ∂xξ2) ≥ 0. We see a different topological
behaviour of the two diffusion examples. The influence of the uphill diffusion areas
are more active than the asymptotic diffusion behaviour. Such mixture mappings are
important to understand the mixture of the three species in different regimes.

Remark 5.37 For a numerical point of view, the drawback of the explicit schemes
are the restriction by the CFL condition. To overcome such a restriction, we have

5.5 A Multicomponent Transport Model for Plasma … 243

taken into account implicit methods and the application of linearization methods,
e.g. Newton’s method or fixpoint schemes, see also some alternative ideas in
Appendix B.2.

5.5.5 Conclusions and Discussions

We discussed an extension of the multicomponent models with the Maxwell–Stefan
approach. Such novel models allowed a more detailed description of the diffusive
processes in gaseous mixtures. We present the coupled and nonlinear model equa-
tions, which are numerically more delicate to solve. Based on a novel global iterative
scheme with restriction to the time steps, we could solve such multicomponent mod-
els. In future, we can overcome such restrictions of the time step with respect to
the CFL and the linerization condition with implicit schemes. Such implicit schemes
allows much more larger time steps but we have to implement nonlinear solver meth-
ods. While in the experiments, we obtain more detailed information at the beginning
of the mixture, we also see a stable and stationary result after the initialization. Such
that it might be possible to apply such a complex model of the Maxwell–Stefan
approach at the beginning of the mixture simultations, while at later timescales, we
could deal with the resolved diffusion processes with standard approaches.

5.6 Multicomponent Model of a Full-Scale Model
of Glycolysis in Saccharomyces cerevisiae: Theory
and Splitting Schemes

Abstract We present a multicomponent model of a glycolysis pathway in saccha-
romyes cerevisiae, see the modelling in [94] and the algorithmic exploration in [95].
The model is based on a dynamical system with different behaviours, e.g. fats dis-
sipative actions combined with slow dynamics on the manifolds. We deal with a
large-scale model with a reaction network, means we solve a strong coupled non-
linear differential equation with highly nonlinearities and interconnections, see [95].
First we have to analyse the particular importance of the different components with
respect to their dynamical behaviour and their oscillation effects, second, we have
to take into account an algorithm to solve such a large-scale problem. We deal with
splitting methods for the strong coupled ordinary differential equations (ODEs),
while separating into different fast and efficient methods for each simpler part is
an attractive point of view, see the motivation of splitting schemes in [96]. Splitting
method can be applied to solve such a delicate biochemical pathway model. When we
decompose to different scale-dependent equation parts, e.g. high- and slow oscillatory
biochemical processes, we can decouple into different fast solvable simple and less
rough scale models. We discuss different splitting approaches. Further, we present the

244 5 Engineering Applications

oscillatory behaviour of the different equation parts such that a splitting approach
can be applied. We present first numerical results of the different eigenvalues of the
strong coupled ODEs and their oscillatory behaviour.

5.6.1 Introduction

The motivation to analyse the problem arose of the idea to understand the dynamical
properties of a delicate biochemistry model dealing with glycolysis. Glycolysis is an
important process of classical biochemistry and it has been thoroughly studies, see
[94, 97]. Such models are large-scale systems with highly nonlinear and strongly
coupled effects. Based on the oscillatory behaviour of the network, see [95], it makes
sense to reduce such systems and apply multiscale methods, that apply techniques
to skip unnecessary highly oscillating components or average such fine scales to an
upscaled system. Such a behaviour can be studied by considering the eigenvalues of
the system and obtain information about the roughness of the different components,
see introduction to dynamical systems [98].

The ideas to solve the underlying problem are given in the following Fig. 5.32.
We concentrate on the following subsection to the presentation of the splitting

approaches.

Fig. 5.32 Multicomponent problem of glycolysis model and application of splitting schemes

5.6 Multicomponent Model of a Full-Scale Model … 245

5.6.2 Introduction to the Pathway Model for the Glycolysis
in Saccharomyces cerevisiae

In the following, we have a delicate multiscale pathway model which are strong and
weak coupled nonlinear ordinary differential equations.

We deal with the following nonlinear equation system.

∂t c = A1(c) + · · · + Am(c), 0 < t ≤ T < +∞, (5.353)

c(0) = c0, (5.354)

where A1, Am are given nonlinear functions Ai : IRm → IRm, i = 1, . . . , m and
c0 ∈ IRm is a given initial vector and the unknown function is c : [0, T) → IRm,
where m is the number of species in the pathway model.

The coupling between each model.
We assume the linearized model based on the idea of

Ai(c) = Ai(c0)

+ ∂Ai(c)

∂c
|c=c0(c − c0) + 1

2
(c − c0)

t H(c)|c=c0(c − c0), (5.355)

where H(c)ij = ∂
∂ci

∂A(c)
∂cj

are the entries of the Hessian matrix.
For simplicity, we choose c0 = 0, we have

Ãic = ∂Ai(c)

∂c
|c=c0 c, (5.356)

where Ãi is the Jacobian matrix of the vectorial function Ai(c) and the approximation
error to the nonlinear case is given with the Hessian: 1

2 ||H(c)|c=c0 || ||(c − c0)
t (c −

c0)||.
We obtain the full linearized problem as

∂t c = Ã1c + · · · + Ãmc

+ (I − Ã1)c0 + · · · + (I − Ãm)c0, 0 < t ≤ T < +∞, (5.357)

∂t c = Ã1c + · · · + Ãmc + f (c0), 0 < t ≤ T < +∞, (5.358)

c(0) = c0, (5.359)

where f (c0) = (I − Ã1)c0 + · · · + (I − Ãm)c0.
For the numerical analysis of the homogeneous problem, we choose c0 = 0.

246 5 Engineering Applications

5.6.3 Model for Hynne Glycolysis

The model is based on the work of [94], where we have the following equations:

x′ = f (x), (5.360)

where f : IRn → IRm is the nonlinear function with the Jacobian matrix

J =

⎡

⎢⎢⎢⎢⎣

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

⎤

⎥⎥⎥⎥⎦
. (5.361)

We apply the linearization via the Jacobian matrices and can study the dynamical
behaviour by the linearized differential equation system:

y′ = Jy, (5.362)

where we apply the splitting into J = J1 + J2, where J1 is the upper and J2 the lower
Jacobian matrix.

The equations of the Hynne glycolysis model, see [94], are given as

dy1

dt
= 597.035y2(t)

0.0816993y2(t)y3(t) + 0.833333y3(t) + 1.17647y2(t) + 2
− 2.832y1(t)

− 597.035y1(t)
(0.0816993y2(t)y3(t)+0.833333y3(t)+0.588235y2(t)+1)(0.588235y1(t)+1)

0.588235y2(t)+1 + 0.588235y1(t) + 1
+ 52.392,

(5.363)
dy2

dt
= − 51.7547y18(t)y2(t)

y18(t)y2(t) + 0.1y2(t) + 0.037

− 597.035y2(t)

0.0816993y2(t)y3(t) + 0.833333y3(t) + 1.17647y2(t) + 2

+ 597.035y1(t)
(0.0816993y2(t)y3(t)+0.833333y3(t)+0.588235y2(t)+1)(0.588235y1(t)+1)

0.588235y2(t)+1 + 0.588235y1(t) + 1
, (5.364)

dy3

dt
= 3815.71y4(t)

5.33333y4(t) + y3(t) + 0.8
− 2.25932y18(t)y3(t)

− 496.042y3(t)

5.33333y4(t) + y3(t) + 0.8
+ 51.7547y18(t)y2(t)

y18(t)y2(t) + 0.1y2(t) + 0.037
, (5.365)

dy4

dt
= − 45.4327y4(t)2

y4(t)2 + 0.021
(

0.15y18(t)2

y20(t)2 + 1
)

− 3815.71y4(t)

5.33333y4(t) + y3(t) + 0.8
+ 496.042y3(t)

5.33333y4(t) + y3(t) + 0.8
, (5.366)

dy5

dt
= 45.4327y4(t)2

y4(t)2 + 0.021
(

0.15y18(t)2

y20(t)2 + 1
)

5.6 Multicomponent Model of a Full-Scale Model … 247

− 2207.82y5(t)

2.46914y6(t)y7(t) + 9.87654y7(t) + y5(t) + 0.1y5(t)y6(t) + 4.93827y6(t) + 0.3

+ 27257.y7(t)y6(t)

2.46914y6(t)y7(t) + 9.87654y7(t) + y5(t) + 0.1y5(t)y6(t) + 4.93827y6(t) + 0.3
, (5.367)

dy6

dt
= 116.365y7(t)

y7(t) + 0.968504y6(t) + 1.23

− 27257.y6(t)y7(t)

2.46914y6(t)y7(t) + 9.87654y7(t) + y5(t) + 0.1y5(t)y6(t) + 4.93827y6(t) + 0.3

− 2115.73y6(t)

y7(t) + 0.968504y6(t) + 1.23

+ 2207.82y5(t)

2.46914y6(t)y7(t) + 9.87654y7(t) + y5(t) + 0.1y5(t)y6(t) + 4.93827y6(t) + 0.3

− 13897.6y6(t)y22(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)

+ 2.52684 × 106y8(t)y21(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)
, (5.368)

dy7

dt
= − 116.365y7(t)

y7(t) + 0.968504y6(t) + 1.23

− 27257.y6(t)y7(t)

2.46914y6(t)y7(t) + 9.87654y7(t) + y5(t) + 0.1y5(t)y6(t) + 4.93827y6(t) + 0.3

− 81.4797y7(t)

25
(

0.034(7.69231y22(t)+1)
y21(t) + 1

)
+ y7(t)

(
0.13(7.69231y22(t)+1)

y21(t) + 1
)

+ 2115.73y6(t)

y7(t) + 0.968504y6(t) + 1.23

+ 2207.82y5(t)

2.46914y6(t)y7(t) + 9.87654y7(t) + y5(t) + 0.1y5(t)y6(t) + 4.93827y6(t) + 0.3
,

(5.369)
dy8

dt
= −443866.y19(t)y8(t)

− 2.52684 × 106y21(t)y8(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)

+ 1528.62y18(t)y9(t) + 13897.6y6(t)y22(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)
,

(5.370)
dy9

dt
=
(

443866.y19(t)y8(t) − 1528.62y18(t)y9(t) − 343.096y19(t)y9(t)

(y19(t) + 0.17)(y9(t) + 0.2)

)
, (5.371)

dy10

dt
=
(

343.096y19(t)y9(t)

(y19(t) + 0.17)(y9(t) + 0.2)
− 53.1328y10(t)

y10(t) + 0.3

)
, (5.372)

dy11

dt
=
(

− 89.8023y21(t)y11(t)

(y11(t) + 0.71)(y21(t) + 0.1)
− 24.7y11(t) + 24.7y16(t) + 53.1328y10(t)

y10(t) + 0.3

)
, (5.373)

dy12

dt
=
(

−16.72y12(t) + 16.72y13(t) + 89.8023y11(t)y21(t)

(y11(t) + 0.71)(y21(t) + 0.1)

)
, (5.374)

dy13

dt
= (16.72y12(t) − 19.552y13(t)), (5.375)

dy14

dt
= 81.4797y7(t)

25
(

0.034(7.69231y22(t)+1)
y21(t) + 1

)
+ y7(t)

(
0.13(7.69231y22(t)+1)

y21(t) + 1
)

248 5 Engineering Applications

− 1.9y14(t) + 1.9y15(t), (5.376)
dy15

dt
= (1.9y14(t) − 4.732y15(t)), (5.377)

dy16

dt
= (24.7y11(t) − 27.532y16(t) − 0.167459y16(t)y17(t)), (5.378)

dy17

dt
= (−0.167459y16(t)y17(t) − 2.832y17(t) + 15.8592), (5.379)

dy18

dt
= 133.333y19(t)2 + 443866.y8(t)y19(t) + 343.096y9(t)y19(t)

(y19(t) + 0.17)(y9(t) + 0.2)

− 432.9y20(t)y18(t) − 3.2076y18(t) − 2.25932y18(t)y3(t)

− 1528.62y18(t)y9(t) − 45.4327y4(t)2

y4(t)2 + 0.021
(

0.15y18(t)2

y20(t)2 + 1
)

− 51.7547y18(t)y2(t)

y18(t)y2(t) + 0.1y2(t) + 0.037
, (5.380)

dy19

dt
= −266.666y19(t)2 − 443866.y8(t)y19(t) − 343.096y9(t)y19(t)

(y19(t) + 0.17)(y9(t) + 0.2)

+ 865.8y20(t)y18(t) + 3.2076y18(t) + 2.25932y18(t)y3(t)

+ 1528.62y18(t)y9(t) + 45.4327y4(t)2

y4(t)2 + 0.021
(

0.15y18(t)2

y20(t)2 + 1
)

+ 51.7547y18(t)y2(t)

y18(t)y2(t) + 0.1y2(t) + 0.037
, (5.381)

dy20

dt
=
(

133.333y19(t)2 − 432.9y20(t)y18(t)
)

, (5.382)

dy21

dt
= − 81.4797y7(t)

25
(

0.034(7.69231y22(t)+1)
y21(t)

+ 1
)

+ y7(t)
(

0.13(7.69231y22(t)+1)
y21(t)

+ 1
)

− 89.8023y11(t)y21(t)

(y11(t) + 0.71)(y21(t) + 0.1)

+ 13897.6y6(t)y22(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)

− 2.52684 × 106y8(t)y21(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)
, (5.383)

dy22

dt
= 81.4797y7(t)

25
(

0.034(7.69231y22(t)+1)
y21(t)

+ 1
)

+ y7(t)
(

0.13(7.69231y22(t)+1)
y21(t)

+ 1
)

+ 89.8023y11(t)y21(t)

(y11(t) + 0.71)(y21(t) + 0.1)

− 13897.6y6(t)y22(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)

+ 2.52684 × 106y8(t)y21(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)
, (5.384)

5.6 Multicomponent Model of a Full-Scale Model … 249

Fig. 5.33 Time course of the different concentrations of the full system

dy23

dt
= 4.51864y3(t)y18(t) + 3.2076y18(t)

+ 81.4797y7(t)

25
(

0.034(7.69231y22(t)+1)
y21(t)

+ 1
)

+ y7(t)
(

0.13(7.69231y22(t)+1)
y21(t)

+ 1
)

− 13897.6y6(t)y22(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)

+ 2.52684 × 106y8(t)y21(t)

(100.y8(t) + 1.66667y6(t) + 1)(10.y22(t) + 16.6667y21(t) + 1)
. (5.385)

We have the following notations:

y1(t) = GlcX(t), y2(t) = Glc(t), y3(t) = G6P(t), (5.386)

y4(t) = F6P(t), y5(t) = FBP(t), y6(t) = GAP(t), (5.387)

y7(t) = DHAP(t), y8(t) = BPG(t), y9(t) = PEP(t), (5.388)

y10(t) = Pyr(t), y11(t) = ACA(t), y12(t) = EtOH(t), (5.389)

y13(t) = EtOHx(t), y14(t) = Glyc(t), y15(t) = Glycx(t). (5.390)

The computation of the equation by a higher order ODE solver, e.g. Runge–Kutta
method is given in Fig. 5.33.

Here we see the different scales of the concentrations. We have high oscillatory
behaviour of the concentration: y1, y2, y3, y4, y10, y14, while the other concentrations
are less oscillatory.

Remark 5.38 Based on the different scale dependencies of the equation, we have to
decompose with respect to the eigenvalues of the Jacobian matrix. We reconstruct a
new equation system based on decomposing into A = Alow +Ahigher , high oscillating
equations and low oscillating equations. The solver methods, which can deal with
such decomposed systems are splitting schemes.

250 5 Engineering Applications

In the following, we discuss the splitting methods, which can be applied for the
decomposed operators based on the decomposition of the eigenvalues of the Jacobian
matrix.

5.6.4 Splitting Schemes for Partitioned Multicomponent
Equations

In the following, we discuss splitting approaches in a additive or multiplicative
scheme.

While additive splitting schemes are interested for parallel implementation, they
have their drawbacks, while they deal with lower order, see [96]. Instead multiplica-
tive splitting schemes are interested for higher order approaches, see [44, 99, 100],
but they have their drawbacks to obtain a parallel version of such a scheme, see [96].

We deal with the linearized equation system given in Eq. (5.357) and apply the
following splitting schemes:

• Parallel Splitting (Additive Splitting)

∂cn
1(t)

∂t
= Ã1cn

1(t), with (n − 1)τ < t ≤ nτ,

cn
1((n − 1)τ) = cN

sp((n − 1)τ), (5.391)

... (5.392)
∂cn

m(t)

∂t
= Ãmcn

m(t), with (n − 1)τ < t ≤ nτ,

cn
m((n − 1)τ) = cN

sp((n − 1)τ), (5.393)

and the additive step :

cn
sp(nτ) = cN

sp((n − 1)τ) +
m∑

i=1

(cn
i (nτ) − cN

sp((n − 1)τ)),

n = 1, 2, . . . , N, where cN
sp(0) = c0.

• Multiplicative or A–B Splitting Scheme

∂c1(t)

∂t
= Ã1c1(t), with c1(t

n) = cn, (5.394)

∂c2(t)

∂t
= Ã2c2(t), with c2(t

n) = c1(t
n+1), (5.395)

... (5.396)
∂cm(t)

∂t
= Ãmcm(t), with cm(tn) = cm−1(t

n+1), (5.397)

5.6 Multicomponent Model of a Full-Scale Model … 251

where the time step is τ n = tn+1 − tn. The solution of equations are cn+1 =
cm(tn+1).

• Symmetrically Splitting Scheme (Parallel A–B Splitting Scheme) (e.g. with two
operators)

∂c1(t)

∂t
= Ã1c1(t), with c1(t

n) = cn
sp(t

n), (5.398)

∂c2(t)

∂t
= Ã2c2(t), with c2(t

n) = c1(t
n+1), (5.399)

where the time step is τ n = tn+1 − tn.

∂v1(t)

∂t
= Ã2v1(t), with v1(t

n) = cn
sp(t

n), (5.400)

∂v2(t)

∂t
= Ã1v2(t), with v2(t

n) = v1(t
n+1), (5.401)

where the time step is τ n = tn+1 − tn. The summation step is given as

cn
sp(t

n+1) = c2(tn+1) + v2(tn+1)

2
. (5.402)

Remark 5.39 The implementation of fast splitting schemes for the large equation
systems need to apply parallel schemes, therefore we propose additive splitting
approaches. Such schemes can be applied as pure additive splitting (lower order). We
could improve the order of the scheme by combining multiplicative splitting scheme,
while parts of the scheme are computed in parallel.

5.6.5 Splitting Errors and Time Step Control

For the accuracy of the computations, it is important to estimate the errors of the
underlying splitting methods. On the one side, we know the error of the scheme, on
the other side, we could control the time step sizes of the underlying schemes.

The splitting errors are given in the following:

• Parallel Splitting (Additive Splitting)

errsp,parallel = exp

(
τ

(m∑

i=1

Ãi

))
−
(

I +
m∑

i=1

(exp(τ Ãi) − I)

)
,

=
m∑

i=1

m∑

j=1,j
=i

(ÃiÃj + Ãj Ãi)τ
2, (5.403)

252 5 Engineering Applications

and the time step control is given as

τ <
1

||∑m
i=1
∑m

j=1,j
=i(ÃiÃj + ÃjÃi)||
. (5.404)

• A–B Splitting (Multiplicative Splitting)

errsp,parallel = exp

(
τ

(
m∑

i=1

Ãi

))
− Πm

i=1 exp(τ Ãi),

=
m∑

i=1

m∑

j=1,j
=i

[Ãi, Ãj]τ 2,

=
m∑

i=1

m∑

j=1,j
=i

(ÃiÃj − ÃjÃi)τ
2, (5.405)

and the time step control is given as

τ <
1

||∑m
i=1
∑m

j=1,j
=i[Ãi, Ãj]||
. (5.406)

• Symmetric A–B Splitting (parallel Splitting, with 2 Operators)

errsp,A−Bparallel = exp

(
τ

(
2∑

i=1

Ãi

))

− 1

2
(exp(τ Ã2) exp(τ Ã1) + exp(τ Ã1) exp(τ Ã2))

=
m∑

i=1

m∑

j=1,j
=i

[Ãi, Ãj]τ 2||,

=
((

1

12
[Ã1, [Ã1, Ã2]] + 1

12
[Ã2, [Ã2, Ã]]

))
τ 2, (5.407)

and the time step control is given as

τ <
1

1
12 ||[Ã1, [Ã1, Ã2]] + 1

12 ||[Ã2, [Ã2, Ã]]|| . (5.408)

In the following, we discuss the splitting ideas based on the separation of the
eigenvectors.

5.6 Multicomponent Model of a Full-Scale Model … 253

5.6.6 Splitting Based on Separation of Eigenvectors
(Assumption: Linearized Jacobian Matrix)

In the following, the idea is based on decomposing to fast and slow reaction equations,
see the literature [101–103].

We separate into a fast subspace (m, n = 1, . . . , M), and a slow subspace (I, J =
M + 1, . . . , N).

If we rewrite to a fast and slow equations separately, we have

dum

dt
=

M∑

n=1

an,mun +
N∑

J=M+1

aJ,muJ , m = 1, 2, . . . , M, (5.409)

duI

dt
=

M∑

n=1

an,I un +
N∑

J=M+1

aJ,I uJ , I = M + 1, 2, . . . , N, (5.410)

or writing into the splitting matrices:

du
dt

= A1u + A2u, (5.411)

u=(uF, uS)t , A1=
(

A1,1 A1,2
0 0

)
, A2 =

(
0 0

A2,1 A2,2

)
, where uF = (u1, . . . , uM)t

and uF = (uM+1, . . . , uN)t .
For the assumption of a constant Jacobian A, we have the following decomposition:

Ami = λimi, i = 1, . . . , N, (5.412)

where we have the eigenvectors mi, i = 1, . . . , N with the eigenmatrix M =
(m1, . . . , mN) and eigenvalues λi, i = 1, . . . , N .

We have the following decomposition criterion:

λj ≥ λbound, j = 1, . . . , Nfast , (5.413)

λj < λbound, j = 1, . . . , Nslow, (5.414)

and for example λbound = 102 and we order into the fast and slow eigenmatrices:
Λfast ,Λslow.

Then we decouple into the splitting matrices:

A1 = Mλfast M
−1, A2 = MλslowM−1. (5.415)

254 5 Engineering Applications

5.6.7 Splitting Based on Fast and Slow Dynamics Based on the
Idea of the CSP (Computational Singular Perturbation)
(Assumption: Linear Jacobian)

The idea is based on decomposing with respect to the dynamics (Jacobian matrix)
of the underlying nonlinear problem.

Based on the orthogonalization of the eigenvalue problem, we decompose into a
fast and slow dynamics.

In the following, the idea is based on decomposing to a orthogonal system of basis
vectors {a1, . . . , an}, which are decomposed as a fast vector field {a1, . . . , am} and
slow vector field {am+1,...,an}.

We deal with the N dimensional stiff autonomous ODEs:

dy
dt

= g(u), (5.416)

further the Jacobian is given as

Dg = dg(y)

dy
. (5.417)

We apply the decomposition via the eigenvalue problem:

Λ = B(Dg)A + dB

dt
A, (5.418)

where Λ is a linear operator, if we assume the constant case, we have the eigenvalue
problem:

Λ = B(Dg)A, (5.419)

where BA = I and A = [a1, . . . , an] are the eigenspace with the eigenvalues.
We have to do an orthogonalization of the eigenspace where bjai = δ

j
i .

Further we assume a dissipative nature of the scheme means λm,r < 0 and
|λm,r | � |λm,i| (where r is the real and i is the imaginary part), we reorder the
eigenvalues in the following case:

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. (5.420)

We assume to that λ1, . . . , λm is the fast regime and λm+1, . . . , λn is the slow
regime and we have the underlying eigenmatrices Afast = [a1, . . . , am] and Aslow =
[am+1, . . . , an].

5.6 Multicomponent Model of a Full-Scale Model … 255

Then we decouple the system into:

du
dt

= gfast (u) + gslow(u), (5.421)

= Bfast Afast g(u) + BslowAslowg(u), (5.422)

then we apply the splitting scheme:

du1

dt
= Bfast Afast g(u1), u1(t

n) = u(tn), (5.423)

du2

dt
= BslowAslowg(u2), u1(t

n) = u1(t
n+1). (5.424)

Remark 5.40 The algorithm is based on the Gram–Schmidt orthogonalization, see
[104]. The matrices are reordered into lower and higher eigenvalues, which are
separated in different matrices, means a matrix with higher eigenvalues and a matrix
with lower eigenvalues. At least, one can consider, what means lower or higher
eigenvalue, e.g. λmin ≤ λlow << λhigh ≤ λmax, where one define λmin or λmax,
and choose the separation into such reordered matrices. We could also skip the high
oscillating matrix with the higher eigenvalues and consider only the slow scales of
the dynamical system, see [102].

5.6.8 Strategies for the Decomposition

In the following, we discuss our strategies based on reducing the dimensionality of
the system of chemical kinetics equations.

• Model reduction: skip fast scales (slow manifolds only apply O(1)),
• Decomposition into a stiff and non-stiff part (perturbation with O(ε)),
• CSP (Computational singular Perturbations), here we apply an algorithm to sepa-

rate the fast and slow manifolds.

The strategies are discussed in the following subsections.

5.6.8.1 Slow Manifolds (Perturbation of the Fast Scales)

The idea is based on the following problem, also called method of multiple timescales
[105].

Some previous definitions:

Definition 5.1 We assume ρA = max{|λ| : λ ∈ σ(A)} is the spectral radius of
A (means the maximal eigenvalue), σ(A) is the spectrum of A means all eigenval-
ues of A.

256 5 Engineering Applications

We assume to have an operator A being the operator for the slow manifolds and
further an operator B is the operator for fast manifolds.

∂U(t)

∂t
= AU(t) + B̃U(t), with U(tn) = Un, (5.425)

where we assume
λmax,A = ρ(A) and λmax,B̃ = ρ(B̃) = 1

ε
λmax,A, so if we apply εB̃ = B and we obtain

λmax,B = ρ(B) = λmax,A.
So that means

ε = λA,max

λB̃,max
. (5.426)

So we have the same timescale of the operator A and B, means

Δt ≤ 1

λA,max
. (5.427)

We derive a solutions U(t, ε) and apply:

U(t, ε) = U0(t) + 1

ε
U1(t) + 1

ε2 U2(t) + · · · + 1

εJ
UJ(t), (5.428)

with the initial conditions U(0, ε) = U(0) and J ∈ N
+ is a fixed iteration number.

Then the hierarchical equations are given as

∂U0(t)

∂t
= AU0(t), with O(1), (5.429)

∂U1(t)

∂t
= AU1(t) + BU0(t), with O

(
1

ε

)
, (5.430)

...

∂UI(t)

∂t
= AUJ(t) + BUJ−1, with O

(
1

εI

)
, (5.431)

and we have also to expand the initial conditions to U0(0) = U(0) and Uj(0) =
0, ∀j = 1, . . . , J .

Remark 5.41 In our application, we compute the maximal eigenvalues of our oper-
ators (Jacobian), we separate a slow and fast operator based on the range of the
eigenvalues, means

5.6 Multicomponent Model of a Full-Scale Model … 257

A = Λ|λ|≤λdecomp , (5.432)

and

B̃ = Λ|λ|>λdecomp , (5.433)

where for example λdecomp = 103.

Then we apply ε = λdecomp
λB̃,max

and start the algorithm.

5.6.8.2 Simple Decomposition Algorithm of O(1)

In the following, we deal with a separation of so-called stiff and non-stiff parts.
We decompose by the following criterion of the Jacobian matrix J . We assume

that a Jacobian can be written in the following portions:

J = J1 + J2 =
(

J1,11 + J2,11 J1,12 + J2,11
J1,21 + J2,11 J1,22 + J2,11

)
, (5.434)

where each submatrix is given as ||J1,ij � J1,ij|| with i, j = 1, 2. Means the matrix
norm of the submatrices are for one part (the J1 matrix) much more larger than for
the second part (the J2 matrix).

Therefore, we decompose into:

J1 =
(

J1,11 J1,12
J1,21 J1,22

)
, (5.435)

and

J2 =
(

J2,11 J2,12
J2,21 J2,22

)
, (5.436)

where we have assumed J1 is the stiff and J2 the non-stiff part, while we apply a much
more smaller time step to resolve the stiff part as the non-stiff part, see separation
into stiff- and non-stiff parts of differential equations in [106].

Further we have tested the modification into:

||J1,11|| � max{(||J1,12||, ||J1,21||), ||J1,22||},
||J2,11|| � max{(||J2,12||, ||J2,21||), ||J2,22||},

with ||J1,11|| � ||J2,11||. Such that we could apply much more smaller time steps for
the separated parts of the stiff equation J1,11 and larger time steps for the non-stiff
parts. Therefore, we could accelerate the computation and reduce larger matrices
into much more smaller matrices, which are faster to solve.

258 5 Engineering Applications

5.6.8.3 CSP (Computational Singular Perturbation) Method

The idea is based on a decomposition to a fast and slow vector field, means

dy
dt

= g(y), (5.437)

is decoupled into g(y) = gfast (y) + gslow(y)

g = Af , (5.438)

f = Bg, (5.439)

where we have

df

dt
= Λf , (5.440)

where Λ = B(Dg)A + dB
dt A = B[A, g] and [·, ·] is the Lie-bracket ([a, g] = (Dg)a −

(Da)g).
Such a linear transformation gives the dynamics of the vector f .
The algorithm is based on a Gram–Schmidt orthogonalization, see the idea in

[107], and we obtain the following reduced equation system:

df

dt
= Λnewf , (5.441)

where Λnew =
(

Bs⊥[Af , g] 0
0 Bf ⊥[As, g]

)
, and Bs⊥ is a basis of the slow manifold,

while Bf ⊥ is a basis of the fast manifold.

5.6.9 Numerical Examples

In the following, we deal with the different numerical examples and the norms of the
errors of the additive and multiplicative splitting approach

• Additive Splitting:

errMultipl = ||
m∑

i=1

m∑

j=1,j
=i

(Ã′
iÃj + Ã′

jÃi)||, (5.442)

5.6 Multicomponent Model of a Full-Scale Model … 259

• Multiplicative Splitting

errMultipl = 1

12
||[Ã1

′
, [Ã′

1, Ã2]] + 1

12
||[Ã2

′
, [Ã′

2, Ã]]||, (5.443)

where Ã′
i are the derivation, means Jacobian of the operator Ãi. For the norms of the

matrices, we apply the maximum- and L2-norm.
We apply the following decomposition techniques:

• Decomposition without eigenvalue consideration (we apply all eigenvalues).
• Decomposition with eigenvalue consideration (we skip the highest eigenvalues).

The decomposition techniques are presented with the following numerical com-
putational results and we consider the following eigenvalues:

1. Decomposition without eigenvalue consideration
In the following, we only decompose to an upper and lower matrices
We have the following time step.
The parallel splitting has a time step of

τ <
1

||J1J2 + J2J1)|| = 7.9452 10−12,

The commutator ||(J1J2 − J2J1)|| = 3.76685 ∗ 1010,

and the anti-commutator ||(J1J2 + J2J1)|| = 7.52185 ∗ 1010.

2. Decomposition with eigenvalue consideration
In the following, we only decompose to an upper and lower matrices.
We have the following time step.

||J1J2 + J2J1||max = max1≤j≤n

m∑

i=i

|ai,j| = 5.85252 × 106, (5.444)

||J1J2 − J2J1||max = max1≤j≤n

m∑

i=i

|ai,j| = 5.85252 × 106, (5.445)

and we apply the time step τ = 1.26438 × 10−7.

Remark 5.42 For the numerical computations, it makes sense to embed the infor-
mations about the eigenvalues of the dynamical system. We obtain a reduction of the
time steps, if we reordered the matrices and skip to high oscillating eigenvalues. The
time step enlarged by a factor of 105. Means we could accelerate the computation of
the dynamical system, without reducing too much information about the dynamics
in the slower regions.

260 5 Engineering Applications

Fig. 5.34 Eigenvalues of the Jacobian’s of the differential equations

The graphical presentation of the eigenvalues of the Jacobian’s of the dynamical
system is shown in Fig. 5.34.

Remark 5.43 The detailed explanation of the separation by the different eigenvalues
and the separation into a lower and upper part of a Jacobian matrix is discussed in
the Appendix B.3.

The detailed timecourse of concentrations, which are applied with the linearized
dynamical system (5.455) based on the Jacobian matrix, are shown in Figs. 5.35 and
5.36.

Remark 5.44 The variance of the concentrations for the different species allows
a separation into different submatrices to reduce the amount of computations. We
could apply the different decomposition strategy to split into different simpler and
monoscaled problems. We also see a possibility to smoothen the perturbations of the
highly oscillating concentration by an averaging over a longer distance.

5.6.10 Conclusion

We have discussed a delicate dynamical system based on a full model of glycolysis
in Saccharomyces cerevisiae. While the problem is related to highly oscillating parts
of the equation system, we present decomposition ideas to separate the slow and fast
oscillating parts of the differential equations. We concentrate on the eigenvalues of
the underlying Jacobian matrix, which can be seen as an indicator to the dynamical
behaviour of the systems. Different splitting ideas are presented and we could discuss
the benefits and drawbacks of such schemes. Based on the study of the individual
oscillatory behaviour of the concentrations, we could apply model reduction ideas to

5.6 Multicomponent Model of a Full-Scale Model … 261

Fig. 5.35 Timecourse of the different eigenvalues of the Jacobian matrix (multiple timescales:
105–10−29)

262 5 Engineering Applications

Fig. 5.36 Timecourse of the different eigenvalues of the Jacobian matrix (multiple timescales:
105–10−29)

5.6 Multicomponent Model of a Full-Scale Model … 263

such systems. The understanding of the dynamical behaviour based on the Jacobian
is therefore important for a model reduction of such delicate dynamical systems,
which are multicomponent models.

5.7 Splitting Approach for a Plasma Resonance
Spectroscopy

Abstract The model is motivated to a real-world application in a plasma diagnostic
method. The idea is to absorb a probe into a plasma and apply a radio frequency signal
to the probe. The diagnostic is based on the resonance near the plasma frequency. The
model is formulated based on the plasma/probe idea and the underlying equation is
based on a Boltzmann’s equation coupled by a Poisson’s equation. One of the main
problems are an application to a general geometry, such that the model can be applied
to a realistic apparatus. Here, one obtain a multiple operator equation with different
scale behaviours. We discuss a splitting approach for solving a delicate model in
active plasma resonance spectroscopy.

5.7.1 Introduction

Since recent years, active plasma resonance spectroscopy is a widely used plasma
diagnostic method. The motivation arose to the idea that a plasma resonates near the
plasma frequency, see Tonks and Langmuir [108]. We are motivated to simulate an
active plasma resonance spectroscopy, which is a well established plasma diagnostic
method. The underlying idea is to immerse a probe into a plasma and applying an rf
signal to the probe tip. Such a response allows to see the natural ability of plasmas,
which is the resonance on or near the plasma frequency.

The model equation of such a process is a Boltzmann equation, we deal with a
linearization and obtain a linear kinetic equation, see [109], which can be applied
with linear splitting methods.

We split the original discretized operator into a sum of two operators, one of which
corresponds with a transport equation, which can be solved fast with characteristics
methods, the other one is the collision operator, which can be solved with fast integral
solvers, see [110].

We propose a new sequential and iterative splitting method, that taken into account
the different underlying spatial discretized operators. While the non-stiff transport
operator is solved with standard characteristics methods, the stiff linearized collision
operator is solved with implicit ODE solvers.

After a number of approximations we consider the error of the method and pro-
posed a choice of the operators.

264 5 Engineering Applications

5.7.2 Modelling

We deal with the following model, which is a linearized and normalized kinetic
equation, based on the Boltzmann equation [109], and is given as

∂g

∂t
+ v · ∇(g − φ{g}) + ∇Φ · ∇vg = ν

4π

∫

Ω
g(|v|e) dΩ − νg + v · ∇φvac. (5.446)

The linearized Boltzmann equation is coupled to Poisson’s equation with homoge-
neous boundary conditions

∇ (ε∇φ) =
∫

R3
wg d3v. (5.447)

It is a challenging task to solve the Boltzmann–Poisson system in a general geometry.
Therefore, we focus on a planar geometry in z-direction with z ∈ [0, L]. In Cartesian
coordinates Poisson’ equation can be solved and introduced as integral operator
in (5.446). In velocity space a transformed spherical coordinate system is applied
caused by the isotropic collision operator.

We have the transformed Boltzmann equation related to the realistic coordinates
of the real-world problem:

∂g

∂t
+ ∂Φ

∂z

((
1 − ξ2

)
√

2�

∂g

∂ξ
+ ξ

√
2�

∂g

∂�

)
+ ξ

√
2�

∂g

∂z

− ξ
√

2�√
π

∫ z

0

∫ 1

−1

∫ ∞

0

√
�e−�+Φ(z′)g d� dξ dz′

+ ξ
√

2�√
πL

∫ L

0

∫ z′

0

∫ 1

−1

∫ ∞

0

√
�e−�+Φ(z′′)g d� dξ dz′′ dz′

= ξ
√

2�
∂φvac

∂z
+ ν

(
1

2

∫ 1

−1
g(z,�, ξ) dξ − g

)
. (5.448)

We decompose the transformed Boltzmann equation into the following operator
equation:

∂g

∂t
= Ag + Bg + Cg + f , (5.449)

where the operators are defined as

A = − ∂Φ

∂z

((
1 − ξ2

)
√

2�

∂

∂ξ
+ ξ

√
2�

∂

∂�

)
, (5.450)

B(g) = ξ
√

2�√
π

(∫ z

0

∫ 1

−1

∫ ∞

0

√
�e−�+Φ(z′)g d� dξ dz′

5.7 Splitting Approach for a Plasma Resonance … 265

− 1

L

∫ L

0

∫ z′

0

∫ 1

−1

∫ ∞

0

√
�e−�+Φ(z′′)g d� dξ dz′′ dz′ − √

π
∂g

∂z

)
, (5.451)

C(g) = ν

(
1

2

∫ 1

−1
g(z,�, ξ) dξ − g

)
, (5.452)

f = ξ
√

2�
∂φvac

∂z
. (5.453)

We obtain one linear and two nonlinear operators, while we have different
timescales based on the linear and nonlinear operators.

Such a coupling of multi-operators with linear and nonlinear parts can be solved
with splitting methods, which are at least also multiscale methods to separate between
different spatial and timescales.

5.7.3 Splitting Schemes

The operator splitting methods are used to solve complex models in the geophysical
and environmental physics, they are developed and applied in [14, 29, 111].

The idea is based on solving simpler equations with respect to receive higher order
discretization methods for the remain equations.

For our coupled linearized Boltzmann and Poisson’s equations, we have derived
an embedded approach of the Poisson’s equation to the boundary integral, see
Eq. (5.449).

Therefore, we deal with the following splitting approach for the transformed
Boltzmann Eq. (5.449):

• Sequential splitting methods,
• Iterative splitting approach (fixpoint schemes),

based on the operators A, B, C.

5.7.3.1 Sequential Splitting: First Method for Linearized Equations

First we describe the simplest operator splitting , which is called sequential operator
splitting for the following system of ordinary linear differential equations:

∂t c(t) = A c(t) + B c(t) + Cc(t), (5.454)

whereby the initial conditions are cn = c(tn). The operators A and B are spatially
discretized operators, e.g. they correspond to the discretized in space convection and
diffusion operators (matrices). Hence, they can be considered as bounded operators.

266 5 Engineering Applications

The sequential operator splitting method is introduced as a method which solve
the two sub-problems sequentially, see [112], where the different sub-problems are
connected via the initial conditions. This means that we replace the original problem
(5.454) with the sub-problems

∂c∗(t)
∂t

= Ac∗(t) + f1(t), with c∗(tn) = cn,

∂c∗∗(t)
∂t

= Bc∗∗(t) + f2(t), with c∗∗(tn) = c∗(tn+1), (5.455)

∂c∗∗∗(t)
∂t

= Cc∗∗∗(t) + f3(t) , with c∗∗∗(tn) = c∗∗(tn+1),

whereby the splitting time step is defined as τn = tn+1 − tn. The approximated split
solution is defined as cn+1 = c∗∗∗(tn+1) and the inhomogeneous parts are given as
c1 + c2 + c3 = 1, f1(t) = c1f (t), f2(t) = c2f (t), f3(t) = c3f (t).

Clearly, the change of the original problems with the sub-problems usually results
some error, called splitting error. Obviously, the splitting error of the operator split-
ting method can be derived as follows (cf. e.g. [113]):

ρn = || 1

τ
(exp(τn(A + B + C)) − exp(τnC) exp(τnB) exp(τnA)) c(tn)||

+||F (tn + τn, tn) − S2(τn)F1(tn + τn, tn) − F2(tn + τn, tn)||
= 1

2
τn([A, B] + [A, C] + [B, C]) c(tn) + O(τ 2). (5.456)

whereby for example [A, B] := AB−BA is the commutator of A and B. Consequently,
the splitting error is O(τn) when the operators A, B and C do not commute, otherwise
the method is exact. Hence, by definition, the operator splitting method is called first
order splitting method.

The inhomogeneous part can be estimated as

||F (tn + τn, tn) − S2(τn)F1(tn + τn, tn) − F2(tn + τn, tn)||
= τ 2

n ||A + B + C|| (C(T)||f1(t)|| + C′(T)||f2(t)||
)+ O(τ 3), (5.457)

where

F (tn + τn, tn) =
∫ t

tn
exp((A + B)(t − s))f (s)ds,

F1(tn + τn, tn) =
∫ t

tn
exp(A(t − s))f1(s)ds,

F2(tn + τn, tn) =
∫ t

tn
exp(B(t − s))f2(s)ds,

S2(τn) = exp(Bτn),

and t = tn + τn.

5.7 Splitting Approach for a Plasma Resonance … 267

Remark 5.45 The optimal choice of the operators are given with the maximal eigen-
values or norm of the operators. We start with the operator of the largest eigenvalue
and end with such operators with the lowest eigenvalue. Means the highest influence
to the solutions is done in previous.

In the next subsection we present the iterative splitting method.

5.7.3.2 Iterative Splitting Method

The following algorithm is based on the iteration with fixed splitting discretiza-
tion step-size τ , namely, on the time interval [tn, tn+1] we solve the following sub-
problems consecutively for i = 0, 3, . . . 3m, (confer [14, 34]).

∂ci(t)

∂t
= Aci(t) + Bci−1(t) + Cci−1(t) + f , with ci(t

n) = cn

and c0(t
n) = cn, c−1 = 0.0, (5.458)

∂ci+1(t)

∂t
= Aci(t) + Bci+1(t) + Cci(t) + f ,

with ci+1(t
n) = cn, (5.459)

∂ci+2(t)

∂t
= Aci+1(t) + Bci+1(t) + Cci+2(t) + f ,

with ci+2(t
n) = cn, (5.460)

where cn is the known split approximation at the time level t = tn. The split approx-
imation at the time level t = tn+1 is defined as cn+1 = c3m+1(tn+1). (Clearly, the
function ci+1(t) depends on the interval [tn, tn+1], too, but, for the sake of simplicity,
in our notation we omit the dependence on n.)

In the following we will analyse the convergence and the rate of the convergence
of the method (5.458) and (5.459) for m tends to infinity for the linear operators
A, B, C :X → X where we assume that these operators and their sum are generators
of the C0 semigroups. We emphasize that these operators are not necessarily bounded,
so, the convergence is examined in general Banach space setting.

Theorem 5.17 Let us consider the abstract Cauchy problem in a Banach space X

∂t c(t) = Ac(t) + Bc(t) + Cc(t) + f , 0 < t ≤ T

c(0) = c0
(5.461)

where A, B, C, A + B, A + C, B + C : X → X are given linear operators being
generators of the C0-semigroup and c0 ∈ X is a given element. Then the iteration
process (5.458)–(5.460) is convergent and for i = 0, 3, 6, . . . (m − 1)3 we have the
order of 3m.

268 5 Engineering Applications

The proof based on Waveform-relaxation schemes is given in [114], in the fol-
lowing, we apply the proof idea in [115].

Proof Let us consider the iteration (5.458)–(5.460) on the sub-interval [tn, tn+1].
For the local error function ei(t) = c(t) − ci(t) we have the relations:

∂t ei(t) = Aei(t) + (B + C)ei−1(t), t ∈ (tn, tn+1],
ei(t

n) = 0,
(5.462)

and
∂t ei+1(t) = (A + C)ei(t) + Bei+1(t), t ∈ (tn, tn+1],

ei+1(t
n) = 0,

(5.463)

and
∂t ei+2(t) = (A + B)ei+1(t) + Cei+2(t), t ∈ (tn, tn+1],

ei+2(t
n) = 0,

(5.464)

for m = 0, 3, 6, . . ., with e0(0) = 0 and e−1(t) = c(t).
The errors are given as

||ei(t)|| ≤ ||A2 + A3|| ∫ t
tn || exp(||A1||(t − s)) ds ||ei−1(t)||, t ∈ [tn, tn+1].

||ei(t)|| ≤ ||A2 + A3|| exp(t ||A1||)
||A1|| ||ei−1(t)||,

||ei(t)|| ≤ ||A2 + A3||M1(t)||ei−1(t)||,
(5.465)

where we assume M1(t) is of order O(t).
The same are done with the other errors

||ei+1(t)|| ≤ ||A1 + A3||M2(t)||ei(t)||,
||ei+2(t)|| ≤ ||A1 + A2||M3(t)||ei+1(t)||, (5.466)

where we assume M2(t), M3(t) is of order O(t).
We obtain:

||ei+2(t)|| ≤ Π3
l=1||A − Al||Ml(t)||ei−1(t)||, (5.467)

and recursively to e0 we have

||e3(m−1)(t)|| ≤ (Π3
l=1||A − Al||Ml(t))m||e0(t)||. (5.468)

We obtain the given order of the scheme, see also [115].

Remark 5.46 The optimal choice of the operators are given with the maximal eigen-
values or norm of the operators. We iterate over the operator of the largest eigenvalue,
while the operators with the lower eigenvalue are only used as perturbation operators.
Means the highest influence to the solutions is done in each iterative step.

5.7 Splitting Approach for a Plasma Resonance … 269

5.7.4 Ideas of Numerical Examples of the Splitting
Approaches

We discuss a simplified the kinetic equation based on the approach of a constant
velocity field, given as

∂g

∂t
= Ag + Bg + Cg, (5.469)

where g0 is the initial value of the equation.
Where we deal with three operators, which can be solved by Laplacian transfor-

mation and we obtain solver operators in matrix form for each operator means

g(t) = SA(t)gA,0, (5.470)

where SA(t) = InvInverseLaplaceT ransform[InvOpAz, t], solves the first equation
with operator A,

g(t) = SA(t)gB,0, (5.471)

where SB(t) = InvInverseLaplaceT ransform[InvOpBz, t], solves the second equa-
tion with operator B,

g(t) = SC(t)gC,0, (5.472)

where SC(t) = InvInverseLaplaceT ransform[InvOpCz, t], solves the third equation
with operator C.

The A–B splitting is coupled as

g(t) = SAB(t)g0 = SC(t)SB(t)SA(t)g0, (5.473)

where g0 is the initial value of the full equation and t is the time step.
The Strang Splitting is given as

g(t) = SStrang(t)g0 = SA(t/2)SB(t/2)SC(t)SB(t/2)SA(t/2)g0, (5.474)

where g0 is the initial value of the full equation and t is the time step.
For a sequence of computations, we separate the large time interval [0, T] into

smaller time intervals Δt .
We start with t = 0 and c(0) = c0, we have N-timesteps, means T/N = Δt , with

time points t0 = 0, t1 = Δt, . . . , tN = NΔt

g(ti+1) = SSplit t ing(Δt)g(ti), i = 0, 1, 2, . . . , N, (5.475)

where t0 = 0 and g(0) = g0, further Split t ing = {AB, Strang}.

270 5 Engineering Applications

Remark 5.47 The numerical implementation was done in MATHEMATIKA, see
[116], while we apply the Laplace transformation with respect to the spatial vari-
ables. The solution operator was derived by the semi-analytical solution of each
operator equation with the inverse Laplace transformation. Such a decomposition is
a multiscale method and allows an individual treatment of each operator part and an
optimal resolution of the spatial scales, while the time scales are solved analytically
by the exp-functions.

5.7.5 Conclusions and Discussions

We present sequential and iterative operator splitting method to solve a linearized
Boltzmann equation. The splitting approach is based on decomposing the delicate
linear Boltzmann equation, while each splitted part can be solved with semi-analytical
or analytical method. Based on the real-life application of the resonance spectroscopy,
the transformation to a realistic, here spherical coordinate system was important.
Both non-iterative and iterative splitting approaches are presented and an engineering
toolbox based on MATHEMATIKA to solve each equation part independently.

5.8 Multiscale Approach with Adaptive and Equation-Free
Methods for Transport Problems with Electric Fields

Abstract The model problem is related to a transport problem of particles in a
electrical field. Based on the different scales of each model equation, means the
macroscopic equation of the particles and the underlying microscopic equation of the
electric field, we deal with a multiscale problem. We discuss a multiscale apporach
based on the equation-free method to overcome the limitation of the time step of
the microscopic scales. We apply a implicit time-discretization of the macroscopic
equation and embed the microscopic equation via EFM into the large scales.

5.8.1 Introduction

We are motivated to accelerate plasma models, which are related to transport and
electric field equations, see the modelling idea in [117]. While, we have different
scales belonging to the transport model of the particles and their underlying elec-
tromagnetic field equation, we have to deal with a multiscale model. Here the data
transfer between the different scales are important to circumvent simulations with
respect to the finest time and spatial scales.

5.8 Multiscale Approach with Adaptive and Equation-Free … 271

In the following, we discuss the multiscale mode of macroscopic transport equa-
tions and microscopic electromagnetic field equations. Here, we apply the word
microscopic and macroscopic, with respect to the different scales, finer scale equa-
tion is named as microscopic equation and the coarser scale equation is named as
macroscopic equation.

In the following, we discuss the model equations:

• Unscaled model equations:

∂

∂t
ni (x, t) + ∂

∂x
(Γi (x, t)) = α (E (x, t)) |Γe (x, t)| , (5.476)

ε0
∂

∂t
E (x, t) = 1

AE
ID (t) − e (Γi − Γe) , (5.477)

further we have the following additional constraints:

d

dt
UC1 (t) = 1

C1

(
ID + qeAE

(
Γi

∣∣∣
x=0

− Γe

∣∣∣
x=0

))
, (5.478)

d

dt
UC2 (t) = 1

C2

(
ID + qeAE

(
Γi

∣∣∣
x=L

− Γe

∣∣∣
x=L

))
. (5.479)

The additional assumptions are given as

ID = 1

RS

(
VS −

∫ L

0
E(x, t) dx − VC1 − VC2

)
, (5.480)

∂E

∂x
= qe

ε0

(
ni − ne

)
, (5.481)

and the parameters of the equations are given as

α (E (x, t)) = Ap e− Bp
|E(x,t)| (5.482)

Γi (x, t) = ni (x, t) μiE (x, t) (5.483)

Γe (x, t) = ne (x, t) μeE (x, t) (5.484)

with the Townsend-coefficents A and B, see [118], and the neutral gas pressure p.
• Scaled model equations: For an engineering application, we retransfer to a partial

differential equation system. We deal with the following scaled constants:

t0 = 1

α0μeE0
, q0 = ε0α0E0, x0 = 1

α0
, (5.485)

j0 = q0μeE0, R0 = E0α0

j0
, C0 = ε0

α0
, (5.486)

U0 = j0R0A0, A0 = 1

α2
0

. (5.487)

272 5 Engineering Applications

The equation system (5.476) and (5.477) is reduced to the following equation
system:

∂ni

∂τ
= − ∂

∂x
(μEni) + |Ene| e− 1

|E| , (5.488)

∂E

∂τ
= j − (μni − ne) E, (5.489)

the additional constraint equations are given as

dUC1

dτ
= AE

C1

(
j +

(
Γi

∣∣∣
x=0

− Γe

∣∣∣
x=0

))
, (5.490)

dUC2

dτ
= AE

C2

(
j +

(
Γi

∣∣∣
x=L

− Γe

∣∣∣
x=L

))
, (5.491)

ne = ni − ∂E

∂x
, (5.492)

VD = −
∫ L

0
E(x, t) dx. (5.493)

Remark 5.48 Based on the transport equation of the particles (5.488), the electric
field E given in Eq. (5.489) is related as a convection parameter and therefore has a
strong influence to the transport equation. Here, we have to resolve the electric field
in order to achieve a correct convection operator. For such a relation the sensitive
variable is given as E and fine scale differences are important, while on the other
hand the variable ni is more sensitive for coarser scales and we have to take into
account such a relation of a multiscale dependency.

5.8.2 Numerical Methods

In the following, we discuss the numerical methods that are applied as multiscale
schemes to coupled the microscopic scale of the electromagnetic field and the macro-
scopic scales of the transport field.

Here, we apply explicit or implicit integrators for the time variable and upwind
finite difference methods for the space variable on a staggered grid. The benefit of
the EFM is given with respect to extrapolate between the fine and coarse spatial- and
timescale to accelerate the computations.

In the following we present the different schemes:

• Full explicit scheme (unsplitted version, we apply only one timescale Δt),
• Adaptive explicit scheme: we split the different equations into a slow scale (density

equation) and fast scale (E-field equation),
• EFM explicit scheme: we extrapolate the fast scale to the slow scale and apply

explicit time-integrators.

5.8 Multiscale Approach with Adaptive and Equation-Free … 273

5.8.3 Full Explicit Scheme: With One Timescale Δt

The macroscopic equation is given as

ni
n+1
j

Δt
= −

Γi
n
j+ 1

2
− Γi

n
j− 1

2

Δx
+ Se

n
j , (5.494)

where the CFL condition is given as CFL : Δt ≤ Δx
max(En

0 ,...,En
J+1)

.

For the one-scale method, the equations are discretized as

En+1
j+ 1

2

Δt
= jD

n + Γi
n
j+ 1

2
+ Γe

n
j+ 1

2
, (5.495)

UC1
n+1

Δt
= AE

C1

(
jD

n + Γi
n
0 + Γe

n
0

)
, (5.496)

UC2
n+1

Δt
= AE

C2

(
jD

n + Γi
n
J+1 + Γe

n
J+1

)
, (5.497)

where we have a time step Δt-limit, which is given by the CFL condition.
Further the electron density ne, source term Se and discharge current density jD

is given by the discrete approach

ne
n
j = ni

n
j −

En
j+ 1

2
− En

j− 1
2

Δx
, (5.498)

Se
n
j = ne

n
j

2

⎛

⎜⎜⎝

∣∣∣∣E
n
j− 1

2

∣∣∣∣ exp

⎛

⎜⎜⎝− 1∣∣∣∣E
n
j− 1

2

∣∣∣∣

⎞

⎟⎟⎠+
∣∣∣∣E

n
j+ 1

2

∣∣∣∣ exp

⎛

⎜⎜⎝− 1∣∣∣∣E
n
j+ 1

2

∣∣∣∣

⎞

⎟⎟⎠

⎞

⎟⎟⎠ , (5.499)

jD
n = 1

AERS

⎛

⎝US
n − UC1

n − UC2
n − Δx

⎛

⎝1

2
En

0 +
J∑

j=1

En
j + 1

2
En

J+1

⎞

⎠

⎞

⎠ .

(5.500)

Particle fluxes are given by the upwind scheme, accounting for flux direction. In the
volume they are given as

Γi
n
j+ 1

2
= μEn

j+ 1
2

{
ni

n
j ∀ En

j+ 1
2

≥ 0

ni
n
j+1 ∀ En

j+ 1
2

< 0,
(5.501)

Γe
n
j+ 1

2
= En

j+ 1
2

{
ne

n
j+1 ∀ En

j+ 1
2

≥ 0

ne
n
j ∀ En

j+ 1
2

< 0.
(5.502)

274 5 Engineering Applications

The boundary conditions for the particle fluxes are defined as

• For the ion flux we have

Γi
n
− 1

2
= μEn

− 1
2

{
0 ∀ En

− 1
2

≥ 0

ni
n
0 ∀ En

− 1
2

< 0
, (5.503)

Γi
n
J+ 1

2
= μEn

J+ 1
2

{
ni

n
J ∀ En

J+ 1
2

≥ 0

0 ∀ En
J+ 1

2
< 0

, (5.504)

• For the electron flux, we have

Γe
n
− 1

2
= En

− 1
2

{
ne

n
0 ∀ En

− 1
2

≥ 0

γseμni
n
0 + Γph ∀ En

− 1
2

< 0
, (5.505)

Γe
n
J+ 1

2
= En

J+ 1
2

{
γseμni

n
J + Γph ∀ En

J+ 1
2

≥ 0

ne
n
J ∀ En

J+ 1
2

< 0
. (5.506)

Remark 5.49 Here, the benefit are the monoscales for all the model equations, such
that apply fast solver schemes and parallelize the explicit solvers. The main drawback
are the very fine time steps that do not allow realistic approaches.

Remark 5.50 The experiments are also enlarged in the case of an electric field point-
ing to an electrode ion impact secondary electron emission as well as photon induced
secondary electron emission. Here, we apply time-dependent function for such emis-
sion problems.

5.8.4 Adaptive Explicit Scheme: With Two Timescales δ t,Δt

In the following, we discuss a more accelerated method, that taken into account the
different macro- and microscales. Based on the different schemes, we apply adaptive
time step schemes to the different models and accelerate the macroscopic model with
larger time steps.

Here, we deal with a multiscale method, that embed the adaptivity based on
different time steps, which are related to the different parts, e.g. macroscopic time
step and microscopic time step. We do not consider a reconstruction or embedding
of the microscopic scales into the macroscopic scales, while we have to apply the
full time intervals for all of the micro- and macroscopic equation.

The macroscopic equation (slow equation) is given as

∂ni

∂t
= − ∂

∂x (μEni) + |Ene| e− 1
|E| , (5.507)

5.8 Multiscale Approach with Adaptive and Equation-Free … 275

tΔ

t

tΔ

tΔ

t=0 t=1 t=2 t=3 t=4 ...

Initial
macro

Initial
micro

Fig. 5.37 Two scales are coupled, fine scale (microscale) and slow scale (macroscale) via the end
points in each corresponding scale

to the explicit discretization we apply a time step with Δt , which is limited via the
CFL condition.

The fast equation (microscopic equation) is given as

∂E

∂t
= j − (μni − ne) E, (5.508)

based on the explicit discretization we have a time step δt << Δt-limit given by an
CFL condition.

The idea of the adaptive method is given in Fig. 5.37.
The microscopic equation can also be integrated by a higher order scheme to gain

a larger time step δt , see the method of Shu–Osher [119], were L(y, t) is the right
hand side of differential equation ∂t y = L(y, t)

y0 = y(t), (5.509)

y1 = y0 + Δt L(y0, t), (5.510)

y2 = 3

4
y0 + 1

4
(y1 + Δt L(y1, t)) , (5.511)

y3 = 1

3
y0 + 2

3
(y2 + Δt L(y2, t)) , (5.512)

y(t + Δt) = y3. (5.513)

276 5 Engineering Applications

Remark 5.51 The explicit time step control are given by the CFL condition of each
scale equation, e.g. CFLmicro and CFLmacro. By decoupling the multiscale equations,
we can accelerate each single-scale equation with a parallel implementation of the
solver schemes.

Remark 5.52 We apply an implicit Scheme for the macroscopic equation, which is
given as

ni(xj, tn+1) − ni(xj, tn)

Δt
= − μE(xj, tn)

ni(xj+1, tn+1) − ni(xj, tn+1)

Δx

+ ∣∣Ene(xj, tn)
∣∣ e

− 1|E(xj ,tn)| , (5.514)

where we are unconditional stable and independent of the CFL condition and
n = 1, . . . , N .

The same idea can be applied to the microscopic equation, which is given as

E(xj, tñ+1) − E(xj, tñ)

Δt
= j(xj, tñn+1)

− (
μni(xj, tñ+1) − ne(xj, tñ+1)

)
E(xj, tñ+1), (5.515)

where we are unconditional stable and independent of the CFL condition and
ñ = 1, . . . , N · m.

We result to a seamless time step, e.g. Δt = Δtseam with n̂ = 1, . . . , N · m̃ and
m̃ > m. Such that we can solve the implicit scheme as

N (t n̂+1) = (I − ΔtseamB)−1N (t n̂), (5.516)

where N (t n̂+1) = (Ni(t n̂+1),Ne(t n̂+1),E (t n̂+1),J (t n̂+1))t ,
with Ni(t n̂+1) = (ni(x1, tn̂+1), . . . , ni(xJ , tn+1))

t ,
Ni(t n̂+1) = (ne(xj, tñ+1), . . . , ne(xJ , tn+1))

t ,
E (t n̂+1) = (E(x1, tn̂+1), . . . , E(xJ , tn̂+1))

t ,
J (t n̂+1) = (j(x1, tn̂+1), . . . , j(xJ , tn+1))

t and B ∈ IR4J×4J is the resulting matrix
of the semi-discretization and J is the number of spatial grid points. Δtseam is the
intermediate time step between the macroscopic and microscopic time step. The
same notation is also done for N (t n̂).

In the next section, we apply a EFM, which is a multiscale method and the micro-
scopic equation, which is upscaled to the macroscopic equation.

5.8 Multiscale Approach with Adaptive and Equation-Free … 277

5.8.5 Equation-Free Explicit Scheme:
With Two Timescale δ t,Δt

In the following scheme, we decompose the macro- and microscopic equation with
a EFM (equation-free method) and the macroscopic solver is reconstructed via the
extrapolation of the microscopic solver.

The macroscopic equation (slow equation) is given as

∂ni

∂t
= − ∂

∂x (μEni) + |Ene| e− 1
|E| , (5.517)

to the explicit discretization we apply a time step with Δt , which is limited via the
CFL condition.

The fast equation (microscopic equation) is given as

∂E

∂t
= j − (μni − ne) E, (5.518)

based on the explicit discretization we have a time step δt << Δt-limit given by a
CFL condition.

The idea of the EFM method is given in Fig. 5.38.
The EFM scheme is given as We have done the semi-discretization with the spatial

operator L = ∂
∂x , e.g. via upwinding, we apply the following parts to our EFM:

• Initialization of the microscopic equation (Lifting):

En,0 = En, (5.519)

tΔ

t

Restriction Interpolation

Fig. 5.38 Two scales are coupled, fine scale (microscacale) and slow scale (macroscale) via the
extrapolation steps in the microscopic scale

278 5 Engineering Applications

• Calculation of the microscopic equation (Evolving):

En,m+1 = En,m + δt f (jn, ni
n, ne

n, En,m), (5.520)

where f (j, ni, ne, E) = j − (μ ni − ne) E and Δt = M δt is the macroscopic time
step,
we apply m = 0, . . . , M − 1.

• Extrapolation into the macroscopic equation (Restriction):

En = En + (Δt − Mδt)
En,m − En,m−1

δt
, (5.521)

• The next macroscopic time step:

ni
n+1 = ni

n − L
(
μEnni

n)+ ∣∣Enne
∣∣ e− 1|En| . (5.522)

Remark 5.53 We control the numerical error of the multiscale scheme, while we
compared different time step results. We start with different small timescales:

δt1 < δt2 � Δt, (5.523)

and if the result:

||Eδt1 − Eδt2 || ≤ err, (5.524)

we can apply the finer scale, while we are bounded below the error estimates.

5.8.6 Conclusions and Discussions

We present a multiscale approach based on a electronic model with macroscopic
transport and microscopic electromagnetic equations. We discuss different app-
roaches to overcome the disparate scales. While simple approaches are time-
consuming, we discuss adaptive approaches and the equation-free method, which
overcome the scale and embeded the microscopic model into the macroscopic model.
Here, we accelerate the computations of the schemes, while applying larger time steps
to the multiscale approaches. Extrapolation and seamless ideas are embedded with
implicit schemes that overcome time restriction to the finer scales. Such strategies
allow to accelerate the computations and speed up with parallel implementation the
simulations.

5.9 Multiscale Approach for Complex Fluids: Applications … 279

5.9 Multiscale Approach for Complex Fluids: Applications
in Non-Newtonian Fluids

Abstract The model problem is related to complex fluids. Such problems occurr in
Non-Newtonian flow problems, while we have an underlying microstructure, e.g.
polymeric fluids or complex interactions at the boundaries. Here, we discuss the
modelling problems and the multiscale methods to overcome the multiscale problem.
In a example, we present the interaction of the macroscopic and microscopic model.

5.9.1 Introduction

Complex fluids are such problems with Non-Newtonian flows, means we have a
complex nature in the constitutive molecules, e.g. polymeric fluids, geometric size
of the problem as in microfluids, complex interactions at the boundary, chemical
reactions at the fluid–fluid or fluid–solid interface, see [120, 121]. To describe such a
problem a very detailed model such as a molecular dynamics (MD) model is needed.
By the way, it is impossible to perform such a model and hybrid numerical methods
as the multiscale methods, are important to take the efficiency of the continuum
model and the accuracy of the molecular model into account.

5.9.2 Non-Newtonian Fluid: Influence of the Microscopic
Model

In the following example, which is discussed in [120], presents the influence of the
microscopic model based on Non-Newtonian flow.

We have a macroscopic (conservation equation of incompressible flow) and a
microscopic (dynamics of the fluid, Newton’s law) equation.

The model equations are given in the following:

• Macroscopic equation (conservation equation) of an incompressible fluid:

ρ∂t v + ∇ · τ = f , in Ω × (0, T), (5.525)

∇ · u = 0, in Ω × (0, T), (5.526)

u(0) = u0, on Ω,

u = 0, on ∂Ω × (0, T).

where v is the velocity field of the fluid, the momentum flux is given as τ =
ρv ⊗ v + pI − τstress, ρ is the density of the fluid, p is the pressure, μ is the
viscosity and τstress is the stress tensor.

280 5 Engineering Applications

Solver:

Pusher:

Equilibration
(Compression)

(Reconstruction)
Lift

Fig. 5.39 Multiscale solver based on the top-down principle, e.g. HMM

• Microscopic equation (Newton’s equation of motion):

mi∂t t xi = Fi, i = 1, . . . , N, (5.527)

where vi = ∂t xi is the velocity of the particle i, Fi is the force acting on particle i
via the interaction to the neighbour particles.

We apply the following coupling structure between the grid- and grid-free-solvers,
see Fig. 5.39.

The coupling of the between the atomar and continuum model is done by the
averaging microscopic stress tensors or reconstruction of the macroscopic velocity
field to the microstructure.

• The averaging (atomar to continuum) we apply the Irving–Kirkwood formula, see
[122], which is implemented as

τ̃ (ξ, t, x) =
∑

i

⎛

⎝ffree Energy(vi, ξ) +
∑

j
=i

fcollision(xi, xj, ξ)

⎞

⎠, (5.528)

τ̃ (ξ, t, x) = −
∑

i

miviviδ(ri − ξ)

5.9 Multiscale Approach for Complex Fluids: Applications … 281

− 1

2

∑

j
=i

((rj − ri)fij)
∫ 1

0
δ(λri + (1 − λ)ri − ξ)dλ (5.529)

τ(t, x) = 1

V

∫

V
τ̃ (ξ, t, x)dξ, (5.530)

where the microscopic stress tensor is τ̃ and the particles i = 1, . . . , I , xi are the
space coordinates of particle i, vi are the velocity coordinates of particle i and the
macroscopic stress tensor is given as τ .

• The reconstruction (continuum to atomar) we apply the shape functions and inter-
polate the atomar velocities with the continuum velocities in each finite volume
cell

vi = v(S(x − xi)), xi, vi ∈ V, (5.531)

where v is the velocity of the finite volume box (with the volume V). The interpo-
lation function is given with S, e.g. spline function.

We deal with the following Algorithm 5.18.

Algorithm 5.18 The algorithm is a top–down algorithm based on the HMM,
see [120].

1. We solve the microscopic equation:

x(n,m+1)
i,j = x(n,m)

i,j + δtv(n,m)
i,j − δt2

2mi,j
∇U(n,m)

i,j ,

v(n,m+1)
i,j = v(n,m)

i,j + δt

2mi,j
∇U(n,m)

i,j ,

τ̃ (xn,m+1
i,j , (m + 1)δt, xn

j) = g(xm
i,j, vm

i,j, δt),

where i = 1, . . . , I , m = 0, 1, . . . , M − 1, e.g. δt ≤ Δt/M.
2. Equilibration of the micro-operators (compression):

τ n
j (Δt, xn

j) = 1

Vj

∑

i

Vi,j τ̃ (xn,M
i,j ,Δt, xn

j).

3. Solving the macroscopic equation on the grid:

vn+1
j = vn

j + ΔtAvn
j + Δtτ n

j , (5.532)

where A is the stiffness matrix based on the finite volume discretization with the
finite volume boxes Vj and j = {1, . . . , J}.

4. Reconstruction of the microscopic velocities in each finite volume cell:

vi,j = vj(S(xj − xi,j)), xi,j, vi,j ∈ Vj, with j = {1, . . . , J}, (5.533)

282 5 Engineering Applications

where J is the number of finite volume boxes.
Then we go to the step (1) with n = n + 1, till the time frame is done.

Remark 5.54 We apply the discrete macroscopic equation with the large macro-
scopic time steps and embed the microscopic equation with respect to the stress
tensor to the macroscopic equation. Therefore, we save computational time, while
we only resolve partially the microscopic scale, e.g. in the finite volume boxes.

5.9.3 Non-Newtonian Fluid: Influence of the at the Boundary
Flow at the Channel

In the following example, which is discussed in [123], presents the influence of the
boundary flow at the channel lower and upper walls. Here, we have a Non-Newtonian
flow at the region of the walls.

We have a macroscopic (Navier–Stokes equation) and a microscopic (dynamics of
the fluid, Newton’s law) equation. Both equations are coupled near the walls, while
in the core of the channel, we apply the pure Navier–Stokes equation.

• The macroscale equation is given by the Navier–Stokes equation for incompress-
ible continuum flow:

ρ∂t u + ρ(u · ∇)u − μΔu + ∇p = ρ f , in Ω × (0, T), (5.534)

∇ · u = 0, in Ω × (0, T), (5.535)

u(0) = u0, on Ω,

u = 0, on ∂Ω × (0, T),

The unknown flow vector u = u(x, t) is considered in Ω × (0, T). In the above
equations, ρ and p represent the fluid density and pressure, respectively. Here, μ

represents the dynamic viscosity of the fluid.
• The microscopic equation is given by Newton‘s equation of motion for each indi-

vidual molecule i for a sample of N molecules,

mi∂t t xi = Fi, i = 1, . . . , N, (5.536)

here, xi is the position vector of atom i, and the force Fi acting on each molecule is
the result of the intermolecular interaction of a molecule i with the neighbouring
molecular within a finite interaction range.

Further we assume to have a Lennard–Jones interaction potential, see [124] and
that we can couple the two models by the viscous stress conditions, see [123].

The viscous stress contribution μΔv in Eq. (5.353) can be modified for a non-
Newtonian flow as ∂σij/∂xj, and we have

5.9 Multiscale Approach for Complex Fluids: Applications … 283

∂σij/∂xj = μapparent∂
2vi/∂x2

j (5.537)

where, we assume the we deal with an apparent viscosity, which can be implemented
and computed by non-Newtonian flow conditions, e.g. moleculcar dynamics com-
putations.

So, finally, we obtain the coupled multiscale equations:

ρ∂t u + ρ(u · ∇)u − μapproxΔu + ∇p = f , in Ω × (0, T),

fi = ∂σij/∂xj|molecular − μapproxΔvi
(5.538)

where Einstein’s summation is used for the volumetric source term f , which accounts
for the deviation of the viscous stresses evaluated at molecular-level from the approx-
imate Newtonian relation μapproxΔv.

We apply the following multiscale method as an adaptive fixed-point approach.
Further the Algorithm 5.19 is given in the following, see also [123].

Algorithm 5.19 On a uniform time grid with tn = t0 + nΔt , n = 0, . . . , N , (where
N is given), the discretized coupled macro- and microscale equations are integrated
in time from time level n to n + 1 using the following adaptive scheme:

(1) For the cell faces with microscale fluxes, compute the velocity gradients

(2) Velocity gradient criterion: max

(∣∣∣∣
(

∂ui
∂xj

)n

micro
−
(

∂ui
∂xj

)last

micro

∣∣∣∣

)
> critgrad , critgrad

∈ IR+. If criterion is satisfied goto (3) else (4)

(3) Dual-time step with fixed-point iteration. Perform the following steps:

(i) Using the last estimate of the microscale apparent viscosity, compute an
estimate of the updated velocity field at the present time step using dual-
time step update.

(ii) Compute the velocity normalization factor as unorm = max(ũi(tn+1−ui(tn),
where ũ denotes the estimated velocity from step (i)

(iii) Compute viscous flux correction normalization as fnorm = max(f̃i(tn+1),
with f̃ the viscous flux correction based on the last apparent viscosity com-
putation

(iv) Store microscale velocity gradients:
(

∂ui
∂xj

)last

micro
=
(

∂ui
∂xj

)n

micro
(v) Initialize the Molecular Dynamics microscale problems with the imposed

velocity gradients from the finite volume cell faces and integrate these
through the initial equilibration phase (e.g. tequi = 50τ)

(vi) Fixed-point iteration:
(a) integrate microscale problems in time through an additional 10τ and

sample apparent viscosity through total microscale sampling time and
ensemble average over nensemble independent realizations

(b) construct the viscous flux corrections fi using updated apparent viscosity
(c) perform dual-time step update using nNewton relaxation steps

284 5 Engineering Applications

step

d
u
d
z

0 100 200 300 400 500

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 Velocity gradients near walls - 10 fixed-point inner iterations

step

d
u
d
z

0 100 200 300 400 500

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Velocity gradients near walls - 15 fixed-point inner iterations

(a)

(b)

Fig. 5.40 Channel flow with time-dependent pressure gradient. Dual-time stepping method with
fixed-point iteration in MD sampling of apparent viscosity. Finite-volume discretization method
with approximated statistical scatter of molecular dynamics viscous fluxes as function of sampling
duration on first 4 cells near lower and upper walls

5.9 Multiscale Approach for Complex Fluids: Applications … 285

(d) check convergence of fixed-point iteration using the stop criteria:∣∣ui(tn+1) − ui−1(tn+1
∣∣/unorm ≤ erru, erru ∈ IR+ and/or

∣∣fi(tn+1) −
fi−1(tn+1

∣∣/fnorm ≤ errf , errf ∈ IR+
(e) if criterion is satisfied time step is completed, else go to step (a)

(4) Dual-time step without fixed-point iteration.

(i) Using the last estimate of the microscale apparent viscosity, compute flux
corrections fi

(ii) Perform dual-time step update using nNewton relaxation steps

if n < N go to (1)

In the following experiment, we deal with the dual-time step formulation as mul-
tiscale approach, each fixed-point iteration corresponds to the solution of a ’pseudo-
steady’ problem using a Newton relaxation method.

For each increment of the fixed-point iteration counter, the microscale problem
is March ed forward by a pre-defined time-increment (in the present section, 10
Lennard–Jones time units (macroscopic scale), corresponding to 10,000 time steps
in the Molecular Dynamics method).

So the coupled idea is based by a relaxation between the macro- and microscopic
model.

The results with different iterative steps is given in Fig. 5.40. We simulate the wall
influence based on the microscopic fluid. We see an relaxation with larger iterative
steps at the macro–micro interface.

Remark 5.55 The benefit of the modelling approach was the decomposition of the
core and wall computations. While the core of the channel is assumed to be only a
macroscopic model, the complex fluid is only assumed near the wall interface. Based
on the iterative approach to couple micro- and macroscopic model at the interface,
we only have to update the macroscopic volume cells at the wall. Therefore, we could
accelerate the computations. Hiher coupling approaches, means more iterative steps,
smoothen the influence of the microscopic approach, see [123].

References

1. L. Rosso, A.F de Baas., Review of materials modelling: what makes a material function?
Let me compute the ways... European Commission, General for Research and Innovation
Directorate, Industrial Technologies, Unit G3 Materials (2014). http://ec.europa.eu/research/
industrial_technologies/modelling-materials_en.html

2. H. Risken, The Fokker-Planck Equation Methods of Solution and Applications, Series in
Synergetics, vol. 18, 3rd edn. (Springer, Berlin, 1996)

3. J. Geiser, Recent advances in splitting methods for multiphysics and multiscale: theory and
applications. J. Algorithms Comput. Technol., Multi-Sci., Brentwood, Essex, UK, accepted
August 2014 (to be published second issue 2015)

http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html
http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html

286 5 Engineering Applications

4. J. Geiser, Additive via iterative splitting schemes: algorithms and applications in heat-transfer
problems, in Proceedings of the Ninth International Conference on Engineering Computa-
tional Technology, ed. by P. Ivanyi, B.H.V. Topping (Civil-Comp Press, Stirlingshire, 2014),
Paper 51. doi:10.4203/ccp.105.51

5. B.I. Cohen, A.M. Dimits, A. Friedman, R.E. Caflisch, Time-step considerations in particle
simulation algorithms for Coulomb collisions in plasmas. IEEE Trans. Plasma Sci. 38(9),
2394–2406 (2010)

6. K. Nanbu, Theory of cumulative small-angle collisions in plasmas. Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top. 55(4), 4642–4652 (1997)

7. T. Takizuka, H. Abe, A binary collision model for plasma simulation with a particle code. J.
Comput. Phys. 25, 205–219 (1977)

8. B.I. Cohen, L. Divol, A.B. Langdon, E.A. Williams, Effects of ion-ion collisions and inho-
mogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering.
Phys. Plasmas 13(2), 022705 (2006)

9. M.E. Jones, D.S. Lemons, R.J. Mason, V.A. Thomas, D. Winske, A grid-based Coulomb
collision model for PIC codes. J. Comput. Phys. 123(1), 169–181 (1996)

10. D.S. Lemons, D. Winske, W. Daughton, B. Albright, Small-angle Coulomb collision model
for particle-in-cell simulations. J. Comput. Phys. 228(5), 1391–1403 (2009)

11. W.M. Manheimer, M. Lampe, G. Joyce, Newblock Langevin representation of Coulomb
collisions in PIC simulations. J. Comput. Phys. 138(2), 563–584 (1997)

12. M. Sherlock, A Monte-Carlo method for Coulomb collisions in hybrid plasma models. J.
Comput. Phys. 227(4), 2286–2292 (2008)

13. A.M. Dimits, B.I. Cohen, R.E. Caflisch, M.S. Rosin, L.F. Ricketson, Higher-order time inte-
gration of Coulomb collisions in a plasma using Langevin equations. J. Comput. Phys. 242,
561–580 (2013)

14. J. Geiser, in Iterative Splitting Methods for Differential Equations. Numerical Analysis and
Scientific Computing Series, ed. by F. Magoules, C.-H. Lai (Chapman & Hall/CRC, 2011)

15. J. Geiser, Multiscale splitting for stochastic differential equations: applications in particle
collisions. J. Coupled Syst. Multiscale Dyn. 1(2), 241–250(10) (2013)

16. E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration illustrated by the Störmer
Verlet method. Acta Numer. 12, 399–450 (2003)

17. E. Weinan, Principle of Multiscale Modelling (Cambridge University Press, Cambridge, 2010)
18. J. Geiser, in Coupled Systems: Theory, Models and Applications in Engineering. Numeri-

cal Analysis and Scientific Computing Series, ed. by F. Magoules, C.-H. Lai (CRC Press,
Chapman & Hall/CRC, Boca Raton, 2014)

19. R. Glowinski, Numerical methods for fluids, in Handbook of Numerical Analysis, vol. IX, ed.
by P.G. Ciarlet, J. Lions (North-Holland Elsevier, Amsterdam, 2003)

20. R. Glowinski, P.G. Ciarlet, J.L. Lions (eds.), Numerical Methods for Non-Newtonian Flu-
ids: Special Volume, Handbook of Numerical Analysis, vol. XVI (North-Holland Elsevier,
Amsterdam, 2010)

21. J. Geiser, St. Guettel, Coupling methods for heat-transfer and heat-flow: operator splitting
and the parareal algorithm. J. Math. Anal. Appl. 388(2), 873–887 (2012) (Elsevier, North
Holland)

22. M.J. Gander, S. Vanderwalle, Analysis of the parareal time-parallel time-integration method.
SIAM J. Sci. Comput. 29(2), 556–578 (2007)

23. OpenFOAM, OpenFOAM Softwarepackage (2004). http://www.openfoam.com/, 2004-2013
OpenCFD Ltd (ESI Group), Bracknell, UK, 2014

24. Ricardo Software, VECTIS, three-dimensional fluid dynamics program (2010). http://www.
ricardo.com/What-we-do/Software/Products/VECTIS/

25. O. Arici, S. Yang, D. Huang, E. Oker, Computer model for automobile climate control system
simulation and application. Int. J. Appl. Thermodyn. 2(2), 59–68 (1999)

26. J. Geiser, Iterative operator-splitting methods for nonlinear differential equations and appli-
cations. Numer. Methods Partial Differ. Equ. 27(5), 1026–1054 (2011)

http://dx.doi.org/10.4203/ccp.105.51
http://www.openfoam.com/
http://www.ricardo.com/What-we-do/Software/Products/VECTIS/
http://www.ricardo.com/What-we-do/Software/Products/VECTIS/

References 287

27. S. Descombes, Convergence of a splitting method of high order for reaction-diffusion systems.
Math. Comput. 70, 1481–1501 (2001)

28. J. Salcedo Rulz, F.J. Sanchez Bernabe, A numerical study of stiffness effects on some higher
order splitting methods. Revista Mexicana de Fisica 52(2), 129–134 (2006)

29. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal.
5, 506–517 (1968)

30. I. Farago, J. Geiser, Iterative operator-splitting methods for linear problems. Int. J. Comput.
Sci. Eng. 3(4), 255–263 (2007)

31. J. Geiser, Iterative operator-splitting methods with higher order time-integration methods and
applications for parabolic partial differential equations. J. Comput. Appl. Math. 217, 227–242
(2008). (Elsevier, Amsterdam)

32. S.A. Chin, The complete characterization of fourth-order symplectic integrators with
extended-linear coefficients. Phys. Rev. E 73, 026705 (2006)

33. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAM Frontiers in Applied
Mathematics, vol. 16 (SIAM, Philadelphia, 1995)

34. J. Kanney, C. Miller, C.T. Kelley, Convergence of iterative split-operator approaches for
approximating nonlinear reactive transport problems. Adv. Water Res. 26, 247–261 (2003)

35. E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B Nonlinear Montone Oper-
ators (Springer, Berlin, 1990)

36. K.H. Karlsen, N. Risebro, An operator splitting method for nonlinear convection-diffusion
equation. Numer. Math. 77(3), 365–382 (1997)

37. M.V. Berry, The Levitron: an adiabatic trap for spins. Proc. R. Soc. Lond. A 452, 1207–1220
(1996)

38. J. Geiser, K.F. Lüskow, R. Schneider, Levitron: multi-scale analysis of stability. Dyn. Syst.
29(2), 208–224 (2014)

39. H.R. Dullin, Poisson integrator for symmetric rigid bodies. Regul. Chaotic Dyn. 9, 255–264
(2004)

40. J. Geiser, Multiscale methods for Levitron problems: theory and applications. Comput. Struct.
122, 27–32 (2013). (Elsevier, North Holland)

41. J. Geiser, Nonlinear extension of multiproduct expansion schemes and applications to rigid
bodies. Int. J. Differ. Equ. (Hindawi Publishing Corporation, New York, USA, accepted,
August 2013)

42. R.I. McLachlan, P. Atela, The accuracy of symplectic integrators. Nonlinearity 5, 541–562
(1992)

43. H. Yoshida, Recent process in the theory and application of symplectic integrators. Celest.
Mech. Dyn. Astron. 56, 27–43 (1993)

44. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations. SCM, vol. 31 (Springer, Berlin, 2002)

45. S. Earnshaw, On the nature of the molecular forces which regulate the constitution of the
luminiferous ether. Trans. Camb. Philos. Soc. 7, 97–112 (1842)

46. H.R. Dullin, R. Easton, Stability of Levitron. Phys. D: Nonlinear Phenom. 126(1–2), 1–17
(1999)

47. R.F. Gans, T.B. Jones, M. Washizu, Dynamics of the Levitron. J. Phys. D 31, 671–679 (1998)
48. J. Geiser, K.F. Lueskow, R. Schneider, Iterative implicit methods for solving nonlinear dynam-

ical systems: application in Levitron problems, in Proceeding of the 6th Conference on FDM.
Lecture Notes in Computer Science (LNCS) (Springer, accepted May 2014)

49. S. Vandewalle, Parallel Multigrid Waveform Relaxation for Parabolic Problems. Teubner
Skripten zur Numerik (B.G. Teubner, Stuttgart, 1993)

50. Y.-L. Jiang, O. Wing, A note on convergence conditions of waveform relaxation algorithms
for nonlinear differential algebraic equations. Appl. Numer. Math. 36(2–3), 281–297 (2001)

51. P. Console, E. Hairer, Ch. Lubich, Symmetric multistep methods for constrained Hamiltonian
systems. Numerische Mathematik 124, 517–539 (2013)

52. J. Geiser, Model order reduction for numerical simulation of particle transport based on
numerical integration approaches (UK, accepted, Mathematical and Computer Modelling of
Dynamical Systems, Taylor and Francis, Abingdon, October 2013)

288 5 Engineering Applications

53. M.E. Innocenti, G. Lapenta, S. Markidis, A. Beck, A. Vapirev, A multi level multi domain
method for particle in cell plasma simulations. J. Comput. Phys. 238, 115–140 (2013)

54. K. Lueskow, J. Duras, O. Kalentev, K. Matyash, J. Geiser J, R. Schneider, D. Tskhakaya.
Non-equidistant particle-in-cell for ion thruster plumes, in Proceedings of the 33rd IEPC,
Washington, DC, IEPC-2013-067, October 2013

55. R. Hockney, J. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton,
1985)

56. G. Lapenta, DEMOCRITUS: an adaptive particle in cell (PIC) code for object-plasma inter-
actions. J. Comput. Phys. 230(12), 4679–4695 (2011)

57. D. Tskhakaya, K. Matyash, R. Schneider, F. Taccogna, The particle-in-cell method. Contrib.
Plasma Phys. 47(8–9), 563–594 (2007)

58. J. Duras, K. Matyash, D. Tskhakaya, O. Kalentev, R. Schneider, Self-force in 1D electrostatic
particle-in-cell codes for non-equidistant grids. Contrib. Plasma Phys. 54(8), 697–711 (2014)

59. P. Colella, P.C. Norgaard, Controlling self-force errors at refinement boundaries for AMR-PIC.
J. Comput. Phys. 229, 947–957 (2010)

60. M.E. Innocenti, G. Lapenta, S. Markidis, A. Beck, A. Vapirev, A multi level multi domain
method for particle in cell plasma simulations (2012). arXiv:1201.6208v1 [physics.plasm-ph]

61. W. Hackbusch, Elliptic Differential Equations. Theory and Numerical Treatment. Springer
Series in Computational Mathematics, vol. 18 (Springer, Berlin, 1992)

62. St. McDonald, Finite difference approximation for linear stochastic partial differential equa-
tions with method of lines. MPRA paper no. 3983 (2007). http://mpra.ub.uni-muenchen.de/
3983

63. D.W. Kelly, R.J. Millis, J.A. Reizes, A posteriori error estimates in finite difference techniques.
J. Comput. Phys. 74, 214–232 (1998)

64. W. Bangerth, R. Rannacher, Adaptive Finite Element Methods for Differential Equations
(Birkhäuser, Boston, 2003)

65. J.T. Oden, J.N. Reddy, Variational Methods in Theoretical Mechanics (Springer, Berlin, 1976)
66. P. Ciarlet, The Finite Element Method for Elliptic Problems (North Holland, Amsterdam,

1975)
67. B.D. Vujanovic, T.M. Atanackovic, An Introduction to Modern Variational Techniques in

Mechanics and Engineering (Birkhauser, Boston, 2004)
68. A. Jentzen, P.E. Kloeden, The numerical approximation of stochastic partial differential equa-

tions. Milan J. Math. 77(1), 205–244 (2009)
69. P.E. Kloeden, E. Platen, The Numerical Solution of Stochastic Differential Equations

(Springer, Berlin, 1992)
70. M.A. Lieberman, A.J. Lichtenberg, Principle of Plasma Discharges and Materials Processing,

2nd edn. (Wiley-Interscience, New York, 2005)
71. V.J. Ervin, W.W. Miles, Approximation of time-dependent, multi-component, viscoelastic

fluid flow. Comput. Methods Appl. Mech. Eng. 194(18–20), 2229–2255 (2005)
72. A. Fick, On liquid diffusion. Philos. Mag. 10, 30–39 (1855)
73. A. Fick, On liquid diffusion. J. Membr. Sci. 100, 33–38 (1995)
74. J.C. Maxwell, On the dynamical theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1866)
75. J. Stefan, Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gas-

gemengen. Akad. Wiss. Wien 63, 63–124 (1871)
76. R. Balescu, Transport Processes in Plasma: Classical Transport, vol. 1 (North Holland Publ.,

Amsterdam, 1988)
77. C. Le Bris, T. Lelievre, Multiscale Modeling and Simulation in Science. Lecture Notes in

Computational Science and Engineering, vol. 66 (2009), pp. 49–137
78. R. Krishna, R. Taylor, Multicomponent mass transfer theory and applications, in Handbook

for Heat and Mass Transfer, vol. 2, Chapter 7, ed. by N. Cheremisinoff (Gulf, Houston, 1986)
79. R. Krishna, J. Wesselingh, The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci.

52, 861–911 (1997)
80. D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Parabolic Problems,

Progress in Nonlinear Differential Equations and Their Applications, vol. 80 (Springer, Basel,
2011), pp. 81–93

http://arxiv.org/abs/1201.6208v1
http://mpra.ub.uni-muenchen.de/3983
http://mpra.ub.uni-muenchen.de/3983

References 289

81. K. Böttcher, Numerical solution of a multi-component species transport problem combining
diffusion and fluid flow as engineering benchmark. Int. J. Heat Mass Transf. 53, 231–240
(2010)

82. T.K. Senega, R.P. Brinkmann, A multi-component transport model for non-equilibrium low-
temperature low-pressure plasmas. J. Phys. D: Appl. Phys. 39, 1606–1618 (2006)

83. M.K. Gobbert, C.A. Ringhofer, An asymptotic analysis for a model of chemical vapor depo-
sition on a microstructured surface. SIAM J. Appl. Math. 58, 737–752 (1998)

84. S. Chapman, Th.G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account
of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases (Cambridge
University Press, Cambridge, 1990)

85. L. Boudin, B. Grec, F. Salvarani, A mathematical and numerical analysis of the Maxwell-
Stefan diffusion equation. Discrete Contin. Dyn. Syst. Ser. B 17(5), 1427–1440 (2012)

86. L. Boudin, B. Grec, F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of
mixtures. Unpublished paper, INRIA - Laboratoire Jacques-Louis Lions - Universite Pierre
et Marie Curie, Paris (2013). http://hal.archives-ouvertes.fr/hal-00554744

87. P.J. Antsaklis, A.N. Michel, Linear Systems (Birkhäuser, Boston, 2005). (Corrected edition)
88. S. Blanes, F. Casas, J.A. Oteo, The Magnus expansion and some of its applications. Phys.

Rep. 470(5–6), 151–238 (2009)
89. S. Blanes, P.C. Moan, Fourth- and sixth-order commutator free Magnus integrators for, linear

and nonlinear dynamical systems. Appl. Numer. Math. 56, 1519–1537 (2006)
90. F. Casas, A. Iserles, Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math.

Gen. 39, 5445–5461 (2006)
91. D. Braess, Finite Elemente (Springer, Berlin, 1992)
92. R. Eymard, T.R. Gallouet, R. Herbin, The finite volume method, in Handbook of Numerical

Analysis, vol. VII, ed. by P.G. Ciarlet, J.L. Lions (2000), pp. 713–1020
93. V. Giovangigli, Multicomponent Flow Modeling (Birkhäuser, Boston, 1999)
94. F. Hynne, S. Dano, P.G. Sorensen, Full-scale model of glycolysis in Saccharomyces cerevisiae.

Biophys. Chem. 94(1–2), 121–163 (2001)
95. P.D. Kourdis, D.A. Goussis, Glycolysis in saccharomyces cerevisiae: algorithmic exploration

of robustness and origin of oscillations. Math. Biosci. 243, 190–214 (2013)
96. H. Holden, K.H. Karlsen, K.-A. Lie, N.H. Risebro, Splitting Methods for Partial Differential

Equations with Rough Solutions. EMS Series of Lectures in Mathematics (2010)
97. B. Teusink, J. Passarge, C.A. Reijenga et al., Can yeast glycolysis be understood in terms of

in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267(17),
5313–5329 (2000)

98. D.K. Arrowsmith, C.M. Place, An Introduction to Dynamical Systems (Cambridge University
Press, Cambridge, 1990)

99. E. Hansen, A. Ostermann, Exponential splitting for unbounded operators. Math. Comput. 78,
1485–1496 (2009)

100. E. Hansen, A. Ostermann, High order splitting methods for analytic semigroups exist. BIT
49, 527–542 (2009)

101. F.A. Williams, Combustion Theory, The Fundamental Theory of Chemically Reacting Systems,
2nd edn. (Benjamin and Cummings Pub. Co., Menlo Park, 1985)

102. S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26,
461–486 (1994)

103. S.H. Lam, in Singular Perturbation for Stiff Equations Using Numerical Methods, Recent
Advances in the Aerospace Sciences, ed. by C. Casi (Plenum Press, New York, 1985), pp.
3–20

104. G.H. Golub, Ch.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University,
Baltimore, 1996)

105. J. Kevorkian, J.D. Cole. Multiple Scale and Singular Perturbation Methods (Springer, Berlin
1996)

106. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations (Springer, Berlin, 2003)

http://hal.archives-ouvertes.fr/hal-00554744

290 5 Engineering Applications

107. A. Zagaris, H.G. Kaper, T.J. Kaper, Fast and slow dynamics for the computational singular
perturbation method. Multiscale Model. Simul. 2(4), 613–638 (2004)

108. L. Tonks, I. Langmuir, Oscillations in Ionized gases. Phys. Rev. 33, 195 (1929)
109. J. Oberrath, T. Mussenbrock, R.P. Brinkmann, Active plasma resonance spectroscopy: a kinet-

ically functional analytic description. Preprint, TET, Ruhr University of Bochum (2013)
110. A. Narayan, A. Klöckner. Deterministic Methods for the Boltzmann Equation. Lecture Notes

(2013). http://mathema.tician.de/dl/academic/talks/boltzmann-notes.pdf
111. G.I. Marchuk, Some applications of splitting-up methods to the solution of problems in

mathematical physics. Aplikace Matematiky 1, 103–132 (1968)
112. M. Bjorhus, Operator splitting for abstract Cauchy problems. IMA J. Numer. Anal. 18(3),

419–443 (1998)
113. J. Geiser, in Decomposition Methods for Partial Differential Equations: Theory and Applica-

tions in Multiphysics Problems. Numerical Analysis and Scientific Computing Series, ed. by
F. Magoules, F. Lai (CRC Press, Chapman & Hall/CRC, Boca Raton, 2009)

114. J. Geiser, An iterative splitting method via waveform relaxation. Int. J. Comput. Math. 88(17),
3646–3665 (2011). (Taylor and Francis, New York)

115. T. Ladics, I. Farago, Generalizations and error analysis of the iterative operator splitting
method. Cent. Eur. J. Math. 11(8), 1416–1428 (2013)

116. Mathematika, Software-Package: Mathematika. Wolfram Mathematica (2015). http://www.
wolfram.com/mathematica/

117. A. Wollny, R.-P. Brinkmann, Plasma-plasma interaction-simulations of ionization wave propa-
gation on micro cavity plasma arrays, in Proceeding of the Conference WELTPP-17, Kerkrade,
The Netherlands, 20–21 November 2014

118. L. Friedland, Ju.M. Kagan, Generalized theory of first Townsend ionization coefficient in
strong electric fields. J. Appl. Phys. 54, 4947 (1983)

119. C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys. 77, 439–471 (1988)

120. W. Ren, E. Weinan, Heterogeneous multiscale method for the modeling of complex fluids
and micro-fluidics. J. Comput. Phys. 204(1):1–26 (2005)

121. C. Le Bris, T. Lelievre, Multiscale modelling of complex fluids: a mathematical initiation.
Research report, RR-6275 (2007). https://hal.inria.fr/inria-00165171

122. J. Irving, J. Kirkwood, The statistical mechanical theory of transport processes IV. J. Chem.
Phys. 18, 817–829 (1950)

123. J. Geiser, Coupled Navier Stokes-molecular dynamics simulation using iterative operator-
splitting methods. Comput. Fluids. 77(1), 97–111 (2013). (Elsevier, North Holland)

124. J.E. Lennard-Jones, On the determination of molecular fields. Proc. R. Soc. Lond., A 106(738),
463–477 (1924)

http://mathema.tician.de/dl/academic/talks/boltzmann-notes.pdf
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/
https://hal.inria.fr/inria-00165171

Conclusions

Conclusions and Perspectives

In this monograph, we discuss the numerical methods, models and applications to
multicomponent and multiscale systems. We cover many fields of engineering prob-
lems, ranging from reactive flow simulations to electronic applications. The model
equations are based on coupled deterministic and stochastic differential equations
with multiple time- and spatial-scales. The differential equations are given with mul-
tiple components, which can have different time and space scales, hence we deal
with large coupled system partial differential equations in our underlying engineer-
ing problems.

Such multicomponent and multiscale systems are delicate to simulate, while the
main problem is disparate time- and spatial-scales. Such multiscale problems need
multiscale treatment with underlying multiscale solvers to resolved each sub-scale
problem with adequate time- and spatial-schemes.

We present multiscale methods and their numerical implementation, which can be
applied to solve such delicate systems and close the gap between numerical methods
and their practical application in engineering problems.

In the theoretical part, we present different numerical approaches based on multi-
scale methods and multicomponent methods, which partitioned the full system into
smaller and simpler solvable partial systems.We discuss the numerical errors of such
approximation methods, while we separate into simpler regimes or upscale multi-
scale regimes and neglect some information, see [1]. Based on the new formulation
of problems, by application of numerical schemes, we discuss the different behaviour
of such mono-component or single-scale approximations and overcome such errors
with higher accurate schemes, see [2].

The following problems are discussed and solved in the monograph:

• The extension of standard numerical scheme with respect to multicomponent and
multiscale applications.

• General principles, which can be applied formulticomponent andmultiscalemeth-
ods to understand their behaviour, are used to develop new methods.

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5

291

292 Conclusions

• Different iterative and additive methods are discussed with respect to their flexi-
bility to solve multicomponent and multiscale systems.

• We discuss the modifications of the methods, their errors and how to overcome
such errors and method drawbacks.

In various applications, we present solutions with different numerical schemes
that are developed to multiscale and multicomponent method using the following
ideas:

• Separating of the different components;
• Separating of the different scales;
• Averaging of scales to upscale fast scales and dealing with an averaged scale;
• Reduction of models by compressing and skipping unnecessary components in
the models.

Further, we apply preferred and embed implicit schemes to have an averaging behav-
iour and incorporate thefiner scales of themodel problems. Therefore,we could apply
larger time- and spatial-scales and reduce the amount of computations.

In the future, the methods for multicomponent andmultiscale systems can be seen
as a combination of different sub-methods, for example:

• Decomposition methods (time and space);
• Adaptive methods and analytical methods;
• Multiple scale methods,
• Implicit and explicit discretization methods;
• Model-reduction methods.

It is important to obtain an overview of the complex models and those problems
in the model that have to be studied more carefully.

Further, the mathematical correctness of the methods is important, which errors
will be embedded (e.g. splitting errors, reduction errors of no applied components,
etc.), which errors can be skipped or are not important to the modified system. It is
important to find a balance between a simplification, e.g. smaller equation system
with lesser components and scales or decomposing into simpler parts of the equation
with numerical errors of the decomposition method, and the necessity for resolving
the physical behaviour of the model, which needs a nearly full model description,
see delicate plasma models [3, 4].

We present different applications which allow to apply such modifications in
simpler equation systems, which can be solved much faster and allow to have high
accuracy in each scale and their components.

In the book, we could apply and extend the ideas of splittingmethods andmultiple
scalemethods into a general spectrumofmulticomponent andmultiscale systems and
derive applicable schemes which are used in practical experience and engineering
software.

Such a scientific tool allows engineers to deal more with simpler and understand-
able problems, which are testable, without losing the context to the full multicom-
ponent and multiscale system.

Conclusions 293

In the near future, when we deal with engineering complexities as in the frame-
work of Horizon 2020, see [5], combinations of multiscale and multicomponent
systems in engineering will be an important part of studying complex fluid or solid
problems. To understand the modelling equation is delicate and to apply accurate
solver methods to perform simulations is important. Here, we gave contributions
to methods which are related in this context and could present a method-toolbox to
apply to complex processes.We gave a theoretical overview of the relevantmultiscale
and multicomponent methods and also their applications to engineering problems,
so that scientists and practitioners can use our underlying ideas.

References

1. E.Weinan,Principle of Multiscale Modelling (CambridgeUniversity Press, Cam-
bridge, 2010)

2. J. Geiser, in Iterative Splitting Methods for Differential Equations. Numerical
Analysis and Scientific Computing Series, ed. by F. Magoules, C.-H. Lai (Chap-
man & Hall/CRC, Boca Raton, 2011)

3. R. Balescu, Transport Processes in Plasma: Classical Transport, vol. 1 (North
Holland Publications, Amsterdam, 1988)

4. R. Balescu, Transport Processes in Plasmas: Neoclassical Transport Theory, vol.
2 (North Holland Publications, Amsterdam, 1988)

5. L. Rosso, A.F. de Baas, Review of Materials Modelling: What Makes a Material
Function? Let Me Compute the Ways... European Commision, General for
Research and Innovation Directorate, Industrial Technologies, Unit G3Mate-
rials (2014). http://ec.europa.eu/research/industrial_technologies/modelling-
materials_en.html

http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html
http://ec.europa.eu/research/industrial_technologies/modelling-materials_en.html

Appendix

In the following, we have some notes to the additional mathematical methods used
in the previous sections.

A.1 Computation of Multiple Stochastic Integrals

In Sect. 5.1, we have applied stochastic integrals in multiple form. Here are some
ideas to solve them with numerical approximations.

We assume to compute

∫ 1

0
W j (s)dWi (s) =

N∑
k=1

W j

(
t j + t j+1

2

)
ΔWi , (A.1)

δt = 1/N , t j+1 = δt + t j , t1 = 0, (A.2)

where the intermediate values of W j are given with respect to the Brownian bridge:

W (t) = (1 + t)B

(
t

1 + t

)
. (A.3)

The Brownian bridge is presented as a Fourier series with stochastic coefficients, as

Bt =
∞∑

k=1

Zk

√
2 sin(kπ t)

kπ
, (A.4)

where Z1, Z2, . . . are independent identically distributed standard normal random
variables (means N (0, 1)) (see the Karhunen Loeve theorem).

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5

295

http://dx.doi.org/10.1007/978-3-319-15117-5_5

296 Appendix

A.2 Alternative Ideas for Solving the Nonlinear
Multicomponent Equation

In the following, we present some alternative ideas to solve the nonlinear behaviour
in the multicomponent equations:

• Iterative scheme in time with a finite volume scheme for the spatial operators:
The benefit of the scheme is straightforward implementation while dealing with
forward steps and linearization via time steps. A drawback is restriction with
respect to the CFL condition.

• Closed form of the Stefan–Maxwell equation: One of the benefits is a closed form
of the equations, i.e. we deal with only one equation which can be done explicitly
or implicitly. The drawbacks are the mixed derivations in the equations and the
delicate implicit scheme, which needs an additional nonlinear solver.

A.2.1 Iterative Scheme in Time (Finite Volume Scheme,
Global Linearisation, Successive Method), Given in [1]

We solve the iterative scheme

(
1

D13
+ αξn

2, j−1/2

)
N n
1, j − αξn

1, j−1/2N n
2, j = ξn

1, j−1 − ξn
1, j

Δx
, (A.5)

−βξn
2, j−1/2N n

1, j +
(

1

D23
+ βξn

1, j−1/2

)
N n
2, j = ξn

2, j−1 − ξn
2, j

Δx
, (A.6)

for n ∈ N (time-index), j, 1 ≤ j ≤ J − 1.

ξn+1
i, j = ξn

i, j − Δt

Δx2
(N n

i, j+1 Δx − N n
i, j Δx), (A.7)

with i = 1, 2 and n ∈ N (time-index), j, 0 ≤ j ≤ J − 1.
We have further

ξn
i, j−1/2 = 1

2
(ξn

i, j + ξn
i, j−1), 0 ≤ j ≤ J − 1, (A.8)

ξ0i, j = ξ ini (x j+1/2), (A.9)

N n
i,0 = 0, n ∈ N, (A.10)

N n
i,J = 0, n ∈ N. (A.11)

Further, D12 = D13 = 0.833, D23 = 0.168 J = 140 with Δx = 1/J and
Δt ≤ 1

2
Δx2

max{D12,D13,D23} .

Appendix 297

Algorithm A.1 (1) Initialization n = 0:

We compute for j = 1, . . . , J − 1:

(
N 0
1, j

N 0
2, j

)
=

(
A0
11, j A0

12, j
A0
21, j A0

22, j

)−1
⎛
⎝

ξ01, j−1−ξ01, j
Δx

ξ02, j−1−ξ02, j
Δx

⎞
⎠ , (A.12)

where ξ01, j = ξ in1 (jΔx), ξ02, j = ξ in2 (jΔx), j = 0, . . . , J and given as for the
different initializations, we have

1. Uphill example

ξ in1 (x) =
⎧⎨
⎩
0.8 if 0 ≤ x < 0.25
1.6(0.75 − x) if 0.25 ≤ x < 0.75
0.0 if 0.75 ≤ x ≤ 1.0

, (A.13)

ξ in2 (x) = 0.2, for all x ∈ Ω = [0, 1], (A.14)

2. Diffusion example (asymptotic behaviour)

ξ in1 (x) =
{
0.8 if 0 ≤ x ∈ 0.5,
0.0 else,

(A.15)

ξ in2 (x) = 0.2, for all x ∈ Ω = [0, 1], (A.16)

The matrix entries are given as

A0
11, j = 1

D13
+ αξ02, j−1/2, A0

12, j = −αξ01, j−1/2, (A.17)

A0
21, j = −βξ02, j−1/2, A0

22, j = 1

D23
+ βξ01, j−1/2, (A.18)

ξ01, j−1/2 = 1

2
(ξ01, j + ξ01, j−1), ξ

0
2, j−1/2 = 1

2
(ξ02, j + ξ02, j−1). (A.19)

Further, the values of the first and the last grid points of N are zero, i.e.
N 0
1,0 = N 0

1,J = N 0
2,0 = N 0

2,J = 0 (boundary condition).

(2) Next time steps (till n = Nend):

(2.1) Computation of ξn+1
1 and ξn+1

2 :

298 Appendix

We compute for j = 0, . . . , J − 1:

ξn+1
1, j = ξn

1, j − Δt

Δx2

(
N n
1, j+1Δx − N n

1, jΔx
)
, (A.20)

ξn+1
2, j = ξn

2, j − Δt

Δx2

(
N n
2, j+1Δx − N n

2, jΔx
)
, (A.21)

where N n
1,0 = N n

1,J = N n
2,0 = N n

2,J = 0 (boundary condition).

(2.2) Computation of N n+1
1 and N n+1

2
We compute for j = 1, . . . , J − 1:

(
N n+1
1, j

N n+1
2, j

)
=

(
An+1
11, j An+1

12, j

An+1
21, j An+1

22, j

)−1
⎛
⎝

ξn+1
1, j−1−ξn+1

1, j
Δx

ξn+1
2, j−1−ξn+1

2, j
Δx

⎞
⎠, (A.22)

where the matrix entries are given as

An+1
11, j = 1

D13
+ αξn+1

2, j−1/2, An+1
12, j = −αξn+1

1, j−1/2, (A.23)

An+1
21, j = −βξn+1

2, j−1/2, An+1
22, j = 1

D23
+ βξn+1

1, j−1/2, (A.24)

ξn+1
1, j−1/2 = 1

2
(ξn+1

1, j + ξn+1
1, j−1), ξ

n+1
2, j−1/2 = 1

2
(ξn+1

2, j + ξn+1
2, j−1). (A.25)

Further, the values of the first and the last grid points of N are zero, i.e. N n+1
1,0 =

N n+1
1,J = N n+1

2,0 = N n+1
2,J = 0 (boundary condition).

(3) Do n = n + 1 and goto (2)

A.2.2 Closed Form with Chain-Rule of the SM Equation

We deal with the multicomponent problem given in Sect. 5.5 as

∂tξ1 + ∂x · N1 = 0, (A.26)

∂tξ2 + ∂x · N2 = 0, (A.27)(
N1
N2

)
= D13D23

1 + αD13ξ2 + βD23ξ1

(
1

D23
+ βξ1 αξ1

βξ2
1

D13
+ αξ2

) (−∂xξ1
−∂xξ2

)
. (A.28)

http://dx.doi.org/10.1007/978-3-319-15117-5_5

Appendix 299

It is also possible to apply Eq. (A.28) directly into Eqs. (A.26) and (A.27). We
apply the partial derivations with respect to the chain-rule and have the following
equations:

(
∂x N1
∂x N2

)
= ∂x

(
D13D23

1 + αD13ξ2 + βD23ξ1

×
(

1
D23

+ βξ1 αξ1

βξ2
1

D13
+ αξ2

) (−∂xξ1
−∂xξ2

))
. (A.29)

Further, we have

N1 = D13D23

1 + αD13ξ2 + βD23ξ1

(
− 1

D23
∂xξ1 − βξ1∂xξ1 − αξ1∂xξ2

)
, (A.30)

N2 = D13D23

1 + αD13ξ2 + βD23ξ1

(
βξ2∂xξ1 − 1

D13
∂xξ2 − αξ2∂xξ2

)
, (A.31)

and the derivations with respect to ∂x and ∂y are given as

∂x N1 =
(D13D23

(1 + αD13ξ2 + βD23ξ1)2

(αD13

D23
∂xξ2∂xξ1

+β∂xξ1∂xξ1 + αβD13∂xξ2ξ1∂xξ1 + β2D23∂xξ1ξ1∂xξ2

))

+ D13D23

1 + αD13ξ2 + βD23ξ1

(
− 1

D23
∂2x ξ1 − β∂xξ1∂xξ1 − βξ1∂

2
x ξ1

− α∂xξ1∂xξ2 − αξ1∂
2
x ξ2

)
, (A.32)

∂x N2 =
(D13D23

(1 + αD13ξ2 + βD23ξ1)2

(βD23

D13
∂xξ1∂xξ2

+ α∂xξ2∂xξ2 + αβD23∂xξ1ξ2∂xξ2 + α2D13∂xξ2ξ2∂xξ2

))

+ D13D23

1 + αD13ξ2 + βD23ξ1

(
− 1

D13
∂2x ξ2 − α∂xξ2∂xξ2 − αξ2∂

2
x ξ2

− β∂xξ2∂xξ1 − βξ2∂
2
x ξ1

)
. (A.33)

Based on the full equation, we could apply the different time- and spatial-
discretization schemes. We apply the finite-difference discretization in space, with
the operators D+ (forward difference operator) and D− (backward difference oper-
ator), see also Sect. 5.5.

For the time-discretization, we apply the explicit or implicit Euler-schemes, which
are discussed in the following.

http://dx.doi.org/10.1007/978-3-319-15117-5_5

300 Appendix

(1) The explicit form with the time-discretization is given as

ξn+1
1 = ξn

1 − Δt N n
1 , (A.34)

ξn+1
2 = ξn

2 − Δt N n
2 , (A.35)

N n
1 = Γ n

1

(
αD13

D23
D+ξn

2 D−ξn
1 + βD+ξn

1 D+ξn
1

+αβD13D+ξn
2 Ξn

1 D−ξn
1 + β2D23D+ξn

1 Ξn
1 D−ξn

2

)

+Γ n
2

(
− 1

D23
D+D−ξn

1 − βD+ξn
1 D−ξn

1

−βΞn
1 D+D−ξn

1 − αD+ξn
1 D−ξn

2 − αΞn
1 D+D−ξn

2

)
, (A.36)

N n
2 = Γ n

1

(
βD23

D13
D+ξn

1 D−ξn
2 + αD+ξn

2 D−ξn
2

+αβD23D+ξn
1 Ξn

2 D−ξn
2 + α2D13D+ξn

2 Ξn
2 D−ξn

1

)

+Γ n
2

(
− 1

D13
D+D−ξn

2 − αD+ξn
2 D−ξn

2

−αΞn
2 D+ D−ξn

2 − βD+ξn
2 D−ξn

1 − βΞn
2 D+D−ξn

1

)
, (A.37)

for j = 1, . . . , J , where ξn
1 = (ξn

1,1, . . . , ξ
n
1,J)T and ξn

2 = (ξn
2,1, . . . , ξ

n
2,J)T and

IJ ∈ R
J × R

J and the matrices are given as

Ξn
1 , Ξn

2 , Γ n
1 , Γ n

2 ∈ R
J × R

J , (A.38)

Ξn
1, j, j = ξn

1, j , j = 1 . . . , J, (A.39)

Ξn
2, j, j = ξn

2, j , j = 1 . . . , J, (A.40)

Γ n
1, j, j = D13D23

(1 + αD13ξ
n
2, j + βD23ξ

n
1, j)

2 , j = 1 . . . , J, (A.41)

Γ n
2, j, j = D13D23

1 + αD13ξ
n
2, j + βD23ξ

n
1, j

, j = 1 . . . , J, (A.42)

Γ n
1,i, j = Γ2,i, j = Ξn

1,i, j = Ξn
2,i, j = 0, i, j = 1 . . . , J, i �= J. (A.43)

Further, D+ and D− are the finite difference matrices, given in Sect. 5.5.

http://dx.doi.org/10.1007/978-3-319-15117-5_5

Appendix 301

(2) The implicit form with the time-discretization is given as

ξn+1
1 = ξn

1 − Δt N n+1
1 , (A.44)

ξn+1
2 = ξn

2 − Δt N n+1
2 , (A.45)

N n+1
1 = Γ n+1

1

(
αD13

D23
D+ξn+1

2 D−ξn+1
1 + β D+ξn+1

1 D+ξn+1
1

+αβ D13D+ξn+1
2 Ξn+1

1 D−ξn+1
1 + β2D23D+ξn+1

1 Ξn+1
1 D−ξn+1

2

)

+Γ n+1
2

(
− 1

D23
D+D−ξn+1

1 − β D+ξn+1
1 D−ξn+1

1 − βΞn+1
1 D+D−ξn+1

1

−αD+ξn+1
1 D−ξn+1

2 − αΞn+1
1 D+D−ξn+1

2

)
, (A.46)

N n+1
2 = Γ n+1

1

(
β D23

D13
D+ξn+1

1 D−ξn+1
2 + αD+ξn+1

2 D−ξn+1
2

+αβ D23D+ξn+1
1 Ξn+1

2 D−ξn+1
2 + α2D13D+ξn+1

2 Ξn+1
2 D−ξn+1

1

)

+Γ n+1
2

(
− 1

D13
D+D−ξn+1

2 − αD+ξn+1
2 D−ξn+1

2

−αΞn+1
2 D+D−ξn+1

2 − β D+ξn+1
2 D−ξn+1

1 − βΞn+1
2 D+D−ξn+1

1

)
,

(A.47)

for j = 1, . . . , J ,where ξn+1
1 = (ξn+1

1,1 , . . . , ξn+1
1,J)T and ξn+1

2 = (ξn+1
2,1 , . . . , ξn+1

2,J)T

and IJ ∈ R
J × R

J and the matrices are given as

Ξn+1
1 , Ξn+1

2 , Γ n+1
1 , Γ n+1

2 ∈ R
J × R

J , (A.48)

Ξn+1
1, j, j = ξn+1

1, j , j = 1 . . . , J, (A.49)

Ξn+1
2, j, j = ξn+1

2, j , j = 1 . . . , J, (A.50)

Γ n+1
1, j, j = D13D23

(1 + αD13ξ
n+1
2, j + βD23ξ

n+1
1, j)2

, j = 1 . . . , J, (A.51)

Γ n+1
2, j, j = D13D23

1 + αD13ξ
n+1
2, j + βD23ξ

n+1
1, j

, j = 1 . . . , J, (A.52)

Γ n+1
1,i, j = Γ2,i, j = Ξn+1

1,i, j = Ξn+1
2,i, j = 0, i, j = 1 . . . , J, i �= J. (A.53)

Further, D+ and D− are the finite difference matrices, given in Sect. 5.5.

Remark A.1 The explicit scheme is simpler to implement but has the drawback of
the CFL condition, i.e. we are restricted in the time step. The implicit scheme is more

http://dx.doi.org/10.1007/978-3-319-15117-5_5

302 Appendix

delicate, while we have to deal with a coupled nonlinear equation system which can
be solved by Newton’s method and fixpoint schemes, see [1]. We have the benefit of
a more flexible time step, while we do not have a time restriction.

A.3 Detail Separation of the Underlying Jacobian Matrix
in the Mathematical Notation

In the following, we discuss the separation of thematrix in themathematical notation.
We have the following idea:

• Decomposition in upper and lower matrix part without eigenvalue separation;
• Decomposition in upper and lower matrix part with eigenvalue separation.

A.3.1 Decomposition in Upper and Lower Matrix Part
(Without Eigenvalue Separation)

Jacobi Matrix upper part of glycolysis.
Only present in this module(
Glycx1′(t):=v161 − v162 − v17

)
(
Glc1′(t):=v021 − v022 − v03

)
(
G6P1′(t):=v03 − v041 + v042 − v22

)
(
F6P1′(t):=v041 − v042 − v05

)
(
FBP1′(t):=v05 − v061 + v062

)
(
GAP1′(t):=v061 − v062 + v071 − v072 − v081 + v082

)
(
DHAP1′(t):=v061 − v062 − v071 + v072 − v15

)
(
Glyc1′(t):=v15 − v161 + v162

)
(
Glcx1′(t):=v011 − v012 − v021 + v022

)
Common species, present in both modules(
BPG1′(t):=v081 − v082

)
(
ATP1′(t):= − v03 − v05 − v22 − v241 + v242

)
(
ADP1′(t):=v03 + v05 + v22 + v23 + 2v241 − 2v242

)
(
AMP1′(t):=v242 − v241

)
(
NADH1′(t):=v081 − v082 − v15

)
(
NAD1′(t):= − v081 + v082 + v15

)
(
P1′(t):= − v081 + v082 + v15 + 2v22 + v23

)
Not present in this module(
PEP1′(t):=0

)
(
Pyr1′(t):=0

)
(
ACA1′(t):=0

)
(
EtOH1′(t):=0

)

Appendix 303

(
EtOHx1′(t):=0

)
(
ACAx1′(t):=0

)
(
CNx1′(t):=0

)

Jacobi Matrix lower part of glycolysis.
Only present in this module

(
PEP2′(t):=v091 − v092 − v10

)
(
Pyr2′(t):=v10 − v11

)
(
ACA2′(t):=v11 − v12 − v181 + v182

)
(
EtOH2′(t):=v12 − v131 + v132

)
(
EtOHx2′(t):=v131 − v132 − v14

)
(
ACAx2′(t):=v181 − v182 − v19 − v20

)
(
CNx2′(t):= − v20 + v211 − v212

)
Common species, present in both modules

(
BPG2′(t):=v092 − v091

)
(
ATP2′(t):=v091 − v092 + v10 − v23

)
(
ADP2′(t):= − v091 + v092 − v10 + v23

)
(
NADH2′(t):= − v12

)
(
NAD2′(t):= + v12

)
(
p2′(t):=v23

)
Not present in this module

(
Glycx2′(t):=0

)
(
Glc2′(t):=0

)
(
G6P2′(t):=0

)
(
F6P2′(t):=0

)
(
FBP2′(t):=0

)
(
GAP2′(t):=0

)
(
DHAP2′(t):=0

)
(
Glyc2′(t):=0

)
(
Glcx2′(t):=0

)

A.3.2 Decomposition in Upper and Lower Matrix Part
(with Eigenvalue Separation)

Glcx1′(t) Glc1′(t) G6P1′(t) F6P1′(t) FBP1′(t) GAP1′(t) DHAP1′(t) BPG1′(t)
PEP1′(t) Pyr1′(t) ACA1′(t) EtOH1′(t) EtOHx1′(t) Glyc1′(t) Glycx1′(t)
ACAx1′(t) CNx1′(t) ATP1′(t) ADP1′(t) AMP1′(t) NADH1′(t) NAD1′(t) P1′(t)

Eigenvalues

c − 725830

−3402.31

−1873.06

−1288.99

304 Appendix

−620.438

−174.753

−97.0176

−75.8312

−54.2505

−34.9159

−0.481297 + 9.91003i

−0.481297 − 9.91003i

−5.68561

−5.65028

−3.02005

−2.27007 + 0.447624i

−2.27007 − 0.447624i

−1.35615

−0.946389

−0.194037

−1.2047299556964155 × 10−12

1.7737943007470836 × 10−15

0.

We have the error estimates given for the parallel and sequential splitting, where
|| · || is the maximum absolute row sum of the matrix:

||J1 J2 + J2 J1||max = max1≤ j≤n
∑m

i=i |ai, j | = 5.85252 × 106

||J1 J2 − J2 J1||max = max1≤ j≤n
∑m

i=i |ai, j | = 5.85252 × 106

The time step is given as
τ = 1.26438 × 10−7.

Reference

1. L. Boudin, B. Grec, F. Salvarani, A mathematical and numerical analysis of the
Maxwell-Stefan diffusion equation. Discret. Contin. Dyn. Syst. Ser. B 17(5),
1427–1440 (2012)

Glossary

In the following, we explain the notation and nomenclature that we used in our book.
Notation We deal with the following notation in our monograph.

D(B) Domain of B
X, XE Banach spaces
Xn = Πn

i=1Xi Product space of X
W m,p(Ω) Sobolev space consisting of all locally

summable functions u : Ω → R such that for
each multi-index α with |α| ≤ m,
∂αu exists in the weak sense and belongs
to L p(Ω)

∂Ω Boundary of Ω

L (X) = L(X, X) Operator space of X, e.g. a Banach space
Ωh Discretized domain Ω with the underlying

grid step h
Hm Sobolev space W m,2

H1
0 (Ω) The closure of C∞

c (Ω) in the
Sobolev space W 1,2

|| · ||L p L p-norm
|| · ||Hm Hm -norm
|| · || Maximum norm, if not defined otherwise
|| · ||X Norm with respect to Banach space X
|| · ||∞ = supt∈I || · || Maximum norm on interval I
(x, y) Scalar product of x and y in a Hilbert space
O(τ) Landau symbol, e.g. first order in time

with time step τ

U = (u, v)T Vectorial solutions of two components
U = (u, v, w)T Vectorial solutions of three components

(x1, . . . , xn)T =
⎛
⎜⎝

x1
.
.
.

xn

⎞
⎟⎠ Vectorial solutions of n components

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5

305

306 Glossary

Notation in the Models In the following, we describe the notation that are used in
our modelling problems.

Ri : Retardation factor [−],
which declares the portion of the porosities of the
underlying aquifer,

ui : Mobile concentration of the i th species,
e.g., transported species Si, T i, C in the plasma [mol/mm3],

gi : Immobile concentration of the ith species,
e.g., absorbed species Si, T i, C in the plasma [mol/mm3],

v: Velocity of the underlying fluid
e.g., direction and absolute value of the plasma flux
in the apparatus [mm/s],

D: Diffusion–dispersion tensor
e.g., molecular and dispersive value of the plasma
diffusion [mm2/s],

λi : Decay constant of the ith species
e.g., decay rates of the transported species in the plasma [1/s],

ei (t), ẽi (t), fi (t): Are the time-dependent convection and
reaction terms, which are polynomials and
ei (t), fi (t) : R+ → R

+, i = 1, . . . , m,
i = 1, . . . , M : i denotes the species and M denotes the number of species,
β : The exchange between the mobile and immobile part

of the aquifer

Bibliography

1. C.T.Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAMFrontiers inApplied
Mathematics, vol. 16 (SIAM, Philadelphia, 1995)

2. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications,
New York, 1970)

3. N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space (Dover Publica-
tions, New York, 1993)

4. I. Alonso-Mallo, B. Cano, J.C. Jorge, Spectral-fractional step Runge-Kutta discretisations for
initial boundary value problems with time dependent boundary conditions. Math. Comput.
73, 1801–1825 (2004)

5. Z.S. Alterman, A. Rotenberg, Seismic waves in a quarter plane. Bull. Seismol. Soc. Am. 59,
347–368 (1969)

6. G. Ariel, B. Engquist, R. Tsai, Amultiscale method for highly oscillatory ordinary differential
equations with resonance. Math. Comput. 78, 929–956 (2009)

7. G. Ariel, B. Engquist, S. Kim, Y. Lee, R. Tsai, A multiscale method for highly oscillatory
dynamical systems using a Poincare map type technique. J. Sci. Comput. 54(2–3), 247–268
(2013)

8. U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-
dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

9. O. Axelsson, Iterative Solution Methods (Cambridge University Press, Cambridge, 1996)
10. W. Balser, J. Mozo-Fernandez, Multisummability of formal solutions of singular perturbation

problems. J. Differ. Equ. 183(2), 526–545 (2002)
11. W. Balser, A. Duval, S.Malek, Summability of formal solutions for abstract Cauchy problems

and related convolution equations. Manuscript, November 2006
12. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces (Editura Acad-

emiei, Bucuresti and Noordhoff, Leyden, 1976)
13. D.A. Barry, C.T. Miller, P.J. Culligan-Hensley, Temporal discretization errors in non-iterative

split-operator approaches to solving chemical reaction/groundwater transport models. J. Con-
tam. Hydrol. 22, 1–17 (1996)

14. P. Bastian, Parallele adaptive Mehrgitterverfahren. Doktor-Arbeit (Universität Heidelberg,
1994)

15. R.M. Beam, R.F. Warming, Alternating direction implicit methods for parabolic equations
with a mixed derivative. SIAM J. Sci. Stat. Comput. 1, 131–159 (1980)

16. R.E. Bellman, Dynamic Programming (Princeton University Press, Princeton, 1957)
17. J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J.

Comput. Phys. 111, 185–220 (2005)

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5

307

308 Bibliography

18. M. Bjorhus, Operator splitting for abstract Cauchy problems. IMA J. Numer. Anal. 18, 419–
443 (1998)

19. S.Blanes, F.Casas, J. Ros, Extrapolation of symplectic integrators. Celest.Mech.Dyn.Astron.
75, 149–161 (1999)

20. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation. Series in Plasma
Physics (Taylor & Francis, New York, 1985)

21. C.K. Birdsall, Particle in cell charged-particle simulations, Plus Monte Carlo collisions with
neutral atoms, PIC-MCC. IEEE Trans. Plasma Sci. 19(2), 65–85 (1991)

22. A.R. Bozorgmanesh,M.Otadi, A.A. SafeKordi, F. Zabihi,M. Barkhordari Ahmadi, Lagrange
two-dimensional interpolation method for modeling nanoparticle formation during RESS
process. Int. J. Ind. Math. 1(2), 175–181 (2009)

23. A. Brandt, Multi-level adaptive solutions to boundary-value problems. Math. Comput.
31(138), 333–390 (1977)

24. M.D.Buhmann,Radial Basis Functions: Theory and Implementations (CambridgeUniversity
Press, Cambridge, 2003)

25. M.D. Buhmann, C.A. Micchelli, On radial basis approximation on periodic grids. University
of Cambridge, Department of Applied Mathematics and Theoretical Physics (1991)

26. D. Buhmann, Das Programmpaket EMOS. Ein Instrumentarium zur Analyse der Langzeit-
sicherheit von Endlagern. Gesellschaft für Anlagen- und Reaktorsicherheit (mbH), GRS-159
(Braunschweig, 1999)

27. J.C. Butcher, Implicit Runge-Kutta processes. Math. Comput. 18, 50–64 (1964)
28. J.C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, Chichester,

2003)
29. C.X. Cao, A theorem on the separation of a system of coupled differential equations. J. Phys.

A: Math. Gen. 14, 1069–1074 (1981)
30. G.Z. Cao, H. Brinkman, J. Meijerink, K.J. DeVries, A.J. Burggraaf, Kinetic study of the

modified chemical vapour deposition process in porous media. J. Mater. Chem. 3(12), 1307–
1311 (1993)

31. Y. Cao, D.T. Gillespie, L.R. Petzold, The slow-scale stochastic simulation algorithm. J. Chem.
Phys. 122(014116), 1–34 (2005)

32. F. Casas, A. Murua, M. Nadinic, Efficient computation of the Zassenhaus formula. Comput.
Phys. Commun. 183(11), 2386–2391 (2012)

33. M.A. Celia, J.S. Kindred, I. Herrera, Contaminant transport and biodegradation 1. a numerical
model for reactive transport in porous media. Water Resour. Res. 25, 1141–1148 (1989)

34. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford,
1987)

35. A.K. Chaniotis, D. Poulikakos, High order interpolation and dierentiation using B-splines. J.
Comput. Phys. 197, 253–274 (2004)

36. Q.-S. Chen, H. Zhang, V. Prasad, C.M. Balkas, N.K. Yushin, Modeling of heat transfer and
kinetics of physical vapor transport growth of silicon carbide crystals. Trans. ASME J. Heat
Transf. 123(6), 1098–1109 (2001)

37. K.L. Chien, J.A. Hrones, J.B. Reswick, On the automatic tuning of generalized passive sys-
tems. Trans. ASME 74, 175–185 (1952)

38. S.A. Chin, A fundamental theorem on the structure of symplectic integrators. Phys. Lett. A
354, 373–376 (2006)

39. S.A. Chin, C.R. Chen, Gradient symplectic algorithms for solving the Schrödinger equation
with time-dependent potentials. J. Chem. Phys. 117(4), 1409–1415 (2002)

40. W. Cheney, Analysis for Applied Mathematics. Graduate Texts in Mathematics, vol. 208
(Springer, New York, 2001)

41. P.D.Christofides,Nonlinear and Robust Control of PDE Systems: Methods and Applications to
Transport-Reaction Processes. Systems & Control: Foundations & Applications (Birkhäuser,
Boston, 2001)

42. A.J. Chorin, J.E.Marsden,A Mathematical Introduction to Fluid Mechanics. Texts in Applied
Mathematics, 3rd edn. (Springer, Heidelberg, 1993)

Bibliography 309

43. D.J. Christie, Target material pathways model for high power pulsed magnetron sputtering.
J. Vac. Sci. Technol. 23(2), 330–335 (2005)

44. C.K. Chui, K. Jetter, J.D.Ward, Cardinal interpolation bymultivariate splines.Math. Comput.
48, 711–724 (1987)

45. P.G. Ciarlet, J.L. Lions (eds.), Finite Difference Methods (Part 1). Handbook of Numerical
Analysis, vol. I (North-Holland/Elsevier, Amsterdam, 1990)

46. P.C. Clemmow, J.P. Dougherty, Electrodynamics of Particles and Plasmas (Addison-Wesley,
Redwood City, 1969)

47. N.Clisby,B.McCoy,Ninth and tenth order virial coefficients for hard spheres inDdimensions.
J. Stat. Phys. 122(1), 15–57 (2006)

48. K.H. Coats, B.D. Smith, Dead-end pore volume and dispersion in porous media. Soc. Pet.
Eng. J. 4(3), 73–84 (1964)

49. G.C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, Hei-
delberg, 2002)

50. ComsolMultiphysics. ComsolMultiphysics application. Online software (2010). http://www.
comsol.de/

51. COMSOL. COMSOL, Multiphysics, Software-Package (2014). http://www.comsol.com/
COMSOL. Burlington, USA

52. N. Crouseilles, M. Mehrenberger, E. Sonnendrücker, Conservative semi-Lagrangian schemes
for the Vlasov equation. J. Comput. Phys. 229, 1927–1953 (2010)

53. B. Davis, Integral Transform and Their Applications. Applied Mathematical Sciences, vol.
25 (Springer, New York, 1978)

54. S.M. Day et al., Test of 3D elastodynamic codes: final report for lifelines project 1A01.
Technical report, Pacific Earthquake Engineering Center (2001)

55. S.M. Day et al., Test of 3D elastodynamic codes: final report for lifelines project 1A02.
Technical report, Pacific Earthquake Engineering Center (2003)

56. A.M. Dimits, W.W. Lee, Partially linearized algorithms in Gyrokinetic particle simulation. J.
Comput. Phys. 107(2), 309323 (1993)

57. A.M. Dimits, B.I. Cohen, R.E. Caflisch, L. Ricketson, M.S. Rosin, Higher-order and Multi-
level time integration of stochastic differential equations and application to Coulomb colli-
sions. Lecture at the Workshop III: Mathematical and Computer Science Approaches to High
Energy Density Physics, 7–11 May 2012, IPAM, UCLA, USA (2012)

58. C.R. Dohrmann, A. Klawonn, O.B. Widlund, Domain decomposition for less regular sub-
domains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal. 46, 2153–2168
(2008)

59. J. Douglas Jr., S. Kim, Improved accuracy for locally one-dimensional methods for parabolic
equations. Math. Models Methods Appl. Sci. 11, 1563–1579 (2001)

60. F. Dupret, P. Nicodéme, Y. Ryckmans, P. Wouters, M.J. Crochet, Global modelling of heat
transfer in crystal growth furnaces. Int. J. Heat Mass Transf. 33(9), 1849–1871 (1990)

61. J. Duras, Instabilities in ion thrusters by plasma-wall interactions. Diploma Thesis, Branden-
burgische Universität Cottbus, Germany (2011)

62. M.K. Dobkin, D.M. Zuraw, Principles of Chemical Vapor Deposition, 1st edn. (Springer,
Heidelberg, 2003)

63. D.R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics
(Springer, New York, 1998)

64. E.G. D’Yakonov, Difference schemes with splitting operator for multi-dimensional nonsta-
tionary problems. Zh. Vychisl. Mat. i. Mat. Fiz. 2, 549–568 (1962)

65. E.Weinan, B. Engquist,Multiscalemodelling and computations. Not. AMS 50(9), 1062–1070
(2003)

66. G. Eason, J. Fulton, I.N. Sneddon, The generation of waves in an infinite elastic solid by
variable body forces. Philos. Trans. R. Soc. Lond. 248, 575–607 (1956)

67. P.Eklund,M.Beckers, J. Frodelius,H.Högberg,L.Hultman,Magnetron sputteringofTi3SiC2
tin films from a compound target. JVST A 25(5), 1381–1388 (2007)

http://www.comsol.de/
http://www.comsol.de/
http://www.comsol.com/COMSOL
http://www.comsol.com/COMSOL

310 Bibliography

68. P. Eklund, Multifunctional nanostructured Ti-Si-C thin films. Linköping studies in science
and technology. Dissertation No. 1087 (2007)

69. P. Eklund, A. Murugaiah, J. Emmerlich, Z. Czigany, J. Frodelius, M.W. Barsoum, H. Hög-
berg, L. Hultman, Homoepitaxial growth of Ti-Si-C MAX-phase thin films on bulk Ti3SiC2
substrates. J. Cryst. Growth 304, 264–269 (2007)

70. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer,
New York, 2000)

71. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (AMS,
Providence, 1998)

72. L. Evans,Partial Differential Equations. Graduate Studies inMathematics (AMS, Providence,
2010)

73. G.R. Eykolt, Analytical solution for networks of irreversible first-order reactions. Water Res.
33(3), 814–826 (1999)

74. G.R. Eykolt, L. Li, Fate and transport of species in a linear reaction network with different
retardation coefficents. J. Contam. Hydrol. 46, 163–185 (2000)

75. R. Eymard, T. Galluoët, R. Herbin, Finite Volume Methods. Handbook of Numerical Analysis,
vol. 7 (North Holland, Amsterdam, 2000), pp. 713–1020

76. G. Fairweather, A.R. Mitchell, A high accuracy alternating direction method for the wave
equations. J. Ind. Math. Appl. 1, 309–316 (1965)

77. I.T. Famelis, F. Xanthos, G. Papageorgiou, Numerical solution of stochastic differential equa-
tions with additive noise by RungeKutta methods. J. Numer. Anal. Ind. Appl. Math. 4(3–4),
171–180 (2009)

78. I. Farago,A.Havasi,On the convergence and local splitting error of different splitting schemes.
Eötvös Lorand University, Budapest (2004)

79. I. Farago, Splitting Methods for Abstract Cauchy Problems. Lecture Notes in Computer Sci-
ence, vol. 3401 (Springer, Berlin, 2005), pp. 35–45

80. I. Farago, Modified iterated operator splitting method. Appl. Math. Model. 32(8), 1542–1551
(2008)

81. I. Farago, A. Havasi, Consistency analysis of operator splitting methods for C0-semigroups.
Semigroup Forum 74, 125–139 (2007)

82. R. Fazio,A. Jannelli, Second order positive schemes bymeans of flux limiters for the advection
equation. IANG Int. J. Appl. Math. 39(1), 25–35 (2009)

83. E. Fein, A. Schneider, d 3 f -Ein Programmpaket zur Modellierung von Dichteströmungen.
Abschlussbericht, Braunschweig (1999)

84. E. Fein, T. Kühle, U. Noseck, Entwicklung eines Programms zur dreidimensionalen Model-
lierung des Schadstofftransportes. Fachliches Feinkonzept, Braunschweig (2001)

85. E. Fein, Beispieldaten für radioaktivenZerfall. Private communications, Braunschweig (2000)
86. E. Fein, Physikalisches Modell und mathematische Beschreibung. Private communications,

Braunschweig (2001)
87. C.A.J. Fletcher, Computational Techniques for Fluid Dynamics. Series in Computational

Physics, 2nd edn. (Springer, Berlin, Heidelberg New York, 1997)
88. P. Frolkovič, J. Geiser, Numerical Simulation of Radionuclides Transport in Double Porosity

Media with Sorption, in Proceedings of Algoritmy 2000, Conference of Scientific Computing
(2000), pp. 28–36

89. M.J. Gander, H. Zhao, Overlapping Schwarz waveform relaxation for parabolic problems
in higher dimension, ed. by A. Handlovičová, M. Komorníkova, K. Mikula Proceedings of
Algoritmy 14, Slovak Technical University (1997), pp. 42–51

90. S.D. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation of
FDTD lattices. IEEE Trans. Antennas Propag. 44(12), 1630–1639 (1996)

91. J. Geiser, Numerical simulation of a model for transport and reaction of radionuclides, in
Proceedings of the Third International Conference on Large-Scale Scientific Computing.
Lecture Notes in Computer Science, vol. 2179 (Sozopol, Bulgaria, 2001), pp. 487–496

92. J. Geiser, Gekoppelte Diskretisierungsverfahren für Systeme von Konvektions-Dispersions-
Diffusions-Reaktionsgleichungen. Ph.D. thesis, University of Heidelberg, Germany (2004)

Bibliography 311

93. J. Geiser, R3T : Radioactive-Retardation-Reaction-Transport-Program for the Simulation
of radioactive waste disposals. Technical report, ISC-04-03-MATH, Institute for Scientific
Computation, Texas A & M University, College Station, TX (2004)

94. J. Geiser, Discretisation methods with embedded analytical solutions for convection domi-
nated transport in porous media, in Proceedings of the 3rd International Conference, NAA
2004. Lecture Notes in Mathematics, vol. 3401 (Springer, Rousse, 2005), pp. 288–295

95. J. Geiser, R.E. Ewing, J. Liu, Operator splittingmethods for transport equationswith nonlinear
reactions, in Proceedings of the Third MIT Conference on Computational Fluid and Solid
Mechanic. Cambridge, MA, 14–17 June 2005

96. J. Geiser, J. Gedicke. Nonlinear iterative operator-splitting methods and applications for non-
linear parabolic partial differential equations. Preprint No. 2006-17 of Humboldt University
of Berlin, Department of Mathematics, Germany

97. J. Geiser, Discretization methods with analytical solutions for convection-diffusion-
dispersion-reaction-equations and application. J. Eng. Math. 57, 79–98 (2007)

98. J. Geiser, Weighted iterative operator-splitting methods: stability-theory, in Proceedings of
the 6th International Conference, NMA 2006. Lecture Notes in Computer Science, vol. 4310
(Springer, Borovets, 2007), pp. 40–47

99. J. Geiser, C. Kravvaritis, Weighted iterative operator-splitting methods and applications, in
Proceedings of the 6th International Conference, NMA 2006. Lecture Notes in Computer
Science, vol. 4310 (Springer, Borovets, 2007), pp. 48–55

100. J. Geiser, S. Nilsson, A Fourth Order Split Scheme for Elastic Wave Propagation. Preprint
2007–08, Humboldt University of Berlin, Department of Mathematics, Germany (2007)

101. J. Geiser, L. Noack, Iterative operator-splitting methods for wave equations with stability
results and numerical examples. Preprint 2007-10, Humboldt-University of Berlin (2007)

102. J. Geiser, V. Schlosshauer, Operator-splitting methods for wave-equations. Preprint 2007-06,
Humboldt University of Berlin, Department of Mathematics, Germany (2007)

103. J. Geiser, S. Sun, Multiscale Discontinuous Galerkin Methods for Modeling Flow and Trans-
port in Porous Media. Lecture Notes in Computational Science, vol. 4487 (Springer, New
York, 2007), pp. 890–897

104. J. Geiser, Operator splitting methods for wave equations. Int. Math. Forum, Hikari Ltd. 2(43),
2141–2160 (2007)

105. J. Geiser, L. Noack, Iterative operator-splitting methods for nonlinear differential equations
and applications of deposition processes. Preprint 2008-04, Humboldt-University of Berlin
(2008)

106. J. Geiser, L. Noack, Operator-splitting methods respecting eigenvalue problems for nonlinear
equations and application in Burgers-equations. Preprint 2008-13, Humboldt-University of
Berlin (2008)

107. J. Geiser, Fourth-order splitting methods for time-dependent differential equations. Numer.
Math.: Theory Methods Appl. 1(3), 321–339 (2008)

108. J. Geiser,M.Arab,Modelling, Optimization and Simulation for a Chemical VaporDeposition.
J. Porous Media, Begell House Inc., Redding, USA, 2(9), 847–867 (2009)

109. J. Geiser, C. Kravvaritis, Overlapping operator splitting methods and applications in stiff
differential equations. Special issue: Novel Difference and Hyprod Methods for Differential
and Integro-Differential Equations and Applications, Guest editors: Qin Sheng and Johnny
Henderson, Neural, Parallel, and Scientific Computations (NPSC), vol. 16 (2008), pp. 189–
200

110. J. Geiser, Discretization and Simulation of Systems for Convection-Diffusion-Dispersion
Reactions with Applications in Groundwater Contamination, Monograph, Series: Groundwa-
ter Modelling, Management and Contamination (Nova Science Publishers, Inc., New York,
2008)

111. J. Geiser, Stability of iterative operator-splitting methdods. Int. J. Comput. Math. 1029–0265,
First published on 26 June 2009. http://www.informaworld.com

112. J. Geiser, Computation of iterative operator-splitting methods. Preprint 2009–21, Humboldt
University of Berlin, Department of Mathematics, Germany (2009)

http://www.informaworld.com

312 Bibliography

113. J. Geiser, C. Kravvaritis, A domain decompositionmethod based on iterative operator splitting
method. Appl. Numer. Math. 59, 608–623 (2009)

114. J. Geiser, Iterative operator-splitting with time overlapping algorithms: theory and application
to constant and time-dependent wave equations, inWave Propagation in Materials for Modern
Applications, ed. by A. Petrin. ISBN: 978-953-7619-65-7, INTECH (2009)

115. J.Geiser,Operator-splittingmethods in respect of eigenvalue problems for nonlinear equations
and applications to Burgers equations. J. Comput. Appl. Math. Elsevier, Amsterdam, North
Holland 231(2), 815–827 (2009)

116. J. Geiser, R. Steijl. Coupled Navier Stokes—molecular dynamics simulation using iterative
operator-splitting methods. Preprint 2009-11, Humboldt University of Berlin, Department of
Mathematics, Germany (2009)

117. J. Geiser,M.Arab,Modelling, Optimization and Simulation for a Chemical VaporDeposition.
J. Porous Media, Begell House Inc., Redding, USA, 12(9), 847–867 (2009)

118. J. Geiser, F. Krien, Iterative operator-splitting methods for time-irreversible systems: theory
and application to advection-diffusion equations. Preprint 2009–18, Humboldt University of
Berlin, Department of Mathematics, Germany (2009)

119. J. Geiser, S. Blankenburg, Monte Carlo simulations concerning elastic scattering with appli-
cation to DC and high power pulsed magnetron sputtering for Ti3SiC2. Preprint 2009–20,
Humboldt University of Berlin, Department of Mathematics, Germany (2009)

120. J. Geiser, C. Fleck, Adaptive Step-size Control in Simulation of Diffusive CVD Processes.
Mathematical Problems in Engineering, vol. 2009, Art. ID 728105. Hindawi Publishing Cor-
poration, New York, USA (2009) 34 p

121. J. Geiser, R. Röhle, Kinetic processes and phase-transition of CVD processes for Ti3SiC2.
JCIT: J. Converg. Inf. Technol. 5(6), 9–32 (2010)

122. J. Geiser, Iterative operator-splitting methods for nonlinear differential equations and appli-
cations. NMPDE, published online, March 2010

123. J. Geiser, Mobile and immobile fluid transport: coupling framework. Int. J. Numer. Methods
Fluids, accepted as Review October 2009. Online published http://www3.interscience.wiley.
com/cgi-bin/fulltext/123276563/PDFSTART (2010)

124. J. Geiser, Consistency of iterative operator-splittingmethods: theory and applications. Numer.
Methods Part. Differ. Equ. 26(1), 135–158 (2010)

125. J. Geiser, V. Buck,M. Arab,Model of PE-CVD apparatus: verification and simulations. Math.
Probl. Eng. 2010, Article ID 407561 (2010)

126. J. Geiser, M. Arab, Simulation of a chemical vapor deposition: mobile and immobile zones
and homogeneous layers. Spec. Top. Rev. Porous Media, Begell House Inc., Redding, USA,
1(2), 123–143 (2010)

127. J. Geiser, M. Arab, Porous media based modeling of PE-CVD apparatus: electrical fields and
deposition geometries. Spec. Top. Rev. Porous Media, Begell House Inc., Redding, USA,
1(3), 215–229 (2010)

128. J. Geiser, Magnus integrator and successive approximation for solving time-dependent prob-
lems. Preprint 2010–10, Humboldt University of Berlin, Department of Mathematics, Ger-
many (2010)

129. J.Geiser,Decomposition Methods in Multiphysics and Multiscale Problems. PhysicsResearch
and Technology (Nova Science Publishers, Inc., New York, 2010). (Monograph)

130. J. Geiser, M. Elbiomy, Splitting method of convection-diffusion methods with disentangle-
ment methods. Preprint 2010-2, Humboldt University of Berlin, Department of Mathematics,
Germany (2010)

131. J. Geiser, G. Tanoglu, Operator-splitting methods via Zassenhaus product formula. Appl.
Math. Comput. 217, 4557–4575 (2011)

132. J. Geiser, G. Tanoglu, N. Guecueyenen, Higher order operator-splitting methods via Zassen-
haus product formula: theory and applications. Comput.Math. Appl., Elsevier, NorthHolland,
62(4), 1994–2015 (2011)

133. J. Geiser, T. Zacher, Time-dependent fluid transport: coupling framework. Preprint 2011-5,
Humboldt University of Berlin, Department of Mathematics, Germany (2011)

http://www3.interscience.wiley.com/cgi-bin/fulltext/123276563/PDFSTART
http://www3.interscience.wiley.com/cgi-bin/fulltext/123276563/PDFSTART

Bibliography 313

134. J. Geiser, R. Calov, Operator-splitting methods respecting eigenvalue problems for shallow
shelf equations with basal drag. Coupled Syst. Mech., Techno-Press, Yuseong-gu Daejeon,
Korea 1(4), 325–343 (2012)

135. J. Geiser, Splitting approach to coupled Navier Stokes and molecular dynamics simulation.
J. Comput. Model. (JCoMod), Commun. Math. Appl. Scienpress Ltd, UK, 2(2), 1–34 (2012)

136. J. Geiser, Multiscale Methods for Levitron Problems: Theory and Applications. Comput.
Struct. 122, 27–32 (2012) (Elsevier, North Holland)

137. J. Geiser, Operator splittingmethods combined with multi-grid methods. J. Mod.Math. Front.
1(2), 1–10 (2012)

138. J. Geiser, Simulation of a Heat Transfer in Porous Media (2012). Preprint, arXiv:1205.2449
139. J. Geiser, M. Arab, Simulation of a chemical vapor deposition: four phase model. Spec. Top.

Rev. Porous Media, Begell House Inc., Redding, USA, 3(1):55–68 (2012)
140. J. Geiser, Modelling and simulation of transport problems with mathematical splitting tech-

niques. Cumulative Habilitation Thesis, University of Bochum, Germany (2013)
141. J. Geiser, Multiscale methods for Levitron problems: theory and applications. Comput. Struct.

122, 27–32 (2013)
142. J. Geiser, Multiscale modeling of PE-CVD apparatus: simulations and approximations. Poly-

mers 5, 142–160 (2013)
143. J. Geiser, An iterative splitting approach for linear integro-differential equations. Appl. Math.

Lett. Elsevier, Amsterdam, The Netherlands, 26(11), 1048–1052 (2013)
144. J. Geiser, Iterative splitting methods for multiscale problems. Distrib. Comput. Appl. Bus.

Eng. Sci. (DCABES), 2–4 September 2013, London, UK, 3–6 (2013)
145. J. Geiser, Embedded Zassenhaus expansion to splitting schemes: theory and multiphysics

applications. Int. J. Differ. Equ., Hindawi Publishing Corporation, New York, USA, August
2013

146. J. Geiser, Multiscale splitting method for the Boltzmann-Poisson equation: application to the
dynamics of electrons. Int. J. Differ. Equ. 2014, Article ID 178625 (2014), 8 p

147. J. Geiser, M. Beauregard, An extrapolated splitting method for solving semidiscretized par-
abolic differential equations. Int. J. Comput. Math., Taylor and Francis, accepted March 2014

148. P. George, Chemical Vapor Deposition: Simulation and Optimization, 1st edn. (VDM Verlag
Dr. Müller, Saarbrücken, 2008)

149. P. George, P.T. Lin, H.C. Gea, Y. Jaluria, Reliability-based optimisation of chemical vapour
deposition process. Int. J. Reliab. Saf. 3(4), 363–383 (2009)

150. M.E. Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications
(Wiley, New York, 2000)

151. W.B. Gragg, The pade table and its relation to certain algorithms of numerical analysis. SIAM
Rev. 14(1), 1–62 (1972)

152. GRAPE. GRAphics Programming Environment for Mathematical Problems, Version 5.4.
Institut für Angewandte Mathematik, Universität Bonn und Institut für Angewandte Mathe-
matik, Universität Freiburg (2001)

153. C. Grossmann, H.-G. Ross, Numerik partieller Differentialgleichungen. Teubner Studien-
bücher, Mathematik (1994)

154. W. Hackbusch, Multi-Grid Methods and Applications (Springer, Berlin, 1985)
155. W.Hackbusch, Iterative Solution of Large Sparse Systems of Equations.AppliedMathematical

Sciences (Springer, Berlin, 1994)
156. J.Hadamard, Sur les problemes aux derivees partielles et leur signification physique. Princeton

University Bulletin, 4952 (1902)
157. F. Haefner, D. Sames, H.-D. Voigt, Heat and Mass Transfer (Springer, Berlin, 1992)
158. E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I. SCM, vol. 8

(Springer, Berlin, 1992)
159. A.Harten,High resolution schemes for hyperbolic conservation laws. J.Comput. Phys.135(2),

260–278 (1997)
160. A.Havasi, J. Bartholy, I. Farago, Splittingmethod and its application in air pollutionmodeling.

Q. J. Hung. Meteorol. Serv. 105(1), 39–58 (2001)

http://arxiv.org/abs/1205.2449

314 Bibliography

161. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathemat-
ics (Springer, Berlin, 1981)

162. J. Herzer,W.Kinzelbach, Coupling of transport and chemical processes in numerical transport
models. Geoderma 44, 115–127 (1989)

163. K. Higashi, T. Pigford, Analytical models for migration of radionuclides in geologic sorbing
media. J. Nucl. Sci. Technol. 17(9), 700–709 (1980)

164. T. Hirono, W. Lui, S. Seki, Y. Yoshikuni, A three-dimensional fourth-order finite-difference
time-domain scheme using a symplectic integrator propagator. IEEE Trans. Microw. Theory
Tech. 49(9), 1640–1648 (2001)

165. V. Hlavacek, J. Thiart, D. Orlicki, Morphology and film growth in CVD reactions. J. Phys.
IV Fr. 5, 3–44 (1995)

166. M. Hochbruck, C. Lubich, Exponential integrators for large systems of differential equations.
SIAM J. Sci. Comput. 19(5), 1552–1574 (1998)

167. M. Hochbruck, C. Lubich, On Krylov subspace approximations to the matrix exponential
operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

168. A.P.W. Hodder, Geothermal waters: a source of energy and metals. New Zealand Institute of
Chemistry, published online (2005). http://nzic.org.nz/ChemProcesses/water/13A.pdf

169. I. Holod, Z. Lin, Statistical analysis of fluctuations and noise-driven transport in particle-in-
cell simulations of plasma turbulence. Phys. Plasmas 14, 032306 (2007)

170. T.Y.Hou,D. Liang,Multiscale analysis for convection dominated transport equations.Discret.
Contin. Dyn. Syst. 23(1–2), 281–298 (2009)

171. W. Hundsdorfer, L. Portero, A note on iterated splitting schemes. J. Comput. Appl. Math.
201(1), 146–152 (2007)

172. E. Huenges, Geothermal Energy Systems: Exploration, Development, and Utilization (Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2010)

173. Y. Igitkhanov, Modelling of multi-component plasma for TOKES. KIT Scientific Report
Nr. 7564, Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM), KIT Scientific
Publishing, Karlsruhe (2011)

174. W. Hundsdorfer, S.J. Ruuth, IMEX extensions of linear multistep methods with general
monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)

175. S. Jiang, L. Wang, J. Hong, Stochastic multi-symplectic integrator for stochastic nonlinear
Schrodinger equation. Commun. Comput. Phys. (CiCP) 14(2), 393–411 (2013)

176. H.A. Jakobsen, Chemical Reactor Modeling: Multiphase Reactive Flows, 1st edn. (Springer,
Heidelberg, 2008)

177. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)
178. T.B. Jones,M.Washizu, R.F. Gans, Simple theory for the Levitron. J. Appl. Phys. 82, 883–888

(1997)
179. J. Janssen, S. Vandewalle, Multigrid waveform relaxation on spatial finite-element meshes:

the continuous case. SIAM J. Numer. Anal. 33, 456–474 (1996)
180. Y.L. Jiang, Periodic waveform relaxation solutions of nonlinear dynamic equations. Appl.

Math. Comput. 135(2–3), 219–226 (2003)
181. K. Johannsen, Robuste Mehrgitterverfahren für die Konvektions-Diffusions Gleichung mit

wirbelbehafteter Konvektion. Ph.D. thesis, University of Heidelberg, Germany (1999)
182. K. Johannsen, An aligned 3D-finite-volume method for convection-diffusion problems, in

Modeling and Computation in Environmental Sciences, vol. 59, ed. by R. Helmig, W. Jäger,
W. Kinzelbach, P. Knabner, G. Wittum (Vieweg, Braunschweig, 1997), pp. 227–243

183. S.L. Johnson, Y. Saad, M. Schultz, Alternating direction methods on multiprocessors. SIAM
J. Sci. Stat. Comput. 8(5), 686–700 (1987)

184. E.J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to com-
putational fluid dynamics I: surface approximations and partial derivative estimates. Comput.
Math. Appl. 19(8/9), 127–145 (1990)

185. E.J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to com-
putational fluid dynamics II: solutions to parabolic, hyperbolic, and elliptic partial differential
equations. Comput. Math. Appl. 19(8/9), 147–161 (1990)

http://nzic.org.nz/ChemProcesses/water/13A.pdf

Bibliography 315

186. E.J. Kansa, R.E. Carlson, Improved accuracy of multiquadric interpolation using variable
shape parameters. Comput. Math. Appl. 24, 99–120 (1992)

187. E.J. Kansa, Y.C. Hon, Circumventing the ill-conditioning problem with multiquadric radial
basis functions: applications to elliptic partial differential equations. Comput. Math. Appl.
39, 123–137 (2000)

188. E.J. Kansa, J. Geiser, Numerical solution to time-dependent 4D inviscid Burgers’ equations.
Eng. Anal. Bound. Elem. 37, 637–645 (2013)

189. S. Karaa, High-order compact ADI methods for parabolic equations. J. Comput. Math. Appl.
52(8–9), 1343–1356 (2006)

190. S. Karaa, High-order difference schemes for 2-d elliptic and parabolic problems with mixed
derivatives. Wiley InterSciences 23(2), 366–378 (2007)

191. K.H. Karlsen, K.-A. Lie, J.R. Natvig, H.F. Nordhaug, H.K. Dahle, Operator splitting methods
for systems of convection-diffusion equations: nonlinear error mechanisms and correction
strategies. J. Comput. Phys. 173(2), 636–663 (2001)

192. C.T. Kelley, Solving Nonlinear Equations with Newton’s Method. Computational Mathemat-
ics, vol. XIV (SIAM, Philadelphia, 2003)

193. G.M. Kepler, H.T. Tran, H.T. Banks, Reduced order model compensator control of species
transport in a CVD reactor. Optim. Control Appl. Methods 21, 143–160 (1999)

194. R. Kettler, Analysis and comparison of relaxation schemes in robust multigrid and precon-
ditioned conjugate gradient methods, in Multigrid Methods. Lecture Notes in Mathematics,
vol. 960, ed. by W. Hackbusch, U. Trottenberg (Springer, Berlin, 1981), pp. 33–53

195. S. Kim, H. Lim, High-order schemes for acoustic waveform simulation. Appl. Numer. Math.
57(4), 402–414 (2007)

196. W. Kinzelbach, Numerische Methoden zur Modellierung des Transports von Schadstoffen im
Grundwasser. Schriftenreihe Wasser-Abwasser, Oldenburg (1992)

197. R.Kozlov,B.Owren,Order reduction in operator splittingmethods. PreprintN6-1999,Depart-
ment of Mathematical Sciences, Norwegian University of Science and Technology, Trond-
heim, Norway (1999)

198. R. Kozlov, A. Kvarno, B. Owren, The behaviour of the local error in splitting methods applied
to stiff problems. J. Comput. Phys. 195, 576–593 (2004)

199. R. Lafore, Object-Oriented Programming in C++, 4th edn. (Sams Publishing, Indianapolis,
2001)

200. A.B. Langdon, B.I. Cohen, A. Friedman, Direct implicit large time-step particle simulation
of plasmas. J. Comput. Phys. 51(1), 107138 (1983)

201. C. Lange,M.W.Barsoum, P. Schaaf, Towards the synthesis ofMAX-phase functional coatings
by pulsed laser deposition. Appl. Surf. Sci. 254, 1232–1235 (2007)

202. D. Lanser, J.G. Verwer, Analysis of operator splitting for advection-diffusion-reaction prob-
lems from air pollution modelling. J. Comput. Appl. Math. 111(1–2), 201–216 (1999)

203. G. Lapenta, Automatic adaptive multi-dimensional particle in cell, in Advanced Methods for
Space Simulations, ed. by H. Usui, Y. Omura (2007), pp. 61–76

204. L. Lapidus, G.F. Pinder, Numerical Solution of Partial Differential Equations in Science and
Engineering (Wiley/Incorporation, Hoboken, 1996)

205. M. Laroussi, X. Lu, Room-temperature atmospheric pressure plasma plume for biomedical
applications. Appl. Phys. Lett. 87(11), 113902 (2005)

206. M. Laroussi, T. Akan, Arc-free atmospheric pressure cold plasma jets: a review. Plasma
Process. Polym. 4(9), 777–788 (2007)

207. E. Larrson, B. Fornberg, Theoretical and computational aspects of multivariate interpolation
with increasing flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)

208. P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock
Waves (SIAM, Philadelphia, 1973)

209. M. Lees, Alternating direction methods for hyperbolic differential equations. J. Soc. Ind.
Appl. Math. 10(4), 610–616 (1962)

210. H.H. Lee, Fundamentals of Microelectronics Processing (McGraw-Hill, New York, 1990)

316 Bibliography

211. J. Lee, T.F. Edgar, Continuation method for the modified Ziegler-Nichols tuning of multiloop
control systems. Ind. Eng. Chem. Res. 44(19), 7428–7434 (2005)

212. E. Lelarasmee, A. Ruehli, A. Sangiovanni-Vincentelli, The waveform relaxation methods for
time domain analysis of large scale integrated circuits. IEEE Trans. CAD IC Syst. 1, 131–145
(1982)

213. R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations,
Steady State and Time Dependent Problems. (Society for Industrial and AppliedMathematics
(SIAM), Philadelphia, 2007)

214. R.W. Lewis, P. Bettess, E. Hinton, Numerical Methods in Coupled Systems. Wiley Series in
Numerical Methods in Engineering (Wiley, New York, 1984)

215. N.A. Libre, A. Emdadi, E.J. Kansa, M. Shekarchi, A multiresolution prewavelet-based adap-
tive refinement scheme for RBF approximations of nearly singular problems. Eng. Anal.
Bound. Elem. 33, 901–914 (2009)

216. P. Lindelöf, Sur l’application des methodes d’approximations successives a l’etude de cer-
taines equations differentielles ordinaires. J. de Math. Pures et Appl. 4(9), 217–271 (1893)

217. P. Lindelöf, Sur l’application des methodes d’approximations successives a l’etude des inte-
grales reelles des equations differentielles ordinaires. J. deMath. Pures etAppl.4(10), 117–128
(1894)

218. K. Lipnikov, M. Shashkov, D. Svyatskiy, The mimetic finite difference discretization of dif-
fusion problem on unstructured polyhedral meshes. J. Comput. Phys. 211, 473491 (2006)

219. C. Lubich, A variational splitting integrator for quantum molecular dynamics. Appl. Numer.
Math. 48(3–4), 355–368 (2004)

220. H. Lutz,W.Wendt, Taschenbuch der Regelungstechnik. Harri-DeutschVerlag, Issue 6, Frank-
furt, Germany (2005)

221. T.E. Magin, G. Degrez, Transport algorithms for partially ionized and unmagnetized plasmas.
J. Comput. Phys. 198(2), 424–449 (2004)

222. Maple Software. The essential tool for mathematics and modelling. Maplesoft, Waterloo
Maple Inc. (2013). http://www.maplesoft.com/products/maple/

223. G.I. Marchuk, Splitting and alternating direction methods, in Handbook of Numerical Analy-
sis, vol. 1, ed. by P.G. Ciarlet, J.L. Lions (Elsevier Science Publishers, B. V., North-Holland,
1990)

224. K. Matyash, R. Schneider, R. Sydora, F. Taccogna, Application of a grid-free kinetic model
to the collisionless sheath. Contributions to Plasma Physics, in 11th International Workshop
on Plasma Edge Theory in Fusion Devices, vol. 48(1–3) (2008), pp. 116–120

225. S. McKinley, M. Levine, Cubic Spline Interpolation. Published online (1998). http://online.
redwoods.cc.ca.us/instruct/darnold/laproj/fall98/skymeg/proj.pdf

226. I.A. Melamies, Atmospheric-pressure plasma in medical technology. Adapted version of
German original: MedPLAST (2008), pp. 38–40

227. R.V.N. Melnik, Mathematical and Computational Models for Transport and Coupled
Processes in Micro- and Nanotechnology, ed. by R.V.N. Melnik, A. Povitsky, D. Srivastava.
Special Issue of J. Nanosci. Nanotechnol. 8(7) (2008)

228. E. Messerschmid, S. Fasoulas, Raumfahrtsysteme: Eine Einführung mit Übungen und Lösun-
gen, 3rd edn. (Springer, Berlin, 2009)

229. S. Middleman, A.K. Hochberg, Process Engineering Analysis in Semiconductor Device Fab-
rication (McGraw-Hill, New York, 1993)

230. U. Miekkala, O. Nevanlinna, Convergence of dynamic iteration methods for initial value
problems. SIAM J. Sci. Stat. Comput. 8(4), 459–482 (1987)

231. C. Moler, The Origins of MATLAB. Cleve’s Corner (in the MathWorks Newsletter) (2004)
232. C. Moler, The Growth of MATLAB and MathWorks over Two Decades. Cleve’s Corner (in

The MathWorks Newsletter) (2006)
233. T. Moritaka, M. Nunami, H. Usui, Development of full particle-in-cell simulation code with

adaptive mesh refinement technique. J. Plasma Fusion Res. Ser. 9, 586 (2010)
234. N. Morosoff, Plasma Deposition, Treatment and Etching of Polymers, 1st edn., ed. by R.

d’Agostino (Academic Press, Boston, 1990)

http://www.maplesoft.com/products/maple/
http://online.redwoods.cc.ca.us/instruct/darnold/laproj/fall98/skymeg/proj.pdf
http://online.redwoods.cc.ca.us/instruct/darnold/laproj/fall98/skymeg/proj.pdf

Bibliography 317

235. F. Neri, Lie algebras and canonical integration. Technical report. University of Arizona,
Department of Physics (1987), 25 p

236. N. Neuss, A new sparse matrix storage method for adaptive solving of large systems of
reaction-diffusion-transport equations, in Scientific Computing in Chemical Engineering II,
ed. by F. Keil, et al. (Springer, Berlin, 1999), pp. 175–182

237. O. Nevanlinna, Remarks on Picard-Lindelöf iteration, part II. BIT 29, 535–562 (1989)
238. O. Nevanlinna, Linear acceleration of Picard-Lindelöf. Numer. Math. 57, 147–156 (1990)
239. X.B. Nie, S.Y. Chen, E.Weinan, M.O. Robbins, A continuum and molecular dynamics hybrid

method for micro- and nano-fluid flow. J. Fluid Mech. 500, 55–64 (2004)
240. NIST, Chemical Kinetic Database. Source for kinetic rate (2013). http://kinetics.nist.gov/

kinetics
241. J. Nolen, Partial Differential Equations and Diffusion Processes. Lecture Notes, Department

of Mathematics, Stanford University (2009)
242. OFELI. An Object Finite Element Library (2003). http://ofeli.sourceforge.net/
243. M. Ohlberg, A posteriori error estimates for vertex centered finite volume approxima-

tions of convection-diffusion-reaction equations. Preprints 12/2000, Mathematische Fakultät,
Freiburg, May 2000

244. M. Ohring, Materials Science of Thin Films, 2nd edn. (Academic Press, San Diego, 2002)
245. A.M. Ostrowski, Collected Mathematical Papers: Determinants, Linear Algebra, Algebraic

Equations (Birkhäuser Verlag, Basel, 1983)
246. J.A.Oteo, TheBaker-Campbell-Hausdorff formula and nested commutator identities. J.Math.

Phys. 32, 419 (1991)
247. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,

vol. 44, Applied Mathematical Sciences (Springer, Berlin, 1983)
248. A.D. Polyanin, V.F. Zaitsev,Handbook of Nonlinear Partial Differential Equations (Chapman

& Hall/CRC Press, Boca Raton, 2004)
249. J. Prüss, Maximal regularity for evolution equations in Lp-spaces. Conf. Sem.Mat. Univ. Bari

285, 139 (2003)
250. C. Quesne, Disentangling q-exponentials: a general approach. Int. J. Theor. Phys. 43, 545–559

(2004)
251. S. Reuter, K. Niemi, V. Schulz-von der Gathen, H.F. Döbele, Generation of atomic oxygen in

the effluent of an atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 18, 015006
(2009)

252. G.F. Roach, Green’s Functions (Cambridge University Press, Cambridge, 1970)
253. H. Rouch, M. Pons, A. Benezech, J.N. Barbier, C. Bernard, R. Madar, Modelling of CVD

reactors: thermochemical and mass transport approaches for Si1−xGex deposition. J. Phys.
IV 3, 17–23 (1993)

254. H. Rouch, MOCVD Research Reactor Simulation, in Proceedings of the COMSOL Users
Conference, Paris, France (2006)

255. L. Rudniak, Numerical simulation of chemical vapour deposition process in electric field.
Comput. Chem. Eng. 22(7), 755–758 (1998)

256. M. Rumpf, A. Wierse, GRAPE, Eine interaktive Umgebung für Visualisierung und Numerik.
Informatik, Forschung und Entwicklung (1990)

257. Y. Saad, Analysis of some Krylov subspace approximation to the matrix exponential operator.
SIAM J. Numer. Anal. 29(1), 209–228 (1992)

258. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn. (SIAMPublications, Philadel-
phia, 2003)

259. H. Schmidt, P. Buchner, A. Datz, K. Dennerlein, S. Lang, M. Waidhas, Low-cost air-cooled
PEFC stacks. J. Power Sources 105, 243–249 (2002)

260. R. Schneider, Plasma-wall interaction: a multiscale problem. Phys. Scr. T126, 76–79 (2006)
261. D. Scholz, M. Weyrauch, A note on the Zassenhaus product formula. J. Math. Phys. 47,

033505 (2006)
262. D. Scholz, V.G. Voronov, M. Weyrauch, Disentangling exponential operators. Preprint No.

2009-19, Georg-August Universität Göttingen, Institute of Numerical and Applied Mathe-
matics (2009)

http://kinetics.nist.gov/kinetics
http://kinetics.nist.gov/kinetics
http://ofeli.sourceforge.net/

318 Bibliography

263. W. Sha, X.Wu,M. Chen, Z. Huang, Application of the higher-order symplectic FDTD scheme
to the curved three-dimensional perfectly conducting objects. Microw. Opt. Technol. Lett.
49(4), 931–934 (2007)

264. Q. Sheng, Solving linear partial differential equations by exponential splitting. IMA J. Numer.
Anal. 9, 199–212 (1989)

265. Q. Sheng, Global error estimates for exponential splitting. IMA J. Numer. Anal. 14(1), 27–56
(1994)

266. Q. Sheng, R. Agarwal, A note on asymptotic splitting and its applications. Math. Comput.
Model. 20(12), 45–58 (1994)

267. A. Sidi, Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs
on Applied and Computational Mathematics, vol. 10 (Cambridge University Press, Cam-
bridge, 2003)

268. M.D. Simon, L.O. Helfinger, S.L. Ridgway, Spin stabilized magnetic levitation. Am. J. Phys.
65(4), 286–292 (1997)

269. B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for
Elliptic Partial Differential Equations (Cambridge University Press, Cambridge, 2004)

270. M.O. Steinhauser, Multiscale Modeling of Fluids and Solids—Theory and Applications
(Springer, Berlin, 2009)

271. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer, Berlin, 2001)
272. Y. Sun, J. Petersen, T. Clement, Analytical solutions for multiple species reactive transport in

multiple dimensions. J. Contam. Hydrol. 35, 429–440 (1999)
273. M. Suzuki, On the convergence of exponential operators—the Zassenhaus formula, BCH

formula and systematic approximants. Commun. Math. Phys. 57, 193–200 (1977)
274. M. Suzuki, General theory of fractal path-integrals with applications to many-body theories

and statistical physics. J. Math. Phys. 32(2), 400–407 (1991)
275. F. Taccogna, R. Schneider, S. Longo, M. Capitelli, Kinetic simulations of a plasma thruster.

Plasma Sources Sci. Technol. 17, 024003 (2008)
276. Y. Tanaka, Two-temperature chemically non-equilibrium modelling of high-power Ar-N2

inductively coupled plasmas at atmospheric pressure. J. Phys. D: Appl. Phys. 37, 1190–1205
(2004)

277. C. Theodoropoulos, Y.-H. Qian, I.G. Kevrekidis, Coarse stability and bifurcation analysis
using time-steppers: a reaction-diffusion example. Proc. Natl. Acad. Sci. 97(18), 9840–9843
(2000)

278. A.-K. Tornberg, B. Engquist, Numerical approximations of singular source terms in differen-
tial equations. J. Comput. Phys. 200, 462–488 (2004)

279. J.P. Trelles, Computational study of flow dynamics from a dc arc plasma jet. J. Phys. D: Appl.
Phys. 46(25), 255201 (2013)

280. F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Appli-
cations (American Mathematical Society, Providence, 2010)

281. H.F. Trotter, On the product of semi-groups of operators. Proc.Am.Math. Soc. 10(4), 545–551
(1959)

282. A.M.P. Valli, G.F. Carey, A.L.G.A. Coutinho, Control strategies for timestep selection in
simulation of coupled viscous flow and heat transfer. Commun. Numer. Methods Eng. 18(2),
131–139 (2002)

283. E. Vanden-Eijnden, Tutorial: problems with multiple time-scales: theoretical and computa-
tional aspects, in Multiscale Modeling and Simulation of Complex Fluids, CXF07 Workshop,
(University of Maryland, 2007)

284. V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representation. Graduate Texts in
Mathematics (Springer, Berlin, 1984)

285. A.E.P. Veldman, K. Rinzema, Playing with nonuniform grids. J. Eng. Math. 26(1), 119–130
(1992)

286. J.G. Verwer, B. Sportisse, A note on operator splitting in a stiff linear case. MAS-R9830,
ISSN 1386-3703 (1998)

Bibliography 319

287. J. Waldén, On the approximation of singular source terms in differential equations. Numer.
Methods Part. Differ. Equ. 15, 503–520 (1999)

288. H.S.Wall, Analytic Theory of Continued Fractions (Chelsea Publishing Company, NewYork,
1973), pp. 335–361

289. Website: http://portal.mytum.de/studium/studiengaenge/computational_science_and_
engineering_master. TU München (2011)

290. E.W. Weisstein, CRC Concise Encyclopedia of Mathematics (CRC Press, Boca Raton, 1998)
291. K.D. Weltmann, E. Kindel, T. von Woedtke, M. Hähnel, M. Stieber, R. Brandenburg,

Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl.
Chem. 82(6), 1223–1237 (2010)

292. J. Wertz, E.J. Kansa, L. Ling, The role of the multiquadric shape parameter in solving elliptic
partial differential equations. Comput. Math. Appl. 51(8), 1335–1348 (2006)

293. Wikipedia Reference: http://en.wikipedia.org/wiki/Multiphysics. Wikipedia, March 2011
294. Wikipedia Reference: http://en.wikipedia.org/wiki/Multiscale_modeling Wikipedia, March

2011
295. Wikipedia Reference: http://de.wikipedia.org/wiki/Computational_Engineering_Science.

Wikipedia, March 2011
296. S.F. Wojtkiewicz, L.A. Bergman, Numerical solution of high-dimensional Fokker-Planck

equations, in 8th ASCE Speciality Conference on Probabilistic Mechanics and Structural
Reliability, PMC2000-167 (2000)

297. T. Yamaguchi, K. Shimizu, Asymptotic stabilization by PID control: stability analysis based
on minimum phase and high-gain feedback. Electr. Eng. Jpn. 156(1), 783–791 (2006)

298. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7),
262–268 (1990)

299. K. Yoshida, Functional Analysis. Classics in Mathematics (Springer, Berlin, 1980)
300. H. Yserentant, On the multi-level splitting of finite element spaces. Numerische Mathematik

49(4), 379–412 (1986)
301. A. Zagaris, H.G.Kaper, T.J. Kaper, Analysis of the computational singular perturbation reduc-

tion method for chemical kinetics. J. Nonlinear Sci. 14, 59–91 (2004)
302. Y. Zeng, C. Tian, J. Liu, Convection-diffusion derived gradient films on porous substrates and

their microstructural characteristics. J. Mater. Sci. 42(7), 2387–2392 (2007)
303. N.B. Nichols, J.G. Ziegler, Optimum settings for automatic controllers. Trans. ASME 64,

759–768 (1942)

http://portal.mytum.de/studium/studiengaenge/computational_science_and_engineering_master
http://portal.mytum.de/studium/studiengaenge/computational_science_and_engineering_master
http://en.wikipedia.org/wiki/Multiphysics
http://en.wikipedia.org/wiki/Multiscale_modeling
http://de.wikipedia.org/wiki/Computational_Engineering_Science

Index

A
Acronyms, list of, xix
Algorithm

leap-frog, 131
Yee’s, 94

Algorithmic
parts, 45

Alternative ideas, 296
Analysis

multi-component, xxiii
multiscale, xxiii

Application
electronic, 291
industrial, 153
practical, 291
real-life, 153

Approach
splitting, 244, 250
Stefan Maxwell, 298

Aspects
theoretical and practical, vii

Asymptotic matching, xxiii
Atmospheric regime, 231

B
Balance

adaptive errors, 222
Behaviour

oscillatory, 244
Boundary flow, 282
Brownian bridge, 295

C
CFL condition, 13, 164, 173, 242
Chain rule, 298

Collisions
Coulomb, 89

Complex fluids, 279
Computation

multiscale, 175
plume, 144

Computational
costs, 194

Conservation
energy, 115, 194
mass, 115, 232
momentum, 115

Constraints
physical, 203

Contribution
viscous stress, 282

Coordinate system
sperical, 270

Corrected shape functions, 128
Coulomb collision, 154
Coupling

boundary conditions, 176
interface, 285

Critical points, 170

D
Data transfer, 153
Debye length, 115
Diffusion

asymptotic, 236
Uphill, 235

Diffusion coefficients, 154
Discretization

adaptive, 119
time, 238

Domain decomposition

© Springer International Publishing Switzerland 2016
J. Geiser, Multicomponent and Multiscale Systems,
DOI 10.1007/978-3-319-15117-5

321

322 Index

iterative, 65
non-iterative, 65
non-overlapping, 66
overlapping, 66

E
Eigenvalue

higher, 255
lower, 255

Electric field, 270
Engineering

applications, 153
complexity, 153

Equation
1D Langevin, 165
binary collision, 202
Boltzmann, 263
convection-diffusion-reaction, 66
deterministic, 153
deterministic–stochastic, 91
flow-field, 176
Fokker–Planck, 156
heat, 176
hierarchical, 256
Langevin-like, 153
linearized Boltzmann, 264
Maxwell, 93, 202
multicomponent, 296
Newton’s, 202
nonlinear, 245
Poisson, 119, 202, 263
Poisson’s, 205
potential, 118
Stefan-Maxwell, 296
stiff ODE, 254
Stochastic, 202
stochastic, 153
stochastic heat, 219
Vlasov, 117, 205

Error
absolute and statistical, 224
numerical, 206
scaling, 226
splitting, 251

Error estimates, 68
adaptive grid, 209
adaptive PIC-cycle, 214
aposteriori, 183
a priori, 182
finite difference, 215
higher order, 211
local PIC, 219

PIC, 203
PIC-cycle, 211

Error reduction, 219

F
Fickian’s approach, 230
Fixpoint

adaptive, 283
Fixpoint scheme, 188
Fluid

complex, 230
Fluid-solver, 175
Formulation

variational, 237
Fourier series, 295
Function

2D shape, 135
cloud in cell, 121
Green’s, 124
higher order spline, 123
linear spline, 122
next grid point, 121

G
Glossary, 305
Glycolysis

in Saccharomyces cerevisiae, 243
pathway, 243

Groundwater flow, 84
Gyroscope, 193

H
Hamiltonian

constraint, 194
non-separable, 194
unconstraint, 194

Heat flow transfer, 175
Hierarchical equations, 75
Highly nonlinearities, 243
Homogenization, xxiii

I
Initial data coupling, 181
Integral

multiple stochastic, 295
Interaction

intermolecular, 282
Interpolation, 203
Ion thruster, 115

Index 323

J
Jacobian matrix, 245, 302

linearized, 253
Jet stream plasma, 72

K
Knudsen number, 231

L
Lagrangian multipier, 196
Laplace transformation

inverse, 270
Lennard-Jones potential, 285
Lobatto IIIA-IIIB, 197
Local thermodynamic equilibrium, 230

M
Macroscopic

scale, 1
Magnetic field, 193
Maxwellian background, 156
Medical sterilization, 230
Method

2D PIC, 134
3D-AOS-FDTD, 106
3D-FDTD, 102
4th order Runge–Kutta, 160
adaptive, 292
additive, 49
analytical, 16
decomposition, 292
domain decomposition, 63
drawbacks, 292
embedded Jacobian Newton, 189
equation-free, 270, 272
Euler–Maruyama, 163
explicit, 194
extended PIC, 116
field, 115
finite difference, 141
grid-based, 202
grid-free, 202
homotopy perturbation, 17
hybrid numerical, 279
implicit, 194
implicit and explcit, 292
iterative, 46, 296
iterative implicit Euler, 201
iterative splitting, 54, 178
Jacobian Newton, 185
mathematical, viii

Milstein, 163
model-reduction, 292
multidimensional FD, 141
multiple scale, 292
multiple shooting, 56
multiscale, 202, 244
nonlinear solver, 243
numerical, 291
Parareal, 190
particle, 115, 202
particle in cell, 115
perturbation, 17
plasma diagnostic, 263
Predictor–Corrector, 163
Schwartz waveform relaxation, 63
singular perturbation, 20, 254
toolbox, 293
velocity verlet, 131

Microfluids, 279
Microscopic

scale, 1
velocity, 281

Model
biochemical pathway, 243
cross-diffusion, 231
glycolysis, 246, 302
Levitron, 193
linearized, 245
microscopic, 155
mono, 153
multi, 153
multicomponent, 71, 153, 243
multiscale, 71, 153
multiscale pathway, 245
plasma, 231
reduction, 292
Stefan–Maxwell, 230, 233
ternary mixture, 233

Modelling
multiscale, 4

Molecular dynamics, 279
Momentum conserved constraint, 132
Multicomponent

analysis, 9
diffusion, 73
flow, 2
fluid, 76
groundwater flow, 84
Langevin-like equations, 89
mixture, 230
solver, 86
system, 79
transport, 2, 230

324 Index

Multicomponent fluid
Stefan–Maxwell equation, 78

Multicomponent fluids, 71, 84
Multicomponent transport model, 72
Multiscale

analysis, 15
averaging, 17
expansion, 24
methods, 5
scale, 4

Multiscale applications, ix
Multiscale methods, viii

N
Nomenclature, 305
Notation, 305

mathematica, 302

O
Operator

collision, 156, 263
Parallel Splitting, 175

Orthogonalization, 254
Gram–Schmidt, 255

Oscillator
harmonic, 167
impact, 168
trigonometric, 167
unharmonic, 167

P
Parallelisation, 190

operator, 58
spatial, 62

Parareal, 55
Particle

field, 154
superposition of, 204
test, 154

Particle in cell, 91, 202
PIC

nonuniform, 115
uniform, 115

Plasma
ionized, 230

Plasma medicine technology, 73
Practicioner, 293
Principles

general, viii, xxiii, 1
Problem

backward, 156

control, 234
eigenvalue, 254
forward, 155
linear optimal, 233
macroscopic, 202
microscopic, 202
multiscale, 193
optimization, 184

Problems
engineering, vii, xxiii, 291
Non-Newtonian flow, 279

Process
biochemical, 243

Propagator
coarse, 191
fine, 191

Pusher, 203

R
Real-life application, 179
Richardson extrapolation, 178

S
Scales

disparate, 291
incorporate, 292

Scheme
adaptive explicit, 272
additive, 154, 250
backward upwind, 237
discretization, 231
equation-free, 277
FDTD, 93
fixpoint, 130
forward upwind, 236
full explicit, 272
iterative, 154, 237
linearization, 231
multiplicative, 250
PIC, 203
Picard’s fixpoint, 196
wave-relaxation, 47
Waveform-relaxation, 197

Self-force problem, 220
Separation

eigenvalue, 303
Shape function, 116

adaptive, 120
Signal

radio frequency, 263
Simulation

Index 325

particle, 154
plasma, 230
reactive flow, 291

Slow manifold, 255
Software

Aura, 175
Aura Fluid, 175
engineering, 292
mathematica, 302
Maxima, 127
Openfoam, 175

Solver, 203
Splitting

AB, 161, 177
additive, 9, 10, 258
additive operator, 93
functional, 33
higher order, 51
iterative, 11, 178
Lie–Trotter, 177
modified AB, 179
multiplicative, 9, 258
parallel, 250
PIC-SDE, 158
Predictor–Corrector AB, 162
strang, 177
techniques, 34

Splitting method
iterative, 265
sequential, 265

Stable attractor, 195
Stefan–Maxwell approach, 231
Stefan–Maxwell equation, 72
Stochastic

differential equations, 91
Stress tensor, 280
Super particles, 119
Symbols, list of, xx
Symplectic

asymptotic, 201
Kernel, 200

Symplectic integrator, 116
System

dynamical, 244

T
Ternary mixture, 235
Test problem

microscopic, 228
Time-acceleration, 192
Two-component

model, 75

V
Variables

sensitive, 272
Variation of constants, 159

	Preface
	Acknowledgments
	Contents
	Acronyms
	Introduction
	1 General Principles
	1.1 Multicomponent Systems
	1.1.1 Multicomponent Flows
	1.1.2 Multicomponent Transport
	1.1.3 Application of Operator Splitting Methods to Multicomponent Flow and Transport Problems

	1.2 Multiscale Systems
	1.2.1 Multiscale Modelling
	1.2.2 Multiscale Methods
	1.2.3 Application of Different Multiscale Methods to Multiscale Problems

	1.3 Multicomponent Analysis
	1.3.1 Additive and Multiplicative Splitting Methods
	1.3.2 Iterative Splitting Methods
	1.3.3 Application of the Operator Splitting Methods to Multiscale Problems

	1.4 Multiscale Analysis
	1.4.1 Analytical Methods
	1.4.2 Multiscale Averaging
	1.4.3 Perturbation Methods
	1.4.4 Computational Singular Perturbation Method
	1.4.5 Alternative Modern Systematic Model Reduction Methods of Multiscale Systems
	1.4.6 Multiscale Expansion (Embedding of the Fast Scales)

	References

	2 Theoretical Part: Functional Splitting
	2.1 Ideas of the Functional Splitting
	2.1.1 Flow Equations
	2.1.2 Decomposition of Convection-Diffusion-Reaction Problems
	2.1.3 Functional Splitting with Respect to the Multiscale Approach

	References

	3 Algorithmic Part
	3.1 Introduction
	3.2 Iterative Methods
	3.2.1 Iterative Schemes
	3.2.2 Reformulation to Waveform Relaxation Scheme

	3.3 Additive Methods
	3.3.1 Additive Splitting Schemes
	3.3.2 Higher Order Additive Splitting Method
	3.3.3 Iterative Splitting Method

	3.4 Parallelization
	3.4.1 Time Parallelization: Parareal Algorithm as an Iterative Solver
	3.4.2 Operator Parallelization: Operator Splitting Method
	3.4.3 Sequential Operator Splitting Method
	3.4.4 Parallel Operator Splitting Method: Version 1
	3.4.5 Parallel Operator-Splitting Method: Version 2
	3.4.6 Iterative Splitting Scheme
	3.4.7 Spatial Parallelization Techniques

	References

	4 Models and Applications
	4.1 Multicomponent Fluids
	4.1.1 Multicomponent Transport Model for Atmospheric Plasma: Modelling, Simulation and Application
	4.1.2 Multicomponent Fluid Transport Model for Groundwater Flow
	4.1.3 Conclusion

	4.2 Multicomponent Kinetics
	4.2.1 Multicomponent Langevin-Like Equations
	4.2.2 Introduction to the Model Equations
	4.2.3 Analytical Methods for Mixed Deterministic--Stochastic Ordinary Differential Equations
	4.2.4 Conclusion

	4.3 Additive Operator Splitting with Finite-Difference Time-Domain Method: Multiscale Algorithms
	4.3.1 Introduction
	4.3.2 Introduction FDTD Schemes
	4.3.3 Additive Operator Splitting Schemes
	4.3.4 Application to the Maxwell Equations
	4.3.5 Practical Formulation of the 3D-FDTD Method
	4.3.6 Explicit Discretization
	4.3.7 Combination: Discretization and Splitting
	4.3.8 Practical Formulation of the 3D-AOS-FDTD Method
	4.3.9 Discretization of the Equations with the AOS
	4.3.10 Transport Equation Coupled with an Electro-magnetic Field Equations

	4.4 Extensions of Particle in Cell Methods for Nonuniform Grids: Multiscale Ideas and Algorithms
	4.4.1 Introduction of the Problem
	4.4.2 Introduction of the Extended Particle in Cell Method
	4.4.3 Mathematical Model
	4.4.4 Discretization of the Model
	4.4.5 2D Adaptive PIC
	4.4.6 Application: Multidimensional Finite Difference Method
	4.4.7 Application: Shape Functions for the Multidimensional Finite Difference Method
	4.4.8 Simple Test Example: Plume Computation of Ion Thruster with 1D PIC Code
	4.4.9 Conclusion

	References

	5 Engineering Applications
	5.1 Multiscale Methods for Langevin-Like Equations
	5.1.1 Introduction of the Problem
	5.1.2 Introduction of the 1D Model Equations
	5.1.3 Analytical Methods for Mixed Deterministic--Stochastic Ordinary Differential Equations
	5.1.4 A--B Splitting with Analytical Methods for Mixed Deterministic--Stochastic Ordinary Differential Equations
	5.1.5 Improved A--B Splitting Scheme: Predictor--Correction Idea
	5.1.6 Improved Explicit Scheme Based on the Predictor--Correction Idea
	5.1.7 CFL Condition for the Explicit Schemes
	5.1.8 Numerical Examples
	5.1.9 Conclusion

	5.2 Multiscale Problem in Code Coupling: Coupling Methods for the Aura Fluid Package
	5.2.1 Introduction
	5.2.2 Mathematical Model
	5.2.3 Splitting Methods
	5.2.4 Modified A--B Splitting Method: Only One Exchange to Operator B
	5.2.5 Coupling of Initial Dates and Multiscale Approach
	5.2.6 Error Estimates
	5.2.7 A Priori Error Estimates for the Splitting Scheme
	5.2.8 A Posteriori Error Estimates for the Splitting Scheme
	5.2.9 Optimization for the Heat- and Radiation Equation: Newton's Method for Solving the Fixpoint Problem
	5.2.10 The Modified Jacobian Newton Methods and Fixpoint Iteration Methods
	5.2.11 Parallelization: Parareal
	5.2.12 Test Example: Simple Car Body
	5.2.13 Conclusion

	5.3 Multiscale Methods for Levitron Problem: Iterative Implicit Euler Methods as Multiscale Solvers
	5.3.1 Introduction
	5.3.2 Unconstraint Hamiltonian of the Levitron Problem
	5.3.3 Integrator for Unconstraint Hamiltonian
	5.3.4 Integrator with Lagrangian Multiplier (Constraint Hamiltonian)
	5.3.5 Numerical Experiments
	5.3.6 Conclusions and Discussions

	5.4 Particle Method as Multiscale Problem: Adaptive Particle in Cell with Numerical and Physical Error Estimates
	5.4.1 Introduction
	5.4.2 Mathematical Model
	5.4.3 Numerical Errors
	5.4.4 Absolute Error Based on the Initialization and Right-Hand Side
	5.4.5 Error Reduction with Respect to SPDE (Stochastic Partial Differential Equations)
	5.4.6 Algorithmic Ideas to Overcome the Self-Force Problems
	5.4.7 Absolute and Statistical Errors
	5.4.8 Scaling of the Error and Analytical Error
	5.4.9 Numerical Results
	5.4.10 Conclusion

	5.5 A Multicomponent Transport Model for Plasma and Particle Transport: Multicomponent Mixture
	5.5.1 Introduction
	5.5.2 Mathematical Model for Plasma Mixture Problem
	5.5.3 Numerical Experiments
	5.5.4 Iterative Scheme in Time (Global Linearization, Matrix Method)
	5.5.5 Conclusions and Discussions

	5.6 Multicomponent Model of a Full-Scale Model of Glycolysis in Saccharomyces cerevisiae: Theory and Splitting Schemes
	5.6.1 Introduction
	5.6.2 Introduction to the Pathway Model for the Glycolysis in Saccharomyces cerevisiae
	5.6.3 Model for Hynne Glycolysis
	5.6.4 Splitting Schemes for Partitioned Multicomponent Equations
	5.6.5 Splitting Errors and Time Step Control
	5.6.6 Splitting Based on Separation of Eigenvectors (Assumption: Linearized Jacobian Matrix)
	5.6.7 Splitting Based on Fast and Slow Dynamics Based on the Idea of the CSP (Computational Singular Perturbation) (Assumption: Linear Jacobian)
	5.6.8 Strategies for the Decomposition
	5.6.9 Numerical Examples
	5.6.10 Conclusion

	5.7 Splitting Approach for a Plasma Resonance Spectroscopy
	5.7.1 Introduction
	5.7.2 Modelling
	5.7.3 Splitting Schemes
	5.7.4 Ideas of Numerical Examples of the Splitting Approaches
	5.7.5 Conclusions and Discussions

	5.8 Multiscale Approach with Adaptive and Equation-Free Methods for Transport Problems with Electric Fields
	5.8.1 Introduction
	5.8.2 Numerical Methods
	5.8.3 Full Explicit Scheme: With One Timescale t
	5.8.4 Adaptive Explicit Scheme: With Two Timescales δt, t
	5.8.5 Equation-Free Explicit Scheme: With Two Timescale δt, t
	5.8.6 Conclusions and Discussions

	5.9 Multiscale Approach for Complex Fluids: Applications in Non-Newtonian Fluids
	5.9.1 Introduction
	5.9.2 Non-Newtonian Fluid: Influence of the Microscopic Model
	5.9.3 Non-Newtonian Fluid: Influence of the at the Boundary Flow at the Channel

	References

	Conclusions
	Appendix
	Glossary
	Bibliography
	Index

