
Chapter 14

Simulating Human Social Behaviors

Yu Zhang

14.1 Introduction

While computer simulations are a widely accepted method of research in the natural

sciences, they have only begun to gain widespread acceptance among the social

sciences. Initial apprehension of the social science community toward computer

simulations grew out of a long-held belief that the experimental methodology

employed by researchers in the natural sciences would not be a suitable mechanism

for understanding social phenomena (Roehner 2007). With little quantitative

knowledge on human social interaction, social scientists are eager to use computer

code to transform their once textual-only social theories into virtual realities.

Sophisticated computer simulations can serve as virtual laboratories to investigate

feedback mechanisms, emergence, and the micro- and macrointeractions among

agents in artificial societies.

The value of these simulations extends far beyond just proof and discovery

(Axelrod 1997). Computer simulations of artificial societies can decompose com-

plex inputs and generate predictions ranging all the way from the level of individual

agents to the system as a whole. Simulations of human behavior can be carried out

solely for performance reasons in order to mimic human behavior, which could lead

to more accurate or optimal results, for example, medical diagnosis. Simulations

could also serve as training mechanisms for helping children deal with bullying

as well as military personnel or business management by providing dynamic,

responsive, and reasonably accurate representations of their human colleagues

(Aylett et al. 2004). Simulation of human social behavior can also serve a
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purely entertainment purpose, as in the case of Will Wright’s popular video game

The Sims.1

While agent-based simulations have been a subject of a great deal of research in

recent years, to date there is no framework for describing social agents that captures

the uniqueness of human decision-making while remaining applicable across a

wide variety of domains. The challenges facing any framework describing agents

embedded in a social environment exist in two aspects.

First, such a framework should provide a computational model that neither

singly takes the point of view of the individual agent nor the entire society by

reconciling the needs, commitments, and goals of individual agents with the

behavior of the system as a whole (Castlefranchi 2000). The problem of balancing

the microlevel behaviors of the individual agents with the macrolevel behavior of

the overall system results in one of two extremes: oversocialization or undersocia-

lization (Castlefranchi 1997). Oversocialization occurs when a framework takes an

entirely macro or organizational approach to constructing the social environment;

the system is very static, predictability is stunted, and the resemblance to human

social systems is tenuous. Likewise, undersocialization occurs when a framework

focuses entirely on the microbehaviors of the individual agents by recursively

modeling the nested beliefs of other agents leading to a potential explosion in

computational complexity and very little resemblance to human social systems

(Kim 1999).

Existing approaches to achieving a balance between under- and oversocia-

lization embed agents with a notion of social awareness through two general

approaches: external incentives and sanctions that favor group participation or

endow agents with prosocial attitudes (Conte et al. 1997). Incentives and sanctions

reward or punish an agent for respectively obliging to or deviating from institu-

tionalized social norms and conventions (Hales and Edmonds 2003; Portes and

Sensenbrenner 1993). Likewise, prosocial attitudes such as altruism and coopera-

tion can either be acquired at runtime through learning or other socialization

behaviors or encoded initially in the design of the model itself (Jiang and Ishida

2007; Parsons and Woolridge 2002). However, these solutions to the micro–macro

problem have major disadvantages:

• When modeling a complex human-based social system, the incentives and

sanctions that lead to the desired behavior may be difficult if not impossible to

identify.

• Furthermore, even if identified for one domain, social norms are not universal

across all simulation domains.

• The degree to which social norms are enforced can greatly affect the overall

system behavior—too strong and the system is relatively predictable and

nonaccidental, too weak and the system is chaotic and unruly.

• Learning prosocial attitudes can be computationally expensive for larger

multiagent systems.

1 http://www.thesims.com
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• Prosocial attitudes are one way, representing the influence an agent has on social

structures but not the influence those structures exert back onto the individual

agents.

In the second aspect, such a framework should incorporate into the individual

agent decision model recent developments in cognitive psychology that involve

important modifications to the classical concept of a rational decision-maker. These

developments, drawn from observed human decision-making patterns, shift deci-

sion theory away from a world view where the decision-maker chooses among a set

of fixed and known alternatives with known consequences toward a conception of

the world in which alternatives are not given and the consequences that will follow

are unknown (Simon 1949). While creating heavier, more cognitive agents, this

paradigm shift minimizes the work done by individual agents, likewise avoiding

any potential performance penalty normally associated with other cognitive archi-

tectures such as COGENT and CODAGE (Das and Grecu 2000; Kant and Thiriot

2006). Aside from performance benefits, this new fuller description of decision-

making has three distinct theoretical advantages over classical descriptions:

• The model allows for the perception of incomplete and imperfect information

that is subject to biases, omissions, and distortions.

• Pseudointuitive inference can be carried out on key pieces of information

(anchors) that constitute only a small fraction of available information (acces-

sibility) if an agent is constrained by some external resource (Kahneman and

Tversky 1979; Kahneman 2002).

• Deliberative inference utilizes information-gathering mechanisms such as com-

munication to expand an agent’s knowledge base, then adopts either a notion of

satiation (Stirling 2003) or maximization to reach a decision.

In this chapter, we will introduce innovative mechanisms that allow agents to

exhibit social behaviors by balancing their individual wants and needs with the

concerns of the entire society while retaining a high level of cognition.

14.2 Dr. Tuncer €Oren’s Contributions to Human Behavior
Simulation

Dr. Tuncer Ören is one of the first researchers who have philosophical thoughts on

the mode, scope, and originality of bridging human decision processes and com-

puter simulation. His research in human behavior simulation has pursued a decision

theory–centric focus. Through Tuncer’s whole career, he investigates a variety of

decision-making techniques to meet a diverse set of needs. For example, advances

in game theory have carried over as methods for selecting partners across a variety

of agent-to-agent interaction patterns, while more traditional economic notions

such as expected value and utility have translated into winning strategies for

decision-making agents.

14 Simulating Human Social Behaviors 291



One of Tuncer’s work done in early 2000 is multimodels and multisimulation

(Yilmaz et al. 2006), which is an advanced simulation-based problem-solving

environment for social and political scientists to improve their ability to conceive,

perceive, and foresee conflicting situations for human behavior simulation. The

multimodels and multisimulation theory is based on interpretation of emergent,

potentially unforeseen conditions to facilitate dynamic runtime simulation compo-

sition and simultaneous experimentation with multiple plausible models. This

method explores the problem state space using feasible sequences or stages of

models. This enables experimentation with alternative realities, potentially at

different levels of resolution. It can also detect relevant and significant situations

in a problem domain and therefore lead to interpretation capabilities regarding

emergent conditions and causes of observed effects. Finally, observed effects need

to be attributed to certain causes within the domain theory of the problem at hand.

Such causes need to be appraised against the problem-solving goals and preferences

to make recommendations for further, potentially simultaneous exploration of

different realities. While this scheme can be characterized as forward

multisimulation, this work also nicely examines the possibility of backtracking

and replaying situated simulation histories with altered conditions as well as futures

generated before exploring alternative realities.

Perceptions—including anticipations— are subjective and are prone to biases

and influences. Some biases may stem from lack of relevant knowledge; others may

be induced by others by influencing decisions. Tuncer’s group uses fuzzy logic to

simulate them properly (Ören and Yilmaz 2004; Ghasem-Aghaee and Ören TI

2004). This problem is hard because there is a wide range of a base for persuasion

such as reciprocation, consistency, social validation, liking, authority, and scarcity.

But despite the inherent difficulty of the problem, several researchers have pursued

a line of research that can be roughly grouped under the title Socially Rational

Decision-Making. The primary goal of this research is to develop a fuzzy agent–

based decision model that produces decisions that are inherently rational from the

individual perspective yet retain that property of rationality on upward toward the

level of the entire system. Traditionally, this has been achieved by making an

individual agent’s autonomy subordinate to the needs and desires of the overall

system. This kind of the top-down approach fails to exploit the inherent bottom-up

and emergent properties that characterize any multiagent system. To retain the

autonomy of individual agents, this research advocates classical decision-theoretic

approaches by encoding social considerations into the utility functions of individual

agents.

Cognitive complexity is an important factor in decision-making in problem

solving. Seck et al. (2005) study human cognitive abilities in order to understand

and test the mechanisms of several aspects of cognition to be able to incorporate

them in simulation studies. They foresee two types of use: (1) enhance simulation

studies and contribute to the advancement of the methodology and technology of

cognitive simulation and (2) use cognitive simulation to test hypotheses about

human cognition. Ören elaborated on the importance of increasing cognitive com-

plexity of an individual to increase his/her effectiveness in coping with complex
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situations. This paper aims at the cognitive ability under stress and fatigue. Stress

and fatigue can interfere dynamically in behavior in performance and decision-

making (both variables can change within the course of a task). They distinguish on

certain tasks the performance difference between high–cognitive complexity peo-

ple and low–cognitive complexity people. A first distinction might be done

concerning the time necessary to finish successfully a cognitive task; a second

one can be made concerning decision-making as high–cognitive complexity people

are known to be more fluent in ideas and more creative and thus generally find the

best solution. To do so, each task of the DEVS atomic behavioral model will

contain a variable representing the task’s cognitive complexity. Different individ-

uals with different personalities, the openness trait in particular, will have different

performances in terms of both time and decision-making.

The ability to understand the emotions of others is critical for successful

interactions among humans. Kazemifard et al. (2011) presented a framework for

emotion understanding to enable intelligent agents to improve their emotional

intelligence when interacting with other agents. This framework builds on a para-

digm of machine understanding. It includes (1) a metamodel, (2) an analyzer, (3) an

evaluator, and (4) a memory modulator. The metamodel consists of episodic

memory and three versions of semantic memory, semantic graphs, a general

semantic graph, and a lookup table of general information about emotions. The

analyzer is a perceptual categorization mechanism. The evaluator consists of an

interpreter that provides an understanding of the perceived agent (analyzer output)

with respect to the contents of the different kinds of memory (the metamodel). The

memory modulator updates episodic memory and semantic graphs. This paper

addresses one of the major themes in individual decision-making, bounded ratio-

nality (Tisdell 1996; Simon 1957; Kahneman 2003), in an expanded social setting.

Agents are bound by the amount of time and resources they can commit toward

resolving a balance between their wants and needs and those of the entire system.

The emotional bound in this paper is able to dynamically change as more resources

become available to an agent allowing them to devote an increased amount of time

and effort toward social considerations. If resources are scarce, an agent may opt to

make a socially nonoptimal yet computationally cheap decision over one that is

more computationally expensive and more aligned with the prevailing social norms

at the time.

The major novel contribution of Tuncer’s research to human behavior simulation

is the formalization to modeling and simulation from theory to practice. He built up

the conceptual foundations of a new exploratory multisimulation methodology with

dynamic models and simulation. This solution presents an advanced problem-

solving environment for social and political scientists to observe and examine the

implications and plausible outcomes of decisions in conflict. He also contributes to

individual agents’ decision-making by quantitatively measuring the effect of an

agent’s action (based on the agent’s personality and emotion-understanding ability)

on the needs of other agents relative to its own. Tuncer’s model stands out in that it

retains an individual’s preference or indifference between two alternatives from not

only its personal perspective but from its societal standpoint as well. This model
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falls short in providing a direct mechanism for agents to influence the decisions and

subsequent actions of others; rather, agents are left to passively infer new beliefs

and desires from their understanding of the needs of other agents.

14.3 CASE: Cognitive Agents for Social Environments

This section introduces CASE, a multiagent architecture that is efficient and

scalable in simulating large-scale social systems.

14.3.1 System Overview

Social behaviors are behaviors that are solely oriented toward another agent. Such

behaviors consider the intention behind another agent’s expression, create expec-

tations about another agent’s actions, and aim to evoke a distinguishable response

from another agent (Rummel 1976). Social interaction occurs when the social

behaviors of two or more agents are mutually oriented toward one another.

Most social interactions can be differentiated according to Weber (1947) into the

following three categories:

• Accidental. This class of interactions is often not planned by either party in

advance and rarely repeated with the same members. However, in rare instances,

this initial unplanned contact between agents has the potential to develop into

one of the other three more temporally permanent classes of social interactions.

Example: A waiter asking a table of customers for their order.

• Repeated. Similar to accidental interactions, these are not planned meetings

between two agents but likely to occur on a frequent basis because of spatial

proximity, shared interests, or similar habits. Example: Coworkers sharing small

talk over the water cooler.

• Regulated. These interactions are planned and tightly controlled by the laws,

customs, norms, or other enforcement mechanisms put in place by members of

the society. Example: Attendance at an employee staff meeting or visiting a

courthouse for jury duty.

In all its forms, social interaction carries with it some degree of influence on the

behavior of the agents involved. While sociologists differentiate between several

types of social influence, namely, peer pressure, charisma, connections, force, and

reputation (Cialdini 2001), CASE agents only concern themselves with the social

structure through which the interaction they are currently experiencing occurs.

These structures represent a relatively stable and enduring pattern of shared

relationships among agents within the society. Each structure subdivides the entire

society of agents into interrelated sets where member agents share a common

function, meaning, and/or purpose (Porpora 1989).

294 Y. Zhang



The likelihood an agent will respond to social influence or social impact of an

agent, however, is intimately tied to the following dimensions (Tanford and Penrod

1984) of the social structure through which the agents are interacting:

• Strength. How important are the other agents who are attempting to influence

you?

• Immediacy. How close to you, in either geographic or social space, are these

agents?

• Number. How many agents are exerting this influence upon you?

Agents always respond to the influence of another agent by altering their

perception of their relationship to the influencer, other agents, or society in general.

This alteration in perception ultimately affects future decisions and behaviors of

that agent. Latane and Darley (1970) generalized these principles to state that the

more agents that were interacting within a social structure, the more influence each

individual agent will have. However, while the impact of individual agents may

grow as new agents are added, the rate of growth actually shrinks inversely to the

number of agents. In addition to the rate of growth, the amount of influence any

individual agent can exert shrinks inversely proportional to the number of agents.

To achieve such ends, many researchers have attempted to grow in silico

fundamental social structures and group behaviors. Their primary aim is to identify

the local or microinteractions among agents that are sufficient to generate the

desired macroscopic behaviors and collective patterns they desire (Epstein and

Axtell 1996). However, while providing a good computational model that takes

into consideration both the individual and social behaviors of autonomous agents, it

is hardly efficient, scalable, or robust.

The difficulty exists in modeling the system by holding both the societal view

and the individual agent view simultaneously. The societal view involves the

careful design of agent-to-agent interactions so that an individual agent’s choices
influence and are influenced by the choices made by others within the society. A

stark contrast to the agent view involves only modeling the individual decision-

making processes. While the single societal view mainly concentrates on the

centralist, static approach to organizational design and specification of social

structures and hence limits system dynamics, on the other hand, the single-agent

view focuses solely on modeling the nested beliefs of the other agents and suffers

from an explosion in computational complexity as the number of agents in the

system grows.

Motivated by these observations, the interactions among CASE agents are

embedded CASE agents in three social structures: group, which represents social

connections; neighborhood, which represents space connections; and a social

network, which spans social and space categories. These three structures reproduce

the way information and social strategy is passed and therefore the way people

influence each other. In our view, social structures are external to an individual

agent and independent from its goals. However, they constrain the individual’s
commitment to goals and choices and contribute to the stability, predictability, and

manageability of the system as a whole.
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We take up the classification proposed by Ferber (1999) that multiagent systems

are an agent/society duality. There are two levels of organization in multiagent

systems, which are illustrated in Fig. 14.1:

• The microagent level, which is in essence represented by the interactions

between agents. There are three common types of interaction: cooperation,

competition, and negotiation. Agents interact with each other through two

ways: its sphere of influence in the environment and direct communication to

other agents.

• The macrosociety level is represented by the dynamics of agents together with

the general structure of the system and its evolution. Our work focuses on the

mesolevel of the agent/society duality. Any society is the result of an interaction

between agents, and the behavior of the agents is constrained by the assembly of

societal structures. For this reason, a society is not necessarily a static structure,

that is, an entity with predefined characteristics and actions.

14.3.2 Groups

A group is usually defined as a collection of agents who share certain characteris-

tics, interact with one another, accept expectations and obligations as members of

the group, and share a common identity (Sherif and Sherif 1948). Interactions

within a group fall under Weber’s regulated category as interactions within a

group are tightly controlled by a communally established set of social enforcement

mechanisms. A group differs from a mere aggregate of agents in that a group

exhibits a sense of cohesiveness and stability through time. Groups may be formed

on the basis of intimate relationships or more formal and institutional means. All

agents maintain the concept of a reference group, i.e., if I am an A, then I am

definitely not a B or a C. Indeed, it is by creating these disassociations with others in

Fig. 14.1 Social realms for the CASE agent
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society that agents categorize, identify, and compare themselves with other agents

by joining groups with whom they share commonalities.

CASE agents interact with other agents in their group with respect to the

classical definition of the function and formation of a group as defined by Muzafer

Sherif (1955):

• A common set of motives and goals

• An accepted division of labor, i.e., roles

• Established status (social rank) relationships

• An accepted set of social norms and values

• The development of accepted sanctions if and when social norms were respected

or violated

Hence, CASE agents that share a similar preference for a class of decision

problems form groups to reinforce their goals and objectives by diffusing their

decision-making preferences to other agents. Each group maintains its own separate

preference that is formulated based on a composite of its members’ preferences as
an analogue to that group’s accepted set of social norms and values.

14.3.3 Neighborhood

An agent’s neighborhood is a geographically localized community located within

the environment and is comprised of all agents whose spatial location falls within

some predefined distance of its own. Here, interactions are typically accidental in

nature as an agent’s neighborhood is subject to change as that agent moves through

the environment. The size neighborhood of a CASE agent is directly related to the

observation capabilities of the agent. The more an agent is able to observe, the

larger its neighborhood will be. As an agent’s neighborhood grows, so does the

number of agents that are likely to influence it; however, in keeping with Latane and

Darley’s (1970) findings, the individual impact of each of its neighbors decreases

relative to the size the entire neighborhood.

14.3.4 Social Network

A social network is a social structure made of nodes, here agents that are tied by one

or more specific types of interdependency. The social network CASE agents utilize

ties them together based on their communication patterns. This type of interaction is

not frequently regulated like the interactions within a group are but typically are

repeated on a regular basis between a small subset of agents. An agent’s social

network serves as a medium through which agents actively disseminate information

and influence to other agents through explicit communicative acts.
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14.3.5 Varying the Sociability of Individual Decision-
Making

Let a given agent in the population be denoted as a, where A denotes the set of all

agents and a 2 A. Each agent has a social strategy. This social strategy can be either
ordinal or cardinal. We denote the social strategy for agent a by Sa.

Let a given group in the population be denoted as g, where G is the set of all

groups and g 2 G. Groups are formulated on the basis of a common preference.

Each agent identifies itself with any group such that the agent’s preference falls

within some threshold of the group’s preference.

8a 2 A and g 2 G, a 2 g if diff Sa, Sg
� �

< d ð14:1Þ

where diff(Sa, Sg) is the difference between the agent’s strategy Sa and the group’s
strategy Sg and d is the threshold. It can be seen that agent a can belong to more than

one group at a time and can belong to different groups over time.

When an agent joins a group, it is given a rank in that group. An agent will have

one rank for every group it belongs to. The agent’s rank can be evaluated based on

the agent’s importance, credibility, popularity, etc. It defines how much the agent

will influence the group as well as how much the group will influence the agent. A

high-ranking agent influences the group and therefore its members more than a low-

ranking agent and at the same time is influenced more than a low-ranking agent. An

agent’s rank is specific to the domain and may change over time. At each time step,

every group will update its strategy. The update is determined by its members’
strategy and the percentage of the total group rank they hold. At each time step,

every group will update their strategy.

Sg ¼
X
a2g

Sa � Rg
aX

b2gR
g
b

ð14:2Þ

where Rg
a denotes agent a’s group rank. This allows for groups to be completely

dynamic because both their members and their strategy can change at each time

step. Just like the rank an agent holds in groups, an agent also has a rank in its

neighborhood and network. Each agent keeps track of the agents in its neighbor-

hood and the agents it communicates with. Every time an agent observes another

agent in its neighborhood, that agent’s neighborhood rank will increase. Also, each

time an agent communicates with another agent, that agent’s communication rank

increases. Therefore, every agent will have a rank value for every agent it interacts

with and a separate rank for every agent it communicates with. When an agent

updates its strategy, it will take into account these ranks. Agents with a high rank

relative to the other agents will have a stronger influence. Therefore, the longer two

agents are near each other, the more they will influence each other. The same is true
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for communications. Below is the update function for the neighborhoods strategy

and the networks strategy:

Sn ¼
X
a2n

Sa � Rn
aX

b2nR
n
b

ð14:3Þ

Sw ¼
X
a2w

Sa � Rw
aX

b2wR
w
b

ð14:4Þ

where Sn is the strategy for neighborhood n, Sw is the strategy for network w, Rn
a is

agent a’s neighborhood rank, and Rw
a is agent a’s network rank.

At each time step, every agent also updates their strategy. An agent’s update

function is defined as

S
0
a ¼ α� Sa þ β � Sg þ γ � Sn þ λ� Sw ð14:5Þ

where α, β, γ, and λ 2 [0, 1] and α + β + γ + λ¼ 1. These values represent what

percentage of influence the agent takes from itself, its group, its neighborhood, and

its network. They allow for multiple agent types. For example, (1, 0, 0, 0) represents

a selfish agent because it cares nothing about the whole society, and (0, 0.33, 0.33,

0.34) represents a selfless agent who cares about the three social structures equally.

14.3.6 The Psychophysics of Individual-Agent
Decision-Making

Traditionally, the design of intelligent agents has centered around the common

abstract notion of an agent execution cycle. This structure serves as a high-level

map for the internal components of any agent-based system. This relates not only

the data structures that comprise an agent’s knowledge about the environment but

the algorithms that act on and control that flows between these structures. In a vast

majority of cases, agent architectures differ only by the data structures and algo-

rithms they choose to utilize. Figure 14.2 illustrates this cycle graphically, with

details about each of the five major steps listed as follows:

• Observation. This step collects information on current environmental conditions

and maps those conditions to precepts. It is important to note that this step is

absolutely domain dependent and limited in its scope by its implementation. For

example, if this model were to be implemented within some sort of robotic

system that utilizes a video camera for input, then the agent’s observation step

would be limited in the amount and types of information it could take in as

sensory input.

• Updating KB (Knowledge Base). An agent’s knowledge base will be updated

under two cases: (1) when the agent observes the environment, it will assert new
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percepts to the knowledge base; (2) when the agent performs an action, it will

assert the effects of the action to the knowledge base. For both cases, the

function update must check the entire knowledge base for inconsistencies.

• Decision. Here, agents make two separate decisions: (1) what act to perform and

(2) what message to communicate and to whom.

• Communication. In general, intelligent agents working within a multiagent

environment cannot force other agents to perform a specific action or directly

alter their internal state. However, they can exert influence over other agents

through communicative actions. Multiagent researchers have built upon John

Searle’s speech-act theory (Sherif and Sherif 1948) to develop a number of

formal languages and ontologies such as FIPA-ACL and KQML (Labrou

et al. 1999) so intelligent agents can understand one another.

• Action. The functional nature of an agent’s action step is rather intuitive and

simple; its purpose is to ensure a successful, coherent, and fault-proof execution

of the optimal action that was recommended by the agent’s decision-making

mechanism. No real further explanation of act is necessary as this function is

highly dependent on the implementation.

14.3.6.1 CASE Agent Execution Cycle

Kahneman and Tversky (1979) suggest a two-phase decision model for descriptive

decision-making (see Fig. 14.3): an early phase of editing and a subsequent phase of

evaluation. In the editing phase, the decision-maker constructs a representation of

the acts, contingencies, and outcomes that are relevant to the decision. In the

Fig. 14.2 Traditional agent

execution cycle
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evaluation phase, the agent assesses the value of each alternative and chooses the

alternative of highest value. Our decision model incorporates their idea and spec-

ifies it by the following five mechanisms:

14.3.6.2 Editing

• Framing: the agent frames an outcome or transaction in its mind and the utility it

expects to receive.

• Anchoring: the agent’s tendency to overly or heavily rely on one trait or piece of
information when making decisions.

• Accessibility: the importance of a fact within an agent’s selective attention.

14.3.6.3 Evaluation

• Two modes of cognitive function: intuition and deliberation.

• Satisfying theory: the goal is no longer optimality, and decisions are accepted

when they are good enough.

14.3.6.4 Editing Phase

One important feature of the descriptivemodel is that it is reference based. This notion

grew out of another central notion called framing where agents subjectively frame an

outcome or transaction in their minds and the utility they expect to receive is thus

affected. This closely patterns the manner in which humans make rational decisions

under conditions of uncertainty. CASE agents frame their current situational context

by forming an attitude or weight, w, toward one class of decisions or outcomes.

Fig. 14.3 Two phase decision-making process
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Framing can lead to another phenomenon referred to as anchoring. Anchoring or

focalism is a psychological term used to describe the human tendency to overly or

heavily rely (anchor) on one trait or piece of information when making decisions. A

classic example would be a man purchasing a used automobile; he may tend to

anchor his decision on the odometer reading and year of the car rather than the

condition of the engine or make of the car. CASE agents anchor by building

selective attention on relevant information. The salience of information i is deter-
mined by

Δi ¼
X

c
i is used

Card I is usedð Þ , i 2 I ð14:6Þ

where Δi is the frequency that information i was used under the context c.
If the salience of i is higher than the threshold, i becomes the anchored

information:

I* ¼ i
��Δi > threshold

� � ð14:7Þ

Accessibility is the ease with which particular aspects and elements of a situa-

tion, the different objects in a scene, and the different attributes of an object come to

mind. As it is used here, the concept of accessibility subsumes the notions of

stimulus salience, selective attention, and response activation or priming. CASE

agents determine the similarity between states only with I* establishing the relation

St � Sm if dc, I* St; Smð Þ < D ð14:8Þ

where St is the current state, Sm is a state in the agent’s memory, and dc,I*(St, Sm) is
the distance between St and Sm regarding all anchored information I* under the

context c. Those states that are most similar to the current one are said to be more

accessible than others.

14.3.6.5 Evaluation Phase

In the evaluation phase, there exist two modes of cognitive function: an intuitive

mode, in which decisions are made automatically and rapidly, and a deliberative

mode, which is effortful and slower. The operations of the intuition function are

fast, effortless, associative, and difficult to control or modify, while the operations

of the deliberation function are slower, serial, and controlled; they are also rela-

tively flexible and potentially rule governed. Intuitive decisions occupy a position

between the automatic operations of perception and the deliberate operations of

reasoning. Intuitions are thoughts and preferences that come to mind quickly and

without much reflection. In psychology, intuition can encompass the ability to

know valid solutions to problems and decision-making.
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Our technical solution to achieve this behavior is that if St, the current state, is
close to a state in memory, Sm, then the optimal policy π*(St) and π*(Sm) should be
close as well. Hence, the agent uses an optimal policy that it has employed before in

a similar state and updates its state memory by adding the current state. If the policy

the agent employed was successful, then the reward associated with that policy and

its accessibility will be increased. The slower, serial, and controlled process of

deliberation determines the state similarity across all information available to the

agent, not just that which is anchored, I*. Traversing its memory, an agent attempts

to reoptimize a previously used policy stored in memory:

π* Smð Þ ¼ argmaxxE
X1
i¼0

γiwR Sið Þ��π
" #

, 0 < γ < 1 ð14:9Þ

where r is the time discount factor and R(Si) is the reward an agent receives when it
arrives at state Si.

In keeping with the notions of satisficing theory under their intuitive mode,

CASE agents do not compute an optimal policy to use in the current St if there is a
state in the agent’s memory Sm that is similar and the policy utilized under that state

can be used once again.

14.3.7 Experiments and Results

We tested the CASE architecture and its new decision-making mechanism within a

number of domains ranging from the classic prisoner’s dilemma to an artificial

stock market as well as initial work on such real-world applications as the subprime

lending crisis.

14.3.7.1 An Extended Prisoner’s Dilemma: Investigating Intuitive

Attitudes Toward Risk

We choose an extension of the classical prisoner’s dilemma as the domain for our

initial experiment. In the classical prisoner’s dilemma, a game comprises two

agents: A and B. Each agent is given the option to either cooperate with or defect

from its opponent with various outcomes for each choice.

We extend this classical prisoner’s dilemma in two distinct ways. First, out-

comes are cumulated in our domain. In the classical dilemma, the outcomes of each

game are not cumulative. Even in an iterated prisoner’s dilemma scenario, the

outcomes of a previous game have no effect on an agent’s decision in subsequent

games. The only outside factor that influences an agent’s decision in an iterated

prisoner’s dilemma is an agent’s knowledge of what action(s) his opponent has

taken in the past. The change to cumulative outcomes allows agents to assign value
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to gains and losses rather than final assets. Since the current asset (prisoner

sentence) of an agent serves as a reference point for subsequent decisions, the

cumulative value of an agent’s assets can have a tremendous effect on that agent’s
later performance. Second, while in the classical prisoner’s dilemma, the four

outcomes are fixed, here we allow them to be uncertain.

Our experiment involved a total number of 2,000 agents within either one or two

societies. Each agent plays over 500 iterations. At each iteration, we randomly

paired agents to play a prisoner’s dilemma game. After each game, the assets of

each agent will be changed to reflect the outcome of the game (gains or losses). This

outcome was then used by the agents to the next iteration. At the start of each

experiment, each agent was assigned a small positive number to represent its

beginning asset position. In some of the experiments, we arbitrarily chose this

number to force groups of agents into either initially risk-seeking or risk-averse

attitudes. At other times, we allowed this number to be randomly generated to

create a heterogeneous distribution of both risk-seeking and risk-averse agents.

Figure 14.4 shows the average asset position of all the agents in the experiment.

The two upwardly curving lines reflect the two possible rewards each agent could

receive for either cooperating (left line) or defecting (right line). There is an evident

shift in the concentration of agents from one decision choice to another as time and

assets progress. This is reflective of the fact that as the agent’s overall assets

increase, its individual behavior becomes increasingly risk averse. The increased

density of points toward the upper end of the line reflects the congregation of agents
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around a single risk averse decision. This result demonstrates that a few minor and

conscientious alterations to individual agent decision processes are more than

sufficient to create the attitudes toward risk that characterize observed human

decision patterns.

14.3.7.2 An Artificial Stock Market: Evaluating the Performance
of Intuitive and Deliberative Decisions

Our initial experiments involving the prisoner’s dilemma only investigated a small

portion of the entire CASE agent functionality and explored only a distinct subset of

prescribed human behavior. Here, we aim to examine in detail the effectiveness and

role of the mechanisms underlying an individual agent’s two-phase decision pro-

cess, most notably the two cognitive modes of intuition and deliberation. Twenty

thousand agents were selected from among 30 unique stock indices for a time frame

of 25 rounds. Every agent began the simulation with initial 10,000 cash, and no

limitations were set on the amount of stock it could purchase each round as long as

they had cash available to make a desired purchase. Stock prices changed each

round based on traditional microeconomic supply and demand curves that

accounted for the volume of buying and selling that occurred in the previous

round. The more shares of a stock were purchased, indicative of a higher demand

for that stock and a dwindling supply, the higher the price was driven up and vice

versa. Agents bought and sold stock only to the market and did not engage in

interagent purchases, sales, or trades for simplicity purposes.

Agents used the two-phase decision-making process, first editing the decision

space by selecting only 10 stock indices from among the available 30 to serve as

anchors each round. These anchor stocks could change from round to round and are

selected as basis for predicting the overall market behavior. Anchors that do not

seem to reflect observed market behavior are discarded at the end of each round,

and new ones are added. However, each agent only keeps exactly 10 anchor stock

indices at each time step. The second phase of the decision process utilizes the two

modes, intuition and deliberation. In the intuitive mode, the 10 anchors are utilized

to predict, by way of a simple polynomial fit, the expected behavior of each anchor

stock index and likewise the predicted behavior of the overall market in the next

round. A downturn in the overall market would signal the CASE agents to begin

selling off their low-performing stocks, while an upturn would signal the need to

purchase stocks on the rise. If half or more of the chosen anchors are the same

stocks that the agent is holding, stock holdings that match current anchors are

bought and sold, and no action occurs to holdings that do not match a current

anchor. Otherwise, more information must be gathered and the deliberation process

started to determine either buying new stocks or selling an agent’s current holdings.
This is done by computing the distance between several random points on the

anchor’s price function and a selected holding’s price function. The anchor with the
smallest distance was chosen to be representative of that particular holding.
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Figure 14.5 illustrates the CASE agent’s choice of cognitive function (i.e.,

intuitiveor deliberative) relative to their stock-holding performance. Here, we see

a clear visual correlation between the number of agents utilizing the intuitive mode

and positive performance in the CASE agent’s stock holdings. This reflects the

crucial role information plays in the simulation. The better the information the

CASE agents have about their environment which is reflected in their choice of

anchors, the better they are able to predict both positive and negative fluctuations in

stock price and likewise react to those anticipated changes. A rise in the number of

deliberative agents and slump in stock-holding performance can be explained in

terms of information as well. Here, the reactive agents have either bought or sold a

large point of stock changing the behavior of the overall system. Hence, the CASE

agent’s anchors no longer serve as a good predictor of overall market performance.

This loss of good information on the part of the CASE agents results in a temporary

downturn in their performance until the next round when new anchors can be

chosen that better reflect the newly altered reality.

Investigating the performance of the CASE agents, alone is certainly not enough

to validate the superior performance of the two-phase decision process. Likewise,

Figs. 14.6 and 14.7 draw from a separate experiment run over 50 time steps (twice

the length of the original) in which the performance of CASE (indicated by the

lighter pink line) and a set of agents employing a classical decision-theoretic

approach (indicated by the darker blue line) were compared.

In Fig. 14.6, when no limits are placed on how many shares of each stock are

available for purchase, agents are absolutely guaranteed that they can purchase

shares of any stock bearing in mind that they have sufficient funds to do so. This

environmental characteristic essentially devalues the major competitive advantage

of decision-making speed that CASE agents hold. Even in these shallow decision

problems where complexity and available information are low as indicated by
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Fig. 14.6, our CASE agents remain competitive with the classical decision-theoretic

frameworks traditionally employed by agent-based researchers. What is most

apparent from Fig. 14.6 is that even in areas when the CASE agent’s performance

drops below that of the classical decision-theoretic agents, their ability to return to a

decision strategy that yields more optimal results is remarkably fast and usually

within approximately five rounds of the simulation.
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When the number of shares of each stock offered at the beginning of each round

is limited, as in Fig. 14.7, the performance of the CASE agents is both markedly

superior and enjoys a slight degree of sustained growth throughout the duration of

the simulation. As stock purchased in one round may or may not necessarily be

available to that agent in future rounds, it is important that agents measure the cost

associated with purchasing/selling that stock now or taking the risk to potentially

purchase/sell that stock later on at a higher or lower price. The ability of the CASE

agents to not only gauge the opportunity cost associated with each of their decisions

but to make those decisions in a rapid and timely manner using their intuition is the

integral recipe for their inevitable sustained success.

14.3.7.3 An Artificial Stock Market: Evaluating Diffusion by Social

Structures

To measure the influence of the three social structures we developed on the

individual agent decision-making process, a 100� 100 grid-based environment

was created, and 1,000 agents were randomly dispersed across it. Sixty percent or

600 agents were assigned at random to a group that employed a conservative

decision-making strategy that attempted to minimize risk while maximizing profit.

Likewise, 40 % or 400 agents were assigned a more aggressive decision-making

strategy that was risk seeking in nature.

The social structures were given initially the following attributes: (1) agents

could observe only the eight cells immediately surrounding them, (2) they were

allowed to have at maximum three agents in their social network that they com-

municated with, and (3) they were not allowed to move from their location,

meaning their neighborhood remained static throughout the experiment

Figure 14.8 shows that under these conditions, the neighborhood appeared to be

the least effective social structure for rapidly disseminating influence among a large

group of agents because of its limited reach and static nature. Adding the group and

social network structures tended to increase the rate at which the conservative and

successful strategy diffused to the other agents in the experiment.

This pattern continues until all three social structures are in use, at which point

the combination of the neighborhood and social network significantly outperforms

the combination of all three. While initially puzzling, this result is indicative of the

very nature of the group social structure. To maintain consistency with conven-

tional sociological conceptions of a group, an agents group serves as a composite of

influence its members receive through their neighborhood and network. This allows

the group to serve as an important medium for widely broadcasting influence

nondiscriminately to a number of agents not bound by any social or spatial context.

The group also serves as a mechanism for resisting or smoothing rapid and sharp

changes occurring in the underlying social structures. In a very limited sense, we

can say that CASE agents through their groups not only maintain a sense of identity

or commitment to a certain ideology (here taken to be aggressive or conservative)
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but actively try to maintain and propagate that sense of connection to other agents in

a fashion that mimics observed human social behaviors.

A more thorough examination of the relationship between an agent’s social

network and neighborhood was carried out by extending the previous experiment

along the following lines: (1) the duration was increased to 300 time steps to ensure

adequate time for the diffusion rate to stabilize, (2) the size of both structures was

varied along with the ability of the agents to move.

Figures 14.9 and 14.10 indicate a strong relationship between the movement of

agents in the environment (no walk/walk) and the rate at which the neighborhood is
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able to diffuse the conservative strategy to other agents. We identified two primary

reasons for that the rate of diffusion being significantly lower in Fig. 14.9. First, the

rate of diffusion with the neighborhood social structure is intimately linked to the

spatial density of the agent population with a higher spatial density yielding rapid,

effective diffusion and vice versa. Second, the direction of the influence diffusing

out of the neighborhood social structure is tied to the location of their immediate

neighbors. The distribution of agents within an individual agent’s neighborhood is

by no means uniform and could very well be overly heavy in one or several

directions as the cells adjacent to an agent’s could or could not contain agents.

Those adjacent cells containing agents specify the direction of influence for the

subsequent time step.

As Fig. 14.10 indicates, allowing agent movement overcomes both these limi-

tations as spatial density and location of neighbors are no longer factors when an

agent is allowed to move. In an abstract sense, the inclusion of agent movement

around the environment effectively transforms an agent’s neighborhood from a

static to dynamic entity. As Figs. 14.9 and 14.10 illustrate, this move to dynamism

is also a dramatic move toward an increased rate of diffusion.

In contrast to the neighborhood, as Figs. 14.11 and 14.12 demonstrate, an agent’s
social network is seemingly unaffected by the spatial density and movement of the

agent population as it exists outside the boundaries of physical space. However, a

direct correlation does exist between the number of agents within an individual

agent’s network and the rate at which and/or degree of influence it can exert on

those agents.
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14.4 Grand Challenges on Simulating Human Social
Behaviors

Human social behaviors are directed toward society. Therefore, these behaviors are

influenced by the interactions with other people in the society. At the same time,

human behaviors are also influenced by culture, attitudes, emotions, values, ethics,

authority, rapport, hypnosis, persuasion, coercion, etc. Due to the paper length, we

focus the grand challenges on how people interact with each other in social

networks to maintain their relationships. In the following sections, we will discuss

the challenges in complex social networks, temporal patterns, and network

randomness.
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14.4.1 Structural Network Measurement

A complex network is a network with nontrivial topological features, i.e., features

that do not occur in simple networks such as lattices or random graphs but often

occur in real graphs. Examining the structure of the whole network as well as

individual patterns that arise offers valuable insight into many different social

applications. These include

• Studies of Communication, which focuses on the study of the transfer of

information. This can include in-person communication, such as the spread of

a rumor, or public-forum communication, such as information conveyed on a

blog (Fleming 2011; Minsheng et al. 2013; Zhoua et al. 2013)

• Community development, including both geographic and online communities.

Of particular interest is developing tools to analyze the development of social

media networks such as Facebook, Twitter, and Wordpress (Lapachelle 2011;

Zhoua et al. 2013)

• Diffusion of innovations or the spread of ideas throughout a community. This

can include finding the “opinion leaders” or the individuals who are especially

influential in the spread of an idea as well as modeling the spread of an

innovation through an entire organization. Recent studies into diffusion have

also looked at how diffusion interacts with network structure (Stattner

et al. 2013)

• Health care analysis, including epidemiological studies and studies of health

care organizations and systems (Levy and Pescosolido 2002; Christakis and

Fowler 2013)

• Language and linguistics, including how different languages evolve through

social interaction. In an increasingly globalized world, this is of particular

interest in studying the decline of native dialects as well as language mainte-

nance and shift in multilingual communities (Milroy 2008)

• Social capital or the resources available to individuals through their social

interactions. For instance, social capital allows certain people to access oppor-

tunities such as job openings. It has also been shown that there is a correlation

between measured social capital and reported quality of life (Valenzuela

et al. 2009).

As complex social networks can be used to analyze many real-world interaction

types from social networking websites to interactions between animals, being able

to effectively study their structures has become increasingly important in recent

years (Pinter-Wollman et al. 2013)

Rumors, opinions, behaviors, and diseases spread to the population via social

interactions. A blocker is an individual in the network that can most effectively

slow down the spread of a process through the population. For example, to slow the

spread of disease, it would be most efficient and effective to vaccinate one of the

key blockers in the network. This paper attempts to find structural network mea-

sures that indicate the best blockers in dynamic and social networks. A dynamic
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network is a series of static networks that show the interactions of an individual at a

certain time. An aggregate network shows a group of individuals and their interac-

tions over a period of time. If two nodes have interaction during the observed period

of time, it is represented by an edge; multiple interactions between a pair of

individuals might be represented as a single edge, multiple edges, or possibly a

weighted edge between the two nodes. A dynamic network is generally more useful

because it shows time and keeps intact the order of interactions.

Structural network measures are like social properties within a network, for

example, betweenness. This method used several of these measures to look at the

entire network and other more localized measures to look at individual nodes. The

global structural properties observed were density, the proportion of edges in a

network to possible edges, dynamic density, the average density at one time, path, a

distinct sequence of nodes, temporal path, a time-respecting path in a dynamic

network, and diameter, the length of the longest shortest path. The localized

properties used were degree, or a node’s number of neighbors, dynamic degree,

dynamic average degree, nodes in the neighborhood, edges in the neighborhood,

betweenness (previously discussed), dynamic betweenness, closeness, or the aver-

age distance between one individual and other individuals in the network, dynamic

closeness, clustering coefficient and dynamic clustering coefficient, the fraction of a

node’s neighbors that are neighbors to each other in previous time steps. These

measures were all compared to determine the blocking ability of individuals.

The paper by Habiba et al. (2010) finds that the dynamic clustering coefficient,

which basically measures how many of your friends are friends with each other,

was a good indicator of the node’s blocking ability. The other structural methods

that best predicted blocking ability were node degree, number of edges in a node’s
neighborhood, and dynamic average degree. These methods must still be tested on

larger and more complex models to determine whether they will be truly useful for

realistic disease spread models. Another problem with this method is that it focused

on practical applications and the theoretical structure of the problem is still not well

known. A large problem with this method is that it cannot identify a set of top

blockers because it goes through the data and tests nodes one at a time by removing

them and measuring the spread of data. Finding the top set of blockers is compu-

tationally hard, and an exhaustive search is infeasible. Another interesting thing

they find is that in networks where blocking spread was difficult, nodes were all

ranked about the same; however, in networks where spread could be blocked by just

removing a few individuals, the nodes had a wider range of rankings.

14.4.2 Temporal Patterns

A temporal network is a network in which the connection between the nodes is not

continuous. The most important part of a temporal network is time. This is also the

most difficult part of a temporal network to visualize and analyze because relation-

ships in networks are changing and modeling the change in relationships while
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keeping the order and time aspect of the network is difficult to do in just one image.

It almost takes a whole string of images or snapshots of the aggregate network at

different points in time to demonstrate a temporal network. In our research, we

examined the various methods that have been used to analyze different aspects of

temporal networks. After becoming thoroughly acquainted with the various

methods of examining properties of temporal networks, we compared each method

and summarized the pros and cons of each method.

We examine several models each of which focuses on a specific problem in

temporal patterns of social networks. The first method we examined was the

betweenness preference (Pfitzner et al. 2013). This method focuses on the structural

properties of a temporal network and looks at how likely certain nodes are to

mediate interactions between any two nodes. Betweenness preference is based on

the idea that certain nodes contact other nodes based on previous contact. The

problem with using betweenness preference to analyze a temporal network is that it

is not present in the time-aggregated network. For example, if given two temporal

networks, when these networks are aggregated, we cannot determine between

which time steps a node mediated an interaction between two other nodes or if

these two nodes are able to interact through their previous contact. This becomes a

problem because of the order that edges are made. In spite of this, betweenness

preference is an important aspect of a temporal network. If we can keep between-

ness preference intact when aggregating our network, this will help us see the flow

of information throughout the network, which is typically lost when the network is

collapsed.

Another problem with a network of time-stamped pairs defining who spoke to

who or who tweeted at who is that a vital part of the flow of information is lost. For

example, if A speaks to B in the morning, then B speaks to C in the afternoon,

information might flow from A to C but not from C to A. The paper (Gindrod

et al. 2011) suggests using a more natural definition of a walk on an evolving

network. Specifically, a node’s ability to both broadcast and receive information is

calculated through a series of basic operations in linear algebra, and the lapse in

time can be accounted for in the flow of data from node to node by utilizing the

noncommutativity of matrix–matrix multiplication. A walk is a path that goes from

node to node. A path is closed if it starts and ends at the same place and open if it

starts and ends at different places. The Katz centrality of a person measures a

person’s centrality by taking into account the number of walks between a pair of

people.

The third issue of temporal patterns is that in some networks, links between

nodes are either positive, like a friendship, or negative, like an opposition. For a link

in a social network, its sign is either positive or negative depending on the attitude

of the creator of the link to the recipient. If we are given a network of nodes with

edges of either positive or negative value and one of the links has a missing value,

we want to find a way to determine, based on the other connections of the network,

whether this missing link is positive or negative. The paper by Leskovec

et al. (2010) uses the logic that the enemy of my friend is my enemy and the friend

of my enemy is my enemy. This method looks at how the sign of a link interacts
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with the pattern of the signs of the links within a certain distance of the given link.

This paper uses edge sign prediction to determine the state of a link given an almost

complete network of either positive or negative links.

While many of these graphs are directed, it is sometimes useful to examine the

graph and its links regardless of the direction of the connection between two nodes.

However, when predicting the sign of an edge, they use directed links. For example,

if we are trying to determine the sign of the edge from node u to node v, we look at

the signs of the outgoing edges from u and the incoming edges to v. They also keep
track of the number of outgoing positive and negative edges from u and the total

number of common neighbors u and v have. When predicting the sign of a link, it is

also helpful to form triads of nodes. For example, they consider the triad containing

the edge (u, v) with a node w such that w has an edge either to or from u and an edge
either to or from v. This theory is called structural balance theory. This theory is

based on the idea stated above that the friend of my friend is my friend and the

enemy of my friend is my enemy. Using the structural balance theory and the idea

of triads, if w forms a triad with the edge (u, v), then (u, v) should have the sign that
causes the triangle formed by w, u, v to have an odd number of positive signs. By

using a balanced data set, we know that by guessing the status of a link, it can have a

50 % correct prediction rate. If we use a full data set, accuracy is improved to 80 %.

14.4.3 Network Randomness

Most social networks are dynamic networks where connections are being continu-

ously made and broken. Being able to accurately predict a dynamic network in the

future has many consequences, many of which are found within the business world.

Large organizations can benefit by being able to suggest new collaborations and

interactions within the organization. Security companies also benefit from the fact

that we could use this information to analyze terrorist networks.

Our first problem is to predict which interactions among existing members are

likely to occur in the near future. A supervised random walk method (Backstrom

and Leskovec 2011) looks at how we can use only the given data of the existing

relationships to accurately predict the future of the network. This is how social

networks like Facebook send users recommendations on who they should befriend

in the future. Supervised random walk combines the information from the network

with node and edge attributes. These attributes are then used to guide a random

walk on the graph. When looking at link prediction, we look at a network at a given

time t and try to predict the edges that will be added to the network at a future time t.
There are a few problems with link prediction methods. One major problem is

that social networks are sparse. For instance, Facebook users connect to an average

of 100 nodes out of a 500 million-node network. For this reason, a good way to

predict edges is to predict no new edges, allowing this method to be extremely

accurate, albeit useless. Thus, supervised random walk helps with these problems.

Using this method, Backstrom and Leskovec (2011) take a supervised random walk
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on the network which visits given nodes more often than other nodes. They use

given node and edge features to determine the strength of the edges so the random

walk will be more likely to visit positive nodes more than negative nodes. Positive

nodes are nodes to which new edges will be created in the future, while negative

nodes are all of the other nodes. A new function must be created then to assign

strength to each edge so when we compute the random walk in a weighted network,

nodes which a node will connect to in the future will have higher scores than those

nodes which a node will not visit in the future.

Another way to analyze the randomness is to use Markov Chain Monte Carlo

(Clauset et al. 2007). This analyzes the probability of nodes making connections by

looking at the whole network. We can then use these probabilities to look at how the

network will look at any given time. Markov Chain Monte Carlo uses Markov

chains along with the law of large numbers to estimate the state of the network at

any given time in the future. Markov Chain Monte Carlo uses stationary distribu-

tion, making the network easier to work with. The network has a given probability

distribution, and Markov Chain Monte Carlo generates random elements with the

same distribution. Markov Chain Monte Carlo then uses this information to predict

the state of the given temporal network at any given time. This means that it will

predict which connections will be made between which nodes at a certain time.

Markov Chain Monte Carlo (Tjelmeland 2007) is closely related to supervised

random walk. A random walk is performed on the network, and each step has a

probability associated with it. Markov Chain Monte Carlo creates a Markov chain

with the same distribution of the network and uses a random walk to simulate the

chain. The problem with the random walk method is the aspect of random walk that

must be calculated and performed on each and every node in the network. These

calculations in a large and expansive network such as Facebook or twitter can

become exhaustingly long and tedious. Another problem with Markov Chain Monte

Carlo is the rate of convergence. It is not very well known how to determine how

long the chain must be used on a network to generate a suitable convergence.

14.5 Conclusion

One of the fundamental questions of human social simulation has traditionally been

how should agents make decisions given they inhabit an environment where their

actions may have unforeseen or unpredictable effects on others? This question often

raises interesting points about the extent to which the individual autonomy of agents

should be sacrificed for global needs and desires of society. As the economic and

mathematical sciences have transitioned toward a more socially conscious

decision-theoretic framework, they have discovered that human beings operating

in real-world environments often rely not only on their own cognitive capabilities

but of those of others around them as well through a network of complex social

structures and institutions.
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If multiagent systems are to provide a proper computational model of both

human decision-making and social interaction, then these structures and institutions

and the cognitive capabilities of the agents that comprise themmust be modeled to a

level where computational complexity is not sacrificed on behalf of realism. Our

CASE model represents an important work that processes by combining recent

advances in behavioral economics that point to a more bounded-rationality human

mindset with the time-honored theories of socialism that cross disciplinary bound-

aries between both sociology and psychology.
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