
Simulation Foundations, Methods and Applications

Levent Yilmaz    Editor 

Concepts and 
Methodologies 
for Modeling 
and Simulation
A Tribute to Tuncer Ören



Simulation Foundations, Methods
and Applications

Series Editor:
Louis G. Birta, University of Ottawa, Canada

Advisory Board:

Roy E. Crosbie, California State University, Chico, USA

Tony Jakeman, Australian National University, Australia

Axel Lehmann, Universität der Bundeswehr München, Germany

Stewart Robinson, Loughborough University, UK

Andreas Tolk, SimIS Inc., Portsmouth, USA

Bernard P. Zeigler, University of Arizona, USA



More information about this series at http://www.springer.com/series/10128



Levent Yilmaz

Editor

Concepts and Methodologies
for Modeling and Simulation

A Tribute to Tuncer Ören
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Foreword

The work of Tuncer Ören, the archetypal Renaissance man of the modeling and

simulation community, embodies the vision of M&S as the essential enabler of

future science and engineering. Ören’s vision stretches widely over the whole M&S

domain encompassing its fundamental body of knowledge, its methodology, its

practice, and its ethics. It also includes the quality of M&S products and specific

application domains such as cognitive and emotive social simulation. The authors

of this tribute book pursue a few—essential—threads of the many emanating from

Ören’s core vision. As a consequence of the underlying unity of conception, the

book is more than a collection of disparate state-of-the art articles. This integration

is enhanced by the fact that every chapter is explicitly connected to pertinent

features of Ören’s thought. Within this perspective, the book covers cutting-edge

topics in simulation methodologies; modeling methodologies; quality assurance

and reliability of simulation studies; and cognitive, emotive, and social simulation.

Notably, it touches on Ören’s intense interest in the body of knowledge of modeling

and simulation, with a review of existing M&S literature through the newly

emerging techniques of journal profiling and co-citation analysis. This book

beckons you, whether theorist or practitioner, generalist or domain application

professional, to partake in and contribute to Ören’s powerful vision.

Potomac, MD, USA Bernard P. Zeigler

December 29, 2014
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Preface

Concepts and Methodologies for Modeling and Simulation aims to present recent

advances in the theory and methodology of Modeling and Simulation (M&S).

By connecting these developments to the conceptual, theoretical, and methodolog-

ical foundations developed by Professor Tuncer Ören, this volume serves as a

testimonial that honors Dr. Ören’s long-lasting and fundamental contributions to

the M&S discipline for over 50 years.

Since 2003, I have had the privilege to collaborate with Dr. Ören, whom I see as

my mentor and a titan in our field. The articles in this book are a testament to the

diversity and innovativeness of his thoughts. As evidenced by this volume, his

influences in the philosophy, theory, methodology, ethics, and the body of knowl-

edge of M&S have numerous connections to recent advancements in our field and

continue to provide directions for its further development. This book is largely due

to the efforts and contributions of the authors, who shared their recent research in

the context of Dr. Ören’s seminal contributions to the M&S discipline. I am

indebted to them for their contributions to this tribute volume. They are not only

authorities in their field but also colleagues of Dr. Ören. Hence, they are qualified

and entitled to trace recent advancements in their fields to the most influential

concepts and methods introduced by him.

In the area of simulation methodologies, Dr. Ören’s earlier work on model-based

M&S and detailed categorizations and taxonomies of M&S has been highly influ-

ential. In particular, normative views for the advancement of M&S, including

synergies of artificial intelligence and systems theories, and his comprehensive

and integrative views have provided a sound and thorough framework for

the development of advanced simulation methodologies. To explain these contri-

butions, the book starts with my reflections on the recent developments in agent-

directed simulation (ADS), providing a framework that explores synergies between

simulation and agent technologies. The readers can trace the provenance of various

ideas explored under ADS to concepts introduced by Dr. Ören when he first

examined and demonstrated how artificial intelligence methods can assist simula-

tion. The second chapter in this section presents how model engineering and
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service technologies can be leveraged to contribute to System-of-Systems (SoS)

Engineering. The third chapter overviews emerging trends and drivers in high-

performance simulation systems, while the fourth chapter examines the role of data

in the context of dynamic data-driven simulations that connect real-time sensor data

to online simulations.

The second section of the book focuses on advanced modeling methodologies.

The first chapter in this area focuses on the philosophical fields of ontology and

epistemology to delineate the role and use of simulations in relation to the taxon-

omies and categories of M&S developed by Dr. Ören as part of his contributions to

the M&S body of knowledge. The second chapter demonstrates how innovations in

modeling formalisms can help manage the challenges in hybrid model composition,

especially in the context of agent-based, human, social, and environment models.

Specifically, the authors describe the use of a polyformalism model composition

approach and highlight its relation to multimodeling strategies that Dr. Ören and

I have developed during the early 2000s. The third chapter of this section underlines

the importance of a model-based approach to M&S and underlines model building,

model-based management, and model processing activities advocated by Dr. Ören.

The authors then present a formal, declarative, and visual transformation (model

processing) methodology to translate a domain conceptual model to a distributed

simulation architecture model.

The third section of the book is devoted to the reliability and quality assurance of

models. The section starts with an overview of quality indicators that can be used to

support a structured and quality-centered approach to simulation development

throughout the entire M&S life cycle. The second paper reviews, summarizes,

and describes the influence of important M&S quality assurance papers developed

by Dr. Ören. The paper also promotes strategies for the replicability and reproduc-

ibility of simulation studies to instill confidence in simulation experiments. The

third paper in this section refers to challenges involved in qualitative and quantita-

tive comparisons of agent-based models to calibrated statistical models for the

purpose of validation and reproducibility. The last chapter in this section introduces

the Generalized Discrete Event System Specification to build more accurate

discrete-event models of dynamic systems. This work highlights the need for

engineering quality into models to improve their accuracy.

The fourth section of the book focuses on the specification and simulation of

human and social behavior, acknowledging Dr. Ören’s contributions to model

specification language development as well as his recent research in cognitive

and emotive simulation modeling including the specification of models of person-

ality, emotions, conflict management, perception, and anticipation. In this section,

the first chapter presents work on social science models that benefits from the

principles based on Dr. Ören’s influences of model specification languages, goal-

directed agents, anticipatory simulation, agent perceptions, and multifacetted

models. Similarly, the second chapter in this area refers to the multisimulation

methodology as a basis to examine bridging human decision processes and com-

puter simulation while also referring to multisimulation as an enabling technology
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for backtracking and replaying situated simulation histories with altered conditions

as well as futures generated before exploring alternative realities in social sciences.

The last section of the book is devoted to M&S body of knowledge work. The

chapter presented in this section was inspired by Dr. Ören’s work and shares

common ground by profiling and classifying M&S publications in terms of tech-

niques, application areas, and their context in a relevant way with the second and

third parts of the body of knowledge, which defines the M&S core areas and

supporting domains.

Auburn, AL, USA Levent Yilmaz

December 19, 2014
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Part I

Simulation Methodologies



Chapter 1

Toward Agent-Supported and Agent-
Monitored Model-Driven Simulation
Engineering

Levent Yilmaz

1.1 Introduction

The concepts that expound on the synergy of artificial intelligence and simulation

date back to late 1970s when Professor Ören (1977) has introduced strategies that

delineate the use of computer assistance in model-based activities and later when he

promoted in (Ören 1978) the principled use of cybernetics for developing simula-

tion software. In 1980s, Ören and his colleagues, Elzas and Zeigler, edited two

volumes (Elzas et al. 1986, 1989) that explicated various facets of the synergy of

modeling and simulation, artificial intelligence, and knowledge-based systems.

These two volumes became highly influential in putting forward a pathway toward

convergence of modeling and simulation (M&S) and artificial intelligence

methodologies.

Concomitantly, the emergence of the software agent concepts (Shoham 1993) that

embody and encapsulate knowledge-based deliberation, reasoning, autonomy, inter-

action, learning, and adaptation mechanisms led to the adoption of agents as model

design metaphors in simulation modeling. However, this limited view of the use of

agents in M&S was critiqued in Ören (2000a, b). In his panel statement (Ören 2000b)

at the 2000Winter Simulation Conference, Dr. Ören has pointed out a broader vision

for the use of agents in M&S. Besides using M&S for modeling agent systems in the

form of agent-based models, by which agent concepts are leveraged to create

abstractions of the system of interest, Dr. Ören has suggested that agents can also

be used to assist or support model behavior generation as part of the simulators or

provide cognitive support as front-end or back-end interface to a simulation system.

He called this expanded view as agent-directed simulation (ADS).
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My collaboration with Dr. Ören on ADS started a few weeks before I joined to

Auburn University as a tenure-track assistant professor in 2003. We met at the 2003

Summer Computer Simulation Conference that was held in Montreal, Canada.

Following our initial discussions on the emerging trends and critical drivers of

the use of software agent technologies in M&S, we developed a framework to

structure and delineate the role of agents throughout the whole life cycle of M&S. A

year later, this framework served as the basis for the first track of sessions on ADS

that Dr. Ören and I organized as part of the 2004 Summer Computer Simulation

Conference. Since the organization of this inaugural event, the ADS track of

sessions has been and, as of 2014, continues to be one of the key features of the

Summer Computer Simulation Conference series. The success of the ADS track in

2004 has led to the first Annual ADS Symposium that was held as part of the 2005

Spring Simulation Multiconference, formerly known as the Advanced Simulation

Technologies Conference. Since 2005, the ADS Symposium continues to be orga-

nized annually by a growing organization committee. In 2007, Dr. Greg Madey and

Dr. Maarten Sierhuis have joined the organization committee; this is followed by

Dr. Yu Zhang joining in 2009. Since then, ADS has also been organized as a track

of sessions as part of the European Modeling and Simulation Symposium and the

SimulTech Conference series.

Our technical collaboration with Dr. Ören, along with other invited contribu-

tions, has led to the publication of the first book (Yilmaz and Ören 2009) on ADS.

The Agent-Directed Simulation and Systems Engineering book is now viewed as

the only book to present the synergy between modeling and simulation, systems

engineering, and agent technologies while also expanding the notion of agent

simulation to also deal with agent-monitored simulation and agent-supported sim-

ulation. This journey in ADS has resulted in numerous publications that range from

advanced modeling and simulation methodologies such as multisimulation to

concepts and demonstrations of agents with personality, emotions, anticipations,

and understanding capabilities with application areas in engineering, defense, and

human and social dynamics.

The objective of this chapter is to illustrate how agents can be used to facilitate

development of next-generation simulators and assist in conducting simulation

experiments. First, we introduce software agents and then characterize the three

dimensions of the ADS framework that help explore the use of agents for simulation

and the use of simulation for agents. This is followed by the introduction

multisimulation and clarification of how agent-monitored and agent-assisted mech-

anisms facilitate its design and implementation. To emphasize the role of agents

besides in model development and simulator (i.e., model behavior generator)

design, we highlight the issues and challenges in goal-directed experimentation

and present an agent-assisted and model-driven experiment management strategy to

effectively address these challenges.
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1.2 Agent-Directed Simulation

Agents are autonomous software modules with perception and social ability to

perform goal-directed knowledge processing over time, on behalf of humans or

other agents in software and physical environments. When agents operate in

physical environments, they can be used in the implementation of intelligent

(smart) machines and intelligent (smart) systems and they can interact with their

environment by sensors and effectors.

The core knowledge-processing abilities of agents include goal-processing,

goal-directed knowledge processing, reasoning, motivation, planning, and

decision-making. The factors that may affect decision-making abilities of agents

(in simulating human behavior) are personality, emotions, and cultural back-

grounds. Abilities to make agents intelligent include anticipation (pro-activeness),

understanding (avoiding misunderstanding), learning, and communication in

natural and body language. Abilities to make agents trustworthy as well as assuring

the sustainability of agent societies include being rational, responsible, and

accountable. These characteristics lead to rationality, skillfulness, and morality

(e.g., ethical agent, moral agent).

Synergy of simulation and agents is called agent-directed simulation (ADS).

As shown in Fig. 1.1, it consists of contributions of simulation for agents and

contributions of agents for simulation.

Agent simulation involves the use of simulation conceptual frameworks and

technologies to simulate the behavioral dynamics of agent systems by specifying

and implementing the behavior of autonomous agents that function in parallel to

achieve objectives via goal-directed behavior. In agent-based model specifications,

agents possess high-level interaction mechanisms independent of the problem being

solved. Communication protocols and mechanisms for interaction via task

Fig. 1.1 Agent-directed simulation
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allocation, coordination of actions, and conflict resolution at varying levels of

sophistication are primary elements of agent simulations. Simulating agent systems

requires understanding the basic principles, organizational mechanisms, and tech-

nologies underlying such systems.

The principal aspects underlying such systems include the issues of action,

cognitive aspects in decision-making, interaction, and adaptation. Organizational

mechanisms for agent systems include means for interaction. That is, communica-

tion, collaboration, and coordination of tasks within an agent system require

flexible protocols to facilitate realization of cooperative or competitive behavior

in agent societies Agent-based modeling in which agents are used as design

metaphors to conceptualize and specify agent systems is becoming the most

common methodology in agent simulation. On the other hand, simulation(s) can

be used to realize deliberation architecture of agents in an agent system by simu-

lating the cognitive processes in decision-making. While embedding simulations

within the deliberation architecture of agents is not necessarily a novel concept on

its own, it is still an unexplored territory in MAS design and implementation.

Agent-based simulation (or agent-monitored simulation) is the use of agent

technology to monitor and generate model behavior. This is similar to the use of

AI techniques for the generation of model behavior (e.g., qualitative simulation and

knowledge-based simulation). Development of novel and advanced simulation

methodologies such as multisimulation suggests the use of intelligent agents as

simulator coordinators, where run-time decisions for model staging and updating

take place to facilitate dynamic composability. The perception feature of agents

makes them pertinent for monitoring tasks. Also, agent-based simulation is useful

for having complex experiments and deliberative knowledge processing such as

planning, deciding, and reasoning. Agents are also promoted and demonstrated as

critical enablers to improve composability and interoperability of simulation

models and software, in general.

Agent-supported simulation deals with the use of agents as a support facility to

augment simulations and enable computer assistance by enhancing cognitive capa-

bilities in problem specification and solving. Hence, agent-supported simulation

involves the use of intelligent agents to improve simulation and gaming infrastruc-

tures or environments. Agent-supported simulation is used for the following pur-

poses: (1) to provide computer assistance for front-end and/or back-end interface

functions, (2) to process elements of a simulation study symbolically (e.g., for

consistency checks and built-in reliability), and (3) to provide cognitive abilities to

the elements of a simulation study, such as learning or understanding abilities.

6 L. Yilmaz



1.3 Agent-Monitored Simulator for Exploratory
Multisimulation

We define multisimulation as simulation of several aspects of reality in a study. It

includes simulation with multimodels, simulation with multi-aspect models, and

simulation with multistage models. Simulation with multimodels allows computa-

tional experimentation with several aspects of reality; however, each aspect and the

transition from one aspect to another one are considered separately.

Simulation with multi-aspect models (or multi-aspect simulation) allows com-

putational experimentation with more than one aspect of reality simultaneously.

This type of multisimulation is a novel way to perceive and experiment with several

aspects of reality as well as exploring conditions affecting transitions. While

exploring the transitions, one can also analyze the effects of encouraging and

hindering transition conditions. Simulation with multistage models allows

branching of a simulation study into several simulation studies, each branch

allowing to experiment with a new model under similar or novel scenarios. Each

different strategy component characterizes a distinct aspect.

Multisimulation can be used to branch out multiple simulations, where each

simulation uses a specific component configured with an exclusively selected

strategy component. Similarly, multiple distinct stages of the problem can be

qualified at a given point in time during the simulation by virtue of the evaluation

of an updating constraint. In such a case, multisimulation enables branching

multiple distinct simulations each one, which generates the behavior of distinct

plausible stage within the problem domain.

Multisimulation with multimodels, multi-aspect models, or multistage models

needs mechanisms to decide when and under what conditions to replace existing

models with a successor or alternative. Staging considers branching to other

simulation studies in response to a scenario or a phase change during experimen-

tation. Graphs of model families facilitate derivation of feasible sequence of models

that can be invoked or staged. More specifically, a graph of model families is used

to specify alternative staging decisions. Each node in the graph depicts a model,

whereas edges denote transition or switching from one model to another. Figure 1.2

depicts the components of the abstract architecture of a possible multisimulation

engine.

A meta-simulator is an agent that generates staged composition of models by

traversing the model stage graph and coordinates their simulation and staging

within distinct simulation frames. Each frame simulates a distinct subset of models

derived from the model stage graph. Note, however, that not all staged composi-

tions are feasible or useful. Hence, the meta-simulator needs to consult with the

model recommender before model staging to determine if emergent trigger or

transition condition in the simulation is consistent with the precondition of the

model to be staged. More than one model in a family can qualify for staging; in such

cases, separate simulation frames need to be instantiated to accommodate and

explore plausible scenarios.

1 Toward Agent-Supported and Agent-Monitored Model-Driven Simulation Engineering 7



Given a collection of models (or more generally, a family of models), a stage

graph can be generated automatically by an optimistic approach that connects every

available node (model) to every other node within the domain of problem. The

edges in a model stage graph denote plausible transitions between models as the

problem shifts from one stage to another. One can consider each model as a separate

conflict management protocol (i.e., compromise over actions, compromise over

outcomes, negotiation, and mediation) or a phase in the conflict process (i.e.,

escalation, resolution), where a phase (i.e., resolution) can constitute alternative

models (i.e., mediation, negotiation, third-party intervention).

The subsets of staged models can be identified by traversing and enumerating the

graph in some order (i.e., depth first). Infeasible paths may be due to an unreachable

node, or it may result due to conflicts between the transition condition and precon-

dition of the target model. Infeasible paths due to incompatible sequences of models

are common. Each edge indicates that there is some legitimate solution; yet, it does

not imply that every solution containing the edge is legitimate. As argued above,

each model in a family of models is associated with a precondition. A precondition

denotes the conditions required for a model to be instantiated. Hence, the feasibility

of staging a successor model depends on the satisfiability of its precondition

(relevance) by the condition of the transition and the post-condition of the prede-

cessor model. As a result, not all enumerated staged sequences of model compo-

nents are feasible.

Model recommendation in multisimulation can simply be considered as agent-

supported exploration of the model-staging space that can be computed by a

Fig. 1.2 Components of a multisimulation engine
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reachability analysis of the graph. There are two modes for the usage: (1) offline

enumeration of paths using the graph and performing a staged simulation of each

model in sequence one after the other, unless a model-staging operation becomes

infeasible due to conflict between the transition condition and the precondition of

the successor model, and (2) run-time generation of potential feasible paths as the

simulation unfolds. In both cases, an online model recommender plays a key role to

qualify a successor model.

The first case requires derivation of sequence of models using a traversal

algorithm. The edges relate families of models. Therefore, the actual concrete

models, the preconditions of which satisfy the transition condition, need to be

qualified, since transition to some of these model components may be infeasible

due to conflict between a candidate model and inferred situation. Identifying such

infeasible sequences is computationally intractable; otherwise, it would have been

possible to determine if the conjunction of two predicates is a tautology by using a

polynomial time algorithm.

Experience in the component-based simulation paradigm, however, indicates

that for most model components, preconditions are simple. Hence, it is possible to

eliminate some models that violate the transition condition. For the remaining

possible transitions, it is possible to select one of the three strategies: (1) omit all

difficult qualification conditions, (2) decide on an edge-by-edge basis which spe-

cific models of a model family to include, and (3) include all difficult edges.

Omitting all difficult associations between transitions and model preconditions is

conservative. This strategy excludes all infeasible models. The cost is the exclusion

of some feasible edges. Hand-selecting those associations between transition con-

ditions and models facilitates inclusion of feasible models. Nonetheless, the costs

involved with this level of accuracy are the potential human error and effort needed

to filter out infeasible models. Choosing to include all difficult associations is

liberal, in that it ensures inclusion of all feasible models. The cost is the inclusion

of some infeasible models, hence the inclusion of some undesirable staged compo-

sitions that enforce models to be simulated even when their qualification conditions

are violated. Nevertheless, it is possible to screen out such models using an online

model recommender.

The second more ambitious yet flexible approach is to delay the enumeration

process until a model is qualified at run time. Run-time generation of feasible

staging using the graph of model families requires monitoring and evaluation of

transition conditions as the simulation unfolds. An agent-planning layer connected

to simulator would be capable of identifying, qualifying, and, if necessary, selecting

and instantiating a model based on the specified preferences and options. Further-

more, in the case of an impasse or lack of knowledge on preferences among

qualifying model switch strategies, a planning layer can guide exploring alternative

contexts (games) in some order. The scheduler agent follows the recommendations

made by the planner agent to instantiate distinct simulation frames.

Focus points maintain candidate models and associated simulations. A focus

point manages branch points in the simulation frame stack. Suppose that a goal

instance (i.e., stage transition condition) is at the top of the stack. If only a single
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model qualifies for exploration, then it is pushed onto the stack. Yet, if more than

one model matches the condition, a simulation focus point is generated to manage

newly created simulation branching (discontinuity) points. Each one of these

simulation focus points has its own context. When a path is exhausted, the closest

focus point selects the next available model to instantiate the simulation frame or

return to the context that generated the focus point. As simulation games are

explored, a network of focus points is generated. Determining which focus point

should be active at any given time is the responsibility of the meta-scheduler. When

more than one model is qualified, then scheduler needs to decide which one to

instantiate. Control rules can inform its decision. Three steps involve in deploying a

new simulation frame in such cases: matching, activation, and preference. The

matching steps should both syntactically and semantically satisfy the request. The

activation step involves running a dynamic set of rules that further test the appli-

cability of models with respect to contextual constraints. Finally, the preference

steps involve running a different set of rules to impose an activation ordering

among the active frames.

1.4 Agent-Supported and Model-Driven Simulation
Experiment Management

Model-driven engineering (MDE) has emerged as a practical and unified method-

ology to manage complex simulation systems development by bringing model-

centric thinking to the fore. The use of platform-independent domain models along

with explicit transformation models facilitates deployment of simulations across a

variety of platforms. While the utility of MDE principles in simulation develop-

ment is now well recognized, its benefits for experimentation have not yet received

attention. However, simulation is the act of using simulators and models to perform

goal-directed experimentation, and hence, model-driven experimentation needs to

be an integral part of the overall MDE-based simulation development process. The

provision of machine-interpretable experiment models grounded on the statistical

Design of Experiments (DOE) methodology will not only enable computer assis-

tance for selecting proper experiment designs but also facilitate reliable evaluation

of results. On the other hand, ad hoc scenario configuration files that are often used

for conducting experiments are not only difficult to maintain but also lack the

capability to define the concepts, relations, and constraints associated with the DOE

methodology.

We present our strategy, which brings together MDE (Stahl and Volter 2006),

DOE, optimization, and Intelligent Agent Technology (Yilmaz and Ören 2009) to

systematically design experiments and execute optimization algorithms by using

abstract, but formal, experiment models defined in terms of a Domain-Specific

Language (DSL). Model transformation (Rashid et al. 2011) methods facilitate

synthesizing experiments and optimization meta-heuristics from high-level
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specifications and then allow their orchestration using software agents that interpret

the design and conduct the experiments and optimization algorithms.

1.4.1 Domain-Specific Experiment Specification Based
on the DOE Metamodel

In the context of MDE, it is mandatory to clearly specify the structure of the

problem domain. In our case, it is the experiment design domain. The metamodel

provides a domain vocabulary and grammar in the form of an abstract syntax, along

with static semantics serving as constraints over the design. One of the first things

an analyst must do to design an experiment is to identify the factors. An experiment

may have many factors, each of which might be assigned a variety or range of

values, called the levels of the factor in DOE. Factors are classified into types,

including quantitative/qualitative, discrete/continuous, and controllable/uncontrol-

lable. Simulations come in many flavors. There are deterministic, stochastic, and

dynamic (terminating or nonterminating) simulations. A design is a matrix where

every column refers to a factor and each row describes a particular combination of

factor levels.

Each unique combination of factor levels is called a design point. We extend this

characterization of DOE to identify key concepts, relationships, and attributes.

Then, we develop a metamodel in the form of experiment domain ontology and

encode it as a grammar for defining the Domain-Specific Language. The DOE

ontology (Somohano-Teran et al. 2014) serves as the base model specifying the

commonalities across DOE experiments. The differences and optional/alternative

designs will be captured using a feature model that will be used to extend and

configure the base model with selected experiment design options (e.g., factorial

design vs. fractional factorial design).

To operationalize the metamodel, we use the Xtext environment, which is a

platform for developing Domain-Specific Languages. The Xtext platform facilitates

generation of the parser and a specific editor with syntax coloring and highlights for

the developed DSL. The metamodel serves as the grammar of the language

allowing users to define an experiment instance in terms of the vocabulary of the

experiment domain ontology (Somohano-Teran et al. 2014).

1.4.2 Feature Models for Experiment Variability Modeling

An experiment design can have various mandatory, alternative, and optional fea-

tures. Features are prominent attributes that facilitate modeling variants of exper-

iments to support different objectives. For instance, the type of the experiment

design (e.g., factorial, fractional factorial), the optimization strategy (e.g.,
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evolutionary strategy vs. simulated annealing), and the analysis method (e.g.,

ANOVA vs. MANOVA) are potential features that collectively define plausible

configurations of an experiment. A feature model is a model that defines the

features and their dependencies in the form of a feature diagram. In our approach,

features are interpreted as views into the DOE ontology, and selected features with

their associated concept structures are woven into the base experiment model to

derive the experiment specification. Each feature is defined in terms of a set of

ontological constructs (e.g., concepts, associations, attributes) and is integrated into

the experiment specification to configure the conceptual (i.e., data) and experiment

workflow components (e.g., batch-run specification, variance reduction method,

warm-up period, run length in terminating simulations, number of replications,

pseudorandom number generator) of an experiment design.

1.4.3 Agent-Assisted Experiment Model Generators

The major elements of our tool suite for experiment synthesis are highlighted in

Fig. 1.3. The DOE methodology and extant research in simulation experiment

design (Kleijnen 2005; Sanchez et al. 2014) provide the basis for the formulation

of experiment domain requirements. The resultant concept statement is used toward

developing the DOE metamodel, which is defined in terms of the Ecore meta-

metamodel over the Eclipse Modeling Framework.

The DOE ontology defines the vocabulary and grammar, i.e., the abstract syntax

for building the experiment domain space model. To support the instantiation of the

experiment models conforming to the DOE metamodel, a suitable Domain-Specific

Language is needed. This involves the definition of the concrete syntax and the

development of an appropriate editor. Tools that support the creation of DSLs are

readily available, and we used the popular Eclipse-based Xtext environment. The

feature model provides additional variants to bring additive variability to the base

model defined by the DSL. The experiment model defined by the DSL is configured

with the aspects specified in the feature model. Weaving an aspect element means

that all properties of the element, including its associated components, are woven

into the base model. Aspect-oriented modeling methods (Rashid et al. 2011) pro-

vided the requisite strategies to achieve this objective.

The Experiment Design Agent, shown in Fig. 1.2, evaluates the generated

experiment design matrix and improves the effectiveness and efficiency of the

design across the parameter space of the simulation application. A trade-off anal-

ysis between the number of design points and the number of replicates per design

point is carried out in relation to the type of experiment being conducted. Consider,

for instance, two options: one with many replicates per design point and another

with more design points with fewer replicates.

The first option enables explicit estimation of response variances that can vary

across scenarios. If the primary objective is to find robust system designs, then some

replication at every design point is essential. If the goal is to understand the system
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behavior, this requires understanding the variance, again mandating replication.

However, if the goal is that of comparing systems and a constant variance can be

assumed, then this constant can be estimated using classic ordinary least squares

regression. Replication is then of less concern, and the second option (exploring

more design points/scenarios) can be a better way to spend scarce computer

resources. Even beyond the trade-off is the consideration of how many design

points and replicates according to the users are needed to conserve or expend

computational resources. Is a quick answer needed or are limited computational

resources at hand? Or, is time not of the essence and computational resources are

not severely constrained? These environments will dictate different appropriate

DOE, and the agent interacts with the user to determine the best combination.

The Experiment Design Agent, if necessary, makes recommendations for

updating the experiment design by evaluating it across a number of design criteria.

A major design attribute is the number of scenarios required to enable estimation of

metamodel parameters using saturated designs such as the fractional factorial

design. To choose among different designs, orthogonality can be used to simplify

computations while observing constraints on factor level combinations (e.g., in a

queuing system, if arrival rates far exceed service rates, this will result in unac-

ceptable steady-state average waiting times). The experiment design also deter-

mines the standard errors for the estimated parameters. The DOE literature uses

several criteria to assure that the sum of these standard errors is minimal, and the

Fig. 1.3 Overview of experiment/optimization model synthesis
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design evaluation agent in updating the design prior to execution of the experiment

plan can use such criteria.

Space-filling design is yet another area that allows sampling design points not

only at the edges of the hypercube that defines the experiment space but also in the

interior. A space-filling design with good and balanced space-filling properties

helps users avoid making many assumptions about the nature of the response

surface and hence results in a robust design (Sanchez et al. 2014). In simulation

experiments, restricting factor values to realistic combinations may complicate the

design process. To this end, we need features in the DSL to allow the user to express

such constraints for interpretation and evaluation by the design agent. Furthermore,

the agent should embody knowledge about the conditions and constraints under

which specific experiment design schema work. The number of factors and the

complexity of the response surface are two critical criteria to assess and classify

designs. For instance, while coarse grids used for variable screening are effective if

the number of factors is few and the complexity is low, sequential bifurcation

(Sanchez et al. 2014) is used if the number of factors increases. Moderate levels of

complexity and number of factors are often handled by composite or central

composite designs (Law and Kelton 2000). On the other hand, if the number of

factors and response surface complexity are high, Latin hypercube and frequency

designs are often used. The design agent will make recommendations and configure

the design matrix to better fit the characteristics of the problem and experiment

space.

Following the instantiation of the experiment model under the Eclipse Modeling

Framework (EMF), model-to-model transformation is utilized via the Xtend platform
to synthesize both the experiment design matrix (in machine-interpretable XML

format) and the experiment workflow model that includes specification of the com-

putational activities for the selected experiment type. For instance, an evolutionary

strategy optimization feature requires components (e.g., to support the variation,

interaction, selection processes) that are different than elements of a strategy

based on particle swarm optimization that seeks optimal design parameters. In this

domain-specific architecture, the abstract experiment and feature models represent the

experiment domain, whereas the generated workflow model along with the concrete

experiment configuration represents the experiment workflow space. The workflow

space model is used toward generating experiment infrastructure modules, which are

initialized and coordinated by the Experiment Orchestration Agent to conduct the

experiment according to the plan specified in the experiment configuration.

Figure 1.4 highlights the major components needed for the synthesis and

execution of the experiment. By using the Eclipse-based Xpand Model-to-Code

generation facility, we define a template for each workflow type to instantiate an

application skeleton comprised of generic software components that implement the

workflow. The orchestration agent initializes the experiment infrastructure modules

and defines the simulation settings such as run length, warm-up period, variance

reduction method setup, batch-run specifications, design point (scenario) initialization,

and distribution of scenario executions.
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The orchestration agent incorporates experiment design adaptation capabilities

so that factors that are not significant in explaining the differences in the dependent

variables are reclassified as control variables, and, if necessary, design schema will

adapt as experimentation moves from variable screening to factor analysis and then

to optimization.

1.4.4 Analysis Model Derivation

The aggregation of results for effective analysis and communication is a critical

step. The mapping of the raw simulation data to abstract models that conform to

specific configurations that lend themselves to effective communication and anal-

ysis benefits from model-driven engineering and transformation principles. For

identifying robust solutions, a good analogy is exploratory analysis. Three-

dimensional rotatable plots, contour plots, and trellis plots provide features that

support exploration. Hence, data models that capture the ontology of these visual-

ization artifacts are effective in conveying the results. Also, regression trees and

Bayesian networks are effective ways of communicating which factors are most

influential on the performance measures.

The process involved in transforming the raw simulation data to a format that

can be consumed by external analysis tools has two main steps: (1) syntactic

Fig. 1.4 Overview of experiment code synthesis and orchestration
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mapping and (2) semantic mapping. Syntactic mapping requires developing an

injector that imports the contents of output stream data into a format that conforms

to the data model of the simulation. Extraction is the process of exporting the

content of the analysis model to an output file using the dedicated format used by

the analysis tool. The semantic mapping aligns the concepts coming from the data

model of the simulation to the concepts pertinent to the analysis model. The

transformation reexpresses the simulation data concepts as a set of analysis con-

cepts that conform to the grammar (metamodel) of the analysis type. For instance,

the data elements that conform to the simulation data model are mapped to the leaf

nodes of the Bayesian Net in a Bayesian Analysis model. On the other hand,

ANOVA models require translating raw data by computing metrics that are used

by the F-statistics to determine significance level of factors. Such mappings are

encoded as part of the Atlas Transformation Language that we have been using for

model-to-model transformation.

1.4.5 Simulation and Experiment Model Updating

The final step in the simulation experiment cycle is model updating in light of the

analysis and evaluation performed by the Experiment Orchestration Agent. We

consider two types of updates: (1) experiment model update and (2) simulation

model update.

Adaptation of an experiment occurs at multiple levels. Based on sequential

experiment results, specific factors are identified as significant, while others are

classified as control variables. The reduction in the number of pertinent factors

triggers a more detailed analysis of the levels of relevant factors. Such changes in

the direction of exploration of the parameter space do not require an update in the

experiment schema. However, experiment schema (metamodel) adaptation may be

necessary when the observed response surface complexity and the change in the

number of factors trigger, for example, an update from a central composite design

to a Latin hypercube design. Schema adaptation can be followed by a complete

schema revision, requiring a new experiment model consistent with the evolving

purpose of the experiment. The initiation of an optimization process immediately

after the discovery of the most pertinent factors calls for instantiation of a new

schema that facilitates implementation of the most appropriate optimization proto-

col. Therefore, the experimentation effort consists of not only data collection and

the number and length of simulation runs but also the effort required to generate the

experimental designs and manage the runs.

The second type of update involves the coevolution of the simulation model with

the experiment design. Figure 1.5 illustrates the related components that connect

the technical spaces of the simulation and experiment models. Besides the updates

needed within the parametric experiment design space, the results of the experiment

may suggest revisions or refinements to the behavioral mechanisms within the

simulation model’s technical space.
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A related benefit of connecting the experiment and simulation models is the

design and transformation of a simulation model in a way that facilitates creating a

list of potential factors and subsequently modifying their levels. At the same time,

the analysis model and its derivation presents a challenge in conveying the results

within the context of high-dimensional response surfaces.

1.5 Conclusions

Simulation involves goal-directed experimentation with dynamic models for a

variety of purposes, including scientific discovery, training, education, and enter-

tainment. Within the M&S life cycle, software agents can play various roles besides

serving as model design metaphors. In this chapter, we examined how agent-

monitored multisimulation concept can help explore alternative scenarios, as well

as evolving and changing context in symbiotic adaptive simulations. In a similar

vein, agent-assisted experiment management can support scientific discovery using

proven and effective heuristics in experiment design and evaluation.

The presented strategy defines simulation experiments in terms of a life cycle

with distinct phases, each with specific requirements and opportunities for compu-

tational assistance. The features of experiments and the governing processes are

defined in terms of explicit experiment models, which can be made available at run

Fig. 1.5 Model updating – coevolution of the experiment and simulation models
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time and be interpreted by intelligent software agents. By closing the loop via an

experiment life cycle, we propose online adaptation of experiment models based on

feedback received from previous iterations. As such, experiment models are used as

explicit run-time introspective models to assist the experimentation process. Fur-

thermore, experiments are defined at multiple levels of abstraction, starting with a

feature model that uses the vocabulary of the experiment domain expert.

Agent-assisted mapping of the feature model onto a more specific experiment

domain ontology, followed by model transformation, results in executable scripts

for batch-mode experimentation. The proposed approach is founded on three

critical pillars: (1) model-driven engineering, (2) agent-assisted experiment man-

agement, and (3) design of reproducible experiments. The synergistic interactions

between these elements are leveraged to improve computational assistance for each

phase of the life cycle. Ontology modeling is used to specify the structure of

the experiment model and to allow the use of model transformers to shift the

focus in experiment design to high-level features that are then compiled into

executable experiment scripts. Agents are used to prune the experiment ontology

space to relevant DOE concepts and attributes that are related to features selected

by the experiment designer.
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Yilmaz L, Ören TI (2009) Agent-directed simulation and systems engineering. Wiley, Berlin

18 L. Yilmaz



Chapter 2

Service-Oriented Model Engineering
and Simulation for System of Systems
Engineering

Bernard P. Zeigler and Lin Zhang

2.1 Introduction

The model is the foundation for simulation activities (Ören et al. 1982), especially

in regard to system of systems (SoS, a composition of systems which component

systems have legacy properties). A valid model and correct simulator are necessary

for obtaining simulation results that serve the intended use of the model (Zeigler

et al. 2000). Verification, validation, and accreditation (VV&A) is the primary

means of establishing the credibility of the simulation results (Pace 2004).

VV&A is usually considered after model construction and involves calibration

and/or validation of the established model in order to determine whether it is

credible. This post-construction determination has important implications to dis-

cover model problems and defects, but it cannot solve the problem of how to get a

correct model in the first place. Especially for complex systems, due to the

complexity and uncertainty of the system, the modeling process can be very

complicated, which makes VV&A of a model extremely difficult. Even if defects

are found via VV&A, revision of the model will be very difficult and costly.

More importantly, for a system of systems, to construct a valid model is just the

first step since a model of a SoS generally experiences a long term of evolution and

management. As a result, the key issue for a complex system model is to guarantee

the credibility of the full model life cycle with minimum cost.

To meet the challenges in development and management of the SoS model, this

chapter introduces the concept of the model engineering (Zhang 2011; Zhang
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et al. 2014a), which aims at setting up a systematic, normalized, and quantifiable

engineering methodology by exploring basic principles in model construction,

management, and maintenance to manage the data, processes, and organizations/

people involved in the full life cycle of a model to guarantee the credibility of its life

cycle. Meanwhile, in recent years, service-oriented technology has been widely

used in software intensive systems, as well as model construction and management

of complex system simulation. Therefore, we will show how modeling engineering

can take advantage of service-oriented technology to provide an efficient way of

building and managing the model of a system of systems.

2.2 Some Related History

It helps to recount some history relevant to service-oriented model engineering
(SOME) as appropriate to a volume dedicated to Tuncer Ören’s 80th birthday. As

early as 1973, Ören was expressing his normative views for modeling and simula-

tion (M&S) methodologies (Ören 1973) and recently published a treatise on the

synergies of simulation, agents, and systems engineering (Ören and Yilmaz 2012).

Many of his views on these synergies are covered in the book with Yilmaz on

Agent-directed Simulation and Systems Engineering (Yilmaz and Ören 2009).

As related by Ören and Zeigler (2012), Ören received his Ph.D. in systems

engineering under the supervision of A.W. Wymore. His Ph.D thesis was greatly

influenced by Wymore’s axiomatic approach for his systems theory (Wymore

1967). Moreover, Ören’s mechanical engineering background allowed him to

appreciate the vital importance of developing software tools for M&S (Ören

1990). He has always been interested in learning, conceiving, and developing

methodologies suitable for complex problems (especially for social problems)

which are inherently nonlinear in nature. As part of his Ph.D. requirements, in the

late 1960s, he developed a simulation model specification language called GEST

(General System Theory implementer) (Ören 1971) based on Wymore’s book

(Wymore 1967). Part of his aim was to use a translator to generate a simulation

program in a language which could be compiled or interpreted. Such translators

were implemented later by his students. GEST’s model specification language is

based on Wymore’s concept of systems composed of component systems and

couplings that all components to exchange information through input and output

ports. Since component systems and coupling recipes were already defined by

Wymore, in set-theoretic notation, Ören concentrated on ease of robust specifica-

tion and readability and avoided any set-theoretic representation.

Over the years, the scope of Ören’s concerns has broadened to formulate a body

of knowledge for M&S expressed in many publications and presented in detail in

Ören (2005, 2014), where he describes a paradigm shift from use of the term M&S

to the term simulation systems engineering (SSE): “In the early days, only very few

were referring to M&S. Afterwards, to stress modeling process and the associated

activities and environments, the term M&S is used by large number of
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simulationists. Currently, a very commendable shift of paradigm is being adopted

to cover all aspects of simulation studies. This is to conceive M&S –within a larger

perspective– as the Simulation Systems Engineering (SSE).” (Slight paraphrase of

(Ören 2005))

In this article, we take a similarly broad perspective and probe the nature of

model engineering in the context of systems engineering, particularly for systems of

systems (SoS) and implemented with service orientation environments. To estab-

lish the background needed for this discussion, we briefly introduce the definition

and theory of systems of systems as it relates to M&S, in particular to the discrete

event system specification (DEVS) formalism for M&S. We then define, and

examine in depth, model engineering for SoS which has deals with the full model

life cycle. With these concepts as foundation, we analyze the services necessary to

support model engineering and the requirements for design of a service-oriented

model engineering and simulation environment. Consideration of the results of

research in DEVS then enables us to give a more concrete characterization of such

an environment. We close with a discussion of how model engineering and DEVS

enable new frameworks for application areas and the opportunities for further

research.

Some short definitions of terms we employ as initial concepts are drawn from

Waite and Ören (2009):

• Body of Knowledge (BoK) – The set of justified true beliefs and competencies –

explicit and implicit – that defines a discipline, practice, role, or field of endeavor

• Referent – n. Something referenced or singled out for attention, a designated

object, real or imaginary, or any class of such objects

• Model – n. The representation of some referent

• Simulation – n. A mechanization of a model’s evolution through time

Although definitions are still in flux, for our purposes, service-oriented model
engineering is a form of model engineering that is based on a service approach to

computation, and simulation systems engineering is an inclusive term that includes

model engineering.

2.3 Theory of Systems of Systems

In systems theory as formulated by Wymore (Ören and Zeigler 2012), systems are

defined mathematically and viewed as components to be coupled together to form a

higher-level system.

As illustrated in Fig. 2.1, Wymore’s (1967) systems theory mathematically

characterizes:

• Systems as well-defined mathematical objects characterizing “black boxes” with

structure and behavior.
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• Composition of systems – constituent systems and coupling specification result

in a system, called the resultant, with structure and behavior emerging from their

interaction.

• Closure under coupling – the resultant is a well-defined system just like the

original components.

2.3.1 System of Systems

As illustrated in Fig. 2.2, a system of systems (SoS) is a composition of systems,

where often component systems have legacy properties, e.g., autonomy, belonging,

diversity, and emergence (Boardman and Sauser 2006). In this view, a SoS is a

system with the distinction that its parts and relationships are gathered together

under the forces of legacy (components bring their preexisting constraints as extant

viable systems) and emergence (it is not totally predictable what properties and

behavior will emerge). Here in Wymore’s terms, coupling captures certain proper-

ties of relevance to coordination, e.g., connectivity, information flow, etc. Struc-
tural and behavioral properties provide the means to characterize the resulting SoS,

such as fragmented, competitive, collaborative, coordinated, etc.

The main difference between SoS and general system composition is worth

noting. SoS generally refers to systems composed of components that are already in

existence and bring certain legacy properties “to the table” when placed into a new

composition. This is in contrast to general system composition where components

may be built from scratch for the distinct purpose of the new composition. This

implies that in the SoS case, a key feature is that the compositions require integra-

tion and/or coordination to overcome the features and goals of the existing systems

that don’t align well with the new system goals. However, we remark also that the

term SoS is still in flux and may sometimes mean complex systems whose compo-

nents themselves are complex systems. Depending on the definition of “complex-

ity” in this context, the two meanings may actually coincide.

Fig. 2.1 Wymore’s system composition
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2.3.2 Discrete Event Systems Specification (DEVS)
Formulation of SoS

The DEVS formalism (Zeigler et al. 2000), based on systems theory, provides a

framework and a set of M&S tools to support systems concepts in application to

SoS engineering (Mittal and Martin 2013). A DEVS model is a system-theoretic

concept specifying inputs, states, and outputs, similar to a state machine. Critically

different, however, is that it includes a time-advance function that enables it to

represent discrete event systems, as well as hybrids with continuous components, in

a straightforward platform-neutral manner. DEVS provides a robust formalism for

designing systems using event-driven, state-based models in which timing infor-

mation is explicitly and precisely defined. Hierarchy within DEVS is supported

through the specification of atomic and coupled models. Atomic models specify

behavior of individual components. Coupled models specify the instances and

connections between atomic models and consist of ports, atomic model instances,

and port connections (ports and connections are not shown here for simplicity). The

input and output ports define a model’s external interface, through which models

(atomic or coupled) can be connected to other models.

As illustrated in Fig. 2.3, based on Wymore’s systems theory, the DEVS

formalism mathematically characterizes the following:

• DEVS Atomic and Coupled Models specify Wymore systems.

• Composition of DEVS models – component DEVS and coupling result in a

Wymore system, called the resultant, with structure and behavior emerging

from their interaction.

• Closure under coupling – the resultant is a well-defined DEVS just like the

original components.

• Hierarchical composition – closure of coupling enables the resultant-coupled

models to become components in larger compositions.

Fig. 2.2 System of systems
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2.4 Model Engineering for SoS

A model is an abstract expression of objects to study and embodies high intelli-

gence of human beings in recognition of the world. With continuous development

of science and technologies, the model is becoming more and more important. It

refers not just to the process of modeling but also to the life cycle of model.

2.4.1 The Life Cycle of a SoS Model and Related Works

Generally, a model experiences requirement analysis, model design, model con-

struction, model verification and validation (VV&A), model application, and model

maintenance (Zhang 2011). These processes compose a complete life cycle of a

model as is shown in Fig. 2.4.

How to build a right model is the core issue in simulation. A large number of

research achievements on models have been obtained in the past dozens of years.

These achievements are related to different phases in a model life cycle, e.g.,

modeling theory and method, VV&A, and model management.

The life cycle concept has not been emphasized enough in the simulation

domain, and related research and applications are not sufficient (Balci 2012).

Fishwick (1989)called the simulation model development process as simulation

model engineering to emphasize engineering feature of the model development

process, but no special explanation on its meaning was given, and no systematic

method system was established.

In recent years, the international simulation community has become conscious of

the unfavorable influences of missing foundational theory of M&S on the develop-

ment of simulation curriculum. As a result, research on the M&S life cycle

management is gradually attracting attention from academic circles. Radeski and

Fig. 2.3 DEVS formulation of systems of systems
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Parr (2002) proposed the modeling simulation life cycle model framework, which

defined organization mode and structure of the modeling simulation process, work

products, quality assurance, and project management, and described the features

and requirements of the life cycle phases such as development, use, maintenance,

and reuse of the modeling simulation system. References (Fishwick 1990; Abdouni

Khayari et al. 2010) achieved some valuable results in the model life cycle

management and developed a model prototype management system, which pro-

vided valuable reference to model development for designers.

2.4.2 Challenges in Development and Management of SoS
Models

As can be seen from the related work, current research on models generally focused

on one phase in the model life cycle and is separate and diffuse. Although impor-

tance of the engineering idea is gradually recognized in applications of the full

model life cycle, currently no complete theory and technology system and philos-

ophy are available. So there are still lots of challenges in the life cycle of the model

of SoS. As pointed in (Zhang et al. 2014a), some reasons for this situation are:

1. High complexity of the referent SoS – Firstly, a SoS is composed of various

component systems, and the relationship between them is very complicated.

Secondly, generally a complex system is dynamic, variable, and very uncertain.

Thirdly, SoS generally performs emergent behaviors. These features make a SoS

very complicated. The complexity of SoS leads to the complexity of the model

itself.

2. The long life cycle of a SoS – With passage of time, the models should be

continuously improved and changed. Different model versions are available.

Each version may be applicable to different application phases. Different

requirement

design

construction

VV&A

application

maintenance

Fig. 2.4 The life cycle of a

SoS model

2 Service-Oriented Model Engineering and Simulation for System of Systems. . . 25



versions and application phases of multiple models compose a complicated

network. How to keep consistency and credibility of different parts and versions

of the model is the key for model maintenance.

3. Model heterogeneity – A SoS is composed of many heterogeneous component

models. Heterogeneity of models generally comes from different development

organizations, different platforms and architectures, different development lan-

guages and databases, etc. Heterogeneity brings big challenges to integration

and maintenance of the system models.

4. Complicated evolution of models – Generally, a SoS is in continuous evolution,

so the models will be continuously adjusted and changed. Changes of different

relations are very complicated in evolution due to system complexity, so the

model elements and its relation should be completely tracked and managed to

guarantee correctness of the model evolution.

5. Difficult model reuse – With growth of complexity of the systems to study, the

roles and values of model reuse are very remarkable in model development and

use of a SoS (Liu et al. 2008). Generally, a SoS includes multiple combined

systems. A huge number of system models in past research and development

practices have been accumulated. Correct and efficient reuse of models will

reduce model development cost, greatly shorten development time, and effec-

tively improve model credibility. Although some research on model reuse has

been conducted, no efficient and practicable model reuse method is

available now.

6. Massive processing data – Generally, a SoS entails a large amount of data to

process, including the required modeling data, data generated in modeling, and

data generated in the modeling process. Data processing includes data storage,

inquiry, exchange, management, understanding, analysis, and mining, which

bring many challenges.

7. The multidisciplinary collaborative model development – Collaborative model

development is associated with different steps in the whole model life cycle.

Collaboration is required on different phases, e.g., collaborative requirement

analysis, collaborative design, and collaborative validation. All this work com-

poses a huge engineering requirement and should be supported by appropriate

management tools.

8. Higher requirements for system performance – Compared to a simple system, a

SoS requires higher performance, e.g., higher requirements for reliability, secu-

rity, credibility, cost, and energy saving. To guarantee that these performance

requirements are met, special means should be required to analyze and process

the models.
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2.4.3 Meaning of Model Engineering

2.4.3.1 Concept of Model Engineering

Based on the state-of-the-art researches on the model, a systematic methodology

was proposed to cope with challenges in model life cycle management of a SoS

(Zhang 2011; Zhang et al. 2014a). The model development and management

activities change from a spontaneous and random behavior to conscious, system-

atic, standardized, and manageable behavior by constructing a model engineering

theory and methodology system in order to guarantee credibility of different model

phases.

Zhang (2011; Zhang et al. 2014a) gave a definition of model engineering as

follows:

Model engineering is defined as a general term for theories, methods, technol-

ogies, standards, and tools relevant to a systematic, standardized, quantifiable

engineering methodology that guarantees the credibility of the full life cycle of a

model with the minimum cost.

Here, model engineering involves the following meaning (Zhang 2011; Zhang

et al. 2014a):

1. Model engineering regards the full life cycle of a model as its object of study,

which studies and establishes a complete technology system at the methodology

level in order to guide and support the full model life cycle process such as

model construction, model management, and model use of a SoS.

2. Model engineering aims to ensure credibility of the full model life cycle;

integrate different theories and methods of models; study and find the basic

rules independent of specific fields in the model life cycle; establish systematic

theories, methods, and technical systems; and develop corresponding standards

and tools.

3. Model engineering manages the data, knowledge, activities, processes, and

organizations/people involved in the full life cycle of a model and takes into

account time period, cost, and other metrics of development and maintenance of

a model.

4. Here, the model credibility is a comprehensive indicator and includes factors

such as availability, accuracy, reliability, and quality of service (QoS).

2.4.3.2 Key Technologies of Model Engineering

As described in the above part, current research on the technologies related to the

full model life cycle is preliminary and diffuse. For comprehensive and systematic

application and implementation of model engineering, many key technologies

should be studied (Zhang et al. 2014a). These technologies can be divided into

six categories as shown in Fig. 2.5.

1. General technologies
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• Body of knowledge of the model engineering: The body of knowledge system

(BoK) includes the concepts and terminologies involved in a specific research

field. The model engineering BoK identifies the research scope of the model

engineering and its boundary and relationship with other related subjects.

Establishment of systematic and complete BoK requires long-term accumu-

lation and extraction.

• Model engineering standards and specifications: Standards are the basis for

the implementation of the model engineering. During the life cycle process of

a model, each activity requires corresponding standards, including model

development process, model description, model component interface,

Key technologies

General technologies

Supporting
technologies

Analysis and
evaluation

technologies

Modeling
technologies

Model management
technologies

Model engineering
process management
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Body of knowledge of the model engineering
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Model data and knowledge management
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Model composition and reuse
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Model engineering standards and specifications

 Modeling of model lifecycle process

Model engineering process management

Acquisition and management of model requirements

Fig. 2.5 Key technologies of model engineering
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model storage, model data exchange, model interoperation, model service,

model maintenance, etc.

2. Model engineering process management technologies

• Modeling of model life cycle process: The life cycle model of the model

engineering aims to identify the structural framework of activities involved in

model construction and management (Zeigler et al. 2000), which is the

methodology to guide the model engineering, and ensure improvement of

model quality and development efficiency and reduction of full model life

cycle cost. Proper process models and corresponding implementation

methods can be proposed by referring to the existing achievements in the

system engineering and software engineering and other relevant fields and

combining the model development features of SoS.

• Model engineering process management: The data, knowledge, tools, per-

sons/organizations, and technologies in the full model life cycle should be

effectively managed with the model life cycle process model as the guide,

with standards and specification as the basis, and with the project manage-

ment methods and means as reference in order to get the dependable model

with the minimum cost. The model maturity definition and control, perfor-

mance management, flow monitoring and optimization, risk control, and cost

control are important in model engineering process management.

3. Modeling technologies

• Acquisition and management of model requirements: Accurate requirement

acquisition is the key in modeling. Requirement acquisition and management

is very challenging due to uncertainty and ambiguity of SoS. Requirement

acquisition studies to extract, describe, parse, and validate requirement via

automated or half-automated means. Requirement management studies how

to reflect the changing requirements in the model construction and mainte-

nance accurately and timely.

• Model description and modeling language: Generally, a SoS contains multi-

ple different systems with different properties such as qualitative systems,

quantitative systems, continuous systems, discrete event systems, determin-

istic systems, uncertain systems, etc. One of the core issues in model devel-

opment of SoS is how to take advantage of effective ways to describe the

whole system. Therefore, it is required to study corresponding model descrip-

tion mechanism and structure and develop generic or specific description

languages according to the characteristics of the various systems.

4. Model management technologies

• Model library: The model library is the foundational platform to carry out

model management and perform standardized encapsulation, storage, and

query for the models (Ören and Zeigler 1979). The complicated applications

such as model reuse, combination, and configuration management can be

based on the model library. Traditional database technology, service-oriented
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technology, and cloud-computing technology can support construction and

management of the model library.

• Model composition and reuse: The model composition and reuse is an

important technology to improve model construction and maintenance effi-

ciency and improve model credibility of SoS. It mainly studies how to use the

existing model components to quickly and correctly compose complicated

models according to the system requirements and includes standardized

encapsulation of model components, intelligent model matching, model

relation management, dynamic model combination, model consistency vali-

dation, and model service.

• Model reconstruction and configuration management: The requirements for

model functions and performances change due to diversified requirements

inside and environmental uncertainty, so the models should be quickly

reconstructed or configured. The model reconstruction aims to adjust the

internal structure without change of the main external functions of models,

further optimize the model performance, and ease its understanding, mainte-

nance, and transplant of models. Model configuration can adapt different

requirements or change of models in function and performance by adjusting

and optimizing internal components and parameters. For SoS model engi-

neering, model reconstruction and configuration management are very impor-

tant and challenging.

5. Analysis and evaluation technologies

• Quantitative analysis and evaluation of the model engineering: The quanti-

tative analysis is one of main features of the model engineering. To ensure

credibility of the full model life cycle, many steps should be analyzed,

evaluated, and optimized in a quantitative manner, e.g., complexity analysis

and evaluation of model development process, cost and benefit analysis and

optimization, risk analysis and control, model availability and reliability

analysis, and model service quality analysis.

• Model validation, verification, and accreditation (VV&A): The model

VV&A technology is one important part in the model engineering. Although

some rich research achievements have been achieved, they cannot meet the

actual requirements of modeling simulation of SoS. Most research focuses on

qualitative analysis, and quantitative and formalized analysis methods are

lacking, so VV&A technology, especially VV&A quantitative analysis, and

formalized analysis technology are still a main research focus in the model

engineering.

• Model data and knowledge management: Many SoS models contain volumi-

nous data to process. Some models are constructed based on massive data, or

even exist in the form of data and their relations. Data management aims to

effectively organize and use the data, especially massive data, and plays a key

role in quantitative analysis of the model engineering. On the whole, the

knowledge is divided into two classes in the model engineering. The class

1 indicates the knowledge in the model, e.g., some qualitative models include
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massive knowledge rules. Another class indicates the knowledge on model

development and management and generally includes experiences accumu-

lated and extracted by developers and users in practices. Different knowledge

should be managed and used in different manners to improve model quality

and intelligence and automation of model construction and maintenance.

6. Supporting technologies

• Visualization technology of model engineering: Visualization technology can

be used on different phases of the model engineering, can realize transparent

model development and management process, facilitate understanding and

monitoring, and improve human–machine interaction efficiency. The visual-

ization technology plays an important role in the model engineering.

• Support environment and tools of model engineering: Implementation of the

model engineering requires an integrated support environment and

corresponding support tool to support different activities of model engineer-

ing, e.g., network collaboration, requirement management, process model

construction and maintenance, model library management, qualitative and

quantitative analysis and evaluation, data integration, knowledge manage-

ment, model validation, and simulation experiment.

2.4.4 Body of Knowledge of Model Engineering

Model engineering is the resultant of fusion of many crossing subjects including the

software engineering, system engineering, computer science and engineering,

mathematics, system M&S, knowledge engineering, project management, quality

management, and related application fields. Based on the body of knowledge in

these disciplines, specific BoK of the model engineering is formed according to the

requirements and features of the model engineering.

To establish the model engineering BoK, it is necessary to tease out the involved

knowledge system in a systematic manner, extract features closely associated with

the model-related activities from related fields, and summarize and condense those

specific development technologies and management means of the model life cycle

process. A preliminary BoK framework of the model engineering was given by

Zhang (2011, 2014a). Two aspects are mainly considered in this process.

1. Identify the horizontal crossing relations between the model engineering and

other closely associated subjects, properly tailor their overlapping parts, and

make these overlapping parts reflect specific features of the model engineering.

2. Identify the modules in the model engineering system and vertical hierarchical

relations and horizontal interface relations between modules, make the frame-

work compose an organic whole, and serve for the full life cycle process of the

model.
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By introducing the model engineering BoK framework, we hope to reach the

following targets:

1. Promote consistent opinion within academic circles on the meaning of model

engineering

2. Identify the research scope of model engineering

3. Relate the position of model engineering to other subjects such as software

engineering, system engineering, computer science, and mathematics and set

their boundaries.

A BoK framework of model engineering is shown in Fig. 2.6 (Zhang 2011;

Zhang et al. 2014a). The BoK framework of the model engineering is divided into

five parts:

• Part 1: Foundation: including the basic concepts and terms, methodology,

technical system, etc. It provides the basic guidance for the implementation of

the model engineering and also is the foundation and guarantee of the model

engineering independent of other subjects.

• Part 2: Model life cycle: it describes different phases of the full model life cycle

at the technical level. This part modeling requirement, model design, model

construction, model VV&A, model application, model maintenance.

• Part 3: Implementation and management of the model engineering: it includes

the process management quality management of model engineering and model

configuration management. All activities in the full model life cycle are man-

aged and controlled implementation, process, and quality.
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Fig. 2.6 The BoK framework of the model engineering
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• Part 4: Model engineering tools: it provides the necessary software tools for the

implementation and application of the full life cycle of the model engineering.

• Part 5: Related standards of model engineering: it includes rules, protocols, or

specifications, which are necessary for implementation of model engineering

and development of related tools.

The detailed contents of each part can be found in Zhang et al. (2014a).

2.5 Service-Oriented Model Engineering and Simulation
Environment

The construction and management based on model engineering are shown in

Fig. 2.7 (Zhang et al. 2014b). Taking modeling as an example, a simulation scenario

is given, then multiple subtasks of the system are formed automatically according to

the scenario, and automatic matching between tasks and processes is completed in

the model engineering platform, so a new model is built. This just-built model can

be added into the model library as a case; therefore, the model library is enriched.

The use, management, and maintenance are completed by the full life cycle of

model engineering.

2.5.1 Architecture of Service-Oriented Model Engineering
and Simulation Environment

Service-oriented technology is one of the most powerful and popular technologies

to the development, management, and integration of software intensive systems and

has been widely applied to lots of different domains.

A service-oriented model engineering and simulation environment is a kind of

software to support the implementation of model engineering (Zhang et al. 2014b)

and simulation (Fig. 2.8). There are five layers including model component layer,

model service layer, model management layer, simulation layer, and application

layer. The functions of each layer are as follows:

1. Model component layer: there are various models, such as qualitative model,

quantitative model, linear model, and nonlinear model. Meanwhile, these

models are provided by different organizations and developers, which can lead

to model heterogeneity, so model component layer is needed to classify and

organize models.

2. Model service layer: this layer is a process of model normalization. It provides

interface specifications among models and conducts unified service encapsula-

tion and transformation (e.g., service–agent modeling (Si et al. 2009; Liu
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et al. 2014) is a kind of method), and then the standardized model is put into the

model service center.

3. Model management layer: model management layer executes management and

operation of models in the model service center, such as searching, matching,
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composition, configuration, modification, VV&A, etc. Fast and accurately

matching among models is guaranteed by management, so requirements of

M&S can be satisfied.

4. Simulation layer: simulation layer mainly consists of simulating calculation,

visualization, man–machine interaction. Simulating calculation means getting

simulation results under the help of software and hardware. Visualization tech-

nology can realize transparent model development and management, as well as

facilitate the process of understanding and monitoring; man–machine interaction

can support different types of interactions.

5. Application layer: different kinds of applications can be carried out with the help
of model engineering. These applications can include manufacturing, medical

treatment, military, environment, society, etc. This reflects the value of model

engineering itself and its contributions to society development.

2.5.2 Implementation of a Service–Agent-Based Model
Engineering Supporting Environment

According to the idea of model engineering, the elements in a model library should

have the characteristics of service oriented, intelligence, standardization, etc.

2.5.3 Encapsulation of Model Components

To achieve this purpose, we use service–agent (SA) that was proposed in Si

et al. (2009) to encapsulate component models in the model library. Service–

agent is a combination of service and agent, which can make service with agent

characteristics (Si et al. 2009; Liu et al. 2014) and will be well suited to features of

SoS. The structure of a SA is shown in Fig. 2.9.

A SA has several features (Liu et al. 2014): (1) A SA is an autonomous entity

which observes and acts upon an environment and directs its activity toward

achieving goals. (2) A SA pertains to SOA standard with XML-based protocols

such as WSDL, SOAP, etc. (3) A SA has states, e.g., working state, prepared state,

waiting state, and searching state.

After component models are encapsulated into SAs, the process of modeling of a

complex system can be transferred into the process of composition of SAs in the

model library. Theoretically, the composition of component models with SAs can

be automatic and have the ability to be self-adapted to the uncertainty of SoS.
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2.5.3.1 Specifications of Service Agents

Specifications of SA are basis of communication, interaction, and composition

among SAs. A set of SA specifications were given by Zhang et al. (2014b). The

SA specifications are described as three parts: interface specifications, architectural

specifications, and implementation specifications.

1. Interface specifications: SA external interface is either java component interface

or web service, which can support integration of local area network (LAN) and

wide area network (WAN). The purpose of user-oriented interface layer speci-

fication is to unify the descriptions of components and build standard calling

interfaces for components. Component interface follows the principle of service

orientation, which let users pay attention to functions provided by components,

rather than the internal structure and state of components.

2. Architectural specifications: SA has the characteristics of environment aware-

ness and special communication interface, which general simulation compo-

nents do not have. These reflect the intelligence of SA. Architectural layer is

designed to support the underlying services for interface layer, while conducts

constraint and guidance as a component for realizing infrastructure by special-

ized technological standard for implementation layer.

3. Implementation specifications: One implementation for the SA is an agent based

on JADE/JAVA platform. Compared with general agents, this endows SA with

function operations in the form of web service and can support web integration.

We discuss DEVS-based approaches to service-oriented model engineering in

Section 2.6.

2.5.3.2 Cooperation Mechanism of SA

Cooperation mechanism of SA can be different according to different SA specifi-

cations and applications. A mechanism is given in Liu et al. (2014). In the
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mechanism, a SA is designed to have four states including the working state,

prepared state, waiting state, and searching state. In working state, service agent

provides service and receives output from its previous SA. In prepared state, all

behaviors are blocked for a new message to come. Waiting state is for the workers.

In this state, the worker receives other organization members’ ID information and

input/output matching information from the organizer. Searching state is for the

organizer. The organizer adopts “first come first serve” strategy to choose workers.

A composition algorithm is given based on the above cooperation mechanism,

and a software platform prototype for an abstracted SoS simulation problem is also

developed (Liu et al. 2014). This prototype used JADE4.1 (Java Agent Develop-

ment Framework) platform to perform model composition with the SA-based

method. JADE is a MAS (multi-agent system) software development platform in

JAVA language. Web services are published in a Tomcat7.0 container and are

packaged byWSIG (JADEWeb Service Integration Gateway) plug-in. The purpose

of WSIG is to achieve the integration of MAS and WS (web service) architecture.

2.6 DEVS-Based Service-Oriented Model Engineering
and Simulation Environment

Mittal (2014) describes model engineering for cyber complex adaptive systems, a

very challenging class of SoS, by extending Model-Based Systems Engineering

(MBSE) paradigms (Zeigler 1976; Zeigler et al. 2000; Mittal and Martin 2013).

Applied to complex adaptive systems, model engineering must address distinct

challenges posed in the M&S domain such as model composability and

executability. These problems can be overcome with formalisms that distinguish

models (which represent the essence of a SoS) from simulators (which are the

platforms for executing the models to generate their behavior). To do so, we can

employ the theoretical and conceptual frameworks such as the systems-based

DEVS concepts presented earlier. The DEVS formalism provides a sound and

practical foundation for the architecture of model engineering and simulation

environment presented in Fig. 2.7. Some of the main reasons for basing the

architecture on DEVS are the following:

• DEVS formalizes what a model is, what it must contain, and what it doesn’t
contain (e.g., experimentation and simulation control parameters are not

contained in the model).

• DEVS represents a system of interest (SoI) using well-defined input and output

interfaces. This is critical because composing models requires respecting such

boundaries for the constituent referent SoIs.

• DEVS is universal and unique for discrete event system models in the sense that

any system that accepts events as inputs over time and generates events as

outputs over time is equivalent to a DEVS in a strong sense: i.e., its behavior

and structure can be described by such a DEVS.
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• A DEVS model is a system-theoretic concept specifying inputs, states, outputs,

similar to a state machine. Critically different, however, is that it includes a time-

advance function that enables it to represent discrete event systems, as well as

hybrid systems with continuous components in a straightforward platform-

neutral manner.

• DEVS-compliant simulators execute DEVS-compliant models correctly and

efficiently. DEVS defines what’s necessary to compose modularized models

that will be executable by a compliant simulator.

• DEVS models can be executed on multiple different simulators, including those

on desktops (for development) and those on high-performance platforms, such

as multi-core processors.

• DEVS supports model continuity which allows simulation models to be exe-

cuted in real time as software by replacing the underlying simulator engine.

Mittal (2014) stresses the fundamental difference between software-based dis-

crete event simulation and systems-based discrete event simulation. While the

former is strictly based on object-oriented software engineering paradigm (e.g.,

Schmidt 2006; Volter et al. 2006), the latter enforces Wymore’s System Theory on

the object-oriented discrete event simulation engine as shown in Section 2. Since

cyber complex adaptive systems are multi-agent adaptive systems at the funda-

mental level, there are many agent-based modeling (ABM) tools available to

represent them. Unfortunately, due to their software-based object orientation, the

large majority of these tools do not conform to Wymore systems theory’s closure
under composition principle. In contrast, a DEVS-based agent has the notion of a

system attached to it and is built on formal semantics that adheres to Wymore’s
systems theory. Such an approach makes it possible to develop a simulator, a

simulation protocol, and a distributed high-performance engine for agent/system

model’s execution that ensures that closure of coupling is not violated. Moreover,

DEVS formal specification allows it to interface with model-checking tools based

on unified modeling language (UML) tools to supplement simulation with formal

verification and validation, a critical feature of model engineering (Zeigler and

Nutaro 2014).

Several M&S environments exist that support the DEVS-based methodology

just described, including DEVS-Suite, CD++, DEVSim++, JAMES II, Python

DEVS, and VLE (see the list at DEVS Standardization Group (2014) for descrip-

tions). Mittal and Martin (2013) describe packaging all these functionalities in a

netcentric DEVS Virtual Machine (VM) that provides and agent-execution envi-

ronment to apply to cyber complex adaptive systems. The M&S environment

MS4Me was developed as the first in a commercial line of DEVS products

(ms4systems.com). It employs Xtext, an EBNF grammar, within the Eclipse

Modeling Framework on the Rich Client Platform and the Graphical Modeling

Project to provide a full-blown IDE specifically tailored to a DEVS development

environment (Zeigler and Sarjoughian 2012).
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2.6.1 System Entity Structure (SES)

The System Entity Structure (SES) formalism is an ontology representation of

compositions, components, and coupling patterns that can be pruned to select a

particular hierarchical model tree information structure. Automatic synthesis can

then generate an executable simulation model through selection of model compo-

nents in the model base (Zeigler 1984; Kim et al. 1990; Kim and Zeigler 1989). The

SES is implementation agnostic and can be represented in various knowledge

representation frameworks including standard relational data formalisms (Park

et al. 1997; Kim and Kim 2006; Zeigler et al. 2013).

The SES/MB framework has been studied in various computational environ-

ments and applied to numerous industrial problems (Mittal et al. 2006; Cheon

et al. 2008). Recently, the SES/MB framework has seen increasing application to

M&S of system of systems (SoS). Commercial environments have been developed

to enable more flexible representation of alternatives (including composition pat-

terns and hierarchical components) and rule-based constraints for pruning enabling

the development of suites of families of models (Zeigler and Sarjoughian 2012).

Distributed simulations of complex federations in HLA can now be generated in

addition to the original stand-alone simulations (Kim et al. 2013; Seo and Zeigler

2009).

The methodology has led to the Hierarchical Encapsulation and Abstraction

Principle which allows combining the top-down paradigm for the constructive

simulation with the bottom-up paradigm for the emergent simulation. Applications

have been to simulation study of agent-based tactical and operational effectiveness

of warfare and network vulnerability analysis (Chi et al. 2009; You et al. 2013; You

and Chi 2009).

Table 2.1 summarizes the above review by examining the layers of service-

oriented model engineering and simulation environment presented in Fig. 2.8 from

the point of view of DEVS support.

DEVS enables new frameworks for application domains, especially those that

feature continuous/and discrete systems that interact (sometimes called hybrid

systems). Some examples such as production flows in the food industry, building

energy design, quantum key distribution (QKD) systems, and agent-based trans-

portation evacuation are presented in Table 2.2 in terms of their novel features and

unique capability offered when compared to existing approaches. DEVS also

supports tools for simulating such models. For example, a compiler that employs

DEVS to execute models expressed in the well-known simulation language,

Modelica.
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2.7 Conclusion

Inspired by Prof. Tuncer Ören’s broad perspective on the M&S enterprise, we

probed the nature of model engineering as spanning the life cycle of a model in

the context of systems of systems engineering, particularly implemented with

service orientation. We presented an architecture for service-oriented model engi-

neering and simulation environments whose layers support the various activities of

model engineering. Based on the results of DEVS research, we gave a more

concrete characterization of such an environment and how model engineering and

DEVS enable new frameworks for application areas. Unifying the various activities

needed to produce credible models via the concept model engineering is only in its

infancy.

Further research is needed to organize and deepen the body and knowledge and

to probe each of the architectural layers we have identified, establish their cross

connections, and add new ones as needed. The application context of service

orientation is a good one to focus attention on the implementation of support for

model engineering but not necessarily the only context in which support might be

conceived. Similarly, DEVS theory and research have given much solid substance

to the body of knowledge and practice of model engineering but more general

Table 2.1 Layers of service-oriented model engineering and simulation environment

Layer Description DEVS support

Model com-

ponent layer

Classifies and organizes models Implementation agnostic, flexible

representation of alternatives (includ-

ing composition patterns and hierar-

chical components), and rule-based

constraints for pruning enabling the

development of suites of families of

models

Model ser-

vice layer

Provides model standardization with

interface specifications, unified service

encapsulation, and transformation

The DEVS formalism provides a for-

mal basis for semantic and pragmatic

interoperability among DEVS models

using Service-Oriented Architecture

and DEVS Namespace

Model man-

agement

layer

Executes searching, matching, com-

position, configuration, modification,

and VV&A

Pruning of the SES enables automatic

synthesis of an executable simulation

model through extraction and cou-

pling of model components in the

model center

Simulation

layer

Provides simulation, visualization,

man–machine interaction

The DEVS Abstract Simulator pro-

vides a standard distributed DEVS

protocol for interoperation of DEVS

simulators

Application

layer

Enables model engineering applica-

tions to specific domains

Numerous applications have been

done with DEVS-based M&S. Exam-

ples of the development of frame-

works are given below
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theory of M&S should inform and unify such a body. For example, ultimately the

elements, such as experimental frame, simulator, etc., and relations (modeling,

simulation, applicability, etc.) of the theory of M&S must be brought in to fully

consider the best practices for M&S and offer normative views on how to formulate

the knowledge needed to make them better.

Table 2.2 DEVS-enabled frameworks

Application area Novel feature Unique capability

Components: processing

units, conveyor belts

New framework for carrying

out simulations of continuous-

time stochastic processes

Keeping track of parameters

related to the process and the

flowing material (tempera-

ture, concentration of pollut-

ant) is also considered. Since

these parameters can change

over time in a continuous

manner, the possibility to

transmit those laws as func-

tions is introduced in the

model

Development of DEVS

models for building energy

design

Allow different professions

involved in the building

design process to work inde-

pendently to create an inte-

grated model

Results indicate that the

DEVS formalism is a prom-

ising way to improve poor

interoperability between

models of different domains

involved in building perfor-

mance simulations

Components: occupants,

thermal network points, win-

dows, HVACs, etc.

Quantum key distribution

(QKD) system with its com-

ponents using DEVS

DEVS assures that the devel-

oped component models are

composable and exhibit tem-

poral behavior independent of

the simulation environment

Enable users to assemble and

simulate any collection of

compatible components to

represent complete QKD

system architectures
Components: classical pulse

generator, polarization mod-

ulator, electronically variable

optical attenuator, etc.

DEVS framework for trans-

portation evacuation integrat-

ing event scheduling into an

agent-based method

This framework has a unique

hybrid simulation space that

includes a flexible-structured

network and eliminates time-

step scheduling used in classic

agent-based models

Hybrid space overcomes the

cellular space limitation and

provides flexibilities in simu-

lating evacuation scenarios

Model is significantly more

efficient than popular multi-

agent simulators. Keeps high

model fidelity and the same

agent cognitive capability,

collision avoidance, and low

agent-to-agent communica-

tion cost

Components: vehicles, agents
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Ören TI, Zeigler BP, Elzas MS (eds) (1982) Simulation and model-based methodologies: an

integrative view. Series: Nato ASI Subseries F, vol 10. NATO Advanced Institute Ottawa,

Ontario, 26 July–6 Aug

Pace DK (2004) Modeling and simulation verification and validation challenges. Johns Hopkins

APL Tech Dig 25(2):2004

Park HC, Lee WB, Kim TG (1997) RASES: a database supported framework for structured model

base management. Simul Pract Theory 5(4):289–313

Radeski A, Parr S (2002) Towards a simulation component model for HLA. In: Proceedings of the

2002 fall simulation interoperability workshop (SISO Fall 2002). Paper ID 02F-SIW-079, Nov

Schmidt DC (2006) Model-driven engineering. IEEE Comput, Orlando, FL, 39(2):25–31. doi:10.

1109/MC.2006.58

Seo C, Zeigler BP (2009) Interoperability between DEVS simulators using service oriented

architecture and DEVS namespace. In: A joint symposium DEVS integrative M&S (DEVS)

and high performance computing (HPC), Proceedings of the Spring Simulation Conference,

San Diego, CA.

Si N, Zhang L, Tao F, Guo H (2009) Research on multi-agent system based service composition

methodology in semantic SOA (in Chinese). In: Proceedings of the 5th conference on multi-

agent system and control, Chongqing, 19–20 Sept

Volter M, Stahl T, Bettin J, Haase A, Helsen S (2006) Model-driven software development:

technology, engineering, management. John, Chichester/Hoboken

Waite W, Oren TI (2009) Modeling & simulation body-of-knowledge index(M&S BOKIndex).

http://sim-summit.org/WebinarBrief/BOK%20Webinar%20Brief%20Feb%202009%20v5%

20Waite.pdf

Wymore AW (1967) A mathematical theory of systems engineering: the elements. John,

New York
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Chapter 3

Research on High-Performance Modeling
and Simulation for Complex Systems

Bo Hu Li, Xudong Chai, Tan Li, Baocun Hou, Duzheng Qin, Qinping Zhao,

Lin Zhang, Aimin Hao, Jun Li, and Ming Yang

3.1 Introduction

A complex system is a kind of system that system composition is complex, system

mechanism is complex, the interactions and energy exchanges between subsystems

or between the system and its surroundings are complex, moreover, the overall

properties of system are emergent, nonlinear, self-organized, chaotic and gaming,

etc. Typical complex systems include complex engineering systems, complex

society systems, complex biological systems, complex environment systems, com-

plex military systems, complex network systems, etc. The research and application

of complex systems are of great significance to both science and social economy.

High-performance modeling and simulation for complex systems (HPMSCS)

refers to a kind of modeling and simulation technology, which integrates high-

performance computing technology with modern modeling & simulation technol-

ogy. And the objective is to optimize the overall performance of modeling, simu-

lation execution, and result analysis for complex systems. Our primary research and

practice indicate that High-Performance Modeling and Simulation for Complex

Systems is becoming a new hotspot in the M&S community.
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The rapid development of HPMSCS is motivated by the application demands to

support two types of users, which are the high-end M&S users of complex systems

and massive users to acquire high-performance simulation cloud service on demand

and fulfill three types of simulation, mathematical, man-in-loop, and hardware-in-

loop/embedded simulation. Those application demands raise great challenges to

traditional M&S technology.

For high-end M&S users of complex systems, the challenges include (1) high

computing power; (2) high performance, high bandwidth, and low latency synchro-

nization/communication network; (3) parallel I/O system with high-performance,

high-throughput, high-scalability for the hardware-in-the-loop/embedded simula-

tion; (4) user-friendly development environment for complex system modeling and

simulation; (5) joint simulation of multiscale, multidisciplinary heterogeneous

systems; (6) “parallel in three levels”; (7) big data processing; (8) verification,

validation, and accreditation (VV&A); (9) intelligent analysis and evaluation of the

simulation results; (10) low power consumption; (11) high reliability; (12) security.

For massive users to acquire high-performance simulation cloud service

on demand, the challenges include (1) making high-performance simulation

resources virtualized and servitized; (2) providing dynamic composition of

different high-performance simulation services based on users’ demands; (3)

presenting a virtualized, high efficient, cooperative simulation environment to

users; (4) providing an user-centered, distributed, cooperative, and interactive

modeling and simulation development paradigm.

For years of research and practice, many key technologies of HPMSCS have

made important development. And communications and cooperation with an inter-

national authority like Professor Tuncer Ören helped a lot in the progress of

HPMSCS in China. This chapter will discuss details about our research on

HPMSCS with respect to Ören’s contribution in HPMSCS.

3.1.1 €Oren’s Contribution in HPMSCS

It was a great honor to take the opportunity to participate in the tribute volume for

Professor Tuncer Ören since Ören has been one of the most respected friends and

partners to both the Chinese simulation community and me. We have communi-

cated and coworked closely on simulation technologies for years. Many concepts

and ideas from Professor Tuncer Ören became inspirations for our research,

especially for our research on High-Performance Modeling and Simulation for

Complex Systems, which the following sections of this chapter are about to

introduce. In this background section, I would like to discuss some important

inspirations from Ören for our research on modeling, simulation, application, and

the body of knowledge (BOK) of HPMSCS.

We started our research on simulation language for continuous and discrete

hybrid systems early in 1986 (Li and Tong 1986). At that time, we noticed a series
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of Ören’s papers (Ören 1978; Ören and Zeigler 1979), in which Ören proposed the

idea of the separation of model session and experiment session. In traditional

simulation language, the description codes of the model equations are interweaved

with the simulation algorithm codes, which bring inconvenience to simulation engi-

neers when they try to implement different simulation experiments on the same

simulation model. The early proposal of separation from Ören enlightened us to

develop the three-session language structure in our ICSL, which are initial session,

model session, and experiment session (Li and Tong 1986). The three-session

language structure is an early practice of the idea of object-oriented simulation.

Ören started the prior research on the artificial intelligence in simulation (Ören

1985) as well as the Knowledge-Based Modeling and Simulation System (Ören and

Aytaç 1985). We tracked that “Most commonly used knowledge-based systems are

rule-based systems” (Ören 1985) and started our research on rule-based systems,

which we called quantitative and qualitative hybrid systems according to the

application demands in the research on complex systems like C4ISR and human-

in-loop simulations. Focused on the rule-based systems, we developed some new

modeling methods like FuzzyCDG to graphically describe the rule-based systems

(Li et al. 2011b) and new algorithms to solve the simulation of quantitative and

qualitative hybrid systems (Fan et al. 2009).

Early in the year 2000, Ören proposed the concept of agent-directed simulation

(ADS) to use agents as a framework to solve problems in complex simulation

systems (Ören 2000a, b). We discussed ADS with Ören in several meetings from

2000 to 2008 and started our research on agents in late 2008 to solve some problems

in the simulation of emergency in systems like the traffic and human groups

(Li et al. 2011b). We combined agents with cellular automation to simulate

human reactions in fire and traffic jams, where some interesting and useful results

were found (Li et al. 2011b).

We started research on verification, validation, and accreditation (VV&A) in the

late 1990s (Li et al. 2001), which set up a series of quality assurance issues on the

simulation of Complex Product Virtual Prototype, based on the issues of Ören’s
“Type 1-Quality assurance in modeling and simulation” (Ören 1984). VV&A has

now become an important QA methodology in the research and development of

large-scale simulation in China.

With years of research on HPMSCS, the relative modeling, simulation, and

application technologies have made great progress in the simulation community.

Inspired by Ören’s work in the BOK of modeling and simulation (Ören 2006), we

started to set up the body of knowledge of HPMSCS to promote the research work

of this rising and maturing discipline (Li et al. 2010d). Furthermore, based on

Ören’s 9,000 technical terms in modeling and simulation (Ören, T.I. et al. ISBN:

2-9524747-0-2.), we cooperated with Professor Ören to compile a Chinese–English

and English–Chinese Dictionary of Modeling and Simulation Terms, which was

published in China in June 2012 (Li et al. 2012a). As Ören said in the preface of that

dictionary, “Words are labels to represent concepts”; the efforts we made in

preparing the dictionary with Ören will have far-reaching influence in Chinese

simulation research.
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Professor Ören’s work on basic simulation theory, AI and knowledge-based

systems, ADS, QA, BOK, and Terminology of modeling and simulation has

made great contributions to the development of this discipline and helped a lot in

simulation research in China. In the following part of this chapter, the research of

our team on HPMSCS inspired by Ören will be presented in detail.

3.2 Our Team’s Contributions to HPMSCS

There are many key technologies related to HPMSCS. These can be classified into

three areas: high-performance simulation modeling theory and method, high-

performance modeling and simulation system theory and technology, and high-

performance simulation application engineering technology.

3.2.1 Body of Knowledge of HPMSCS

Each direction has plenty of research hotspots, as shown in Fig. 3.1. Taking the

BOK of HPMSCS as a framework and blueprint (Li et al. 2010d), our team has

made a couple of breakthroughs around the three related directions that enrich the

BOK and the HPMSCS discipline.

3.2.2 Complex System Simulation Modeling Method

Research of simulation modeling methods for qualitative and quantitative mixed

systems basically includes three aspects:

1. Qualitative and quantitative Unified Modeling Method, including the system

top-level description that is responsible for the top-level description of the static

structure and dynamic behavior of the system and the domain-oriented descrip-

tion that is responsible for the description of kinds of domain models (including

quantitative and qualitative models). The research fruit of our team is QR

(quantitative-rule)–QA (quantitative-agent) modeling method (Fan et al. 2009).

2. Modeling the interface of quantitative and qualitative interaction. The interface

converts the quantitative and qualitative interaction data into specific structure

and format needed by the qualitative model and the quantitative model.

The interface converts the quantitative and qualitative interaction data into

specific structure and format needed by the qualitative model and the

quantitative model.

3. Qualitative and quantitative time advance mechanism. The research fruit of our

team is a QR (quantitative-rule)–QA (quantitative-agent) mixed time advancing
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method, which realizes qualitative/quantitative mixed, hierarchical computing

control and management of heterogeneous models (Fan et al. 2009)

3.2.2.1 Simulation Modeling Method Based on Metamodeling

Framework

Simulation modeling method based on metamodeling framework mainly researches

on the metamodel-based unified simulation modeling of the complex system

features like multidisciplinary, heterogeneous, and emergency. The research out-

come of our team is Meta Modeling Framework (M2F) (Li et al. 2010b), which

proposes a hierarchical metamodel architecture, separating the continuous, discrete,

qualitative mixed heterogeneous system models at the abstract level theoretically,

so as to achieve unified top-level modeling for complex systems.

3.2.2.2 Simulation Modeling Method for Variable Structure System

Research of simulation modeling methods for variable structure systems mainly

focuses on the dynamic variability of the simulation model content, interface, and

connection, to support the complete modeling of the variable structure system.

Research content of 
high-performance 
complex systems 

simulation technology

High-performance
Simulation modeling 
theory and method

High-performance
Simulation application 

engineering 
technology

High-performance
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The research outcome of our team is CVSDEVS (Yang and Li 2013), a DEVS-

extended description norm for the complex variable structure system, which

improves the ability of DEVS in describing the variability pattern and

execution mode.

3.2.2.3 Three-Level Paralleling High-Performance Algorithm

High-performance simulation algorithm for complex systems is a kind of algorithm

to employ high-performance simulation computers to solve complex system prob-

lems. In order to speed up simulation, our team focuses on research of three-level

parallelization methods, including

1. Task-level parallelization methods for large-scale problems. Research outcomes

include quantum multiagent evolutionary algorithm (QMAEA) (Zhang

et al. 2009); cultural genetic algorithm (CGA) (Wu et al. 2010); and multigroup

parallel differential evolution algorithm fusing azalea search (MPDEA);

2. Federate-level parallelization methods between federates. Research outcomes

include a federate-level parallelization method based on RTI (Zhang

et al. 2010a) and an event list–based federate-level parallelization method

(based on optimistic methods)

3. Model/thread-level parallelization methods based on solving of complex

models. Research outcomes include parallel algorithm of constant differential

equations based on SMPS with load balance of right functions; GA-BHTR:

genetic algorithm based on transitive reduction and binary heap maintenance

(Qiao et al. 2010).

3.2.3 Complex Systems for Environment Technology

3.2.3.1 High Performance Cloud Simulation

High-performance cloud simulation, which was proposed by our project team in

2009 (Li et al. 2009), is a new network-based (including internet, internet of things,

telecommunication network, broadcasting network, mobile network, etc.) and

service-oriented intelligent, agile, and green simulation paradigm and means.

High-performance cloud simulation is an extension and development of cloud

computing, which provides IaaS (Infrastructure as a Service), PaaS (Platform as a

Service) and SaaS (Software as a Service). It enriches and expands “the sharing

content of resources/capabilities, service patterns and supporting technologies” of

cloud computing (Fig. 3.2).

Research of cloud simulation will be divided into the common technical research

and application. Research on common techniques including portal layer technology

(problem-solving environment technology, visualization of portal technology, per-

vasive portal technology, and so on), cloud simulation service layer technology
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(simulation service discovery, composition, interaction, management, and fault-

tolerant migration, resource layer technology (Zhang et al. 2010a, b) of all kinds of

simulation resource virtualization, service technology, system security (security

mechanism and management technology), and standard technology (general and

application fields of standards).

Application Research of service is mainly research on the natural sciences and

engineering, social science, management science, life science and military fields

such as digital/man in the loop/semi physical simulation service application.

Research fruits in the key technology of cloud simulation include heterogeneous

simulation resource and ability of virtualization technology (computer hardware,

software, interoperability of heterogeneous/reusable simulation platform (such as

RTI), virtual model, simulator and knowledge/content, many kinds of heteroge-

neous simulation resource and ability, high efficiency) to build the technology of

virtual cloud simulation environment (simulation ability and resource registration

and discovery, according to the optimal scheduling of simulation tasks automati-

cally construct simulation virtual environment and multiuser simulation resources)

(Zhang et al. 2010a, b), high-performance RTI (shared memory technology, based

on structure, structure model, threads based on traditional RTI performance,

improve the real-time RTI, scalability, and throughput and suitable for SMP server

and multicore machine (Zhang et al. 2010a, b)) and efficient fault-tolerant virtual

cloud simulation environment migration technology (to achieve during the simu-

lation run environment/system error detection, evaluation and simulation of inter-

mediate results’ fast storage and loading, and the replacement of environment found

and migration technology of based on virtualization technology).
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3.2.3.2 Multi-discipline Virtual Prototyping Engineering

Complex products are complex systems featured with complex customer require-

ments, complex product composition, complex product technologies, complex

manufacturing processes, complex experimentation and maintenance, complex

working environment and complex project management. Typical complex products

include spacecraft, plane, and car, complex mechanical and electrical products and

so on.

Multi-discipline virtual prototyping engineering is a simulation-based method of

digital design of complex products, which is a typical application of HPMSCS in

the life-cycle of complex products (Li et al. 2006). It uses the digital model of

product (virtual prototype) to simulate the real product from visual, auditory, tactile

and functional and behavioral views.

The research fruits of our team include the multi-phase unified modeling

method, the integrated decision-making and simulation evaluation technology,

the comprehensive management and prediction methodology, as well as the

multi-discipline virtual prototyping engineering platform COSIM (Li et al. 2006).

3.2.3.3 Complex System Modeling and Simulation Language

High-performance simulation language for complex systems is a highly efficient

problem-oriented software system for modeling and simulation of complex sys-

tems. It allows users to focus on a complex system itself and can greatly facilitate

software development and debugging efforts of system modeling and simulation

and high-performance computing. Other domain-oriented simulation language

(such as biological system simulation problem oriented language, multidisciplinary

virtual product simulation oriented language and so on) can be developed based on

this language. Key technologies of simulation language include

1. Simulation language framework. Generally speaking, the simulation language

framework consists of one modeling environment (model and experiment

description language, translation/compiler, utility), libraries (model libraries,

algorithm libraries, and function libraries), and one simulation run and control

engine and result processing software (Li et al. 2011b).

2. The descriptive language of model and experiment. The simulation language

uses the component-based extensible language architecture, which consists of

the initialization module, the model module, and the experiment module. The

initialization module includes the initial value of parameter settings and syntax

and statement of algorithm settings. The model module mainly depicts static and

dynamic description statements and syntax, including the continuous, discrete,

qualitative, or mixed system. The experiment module describes various state-

ments of experimental operation (such as running with initial values, stop,

drawing, etc.) and experiment processes. The language usually adopts the
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similar descriptive statement of simulated problems itself (continuous, discrete,

qualitative, mixed system) to describe the model (such as using dx/dt¼ f(x) in
continuous system models).

3. Complex system simulation modeling technology. As shown in the section

“Complex system simulation modeling method.” The effective dynamic

parallelized compiler technology. The research contents include lexical parsing

of the simulation language, parallelism analysis of the complex system problem,

and dynamic parallel compilation of objective codes (Li et al. 2011b). The core

of this technology is to automatically decompose and parallelize the problem

described by simulation language and to automatically link to the corresponding

function library, model library, and algorithm library. The method that our team

takes is to achieve text conversion based on the operations of C++ file stream and

string class and parallel computing based on OpenMP/TBB guidance statement

and VC, through the analysis of the intrinsic properties of the target machine

architecture (vector/parallel multiprocessors) as well as the characteristic of the

problem (dependency relationship/loop equivalent transformation, etc.)

(Fig. 3.3).
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3.2.3.4 High-Performance Simulation Computer System

High-performance simulation computer system is an integrated high-performance

modeling and simulation system, depending on the fusion of three kinds of tech-

nologies, including the newly emerging information technologies (e.g., Cloud

Computing, Internet of Things, Big Data, Service-Oriented Computing), modern

modeling and simulation technology, and high-performance computer system tech-

nology to support two types of users (high-end users of complex system modeling

and simulation, massive users to acquire high-performance simulation cloud ser-

vices on demand) to complete three types of simulation (mathematical, man-in-the-

loop, hardware-in-the-loop/embedded simulation). The objective is to optimize the

overall performance of modeling, simulation execution, and result analysis.

The research works of our team include

System architecture of high-performance simulation computer – System architec-

ture research contains system topology (as shown in Fig. 3.4), system function

composition (as shown in Fig. 3.5), hardware system architecture (as shown in

Fig. 3.6), and software system architecture (as shown in Fig. 3.7). The features

include integrated architecture for two types of users (high-end users of complex

system modeling and simulation and massive on-demand users of high-

performance simulation cloud services); integrated architecture for three types

of simulation (mathematical simulation, man-in-the-loop simulation, and hard-

ware-in-the-loop embedded simulation).

High-efficiency simulation system architecture composed of Hardware Sys-

tem Layer, Parallel OS Layer, Parallel Complier System Layer, Simulation
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Service Layer, and Portal Layer. And relevant standards, protocols and security

mechanisms are adopted on all these layers shown in Fig. 3.3.

Currently, high-efficiency simulation hardware, which mainly consists of

FPGA, GPU, dedicated accelerator, and general commercial multicore/many-

core processors is developing toward high-efficiency and energy-saving direc-

tion by combining generalization and specialization, local customization, and

targeted optimization method. High-efficiency simulation hardware technology

is used to address specific complex simulation demand by optimized hardware

design, as shown in Fig. 3.5.
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complex system simulation; currently, high-performance simulation hardware is

developing toward the high efficient direction that FPGA, GPU, dedicated accel-

erator, and general multicore/many-core processors play the main role, with a

combination of generalization and customization, local customization, and

corresponding optimization. The research fruits of our team on high-performance

simulation hardware technology include, (a) CPU+GPU-based heterogeneous

high-performance computing systems, (b) Application-oriented high-bandwidth,

low-latency interconnection network (Yao Yiping 2012), (c) Simulation-oriented

hardware acceleration components based on CPU+GPU, and (d) Interface

subsystem for hardware-in-the-loop/embedded simulation.

High-performance simulation software technology—High-performance simulation

software supporting technology is a kind of design and implementation technology

of supporting software fitting to the characteristics and needs of complex system

simulation; for now, high-performance simulation software is evolving toward the

direction of componentization and automatic parallelization; there are four research

contents, including (a) Parallel operating system technology, (b) High-performance

parallelization compiler technology, (c) High-performance parallel compiler tech-

nology, and (d) HLA/RTI on high-performance computers (Zhang et al. 2010a, b).

3.2.3.5 High-Performance Visualization Technology

High-performance simulation visualization technology mainly researches on GPU

group–based parallel visualization system architecture; data organization and

scheduling technology of large-scale virtual scene; two-level parallel rendering
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based on multimachine and multicore technology; efficient visualization technol-

ogy of inconstancy objects in battlefield environment; real-time dynamic global

illumination (Li et al. 2012b) (Fig. 3.8).

3.2.4 Simulation Application Engineering Technology
of Complex Systems

3.2.4.1 VV&A of Complex System M&S

High-performance simulation VV&A technology for complex systems includes

verification: ensuring that the system models express the user’s research targets;

validation: ensuring that a simulator processes a satisfactory range of accuracy;

accreditation: ensuring that the simulation results satisfy a user’s specified criteria.

Research includes VV&A of life cycle; VV&A of the whole system; hierarchical

VV&A; VV&A of the entire personnel; VV&A of the full range of management

(Wang et al. 1999).

The research work in our team to carry out system modeling and simulation of

VV&A and reliability evaluation, independently research into system of systems

combat simulation system’s credibility evaluation tool set, significantly improving

the whole life cycle of the credibility of simulation system (Yang et al. 2003), and

will further study on VV&A model technology, VV&A process lifecycle collabo-

ration technology of multi stage as well as the physical experiments and simulation

integration VV&A technology.
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3.2.4.2 Management, Analysis, and Evaluation Technologies

of Simulation Results

The complex system simulation experiments and results management, analysis and

assessment technology for complex system simulation, a series of functional

simulation of data acquisition, data management, visualization and analysis

processing and intelligent evaluation, as well as the simulation results analysis

and evaluation and optimization provide full support for the application of

personnel.

The main research contents include experimental data acquisition technology,

mass data management technology (storage, query, analysis, and mining), experi-

mental data analysis and processing technology, the simulation experiment data

visualization technology, and intelligent simulation and evaluation technology

(Li et al. 2001).

The research fruit in complex system simulation and evaluation of the team can

be taken as an example as an effective assessment tool for complex system

simulation application, which provides a dynamic simulation data acquisition to

evaluate the simulation, application of a variety of evaluation algorithms are

evaluated, and the simulation process of playback analysis and other functions,

the evaluation of the prototype system, the modeling and Simulation of complex

systems in engineering implementation. Its characteristic lies in, modeling, support

technology to develop complex evaluation model integration, deployment and

operation, openness, scalability, reusability and flexibility; support dynamic data

acquisition, evaluation model of loading and the simulation playback; support to

data driven mode effectively connecting the algorithm model, to automate the

evaluation process (Li et al. 2006).

3.3 Application Examples

3.3.1 Application of Complex Systems with High-
Performance Simulation Language

In the modeling and simulation of complex systems that realize co-simulation and

optimization system based on parallel simulation, prototype of complex system

modeling and simulation language has been applied to implement the complicated

electromagnetic environment simulation calculation, the qualitative and quantita-

tive process, using modeling and simulation language text and graphical environ-

ment to realize the efficient continuous discrete combination of qualitative and

quantitative system (Li et al. 2011b) (Fig. 3.9).
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3.3.2 Application of Complex Systems with High-
Performance Cloud Simulation

Based on high-performance cloud simulation technology, the team developed a

cloud simulation system prototype, which supports four kinds of cloud simulation

application mode, including personalized virtual desktop mode, batch mode, col-

laborative simulation model as well as the ability to trade mode. Cloud simulation

prototype system developed a cloud simulation platform and constructed the cloud

simulation service system where the resources and capabilities are virtualized as

services to users. High-performance cloud simulation application and demonstra-

tion of the landing gear system collaborative simulation is shown as (Zhang

et al. 2010a, b) (Fig. 3.10).

Fig. 3.9 Application of M&S language for complex system
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3.3.3 Application of Complex Systems with High-
Performance Semiphysical Simulation

Based on the high-performance simulation computer, we set up a semiphysical

simulation system which includes control system models running on the computer

and physical devices. The environment model and production models are run on

physical simulators, communicating with the digital control models through

InfiniteBand and PCI-E Cable. The structure of the application of complex systems

with high-performance semiphysical simulation is shown in Fig. 3.11.

Fig. 3.10 Application of high performance “cloud simulation” technology
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3.4 Benefits of High-Performance Simulation Research

3.4.1 M&S Technologies in the Big Data Era

Big data are data featured with “4 V”, big Volume, big Variety, big Veracity, and

big Velocity. Big data technology might bring revolutions to traditional M&S in

many aspects (Academy of Chinese Science Association 2014), including

1. The revolutions in simulation mind and research pattern, such as the knowledge

mining in Big Data, the further fusion of reductionism and holism, and the

intelligent reasoning of the data and simulation results

2. The revolutions in modeling, such as the extension from traditional mechanism-

based modeling to Big Data–based modeling

3. The revolutions in simulation supporting systems, such as the establishment of

the unified smart cloud simulation system based on pervasive network and Big

Data middleware; the introduction of Big Data management and mining tech-

nology into current simulation algorithms and systems

4. The revolutions in simulation application engineering, such as the Big Data–

based VV&A, the intelligent simulation result analysis technology based on Big

Data, etc.

3.4.2 Pervasive Simulation Technology

Pervasive simulation technology aims at realizing the pervasive simulation pattern,

in which the combination and spontaneous interaction of physical space and

Fig. 3.11 Application of Complex system with high performance semi-physical simulation
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simulation space is everywhere and people can get simulation service transparently

wherever and whenever (Li et al. 2012).

Relative research contents include (1) the architecture of pervasive simulation

based on web-based distributed simulation technology, grid computing technology,

and pervasive computing technology; (2) the development of pervasive simulation-

oriented software platform and middleware; (3) the new intercommunication chan-

nel between user and simulation computing service; (4) the new simulation appli-

cation model for pervasive computing mode; (5) the new simulation services to

satisfy the requirements of pervasive simulation; (6) the collaborative management

and integration technology of the information space and the physical space; (7) the

self-organization, self-adaptability, and high toleration of pervasive simulation

based on pervasive computing.

Some key technologies have been studied primarily by our research teams (Tang

and Li 2007), including (1) application mode and architecture of pervasive collab-

orative design; (2) implicit simulation service invocation framework; (3) context-

aware technology in pervasive collaborative design; (4) service-self migrating

technology based on mobile agents.

3.4.3 Embedded Simulation Technology

Embedded simulation is to embed the simulation system into the real system.

Embedded simulation can enable operators to see the virtual world (virtual

world) and the real system through the interaction of various subsystems to com-

plete real-time performance monitoring, information visualization, operation, man-

agement, decision support, training, test, and evaluation functions (Abate

et al. 1998). Promising research directions of embedded simulation technology

include

1. Training based on embedded simulation. Embedded simulate the operation

environment and targets in real physic equipment to provide vivid training

experience to the operator.

2. Decision and control technology based on embedded simulation. Collect the

real-time data in the environment and run the simulation real time to find the

right decision to adjust dynamically (Asia Simulation Company 2009).

3.4.4 Intelligent Simulation Technology for Complex
Systems

Intelligent simulation technology combines simulation technology with intelligent

science, which is composed of brain science, cognitive science, and artificial

intelligence to research on the basic theory and realization of human intelligence
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(Shi 2014). The intelligent science enables the intelligent recognition, fusion,

computing, control, and analysis of the “Human –Machine – Things – Information”

in simulation.

Promising research topics of intelligent simulation technology for complex

systems include the intelligence-based simulation modeling methods, the

intelligence-based high-performance simulation supporting platform, and the

intelligence-based high-performance simulation application engineering.

3.4.5 Mobile Internet–Based Simulation Technology

Mobile Internet technology refers to technologies that enable the mobile client to

access the Internet via mobile communication networks (Features, key technologies

and application of Mobile Internet. http://CrazyCoder.cn/ 2010). Mobile Internet–

based simulation technology will be an important technology to realize the

on-demand socialized simulation.

In the future, mobile Internet technologies like SOA, WEB X.0, Widget/

Mashup, P2P/P4P, and SaaS/Cloud Computing and Protocols like MIP/SIP/RTP/

RTSP will be fused with simulation systems to support the on-demand socialized

simulation.

3.4.6 Cyberspace Simulation Technology

The concept of “Cyberspace” was primarily proposed by US-NSF in their paper

(NSF Advisory Committee 2013), which refers to the virtual space in computers

and networks. And the cyberspace becomes the fifth space besides Land-space,

Ocean-space, Aero-space, and Outer-space (Hu 2013). Important research topics in

cyberspace simulation technology include

1. Cyberspace modeling and algorithm, including the multiscale, multipattern

simulation modeling, advanced discrete method of PDE, the simulation-based

large-scale system optimization, etc.

2. Cyberspace high-performance simulation, including the simulation program-

ming and runtime technology for huge systems; petabyte/exabyte-level Big

Data simulation and analysis

3. Cyberspace high-performance simulation application, including the VV&R

(verification, validation, and reproducibility) for huge cyberspace systems;

data-sensitive simulation visualization
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Ören TI (2000b – Invited Presentation) Use of intelligent agents for military simulation. Lecture

notes of simulation for military planning, 21–22 Sept 2000. International Seminars and

Symposia Centre, Brussels
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Chapter 4

Dynamic Data-Driven Simulation:
Connecting Real-Time Data with Simulation

Xiaolin Hu

4.1 Introduction

Data plays an essential role in almost every aspect of computer modeling and

simulation. The importance of data in modeling and simulation was discussed in

many of Tuncer Ören’s works. In a well-cited early work (Ören and Zeigler 1979),

Ören and Zeigler pointed out that one of the shortcomings of conventional simu-

lation techniques was the lack of needed tools for managing data and models. Data

was regarded as an important factor in the conceptual framework of simulation.

In another work devoted to the topic of “Impact of Data on Simulation” (Ören

2001), Ören systematically studied the relationship between data and simulation

and elaborated the multiple ways data can impact simulations. According to the

article, “Data can occur in several phases of a simulation study: In formulating a

model, in formulating an environment (static or dynamic) where the model resides,

in providing input to excite the model, and as the behavior of the model”. Further-

more, “In modeling, data is needed for parameter fitting and parameter calibration.

Afterwards, data is needed for validating the model and experimental conditions.”

In this article, Ören also differentiated two types of simulations: standalone simu-
lation, where the use of simulation is independent of the real system, and online
simulation, where a simulation runs concurrently with a real system.

Using online simulation to support real-time decision-making was identified as

an important application of simulation: “Simulation has the potential of surpassing

its own abilities of being an off-line decision making tool to be also an on-line

decision support tool for complex and important problems.” (Ören 2000). Ören’s
differentiation of two types of simulations and discussions of how data can impact

simulations provide a conceptual framework to categorize the many existing works
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of using data in simulation. Most of these existing works were developed from the

perspective of modeling, e.g., using data to support model design, model calibra-

tion, and model validation. In this book chapter, we focus on using data from the

perspective of simulation, i.e., assimilating real-time sensor data into a running

simulation model in the context of online simulation.

4.1.1 The Need of Dynamic Data-Driven Simulation

Computer simulations have long been used for studying and predicting behaviors of

complex systems such as wildfires, urban traffic, and infectious disease spread. The

accuracy of these simulations depends on many factors, including data used in the

simulations and fidelity of the simulation models. Considering wildfire spread

simulation as an example, the simulation relies on terrain data, vegetation data,

and weather data in the wildfire area. Due to the dynamic and stochastic nature of

wildfire, it is impossible to obtain all this data with no error. For example, the

weather data used in a simulation is typically obtained from local weather stations

in a time-based manner (e.g., every 30 min). Before the next data arrives, the

weather is considered unchanged in the simulation model. This is different from

the reality, where the real weather constantly changes (e.g., due to the mutual

influences between wildfires and the weather). Besides data errors, the wildfire

behavior model introduces errors too because it is an abstraction of the real world.

Due to these errors, the predictions from a simulation model will inevitably be

different from what is in a real wildfire. Without assimilating real-time data from

the real wildfire and dynamically adjusting the simulation model, the difference

between simulation and real wildfire is likely to grow continuously.

Incorporating real-time data into a running simulation model has the potential to

significantly improve simulation results. Unfortunately, until recently, this idea has

not received much attention in the simulation research community. While sophis-

ticated simulation models have been developed for various applications, traditional

simulations are largely decoupled from real systems by making little usage of real-

time data from the systems under study. This was partially due to the limited

availability and quality of real-time data in the past. With recent advances in sensor

and network technologies, the availability and quality of such real-time data have

greatly increased. As a result, a new paradigm of Dynamic Data-Driven Simulation
(DDDS) is emerging where a simulation system is continually influenced by real-

time data streams for better analysis and prediction of a system under study.

Figure 4.1 illustrates the idea of dynamic data-driven simulation based on the

application of wildfire spread simulation. In the figure, the top part represents the

wildfire simulation model; the bottom part represents the real wildfire. As the

wildfire spreads, streams of real-time data are collected from fire sensors, e.g.,

ground temperature sensors deployed at various locations of the fire area. This real-

time sensor data (referred to as observation data) reflects the dynamically changing

system states (e.g., fire front location and fireline intensity, which are usually not
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directly observable and need to be estimated) of the wildfire. The real-time obser-

vation data is assimilated by the data assimilation component to improve simulation

results. By coupling a simulation system with real-time data, dynamic data-driven

simulation can greatly increase the power of simulation-based study. In the wildfire

example, based on the real-time sensor data of a wildfire, a wildfire simulation can

better estimate the current fire front and fire intensity and thus provide initial

conditions for more accurate fire spread simulations in the future. The sensor data

also carries “feedback” information for a simulation to calibrate its model param-

eters to reduce discrepancies between its simulation results and the observations.

The dynamically calibrated model parameters can improve simulation results as

time moves forward. These capabilities are very useful for supporting real-time

decision-makings of wildfire containment.

The work of dynamic data-driven simulation is closely related toDynamic Data-
Driven Application System (DDDAS), which entails the ability to dynamically

incorporate data into an executing application simulation and, in reverse, the ability

of applications to dynamically steer measurement processes (Darema 2004).

DDDAS advocates a conceptual framework including bidirectional influence

between the application simulation and the measurement system. Dynamic data-

driven simulation is also related to the work of data assimilation by incorporating

data into a running model. Data assimilation is an analysis technique in which the

observed data is assimilated into the model to produce a time sequence of estimated

system states (Bouttier and Courtier 1999). It has achieved significant success in

fields such as oil and gas pipeline models and atmospheric, climate, and ocean

modeling. Important estimation techniques used in data assimilation include

Kalman filter and its variance (Kalman 1960; Evensen 2007). Conventional

real time sensor data real weather

simulation resultweather data

Data Assimilation

dynamically estimated 
system state of fire

Fig. 4.1 Dynamic data driven simulation for wildfire spread prediction
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estimation techniques, however, cannot effectively support dynamic data-driven

simulation because many sophisticated simulation models (such as cellular

automata-based wildfire spread simulation models and agent-based crowd behavior

simulation models) lack the analytic structures from which functional forms of

probability distributions can be derived. Furthermore, these simulation models

usually have nonlinear, non-Gaussian behavior, which makes conventional estima-

tion methods ineffective. To overcome these difficulties, in our work we employ

Sequential Monte Carlo (SMC) methods (Doucet et al. 2001) to assimilate real-time

sensor data into simulation models for dynamic data-driven simulation.

This book chapter presents a framework of dynamic data-driven simulation

based on SMC methods. Section 4.2 provides an overview of SMC methods.

Those who are not interested in the technical aspect of Bayesian inference may

skip this section. Section 4.3 describes the overall dynamic data-driven simulation

framework based on SMC methods. Section 4.4 describes the potential applications

and challenges of dynamic data-driven simulation. Section 4.5 presents an illustra-

tive example of dynamic data-driven simulation for wildfire spread simulation.

Section 4.6 concludes this chapter.

4.2 Overview of Sequential Monte Carlo (SMC) Methods

SMC methods, also called particle filters, are sample-based methods that use

Bayesian inference and stochastic sampling techniques to recursively estimate the

state of dynamic systems from some given observations. A dynamic system is

formulated as a discrete dynamic state-space model, which is composed of the

system transition model of Eq. (4.1) and the measurement model of Eq. (4.2)

(Jazwinski 1970). In the equations, t is the time step, st and mt are the state variable

and the measurement variable (the observation) respectively, the function f defines
the evolution of the state variable, and the function g defines the mapping from the

state variable to the measurement variable, where γt and ωt are two independent

random variables representing the state noise and the measurement noise.

stþ1 ¼ f st; tð Þ þ γt: ð4:1Þ
mt ¼ g st; tð Þ þ ωt: ð4:2Þ

Due to its stochastic nature, the system transition function Eq. (4.1) is often

referred to as the state transition density and is represented by a probability

distribution p st
��st�1� �

; the measurement function Eq. (4.2) is often referred to as

the measurement density and is represented by a probability distribution p mt

��st� �
.

Typically, the system state is hidden and cannot be observed. Nor can it be directly

computed from the measurement based on Eq. (4.2) (i.e., the inverse problem).

Thus, there is a need to estimate the dynamic changing state based on measure-

ments and the system’s state evolution over time. Figure 4.2 shows the relationships
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among a system’s states, measurements, state transition function, and measurement

function. In the figure, p st
��st�1� �

is the state transition model and is considered as a

first-order Markov process; p mt

��st� �
is the measurement model that maps system

states to measurements.

SMC methods are sample-based methods that approximate the sequence of

probability distributions of interest using a large set of random samples named

particles. These particles are propagated over time using importance sampling

(IS) and resampling mechanisms. It has been shown that a large number of particles

are able to converge to the true posterior even in non-Gaussian, nonlinear dynamic

systems (Liu and Chen 1998). For systems with strongly nonlinear behavior, SMC

methods thus are more effective than the widely used Kalman filter and its various

extensions, which approximate beliefs by their second-order characteristics and

some linear correction (updating) procedure. The recursive nature of SMC methods

also makes it more suited for dynamic data-driven simulation that incorporates real-

time data in a sequential manner.

As a sample-based variant of Bayes filters, SMC methods represent the belief Bel

(st) by a set St which includes N weighted samples distributed according to Bel(st)

st ¼ s
ið Þ
t ,w

ið Þ
t

D E�� i ¼ 1, . . . ,N
n o

where each s
ðiÞ
t is a state, and the w

ðiÞ
t are non-negative numerical factors called

importance weights, which sum up to one. A time update of the basic SMC

algorithm (the bootstrap filter algorithm (Gordon et al. 1993), which chooses the

proposal density to be the system transition density), is outlined in Table 4.1 below.

It describes the basic algorithmic structure of SMC methods, from which various

sampling and resampling techniques can be developed and incorporated.

This algorithm implements a sequential importance sampling and resampling

(SISR) procedure. In each iteration, the algorithm receives a sample set st�1 ,
representing the previous belief of the system state, and an observation mt and

P(mt|st) 
(measurements
depend on state) 

st+1stst-1

mt-1 mt mt+1

t-1 t t+1 time

measurements
(observed) 

states
(cannot be observed and
need to be estimated) p(st|st-1 ) 

(state transition–first order
Markov process) 

Fig. 4.2 States and measurements of a stochastic dynamic system
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then generates N samples representing the posterior belief. In the importance

sampling step, each sample in st�1 is used to predict the next state es ið Þ
t . This is

done by sampling from the prior distribution p st
��s ið Þ

t�1
� �

that represents the system

transition (the simulation model). The importance weight for the i-th sample is

computed from p mt

��es ið Þ
t

� �
. These weights are normalized after generating all

N samples. In the resampling step, N offspring samples are drawn with probability

proportional to the normalized sample weights. These samples represent the pos-

terior belief of the system state and are used for the next iteration.

4.3 Dynamic Data-Driven Simulation Based on Sequential
Monte Carlo Methods

DDDS uses data assimilation to dynamically incorporate real-time observation data

into a running simulation model. Whenever new observation data arrives (or after

every fixed period of time, e.g., every 30 min), data assimilation is carried out to

assimilate the new observation data. The goal of data assimilation is to provide an

updated estimate of the “current” system state, which is often hidden and cannot be

observed. The estimated system state is then used to provide initial conditions to

simulate/predict the system dynamics in the future. Since initial conditions have

significant impacts on simulation results, a simulation starting from more accurate

initial conditions will lead to improved simulation results.

Figure 4.3 shows how data assimilation works in dynamic data-driven simula-

tion. In the figure, the current time step is denoted as t. Data assimilation is carried

out using the observation data at time t to estimate the current system state. The

estimated system states at time t are then used as initial conditions to simulate/

Table 4.1 Bootstrap filter algorithm

1. Initialization, t ¼ 0:

For i ¼ 1, . . . ,N; sample s i0 e p s0ð Þ and set t ¼ 1:

2. Importance sampling step

For i ¼ 1, . . . ,N; sample es ið Þ
t e p st

��s ið Þ
t�1

� �
and set es ið Þ

0:t ¼ s
ið Þ
0:t�1;es ið Þ

t

� �
.

For i ¼ 1, . . . ,N; evaluate the importance weights

ew ið Þ
t ¼ p mt

��es ið Þ
t

� �
Normalize the importance weights.

3. Selection step (resampling step)

Resample with replacement N particles s
ið Þ
0:t; i ¼ 1, . . . ,N

� �
from the set es ið Þ

0:t; i ¼ 1, . . . ,N
� �

according to the importance weights.

Set t tþ 1 and go to step 2.
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predict how the system evolves in the future. Note that at a previous time step t� 1

(in the past), data assimilation was also carried out using the data at t� 1, and

simulations were run to simulate/predict the system evolution after t� 1. With new

observation data arrived at time t, the data assimilation at time t enables new

simulations for updated predictions of the future. As time moves forward, this

process continues, and the simulation system keeps adjusting itself to improve

simulation/prediction results. This compares to traditional simulations where the

simulation is decoupled from the real system and the difference between simulation

and real system is likely to grow larger and larger as time increases. We note that in

Fig. 4.3, the time steps t� 1 and t are used to indicate the stepwise nature of the

process. The actual time interval between two consecutive steps is usually defined

by how often sensor data is collected, for example, every 30 min.

The need of dynamic data-driven simulation asks for advanced data assimilation

methods that can work with sophisticated simulation models. Sequential Monte

Carlo (SMC) methods hold great promise in this area. A key advantage of SMC

methods is their ability to represent arbitrary probability densities. This makes them

effective methods for data assimilation for complex simulation models, which

usually have nonlinear, non-Gaussian, unsteady behaviors. Meanwhile, SMC

methods are nonparametric filters that do not rely on analytic functions of proba-

bility distributions. This feature is especially suited for sophisticated simulation

models (such as cellular automata-based wildfire spread simulation models and

agent-based traffic simulation models) that lack the analytic structures from which

functional forms of probability distributions can be derived. Furthermore, SMC

methods are recursive methods that are able to recursively adjust their estimations

of system states when new observation data becomes available. This feature is

suited for dynamic data-driven simulation where new sensor data arrives sequen-

tially and the simulation system needs to be continuously updated. Due to these

reasons, we choose SMC methods to carry out data assimilation in DDDS.

Figure 4.4 shows a DDDS framework based on SMC methods (specifically the

bootstrap filter algorithm described in Section 2). Major components of the

Fig. 4.3 Data assimilation in dynamic data driven simulation
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framework include a real system under study, a simulation model that simulates the

dynamic behavior of the real system. The real system is influenced by external

inputs, e.g., weather input that is external to the wildfire system in the wildfire

simulation example. Similarly, the simulation model is influenced by control input

that aims to capture the external inputs of the real system. As mentioned earlier, due

to data errors and model errors, there exist differences between simulation results

and the real system. Furthermore, the real system’s states, which change over time,

cannot be directly observed and are unknown to the simulation model. This makes a

simulation start from an initial state different from the state of the real system,

leading to inaccurate simulation results.

A major task in dynamic data-driven simulation is to dynamically estimate the

“current” state of the real system and then feed the estimated states to the simulation

model for follow-on simulations. This is achieved through data assimilation based

on SMC methods, which assimilate real-time sensor data to infer the “current”

system state. As will be discussed later, data assimilation also makes it possible to

dynamically calibrate model parameters to reduce discrepancies between simula-

tion and the real system. To support dynamic data-driven simulation, sensors are
deployed, and real-time sensor data (referred to as observations in Fig. 4.4) is

collected. Meanwhile, a measurement model is developed that maps system state to

observations according to the sensors used. With this measurement model, one can

compute the measurement data for a given simulated system state. The difference

between measurement data (computed from simulated system state) and real

observations (collected from the real system) carries information about how well

the simulation is doing compared with the real system. This information is utilized

by the data assimilation component to dynamically estimate the real system’s state.

Data Assimilation
(using SMC Methods)

simulation resultscontrol input

dynamically estimated
system states or calibrated
model parameters

observations

Simulation Model

Real System
(whose states 

cannot be observed)
Sensors

Measurement
Model

measurement data

external input

Fig. 4.4 Dynamic data driven simulation based on SMC methods
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To support data assimilation based on the bootstrap filter algorithm, one needs to

define the system state appropriately and develop the associated models and

algorithms following the structure of the bootstrap filter algorithm. The major

activities are described below.

• Define the system state. The system state evolves over time and needs to be

estimated. Typically, the system state is a vector of state variables.

• Specify the system transition model (Eq. (4.1) in Section 2). Because the

simulation model defines how the system state changes over time, the simulation

model essentially is the system transition model. One issue may arise if the

simulation model is a deterministic simulation model. In this case, stochastic

behavior (e.g., by adding random noises) needs to be introduced in order to

construct a stochastic state transition model required by SMC methods. An

example can be found in Xue et al. (2012).

• Define the measurement model (Eq. (4.2) in Section 2). The measurement model

maps system state to observation data collected by sensors. Thus the measure-

ment model is sensor dependent—it should be constructed according to the

specific sensors deployed in the real system. In the example to be shown in

Section 5, the sensor data is collected from multiple ground temperature sensors

deployed at different locations of a fire area. Accordingly, the measurement

model is to compute a vector of temperature data (corresponding to the deployed

sensors) from the system state, i.e., the state of the burning wildfire.

• Develop the sampling, weight updating, and resampling methods to be used by

the bootstrap filter algorithm. Sampling is to run simulation to the next data

assimilation time point (e.g., 30 min later) and obtain the new system state.

Weight updating is based on the difference between the real observation data and

the measurement data computed from the simulated system state and assigns

weights accordingly. The resampling method is to sample new particles

according to their normalized weights. Several standard resampling methods,

e.g., multinomial resampling, systematic resampling (see Douc et al. (2005) for a

comparison of the different resampling methods), have been developed and can

be used.

With all the above components developed, the bootstrap filter algorithm can be

run to carry out data assimilation. In this algorithm, the set of system states is

represented by a set of particles, each of which represents a full system state.

Figure 4.5 shows the procedure of data assimilation based on the bootstrap filter

algorithm. In the figure, the rectangle boxes represent the major activities in one

step of the algorithm, and the circles represent the data/variables. The data assim-

ilation runs in a stepwise fashion. At time step t, the set of particles from time step

t� 1 (denoted as St� 1 in Fig. 4.5) are fed into the system transition model. Each

sample in the sample set represents a specific system state. This whole sample set

represents the prior belief of the system state. For each particle in St� 1, the system

transition model uses the state represented by the particle to produces a new sample

by running simulation from time t� 1 to time t. The resulting system state set is

denoted as S0t. To compute the importance weights of the particles, for each state in
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S0t, its measurement data is computed according to the measurement model and the

sensor deployment schema of the real sensors. The set of measurement data for all

states in S0t are denoted as M0t. Then, considering each measurement data vector in

M0t as the mean vector, the probability density value of the real observation data

vector mt (the data collected from real sensors at time t) is calculated based on a

multivariate Gaussian distribution. This density value is used to update the impor-

tance weight of the corresponding particle. After normalizing the weights of all

particles, a resampling algorithm is applied to generate a new set of offspring

samples according to the probabilities proportional to the normalized weights of

particles. These samples (denoted as St) represent the posterior belief of the system
state and are used for the next iteration.

4.4 Applications and Challenges

DDDS represents a new paradigm where a running simulation system is coupled

with the real system by assimilating real-time sensor data. The capability of

assimilating real-time sensor data to improve simulation results is especially

important for supporting real-time decision-making. Within this context, below

we list several applications that DDDS enables.

• Dynamic state estimation: Estimating the dynamically changing system states

from observation data is a fundamental task in DDDS. The state estimation from

real-time data allows a simulation to start from a state “closer” to the real

system’s state and thus leads to more accurate simulation results.

• Online model parameter calibration: Besides estimating system state that

represents the system behavior, it is also desirable to dynamically calibrate

model parameters that characterize the system structure. One can formulate

the problem of online model parameter calibration as a joint state–parameter

estimation and uncertainty assessment problem, which treats model parameters

St-1

Sampling
(system transition

model)

Measurement
computing

(measurement
model) 

Resampling

Weight
updating

measurement 
data

importance
weights 

real
observation 

time

step t+1step tstep t-1

…

sensor
deployment
schema  

St

mtM't

S't

Fig. 4.5 Data assimilation based on the bootstrap filter algorithm
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as stochastic state variables that need to be estimated (see Moradkhani

et al. (2005) as an example).

• Dynamic data-driven event reconstruction: We define dynamic data-driven

event reconstruction as the process of estimating the occurrences and character-

istics (e.g., when, where) of some events of interest. Such events are not

explicitly modeled by the simulation model but can significantly affect the

system behavior. In the wildfire example, while a wildfire is spreading, new

fires may be ignited in the vicinity of fire front, resulting in multiple fires. Being

able to estimate the occurrences of such new fires from real-time sensor data can

greatly improve fire spread simulation results.

Due to the complexity of simulation models and the data assimilation algorithms,

DDDS also faces several major challenges as described below.

• The first challenge is associated with the fact that many simulation models (such

as cellular automata-based fire spread simulation and agent-based traffic simu-

lation) do not have the analytic structures as the ones in numeric models (e.g.,

partial differential equations). The lack of analytic structures makes it infeasible

to derive functional forms of probability distributions from which samples can

be easily drawn and density can be calculated. As a result, many advanced

particle filtering methods developed for numeric models cannot be applied to

data assimilation for simulation models. New methods need to be developed in

order to improve the effectiveness of SMC methods to work with simulation

models with nonanalytic structures.

• The second challenge is associated with the high-dimensional state space of

simulation models. High-dimensional filtering is a fundamental challenge for

SMC methods (see Snyder et al. (2008) for detailed discussions on this).

Simulation models often have a large number of state variables and thus a

high-dimensional state space. The high-dimensionality asks for advanced sam-

pling and resampling methods in order for SMC methods to achieve effective

inference and quick convergence in data assimilation.

• Another important challenge is associated with the high computation cost of

applying SMC methods to sophisticated simulation models. SMC methods have

a demanding computation cost because of the large number of particles, each of

which needs a full-scale simulation to sample new particles for the next time

point. This issue of high computation cost is especially true for large-scale

simulations such as simulations of large-scale wildfires. Developing advanced

methods to reduce the demanding computation cost is crucial for supporting

real-time decision-making.

• Research challenges also come from how sensor data is collected, which is an

important part of data assimilation. In general, advanced sensors and dense senor

deployment are needed in order to collect high-quality sensor data to be used in

data assimilation. However, this will increase the cost of sensors and sensor

deployment. An important research task is to study how to deploy sensors in

effective manners and how to extract useful information from sensors for data

assimilation.
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4.5 An Illustrative Example: Dynamic Data-Driven
Wildfire Spread Simulation

We present an example to illustrate how dynamic data-driven simulation works

based on the application of wildfire spread simulation. This example is adapted

from our previous work (Xue et al. 2012), where interested users can find more

details. In this example, the wildfire spread simulation model is a discrete-event

simulation model called DEVS-FIRE (Hu et al. 2012; Ntaimo et al. 2008). DEVS-

FIRE is a two-dimensional cellular space model where the forest is modeled as a

two-dimensional cell space. The cell space contains individual forest cells, each of

which contains its own GIS data and weather data. Each cell in the cell space is

represented as a DEVS (Zeigler et al. 2000) atomic model and is coupled with its

eight neighbor cells according to the Moore neighborhood. Consequently, the forest

cell space is a coupled model composed of multiple forest cell models. Fire spread

is modeled as a propagation process where burning cells ignite their unburned

neighbors. The rate of spread of a burning cell is calculated using Rothermel’s fire
behavior model (Rothermel 1972) and then decomposed into eight directions

corresponding to the eight neighboring cells. More details about the DEVS-FIRE

model can be found in Hu et al. (2012) and Ntaimo et al. (2008).

Ground temperature sensors are (sparsely) deployed at different locations of the

fire area. These sensors collect data that reflects the local temperature of the sensor

location. For example, when a sensor is far away from the burning fire front, its

temperature data is the ambient temperature; as the fire front spreads and gets closer

to the sensor location, its temperature data increases. Different sensors provide

different temperature data due to their different locations in the area. This data

changes dynamically as the fire spreads. In our example, we assume sensor data is

collected every 20 min. Our goal is to assimilate the sensor data to estimate the

dynamically changing system state of the fire, based on which to improve simula-

tion results.

To apply SMC methods for data assimilation, the system state, measurement

data, system transition model of state evolution, and the measurement model that

maps system state to measurement data need to be defined. In this example, the

DEVS-FIRE model is composed of many cells, each of which captures the state

(e.g., unburned or burning, fireline intensity, etc.) of the corresponding local region

in the fire area. Based on this implementation, we can define the overall system state

as an nc dimensional vector fire 2 FIREnc , where

FIRE ¼ < unburned, 0 > , < burning, FI > , < burned, 0 >f g;

nc is the total number of cells in the whole cell space, and the second element in

each tuple indicates the fireline intensity. We define the measurement variable mt as

an ns (the number of sensors)-dimensional vector containing temperature values

from all the sensors deployed in the fire area. With system state and measurement
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variable defined, we then formulate a nonlinear state space model as shown in the

equation below.

firetþ1 ¼ SF firet; tð Þ þ γt,
mt ¼ MF firet; tð Þ þ ωt:

�

where firet and firetþ1 are system state variables of fire spread at time step t and time

step t+ 1 respectively; SF is the system transition function. In this work, SF() is

based on the DEVS-FIRE simulation model (a simulation model defines how the

system state evolves over time):

SF firet; tð Þ ¼ DEVSFIRE firet, θt,Δtð Þ;

where Δt is the time duration of a data assimilation step (20 min in this example);

parameter θt captures the slope, aspect, fuel, and weather data used in computing

fire spread behavior; γt is the system transition noise that introduces stochastic

elements to the system transition model; the function DEVSFIRE() represents the

DEVS-FIRE simulation model. For the measurement model, mt is the measurement

variable; MF(firet, t) is the measurement function mapping fire states to measure-

ments, and ωt is the measurement noise. Given a fire state at time step t, through SF
(), a fire state at time step t+ 1 can be obtained; also, through MF(), the

corresponding measurements can be calculated.

The measurement function MF() maps a fire state to a measurement vector

(temperature data of deployed sensors). The number of sensors and their locations

are predefined based on how real sensors are deployed in the fire area. Given a

system state, for a particular temperature sensor, the measurement model is used to

compute the sensor’s temperature data based on the fire intensity and the spatial

distance between the sensor and the fire front (see Xue et al. (2012) for more

details). As an illustrative example, Fig. 4.6a shows a snapshot of a simulated fire’s
fire front. Figure 4.6b shows the temperature data collected by the temperature

sensors, with different colors indicating different temperature values. In Fig. 4.6b,

the blue dots in the outside area represent the locations of the ground temperature

sensors. Note that as the fire front evolves, the collected temperature sensor data

changes over time too.

4.5.1 Experimental Results

We use the identical-twin experiment, which is widely used in data assimilation

research, to show how the data assimilation works and the data assimilation results.

The purpose of identical-twin experiments is to study data assimilation in ideal

situations and evaluate the proximity of the prediction to the true states in a

controlled manner. In the identical-twin experiment, a simulation is first run, and

the corresponding data is recorded. These simulation results are considered as

4 Dynamic Data-Driven Simulation: Connecting Real-Time Data with Simulation 79



“true”; therefore, the observation data (real-time sensor data) obtained here is

regarded as the real observation data (because it comes from the “true” model).

Consequently, we estimate the system states from the observation data using SMC

methods and then check whether these estimated results are close to the “true”

simulation results. In the following description, we use three terms, real fire, filtered
fire, and simulated fire, to help us present the experimental results. A real fire is the

simulation from which the real observation data is obtained. A simulated fire is the

simulation based on some “error” data (“error” in the sense that the data is different

from that used in the real fire), for example, imprecise weather data. This is to

represent the fact that wildfire simulations usually rely on imperfect data as

compared to real wildfires. Finally, a filtered fire is the data assimilation–enhanced

simulation based on the same “error” data as in the simulated fire. In our experi-

ments, we intend to show that a filtered fire gives more accurate simulation results

by assimilating sensor data from the real fire even if it still uses the “error” data.

The differences between a real fire and a simulated fire are due to the imprecise

data, such as wind speed, wind direction, GIS data, and fuel model, used in the

simulation. In this example, we choose to use the imprecise wind speeds as the

“error” data. Specifically, the real wind speed and direction are 8 (m/s) and 180�

(from south to north) with random variances added every 10 min. The variances for

the wind speeds are in the range of �2 to 2 (m/s), and the variances for the

wind direction are in the range of �20 to 20 (degrees). We introduce errors to the

wind speeds and make the wind directions to be exactly the same as the real wind

directions. Two simulations are carried out. In the first simulation (referred to as

case 1), the wind speed is randomly generated based on 6 (m/s) with variances

added in the range of�2 to 2 (m/s). In the second simulation (referred to as case 2),

the wind speed is randomly generated based on 10 (m/s) with variances added in the

range of �2 to 2 (m/s). Figure 4.7a displays the real fire after 3 h of simulation.

Figure 4.7b, c show the two simulated fires for the same simulation duration (3 h).

Fig. 4.6 Fire front and temperature sensor data. (a) Fire front of the a fire. (b) Temperature

sensor data
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In the figures, the burning cells and the burned cells are displayed in red and black

respectively. The other colors display different fuel types of the cells. From the

figures, we know that the real fire and the simulated fires have large deviations due

to the imprecise wind speeds. In the first simulation, the real fire spreads faster than

the simulated fire because the real wind speeds are larger than the error wind

speeds. In the second simulation, the real fire grows slower than the simulated

fire since the real wind speeds are smaller than the error wind speeds.

By assimilating the temperature sensor data into DEVS-FIRE, the filtered fires

were obtained. Figures 4.8a, b display the filtered fires (displayed in blue) after 3 h

of simulation, compared with the real fire (displayed in red) and the simulated fires

(displayed in green). Figure 4.8 shows that in both cases, the filtered fire shapes

match the real fire shape better than the simulated fires do. This is particularly true

Fig. 4.7 Inaccurate fire spread simulations due to imprecise wind speed. (a) Real fire. (b)
Simulated fire 1: wind speed is smaller than real wind speed. (c) Simulated fire 2: wind speed is

larger than real wind speed

Fig. 4.8 Data assimilation results by assimilating temperature sensor data. (a) Data assimilation

result for the fire spread simulation using smaller wind speed. (b) Data assimilation result for the

fire spread simulation using larger wind speed
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at the head area (the north direction) of the fire, where the fire spreads fast. For

example, in Fig. 4.8a, the simulated fire is much smaller than the real fire at the head

area due to the smaller wind speeds. However, using the same “error” wind speeds

as the simulated fire did, through data assimilation the filtered fire was able to match

the real fire well at the head area. Similar effects can be seen for the second case as

shown in Fig. 4.8b. This demonstrates the effectiveness of the data assimilation

method.

We note that the current data assimilation method still has a lot of room for

improvement. For example, in Fig. 4.8a, although the filtered fire matches well with

the real fire at the head area, it spreads faster than the real fire does on the west side.

This asks for further development of the data assimilation method for improving the

data assimilation results. More results of data assimilation can be found at (Xue

et al. 2012).

To quantitatively show the data assimilation results, Figs. 4.9a, b display the

perimeters and burned areas of the real fire, the simulated fire, and the filtered fires

for case 1 from data assimilation step 1–9. Figures 4.9c, d show the perimeters and
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Fig. 4.9 Perimeters and areas of real fire, simulated fires, and filtered fires for case 1 and case

2. (a) Perimeters for case 1; (b) Burned areas for case 1; (c) Perimeters for case 2; (d) Burned areas
for case 2

82 X. Hu



areas of the real fire, the simulated fire, and the filtered fires for case 2 from data

assimilation step 1–9. In both cases, we carried out ten independent runs of data

assimilation experiments and display the average results from the ten runs in the

figures. These figures show that the differences between the real fire’s perimeter

and the filtered fires’ perimeters are smaller than those for the simulated fires. The

same trend holds true for the burned areas. We note that in the beginning, the

differences among the real fire, the simulated fire, and the filtered fire are small

because the fire sizes are small. As the fire size grows larger, the effect of data

assimilation becomes more obvious. Since the filtered fires are much closer to the

true system states, simulations starting from these fires (i.e., using the filtered fires

as initial conditions) will lead to more accurate simulation/prediction results in

the future.

4.6 Conclusions

Data is an essential part of computer modeling and simulation and will play even

more important roles for modeling and simulation in the future. The importance of

data in modeling and simulation was recognized by Ören in several of his works. In

this book chapter, we present dynamic data-driven simulation as a new simulation

paradigm where a simulation system is continually influenced by the real-time data

for better analysis and prediction of a system under study. A framework of dynamic

data-driven simulation based on Sequential Monte Carlo methods is presented. We

describe the applications and challenges associated with dynamic data-driven

simulation and provide an illustrative example of dynamic data-driven simulation

based on the application of wildfire spread simulation.
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Part II

Modeling Methodologies



Chapter 5

Learning Something Right fromModels That
Are Wrong: Epistemology of Simulation

Andreas Tolk

5.1 Introduction

Essentially, all models are wrong, but some are useful. (Box and Draper 1987, p. 424)

Epistemology is the branch of philosophy that deals with gaining knowledge. It is

closely related to ontology, the branch that deals with questions such as “What is

real?” and “What do we know?” When using modeling and simulation (M&S), we

usually do so to either apply knowledge, in particular when we are using them for

training and teaching, or to gain knowledge, for example, when doing analysis or

conducting virtual experiments. But none of ourmodels represents reality as it is. They

are only valid within their limitations, which leads to the famous quote of Box that “all

models are wrong.” The question is therefore: how can we learn something from these

models? What are the epistemological foundations for us simulationists?

Already in his early contributions, Tuncer Ören (1977) observes that simulation is

ubiquitously applied across many domains as a tool to solve problems, but is it really

scientific to use simulations when we are interested in real-world solutions? Can we

as the modeling and simulation community justify the use of simulation as a tool that

we provide to scientists, scholars, and decision-makers? Is the use of simulation a

scientifically sound method? To be able to answer these questions, we have to revisit

what we understand regarding the application of science to solve problems.

The basic elements of the scientific method are learned in elementary school—

especially in conjunction with science fairs. It all starts with a question. The next

step is to conduct background research. Is there already a theory that answers the
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question within the current body of knowledge? If not, we formulate a hypothesis

that predicts the expected outcome. Using an experiment, we then evaluate the

constructed hypothesis. We identify the independent and dependent parameters,

capture expected causality and resulting observations, eliminate all disturbing

factors and aggregate nonessential influences, and then run our experiment as

often as required to attain statistical significance at the level desired. Resultant

data is then analyzed in light of the following hypothesis: do the observed data

points correlate with expected values within the target margins of error? If they do,

our hypothesis is supported and ultimately may become part of the embedding

theory. If they do not, the hypothesis is rejected as it could not be supported by the

observations during the experiment.

What does this have to do with modeling and simulation (M&S)? Much more

than we might expect. It begins with the process of modeling. Modeling is a task-
driven purposeful simplification and abstraction of a perception of reality (Tolk

2013a). Let us have a closer look at the components of this definition:

Task-driven: a model is generated for a task, such as to answer a question within the

domain of analysis or provide certain functionality, such as supporting training.

Like the question that initiates the scientific method, the task drives the modeling

process.

Purposeful: modeling is a creative act. The various activities are driven by the task

and are done knowingly and purposefully to reach the goal to the greatest extent

possible.

Simplification and abstraction: as in the experiment described above, elements that

are not important and only distract from the main event are eliminated from the

model. Furthermore, components that may have an effect but are considered

secondary or less important can be combined as a form of data reduction

techniques.

Reality: our work shall be rooted in empirical data, no matter if we assume a

positivistic or postmodern worldview.

Perception: our perception is shaped by physical–cognitive aspects and constraints.
The physical aspect defines what attributes of an object are observable with the

sensory system of the observer or, more generally, the information about the

object that can be obtained (this can include gaining insight from literature,

discussions with colleagues, using instruments, etc.) Cognitive aspects are

shaped by the education and the knowledge of the observer, their paradigms,

and even knowledge of related tools associated with the tasks.

The result of the modeling phase is a conceptualization shaped by the task as

well as by the physical–cognitive abilities of the modeler. This conceptualization is

then captured using a modeling method and subsequently transformed into an

executable simulation. This process is also shaped significantly by the resources

and abilities of the programmers. Are the computers powerful enough to translate

the concepts into something directly executable, or do memory and processor

capacities require additional simplifications? Do the languages support all
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manipulations envisioned? Are there numerical challenges that influence the qual-

ity of the simulation?

This introduction demonstrates good reasons why there can be no “correct”

model and therefore no “correct” simulation, as they always will be limited to their

constraints and assumptions that are made in the process of their creation. However,

we will see in the following section that this is not really surprising for the scientist

or the simulationist and that we nonetheless learn from models and simulations.

To guide the reader on this path, we will start with an introduction to the

philosophical fields of ontology and epistemology, leading to a short history of

science, both from a simulationist view. These views shape our discussion on the

use of models and resulting limits and constraints. The outcome of these analyses,

many of them based on work initiated by Tuncer Ören, as will be demonstrated, will

lead to a grand challenge for the simulation community to evolve within the

community of scientists by including epistemological perspectives in curricula

for simulationists as a pillar of our profession.

5.2 Ontology and Epistemology for Simulationists

Theories cannot be proven to be generally correct, but we can state that they have not been

falsified so far by new observations or insights!. (Popper 1935)

Our current curricula in the domains of science and engineering often neglect the

ethical and philosophical foundations that are so important for each discipline.

Interestingly, philosophers of science seem to be more interested in the foundations

of M&S than simulationists themselves. Since 2004, the workshop on Epistemo-

logical Perspectives on Simulation (EPOS) convenes every second year (Frank and

Troitzsch 2005; Squazzoni 2009; Grune-Yanoff and Weirich 2010). The following

two sections summarize some of the fundamentals every simulationist should be

aware of.

Ontology and epistemology pose the questions of what we know and how we can

gain knowledge. To answer these questions, one should begin with a short overview

of science and what is considered to be knowledge and what role M&S can play in

this regard.

5.2.1 A History of Science: A Simulationist’s View

In the introduction of this chapter, we looked at the scientific method. Interestingly,

this method is relatively young, as described by Goldman (2006). In the same era,

two scientists shaped our understanding of what science knows and how we can

increase this knowledge.
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Sir Francis Bacon lived from 1561 to 1626 in England. He is considered the

father of the inductive–empirical method. He postulated that knowledge can only be
derived by observation and data collection. Only that which can be observed should

be the subject of science. With the development of more and more sophisticated

sensor systems, the discussion arose as to what extent observations made by sensors

are valid. In particular, when they were made under limiting constraints, such as the

use of small probes under a microscope, their validity was often questioned. This

discussion continues to this day in some domains of modern physics. Overall,

Bacon’s idea was that knowledge could be derived only from observation, data

collection, and data analysis.

Parallel to these efforts, René Descartes (1596–1650), who worked in France in

defining the deductive–rational method, assumed that a world order of physical

laws can be described by mathematical models. These perfect models are the basis

of knowledge. He followed the traditions of ancient Greek thinkers that led to the

Platonic–Aristotelian view: that rational thought is linked via deduction to reality.

For Descartes, observations and data were means to validate knowledge.

These two competing visions of the scientific methods, also known as Baconian

empiricism and Cartesian rationalism, were unified in the work of Sir Isaac Newton

(1642–1727). His work onMathematical Principles of Natural Philosophy (original
1687 in Latin, Newton et al. 1955) was the standard literature for more than

200 years and is still the foundation of high school physics. Newton utilized

mathematical models that allowed for coherent and consistent interpretation of

observations: a conceptualization of experience used to generalize observations

(knowledge generation, theory development) as well as having to be validated by

empirical observations (theory testing). Newton’s pragmatic approach employed

both visions.

This new approach was not immediately embraced by all, as the discussions

between Clark, a student of Newton, and the German philosopher and mathemati-

cian Gottfried W. Leibniz show (Alexander 1998). In particular, continental Europe

clinched to the ideas of perfect laws reigning the universe. Newton’s premise was

that science does not discover truth about natural laws but that scientists construct
interpretations of experiences. For him, a theory was the best model available that

explains all observations and experiences without internal contradictions. If new

observations are made that contradict the old theory, the theory is falsified and

needs to be extended or replaced. In this view, science is understood as a series of

models.

The work of Newton was continued by John Locke (1632–1704) and David

Hume (1711–1776), who introduced the ideas of skepticism and challenges of

inductive reasoning. On what evidence can we assume that our experiences are

universal or even repeatable in the future? Immanuel Kant (1724–1804)

reintroduced a kind of certainty and stability with his cosmological theory. His

Universal Natural History and Theory of the Heavens (original 1755, Kant and Jaki
1981) established the rational mind as the objective element. Again, the model was

the central role of knowledge: a rational conceptualization.
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In the nineteenth century, scientific knowledge became more and more directly

applicable. Technological innovation was driven by scientific insights; real-world

problems were solved by applying scientific principles to engineer solutions. The

application became in many domains more important than the theory. At the same

time, the physics of the nineteenth century started to discover alternatives to

principles assumed to be inviolable (Harman and Harman 1982). Discovery and

successful applications to alternatives of Euclidian geometry, such as Fourier’s
equations, emphasized the need for models that clearly stated their assumptions and

constraints. It also led to the possibility of having two models based on incompat-

ible theories that were equally valid themselves. Assumptions and constraints

needed to be formulated to capture these premises in order to unambiguously

communicate results and ideas. In summary, the model and its assumptions became

the best representation of the theory.

The twentieth-century views can be reflected when looking at the work of

Bertrand Russell (1872–1970), Henri Poincaré (1854–1912), and Percy Bridgman

(1882–1961). They agreed on the principles that scientific knowledge is not about

reality but focuses more on common concepts, how to measure them, and how to

express them. Mathematics, and in particular logic, was understood as the common

language to express these concepts. Science was interpreted as a commonly con-

ceptualized and experiential world expressed by models based on logic. Their work

became the foundation of logical positivism, embracing the idea that only science

can provide a rational account of the world. In their view, truth was driven by a

physicalistic–deterministic account of reality.

This viewpoint was shaken by Albert Einstein (1879–1955) and Niels Bohr

(1885–1962) with their theories of relativity and quantum theory. The work of

Werner Heisenberg (1901–1976) and Erwin Rudolf Josef Alexander Schr€odinger
(1887–1961) added to the new challenges: scientific theories had become complex

and often argued against empirical observations of daily life. They were no longer

considered to have explanatory value. Accordingly, the view on science and its

models changed again. It was no longer understood as a converging process getting

closer and closer to reality but a discontinuous and even revolutionary process in

which old theories were replaced by new ones in a nonconvergent but progressive

process (Kuhn 1962). Again, science was a series of models continuing to replace

each other.

Today, 400 years after the modern story of science began, we are in a “science

war” between natural scientists and supporters of the idea that scientific knowledge

is a mere social construction, also referred to as relativism. The role of modeling

has not diminished. The definition of modeling as a task-driven purposeful simpli-

fication and abstraction of a perception of reality holds under all paradigms and

allows for communication between scientists across the borders of paradigms and

belief systems. As stated by Robert Rosen (1998), “I have been, and remain,

entirely committed to the idea that modeling is the essence of science and the

habitat of all epistemology.”

The history of science from the simulationist’s view is a series of models that are

created to explain the world. We use models to explain what we see (inductive) as
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well as to forecast what happens based on our experience (deductive). When

creating a model, we establish a theory by replacing empirically observed correla-

tion with assumed causality. When we compare our model predictions with actual

observations, we validate our theory as implemented in the model. Science came to

the understanding that theories are always just “as good as they can be.” Scientists

never know what new observations will be made or correlation will be discovered

that cannot be explained with the current best theory. They also understand that, as

Popper (1935) shows in his work, theories cannot be proven to be generally correct.

The best we can do is to observe that so far, no contradictions between theory and

observation occurred. Therefore, asking if we can learn anything from models that

are wrong is like asking: can we learn anything from science?

With the advent of more and more powerful computers, the simulation compo-

nents of M&S started to influence science as well (Winsberg 2010). The use of

simulation in science was only recently highlighted by Arieh Warshel. He delivered

his Nobel Lecture on “Computer Simulations of Biological Functions: From

Enzymes to Molecular Machines” on December 8, 2013, at Aula Magna, Stock-

holm University, where he was introduced by Professor Sven Lidin, Chairman of

the Nobel Committee for Chemistry. In 2006, a National Science Foundation Blue

Ribbon Panel even envisioned simulation as the third pillar of scientific work,

standing as an equal partner beside theory and experimentation. In the next section,

this claim will be evaluated in more detail.

5.2.2 Referential and Methodological Ontology

Philosophically, ontology is understood as the study of being or the study of what

exists. Epistemology is the study of how we come to know or how we define

knowledge, represent it, and communicate it with others. These two fields are

often accompanied by teleology, which deals with design and purpose or applica-

tion, and axiology, the study of values, normally in the ethical sense. Ören (2000)

uses these views to make a strong point for philosophy and ethics within simulation.

Most simulationists, however, think of computer tools such as Protégé when

they discuss ontology. Among the more known approaches are the Discrete-event

M&S Ontology (DeMO) (Silver et al. 2011) and the Component-Oriented Simula-

tion and Modeling Ontology (COSMO) (Teo and Szabo 2008). These ontologies

describe how we model which methods we use to describe simulations, federations,

and the like. Hofmann et al. (2011) refer to this type of ontology as methodological

ontologies that address the question: How shall we model?
Gruber (1995) understands ontology from the information systems perspective

as a formal specification of a conceptualization in communicable and reusable form

within a community of interest. This conceptualization is a collection of concepts,

their characteristic attributes, their relations, activities, and behavior as well as

governing processes shared within the community of interest and captured in

unambiguous form. Hofmann et al. (2011) refer to this type of ontology as refer-

ential ontologies that address the question: What shall we model!

92 A. Tolk



Referential and methodological ontologies are two dimensions equally important

to understanding M&S. Common referential ontologies such as the National Infor-

mation ExchangeModel (NIEM) establish a common set of concepts that can be used

to exchange information between systems of the same community of interest. With

the help of these referential ontologies, two systems can detect if they have an

overlapping information space within the application domain. Only if two systems

have some referential concepts in common can they then exchange information.

However, this is only part of a solution. The methods and paradigms used in the

participating systems must be mappable to each other as well. This can be evaluated

by looking at the methodological ontologies. Referential and methodological ontol-

ogies are captured in formal languages. As discussed by Tolk et al. (2013), the

mathematical branch of the Model Theory can therefore be applied to identify if

two systems talk about the same concepts (referential) using equivalent means to do

so (methodological). Both dimensions are equally important.

Coupling models to compose their functionality to provide the user with a

broader set of information is a good practice. However, the simulationist must be

aware of the dangers as well. Winsberg (2010, pp. 72–92) uses nanosciences as an

illustration. In his example, scientists are interested in how cracks evolve and move

through materials in order to predict, e.g., the stability of a bridge or a building. To

address this problem, three different levels of resolution are necessary. In order to

understand how cracks begin, sets of atoms governed by quantum mechanics are
modeled in small regions. These regions are embedded into medium-scale regions

that are governed by molecular dynamics. Finally, most of the material is neither

cracking nor close to a developing crack and can be modeled using continuum

mechanics based on linear-elastic theory. The challenge is that these three theo-

ries—quantum mechanics, molecular dynamics, and linear-elastic theory—cannot

all be valid at the same time; each exists with excluding principles. Nevertheless, a

simulationist can easily establish a heuristic to create handshakes between these

simulation systems. But what is the value of such a composition? According to

Winsberg (2010), there are still many gray zones when it comes to applying

simulation in support of science. Actually, simulation may create in itself a new

field of scientific studies addressing the simulatability of problems.

In summary, epistemology of M&S applications must address methodological

constraints of the M&S domain as well as referential constraints of the application

domain. The next section will look into the use of models in more detail.

5.3 How Do We Use Models and Simulations?

Simulation is like a gem: it is multifaceted!. (Ören 1984)

How do simulationists see their models being used? Tuncer Ören is one of the

leading experts to answer this question. The seminal paper by Ören and Zeigler

(1979) on “Concepts for Advanced Simulation Methodologies” laid the foundation
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of a simulation taxonomy that is still used and referenced today worldwide. The

1989 proceedings edited by Elzas, Zeigler, and Tuncer Ören on “Modelling and

Simulation Methodology: Knowledge Systems Paradigms” comprises ideas like

model bases usable as knowledge repositories that are still on the research agenda

of scholars today.

Simulations have been successfully applied in hundreds of application areas for

a variety of purposes. Despite this great variety of areas and purposes, general

trends can be observed that allow for categorization of the use of simulations. The

categories used here are motivated by the seminal book chapter by Tuncer Ören in

2009 for a textbook intended to be used for the first M&S engineering curriculum:

using models to communicate and preserve knowledge and use this to teach and

train and to gain new insights and ultimately become a knowledge repository. As

Ören (2009a) points out, there are two aspects when simulation is applied: experience
and experimentation.

Experience is something we know now and have gained and want to provide to

others. We gain experience by being exposed to or involved in something.

Simulation can create the necessary emergent environments to expose students

to and involve them in things or events that are not as dangerous or costly as

the real experience or event they simulate. We can use such simulations for

teaching, training, or even entertaining, but in any case, we use M&S to provide

experience.

We conduct experimentation to gain insight. We want to understand some

phenomenon better, or we want to find a solution of a given problem, or we simply

want to conduct some what-if analysis to better understand our alternatives.

Finally, Tuncer Ören was among the first to recommend using M&S to not only

capture knowledge but also to generate new knowledge. Knowledge repositories

use M&S to store knowledge, process knowledge, and actually derive new

knowledge as cybernetic tools.

5.3.1 Using M&S to Provide Experience

One of the most mature application domains of M&S is defense (Tolk 2012).

Combat modeling and distributed simulation was supported by the military–

industrial complex with significant funding allowing for lots of research and

innovation. In addition, soldiers have used simulation for centuries. Soldiers used

wooden weapons to gain experience in fighting without having to fear being

seriously wounded. Officers used wargames, like the Kriegsspiel developed by

Baron von Reisswitz, the War Counselor in Prussia in 1811, which was a tabletop

covered in model terrain representing a miniature version of the battlefield in which

wooden blocks showed the placement of units, rules, and charts describing actions

and outcomes (Loper and Turnitsa 2012). Using simulation to make this experience
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more realistic was a logical step. Weapon simulators allowed for individual

training and reduced risks as well as the cost of life ammunition significantly.

Tank crews were trained in tank simulators so well that in the Operation Desert

Storm in February 1991, the U.S. Army defeated the Iraqi Republican Guards

although they were outnumbered and outgunned. The reason for this success in

the Battle of 73 Easting was that the American troops trained intensively before

the engagement using distributed simulators in a virtual recreation of the expected

battlefield (Banks 2009). Using simulation for training has become so predomi-

nant in the armed forces that other domains are often not even perceived to be

important.

Another M&S customer, also interested in a realistic simulation of the environ-

ment and the effects of actions taken by the user in a safe manner, is the entertain-

ment industry! Theme parks like Universal Studios and Disney World use

simulations to provide their guests a range of experiences that they cannot get

anywhere else.

Gaming utilizes simulation more and more as well. The worldwide video game

marketplace, which includes video game console hardware and software, online,

mobile, and PC games, will reach $93 billion in 2013, up from $79 billion in 2012,

according to online publications of Gartner, Inc. on their website.

Another domain of increasing interest is health care (Levine et al. 2013). Stan-

dardized patients, mannequin-based simulators, haptic simulators, and virtual envi-

ronments are integrated into the education of medical professionals to provide them

with experiences without endangering the student or the patient. Okuda et al. (2009)

report on two studies that have shown the direct improvement of medical outcomes

from the use of simulation: Residents trained on laparoscopic surgery simulations

showed improvement in procedural performance in the operating room, and resi-

dents trained on simulators were more likely to follow advanced cardiac life support

protocols when treating cardiac-arrest patients. They also show benefits in many

other areas; however, additional systematic research on the utility of simulation is

still needed.

In summary, simulation has been successfully applied to train and educate

students in various domains. They gained motoric skills, procedural skills,

decision-making skills, and even high-level operation skills. Systematic studies

on the effectiveness and efficiency are being published.

Connecting this use of M&S to our earlier sections, we observe that for all these

examples, we have an established and accepted theory that we use to build our

models on and that we can use to validate our simulations against. We know how

bullets fly, so we can build a valid gun simulator. Knowing how certain medicine

influences blood flow and heart rate allows us to build a mannequin that exposes

this behavior to train nurses, doctors, and other medical professionals. As a rule, we

observe that whenever we know a solution, we can use this solution to provide the

desired experiences to the user in the form of the simulation.
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5.3.2 Using M&S to Gain Insight

In the previous section, simulations and simulators were shown to represent sys-

tems or components that are well understood for the purpose to train students to act

and behave in the best way. The approach described in this section is different.

Here, we want to gain insight into something, looking for solutions or simply

broader understanding. In this case, we use simulations to analyze problems, to

evaluate possible engineered solutions, or to find good control parameters. In all

these cases, our solution space is not fully defined, and we still need to acquire an

understanding of the phenomenon of interest. The premise is that we do not have a

solution; instead, we use simulation to find one. We may have requirements

constraining the solution space, but we have no specification for a point solution.

In other words, we use M&S for theory building, as foretold by Tuncer Ören in his

comprehensive and integrative view (2009b).

In his dissertation, Padilla (2010) used an agent-based simulation approach to

represent three components of understanding—knowledge, worldview, and prob-

lem. This construct was used to successfully explain existing theories of under-

standing, as published in the literature. Both types of understanding could be

explained and modeled by this construct. When Padilla defined the guiding rules

on how knowledge, worldview, and problem are interconnected and ran several

simulations to find out if the two theories could be reconstructed by these simple

construction rules, the simulation actually produced three types of understanding;

two types that are known from literature and a third type that so far was not

described but made perfect sense when evaluated by subject matter experts. In

other words, by using existing theory components, the simulation not only

supported the guiding theory but also generated new constructs that are valid

under the given constraints and that were accepted as new theoretical contributions.

Simulation for experimentation to gain insight is also a powerful tool. As Tuncer

Ören (2005) described it, “One of the superiorities of simulation over real-system

experimentation is that simulation is possible in all cases when experimentation on

real system cannot be performed. Furthermore, in simulation experimental condi-

tions can include cases that cannot and should not be performed on real systems.”

We can use powerful heuristic tools, like genetic algorithms, to calibrate our

simulation parameters to create new trajectories, behaviors, or even new entities

and fit the simulation to empirical data. Theory building using simulation is

possible, and we are starting to use this capability.

5.3.3 Using M&S as a Knowledge Repository

The third usage category for M&S is one that has not been referred to in textbooks,

although it is connected with using M&S for training and teaching—using M&S as

a knowledge repository. From the first section of this chapter, we already learned
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that Rosen (1998) understands modeling as the essence of science and the habitat of

all epistemology. In this chapter, we introduce the viewpoint that simulations can

be understood as executable theories (or hypothesis if they have not been verified

with empirical observations).

In their introduction to their book Information and the Nature of Reality, Davies
and Gregersen (2010) describe a long tradition of using the pinnacle of current

technology as a metaphor for the universe on the search for universal truth. They

observe,

In ancient Greece, surveying equipment and musical instruments were the technological

wonders of the age, and the Greeks regarded the cosmos as a manifestation of geometric

relationships and musical harmony. In the 17th century, clockwork was the most impressive

technology, and Newton described a deterministic clockwork universe, with time as an

infinitely precise parameter that gauged all cosmic change. In the 19th century the steam

engine replaced clockwork as the technological icon of the age and, sure enough, Clausius,

von Helmholtz, Boltzman, and Maxwell described the universe as a gigantic, entropy-

generating heat engine, sliding inexorably to a cosmic heat death. Today, the quantum

computer serves the corresponding role. Each metaphor has brought its own valuable

insights; those deriving from the quantum computation model of the universe are only

just being explored. (Davies and Gregersen 2010, p. 3–4).

Using M&S, we now can define a concept—whether it has a real-world refer-

ence or not—by its axioms and rules as an executable simulation and “bring it to

life” using animation and visualization and use emergent virtual environments to

make the user part of this creation. This is a powerful approach to understand things

that are, that could be, or that could not be. Quantum computation will be a

powerful technology that will support the next generation of even more powerful

M&S applications, but it will be the application that will drive our imagination and

understanding of the universe. These M&S applications will become the pinnacle of

technology of our epoch. They will become the knowledge repository that cannot

just be understood by study; it can be experienced and actively integrate the user to

discover new theories and close existing gaps in an interactive interplay.

At the end of this section, we want to come back to the notion of simulation as

the third pillar in science. In this section, we have shown that simulation can support

theory building as well as theory testing, hence it is a useful method in support of

theory building and experimentation, but to claim it to be a new pillar of science

may be an exaggeration. Nevertheless, simulation changes and will continue to

change our view on science. It is therefore even more important to clearly under-

stand what simulation can do and also what simulation cannot do. As simulation

systems are computer programs, they are ruled by computability and computational

complexity constraints. The last section will “poor some water into the wine” by

looking at some limits and constraints we have to be aware of.
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5.4 Limits and Constraints

One of the best things to come out of the home computer revolution could be the general

and widespread understanding of how severely limited logic really is. (Frank Herbert,

Krieger 2002, p. 102)

The famous artificial intelligence (AI) researcher Huber L. Dreyfus is well known

for his two books on the limits and constraints of computers in his work: What
Computers Can’t Do: The Limits of Artificial Intelligence (1972) and What Com-
puters Still Can’t Do: A Critique of Artificial Reason (1992). While many of his

colleagues were overly enthusiastic, Dreyfus pointed to known limits that are

founded in the nature of computers. While some researchers openly dreamed

about computers with real intelligence or even with a soul, Dreyfus pointed to the

works of Turing, Church, G€odel, and other pioneers of computer science that were

often overlooked by his colleagues. As a result of too enthusiastic and unbounded

promises, AI could not keep up with the expectations. Many valuable methods and

heuristics survived and are successfully applied today, but overall, AI became a

disappointment. A nice summary of important AI debates has been compiled by

Graubard (1988).

Did we make—or are we making—a similar mistake with M&S? Are we setting

the expectations too high? Do we make promises that we cannot fulfill? Are there

significant limits and constraints that we have to know when dealing with M&S? To

answer these questions, we will look into computability and decidability, compu-

tational complexity, and algorithmic information theory from a simulationist’s
point of view: what do they imply for M&S? While the first sections of this chapter

focused on the role of models and modeling, our focus in the following section will

be on simulation, in particular computer simulation as the executable expression or

version of models.

5.4.1 Computability and Decidability

A simple interpretation of the term computability is the ability of a function to be

executed on a computer. Computer science established several models of compu-

tations that are used to give a more precise definition of these terms; the best known

are the Lambda calculus, the Turing machine, and recursive function theory (Davis

et al. 1994).

From a practical sense, it boils down to functions that have a limited and discrete

range and domain. If range and domain are not limited, they cannot be handled in

the finite space of the computer. If they are not discrete, they cannot be mapped to

the digital space. We often treat noncomputable functions as computable by simply

using an approximation; we artificially limit range and domain to fit (or we receive

an overflow error), and we discretize the arguments. For many practical purposes,

this is sufficient, but we always have in mind that we are just working with
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approximations. Deterministic chaotic functions, e.g., will follow completely dif-

ferent trajectories if the initial starting points are different. Even if the starting

points are arbitrarily close to each other, after several iterations the results will

differ significantly. No matter how dense our digitalization mesh is, there are

always spots that are not part of it, which means we cannot realistically capture

chaotic functions with computable functions. This is just one example of many. As

computer simulation is limited to using computable functions, all of these limita-

tions apply.

Another aspect is that not every problem can be decided by algorithms that can

be executed on computers. In 1931, Kurt G€odel’s incompleteness theorem shocked

the academic world. Up until his proof, mathematical logic was considered to be the

key for unambiguous, consistent, and complete descriptions of knowledge. G€odel
showed that a logical system that is powerful enough to allow for mathematical

reasoning will necessarily comprise axioms that are true but that cannot be proven
to be true within the system. Another interpretation is that complex and powerful

logical systems can be either complete or consistent but not both. If the system is

complete, it comprises statements that make the system fail. If we exclude these

statements to reach consistency, the system is no longer complete.

Turing applied a similar idea to show that problems do exist that cannot be

decided by a computer. He used the halting problem to demonstrate this: If we have

a computer program and the input data, can we write a general program that decides

if the program will halt with this input, or will it go into an infinite loop? Turing

argued as follows: He assumed a program that solves the halting problem would

exist. If so, it would return the Boolean value “true” if the program holds with the

input data and “false” if this is not the case. He then applied this program to itself,

meaning he used the data describing the program as input data to the program. Next,

he constructed a new program by extending this halting decision program working

on its own data and going into a loop if the returned value is “true” and halting the

program if the returned value is “false.” If we now apply the halting decision

program to this new program, we run into a paradox. If we apply this new program

to itself and it goes into an infinite loop, it does so because the halting decision

program returns “true,” which means that it does not go into an infinite loop.

Similarly, if it stops and returns “true,” it does this because the halting decision

problem decided that it would loop. As the only assumption Turing made was that

he can write the halting decision problem and this assumption leads to the paradox,

the assumption must be wrong. Ergo, we cannot write a program that generally

decides the halting problem! The halting problem is undecidable, which really

means that it cannot be decided. There is no existence of an algorithm that can

help, so the best we can do is to look for a good heuristic. This is a matter of

mathematics, not of computing power. No matter how fast and powerful our

computers will become, we will never be able to use them to decide the halting

problem. Computers can’t do this!

There are many more examples of undecidable problems, such as questions like

“Will the system terminate?”, “Are two modeled actions order independent or do I

have to orchestrate them?”, “Is the specification complete?”, “Is the specification
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minimal?”, or “Are two specifications functionally equivalent, in other words, do

they deliver the same functionality?” As simulation systems are computer pro-

grams, they also cannot decide undecidable problems. If we know from computer

science that a problem is undecidable, we do not have to develop a simulation to

solve it, as we cannot succeed. However, simulation systems may help with coming

up with better heuristics or engineering approaches that do not solve a problem

generally but provide good enough results for all practical purposes.

The simulationist must therefore know his theory as well as possess an engi-

neering mindset to understand what he/she can make work and what can just be

approximated. Computability and decidability must be well understood.

5.4.2 Computational Complexity

The next hurdle for a simulationist is computational complexity. Only because a

problem is computable and decidable, it does not mean it can be solved in a

practically reasonable time. Generally, computational complexity studies the use

of resources, namely, computer memory and computing time. Computational

complexity is interested in the order of magnitude of functions to describe their

general behavior. This order is often defined using the letter “O,” and the resulting

notation is known as the big O notation. The seminal paper of Stephen Cook (1971)

introduced complexity classes of P, NP, NP-complete, and NP-hard. He distin-

guished between whether a problem is verifiable in polynomial time, which means I

have an answer and want to know if it is a correct one, and whether a problem can

be solved in polynomial time. From a practical standpoint, problems that are known

to be NP hard or NP complete are not generally solvable with computers. Interest-

ingly, the fundamental P versus NP problem is still a major unsolved problem in

computer science.

For simulationists, the question of reuse is very interesting. Intuitively,

component-oriented design offers a reduction in the complexity of system con-

struction by enabling the designer to reuse appropriate components without having

to reinvent them. However, Page and Opper (1999) showed that this intuition is

wrong. Although determining if a collection of components satisfies a set of

requirements becomes feasible under certain assumptions, we still have to solve a

potentially computationally intensive problem. Selecting the right component to fit

into a bigger solution is a nontrivial NP class task that cannot be generally solved or

left to technology. Again, the simulationist has to know his theory or he is in danger

of trying to solve the insolvable with the computer simulation.

5.4.3 Chaotic Dynamical Systems

Chaos theory describes the behavior of chaotic dynamical systems. They received a

great deal of attention two decades ago, including from the simulation community
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(Dewar et al. 1991) as the behavior of chaotic systems cannot be predicted over

longer periods, which generally challenges the analytic usability of computer-based

analytics including simulation.

The predominantly used definition of chaos was suggested by Devaney (1989),

who proposed that for a metric space X, a continuous map f: X!X is said to be

chaotic in X when

1. f is topologically transitive

2. The periodic points of f are dense in X
3. f has sensitive dependence on initial conditions

In laymen’s terms, chaotic systems are bounded and show some degree of order,

but they are not predictable over time as even points that are close to each other will

follow different trajectories over time. The system can also not be decomposed due

to the topological transitivity: whenever we look only at components or subspaces,

we are losing interactions that characterize the system.

Whenever a system is truly chaotic, the initial points can be arbitrarily close to

each other, and still they will be all over the map after several iterations. We cannot

apply our intuitive idea of interpolation: that two points close at the beginning will

continue to stay close over time.

The implications for digital computer simulations are significant: no matter how

precise our computer will be, it still is only able to represent a discrete subset of

possible initial conditions. No matter how precisely we measure our initial value,

there is always an element of error and imprecision connected with this. No matter

how hard we try, we cannot reliably predict the long-term behavior of any truly

chaotic dynamical system! This does not exclude using simulation to gain better

understanding of the behavior of chaotic systems, but it limits the use of simulation

to predict the outcome of operations in the long term. Palmore (1996) gives several

examples from the defense domain, but this problem of unpredictability exists in all

application domains as all of them are affected by these limits and constraints.

5.4.4 Algorithmic Information Theory and Model Theory

The last part of this section on limits and constraints of simulations goes a little bit

deeper into the mathematical foundations and their implications for the epistemol-

ogy of simulation.

Algorithmic information theory (Chaitin 1987) is a branch of mathematics that

proposes that a theorem deduced from an axiomatic system cannot contain more

information than the axioms themselves. To get to this insight, the classical theory

of information (Shannon 1948) had to be extended from pure information to

algorithms that can produce this information. While Shannon focused on encoding

of symbols and syntactical expressions, Chaitin extended these ideas to complete

programs. However, the programs are not seen as syntactical expressions but as

formal languages that produce sentences. If two theorems produce the same

sentences, they are equivalent. A program that produces a series of sentences
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bears therefore the same information as an enumeration of all the sentences it

produces. Algorithmic information theory seeks the shortest and most compact

form to produce information as this is the most efficient form to communicate

capabilities.

For the epistemologically interested simulationist, these findings mean that all a

simulation system can produce is already in the simulation system and the input

data. Computer programs can only transform, not create. As such, we cannot create

new knowledge with simulation. However, we may be able to discover new insights

that were not as obvious before the transformation by the simulation. We may know

the details, but simulation systems may help us to experience the big picture that

emerges from this detailed knowledge we already have. Simulation cannot help us

to understand what we do not know, but it can help us to discover what we

already know.

Another branch of mathematics of particular interest to simulationists is model
theory. Model theory is a subset of mathematics that focuses on the study of formal

languages and their interpretations and is recognized as its own branch since around

1950. It applies logic to the evaluation of truth represented using mathematical

structures. In other words, the way we model truth using mathematical structures

can lead to different interpretations: what is evaluated to be true in one represen-

tation can be false in another one. Ultimately, model theory deals with answering

questions regarding consistency of formal language interpretations, i.e., result in the

same truth statements for the same logical statements. Simulation systems are

written in programming languages, which are a subset of formal languages. The

findings of model theory have direct implications for simulation systems in general.

Two results of model theory that are directly applicable in support of interopera-

bility challenges are Robinson’s joint consistency theorem and Łoś’s theorem.

Robinson’s joint consistency theorem simply states that the union of two formal

language expression sets is satisfiable under a common interpretation of truth if and

only if their intersections are consistent. In other words, there is only one interpre-

tation of truth valid in both models. It is possible that two formal languages are

using different symbols and structures and the resulting sentences are not compa-

rable. To cope with these cases, Łoś’s theorem generalizes the idea of consistency

by expanding the expression sets through the Cartesian product and defines filters

that allow the comparison in a common equivalent representation. It allows us to

find out if a mediation function exists, and if so, Robinson’s joint consistency

theorem can be applied to the results. This small subset of model theory insights

shows that the mathematical foundations of interoperability and composability are

already laid and have far-reaching implications, such as the introduction of a

“common information exchange model” can never solve the underlying systemic

problem of interoperability: the need for a consistent representation of truth in all

participating components.

These examples of limits and constraints have been chosen to show the necessity

for simulationists to understand their mathematical roots. M&S is a very powerful

discipline, but without a strong mathematical foundation, we are in danger to

oversell the potential and give bad advice, which would be unethical. In the long
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term, it is also bad practice from a business perspective to promote exaggerated

M&S capabilities, like promising to solve undecidable problems, as we cannot

deliver such promised solutions. In summary, the mathematical foundations can

become the anchor point for the diverse body of knowledge of M&S that Tuncer

Ören so eagerly contributes to.

5.5 The Future of Modeling and Simulation

Prediction is very difficult, especially if it’s about the future. (attributed to Niels Bohr)

Despite all these constraints, the future of M&S has always been bright in Tuncer

Ören’s mindset (Ören 2002). In current days, simulation is dealt with more and

more in the media as well. The Nobel prize mentioned earlier is one example, but

another story caught also many people’s attention. Satell (2013) contributed an

article to the technical section of the Forbes magazine on “Why the Future of

Innovation is Simulation.” In this article, he describes the following anecdote:

In business life, Mitt Romney was known for his acumen, strong work ethic and keen eye

for talent. He carried over these practices to his political career and his campaign team was

similarly bright and indefatigable. They analyzed past trends, developed a theory of the

case and executed their strategy efficiently. They had only one chance to get it right.

His opponent, the incumbent President Barack Obama had a different approach. He

created an entire division of young, unkempt, over-caffeinated data junkies with little

experience in business or politics. They had no set theory of the case, but instead ran

62,000 simulations per night and continuously updated their approach.

The result is now clear to just about everyone on the planet. The smartest guys in the

room were no match for terabytes of data and smart algorithms. There is no one “theory of

the case” anymore, but thousands of them, being run constantly. The point isn’t to be right,
but to become less wrong over time.

In general, Satell observes that the idea of “one correct common picture” or “one

common theory” is no longer the real objective. It is much more about finding a set

of less wrong models than it is about finding the one right model. Weather

simulation is a good example: instead of trying to find one good forecast, new

approaches are looking at a number of forecast models and creating a set of most

likely predictions. Instead of trying to find the optimal, we are starting to look more

at not being completely off.

This trend was observed in my own philosophical reflections as well (Tolk

2013b), and in Tolk et al. (2013), we pointed to the ideas of Tuncer Ören and

colleagues on multimodeling as exactly the best approach (Yilmaz et al. 2007)

when it is rooted in the mathematical foundations of model theory. Weather

modeling is an application of these ideas well known to everyone who followed

the forecasting of hurricanes: several models are executed in parallel and visualized

on a common map showing the possible paths of the hurricane as predicted by the

various models. Based on these possible paths, homeowners can make their
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decision on how to prepare for the impact and if they want to leave their house or

not. Nothing speaks against using this method for other prediction analyses as well.

If we now include the idea of Big Data and marry it with multimodeling, the

future of M&S remains indeed bright, and many ideas of Tuncer Ören will continue

to make it from his visionary concept to the tool sets of engineers, scientists,

scholars, and decision-makers. While Big Data exposes correlations we were not

aware of, running simulation on these data sets will add the component of dynamic

developments and possible trends that cannot be derived from snapshots alone.

5.6 Concluding Remarks

“So this, then, was the kernel of the brute!” Faust Part 1: Studierzimmer (1808)

– Johann Wolfgang von Goethe

Within this chapter, we looked at the question of how to learn something from using

M&S. We observed a short history of science as a series of models that were used to

capture knowledge. In doing so, the need for a clear conceptualization framework

becomes clear as well as how simulationists can use ontological and epistemolog-

ical means to capture this. As we use models, we use them to provide experience or

to gain insight and ultimately to capture our knowledge. As we use computer

simulations to accomplish these goals, we have to be aware of the limits and

constraints.

Philosophy of simulation answers WHAT we are doing. It completes simulation

as a science and engineering discipline answering HOW we do something and the

code of ethics for simulationists answering WHY we are doing our task. Each

simulationist must be aware of these three pillars of our profession. Tuncer Ören

contributed as a titan in this field to all three interrogatives with questions, ideas,

and answers (Ören et al. 2002; Ören and Yilmaz 2013). His students and protégés

are carrying this flame on in order to mature M&S as a discipline carried by

engineering, ethics, and philosophy.
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Chapter 6

Managing Hybrid Model Composition
Complexity: Human–Environment
Simulation Models

Hessam S. Sarjoughian, Gary R. Mayer, Isaac I. Ullah,
and C. Michael Barton

6.1 Introduction

It is becoming commonplace to use multiple types of models together for simulat-

ing multifaceted systems across many scientific disciplines. Indeed, in recent years,

some approaches (referred to as multimodeling or multiformalism modeling) have

been developed for representing a complex system as a set of subsystem models.

Among these, there has been an interest in developing hybrid methods where

structures and behaviors of models are explicitly accounted for. Furthermore,

theories and approaches are proposed to define the interactions among heteroge-
neousmodel types. However, modeling a system this way brings about composition

complexity that must also be managed. The complexities of hybrid modeling

resulting from the interactions of the composed models can be reduced using

interaction models, an approach referred to as polyformalism modeling

(Sarjoughian 2006). Independently developing and utilizing such interaction

models provides additional flexibility in system model design, modification, and

execution for both the subsystem models and the resultant hybrid system model.

This paper discusses the use of the polyformalism model composition approach for
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researching human–environment dynamics with direct support for managing the

complexity which results from subsystem model interactions within this domain.

The dynamics of a system (and therefore its complexity) arises from its individ-

ual subsystems and their interactions with one another. A basic concept when

modeling systems that are built from subsystems and exhibit compound dynamics

is to model each subsystem separately and then combine them to represent system

models (see Wymore 1993; Fishwick 1995; Zeigler et al. 2000; Ptolemaeus 2014).

However, decomposition of a system model into subsystem models or inversely

composing the system model from the subsystem models is difficult (Davis and

Anderson 2004). Models can be conceptualized and defined to be connected to one

another in many ways. Tuncer Ören has developed a list of coupling types and

associated terms (Ören 2014). It details structural input/output relationships with

types for coupled models with considerations such as dynamic changes in input/

output couplings and model parts that can be defined using the system-theoretic

approach (Wymore 1993; Ören and Zeigler 2012).

Engineering researchers have been developing useful and practical concepts,

techniques, and tools to support hybrid modeling for embedded devices (e.g.,

Karsai et al. 2004) and manufacturing and planning enterprises (e.g., Huang

et al. 2009). In natural sciences, research in hybrid modeling (e.g., social–ecolog-

ical systems) is relatively new. For these areas of science as well as others such as

system biology (e.g., Kirschner et al. 2014), it is important to manage the com-

plexity of the individual and composed models.

To define a system model that consists of distinct subsystem model types

(e.g., differential and difference equation system specification (Zeigler et al. 2000)),

it is necessary to devise appropriate model abstractions from the system and its

subsystems based on the kinds of questions expected to be formulated and answered

by the simulation model. The model descriptions for the subsystems can range from

simple to complex. For instance, a subsystem may be represented by a set of discrete-

time components having hierarchical relationships. Alternatively, its dynamics may be

abstracted to a single difference equation. The choice of modeling formalism for each

subsystem model has a direct relationship to the complexity of the system model

dynamics. This is because two disparate modeling formalisms can differ significantly

in the kinds of structure and behavior that they represent and simulate (e.g., agent

(Epstein and Axtell 1996) and cellular automata (Anderson 2006)).

Another main consideration in developing hybrid models is the intrinsic charac-

teristics of the system to be modeled. For example, the structures and behaviors of

socioecological systems—as compared, for example, with discrete manufacturing

systems—are not as well understood and may be difficult to accurately model at

desirable levels of resolution. It can also be argued that hybrid modeling of a

socioecological system poses unique challenges given the disparity of its subsys-

tems’ dynamics. The subsystem models can be quite expressive, and combining

them together results in complex model structure and behavior beyond those that are

contained in each of the subsystem models. Contributors to model complexity

include the type of data and how it is processed in the individual (subsystem)

model components and the kinds of interactions sanctioned among those compo-

nents. For example, consider modeling a socioecological system with two
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subsystems: a village with some households that can be described as a rule-based,

discrete-event agent model and a landscape providing food for a village that can be

described as a discrete-time cellular automata model (Mayer et al. 2006; Mayer

2009; Barton et al 2012; Ullah et al. 2008; Ullah 2012). Such a composite

socioecological system model may best answer the research questions if the agent

and cellular automata use different spatial resolutions for the landscape. Similarly,

since the time-based dynamics of the agent and cellular automata models can be

different, their dynamics and interactions must be synchronized (Mayer and

Sarjoughian 2008, 2009). The differences in spatial data of the subsystem models

should be modeled separately to allow a spatial representation that best suits each

model’s abstraction. Furthermore, the interactions between agent and cellular

automata models should be flexible and configurable to allow for modification in

research design and data collection. The ability to formulate the interactions of such

subsystem models in a stand-alone model is a central factor in managing the

complexity of this hybrid system model.

The complexity of a human–environment model can be explained in terms of

how its subsystems are modeled and composed. Since each subsystemmodel acts as

both producer and consumer, there is bidirectional interaction in the hybrid system

model. This paper considers the use of a third model, referred to as an interaction

model (IM). Such a model explicitly describes the subsystems’ interactions and is

formalized using polyformalism modeling (Sarjoughian 2006). A structural and

behavioral independence between all three models allows a suitable modeling

formalism to be chosen for each model. Figure 6.1 shows a hybrid model concept

of a discrete-event, rule-based agent model composed with a discrete-time, cellular

automaton landscape model (Mayer et al. 2006; Mayer 2009; Ullah 2012). The

arrows represent communication between the models. Note that there is no direct

communication between the two composed models. The third model, which com-

poses the two subsystem models and facilitates their communication, is called an

Interaction model (IM). An important benefit is the ability to partition and map

domain knowledge to the models (e.g., use an agent model to represent the humans,

a cellular automata (CA) model to represent the environment, and an agent–CA

interaction model to represent synchronized control and data exchanges between

the agent and cellular automata models). The agent–CA interaction model may use

a known formalism that is as specific or general as needed (e.g., discrete-event) to

properly represent the interaction between the composed subsystem models. By

maintaining separation of the models, researchers and practitioners are better able

to study the subsystem models separately as well as examine their interactions

methodically. The use of an interaction model in this fashion is referred to as

polyformalism composition (Sarjoughian 2006).

6.2 Hybrid Human–Environment Modeling Categories

Various approaches (including systems and agent-based modeling) have grown

from within scientific communities for building human–environment simulation

models. A variety of established and popular toolkits have been examined during

6 Managing Hybrid Model Composition Complexity: Human–Environment. . . 109



the course of this research in terms of their capabilities for hybrid agent and

landscape process models (Mayer 2009; Ullah 2012). The most applicable can be

divided into agent-centric, landscape-centric, and theory-centric categories. The

agent-centric and landscape-centric development environments are primarily built

by casting domain-specific knowledge and modeling concepts to programming

languages, whereas theory-centric environments emphasize the use of general-

purpose modeling formalisms with proven execution protocols. Next, some major

approaches that belong to these categories are discussed from the perspective of

hybrid human–environment modeling.

6.2.1 Agent-Centric

Various toolkits specifically for agent modeling have been under development since

the 1990s and, in recent years, adopted by researchers and practitioners in social

and environmental sciences (Ören and Yilmaz 2009). For agent–landscape

domains, Mason (Luke et al. 2005), NetLogo (Tisue and Wilensky 2004), Repast

(North et al. 2005), and Swarm (Minar et al. 1996) are generally used. Each offers a

specialized development environment with foci on certain types of agents that are

combined in specialized ways with spatial, particularly 2D/3D, models. Generally,

agents are implemented as basic software objects where each agent generates

output after receiving input. These software-centric toolkits are developed using

domain concepts. They also vary in their features such as levels of support for data

visualization, experimentation configuration, and graphical user interfaces. These

toolkits essentially require using templates for developing models which may be

modified for intended application domains as in social sciences.

The agent interactions are managed through interfaces that are defined in terms

of software concepts and techniques (Parker et al. 2003). Toolkits are developed

based on object-oriented programming languages such as Java. While agent

Fig. 6.1 An Human-

Interaction-Landscape

model concept

110 H.S. Sarjoughian et al.



modeling toolkits can be interfaced with external landscape model tools such as

GIS (see next section), the resulting integrated tools suffer from two possible

problems. The first is that these tools may become more difficult for modelers to

use unless they have expertise in software development and in particular reverse

software engineering due to lack of access or availability to software specifications

(e.g., see Lytinen and Railsback 2012). That is, expertise in software design,

implementation, and testing in programming and software engineering is necessary

when agent and landscape models need to be changed and especially when relation-

ships between agent and landscape models are to be modified or created.

The second challenge is in determining correctness of the system model. This is

because software-centric toolkits do not have a formal modeling and simulation

underpinning. Instead, they are grounded in a combination of domain-level knowl-

edge, agent modeling concepts, and software engineering techniques. A conse-

quence is the difficulty in having confidence in correctness of the interactions

between agent and nonagent model components which in turn weakens simulation

validation. It is important to note that some studies (e.g., Lytinen and Railsback

2012) have compared computational efficiency of some agent-based modeling

toolkits suggesting they may be used interchangeably (i.e., simulation results

from these tools are indistinguishable). Another study, however, shows that such

agent-centric toolkits may produce substantially different dynamics (Bajracharya

and Duboz 2013). Correctness refers to the relationships between models to have

correct structural and behavioral syntax and semantics. Object and object-oriented

models must represent time and sanction acceptable interactions (e.g., how to

resolve confluence of multiple inputs and outputs arriving at instance of time). To

provide formal grounding to such models, it is suggested to add formal modeling

methods as a layer atop such toolkits (Cicirelli et al. 2013). However, placing

constraints on such simulation infrastructures is not straightforward and is likely

to result in untamed complexity (Sarjoughian and Zeigler 2000).

6.2.2 Landscape-Centric

Geographic information systems (GIS) are a popular environment for modeling

landscape processes. The Geographic Resources Analysis Support System

(GRASS) (GRASS 2014) is a well-known, open-source GIS (Neteler and Mitasova

2004) that includes a georeferenced data management system that supports exam-

ination and modification of large data sets. It is widely used throughout govern-

ment, research, and educational communities that deal with large amounts of

geospatial data. Landscape-centric development environments, including GRASS,

have the capability to support efficient map algebra calculations on very large data

sets. However, they are not well suited for modeling rule-based agents or, more

generally, component-based models. The main weakness of GRASS, from a hybrid

human–environment model perspective, is its inability to represent detailed models

of human agents and their integration with one another. While mathematical
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representations such as differential equations can be used with the GRASS map

algebra functions, the concept and constructs of agents are difficult to conceptual-

ize, create, and execute within the GRASS development environment and the

scripting languages typically employed (Ullah 2012). Furthermore, the map algebra

theory upon which GRASS is developed cannot directly support the representation

of structured systems such as cellular automata models (Mayer 2009).

6.2.3 Theory-Centric

Theory-based approaches have mathematical formalisms within which every model

has known structural and behavioral properties. A proof of correctness can be

applied to models specified with the formalism and to the models interfaced within.

However, theory-based approaches are general in order to remain applicable to a

broad array of domain applications. For example, the Discrete Event System

Specification (DEVS) (Zeigler et al. 2000) is a modeling framework for describing

discrete-event systems. The formalism defines two types of models—atomic and

coupled—with an abstract simulator responsible for executing the model specifi-

cation with toolkits such as DEVS-Suite (Kim et al. 2009; ACIMS 2009). An

atomic model is the basic abstraction that exhibits autonomous and reactive behav-

ior. A coupled model contains one or more atomic or coupled models. Its behavior

is determined by the models it contains and how they are hierarchically composed.

The relationships between models are established via the use of couplings that

employ message passing between models’ input and output ports.

Cellular DEVS, an extension of DEVS, uses regular tessellations to model cell

structures as a collection of individual automata (e.g., Wainer 2006). DEVS could

be used to represent agents, while Cellular DEVS can represent the landscape

processes. These two formalisms are closely related, and together they can support

modeling human–environment systems. The strength of this approach is its formal-

ism with built-in interface for composing agent and landscape models together. The

use of this approach weakens as large-scale models must be developed. The

landscape model may encompass a very large data set—on the order of millions

of cells. However, while the hierarchical structure of DEVS fits well for an agent

model, the cost of managing each cell as an individual object can grow exponen-

tially (Kincaid et al. 2006). While it could be argued that parallel implementation

can increase execution efficiency for large-scale cellular models (e.g., Vasconcelos

and Zeigler 1993), an environment such as GRASS is still more efficient for the

type of landscape process dynamics considered in this work. In the late 1990s,

GRASS was integrated with DEVS-C++ to support simulation of complex adaptive

systems containing georeferenced movement of satellites, aircrafts, and ground

assets (Hall 2005). This approach uses high-level architecture (HLA) where differ-

ent simulations are integrated (IEEE Std 1516-2010 2010). Integration-based

approaches such as HLA primarily support simulation interoperability (the
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coordination of different simulation executors) instead of model composability

(e.g., Sarjoughian and Zeigler 2000; Davis and Anderson 2004).

6.3 Human–Environment Model Composability

The study of many interesting systems requires developing multimodels with

distinct abstractions. One method, as proposed here, is to define the structure and

behavior of every model and its composition with other models according to

modeling formalisms. A modeling formalism can be used to describe the external

and internal parts of a model using proper syntax and semantics independent of its

software design and implementation. Some researchers, however, develop hybrid

human–environmental models that do not employ formal modeling and simulation

methods. These models can generate dynamics that are difficult to explain. The

modeling categories presented in the previous section are extended from the

conceptual and software implementation aspects, for example, to assign agent

models to spatial models (Howe and Diggory 2003; Luke et al. 2005). However,

methodical model composition must use more rigorous definitions centered on the

formalisms that are used. It is useful to note that although modeling in such

environments can be sanctioned to comply with monolithic formal modeling and

simulation methods, it is impractical to achieve grounded heterogeneous model

composition as described below.

Building on monoformalisms, the superformalism, metaformalism, and

polyformalism multimodeling approaches (Sarjoughian 2006) have been consid-

ered for heterogeneous model composition (see Fig. 6.2). An attempt at a best-fit of

the categories discussed in the previous section into these multiformalism modeling

approaches can be made. It is useful to say “best-fit” for a model whose behavior

and structure are only limited by programming language concepts and, perhaps,

object-oriented design, which are typically difficult to compartmentalize within the

more strict modeling formalism composition approaches. In the superformalism

modeling approach, different subsystem models may be described in closely related

modeling formalisms and mapped to a single, higher-level specification. For exam-

ple, continuous and discrete models may be composed using a mixed continuous/

discrete modeling formalism (e.g., Praehofer 1991). This includes the DEVS and

Cellular DEVS model described in the previous subsection. Using metaformalism

modeling approaches such as (Karsai et al. 2004) and (Mosterman and Vangheluwe

2004), subsystem models that are described using different formalisms may be

transformed into a third, common modeling language such as Discrete Event

System Specification (DEVS) and Unified Modeling Language (UML) models.

Domain-specific needs drive the specific data that incur the transformation. For

both superformalism and metamodeling approaches, any add-ons must be capable

of transforming to the core constructs. In the polyformalism modeling approach, an

interaction model is introduced to describe data and control exchanges at varying

levels of detail between two models that are specified using disparate modeling
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formalisms. The interaction model is consistent with the composed models in that

the composed models retain their formal properties without the need to incorporate

specific knowledge of the structure and dynamics of the other composed model.

6.3.1 Composition Complexity

Many systems exhibit traits that researchers define as complex. As decomposition

of a system is a common approach to managing complexity, multimodeling tech-

niques prove useful. All three model composition approaches discussed above can

capture the complex behaviors of multimodel systems and thus simulate their

dynamics. However, a way to simplify the often difficult task of describing the

interactions between the composed models is an important consideration in choos-

ing which multimodeling composition approach to use. Importantly, system and

subsystem complexities must be accounted for within these descriptions.

Modeling the interactions between disparate model types can be viewed in terms

of complexities that are associated with (i) software toolkits and (ii) modeling

approaches. When describing agent or landscape dynamics through the use of

software components, the complexity of agent-centric and landscape-centric

Fig. 6.2 A classification of modeling formalisms
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approaches can be attributed to their software toolkits. The reason is that software

complexity contributors (i.e., discreteness of model components, model component

design, management of model development process, and the flexibility of model

components to evolve) underlie the complexity of developing hybrid models

(Booch and Young 2006; Grimm et al. 2006). Consequently, the complexity of

toolkit approaches such as Mason, Netlogo, and Repast can be mainly described in

terms of software complexity (Rand et al. 2005). Therefore, development of agent

and landscape models must be understood in terms of software components instead

of model abstractions that are based on modeling formalisms.

As stated above, the complexity of hybrid model development can also be

considered in terms of the modeling approach that one chooses. Algorithmic,

deterministic, and aggregate complexities have been proposed in the context of

social and natural sciences (Manson 2001). Algorithmic complexity refers to the

difficulty in solving a problem mathematically as well as simplifying that solution

(a domain-dependent endeavor). Deterministic complexity involves the ability to

determine the outcome of the system given changes in initial conditions and input.

These two kinds of complexity comprise a holistic view of a model. In contrast,

aggregate complexity emphasizes the importance of synergy arising from the

interactions among the subsystems of a system. The concept of aggregate model

complexity (i.e., composition complexity) is especially relevant for multimodeling

approaches that have been under development for engineered systems and, to a

lesser extent, for socioecological systems. In some cases (e.g., agent/cellular DEVS

(Ntaimo et al. 2004)), the complexity of hybrid model development may be

explained in terms of both a modeling approach and the software toolkit. With an

emphasis on the composition of models, this paper’s focus is aggregate model

complexity and choosing a model composition approach that helps to manage it. To

this end, the degree of effort in hybrid modeling is also included. The modeling

effort is influenced by three factors: (i) expressiveness of the modeling formalisms

and their composition, (ii) simplicity of model development, and (iii) availability of

robust and efficient simulation tools. All of these factors are in turn influenced by

domain knowledge (e.g., human–environment modeling).

Of the three model composability approaches, polyformalism composition best

suits human–environment modeling when the system model is prone to modifica-

tion (e.g., testing different model subsystems or subsystem configurations). Social

science is often beset by partial data sets and contested meanings of the data at

hand. It is also often not fully understood how the system works. Examining system

dynamics theories may be the crux of the research. In these cases, it is useful for the

researchers to able to build and modify the system model to test system dynamic

hypotheses and/or modify the system as more data becomes available. This may

sometimes mean changing the abstractions of the models or the subsystem models.

Polyformalism composition enables each subsystem model to be developed using

its own formalism. Thus, the models can be as expressive as the modeler and

domain require. Polyformalism composition also provides the domain experts

(e.g., anthropologists and geologists) with the capability to work on their subsystem

models independently of the other modelers. This makes model development
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easier. Furthermore, this modeling approach directly exposes the interaction

between the subsystem models, allowing the modelers to have explicit and exact

control over the interaction and visibility into the resultant behaviors of both the

subsystem models and the hybrid system model itself. This in turn simplifies the

management of aggregate complexity.

6.3.2 Polyformalism Model Composition

The polyformalism approach introduces the knowledge interchange broker (KIB)
concept to compose multiple modeling formalisms (Sarjoughian 2006). To model

interactions between models that are described in disparate modeling formalisms,

the KIB can be used to specify input/output mappings (including transformations)

and synchronization. The purpose of the KIB is to succinctly define model data and

control interactions. The polyformalism composition approach does not predeter-

mine which formalism is used to describe either the human model or the environ-

mental model. Furthermore, it does not require that either model have any structural

or behavioral knowledge of the other subsystem model. What it specifies is a third

model (i.e., an interaction model, an instance of the KIB) being created that

explicitly models the interaction between the two subsystem models. In this way,

the two subsystem models remain independent of each other. This reduces the

complexity of managing model development as each may be handled separately

with minimal concern for the other subsystem beyond domain application. Further-

more, explicit visibility and management of the composition is provided. This

enables more control over the complexity generated by the interaction, including

direct input and output for experimentation (Mayer and Sarjoughian 2008; Godding

et al. 2007; Sarjoughian and Huang 2005; Huang 2008).

The reason for explicitly modeling interactions between modeling formalisms

has important implications. For example, it is important to know what it means to

inject data and control from an external source that may not have the same approach

to model specification and execution. One model may have an innate concept of

time, while the other may not. Consider, also, what it means for a rule-based agent

model to inject data into a CA model not at predefined discrete time steps (Mayer

and Sarjoughian 2008, 2009). The modeler must ensure that an external input does

not arbitrarily modify the state of the CA model. All state changes must be in

accordance with the rules of that model’s formalism; otherwise, correctness and

validity of that model is suspect. To achieve model composability, the main goal

centers on having appropriate concepts and methods to compose different model

types such that both the disparate models and their interactions can be described

using model abstractions with proper syntax and semantics. The composed models

must be specified correctly—i.e., (i) correctness is ensured according to the

domain-neutral modeling formalism of each subsystem model and (ii) validation

is ensured according to the domain-specific model descriptions (Mayer et al. 2006;
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Huang et al. 2009; Godding et al. 2007). Once the subsystems are formally defined,

an interaction model can be developed to explicitly model the interaction.

The interaction model composes the two subsystem models by accounting for all

aspects of the two models being composed. These are grouped into formalism and

realization aspects (see Fig. 6.3). The formalism refers to model specification and

execution (i.e., mathematical descriptions of the system and the machinery to

execute the model). The specification and execution layers are not specific to any

one model instantiation. Rather, they describe any model that conforms to the

formalism. The realization aspect encompasses software architecture design and

implementation. The architecture layer refers to software design (e.g., described in

the Unified Modeling Language (UML) (Booch and Young 2006)) that can be

forward engineered to specific programming languages (e.g., Java, C, Lisp). Design

considerations can be as simple as converting an integer from one model into a

double for another or as complicated as handling synchronous versus asynchronous

input and output exchanges. The implementation layer specifies software library

and programming language choices, for example. This layer refers to the imple-

mentation details that comply with the software architecture and are driven by the

system’s domain knowledge. For a socioecological model, this could involve how

the scale and resolution of a model relates to other models, for example, an

environmental model scaled to employ millions of data elements, each at a

10,000 m2 resolution, interacting with an agent model using only a few hundred

agents working at a 100 m2 resolution. The modeler must consider the significance

to an agent’s movement possibly existing entirely within one cell of the environ-

ment model.

While the implementation-specific layer may have the most explicit representa-

tion of the domain, all other layers also are influenced by domain knowledge. It is

the domain that should dictate what formalisms are suitable to develop the model of

a system, how the model is executed, and how the model experimentations are to be

conducted. By considering the domain across all the layers of the model, the model

can better represent the domain under study. The domain experts will be capable of

developing the system model provided that a suite of subsystem model parts for a

given domain are already (or can be) developed. Furthermore, the complexities of

the domain dynamics must be systematically represented within the model and, just

as importantly, managed and simulated.

It is through the context of the domain and the design of experiments that an

understanding of how the two subsystem models can interact is gained. From this

understanding, the modeler can choose an appropriate formalism for the interaction

model. The IM may be developed using either of the modeling formalisms used for

the subsystem models or may employ a distinct formalism. The realization of the

IM is derived from its chosen formalism. The dynamics of the IM are dependent

upon the realizations of the two composed subsystem models. It is within the

realization of the IM that the interactions between the subsystem models occur

through data transformation, synchronization, concurrency, and timing of the KIB

(Sarjoughian and Huang 2005). This approach affords the ability to segregate the

two subsystem model formalisms and realizations. Furthermore, it allows the
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domain-specific details for each subsystem and their interactions to exist within

their respective models.

6.4 Hybrid Agent–Landscape Model

The exemplar human–environment model is a simulation of human farmers living

in the Penaguila Valley, Spain, during the early Bronze Age (Mayer et al. 2006;

Mayer 2009; Ullah 2012; Arrowsmith et al. 2006; Soto et al. 2007). A conceptual

illustration of this system is shown in Fig. 6.1. The agent model represents human

farmers who employ cropping cycles in a rain-fed subsistence agropastoral system.

The landscape model is a process-based, cellular automata simulation of surface

runoff flow, sediment detachment (erosion), sediment transport, and sediment

deposition. The agent model is dependent upon some characteristics of the land-

scape model to make decisions and provide for its survival. The actions that an

agent takes in order to survive may then impact the landscape model. These impacts

change the dynamics of the landscape model and, quite frequently, the same

characteristics upon which the agent depends. A clearer delineation between com-

plexity emerging from within a subsystem model (i.e., algorithmic and determin-

istic) and that which results from interaction with the other composed model (i.e.,

aggregate) is gained by directly expressing these models’ interactions within a

separate model.

Separating these internal and external complexities (with respect to a subsystem

model) has other benefits. The algorithmic and deterministic complexities are more

the result of modeler abstractions and implementation choices. These choices are

dependent upon the experimentation setup and the domain. Thus, one may argue

that there is some degree of modeler control over these complexities. On the other

hand, aggregate complexity typically materializes as emergent behavior. As this

Fig. 6.3 A conceptual

depiction of separation of a

model’s formalism from its

realization

118 H.S. Sarjoughian et al.



behavior is not explicitly defined by the modeler and its results are often nondeter-

ministic, there is much less modeler control. Further, as the emergent behavior must

be analyzed at the hybrid system level, there needs to be visibility and flexibility in

the hybrid model design in order to test and modify the subsystem models such that

the resultant emergent behavior, assuming that it is desired, produces valid results.

6.4.1 Agent Model

The agent model is a combination of discrete-event, rule-based agents and models

that define an agent’s relation to another (Mayer et al. 2006; Mayer 2009; Mayer

and Sarjoughian 2009). The discrete-event timing nature of the agents signifies that

the agent conducts its actions in a discrete fashion but its current action may be

interrupted by external factors. The result of such an interruption is dependent upon

the agent’s current state at the time.

The agent is a representation of a human household in which all members have

common goals and share resources managed by the household. The model main-

tains population and allows for growth (positive and negative). The goal of each

household is simply survival. A household is given a caloric requirement based on a

per capita value. Additionally, the household is able to provide labor based upon all

or a percentage of its population. To support its population, a household must feed

its members by farming wheat and barley. The wheat is consumed directly by the

household, while the barley is used to feed livestock that produce milk and meat,

which add to a household’s caloric intake. In each cycle, the household calculates

how much of each crop is required and how much land is required to produce

it. Assuming that the household has enough labor to cultivate for the projected crop,

it attempts to do so. If not, it attempts to cultivate as much as its current laboring

populace will allow. To farm, households conduct a survey of their surrounding

landscape. They assign a value to land based upon the attributes of soil depth, land

cover, and distance. Once the land is assigned a value, a household makes a plan for

that cycle which meets its needs (or comes as close as possible) using the most

valuable land. A probabilistic birth rate and death rate modified by the ratio of yield

to need is used to determine a household’s yearly change in population (if any)

(Cowgill 1975; Wood et al. 1998).

Land cover is a discrete-time abstraction of both the plant growth on the soil

surface and the health of the soil overall. Healthier soil supports more plant growth.

The households desire a moderate level of land cover which is indicative of soil that

is healthy enough to support a large crop without having to put too much effort into

clearing the land of trees and shrubs to cultivate it. If the land cover is above the

desired amount, the households will reduce it to a desired level for farming,

indicative of clearing the land.
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6.4.2 Landscape Model

The landscape model (Ullah 2012) is based upon well-known and broadly applied

algorithms that calculate sediment flux at points on a landscape given the supply of

sediment at that point and the topographic characteristics of the areas up- and

downslope from that point (Braun et al. 2001; Dietrich et al. 2003; Hancock

2004; Mitasova and Mitas 1993; Willgoose 2005; Barton et al. 2004). These flux

calculations also rely on the results of flow accumulation. The model simulates

discrete flow of water and its accumulation in each cell. The sediment flux at each

point on the landscape is then transformed into an elevation change through the

Unit Stream Power Erosion Deposition (USPED) equation (Mitasova and Mitas

1993), a three-dimensional modification of the Revised Universal Soil Loss Equa-

tion (RUSLE) (Warren et al. 2005). In the landscape model, the net erosion/

deposition of the sediment is estimated from the sum of the change in the sediment

transport capacity in the x and y directions. The sediment transport capacities are

modified by a transport factor Tr derived from a modification of the standard

RUSLE. It is the product of the rainfall intensity and three erosion resistance

factors. These erosion resistance factors are a soil erosion resistance factor based

upon soil composition, a vegetation erosion protection factor based upon vegeta-

tion’s ability to hinder rainfall and surface flow, and an erosion prevention practices
factor (e.g., terraces and check dams). The rainfall intensity factor is computed by

an equation that combines monthly precipitation amounts and is expressed as a map

of rainfall intensity for each area in the landscape. The value is calculated from

retrodicited precipitation values for the middle of the early Neolithic (7,000 BP

(Before Present)) for southern Spain (Bryson and McEnaney-DeWall 2007). All the

erosion resistance factors are scaled from 0 to 1, with 0 being nonerodible and

1 being unprotected from rainfall intensity.

The landscape model also includes a simple vegetation model (Ullah 2012).

Vegetation is coded on a 50-year timescale. Any degraded land cover, if left

unmodified by the agents, is regenerated in stepwise fashion through a simplified

succession sequence. Bare ground will grow back through grass to scrub and

eventually to forest cover in a 50 year period if no human impact occurs during

the regeneration cycle (Pardo and Gil 2005). The land cover values are then

translated to vegetation erosion protection factor values based upon linear regres-

sion of the known relationship between “classic” land cover types and vegetation

erosion protection factor values in Mediterranean environments.

6.4.3 Interaction Model

The IM encompasses all the interactions occurring between the agent and the

landscape models as sketched in Fig. 6.1. Figure 6.4 shows the interactions between

the agent and landscape models as a separate part having its own specification,

120 H.S. Sarjoughian et al.



execution, software, and implementation (Mayer 2009). The IM is developed in

part in the DEVS-Suite simulator (ACIMS 2009) and conforms to the abstract

communication regime defined for parallel DEVS. The IM’s data transformations

and control follow the KIB method since the interactions between the IM and

GRASS cannot be defined in the DEVS formalism.

Household farming impacts the environment by reducing the land cover. When

coupled with the landscape evolution model, this has the effect of increasing soil

erosion in that area. As soil erodes, less crop yield is produced by the same land.

However, each year that land is allowed to fallow, the land cover increases. This

represents some health returning to the soil. As plant matter grows back, it also has

the effect of decreasing soil erosion, thus possibly increasing soil depth. An

emergent result of this logic is that the households may exhibit the behavior of

cycling their planting sites—farming in one area the in the first cycle and then

farming in another area in a later cycle and allowing the previous site to fallow.

Additionally, the village footprint also impacts erosion. While no crops are grown

within the village itself, villages were often established near water sources. The

erosion change caused by the village often has effects on the environment

downstream.

In the current hybrid model, there are four interactions in each simulation cycle:

the agent view of the landscape, the agent impacts on the landscape, the agent’s
harvesting of the crops, and the landscape processes affected by agent actions. It is

these four interactions which define the aggregate complexity for this hybrid model.

It is through the explicit modeling of these interactions, the usage of aggregation/

disaggregation, timing control, and other mechanisms (described below) by which

this complexity is managed.

It should be noted that the IM does not initiate interaction with a subsystem

model on its own. It is a model of the interaction between the subsystem models,

and as such, it sends data or a control message to a subsystem model as a result of

input from the other. However, the IM must be cognizant of the differences in

Fig. 6.4 A schematic view

of the hybrid DEVS-IM-

GRASS environment
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timing mechanisms and data content for each subsystem model. The IM must

respond to input from both composed models and, in the case of the discrete-

event agent model, may not know the exact timing of such inputs. Therefore, it is

appropriate to consider a discrete-event modeling formalism for the IM. With this

in mind, the IM may potentially inject data into one of the subsystem models at any

time. The time at which an event input is injected may not align with a regularly

scheduled discrete-time instant. This poses a potential problem since the time-

dependent functions within the discrete-time landscape model must be executed

at specific time steps. In the current model, the agent and landscape models operate

on the same cycle. However, each agent sends independent control messages to

interact with its environment. The IM then aggregates all agent input to a particular

landscape model process. It then disaggregates the output of the process to provide

each agent the portion of the landscape model result with which it is concerned.

Another subsystem model disparity that the exemplar IM accounts for is envi-

ronmental resolution (Ullah et al. 2008). The agent manages cells with a 25 m2

resolution (5 m� 5 m). The landscape models use a coarser granularity of 100 m2

(10 m� 10 m). Thus, each agent action impacts four landscape model cells. This

has important implication during each of the view, farm, and harvest interactions.

As stated above, the agent uses soil depth, land cover, and a distance cost from the

village to determine the land value. During viewing, the IM provides the same

landscape data to the one or more agents that occupy a specific landscape cell. The

distance cost calculation is special. It is not just the length between two points; it is

weighted by the type of terrain over which the agent must travel to get to that point.

The distance cost is therefore a value created by an association between an agent

model attribute (village location) and a landscape model attribute (terrain) and, as

such, is an attribute of the IM itself.

When an agent specifies a farming action, the IM will aggregate the impact from

the agent’s four “farmed” cells to the representative cell in the landscape model.

When an agent decides to harvest a crop, it receives back from that action an

amount of crop harvested as yield. This yield is dependent upon the environmental

factors in which it was grown (soil depth, rainfall, etc.). The crop itself is neither

part of the landscape model nor of the agent model. However, for this attribute of

the hybrid model to be useful, it requires data from both subsystem models and is

therefore well suited to be formulated within the IM. Thus, it is the IM that

intercepts an agent’s harvest request, queries the landscape model for environmen-

tal values which impact crop yield, calculates the actual yield, and provides this

value to the agent. In turn, the IM collects agent impact data (farming and village

site data) and provides this to the landscape model in order to facilitate the erosion

model dynamics. Agent impacts are another model characteristic which, while

generated as a result of agent decisions, makes little sense on their own in either

the context of agent decision making or in pure landscape dynamics. So again, this

is another attribute of the hybrid model that is best suited within the interaction

model.

As stated previously, the IM provides visibility into the hybrid model interac-

tions and behaviors. Consider that the agent model uses a deterministic, rule-based
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approach to drive its basic behaviors. However, it also uses stochastic methods to

resolve conflicts between agent farming locations. This leads to nondeterministic

results when it comes to individual household land holdings and, ultimately,

survival. The landscape model also uses deterministic processes to model the

environmental behavior. However, the exact process for each subsystem is

unknown. Researchers strive to include more details into the subsystem models in

order to test their understanding of these real systems. Thus, the subsystem model’s
algorithmic complexity has grown due to the addition of a large number of

variables.

While the range of input variables and initial conditions can be a priori formu-

lated when each subsystem model is considered independently, it becomes less so

when the two models interact. The impact that each variable has on the hybrid

system behavior can become very difficult to determine. This is exacerbated by the

fact that the agents working with landscape data exhibit emergent behaviors in

farming practices such as farming location and land management (i.e., farmed or

fallowed). This in turn leads to different erosion patterns as a result of the agent’s
actions. By using an interaction model, the researchers are able to model and

manage the data passing between the subsystem models by focusing on things

such as boundary values and input/output relation (i.e., sensitivity analysis) for a

range of values. Furthermore, having an IM reassures the modeler that only specific

data is being passed between the subsystem models. This helps to ensure that as the

internal complexity of each model rises in the form of algorithmic or deterministic

complexity, the aggregate complexity remains controlled. Thus, if the emergent

behavior is invalid, a much smaller subset of processes and variables need be

examined and modified. Finally, another important factor is the scalability of the

IM since the amount of data exchanges and the frequency of subsystem models’
interactions can be separately handled.

6.4.4 Software Realization

The software architecture for interaction modeling and simulation must account for

disparate software languages and constructs (Mayer et al. 2006). The agent model

and the IM are developed in DEVS-Suite simulator (ACIMS 2009), a Java language

implementation of the parallel DEVS modeling formalism. The landscape model is

developed in GRASS (GRASS 2014). GRASS modules are written in C. Scripts

(and functions) may be written in any scripting language such as Bash or Python

depending on the system functionality that the modeler requires (e.g., file manage-

ment, use of regular expressions, etc.). To run a GRASS script, a DEVS model

component uses the Java Runtime.exec() command to execute it.

Each GRASS module is independent and therefore has its own interface, but the

modules do not continuously run. They accept input, return output, and terminate in

a noninterruptible fashion. The output from the modules is only provided to the

standard output stream (and sometimes, standard error stream). Thus, to get return
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data, the IM must capture and parse the data from the standard output buffer and

then insert that data into a DEVS message object. This approach is complicated by

the fact that GRASS, being an open-source project initially developed during the

early 1970s during the time of command-line interfaces, has output that is typically

preformatted for ASCII viewing and each module has its own unique output format.

The GRASS community is working on standardizing such variations. It is mana-

gerial modeling tasks such as buffer parsing, which are not directly related to the

simulation with which the researchers are concerned, that can tightly couple two

composed models and restrict the approach used in subsystem model development.

In light of the fact that the GRASS implementation may have to change, the IM

implementation may also require modification. The use of the interaction model

frees both subsystem models from the burden of data transformation and mapping,

allowing their developers to focus on the best architecture for each.

6.5 Simulation

The simulation models presented in this paper are designed to investigate the

impacts of farming in the early Neolithic (1–17,000 BP) of southern Spain

(MedLand 2014). The environmental conditions of the model were set according

to what is believed to be the conditions: moderate Mediterranean rainfall regime,

Mediterranean terra rossa soils, and an initial land cover of Mediterranean oak

woodland. Because archeological evidence is rather limited, data from ethnoarch-

eological investigations of similar modern farmers has been used to devise the agent

model (Mayer et al. 2006). With the simulation described in this paper, the

MedLand research group sought to better understand the workings of the hybrid

human–landscape model and how it represented the underlying villagers and

environment subsystems. Questions that were focused on included

1. Can the environment sustain a moderately sized village population using a

known archeological site?

2. How much do certain factors contribute to population sustainment?

– Soil depth (and associated erosion)

– Labor force versus the household size and caloric requirements

– The number of households

3. What impacts do the farmers have on the landscape?

4. What are the impacts of different data exchanges between agent and landscape

(e.g., selected data elements and data size/resolution) and control frequency of

data exchanges?
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6.5.1 Hybrid Model Configuration

In one scenario, one village site was chosen to allow examination of how topogra-

phy influences the outcome of the model (Ullah 2012). The village site is located in

an area that was actually a village in the Neolithic period (as best we can tell from

data collected during a field survey). We reconstructed the paleotopography

(by filling in the deep barrancos) and used the early Neolithic climate data. The

details of some of the major initial conditions are given below. Many of these

values may be visually modified at the start of the simulation (Mayer 2009). The

intent is to highlight the number of variables in the hybrid model, many of which

may have profound impacts on the simulation results and increase the difficulty of

managing the model’s complexity.

In the simulation, the village consists of 10 households, each with an initial

population of 6 people. The initial birth rate is set at a 3 % probability, and the

initial death rate is set at 2 % (Cowgill 1975; Wood et al. 1998). In the event of a

particularly good or bad year (when the yield-versus-need ratio is high or low,

respectively), the birth rate changes at a rate of 1 % per year, while the death rate

would inversely change at 5 % per year. The maximum birth and death rates were

capped at 5 and 100 % probability, respectively. The minimum birth and death rates

were 0 and 2 % probability, respectively.

Maximum yield of wheat and barley (in a soil depth greater than or equal to

100 cm) was set to 460 kg/Ha. Minimum yield (in a soil depth less than or equal to

13 cm) was 168 kg/Ha (Thomson et al. 1985). Yields for soils of depths between

13 and 100 cm were scaled by the power regression formula:

Y¼ 43.951�D0.522071, where Y is the yield and D is the soil depth in centimeters

(Sadras and Calvino 2001). Households were set to initially expect a yield of

450 kg/Ha in the first year and from then on to expect the same yields as were

actually produced in the prior year. As extensive grazing has not yet been added to

the human model, the impact of herd animals (goats and sheep) is only modeled by

the amount of barley (grains, straw, and chaff) needed for supplemental herd

feeding over the fall/winter months.

Each member of the household populace required 1,000,000 kcal of wheat per

year and 250,000 kcal of milk and meat per year. Wheat was considered to be

directly consumed in the form of bread and porridges, while barley was considered

only as fodder for herd animals that produced meat and milk products to be

consumed by the households. Therefore, after harvest loss, seed reserve loss, and

processing loss, wheat provided agents with 3,500 kcal/Ha, while barley only

provided agents with 213.87 kcal/Ha (Thomson et al. 1985). In the simulation,

only 50 % of the population was able to produce labor, and each productive person

was considered able to produce 300 man-days per year. Wheat and barley farming

required 50 man-days per Ha per year (Simms and Russell 1997).

In order to speed land patch querying and village-level land negotiations (cur-

rently the most time-costly operation in the agent model), the village in the current

simulation was given a “viewable” territory based on a 10 min anisotropic walking-
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time cost radius from the village center, which translates into an area of about

160 Ha. Village area was calculated using the population density formula, A¼Vp/

D, at the start of the simulation and every time the village population changed. A is

the area occupied by the village in square meters, Vp is the current village popula-

tion, and D is the population density coefficient of people per square meter. The

current simulation used a D value of 0.0159. Additional details and in particular

details of the archeological data, landscape modeling, and evaluation of the hybrid

human–landscape dynamics highlight the scale and complexity of modeling and the

necessity of hybrid model correctness for simulation validation (Ullah 2012).

Figure 6.5 shows the simulated agropastoral landuse at three stages run for

200 cycles (at a temporal resolution of one cycle per year). The extent of the

households’ impacts on their environment was assessed by comparison with a

control landscape model. Figure 6.5-(a, b) at year 5, (c, d) at year 100, and (e, f)

at year 200 show the impact of households on the landscape and the resultant

landcover. We can observe an emergent pattern of concentric “rings” of landuse

around the village that results in corresponding “rings” of landcover in various

stages of regrowth. This pattern emerges as agents encounter a series of thresholds

in their land allocation logic, whereby they use portions of land until fertility

(or grazability) is reduced to the point that they release it and move outward in

search of new plots (note the difference between year 5 and year 100). Eventually,

the discarded plots regain fertility and vegetation, and since they are closer, agents

abandon the plots located further away in favor of those that are closer. This creates

the “rings,” and as the agents’ population increases (and they need more and more

land to satisfy their food requirements), a series of superimposed rings of fallowed

and actively cultivated/grazed land develops (see the landcover and impact patterns

for year 200).

6.5.2 Results

The simulation study provides some clear answers to the questions posed in the

previous subsection. Realistic values derived from ethnographic data, archeological

data, and other research studies were used. The simulation results revealed hybrid

model dynamics that could be directly attributed to complex interactions between

the individual household and landscape models. The domain experts are able to

understand and explain model composition complexities that previously could not

be examined at such a level of detail and scale for the agent and landscape models.

1. The environment can sustain a moderately sized village population using known

archeological sites. However, the extent to which the population is successful at

surviving is dependent upon the output of both the conflict resolution and

population growth (i.e., birth and death) stochastic processes.

2. How much do certain factors contribute to population sustainment?
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– Soil depth (and associated erosion) only plays a significant role if the depth

falls within the minimum and maximum values for yield. If soil depth is

beyond the maximum for yield, the household does not notice any changes in

soil depth with relation to its yield.

– In examining labor force versus the household size and caloric requirements,

careful consideration must be given to the initial values of the variables. The

wrong values either provide too easy a scenario for the households or one in

which it is impossible to survive.

– An impact of changing the number of households is the change in the distance

from the household to the farmland. This is because as the number of

households increases, some households have to travel further to find viable

land for farming. Additionally, due to the stochastic nature of how households

were assigned management rights to a land area, some unlucky households

were left with farmland that produced lower yields than average, and there-

fore, their populations did not do as well. With these impacts, the rules used to

model how households determine where to farm (e.g., soil quality and

distance) could be more thoroughly tested and compared to

anthropological data.

3. Farming is shown to increase landscape erosion. However, a village site, which

is considered to be compacted soil, decreases erosion. The extent of the impact is

dependent upon the environmental conditions surrounding the area. For exam-

ple, if an area would naturally incur deposition of soil, then farming may just

cause the soil depth to be near static. On the other hand, an area already prone to

erosion would decline rapidly, forcing the farmers to soon give up their farmland

areas and seek better ones.

4. The different data exchanges between the human and landscape subsystem

models show the importance of maintaining their separation via an interaction

model. An important idea is that each model need not expose all its data to its

external environment. It provides the data it wants to the IM, and the IM may

then manipulate that data as needed to conform to the input of the other

Fig. 6.5 Penaguila Valley with village locations and erosion impacts
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subsystem model. This reduces the complexity within each subsystem model.

Furthermore, with respect to frequency of data exchanges, each model may use

its own timescale. The IM may then manage data transformation and exchange

frequency at the appropriate times. Reducing data exchanges can improve

simulation execution time (performance) since interaction between models can

be controlled both in quantity and frequency. For our development environment

(i.e., DEVS-Suite simulator), aggregating multiple, similar exchanges (house-

holds desiring to examine the same land, for example) proved an efficient way to

improve performance.

In answering each of these, examining the data exchanged between the human

and landscape models was key. There were many factors to consider in determin-

ing, for example, why a population decreased. By examining the interaction

between the two subsystem models, it might be seen that yield values were plentiful

for supporting the household’s population. This then leads the researcher to exam-

ine the internal processes of the human model, such as the amount of land that could

be farmed and the stochastic population growth. For example, even when the

average birth rate is higher than the average death rate, it is possible that random

number generation will produce more deaths than births. Alternatively, it might be

found that yield values would not support the population even after the household

tried farming many different lands. This then leads the researcher to examine the

landscape soil depths to determine why they became so low. In short, it is the

visibility offered by the interaction model which leads the researcher along a logical

path to understanding why the hybrid model is behaving the way it is. In another

simulation setting, one village located at high elevation in a relatively steep valley

flank was added. In this kind of scenario, larger-scale agent models and thus a

higher degree of interactions make the role of the IM more significant.

6.6 Conclusions

Multimodeling has become more commonplace across many scientific research

areas. This approach allows modelers to represent larger, more complex systems

with smaller, less complex ones that work together. Also, while developing these

subsystem models, the modeler may find that each is best represented by a different

formalism. A difficulty then arises in composing these disparate subsystem models

into a system model. Furthermore, some level of complexity invariably comes

about from the interaction between the subsystem models, which is reflected in

the overall behavior of the system. Thus, it is incumbent on the modeler to decide

upon a multimodeling approach that methodically and correctly composes the

subsystem models into a system model.

Polyformalism model composability is a multimodeling approach with several

advantages. First, it ensures that each subsystem model is loosely coupled with its

composed model to provide flexibility in design and to make changes with minimal
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impact on the other model. Also, each subsystem retains its formalism expressive-

ness to provide the best description of the subsystem model. This can also reduce

the algorithmic and deterministic complexities by allowing the modelers more

flexibility in the design of the subsystem models. Second, polyformalism compo-

sition explicitly models the interaction between the two composed models using a

third model. This provides visibility into and strict management of the interaction

and, therefore, the aggregate complexity of the system model. Third, the IM pro-

vides a point at which to implement simulation tools common to both models

without burdening the architecture of either composed model. The applicability

of the polyformalism concept for three or more very different modeling approaches

along with multiple interaction models is an ongoing research (Sarjoughian

et al. 2013). Composing disparate modeling formalisms can benefit from coupling

model concepts (Ören 2014) and metamodeling concepts that are aimed as auto-

mating generation of simulation code (Sarjoughian and Markid 2012).

These advantages are most beneficial to scientific communities whose purpose

for modeling involves complex systems in which the dynamics of the system itself

are being explored. In this paper, we detailed a study of a complex human–

environment system. Both human behavior and environmental dynamics involve

many factors. Some of these factors are well understood, while others are the

subject of ongoing research across different application domains. The resultant

hybrid model is sensitive to the complexities within each subsystem model, and

their interactions add more of their own. Furthermore, there is a need to compare

simulation results between models with different initializations, different input

regimes, different behavior, and different structures to best understand the signif-

icance of the system data that is available.

In addition, the interaction model’s relation to the two subsystem models

facilitates stand-alone data observation using suitable visualization tools. When

dealing with simulation output data that represents over one million dynamic

landscape cells and the actions of some 100 agents in various locations throughout

the landscape, visualization tools provide a means for the modeler to quickly assess

the outcomes of the simulation. The IM, being a model of the interaction, offers

clear and concise points to capture data of the subsystem models’ interaction. This
data may then be sent to visualization tools as necessary. The current hybrid

modeling environment (i.e., DEVS-Suite/GRASS) offers rudimentary support for

simulation initialization, data collection, and observation (Mayer 2009). However,

advanced visualization capabilities are planned.

In order to implement a hybrid model using polyformalism composition, a

modeler (or group of modelers) must be familiar with both subsystem models—

from both a formalism and realization perspective—and the domain. This person or

group has the responsibility of developing the interaction model. This includes

selecting the formalism to which the IM is developed and working with both

subsystem modelers to determine how to define the interaction including how

those aspects of the hybrid system fit within the IM. Also, these interaction

modelers must then design, develop, and maintain the IM. As with any good

software architecture, the latter requires some preplanning in the design phase

6 Managing Hybrid Model Composition Complexity: Human–Environment. . . 129



based upon the anticipated changes to both the subsystem models and the interac-

tions themselves.

6.6.1 Other Observations

Another key feature of using polyformalism composition for human–environment

modeling is usability. Developing distinct, detailed subsystem models entails the

need to apply domain expertise from two very different domains. The benefit of this

is that it opens the door to diverse multidisciplinary endeavors. Domain experts

may normally work within very different communities. A potential downside is that

domain languages, tools, and methodologies may vary widely between the two

subsystem model domains. As a result, the IM offers an opportunity to provide a

common means to describe data access and simulation control that either commu-

nity may feel comfortable using to experiment with the entire hybrid model.

For example, the MedLand project models are being developed by groups of

researchers from different scientific disciplines. The agent and IM models are being

developed by computer scientists and the landscape model by social scientists. Each

has had experience building their respective models previously and within that

specific development environment. The instance simulation model of the human–

landscape IM is developed jointly. The use of the interaction model eliminates the

need for the modelers to incorporate specific details of the other model into their

design and implementation. It also eliminates the need for one or both of the

modelers to explicitly incorporate data and control mechanisms into the models

in order to facilitate interaction with the other model. To enable all modelers to

execute the simulation and perform experimentation, a centralized graphical user

interface (GUI) has been developed that parameterizes the initial values for each of

the models.

Another benefit of an interaction model is a level of generality derived from

composing two formalisms (see Fig. 6.4). Due to the uniqueness of the semantic

behind different formalisms and the domain dependency of the subsystem models’
interaction, a generalized concept for the creation of an interaction model needs to

be specialized and realized. A unique IM is built for each multiformalism pair and

domain. For instance, there are different approaches required to manage the inter-

action between a discrete-event model and a Model Predictive Control (MPC)

optimization model than between a discrete-event model and a cellular automaton.

Furthermore, if an IM composes a discrete-event model that represents human

agents that farm and a cellular automaton that represents farmland, it will likely

require a different IM to manage a discrete-event model representing robotic

aircraft flying over a cellular automaton representing enemy land, “different” in

this case being in terms of the specific data transformation and control mechanisms

used. Both interaction models (for the farmer and aircraft) are likely to employ the

same approach to composing the discrete-event model with the cellular automaton

from a formalism interaction perspective. Once it is semantically defined how two
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formalisms interact at the application domain level, then this level of interaction,

like the formalisms themselves, is domain independent.
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(Ören TI, Yilmaz L eds) Wiley series in systems engineering, Wiley-VCH, Berlin, Germany
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Chapter 7

Transformation of Conceptual Models
to Executable High-Level Architecture
Federation Models

Gürkan €Ozhan and Halit Oguztüzün

7.1 Introduction

An early insight into the importance of a model-based approach for the field of

modeling and simulation was offered by Tuncer Ören and his colleagues. As early

as 1979, Ören and Zeigler set forth their concepts for the design and implementation

of advanced simulation methodologies. In Ören and Zeigler (1979), they contend,

“A successful methodology will allow the modeler to think in the modeling terms

most familiar to him and suitable to the relevant characteristics of the real system.”

This is exactly what we call domain-specific modeling today. They go on to argue,

“The computer’s role here will be to translate the description of the model,

whatever its format, into a standardized representation suitable for undergoing the

manipulations of the model file.” The format or representation of the model in the

present setting is defined by a metamodel, and the translations they refer to

corresponds to our model-to-model transformations. Finally, in anticipation of

automated model-to-text transformations, they add, “Subsequently, a compiler

must be available to convert the model description into a procedural code for

simulation (the target language may well be a conventional simulation language).”

Ören advocated “model-based simulation” initially in Ören (1984), later elabo-

rated in Ören (2009). He identifies three types of model-based activities: model

building, model-based management, and model processing. Model transformation

and to a lesser extent behavior generation are two of the model processing activities

that are the subjects of the present chapter. In Ören (2002), he called for exploratory

research for the interoperability of next-generation HLA federates from the follow-

ing perspectives: “(1) Domain-specific and graphic specification environments

would be useful in specifying simulation studies. (2) A translator, to be developed

G. Özhan (*) • H. Oguztüzün
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only once, can transform graphic problem specification expressed in a high level

specification language. (3) The specifications and not the computer codes should be

integrated and corresponding code should be generated by a program generator.”

The present work can be viewed as an attempt to answer his call.

In this chapter, we present a formal, declarative, and visual model transforma-

tion methodology from a domain conceptual model (CM) to a distributed simula-

tion architecture model (DSAM). The produced simulation model is then fed into a

code generator to generate source code that can be executed on a distributed

simulation runtime infrastructure. The presented mechanism is generic in the

sense that the proposed abstract CM template can be extended and specialized

into a domain-specific CM and transformed following the necessary tweaking on

the domain-specific parts of the transformation rules.

Specifically, this chapter introduces a two-phase automatic transformation of a

field artillery conceptual model (ACM) into a high-level architecture (HLA) fed-

eration architecture model (FAM) into executable distributed simulation code. The

approach followed in the course of this work adheres to the principles of model-

driven engineering (MDE). The ACM and the FAM conform to their metamodels,

which are separately built with the generic modeling environment (GME) tool.

These two metamodels are composed of data and behavior parts, where the behav-

ior representation in both is based on live sequence charts (LSC). The ACM-to-

FAM transformation is carried out with the graph rewriting and transformation

(GReAT) tool and partly hand coded. Code generation from FAM is accomplished

by employing a model interpreter that produces source code for each member

federate. After weaving the necessary computational aspects and compiling the

code for a federate application, it is ready for execution on an HLA runtime

infrastructure (RTI). Generalizing the ACM-to-FAM transformation case study,

we propose a set of key design principles and an implementation framework as a

step forward in achieving generic conceptual model (CM) transformations for

publish/subscribe (P/S)-based distributed simulation.

The model-driven engineering (MDE) approach (Schmidt 2006) is becoming

prominent in software and systems engineering, bringing a model-centric approach

to the development cycle in contrast to today’s mostly code-centric practices. A

well-known MDE initiative is the model-driven architecture (MDA) of the object

management group (OMG). Model transformations are considered to be the heart of

MDA, where the platform-independent model (PIM) of a system to be constructed

is transformed into a platform-specific model (PSM), which can be translated to

executable code (Sendall and Kozaczynski 2003). An earlier manifestation

of MDE, Model Integrated Computing (MIC) (Ledeczi et al. 2001a), relies on

metamodeling to define domain-specific modeling languages and model integrity

constraints. The metamodel (also referred to as a paradigm) is then used to

automatically compose a domain-specific model-building environment to create,

analyze, and evolve the system through modeling and generation. In this approach,

a crucial point is generation, in which (domain-specific) models are transformed

into lower-level executable and/or analysis models. Model transformation tech-

niques and tools are essential in realizing the generation process.
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7.1.1 Motivation and Scope

In the last decade, there has been a considerable proliferation of literature on model

transformations and a rapid dissemination of the MDE approach (Sendall and

Kozaczynski 2003; Agrawal et al. 2006; Bézivin 2009). As such, a recent interest

has been shown by the modeling and simulation (M&S) community (Ören 2009;

Kewley and Tolk 2009; Özhan and Oguztüzün 2013; Garcia and Tolk 2013;

Bocciarelli et al. 2012). However, accounts of the nuts and bolts of the practical

MDE application are missing. Usually, transformations are applied between narrow

domains, avoiding realistic concerns and practical difficulties (Maoz and Harel

2006), and they are single-step source models to target model transformations

(Garcia and Tolk 2013). Also, some transformations are achieved either within

the same domain (mostly operating on a single model) or between two highly

similar, tightly coupled domains. The term domain is used in the sense of an area of
interest such as field artillery or HLA-based distributed simulation. Last, although

descriptions of model transformations of either the data or behavior (Maoz and

Harel 2006; Bontemps et al. 2005) are abundant, reported works placing both

aspects on the same footing in an integrated fashion are rare.

The methodology is applied in a case study where the CM is the field artillery

conceptual model (ACM) (Özhan et al. 2008) and the DSAM is the federation

architecture model (FAM) (Topçu et al. 2008), which is a domain model of high-

level architecture (HLA)-based distributed simulation. The model transformation

paradigm is graph based, where the transformation rules are defined over the source

and target metamodels. The transformation process is continued with a model

interpretation of the produced FAM to generate Java/AspectJ code that can be

executed on an HLA runtime infrastructure (RTI) (IEEE 2000a).

From an implementation perspective, our work can be considered as a sequence

of applications of the MIC approach. It is intended as an MDE-based end-to-end

systems development endeavor from the conceptual model to executable simulation

code, promoting a rigorous use of model transformations.

7.1.2 The Context of the Transformations

In order to clarify the purpose and provide a referential overview of the process, this

section outlines the two-phased transformations within the context of the case

study. The first phase is a model-to-model transformation, and the second is a

model-to-code transformation. The ACM is a PIM of the part of reality (i.e., field

artillery domain) with which the simulation is concerned. The FAM is a PSM,

where the platform is the HLA-RTI in our case. The model transformer produces a

FAM from an ACM by executing the ACM2FAM transformation rules, and the

Aspect/Java-based code generator produces executable code from that FAM.
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ACMM and FAMM are the metamodels of ACMs and FAMs, respectively. The

two metamodels (and consequently the models) consist of data and behavior parts.

The metamodel of live sequence charts (LSCs) and message sequence charts

(MSCs) (Damm and Harel 2001; ITU-T 2004; Topçu et al. 2008) are used for

behavioral representation in both metamodels. The two data models are integrated

with the behavioral model in such a way that the top-level data model elements are

extended from a set of designated LSC and MSC model elements. The transforma-

tions are defined in such a way that first, the data model transformation is

conducted, followed by the behavioral model transformation. In the second

phase, the federate application code generator produces executable simulation

code and supporting artifacts such as the federation object model (FOM) document

data (FDD) from the FAM. This chapter is more focused on the first phase

transformations.

It may seem plausible to directly produce HLA federate codes from the concep-

tual model instead of passing through two phases of model transformations. Our

approach is more appealing in several ways. First, the ACM rests at a higher

conceptual level, while federation code is at a lower, more detailed level. FAM

on the other hand is at an intermediary level, serving as a bridge between the two

models. It has a clearer mapping from ACM and to the federation code. This makes

the transformations more modular and maintainable. Second, the components of a

FAM, consisting of the HLA object model template (OMT) model and

intra-federation behavioral model, are useful artifacts in their own right as they

are used by the RTI and HLA federation development tools. Furthermore, once a

FAM, which is machine processible, is made available, it can be used as an input for

further activities such as optimization, debugging, verification, and validation.

The transformations are defined over the metamodels of the source and target

domains expressed in a Unified Modeling Language (UML)-based notation. The

relationships between the models and the metamodels are summarized in Fig. 7.1.

Fig. 7.1 The three layers of modeling used in this work in relation to MDA
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The modeling and model transformation activities and products in this work are

formally defined due to model conformance relationships. The figure also associ-

ates the different levels of models used in this work to modeling layers of the OMG

and the MDA standards (OMG 2006, 2007, 2011).

7.1.3 Organization

The remainder of this chapter is organized as follows. Section 7.2 provides back-

ground information to the modeling and the model transformation tools that were

used as well as the source and target domain models. Section 7.3 outlines a concep-

tual framework independent of the details and jargon of the specific domains, tools,

and technologies. Section 7.4 presents the highlights of the ACM2FAM transforma-

tion case study. Section 7.5 contains the discussion and the assessment of this work.

Section 7.6 provides an overview of the related works in the literature. Finally,

Sect. 7.7 concludes and points to the directions of future research.

7.2 Background

This section provides brief background information on GME, the modeling tool

used in building both the source and target metamodels and the models, and

GReAT, the model transformation tool. The section also presents short narrations

on the source and target domains and introduces the corresponding metamodels.

7.2.1 Generic Modeling Environment

Generic Modeling Environment (GME) (Ledeczi et al. 2001a) is a configurable

toolkit for creating domain-specific modeling and program synthesis environments.

The configuration is achieved through metamodels specifying the modeling lan-

guage (i.e., “paradigm” in the GME vernacular) of the application domain. The

paradigm defines the family of models that can be created using the resulting

modeling environment.

The metamodel for each domain-specific modeling language is defined using the

UML-based metamodeling language named MetaGME, which has the same role

Meta-Object Facility (MOF) (OMG 2006) plays in UML2 (OMG 2007). When a

metamodel is registered in GME, GME provides a domain-specific model-building

environment. The generated environment is then used to build and manipulate

domain models.

GME further provides a generic application programming interface (API) called

BON2 to access the models by paradigm-specific interpreters. Using the API,
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developers are able to programmatically traverse and manipulate a GME model

with the same set of capabilities provided by the visual GME environment.

The federate code generator of the second phase transformation is implemented

in such a way.

7.2.2 Graph Rewriting and Transformation

Graph rewriting and transformation (GReAT) (Agrawal et al. 2006) is a graph-

based transformation language for model-to-model transformations with precise

formal and executable semantics. GReAT has a high-level control flow language

built on top of the graph transformation language with sequencing,

nondeterminism, hierarchy, recursion, and branching constructs. GReAT uses

UML (OMG 2007) class diagrams and Object Constraint Language (OCL) to

represent the source and target domains of the transformations and integrity con-

straints over those domains. The GReAT metamodel, the UML Model Transformer

(UMT) paradigm, comes bundled with the GME installation. By creating models

conforming to this paradigm in GME, it is possible to define model transformations.

GReAT defines a production (i.e., rule in UMT terms) as the basic transforma-

tion entity. A production contains a pattern graph that consists of pattern vertices

and edges. The pattern graph consists of elements from the source and target

metamodels and elements that are newly introduced inside the transformation

model (such as cross-links or globals). Each pattern object has a bind, delete, or
new designation that specifies the role it plays in the transformation. Bind is used to

match objects in the graph. Delete is also used to match objects in the graph, but

afterward, they are deleted from the graph. New is used to create objects after the

pattern is matched. The execution of a rule involves matching every pattern object

marked either bind or delete. If the pattern matcher is successful in finding matches

for the pattern, then for each match, the pattern objects marked delete are deleted

from the match, and objects marked new are created.

Sometimes, the patterns themselves are not sufficient to specify the exact graph

parts to match. Then, other nonstructural constraints on the pattern are needed.

These constraints or preconditions are expressed in a guard and are described using

OCL. Attribute-mapping elements provide values to the attributes of newly created

objects or modify the attributes of existing objects. Attribute mapping is applied to

each match after the structural changes are completed.

The model transformation language is supported through the GReAT execution

engine. The engine basically inputs the transformation definition (i.e., rules and

sequencing) and a source model to automatically produce a corresponding target

model. A high-level overview of the model transformation architecture of this work

is illustrated in Fig. 7.2. The shaded components are parts of GReAT, and the rest

are artifacts developed within the scope of this work. The engine provides access to

a generic programming API called the Universal Data Model (UDM) (Bakay and

Magyari 2004) that can be used to further manipulate and fine-tune the generation.
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This mechanism works by invoking user code library methods from within trans-

formation rules.

7.2.3 Field Artillery and High-Level Architecture Domains

A brief account of the field artillery domain provided here is gleaned from US Army

field manuals (FM 6–30 1991; FM 6–40 1996). The general mission of field

artillery is to destroy, neutralize, or suppress the enemy by cannon, rocket, and

missile fire and to help integrate all fire support assets into combined arms opera-

tions. Observed fire is carried out by the coordinated efforts of the field artillery

team, which is composed of the forward observer, the Fire Direction Center (FDC),

and several firing sections of the firing unit. The basic duty of the forward observer,

who is considered to be the eyes of the team, is to detect and locate suitable indirect

fire targets within his zone of observation. In order to start an attack on a target, the

forward observer issues a call for fire (CFF) request to the FDC. It contains the

information needed by the FDC to determine the method of attack.

As it is likely to miss the target in the first round of fire, the common practice is

first to conduct adjustment on the target. Usually, the central gun is selected as the

adjusting weapon. After each shot is fired, the observer provides correction infor-

mation to the FDC based on his spotting of the detonation. Once a target hit is

achieved, the observer initiates the fire for effect (FFE) phase by noting this in his

correction message. FFE is carried out by all the weapons of a firing unit firing

together with the same fire parameters as the last adjustment shot. After the

designated number of rounds is fired, the observer sends a final correction including
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surveillance information. If the desired effect on the target is achieved, the mission

ends. Otherwise, the observer may request repetitions or restart the adjustment

phase if deemed necessary.

The high-level architecture (HLA) provides a framework based on the publish/

subscribe pattern that facilitates distributed simulation interoperability and reuse.

HLA introduces the concepts of federation and federate, where a federation is a

composable set of interacting simulations and a federate is an individual application

that participates within a federation. The interaction between federates is managed

by a runtime infrastructure (RTI), which is the middleware that provides a set of

software services that are necessary to support the federates by coordinating their

operations and data exchange during execution. HLA is comprised of three com-

ponents, namely, the HLA interface specification, object model template (OMT),

and HLA rules. There are ten rules that set out the principles of the HLA in terms of

responsibilities that federates and federations must uphold (IEEE 2000a). The HLA

interface specification consists of a standard set of services and interfaces that

federates use to support information exchange when participating in a federation

execution (IEEE 2000c). It is defined in terms of a set of functions specified through

an API. Practically speaking, an RTI implements the HLA interface specification

but is not itself part of the specification. The OMT provides a means of

documenting key information about the federates and the federation (IEEE 2000b).

7.2.4 Field Artillery and Federation Architecture Models

ACMM, the metamodel of ACM, serves as a conceptual model for the field artillery

observed fire domain. In other terms, it can also be called a field artillery mission

space model, and it is developed using the GME tool. Registering ACMM as a

paradigm in GME yields a domain-specific language for the formal definition of an

observed fire mission (i.e., an ACM) such as fire for effect. An ACM is the input

source model for a transformation. ACMM consists of a behavior component and a

data component. The data model addresses certain aspects of tactical rather than

technical fire direction. The entire top-level domain entities in the data model are

specialized from NATO’s Joint C3 Information Exchange Data Model (JC3IEDM

2007). Please refer to Özhan et al. (2008) for the details of ACMM and the model of

a fire for effect mission in visual LSC notation.

FAMM, the metamodel of FAM, describes the architecture of an HLA-

compliant federation. Like ACMM, it is formulated in GME and as such provides

a domain-specific language for the formal representation of an HLA federation

when registered in GME. FAMM is also comprised of behavior and data compo-

nents. The data portion covers the HLA interface specification (IEEE 2000c) and

the OMT (IEEE 2000b). Please refer to Topçu et al. (2008) for a thorough

presentation of FAMM.

The behavioral parts of both ACMM and FAMM are essentially the LSC

metamodel (Topçu et al. 2008). As LSC is extended from MSC, the metamodel
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covers the MSC metamodel in its core. MSC is a visual language that specifies the

behavior of a concurrent system focusing on the communication aspect. The

metamodel covers all the standard MSC features (ITU-T 2004) and the proposed

LSC extensions (Damm and Harel 2001), most notably the distinction between

optional and mandatory behavior as a coherent whole.

Figure 7.3 shows a high-level overview of the integration of data and behavior

submodels of the ACMM and FAMM model components, which have been sepa-

rately developed and seamlessly integrated (see Sect. 7.3.1 for model details).

Effectively, the behavioral model relies on the data models for the definition of

domain-specific data types. The observable behaviors in a field artillery mission

(HLA federation in a FAM) are represented by means of specialized LSCs. This is

achieved by extending the relevant data model elements from the behavioral model

elements in the sense of the UML inheritance (OMG 2007).

7.3 The Conceptual Framework forModel Transformation

This section provides a conceptual framework for this work including the

metamodeling and model transformation. The content is abstracted as much as

possible to facilitate comprehensibility and appeal to a broader range of readers and

potential adopters. We present a formal multistage model transformation endeavor

from a domain conceptual model (CM) to a distributed simulation architecture

model (DSAM) and from that to executable simulation code and supporting arti-

facts. The end-to-end transformation process, which is elaborated in the subsequent

sections, is depicted in Fig. 7.4. CMs and DSAMs are formally built in compliance

with the metamodels conceptual metamodel (CMM) and distributed simulation

architecture metamodel (DSAMM), respectively. The transformation is defined

over these metamodels. The CM encompasses the (static) domain entities and the

(dynamic) behavior of the source domain. The same holds for the DSAM in relation

with the target domain.
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7.3.1 The Conceptual and Distributed Simulation
Architecture Models

This section introduces the data portions of the conceptual and distributed simula-

tion architecture metamodels and the behavioral (i.e., LSC) metamodel.

7.3.1.1 The Conceptual Data Model

The data portion of the CMM, the conceptual data metamodel (CDMM), consists of

a set of domain entities called actors that are able to perform computations and

send/receive messages (to/from other actors and the environment) on a one-to-one

or multicast basis. The communicated messages are collections of domain infor-

mation extracted from authoritative sources and composed in different granular-

ities. The messages are categorized as being durable or nondurable. This durability
distinction facilitates the transformation definitions for the target models of the

distributed simulation domain such as HLA. A durable message represents infor-

mation that is intended to be kept and maintained by the receiver. A nondurable

message represents information that is meant to be used immediately and is then

discarded by the receiver (barring, of course, logging).

The upper-level model elements of the CDMM and their associations are shown

in the UML diagram given in Fig. 7.5. In the figure, the elements labeled with

stereotype Model are the primary building blocks of the communicated data and

can be organized recursively to represent composite structures. The data model is

built of Messages, Actors, and DurableDataStore folders. The messages, durable or

nondurable, are stored in the Messages folder. The durable data messages are

further specialized into instantiation, update, and delete types. Since the objects

corresponding to durable data messages need to be retained, they are kept in the

DurableDataStore folder. An instantiation type of durable message contains the

original copy of the durable data that was placed in the store the first time.
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Subsequent update messages contain template objects that are used to update the

effective copy residing in the store. The deletemessage indicates the corresponding

durable data to be deleted from the store. The Actors folder contains the domain

elements of type Actor and Net. Net is a special kind of Actor that represents a

collection of actors where any message coming into a net is assumed to be delivered

to all the actors included in the net.

7.3.1.2 The Distributed Simulation Architecture Data Model

The DSAMM data model is the distributed simulation architecture data metamodel

(DSADMM) that consists of elements that collectively define the static view of a set

of autonomous and loosely coupled interoperating simulations. The interactions are

mediated via the simulation infrastructure or middleware. The middleware func-

tions as the overarching manager that knows about the identities and data exchange

interests of the participating simulations and orchestrates all the communication

traffic. The DSADMM defines the structure and organization of the communicated

data as classes of simulation objects categorized by having lifetimes of single

interactions or the whole simulation.

An overview of the DSADMM is depicted in Fig. 7.6. The Connection stereo-

type is used to define association classes between model elements. The simulation

data model consists of the simulation environment, a number of member applica-

tions (SimMember), and a simulation data exchange model element. The data

exchange model contains instances of simulation classes, which represent the

data structures communicated within the simulation environment. The simulation

class is specialized into simulation objects and simulation interaction types, of

which the former is intended to model durable information and the latter to
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model instantaneous events. The simulation classes contain attributes having data

types defined in the specific distributed simulation domain. For instance, HLA has a

default set of simple, enumeration, array, and record data types. The simulation

environment manages the overall communication taking place among the member

applications. The member applications use a set of simulation class instances that

they produce or consume for exchanging data with each other.

7.3.1.3 The Behavioral Model

The behavioral metamodel (BMM) is used in both the source and target models.

BMM is a representation of the LSC/MSC formalism, which shares many con-

structs with the UML sequence diagrams (OMG 2007). The behavioral metamodel

is capable of representing the discrete communication behavior of many practical

systems consisting of components exchanging messages independently of the

domain. This communication aspect of the system behavior is particularly empha-

sized when taking the LSC modeling perspective. A simplified view of the upper-

level elements of the BMM and their associations are provided in Fig. 7.7.

According to BMM, the behavioral specification of a system is captured in a

single MSC document, which consists of a document head and one or two docu-

ment bodies. The document head includes declaration lists for the instances,
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messages, and timers used in the document and optionally a reference to another

document from which it is “inherited” (not shown in the figure). The body part of

the document is modularized into a set of MSCs, each of these, similar to the MSC

document but only pertaining to its own scope, has a head and a body. LSC is the

most commonly used MSC body type and is the primary means for representing the

behavioral specification of the system being modeled. The LSC contains, besides

other items, a set of references to the instances that interact with each other using a

variety of instance events. An important event group from a model transformation

perspective is the message event, which provides the mechanism to exchange data

between the instances in the form of LSC messages. LSC is recursively defined and

is allowed to refer to other MSCs in order to support the modularization of large

behavioral descriptions. The inline operand is the main building block of the

nonorderable multi-instance type of events called inline expressions. Inline
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expressions include constructs for defining loop, optional, exceptional, alternative,

parallel, and sequential flows.

7.3.2 The Model Transformations

The section introduces the key elements of the transformations and summarizes the

mappings and correspondences between the CM and DSAM components. The

following two sections elaborate on the crucial parts of the data (i.e., message

structure) and behavior (i.e., communication) transformations.

7.3.2.1 Key Elements of the CM-to-DSAM Transformation

The CM-to-DSAM transformation is essentially formulated around the core of data

and behavior model transformations executed in sequence. Before and after these

core blocks come the smaller sets of pre and post rules that set up and tear down the

stage for the platform-specific distributed simulation environment. The key trans-

formation steps and mappings from CM to DSAM are summarized in Table 7.1.

Evidently, this set of mappings is one of various possibilities. Different design

decisions can be effected by defining different transformation rules. For example,

multiple actors can be allocated to the same member application. These mappings

are marked by creating cross-links (i.e., temporary associations) between the CM

and DSAM elements during the model transformation.

The model transformation follows the organizational LSC/MSC hierarchy of the

source model and creates corresponding LSC/MSC components on the DSAM side

while traversing through the source model. Specifically, the transformation starts

from the MSC document and continues down to the individual LSCs and the events

inside the LSCs (see Fig. 7.7 for the LSC/MSC structure). Since the top-level data

model elements are extended from the LSC elements, the LSC transformation also

implicitly covers the data model elements. Due to this LSC-centric approach, the

CM-to-DSAM transformation is essentially an LSC transformation.

7.3.2.2 Transforming Message Structures

The transformation of CM message structures to their corresponding simulation

classes is performed during the data model transformation step of the CM2DSAM

transformation. In a nutshell, all nondurable (i.e., with a life span of only a message

transmission period) messages are transformed to interaction classes, and durable

messages (i.e., with a life span of the whole simulation execution unless deliber-

ately deleted) are transformed to object classes.

The user code library facilitates data model transformations in several ways.

A CM message can be deeply structured, possibly with optional child objects
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(i.e., having containment cardinality 0..m). Handling such a message transformation

solely through graph matching requires many (exponential in the number of

descendants in the worst case) transformation rules to address all the possible

pattern combinations. On the other hand, with the user code library, only one rule

is needed no matter how many children exist with whatever cardinality a message

structure may have. The rule matches the top CM message element, creates an

empty DSAM class, and invokes the code library, which programmatically builds

Table 7.1 A partial view of the mappings from Conceptual Model to Distributed Simulation

Architecture Model

CM component DSAM component

Actor/Net Member application

Non-durable message Simulation interaction

Durable message Simulation object

<NA>
Simulation environment is brought in as a collection of communicating
member applications 

Actor-actor non-durable
comm.

Member application to member application communication via 
the simulation environment (running the middleware), using a
pair of send/receive interaction messages

Actor-actor durable comm. 
(instantiation type)

Member application to member application communication via 
the simulation environment, using three pairs of register/discover 
object, request/provide attribute update and update/reflect attributes 
messages

(update type)

Member application to member application communication via 
the simulation environment, using a pair of update/reflect 
attributes messages

Actor-actor durable comm. 
(deletion type)

Member application to member application communication via 
the simulation environment, using a pair of delete/remove object 
messages

<NA>
Default distributed simulation data types are brought in to be 
used by the simulation class attributes 

<NA>

Simulation environment initialization is introduced in a preliminary
LSC by creating the environment, having the member applications
join the environment, declaring member application data exchange
interests and other sorts of simulation-specific in itializations

<NA>

Simulation environment shut down is brought in to the final LSC 
by resigning the registered member applications from the simulation
middleware and destroying the simulation environment 

Other CM LSC components Similar DSAM LSC components

Actor-actor durable comm. 
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the DSAM class contents as it traverses the CMmessage structure. The other reason

for using the code library is to obtain a considerable performance gain by directly

executing the C++ code instead of running many transformation rules with minor

variations. (Be reminded that the subgraph isomorphism problem, which is

involved in every pattern-matching step, is NP complete.)

Transforming a CM message into a DSAM class (more specifically, object

model template (OMT) class in HLA terms) and its attributes is conceptually

presented in Fig. 7.8. The figure only demonstrates a nondurable CM message

transformation. Durable message transformation is undertaken in a similar way. On

the left side is a CM message structure named Msg having two components named

C and P, both of which have a couple of child elements. Each leaf child has one

attribute named val of the type shown. It is assumed that C is a common component,

which is possibly reused by other CM messages, and P is a noncommon component

specific to the message in question.

The transformation rule creates the MsgIC interaction class on the right-hand

side through pattern matching. Then, the user code library creates an attribute and

its data type for the class. The CM message content is transformed into an HLA

(fixed) record data type. Each common message component is transformed into a

field of the main record type, which in turn has a record data type mimicking the

common content. This common child record type is made reusable for subsequent

rules. All the other noncommon parts of the message structure are flattened as direct

fields of the main record type having appropriate primitive/simple types, with the

field name reflecting the message structure hierarchy. Conventionally, the field

name of a record type consists of a string of concatenated message structure

element names separated by “_” from the leaf to the top CM element corresponding

to the record. Alternative message transformation approaches are discussed in

Özhan et al. (2010).

C

C1
val:int

P1
val:string

C2
val:int

P2
val:string

P

Msg

NonDurableMsg

MsgParam
<attribute>

MsgIC
<intclass>

SimInteraction

MsgDT
<hlaRec>

Msg_C
<field>

CDT
<hlaRec>

C_C1
<field>

C_C2
<field>

HLAASCIIstring

HLAinteger32BE

Msg_P_P1
<field>

Msg_P_P2
<field>

Transform

CM Message DSAM Class

Fig. 7.8 An abstract view of a CM message to DSAM class (in HLA-OMT) transformation
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7.3.2.3 Transforming Message Communications

The crux of the model transformation work is the transformation of a typical one-to-

one communication between the actors of a CM. The nondurable and the three

kinds of durable message types are used in message communications. Each kind is

transformed using a specific transformation rule set.

A simplified and abstract view of the CM LSC-to-DSAM LSC transformation

involving a nondurable message event transmission is illustrated in Fig. 7.9. The

LSCs in the figure are represented in graphical LSC notation (Damm and Harel

2001). The figure also demonstrates the mappings of the CM actors and message

types to their DSAM counterparts.

For every CM actor, a corresponding member application (federate in HLA

terms) with the same name is defined. The simulation environment, which is

specific to the DSAM domain, corresponds to the runtime infrastructure (RTI) of

HLA that mediates and monitors the communication between the federates during

the simulation execution (IEEE 2000a). These DSAM LSC instances are actually

created as part of the data model transformation before the behavior model trans-

formation step. They are later referenced from within the LSCs. The CM messages

and DSAM classes are included as parameters of the in/out events.

According to the LSC specification, for every out-event sent by a sender, a

corresponding in-event is received by the receiver (provided that the out-event is

not lost in the meantime, meaning that it is “hot”) (Damm and Harel 2001). In our

behavioral metamodel, the definitions of out-event and in-event include both the

source and target elements of the event. Since both parties of the out (in) event are

known, we discard the declaration of the other corresponding in (out) event and thus

reduce the total number of events by half but still do not sacrifice any communi-

cation semantics. It is assumed that the corresponding event is implicitly there.

The communication architecture of DSAMM requires that an actor A to B out-

event transmission of a CM should be represented as member application A sending

an out-event to the simulation environment first and the simulation environment

sending another out-event to member application B (see the right part of Fig. 7.9).

Since the single out-event communication in a CM is transformed into a pair of out-

event and in-event communication in the DSAM, if the out-event has execution

Transform

Actor A Actor B
Simulation
Member A 

Simulation
Member B 

Simulation 
Environment

CM LSC DSAM LSC

Outn OutnInn Inn
Outn+1 Inn+1

impliedimplied

(NonDur Msg) (SendInteract(MsgIC))

(ReceiveInteract(MsgIC))

Fig. 7.9 An abstract view of a non-durable CM message comm. to DSAM transformation
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order index n, then the following in-event is given a higher execution order index,

say n+ 1, reflecting this discrete communication behavior.

Similarly, Fig. 7.10 summarizes how a durable instantiation type of CM mes-

sage communication is transformed into a series of HLA messages between the

corresponding member applications and the simulation environment. In accordance

with the HLA specification, the owner of the object class first registers the object

with the simulation environment, which in turn informs the interested parties of its

availability. Then, the owner is requested to provide the values for the object.

Finally, the owner sends value updates to the simulation environment, which in

turn delivers the requested information to the subscribed members.

All these six messages are time ordered and assigned increasing execution order

indices along the vertical axis as seen in the figure. The other two durable message

types, namely, the update and delete types, are similarly transformed, each having a

pair of out- and in-events with the parameters listed in Table 7.1.

7.4 Case Study: ACM to FAM Transformation

This section demonstrates the CM2DSAM transformation conceptually described

in Sect. 7.3 in a real-life case study. The source model is the artillery conceptual

model (ACM) of the field artillery observed fire domain (FM 6–30 1991; FM 6–40

1996). The target model is the federation architecture model (FAM) of the HLA-

based distributed simulation domain (IEEE 2000a, b, c). Both the source and target

models adhere to their metamodels ACMM (Özhan et al. 2008) and FAMM (Topçu

et al. 2008). This section presents excerpts of the transformation rules developed in

the Generic Modeling Environment (GME) (Ledeczi et al. 2001b) tool using the

graph rewrite and transformation (GReAT) language notation (Agrawal

et al. 2006). Figure 7.11 illustrates the overall modeling and model transformation

context in a nutshell. The data part of ACMM defines the field artillery domain

Transform

Actor A Actor B
Simulation
Member A 

Simulation
Member B 

Simulation
Environment 

CM LSC DSAM LSC

Outn
Outn Inn+1

(DurInst Msg)
(RegisterObjInst(...))

(DiscoverObjInst(...))

Inn+3
(ReqAttribValUpd(...))

(ProvAttribValUpd(...))

Outn+2

Outn+4 Inn+5
(UpdAttribValues(...))

(ReflAttribValues(...))

Fig. 7.10 An abstract view of a durable-instantiation CM message communication to DSAM

transformation
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entities, and its behavior part defines the observed fire missions in LSC form.

Likewise, the data part of FAMM defines the field artillery entities as federates,

the federation, and HLA messages, and its behavior part defines the fire missions as

intercommunicating federates via the RTI, again in LSC form.

The transformation definition is comprised of a set of major transformation

blocks, which contain other blocks, transformation rules, cases, or expression

references. Table 7.2 summarizes the metrics for the overall ACM2FAM transfor-

mation indicating 64 blocks, 4 for-blocks, 187 rules, 13 tests (with 55 cases), and

21 references to other rules in total. The definitions of these GReAT language

constructs can be found in Agrawal et al. (2006).

7.4.1 Data Model Transformation

Data model transformation corresponds to the structural part of the ACM2FAM

transformation. From a FAM perspective, it aims to construct the federation object,

the federate objects, and the FOM for the federation. The main DataModelTr block

is shown in Fig. 7.12. It is composed of two inner blocks named ObjectModelTr and

FederationStructureTr that are executed sequentially in that order.

7.4.1.1 Object Model Transformation

Object model transformation basically transforms the set of messages communi-

cated among the domain actors in field artillery missions into HLA classes. As a
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Fig. 7.11 Overview of ACM to FAM to executable code transformation

Table 7.2 Metrics for the ACM2FAM transformation

Transformation expression Count Transformation expression Count

Block 64 Test 13

ForBlock 4 Case 55

Rule 187 Expression Reference 21
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preliminary step in the field artillery message–to–OMT class transformation, the

DataTypes block creates all the standard HLA-OMT data types (IEEE 2000b). The

InitFOM rule creates containers for the interaction classes and object classes and an

empty FOM element, which is later filled with interaction and object classes. These

two kinds of OMT classes are the key elements in FAM data model in that they are

used frequently throughout the rest of the rules. Then, the transformation flow splits

into two parallel branches where the interaction and object classes are concurrently

created. At this point, the user code library is invoked to manipulate the bound

objects using the generic UDM API (Bakay and Magyari 2004). The user code

library executes the actual field artillery message to OMT class transformation

programmatically.

The InteractionClasses rule is provided in Fig. 7.13, where black model elements

indicate a pattern to match and blue colored elements designate the new elements to

be created. The code snippet inside an AttributeMapping element is executed after

the rule pattern is matched and the structural modifications on the matched model

elements are made. It invokes the user code library’s message transformation

method.

7.4.1.2 Federation Structure Transformation

The federation structure transformation constitutes the second part of the data

model transformation shown in Fig. 7.12. It instantiates the singleton federation

object together with a reference to the FOM that was previously created. It also

transforms every field artillery actor and net to a corresponding HLA federate along

with a reference to an associated SOM. In this work, the SOMs per federate are left

as stubs and are not developed any further. The FOM is sufficient to capture all the

OMT objects participating in the federation execution. Indeed, the FOM is what an

RTI needs to run a federation (IEEE 2000a). Finally, cross-domain associations

Fig. 7.12 The main DataModelTr block
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(has-correspInst) establish references from each actor/net of the ACM to its

corresponding federate of the FAM. These temporary links later function as a key

enabler during the transformation of the message communications in the behavioral

model transformation step.

7.4.2 Behavioral Model Transformation

The behavioral model transformation is the larger and more challenging part of the

overall ACM2FAM transformation. It uses the resulting objects of the data model

transformation as the instances and message parameters in the LSCs that are being

produced. Since the behavioral model transformation is so large, consisting of more

than 60 transformation blocks and over 180 rules, only the prominent parts are

presented here.

The cascaded main behavioral model transformation blocks are given in

Fig. 7.14. The dashed projector lines indicate the existence of other nonshown

transformation blocks in between the connected blocks. The AscGlobalHlaMeths

block fetches the method library of FAM that contains predefined HLAmethods for

the management of federation, declaration, object, ownership, and time. The

AscInstanceOfAcm block basically creates is-InstanceOf associations between

the instances that stand for the same actor element in ACM. This chain of

Fig. 7.13 The InteractionClasses rule

7 Transformation of Conceptual Models to Executable High-Level Architecture. . . 155



associations establishes traceability between the behavior and data submodels of

ACM and facilitates pattern matching in a number of subsequent rules.

A similar approach is followed on the FAM side as the transformation rules

progressively construct the target model. The CrtBehaviorMdlFld and CrtMscDoc

rules create a FAM behavioral model folder and an MSC document underneath it

provided that their corresponding counterparts are matched in the ACM. A has-

correspMscDoc association is established between the ACM and FAM MSC

documents since there can be more than one MSC document in a source model

and in such a case this association is necessary to keep track of MSC references in

different documents and during instance decomposition. See Sect. 7.4.2.2 for a

discussion of instance decomposition.

7.4.2.1 MSC Document Transformation

The transformation blocks and rules within MSCDocTr match and traverse the

structure delineated by the MSC metamodel to create a FAM MSC document from

an ACM MSC document. The DocumentHeadTr block handles the data definition,

message declaration, instance declaration, and timer declaration parts of the docu-

ment head of the FAM being constructed. The instance declaration part creates

federate objects and a federation object derived from the corresponding counter-

parts found in the federation structure portion of the FAM data model.

A derived object (Bakay and Magyari 2004), which is a deep copy of another

compound object, is created inside the attribute-mapping code by invoking a UDM

API method. This at the same time creates a kind of inheritance association where

the attribute values of the derived object are maintained in synchronization with the

values of the corresponding attributes in the archetype object (Ledeczi et al. 2001b)

Fig. 7.14 The BehavioralModelTr and MscDocTr and MSCTrans blocks
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(i.e., the topmost object in the hierarchy) as long as they are only modified through

their archetype. Once an attribute’s value is modified directly on the derived object,

the attribute becomes desynched from the archetype. This approach enables the

behavior model being contentwise backed up by the data model. Any attribute

update to federate objects in the data model will be automatically propagated down

to the derived objects in the MSC document and from them to the further derived

objects in the MSCs of the behavioral model.

DocumentBodyTr transforms the utility and defining parts of an MSC document.

Note that it is necessary to handle the utility part first because the MSCs of the

utility part are referenced from within the defining part. The MSC document body

transformation essentially boils down to an MSC transformation. The attribute-

mapping code in the rule copies the chart order index of the ACMMSC to the FAM

MSC. The chart order index, although not an integral part of the MSC metamodel,

is a crucial annotation that facilitates the construction of model interpreters,

particularly the code generator, by providing the processing order of the MSCs at

runtime. The rule finally delivers both MSCs to the MSCTrans block for further

construction of the FAM MSC.

7.4.2.2 MSC Transformation

The MSC transformation block MSCTrans consists of three consecutive steps that

handle the MSC head and body transformations and initialize the federation after

the completion of the former two. In this work, we only use LSC as the MSC body

and only allow LSCs and inline operands within the LSCs. The MSC body

transformation eventually hands over the flow of execution to the LSC transforma-

tion after the creation of a stub LSC element.

MSC Head Transformation

The functionality of MSCHeadTr is to prepare the instances used in the FAM MSC

by looking at the instances found in the corresponding ACM MSC. Derived FAM

MSC instances are created from the corresponding FAM document head instances

and are associated with the ACMMSC instances (through has-correspInst) and with

the FAM document instance archetypes (through is-instanceOf). Thus, structural

and one-to-one correspondences are established between and inside ACM and FAM

MSCs. This principle is followed throughout the MSC document, LSC, data

element, and event transformations.

The MSC head transformation partly handles instance decomposition. The MSC

specification (ITU-T 2004) states that an instance can be viewed as an abstraction of

a whole MSC document (representing a system component) that is participating in a

higher-level system; hence, it is the mechanism for hierarchical decomposition. The

outcome of instance decomposition is the introduction of a separate MSC document

per decomposed instance and a new MSC for every MSC in the higher-level
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document that the decomposed instance participates in, which describes the MSC

from the perspective of that instance. This noteworthy part of the ACM2FAM

transformation is thoroughly described in Özhan and Oguztüzün (2013).

Federation Initialization

Before moving to MSC/LSC transformation, this section fast-forwards to explain

the federation initialization on the FAM side. The federation initialization is

undertaken in the InitFederation block after an MSC document is transformed

head- and bodywise (see Fig. 7.14). It is a postprocessing step following the full

transformation of all the LSCs in the document. This is a part of the behavioral

model transformation pertaining only to the FAM domain; that is, there are no

associations to ACM in the transformation rules apart from the identification of the

instances involved. The block handles the four preliminary federation execution

activities of creating a federation execution, joining federates to the federation

execution, and initializing time and declaration management.

7.4.2.3 LSC Transformation

The LSC transformation is the place where the nuts and bolts of the transformation

of field artillery interentity communications to federate interactions via the HLA

RTI are defined. The LSC transformation process is carried out in the LSCTrans

block as shown in Fig. 7.15, which is the largest component of the ACM2FAM

transformation. Each pass of the block inputs an ACM LSC and a stub FAM LSC

and step by step constructs the FAM LSC as the transformation proceeds through

the internal blocks. Please refer to ITU-T (2004) for a comprehensive description of

the MSC/LSC concepts and elements mentioned here.

The execution order of the sub-blocks does not matter except for the second and

last blocks. The InstanceRefTr creates the necessary references to federate

Fig. 7.15 The LSCTrans block
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instances in the FAM LSC by inspecting the ones found in the corresponding ACM

LSC. Since these instances are referred to in most of the subsequent rules,

InstanceRefTr must be executed before them. The last block, SpecialConnsTr,

creates associations between a pair of instance events within the LSC and thus

needs to be executed after ensuring that all such events have been created. The

activation condition is a boolean expression that indicates the start predicate for a

chart, and its transformation is performed in ActivationConditionTr. The definitions

of the LSC transformation blocks are generally based on the instance event types of

the elements inside the LSC. These blocks are briefly explained in the remaining

part of this section.

Precharts and subcharts are child LSCs that have special role names on the

containment associations with their parents. The PreSubChartTr block handles the

transformation of precharts and subcharts in an LSC. The block ends with a

recursive call to the LSCTrans block in order to continue the transformation for

the child element, which is yet another LSC.

The transformations of multi-instance events, which constitute a set of fre-

quently used elements including condition, otherwise, inline expression, and refer-

ence (to an MSC), are handled in the sub-blocks and rules of the block

MultiInstanceEventTr. Multi-instance event transformation rules, although numer-

ous, are quite straightforward and intuitive in that they basically create a similar

event in the FAM that corresponds to the matched ACM event. Since the inline

operand specializes from LSC (Topçu et al. 2008), the paired ACM and FAM inline

operands are recursively fed into the LSCTrans rule for further processing as LSCs.

The nonorderable events constitute the set of instance events that do not have an
explicit ordering of execution. A relative execution order among the events of an

instance is implicit along the axis line of an instance; that is, the events attached

higher up along the axis execute before the ones that are attached lower along the

axis. However, no claim can be made about the execution order of two disjoint

events on separate instance axes without using explicit ordering. Inside the

NonorderableEventTr block, the input elements are matched and dispatched to

one of the handler rules according to the type of the ACM nonorderable event.

Each handler rule performs the actual transformation of a specific non.orderable

event type.

Orderable events are generally the most frequently used set of events found in

the behavioral model of a field artillery scenario. One of the orderable event types,

the message event, plays a key role for the communication among the LSC

instances (i.e., actors in an ACM and federates/federation in a FAM). The top-

level OrderableEventTr block is shown in Fig. 7.16. The block starts by matching

and dispatching an ACM orderable event to the appropriate rule or block to create

its FAM counterpart.

The kinds of orderable events handled are action, create, timer, method, and

message. After these events are transformed, any general ordering relations are

applied in the GeneralOrderTr block.

Message events implement communication flows in behavior models. These

rules are driven by conditions that take the type and structure of the input ACM
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element and are the primary parts where platform (i.e., HLA)-specific content is

created. Consequently, message event rules are usually more involved than other

types of rules. MsgEventTr performs the transformation of durable and nondurable
ACM messages in two parallel blocks. Nondurable message transformation is

relatively simpler because a nondurable message transmission in ACM maps to

two HLA message transmissions in FAM, whereas a durable message transmission

can map up to six.

Out- and in-events are the two kinds of message events and are the conjugates of

each other in that every out-event from A to B implies a corresponding in-event

sourced in B and targeted on A. In our implementation, if an ACM actor A sends an

out-event message to actor B, then federate A sends an out-event message to the

federation, and one discrete step later, the federate B receives an in-event message

from the federation. Since the federation element is already included in these two

federate events, the in-event to and out-event from the federation are not explicitly

created for the sake of simplicity.

The SendRecvIntClsSrc rule shown in Fig. 7.17 actually defines the federate-to-

federate HLA method transmissions via the federation.

It first creates a message out-event and associates it with the source instance (i.e.,

federate) using an ordered connection. Then, it associates the out-event to the send
interaction method using a special connection. Finally, it associates the send

interaction method to the federation instance using an address connection. A

similar set of steps is defined for the receive interaction method from the federation

Fig. 7.16 The OrderableEventTr block
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to the target federate. First, the receive interaction method is associated with the

federation instance using an address connection. Then, an in-event message is

created and associated with the receive interaction method using a special connec-

tion. The last part of the out-event transformation is carried out by one of the two

parallel rules SendRecvIntClsDstInst and SendRecvIntClsDstRef (see Fig. 7.16).

They associate the new FAM in-event either to a target instance or to an MSC

reference.

The outcome of the nondurable message transformation is illustrated in

Fig. 7.18, showing the partial view of an ACM LSC and its generated FAM LSC

(in abstract syntax). The name of a model element is shown below the element, and

its type is shown as its stereotype. In the source LSC, it is seen that an Oid_W_Msg

message out-event is sent from FwdObserver to BatteryFDC. In the produced LSC,

this corresponds to two HLA message event transmissions.

The figure shows the FwdObserver federate sending a message out-event of

SendInteractionWithRegions to the field artillery federation and BatteryFDC fed-

erate receiving the corresponding message in-event of ReceiveInteraction from the

federation. Sequencing (i.e., the precedence attribute) of the message transmissions

are annotated in the callout boxes. The precedence value of the ACM message

event is copied to the initial FAM message event, and its autoincremented value is

assigned to the second event. The transformation definition ensures a conflict-free

generation of ordering values throughout the FAM LSC. Durable message trans-

formation is defined similarly to OutNonDurableMsg2HLA block, most notably

being about three times in size.

Fig. 7.17 The SendRecvIntClsSrcrule
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7.4.3 FAM-to-Simulation Code Generation and Execution

Referring back to Fig. 7.4, the content presented up to here constitutes the first

phase of the overall transformation process focusing on the ACM-to-FAM trans-

formation. In the second phase, the produced FAM is fed to the code generator to

produce simulation code and other useful artifacts such as FDD.

The aspect-oriented programming (AOP) (Elrad et al. 2001) paradigm is adopted

in generating distributed simulation code. AOP provides for the separation of cross-

cutting concerns. In our case, this allows us to generate code that exercises the LSCs

in a computation-free manner. The LSC instance is the focal element in code

generation. All LSC instance codes are generated in individual class files and are

referenced from the diagram code generated from the LSC itself. Using AOP in

order to obtain a full-fledged simulation, application-specific computational (and

other noncommunication) aspect advices are to be crafted by the simulation devel-

oper. These advices are then woven onto the generated base code by the aspect-

oriented programming environment AspectJ. For example, ballistic computations

required by the battery FDC will be handled by the final aspect code provided by the
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Fig. 7.18 Partial view of non-durable message transformation and its result in FAM
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developer. On the other hand, HLA-specific portions of the code are automatically

woven into the base code generated from the LSC

Figure 7.19 shows the relationship between the generated simulation code files

for an LSC. For every LSC message out-event, a simulation middleware (e.g., RTI

in the case of HLA) interface method call is made, and for every LSC message

in-event, a member application interface method callback is generated. The LSC

instance aspect code intercepts the middleware interface method calls. It executes

developer-written computation code and then redirects the call to the middleware

with the computation code in effect. On the middleware side in addition to LSC,

aspect code is generated for the overall simulation environment. This aspect code

catches the middleware callback methods and forwards them to the LSC instance

(member application) code. Then in the LSC instance aspect code, the result of the

callback (with all arguments) is made available to the developer. The details of the

code generator and the code generation process are presented in Adak et al (2010).

The code generator creates an Eclipse project and stores the generated Java and

AspectJ codes in the project root folder. AspectJ (Kiczales et al. 2001) is an aspect-

oriented extension for the Java programming language. We use an AOP-enabled

Eclipse installation to weave the aspects and run the simulation code. A screenshot

of the generated code from the FAM of an Adjustment Followed by Fire For Effect
(Adj/FFE) mission scenario (Özhan et al. 2008) is displayed in Fig. 7.20. The

details of code generation for the AdjFFE case study are presented in Özhan and

Oguztüzün (2011).

After the aspect codes are written and the source is compiled, the simulation is

run for execution. Currently, the code generator supports the IEEE-1516 certified

RTI implementation developed by Pitch Technologies named pRTI.

7.5 Discussions

This section starts with an informal analysis of this work with respect to several

model transformation principles published in literature. Then, the degree of support

for the verification of the transformations is explored. Finally, an approach to

implement generic model transformations from any conceptual model to an

HLA-compliant distributed simulation model is proposed based on our experience.

Fig. 7.19 Relationship between the generated source codes for an LSC
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7.5.1 Analysis of the Transformations

In this section, we analyze our transformation work from the perspectives of modu-

larity, transformation composition, scope, scalability, and change propagation.

7.5.1.1 Modularity

Modularity is a key factor in developing reusable and maintainable model trans-

formations. Transformation reusability is facilitated if a transformation unit has

a specification that describes what is transformed into what but not necessarily how

the transformation is carried out (Cuadrado and Molina 2009). Section 7.3.2.1

explains which parts of the ACM data model are transformed into which parts

of the FAM data model and similarly for the behavioral models. Figure 7.7

provides an implicit roadmap for the modular breakdown of the ACM2FAM

transformation along the LSC structure. Following this breakdown, the whole

transformation is defined as a set of hierarchical transformation blocks down

to the individual transformation rule level. Moreover, employing expression

references for recurring transformation blocks and rules are examples of transfor-

mation reuse.

Fig. 7.20 A screenshot of the generated code for the AdjFFE mission in Eclipse
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7.5.1.2 Transformation Composition

Kleppe (2006) describes two kinds of transformation compositions, namely, inter-

nal and external. Internal transformation composition is defined as the ability of a

tool to compose transformation definitions written in the same transformation

language. In the ACM2FAM transformation, the data model transformation is

performed before the behavior model transformation, and these separately defined

transformation modules are internally composed with each other using connection

ports between the main blocks. The output of the data model transformation is used

by the behavior transformation.

In contrast, external transformation composition is the ability to compose trans-

formation definitions written in different transformation languages. This requires

interoperability between different tools and languages. In the case study, the

ACM2FAM transformation (phase 1) is realized with the graph-based GReAT

tool, and the FAM2Code transformation (phase 2) is realized with the Java-based

model interpreter. The transition between the two different transformation phases is

facilitated due to the FAM being a common part of the phases, as the target for

phase 1 and as the source for phase 2.

The internal and external transformation compositions applied in this work are

summarized in Fig. 7.21. Note that GReAT does not provide a composition operator

in the sense of Kleppe (2006). The closest constructs would be the connection port

used for sequencing and the expression reference used for rule reuse.

7.5.1.3 Scope

Scope is the area of a model (either the source or target) covered by a single

transformation step, where a transformation step is usually a single rule application.

The pivot of a transformation step is defined as the main source element from which

a rule resolves. Four types of transformation steps are identified by van

Wijngaardeen and Visser (2003), against which we categorize our rules.

In a local-to-local transformation step, a source element can be directly trans-

lated to a target element. All the information needed to create the target element is

Fig. 7.21 Internal and external transformation compositions
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readily available from the source element. Most of our rules transforming LSC

components are of this type except for those associated with the payloads of the

communicated messages

In a local-to-global transformation step, a source element is transformed into

several target elements. Usually, while some of these target elements are part of the

target model being generated by the rule, others need to be allocated in different

parts of the target model. These target elements are referred to as nonlocal results. A

considerable amount of rules in this work are of this type since the transformation of

a PIM (i.e., ACM) to a PSM (i.e., FAM) requires the introduction of model

elements pertaining to the platform and other target domain–specific aspects.

Examples of this category on the data model transformation side include rules

that initialize HLA data types, FOM and its subcontainer elements, rules that create

and populate interaction and object classes, and rules that create the federation

structure elements. On the behavioral side are the rules that create federation

initialization and teardown and especially the orderable event transformation

rules for durable and nondurable messages.

In a global-to-local transformation step, additional information is required to

create a target element from a source element. This additional information is not

readily accessible from the source element being transformed (i.e., the pivot), but a

complex query is needed. GReAT provides two convenient mechanisms in dealing

with them: a global container and cross-links (Agrawal et al. 2006). Many rules that

spread throughout the data and behavior transformations employ cross-links or

global containers and thus are examples of global-to-local transformations.

A global-to-global transformation is a combination of the previous two situa-

tions. We have tried to avoid such expensive pattern-matching cases as much as

possible by dividing the transformation into a number of smaller rules. Still, the

orderable event transformation rules for durable and nondurable messages are quite

complex and are examples of global-to-global transformations.

7.5.1.4 Scalability and Change Propagation

Scalability and change propagation are two challenging topics in the area of model

transformations. Since graph pattern matching is an NP-complete problem, our

transformer does not scale well as the models and rules grow. In order to reduce the

search space in pattern matching, we first tried to achieve as much initial binding as

possible in the rules, effectively discarding those already bound pattern elements

from the search. Second, we tried to avoid overly general and disconnected pattern

elements that would result in many match possibilities. As a rule of thumb, we

favored defining many narrow-scoped specific rules against a few but generic ones.

We developed a user code library that programmatically aids in transformations.

The library is written to facilitate model transformations in terms of improved

execution performance and saving the user from the tedium of graphically defining

transformation rules that are slight variations of each other.
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The propagation of the changes in the metamodels proved to be challenging.

Since the transformation rules are defined in terms of metamodels and rule sequenc-

ing follows the structural organizations of the metamodels, any changes in these

had profound effects on the transformation definitions.

7.5.2 Support for the Verification of the Transformations

Verification of compilers for high-level programming languages has been studied

extensively; however, similar studies on model-to-model and model-to-code trans-

formations are less established. For practical purposes, a transformation may be

said to have “executed correctly” if a certain instance of its execution produced an

output model that preserved certain properties of interest and was endowed with

targeted properties.

Narayanan and Karsai (2008b) show that it is both practical and prudent to verify

the correctness of every execution of a model transformation as opposed to finding a

correctness proof for the transformation specification. This can make the verification

tractable and can also find errors introduced during the implementation of a trans-

formation. Our source and target models and the transformation rules conforming to

their respective metamodels provide a degree of assurance similar to type checking in

programming languages. With the second phase transformation, we are able to

generate source code that executes on an RTI. By observing the simulation execution,

we are able to conclude whether that transformation instance works as intended.

Narayanan and Karsai (2008a) present a formal verification technique based on

the so-called structural correspondence. First, a set of structural correspondence

rules specific to a certain transformation are defined. Then, cross-model associa-

tions are used to trace source elements with the corresponding target elements, and

finally, these associations are used to check whether the structural correspondence

rules hold. Their approach is applicable in our work due to the correspondence

mappings shown in Table 7.1 and the cross-links between model elements.

Baudry (2009) explores adapting software-testing techniques to validate model

transformations especially focusing on the generation and qualification of test data.

However, test-based verification is usually not exhaustive, and as systems get more

complex, their coverage becomes less and less adequate. Formal verification of

model transformations is more desirable since such techniques provide significantly

higher confidence of correctness and can even be exhaustive.

7.5.3 Toward a Domain-Independent CM Transformer
for HLA

The model transformation experience gained in this work has been useful in

identifying the key points toward generalizing the transformation perspective
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from ACM2FAM to (Any) CM2FAM. We claim that if the CM or a part thereof of

any given domain can be formulated as entities communicating durable and/or

nondurable (see Sect. 7.3.1.1) data and can be based on the LSC metamodel for

behavior representation, then it is viable to implement the model transformation as

a source domain–independent LSC-to-LSC transformation.

The key point in obtaining a domain-independent HLA transformer is to devise a

mechanism that guides the model transformer in coupling the elements of the

source CM with the corresponding elements of FAM (see Table 7.1). Also, the

user code library has to be adapted for the parts pertaining to the source domain.

Figure 7.22 proposes the high-level architecture of the domain-independent HLA
transformer which would be used to adapt a given CM for FAM transformation by

allowing the user to configure and integrate the transformation’s source domain–

specific content. Adaptation is accomplished by fitting the source conceptual data

model to a so-called abstract CM template as shown in Fig. 7.5. Fitting is used in the

sense of extending appropriate user-designated CM elements from the model

elements in the template. Note that the CM is assumed to use the LSC formalism

for its behavior representation (similar to FAM).

The outcome of the adaptation process is an intermediary model called the HLA-
adapted PIM, which is a unification of the template and the given CM. This

Fig. 7.22 The envisioned domain-independent HLA transformer
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composite model is then fed to the CM2FAM transformer to automatically produce

the FAM. In summary, the CM actors and nets are mapped to HLA federates, and

the CM data elements are transformed into HLA classes by invoking the configured

user code library, which is effectively detached from the transformation rule

definitions. The LSC-to-LSC transformations are carried out using the template

model elements independent of the CM elements. This can be observed in the way

the LSC transformation rules presented in Sect. 7.4.2.3 are defined. The pre- and

post-HLA generation parts of the transformer are independent of the source model

and only generate the HLA prerequisites, federation initialization, and federation

teardown parts of the FAM as explained in Sect. 7.4.2.2.

7.6 Related Work

Although there is work that focuses on behavioral or data model transformations in

the literature, reports on transforming a full-fledged conceptual model to an exe-

cutable model in the spirit of MDE are rare. From our transformation perspective,

we treat both data and behavior on an equal basis. In this section, we discuss a

selection of the related works and compare them with our work.

Code generation from behavioral specifications in LSC is an ongoing challenge

for researchers (Maoz and Harel 2006). There is also a body of literature dealing

with transforming LSCs to some executable form, in particular, state charts (Bon-

temps et al. 2005). We prefer to generate executable code directly from LSC as this

approach tends to yield more readable code. Additionally, our metamodeling

approach provides the opportunity to extend or tailor the code generator in accor-

dance with the data model by virtue of its data model integration capability.

Kewley and Tolk (2009) specify a systems engineering process for the develop-

ment of federated simulation models in order to support systems-of-systems anal-

ysis. The process borrows principles from the MDA approach to produce models of

the simulation system on three different levels, namely, operational, system, and

technical levels. Although this work advocates an evolutionary CIM-to-PIM-to-

PSM development process and specifies mappings from the upper-level product

components to the lower-level ones, it neither takes a model transformation per-

spective nor any other formal means to derive the lower-level model from the

upper-level model.

Similar to this work, Bocciarelli et al. (2012) present a two-stage transformation

approach to generate executable code for HLA federations. They also introduce two

UML profiles to represent HLA-based information in the models and to support the

automated generation of simulation code. They begin with a platform-independent

model of the system under study in SysML, while our starting point is a conceptual

model conforming to a domain-specific metamodel. On the HLA side, the authors

rely on a SysML profile, while our work is based on a purpose-built metamodel,

namely, FAMM.
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7.7 Conclusion

This chapter presented a comprehensive account of a graph-based model

transformation from the field artillery conceptual model (ACM) to HLA federation

architecture model (FAM). The extra platform-specific information required for the

FAM is provided through the transformation rules. A user code library is developed

to simplify rule development and to improve runtime performance. A second

phase transformation is applied by a code generator to produce executable simula-

tion code from a FAM. Computation logic has to be woven onto the generated

(aspect) code in order to provide legitimate values for the data structures at runtime.

Our work can be considered as a step toward validating conceptual models through

generation and execution.

Generalizing the experience gained in the case study, we have proposed an

outline of a generic model transformer for HLA-based distributed simulation

from any conceptual model that is based on LSC for behavioral representation

and based on a UML-like language for the data model representation.

In terms of future studies, the conceptual models of other domains can be

developed in parallel to building the generic HLA model transformer in the light

of the experience reported in this chapter. Another research direction is to investi-

gate the reusability of higher-order transformations, which are declarative rules

that allow to capture the recurring patterns of ordinary transformation rules.

Another future work direction is the investigation of the applicability of a formal

transformation verification approach.

Appendix: Abbreviations and Acronyms

ABM Artillery Behavior Model

ACM Artillery Conceptual Model

ACMM Artillery Conceptual MetaModel

Adj/FFE Adjustment Followed by Fire For Effect

ADM Artillery Data Model

ADMM Artillery Data MetaModel

AOP Aspect Oriented Programming

API Application Programming Interface

BatRadNet Battery Radio Net

BM Behavioral Model

BMM Behavioral MetaModel

CIM Computation Independent Model

CM Conceptual Model

DIHT Domain-Independent HLA Transformer

DSAM Distributed Simulation Architecture Model

DSAMM Distributed Simulation Architecture MetaModel
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FAM Federation Architecture Model

FAMM Federation Architecture MetaModel

Fd Federate

FDC Fire Direction Center

FDD FOM Document Data

Fed Federation

FOM Federation Object Model

GME Generic Modeling Environment

GReAT Graph Rewriting And Transformation

HBM HLA Behavior Model

HLA High Level Architecture

HMSC High Level MSC

HOM HLA Object Model

HOMM HLA Object MetaModel

Lib Library

LSC Live Sequence Chart

M&S Modeling and Simulation

JC3IEDM Joint C3 Information Exchange Data Model

MDA Model Driven Architecture

MDE Model-Driven Engineering

MOF Meta Object Facility

MSC Message Sequence Chart

Msg Message

MIC Model Integrated Computing

OCL Object Constraint Language

Oid_W Observer identification & Warning

OMG Object Management Group

OMT Object Model Template

PIM Platform Independent Model

PSM Platform Specific Model

QVT Query/View/Transformation

Ref Reference

RTI Run-Time Infrastructure

SOM Simulation Object Model

UDM Universal Data Model

UML Unified Modeling Language

UMT Universal Model Transformer
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Adak M, Topçu O, Oguztüzün H (2010) Model-based code generation for HLA federates. Softw

Pract Exp 40(2):149–175

Agrawal A, Karsai G, Neema S, Shi F, Vizhanyo A (2006) The design of a language for model

transformations. Softw Syst Model 5(3):261–288

7 Transformation of Conceptual Models to Executable High-Level Architecture. . . 171



Bakay A, Magyari E (2004) The UDM framework. Institute for Software-Integrated Systems,

Vanderbilt University, Nashville

Baudry B (2009) Testing model transformations: a case for test generation from input domain

models, Chapter. In: Model driven engineering for distributed real-time embedded systems.

Hermes, Hoboken, NJ, USA

Baudry B (2013) Testing model transformations: a case for test generation from input domain

models. In: Babau J-P, Blay-Fornarino M, Champeau J, Robert S, Sabetta A (eds) Model-driven

engineering for distributed real-time systems: MARTE modeling, model transformations and

their usages. Wiley, Hoboken. doi:10.1002/9781118558096.ch3
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Chapter 8

Using Discrete-Event Cell-Based
Multimodels for the Simulation
of Evacuation Processes

Gabriel Wainer

8.1 Introduction

Prof. Ören is a pioneer in the fields of Multimodeling and Agent-Based Modeling

and Simulation. In Ören (1987), he introduced the concepts of extension and

generalization for multimodel formalisms, including formal M&S like DEVS

(Discrete Event System Specification) (Zeigler et al. 2000). According to Yilmaz

and Ören (2004), a multimodel can be defined as a modular mathematical entity that

subsumes multiple submodels that together represent the behavior of the model.

Multimodels, introduced in (Zeigler et al. 2000), were extended in Ören (1991) to

facilitate generalization of discontinuity in piecewise continuous systems.

The work of Prof. Ören in the area of agent-based simulation is extensive; in

particular, we are interested in human behavior modeling, like in Ghasem-Aghaee

and Ören (2003). In Yilmaz and Ören (2004), Profs. Ören and Yilmaz define a

detailed taxonomy on agent-based multimodeling methodologies. The idea is that

agent-based simulation allows defining entities (the agents) that can perceive and

reason about their environment and provide responses in order to achieve a goal.

Our objective is to apply these ideas to the field of evacuation simulation

processes. In recent years, many simulation models of real systems have been

represented as multimodels with agents in the shape of cell spaces (Jalaliana

et al. 2011; Weifeng et al. 2003; Vizzari and Bandini 2013). In particular, evacu-

ation processes are important applications and a necessary step in building design.

Evacuation simulation is useful for various reasons, such as preventing collapse

during evacuation and reducing building evacuation time. Small changes in the

building design can result in having important differences; thus, simulation can be

used for studying the influence of changing the location of stairways or adding
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sufficient emergency exits to ensure that the building can be evacuated rapidly. In

such cases, the models can be built using an agent-based approach for the behavior

of the individuals (who need to find the closest exit, might exhibit panic behavior,

might need to meet with friends and family, or gather their property; the behavior of

the agents should be properly modeled). Using a multimodel approach is important,

as different entities at different levels of abstraction exist: individuals, flocks of

individuals, buildings, corridors, rooms, and stairs, elevators, obstacles, and even

complete city sections. By first creating a virtual version of the building, it is

possible to test many different designs to get important measurements such as

evacuation time to find the best design. This way, potential problems can be

avoided and fixed before construction begins. A multimodel approach and the

definition of varied behavior of the agents being evacuated can help in developing

a better design.

In this chapter, we will discuss how to address these issues by defining

multimodels that can be represented as cell spaces, in which agents represent the

behavior of the evacuating agents, and their application in different construction

scenarios. We focus on 2D and 3D visualization of the simulation results in order to

make the models easier to understand and analyze.

According to the taxonomy in Yilmaz and Ören (2004), our model can be

included in the following categories:

• According to the number of submodels, it’s a multiaspect model, as there are

various submodels active at the same time (one per individual at least; we also

have models specifying stairs and exits in a building).

• Based on the model’s variability, it’s a static-structure multimodel (representing

the building as a cell space and individuals moving to each cell).

• In terms of the nature of knowledge to activate the models, it is an adaptive

multimodel, as the submodel’s behavior is driven by constraints (space, obsta-

cles, building floor plan, panic, etc.).

• The location of the knowledge to activate the submodels is within the

multimodel; therefore, we can say this is an active multimodel.

8.2 Multimodels in DEVS and Cell-DEVS

A popular multimodel method to describe agents that have spatial properties is

called cellular automata (CA), a well-known formalism to describe cell spaces in

which individual agents are spatially located in cells in 2D or 3D spaces (Burks

1970; Wolfram 2002). CA is defined as infinite n-dimensional lattices of cells

whose values are updated according to a local rule. Cell-DEVS (Wainer and

Giambiasi 2000; Wainer 2009) was defined as a combination of cellular automata

and DEVS (Discrete Event System specification) (Zeigler et al. 2000). The goal is

to improve execution speed building discrete-event cell spaces and to improve their

definition by making the timing specification more expressive.
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DEVS is a systems theoretical approach that allows the definition of hierarchical

modular multimodels. A real system modeled using DEVS can be described as a set

of atomic or coupled submodels. The atomic model is the lowest level and defines

dynamics, while the coupled are structural models composed of one or more atomic

and/or coupled models. DEVS is a formalism proposed to model discrete-event

systems, in which a model is built as a composite of basic (behavioral) models

called atomic that are combined to form coupled models. A DEVS atomic model is

defined as

M ¼ < X, S, Y, δINT, δEXT, λ, ta > ð8:1Þ

Where X represents a set of input events, S a set of states, and Y is the output

events set. Four functions manage the model behavior: δINT the internal transitions,
δEXT the external transitions, λ the outputs, and D the duration of a state. Each

atomic model can be seen as having an interface consisting of input (X) and output

(Y) ports to communicate with other models. Every state (S) in the model is

associated with a time advance (ta) function, which determines the duration of the

state. Once the time assigned to the state is consumed, an internal transition is

triggered. At that moment, the model execution results are spread through the

model’s output ports by activating an output function (λ). Then, an internal transi-

tion function (δINT) is fired, producing a local state change. Input external events are
collected in the input ports. An external transition function (δEXT) specifies how to

react to those inputs.

Once an atomic model is defined, it can be incorporated into a coupled model

defined as

CM ¼ < X, Y, D, Mif g, Iif g, Zi j

� �
, select > ð8:2Þ

Each coupled model consists of a set of D basic modelsMi. The list of influences

Ii of a given model is used to determine the models to which outputs (Y ) must be

sent and to build the translation function Zij in charge of converting outputs of a

model into inputs (X) for the others. An index of influences is created for each

model (Ii). For every j in the index, outputs of model Mi are connected to inputs in

model Mj. Coupled models are defined as a set of basic components (atomic or

coupled), which are interconnected through the models’ interfaces. The models’
coupling defines how to convert the outputs of a model into inputs for the others and

how to handle inputs/outputs from/to external models. The select function decides

how to deal with simultaneous events.

Cell-DEVS extended the DEVS formalism, allowing the implementation of

cellular models with timing delays. In Cell-DEVS, each cell of a cellular model

is defined as an atomic DEVS. Cell-DEVS atomic models are specified as

TDC ¼ < X, Y, S, θ, N, delay, d, δINT, δEXT, τ, λ, D > ð8:3Þ
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Each cell will use N inputs to compute the future state S using the function τ.
The new value of the cell is transmitted to the neighbors after the consumption

of the delay function. Delay defines the kind of delay for the cell and d its duration.
The outputs of a cell are transmitted after the consumption of the delay.

Once the cell atomic model is defined, they can be put together to form a coupled

model. A Cell-DEVS coupled model is defined by

GCC ¼ < Xlist, Ylist, X, Y, n, t1; . . . ; tnf g, N, C, B, Z > ð8:4Þ

The cell space C defined by this specification is a coupled model composed by an

array of atomic cells with size {t1 �. . .� tn}. Each cell in the space is connected to

the cells defined by the neighborhood N, and the border (B) can have different

behavior. The Z function allows one to define the internal and external coupling of

cells in the model. This function translates the outputs of output port m in cell Cij

into values for them input port of cell Ckl. The input/output coupling lists (Xlist, Ylist)
can be used to interchange data with other models.

The CD++ tool (Wainer and Giambiasi 2000; Wainer 2002, 2009) was devel-

oped following the definitions of the Cell-DEVS formalism. CD++ is a tool to

simulate both DEVS and Cell-DEVS models. Cell-DEVSs are described using a

built-in specification language, which provides a set of primitives to define the size

of the cell space, the type of borders, a cell’s interface with other DEVS models, and

a cell’s behavior. The behavior of a cell (the τ function of the formal specification)

is defined using a set of rules of the form VALUE DELAY CONDITION. When an

external event is received, the rule evaluation process is triggered to calculate the

new cell value. Starting with the first rule, the CONDITION is evaluated. If it is

satisfied, the new cell state is obtained by evaluating the VALUE expression. The

cell will transmit these changes after a DELAY. If the condition is not valid, the

next rule is evaluated repeating this process until a rule is satisfied.

The specification language has a large collection of functions and operators. The

most common operators are included: Boolean, comparison, and arithmetic. In

addition, different types of functions are available: trigonometric, roots, power,

rounding and truncation, module, logarithm, absolute value, minimum, maximum,

G.C.D., and L.C.M. Other available functions allow checking if a number is integer,

even, odd, or prime. In addition, some common constants are defined. Figure 8.1

shows the definition of a very simple example of the definition of such models.

The rules in this example say that a cell remains active when the number of

active neighbors is 3 or 4 (truecount indicates the number of active neighbors) using

a transport delay of 10 ms. If the cell is inactive ((0,0)¼0) and the neighborhood
has three active cells, the cell activates (represented by a value of 1 in the cell). In

every other case, the cell remains inactive (t indicates that whenever the rule is

evaluated, a True value is returned).
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8.3 Agents for Evacuation Processes in Cell-DEVS

In recent years, models for building evacuation have been developed to assist

rescue and emergency response crews with proper situation analysis and prompt

reaction procedures. The ability to simulate and represent such situations increases

training efficiency and creates an opportunity to understand the evacuation process

better. The goal is to learn where the bottlenecks can occur and which solutions are

effective to prevent congestion during evacuation (Jalaliana et al. 2011; Weifeng

et al. 2003; Vizzari and Bandini 2013). The basic idea of the model was to simulate

the behavior and movement of every single agent (a person) involved in the

evacuation process using a multimodel approach (Brunstein and Ameghino

2003). We defined a Cell-DEVS model with various rules to characterize a person’s
behavior:

• People try to move toward the closest exit.

• A person in panic might move in the opposite direction to the exit.

• People move at different speeds.

• If the way is blocked, people can decide to move away and look for another way.

We used two planes to represent this spatial model: one for the floor plan of the

building and to represent the people moving and the other for the orientation toward

the exits, as we can see in Fig. 8.2.

Each cell in the grid represents 0.4 m2 (one person per cell). The coordinates of

each object are divided into two: Boundaries and people, and Objects (i.e., walls,

chairs, columns, etc.). The orientation layer contains information that serves to

guide persons toward the exits. We assigned a potential distance to an exit to every

cell of this layer. The persons will move for the room trying to minimize the

potential of the cell in which they are. That is, the people move to a cell with

decreasing potential. Each cell can contain different values: exits (value¼�2),

obstacles (value¼�1), distance to the exit (positive value in the first plane), and

information about the individuals in the cell. The individuals’ information is

represented by a six-digit value, in which each digit represents a different property,

as follows.

For instance, a cell with a value of 009121 represents an individual going to the

W (first digit ¼1), at a speed of 4.5 km/h (two cells per second, each cell is 0.4 m

Fig. 8.1 Definition of the Life game in CD++
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long), the last movement was W (the individual is keeping the current direction), a

stable emotional state, the current panic level is 0 (no panic), and the person will not

change the direction of potential. A person moves to decrease the movement

potential by decreasing the distance to the exit. If there is no available move that

will decrease the potential, a person will try to move to a neighboring cell that has

the same potential. If none is available, the person will move further away in an

attempt to find another route.

Figure 8.3 shows a subset of the rules used for evacuation models in CD++. We

first define the Cell-DEVS multimodel (two layers, 18� 18 cells each). The model

uses inertial delays (which allows preemption, which is needed because we have to

deal with collision behavior). The first set of rules we can see in the figure is used to

define the path taken by a person using the orientation plane. The basic idea is to

take the direction decreasing the potential of a cell, building a path following the

lower value of the neighbors. We use eight different rules to control the people’s
movement, one for each direction. In all cases, the rules analyze the 8 near

neighbors to understand what direction the person should take. We use a random

direction (randint) when the near neighbors have the same value. The second set of

rules model panic: a person in panic will take a wrong path or will not follow the

orientation path. In that case, the direction is calculated by taking the path where the

cell’s potential is increased.
The following figures show different visualizations for the simulation results for

this model. Figure 8.4 shows a simple graphical representation of the simulation

results. We can see the building shape (with walls in black and two exits: one to the

left and one to the bottom right) and people who want to leave the building using the

exit doors. The evacuation path is the one previously presented in Fig. 8.2a. As we

can see, there is a group of people blocking the left exit because individuals tend to

Fig. 8.2 (a) Orientation layer: potential value (b) Individuals
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Fig. 8.3 Specification of evacuation model

Fig. 8.4 (a) People seeking an exit. (b) After 15 s, people found the exit
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move reducing the potential (and based on the original configuration, the closest

exit for most people is to the left). Although CD++ provides different visual tools to

the ones used to generate the graphical results above, we need to build more

sophisticated 3D graphics, which improves data exploration. To overcome these

drawbacks and to meet the diverse needs of different users, we have developed

mechanisms to integrate the CD++ environment with a variety of both commercial

and open-source visualization and rendering techniques, including Autodesk Maya,

OpenGL, and Blender (Wainer and Liu 2009).

In this section, we will elaborate on these advanced techniques and demonstrate

their capabilities with a wide range of applications. Autodesk Maya is one of the

leading commercial software packages for 3D modeling, animation, and visual

effects. Maya software interface is fully customizable, and it allows users to extend

their functionality by providing access to the Maya Embedded Language (MEL).

With MEL, users can tailor the GUI to fulfill their specific needs and to develop

in-house tools. The MEL scripting language has been used in our research to create

a high-performance 3D visualization engine (Poliakov et al. 2007), allowing for

interoperability between a DEVS-based M&S tool and an advanced generic visu-

alization environment like Maya. Users create a static scene in Maya, providing the

necessary background for 3D animation of the simulation results. This Maya plugin

allows showing different visualizations as seen in Fig. 8.5.

As we can see, the visualization process using a 3D engine makes the results

easier to observe and study. Figure 8.5 shows a different building configuration

with two exits (one in the center and one to the left) and people moving toward

the exits and evacuating the building. A video of this visualization can

be found at https://www.youtube.com/watch?v¼GOOm1vFWG6Y&index¼10&

list¼PLA7006DDBBF660D55

Fig. 8.5 Evacuation Model at time (a) 00:00:00:000 (b) close up at time 00:00:05:240
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8.3.1 Evacuation Example 1: The SAT Building

The Society for Arts and Technology (SAT) building is located on Blvd. St. Laurent

in downtown Montreal. This building is a center devoted to the creation, develop-

ment, and conservation of digital culture. We have built a model based on existing

floor plans to study the evacuation processes in the SAT building. This multimodel

also uses various agents with different panic level, considers the distance from

exits, etc. The model represents people moving through a room or group of rooms

trying to gather their belongings or related persons and to get out through an exit

door. Following a similar idea as in the previous section, the agents moving through

the cells representing the space of the building use different values to represent

different phenomena as follows Table 8.1.

Once the model has been specified as in Fig. 8.7 as above, the simulator

generates a log file with the simulation results, as follows (Fig. 8.8).

As we can see, the log file contains the time of the output messages generated by

the agents on each cell and the current value representing the combination of digits

presented in Table 8.1 for each of the agents. In this case, they represent different

individuals moving in different directions, some leaving a cell and others arriving

into a new one. For instance, the person in cell (Wainer and Liu 2009; Wainer 2009)

abandons the cell (value¼ 0) and moves to cell (Poliakov et al. 2007; Wainer

2002). The emotional state is 5 (average); it was moving in direction SW and

now moves in direction S. It moves at a speed of 4 cells per second.

In the above examples, we show different simulation scenarios showing differ-

ent agents moving through this building. The first example, presented in Fig. 8.8,

shows a simple scenario with eight people distributed throughout the building. The

initial values for the cells in the figure are as follows:

(13,10,0)¼5040, (36,24,0)¼5010, (45,25,0)¼5040, (40,18,0)¼5020,

(29,5,0)¼5040, (35,7,0)¼5030, (42,6,0)¼5040, and (43,4,0)¼5060.

Table 8.1 Values used to represent the agents behavior

Digit Property

6 Next movement direction. 1:W; 2:SW; 3:S; 4:SE; 5:E; 6:NE; 7:N; 8:NW

5 Speed (cells per second: 1–5)

4 Last movement direction, it can vary from 1 to 8 (as digit #6)

3 Emotional state: the higher this value is the lower the probability that a person gets in

panic and changes direction.

2 Number of movements to increase the potential of a cell. If a person moves this number

of times, the person, which is now in panic, can move into a different direction in which

the potential is increased.

1 Panic Level, representing the number of cells that a person will move in increasing

direction of potential.
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As we can see, the first two digits on each agent have not been used (as we are

not modeling panic). We can also notice different speed levels, which make for a

more realistic simulation since not all people move at the same speed or pace.

We use the rules presented in Fig. 8.6, with the agents placed at random inside

the building and following the path defined in the second layer to exit the building

(no one is in panic). As the level of complexity is small, we could observe that they

all followed the exit path. The building is almost empty (which is a normal

Fig. 8.7 Simulation log files

Fig. 8.6 Evacuation rules in CD++
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condition for SAT); however, there are people in each sector. This evacuation gives

us a general idea of the exit directions people will follow. In this case, no one is in

panic, and we did not change the movement potential using a high level of patience.

The total evacuation time for this scenario was 13:015 s.

The example presented in Fig. 8.9 also represents eight people; however, they

are all located in the bottom left corner of the floor plan. Although we do not include

panic behavior and the agents follow an organized evacuation pattern, we can see a

bottleneck situation in one of the exits. Although the total evacuation time is short

(04:005), this occurs due of the proximity of the people to the exit.

Our following scenario includes panic behavior for one of the agents. If we

analyze the execution results on Fig. 8.10, we can notice that this person moves

away from the exit because it is blocked. The rest of the individuals leave the

building normally. The total evacuation time is 05:004 s (it takes longer because the

person in panic finally returns to the main door after the bottleneck disappears). In

order to observe the effect of panic on the simulation time, we used the exact same

number of people and their positions as specified above.

The following test uses a larger number of people in the building, but they are

located closer to the exit on the right, which allows us to study the results of two

separate exits close to each other (Fig. 8.11).

In order to observe the effect of panic on the simulation time, we used the exact

initial configuration on the left part of the building and more people on the right.

This time, however, we introduced the maximum panic level in all the individuals.

We noticed an increase in the evacuation time up to three times larger than what

was observed in the previous simulation (the total evacuation time was 14:774). We

can see people moving away from the exits in any situation where there is a

blockage, making the evacuation process much slower than in the previous cases.

Fig. 8.8 SAT evacuation scenario: eight individuals under normal circumstances
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Fig. 8.10 Evacuation with panic (one person)

Fig. 8.9 (a) Time: 00:000; (b) time: 01:005
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The following scenario, presented in Fig. 8.12, shows an initial configuration

with identical people positions as in Fig. 8.11; however, the panic condition has

been removed from the individuals on the right side of the building (representing,

for instance, the fact that there is a fire on the left side of the building and the people

on the right cannot see it). We can notice a better organized evacuation with

movements focused on the exit on that side of the building. Nevertheless, the

total evacuation time on the left was 15:607 because it took longer to evacuate

the people in panic.

Fig. 8.11 Evacuation with panic (everybody)

Fig. 8.12 Evacuation with panic (left part of the building)
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As seen in Fig. 8.13, when we increase the number of people on the right side of

the building and we change their speed (so they move slowly but with no panic), it

still results in an organized evacuation on the right side while a random evacuation

can be noticed on the left side due to high panic conditions (the total evacuation

time is 16:611).

As we can see in all these examples, the multimodeling methodology allows us

to define varied components for studying the evacuation process with ease, while

the agent-based approach lets us focus on the individual behavior of each person,

which results in a simpler mechanism to define behavior.

The same log files used to generate the figures above were used in Autodesk

Maya to visualize the model in 3D. We start by defining the simulation type, the

coordination files (in our case completed scene), and the file locations into the user

interface (which can be activated through web services, allowing us to remotely

execute the CD++ simulations to obtain the log files over the internet). After

rendering the building scene, we can see better detail on the building to give us

better familiarity with the setting. For the SAT building, the initial scene setup

looks like in Fig. 8.14.

Once the building floor plan has been loaded and rendered, the CD++/Maya

plugin loads the initial values for the cell spaces—in our case people inside the

building. Then, we search the log file looking for the Y messages (which, as seen in

Fig. 8.7, carries information about the current cell values and locations). The MEL

script uses these values and coordinates to relocate the human figures. This orga-

nization results in a frame-based motion of the human figures and hence makes an

easy-to-see evacuation model. The following are five rendered images of separate

frames that show the progressive motion of the human figures toward the dedicated

building exits (Fig. 8.15).

Fig. 8.13 Evacuation with panic (left part of the building)
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Fig. 8.14 Initial configuration for the SAT building in Maya

Fig. 8.15 SAT building evacuation simulation in Maya
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8.3.2 Evacuation Example 2: Copenhagen Zoo’s New
Elephant House

In this section, we present a case study focused on analyzing the occupancy levels

of the Copenhagen Zoo’s New Elephant House. The Copenhagen Zoo is the largest

cultural institution in Denmark, attracting over 1.2 million visitors a year. The New

Elephant House, which has two floors, tries to create a close visual relationship

between the Zoo and the park. Visitors walk in from the main entrance, move

downstairs, and leave the house through the exit, moving at random and following

the pathway and spending time watching the elephants. The level of occupancy of

the building is important in case of needing to evacuate it.

In this case, we have used Autodesk Revit as a tool to input the building floor

plan into the simulation model and Autodesk 3Ds Max as the visualization tool.

Figure 8.16 shows a view of the building using Autodesk Revit. We used Cell-

DEVS to simulate the behavior of the level of occupancy of the building. Each floor

uses 10� 22 cells, and each cell represents a square place associated with physical

horizontal coordinates. The two floors are connected through stairwells. Each

individual on each cell uses different state variables to represent the movement:

• Movement: It defines the current position and the relation to the different phases,
defined below.

• Phase: Each movement cycle goes through four phases (Intent, Grant, Wait,

Move), to be discussed in detail later.

Fig. 8.16 Copenhagen’s New Elephant House in Revit
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• Pathway: Visitors tend to move following the pathway with certain probabilities.

Normally, the pathway points to the shortest path toward the exit. In our case, we

overlay a Voronoi diagram of the route to an exit or stairwell.

• Layout: Each cell can be an empty space, a wall, an entrance, a stairwell, an

exit, etc.

• Hot Zones: They reflect the popularity levels of certain spots influencing differ-

ent potential waiting time. The higher value the hot zone is, the higher the

probability that a visitor would stay.

In order to implement random movement and random waiting, the movement

behavior is divided into four phases (Intent, Grant,Wait, andMove). In general, for
an occupied cell, a visitor chooses a direction at random during the intent phase. If
the target cell is available, the visitor state changes to get grant; otherwise, it turns
to get rejected. If granted, the visitor would wait for some time at random

(according to the hot zone where the visitor is) and then empty the cell at the

move phase. If rejected, the visitor needs to wait. For an empty cell, the logic is

simpler: it chooses a surrounding cell, which is in the grant phase, and changes to

occupied at the move phase.

rule : {~movement :¼ 2; ~phase :¼ 1;} 0 {uniform(0,1) <

#VisitorRate and remainder(time, 4)¼1 and (0,0,0)~phase ¼ 0 and

(0,0,0)~movement¼0 and $layout¼3}

At the beginning of the simulation, visitors go to the main entrances with certain

probability (VisitorRate) in order to mimic different input flow rates with rush/slash

hour during the opening time. In the current implementation, each cycle has 4 s

(each phase has 1 s). We check to see if it is the beginning of the cycle (remainder
(time, 4) ¼0) and then generate a new individual.

During the intent phase, the desired direction is determined using the pathway

direction and probability.

rule : {~movement :¼ 10; ~phase :¼ 2;} 1 { (0,0,0)~phase ¼ 1 and

(0,0,0)~movement ¼ 1 and $layout ¼ 5}

rule : {~movement :¼ uniform(0,1); ~phase :¼ 1.1;} 0 { (0,0,0)~phase ¼
1 and (0,0,0)~movement¼1 and (0,0,0)~pathway>¼5}

. . .

rule : {~movement :¼ 11; ~phase :¼ 2;} 0 (0,0,0)~phase ¼ 1.1 and

(0,0,0)~pathway ¼ 5 and (0,0,0)~movement > 0.0 and

(0,0,0)~movement <¼ #Front }

. . .

rule : {~movement :¼ 18; ~phase :¼ 2;} 0 (0,0,0)~phase ¼ 1.1 and

(0,0,0)~pathway ¼8 and (0,0,0)~movement > #Front + #Left-Front and

(0,0,0)~movement <¼ #Front+. . .+#Right-Front}
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We first check if the individual is in the intent phase, if the cell is a stair, and if

the cell below is empty (intent direction¼ 10). If the cell is not a stair, we find the

probability to move in different directions. We then generate a random number

between 0 and 100 and check in which direction that random number is located.

Finally, the cell value changes to 10–18, whose unit value corresponds with the

intent direction: D(0), E(1), NE(2), N(3), NW(4), W(5), SW(6), S(7), SE(8); e.g.,

for going up, it should be 13. Note here: we do not care whether the target cell is

available; it will be checked in the following phases.

After choosing the intended direction, we need to handle collisions (i.e., to see if

more than one person want to enter into the same cell). This phase, called grant, is
used to choose only one agent to move to a neighbor cell. To do so, it checks

neighbors in the intent phase and will mark one of the eight reverse directions (i.e.,

41 means the current cell accepts the left neighbor to come in). The cells with intent
direction 10–18 change to 20–28 and phase 3 (waiting). The rules for the Grant

phase are as follows:

rule : {~movement :¼ 40; ~phase :¼ 4;} 1 { (0,0,0)~movement ¼ 0

and (0,0,-1)~movement ¼ 10 }

rule : {~movement :¼ 41; ~phase :¼ 4;} 1 { (0,0,0)~movement ¼ 0

and (0,-1,0)~movement ¼ 11 and $layout !¼ 2} . . .

rule : {~movement :¼ 48; ~phase :¼ 4;} 1 { (0,0,0)~movement ¼ 0

and (-1,-1,0)~movement ¼ 18 and $layout !¼ 2}

rule:{~movement :¼ ((0,0,0)~movement+10); ~phase :¼ 3;} 1 {

(0,0,0)~movement >¼ 10 and (0,0,0)~movement <¼ 18 }

The wait phase defines a random wait. If a person is granted to move, they wait

for a random amount of time before moving, based on the hot zone where the person

is. We implement this by adding different delays in the associated rules, as follows:

rule : {~movement :¼ 30; ~phase :¼ 4;} 1 { (0,0,0)~phase ¼ 3 and

(0,0,0)~movement ¼ 20 and (0,0,1)~movement ¼ 40 }

rule : {~movement :¼ 31; ~phase :¼ 4;} { 1 + 4*randInt($hotzone) }

{ (0,0,0)~phase ¼ 3 and (0,0,0)~movement ¼ 21 and

(0,1,0)~movement ¼ 41 }

rule : {~movement :¼ 38; ~phase :¼ 4;} { 1 + 4*randInt($hotzone) }

{ (0,0,0)~phase ¼ 3 and (0,0,0)~movement ¼ 28 and

(1,1,0)~movement ¼ 48 }

rule : {~movement :¼ 39; ~phase :¼ 4;} 1 { (0,0,0)~phase ¼ 3 and

(0,0,0)~movement >¼20 and (0,0,0)~movement <¼ 28 }

Now, every individual that intended to move has a value of 30–38 (the move-

ment was granted) or 39 (the movement was rejected). A granted individual can

move to the target cell. To finish the moving for the next cycle, we empty the

intended cells (value¼ 0) and change the rejected ones to 1.
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rule : {~movement :¼ 0; ~phase :¼ 1;} 100 { (0,0,0)~phase ¼ 4 and

(0,0,0)~movement ¼ 30 and (0,0,1)~movement ¼ 40 } . . .

rule : {~movement :¼ 1; ~phase :¼ 1;} 100 { (0,0,0)~phase ¼ 4 and

(0,0,0)~movement ¼ 48 and (-1,-1,0)~movement ¼ 38}

As seen in the previous section, 3D visualization provides a more intuitive way

to observe simulation results, enabling the designers to check the building perfor-

mance and people behaviors under different properties. Most authoring tools

support full-featured 3D visualization of buildings. Among them, Autodesk 3ds

Max is a powerful tool for 3D animation and rendering. We have developed an

advanced visualization tool in 3ds Max, providing options for hiding building floors

for visibility and filtering models. We include arrow models with key framing

ability and humanoids to animate real body movement (using the Motion Mixer

plugin). The simulation results presented in Fig. 8.17 show the basic behavior of the

visitors under normal conditions. We can see the two floors in the building and

visitors arriving in the building and moving around the floors (they arrive using the

main doors on the left). Then, they move to the first floor downstairs (following the

white arrows) and leave the building. Each visitor goes through the four cycles

discussed above.

In Wang et al. (2013), we presented different simulation scenarios for this

building, showing the impact of door location/stairs number in terms of occupancy,

and simulated two modifications to the original design. It was found that arrival rate

and stairs affect the occupancy level more significantly than other properties do. In

order to evaluate different options, the following parameters were modified:

1. Hot zones: we decreased the probability of people waiting, representing people

moving faster. The result showed that the occupancy level decreased relatively

obviously, which indicates the influence of people movement speed to the

occupancy.

Fig. 8.17 Simulation results of basic properties at different simulation times. (a) At 2.5 min. (b)
At 7.5 min
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2. Movement direction: in the simulation results shown in Fig. 8.17, visitors have a

70 % probability to move forward. We changed this probability to 50 %, giving

visitors freedom to move in other directions. The differences with the original

simulations were minimal. People stop to watch the exhibits longer than any

influence in their moving direction, and they reach the stairs and exits at a rate

similar to that in the original case.

3. Arrival rate: we conducted tests with different arrival rates. When interarrival

interval was longer, the simulation results showed a decrease in the occupancy of

the first floor (from 38.9 to 26.7 %) but only a small change in the second floor

because the flow from the first to the second floor does not change much.

Nevertheless, the first floor is less congested when there are less individuals

arriving.

Figure 8.18 shows the results of the occupancy simulation using our 3D visual-

ization tool. As we can see, we can combine the simulation results with the original

3D floor plan in Revit, which is used to generate initial conditions for the simula-

tion. Then, we use 3Ds Max to visualize the results of the simulation.

Fig. 8.18 Different visualization options
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The figure shows some visualization results of different options. We can see the

whole building and the two floors and different individuals represented as cones in

the direction of the movement of the individuals. The complete visualization of this

simulation can be seen at https://www.youtube.com/watch?v¼ciA5mtXdHIA.

8.4 Conclusion

Multimodeling can help builders of complex models and their simulations to

organize their work better, address each of the problems at the right level of

abstraction, and resolve the problems quicker and easier. Prof. Ören’s invention

allowed us to address these complex problems with ease. The application of

multimodels into agent-based simulation provides a good combination for solving

complex simulation problems. Here, we showed how to use these concepts com-

bined with the DEVS formalism proposed by Prof. Zeigler and cellular models to

describe the phenomena using a spatial-based notation. We showed different

modeling and simulation examples focusing on evacuation and occupation of

buildings. We defined a solution based on building information modeling, mixing

the results of buildings and simulations in Cell-DEVS. We also presented new

methods to view advanced 3D visualization in 3Ds Max. We showed two different

case studies: one for the SAT building in Montreal and another one for

Copenhagen’s New Elephant House.

The models are public domain and can be easily modified to be applied for other

purposes. The tools can be found at http://cell-devs.sce.carleton.ca. The different

models can be found at http://www.sce.carleton.ca/faculty/wainer/wbgraf.

These techniques can benefit building designers and engineers to understand

better some issues related to the buildings under construction (e.g., doors location,

stairs number, rush/slash hours, different movement probabilities of directions,

etc.), allowing them to better manage the design and to provide suggestions for

improvements.
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Yilmaz L, Ören TI (2004) Dynamic model updating in simulation with multimodels: a taxonomy

and a generic agent-based architecture. In: Proceedings of SCSC 2004 – summer computer

simulation conference, San Jose

Zeigler B, Praehofer H, Kim T (2000) Theory of modeling and simulation: integrating discrete

event and continuous complex dynamic systems. Academic Press, San Diego

196 G. Wainer



Part III

Quality Assurance and Reliability of
Simulation Studies



Chapter 9

Quality Indicators Throughout the Modeling
and Simulation Life Cycle

Osman Balci

9.1 Introduction

I met Dr. Tuncer Ören in April 1980 at a meeting in New York City where he

presented a paper entitled “Concepts and Criteria to Assess Acceptability of

Simulation Studies: A Frame of Reference,” which was later published in the

Communications of the ACM (Ören 1981). During that time, I was focusing on

my Ph.D. dissertation research in the area of simulation model validation. I also

presented a paper at that meeting entitled “A Methodology for Cost-Risk Analysis

in the Statistical Validation of Simulation Models,” which was later published right

after his paper in the same special issue of the Communications of the ACM (Balci

and Sargent 1981).

Dr. Ören’s seminal paper in the Communications of the ACM has expanded my

horizon in assessing the acceptability of modeling and simulation applications. I am

honored to contribute this chapter presenting quality indicators that can be used for

such acceptability assessment. Dr. Ören has published and presented more than

85 articles just on the topic of reliability, quality assurance, and failure avoidance in

modeling and simulation since his seminal paper. He has been an internationally

recognized leading authority not only in this topic but also in the whole modeling

and simulation discipline. Dr. Ören’s linguistic ability is beyond my comprehen-

sion. He is the only person I know who can deliver a very technical speech in

Turkish without using a single English word! That is unbelievable!

As the saying goes, “Quality is Job 1!” Quality is a critically important issue in

almost every discipline. Whether we manufacture a product, employ processes or

provide services, quality often becomes a major goal. Achieving that goal is the
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challenge. Many associations have been established worldwide for quality, e.g.,

American Society for Quality (http://www.asq.org), Australian Organization for

Quality (http://www.aoq.asn.au), European Organization for Quality (http://www.

eoq.org), and Society for Software Quality (http://www.ssq.org). Manufacturing

companies have quality control departments, business and government organiza-

tions have Total Quality Management programs, and software development com-

panies have Software Quality Assurance departments to be able to meet the quality

challenge.

Quality can be generically defined for anything X as: Quality of X is the degree

to which the X possesses a desired set of characteristics.

The ultimate goal of a modeling and simulation (M&S) project is to develop an

M&S application with sufficient quality characteristics. M&S quality assurance

(QA) refers to the planned and systematic activities that are established throughout

the M&S life cycle to substantiate adequate confidence that an M&S application

possesses a set of characteristics required for a set of intended uses.

M&S applications are mostly made up of software or are software based.

Software is inherently complex and very difficult to engineer. Under the current

state of the art, we continue to face serious technical challenges in developing a

reasonably large and complex software product with acceptable accuracy. Accuracy
refers to the transformational and representational/behavioral correctness and is

considered just one of dozens of quality characteristics of an M&S application.

M&S accuracy is judged by conducting M&S verification and validation (V&V).

As advocated by Balci et al. (2002), we can increase our confidence in the accuracy

of large-scale and complex M&S applications by employing a quality-centered

evaluation approach.

The purpose of this chapter is to present quality indicators throughout the M&S

life cycle that can be used for such a quality-centered evaluation approach. After

providing background information and an introduction, we present a life cycle for

modeling and simulation, which is applicable for any kind of M&S project. We

describe the quality indicators throughout the M&S life cycle based on the expe-

rience and knowledge gained by the author in the U.S. Department of Defense large

and complex M&S application verification, validation, and accreditation projects.

Concluding remarks are stated to conclude this chapter.

9.2 Modeling and Simulation Life Cycle

A life cycle for M&S is presented in Fig. 9.1. This life cycle is a different

representation of the same life cycle described by Balci (2012). The author has

developed this life cycle based on his many years of experience and knowledge

gained in more than a dozen U.S. Department of Defense large and complex M&S

application development projects.

An M&S life cycle is a framework for organization of the processes, work

products, quality assurance activities, and project management activities required
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to develop, use, maintain, and reuse an M&S application from birth to retirement.

The M&S life cycle is created to modularize and structure an M&S application

development and to provide guidance to an M&S developer (engineer), manager,

organization, and community of interest (COI).

The M&S life cycle presented in Fig. 9.1 enables to view M&S development

from four perspectives (or Ps): Process, Product, People, Project. The M&S life

Fig. 9.1 A life cycle for modeling and simulation (Copyright © Osman Balci)
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cycle (a) specifies the work products to be created under the designated processes
together with the integrated verification and validation (V&V) and quality assur-

ance (QA) activities, (b) modularizes and structures M&S development and pro-

vides valuable guidance for project management, and (c) identifies areas of

expertise in which to employ qualified people.
The M&S life cycle consists of four phases as depicted in Fig. 9.1: problem and

requirements phase, design and programming phase, simulation and certification

phase, and storage and reuse phase. It consists of eleven major processes organized

in a logical order, as depicted in Fig. 9.1, starting with Problem Formulation and

culminating with Reuse. A process, represented by a double-line arrow, is executed

to create a work product. For example, we execute the process of Requirements

Engineering to create a Requirements Specification document or the process of

Design to create a Design Specification document. A work product is created in

different forms, i.e., document, model, executable, results, or repository, as shown

with different symbology in Fig. 9.1.

The M&S life cycle should not be interpreted as strictly sequential or linear. The

sequential representation of the double-line arrows is intended to show the direction

of workflow throughout the life cycle. The life cycle is iterative in nature and

reverse transitions are expected. For example, an error identified during V&V of the

executable model may require changes in the requirements specification and redo-

ing the earlier work. We typically bounce back and forth between the processes

until we achieve sufficient confidence in the quality of the work products.

9.3 Quality Indicators

In this section, we present quality indicators throughout the M&S life cycle that can

be employed under a quality-centered assessment approach for large-scale and

complex M&S projects.

9.3.1 Formulated Problem Quality Indicators

Formulated problem quality can be assessed by employing the following indicators

(Balci 2012):

1. What are the chances that the real problem is not completely identified due to the

possibility that

1.1. People might have personalized problems?

1.2. Information showing that a problem exists might not have been revealed?

1.3. The problem context is too complex for the analyst to comprehend?

1.4. Root problems might have arisen in contexts with which people have had

no experience?
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1.5. Cause and effect may not be closely related within the problem context?

1.6. The analyst might have been unable to distinguish between facts and

opinions?

1.7. The analyst might have been misguided deliberately or accidentally?

1.8. The level of extraction of problem context was insufficiently detailed?

1.9. The problem boundary was insufficient to include the entire real problem?

1.10. Inadequate standards or definition of desired conditions exist?

1.11. The root causes might be time dependent?

1.12. A root cause might have been masked by the emphasis on another?

1.13. Invalid information might have been used?

1.14. Invalid data might have been used?

1.15. Assumptions might have concealed root causes?

1.16. Resistance might have occurred from people suspicious of change?

1.17. The problem was formulated under the influence of a solution technique?

1.18. The real objectives might have been hidden accidentally, unconsciously,

or deliberately?

1.19. Root causes might be present in other unidentified systems, frameworks,

or structures?

1.20. The formulated problem may be out of date?

2. Stakeholders and Decision Makers

2.1. Do you know or can you think of any stakeholders and decision makers,

other than the ones identified by the analyst, who might be aided by the

solution of the problem?

2.2. Are all active stakeholders (e.g., users of the solution system, administrators

of the solution system, trainers of the solution system users) identified?

(An active stakeholder is the one who will actively interact with the

solution system once it is operational and in use.)

2.3. Are all passive stakeholders (e.g., developers, decision makers about the

use of the solution system, logistics personnel, manufacturer, owners/spon-

sors if they do not use/operate the solution system) identified? (A passive
stakeholder is the one who will not actively interact with the solution

system once it is operational and in use.)

3. Constraints

3.1. Do you know or can you think of any other constraints, which should have

been identified by the analyst?

3.2. Are there any incorrect or irrelevant constraints?

3.3. Are there any constraints that make the formulated problem infeasible to

solve?

4. Objectives

4.1. How well are the objectives stated?

4.2. Do you believe any objectives to be inconsistent, ambiguous, or conflicting

in any way?
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4.3. How realistic are the objectives?

4.4. Are there any priorities specified for the case where only some of the

objectives are achievable?

4.5. Do you know or can you think of any relevant stakeholders and decision

makers whose objectives are conflicting with any of those specified?

4.6. In case of multiple objectives, do you agree with the way the objectives are

weighted?

4.7. Do you agree that the stated objectives are the real objectives of the

stakeholders and decision makers involved?

4.8. Do you know or can you think of any associated objective, which is

disguised or hidden accidentally, unconsciously, or deliberately?

4.9. How often could the stated objectives change?

5. Data and Information

5.1. Are there any sources of data and information used by the analyst that you

believe to be unreliable?

5.2. Are there any data and information used by the analyst that you believe to

be out of date or need to be updated?

5.3. Are there any data and information, which you believe to be not sufficiently

accurate?

6. Assumptions

6.1. How well are the assumptions stated?

6.2. Are there any invalid assumptions based on which the problem is

formulated?

6.3. Are there any invalid inferences or conclusions drawn by the analyst?

9.3.2 Requirements Quality Indicators

M&S requirements quality can be assessed by employing the following indicators:

1. M&S Requirements Accuracy is the degree to which the requirements possess

sufficient transformational (verity) and representational (validity) correctness.

1.1. M&S Requirements Verity is assessed by conducting M&S requirements

verification. M&S requirements verification is substantiating that the M&S

requirements are transformed from higher levels of abstraction into their

current form with sufficient accuracy judged with respect to the M&S

intended uses. M&S requirements verification addresses the question of

“Are we creating the M&S requirements right?”
1.2. M&S Requirements Validity is assessed by conducting M&S requirements

validation. M&S requirements validation is substantiating that the M&S

requirements represent the real needs of the application sponsor with
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sufficient accuracy. M&S requirements validation addresses the question of

“Are we creating the right M&S requirements?”

2. M&S Requirements Clarity is the degree to which the M&S requirements are

unambiguous and understandable.

2.1. M&S Requirements Unambiguity is the degree to which each statement of

the requirements can only be interpreted one way.

2.2. M&S Requirements Understandability is the degree to which the meaning

of each statement of the requirements is easily comprehended by all of its

readers.

3. M&S Requirements Completeness is the degree to which all parts of a require-

ment are specified with no missing information, i.e., each requirement is self-

contained. For example, “radar search pulse rate must be 10” is an incomplete

requirement because it is missing the “per second” part. The requirement

“missile kill assessment delay must follow the Uniform probability distribution”

is incomplete because it is missing the range parameter values. Also use of the

placeholder “TBD” (to be determined or to be defined), “TBR” (to be resolved),

“TBP” (to be provided), and use of the phrases such as “as a minimum,” “as a

maximum,” and “not limited to” are indications of incomplete requirements

specification.

4. M&S Requirements Consistency is the degree to which (a) the requirements are

specified using uniform notation, terminology, and symbology, and (b) any one

requirement does not conflict with any other.

5. M&S Requirements Feasibility is the degree of difficulty of (a) implementing a

single requirement, and (b) simultaneously meeting competing requirements.

Sometimes it may be possible to achieve a requirement by itself, but it may not

be possible to achieve a number of them simultaneously.

6. M&S Requirements Modifiability is the degree to which the requirements can

easily be changed.

7. M&S Requirements Stability is (a) the degree to which the requirements are

changing while the M&S application is under development, and (b) the possible

effects of the changing requirements on the project schedule, cost, risk, quality,

functionality, design, integration, and testing of the M&S application.

8. M&S Requirements Testability is the degree to which the requirements can

easily be tested. A testable requirement is the one that is specified in such a

way that pass/fail or assessment criteria can be derived from its specification. For

example, the following requirement specification is not testable: “The probabil-

ity of kill should be estimated based on the simulation output data.” The

following requirement specification is testable: “The probability of kill should

be estimated by using a 95 % confidence interval based on the simulation output

data.”

9. M&S Requirements Traceability is the degree to which the requirements related

to a particular requirement can easily be found. Requirements should be spec-

ified in such a way that related requirements are cross-referenced. When it is
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necessary to change a requirement, those requirements affected by the changed

requirement should be easily identified by using the cross-references.

9.3.3 Conceptual Model Quality Indicators

The quality of a conceptual model created for a particular problem domain can be

assessed by employing the following indicators (Balci et al. 2011):

1. How well does the conceptual model assist in designing not just one simulation

model but also many in a particular problem domain?

2. How well does the conceptual model assist in designing any type of simulation

model?

3. How well does the conceptual model assist in achieving reusability in simula-

tion model design? (Balci et al. 2011)

4. How well does the conceptual model assist in achieving composability in

simulation model design? (Balci et al. 2011)

5. How well does the conceptual model enable effective communication among

the people involved in a large-scale M&S project such as stakeholders, poten-

tial users, managers, analysts, and M&S developers?

6. How well does the conceptual model assist in overcoming the complexity of

designing large-scale complex simulation models in a particular problem

domain?

7. How well does the conceptual model provide a multimedia knowledge base

covering the areas of expertise needed for designing large-scale complex

simulation models in a particular problem domain?

8. How well does the conceptual model help a subject matter expert (SME)

involved in an M&S project to understand another SME’s work?
9. How well does the conceptual model facilitate the collaboration among the

SMEs for designing a large-scale complex simulation model in a particular

problem domain?

10. How well does the conceptual model assist in verification, validation, and

certification (VV&C) of an M&S application in a particular problem domain?

11. How well does the conceptual model support effective and efficient VV&C of

an M&S application in a particular problem domain?

12. How well does the conceptual model assist in the specifications of test designs,

test cases, and test procedures for an M&S application in a particular problem

domain?

13. How well does the conceptual model assist in proper formulation of intended
uses (objectives) for an M&S application in a particular problem domain?

14. How well does the conceptual model assist in the generation of new M&S

requirements?

15. How well does the conceptual model provide significant economic benefits

through its repeated use?
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9.3.4 Architecture Quality Indicators

The following indicators can be employed for assessing how well a specified

architecture such as High Level Architecture (HLA) (IEEE 2000) enables an

M&S application to possess a desired set of quality characteristics under a set of

indented uses (Balci and Ormsby 2008):

1. Adaptability is the degree to which the architecture enables the M&S applica-

tion to be easily modified to satisfy changing requirements.

2. Compliance with standards is the degree to which the architecture enables the

M&S application to comply with required standards.

3. Dependability is the degree to which the architecture enables the M&S appli-

cation to (a) deliver services when requested, (b) deliver services as specified,

(c) operate without catastrophic failure, and (d) protect itself against accidental

or deliberate intrusion.

3.1. Availability is the degree to which the architecture enables the M&S

application to function according to its requirements at a given point in

time. Availability refers to the ability of the M&S application to deliver

services when requested.

3.2. Reliability is the degree to which the architecture enables the M&S

application to perform its required functions without failure under pre-

scribed conditions in a specified period of time for a specific purpose.

Reliability refers to the ability of the M&S application to deliver services

as specified.

3.3. Safety is the degree to which the architecture enables the M&S application

to operate, normally or abnormally, without threatening people or the

environment. Safety refers to the ability of the M&S application to operate

without catastrophic failure.

3.4. Security is the degree to which the architecture enables the M&S appli-

cation to provide protection and authentication of information in transit or

stationary, as well as the confidentiality of sensitive information. Security

refers to the ability of the M&S application to protect itself against

accidental or deliberate intrusion.

4. Deployability is the degree to which the architecture enables the M&S appli-

cation to be easily transformed to run on more than one hardware, software, or

network environment.

5. Extensibility is the degree to which the architecture enables the M&S applica-

tion to (a) be capable of growing by including more and a greater diversity of

subsystems, and (b) facilitate the extension of its capabilities by modifying

current features or adding new features.

6. Interoperability is the degree to which the architecture enables the M&S

application to exchange data with other systems or subsystems and be able to

use the data that has been exchanged.
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7. Maintainability is the degree to which the architecture enables the M&S

application to facilitate changes for: (a) adaptations required as the system’s
external environment evolves (adaptive maintenance), (b) fixing bugs and

making corrections (corrective maintenance), (c) enhancements brought

about by changing customer requirements (perfective maintenance), and

(d) preventing potential problems or for reengineering (preventive
maintenance).

8. Modifiability is the degree to which the architecture enables the M&S applica-

tion to be easily changed.

9. Openness is the degree to which the architecture enables the M&S application

to possess interface specifications of its components or subsystems that are

fully defined, publicly available, nonproprietary, and maintained by recognized

standards bodies.

10. Performance is the degree to which the architecture enables the M&S applica-

tion to execute its work in a speedy, efficient, and productive manner.

11. Scalability is the degree to which the architecture enables the M&S application

to continue to function correctly as its workload (e.g., number of users, size of

network, and amount of processing) is increased within anticipated limits.

12. Survivability is the degree to which the architecture enables the M&S applica-

tion to satisfy and continue to satisfy specified critical requirements (e.g.,

security, reliability, real-time responsiveness, and accuracy) under adverse

conditions.

13. Testability is the degree to which the architecture enables the M&S application

to facilitate the creation of test criteria and conduct tests to determine whether

those criteria have been met.

14. Usability is the degree to which the architecture enables the M&S application

to be easily employed for its intended uses.

9.3.5 Simulation Model Design Quality Indicators

The following indicators can be employed for assessing the quality of a simulation

model design:

1. Adaptability is the degree to which the simulation model design can accom-

modate changing requirements.

2. Complexity is the degree to which the simulation model design can be under-

stood without difficulty and can easily be communicated to others.

3. Composability is the degree to which the simulation model design is capable of

being constituted by combining modules, parts, or elements.

4. Correctness is the degree to which the simulation model design possesses

sufficient transformational, representational, and behavioral accuracy.

5. Detailedness is the degree to which the simulation model design possesses

sufficient level of detail to enable its programming into an executable model.
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6. Efficiency is the degree to which the simulation model design enables the M&S

application to fulfill its purpose without waste of resources.

7. Flexibility is the degree to which the simulation model design accommodates

modifications.

8. Integrity is the degree to which the simulation model design enables the M&S

application to be capable of controlling access to sensitive information by

unauthorized persons or other applications.

9. Interoperability is the degree to which the simulation model design enables the

M&S application in a distributed environment to exchange data with other

applications and to be able to use the data that has been exchanged.

10. Maintainability is the degree to which the simulation model design facilitates

changes for: (a) adaptations required as the model’s external environment

evolves (adaptive maintenance), (b) fixing bugs and making corrections (cor-
rective maintenance), (c) enhancements brought about by changing customer

requirements (perfective maintenance), and (d) preventing potential problems

or for reengineering (preventive maintenance).
11. Modularity is the degree to which the simulation model design has the highest

level of cohesion and the lowest level of coupling.

12. Cohesion is the degree to which the elements included within a simulation

model design component are highly related to each other.

13. Coupling is the degree to which the simulation model design components

depend on each other in terms of their internal logic.

14. Portability is the degree to which the simulation model design can easily be

transformed to enable the M&S application to run on more than one hardware

or software platform.

15. Reusability is the degree to which the simulation model design facilitates the

reuse of its components in the development of other simulation model designs.

16. Testability is the degree to which the simulation model design facilitates the

creation of test criteria and conducting tests to determine whether those criteria

have been met.

9.3.6 M&S Application Quality Indicators

M&S application quality can be assessed by employing the following indicators

(Balci 2004; Pressman 2010; Sommerville 2011):

1. M&S Application Dependability is the degree to which the M&S application

(a) delivers services when requested, (b) delivers services as specified,

(c) operates without catastrophic failure, and (d) protects itself against accidental

or deliberate intrusion.

1.1. M&S Application Availability is the probability that the M&S application

functions according to its requirements at a given point in time. Availability
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refers to the ability of the M&S application to deliver services when

requested.

1.2. M&S Application Reliability is the degree to which the M&S application

performs its required functions without failure under prescribed conditions

in a specified period of time for a specific purpose. M&S application

reliability refers to the ability of the M&S application to deliver services

as specified.

1.2.1. M&S Application Accuracy is the degree to which the M&S appli-

cation possesses sufficient transformational and representational/

behavioral accuracy.

1.2.1.1. M&S Application Verity is assessed by conducting M&S

application verification, which is substantiating that the

M&S application is transformed from one form into another

with sufficient accuracy. M&S application verification

addresses the question of “Are we building the M&S appli-

cation right?”
1.2.1.2. M&S Application Validity is assessed by conducting M&S

application validation, which is substantiating that the M&S

application possesses sufficient representational and behav-

ioral accuracy. M&S application validation addresses the

question of “Are we building the right M&S application?”

1.2.2. M&S Application Mean Time to Failure (MTTF) is the average time

between observed M&S application failures. MTTF¼ 300 h means

that, on the average, one failure can be expected to occur every

300 h.

1.2.3. M&S Application Mean Time to Restore (MTTR) is the average time

it takes to restore the M&S application after failure.

1.2.4. M&S Application Recoverability is the degree to which the M&S

application provides mechanisms to enable users to recover from

errors.

1.3. M&S Application Safety is the ability of the M&S application to operate,

normally or abnormally, without threatening people or the environment.

M&S safety refers to the ability of the M&S application to operate without

catastrophic failure. The safety may be an issue particularly for training

simulations.

1.4. M&S Application Security is the degree to which the M&S application

provides protection and authentication of information in transit or station-

ary, as well as the confidentiality of sensitive information. M&S security

refers to the ability of the M&S application to protect itself against acci-

dental or deliberate intrusion.

2. M&S Application Functionality is the degree to which the M&S application

completely captures all of the desired functional modules that need to be present.
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2.1. M&S Application Capabilities is the degree to which the M&S application

is capable of performing its feature set, e.g., capability of simulating a

particular combat at the soldier level of granularity.

2.2. M&S Application Detailedness is the degree to which the M&S application

is characterized by abundant use of detail or thoroughness of treatment.

2.3. M&S Application Feature Set is the degree to which the M&S application

provides the set of features that need to be present, e.g., simulating a

particular combat.

2.4. M&S Application Generality is the degree to which the M&S application

can be used for a wide range of intended uses.

3. M&S Application Performance is the degree to which the M&S application

executes its work in a speedy, efficient, and productive manner.

3.1. M&S Application Algorithmic Efficiency is the degree to which the algo-

rithms used in the M&S application provide the optimal execution time.

3.2. M&S Application Architectural Efficiency is the degree to which the M&S

application architecture enables the optimal execution time.

3.3. M&S Application Communication Efficiency is the degree to which the

M&S application fulfills its purpose of communicating with its user over a

network without waste of resources. Communication efficiency is

influenced by the communication protocol (e.g., HTTP or RMI) used by

the M&S application, encryption/decryption of the communication, or the

existence of a firewall.

3.4. M&S Application Resource Use Efficiency is the degree to which the M&S

application fulfills its purpose without waste of resources such as CPU,

main memory, and hard disk space.

4. M&S Application Supportability is the degree to which the M&S application can

be supported.

4.1. M&S Application Compatibility is the degree to which the M&S application

can be integrated into or used with other M&S applications, products, or

systems.

4.2. M&S Application Configurability is the degree to which the M&S applica-

tion can easily be set up or configured for a particular application or

intended use.

4.3. M&S Application Conformity is the degree to which the M&S application

adheres to standards and conventions.

4.4. M&S Application Installability is the degree to which the M&S application

can easily be prepared for use.

4.5. M&S Application Interoperability is the degree to which the M&S appli-

cation in a distributed environment (e.g., federation of models) can

exchange data with one or more other M&S applications and be able to

use the data that has been exchanged.

4.6. M&S Application Localizability is the degree to which the M&S application

can easily be adopted, preferably via preferences or options, (a) to satisfy
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the needs of languages other than English, and (b) to local standards such as

decimal separator, currency symbol, time zone, calendar, etc.

4.7. M&S Application Maintainability is the degree to which the M&S applica-

tion facilitates changes for: (a) adaptations required as the M&S applica-

tion’s external environment evolves (adaptive maintenance), (b) fixing

bugs and making corrections (corrective maintenance), (c) enhancements

brought about by changing customer requirements (perfective mainte-
nance), and (d) preventing potential problems or for reengineering (preven-

tive maintenance or software reengineering).

4.7.1. M&S Application Adaptability is the degree to which the M&S

application can accommodate changes to its external environment.

4.7.2. M&S Application Correctability is the degree to which the M&S

application facilitates changes for fixing bugs and making

corrections.

4.7.3. M&S Application Extensibility is the degree to which the M&S

application capabilities can be extended by modifying current fea-

tures or adding new features.

4.7.4. M&S Application Preventability is the degree to which the M&S

application facilitates changes for preventing potential problems or

for reengineering.

4.8. M&S Application Portability is the degree to which the M&S application

can easily be transformed to run on more than one hardware or software

platform.

4.9. M&S Application Testability is the degree to which the M&S application

facilitates the creation of test criteria and conducting tests to determine

whether those criteria have been met.

5. M&S Application Usability is the degree to which the M&S application can

easily be employed for its intended use.

5.1. M&S Application Documentation Quality is the degree to which the M&S

application external documentation (e.g., user manuals, reference guides,

online help) possesses a desired set of characteristics.

5.2. Ease of Experimentation or Exercise Specification is the degree to which a

simulation experiment (for analysis) or a simulation exercise (for training)

can easily be specified.

5.3. Ease of M&S Application Input Specification is the degree to which the

input conditions and data of the M&S application are easily specified under

a set of prescribed intended uses.

5.4. M&S Application Ease of Learning is the ease with which the M&S

application can be learned.

5.5. M&S Application Output Understandability is the degree to which the

meaning of the M&S application output is easily comprehended by its

users under a set of prescribed intended uses.
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9.3.7 Simulation Results Quality Indicators

The simulation results make up the solution to the problem (for problem solving),

show effectiveness of simulation-based training (for training purposes), or indicate

some benefit in using the simulation model (e.g., for research). The quality of the

results obtained from a simulation model by way of experimentation (for problem

solving), exercise (for training purposes) or otherwise use can be assessed by

employing the following indicators:

1. How reliable is the random number generator used as judged by the community?

2. How theoretically accurate are the algorithms used for random variate

generation?

3. How accurately are the random variate generation algorithms translated into

executable code?

4. How well are the simulation experiments designed to gather the desired infor-

mation at minimal cost and to enable the analyst to draw valid inferences?

5. How accurately are the designs of experiments translated into executable code?

6. How appropriate are the statistical techniques used for the analysis of simulation

output data?

7. How well are the assumptions underlying the statistical techniques used

satisfied?

8. How appropriately is the problem of the initial transient (or the start-up problem)

addressed?

9. How correctly are identical experimental conditions created for each of the

alternative operating policies compared?

9.3.8 Presented Results Quality Indicators

The life cycle process of presentation consists of (a) interpretation of the simulation

results, (b) documentation of the simulation results, and (c) communication of the

simulation results to the decision makers. Simulation results must be interpreted

because all simulation models are descriptive in nature. A descriptive model is a
model that describes the behavior of a system without any value judgment on the

“goodness” or “badness” of such behavior. For example, a simulation result can be

“average waiting time is 5 minutes” without indicating how good or bad the value

5 is. That value must be interpreted and judged before presenting it to the decision

makers. Due to the complexity of some simulation results, failing to properly

interpret, document, and communicate the simulation results may lead to wrong

decisions in spite of the fact that the simulation results are sufficiently credible.

The quality of the presented results can be assessed by employing the following

indicators:

1. How accurately are the simulation results interpreted?

2. How properly are the simulation results documented?
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3. How correctly are the simulation results communicated to the decision makers?

4. How accurately are the simulation results converted from the technical jargon

into a language the decision makers can understand?

5. How accurately are the simulation output data transformed into visualizations,

spreadsheets, tabulations, and/or graphical representations for effective

presentation?

9.4 Concluding Remarks

Accuracy undoubtedly stands out to be the most important quality indicator of an

M&S application. It is assessed by conducting verification, validation, and testing

(VV&T) (Balci 2003). Tremendous amount of literature exists on VV&T. More

than 75 VV&T techniques have been described in the published literature (Balci

1998).

Assessment of accuracy alone, however, is not sufficient for judging the accept-

ability of a large-scale and complex M&S application. An M&S application may be

sufficiently accurate, but it may not satisfy other quality indicators such as the ones

described in this chapter. Gaining an acceptable level of confidence in the accuracy

of a large-scale and complex M&S application may not be feasible due to the

complexity. Therefore, a total quality-centered assessment approach should be used

to gain sufficient level of confidence in certifying the acceptability of a large-scale

and complex M&S application.

Quality assessment activities must be tied to a well-structured M&S life cycle

(Balci 2012). Quality assessment is not a stage but a continuous activity carried out

hand in hand throughout the entire M&S life cycle. The use of an effective M&S

life cycle is critically important for success in gaining sufficient confidence in M&S

application acceptability.
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Chapter 10

Verification, Validation, and Replication
Methods for Agent-Based Modeling
and Simulation: Lessons Learned the Hard
Way!

S.M. Niaz Arifin and Gregory R. Madey

10.1 Introduction

Reproducible modeling and simulation research has been identified as one

of the Modeling and Simulation (M&S) Grand Challenge activities (Taylor

et al. 2013). Recently, uncertainty quantification has seen a renewed emphasis

(National Research Council 2012). While methods for verification and validation

(V&V) have been widely developed for discrete-event simulations, newer simu-

lation approaches such as the agent-based, agent-directed, and multi-agent simula-

tion approaches introduce new V&V challenges. The active elements in these

newer approaches have greater heterogeneity, e.g., every agent can be unique,

with complex attributes and behaviors. Those behaviors can result in actions

based on interaction with other agents, the environment, and even the outcome of

simulated or artificial intelligence. The simulation spaces are often less constrained,

e.g., rather than a network of servers and queues, the space can be continuous 2D

Euclidian space with multiple associated geographic information systems (GIS)

layers influencing the behavior of the actors.

Over the last decade, a multitude of techniques has been used in agent-based

modeling and simulation (ABMS) to perform V&V as well as replication and

reproducibility (R&R) of the models. In this chapter, we review and summarize

some important papers by Tuncer Ören and his colleagues and describe the influence

of some of the early works by Ören.We present an overview of other contributions in

V&V, quality assurance (QA), and R&R of simulation studies, with special focus on

ABMS. We also discuss the lessons learnt in V&V and replication from a series of

simulation experiments using agent-based models (ABMs).
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Verification and validation (V&V), accreditation, quality assurance (QA), cer-

tification, replication and reproducibility (R&R), acceptability assessment and

uncertainty quantification are critical steps in the modeling and simulation

(M&S) process. Without properly conducting these steps there can be little trust

in the insights and predictions provided by a simulation study. For these steps in

M&S studies, Tuncer Ören recognized both their pragmatic importance and their

ethical implications for the modelers conducting such studies.

In this chapter, we review and summarize some important papers by Ören and

his colleagues and describe the influence of some of the early works by Ören. We

present an overview of other contributions in V&V, QA, and R&R of simulation

studies, with special focus on agent-based modeling and simulation. We also

discuss the lessons learnt in V&V and replication from a series of simulation

experiments using agent-based models (ABMs).

The V&V and R&R experiences we present in this chapter originate from using

several ABMs of the population dynamics of one of the most efficient mosquito

species for transmitting malaria, Anopheles gambiae. Malaria is the third most

important pathogen-specific cause of human morbidity and mortality in the world

today. The populations of sub-Saharan Africa experience the highest burden of the

disease with an estimated two million deaths per year. Agent-based modeling of

malaria plays important roles to quantify the effects of malaria-control interven-

tions and to answer interesting research questions (Arifin et al. 2013, 2014).

From the philosophical and methodological viewpoints, we also discuss the

connection of the following to the M&S grand challenges:

• Challenges faced during V&V of multiple ABMs, all of which originated from

the same conceptual model

• Unique challenges encountered during replication of published ABMs

• Major sources from which model differences may arise and/or the process of

replication may become more time-consuming and challenging, etc.

Some commonly used methodologies and techniques used for the assessment of

accuracy of M&S research described in this chapter are listed in Table 10.1.

The rest of this chapter is organized as follows. In the remainder of this section,

we review some of the earliest works in V&V by Ören and others in advanced

simulation methodologies, assessing the acceptability of simulation studies, cate-

gorizations and taxonomies of M&S, and M&S applications. In Sect. 10.2, we

summarize the contributions of Ören and others in the areas of V&V and QA.

Section 10.3 discusses some important works in R&R. In Sect. 10.4, we briefly

introduce the malaria entomological model and the ABMs we used to perform the

V&V and R&R works. Sections 10.5 and 10.6 describe the V&V and R&R

challenges we faced, discuss some important V&V issues from which model

differences may arise and offer recommended guidelines for ABM modelers.

Finally, Sect. 10.7 concludes with a summary.
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Table 10.1 Methodologies and techniques commonly used for the measurement and assessment

of accuracy in M&S research. Methodologies are ordered alphabetically

Definition

Alternative or

synonymous terms References

Acceptability

assessment

The official certification that

a model, simulation, or fed-

eration of models and simu-

lations is acceptable for use

for a specific purpose.

Accreditation, certi-

fication, credibility

assessment

Ören (1981), Balci

(1989, 1998a, 2003)

Docking A form of V&V that tries to

align multiple models in

order to investigate whether

they yield similar results.

Alignment, model-

to-model comparison

Axtell et al. (1996),

Arifin et al. (2010a, b)

Quality

assurance

Ensuring that an M&S

application possesses a

desired set of characteristics

to match a desired degree of

quality.

Quality assessment Ören (1984), Balci

(2004)

Replication To allow independent

researchers to address scien-

tific hypotheses in a model

and produce evidence for or

against them in order to

judge the scientific claims

presented by the model.

Alignment, cross-

model validation,

model-to-model

comparison

Peng (2011), Jasny et

al. (2011)

Reproducibility The ability to independently

verify the prior findings

reported by an established

model. The ability to inde-

pendently replicate, repro-

duce and, if needed, extend

computational artifacts

associated with published

work.

Santer et al. (2011)

Fomel and

Hennenfent (2009)

Uncertainty

quantification

The process of quantitative

characterization and reduc-

tion of uncertainties in M&S

applications. It tries to

determine how likely certain

outcomes are if some aspects

of the system are not exactly

known.

Calibration, parame-

ter estimation,

parameter fitting,

sensitivity analysis

National Research

Council (2012),

Walker et al. (2003),

Thiele et al. (2014)

To learn about the relative

importance of the various

mechanisms represented in

the model and how robust

the model output is to

parameter uncertainty by

exploring the sensitivity of

model output to changes in

parameters.

(continued)
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10.1.1 Advanced Simulation Methodologies

One of the earliest works in this area includes the 1979 seminal paper by Ören and

Zeigler (1979) on advanced simulation methodologies, which is still one of the 50

most-frequently cited articles in Simulation (5/50) as of 3 Dec 2014. This has been

considered a thought-provoking article, earning 177 citations so far. In this paper, a

set of comprehensive concepts is proposed for the design and implementation of

advanced simulation methodologies. Later, it influenced the development of several

special-purpose simulation systems and general-purpose languages, including the

concepts of functional separation of model development, entity description, sce-

nario specification, output analysis, etc. (Ketcham et al. 1984, 563). It also

presented the concept of hierarchical/structured modeling and experimental frames,

changing the emphasis of simulation software development from then on (An et al.

1989, 500; Wang and Li 1991, 1062). The described approach can be connected to

general systems theory, a field to which both authors of this paper have made

frequent and significant contributions (Karplus 1979). It also pointed out several

weaknesses and drawbacks in current simulation languages (Shannon 1986, 150;

Lin 1990; Pegden et al. 1995), inspired the development of tools covering the whole

trajectory from systems analysis through model construction (Elzas 1988, 49), new

approach to definitions (Wittmann 1992), etc.

10.1.2 Assessing the Acceptability of Simulation Studies

In assessing the acceptability of simulation studies, Ören proposed a framework

that permits the discussion of the concepts and criteria related to the acceptability of

Table 10.1 (continued)

Definition

Alternative or

synonymous terms References

Verification The assessment of transfor-

mational accuracy of the

model by addressing the

question of “are we creating

the model right?”

Balci (1998a, 2003)

Ensuring that the computer

program of the computer-

ized model and its imple-

mentation are correct.

Sargent (2001, 2004)

Validation The assessment of behav-

ioral or representational

accuracy of the model by

addressing the question of

“are we creating the right

model?”

Balci (1998a, 2003)

Sargent (2001, 2004)
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various components of a simulation study, including simulation results, real world

and simulated data, parametric model and the values of the model parameters,

specification of the experimentation, representation and execution of the computer

program, and modeling, experimentation, simulation, and programming methodol-

ogies or techniques used, etc. (Ören 1980, 1981). The acceptability issues, which

are closely related to credibility of simulation studies, validation of models, and

verification of simulation programs, are described in a highly cited 1981 paper

(Ören 1981) with 82 citations (according to Google Scholar) so far. These issues are

discussed with respect to the goal of the simulation study, the structure and data of

the real system, the parametric model, the model parameter set, the specification of

the experimentation and the existing or conceivable norms of modeling methodol-

ogy, experimentation technique, simulation methodology, software engineering

etc. (Ören 1981).

10.1.3 Categorizations and Taxonomies of Modeling
and Simulation (M&S)

The detailed classification, categorizations, and taxonomies of M&S tools proposed

by Ören influenced and guided the research in multiple related topics, including

identification of regions that require immediate additional efforts (Garzia 1979),

simulation model management (Nance et al. 1981), simulation software develop-

ment (Standridge and Pritsker 1982), general systems models (Troncale 1985) etc.

The related works by Ören and Zeigler (1979) provided a framework for preparing

taxonomy of expert systems (ES) and artificial intelligence (AI) techniques related

to simulation studies (Zeigler 1982; Ketcham 1986).

10.1.4 M&S Applications

Ören and others later reported results of the ideas introduced in the papers discussed

above in several applications. For example, to deal with various types of errors that

can be generated by simulations of nuclear fuel waste management programs, Ören

et al. (1985) offered M&S frameworks to clarify issues of model reliability and

software quality assurance. They identified potential problems with reference to the

main areas of concern for reliability and quality, e.g., experimental issues, decom-

position, scope, fidelity, verification, requirements, testing, correctness, and robust-

ness, and provided a list of 80 most common computerization errors, as well as

software tools and techniques to detect and to correct the errors (Ören et al. 1985).

In an attempt to promote the credibility and integrity of simulation as a field

itself, Ören (2000) pointed out the existence of professional codes of ethics in

domains that are relevant to simulation, including science, engineering, business,
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computerization, software engineering, AI, software agents, the Internet, and

defense industries. The article discuses a set of important philosophical questions

related to simulation and ethics, for example: the need for a code of ethics for

simulation, where to start to develop such a code, whose responsibility and respon-

sibility to whom, etc. (Ören 2000). While addressing quality assurance problems in

simulation, Ören also introduced and defined the concept of normative assessment
of an element of a simulation study as its evaluation with respect to some norms of a

value system, which can be pragmatic or ethical (Smit 1999). He also strongly

advised the development of a code of conduct for simulation professionals, and

presented a procedure of composing such a code of conduct (Kettenis 2001).

10.2 Verification and Validation (V&V) and Quality
Assurance (QA)

In general, verification, validation, docking, testing, accreditation, certification,

quality assurance, and credibility assessment activities primarily deal with the

measurement and assessment of accuracy of M&S (Balci 1998a, b; Ören and

Yilmaz 2009; Arifin et al. 2010a, b).

Verification involves transformational accuracy of the model artifacts in model

development, in order to ensure that the implementation is a correct realization of

the conceptual model. Validation, on the other hand, involves substantiation that a

model within its domain of applicability possesses a satisfactory range of accuracy

consistent with its intended application.

Regarding the quality assurance of system design for complex problems,

Ören recognized the needs to critically examine the nature and problem-solving

paradigms of complex interrelated problems, and listed a set of questions and

metaquestions relevant to the task under the six categories of: (1) problem and

problem solving paradigms, (2) goals, (3) performance measures, (4) decision

and its components, (5) system, and (6) resources (Ören 1983). This work was

soon followed by presenting a basis for the taxonomy of concepts related with

quality assurance in M&S, which included three major parts: (1) criteria for

assessment, (2) types of assessments, and (3) a comprehensive categorized list of

related terms (Ören 1984).

Ören and Yilmaz (2009) pointed out various sources of failures in order to take

necessary precautions to minimize the risks associated with agent-based modeling

(ABM) and agent-directed simulation (ADS), and suggested new failure avoidance

(FA) paradigms for V&V as well as quality assurance (QA) purposes for M&S.

They recognized the significant repercussions of any failure to the application area

in the use of M&S, provided a five-part representative list of common mistakes in

M&S projects, described three groups of concepts (i.e., types, criteria, and ele-

ments) involved in an assessment paradigm, and discussed various V&V, QA, and

FA paradigms for successful M&S projects (Ören and Yilmaz 2009). They also
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noted the importance of lessons learned and best practices from earlier mistakes –

portraying the collection and analyses of lessons learned from studies in V&V, QA,

and FA to be useful in benefiting from the shared experiences of many simulation

professionals (Ören and Yilmaz 2009).

Guided by the pioneering work of Ören and others (1985), Balci (1998a, b)

proposed the need for a simulation quality assurance (SQA) group, portraying it as

critically essential for the success of a simulation study. The SQA is a managerial

approach whose job is to ensure quality management by working closely with the

simulation project managers in planning, preparing, and administering QA activi-

ties throughout the simulation study (Balci 1998a). He also presented guiding

principles for conducting verification, validation, and accreditation (VV&A) of

M&S applications (Balci 1998a, b).

Some of the other previous works involving V&V, docking, alignment, and

model-to-model comparison are described below.

Axtell et al. (1996) described the docking process of Axelrod and Sugarscape

models and concluded that by comparing independently built simulations using

different tools, docking (or alignment) may discover bugs, misinterpretation of

model specification, and inherent differences in toolkit implementations. Sargent

(2001) described different approaches to decide validity by two different paradigms

that relate V&V to the model development process, with the use of graphical data

statistical references for operational validity. Carley (2002) described the impor-

tance of docking in computational social and organizational science. North and

Macal (2002) implemented the Beer game using Mathematica programming,

Repast and Swarm ABMS, reproducing (i.e., docking) published results with

these new implementations. Burton (2003) argued that docking provides a guide

in use of different laboratories to address organization questions, and computational

and non-computational models can be docked to broaden the understanding of

organization science. Xu et al. (2003) discussed the results of docking a Repast

simulation and a Java/Swarm simulation of four social network models of the Open

Source Software (OSS) community.

Edmonds and Hales (2003) replicated a published model involving co-operation

between self-interested agents in two independent implementations to align the

results and the conceptual design, revealing a host of minor bugs and ill-defined

implementation issues that otherwise appeared unnoticed. By using model-to-

model comparison (docking), Xiang and others demonstrated the V&V processes

for a natural organic matter simulation model (Xiang et al. 2005; Huang et al.

2005). Kennedy and others (Kennedy et al. 2005, 2006) presented V&V results

involving two different case studies (a scientific and an economic model), identi-

fying general guidelines on the best approach to new simulation experiments and

drawing conclusions on effective V&V techniques. They argued that one of the

goals of docking is to try to align multiple models in order to investigate whether

they produce similar results (Xiang et al. 2005; Kennedy et al. 2006).

Yilmaz (2006) presented a process-centric perspective for the V&V of agent-

based computational organization models. He emphasized the importance of V&V

in assessing not only predictive capability but also explanation accuracy of formal
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models in terms of the degree of realism, and presented a framework for the V&V

of multi-agent organizations and a set of formal validation metrics to substantiate

the operational validity of emergent macro-level behavior (Yilmaz 2006).

We performed a docking case study on agent-based models of malaria epidemi-

ology, and showed how docking helped in increasing confidence to the conceptual

model (from which several agent-based implementations were built), revealing

conceptual and/or programming errors, and eliminating dubious assumptions

(Arifin et al. 2010a, b). To examine the effects of spatial heterogeneity, we later

extended the non-spatial ABMs to have explicit spatial representations, and

performed V&V between several non-spatial and spatial ABMs, all of which

originated from the same conceptual model (Arifin et al. 2012).

In many cases, ABMs can produce large volumes of textual outputs, potentially

in the range of hundreds of gigabytes. In general, these outputs contain inherent

logical structures that can be naturally expressed in terms of abstract mathematical

notions such as graphs, relations, etc. The modeler is often interested in visualizing

these structures in the forms of data plots, time-series analysis, visual graphs, and

the like. Thus, to understand the results and patterns exhibited by the agents, it is

crucial to be able to effectively analyze the voluminous textual outputs, and to

produce the desired visualization with ease. Appropriate analysis and visualization

also play important roles in V&V of the ABMs. To meet these goals, we developed

a software module called P-SAM (Post-Simulation Analysis Module) for post-

simulation output analysis and visualization (Arifin et al. 2010c). As a case study,

we described its application to a biological simulation model named LiNK, which

models pathogen transmission amongst long-tailed macaque monkeys on the island

of Bali in Indonesia. P-SAM allowed the modelers to analyze and visualize the

logical structures inherent in LiNK outputs, thus helping in V&V of the model

(Arifin et al. 2010c).

10.3 Replication and Reproducibility (R&R)

Replication and reproducibility (R&R) cover a wide spectrum of issues related to

M&S, and fall under the broader subject area of V&V. In M&S, replication is also

known as model-to-model comparison, alignment, or cross-model validation. In

general, many replication tasks may be viewed as a weaker form of docking, in

which the goal of the modeler is to qualitatively (as opposed to quantitatively)
replicate the results of previously published models.

Replication is treated as the scientific gold standard to judge scientific claims. It

allows independent researchers to address a scientific hypothesis and produce

evidence for or against the hypothesis (Peng 2011; Jasny et al. 2011). Replication

confirms reproducibility, which refers to the independent verification of prior

findings, and is at the core of the spirit of science (Santer et al. 2011). Reproduc-

ibility, as a fundamental principle of the scientific method, refers to the ability to

independently replicate, reproduce and, if needed, extend computational artifacts
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associated with published work (Fomel and Hennenfent 2009). Replication exer-

cises can also provide unique opportunities for V&V processes (Zhong and Kim

2010).

Although computational science has led to exciting new developments, the

nature of the work has also exposed shortcomings in the general ability of the

research community to evaluate published findings (Peng 2011). As the use of

computer simulation is becoming increasingly important, lack of proper documen-

tation, validation, and distribution of models may hamper reproducibility, causing a

credibility gap (Yilmaz 2011; Yilmaz and Ören 2013). In order to minimize this

credibility gap, replicability of the in silico experiments and simulations performed

by various models bear special importance (Arifin et al. 2013). In the following, we

describe some of the other previous works involving R&R.

Will and Hegselmann (2008) showed the importance of replication by reporting

a failure to replicate the results presented on a published model. Obtaining the

source code from the original authors, Will (2009) later found that the simulation

unintentionally implemented an assumption that was never mentioned in the orig-

inal model, and showed that the model crucially depended on that dubious assump-

tion, and its removal leaded to dramatically different results. Others (Rand and

Wilensky 2006; Wilensky and Rand 2007) presented a case study that replicated the

Axelrod-Hammond model and described the challenges in recreating the model and

in determining whether the replication was successful. Pav�on et al. (2008) proposed
the use of agent-based graphical modeling languages to specify social systems as

multi-agent systems, which allow replication of simulations on different platforms.

Rouchier et al. (2008) described advancements in model-to-model analysis, and

categorized comparative modeling research into a number of areas. Olaru et al.

(2009) reported the docking experience and validation stages performed when

replicating a fuzzy logic model with an agent-based model in innovation business

networks.

In a “Letter from the Editor” for the Simulation journal, Yilmaz (2011) empha-

sized that since science is a collective phenomenon, progress in simulation-based

science requires the ability of scientists to create new knowledge, elaborate and

combine prior computational artifacts, and establish analogy and metaphor across

models. Thus, models that are not designed and disseminated to be discovered,

extended, or combined with other models may hinder scientific progress (Yilmaz

2011, 2012a, b). He argues that reproducibility should become the responsibility of

the broader scientific community, and suggested a set of guidelines for the authors,

publishers, funding agencies, journals, and the broader scientific community. Some

of these guidelines include the following to be made available, along with the

simulation code, by the modelers:

• Links to data, source code, standard documentation, and experimental condi-

tions (pertaining to testing and validating the model)

• Open source repositories which may help facilitate making data available to

others and allow replication through the use of openly accessible simulations

• A version control system which may help to uniquely identify and cite each

version of published models and data
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• Automated batch scripts that can produce tables, data summaries, and figures to

support data analysis

• Automated model documentation tools that can be integrated with model devel-

opment processes

• Annotation technologies and standard notation for metadata which may help

presenting comments, notes, explanations, or other types of external remarks for

each shared model

In addition, to promote reproducibility, Yilmaz (2011) suggested the following:

(1) the funding agencies and grant reviewers can give preference to highly qualified

proposals with fully implemented, transparent and online scientific workflows, (2)

the reviewers can provide incentives to research groups to develop shared artifacts

for reproducibility, and (3) a classification system of reproducibility categories (e.

g., verifiable, verified, annotated, shared etc.) be used.

Yilmaz (2012a) also classified the major areas of focus in reproducible research

under three dimensions: (1) scholarly communication, (2) methodology of scientific

practice, and (3) technical infrastructure. He identified issues, strategies, and

implications for each of these dimensions for simulation model development. To

promote the reproducibility of computational research, he also proposed a multi-

dimensional strategy, a software framework as a technical solution for establishing

and maintaining open M&S research platforms, and suggested a set of systematic

guidelines with regard to legitimization, dissemination, and access dimensions for

authors and institutional environments (Yilmaz 2012a, b). Yilmaz and others also

introduced the e-Portfolio concept as an ensemble of integrated active documents

that encompass published manuscript, computer code, data, and scientific workflow

specification (Yilmaz 2011, 2012a, b; Yilmaz and Ören 2013).

10.4 The Models

Our V&V and R&R experiences originate from using several agent-based models

(ABMs), all of which were developed from a core entomological model (hereafter

referred to as the core model) of the population dynamics of Anopheles gambiae,
which is regarded as one the most efficient malaria-transmitting mosquito species.

Details about the core model and the ABMs can be found in (Arifin et al. 2013,

2014). In this section, we present a brief overview of the models.

The An. gambiae mosquito life cycle consists of aquatic and adult phases. The

aquatic phase consists of three aquatic stages (egg, larva, and pupa). The adult

phase consists of five adult stages (immature adult, mate seeking, blood meal

seeking, blood meal digesting, and gravid). The development and mortality rates

in all stages of the life cycle are described in the core model in terms of the aquatic

and adult mosquito populations.

The core model assumes simplistic, homogeneous aquatic habitats (which serve

as breeding sites for female adult mosquitoes). Each aquatic habitat is set with a
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carrying capacity, which regulates the density-dependent egg-laying (oviposition)

mechanism and the age-adjusted biomass that the habitat can sustain. Age-specific

mortality rates are used for the larva stage, and for all the adult stages in the core

model. Female adult mosquito abundance and potentially infectious female (PIF,

which denotes the number of female adult mosquitoes that are potentially capable

of transmitting malaria) abundance are treated as the primary outputs of the model.

In order to compare language-specific dependencies as well as other V&V features,

the core model was implemented as ABMs in two programming languages (Java

and C++). Over the last few years, several versions evolved in both languages to

explore various related research problems. For example, one specific Java version

extended the core model to have an explicit spatial representation by appending

spatial properties to the mosquito agents and the underlying landscapes (Arifin et al.

2013).

10.5 Verification and Validation Challenges

The V&V techniques we used form a subset of the taxonomy of more than 77 V&V

techniques listed by Balci (1998b). These techniques, and the new dynamic tech-

niques of phase-wise docking and compartmental docking, are listed in Table 10.2.

However, among these, face validationwas by far the more frequently used than the

rest. Note the absence of any formal category, due to the population dynamics-

based ABM abstractions of the models.

Most of the V&V were performed by using model-to-model comparison, i.e.,

docking, between the agent-based implementations. The docking workflows,

performed in two separate episodes, are depicted in Fig. 10.1. In both episodes,

different versions were developed in the two languages (Java and C++). For

Episode 1, they are noted as Java1, Java2, Java3, and CPP. For Episode 2, they
are noted as Java1, Java2, CPP1, and CPP2. All versions are hereafter referred to

by using these notations.

Table 10.2 V&V Techniques We Used

Primary

category Secondary category

Informal Face validation, inspections, reviews

Static Data analysis, failure analysis

Dynamic Phase-wise docking*, compartmental docking*, bottom-up testing, compar-

ison testing, debugging, execution testing, functional (black-box) testing,

graphical comparisons, partition testing, predictive validation, sensitivity
analysis, statistical techniques, structural (white-box) testing, submodel testing,

top-down testing, visualization

Formal (none)

The more frequently used techniques are marked in bold. The new techniques of phase-wise

docking and compartmental docking are marked with *
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10.5.1 Episode 1: Phase-Wise Docking

As depicted in Fig. 10.1a, Episode 1 consists of the phase-wise docking workflows.

Not surprisingly, the initial V&V results obtained in this episode showed substan-

tial differences, highlighting different conceptual (mental) images of the core

model among the developers, and thus necessitating further investigation. We

identified the following major differences in Episode 1:

1. Both the adult and aquatic mosquito populations differed significantly

2. Proportion of the older female adult mosquitoes (with an age of 12 days or

higher) was significantly lower in CPP
3. The aquatic population sizes were consistently higher in CPP

Fig. 10.1 The V&V
workflows. (a) The phase-
wise docking workflow

reported in (Arifin et al.

2010a). (b) The
compartmental docking
workflow reported in (Arifin

et al. 2010b). The solid
arrows indicate verification
relationships and immediate

successorship between the

ABMs. The dashed arrows
indicate validation

relationships with the core

model, as well as internal

verifications between the

ABMs. In both episodes,

different versions were

developed in the two

languages (Java and C++),

as abbreviated in the figure
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Before analyzing the above differences, we addressed some minor issues. First,

we verified that the initial parameter settings and constants used were identical for

both models. Next, we logged all randomly-generated numbers with the specified

distribution parameters, and ensured that proper distributions were being generated,

ruling out any potential differences due to the use of different random number

generator libraries. We also explicitly typecasted all floating point arithmetic into

decimal arithmetic to ensure that the former was being correctly computed in both

models.

To address the first difference as listed above, we verified the age-specific

mortality rate functions for the adult mosquitoes. Comparisons of the specific

routines to calculate the age-specific mortality functions revealed that although it

was intended to eliminate all adult mosquitoes in a given age group, CPP placed an

artificial bound to kill only 80 % mosquitoes in the group. This modification, once

applied to Java1, had little impact on the results. However, it revealed another

critical error: in the models, an agent entered the simulation with an age of 0 days,

and in each simulated day the age was increased by 1, which was supposed to

continue without any resetting of the age when the agent transitioned into the first

adult stage. At this transition, the mosquito’s age was reset to 0 in CPP, but
inadvertently, not in Java1 or Java2. This also partially explained the second

difference, i.e., why a larger proportion (approximately half) of the female adult

mosquito population was �12 days old in Java1. While resetting the mosquito’s
age reduced the oscillation in the proportion of older females, there were still

significant differences in terms of average number of mosquitoes (CPP still had

much higher abundances).

To address the third difference (which primarily dealt with the aquatic mosquito

population), we noted that the number of eggs in Java1 was consistently less than

CPP, causing Java1 to eventually inject fewer agents into the system. This, in

conjunction with the second difference, suggested that younger mosquitoes were

killed more rapidly than the older ones. However, at least on the surface, this insight

was counterintuitive, since the age-specific mortality rate functions were designed

to kill the older mosquitoes at a higher rate.

We further verified the age-specific mortality for the aquatic stages. This

revealed that Java1 and CPP calculated an important age-adjusted biomass param-

eter (the 1-day old equivalent larval population, see Arifin et al. 2014) differently:

CPP computed it once at the start of each day, using the previous day’s aquatic
populations. Java1, on the other hand, recomputed it for every egg-laying

event, creating a selection bias for female mosquitoes trying to lay eggs ahead

of others within the same simulation day, and thus causing more repulsive force

to the females trying later. This issue, when resolved, yielded some impact to

increase the number of eggs being laid in Java1. It also revealed a transition logic

variance in CPP for the egg development time: eggs took 2 days (instead of 1 day

as intended). When resolved, this further reduced the difference in number of

adult mosquitoes.

10 Verification, Validation, and Replication Methods for Agent-Based Modeling. . . 229



However, at this point, the Java (Java1, Java2, and Java3) and CPP versions

were not completely docked, especially in terms of the aquatic mosquito

populations. To achieve a complete docking, we used the technique of compart-
mental docking in Episode 2, as described in the following.

10.5.2 Episode 2: Compartmental Docking

Episode 2 consists of the compartmental docking workflows, as depicted in

Fig. 10.1b. The results of the separate implementations revealed that seemingly

insignificant differences leaded to significant mismatch in overall model outputs.

Hence, for V&V purposes, we decided to separate the artificial simulation world

into isolated compartments, so that errors in one specific compartment were not

propagated. Thus, they could not influence the discovery (and correction) of errors

in other compartments. Following the divide and conquer paradigm, we compart-

mentalized the mosquito world into the adult and aquatic populations. Then, we first

ensured that the compartments were working as intended, and later combined them

to perform more complex V&V experiments.

In this episode, we made the following simplifying assumptions in all

implemented versions:

• All sources of randomness were removed

• The carrying capacity of each aquatic habitat was fixed as a constant

• The mate seeking state was omitted altogether (for simplicity)

• The egg-laying mechanism was simplified

• All male mosquito agents were omitted

The compartmental docking was performed by first isolating the adult mosquito

populations from the aquatic mosquito populations. In order to ensure the theoret-

ical expected measures for age-structure and age-specific mortality rates for the

adult stages, some additional simplifying assumptions were made, which included

using fixed number of days for some stages in the adult development, a simplified

egg-laying mechanism, etc.

The next phase dealt with the isolated aquatic mosquito populations. To ensure

the theoretical expected measures for age-structure and age-specific mortality rates

of the aquatic populations, the simplifying assumptions in this phase included using

fixed number of female eggs per oviposition, fixed carrying capacity for each

aquatic habitat, etc.

The last phase combined the isolated adult and aquatic mosquito populations,

verified the transitions from aquatic to adult stages, the egg-laying mechanism, the

actual number of eggs laid in aquatic habitats and the durations of stages. The four-

fold outputs from the two Java (Java1 and Java2) versions and the two C++

versions (CPP1 and CPP2) were compared, and potential misinterpretations were

analyzed and fixed. The major issues discovered in different phases during com-

partmental docking are listed in Table 10.3.

Once all the issues listed in Table 10.3 were addressed, the results produced a

complete four-fold dock between the separate versions.
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Table 10.3 The major issues discovered in different phases during compartmental docking

Issue Resolution

In CPP1 and Java1, the adult populations were
slightly less in number than those in Java2 and

CPP2. Also, the aquatic populations in CPP1
and Java1 were killed at a higher rate than

suggested by the theoretical expected

measures.

Resolved after all versions used the same car-

rying capacities for the aquatic habitats.

CPP1 and Java1 had female mosquitoes lay all

of their eggs on the first egg-laying attempt.

This created an egg-laying pattern where bursts

of eggs were laid on the same day, followed by

a few days when no eggs are laid, then another

burst, and so on. In Java2 and CPP2, however,
the eggs were laid over a period of successive

days.

This issue suggested a difference in the egg-

laying code. It was partially resolved after all

versions ensured to use the same formulas for

calculating how many eggs a female could lay

in different egg-laying attempts.

On the first egg-laying attempt, eggs were laid

one day sooner in Java1 and CPP1 than in

Java2 and CPP2.

It was revealed that in CPP1 and Java1, eggs
were laid at the end of the blood meal

digesting stage, rather than waiting until the

first day of the gravid stage. Consequently,

they were updated to ensure that eggs were

only laid while in the gravid stage.

In Java1, after all female mosquitoes laid all

their eggs in the gravid stage, they did not

transition back to the blood meal seeking stage

on the same day.

Java1 was updated to ensure that the females

transitioned back to the blood meal seeking

stage from the gravid stage on the same day

once all eggs are laid.

CPP1 and Java1 allowed the female mosqui-

toes to lay all their eggs on the first egg-laying

attempt during day 5 and 6. However, as

suggested by the density-dependent egg-laying

mechanism, laying all the eggs in a single

attempt was possible only if the aquatic habitat

was empty.

It was ensured that the egg-laying was indeed

complete after three attempts in CPP1 and

Java1, and we made a simple adjustment

delay before the female mosquitoes could

leave the gravid stage.

CPP2 and Java2 placed an upper bound of

80 % on the larval mortality rate.

CPP1 and Java1 were ensured to use the same

value.

In calculating the maximum number of eggs a

female could lay, CPP2 and Java2 erroneously
used another parameter: the number of eggs

remaining to lay.

CPP2 and Java2 were ensured to use the same

parameter.

In Java1, gravid females incorrectly laid all

eggs, and the biomass of the aquatic habitat did

not affect the number of eggs actually laid.

In the calculation of the number of eggs

allowed to lay, some double-precision values

were erroneously converted to integer values,

making the expressions evaluating to 0 in

these instances. This, in turn, affected the

related variables. Java1 was updated to use

double-precision values by explicit

typecasting.

After 14 simulation days, CPP1 and Java1
killed different number of adult mosquitoes.

After analyzing the relevant code, a rounding

error was found. Also, Java1 erroneously used
an extra parameter in the adult age-specific

mortality rate function. These were corrected.
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10.6 Replication and Reproducibility (R&R) Challenges

Our R&R experiences originate from replicating the results and extending some

assumptions of several published malaria models (both mathematical and agent-

based), including Gu and Novak (2009a, b), Yakob and Yan (2009), Chitnis et al.

(2010) and Eckhoff (2011). We emphasize that the goal of replication was to

achieve qualitative (not absolute or quantitative) matches between the respective

models.

Critical examination of the first two studies (Gu and Novak 2009a, b), which

explored the impact of applying several mosquito control interventions, revealed

that despite providing reasonably plausible results, the models adopted two major

dubious assumptions regarding: (1) the number of replicated simulation runs, and

(2) the boundary type of the landscapes.

In general, any simulation model which involves substantial stochasticity should

conduct sufficient number of replicated runs (with identical parameter settings but

different random seeds), and the average and/or aggregate results of these replicated

runs should be reported, as opposed to reporting results from a single run. Sufficient

number of replications is required to ensure that, given the same input, the average

response can be treated as a deterministic number, and not as random variation of

the results. This allows modelers to obtain a complete statistical description of the

model variables. The same principle also applies to a set of stochastic (Monte

Carlo) simulation models in other domains (e.g., traffic flow, financial problems,

risk analysis, supply chain forecasting, etc.), where, in most cases, the standard

practice is to report the averages and standard deviations of the measures of interest

(also known as the measures of effectiveness, or MOEs).

We argued that since most epidemiology models (including ABMs) involve

substantial stochasticity in the forms of probability-based distributions and equa-

tions, performing sufficient number of replicated runs is also important for valida-

tion of the results. In malaria ABMs, agents’ decisions are often simulated using

random draws from certain distributions. These sources of randomness are used to

represent the diversity of model characteristics, and the behavior uncertainty of the

agents’ actions, states, etc., with the goal to mimic/simulate the reality as closely as

desired. For example, in our ABM, when a host-seeking mosquito searches for a

blood meal in a house covered by insecticide-treated bed nets, a 50 % mortality by

bed nets would mean that it may die with a probability of 0.5, which can be

simulated using random draws from a uniform distribution. As another example,

the number of eggs in each egg-batch of a gravid mosquito is simulated using

random draws from a normal distribution with mean (average) = 170 and standard

deviation = 30. As we showed, these sources of randomness can have significant

impact on the results of the simulation, and different simulation runs can therefore

produce significantly different results, due to a different sequence of pseudo-

random numbers drawn from the distributions (Arifin et al. 2013).

The second issue, the use of a specific boundary type, may greatly impact the

movement process of the agents (mosquitoes). In general, three different boundary
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types are commonly used in ABMs: absorbing, non-absorbing, and reflecting. With

an absorbing boundary, mosquitoes are permanently removed (effectively killed)

when they hit an edge of the landscape’s boundary. On the other hand, with a non-

absorbing boundary, when mosquitoes hit an edge, they re-enter the landscape from

the edge directly opposite of the exiting edge (and thus are not killed due to hitting

the edge). Unless the underlying landscape reflects a completely isolated geo-

graphic location (e.g., an island far away from the mainlands), in reality, when

mosquitoes hit an edge, logical approaches are either to reflect the mosquito back

from the same edge (reflecting boundary), or to coerce the mosquito to re-enter

from the opposite edge (non-absorbing boundary). We argued that a non-absorbing

boundary might capture the mosquito population dynamics more realistically. This

is especially true when the resource (e.g., the houses and aquatic habitats) densities

are high, and the resources are more evenly distributed across the landscape. Gu and

Novak (2009a, b) used an absorbing boundary for all landscapes. In replicating their

results, we used a non-absorbing boundary for all landscapes, which were modeled

topologically as 2D torus spaces.

We also replicated the results reported by Yakob and Yan (2009), which

examined the combined impact of several mosquito control interventions. A sys-

tematic comparison of some R&R features and assumptions of several recent

malaria models is given in Table 10.4. Note that the features refer to the particular

results presented in the cited publications, and should not be treated as limitations

of the respective models. For example, for the feature “average of multiple simu-

lation runs”, both EMOD (Eckhoff 2011) and OpenMalaria (Chitnis et al. 2010) are

capable of reporting the averages of multiple simulation runs; however, in the cited

publications, they were not explicitly reported.

Figure 10.2 shows some important R&R results depicting the effects of

performing sufficient number of replicated simulation runs and the type of bound-

ary used for the landscapes. The importance of performing multiple simulation runs

(instead of a single run) can be seen by comparing the simulation output (mosquito

abundance) for the maximum, the minimum, and the average cases.

As we found (Arifin et al. 2013), in 94 % cases, use of an absorbing boundary

yielded less mosquito abundance than that with a non-absorbing boundary. Also,

with an absorbing boundary, even before applying any control intervention, abun-

dances were too low when compared to those with a non-absorbing boundary. Due

to using an absorbing boundary, more mosquitoes died out because of the additional

unrealistic killing effect imposed by the absorbing boundary. This suggested the

importance of using the proper boundary type in the ABM in order to avoid any

potential bias created by a specific boundary type.

Our R&R works posed some unique challenges which include: (1) the

unavailability of source codes of the original models inhibited us from performing

direct model-to-model comparison (docking) and (2) the structural characteristics

of the ABMs, which are fundamentally different from, for example, equation-based

mathematical models, also ruled out the possibility of systematic R&R of model

features. These experiences, many of which were reported and addressed by the

earlier works of Ören and others (Ören 1983, 1984; Ören et al. 1985; Ören and
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Table 10.4 Summary of R&R feature comparisons from several malaria models

Model feature

Malaria models

Gu and

Novak

(2009a, b)

Yakob and

Yan (2009)

EMOD

(Eckhoff

2011)

OpenMalaria

(Chitnis et al.

2010)

Arifin et

al. (2013)

Model type Agent-

based

Mathematical Individual-

based

Hybrid

(agent-based/

mathematical)

Agent-

based

Automation of

landscape gener-

ation (e.g., using

separate tools)

No N/A No N/A Yes

Boundary type of

landscape*

Absorbing N/A N/A N/A Non-

absorbing

Average of mul-

tiple simulation

runs

No No No No Yes

Time-step

resolution

Daily Daily Daily Daily Hourly

Age-specific

mortality

No No N/A No Yes

Daily mortality

rate (aquatic

stages)

Fixed (0.2) Fixed (0.15) Temperature-

dependent

N/A Age-spe-

cific (for

larvae)

Daily mortality

rate (adult stages)

Fixed (0.2) Fixed (0.15) Adult life

expectancy of

10 days

N/A Age-

specific

Fecundity (eggs/

oviposition)

Fixed (80) N/A Fixed (100) N/A N(170,
30)

Variability in

daily temperature

No No Yes Yes Yes

Length of indi-

vidual simulation

run

200 days or

300 days

N/A >6 years N/A �1 year

Interventions

modeled

LSM, ITNs LSM, ITNs IRS, ITNs,

larvicides,

space

spraying

ITNs, IRS LSM,

ITNs

Time-step of

intervention

application

Day 100 for

LSM, day

150 for

ITNs

N/A N/A N/A Day 100

Explores com-

bined

interventions

No Yes Yes Yes Yes

Variability in

human

populations

No Yes No Yes Yes

(continued)
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Table 10.4 (continued)

Model feature

Malaria models

Gu and

Novak

(2009a, b)

Yakob and

Yan (2009)

EMOD

(Eckhoff

2011)

OpenMalaria

(Chitnis et al.

2010)

Arifin et

al. (2013)

Coverage scheme

used for ITNs*

Proportion

of house-

holds with

bed nets

Proportion of

populations

sleeping

under bed

nets

Proportion of

populations

sleeping

under bed

nets

Proportion of

populations

sleeping

under bed nets

Partial

and com-

plete cov-

erage

schemes

Comparison of

coverage

schemes for ITNs

No No No No Yes

Adapted and edited from Arifin et al. (2013)

The features refer to the particular results presented in the cited publications, and should not be

treated as limitations of the respective models. Each row represents a specific model feature. Each

column represents a specific malaria model. Features marked with * were either modeled with

extensions, or were treated as new (not modeled earlier by other studies). Text in the cells represent

whether the feature was implemented/available in the model, including simple yes/no, or other

comments. N/A means not applicable or not available. N indicates a normal distribution withmean
and standard deviation. LSM, ITNs, and IRS mean larval source management, insecticide-treated

nets, and indoor residual spraying, respectively

Fig. 10.2 Smoothing out the simulation stochasticity effects by performing sufficient number of

replicated simulation runs (Data obtained from (Arifin et al. 2013). The results are derived from 50

replicated runs. The maximum, the minimum, and the average time-series plots represent the

maximum, the minimum, and the average output (mosquito abundance in this case) values,

respectively, obtained across all 50 replicated runs in each time-step)
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Yilmaz 2009; Balci 1998a, b), drew some important V&V issues from which model

differences may arise, and/or the process of R&R may become more time-consum-

ing and challenging (Arifin et al. 2013):

• Conceptual image of the model: the intended logical view of the ABM may be

perceived differently by different modelers, thus creating different conceptual,

mental images of the logical view.

• Choice of tools: selection of programming languages and tools (e.g., C++ vs.

Java) from the numerous options offered these days may be another potential

source. The availability and limitations of a particular programming language,

the use of specific data structures and other language constructs, and even the

coding style of individual modelers, can compound the differences.

• Availability of additional resources: in some cases, additional resources used by

the model (in the forms of artificial maps, object-based landscapes, etc.), if not

defined or made explicitly available, pose subtle challenges. Although the

importance of these resources may seem somewhat arbitrary in the broader

context, goals, and outputs of the original models, their precise specification

still remains important for R&R. For example, in replicating the landscapes, the

absence of a listing of the spatial coordinates of the objects (which may be

provided as supplementary materials) not only forces future modelers who try to

replicate the landscapes to spend a significant amount of time in reproducing the

landscapes (some parts of which inevitably rely on best guesses, due to the lack

of additional information), it also increases the possibility of judgment errors

being introduced in this phase.

Based on the above experiences, we also proposed several guidelines for future

ABM modelers (Arifin et al. 2013):

• Code and data sharing: As the trends of open-access research have become

increasingly important and popular in recent years, the source code and execut-

able programs of the ABMs should be shared with the M&S research commu-

nity. To ensure a minimum standard of R&R in M&S, enough information about

methods and code should be available for independent researchers to reach

consistent conclusions. Many reputed journals across multiple disciplines have

also implemented different code-sharing policies. For example, the journal

Biostatistics (Biostatistics 2014) has implemented a policy to encourage authors

of accepted papers to make their work reproducible by others: based on three

different criteria termed as “code”, “data”, and “reproducible”, the associate

editor for reproducibility classifies the accepted papers as C, D, and/or R,

respectively, on their title pages. Reproducibility, in the form of code sharing,

may allow multiple research groups examining the same model, and generating

new data or output may lead to robust conclusions. However, for certain reasons

(e.g., during preliminary design and development phases, exploratory feature

testing phases, etc.), it may not always be the ideal case to share the source code.

In these cases, we recommended that for ABM-based studies which are accepted

for publication, at least the associated executable programs and/or other tools be

made available as supplementary materials with detailed instructions.

236 S.M.N. Arifin and G.R. Madey



• Relevant documentation: Modelers who share the source code and/or executable

programs of their ABMs should also provide well-written documentation. Doc-

umentation is an important part of software engineering. The journal PLOS
Computational Biology, which publishes articles describing outstanding open

source software, emphasizes that the source code must be accompanied with

documentation on building and installing the software from the source, including

instructions on how to use and test the software on supplied test data (PLoS

Computational Biology Guidelines for Authors 2014). An ABM documentation

may include statements describing the attributes, features, and characteristics of

the agents and environments of the ABM, the overall architecture or design

principles of the code, algorithms and application programming interfaces

(APIs), manuals for end-users, interpretation of additional materials (e.g.,

object-based landscapes), etc. Free and commercial software tools are also

available which can help automating the process of code annotation, code

analysis, and software documentation.

• Standardized models: The general workflow of the ABM, including the input/

output requirements, program logic, etc. should follow a standardized approach.

The need for standardization becomes more important when the broader utility

of the model is considered by multiple research groups, and within an integrated

modeling platform. For example, two malaria models, OpenMalaria

(OpenMalaria 2014) and EMOD (Institute for Disease Modeling (IDM) 2014),

are currently being integrated within the open-access execution environment of

the Vector-Borne Disease Network (VecNet) (VecNet 2014). The proposed

VecNet cyberinfrastructure (VecNet CI), within a shared execution environ-

ment, establishes three modes of access sharing for model developers: (1) shared

data, (2) shared execution, and (3) shared software. Once integrated, these

models can utilize other components of the VecNet CI, including the VecNet

Digital Library, web-based user interfaces (UI), tools for visualization, job

management, query and search, etc. in order to, for example, import and use

malaria-specific data to run specific scenarios or campaigns of interest, and

display their outputs using the visualization and/or the UI tools of the VecNet

CI. It is envisaged that most malaria ABMs, in future, will be accommodated

within similar integrated modeling frameworks. Hence, to expedite the integra-

tion process, future malaria ABMs should plan and follow a well-defined

integration path from the early phases of model development.

10.7 Conclusions

In this chapter, we reviewed some of the earliest works in V&V by Ören and others,

which include advanced simulation methodologies, assessing the acceptability of

simulation studies, categorizations and taxonomies of M&S, and M&S applica-

tions. We also summarized the contributions of Ören and others in the areas of

V&V, QA, and R&R.
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We then described our V&V and R&R experiences from using several agent-

based models, all of which were developed from a core entomological model of the

malaria-transmitting mosquito species An. gambiae. In general, the V&V works

were influenced by previous works of Ören, Balci, Yilmaz, and others, and

performed primarily using docking (model-to-model comparison) between the

agent-based versions.

For V&V, with the different language-specific implementations (versions), we

showed how docking helped to verify the different implementations, to validate

these against the core model, and to reveal incorrect assumptions and errors, which,

being unnoticed, initially led to erroneous results. Our results showed that seem-

ingly insignificant differences in separate versions may lead to significant mismatch

in overall model outputs, suggesting that docking should be iterative and should

involve well-planned feedback from earlier versions. Using compartmental docking

and following the divide and conquer paradigm, we also showed how the V&V

produced incremental agreements in model outputs.

For R&R, as our results indicated, replicability of the experiments and simula-

tions performed by malaria models published earlier bear special importance. Due

to several factors (including new tools and technologies, massive amounts of data,

interdisciplinary research, etc.), the task of replication may become complicated.

We summarized the challenges, insights, and experiences gained from the R&R

works of several models and offered several guidelines for future ABM modelers.

Overall, our V&V and R&R experiences, learned the hard way from these exer-

cises, served the dual purpose of increasing confidence to the core model as well as

revealing conceptual errors in different versions.
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Ören TI, Elzas MS, Sheng G (1985) Model reliability and software quality assurance in simulation

of nuclear fuel waste management systems. ACM SIGSIM Simulation Digest 16(4):4–19

Pav�on J, Arroyo M, Hassan H, Sansores C (2008) Agent-based modelling and simulation for the

analysis of social patterns. Pattern Recogn Lett 29(8):1039–1048

Pegden CD, Shannon RE, Sadowski RP (1995) Introduction to simulation using SIMAN.

McGraw-Hill, New York

Peng RD (2011) Reproducible research in computational science. Science 334:1226–1227

PLoS Computational Biology Guidelines for Authors (2014) http://www.ploscompbiol.org/static/

guidelines.action#software. Accessed 2 Dec 2014

Rand W, Wilensky U (2006) Verification and validation through replication: a case study using

Axelrod and Hammond’s ethnocentrism model. In: 14th annual conference of the North

American Association for Computational Social and Organization Sciences (NAACSOS),

Notre Dame, 22–23 June 2006

Rouchier J, Cioffi-Revilla C, Polhill JG, Takadama K (2008) Progress in model-to-model analysis.

J Artif Soc Soc Simul 11(2):8

Santer BD, Wigley TML, Taylor KE (2011) The reproducibility of observational estimates of

surface and atmospheric temperature change. Science 334:1232–1233

Sargent RG (2001) Verification and validation: some approaches and paradigms for verifying and

validating simulation models. In: Proceedings of the 33rd conference on winter simulation.

IEEE Computer Society, Washington, DC, pp 106–114

240 S.M.N. Arifin and G.R. Madey

https://code.google.com/p/openmalaria
https://code.google.com/p/openmalaria
http://www.ploscompbiol.org/static/guidelines.action#software
http://www.ploscompbiol.org/static/guidelines.action#software


Sargent RG (2004) Validation and verification of simulation models. In: Proceedings of the 2004

winter simulation conference, Washington, D.C., USA, vol 1. IEEE

Shannon RE (1986) Intelligent simulation environments. In: PA Luker, Adelsberger HH (eds)

Proceedings of the conference on intelligent simulation environments, Society for Computer

Simulation, San Diego, 23–25 Jan 1986

Smit W (1999) A question of ethics. In: The book edited to honor Prof. Ir. M.S. Elzas, University

of Wageningen, Dept. of Informatics, Wageningen, pp 30–33

Standridge CR, Pritsker AAB (1982) Using data base capabilities in simulation. In: Cellier FE (ed)

Progress in modelling and simulation. Academic, London, pp 347–365

Taylor SJE, Khan A, Morse KL, Tolk A, Yilmaz L, Zander J (2013) Grand challenges on the

theory of modeling and simulation. In: Proceedings of the symposium on theory of modeling &

simulation 2013, San Diego, California, USA, 34:1–8

Thiele JC, Kurth W, Grimm V (2014) Facilitating parameter estimation and sensitivity analysis of

agent-based models: a cookbook using NetLogo and ‘R’. J Artif Soc Soc Simul 17(3)

Troncale LR (1985) The future of general systems research: obstacles, potentials, case studies.

Syst Res 2(1):43–84

Vector-Borne Disease Network (VecNet) (2014) https://www.vecnet.org. Accessed 2 Dec 2014
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Chapter 11

Comparisons of Validated Agent-Based
Model and Calibrated Statistical Model

ll-Chul Moon and Jang Won Bae

11.1 Introduction

Modeling and simulation are an abstracted generation of a part of the real world,

and their validity on the generation is the holy grail of the modeling and simulation

study. In spite that this is a key factor in the credibility of simulation, still there is a

large unchartered area in the validation of modeling and simulation. Prof. Tuncer

Ören acknowledged this challenge in his article (Sheng et al. 1993; Yilmaz and

Ören 2009). He claims that there are three major reasons which make the validation

a challenge: philosophical, definitional, and theoretical reasons. He points out the

philosophical problem by quoting Thomas Kuhn and Karl Popper, and he contrasts

two arguments: “. . .theories are confirmed or refuted on the basis of critical

experiments designed to verify the consequences of theories” from Kuhn and “. . .
as scientists we can never validate a hypothesis, only invalidate it” from Popper. If

we take Kuhn’s positivism argument, it is imperative to validate a simulation model

by the consequence of the model execution, yet Popper might agree that a simula-

tion model will be only invalidated when a real-world case opposing to the

simulation result is found.

Prof. Tuncer Ören also points out the various definitions of model validation. For

instance, a model validation can be measured by the standard of either correct

representation or acceptable representation. This definition difference inherits the

Kuhn’s view and the Popperian view, respectively. When we narrow down the

scope to the computer simulation, the Society of Computer Simulation (SCS)

defines the validation as “substantiation that a computerized model within its

domain of applicability possesses a satisfactory range of accuracy consistent with

the intended application of the model.” This definition seems to be a mixture of
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arguments from correct representation and acceptable representation. The satisfac-
tory range of accuracy suggests that the correct representation with a certain level

of quantitative confidence is required, yet the intended application of the model
asserts the importance of the acceptance of the model.

Prof. Tuncer Ören argues that one distinction of the validation study in the

modeling and simulation is the relative validity concept from the experiments of

simulation models. Since a simulation is a limited representation of the real world,

and because the limited representation is determined by the modeler, the modeler is

able to adjust the scope to make the model more valid. The simulations often used

as a part of virtual experiments which is a part of the typical scientific method. The

virtual experiments consist of (1) a simulation model, (2) generated/collected/

observed data, and (3) the experiment framework. The scope of the model depends

on the model features as well as the used dataset in the experiment design.

Though time has passed since Prof. Tuncer Ören’s works on validation, this

community still struggles to have better theoretical frameworks as well as case

studies on validation. Furthermore, when the users of simulation models call for the

predictive results, simulation models are considered to be weaker solutions than

statistical models only designed for predictions. Such perception is in the line of the

continuing argument of correctness vs. acceptance of models. However, some

simulation models might be better at the prediction as well as the replication to a

certain scope at a certain problem set. This chapter introduces such case to see

whether there is a chance for a simulation model to be good at the two aspects

simultaneously.

11.2 Background

Agent-based model consists of multiple agents, environments, and interactions

among the agents and environments (Yilmaz and Ören 2009; Bonabeau 2002).

Such model structure reflects a holistic view where the aggregate of a system is

different from the sum of its components. This view has been recognized as an

efficient method to analyze complex systems that contain a large number of

components and interactions among them. From this reason, agent-based model

has been applied to understanding, replicating, and resolving problems in various

domains, such as sociology (Schelling 1971), economy (Tesfatsion 2003), biology

(Grimm et al. 2005), etc. Agent-based modes are generative models so that they can

provide unrecorded, yet important information to model users. For example, in the

disaster event (Lee et al. 2014), how the disaster response organizations efficiently

reacted is hard to be evaluated, because their efficiency is rarely recorded in such

immediate events. However, agent-based model, as a generative model, can help us

to estimate such efficiency using several partial data which seem not to be related to

the efficiency.

Although agent-based model provides such invaluable information, outsider as

well as insider of the agent-based model community often considers about its

accuracy for the prediction (Moss 2008; Brown et al. 2005; Windrum 2007).
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To compare with the model for accurate prediction, such as statistical model, agent-

based model might have less accuracy in the prediction. Statistical model describes

how a set of variables are related to the other set of variables mathematically. From

such mathematical bases, statistical models often represent the accurate predictions.

This accuracy depends on the proper data for the prediction, yet finding such data in

the real world would be another problem.

Hence, this chapter intends to investigate the differences of the model for

regeneration of the real world, i.e., agent-based model, and the model for accurate

predictions of the real world, i.e., statistical model. The investigations include

quantitative comparisons of the two types of models. As a case study, an agent-

based model for city commerce was compared to the corresponding statistical

model. This particular comparison, again, casts light on the trade-off of different

contributions from different models.

11.3 Validation of Agent-Based Models

The validation of simulation models can be completed at the various levels and

through diverse methodologies (Moss 2008). These different types of validations

range from the qualitative assessments of models, i.e., quality assurance of models,

to the quantitative validations, i.e., correlation between the simulated world and the

real world. Some models in a certain virtual experiment can be verified by the

quantitative analyses, while other models are only able to be qualitatively validated.

Let’s imagine that there is a traffic simulator designed for urban areas. This

traffic simulator might be validated for daily traffic estimation which can be

validated by historic records of the simulated area. Since it is daily estimation,

the validation data would be sufficient, and the details of the model would be easily

expected by the modelers. On the other hand, this traffic simulator might be used for

the traffic estimation on city-scale evacuation. This case would be very difficult to

be numerically validated because it would be impossible to obtain sufficient

datasets to be compared with. Moreover, the modeled details of the evacuation

simulator should be different from the models for the daily traffic estimations.

These hypothetical scenarios reveal that some models might be quantitatively

validated by the support of the experimental framework (see Fig. 11.1), and other

models are only subject to qualitative quality assurance of the model.

When the validation of a simulation model is perceived as quality assurance,

there are two different approaches to view the simulation model. The first perspec-

tive is treating the simulation model as software artifact, which is true because the

simulation model to be validated needs to be implemented as a software executable

(Yilmaz and Ören 2009). Then, we can apply diverse software quality assurance

techniques, for instance, CMMI (Chrissis et al. 2003). This is a comprehensive

quality checking over the modelers, the simulation model before implementation,

and the simulation software after implementation. The other perspective is adopting

a qualitative simulation validation approach. Such qualitative assessment often
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relies on the knowledge of subject-matter experts (Sargent 2005). The experts

receive the simulation results in various formats, i.e., visualization of simulation

progresses, response surface analysis (Inman et al. 1981), etc. With the provided

materials from simulations, the experts decide to accredit the simulation model for

its validity.

Similar to the levels of quality assurance, the quantitative validation has diverse

levels of validation. The fundamental of the quantitative validation is the compar-

ison between the simulated data and the real-world data with statistical approaches.

However, the comparison points would be different from the intended acceptance

level, which we and Prof. Tuncer Oren discussed in the Background section. A

certain virtual experiment might be only interested in the change point of the target

system, which is known as tipping point (Davis et al. 2007). Also, another exper-

iment setting would concentrate on the performance and the state dynamics at the

end of the target period or at the convergence of the system states. These quanti-

tative validations aim at the point validation, which limits the validity of the

simulation to a certain point of the simulated period. The point validation can be

simply performed by checking the difference between the simulated point and the

real-world point with a null hypothesis. Often, confidence intervals, T-tests, F-tests,
etc. are the statistical tools to be used. The experiments with point validation have

lower intended acceptance level than the validation on the complete timeline of the

simulated period because the point validation does not ensure the generation

process of the simulated world to be close to the real world. From this perspective,

the point validation is quite analogical to the statistical models for predictions. The

statistical models might not produce the generation process of the target system,

and the statistical models are only trained to be close to the prediction point of the

system.

When modelers need to validate the generative process of the simulations, it is

necessary to validate the matching between the simulated data and the real-world

data, and this process is often called as trend validation (Kleijnen 1995; Barlas

1996). This is different from the point validation which requires a correlation on a

single time-step. Because the trend validation requires match the trend, not a point,

Fig. 11.1 Simulation-based experiment flow and the interaction between the real-world data and

the simulated data
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this validation needs a further calibration than the before. The calibration now

includes adjusting the parameters controlling the temporal flow of the simulation.

The trend validation can be performed by multiple statistical methods. Firstly, each

point over the simulated period might be tested with the point validation technique,

such as T-test. Secondly, the overtime data from the real world is fitted to an auto-

regression model, either linear or nonlinear; then we can see the fitness of the

simulated data to the auto-regression model. Finally, there are techniques for

temporal data comparisons, such as dynamic time warping. The dynamic time

warping technique selects the most similar temporal flow between two overtime

data, so this supplements the temporal flow discrepancy between a simulation and

the real world.

11.4 Prediction with Agent-Based Model

In this section, we presented city commerce models for a quantitative comparison

of validated agent-based model and calibrated statistical model.

11.4.1 Case Study: City Commerce Models

The agent-based model was developed in our previous paper (Lee et al. 2013) to

estimate the impact on the city commerce by relocation policy. Relocation policy,

which moves city functions from the centralized city to newly developed city, has

been implemented in several countries such as the UK, Ireland, and Germany

(Marshall 2007). In Korea, the government recently executed a relocation policy

to resolve problems from overpopulation in Seoul, which is the capital of Korea,

and achieve the balanced regional development. By the relocation policy, some of

government branches from Gwacheon city, near Seoul, moved to a newly built city,

located about 100 km south from Seoul.

While the government cares about the positive effect of the relocation policy, on

the other side, several researchers concern about potential negative impacts asso-

ciated with relocation, such as depressed economy in the region which people left.

For investigating such negative impacts from the relocation policy from Korea, we

developed an agent-based model for Gwacheon city.

To evaluate the changes, we established an assumption: the change of city

commerce might have a positive correlation with the mobility of the population

in Gwacheon city. So, the agent-based model describes a daily movement of the

citizen in Gwacheon city. More specifically, the daily movement indicates a traffic

flow in a day with respect to the job types of peoples in the city and daily time

schedules associated with the jobs. To represent such characteristics in the

agent-based model, we applied three kinds of real data: micropopulation data,

time-use data, and GIS data.
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Micropopulation data are detailed statistics about population in a certain region.

In the United States, the micropopulation data are called the Public Use Microdata

Sample (PUMS); in Korea, the data are named the Micro Data Service System

(MDSS). MDSS contains a collection of attributes, such as the individual’s address,
occupation, family composition, education level, and so on. Because there is a

concern about privacy violation, the dataset is usually provided as an anonymized

sample. We could obtain a 5 % sample of population data, which contains 1,189

population data out of 23,780 populations in Gwacheon city, from MDSS, and use

them to identify jobs of each agent (see the top of Fig. 11.2).

Fig. 11.2 (Top) Flowchart of agent-type categorization with MDSS dataset and (bottom) an

example of time-use statistics of daily activity by student, employed persons, and homemaker
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In many countries, time-use data is used to gauge productivity, daily life, and

infrastructure efficiency of a population. In Korea, the Korean National Statistical

Office provides time-use data that specify how much time an individual with a

certain job spends performing a certain activity (see the bottom of Fig. 11.2). This

data provides three types of modeling information. First, from the time-use data, we

enumerate activity states of agent types and their transitions. Second, the transition

time for states of an agent is also specified by the dataset. Lastly, we can develop

commuting time of agents, which is important in analyzing and simulating traffic

patterns, shopping-in behavior, and regional characteristics.

In the agent-based model, agents are corresponding to vehicles, and they move

through the road network in Gwacheon city. Thus, the structure of the road network

affects to the simulation objective which is to see the traffic flow in the target city.

To reflect geospatial information to the agent-based model, we utilized GIS data of

the target region. The data were downloaded from OpenStreetMap, and the data

include the information of roads and buildings, such as coordinates, type, and

identification. Figure 11.3 shows GIS data in Gwacheon city and replicated road

network in the agent-based model using the GIS data. In particular, we selected the

commercial buildings of interests to see the city commerce in the agent-based

model (buildings with numbering in the right of Fig. 11.3).

On the other hand, some researchers raised a doubt about why agent-based

model is applied to investigate the change of the city commerce. They stated that

for the city commerce model, statistical model would be a better choice than agent-

based model from the perspective of the accuracy in the model prediction.

For the comparison of accuracy from the two models, we develop several

statistical models using a linear regression method. It is difficult to consider the

above real data, such as MDSS, time-use data, and GIS data, in the development of

statistical models, so we applied another data to the model development. In the

development of statistical models, data that directly reflect the traffic flow would be

Fig. 11.3 (Left) GIS data of Gwacheon city from OpenStreetMap and (right) replicated road

network and commercial buildings of ID in Gwacheon city using GIS data
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more appropriate, so we collected two kinds of such data: traffic velocity and

centrality of the road network.

The traffic velocity indicates average velocity of the roads in Gwacheon city, and it

can be a direct barometer for the traffic flow. Traffic velocity of the roads in Gwacheon

is opened in Intelligent Transport Systems (ITS) in Gwacheon. Based on the traffic

velocity from ITS Gwacheon, we calculated the average velocity of the roads at each

hour for a week during 6 months (Mar 2012–Jun 2012 and Mar 2013–Jun 2013). The

left in Fig. 11.4 shows the average velocity of the roads in Gwacheon city.

The other is the road network structure derived from GIS data in Gwacheon city.

GIS data provide the information of junctions and roads so that the road network can

be developed by its vertices as the junctions and its edges as the roads. The right of

Fig. 11.4 illustrated the road network of which edge weights represent the distances

between two junctions. Using this network structure, we can calculate measures for

the network centralities for the traffic flow: degree and betweenness centrality.

Degree centrality is defined as the number of edges that are incident upon a

vertex (Freeman 1979). The degree centrality can be interpreted as the immediate

risk of a node for catching whatever is flowing through the network, which means

that higher degree centrality shows more central node in the network. In the road

network, degree centrality (CD) of a junction ( ji) is expressed by Eq. (11.1), where

deg ( ji) means the degree centrality of junction ji and
P

iγi j
indicates the number of

roads connected to junction ji

CD jið Þ ¼ deg jið Þ ¼
X

i 2 all junctions
γi j ð11:1Þ

Because the degree centrality is purely a local measure, we applied betweenness

centrality, which is a useful measure for both the load and the importance of a node.

Fig. 11.4 (Left) Average traffic velocity of the roads and (right) road network with edge weight of
road distance
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The load of a node describes a global effect in a network, whereas the importance of

a node shows a local effect of the node. In the road network, betweenness centrality

(CB) of a junction ( ji) is expressed by Eq. (11.2). In Eq. (11.2), σst is the total

number of shortest paths from node s to node t, and σst ( ji) is the number of those

paths that pass through ji:

CB ¼
X

s 6¼ t 6¼ ji

σst jið Þ
σst

, where s, t 2 all junctions ð11:2Þ

11.4.2 Comparison of Predictions from Agent-Based
and Statistical Models

To evaluate our assumption, which is that the city commerce would have positive

correlations with the mobility of the citizen, we developed agent-based model

describing the daily movement in the target city and statistical model using real

data that is directly related to the assumption. Now, we intend to compare the

accuracy of their predictions by calculating their correlations to a value in the real

world.

We collect an indicator of the real city commerce in the target region, which are

the rent rates of the commercial buildings in the target region. The direct measure of

commercial status of a city might be a sales amount of shops and malls in the target

region, but such information is difficult to collect in the city-wide area. Therefore,

we chose and collected the indirect measure, and this measure can be collected by

personal visits to real estate agencies in the target region.

Before the comparison, we needed a value for calculating the correlations from

the agent-based model related with the interested buildings. To do that, we counted

the number of the passing-by agents which go through front roads around the

interested areas. Similarly, for the statistical models, we mapped (1) traffic veloc-

ities to the buildings by calculating the average velocity of the roads around the

building and (2) network centralities to the buildings by calculating the average

centrality for the roads and the junctions around the building.

We started correlation analyses of the two from drawing scattering plots between

the rent rates and the data from the agent-based model and the statistical model (see

Fig. 11.5). Although it is difficult to see strong correlations between the two, they

represented different trends: a scattering plot for the number of passing-by agents

illustrates a positive correlation to the rent rates, yet the plot for traffic velocity

shows little correlation, and the plot for network centralities shows, even, negative

correlations to the rent rates. Also, we can find that several outliers in each scatter

plot and some of them are included in all the scatter plots, such as building 711, 706,

and 302.

Since we cannot confirm the correlations from Fig. 11.5 and say that the

assumption is surely true, we calculated the correlations between the rent rate and

the four data. In particular, we calculated three different correlations in each case:

Pearson’s value correlation, Spearman’s rank correlation, and Kendall’s tau rank
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correlation. Table 11.1 shows the summary of this correlation analysis. When we

include every building of interests, the number of passing-by agents and between-

ness centrality is recorded the highest positive and negative correlation values,

respectively. However, when we exclude the common outliers in Fig. 11.5, the

correlation value of the number of passing-by agents becomes 68.3 and 68.5 % in

value and rank correlations. This would be a good quality of validation considering

the difficulty of the validation of social simulations. However, the correlation

values of other data are much lower than the one of the number of passing-by

agents.

Also, we built linear regression models for the rent rate as an independent

variable and the four factors as the dependent variables (see Table 11.2). Model

M1 including all the four variables shows the highest value of R-squared (0.680),

which suggests that the prediction from this model is more reliable than any other

models with confidence. However, some of the dependent variables showed p-value
over 0.05. To find a significant regression model, we performed the backward

elimination to M1 and, eventually, developed M6. M6 holds one dependent vari-

able, as the number of the passing-by agents with p-value <0.05 and shows higher

R-square value. On the other hand, other factors, such as traffic velocity, degree

Fig. 11.5 Scattering plots and its linear fitted lines for the rent rates from the real world: (left-top)
number of passing-by agents, (right-top) average of traffic velocity, (left-bottom) degree centrality,
and (right-bottom) betweenness centrality
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centrality, and betweenness centrality, are not significant variables in all the

regression models.

The above correlation analyses and linear regression models show that the

number of passing-by agents from the agent-based model has strong relationship

with the rent rates from the real world. These results indicate that the agent-based

model is well validated and expected to generate reliable predictions in the assump-

tion, yet traffic velocity and network centralities, which are directly related to the

assumption, did not provide significant predictions. It is because both traffic

velocity and network centralities are certainly related to the daily movements of

the citizens, but each is not sufficient to express them. On the other hand, the agent-

based model is capable of representing such dynamic behaviors, that’s why the

number of passing-by agents from the agent-based model shows the highest

correlation.

11.5 Conclusion

Agent-based model has been applied to various problems, yet the method has been

questioned for its prediction accuracy. It is because that contrary to statistical

models, the prediction of the agent-based model is difficult to be evaluated, even

if it is validated. However, as a generative model, agent-based model provides

Table 11.2 Linear regression

models for the rent rate with

varying variables

Model Variables Std. coefficients p-value R2

M1 Agent 0.878 0.019 0.680

Velocity �0.238 0.424

Degree �0.481 0.204

Betweenness 0.519 0.177

M2 Velocity 0.234 0.534 0.137

Degree �0.356 0.508

Betweenness 0.471 0.392

M3 Agent 0.844 0.017 0.544

Velocity �0.266 0.373

M4 Agent 0.706 0.023 0.499

Degree �0.072 0.780

M5 Agent 0.713 0.018 0.536

Betweenness 0.206 0.418

M6 Agent 0.703 0.016 0.494

M7 Velocity 0.184 0.589 0.034

M8 Degree �0.038 0.911 0.001

M9 Betweenness 0.170 0.616 0.029

Agent the number of passing-by agents, Velocity average of the

traffic velocity, Degree degree centrality, and Betweenness
betweenness centrality
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invaluable results which cannot be generated by statistical models. In certain cases,

these invaluable results provide more accurate predictions than statistical models.

This chapter provides one example of the certain cases. To investigate relation-

ships between the simulated and the real world data from the city commerce, we

calculated the correlation between the two datasets, and the correlation was high.

Although this example does not provide an answer for doubts about the accuracy of

the agent-based model, it is sufficient to consider a trade-off for selecting a

modeling method for different cases.
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Chapter 12

Generalized Discrete Events for Accurate
Modeling and Simulation of Logic Gates

Maamar El Amine Hamri, Norbert Giambiasi, and Aziz Naamane

12.1 Introduction

We had the opportunity to welcome Dr. Ören in our laboratory LSIS (www.lsis.org)

as invited professor in many occasions during 2006 until 2008. He participated

actively in the life of our lab by having done several seminars, participated in the

days of our VERSIM workgroup (toward a theory of the simulation) at Toulouse,

and was member of jury of the Ph.D. thesis of Seck (2007) and of the Accreditation

to Supervise Research of Santoni (2008). We are also grateful to him for having

registered our workgroup on the label McLeod Modeling and Simulation Network

(http://www.m-s-net.org/). Moreover, we had also published a French–English

lexical dictionary (Ören et al. 2006) for the modeling and simulation readers.

I (Amine) remember having dinner with Dr. Ören at Vieux Port in Marseilles one

night of 2008. We discussed for a long time on research on M&S (modeling and

simulation) and the challenges of this discipline, which showed me the devotion of

Dr. Ören for the sciences.

In the past, we have shown the advantages of the Generalized Discrete EVent

system Specification (GDEVS) to build more accurate discrete-event models of

dynamic systems. These theoretical concepts are applied to the field of logic gate

design and analysis in order to get more accurate and fast simulations. In fact, states

are represented with linear piecewise trajectories contrary to the classical Boolean

logic models where states have constant piecewise trajectories (0 and 1). With

GDEVS models, the transition from a low level to a high one and vice versa is a

linear trajectory more realistic than the instantaneous transitions of classical logic
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gate models. Note that this more accurate representation does not imply any more

computations than in Discrete EVent system Specification (DEVS).

This study is supplied with a software plug-in providing to the final user a

framework to define new logic gate models by reusing those designed in an

eXtensible Markup Language (XML) and to simulate the specified behavior

based on object code generated from these specifications.

In this chapter, we propose an original approach to build discrete-event models

of logic gates without the classical constraint of piecewise constant input–-output

trajectories. This allows building event-driven simulators using piecewise polyno-

mial trajectories as in classical continuous simulators but with a continuous time

representation and with an event-driven technique in place of a time-stepped one. A

first work on this kind of approaches was proposed in (Giambiasi et al. 2000; Ghosh

and Giambiasi 2001); here, we present a more general approach based on the

GDEVS formalism for accurate modeling of dynamic systems.

GDEVS formalism has been introduced recently in the literature to enable the

synthesis of accurate discrete-event models of highly dynamic continuous pro-

cesses (Giambiasi et al. 2000). Its originality stems from the use of polynomials

of arbitrary degree, as opposed to constant values, to represent the piecewise input–

output trajectories. Thus, in essence, GDEVS constitutes a generalization of the

concept of discrete event and of the classical discrete-event modeling approaches

including DEVS (Zeigler 1989; Zeigler et al. 2000).

One of the concrete repercussions from the proposed generalization of the

classical discrete-event abstraction process (to use any kind of trajectories instead

of piecewise constant trajectories) is the possibility to simulate continuous or

hybrid models with a good approximation by using event-driven techniques. The

basic idea for the generalization of the concept of event was introduced for the first

time in Giambiasi et al. (1994) for the purpose of modeling gate delays using fuzzy

distributions.

Note that our work is a part of recent research works on normative views for

M&S methodologies for which Ören and Zeigler (1979) have been the precursors.

In addition, in the field of specification languages in order to keep user models, we

propose through our framework to keep networks of logic gates. Ören (1984) has

proposed GEST, a specification language, and proved thus the importance of

specification languages which make the modeling task easier for the user.

In electronics, a logic gate is a physical device implementing a boolean function

that performs a logical operation on one or more logical inputs and produces a

single logical output (Cappochi et al. 2006; Paoli et al. 2004). Consequently, logic

circuits are the basis for modern digital computer systems, and digital electronic

circuits are usually made from large assemblies of logic gates, which are simple

electronic representations of boolean logic functions. In addition, most hardware of

these days is based on this boolean logic, where simple boolean operations like And,
Or, and Not can be composed into basic building blocks used to construct more

sophisticated logic circuits (calculators, modems, CPUs, etc.).
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In this chapter, it is shown that with a discrete-event modeling formalism and

event-driven simulation, logic gates can be modeled and simulated.

The remainder of this chapter is organized as follows. Section 12.2 recalls the

DEVS formalism. Section 12.3 discusses functional abstraction for logic gates in

the GDEVS paradigm. Section 12.4 presents the design and the implementation

procedure, and Section 12.5 offers concluding remarks.

12.2 Overview

The key to building a discrete-event abstraction of a dynamic system consists in

mapping the piecewise constant segments of the dynamic system, obtained perhaps

through threshold sensor signals, into discrete events to generate the input, output,

and state trajectories of the discrete-event model.

12.2.1 Discrete-Event Abstraction

Formally, a transformation from a piecewise constant segment, w, into discrete-

event segments, w*, may be expressed as follows:

Where A is a set of integers, reals, or symbols, Φe is the nonevent, and TE ¼
te1, te2, . . . , tenf g the set of occurrence times of events. A pictorial represen-

tation is shown in Fig. 12.1.

The reverse transformation, i.e., from discrete events, w*, to a piecewise con-

stant segment, may be expressed as follows:

8t 2 tei, teiþ1½ �,w tei, teiþ1½ � ¼ w* tð Þ

Fig. 12.1 Transforming a piecewise constant segment into a set of discrete events. (a) Piecewise
constant segment. (b) Discrete event values
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12.2.2 Generalized Discrete Events and GDEVS

For complex real-world systems that are highly dynamic, the use of piecewise

constant input–output trajectories, for a given sampling time interval, may not

succeed in accurately modeling the system behavior. Traditionally, under these

circumstances, the sampling time interval is shortened to limit the representational

error and achieve acceptable accuracy at the cost of increased simulation execution

time. GDEVS adopts a radically new approach wherein it focuses on a system

characteristic, namely, the function that represents the system behavior in the given

time period, and increases its complexity from an identity function (classical

Discrete-Event System models) to a higher-order function.

In this section, we recall the concept of generalized discrete events and of the

GDEVS formalism. For more clarity, we consider first piecewise linear trajectories.

12.2.3 Specifying a Piecewise Polynomial Trajectory

A piecewise polynomial trajectory, expressed through the symbol w and shown in

Fig. 12.2, is a collection of individual segments over a continuous time base.

The key characteristics include the following:

• There exists a finite number of time intervals tei, teiþ1½ �, with which tuples (a0,
a1,. . ., an) are associated, where the ai are constants.

• 8t 2 tei, teiþ1½ �w tð Þ ¼ a0 þ a1t þ � � � þ ant
n

w te0, ten½ � ¼ w te0, te1½ � ow te1, te2½ �o . . . ow ten�1, ten½ � where o represents the left con-

catenation operator over the individual segments.

12.2.4 Example: Piecewise Linear Trajectory

In Fig. 12.3a, the piecewise linear trajectory, w te0, te3½ �, ranging between time

instants t0 through t3, may be expressed as

w te0, te3½ � ¼ w te0, te1½ �ow te1, te2½ �ow te2, te3½ � where:

w te0, te1½ � ¼ a1t þ b1 ð12:1Þ
w te1, te2½ � ¼ a2t þ b2 ð12:2Þ
w te2, te3½ � ¼ a3tþ b3 ð12:3Þ

In each of the individual Eqs. (12.1), (12.2), and (12.3), a1, a2, and a3 are the

gradients, and b1, b2 and b3 are the intercepts of the individual segments. The origin

of time, t¼ 0, is assumed to occur at the start of each segment.
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12.2.5 Coefficient Values of a Segment

For an individual polynomial segment w[ti, tj], its coefficient values are defined by

the tuple (a0, a1,. . ., an). Formally, the Coef function associates the coefficient

values of a polynomial with all continuous polynomial segments w[ti, tj] over a time

interval [ti, tj]. Thus, Coef : Ψ ! An where Ψ represents a set of polynomials and

A a subset of the real numbers. Also, the following function composition holds: for

a given continuous polynomial segment w[ti, tj] over the time interval [ti, tj], the
components of the coefficients are n+ 1 constants.

Figures 12.3b and 12.3c describe the trajectories of the coefficients graphically

over the time interval for a piecewise linear trajectory shown in Fig. 12.3a:

In the interval t0, t1½ � : Coef w t0, t1½ �
� � ¼ a1, b1ð Þ

In the interval t1, t2½ � : Coef w t1, t2½ �
� � ¼ a2, b2ð Þ

In the interval t2, t3½ � : Coef w t2, t3½ �
� � ¼ a3, b3ð Þ

Fig. 12.2 Piecewise polynomial trajectory

Fig. 12.3 Trajectories as a function of time. (a) Piecewise linear trajectory. (b) Intercept coeffi-
cients. (c) Gradient coefficients
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In order to determine a polynomial trajectory on a time interval given the

coefficients as a function of time, the inverse function Coef�1 is defined:

Coef�1 : An ! L

Coef�1 a0, a1, ::::, anð Þ ¼ a0 þ a1t þ � � � þ ant
n and

w ti, tj½ �oCoef�1 : An ! A
0

For example, in the time interval [t0, t1], the coefficient values are (a1, b1), and
the value of w at time t is through

w ti, tj½ �oCoef�1 a1, b1ð Þ ¼ a1t þ b1

In the coefficient space, shown in Fig. 12.3, a piecewise linear trajectory is

represented through piecewise constant values.

12.2.6 A New Concept: Coefficient Events or Generalized
Discrete Events

As a generalization, under GDEVS, events are defined for the coefficients obtained

from a linear piecewise trajectory.

12.2.6.1 Generalized Discrete Event

A coefficient event or a generalized discrete event, for a piecewise polynomial

trajectory, is an instantaneous change of at least one of the elements of the tuple that

defines the coefficient values.

In a time interval [t0, tn] of a piecewise polynomial trajectory, there exists a

generalized discrete event at time ti if

Coef w ti�1, ti½ �
� � 6¼ Coef w ti, tiþ1½ �

� �

For example, consider the piecewise linear trajectory shown in Fig. 12.4a. In the

coefficient space, shown in Fig. 12.4b, a coefficient event occurs at time t¼ t1 that
corresponds to a change in the gradient and the intercept of the trajectory, and at

time t¼ t2, there is an event corresponding to a change in the intercept value.

8te 2 te0, te1, . . . , tenf g ^ 8t 2 tei, teiþ1½ �
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w* t0, tn½ � ¼ xi ¼ x0, x1, . . . :, xnð Þ if t ¼ tei
xi ¼ Φe is the non event if t 6¼ tei

�
ð12:4Þ

12.2.6.2 Order of a Generalized Discrete Event

The order of an event is equal to the number of coefficients of the underlying

polynomial minus one.

For piecewise linear trajectories, the order of the events is 1, while for classical

piecewise constant trajectories, the order of the events is 0.

12.2.6.3 GDEVS Atomic Model

A GDEVS model M is a structure:

M ¼ < X, Y, S, δint, δext, λ, lifetime > with

• X: the set of input events, X ¼ AxAx . . . xA:
• Y: the set of output events, Y ¼ A0 � A0 � . . . � A0:
• S: the set of states.
• lifetime: S!R+, the function defining the maximum length or lifetime of a state.

Thus, for a given state, lifetime(si) represents the time during which the model

will remain in the state si if no external event occurs.

A state si with an infinite lifetime is said to be a stable state. A state with a finite

lifetime is a transitory state. Denoting SS as the subset of steady states and ST as the
subset of transitory states, we have the following:

σi ¼ 1 , si 2 SS ^ σi < 1 , si 2 ST

SS [ ST ¼ S ^ SS \ ST ¼ ∅

• δext : Q ! S, is the external transition function that specifies the state changes

due to external events.

Fig. 12.4 Coefficient events for a piecewise linear trajectory. (a) Piecewise linear trajectory (b)
GDEVS gradient and intercept coefficients
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• δint : ST ! S, is the internal transition function that defines the state changes

caused by internal events (autonomous evolution of the model). WhereM arrives

in state si at time ti, it will transition to state s j ¼ δint sið Þ, at time

t ¼ ti þ lifetime sið Þ, provided no external event occurs earlier than this time.

• λ : ST ! Y, is the output function.

As in the DEVS formalism, we introduce the definition of total state qi¼ (si, e),
where e is the elapsed time in the current state si.

Q ¼ �
si; eð Þ��si 2 S ^ e 2 Rþ [ �1��

. The elapsed time e is reset to 0 when a

discrete transition takes place.

Evidently, the polynomial state provides knowledge of the value of the state at

any time instant over the polynomial segment. Lastly, the polynomial segment

degenerates to the case of the traditional piecewise constant segment (classical

DES) where a0 is the only non-null coefficient.

12.2.6.4 GDEVS Coupled Model

GDEVS promotes modular modeling to reduce the complexity of the system to

describe as in DEVS. The GDEVS coupled structure MC allows formalizing the

modeled system in a set of interconnected and reused components.

MC ¼ XMC, YMC, DMC, M
d
��d2D, EIC, EOC, IC, Select

� 	
, where

XMC: set of external events

YMC: set of output events

DMC: set of component names

Md: GDEVS model named d
EIC: External Input Coupling relations

EOC: External Output Coupling relations

IC: Internal Coupling relations

Select: defines a priority between simultaneous events intended for different

components

This formalism is proved by the closure under coupling property, which shows

that a GDEVS coupled model has an equivalent GDEVS atomic one (for more

details, refer to Giambiasi et al. (2000)).

12.2.6.5 Abstract Simulator of GDEVS

Like in DEVS, the GDEVS abstract simulator (see Fig. 12.5b) consists of a root

coordinator, which manages the simulation time, subcoordinators, which dispatch

messages according to the specific couplings of the coupled model that attempt to
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simulate, and basic simulators related to atomic models. Each process behaves

according to the received messages from parent and child processes.

12.3 GDEVS Model of Logic Gates

GDEVS promises to permit the development of models of greater accuracy while

preserving the computational advantages of discrete-event simulation. As an exam-

ple, consider the process underlying a digital system design at different levels of

abstraction. At the transistor level, signals may be represented through continuous

graphs, as shown in Fig. 12.6a. At the higher logic gate level, the classical discrete-

event abstraction employs a boolean variable, and the signal model utilizes piece-

wise constant values 0 and 1, as shown in Fig. 12.6b (classical DES model).

Figure 12.6d represents a piecewise linear approximation of continuous seg-

ments, which offers, clearly, higher accuracy in modeling the real-world behavior.

The event trajectory is first-order discrete-event abstraction under GDEVS (see

Fig. 12.6e), which is computationally faster than the transistor-level model and

offers greater accuracy than the classical discrete-event modeling (see Fig. 12.6c).

12.3.1 Logic Gate Models

In order to model a logic gate, we use three basic components, as represented in

Fig. 12.7:

• A boolean ideal function

• A delay block

• An amplifier block

Fig. 12.5 GDEVS simulation structure. (a) GDEVS model (b) GDEVS abstract simulator
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The boolean ideal function block has the purpose to model the boolean function

of the gate. This function block has a fixed number of inputs and computes one

output signal. The output of the function block Vout is a function of the input signals

Vi at time t, i.e.,

Vout tð Þ ¼ f V1 tð Þ, V2 tð Þ, . . .ð Þ ð12:5Þ

Fig. 12.6 Discrete abstraction of a signal. (a) Continuous signal. (b) Boolean signal. (c) Discrete
events. (d) Piecewise linear. (e) Discrete events of order one

Fig. 12.7 Logic gate structure
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12.3.1.1 Boolean Function Model

The basic boolean functions are defined as follows:

And : Vout tð Þ ¼ min Vi tð Þ ð12:6Þ
Or : Vout tð Þ ¼ max Vi tð Þ ð12:7Þ

Not : Vout tð Þ ¼ Voffset � Vi tð Þ ð12:8Þ

We build a first-order discrete-event abstraction of these continuous functions

under GDEVS considering piecewise linear input–output signals. More accurate

representations can be defined using high-order polynomials. In our case, a first-

order event will be a list of two values (a, b) representing the gradient a and the

intercept b of the corresponding linear trajectory. The boolean operators apply the

previous rules to the piecewise linear segments defined by the first-order events

occurring on its inputs.

Let us notice that one input event can generate several output events. In general,

an input event can create several transitory (active) states of the GDEVS model that

implies several output events.

Note that at a conceptual level, the simulation consists in activating the external

transition function when an external event occurs and in activating the output and

the internal transition functions when the lifetime duration of the present state is

elapsed.

The activation of the internal and external transitions and the output functions of

the GDEVS gates And and Or is done as follows. These gates hold

• The two input ports input1 and input2 and the output port output

• The variables ai, bi, as, bs, and an, bn : the gradient and intercept of the input i, the
gradient and intercept of the current output s, and the gradient and intercept of

the output at crossing time tn respectively.

We consider the two piecewise linear segments applied to input1 at time t1 and to
input2 at time t2:

y1 ¼ a1 time� t1ð Þ þ b1 ð12:9Þ
y2 ¼ a2 time� t2ð Þ þ b2 ð12:10Þ

However, at crossing time tn at which the two signal magnitudes are equal, we

have

a1 tn � t1ð Þ þ b1 ¼ a2 tn � t2ð Þ þ b2 ð12:11Þ

The gate Not has only one input port on which the gate receives the input signal

(a, b) that will be limited between the two trajectories Vmin(t) and Vmax(t).
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12.3.1.2 Delay Model

The delay model has to simulate the minimal time that an input signal spends to

cross a digital component. The delay model sends out, through its unique output, the

signal coefficients after a specified delay d.

atþd, btþdð Þ ¼ input at, btð Þ��d > 0 ð12:12Þ

12.3.1.3 GDEVS Amplifier Model

The purpose of the amplifier model is to model finite gain, supply rail clipping,

and slew rate limiting. First, the input signal is multiplied by the gain A2R
of the amplifier. This is easily accomplished by replacing input events of the

form ev ¼ t; n; b; að Þð Þ with events of the form ev ¼ t; n; Ab; Aað Þð Þ
The second function of the amplifier block is to model power supply rail

clipping, i.e., the output of the block is constrained to be between some minimum

output voltage Vmin, and some maximum output voltage Vmax. Given an input signal

Vin(t) at time t, the clipped voltage is given by

Vclip tð Þ ¼
Vmin ifVin tð Þ � Vmin

Vin tð Þ ifVmin < Vin tð Þ < Vmax

Vmax ifVin tð Þ � Vmax

8<
: ð12:13Þ

The third function of the amplifier block is to model limited slew rate (i.e.,

voltage time derivative) of the circuit component. The maximum slew rate of a

component is a function of the nominal output capacitance of the component, the

input capacitance of the devices driven by this component, and the capacitance of

the interconnect. Slew rate limiting is characterized by two parameters δr and δf,
which are the maximum time derivatives of rising and falling signals (respectively);

i.e., in a slew rate limited event sequence, the component of each event satisfies

δf<a< δr.
Slew rate limit would appear to only affect a component of signal events.

However, simple clipping of a component of events results in signals that are not

continuous; e.g., consider two consecutive events, ev ¼ t, n, b, að Þð Þ and

eviþ1 ¼ tiþ1, n, biþ1, aiþ1ð Þð Þ. If a is positive and exceeds δr and if it is simply

replaced by δr, then the signal is no longer continuous since

bi þ δr tiþ1 � tið Þ 6¼ biþ1. A method for constructing a slew rate limited signal is

given in the following explanation.

Given a sequence of events of the first order, S nð Þ ¼ ev0, ev1, ev2, . . .f g, where
evi ¼ ti, n, bi, aið Þð Þ, the goal is to construct a new sequence of events, S nð Þ ¼
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f 0, f 1, f 2, . . . , f nf g, where f j ¼ t j, n, w j, w j
0� �� �

, such that S(n) is piecewise

linear, continuous, and slew rate limited, i.e., δ f � w0
j � δr. The following is a

recursive method for computing S(n).
First, the base case: Given e0 ¼ t0, n, b, að Þð Þ as follows.
Let t0¼ t and w0¼ b0. Then, if a0 � δ f , let w0

0 ¼ δ f ; if a0 � δr, let w0
0 ¼ δr;

otherwise, let w0
0 ¼ a0.

Next, the recursive step: Given e0, e1,. . ., ei and f0, f1,. . ., fj� 1 such that ti�1 �
t j�1 � ti; compute fj as follows. First, let tj¼ ti and w j ¼ w j�1 þ w j�1

0 t j � t j�1

� �
.

To compute wj

0
, there are three cases to consider:

1. w j ¼ ai

w j
0 ¼

δ f if ai < δ f
δr if ai � δr
vi otherwise

8<
: ð12:14Þ

2. wj< ai: in this case, the slew rate limited signal is below the input signal. Let

wj

0 ¼ δr. Next, compute tx ¼ ti þ vi � wið Þ= w j
0 � v j

0� �
. At time tx, the slew rate

limited signal will meet the input signal. If the signals meet before the next input

event, ei+ 1, i.e., if tx < tiþ1, then an extra output event, fj+ 1, is computed as

follows. Let t jþ1 ¼ tx and w jþ1 ¼ w j þ w j
0 t jþ1 � t j
� �

3. Finally, ai � δ f :

w jþ1
0 ¼

δ f if ai < δ f
δr if ai � δr
vi
0 otherwise

8<
: ð12:15Þ

The GDEVS models of the gates And, Or, Not, Delay, and Amplifier can be

consulted in Hamri et al. (2014).

12.4 Design and Implementation

In order to permit the design of composite gates, we develop a software framework

combining XML and java to develop simulations. Firstly, the user defines an XML

file which corresponds to a coupled gate; this file has a specific grammar that

respects the GDEVS coupled definition.
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Then, from a valid XML file, the framework generates a java class which

corresponds to the designed coupled gate to simulate and with the name specified

by the user in an XML file. Another java class called Main, which defines the

simulation context is generated. The method main() instantiates the designed gate

and starts the simulation. While the simulation advances, the input and output

events of each gate are displayed to the user, who follows the simulation trace. In

addition to this trace, for each gate (the whole gate and reused ones), a formatted file

is generated containing the computed output events; using an appropriate software

or toolkit (MATLAB©, EXCEL©, etc.), the user may load these files to plot the

simulation and may make conclusions at critical times.
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To automatize the chain of M&S of logical gates, we develop an eclipse© plug-

in to make easy the passage from a step to another one (generation of java files, start

simulation, etc.). Figure 12.8 gives an overview about this plug-in.

12.5 Conclusion

In this research work, an original approach to build discrete-event models of logic

gates without the classical constraint of piecewise constant input–output trajecto-

ries is proposed. This approach allows the use of GDEVS either of the first order or

of higher order according to the requested accuracy. In such cases, a key advantage

of GDEVS is that where higher accuracy is desired, higher-order polynomials may

be used without any commensurate increase in the number of events. In contrast, in

the classical continuous simulation approach, higher accuracies generally require a

reduction in the simulation time step, which in turn implies more execution steps

and higher execution time. Thus, the performance advantage of GDEVS over the

classical continuous simulation approach is likely to be superior where the use of

higher-order models is warranted.

One of the concrete outcomes from the proposed generalization of the classical

discrete-event abstraction process, namely, the use of any kind of trajectories

instead of piecewise constant trajectories, is the possibility to simulate continuous

or hybrid models with a good approximation by using event-driven techniques.

In the near future, we will conduct practical comparisons with commercial

simulation software of logic gates (PSpice©, MATLAB©, etc.) in order to confirm

Fig. 12.8 Logic gate plug-in under eclipse©
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our best performances with GDEVS logic gates and the capacity of designing large-

scale circuits.
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Part IV

Cognitive, Emotive, and Social Simulation



Chapter 13

Specification and Implementation of Social
Science Models

Paul K. Davis

13.1 Introduction

I was delighted with the opportunity to submit a chapter to the testimonial volume

on Tuncer Ören’s work, for all the reasons discussed in the introduction. Then, of

course, I had to figure out what to write about—always a problem after agreeing to

do something. In this case, the answer popped up immediately because of a paper

that a colleague and I had done last year (Davis and O’Mahony 2013), a paper

motivated in part by a talk I had heard from Tuncer no less than 30 years ago (Ören

1984). The ideas I got from the paper were significant abstractions that bore little

resemblance to details of what Tuncer discussed, but that is sometimes the way we

learn: an idea in one context generates an idea for another.

Tuncer’s paper was presented in a conference seeking to integrate various

simulation and modeling methodologies (Ören et al. 1984)—always a worthy effort

and one that could just as well be attempted again in 2014, since success in such

matters seems never to be complete. Tuncer’s paper was about something called

GEST, which I have never actually looked at in detail or used, but which I saw as

reflecting a sense of fundamentals. GEST was actually a computer language, but not

what people usually have in mind. Not being a computer scientist or programmer

myself, I didn’t know then how much traction the concept had gotten or would get

over the years, but I knew that I liked some of the ideas. In particular, “a GEST

program is highly descriptive and acts as documentation (for communication
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among humans) as well as a specification (for man–machine communications)”

(Ören 1984, p. 282).1

My favorable reaction reflected my graduate work in theoretical chemistry and

physics, during which I learned how valuable it was to distinguish between the

concepts of quantum statistical mechanics and the attempts to address particular

problems by computational evaluation of differential equations with all the com-

plexities and annoyances that so beset researchers in those days. Some of my fellow

graduate students spent the majority of their dissertation period forcing unruly

computers to do the right thing when they would rather have been focused on the

science. Fortunately my research was more abstract, using elegant mathematical

methods developed by physicist Eugene Wigner, John Kirkwood, and my disserta-

tion advisor, Irwin Oppenheim. Wigner’s beautiful work in the early 1930s

expressed the then–new concepts of quantummechanics in a Hamiltonian/Liouville

formalism that extended classical physics to the quantum domain. Quantum

mechanics is surely mysterious, but seeing its relationships to classical mechanics

helps. Also, as with Paul Dirac’s approach to quantum mechanics, operator-based

mathematics allows one to think about the underlying physics rather than how to

solve or compute solutions to differential equations.

Tuncer’s paper about a specification model, then, fell on friendly ears, even

though I was interpreting it a bit differently—i.e., that such a thing was useful

because one should not confuse the concepts of a theory with the mathematical

details, much less with computational procedures. My interest was even greater

because, at the time, I was directing a project at RAND that involved building a

large computer system for “analytic war gaming”—a system for studying paths

from peacetime through crisis into conflict or, in favorable cases, back to peace

(Davis 1985a, b). We had agents representing the leadership and military command

levels of the Warsaw Pact and NATO and the leadership of third countries. Humans

could substitute for agents. The system also included a large and complex simula-

tion of military activities, including mobilization, deployment, and combat. This

being the 1980s rather than the 2010s, everything was difficult. Our agents, for

example, were uniquely constructed using UNIX coprocess mechanisms because

the agent-based modeling and multi-model technologies that we now take for

granted were only beginning to emerge. In addition, the military simulation was

highly complicated because it was global in scope with multiple levels of detail

(e.g., army brigades up to decisions by theater commanders or presidents). It was

also variable-structure simulation in that top leaders might change in the course of

the simulation. All of this required heavy-duty programming informed by serious

computer science. However, even the deep-thinking computer scientists tended to

focus on the programming challenges, not the real-world concepts that we were

1A scanned version is available at http://www.site.uottawa.ca/~oren/pubs-pres/1984/pub-1984-

03_GEST_NATO_ASI.pdf. Tuncer and Bernie Zeigler have recently described the history of

GEST and subsequent developments building on system theoretic foundations laid out by

A. Wayne Wymore (Ören and Zeigler 2012).
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attempting to model and simulate. It was a constant struggle for the team to rise

above the machine-related difficulties to discuss the phenomena.

I found it even more difficult to encourage or demand model design. To a

programmer, “design” can involve dealing with memory, processing speed, com-

munication among elements of the system, and so on. Substantively, however, we

needed to worry about how to represent various forms of combat and the decision

processes generating escalation of conflict or, in more favorable cases,

de-escalation. Design, in that context, means theory development.

The substantive modeling required knowledge from fields such as political

science, psychology, organizational theory, and artificial intelligence. The link to

artificial intelligence was due not to computational issues but rather to the fact that

some computer scientist pioneers such as Herbert Simon were also deeply involved

with political science, economics, decision-making, and organizational behavior.

The kind of thinking that was most relevant to our modeling was to be found in

artificial intelligence research rather than textbook political science. Simon, in

particular, had “blown the whistle” on the notion that real-world decision-makers

use or should use the rational-actor model on complicated problems. He pointed out

that they lack the necessary information and, even if they had it, could not do the

necessary computations because of uncertainty. He later won the Nobel Prize in

economics for these observations (Simon 1978), although the field of economics

made minimal use of them for decades. He also wrote inspirationally on nearly

decomposable systems (Simon 1996), anticipating key elements of what we now

associate with complex adaptive system research. So also we drew on the work of

Daniel Kahneman and his colleagues, for which Kahneman won a Nobel Prize

(Kahneman 2002). As it turns out, real people must draw on various heuristics to

cope with complex situations. Various approaches existed for attempting to repre-

sent such heuristics. These included script-based methods as in the work of Roger

Schank, methods used by chess masters to “read” a chessboard at a glance, and

models in a style then referred to as rule-based systems or knowledge-based

systems. Most or all of these methods were discussed to greater or lesser extent in

the several conferences held in the 1980s in which Tuncer played a major role

(Elzas et al. 1986, 1989).

Tuncer’s 1984 paper, off-line discussions with him and Bernie Zeigler about

modeling and artificial intelligence, a paper by Robert G. Sargent (1984), and

the subsequent conferences relating simulation to artificial intelligence research

all affected my thinking. One of Tuncer’s papers was a forward-looking survey of

the key challenges ahead, including some that were meaningful to my own work

(e.g., goal-directed agents, anticipatory simulation, agent perceptions, and multi-

faceted models) (Ören 1989). In any case, I became a believer in (1) distinguishing

sharply between the conceptual model and its implementation in a particular

programming language, (2) the value of describing the conceptual model separately

and coherently, and (3) the Sisyphusian nature of trying to force programmers to

design conceptually and document the results. Over the next half-dozen years, I

strived mightily to apply those principles while running the model-building project

mentioned above. Interestingly, there was always resistance. It seems to me that,
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especially in the United States rather than Europe, most programmers have resisted

anything that gets between them and “cutting code.” Bernie Zeigler’s early text was
a notable effort to encourage doing better (Zeigler 1984).

As an aside that I cannot resist, another memory from the time of the 1984

conference and its successors was that Tuncer loves taxonomies.2 Perhaps because

Tuncer believes in careful thinking and design, but has also worked as a computer

scientist in engineering contexts, he likes nothing better than to lay out all the

distinctions, niches, and crevices of a problem. Although I can’t say that I emulated

such work (it’s too painful for this lazy author), I was at least admiring.

Many years have intervened, and I have often found Tuncer’s papers to be

provocative and insightful, especially his many contributions to agent-based model-

ing (Yilmaz and Ören 2009) and his recognition that agent modeling could help in

understanding international disputes and crises in the context of peace studies. In

the remainder of this paper, I sketch work that drew on the principles mentioned

above that benefited from Tuncer’s early influence.

13.2 A Modern Attempt at a Kind of Specification
Language

13.2.1 Context of Work

Over the last decade, the United States and allies have been involved in conflicts

and wars that could not be more different from the “industrial wars” of the twentieth

century (WWI and WWII). Instead, they have involved terrorism, insurgency, and

competitions for public support. Modeling the phenomena raises entirely different

issues from those dominant in military modeling of the past. In the period 2002–

2008, a good deal of computer modeling sought to represent those phenomena,

often with agent-based simulations. By about 2008, however, Department of

Defense officials responsible for modeling and analysis had concluded that they

were quite unhappy with the results. In particular, they were seeing large computer

programs that purported to simulate incredibly complicated social and military

issues, but their content was inaccessible and/or incomprehensible. Further, the

officials doubted that the programs actually represented the best social science

available. They then took the remarkable step of backing up and saying to them-

selves “Whoa! We should insist on understanding the underlying science before

proceeding further with modeling and programming.” They asked for related

studies, including a large RAND study that I led with co-author Kim Cragin—

unlike myself, a bona fide social scientist (Davis and Cragin 2009). Our team

2As documentary evidence of this assertion, I note that Tuncer’s personal website (https://www.
site.uottawa.ca/~oren/) lists “Taxonomies” as one of the categories in which he lists his publica-

tions, right along with “Ethics” and, e.g., “Agent-Directed Simulation.”
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included people with backgrounds in psychology, political science, anthropology,

sociology, and economics. We approached the study focused on the social science,

not modeling. After a few months, however, it became clear that pulling the pieces

together—i.e., going beyond just stapling essays together—required “modeling,”

even if it was not what people usually think of a modeling (there were no computers

or equations in sight). We introduced what came to be called the factor-tree
methodology that summarized our critical surveys of the relevant literature with

diagrams that highlighted the factors at work causing developments such as indi-

viduals becoming terrorists, publics supporting terrorist movements, and so

on. This approach focused on the content of social science that is most reliable:

disciplinary experts, who have spent their professional lives working on subjects,

really do know the factors at work, some of which are not at all obvious. In contrast,

experts are notoriously unreliable in predicting consequences or even in judging the

reliability of their own predictions (Tetlock 2005). Figure 13.1 shows the factor tree

for public support of insurgency and terrorism stemming from the 2009 work and a

subsequent study that validated the qualitative model with new case studies, which

also motivated refinements (Davis et al. 2012). We have used factor trees success-

fully in conducting interdisciplinary meetings with both academic scholars and

military officers.

Although factor trees such as Fig. 13.1 appear simple and can be shown in

viewgraphs to audiences of varied backgrounds, they embody a great deal of

nontrivial knowledge. It was common in the 2000s for people (even academics

who should have known better) to argue that “the” cause of terrorism and its support

were something specific such as the Islamic religion, poverty, or nationalism. Such

“theories” (shown in quotes as a sign of derision) were and are simple minded. As

indicated in Fig. 13.1, terrorism and its public support can arise from any of several

causes. Further, all major religions have justified terrorism at one time or another, as

have many nonreligious ideological causes. Moreover, the motivations are often

Fig. 13.1 Factor tree of public support for insurgency and terrorism
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more about identity than anything intellectual such as religious or ideological

concepts (Davis et al. 2012). In addition, some who participate are driven by

thrill-seeking on the one hand or fear of the consequences if they do not participate.
The social science on these matters is strong. Terrorists and their supporters, then,

are motivated by something. Beyond that, they typically need to feel that terrorism

is “legitimate.” Further, to participate in or support terrorism, motivations have to

outweigh the risks and negatives that they recognize emotionally or rationally. And,

finally, potential terrorists often never get around to anything significant unless they

are part of an organization providing a mixture of motivational support and

practical matters such as planning, logistics, leadership, and intelligence. Similarly,

public support tends to be modest unless such organizational cohesion exists. The

top-level factors of Fig. 13.1, then, are all important and, to a first approximation,

necessary.

This is suggested by the “ands” connecting the top-level factors. As shown, each

of the four top-level factors in Fig. 13.1 depends in turn on lower-level factors.

Some of these can substitute for one another, as with motivation being due to any

one or a combination of causes (as suggested by “ors”).

The factor tree for public support includes tens of factors, but they are arranged

in layers because most factors have their effect through higher-level factors.

Technically, this is multiresolution modeling; it also reflects the way humans

routinely reason (Davis and Bigelow 1998; Davis et al. 2001). It is not strictly

hierarchical modeling. Some factors, shown at the bottom of the figure, are cross-

cutting, and, over time, there are feedbacks and more cross-cutting. For example, if

the United States were drawn into a new war in the Middle East, that would

probably affect the subsequent values of numerous factors in the tree itself. Some

of these cross-factors can be seen as environmental; others relate to culture and

emotions.

Such conceptual modeling allows convergent, constructive discussion among

people with different backgrounds and dispositions. It is relatively easy for people

to accept that the causes that they have studied or believed in are not unique, so long

as their perspective is included in the larger picture. That is, someone who sees

nationalism behind terrorism can accept that another stream of research related to

revolution against tyranny is also legitimate. A second value is that factor trees can

get across a “system perspective,” as in noting that people usually become terrorists

only when the four factors mentioned above are all present.
My colleagues and I believe that social science knowledge on such matters is

best approached qualitatively and that efforts to force research into quantitative

form (as with statistical analysis of, say, terrorist incidents versus alleged determi-

nants) are often counterproductive because the data analysis of historical events is

intellectually flawed, with problems of hidden variables, uncontrolled variables,

and poor proxy variables (Davis 2011). Qualitative causal models are more infor-

mative even if they cannot be used to make predictions as one would use a weather

model or a model of whether precision-guided munitions would be able to destroy

some particular target. They can be valuable for structuring issues, explaining what

happens, and planning under uncertainty.
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13.2.2 The Transition to a Computational Modeling

Despite our strategy of emphasizing qualitative models—something that changed

the focus of DoD work in important respects—the intent from the outset was to

come back to the question of whether computational modeling was possible and

useful. In 2012–2013, I did so with colleague Angela O’Mahony (Davis and

O’Mahony 2013). The question was whether we could do something more than

the factor trees. We “should” be able to do so, since available social science

knowledge goes beyond what is in such trees. That is, even if the factors of

Fig. 13.1 are correct, what is the result of the combined influences? Social science

has some things to say, even if predictions are at best highly contingent and, even

then, uncertain.

The approach that we took was to treat the factor tree for public support of

insurgency and terrorism as the qualitative “specification model” and to ask what

was needed to move to a fully specified model with the same concepts but with the

additional details needed to compute consequences. We would need “combining

rules” consistent with social science and reasoning. Since a theme of our work was

dealing with uncertainties, the model should be of a special variety: one that would

assist analysts making assessments amidst great uncertainty. To enforce this phi-

losophy, the interface should emphasize the uncertainty of factor values and certain

structural aspects of the model itself (i.e., combining rules). It should be difficult for

a model user to even generate a “point” conclusion, but—if all worked out—it

would be possible to get a sense of situation-dependent propensities and possibil-

ities. We would routinely show model results as a function of parameters, thereby

making results contingent on contexts and assumptions. This is quite different from

constructing a single model treated as though it were “correct,” constructing an

approved database for all the input assumptions, running the model, and reporting

the results as a point prediction (perhaps with minor sensitivity testing).

Finally, a key element of the approach was to focus on static snapshot-in-time

relationships. Dynamics are certainly important, but I felt that much of the insight

could be gained with snapshot-in-time modeling, with dynamics treated as a next

step. Moreover, while I have long concluded that the causal-loop or influence-

diagram methods of system dynamics are powerful qualitatively, the uncertainties

in dynamics are significantly worse even than those in a static situation. As a first

step, then, we would focus on the static depiction and then discuss dynamics

qualitatively as a next step.

13.2.3 The Research Challenges

Building a computational model based on a factor tree posed numerous challenges

as summarized in Table 13.1. This list guided our research. The challenges were in

four blocks, as indicated by shading in the table: (1) defining the factors and their
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values; (2) defining how to reflect cryptic factor-tree “and” and “or” relationships,

ambiguous influences indicated by � signs, and the varied significance of influ-

ences sometimes indicated by arrow thickness (illustrated in the text, but not in

Fig. 13.1); (3) dealing with uncertainty about factor values and combining rules and

showing results of exploratory analysis across uncertainties; and (4) implementing

the model in a computer program in which substantive content is transparent,

comprehensible, and as language independent as possible so as to facilitate model

reuse, model composition, or rapid reprogramming.

How we dealt with the challenges is discussed in our study (Davis and

O’Mahony 2013). Let me just mention a few highlights that are related to the

issue of a specification language, i.e., of separating model content from program.

First, we characterized inputs in qualitative terms such as very low, low,

medium, high, and very high, but—within the model (and in outputs, so that they

could be graphed)—we mapped such values into numbers 1, 3, 5, 7, and 9. This

required identifying reasonably recognizable factor levels that are “equally

spaced,” rather than merely ordinal.

Perhaps the most difficult challenge was developing building-block combining

rules. Real-world behaviors are not consistently predicted by any one set of

combining rules, but how many alternatives did we need? We concluded that a

great deal could be done with methods that we called “thresholded linear sums” and

a “primary factor” method. That is, sometimes, the effect of a number of factors

Table 13.1 Research challenges

Challenge Issues

Define factors and factor values How many values are sufficient? How can soft and

fuzzy variables be reasonably defined?

Define “and” connections mathematically How rigid should the relationship be? How can

uncertainties be reflected?

Define “or” connections mathematically How many alternative functional relationships are

needed?

Define ambiguous and conflicting influ-

ences (� signs) mathematically

What does the ambiguity mean? How can it be

represented?

Represent implications of line thickness in

factor trees

How should relative importance of factors be

understood and represented in the model?

Represent uncertainty of factor values Should this be done by giving ranges of parameter

values or by using probabilistic methods?

Represent structural uncertainty of com-

bining relationships

Should this be done with alternative models,

structural parameterization, or both?

Build model for exploratory analysis

under uncertainty

How should far-reaching exploratory analysis be

accomplished? When should probabilistic methods

be used?

Assess “confidence” of nominal factor-

value estimates and of model outputs

How should this best be accomplished?

Implement model in understandable high-

level language

What language? How can the model be made

transparent, comprehensible, and easy to

re-implement (a form of reuse)?
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would be a linear weighted sum of those factors exceeding threshold values. In

other cases, the largest factor dominates: someone’s overall motivation for an

action is then driven by whatever one motivation is strong. The absence of other

possible motivations is irrelevant. Which mathematics is the better approximation

is context dependent. Thus, our modeling tool kit had to provide a set of possibil-

ities, but we thought that it need not be large.

The tool kit of combining relationships that we settled on can be regarded as

hypotheses about combining relationships to be tested in psychological research

and case studies, both to determine the adequacy of the choices we provide and to

better understand when one applies rather than another (e.g., When are threshold

effects stronger and weaker? When does the strongest factor altogether dominate?).

Another crucial issue was dealing with uncertainty. We designed the model for

exploratory analysis (i.e., analysis that shows results for all combinations of the

relevant factor values). I prefer to do exploratory analysis deterministically—

establishing a discrete range of plausible values for each input, running all the

possible combination cases, and then looking for patterns indicating what combi-

nations of factor values lead to results that are good, bad, or indifferent. The analyst

and decision-maker can then make judgments about the relative plausibility of the

different domains before reaching conclusions or taking actions. This approach has

been used by RAND in many studies over the past two decades in connection with

planning for adaptiveness and robust decision-making (Davis 2012).

We also used an alternative approach that characterizes each input with a

probability distribution. This is sometimes valuable but can obfuscate causal

relationships and be misleading if correlations are ignored. Given numerous uncer-

tain factors, it is sometimes best to use the hybrid approach of treating the most

important of them deterministically while treating the others stochastically.

We wanted to implement the model (as a program) so as to permit in-depth

review, reuse, and composability. We used Analytica® which is maintained and

sold by Lumina Corporation. The model’s content can be largely comprehended

without dealing with programming issues. The model is expressed visually in

influence diagrams and, at the next level of detail, in a relatively simple syntax

closely tied to mathematics rather than procedural programming. The result is

intuitive for those with background in vectors, matrices, and arrays. This tie to

mathematics also makes the model especially suitable as a specification model

available to researchers generally. Figure 13.2 is a screenshot from the program

itself, which is called PSOT, for Public Support of Terrorism. The bubbles are

modules, functions, or primitive variables and constants. Important for the philo-

sophical approach taken, the structure of the program is identical to that of the
qualitative factor tree. That is valuable for review, communication, documentation,

and reuse.

Figure 13.2 and various drill-downs indicate the model’s structure, but the

problem remains of how to represent the nitty-gritty of combining relationships.

In documentation, we could do this with straightforward linear algebra as in

Fig. 13.3. In this case, the output function is simply a linear weighted sum of
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factors remaining after all of them have been compared with threshold values and

after those failing to reach threshold values are discarded.

In Analytica the scalar product of vectorsW and F is represented by “sum (W, F,

I),” where I is the name of the index over which the sum is to be performed, which is

necessary because W and B may be n-dimensional arrays distinguishing between,

say, region, year, tribe, or an uncertain parameter. In other languages, such scalar

products may be accomplished with for loops or other such devices.

A next issue is what the outputs should look like. Figure 13.3 shows illustrative

uncertainty-sensitive PSOT results for the extent to which “the public” will regard

the costs and risks of supporting the insurgency and its terrorism as acceptable. That

is, it indicates what factor combinations would create a net sense of unacceptable

costs (such factors are colored green in Fig. 13.2, because they are good from the

counterinsurgency perspective) or low costs (shown in red). Results are shown as a

Fig. 13.2 Influence diagram in Analytica corresponding to factor-tree structure

Fig. 13.3 Specifying the

algorithm with simple array

mathematics
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function of five factors: (1) intimidation by the insurgents, which raises acceptabil-

ity of support by making it dangerous to not to support the insurgency; (2) intimi-

dation by the government; (3) fear that the insurgents will win; (4) countervailing

social pressures (e.g., the urgings of family respected leaders not to provide

support); and (5) other personal costs of support. The “message” of Fig. 13.3 is

that one can be in “bad” situations (the red areas, indicated also with 9s) as the result

of different combinations of the contributing factors. Similarly, various combina-

tions of those factors can lead to “good” situations (the green areas). Strategy

involves trying to manipulate some of the variables to move in the right direction.

Figure 13.3 reflects computations using a particular set of algorithms (the primary

factor approach mentioned above). Other such figures would show how much the

choice of algorithm affects the big picture.

Such a depiction can help in diagnosing the seriousness of a situation, discussing

what factors must be changed to move to a better situation, and assessing the

relative leverage of factors (which may or may not be subject to influence). The

model, then, is not about prediction but about improved diagnosis and reasoning. It

can be especially valuable in dampening enthusiasms when one factor is subject to

influence but the net effect is unlikely to be significant or in suggesting approaches

in which moderate influence on two or more factors may have synergistic favorable

effects.

We completed our prototype work and published results. It remains to be seen

how successful it will be judged to be by others, but initial feedback has been

positive. Ideally, next steps would include using the model to improve knowledge

elicitation, holding workshops to review and debate the scientific content without

much programming overhead, and building analogous specification models for

other aspects of terrorism, insurgency, and irregular warfare. I believe, however,

that many social-policy problems could be modeled using similar techniques,

whether in education, health, or other domains.

Social science is notoriously difficult—and, as the cliché goes, much “harder”

than the hard sciences. Nonetheless, social science contains extraordinary amounts

of knowledge. Our report was one step in the process of learning how to better

represent that knowledge in increasingly rigorous, albeit often qualitative and

uncertainty-sensitive, systemic models.

13.3 Concluding Remarks

The original concept of a “specification model” had much to recommend

it. However, my interest has been less in distinguishing between model and

simulation than between model and computer program (whether or not dynamic).

In the old days, that meant something like specifying the model with rigorous

mathematics and passing the specification over the transom to the programmers.

Today that is impractical: most of us work at the computer from the outset. We

“think” at the computer, simultaneously creating, designing, experimenting, and

programming. The old-school ideal of mathematical specifications on paper now
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seems absurd, although it is sometimes valuable to step back and resort to archaic

tools such as pen and paper to clear our minds.

Because the man–machine linkage is so strong in today’s world, it seems that a

good analog to the old separation of mathematics and program is a combination of

qualitative conceptual model (to include diagrams) and an implementation faithful

to its structure in a very-high-level language. This is especially feasible with high-

level visual languages, such as Analytic, the System Dynamic languages such as

iThink, and certain other languages such as Netica. The result can be comprehen-

sible even to people of varied disciplines with only modest programming skill.

Further, if the model is expressed in mathematical concepts, reprogramming should

be straightforward for the use in a different environment. To put things differently,

my intent was to make model content reviewable by non-mathematician

non-programming professors and easily adaptable by graduate students or others

with reasonable computer skills. Whether we succeeded can be judged by others,

but it was an interesting experiment and a good example of how Tuncer Ören’s
influence has manifested itself in unusual ways and places, even many years after

his initial contributions on a subject. I can only hope that he will view the result with

interest, even though he may well have ideas about how to do the same thing better.

After all, he continues to be constructively pushy and forward-looking despite

having contributed more than his fair share of good ideas over the years.
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Chapter 14

Simulating Human Social Behaviors

Yu Zhang

14.1 Introduction

While computer simulations are a widely accepted method of research in the natural

sciences, they have only begun to gain widespread acceptance among the social

sciences. Initial apprehension of the social science community toward computer

simulations grew out of a long-held belief that the experimental methodology

employed by researchers in the natural sciences would not be a suitable mechanism

for understanding social phenomena (Roehner 2007). With little quantitative

knowledge on human social interaction, social scientists are eager to use computer

code to transform their once textual-only social theories into virtual realities.

Sophisticated computer simulations can serve as virtual laboratories to investigate

feedback mechanisms, emergence, and the micro- and macrointeractions among

agents in artificial societies.

The value of these simulations extends far beyond just proof and discovery

(Axelrod 1997). Computer simulations of artificial societies can decompose com-

plex inputs and generate predictions ranging all the way from the level of individual

agents to the system as a whole. Simulations of human behavior can be carried out

solely for performance reasons in order to mimic human behavior, which could lead

to more accurate or optimal results, for example, medical diagnosis. Simulations

could also serve as training mechanisms for helping children deal with bullying

as well as military personnel or business management by providing dynamic,

responsive, and reasonably accurate representations of their human colleagues

(Aylett et al. 2004). Simulation of human social behavior can also serve a
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purely entertainment purpose, as in the case of Will Wright’s popular video game

The Sims.1

While agent-based simulations have been a subject of a great deal of research in

recent years, to date there is no framework for describing social agents that captures

the uniqueness of human decision-making while remaining applicable across a

wide variety of domains. The challenges facing any framework describing agents

embedded in a social environment exist in two aspects.

First, such a framework should provide a computational model that neither

singly takes the point of view of the individual agent nor the entire society by

reconciling the needs, commitments, and goals of individual agents with the

behavior of the system as a whole (Castlefranchi 2000). The problem of balancing

the microlevel behaviors of the individual agents with the macrolevel behavior of

the overall system results in one of two extremes: oversocialization or undersocia-

lization (Castlefranchi 1997). Oversocialization occurs when a framework takes an

entirely macro or organizational approach to constructing the social environment;

the system is very static, predictability is stunted, and the resemblance to human

social systems is tenuous. Likewise, undersocialization occurs when a framework

focuses entirely on the microbehaviors of the individual agents by recursively

modeling the nested beliefs of other agents leading to a potential explosion in

computational complexity and very little resemblance to human social systems

(Kim 1999).

Existing approaches to achieving a balance between under- and oversocia-

lization embed agents with a notion of social awareness through two general

approaches: external incentives and sanctions that favor group participation or

endow agents with prosocial attitudes (Conte et al. 1997). Incentives and sanctions

reward or punish an agent for respectively obliging to or deviating from institu-

tionalized social norms and conventions (Hales and Edmonds 2003; Portes and

Sensenbrenner 1993). Likewise, prosocial attitudes such as altruism and coopera-

tion can either be acquired at runtime through learning or other socialization

behaviors or encoded initially in the design of the model itself (Jiang and Ishida

2007; Parsons and Woolridge 2002). However, these solutions to the micro–macro

problem have major disadvantages:

• When modeling a complex human-based social system, the incentives and

sanctions that lead to the desired behavior may be difficult if not impossible to

identify.

• Furthermore, even if identified for one domain, social norms are not universal

across all simulation domains.

• The degree to which social norms are enforced can greatly affect the overall

system behavior—too strong and the system is relatively predictable and

nonaccidental, too weak and the system is chaotic and unruly.

• Learning prosocial attitudes can be computationally expensive for larger

multiagent systems.

1 http://www.thesims.com
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• Prosocial attitudes are one way, representing the influence an agent has on social

structures but not the influence those structures exert back onto the individual

agents.

In the second aspect, such a framework should incorporate into the individual

agent decision model recent developments in cognitive psychology that involve

important modifications to the classical concept of a rational decision-maker. These

developments, drawn from observed human decision-making patterns, shift deci-

sion theory away from a world view where the decision-maker chooses among a set

of fixed and known alternatives with known consequences toward a conception of

the world in which alternatives are not given and the consequences that will follow

are unknown (Simon 1949). While creating heavier, more cognitive agents, this

paradigm shift minimizes the work done by individual agents, likewise avoiding

any potential performance penalty normally associated with other cognitive archi-

tectures such as COGENT and CODAGE (Das and Grecu 2000; Kant and Thiriot

2006). Aside from performance benefits, this new fuller description of decision-

making has three distinct theoretical advantages over classical descriptions:

• The model allows for the perception of incomplete and imperfect information

that is subject to biases, omissions, and distortions.

• Pseudointuitive inference can be carried out on key pieces of information

(anchors) that constitute only a small fraction of available information (acces-

sibility) if an agent is constrained by some external resource (Kahneman and

Tversky 1979; Kahneman 2002).

• Deliberative inference utilizes information-gathering mechanisms such as com-

munication to expand an agent’s knowledge base, then adopts either a notion of

satiation (Stirling 2003) or maximization to reach a decision.

In this chapter, we will introduce innovative mechanisms that allow agents to

exhibit social behaviors by balancing their individual wants and needs with the

concerns of the entire society while retaining a high level of cognition.

14.2 Dr. Tuncer €Oren’s Contributions to Human Behavior
Simulation

Dr. Tuncer Ören is one of the first researchers who have philosophical thoughts on

the mode, scope, and originality of bridging human decision processes and com-

puter simulation. His research in human behavior simulation has pursued a decision

theory–centric focus. Through Tuncer’s whole career, he investigates a variety of

decision-making techniques to meet a diverse set of needs. For example, advances

in game theory have carried over as methods for selecting partners across a variety

of agent-to-agent interaction patterns, while more traditional economic notions

such as expected value and utility have translated into winning strategies for

decision-making agents.
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One of Tuncer’s work done in early 2000 is multimodels and multisimulation

(Yilmaz et al. 2006), which is an advanced simulation-based problem-solving

environment for social and political scientists to improve their ability to conceive,

perceive, and foresee conflicting situations for human behavior simulation. The

multimodels and multisimulation theory is based on interpretation of emergent,

potentially unforeseen conditions to facilitate dynamic runtime simulation compo-

sition and simultaneous experimentation with multiple plausible models. This

method explores the problem state space using feasible sequences or stages of

models. This enables experimentation with alternative realities, potentially at

different levels of resolution. It can also detect relevant and significant situations

in a problem domain and therefore lead to interpretation capabilities regarding

emergent conditions and causes of observed effects. Finally, observed effects need

to be attributed to certain causes within the domain theory of the problem at hand.

Such causes need to be appraised against the problem-solving goals and preferences

to make recommendations for further, potentially simultaneous exploration of

different realities. While this scheme can be characterized as forward

multisimulation, this work also nicely examines the possibility of backtracking

and replaying situated simulation histories with altered conditions as well as futures

generated before exploring alternative realities.

Perceptions—including anticipations— are subjective and are prone to biases

and influences. Some biases may stem from lack of relevant knowledge; others may

be induced by others by influencing decisions. Tuncer’s group uses fuzzy logic to

simulate them properly (Ören and Yilmaz 2004; Ghasem-Aghaee and Ören TI

2004). This problem is hard because there is a wide range of a base for persuasion

such as reciprocation, consistency, social validation, liking, authority, and scarcity.

But despite the inherent difficulty of the problem, several researchers have pursued

a line of research that can be roughly grouped under the title Socially Rational

Decision-Making. The primary goal of this research is to develop a fuzzy agent–

based decision model that produces decisions that are inherently rational from the

individual perspective yet retain that property of rationality on upward toward the

level of the entire system. Traditionally, this has been achieved by making an

individual agent’s autonomy subordinate to the needs and desires of the overall

system. This kind of the top-down approach fails to exploit the inherent bottom-up

and emergent properties that characterize any multiagent system. To retain the

autonomy of individual agents, this research advocates classical decision-theoretic

approaches by encoding social considerations into the utility functions of individual

agents.

Cognitive complexity is an important factor in decision-making in problem

solving. Seck et al. (2005) study human cognitive abilities in order to understand

and test the mechanisms of several aspects of cognition to be able to incorporate

them in simulation studies. They foresee two types of use: (1) enhance simulation

studies and contribute to the advancement of the methodology and technology of

cognitive simulation and (2) use cognitive simulation to test hypotheses about

human cognition. Ören elaborated on the importance of increasing cognitive com-

plexity of an individual to increase his/her effectiveness in coping with complex
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situations. This paper aims at the cognitive ability under stress and fatigue. Stress

and fatigue can interfere dynamically in behavior in performance and decision-

making (both variables can change within the course of a task). They distinguish on

certain tasks the performance difference between high–cognitive complexity peo-

ple and low–cognitive complexity people. A first distinction might be done

concerning the time necessary to finish successfully a cognitive task; a second

one can be made concerning decision-making as high–cognitive complexity people

are known to be more fluent in ideas and more creative and thus generally find the

best solution. To do so, each task of the DEVS atomic behavioral model will

contain a variable representing the task’s cognitive complexity. Different individ-

uals with different personalities, the openness trait in particular, will have different

performances in terms of both time and decision-making.

The ability to understand the emotions of others is critical for successful

interactions among humans. Kazemifard et al. (2011) presented a framework for

emotion understanding to enable intelligent agents to improve their emotional

intelligence when interacting with other agents. This framework builds on a para-

digm of machine understanding. It includes (1) a metamodel, (2) an analyzer, (3) an

evaluator, and (4) a memory modulator. The metamodel consists of episodic

memory and three versions of semantic memory, semantic graphs, a general

semantic graph, and a lookup table of general information about emotions. The

analyzer is a perceptual categorization mechanism. The evaluator consists of an

interpreter that provides an understanding of the perceived agent (analyzer output)

with respect to the contents of the different kinds of memory (the metamodel). The

memory modulator updates episodic memory and semantic graphs. This paper

addresses one of the major themes in individual decision-making, bounded ratio-

nality (Tisdell 1996; Simon 1957; Kahneman 2003), in an expanded social setting.

Agents are bound by the amount of time and resources they can commit toward

resolving a balance between their wants and needs and those of the entire system.

The emotional bound in this paper is able to dynamically change as more resources

become available to an agent allowing them to devote an increased amount of time

and effort toward social considerations. If resources are scarce, an agent may opt to

make a socially nonoptimal yet computationally cheap decision over one that is

more computationally expensive and more aligned with the prevailing social norms

at the time.

The major novel contribution of Tuncer’s research to human behavior simulation

is the formalization to modeling and simulation from theory to practice. He built up

the conceptual foundations of a new exploratory multisimulation methodology with

dynamic models and simulation. This solution presents an advanced problem-

solving environment for social and political scientists to observe and examine the

implications and plausible outcomes of decisions in conflict. He also contributes to

individual agents’ decision-making by quantitatively measuring the effect of an

agent’s action (based on the agent’s personality and emotion-understanding ability)

on the needs of other agents relative to its own. Tuncer’s model stands out in that it

retains an individual’s preference or indifference between two alternatives from not

only its personal perspective but from its societal standpoint as well. This model
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falls short in providing a direct mechanism for agents to influence the decisions and

subsequent actions of others; rather, agents are left to passively infer new beliefs

and desires from their understanding of the needs of other agents.

14.3 CASE: Cognitive Agents for Social Environments

This section introduces CASE, a multiagent architecture that is efficient and

scalable in simulating large-scale social systems.

14.3.1 System Overview

Social behaviors are behaviors that are solely oriented toward another agent. Such

behaviors consider the intention behind another agent’s expression, create expec-

tations about another agent’s actions, and aim to evoke a distinguishable response

from another agent (Rummel 1976). Social interaction occurs when the social

behaviors of two or more agents are mutually oriented toward one another.

Most social interactions can be differentiated according to Weber (1947) into the

following three categories:

• Accidental. This class of interactions is often not planned by either party in

advance and rarely repeated with the same members. However, in rare instances,

this initial unplanned contact between agents has the potential to develop into

one of the other three more temporally permanent classes of social interactions.

Example: A waiter asking a table of customers for their order.

• Repeated. Similar to accidental interactions, these are not planned meetings

between two agents but likely to occur on a frequent basis because of spatial

proximity, shared interests, or similar habits. Example: Coworkers sharing small

talk over the water cooler.

• Regulated. These interactions are planned and tightly controlled by the laws,

customs, norms, or other enforcement mechanisms put in place by members of

the society. Example: Attendance at an employee staff meeting or visiting a

courthouse for jury duty.

In all its forms, social interaction carries with it some degree of influence on the

behavior of the agents involved. While sociologists differentiate between several

types of social influence, namely, peer pressure, charisma, connections, force, and

reputation (Cialdini 2001), CASE agents only concern themselves with the social

structure through which the interaction they are currently experiencing occurs.

These structures represent a relatively stable and enduring pattern of shared

relationships among agents within the society. Each structure subdivides the entire

society of agents into interrelated sets where member agents share a common

function, meaning, and/or purpose (Porpora 1989).
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The likelihood an agent will respond to social influence or social impact of an

agent, however, is intimately tied to the following dimensions (Tanford and Penrod

1984) of the social structure through which the agents are interacting:

• Strength. How important are the other agents who are attempting to influence

you?

• Immediacy. How close to you, in either geographic or social space, are these

agents?

• Number. How many agents are exerting this influence upon you?

Agents always respond to the influence of another agent by altering their

perception of their relationship to the influencer, other agents, or society in general.

This alteration in perception ultimately affects future decisions and behaviors of

that agent. Latane and Darley (1970) generalized these principles to state that the

more agents that were interacting within a social structure, the more influence each

individual agent will have. However, while the impact of individual agents may

grow as new agents are added, the rate of growth actually shrinks inversely to the

number of agents. In addition to the rate of growth, the amount of influence any

individual agent can exert shrinks inversely proportional to the number of agents.

To achieve such ends, many researchers have attempted to grow in silico

fundamental social structures and group behaviors. Their primary aim is to identify

the local or microinteractions among agents that are sufficient to generate the

desired macroscopic behaviors and collective patterns they desire (Epstein and

Axtell 1996). However, while providing a good computational model that takes

into consideration both the individual and social behaviors of autonomous agents, it

is hardly efficient, scalable, or robust.

The difficulty exists in modeling the system by holding both the societal view

and the individual agent view simultaneously. The societal view involves the

careful design of agent-to-agent interactions so that an individual agent’s choices
influence and are influenced by the choices made by others within the society. A

stark contrast to the agent view involves only modeling the individual decision-

making processes. While the single societal view mainly concentrates on the

centralist, static approach to organizational design and specification of social

structures and hence limits system dynamics, on the other hand, the single-agent

view focuses solely on modeling the nested beliefs of the other agents and suffers

from an explosion in computational complexity as the number of agents in the

system grows.

Motivated by these observations, the interactions among CASE agents are

embedded CASE agents in three social structures: group, which represents social

connections; neighborhood, which represents space connections; and a social

network, which spans social and space categories. These three structures reproduce

the way information and social strategy is passed and therefore the way people

influence each other. In our view, social structures are external to an individual

agent and independent from its goals. However, they constrain the individual’s
commitment to goals and choices and contribute to the stability, predictability, and

manageability of the system as a whole.
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We take up the classification proposed by Ferber (1999) that multiagent systems

are an agent/society duality. There are two levels of organization in multiagent

systems, which are illustrated in Fig. 14.1:

• The microagent level, which is in essence represented by the interactions

between agents. There are three common types of interaction: cooperation,

competition, and negotiation. Agents interact with each other through two

ways: its sphere of influence in the environment and direct communication to

other agents.

• The macrosociety level is represented by the dynamics of agents together with

the general structure of the system and its evolution. Our work focuses on the

mesolevel of the agent/society duality. Any society is the result of an interaction

between agents, and the behavior of the agents is constrained by the assembly of

societal structures. For this reason, a society is not necessarily a static structure,

that is, an entity with predefined characteristics and actions.

14.3.2 Groups

A group is usually defined as a collection of agents who share certain characteris-

tics, interact with one another, accept expectations and obligations as members of

the group, and share a common identity (Sherif and Sherif 1948). Interactions

within a group fall under Weber’s regulated category as interactions within a

group are tightly controlled by a communally established set of social enforcement

mechanisms. A group differs from a mere aggregate of agents in that a group

exhibits a sense of cohesiveness and stability through time. Groups may be formed

on the basis of intimate relationships or more formal and institutional means. All

agents maintain the concept of a reference group, i.e., if I am an A, then I am

definitely not a B or a C. Indeed, it is by creating these disassociations with others in

Fig. 14.1 Social realms for the CASE agent
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society that agents categorize, identify, and compare themselves with other agents

by joining groups with whom they share commonalities.

CASE agents interact with other agents in their group with respect to the

classical definition of the function and formation of a group as defined by Muzafer

Sherif (1955):

• A common set of motives and goals

• An accepted division of labor, i.e., roles

• Established status (social rank) relationships

• An accepted set of social norms and values

• The development of accepted sanctions if and when social norms were respected

or violated

Hence, CASE agents that share a similar preference for a class of decision

problems form groups to reinforce their goals and objectives by diffusing their

decision-making preferences to other agents. Each group maintains its own separate

preference that is formulated based on a composite of its members’ preferences as
an analogue to that group’s accepted set of social norms and values.

14.3.3 Neighborhood

An agent’s neighborhood is a geographically localized community located within

the environment and is comprised of all agents whose spatial location falls within

some predefined distance of its own. Here, interactions are typically accidental in

nature as an agent’s neighborhood is subject to change as that agent moves through

the environment. The size neighborhood of a CASE agent is directly related to the

observation capabilities of the agent. The more an agent is able to observe, the

larger its neighborhood will be. As an agent’s neighborhood grows, so does the

number of agents that are likely to influence it; however, in keeping with Latane and

Darley’s (1970) findings, the individual impact of each of its neighbors decreases

relative to the size the entire neighborhood.

14.3.4 Social Network

A social network is a social structure made of nodes, here agents that are tied by one

or more specific types of interdependency. The social network CASE agents utilize

ties them together based on their communication patterns. This type of interaction is

not frequently regulated like the interactions within a group are but typically are

repeated on a regular basis between a small subset of agents. An agent’s social

network serves as a medium through which agents actively disseminate information

and influence to other agents through explicit communicative acts.
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14.3.5 Varying the Sociability of Individual Decision-
Making

Let a given agent in the population be denoted as a, where A denotes the set of all

agents and a 2 A. Each agent has a social strategy. This social strategy can be either
ordinal or cardinal. We denote the social strategy for agent a by Sa.

Let a given group in the population be denoted as g, where G is the set of all

groups and g 2 G. Groups are formulated on the basis of a common preference.

Each agent identifies itself with any group such that the agent’s preference falls

within some threshold of the group’s preference.

8a 2 A and g 2 G, a 2 g if diff Sa, Sg
� �

< d ð14:1Þ

where diff(Sa, Sg) is the difference between the agent’s strategy Sa and the group’s
strategy Sg and d is the threshold. It can be seen that agent a can belong to more than

one group at a time and can belong to different groups over time.

When an agent joins a group, it is given a rank in that group. An agent will have

one rank for every group it belongs to. The agent’s rank can be evaluated based on

the agent’s importance, credibility, popularity, etc. It defines how much the agent

will influence the group as well as how much the group will influence the agent. A

high-ranking agent influences the group and therefore its members more than a low-

ranking agent and at the same time is influenced more than a low-ranking agent. An

agent’s rank is specific to the domain and may change over time. At each time step,

every group will update its strategy. The update is determined by its members’
strategy and the percentage of the total group rank they hold. At each time step,

every group will update their strategy.

Sg ¼
X
a2g

Sa � Rg
aX

b2gR
g
b

ð14:2Þ

where Rg
a denotes agent a’s group rank. This allows for groups to be completely

dynamic because both their members and their strategy can change at each time

step. Just like the rank an agent holds in groups, an agent also has a rank in its

neighborhood and network. Each agent keeps track of the agents in its neighbor-

hood and the agents it communicates with. Every time an agent observes another

agent in its neighborhood, that agent’s neighborhood rank will increase. Also, each

time an agent communicates with another agent, that agent’s communication rank

increases. Therefore, every agent will have a rank value for every agent it interacts

with and a separate rank for every agent it communicates with. When an agent

updates its strategy, it will take into account these ranks. Agents with a high rank

relative to the other agents will have a stronger influence. Therefore, the longer two

agents are near each other, the more they will influence each other. The same is true

298 Y. Zhang



for communications. Below is the update function for the neighborhoods strategy

and the networks strategy:

Sn ¼
X
a2n

Sa � Rn
aX

b2nR
n
b

ð14:3Þ

Sw ¼
X
a2w

Sa � Rw
aX

b2wR
w
b

ð14:4Þ

where Sn is the strategy for neighborhood n, Sw is the strategy for network w, Rn
a is

agent a’s neighborhood rank, and Rw
a is agent a’s network rank.

At each time step, every agent also updates their strategy. An agent’s update

function is defined as

S
0
a ¼ α� Sa þ β � Sg þ γ � Sn þ λ� Sw ð14:5Þ

where α, β, γ, and λ 2 [0, 1] and α + β + γ + λ¼ 1. These values represent what

percentage of influence the agent takes from itself, its group, its neighborhood, and

its network. They allow for multiple agent types. For example, (1, 0, 0, 0) represents

a selfish agent because it cares nothing about the whole society, and (0, 0.33, 0.33,

0.34) represents a selfless agent who cares about the three social structures equally.

14.3.6 The Psychophysics of Individual-Agent
Decision-Making

Traditionally, the design of intelligent agents has centered around the common

abstract notion of an agent execution cycle. This structure serves as a high-level

map for the internal components of any agent-based system. This relates not only

the data structures that comprise an agent’s knowledge about the environment but

the algorithms that act on and control that flows between these structures. In a vast

majority of cases, agent architectures differ only by the data structures and algo-

rithms they choose to utilize. Figure 14.2 illustrates this cycle graphically, with

details about each of the five major steps listed as follows:

• Observation. This step collects information on current environmental conditions

and maps those conditions to precepts. It is important to note that this step is

absolutely domain dependent and limited in its scope by its implementation. For

example, if this model were to be implemented within some sort of robotic

system that utilizes a video camera for input, then the agent’s observation step

would be limited in the amount and types of information it could take in as

sensory input.

• Updating KB (Knowledge Base). An agent’s knowledge base will be updated

under two cases: (1) when the agent observes the environment, it will assert new

14 Simulating Human Social Behaviors 299



percepts to the knowledge base; (2) when the agent performs an action, it will

assert the effects of the action to the knowledge base. For both cases, the

function update must check the entire knowledge base for inconsistencies.

• Decision. Here, agents make two separate decisions: (1) what act to perform and

(2) what message to communicate and to whom.

• Communication. In general, intelligent agents working within a multiagent

environment cannot force other agents to perform a specific action or directly

alter their internal state. However, they can exert influence over other agents

through communicative actions. Multiagent researchers have built upon John

Searle’s speech-act theory (Sherif and Sherif 1948) to develop a number of

formal languages and ontologies such as FIPA-ACL and KQML (Labrou

et al. 1999) so intelligent agents can understand one another.

• Action. The functional nature of an agent’s action step is rather intuitive and

simple; its purpose is to ensure a successful, coherent, and fault-proof execution

of the optimal action that was recommended by the agent’s decision-making

mechanism. No real further explanation of act is necessary as this function is

highly dependent on the implementation.

14.3.6.1 CASE Agent Execution Cycle

Kahneman and Tversky (1979) suggest a two-phase decision model for descriptive

decision-making (see Fig. 14.3): an early phase of editing and a subsequent phase of

evaluation. In the editing phase, the decision-maker constructs a representation of

the acts, contingencies, and outcomes that are relevant to the decision. In the

Fig. 14.2 Traditional agent

execution cycle
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evaluation phase, the agent assesses the value of each alternative and chooses the

alternative of highest value. Our decision model incorporates their idea and spec-

ifies it by the following five mechanisms:

14.3.6.2 Editing

• Framing: the agent frames an outcome or transaction in its mind and the utility it

expects to receive.

• Anchoring: the agent’s tendency to overly or heavily rely on one trait or piece of
information when making decisions.

• Accessibility: the importance of a fact within an agent’s selective attention.

14.3.6.3 Evaluation

• Two modes of cognitive function: intuition and deliberation.

• Satisfying theory: the goal is no longer optimality, and decisions are accepted

when they are good enough.

14.3.6.4 Editing Phase

One important feature of the descriptivemodel is that it is reference based. This notion

grew out of another central notion called framing where agents subjectively frame an

outcome or transaction in their minds and the utility they expect to receive is thus

affected. This closely patterns the manner in which humans make rational decisions

under conditions of uncertainty. CASE agents frame their current situational context

by forming an attitude or weight, w, toward one class of decisions or outcomes.

Fig. 14.3 Two phase decision-making process
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Framing can lead to another phenomenon referred to as anchoring. Anchoring or

focalism is a psychological term used to describe the human tendency to overly or

heavily rely (anchor) on one trait or piece of information when making decisions. A

classic example would be a man purchasing a used automobile; he may tend to

anchor his decision on the odometer reading and year of the car rather than the

condition of the engine or make of the car. CASE agents anchor by building

selective attention on relevant information. The salience of information i is deter-
mined by

Δi ¼
X

c
i is used

Card I is usedð Þ , i 2 I ð14:6Þ

where Δi is the frequency that information i was used under the context c.
If the salience of i is higher than the threshold, i becomes the anchored

information:

I* ¼ i
��Δi > threshold

� � ð14:7Þ

Accessibility is the ease with which particular aspects and elements of a situa-

tion, the different objects in a scene, and the different attributes of an object come to

mind. As it is used here, the concept of accessibility subsumes the notions of

stimulus salience, selective attention, and response activation or priming. CASE

agents determine the similarity between states only with I* establishing the relation

St � Sm if dc, I* St; Smð Þ < D ð14:8Þ

where St is the current state, Sm is a state in the agent’s memory, and dc,I*(St, Sm) is
the distance between St and Sm regarding all anchored information I* under the

context c. Those states that are most similar to the current one are said to be more

accessible than others.

14.3.6.5 Evaluation Phase

In the evaluation phase, there exist two modes of cognitive function: an intuitive

mode, in which decisions are made automatically and rapidly, and a deliberative

mode, which is effortful and slower. The operations of the intuition function are

fast, effortless, associative, and difficult to control or modify, while the operations

of the deliberation function are slower, serial, and controlled; they are also rela-

tively flexible and potentially rule governed. Intuitive decisions occupy a position

between the automatic operations of perception and the deliberate operations of

reasoning. Intuitions are thoughts and preferences that come to mind quickly and

without much reflection. In psychology, intuition can encompass the ability to

know valid solutions to problems and decision-making.
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Our technical solution to achieve this behavior is that if St, the current state, is
close to a state in memory, Sm, then the optimal policy π*(St) and π*(Sm) should be
close as well. Hence, the agent uses an optimal policy that it has employed before in

a similar state and updates its state memory by adding the current state. If the policy

the agent employed was successful, then the reward associated with that policy and

its accessibility will be increased. The slower, serial, and controlled process of

deliberation determines the state similarity across all information available to the

agent, not just that which is anchored, I*. Traversing its memory, an agent attempts

to reoptimize a previously used policy stored in memory:

π* Smð Þ ¼ argmaxxE
X1
i¼0

γiwR Sið Þ��π
" #

, 0 < γ < 1 ð14:9Þ

where r is the time discount factor and R(Si) is the reward an agent receives when it
arrives at state Si.

In keeping with the notions of satisficing theory under their intuitive mode,

CASE agents do not compute an optimal policy to use in the current St if there is a
state in the agent’s memory Sm that is similar and the policy utilized under that state

can be used once again.

14.3.7 Experiments and Results

We tested the CASE architecture and its new decision-making mechanism within a

number of domains ranging from the classic prisoner’s dilemma to an artificial

stock market as well as initial work on such real-world applications as the subprime

lending crisis.

14.3.7.1 An Extended Prisoner’s Dilemma: Investigating Intuitive

Attitudes Toward Risk

We choose an extension of the classical prisoner’s dilemma as the domain for our

initial experiment. In the classical prisoner’s dilemma, a game comprises two

agents: A and B. Each agent is given the option to either cooperate with or defect

from its opponent with various outcomes for each choice.

We extend this classical prisoner’s dilemma in two distinct ways. First, out-

comes are cumulated in our domain. In the classical dilemma, the outcomes of each

game are not cumulative. Even in an iterated prisoner’s dilemma scenario, the

outcomes of a previous game have no effect on an agent’s decision in subsequent

games. The only outside factor that influences an agent’s decision in an iterated

prisoner’s dilemma is an agent’s knowledge of what action(s) his opponent has

taken in the past. The change to cumulative outcomes allows agents to assign value
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to gains and losses rather than final assets. Since the current asset (prisoner

sentence) of an agent serves as a reference point for subsequent decisions, the

cumulative value of an agent’s assets can have a tremendous effect on that agent’s
later performance. Second, while in the classical prisoner’s dilemma, the four

outcomes are fixed, here we allow them to be uncertain.

Our experiment involved a total number of 2,000 agents within either one or two

societies. Each agent plays over 500 iterations. At each iteration, we randomly

paired agents to play a prisoner’s dilemma game. After each game, the assets of

each agent will be changed to reflect the outcome of the game (gains or losses). This

outcome was then used by the agents to the next iteration. At the start of each

experiment, each agent was assigned a small positive number to represent its

beginning asset position. In some of the experiments, we arbitrarily chose this

number to force groups of agents into either initially risk-seeking or risk-averse

attitudes. At other times, we allowed this number to be randomly generated to

create a heterogeneous distribution of both risk-seeking and risk-averse agents.

Figure 14.4 shows the average asset position of all the agents in the experiment.

The two upwardly curving lines reflect the two possible rewards each agent could

receive for either cooperating (left line) or defecting (right line). There is an evident

shift in the concentration of agents from one decision choice to another as time and

assets progress. This is reflective of the fact that as the agent’s overall assets

increase, its individual behavior becomes increasingly risk averse. The increased

density of points toward the upper end of the line reflects the congregation of agents
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around a single risk averse decision. This result demonstrates that a few minor and

conscientious alterations to individual agent decision processes are more than

sufficient to create the attitudes toward risk that characterize observed human

decision patterns.

14.3.7.2 An Artificial Stock Market: Evaluating the Performance
of Intuitive and Deliberative Decisions

Our initial experiments involving the prisoner’s dilemma only investigated a small

portion of the entire CASE agent functionality and explored only a distinct subset of

prescribed human behavior. Here, we aim to examine in detail the effectiveness and

role of the mechanisms underlying an individual agent’s two-phase decision pro-

cess, most notably the two cognitive modes of intuition and deliberation. Twenty

thousand agents were selected from among 30 unique stock indices for a time frame

of 25 rounds. Every agent began the simulation with initial 10,000 cash, and no

limitations were set on the amount of stock it could purchase each round as long as

they had cash available to make a desired purchase. Stock prices changed each

round based on traditional microeconomic supply and demand curves that

accounted for the volume of buying and selling that occurred in the previous

round. The more shares of a stock were purchased, indicative of a higher demand

for that stock and a dwindling supply, the higher the price was driven up and vice

versa. Agents bought and sold stock only to the market and did not engage in

interagent purchases, sales, or trades for simplicity purposes.

Agents used the two-phase decision-making process, first editing the decision

space by selecting only 10 stock indices from among the available 30 to serve as

anchors each round. These anchor stocks could change from round to round and are

selected as basis for predicting the overall market behavior. Anchors that do not

seem to reflect observed market behavior are discarded at the end of each round,

and new ones are added. However, each agent only keeps exactly 10 anchor stock

indices at each time step. The second phase of the decision process utilizes the two

modes, intuition and deliberation. In the intuitive mode, the 10 anchors are utilized

to predict, by way of a simple polynomial fit, the expected behavior of each anchor

stock index and likewise the predicted behavior of the overall market in the next

round. A downturn in the overall market would signal the CASE agents to begin

selling off their low-performing stocks, while an upturn would signal the need to

purchase stocks on the rise. If half or more of the chosen anchors are the same

stocks that the agent is holding, stock holdings that match current anchors are

bought and sold, and no action occurs to holdings that do not match a current

anchor. Otherwise, more information must be gathered and the deliberation process

started to determine either buying new stocks or selling an agent’s current holdings.
This is done by computing the distance between several random points on the

anchor’s price function and a selected holding’s price function. The anchor with the
smallest distance was chosen to be representative of that particular holding.
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Figure 14.5 illustrates the CASE agent’s choice of cognitive function (i.e.,

intuitiveor deliberative) relative to their stock-holding performance. Here, we see

a clear visual correlation between the number of agents utilizing the intuitive mode

and positive performance in the CASE agent’s stock holdings. This reflects the

crucial role information plays in the simulation. The better the information the

CASE agents have about their environment which is reflected in their choice of

anchors, the better they are able to predict both positive and negative fluctuations in

stock price and likewise react to those anticipated changes. A rise in the number of

deliberative agents and slump in stock-holding performance can be explained in

terms of information as well. Here, the reactive agents have either bought or sold a

large point of stock changing the behavior of the overall system. Hence, the CASE

agent’s anchors no longer serve as a good predictor of overall market performance.

This loss of good information on the part of the CASE agents results in a temporary

downturn in their performance until the next round when new anchors can be

chosen that better reflect the newly altered reality.

Investigating the performance of the CASE agents, alone is certainly not enough

to validate the superior performance of the two-phase decision process. Likewise,

Figs. 14.6 and 14.7 draw from a separate experiment run over 50 time steps (twice

the length of the original) in which the performance of CASE (indicated by the

lighter pink line) and a set of agents employing a classical decision-theoretic

approach (indicated by the darker blue line) were compared.

In Fig. 14.6, when no limits are placed on how many shares of each stock are

available for purchase, agents are absolutely guaranteed that they can purchase

shares of any stock bearing in mind that they have sufficient funds to do so. This

environmental characteristic essentially devalues the major competitive advantage

of decision-making speed that CASE agents hold. Even in these shallow decision

problems where complexity and available information are low as indicated by
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Fig. 14.6, our CASE agents remain competitive with the classical decision-theoretic

frameworks traditionally employed by agent-based researchers. What is most

apparent from Fig. 14.6 is that even in areas when the CASE agent’s performance

drops below that of the classical decision-theoretic agents, their ability to return to a

decision strategy that yields more optimal results is remarkably fast and usually

within approximately five rounds of the simulation.
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When the number of shares of each stock offered at the beginning of each round

is limited, as in Fig. 14.7, the performance of the CASE agents is both markedly

superior and enjoys a slight degree of sustained growth throughout the duration of

the simulation. As stock purchased in one round may or may not necessarily be

available to that agent in future rounds, it is important that agents measure the cost

associated with purchasing/selling that stock now or taking the risk to potentially

purchase/sell that stock later on at a higher or lower price. The ability of the CASE

agents to not only gauge the opportunity cost associated with each of their decisions

but to make those decisions in a rapid and timely manner using their intuition is the

integral recipe for their inevitable sustained success.

14.3.7.3 An Artificial Stock Market: Evaluating Diffusion by Social

Structures

To measure the influence of the three social structures we developed on the

individual agent decision-making process, a 100� 100 grid-based environment

was created, and 1,000 agents were randomly dispersed across it. Sixty percent or

600 agents were assigned at random to a group that employed a conservative

decision-making strategy that attempted to minimize risk while maximizing profit.

Likewise, 40 % or 400 agents were assigned a more aggressive decision-making

strategy that was risk seeking in nature.

The social structures were given initially the following attributes: (1) agents

could observe only the eight cells immediately surrounding them, (2) they were

allowed to have at maximum three agents in their social network that they com-

municated with, and (3) they were not allowed to move from their location,

meaning their neighborhood remained static throughout the experiment

Figure 14.8 shows that under these conditions, the neighborhood appeared to be

the least effective social structure for rapidly disseminating influence among a large

group of agents because of its limited reach and static nature. Adding the group and

social network structures tended to increase the rate at which the conservative and

successful strategy diffused to the other agents in the experiment.

This pattern continues until all three social structures are in use, at which point

the combination of the neighborhood and social network significantly outperforms

the combination of all three. While initially puzzling, this result is indicative of the

very nature of the group social structure. To maintain consistency with conven-

tional sociological conceptions of a group, an agents group serves as a composite of

influence its members receive through their neighborhood and network. This allows

the group to serve as an important medium for widely broadcasting influence

nondiscriminately to a number of agents not bound by any social or spatial context.

The group also serves as a mechanism for resisting or smoothing rapid and sharp

changes occurring in the underlying social structures. In a very limited sense, we

can say that CASE agents through their groups not only maintain a sense of identity

or commitment to a certain ideology (here taken to be aggressive or conservative)
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but actively try to maintain and propagate that sense of connection to other agents in

a fashion that mimics observed human social behaviors.

A more thorough examination of the relationship between an agent’s social

network and neighborhood was carried out by extending the previous experiment

along the following lines: (1) the duration was increased to 300 time steps to ensure

adequate time for the diffusion rate to stabilize, (2) the size of both structures was

varied along with the ability of the agents to move.

Figures 14.9 and 14.10 indicate a strong relationship between the movement of

agents in the environment (no walk/walk) and the rate at which the neighborhood is
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able to diffuse the conservative strategy to other agents. We identified two primary

reasons for that the rate of diffusion being significantly lower in Fig. 14.9. First, the

rate of diffusion with the neighborhood social structure is intimately linked to the

spatial density of the agent population with a higher spatial density yielding rapid,

effective diffusion and vice versa. Second, the direction of the influence diffusing

out of the neighborhood social structure is tied to the location of their immediate

neighbors. The distribution of agents within an individual agent’s neighborhood is

by no means uniform and could very well be overly heavy in one or several

directions as the cells adjacent to an agent’s could or could not contain agents.

Those adjacent cells containing agents specify the direction of influence for the

subsequent time step.

As Fig. 14.10 indicates, allowing agent movement overcomes both these limi-

tations as spatial density and location of neighbors are no longer factors when an

agent is allowed to move. In an abstract sense, the inclusion of agent movement

around the environment effectively transforms an agent’s neighborhood from a

static to dynamic entity. As Figs. 14.9 and 14.10 illustrate, this move to dynamism

is also a dramatic move toward an increased rate of diffusion.

In contrast to the neighborhood, as Figs. 14.11 and 14.12 demonstrate, an agent’s
social network is seemingly unaffected by the spatial density and movement of the

agent population as it exists outside the boundaries of physical space. However, a

direct correlation does exist between the number of agents within an individual

agent’s network and the rate at which and/or degree of influence it can exert on

those agents.
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14.4 Grand Challenges on Simulating Human Social
Behaviors

Human social behaviors are directed toward society. Therefore, these behaviors are

influenced by the interactions with other people in the society. At the same time,

human behaviors are also influenced by culture, attitudes, emotions, values, ethics,

authority, rapport, hypnosis, persuasion, coercion, etc. Due to the paper length, we

focus the grand challenges on how people interact with each other in social

networks to maintain their relationships. In the following sections, we will discuss

the challenges in complex social networks, temporal patterns, and network

randomness.
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14.4.1 Structural Network Measurement

A complex network is a network with nontrivial topological features, i.e., features

that do not occur in simple networks such as lattices or random graphs but often

occur in real graphs. Examining the structure of the whole network as well as

individual patterns that arise offers valuable insight into many different social

applications. These include

• Studies of Communication, which focuses on the study of the transfer of

information. This can include in-person communication, such as the spread of

a rumor, or public-forum communication, such as information conveyed on a

blog (Fleming 2011; Minsheng et al. 2013; Zhoua et al. 2013)

• Community development, including both geographic and online communities.

Of particular interest is developing tools to analyze the development of social

media networks such as Facebook, Twitter, and Wordpress (Lapachelle 2011;

Zhoua et al. 2013)

• Diffusion of innovations or the spread of ideas throughout a community. This

can include finding the “opinion leaders” or the individuals who are especially

influential in the spread of an idea as well as modeling the spread of an

innovation through an entire organization. Recent studies into diffusion have

also looked at how diffusion interacts with network structure (Stattner

et al. 2013)

• Health care analysis, including epidemiological studies and studies of health

care organizations and systems (Levy and Pescosolido 2002; Christakis and

Fowler 2013)

• Language and linguistics, including how different languages evolve through

social interaction. In an increasingly globalized world, this is of particular

interest in studying the decline of native dialects as well as language mainte-

nance and shift in multilingual communities (Milroy 2008)

• Social capital or the resources available to individuals through their social

interactions. For instance, social capital allows certain people to access oppor-

tunities such as job openings. It has also been shown that there is a correlation

between measured social capital and reported quality of life (Valenzuela

et al. 2009).

As complex social networks can be used to analyze many real-world interaction

types from social networking websites to interactions between animals, being able

to effectively study their structures has become increasingly important in recent

years (Pinter-Wollman et al. 2013)

Rumors, opinions, behaviors, and diseases spread to the population via social

interactions. A blocker is an individual in the network that can most effectively

slow down the spread of a process through the population. For example, to slow the

spread of disease, it would be most efficient and effective to vaccinate one of the

key blockers in the network. This paper attempts to find structural network mea-

sures that indicate the best blockers in dynamic and social networks. A dynamic
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network is a series of static networks that show the interactions of an individual at a

certain time. An aggregate network shows a group of individuals and their interac-

tions over a period of time. If two nodes have interaction during the observed period

of time, it is represented by an edge; multiple interactions between a pair of

individuals might be represented as a single edge, multiple edges, or possibly a

weighted edge between the two nodes. A dynamic network is generally more useful

because it shows time and keeps intact the order of interactions.

Structural network measures are like social properties within a network, for

example, betweenness. This method used several of these measures to look at the

entire network and other more localized measures to look at individual nodes. The

global structural properties observed were density, the proportion of edges in a

network to possible edges, dynamic density, the average density at one time, path, a

distinct sequence of nodes, temporal path, a time-respecting path in a dynamic

network, and diameter, the length of the longest shortest path. The localized

properties used were degree, or a node’s number of neighbors, dynamic degree,

dynamic average degree, nodes in the neighborhood, edges in the neighborhood,

betweenness (previously discussed), dynamic betweenness, closeness, or the aver-

age distance between one individual and other individuals in the network, dynamic

closeness, clustering coefficient and dynamic clustering coefficient, the fraction of a

node’s neighbors that are neighbors to each other in previous time steps. These

measures were all compared to determine the blocking ability of individuals.

The paper by Habiba et al. (2010) finds that the dynamic clustering coefficient,

which basically measures how many of your friends are friends with each other,

was a good indicator of the node’s blocking ability. The other structural methods

that best predicted blocking ability were node degree, number of edges in a node’s
neighborhood, and dynamic average degree. These methods must still be tested on

larger and more complex models to determine whether they will be truly useful for

realistic disease spread models. Another problem with this method is that it focused

on practical applications and the theoretical structure of the problem is still not well

known. A large problem with this method is that it cannot identify a set of top

blockers because it goes through the data and tests nodes one at a time by removing

them and measuring the spread of data. Finding the top set of blockers is compu-

tationally hard, and an exhaustive search is infeasible. Another interesting thing

they find is that in networks where blocking spread was difficult, nodes were all

ranked about the same; however, in networks where spread could be blocked by just

removing a few individuals, the nodes had a wider range of rankings.

14.4.2 Temporal Patterns

A temporal network is a network in which the connection between the nodes is not

continuous. The most important part of a temporal network is time. This is also the

most difficult part of a temporal network to visualize and analyze because relation-

ships in networks are changing and modeling the change in relationships while
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keeping the order and time aspect of the network is difficult to do in just one image.

It almost takes a whole string of images or snapshots of the aggregate network at

different points in time to demonstrate a temporal network. In our research, we

examined the various methods that have been used to analyze different aspects of

temporal networks. After becoming thoroughly acquainted with the various

methods of examining properties of temporal networks, we compared each method

and summarized the pros and cons of each method.

We examine several models each of which focuses on a specific problem in

temporal patterns of social networks. The first method we examined was the

betweenness preference (Pfitzner et al. 2013). This method focuses on the structural

properties of a temporal network and looks at how likely certain nodes are to

mediate interactions between any two nodes. Betweenness preference is based on

the idea that certain nodes contact other nodes based on previous contact. The

problem with using betweenness preference to analyze a temporal network is that it

is not present in the time-aggregated network. For example, if given two temporal

networks, when these networks are aggregated, we cannot determine between

which time steps a node mediated an interaction between two other nodes or if

these two nodes are able to interact through their previous contact. This becomes a

problem because of the order that edges are made. In spite of this, betweenness

preference is an important aspect of a temporal network. If we can keep between-

ness preference intact when aggregating our network, this will help us see the flow

of information throughout the network, which is typically lost when the network is

collapsed.

Another problem with a network of time-stamped pairs defining who spoke to

who or who tweeted at who is that a vital part of the flow of information is lost. For

example, if A speaks to B in the morning, then B speaks to C in the afternoon,

information might flow from A to C but not from C to A. The paper (Gindrod

et al. 2011) suggests using a more natural definition of a walk on an evolving

network. Specifically, a node’s ability to both broadcast and receive information is

calculated through a series of basic operations in linear algebra, and the lapse in

time can be accounted for in the flow of data from node to node by utilizing the

noncommutativity of matrix–matrix multiplication. A walk is a path that goes from

node to node. A path is closed if it starts and ends at the same place and open if it

starts and ends at different places. The Katz centrality of a person measures a

person’s centrality by taking into account the number of walks between a pair of

people.

The third issue of temporal patterns is that in some networks, links between

nodes are either positive, like a friendship, or negative, like an opposition. For a link

in a social network, its sign is either positive or negative depending on the attitude

of the creator of the link to the recipient. If we are given a network of nodes with

edges of either positive or negative value and one of the links has a missing value,

we want to find a way to determine, based on the other connections of the network,

whether this missing link is positive or negative. The paper by Leskovec

et al. (2010) uses the logic that the enemy of my friend is my enemy and the friend

of my enemy is my enemy. This method looks at how the sign of a link interacts
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with the pattern of the signs of the links within a certain distance of the given link.

This paper uses edge sign prediction to determine the state of a link given an almost

complete network of either positive or negative links.

While many of these graphs are directed, it is sometimes useful to examine the

graph and its links regardless of the direction of the connection between two nodes.

However, when predicting the sign of an edge, they use directed links. For example,

if we are trying to determine the sign of the edge from node u to node v, we look at

the signs of the outgoing edges from u and the incoming edges to v. They also keep
track of the number of outgoing positive and negative edges from u and the total

number of common neighbors u and v have. When predicting the sign of a link, it is

also helpful to form triads of nodes. For example, they consider the triad containing

the edge (u, v) with a node w such that w has an edge either to or from u and an edge
either to or from v. This theory is called structural balance theory. This theory is

based on the idea stated above that the friend of my friend is my friend and the

enemy of my friend is my enemy. Using the structural balance theory and the idea

of triads, if w forms a triad with the edge (u, v), then (u, v) should have the sign that
causes the triangle formed by w, u, v to have an odd number of positive signs. By

using a balanced data set, we know that by guessing the status of a link, it can have a

50 % correct prediction rate. If we use a full data set, accuracy is improved to 80 %.

14.4.3 Network Randomness

Most social networks are dynamic networks where connections are being continu-

ously made and broken. Being able to accurately predict a dynamic network in the

future has many consequences, many of which are found within the business world.

Large organizations can benefit by being able to suggest new collaborations and

interactions within the organization. Security companies also benefit from the fact

that we could use this information to analyze terrorist networks.

Our first problem is to predict which interactions among existing members are

likely to occur in the near future. A supervised random walk method (Backstrom

and Leskovec 2011) looks at how we can use only the given data of the existing

relationships to accurately predict the future of the network. This is how social

networks like Facebook send users recommendations on who they should befriend

in the future. Supervised random walk combines the information from the network

with node and edge attributes. These attributes are then used to guide a random

walk on the graph. When looking at link prediction, we look at a network at a given

time t and try to predict the edges that will be added to the network at a future time t.
There are a few problems with link prediction methods. One major problem is

that social networks are sparse. For instance, Facebook users connect to an average

of 100 nodes out of a 500 million-node network. For this reason, a good way to

predict edges is to predict no new edges, allowing this method to be extremely

accurate, albeit useless. Thus, supervised random walk helps with these problems.

Using this method, Backstrom and Leskovec (2011) take a supervised random walk
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on the network which visits given nodes more often than other nodes. They use

given node and edge features to determine the strength of the edges so the random

walk will be more likely to visit positive nodes more than negative nodes. Positive

nodes are nodes to which new edges will be created in the future, while negative

nodes are all of the other nodes. A new function must be created then to assign

strength to each edge so when we compute the random walk in a weighted network,

nodes which a node will connect to in the future will have higher scores than those

nodes which a node will not visit in the future.

Another way to analyze the randomness is to use Markov Chain Monte Carlo

(Clauset et al. 2007). This analyzes the probability of nodes making connections by

looking at the whole network. We can then use these probabilities to look at how the

network will look at any given time. Markov Chain Monte Carlo uses Markov

chains along with the law of large numbers to estimate the state of the network at

any given time in the future. Markov Chain Monte Carlo uses stationary distribu-

tion, making the network easier to work with. The network has a given probability

distribution, and Markov Chain Monte Carlo generates random elements with the

same distribution. Markov Chain Monte Carlo then uses this information to predict

the state of the given temporal network at any given time. This means that it will

predict which connections will be made between which nodes at a certain time.

Markov Chain Monte Carlo (Tjelmeland 2007) is closely related to supervised

random walk. A random walk is performed on the network, and each step has a

probability associated with it. Markov Chain Monte Carlo creates a Markov chain

with the same distribution of the network and uses a random walk to simulate the

chain. The problem with the random walk method is the aspect of random walk that

must be calculated and performed on each and every node in the network. These

calculations in a large and expansive network such as Facebook or twitter can

become exhaustingly long and tedious. Another problem with Markov Chain Monte

Carlo is the rate of convergence. It is not very well known how to determine how

long the chain must be used on a network to generate a suitable convergence.

14.5 Conclusion

One of the fundamental questions of human social simulation has traditionally been

how should agents make decisions given they inhabit an environment where their

actions may have unforeseen or unpredictable effects on others? This question often

raises interesting points about the extent to which the individual autonomy of agents

should be sacrificed for global needs and desires of society. As the economic and

mathematical sciences have transitioned toward a more socially conscious

decision-theoretic framework, they have discovered that human beings operating

in real-world environments often rely not only on their own cognitive capabilities

but of those of others around them as well through a network of complex social

structures and institutions.
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If multiagent systems are to provide a proper computational model of both

human decision-making and social interaction, then these structures and institutions

and the cognitive capabilities of the agents that comprise themmust be modeled to a

level where computational complexity is not sacrificed on behalf of realism. Our

CASE model represents an important work that processes by combining recent

advances in behavioral economics that point to a more bounded-rationality human

mindset with the time-honored theories of socialism that cross disciplinary bound-

aries between both sociology and psychology.
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Part V

Body of Knowledge of Modeling &
Simulation



Chapter 15

A Review of ExtantM&S Literature Through
Journal Profiling and Co-citation Analysis

Navonil Mustafee, Korina Katsaliaki, and Paul Fishwick

15.1 Introduction

It has only been about 60 years since the founding of one of the most important

professional societies for M&S, the Society for Modeling and Simulation Interna-

tional (SCS) in 1952; however, the field already celebrates official recognition with

the passage of the US House of Representatives House Resolution 487 in 2007

identifying M&S as a national critical technology (Ören 2009). The high number of

industry groups related to M&S, the growth of M&S academic programs, and the

existence of multiple professional certification programs (Bair and Jackson 2013)

are indicators of the importance of the field. The M&S knowledge base benefits

from advancements in Computer Science, Systems Engineering, Software Engi-

neering, Artificial Intelligence, and more (Fishwick 1992). On the other hand, M&S

contributes to the development of these disciplines by being an enabler. Let us take

the example of M&S and Computer Science to illustrate this symbiotic

interdependence among research disciplines. Computers with multicore CPUs/

GPGPUs enable faster execution of simulations and may bring about methodolog-

ical advancements in M&S (e.g., how do we execute multiagent simulations over

GPGPUs?).
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Similarly, developments in M&S methodology and applications may act as an

enabler of complex systems modeling in CS (e.g., executing network protocol

simulations over GPGPUs). However, it can sometimes be a challenge defining

the boundaries, and by extension vocabularies, that align between M&S and the

other disciplines, and Tolk argues that “a comprehensive and concise representation

of concepts, terms, and activities is needed that make up a professional Body of

Knowledge for the M&S discipline” (Tolk 2010). Fishwick (2014) recently posited

that M&S is at the heart of computer science by virtue of the role of modeling in

capturing fundamental concepts in computing. Due to the broad variety of contrib-

utors, this process is still ongoing, and according to Ören (2009), researchers ought

to continue advancing it for consolidating and disseminating pertinent knowledge

about M&S; assuring professional standards; and advancing M&S science, meth-

odology, and technology to continue solving problems in hundreds of traditional

application areas and new areas.

This research aims to contribute to the development of such a body of knowledge

by presenting a profiling and cocitation analysis study of literature from a scholarly

outlet published by SCS. SCS is a technical society that is devoted to furthering the

field of M&S. The Society has effectively engaged the community it serves and has

played a significant role in advancing research in simulation and allied computer

arts, in applying research for solving real-world problems, in fostering networking

among professionals, in organizing and sponsoring leading conferences in this area,

in providing outlets for scholarly research (through Society publications), and in

recognizing the achievements and contributions of both Society members and the

M&S community at large (SCS 2014). With the objective of providing a compre-

hensive and integrative view of M&S body of knowledge, we have reviewed

literature published in the Society’s journal—Simulation: Transactions of the
Society for Modeling and Simulation International. So as to eliminate the ambiguity

between the name of the journal and the discipline that it caters to (both being

“Simulation”), the journal will henceforth be referred to in uppercase italics, i.e., as

SIMULATION. For the purpose of this research, we have considered scholarly

articles published in the journal between 2000 and 2011; we use this underlying

data set to conduct two forms of analyses, namely, a profiling study and a cocitation

study, to realize the following seven objectives in pursuance of furthering knowl-

edge on the scope and the breadth of our scholarly field:

• To determine the most commonly used M&S approaches and techniques

• To identify the broad areas/sectors associated with the application of M&S

• To identify the specific fields (within the aforementioned areas/sectors) where

the application of M&S is widespread

• To identify the institutional departments associated with the majority of

publications

• To determine the geographic location associated with the majority of

publications
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• To identify the underlying research clusters that have high article cocitation

counts associated with them (using cocitation analysis)

• To identify journals which are frequently cocited (using cocitation analysis)

The limitation of this work is its sole reliance on one particular journal, and we

would like to emphasize that the findings of this study should be regarded as

indicative only of the journal’s activity and its contribution in shaping the M&S

knowledge base. However, it is also true that advances in research usually percolate

through various sources of scholarly dissemination, and it is arguable that important

topics, applications, and advancements in M&S would have found their way in all

leading journals in M&S including the journal SIMULATION. It further follows that
a methodological review of the M&S knowledge base using papers published in one

journal would be akin to sampling a subset of literature in our field. Thus, the

findings of this research can reasonably lay claim to being representative of the

wider body of literature in M&S.

The remainder of this book chapter is organized as follows. In Section 15.2, we

discuss the work of Tuncer Ören in developing an integrated view of the M&S

knowledge base. In Section 15.3, we present the research methodology which

includes (a) an overview of the journal SIMULATION; (b) the journal profiling

methodology, which is used for the analyses of application sectors, specific fields,

M&S techniques, institutional departments, and geographic location of authors; and

(c) cocitation analysis, which is used for the identification of research clusters and

journals that are frequently cited by authors publishing in the journal. Following

this, we present the findings of our study in Section 15.4 and conclude

by reinforcing the contribution of this research and pointers to future work

(Section 15.5).

15.2 Tribute to Tuncer €Oren for His Contribution
in Developing the M&S Body of Knowledge (BOK)

Ören states in several of his publications that “Modeling and Simulation (M&S) –as

a field, discipline, and profession– is progressing, maturing, and continues to be

used in many conventional and unconventional application areas as a powerful

infrastructure. . . and urgently needs to have its Body of Knowledge” (Ören 2011a;

Ören and Waite 2010). It is arguable that Ören is the founding father of the M&S

BoK, and this is aptly established in his numerous publications on this subject (over

35 papers since 2000) and his work toward compiling the M&S BoK Index. The

Index is an online resource consisting of four parts (Ören 2013). We elaborate on

the Index for the benefit of the readers to fully appreciate the corpus of M&S

knowledge that has been archived by Ören.

• The first part provides a background to the project and to the M&S discipline

and profession and its developments, incorporating also terminology and
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relevant dictionaries and a comprehensive view of the area. One facet of Ören’s
work is dedicated to the terminology of M&S with the purpose of identifying a

good definition which covers all aspects of M&S and allows a top-down

decomposition of the field for elaboration of all relevant aspects (Ören 2011a).

Relevant to this, he has published a compilation of definitions of simulation

(Ören 2011b, c), collections of special terms, and M&S multilingual dictionar-

ies. His comprehensive and consolidated view of the area is also identified in

many of his publications (Ören 2009, 2010).

• The second part of the Index is dedicated to 11 core areas of M&S—Science/

Methodology, Types of simulation, Life cycles of M&S, Technology, Infra-

structure, Reliability, Ethics, History, Trends, Challenges and Desirable Fea-

tures, Enterprise, and Maturity. These have multiple subcategories and may

include specific terms and literature related to the overarching core theme.

• The third part concerns the M&S supporting domains that are independent of its

application areas; these are categorized into Computers and Computation, Sci-

ence Areas, Engineering Areas, Management Areas, and Education. The explo-

ration of synergies among these supporting domains and M&S is also another

well-researched area in Ören’s work (Ören 2002, 2005).

• The final part of the Index provides links to important M&S portals, blogs, and

references (by authors, application areas, and topics).

The updated M&S Index will also incorporate BoKs of other disciplines for

adopting best practices and creating synergies among them. Subsequent to the M&S

BoK Index being finalized, it will be hosted by the SimSummit collaborative

environment (sim-summit.org/BoK07/). The finalization of the Index requires the

views of professional simulation practitioners for updating information held in the

website, and a special call toward this has been made by Ören and Waite (2010). A

review committee is already formed for this purpose, which receives the recom-

mendations from colleagues. This collaborative work through an open forum is an

excellent mechanism for keeping the discipline active with a fast pace of growth.

Ören’s concluding remarks in one of his presentations includes the following:

“M&S offers many opportunities and challenges to solve problems of unprece-

dented complexities. Simulationists can contribute by sharpening the tools used,

abiding by ethics and offering their services” (Ören 2012). Therefore, the M&S

BoK has a clear direction for the future.

Ören’s work was an inspiration to this research, which shares some common

ground with the M&S BoK in general terms. The aim of this study is in line with the

profiling of M&S discipline and profession and its developments as in the first part

of the BoK through the documentation of M&S publications by geographic loca-

tions, university departments, and publishing outlets. Moreover, our study classifies

M&S publications in terms of techniques, application areas, and their context in a

relevant way with the second and third parts of the BoK, which define the M&S

core areas and supporting domains. Lastly, this paper provides a network analysis

of the M&S publication relationships to other subdisciplines in line with the

purpose of the updated M&S Index to identify synergies among M&S and other

disciplines.
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15.3 Methodology

The research presented in this chapter has employed two forms of content analyses,

namely, journal profiling and cocitation analysis. These are described under sep-

arate subheadings and provide further information pertaining to the technique, the

specific data sets, and, in the case of cocitation analysis, the tool used. As has been

mentioned earlier, our data set comprises of articles published in SIMULATION,
and we therefore consider it prudent to begin this section by presenting an overview

of the journal.

15.3.1 A Brief Overview to the SIMULATION Journal

SIMULATION encourages submissions on methodology and applications and has a

strong interdisciplinary focus. Presently in its 90th volume, the journal is indexed in

numerous scholarly databases (including the Web of Science™) and has an impact

factor of 0.656 according to the 2013 Journal Citation Report® (JCR Science

edition) that is published by Thomson Reuters; it has a 5-year impact factor of

0.737. JCR classifies the journal under two categories, Computer Science: Interdis-

ciplinary Applications and Computer Science: Software Engineering. The reputa-

tion of the journal has meant that it continues to attract a large number of

submissions, which are then subjected to peer review (each submission is usually

allocated three reviewers), and this constant throughput of original research and

review articles have ensured that the journal has continued to offer a monthly

publication frequency. For example, the number of research papers that were

published in the time span 2000–2010 varied from a minimum of 39 in 2001 to a

maximum of 56 articles in 2002, with a yearly average of around 48 papers. Yet

another indicator of the journal’s reputation is the number of special issues (SI) that

have been published over the years.

Academics and practitioners acted as SI guest editors realizing the dissemination

potential of the journal and its standing in the international M&S community. This

is best demonstrated by the fact that the total number of special issue papers that

were published between 2000 and 2010 was 267—this represented approximately

half of all articles published. The special issue topics also demonstrate the focus of

the journal on methodology and theoretical papers as well as application-oriented

papers (refer to Mustafee et al. 2012 for the list of SI topics).

15.3.2 Journal Profiling Methodology

The profiling exercise required us having to undertake an exhaustive review of

papers that were published in the journal from 2000 to 2010. SIMULATION is the
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monthly publication of the Society; thus, every volume (from 2002 onward) usually

has 12 issues. The publication frequency is largely consistent during the period of

analysis, the exception being the double issues that were published within this time

frame.

The papers published in the journal generally belong to one of two categories:

regular articles or special issue articles. However, between 2000 and 2004, articles

were published under several other categories including introduction to special

issues, columns on AI and simulation, the art of modeling, simulation in the service

of society, spotlight onM&S activities, and special issue call for papers. Most of the

articles under these supplementary categories cannot be considered as having

undergone a peer review. Hence, in the analyses presented in this paper, we have

only considered regular articles (258 papers) and special issue articles (267 papers).

Thus, the total number of papers selected for the analyses is 525.

For every paper included in the analysis, we captured data on variables

pertaining to, for example, the year of publication, the department and the geo-

graphic location pertaining to authors’ affiliation, the simulation technique that was

applied, the application domain/sector, and the context of its application. Extracting

detailed information for the last three variables required reading the article and then

adopting a peer review approach to limit any bias. For further discussion pertaining

to the individual variables and for the complete journal profiling study, the reader is

referred to Mustafee et al. (2012).

15.3.3 Cocitation Analysis

Cocitation analysis identifies clusters of “cocited” references by creating a link

between two or more references when they co-occur in the reference lists of citing

articles (Raghuram et al. 2009). Let us take an example where there are three

articles (A1, A2, and A3), each of which cites two articles (B1, B2). Even though

B1 and B2 may not directly cite each other, B1 and B2 form a kind of semantic

cluster since A1, A2, and A3 all cite B1 and B2. B1 and B2 are, therefore, related by

cocitation. The resultant cocitation networks provide important insights into knowl-

edge domains by identifying frequently cocited papers, authors, and journals related

to the domains in question, and this would have been overlooked if only conven-

tional citation analysis techniques were used.

For this part of the analysis, citation data pertaining to the journal was

downloaded from Web of Science™ (WOS). A search for papers associated with

our target journal revealed that the journal was indexed in WOS starting from

September 2001—the search criterion used was as follows: Publication Name¼
(SIMULATION-TRANSACTIONS OF THE SOCIETY FORMODELING AND SIM-
ULATION INTERNATIONAL); Databases¼ SCI-EXPANDED, SSCI, A&HCI,
CPCI-S, CPCI-SSH. For this study, we considered a time span of 10 years starting

from January 2002 (Volume 78, issue 1) to December 2011 (Volume 87, issue 12).

In total, we downloaded citation data pertaining to 564 papers that were published
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during this period. For cocitation analysis, we used this downloaded data set and the

knowledge domain visualization software called CiteSpace (Chen 2004). CiteSpace

identifies turning points associated with articles from citation data. The use of

CiteSpace requires careful selection of a multitude of options, and an acceptable

options’ combination frequently requires learning through “trial and error” as well

as knowledge of the underlying research domain. For the specific CiteSpace option

values that were selected and for the complete cocitation study, please refer to

Mustafee et al. (2014).

15.4 Findings

Our journal profiling exercise and cocitation analysis concluded in a series of

findings. These findings are described next under separate headings; each heading

is associated with a particular objective which was defined in the introduction

section. More specifically, findings that present a comprehensive and integrative

view of M&S include the identification and categorization of M&S techniques

(Section 15.4.1), identification of the broad areas/sectors associated with the appli-

cation of M&S (Section 15.4.2), and the context of its application (Section 15.4.3);

findings derived from authors’ affiliation which show the interdisciplinary nature of

M&S and its widespread prevalence include institutional departments (Section

15.4.4) and geographic locations (Section 15.4.5); findings from the cocitation

analysis include identification of research clusters and important journals that are

frequently cocited (Sections 15.4.6 and 15.4.7).

15.4.1 Analysis Based on M&S Technique

Two authors independently and critically reviewed the papers by reading their

abstracts and, if in doubt, reading the whole article. Furthermore, the authors

scrutinized papers that had coding discrepancies; the objective was to reconcile

the differences pertaining to classification and to agree on a decision. Indeed, this

exercise often necessitated revisiting previously classified papers for the sake of

consistency. The authors then grouped the M&S technique–related data under

specific headings. Since this required subjective decision-making, regrettably, the

tables presenting this analysis cannot be recreated. The authors also admit that the

inclusion of a third reviewer could have changed the groupings to an extent;

however, it is arguable that the important M&S categories identified and their

corresponding frequencies would still have remained largely consistent with the

present findings.

Table 15.1 lists the M&S techniques that were reported in the papers published

in the journal, grouped under 12 categories (including the category Not Known) and
their corresponding frequency of use. We have assigned one M&S technique for
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Table 15.1 M&S techniques

A. Simulation Techniques 196

Network Modeling and Simulation 76

Discrete Event Simulation 55

Monte Carlo Simulation; Numerical Simulation 9 each

Finite Element Method-based Modeling and Simulation; Real Time Simulation 7 each

Discrete-Event Simulation and Visualization; System Dynamics; Trace-based

Simulation

4 each

Continuous Simulation/Flow Simulation; Statistical Simulation (including Regression

and Poisson Simulation)

3 each

Rare Events Simulation; Software-In-The-Loop Simulation; Stochastic Simulation;

Virtual Reality Simulation; Web-based Simulation

2 each

Chaos-based Simulation; Interval-based Microscopic Simulation; Qualitative Simula-

tion and Prediction; Simulation Visualization; Spreadsheet Simulation

1 each

B. Parallel and Distributed Simulation 69

Parallel and Distributed Simulation 32

Distributed Simulation 22

Agent-Based Distributed Simulation 6

Parallel Simulation 4

Distributed Interactive Simulation 3

Grid-Based Simulation; Web-based Distributed simulation 1 each

C. Systems Modeling 67

Mathematical and Equation-based Modeling 25

Bond Graph Modeling; Petri Nets 9 each

Markov-chain Modeling 6

Multi-Paradigm Modeling 4

Statistical Modeling; Stochastic Modeling 3 each

Visual Interactive Modeling 2

Bayesian Networks; Discrete-Time Modeling; GERT -Graphical Evaluation and

Review Technique; Meta-Modeling; Model Verification and Validation; Semi-Markov

Model

1 each

D. Agent Based Modeling and Simulation 44

Agent-Based Modeling and Simulation 34

Multi-Agent Systems 9

Agent-Based Geo-Simulation 1

E. Discrete Event System Specification (DEVS) and other Formalisms 37

Devs 26

Devs – Cell-Devs 2

Composable Cellular Automata Formalism; Devs – Devs/soa; Devs – Dsdev; Devs –

eUdevs; Devs – Gdevs; Devs – Rtdevs; Devs – Cell space approach (note: this is

different from Cell-Devs); Formal Specification and Analysis (Maude); Heterogeneous

Flow System Specification Formalism

1 each

F. Application-Specific Modeling and Simulation 31

Analysis of Algorithms (including Simulation of Algorithm) 8

Physics-based Modeling and Simulation (including N-body and VOXEL-based

simulation)

3

Biological Pathway Modeling; Logic Simulation; Sound simulation 2

(continued)
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each article. Articles that deal with multiple M&S techniques have been clustered

either underMultiple Techniques (where there is equal emphasis on each technique

and the techniques are applied independently) or Hybrid Methods (where the

techniques are applied symbiotically). The data is presented in descending order,

sorted on the number of occurrences identified for each of the 12 broad categories.

Table 15.1 (continued)

Architecture Simulation; Chemical Simulation; Circuit Simulation; Computerized

Tomography Simulation; Constructive Military Simulations; Drift Path Simulation;

Embedded Simulation; Engineering Simulation; Job Shop Simulation; Landslide

Simulation; Load Flow Modeling; Simulation and Gaming; Simulation of Flight

Mechanics; Thermodynamic Simulation

1 each

G. Programming/Specification Languages/Frameworks/Methodology 24

Object Oriented Simulation 6

Programming (including, Fuzzy Linear Programming, Genetic Programming, Integer

Programming, Integer Linear Programming)

4

Component-based Modeling and Simulation 2

Architecture Description Languages; Cellular Automata Programming Environment;

Data Exchange Model; Extensible Battle Management Language; Finite State

Machines Modeling Language; Formal Co-design Framework; GESAS II Methodol-

ogy; Object-Oriented Modeling Language; Parallel Object-Oriented Specification

Language; Programming Environment for Simulator; Programming Language;

Service-Oriented Architecture (SOA) Simulation

1 each

H. Operations Research Techniques
(including Optimization and AI-based approaches)

22

Optimization (including Genetic Algorithm Optimization, Metaheuristic-based

Optimization, Particle Swan Optimization, Simulation-based Optimization)

10

Artificial intelligence (including Fuzzy Inductive Reasoning and Neural Networks) 6

Heuristics 3

Multiobjective Decision Analysis; Scheduling; Uncertainty Modeling 1 each

I. Multiple Techniques 13

Various 7

(Discrete-Event Simulation +Hardware-in-the-loop simulation); (Genetic algorithm-

based optimisation + Finite-Element Method +Grid-enabled Parallel Simulation);

(Kinematic Vehicle Modeling +VR Modeling); (Monte-Carlo Simulation + Petri Net

Modeling); (Policy Specification Language + Policy Development Framework

+Distributed Simulation); (Very High Speed Integrated Circuits Hardware Description

Language [VHDL] +Artificial Neural Network + Fuzzy Logic)

1 each

J. Hybrid Methods 8

Intelligent Agents with queuing network model; Mesoscopic simulation (microscopic

and macroscopic simulation)

2 each

Discrete-continuous combined simulation; Hybrid symbolic-numerical simulation

method; Hybrid system examples; Monte Carlo–based Discrete Event Simulation

1 each

K. Not known 8

L. Uncategorised 6

Knowledge-based systems and expert Systems 3

Model-based information-processing systems; Performance evaluation of simulated

systems; Reliability simulation

1 each

Total 525
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As can be seen from the table, category Simulation Technique has 196 occur-

rences; the different M&S techniques that make up this figure include Network
M&S (76 occurrences), Discrete-Event Simulation (55), Monte Carlo and Numer-
ical Simulation (9 each), etc. Owing to the large number of papers that relate to

agents (44 occurrences), we have not included this under the Simulation Technique
category but have created a separate category called Agent-Based Modeling and
Simulation. The other prominent categories in Table 15.1 include Parallel and
Distributed Simulation (69 occurrences), System Modeling with 67 occurrences

(this includes mathematical and equation-based modeling, statistical modeling,

Petri nets, Markov chains, Bayesian networks, etc.), DEVS and Other Formalisms
with 37 occurrences, and Operations Research Techniques (22 occurrences).

15.4.2 Analysis Based on M&S Application Areas/Sectors

For the purposes of this analysis, we adopted a peer review approach similar to the

one used above. The findings are presented in Table 15.2. We have identified a total

of 28 application areas with Telecommunications reporting the highest number of

studies. Health care and Military/Defense are placed fifth and the sixth

Table 15.2 Application areas/sectors

Application areas/sectors Count %

Telecommunications 98 18.82

Engineering 50 9.51

Distributed Computing 40 7.60

Manufacturing 30 5.70

Health care 26 4.94

Military/Defence 23 4.37

Computers 19 3.61

Environment 18 3.42

Air Transport 13 2.47

Automotive; Education 12 each 2.28 each

Road Transport; Urban studies 11 each 2.09 each

Systems Biology 9 1.71

Marine/Water Transport 6 1.14

Logistics; Supply chain 5 each 0.95 each

Rail Transport 4 0.76

Astronomy; Construction; Mobile Computing; Retailing

and Wholesaling; Space

3 each 0.57 each

Mining/Metals 2 0.38

E-Business; Economics; Public Administration; Sports 1 each 0.19 each

Methodology papers (not specific to any application area) 112 21.29

Total 525 100
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respectively. The majority of the papers (approx. 21 %) are not specific to an

application area but are related to methodology. These papers are included at the

end of the table (for obvious reasons, our count of 28 application areas excludes this

category). The predominance of Methodology implies that majority of papers

analyze and develop specific techniques and focus more on the method rather

than on testing their application on a specific sector.

15.4.3 Analysis Pertaining to the Field
(Within an Area/Sector)

Similar to the methodology adopted in the earlier sections, in this analysis we

adopted a peer review approach with the objective of eliminating any unintended

bias. Table 15.3 presents the context of the application of M&S within an area/

sector. We started with the 29 application categories that were identified in the

previous analysis; the papers reporting on the use of M&S techniques and their

application areas provided specific information on the application context.

As can be seen from the table, the category Methodology was applied in several

contexts, for example, framework (10 occurrences), time management—related to

parallel and distributed simulation (9), component-based M&S (3), etc. Similarly,

M&S techniques were applied to the Telecommunication sector in contexts such as

analysis of networks (12 occurrences), quality of service (6), analysis of protocols,

e.g., routing protocol, flow control, physical layer, access/admission control

(numerous occurrences), and network power management (4 occurrences).

15.4.4 Analysis Based on Authors’ Departmental Affiliation

The purpose of this analysis is to investigate the interdisciplinary nature of M&S as

evidenced by the breadth of the subject area of the authors’ departmental affiliation

(i.e., the home departments in which the authors are based). Unfortunately, for this

variable we had a lot of missing data. From a total of 1,250 academic authors and

coauthors, we could gather information for approximately 88 % (1,100 authors to

be precise). Moreover, in order to present readable results, we had to cluster the

names of the authors’ departments/schools under more general and distinct head-

ings. For example, the category Computer Science, Information and Communica-
tion Technologies (ICT) and Electronics Engineering consists of schools and

departments related to Computer Science (including Applied CS), Computer Engi-

neering, Computing and Mathematical Sciences, Electronics, Communications

Engineering, Telecommunications, Information Sciences, M&S, etc.; all the spe-

cific Engineering departments (other than those in the aforementioned category) are

classified under the Engineering category—e.g., Aerospace Engineering,
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Table 15.3 Analysis pertaining to context of application (within an area/sector)

A. Methodology 112

Simulation Environment/Platform/Language 13

Framework 10

Time Management 9

Rare Event Simulation 6

Hybrid M&S 5

Performance Evaluation; Verification & Validation 4 each

Complex Systems; Component-based M&S; Optimization Algorithm; Simulation

Experimentation/Experimentation Design; Simulation Output Analysis; VR Modeling/

Virtual Environments

3 each

Collaborative Simulation Environment/Tool; Data Distribution Management; Hybrid

Systems; Model Integration/Model ComposAbility; Poisson Simulation/Poisson Pro-

cess; Real Time Systems; Visualization

2 each

Artificial Intelligence; Automatic Model Completion; Business Process Simulation;

Chaos-based Simulation; Construction of Models; Continuous Systems; Derivative

Estimation; Event List; Fault Tolerance; Graphical Models; Grid-based Simulation;

Input Data Analysis; Large-Scale Simulation; Model Extraction; Model Selection;

Model Transformation; Network Traffic; Proportion Estimation; Quantization-Based

Simulation; Queuing Systems; Simulation Cloning; Simulation Interoperability; Sim-

ulation Model Reuse; Simulation Practice; State Management; Time-Parallel Simula-

tion; Time-Series Forecasting; Training Simulator; Uncertainty Modeling

1 each

B. Telecommunications 98

Analysis of Networks 12

Network Security; Programming/Network Simulation Environment; Protocol M&S

(Routing)

8 each

Design of Integrated Architectures 7

Network Quality of Service 5

Multimedia Services; Power Management; Protocol M&S (Congestion Control) 4 each

Protocol M&S (Flow Control) 3

Distributed Network Simulation/Parallel Network Simulation; Optimal Configuration

of Networks; Protocol M&S (Access/Admission Control); Protocol M&S (Communi-

cation); Protocol M&S (Physical Layer); Protocol M&S (Scheduling); Reusability;

Scalability of Networks; Speed of Simulation Execution

2 each

Empirical Models; End-User Studies; Execution Time; Intelligent Networks; Load

Balancing; Network Emulation; Network Management; Network Mobility; Network

Reconfiguration; Pricing; Protocol M&S (Deadlock Recovery); Protocol M&S

(TDMA); Protocol M&S (Access/Admission Control); Protocol M&S (Wireless);

Review; Voice Quality; Workload Modeling

1 each

C. Engineering 50

Power System Design/Power Transmission 12

M&S of Physical Systems 8

Design of Systems; Fault Diagnosis/Fault Detection and Isolation 6 each

Movement of Fluids/Flow Simulation 4

Control Systems/Factory Automation Systems/Expert Systems 3

M&S of Physical Processes; Modeling Framework; Training Simulator 2 each

Audio Signal Processing; Flood Management; Logic Simulation; Model Driven Engi-

neering; Review

1 each

(continued)
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Table 15.3 (continued)

D. Distributed Computing 40

Scheduling; WWW/SOA/Web Services 8 each

Design of Distributed Systems 5

Load Balancing/Resource Management 4

Communication; Execution/Programming Environment; Simulation of HPC systems 3 each

Data Replication; P2P Networks; Peer-to-Peer (P2P) Gaming; Scalability; Transaction

Management; Virtual Environments

1 each

E. Manufacturing 30

Factory/Production Line/Job Shop Simulation; Simulation of Physical Systems/Process 6 each

Fault Diagnosis/Fault Detection and Isolation 4

Web-Based Simulation 2

Complex Manufacturing Systems; Execution Speed; Enterprise Decision-making

Support; Grid-based Simulation; Inventory Management; Lean Manufacturing; Quality

Improvement; Repair and Maintenance; Shop-Floor Control Systems; Simulation

Interoperability; Simulation-based Order Acceptance; System Reconfiguration

1 each

F. Healthcare 26

Epidemic M&S; Modeling of Physical Systems/Computed Tomography 4 each

Hospital/Clinic Management; Scheduling 3 each

Healthcare Informatics; Operating theatres; Review 2 each

A&E; Lean/JIT; Simulation of Disorders; Supply Chain Simulation; Training;

Viewpoint

1 each

G. Military/Defence 23

Simulation Interoperability; Training 4 each

Military Communications 3

Behaviour Representation 2

Airborne Operations; Availability of Weapon Platforms; Casualty Evacuations;

Dynamic Behaviour of Simulation; Embedded simulation; Live–Virtual–Constructive

(LVC) Simulation; Missile Threat Simulation; Radar Interference; Simulation State

Updates; System Decomposition

1 each

H. Computers 19

Computer Architecture 6

Microprocessor Architecture 5

Emulation; Execution/Programming Environment; Formal Design Methods; GPU;

Human-Computer Interface; Real Time Computers; Software Architecture; Ubiquitous

Computing

1 each

I. Environment 18

Ecology Modeling 7

Spread of Fire 4

Modeling Forest Landscapes 3

Methodology for Environment Modeling; Terrain Modeling/Landslide Modeling 2 each

J. Air Transport 13

Aviation Safety 4

Air and Ground Traffic Control; Air Network Simulation; Evolution of the Airline

Industry; Flight Control System; Future of Air Transportation; M&S Infrastructure for

Airports; Risk Management; Training; Visualisation of Airport Operations

1 each

(continued)
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Table 15.3 (continued)

K. Automotive 12

Design of Automobiles 5

Automobile Production Line 4

Automobile Safety; Driving Simulator; Sound modeling 1 each

L. Education 12

Simulation Pedagogy; Simulation-based Training and Teaching 4 each

Visual Interactive and Multimedia Simulations 3

Design of Simulation Course 1

M. Road Transport 11

Traffic Light Control/Traffic Signal Timings 3

Intelligent Transportation System 2

Driving Behaviour; Hybrid Modeling; Incident Management; Operation of a Toll

Plaza; Surface Transportation System; Training Simulator

1 each

N. Urban studies 11

Behavioural M&S; Water Management 4 each

Crowd M&S 2

Organisational Adaption 1

O. Systems Biology 9

Biological Modeling 3

Experimental Design; Modeling Environment/Modeling Description Language 2 each

Functional Genomics; Model Decomposition 1

P. Marine/Water Transport 6

Analysis of Physical Systems; Control Systems; Design of Systems; Investment Deci-

sions; Maritime Transport System; Training Simulator

1 each

Q. Logistics 5

Optimization 3

Planning; Quality Improvement 1 each

R. Supply chain 5

Distributed Supply Chain Simulation 3

Hybrid Supply Chain Simulation; Supply Chain Simulation 1 each

S. Rail Transport 4

Control Systems; Intermodal Transport Planning; Safety; Simulation of Physical Sys-

tems/Process

1 each

T. Astronomy 3

Astronomic telescope data processing; Galactic Simulation; Radiometer simulation 1 each

U. Construction 3

Construction Management; Highway Maintenance and Reconstruction; Stress Analysis

of Materials

1 each

V. Mobile Computing 3

Location-Based Service; Mobile Network Performance; Mobility Prediction 1 each

W. Retailing and Wholesaling 3

Customer Experience; Inventory Control; Store Management 1 each

(continued)
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Bioengineering, Chemical and Materials Engineering, Civil Engineering, Electrical

Engineering, General Engineering, Hydraulic Engineering, Industrial and Opera-

tions Engineering, Mechanical and Control Engineering, and Production Engineer-

ing; Economics and Management category consists of Administration, Business,

Economics, Econometrics, Decision Sciences, Management Science, Organiza-

tional Science, Supply Chain Management, and other similar departments. In

total, we formed eight such categories (shown in Table 15.4).

Our analysis of the department/school-specific affiliation information showed

that the largest number of contributors were from departments/schools under the

umbrella category of Computer Science, Information and Communication Technol-
ogies (ICT) and Electronics Engineering (62 %). This category is followed by

Engineering (17.9 %), Economics and Management (4.0 %), and Maths, Stats, and
Physics (3.5 %). Research labs have been classified under the category Basic
Sciences and Research, and considering that this category only has a handful of

Table 15.3 (continued)

X. Space 3

Design of Satellite Cluster System; Satellite Communication; Simulation of Physical

System/Process

1 each

Y. Mining/Metals 2

Investment Decisions; Surface Mine Design 1 each

Z. E-Business 1

Business Process Reengineering 1

AA. Economics 1

Fiscal Modeling 1

AB. Public Administration 1

Institutional Reorganisation 1

AC. Sports 1

Agent Behaviour 1

Total 525

Table 15.4 Classification of the authors’ departmental affiliation under eight broad categories

Academic departments Total Total (%)

Computer Science, Information & Communication

Technologies (ICT) & Electronics Engineering

682 62.0

Engineering (Mechanical, Civil, Electrical, etc.) 197 17.9

Economics and Management 44 4.0

Mathematics, Statistics and Physics 39 3.5

Basic Sciences and Research 29 2.6

Medical-Health 21 1.9

Social Sciences 13 1.2

Others 75 6.8

Total 1,100 100.0
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research labs (e.g., IBM Austin Research, IBM T. J. Watson Research, IBM Zurich

Research, Domaine Scientifique de la Doua—INSA Lyon, Google Taiwan R&D,

Ford Scientific Research, and C&C Research Laboratories), 2.6 % of contribution is

noteworthy.

15.4.5 Analysis Based on Authors’ Geographic Location

The purpose of this analysis was to bring to attention the widespread prevalence of

M&S as evidenced by the number of authors around the world. The geographic

location of the authors’ affiliations was the underlying data used for this analysis.

This analysis has taken into consideration the double affiliations reported by seven

authors. Our analysis revealed that contributors came from 58 different countries,

with the USA (38.7 %) clearly dominating. The second (5.6 %) and third (5.3 %)

largest categories were formed by authors affiliated to either Spanish or Canadian

institutions respectively. France, South Korea, UK, and the Netherlands were next

in the list. Table 15.5 shows the top 20 countries in terms of (a) the geographic

Table 15.5 List of the top twenty geographical locations based on (a) authors’ affiliation (b) and

total number of author contributions

Country (a)

Unique

authors (a)

Total

(%) (a) Country (b)

Author

contributions (b)

Total

(%) (b)

US 484 38.7 US 581 38.7

Spain 70 5.6 Spain 78 5.2

Canada 66 5.3 Canada 76 5.1

France 57 4.6 South Korea (incl.
Korea¼ 21)

68 4.5

South Korea (incl.
Korea¼ 20)

53 4.2 France 65 4.3

UK 52 4.2 UK 62 4.1

Netherlands 50 4.0 Netherlands 59 3.9

China; Germany 47 each 3.8 each Germany 51 3.4

Italy 44 3.5 China 50 3.3

Greece 26 2.1 Italy 48 3.2

Taiwan 25 2.0 Singapore 44 2.9

India 24 1.9 India 40 2.7

Singapore 20 1.6 Greece 35 2.3

Turkey 17 1.4 Taiwan 34 2.3

Iran 16 1.3 Iran 23 1.5

Australia; Brazil 13 each 1.0 each Turkey 18 1.2

Sweden 12 1.0 Sweden 15 1.0

Hungary 9 0.7 Brazil 14 0.9

New Zealand 8 0.6 Australia 13 0.9

Slovenia 7 0.6 Hungary;

New Zealand

9 each 0.6 each
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location of the authors’ affiliations (columns 1–3) and (b) the total region-specific

contributions of the authors taking into consideration the fact that authors could

have contributed to more than one paper (columns 4–6). The actual number of

contributions is 1,494, but 7 of the authors appear in the database with double

affiliation, and thus, the total contributions are considered to be 1,501.

It is perhaps not surprising that the largest contribution is from the USA. This is

because the journal was created and established in the USA with US editors.

However, the large representation of other countries indicates the journal’s inter-
national audience and reputation. However, the findings must be carefully consid-

ered since the results are meaningful but not normalized by country population size.

For example, Singapore has just over five million people, whereas the USA has

307 million. Table 15.5 shows 484 unique authors from the USA and 20 from

Singapore. When normalized using per capita figures, Singapore shows 4 authors

per million people and the USA 1.57 authors per million. One also needs to keep in

mind relative densities: Singapore is highly concentrated in space with significantly

high technology, whereas the spatial variations differ in other countries.

15.4.6 List of Research Clusters (Cocitation Analysis)

Nodes and links are the building blocks of a cocitation network. CiteSpace supports

a total of 11 node types (NTs). In this and the subsequent finding (Section 4.7), we

are interested in NTs “cited references” and “cited journals” and the resultant

Document Cocitation Network (DCN) and Journal Cocitation Network (JCN)
respectively. The following discussion applies equally to DCN and JCN. Each

node in the DCN/JCN refers to an article/journal. The different time-sliced

DCN/JCN cocitation networks are distinguished by their color. The colors indicate

time, and through the use of the VIBGYOR spectrum, they represent the complete

time interval of the analysis. The links can visually represent various characteristics

of the underlying network; for example, the color of the link represents the year in

which a connection between two nodes was first established (e.g., with regard to the

DCN, it is the year in which two articles were first cocited), and the strength of

connection between any two nodes is represented by the thickness of the link (e.g.,

in the context of JCN, the thicker the connection between two nodes, the greater the

frequency of journal cocitation).

The DCN visualization allows us to identify underlying relationships among the

cited articles. For example, a thick link between two nodes (denoting high

cocitation count among the articles), both of which also have a relatively large

diameter (denoting high citation count) and have been consistently cited over the

years, would generally identify two papers that are equally important to a subject

matter. But the question is: what is the subject matter? Is it possible to infer this

from reading the abstracts of the papers with high citation count? However, this

process is time consuming, and the interpretation is subjective as it is based on a

researcher’s domain knowledge. An alternative way to achieve this is to
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automatically assign meaningful labels to the cocitation clusters that are identified

in a cocitation network; CiteSpace “characterizes clusters with candidate labels

selected by multiple ranking algorithms from the citers of these clusters and reveals

the nature of a cluster in terms of how it has been cited” (Chen et al. 2010).

CiteSpace presently supports nine different ways of labeling the clusters—allowing

selection of candidate terms from three sources (titles, abstracts, and index terms),

all of which belong to the citing articles, and three ranking algorithms (tf*idf

weighting, LLR, MI) (Chen et al. 2010). In our study, we have selected index

terms and have used the tf*idf weighting algorithm. The output is shown in

Fig. 15.1. The list of clusters is presented in Table 15.6. It shows a total of 35 unique

clusters. These clusters were identified from among 212 nodes and a total of

221 links. Figure 15.2 focuses on one such cluster (#40 scalability), and it shows

five papers with high cocitation count (De Boer 2006; Dupuis et al. 2007;

Glasserman and Kou 1995; Kroese and Nicola 2002; Parekh 1989). All these papers

are on queuing networks (tandem queues, Jackson network).

15.4.7 List of Frequently Cited Journals (Cocitation
Analysis)

Table 15.7 presents a list of scholarly literature sources that are frequently cocited

by authors of SIMULATION. The majority of the items identified are journals, with

the exception of three books (authored by Zeigler BP; Law AM & Kelton WD;

Fig. 15.1 Clusters identified in the DCN solution space and named using candidate labels
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Fujimoto RM), an edited book series by Springer (Lecture Notes in Computer
Science), and five conference proceedings (Proceedings of the Winter Simulation
Conference—WSC, 1998, 2000, 2002, and 2005; Proceedings of the Annual Sim-
ulation Symposium—ASimS). If we combine the WSC citations, then WSC is the

third most popular citation source, with the number of citations being higher than

ACM Transactions on Modeling and Computer Simulation (TOMACS).
The JCN has identified that ACM TOMACS is most frequently cocited with

Communications of the ACM, Journal of Parallel and Distributed Computing,
IEEE Transactions on Software Engineering, Proc. of WSC (1997 and 2000), and
Proc. from the Workshop on Principles of Advanced and Distributed Simulation
(PADS). This is shown in Fig. 15.3.

Table 15.6 List of research clusters identified using DCN

Cluster Cluster Cluster

Policies Composability Health-care

Mathematical-theory Real-time systems Systems biology

Virus High level architecture Continuous system

simulation

Traffic management Network simulation Traffic

Explicit window adaptation Distributed simulation Architecture

OMNET plus Wireless Combat simulation

Tomography Problem-solving environment System dynamics modelling

Dynamic structure discrete

event system specification

Parallel machines Telemedicine

Semiconductor Support Integer linear programming

Bifurcation System dynamics Demand

Verification and validation Web Scalability

Hybrid system modelling Coherence protocol

Fig. 15.2 Articles with high co-citation counts for cluster on scalability (using DCN)
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Table 15.7 List of frequently cited journals, books, conferences (freq� 20) identified using JCN

Freq Journal Freq Journal Freq Journal

193 Simulation: Transac-

tions of the SCS

33 Proc. Annual Simulation

Symposium (ASimS)

25 European Journal

of Operational

Research

102 Lecture Notes in Com-

puter Science (LNCS)

31 Simulation Modelling

Practice and Theory

25 Journal of Parallel

and Distributed

Computing

67 ACM TOMACS 30 Parallel and Distributed

Simulation Systems

(Fujimoto RM)

24 IEEE Transactions

on Software

Engineering

57 Theory of Modeling

and Simulation

(Zeigler BP)

30 Operations Research 22 Proc. 2000 Winter

Simulation

Conference (WSC)

55 Communications of the

ACM

29 IEEE Transactions on

Parallel and Distributed

Systems

22 Proc. 1998 WSC

48 IEEE/ACM Transac-

tions on Networking

29 Management Science 22 Artificial

Intelligence

43 IEEE Journal on

Selected Areas in

Communications

28 IEEE Transactions on

Computers

21 Journal of the

Operational

Research Society

38 Proceedings of the

IEEE

26 Computer

Communications

20 Proc. 2005 WSC

38 Simulation Modeling

and Analysis (Law AM

& Kelton WD)

26 IEEE Communications

Magazine

20 Proc. 2002 WSC

20 International Jour-

nal of Production

Research

Fig. 15.3 JCN identifying journals frequently co-cited



15.5 Conclusions

The purpose of this research was to extract both qualitatively and quantitatively

derived observations about a corpus of information centered on the publications of a

society (The Society for Modeling and Simulation International). Two methods

were used for this purpose. The first method relied on a profiling study by reading

SIMULATION articles and then capturing variables in a methodological manner to

present the findings. The resultant data from this analysis provide a reference point

for discussions pertaining to the discipline of M&S. As the readers would note, the

peer review approach was adopted for capturing variable values pertaining to the

M&S technique used (Section 4.1), M&S application area/sector (Section 4.2), and

the context of the application of M&S in particular areas/sectors (Section 4.3). The

objective of this was to eliminate any unintended bias that could have been a result

of our biased decision-making. However, as the peer review approach was being

conducted, it became evident that the majority of the discrepancies arose from the

differing categorization granularity we adopted. For example, whether a paper on

“agent-based distributed simulation” is codified under a new category with the

same name or under an existing category (e.g., “Agent-Based M&S” or “Parallel

and Distributed Simulation”) would be dependent on how specific we wanted the

categorization to be (keeping in mind that the number of categories should be

manageable) and, in instances where we independently decided against creating a

new category, whether we felt the paper was better represented by one or the other

of the available umbrella categories. In cases where there was no consensus with

regard to codification, we created a new subcategory and assigned it to an over-

arching category with the best-fit (this was unusually achieved subsequent to

reading the full text). Taking the previous example, a subcategory called “Agent-

Based Distributed Simulation” was created, and it was placed under the existing

category of “Parallel and Distributed Simulation.” In summary, the tables that we

have collated have a wealth of information in them, and although we do not claim

that our categorization is authoritative, we believe that they can be used as a source

of scholarly reference, discussion, and debate.

The second method used was cocitation, which is a graph-theoretic approach

frequently employed for identifying topics, clusters, and categories. The two main

graph types studied were document and journal cocitation networks. While these

graph types were useful in identifying key areas of research and important journals,

the analysis also paints a larger picture. In the emerging era of “big data,” M&S

practitioners should consider data-centric methods (e.g., graph and network theory)

for determining important questions about our discipline. What types of dynamic

models are being used and can they be stratified over time or correlated with

specific authors or disciplinary areas? What programming languages predominate

in simulation? Answers to these questions at one time were mainly answered

through survey articles; however, in the future with so much available data, we

might consider new forms of data and graph analysis along the lines of the methods

discussed in this article.
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Future research directions could involve broadening the boundaries of our

profiling data set. For example, we could utilize a more inclusive set of data that

is representative of the whole domain and not restricted to a single publishing outlet

with the purpose of capturing a more complete picture of the interrelationships

between the key variables discussed in this paper. This would provide further

insights into the M&S body of knowledge and would also make our results

indicative of all M&S researchers and not only of the population of researchers

who submit to the particular outlet, particularly since M&S communities are

severely fragmented by application/technique area. Another area of future research

is to use cocitation analysis to detect the emergence of new areas in M&S; one way

to achieve this is through the detection of citation bursts which indicate articles that
have received an extraordinary degree of attention from the scientific community.

A further study could involve mapping the evolution of M&S research by

performing cocitation analysis using well-defined time slices and noun phrases

that are extracted from titles and abstracts, similar to the approach followed by

Mustafee (2011).

M&S research during the last decade, as pictured in this study, brings out

similarities but also differences to Ören’s taxonomies and visions of the discipline.

As Ören (2009) stated, researchers ought to continue advancing M&S methodology

and solve problems in hundreds of traditional and new application areas. From our

analysis, it is evident that M&S incorporates a plethora of techniques (Table 15.1),

from fundamental ones (e.g., systems modeling) to contemporary techniques that

have evolved with advancement in computing technology (e.g., parallel and dis-

tributed simulation, agent-based M&S). Moreover, these techniques have been

applied in numerous application areas (Tables 15.2 and 15.3). Although these

techniques have been predominantly skewed toward communications, engineering,

and a few other sectors, other areas such as the environment, logistics, and supply

chains make their appearance in M&S literature. However, the taxonomy that Ören

provided for the organization of the M&S application areas (i.e., Computers and
Computation, Science Areas, Engineering Areas, Management Areas, and Educa-
tion) are more general than those identified in this study. Nevertheless, it may be

possible to classify our application areas under the classification presented by Ören.
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