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Andreas Kleefeld and Bernhard Burgeth

Abstract In this chapter, we illustrate how to process multispectral and hyper-
spectral images via mathematical morphology. First, according to the number of
channels the data are embeded into a sufficiently high dimensional space. This
transformation utilizes a special geometric structure, namely double hypersimplices,
for further processing the data. For example, RGB-color images are transformed
into points within a specific double hypersimplex. It is explained in detail how
to calculate the supremum and infimum of samples of those transformed data to
allow for the meaningful definition of morphological operations such as dilation
and erosion and in a second step top hats, gradients, and morphological Laplacian.
Finally, numerical results are presented to explore the advantages and shortcomings
of the new proposed approach.

1 Introduction

Mathematical morphology is concerned with the detection, extraction and manip-
ulation of shapes, contours, and structures in image data. Scientists working in
this field may look back at almost half a century of successful developments
and applications of powerful methods for image processing in, roughly speaking,
medical and engineering sciences. Since the path-breaking work of Matheron and
Serra [12, 13, 17, 18], a vast amount of literature (e.g. [3, 10, 11, 16, 20–22, 25])
provides testimony of this story of success. The operations of dilation and erosion
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are the cornerstones of mathematical morphology typically applied to gray-scale
images endowed with a (complete) lattice structure. However, the recent decade
has seen ever rising efforts to develop powerful morphological tools for data types
that do not allow for such a lattice structure. There the main focus certainly lies on
color images [1, 4, 9, 19, 24], that is, vectorial data, see the excellent survey [2] and
the literature cited therein, but, to a much lower extend, on matrix valued images
as well (e.g. [8]). The most promising and recent approach to color morphology,
presented by van de Gronde and Roerdink [24] relies on the very versatile concept
called frames. The main idea of Burgeth and Kleefeld [5, 6] consists of establishing
a one-to-one correspondence of a RGB-image with a matrix-valued image of 2 � 2

real symmetric matrices for which morphological techniques already have been
developed, see [7]. This correspondence is inspired by the striking similarity of the
Ostwald color bi-cone [14] in the well known HSL-model and the Loewner order
cone for 2 � 2 symmetric matrices.

In essence, a color image is transformed into a matrix valued image, undergoes
morphological processing and the result is transformed back into a color image.
However, this approach has two disadvantages: One is that it is geared towards
images with three channels which is the degree of freedom in a 2 � 2 symmetric
matrix. The other one is that due to its non-polyhedral structure the Loewner
bi-cone (e.g. the transformed Ostwald bi-cone) is not stable under taking the
Loewner-supremum (or -infimum). Precisely, taking the supremum can lead to an
element outside the bi-cone. In this chapter an approach is presented that overcomes
both obstacles; it utilizes an embedding into polyhedral double (hyper-)simplexes
instead of Loewner cones making them both stable under a sup-, inf-operation
(now the operations satisfy the closure condition) and adaptable to an arbitrary
number of channels in a multivariate image. The simplicial structure is important
since, as it turns out, mappings into other polyhedra entails non-uniqueness of
the supremum/infimum of a finite set of multivariate data. For example, draw the
two squares with edge length 0.1 with lower left vertex .0:1; 0:1/ and .0:2; 0:1/,
respectively. The smallest enclosing square enclosing the two given squares has
edge length 0.2 and the lower left coordinate is given by .0:1; y/ with 0 � y � 0:1.

Note also that the Loewner order for symmetric matrices has another flaw; it
is not associative. In general, it holds sup.sup.A;B/; C / ¤ sup.A; sup.B; C //,
likewise for the inf-operation. This makes the calculation of a supremum/infimum of
three or more matrices cumbersome. This disadvantage alone makes it worthwhile
to look for an alternative approach such as the double hypersimplex approach.

The chapter is organized as follows. First, it is explained in Sect. 2 how to map the
data of a multispectral/hyperspectral image into a suitable space. The space under
consideration will be a double hypersimplex. Additionally, the inverse of the map
introduced in Sect. 2.1 is constructed in Sect. 2.2. Then, it is illustrated in Sect. 2.3
how to find the supremum and infimum of a set of points located in the double
hypersimplex using a geometric approach which is needed to define mathematical
morphological operation such as dilation and erosion. In Sect. 2.4, we explain how
to subtract two points located in the double hypersimplex to make mathematical
morphological operations such as top hats, gradients, and morphological Laplacian
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meaningful. In Sect. 3, we give a glimpse at scalar-valued morphology operations
and explain how to use those operations for multispectral/hyperspectral images.
Numerical results are presented for a variety of multispectral and hyperspectral
images in Sect. 4. A short summary including possible future research concludes
this article in Sect. 5.

2 Mathematical Morphology
for Multispectral/Hyperspectral Images

A typical multispectral image consists of data in the form depth�width�height,
n � w � h for short, where 3 � n � 10. For n > 10, we call it a hyperspectral
image, which can contain as many as 200 (or more) depth information. Note that
in the sequel we assume n � 3. For example, an RGB-image can be considered
as a multispectral image of size 3 � w � h. We call a slice in the n-direction of
a multispectral/hyperspectral image a pixel. Hence, a pixel is a vector of size n
containing normalized data; i.e., data in the range Œ0; 1�. If this is not the case,
we can always normalize them assuming that the range is finite. Precisely, a
multispectral/hyperspectral image has w � h pixels of the form Œ0; 1�n. To apply
mathematical morphology, we need to define an appropriate supremum and infimum
of a given set of pixels for the operations such as dilation and erosion. As a first
step, we convert a pixel datum Œ0; 1�n (a hypercube, �n for short) into a double
hypersimplex, ˙n for short. As a second step, we define an appropriate supremum
and infimum of a set of points located in the double hypersimplex.

2.1 Map from the Hypercube to the Double Hypersimplex

In this subsection, we first illustrate how to convert a point x D .x1; : : : ; xn/ 2 �n

into a point y D .y1; : : : ; yn/ 2 4n, where the hypersimplex is defined as

4n WD
(

y 2 R
n W yi � 0 ;

nX
iD1

yi � 1

)

for n � 2. Define the map  W �n ! R
n by

 .x/ D
�
x1
m

s
; : : : ; xn�1

m

s
; xn

m

s

�
DW y ; (1)

where m D maxfx1; : : : ; xn�1; xng and s D x1 C : : : C xn�1 C xn. If x D 0, then
we define y D 0. We have  .�n/ D 4n. To see this, let x ¤ 0 with xi 2 Œ0; 1�,
8 i D 1; : : : ; n, then clearly yi D xi

m
s

� 0, since m � 0 and s � 0 and we have
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Pn
iD1 yi D Pn

iD1 xi ms D m
s

Pn
iD1 xi D m

s
� s D m � 1, since the maximal m is

one.

Example 1 Application of the map (1) to the point .1=2; 1=10; 3=5; 4=5; 1=20/ 2
�5 yields .8=41; 16=410; 48=205; 64=201; 4=205/ 2 45, since s D 41=20 and
m D 4=5.

Next, we define a map from the hypercube to the double hypersimplex ˙n which
is given by the union of �n and �n mirrored at the x1 � : : : � xn�1–plane. The
desired map is constructed by transforming the last coordinate by using 2xn � 1 and
then applying the mapping (1) withm D maxfx1; : : : ; jxnjg and s D x1C : : :Cjxnj.
It is noteworthy that we could pick any coordinate position and transform the entry
as before, but we decided to change the last coordinate to keep things simple.

Precisely, we have the map � W �n ! R
n given by

�.x/ D
�
x1
m

s
; : : : ; xn�1

m

s
; .2xn � 1/ m

s

�
DW y ; (2)

where m D maxfx1; : : : ; xn�1; j2xn � 1jg and s D x1 C : : : C xn�1 C j2xn � 1j.
If x D .0; : : : ; 0; 1=2/, then we define y D 0. We clearly have  .�n/ D ˙n by
construction.

Example 2 Application of the map (2) to the point .1=2; 1=10; 3=5; 4=5; 1=20/ 2
�5 yields .8=41; 16=410; 48=205; 64=201;�72=205/ 2 ˙5, since s D 41=20 and
m D 4=5.

With the two maps (1) and (2) we are able to convert any point located in the
hypercube to a point located in the hypersimplex and the double hypersimplex,
respectively. The following two examples illustrate the result of the map  and
� given by (1) and (2) applied to 1,000 points located in the unit square and unit
cube, respectively.

Example 3 In Figs. 1a and 2a, we show 1,000 randomly chosen points in the unit
square. The result of the mappings and � given by (1) and (2) for n D 2 applied to
those 1,000 points is shown in Figs. 1b and 2b, respectively. As we can see, the 1,000
randomly chosen points from the unit square are mapped into the two-dimensional
simplex and into the two-dimensional double simplex, respectively.

Example 4 In Figs. 3a and 4a, we show 1,000 randomly chosen points in the unit
cube. The result of the mapping  and � given by (1) and (2) for n D 3 applied to
those 1,000 points is shown in Figs. 3b and 4b, respectively. As we can see, the 1,000
randomly chosen points from the unit cube are mapped into the three-dimensional
simplex and three-dimensional double simplex, respectively.

Now, we are able to convert an rgb-datum into a point located in ˙3.
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Fig. 1 Thousand randomly chosen points in �2 and the result of the mapping  applied to those
1,000 points. (a) 1,000 randomly chosen points in �2. (b) 1,000 points in 42
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Fig. 2 Thousand randomly chosen points in �2 and the result of the mapping � applied to those
1,000 points. (a) 1,000 randomly chosen points in �2. (b) 1,000 points in ˙2

2.2 Map from the Hypersimplex to the Hypercube

In this subsection, we define the inverse of the map  given by (1). The map  �1 W
4n ! R

n is given by

 �1.y/ D
�
y1
s

m
; : : : ; yn�1

s

m
; yn

s

m

�
DW x ; (3)

where m D maxfy1; : : : ; yn�1; yng and s D y1 C : : : C yn�1 C yn. If y D 0,
then we define x D 0. We have  �1.4n/ D �n. To see this, let x 2 �n, then
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Fig. 3 Thousand randomly chosen points in �3 and the result of the mapping  applied to those
1,000 points. (a) 1,000 randomly chosen points in �3. (b) 1,000 points in 43
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Fig. 4 Thousand randomly chosen points in �3 and the result of the mapping � applied to those
1,000 points. (a) 1,000 randomly chosen points in �3. (b) 1,000 points in ˙3

y D  .x/ 2 4n; i.e., yi D xi
m
s

D xi
maxfx1;:::;xn�1;xng
x1C:::Cxn�1Cxn by definition, which can be

rewritten as

yi D xi
maxfm

s
x1; : : : ;

m
s
xn�1; ms xng

m
s
x1 C : : :C m

s
xn�1 C m

s
xn

D xi
maxfy1; : : : ; yn�1; yng
y1 C : : :C yn�1 C yn

and hence xi D yi
y1C:::Cyn�1Cyn

maxfy1;:::;yn�1;yng for all i .



Processing Multispectral Images via Mathematical Morphology 135

Similarly, we can write down the inverse of the map � given by (2). The map
��1 W ˙n ! R

n is given by

��1.y/ D
�
y1
s

m
; : : : ; yn�1

s

m
;
1

2
.yn C 1/

s

m

�
DW x ; (4)

wherem D maxfy1; : : : ; yn�1; jynjg and s D y1 C : : :Cyn�1 C jynj. If y D 0, then
we define x D .0; : : : ; 0; 1=2/. We clearly have ��1.˙n/ D �n by construction.

2.3 Calculating Suprema and Infima

In this subsection, we illustrate how to calculate suprema and infima of a set of
points located in the double hypersimplex ˙n. Generally, it should be noted that one
could only define the supremum in the hypersimplex, but to make the calculation
of a infimum straightforwardly, we decided to define the supremum in the double
hypersimplex.

First, we illustrate how to calculate the supremum of a set of points P located
in 43. Let x.i/ WD .x

.i/
1 ; x

.i/
2 ; x

.i/
3 / be the i -th point of the set P . Note that

each point is representing a pyramid with corners E.i/
1 D .x

.i/
1 ; x

.i/
2 ; 0/, E

.i/
2 D

.x
.i/
1 C h.i/; x

.i/
2 ; 0/, E

.i/
3 D .x

.i/
1 ; x

.i/
2 C h.i/; 0/, and E.i/

4 D .x
.i/
1 ; x

.i/
2 ; h

.i//, where

h.i/ D x
.i/
3 . Obviously, each base of a pyramid is a triangle with vertices .x.i/1 ; x

.i/
2 /,

.x
.i/
1 Ch.i/; x.i/2 /, and .x.i/1 ; x

.i/
2 Ch.i//. We call them base triangles. Note that we list

only the first two coordinates, since the base triangles are located in the x1�x2–plane
(the third coordinate is zero). In Fig. 5a, b, the point .0:3; 0:4; 0:2/ representing
a pyramid inside 43 (red) is shown in blue and its base triangle (green triangle
with blue boundary) located in the x1 � x2-plane, respectively. Note that the point
.0:3; 0:4; 0:2/ is the upper vertex of the blue pyramid and uniquely determines it.

The ordering we are considering is induced by the cone determined by the vertex
.0; 0; 0/ and a base spanned by the three points .0; 0; 1/, .0; 1; 1/, and .1; 0; 1/. This
means that the point .0; 0; 1/ is larger in this ordering than any other point of 43.
Hence, if one considers two points a; b 2 43, then the supremum sup.a; b/ is
the upper vertex of the smallest pyramid with triangular base in the x1 � x2-plane
covering those two points. This smallest pyramid can be determined by the base
triangles. To this end consider, for example, as above the point .0:3; 0:4; 0:2/ as
the upper vertex of the small blue pyramid. Such a point determines a pyramid and
its base triangle uniquely, and vice versa. We have a one-to-one correspondence
between points in 43 and the set of aforementioned base triangles. Now finding this
smallest pyramid with triangular base in the x1 � x2-plane amounts to finding the
smallest base triangle enclosing the two base triangles generated by the two points
a and b. More general, to obtain the supremum of a set of points ai with some index
set I 3 i boils down to determine the smallest base-triangle enclosing the base-
triangles corresponding to the points ai . In principle the same strategy is applicable
in higher dimensions.
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Fig. 5 Point .0:3; 0:4; 0:2/ representing a pyramid (blue) inside 43 (red) and its base triangle
(green triangle with blue boundary) located in the x1 � x2-plane, respectively. (a) The point
.0:3; 0:4; 0:2/ representing a pyramid (blue) inside 43 (red). (b) The base of the pyramid (green
triangle with blue boundary) represented by the point .0:3; 0:4; 0:2/ located in the x1 � x2-plane

Finding the smallest base triangle with vertices v1;max, v2;max, and v3;max of
a set of base triangles is an easy task, since it is an easy geometric problem.
The first and second coordinate of v1;max are given by x1;min WD mini x

.i/
1 and

x2;min WD mini x
.i/
2 , respectively. The length of the smallest base triangle is given

by l2 WD maxi
P3

jD1 x
.i/
j � x1;min � x2;min. To see this, one has to calculate

the i -th distance of the line spanned by the two points .x.i/1 C h.i/; x
.i/
2 / and

.x
.i/
1 ; x

.i/
2 C h.i// by using the Hessian normal form and scale the distance by the

factor
p
2. The maximum of the i -th distance is the length. Hence, the first and

second coordinate of v2;max are x1;min C l2 and x2;min, respectively. The first and
second coordinate of v3;max are x1;min and x2;min C l2, respectively. It should be clear
how to construct the corresponding pyramid. In sum, the supremum is given by
the point .x1;min; x2;min; l2/. In Fig. 6a, we show in blue the smallest enclosing base
triangle given the three base triangles of the pyramids corresponding to the points
.0:1; 0:4; 0:3/, .0:2; 0:1; 0:1/, and .0:6; 0:2; 0:1/ in 43. The supremum is given by
the point .0:1; 0:1; 0:7/. The triangle with edge color red is the maximum possible
smallest triangle enclosing a set of triangles. In Fig. 6b, we show the smallest
enclosing triangle for a set of five triangles which are represented by five randomly
generated points.

Next, we illustrate how to calculate the supremum for a set of points located
in 44. Let x.i/ WD .x

.i/
1 ; x

.i/
2 ; x

.i/
3 ; x

.i/
4 / be the i -th point of the set P . The base

of the i -th point is a pyramid with corners .x.i/1 ; x
.i/
2 ; x

.i/
3 /, .x

.i/
1 C h.i/; x

.i/
2 ; x

.i/
3 /,

.x
.i/
1 ; x

.i/
2 C h.i/; x

.i/
3 /, and .x.i/1 ; x

.i/
2 ; x

.i/
3 C h.i//, where h.i/ D x

.i/
4 . Note that we

are again suppressing the last coordinate, since it zero. Finding the smallest base
pyramid with vertices v1;max, v2;max, v3;max, and v4;max of a set of pyramid works
as follows. The first, second, and third coordinate of v1;max are x1;min WD mini x

.i/
1 ,
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Fig. 6 Smallest enclosing base triangle given a set of base triangles. (a) Smallest enclosing base
triangle given three base triangles. (b) Smallest enclosing base triangle given five base triangles
(randomly generated)
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Fig. 7 Smallest enclosing base pyramid given a set of base pyramids. (a) Smallest enclosing base
pyramid given three base pyramids (randomly generated). (b) Smallest enclosing base pyramid
given five base pyramids (randomly generated)

x2;min WD mini x
.i/
2 , and x3;min WD mini x

.i/
3 , respectively. The length of the smallest

base pyramid is given by l3 WD maxi
P4

jD1 x
.i/
j � x1;min � x2;min � x3;min. To

verify this, one has to calculate the i -th distance of the plane spanned by the
three points .x.i/1 Ch.i/; x

.i/
2 ; x

.i/
3 /, .x

.i/
1 ; x

.i/
2 Ch.i/; x

.i/
3 /, and .x.i/1 ; x

.i/
2 ; x

.i/
3 Ch.i//

by using the Hessian normal form and scales the distance by the factor
p
3. The

maximum of the i -th distance is the length. Hence, the supremum is given by the
point .x1;min; x2;min; x3;min; l3/. In Fig. 7a, b, we show the smallest base pyramid
enclosing three and five base pyramids, respectively. The points representing the
base pyramids are randomly generated.

Finally, we explain how to find the supremum given a set of points located in
4n. Let x.i/ WD .x

.i/
1 ; : : : ; x

.i/
n�1; x

.i/
n / be the i -th point of the set P . Following the
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arguments as before, it is easy to see that the supremum is given by the point

.x1;min; : : : ; xn�1;min; ln/ ; (5)

where xj;min WD mini x
.i/
j and ln WD maxi

Pn
jD1 x

.i/
j � Pn�1

jD1 xj;min.
Now, we are in position to explain how to calculate a supremum for a set of

points located in ˙n. We could add one to the last coordinate of the points, use
the formula (5) to calculate the supremum, and then subtract one from the last
coordinate of the result which is motivated by supi x.i/ D supi fx.i/ C eng � en
to ensure that the base of the penumbras is located in the x1 � : : : � xn�1–plane.
A careful inspection of the used formulas reveals that we can directly calculate the
supremum for a set of points located in ˙n using the formula (5).

A corresponding infimum of a set of points located in ˙n is found by flipping the
sign of the last coordinate of the points, use formula (5) to calculate the supremum,
and then flip the sign of the last coordinate of the result, which is motivated through
the use of infi a D � supi f�ag for a 2 R. Precisely, we calculate

inf
i

x.i/ WD sup
i

fx.i/g

where x.i/ WD .x
.i/
1 ; : : : ; x

.i/
n�1;�x.i/n /.

Example 5 In this example, we calculate the supremum of the three rgb-colors
.1; 0; 0/ (red), .0; 1; 0/ (green), and .0; 0; 1/ (blue). Using the map (2) leads
to the representation .1=2; 0;�1=2/, .0; 1=2;�1=2/, and .0; 0; 1/ in the double
hypersimplex ˙3, respectively. The supremum is given by .0; 0; 1/ calculated
via (5). Applying the map (4) leads to .0; 0; 1/ 2 �3 which represents the color blue.
The infimum is given by .0; 0;�1/. Applying the map (4) leads to .0; 0; 0/ 2 �3

which represents the color black.

The set of all double hypersimplices aligned as described above is partially
ordered with respect to the inclusion “�”; i.e., given two double hypersimplices
S1 2 ˙n and S2 2 ˙n, S1 is smaller than S2, if S1 is contained in S2, written as
S1 � S2. The set of all these double hypersimplices admits an infimum (equivalently
the greatest lower bound or meet) and a supremum (the least upper bound or
join), hence it is a lattice [15]. It is even a distributive lattice since for any double
hypersimplices S1; S2; S3 2 ˙n the relations

inf .S1; sup .S2; S3// D sup .inf .S1; S2/ ; inf .S1; S3//

or equivalently

sup .S1; inf .S2; S3// D inf .sup .S1; S2/ ; sup .S1; S3//

are valid. To verify this, let x.1/, x.2/, and x.3/ be the point representing the double
hypersimplices S1; S2; S3 2 ˙n, respectively. Let i D 1; : : : ; n � 1, then the i -
th component of inf .S1; sup .S2; S3// is given by minfx.1/i ;minfx.2/i ; x.3/i gg which
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equals minfminfx.1/i ; x.2/i g;minfx.1/i ; x.3/i gg which represents the i -th component of
the expression sup .inf .S1; S2/ ; inf .S1; S3//. The n-th component involves more
steps of calculations and is left to the reader.

2.4 Difference of Two Points Located in the Double
Hypersimplex

In this subsection, we explain how to subtract two points located in the double
hypersimplex to make mathematical morphological operations such as top hats,
gradients, and morphological Laplacian meaningful.

Before we define the new subtraction, we need the Einstein velocity addition ˚
defined by

u ˚ v D 1

1C u� v
�

u C 1

�u
v C �u

1C �u
.u� v/� u

�
; (6)

where

�u D 1p
1 � u� u

:

Here, we used the constant c D 1 (see [23, p. 3]). Naturally, the Einstein subtraction
� is defined by u ˚ .�v/.

Next, we will explain how to subtract two points located in ˙n ensuring that the
result will be in ˙n. The new subtraction will work as follows. Given two points x
and y from ˙n, we will transform the first n�1 coordinates of them by Oxi D 2xi �1
and Oyi D 2yi � 1 (i D 1; : : : ; n � 1), respectively. Additionally, we set Oxn D xn
and Oyn D yn. Hence, it is ensured that each component of Ox and Oy is in Œ�1; 1�.
Next, we apply componentwise the Einstein velocity subtraction using formula (6).
Precisely, we calculate Ozi WD Oxi ˚ .� Oyi / for i D 1; : : : ; n. The result Ozi will be in
Œ�1; 1� for each i D 1; : : : ; n. Finally, we convert the n � 1 components of Oz using
zi D .Ozi C1/=2 ensuring that each zi is in Œ0; 1� for i D 1; : : : ; n�1. We set zn D Ozn
which is Œ�1; 1�. Finally, we apply the map  given by (1) to z. The result is in ˙n

by construction. In sum, for x; y 2 ˙n, we define the difference operation ˇ as

x ˇ y WD  

�
Œ.2x1 � 1/˚ .� .2y1 � 1//�C 1

2
; : : : ; (7)

Œ.2xn�1 � 1/˚ .� .2yn�1 � 1//�C 1

2
; xn ˚ .�yn/

�
:

The result of x ˇ y is clearly an element of ˙n by construction.
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3 A Glimpse at Scalar-Valued Morphology

In this section, we briefly review the definitions of some fundamental scalar-valued
morphological operators that we will generalise to the multi-valued setting.

In gray-scale morphology an image is represented by a scalar function f .x; y/
with .x; y/ 2 R

2. The so-called structuring element is a set B � R
2 that determines

the neighbourhood relation of pixels. Often convex sets such as disks, ellipses or
squares are used as structuring elements.

Gray-scale dilation ˚ replaces the gray-value of the image f .x; y/ by its
supremum within a mask B . It is given by .f ˚B/ .x; y/ WD sup ff .x � x0; y �
y0/ j .x0; y0/2Bg; while erosion � is determined by taking the infimum. It is given
by .f �B/ .x; y/ WD inf ff .xCx0; yCy0/ j .x0; y0/2Bg: The opening operation,
denoted by ı, is defined as erosion followed by dilation: f ı B WD .f � B/˚ B :

Closing, indicated by the symbol 	, consists of a dilation followed by an erosion:
f 	 B WD .f ˚ B/ � B : Since erosion and dilation are antagonistic operations
one can view opening and closing as an attempt to restore the image. A comparison
with the original image by taking the difference to the opened or closed image leads
to the so-called top-hats. The white top-hat which is the difference between the
original image and its opening is defined as WTH.f / WD f � .f ı B/ : Its dual,
the black top-hat is the difference between the closing and the original image; i.e.,
BTH.f / WD .f 	 B/ � f ; while the self-dual top-hat is the difference between
closing and opening; i.e., SDTH.f / WD .f 	 B/ � .f ı B/ : By construction these
top-hats allow the detection of small details in an image.

In an image the boundaries or edges of objects are the loci of high gray-value
variations. These variations can be detected by a derivative operator such as the
gradient. Erosion and dilation are also the elementary building blocks of the basic
morphological gradients: The so-called Beucher gradient is the difference between
the dilation and the erosion: %Bf WD .f ˚ B/ � .f � B/ : It is an analog to the
Euclidean norm of the gradient jrf j if an image is regarded as a differentiable
function. We also consider the internal gradient as the difference between the
original image and its erosion given by %�

Bf WD f � .f � B/ ; and the external
gradient as the difference between the dilation and the original image given by
%C
B f WD .f ˚ B/ � f : The morphological Laplacian is defined by the difference

of the external and internal gradient; i.e., �Bf WD %C
B f � %�

Bf .
All morphological operations can now be carried over for multispectral and

hyperspectral images by using the supremum and infimum definition as explained
on page 138, refer specifically to expression (5) and the next paragraph. The
difference operation is replaced by the Einstein difference operation given by (8).
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4 Numerical Results

In this section, we present the new proposed approach to process some data sets.
First, we consider the case of a multispectral image with three bands; i.e., an rgb-
image. We use the colored peppers-image of size 512 � 512 which is shown in
Fig. 8a. As a first step, each pixel of the image is converted to a point located
in the double hypersimplex using the map (2) with n D 3. The result is stored
in a matrix field f . Next, we define a cross-shaped structuring element SEcross

consisting of five pixels, B for short. Then, dilation f � B and erosion f ˚ B

are properly defined by using the supremum and infimum operation, respectively
(refer to page 138, specifically to expression (5) and the next paragraph). Other
morphological operations such as opening f ı B D .f � B/ ˚ B , closing
f 	B D .f ˚B/�B , white top-hat f ˇ .f ıB/, black top-hat .f 	B/ ˇ f , self-
dual top-hat .f 	 B/ ˇ .f ı B/, Beucher gradient .f ˚ B/ ˇ .f � B/, internal
gradient %�

Bf D f ˇ .f � B/, external gradient %C
B f D .f ˚ B/ ˇ f , and

the morphological Laplacian �Bf D %C
B f ˇ %�

Bf , where ˇ is the difference
operation given by (8). After the application of a morphological operation the
result is visualized by transforming back to a color image using the map (4) with
n D 3. The results of the aforementioned morphological operations are presented
in Fig. 8b–l. Now, we will show that it is possible to easily process a color image.
The question of the interpretation of correct colors in the resulting color images
is a completely different story. In our opinion, better results would be obtained if
one can map the diagonal of the cube from .0; 0; 0/ and .1; 1; 1/ to the line of ˙3

spanned by the two points .0; 0;�1/ and .0; 0; 1/ (in this instance the approach of
gray-scale images is equivalent to basic gray-scale morphology), but unfortunately
such a map has not yet been found. Note that our intention is not to give a better way
of processing color images (this is just a byproduct of our new approach to process
multispectral images for n D 3). As we can see the dilated peppers-image gets a
blue touch. This happens because the supremum of the colors red and green is blue
(refer to Example 5 and Fig. 8b). The minimum of those two colors is black as we
can see in the eroded peppers-image (also refer to Example 5 and Fig. 8c). Opening
and closing are the concatenation of the antagonistic operations dilation and erosion,
hence in some way approximations to the identity map. Therefore the images in
Fig. 8d, e are similar to the original, but not quite. The difference is obtained by
the top hats as displayed in Fig. 8f–h. For large parts of the image there is hardly
any difference (almost zero-difference) which accounts for the predominant color
gray. Morphological derivatives imitate regular derivatives from calculus, hence
help to detect locii of strong changes in the data as they appear, for example,
at object boundaries. This explains the appearance of Fig. 8i–l where, to varying
extent, contours are enhanced, while flat regions (almost zero-variance) are gray.
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a b c

d e f

g h i

j k l

Fig. 8 Dilation, erosion, opening, closing, white top-hat, black top-hat, self-dual top-hat, Beucher
gradient, internal and external gradient, and morphological Laplacian applied to peppers having
resolution 512 � 512. (a) Original image of size 512 � 512. (b) Dilation, SEcross. (c) Erosion,
SEcross. (d) Opening, SEcross. (e) Closing, SEcross. (f) White top-hat, SEcross. (g) Black top-hat,
SEcross. (h) Self-dual top-hat, SEcross. (i) Beucher gradient, SEcross. (j) Internal gradient, SEcross.
(k) External gradient, SEcross. (l) Morphological Laplacian, SEcross
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Fig. 9 Color image baboon
and its gray-valued
representation used as
transparency. (a) Original
color image baboon of size
512 � 512. (b) Gray-valued
image baboon of size
512 � 512

a b

We need 0:2; 0:7; 3; 11, and 36 s to dilate a rgb-image of size 32 � 32, 64 � 64,
128 � 128, 256 � 256, and 512 � 512, respectively. This is more than two times
faster than our previous color processing approach (see [5]). Of course, it still very
expensive if compared to the binary or gray-scale case.

Next, we will consider an rgb˛-image; i.e., an rgb-image that contains an ˛-
channel (transparency). We use the colored test image baboon of size 512 � 512

as shown in Fig. 9a and use as ˛-channel its gray-value representation (created with
gimp using Image ! Mode ! Grayscale) as illustrated in Fig. 9b. We use this
multispectral image of size 512� 512� 4 and apply opening, closing, white top-hat,
external gradient, internal gradient, and morphological Laplacian to it. Figure 10a–
l are displaying the processed outcomes of a 4-channel image. In Fig. 10a–c, g–i
one can see the rgb-parts of the results of various morphological operators (first and
third row of Fig. 10). Each of Fig. 10d–f, j–l shows the transparency as a gray-scale
image (second and fourth row of Fig. 10).

Essentially, what has been said about Fig. 8 holds true for those images in Fig. 10
as well. However, since the original image contains rich texture-like structures with
high variations, the results display more details and texture of the original image
“covered” with a dominant gray tinge.

Next, we will process a hyperspectral image with 12 channels having resolution
949 by 220. We use the image STC taken from the MultiSpec website.1 The image
has been taken in June 1966 by an aircraft scanner Flighline C1 and shows a portion
of Southern Tippecanoe County in Indiana. The data are stored in band sequential
format (BSQ-format). The wavelength of the 12 channels are 0.4–0.44, 0.44–0.46,
0.46–0.48, 0.48–0.5, 0.5–0.52, 0.52–0.55, 0.55–0.58, 0.58–0.62, 0.62–0.66, 0.66–
0.72, 0.72–0.8, 0.8–1�m, respectively. In Fig. 11a, the image is shown as a rgb-
image, where we have extracted the bands 11, 9, and 7, since band 11, 9, and 7
represent red, green, and blue of the spectrum. Using the same approach as before
with n D 12 and the structuring element SEcross consisting of five pixels, we get the
following results for dilation, erosion, opening, closing, white top-hat, black top-hat,
internal gradient, external gradient, and morphological Laplacian, where the result
is again shown in Fig. 11b–j as a rgb-images using bands 11, 9, and 7. The same

1https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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a b c

d e f

g h i

j k l

Fig. 10 Opening, closing, white top-hat, internal and external gradient, and morphological
Laplacian applied to rgb˛-image baboon having resolution 512 � 512. (a) Opening, SEcross.
(b) Closing, SEcross. (c) White top-hat, SEcross. (d) Opening, SEcross. (e) Closing, SEcross. (f) White
top-hat, SEcross. (g) External gradient, SEcross. (h) Internal gradient, SEcross. (i) Morphological
Laplacian, SEcross. (j) External gradient, SEcross. (k) Internal gradient, SEcross. (l) Morphological
Laplacian, SEcross
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a b c d e

f g h i j

Fig. 11 STC-image and various morphological operations applied to it are shown as rgb-color
image using bands 11, 9, and 7. (a) STC-image of size 949 � 220. (b) Dilation, SEcross. (c) Erosion,
SEcross. (d) Opening, SEcross. (e) Closing, SEcross. (f) White top-hat, SEcross. (g) Black top-hat,
SEcross. (h) Internal gradient, SEcross. (i) External gradient, SEcross. (j) Morphological Laplacian,
SEcross
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Table 1 Time in seconds to dilate a multispectral/hyperspectral image of size n � 512 � 512 for
various n ranging from 3 to 200

n 3 5 10 20 50 100 150 200

s 41.4 42.0 42.4 42.8 48.7 58.3 65.8 75.9

interpretation of the results carries over to the processed versions, see Fig. 11b–j, of
the 12-channel STC-image as displayed in Fig. 11a. Note that the algorithm needs
30 s to dilate the image.

Finally, we dilate a multispectral/hyperspectral image of size n � 512 � 512 for
various n using the structuring element SEcross to show that the computation time is
quite low no matter how big n actually is. In Table 1 we list the time needed to dilate
an image using the structuring element SEcross with the number of channels ranging
from n D 3 to n D 200.

Hence, we are able to process quickly a hyperspectral image with 200 channels
in 75:9 s.

5 Conclusion and Outlook

We have shown that it is a simple step to define mathematical morphological
operations such as dilation and erosion for multispectral/hyperspectral images by
first converting the data into a double hypersimplex using a simple geometric
approach which is motivated by the Loewner ordering. Then, with the definition of a
suitable difference operation motivated by the Einstein velocity addition we are able
to define morphological operations such as top hats, gradients, and morphological
Laplacian. Numerical results confirm that this approach has the potential to be
applicable to multispectral images. Note that from the computational point of
view the approach is fast in computation time and that we are not limited to
multispectral images. As shown, the approach can also be used for hyperspectral
images without any limitations. It remains to think about how to visualize a
multispectral/hyperspectral image to extract meaningful information of a processed
multispectral image such as the Beucher gradient or the morphological Laplacian.
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