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Abstract Traditional path-based morphology allows finding long, approximately
straight, paths in images. Although originally applied only to scalar images, we
show how this can be a very good fit for tensor fields. We do this by constructing
directed graphs representing such data, and then modifying the traditional path
opening algorithm to work on these graphs. Cycles are dealt with by finding strongly
connected components in the graph. Some examples of potential applications are
given, including path openings that are not limited to a specific set of orientations.

1 Introduction

An image can be considered as a function whose argument is a position. However,
with increasing computing power and increasing sensor capabilities, it is becoming
more and more common to acquire data that varies as a function of both position
and orientation. For example: orientation scores (and similar schemes) [9, 15–17,
29, 32], flow fields, diffusion MRI data [28, 48] and seismic anisotropy data [40].
When filtering such data this additional structure can be taken into account to extract
more relevant data.

Path openings [23, 24] are a class of morphological filters that are able to extract
long and thin structures. They essentially allow preserving pixels that are part of
a long path, while suppressing pixels that are only part of short paths (this allows
these filters to be interpreted as hyperconnected filters [53]). Applied to traditional
binary or greyscale images this can be useful for finding cracks, roads, fibres, and
other thin elongated structures [10, 34, 37, 45, 49].
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In this work we motivate why the concept of a path is natural to consider
in the context of (symmetric) tensor fields. We then explain how path openings
traditionally work on directed acyclic graphs, and how they can be generalized to
allow for cycles. This leads to an efficient algorithm, which we use to demonstrate
that our method can indeed be used to produce sensible results on (tensorial)
orientation scores and diffusion MRI data.

1.1 Related Work

Certain fibre tractography methods already use a graph-based approach [6, 25,
44, 47]. However, these are typically undirected graphs, and are primarily used
for finding tracts (using shortest paths), and not for filtering the data. The use of
directed graphs in this work allows us to prevent a path from doubling-up on itself
unnecessarily, while still allowing very efficient filtering of the entire data set. Still,
the graph building methods employed by these tractography methods could be a
source of inspiration.

Some of the work on mathematical morphology on tensor fields by Duits
et al. [18] also considered dilations along what can be considered as “paths”
following the local orientation. But rather than using path openings, more traditional
dilations and erosions were used (it is not immediately clear whether these
operations could be used to implement path openings). And instead of using a
graph-based approach, a PDE-based approach was used. Franken and Duits [20]
applied a similar approach to orientation scores (although without focussing on
morphological operators).

Bismuth et al. [4] developed a method to at least partially deal with curved
features in a close relative of path openings, by iteratively linking up approximately
linear segments. However, they only support a limited number of changes of
direction, and still rely on being able to define suitable directed acyclic graphs. In
contrast, here we simply forgo the requirement that the graph is acyclic. In addition,
our method could be used to link up approximately linear segments with different
orientations too, without the need to explicitly build chains of a certain length. It
is not immediately clear how some of their other refinements could translate to our
work though.

The technique recently developed by Morard et al. [38] could in theory also be
adapted to compute path openings on tensor fields, as it simply finds a number
of (potential) paths and then filters along those using a 1D algorithm (instead of
implicitly filtering along all paths). However, we would still need a suitable method
for finding paths. Also, it is not yet clear how well it approximates the “true” path
opening.
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2 Definitions and Notation

2.1 Mathematical Morphology and Openings

Mathematical morphology is a framework for non-linear image processing based
on (algebraic) lattices [22]. A lattice is a partially ordered set such that every two
elements have a uniquely defined least upper bound and a uniquely defined greatest
lower bound. These are called the join/supremum (‘_’) and meet/infimum (‘^’),
respectively. Typically, one works with lattices of images, using a partial order that
compares images in a pixel-wise fashion: an image is less than or equal to another
image if every pixel value in it is less than or equal to the corresponding pixel value
in the other image. We will work mostly with the lattice of graphs, in which one
graph is less than or equal to another graph if it is a subgraph of the other graph.

Central in the theory of mathematical morphology is a categorization of operators
based on the properties they have. For example, an operator is called an erosion if it
distributes over taking the meet (".a ^ b/ D ".a/ ^ ".b/). Another important class
of operator is the opening. An (algebraic) opening is an operator from a lattice to
another (possibly the same) lattice that is [22, 41]:

increasing a smaller input implies a smaller output,
anti-extensive the output is less than or equal to the input, and
idempotent the output is a fixed point of the operator.

So more input means more output, you cannot get more out than you put in, and
applying an opening twice does the same as applying it once. If an opening depends
on some parameter to control its “strength”, it is often possible to produce an
intermediate data structure called an opening transform that contains information
on which pixels to keep for what parameter values.

2.2 Tensors

We consider a tensor field to be an image whose pixel values are tensors based on
the (local) tangent space. For example, even though a vector can be considered a
tensor, we do not consider a colour image to describe a tensor field, as a colour
vector does not describe a direction in the image domain.

We will only concern ourselves with real, symmetric tensors based on (tangent
spaces of) Euclidean spaces. Most crucially, the tensors are based on some vector
spaceV with an inner product ‘�’. We consider symmetric tensors to be built from the
symmetrized tensor product ‘ˇ’ [7, 31], so a rank-r , degree-n (or order-n) tensor A
is any tensor that can be written as a weighted sum of r (but not less than r) tensors
of the form [11]

aˇn D a ˇ � � � ˇ a
„ ƒ‚ …

n times

, with a 2 V :
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The terms in such a weighted sum form a so-called “rank-one decomposition” of
a tensor, analogous to the eigendecomposition of a symmetric matrix. Due to its
linearity, the inner product on tensors is fully determined by

aˇn � bˇn D .a � b/n:

The identity tensor In is the unique degree-n symmetric tensor that satisfies
In � aˇn D kakn, with n even. See our previous work [21, 50] for details.

2.3 Graphs

A directed graph G can be identified with a pair .V; E/ containing a set of vertices
and a set of edges, with all of the edges being pairs of vertices. A graph is a subgraph
of another graph if both its vertex set and its edge set are subsets of the vertex set
and the edge set, respectively, of the other. A cycle is a sequence of edges of the
form .v1; v2/; .v2; v3/; : : : ; .vn; v1/ (that is, if an edge ends at vertex v then the next
edge starts at vertex v, and the first and last vertex are also the same). If a directed
graph does not contain any cycles it is called a directed acyclic graph, or DAG. The
vertices in a directed acyclic graph can always be ordered in such a way that if there
is an edge from a vertex to another vertex, then this other vertex comes after the first
in the ordering. Such an ordering is called a topological ordering of the graph.

3 From Tensor Fields to Paths in Graphs

Previously [21, 50, 51], we looked at generalizing mathematical morphology to
vector-valued images and tensor fields. For this, it was found that it is important
to construct rotation-invariant operators. This is in line with some older research
[2, 8, 42], as well as the more recent work by Angulo [1] for example. We
accomplished this by “lifting” to rotation-invariant representations. For tensor fields,
this boiled down to taking a function that maps a position to a tensor (describing a
tensor field), and turning it into a function that maps a tangent vector1 to a scalar
(for example: if f maps positions to degree-n tensors, then one could construct a
function f 0 on tangent vectors defined by f 0.x; v/ D f .x/ � vˇn, where the pair
.x; v/ represents a tangent vector). This makes it much easier to apply traditional
morphological concepts, as these are typically already suited to scalar images.

1A tangent vector can be considered an element in the tangent bundle, and is a combination of
a position and a vector describing an orientation/direction. Physically, a tangent vector can be
considered to describe the position and velocity of a particle, for example.
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Fig. 1 Illustration of what
(spherically deconvolved)
diffusion MRI data looks like.
There is a regular grid of
points, and for each of those
points there are zero or more
antipodal pairs of directions
with weights (the arrow
length corresponds to the
weight). Any two antipodal
directions have the same
weight. The idea is that
vectors that roughly line up
could be indicative of a fibre
bundle running through those
vectors

By adapting the theorem that showed the usefulness of lifting to a rotation-
invariant representation [51, Thm. 1], we can also consider operations like tensor
decomposition to be admissible lifting operators. That is, we can consider the
tensor decomposition as a rotation invariant map from the tensor space to a rotation
invariant lattice. Although we will not prove this here, this is part of our (intuitive)
justification for using tensor decompositions for morphological filters on tensor
fields.

Once we view a tensor field as a function on tangent vectors—or as a sparse set
of (weighted) tangent vectors (see Fig. 1)—it becomes natural to look for paths in
the data. This is like looking for streamlines [35] in a flow field, or performing trac-
tography on diffusion tensor fields [3, 14, 36, 39]. More fundamentally, orientations
really only make sense if they line up somehow, naturally giving rise to the concept
of a path.

In some cases, like gradients of functions, it might be more natural to consider
something like a “hyperplane/sheet” opening (extracting surfaces or other structures
that are more than one dimensional), but this is somewhat outside the scope of the
current work. We do show an example (using orientation scores) in 2D though,
where a hyperplane is also a line, so that it still makes sense to use a path opening.

In our examples we build graphs in which the vertices correspond to tangent
vectors. There is an edge from a tangent vector to another tangent vector with the
same orientation at a neighbouring position if and only if the neighbouring position
is within 0.65 times the cell spacing of the ray spanned by the first tangent vector.
More formally, if we denote the set of all possible edges on the current grid by N
(so regardless of which tangent vectors are in any particular data set), then (with unit
cell spacing, x1; x2 in some Euclidean space, v a unit vector in the tangent space,
and ignoring the weights associated with the tangent vectors):

..x1; v/; .x2; v// 2 N ” .x2 � x1/ � v � 0

and k.x2 � x1/ � ..x2 � x1/ � v/vk � 0:65:
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Fig. 2 A tangent vector is connected to another tangent vector with the same direction at a
neighbouring position if the neighbouring position is within a set distance from the ray spanned by
the first tangent vector. For connecting to different orientations, positions are chosen only if both
orientations “agree” on being able to reach/come from each other’s position

Fig. 3 If we connect vectors to other vectors in a bidirectional way (left), we quickly link
everything together and lose the idea behind finding paths (the grey line could be a single path!).
That is why we only connect vectors to other vectors that lie roughly in the direction the vector
is pointing to (right figure shows an example path). Note that the grey line segments connect the
midpoints of the arrows representing tangent vectors

We also connect tangent vectors to tangent vectors with a different orientation if
they “agree” on being able to reach each other’s position (see Fig. 2):

..x1; v1/; .x2; v2// 2 N ” ..x1; v1/; .x2; v1// 2 N
and ..x1; v2/; .x2; v2// 2 N :

If G D .V; E/ is the graph we build for a particular data set, with V containing all
the tangent vectors, then E D .V � V / \N . See Fig. 3 for why it is important that
the above relation is not symmetric.

The above connectivity scheme strikes a balance that seems to work reasonably
well in practice. However, it would definitely be interesting to examine more closely
what kind of connectivity makes sense for this kind of data. In particular, though it
might be tempting to try to fit “trajectories” through tangent vectors to determine
the connectivity between neighbouring positions and orientations, in practice the
discrete grid (of positions) works against this. Also, a good balance should be struck
between being able to track sharp turns and preventing spurious connections.
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Note that since in our applications we always have antipodal pairs of tangent
vectors, it is useful to have the concept of an “opposite”. For each graph G D .V; E/

we have a map of opposites o W V ! V that gives the antipodal partner of each
vertex. We have: .v1; v2/ 2 E ” .o.v2/; o.v1// 2 E , for all v1; v2 2 V .

4 Path Openings on Graphs with Cycles

Traditionally [23, 24], binary path openings are computed by constructing several
directed acyclic graphs (DAGs), one for each direction, like in Fig. 4. These graphs
are then used to determine the lengths of the longest paths running through each
point using a dynamic programming scheme. Said paths are constrained to form a
(connected) path in one of the graphs. So one can have an approximately horizontal
path, an approximately vertical path, etc. (depending on the number of directions
used). Some enhancements have been developed [34], but the basic idea remains the
same. This means that path openings are not well suited to extract curved features.

In most work on path openings, weighted graphs are considered, with the weights
corresponding to—binary—pixel values. In our setting it is more convenient to
simply consider the graph induced by those pixels that are “on”. We define a path a

in a graph G D .V; E/ to be a sequence of vertices such that any pair of consecutive
vertices is an edge in E . The set of vertices in a is denoted by �.a/, its length by
jaj, and the set of all paths in G by ˘.G/. A path opening on a directed acyclic
graph G, with path length threshold L, can then be defined as:

˛L.G/ D
[

f�.a/ j a 2 ˘.G/ and jaj � Lg :

Introducing cycles in the graph poses a problem: there is no such thing as
a longest path in the presence of a cycle. One solution is to constrain paths to
never visit the same vertex twice. However, finding the length of the longest path
through each vertex would then be NP-hard (even approximations are hard [5, 27]).
Constraining paths to never traverse the same edge twice might be simpler in some
cases, but it is not immediately clear in what cases, nor how we could (easily) find
such paths. Also, if the idea is to find the longest (or, rather, largest) path, why
should we avoid cycles in the path?

Fig. 4 A set of DAGs that has been used for (traditional) 2D path openings
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The key is to focus on path size (j�.a/j) instead of path length (jaj). For a DAG,
there is no difference, as a vertex can only occur once in a path in a DAG anyway,
but in the presence of cycles it can make a big difference. In particular, traversing a
cycle multiple times does not make the path larger (in the sense of the size of the set
of vertices covered by the path). In the interest of brevity, we will, from now on, say
“path size” instead of “the size of the set of vertices covered by a path”. So rather
than finding longest paths through vertices, we find, for each vertex, the maximum
size of all paths through that vertex. We thus (re)define the path opening as follows:

˛S .G/ D
[

f�.a/ j a 2 ˘.G/ and j�.a/j � Sg : (1)

The subscript S will be dropped whenever it is immaterial to the matter at hand.
Also, when convenient we equate ˛S .G/ with the subgraph of G D .V; E/ it
induces: .˛S .G/; f.a1; a2/ 2 E j a1; a2 2 ˛S .G/g/.

Note that the above allows us to apply path openings to oriented data and find
curved paths, as we demonstrate in Sect. 5. Also, we give an efficient algorithm to
compute ˛S in Sect. 4.2. But first we show that ˛S is indeed worthy of the title path
opening.

4.1 ˛S is an Algebraic Opening

The above develops a generalization of the traditional path opening, but it is not
immediately clear that the result is in fact still an opening in the algebraic sense of
the word. That is, it should be increasing, anti-extensive and idempotent. Here we
first show that the operator does in fact still have these properties in an abstract
graph-based setting, and then go on to discuss how this applies to some more
concrete settings.

Theorem 1 A path opening ˛ on directed graphs is an opening: increasing, anti-
extensive and idempotent. In particular, for all directed graphs G and H , if G is
a subgraph of H , then ˛.G/ is a subset of ˛.H/ (increasing). Also, ˛.G/ induces
a subgraph of G (anti-extensive), and ˛.˛.G// D ˛.G/ (idempotent), where we
equate ˛.G/ with the subgraph of G that it induces.

Proof We start by observing that ˛ is almost trivially anti-extensive: by definition it
returns a subset of the vertices of the graph (inducing a subgraph).

To see that ˛ is increasing, observe that if G is a subgraph of H , any path possible
in G is also possible in H . The maximum path size through every vertex in H that
is also in G should thus be greater than or equal to the maximum path size of the
same vertex in G. It follows that ˛.G/ � ˛.H/.

That ˛ is idempotent follows from the fact that if it returns a vertex, it also returns
all vertices in the path that made it return that vertex. So all of the vertices returned
by the path opening will have large enough paths in the induced subgraph to be
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preserved by a second application of the path opening: ˛.˛.G// � ˛.G/. And since
we already concluded that ˛ is anti-extensive, implying that ˛.˛.G// � ˛.G/, we
have that ˛ must be idempotent.

In the above, filtering is done by removing vertices from the graph rather than
“turning them off” (as in traditional path openings). However, if we have a graph
with boolean weights, then we can simply consider the subgraph that contains only
those vertices that are turned on. Since paths do not propagate through vertices that
are turned off, this has no effect on the result. Using this trick the above can be
interpreted as a(nother) proof that traditional path openings are indeed openings.

When applying the above to orientation scores (see Sect. 5.1), where we use
tensor decompositions to compute sparse sets of tangent vectors, it is not clear yet
to what extent the whole procedure (decomposition, filtering, reconstruction) can
be considered an opening. The main issues are picking a suitable order, and the
possible ambiguity of tensor decompositions. Since the path opening itself is anti-
extensive, we suspect the Loewner order [8, 50] might be sufficient to prove anti-
extensivity, but it is unlikely to be of use for proving increasingness. As for tensors
with ambiguous decompositions (analogous to having eigenvalues with multiplicity
greater than one), a more detailed study of how often and where they occur would
be needed. As it is, we consider this firmly outside the scope of the current work,
but look forward to future developments.

4.2 Implementation

The first step in realizing an efficient algorithm to find the maximum path sizes
through all vertices, is to observe that all vertices within a cycle share the same
longest path size, and that this size is greater than or equal to the cycle size. Also,
since for counting the path size it does not matter where we enter the loop, we can
contract any loop of n vertices into a single vertex that we count as n vertices without
affecting the results (see Fig. 5). If we do this with all cycles, then we clearly end up

6 8

88
8

8

8
8

8

6 8

88
8 8

3
8

Fig. 5 Left: original directed graph containing a cycle (dashed), along with the maximum path
“lengths” through each vertex. Right: same graph after contracting the cycle into a single vertex
with weight 3 (rather than 1)
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Algorithm 1: Path opening on graphs, allowing for cycles
Input : A directed vertex-weighted graph G D .V; E; w/, with w W V !R, a map of

opposites o W V !V , and a threshold S .
Output: A set A � V .

H D .V 0; E 0; w0/ graph of strongly connected components in G

construct o0 W V 0!V 0 such that v 2 v0 and u 2 u0 and o.v/ D u H) o0.v0/ D u0

find �C W V 0!R using Algorithm 2
A ;
for v0 2 V 0 do

� �C.v0/C w0.v0/C �C.o0.v0//

if � � S then
A A[ v0

with a directed acyclic graph, allowing the application of a traditional path opening
algorithm.

Can we easily find the graph resulting from contracting all cycles? (Known as
the condensation of a graph.) Yes: by finding strongly connected components. A
strongly connected component in a directed graph is a (maximal) set of vertices
such that there is a path in the graph from every vertex to every other vertex in
the set. The set of all vertices in a directed graph can be partitioned into strongly
connected components. As all vertices in a cycle clearly belong to the same strongly
connected component, contracting the cycle does not change the partition. So after
we have contracted all cycles, each vertex of the contracted graph corresponds to a
strongly connected component in the original graph. We use Tarjan’s algorithm [46]
to find all the strongly connected components in a graph in linear time.

Instead of just counting the number of vertices in a path, Algorithm 1 uses the
sum of all vertex (and edge) weights associated with the set of vertices (and edges)
covered by the path. The weight of a strongly connected component is the sum of the
weights of the vertices (and edges) in the component. Also, we only find the sizes
of paths that end in each vertex (up to, but not including, the weight of the vertex
itself). Since in our context the vertices (tangent vectors) come in antipodal pairs,
the maximum size of a path through a vertex is then determined by combining its
associated path size with the path size found for its opposite (and the vertex’s own
weight).

Our implementation of a (one-sided) path opening on a directed (acyclic) graph
in Algorithm 2 uses an algorithm by Kahn [26] to compute the topological ordering,
but avoids outputting this topological order by integrating the body of the (outer)
loop in Algorithm 2 with the topological sort.
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Algorithm 2: One-sided path opening transform
Input : A directed acyclic vertex-weighted graph G D .V; E; w/, with w W V !R.
Output: A map � W V !R giving the maximum lengths of paths ending in each vertex

(excluding the weight of the vertex itself).

initialize � W V !R to zero
O  topological sort of V

for o in O do
l  �.o/C w.o/

for s 2 V j .o; s/ 2 E do
�.s/ maxf�.s/; lg

5 Examples

We now apply the above to two types of oriented data: tensorial orientation scores
and diffusion MRI data. These proof-of-concepts illustrate how our methods can be
applied to oriented data. We use tensor decomposition and spherical deconvolution
to obtain sparse sets of tangent vectors and associated weights that together describe
the data. We then build graphs on these tangent vectors using simple rules for
deciding what vectors can be connected. Finally, we apply the above to filter the
data, and show the results.

5.1 Orientation Scores

Our first example2 takes a 2D image and computes an orientation score inspired on
work by Duits and Franken [15–17, 19, 20], except that we use a fourth order tensor
to represent the orientation score rather than a discrete number of directions based
on a discrete approximation of a tensor-valued filter defined in the Fourier domain

by F.�/ D �ˇn

k�kn . We then use the (symmetric) higher order power method [30] in
combination with multiplicative update rules for non-negative least squares [43] to
find a decomposition of the tensors into positively weighted rank-one tensors and the
identity tensor (in as far as this is possible). Since it proved slightly simpler to extract
positive components from a tensor than negative components, we ignore negative
components; our example has a dark background and light foreground to ensure
that the main features are represented by positive components. We also ignore the
weight of the identity tensor, as we are only interested in oriented features. The
compound effect of these measures is shown in Fig. 6.

Having found directions and weights, we rotate the directions by 90ı so they
point along the edge/line, and turn them into antipodal pairs. For building a graph

2Code available at http://bit.ly/1zpfIXf.

http://bit.ly/1zpfIXf
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Fig. 6 From left to right: the original image; the reconstruction from the vectors and values
extracted from the orientation tensors (ignoring any negatively weighted components, as well as
the identity component); the reconstruction after path opening with a threshold of 400 pixels. Since
the image dimensions are 387 � 517, this threshold is way too large for a traditional path opening
to have picked up any part of the curves. Note that for the path opening the weights are ignored
(and kept unchanged). Grey values have been inverted, so the filter was run on an image with a
dark background and light curve

Fig. 7 Left: the original orientations found (near the top-most crossing in Fig. 6). Right: the output
of the path opening. The orientations are shown as small line segments extending symmetrically
from the center of each pixel (the length corresponding to the weight)

on the orientation score data, we use the rules already discussed in Sect. 3. For this
example we use one additional constraint though: we only connect tangent vectors
to other tangent vectors if they differ in angle by less than 30ı. We compute a path
opening on the graph, and then reconstruct the data from the output graph. Figure 7
shows what the intermediate sets of tangent vectors look like.
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Figure 6 shows that we can extract a long curved path from a noisy background,
even though we use a threshold that is in fact higher than the width of the image,
and definitely higher than any of the approximately straight paths that could have
been picked up by a traditional path opening. Also, our method is not limited to
fixed set of orientations, it works with whatever orientations are found by the tensor
decompositions. This is in stark contrast to traditional path openings, which have
to process the entire image once per orientation, and require relatively complicated
schemes to be able to distinguish between more than eight orientations (in 2D) [52].

5.2 Diffusion MRI

Our spherically deconvolved diffusion MRI dataset has a (short) list of directions
and associated weights for each point in a regular (although slightly anisotropic) 3D
grid. Because of the physics of diffusion, these directions again come in antipodal
pairs, with the same weight for both directions. To build a graph on the diffusion
MRI data, we use the same rules as explained in Sect. 3.

ExploreDTI [33] was used for motion and eddy currents correction, while Star-
Track [12] was used for spherical deconvolution. In principle tensor decomposition
could be considered a kind of spherical deconvolution, but for diffusion MRI it is
often appropriate to use a different kernel (fibre response function) to deconvolve
with. Also, we typically do not start with a tensor, but rather with measurements
in many discrete directions. The resulting path opening is demonstrated in Fig. 8.
Figure 9 shows the largest strongly connected component.

In this example we remove tangent vectors whose weight is below a threshold.
However, at crossings, the values tend to be smaller than in regions with a single

Fig. 8 The result of performing a path opening on spherically deconvolved (and thresholded)
diffusion MRI data. From left to right: the original graph; a path opening with length threshold
five; and a path opening with length threshold 100. The most striking differences are visible along
the periphery. Path length was measured in voxels; the complete volume contains 128 � 128� 69

voxels. Interactive version available at http://bit.ly/1zpfIXf

http://bit.ly/1zpfIXf
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Fig. 9 Largest strongly
connected component present
in the (thresholded) diffusion
MRI data (containing 16,540
elements). Apart from this
strongly connected
component there was one
other of a size of several
thousands (corresponding to
the noisy blob at the bottom
of the data visible in Fig. 8),
and two with a size of only
four elements. All 668,966
remaining strongly connected
components had size one (so
were not part of a cycle)

fibre orientation.3 Our attempt at compensating for this assumes that all directions
suffer the same attenuation, and that this factor is equal to the maximum weight for
a voxel divided by the sum of all the weights in a voxel (compensating for the fact
that vectors come in pairs).

A more traditional way of finding paths/fibres in diffusion MRI is using
tractograpy. In a common variant of tractography the diffusion MRI data is used
to extract a finite set of trajectories/fibres representing the layout of the actual
nerve fibre bundles. Here, tractography was performed using StarTrack [13].
Figure 10 shows some examples of how the constructed graph compares to more
traditional tractography. For comparison purposes we took the markers used to
select trajectories in the tractography data and used those for what amounts to
a flood fill procedure on the graph we constructed, limited to staying within a
certain number of steps from the marker. The main differences (in what structures
are found) appear to be caused by our method’s tendency to be more sensitive to
small branches (it picks up on what, when taking the data at face value, could be a
connection from the fornices to the corpus callosum for example), and the traditional
method’s ability to follow trajectories at a low(er) threshold (at least in order to cross
small gaps).

3This makes some intuitive sense, as every voxel contains the same amount of space, but at a
crossing it is shared by fibres of multiple orientations.
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Fig. 10 Tractography of the corpus callosum (top) and the fornices (bottom), and propagation
of the same markers (seedpoints) on the graph we constructed (on the right, showing all tangent
vectors within 20 steps of the markers). Note that the views are all at roughly the same scale and
look onto the anterior of the brain, but that the graph-based images are much sparser due to only
plotting tangent vectors at voxel positions (as well lines between connected tangent vectors)

Although our method is perhaps not really suitable as a drop-in replacement for
more traditional tractography methods, it does have some interesting characteris-
tics:

• Symmetry of the connections. By construction, if our method finds a path from
position and orientation A to position and orientation B, it will also find a
reversed path. Tractography methods based on numerically integrating PDEs will
tend to miss small branches of larger tracts.

• Output data has the same format as input data (it is just sparser). In fact, as the
result of an algebraic opening, the output is a subset of the input.

Also, in principle, we could imagine first thinning the data (within the same kind of
framework), and then filtering it. If we record the thickness of the bundles, this could
then be taken into account during filtering. Essentially this would mean working
with bundles rather than paths.
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6 Conclusion and Future Work

We have shown how we can deal with cycles in graphs so as to still have an easy
and efficient algorithm for path openings. The idea is to contract all cycles (or
rather, strongly connected components) to single vertices weighted by the sum of the
weights of the vertices in the contracted cycles. The remaining acyclic condensation
graph can be filtered using more traditional path opening algorithms.

In contrast to traditional path openings, our approach allows extracting curved
paths without any problems. We can also easily support tensor fields and similar
data. In principle we could even construct path openings for data whose “image
domain” is a sphere or other curved space/manifold. We do note, however, that
picking any arbitrary graph structure is unlikely to be successful, some amount of
sparsity and a tendency to avoid (unnecessary) cycles is crucial in getting sensible
results. Our examples show that it is entirely feasible to apply our method to certain
classes of real-world data though.

In the future we hope to look at other attributes than length or size for paths and
proper greyscale path openings. We suspect that for certain attributes the strongly
connected component decomposition can still help, as long as we want to compute
those attributes over maximal paths (maximal in the sense that there are no other
paths of which they are proper subsets). The condensation of a graph makes it easier
to deal with cycles when analyzing paths in directed graphs.

Regarding tensors and tensor decompositions, there are still some unresolved
issues. For example, how likely is it to have an ambiguous (minimum symmetric-
rank) tensor decomposition? How does this change if we add identity tensors to
the possible “basis” tensors? What if we put certain constraints on the tensors?
Ultimately, we hope to be able to consider the path openings we have created here as
algebraic openings on tensor fields (and not just graphs built on top of those tensor
fields), but so far the possibility or impossibility of this is still an open question. In
addition, it would be interesting to explore tensor decompositions that can also deal
with negative components, for use with orientation scores.

We are also highly interested in looking at bundles (paths with a width) rather
than paths (without width). In 3D it might also be worthwhile to attempt finding
sheets rather than paths. Finally, we would like to develop versions of our path
openings that are more robust to noise [10, 45], and experiment with “greyscale”
path openings on (decomposed) tensor fields.
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