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Abstract In this paper we give closed-form expressions of the orientation tensors
up to the order four associated with some axially-symmetric orientation distribution
functions (ODF), including the well-known von Mises-Fisher, Watson, and de la
Vallée Poussin ODFs. Each is characterized by a mean direction and a concentration
parameter. Then, we use these elementary ODFs as building blocks to construct new
ones with a specified material symmetry and derive the corresponding orientation
tensors. For a general ODF we present a systematic way of calculating the
corresponding orientation tensors from certain coefficients of the expansion of the
ODF in spherical harmonics.
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1 Introduction

Fibrous composites are ubiquitous in nature and occur over a wide range of length
scales. While there are familiar examples in engineering, materials sciences, and
geophysics, in biology, they arise as nanoscale fibrous macromolecular systems,
sub-microscopic fibrous bundles, and even macroscopic fibrous tissues and organs.
There is an increasing appreciation and desire to describe, predict, and measure
material and transport processes within these complex systems. Central to achieving
this goal is developing a mathematical and statistical framework like the one
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presented here, from which one can build constitutive laws and more precise,
accurate, and predictive models of material behavior. In the medical imaging field,
there has been much interest determining orientation distribution functions (ODF)
in brain white matter. For this application, the ODFs we consider and propose here
can be explicitly included in models of nerve fiber orientation within an imaging
voxel, whose parameters could be measured or estimated from MRI data.

The microscopic description of fiber orientation in fibrous materials, which are
made of a large collection of rod-like objects, is embodied in the ODF, which is
a non-negative function � defined on the unit sphere S2 of R

3. It is normalized
so that

R
S2
�.n/ d� D 1, where d� is the area element in S2 and n is a generic

vector on the unit sphere S2 that can be parametrized by spherical coordinates as
n D .cos � sin �; sin � sin �; cos�/T with 0 � � � 2� and 0 � � � � . If �
satisfies �.n/ D �.�n/, then � is said to be antipodally symmetric.

Since the work of Advani and Tucker [1], orientation tensors of even orders have
been used to describe the orientation of fibers at the macroscopic scale. For a given
positive integer k, the kth order orientation tensor is given by the expected value,
with respect to the orientation distribution function �, over all orientations n 2 S2:

hn˝ki� WD
Z

S2
�.n/n˝k d�; (1)

where, n˝k denotes the kth-power tensor product of n defined by

n˝k D n ˝ n ˝ � � � ˝ n„ ƒ‚ …
k times

:

Orientation tensors enjoy certain properties that follow immediately from their
definition (1). First, the kth order orientation tensor hn˝ki� is totally symmetric, i.e.,
its components satisfy

.hn˝ki�/i1;��� ;ik D .hn˝ki�/i�.1/;��� ;i�.k/ ;

for all permutations �.�/ of the integers 1; � � � ; k. Second, since n is a unit vector,
all the components of hn˝ki� are less than or equal to one in absolute value. Third,
the contraction of the kth order orientation tensor with respect to any two indices is
the .k � 2/th order orientation tensor, i.e.,

.hn˝ki�/i1;��� ;ik�2;j;j D .hn˝k�2i�/i1;��� ;ik�2
:

Furthermore, the trace of even-order orientation tensors hn˝2ki� is equal to one

.hn˝2ki�/i1;��� ;ik ;i1;��� ;ik D 1;
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and the complete contraction of odd-order orientation tensors hn˝2kC1i� is equal to
the orientation tensor of the first order, i.e.,

.hn˝2kC1i�/i1;��� ;ik ;i1;��� ;ik ;j D .hni�/j :

Any ODF � can be (uniquely) decomposed into an antipodally symmetric part �s

and an antipodally skew-symmetric part �a according to

�.n/ D �s.n/C �a.n/; (2)

where

�s.n/ WD 1
2
.�.n/C �.�n// and �a.n/ WD 1

2
.�.n/� �.�n//:

It should be noted that the antipodally symmetric part �s is always an ODF, i.e., it
is a non-negative function in S2 and its integral over S2 is equal to one. In general,
the antipodally skew-symmetric part is not, however, an orientation distribution
function.

By exploiting the fact that integration over S2 is invariant under the change of
variable n ! �n it follows that for k even we have

Z

S2
�.n/n˝k d� D

Z

S2
�.�n/n˝k d� D

Z

S2

1
2
.�.n/C �.�n//n˝k d�;

and that for k odd we have
Z

S2
�.n/n˝k d� D �

Z

S2
�.�n/n˝k d� D

Z

S2

1
2
.�.n/� �.�n//n˝k d�:

Therefore, even-order orientation tensors depend only on the antipodally symmetric
part of � and odd-order orientation tensors depend only on the antipodally skew
symmetric part of �. As a consequence, when � is antipodally symmetric all
odd-order orientation tensors vanish. The orientation tensor of order k, hn˝ki�, is
also called a fabric tensor of the first kind of rank k [16].

For an ODF �.n/ defined on the unit sphere S2, one can consider the kth order
approximation

Q�.n/ WD C0 C C1 � n C tr.C2hn˝2i�/C tr.C3hn˝3i�/C � � � C tr.Ckhn˝ki�/;

where the coefficients Ci , i D 0; : : : ; k, each of which is a totally symmetric tensor
of order i , are determined so that the least-squares functional

E .�/ WD
Z

S2
Œ�.n/� Q�.n/�2 d�;
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is minimized. However, as explained in the seminal paper of Kanatani [16], these
coefficients tensors are not uniquely defined. The reason is that the even-order
tensors 1, n˝2, n˝4 : : : are not linearly independent, and similarly, the odd-order
tensors n, n˝3 : : : are not linearly independent. In fact, since knk D 1, n˝l can be
obtained from n˝k , with k � l C 2, by repeated contractions.

We note that if �.n/ is antipodally symmetric, which is the condition that we
will consider next, then all odd-order coefficient tensors vanish. Let Vl be the vector
space of functions defined on S2 spanned by n˝l . Then, because of what we stated
earlier on the linear dependence of 1, n˝2, n˝4 : : : , we have V0 � V2 � V4 : : :.
Therefore, if one wants to approximate �.n/ up to order k (even), then it suffices to
simply consider an approximation of the form

�.n/ � 1

4�
Fi1���ik ni1 � � �nik ; (3)

where Fi1���ik are the components of a kth order totally symmetric tensor called the
fabric tensor of the second kind of rank k [16]. The fabric tensors of the second kind
of rank 0, 2, and 4 are, respectively

F D 1; F D 15

2

�hn˝2i� � 1
5
I
�
; FD 315

8

�hn˝4i� � 1
3
.I ˝ hn˝2i�/s C 1

7
.I ˝ I/s

�
:

Here and throughout the paper, I denotes the (second-order) identity tensor, and the
superscript s on a tensor indicates taking the totally symmetric part of that tensor.

Because the approximation (3) has a compact form, the number of tensor
components needed for the computation is minimal. However, to get a higher-order
approximation one must recompute the tensor. By a Gram-Schmidt process, we can
get the orthogonal decomposition of Vk D V 0

k ˚ V 0
k�2 ˚ � � � ˚ V 0

0 where V 0
0 D V0

and V 0
l is the orthogonal complement of Vl�2 in Vl with respect to the L2.S2/-inner

product. Then, using this orthogonal decomposition, we obtain the more practical
approximation of �.n/ [15, 16]:

�.n/ � 1

4�

�
D C tr.Dhn˝2i�/C tr.Dhn˝4i�/C � � � � : (4)

The coefficients D , D, and D are called the fabric tensors of the third kind of rank
0, 2, and 4, respectively. They are given by

D D 1; D D 15

2

�hn˝2i� � 1
3
I
�
; DD 315

8

�hn˝4i� � 3
7
.I ˝ hn˝2i�/s C 1

35
.I ˝ I/s

�
:

In the field of diffusion MRI, high angular diffusion resolution imaging (HARDI)
is a commonly used modality for non-invasively probing water diffusion in fibrous
biological tissues such as muscle and brain white matter. HARDI encompasses
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several techniques such as Q-ball imaging [31], diffusion orientation transform MRI
[24], and spherical deconvolution MRI [30]. In general, these techniques produce a
function defined on the unit sphere. Various high-order tensor decompositions have
been used for approximating such functions. The reader is referred to the recent
review article [28] on the use of higher-order tensors in diffusion imaging. We
here particularly mention the work of Özarslan and Mareci [23] who employed an
approximation of the form (3), and the work of Florack and co-authors [9, 10] who
used an approximation of the form (4).

We mention that orientation tensors of even order have been widely used in
the macroscopic description of short-fiber composites [2, 14], fiber suspensions
[7], damage mechanics [25, 33], etc. For classical solids and fluids, the even-order
orientation tensors suffice for the macroscopic description of such media. However,
there are natural and man-made materials that exhibit chiral behavior, i.e., they are
not invariant under inversion. Such materials are called chiral, noncentrosymmetric,
or hemitropic [17]. For instance, quartz, biological molecules such as the DNA
double helix, and composites with helical or screw-shaped inclusions, polar chiral
materials [6, 12, 22], and chiral metamaterials [34] all show different behaviors for
opposite directions. Material properties such as piezoelectricity and pyroelectricity
are represented by odd-order tensors [17]. It is therefore necessary to use odd-order
orientation tensors as well for the macroscopic description of such properties for
these types of media. We should also mention that odd-order orientation tensors are
necessary for dealing with singularities in fiber arrangements and in fiber splaying
and merging. Furthermore, in the work of Liu et al. [18], odd-order diffusion tensors
are considered for the measurement of the phases of magnetic resonance signals.

In the remainder of the paper, we will give the expressions of the orientation
tensors up to the fourth order for ODFs with some prescribed material symmetry
classes. The notation that will be used is described below.

Let E 3 denote the three-dimensional Euclidean space and let feigiD1;2;3 be an
orthonormal basis of it. Any vector v in E 3 can be represented as v D viei . The
inner product of two vectors a and b is denoted by a � b.

A second-order tensor T of the three-dimensional space E 3 is a linear map that
assigns to each vector in E 3 a vector in E 3. We denote by u ˝ v the second-order
tensor that assigns to a vector w the vector .v � w/u. A second-order tensor can
thus be represented as T D Tij ei ˝ ej . A second-order tensor T is symmetric if
Tij D Tj i for all i; j D 1; 2; 3. The tensor product a ˝b of two vectors is the tensor
that assigns to each vector u the vector .b � u/a. In components .a ˝ b/ij D aibj .

A third-order tensor T can be seen as a linear map that assigns a vector
to each second-order tensor. A third-order tensor admits the representation
T D Tijkei ˝ ej ˝ ek . This tensor is said to be symmetric in the last two indices if
Tijk D Tikj for all i; j; k D 1; 2; 3, and totally symmetric if in addition Tijk D Tjik

for all i; j; k D 1; 2; 3.
A fourth-order tensor T can be seen as a linear map that assigns to each second-

order tensor a second-order tensor. A fourth-order tensor admits the representation
T D Tijklei ˝ ej ˝ ek ˝ el . This tensor is said to possess the minor symmetries
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if Tijkl D Tjikl D Tijlk for all i; j; k; l D 1; 2; 3, the major symmetry if Tijkl D
Tklij for all i; j; k; l D 1; 2; 3, and total symmetry if in addition to the minor and
major symmetries it satisfies Tijkl D Tikjl for all i; j; k; l D 1; 2; 3. Any fourth-
order tensor T possessing the minor and major symmetries can be decomposed, in
a unique manner, into its totally symmetric part Ts and its asymmetric part Ta as:
T D T

s C T
a. The components of the totally symmetric and asymmetric parts are

[3, 21]

T sijkl D 1
3
.Tijkl C Tikjl C Tilkj/; T aijkl D 1

3
.2Tijkl � Tikjl � Tilkj/: (5)

Let I denote the fourth-order identity tensor whose components are given by Iijkl D
1
2
.ıikıjl C ıil ıjk/. Then the components of its totally symmetric part Is are I sijkl D
1
3
.ıikıjl C ıilıjk C ıij ıkl /, and the components of its asymmetric part Ia are I aijkl D
1
6
.ıikıjl C ıil ıjk � 2ıij ıkl /.

We note that vectors and second-order tensors are easily dealt with by using
linear algebra operations. This is not the case for third- and fourth-order tensors. We
therefore introduce a (non-physical) six-dimensional space OE so that the usual linear
algebra operations can be used for the manipulation of third-order tensors that are
symmetric with respect to the last two indices and fourth-order tensors possessing
the minor symmetries.

Let Oe1 D e1 ˝ e1, Oe2 D e2 ˝ e2, Oe3 D e3 ˝ e3, Oe4 D 2�1=2.e2 ˝ e3 C e3 ˝ e2/,
Oe5 D 2�1=2.e1˝e3Ce3˝e1/ and Oe6 D 2�1=2.e1˝e2Ce2˝e1/. Then any third-order

tensor T D Tijkei ˝ ej ˝ ek with Tijk D Tikj can be represented by

OT D OTi˛ei ˝ Oe˛;

where the Latin indices range from 1 to 3 and the Greek indices run from 1 to 6.
Similarly, any fourth-order tensor T D Tijklei ˝ej ˝ek ˝el with Tijkl D Tjikl D Tijlk

can be represented by

OT D OT˛ˇ Oe˛ ˝ Oeˇ:

In this way, the fourth-order identity tensor I is represented by, OI, the second-order
identity tensor in OE whose components are OI˛ˇ D ı˛ˇ.

2 Isotropic, Transversely Isotropic, and Uniform ODFs

The isotropic ODF is given by

�iso.n/ D 1

4�
: (6)
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Fig. 1 (a) Spatial randomly oriented fibers, (b) planar randomly oriented fibers, (c) totally aligned
fibers

The isotropic orientation averages of n˝2 and n˝4 are given by

hn˝2iiso WD
Z

S2
�iso.n/n˝2 d� D 1

3
I; (7)

and

hn˝4iiso WD
Z

S2
�iso.n/n˝4 d� D 1

5
I
s ; (8)

where I
s is the totally symmetric part (defined by (5)1) of the fourth-order

identity tensor I. The isotropic distribution (6) represents a uniform distribution of
orientations on the unit sphere S2. This distribution corresponds to fibers that are
randomly oriented as depicted in Fig. 1a.

There are two other special distributions that need to be mentioned here. First,
the distribution

�iso;m.n/ D 1

2�
ı.n � m/; (9)

represents a uniform distribution of orientations in the plane perpendicular to m,
where m is a unit vector and ı.�/ denotes the Dirac delta function. This distribution
corresponds to randomly oriented fibers in planes perpendicular to m, see Fig. 1b.
The second- and fourth-order orientation tensors associated with (9) are

hn˝2iiso;m WD
Z

S2
�iso;m.n/n˝2 d� D 1

2
.p˝2 C q˝2/;
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and

hn˝4iiso;m WD
Z

S2
�iso;m.n/n˝4 d� D 1

8

�
3p˝4 C 3q˝4 C p˝2 ˝ q˝2 C q˝2 ˝ p˝2

C.p ˝ q/˝2 C .q ˝ p/˝2 C p ˝ q˝2 ˝ p C q ˝ p˝2 ˝ q
�
;

where p and q are any two orthogonal unit vectors in the plane perpendicular to m.
Second, the distribution

�m.n/ D ı.1 � .n � m/2/

4�
p
1 � .n � m/2

; (10)

represents orientations totally aligned with m. This distribution corresponds to fibers
oriented along m, see Fig. 1c. We note that this orientation distribution can simply
be expressed as �m.n/ D ım.n/, where ım.�/ is the spherical delta function defined
such that for any functions f on S2 we have

Z

S2
ım.n/f .n/ d� D f .m/:

It is given by ım.n/ D 1
sin� ı.� � �0/ı.� � �0/ where .�; �/ and .�0; �0/ are the

spherical coordinates of n and m, respectively, see e.g., [29, p. 211]. The second-
and fourth-order orientation tensors associated with (10) are

hn˝2im WD
Z

S2
�m.n/n˝2 d� D m˝2; (11)

and

hn˝4im WD
Z

S2
�m.n/n˝4 d� D m˝4: (12)

3 Axially-Symmetric ODFs

We say that an ODF %m.�/ is axially symmetric with respect to m 2 S2 if %m.Rn/ D
%m.n/ for all (proper) rotations R about the vector m. The ODF %m.�/ is also called
transversely hemitropic with m as the direction of transverse hemitropy. In this case,
there exists a positive function Q%.�/ defined on the interval Œ0; �� such that

%m.n/ D Q%.˚/; (13)
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where cos˚ D m � n. As %m.�/ is normalized, the function Q%.�/ further satisfies

2�

Z �

0

Q%.˚/ sin˚ d˚ D 1:

If, in addition the ODF %m.�/ is antipodally symmetric, which is the case when
Q%.˚/ D Q%.� � ˚/ for all ˚ 2 Œ0; ��, then the ODF %m.�/ is called transversely
isotropic with m as the direction of transverse isotropy.

The first-order orientation tensor, corresponding to the axially symmetric distri-
bution %e3 , is

hni%e3
WD
Z

S2
%e3 .n/n d� D

2

4
0

0

A

3

5 ;

and the corresponding second-order orientation tensor is

hn˝2i%e3
WD
Z

S2
%e3 .n/n

˝2 d� D
2

4
B 0 0

0 B 0

0 0 1 � 2B

3

5 ;

where

A D 2�

Z �

0

cos˚ sin˚ Q%.˚/ d˚; B D �

Z �

0

sin3 ˚ Q%.˚/ d˚: (14)

The corresponding third-order orientation tensor,

hn˝3i%e3
WD
Z

S2
%e3 .n/n

˝3 d�;

has the matrix representation

2

4
0 0 0 0

p
2C 0

0 0 0
p
2C 0 0

C C A� 2C 0 0 0

3

5 ;

where

C D �

Z �

0

cos˚ sin3 ˚ Q%.˚/ d˚: (15)
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Similarly, the corresponding fourth-order orientation tensor,

hn˝4i%e3
WD
Z

S2
�%e3 .n/n

˝4 d�;

has the 6D second-order tensor representation

2

6
6
6
6
6
6
6
4

3D D F 0 0 0

D 3D F 0 0 0

F F E 0 0 0

0 0 0 2F 0 0

0 0 0 0 2F 0

0 0 0 0 0 2D

3

7
7
7
7
7
7
7
5

;

where

D D 1
4
�

Z �

0

sin5 ˚ Q%.˚/ d˚; (16a)

E D 2�

Z �

0

cos4 ˚ sin5 ˚ Q%.˚/ d˚; (16b)

F D �

Z �

0

cos2 ˚ sin3 ˚ Q%.˚/ d˚: (16c)

As the trace of the fourth-order orientation tensor is equal to one, one can easily
verify that 8D C E C 4F D 2�

R �
0

sin˚ Q%.˚/ d˚ D 1.
In the following subsections we will give explicit expressions of the orientation

tensors up to the order four for several uni-modal axially symmetric ODFs. All
these orientation distributions are characterized with the modal vector (mean axis) m
and a concentration parameter � 2 Œ0; �1/. When the concentration parameter � is
equal to zero, the orientation distribution reduces to the isotropic distribution (6). On
the other hand, when the concentration parameter � approaches �1 the orientation
distribution tends to the totally aligned orientation distribution (10).

3.1 The von Mises-Fisher ODF

The widely used uni-modal orientation distribution is the Fisher distribution (also
known as the von Mises-Fisher distribution), with modal vector m 2 S2 and
concentration parameter � > 0; it is given by (see e.g., [19, 35])

�MF
m;� .n/ D 	MF.�/

4�
exp.�m � n/; (17)
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Fig. 2 Plots of the
transversely hemitropic
ODF (17) for � D 1, 2, 5,
and 10

where

	MF.�/ D �

sinh �
:

In Fig. 2 we give plots of (17) for various values of the concentration parameter �.
It should be noted that this distribution is not invariant under the inversion of
directions: n 7! �n, and hence it is not antipodally symmetric.

When m D e3, the corresponding first-order orientation tensor is

hniMF
m3;�

WD
Z

S2
�MF

m3;�
.n/n d� D 1

�

2

4
0

0

˛.�/

3

5 ;

and the corresponding second-order orientation tensor is

hn˝2iMF
m3;�

WD
Z

S2
�MF

m3;�
.n/n˝2 d� D 1

�2

2

4
˛.�/ 0 0

0 ˛.�/ 0

0 0 �2 � 2˛.�/

3

5 ;

where

˛.�/ D 	MF.�/ cosh � � 1:

The corresponding third-order orientation tensor

hn˝3iMF
m3;�

WD
Z

S2
�MF

m3;�
.n/n˝3 d�;

has the matrix representation

1

�3

2

4
0 0 0 0

p
2ˇ.�/ 0

0 0 0
p
2ˇ.�/ 0 0

ˇ.�/ ˇ.�/ 
.�/ 0 0 0

3

5 ;

where

ˇ.�/ D .�2 C 3/� 3	MF.�/ cosh �;


.�/ D .�2 C 6/	MF.�/ cosh � � 3.�2 C 2/:
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Note that as the contraction of hn˝3iMF
m3;�

is equal to hniMF
m3;�

we can verify that

2ˇ.�/C 
.�/ D �2˛.�/:

Similarly, the corresponding fourth-order orientation tensor,

hn˝4iMF
m3;�

WD
Z

S2
�MF

m3;�
.n/n˝4 d�;

has the 6D second-order tensor representation

1

�4

2

6
6
6
6
6
6
6
4

3a.�/ a.�/ c.�/ 0 0 0

a.�/ 3a.�/ c.�/ 0 0 0

c.�/ c.�/ b.�/ 0 0 0

0 0 0 2c.�/ 0 0

0 0 0 0 2c.�/ 0

0 0 0 0 0 2a.�/

3

7
7
7
7
7
7
7
5

;

where

a.�/ D �2 C 3.1� 	MF.�/ cosh �/;

b.�/ D �4 C 12�2 C 24� 4.�2 C 6/	MF.�/ cosh �;

c.�/ D .�2 C 12/	MF.�/ cosh � � 5�2 � 12:

Because the trace of even-order orientation tensors is equal to one, the three
functions a.�/, b.�/, and c.�/ are dependent, satisfying the relation

8a.�/C b.�/C 4c.�/ D �4:

As mentioned before, the von Mises-Fisher ODF (17) is not antipodally symmet-
ric. Its antipodally symmetric part is given by

.�MF
m;� /

s.n/ D 	MF.�/

4�
cosh.�m � n/; (18)

and its antipodally skew-symmetric part is given by

.�MF
m;� /

a.n/ D 	MF.�/

4�
sinh.�m � n/: (19)

Plots of (18) for various values of the concentration parameter � are shown in Fig. 3.
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Fig. 3 Plots of the
transversely isotropic
ODF (18) for � D 1, 2, 5,
and 10

All orientation tensors of even orders relative to the orientation distribution
function (18) are equal to the orientation tensors of even orders relative to the
orientation distribution function (17), whereas all orientation tensors of odd orders
relative to the ODF (18) vanish.

3.2 The Watson ODF

The Watson distribution (also known as the Dimroth-Watson distribution) with
modal vector m 2 S2 and concentration parameter � > 0 is given by [8]

�DW
m;� .n/ D 	DW.�/

4�
exp.�2.m � n/2/; (20)

where

	DW.�/ D 2�p
� erfi.�/

;

and erfi.�/ represents the imaginary error function defined by

erfi.s/ D �i erf.is/ D 2sp
�

Z 1

0

exp.s2t2/ dt:

This distribution can be seen as a special case of the well-known Bingham (multi-
modal) distribution for axial data

�K.n/ D 1

b.K/
exp.n � Kn/;
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Fig. 4 Plots of the
transversely isotropic
ODF (20) for � D 1,

p
2, 2,

and 3

where K is a symmetric matrix and b.K/ is a normalization constant. The
distribution �DW

m;� .n/ is transversely isotropic. Like the von Mises-Fisher distribution,
the Dimroth-Watson distribution is parametrized by the concentration parameter �.
Plots of (20) for various values of the concentration parameter � are given in Fig. 4.

When m D e3, the corresponding second-order orientation tensor hn˝2iDW
m3;�

WDR
S2
�DW

m3;�
.n/n˝2 d� is given by

1

4�2

2

4
Q̨ .�/ 0 0

0 Q̨ .�/ 0

0 0 2
�
2�2 � Q̨ .�/�

3

5 ;

where

Q̨ .�/ D .2�2 C 1/� 	DW.�/e�
2

:

The corresponding fourth-order orientation tensor,

hn˝4iDW
m3;�

WD
Z

S2
�DW

m3;�
.n/n˝4 d�;

has the 6D second-order tensor representation

1

32�4

2

6
6
6
6
6
6
6
4

3 Qa.�/ Qa.�/ Qc.�/ 0 0 0

Qa.�/ 3 Qa.�/ Qc.�/ 0 0 0

Qc.�/ Qc.�/ Qb.�/ 0 0 0

0 0 0 2 Qc.�/ 0 0

0 0 0 0 2 Qc.�/ 0

0 0 0 0 0 2 Qa.�/

3

7
7
7
7
7
7
7
5

;
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where

Qa.�/ D 4�2.�2 C 1/C 3� .2�2 C 3/	DW.�/e�
2

;

Qb.�/ D 8
h
3C .2�2 � 3/	DW.�/e�

2
i
;

Qc.�/ D 4
h
3	DW.�/e�

2 � .2�2 C 3/
i
:

We note that, since the trace of even-order orientation tensors is equal to one, the
three functions Qa.�/, Qb.�/ and Qc.�/ satisfy the relation

8 Qa.�/C Qb.�/C 4 Qc.�/ D 32�4:

3.3 The Singular-Kernel ODF

The uni-modal ODF with modal vector m 2 S2 and concentration parameter 0 <
K < 1 given by

�SK
m;K.n/ D 	SK.K/

4�

1

1 � 2K.m � n/CK2
; (21)

where

	SK.K/ D K

tanh�1 K
;

is called the singular-kernel distribution [32]. It should be noted that this distribution
is not invariant under the inversion of directions: n 7! �n. In Fig. 5 we present plots
of (21) for various values of the concentration parameterK .

Fig. 5 Plots of the transversely hemitropic ODF (21) for K D 2
3
, 3
4
, and 5

6
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When m D e3, the corresponding first-order orientation tensor is

hniSK
m3;K

WD
Z

S2
�SK

m3;K
.n/n d� D 1

2K

2

4
0

0

K2 C 1 � 	SK.K/

3

5 ;

and the corresponding second-order orientation tensor is

hn˝2iSK
m3;K

WD
Z

S2
�SK

m3;K
.n/n˝2 d� D 1

8K2

2

4
Ǫ .K/ 0 0

0 Ǫ .K/ 0

0 0 2.4K2 � Ǫ .K//

3

5 ;

where

Ǫ .K/ D .K2 C 1/	SK.K/� .K2 � 1/2:

The corresponding third-order orientation tensor,

hn˝3iSK
m3;K

WD
Z

S2
�m3;K.n/n

˝3 d�;

has the matrix representation

1

16K3

2

6
4

0 0 0 0
p
2 Ǒ.K/ 0

0 0 0
p
2 Ǒ.K/ 0 0

Ǒ.K/ Ǒ.K/ O
.K/ 0 0 0

3

7
5 ;

where

Ǒ.K/ D .K4 � 2
3
K2 C 1/	SK.K/� .K6 �K4 �K2 C 1/;

O
.K/ D 2
�
.K6 C 3K4 C 3K2 C 1/� .K4 C 10

3
K2 C 1/	SK.K/

�
:

Note that as the contraction of hn˝3iSK
m3;K

is equal to hnim3;K we can verify that

2 Ǒ.K/C O
.K/ D 8K2Œ.K2 C 1/� 	SK.K/�:

Similarly, the corresponding fourth-order orientation tensor,

hn˝4iSK
m3;K

WD
Z

S2
�m3;K.n/n

˝4 d�;
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has the 6D second-order tensor representation

1

128K4

2

6
6
6
6
6
6
6
4

3 Oa.K/ Oa.K/ Oc.K/ 0 0 0

Oa.K/ 3 Oa.K/ Oc.K/ 0 0 0

Oc.K/ Oc.K/ Ob.K/ 0 0 0

0 0 0 2 Oc.K/ 0 0

0 0 0 0 2 Oc.K/ 0

0 0 0 0 0 2 Oa.K/

3

7
7
7
7
7
7
7
5

;

where

Oa.K/ D .K8 � 4K6 C 6K4 � 4K2 C 1/� .K6 � 11
3
K4 � 11

3
K2 C 1/	SK.K/;

Ob.K/ D 8
�
.K8 C 4K6 C 6K4 C 4K2 C 1/� .K6 C 13

3
K4 C 13

3
K2 C 1/	SK.K/

�
;

Oc.K/ D 4
�
.K6 C 1

3
K4 C 1

3
K2 C 1/	SK.K/� .K4 � 1/2

�
:

Because the trace of even-order orientation tensors is equal to one, the three
functions Oa.�/, Ob.�/ and Oc.�/ are dependent. Indeed, they satisfy the relation

8 Oa.K/C Ob.K/C 4 Oc.K/ D 128K4:

As mentioned before, the singular-kernel orientation distribution function (21) is
not antipodally symmetric. Its antipodally symmetric part is given by

.�SK
m;K /

s.n/ D 	SK.K/

4�

1CK2

.1CK2/2 � 4K2.m � n/2
; (22)

and its antipodally skew-symmetric part is given by

.�SK
m;K/

a.n/ D 	SK.K/

4�

2Km � n
.1CK2/2 � 4K2.m � n/2

: (23)

Plots of (22) for various values of the concentration parameterK are given in Fig. 6.

Fig. 6 Plots of the transversely isotropic ODF (22) for K D 2
3
, 3
4
, and 5

6
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All orientation tensors of even orders relative to the orientation distribution
function (22) are equal to the orientation tensors of even orders relative to the
orientation distribution function (21), whereas all orientation tensors of odd orders
relative to the ODF (22) vanish.

For the comparison with the other distributions, we can compose the functions
Ǫ .K/, Ǒ.K/, O
.K/, Oa.K/, Ob.K/, and Oc.K/with the functionK 7! � D K=.1CK/.

3.4 The de la Vallée Poussin ODF

The ODFs

�VP
m;k.n/ D 2k C 1

4�
.n � m/2k; (24)

are a family (indexed by a positive integer k) of antipodally and axially symmetric
ODFs. We note here that �VP

e3;k
.n/ D .cos�/2k has the same functional form (with

� replaced by 1
2
�) as the de la Vallée Poussin distribution in SO.3/, the group of

rotations in R
3 [26]. Accordingly, we call the family of ODFs (24) the de la Vallée

Poussin ODF. The positive integer k acts as the concentration parameter of the
Fisher and Watson distributions. Plots of (24) for various values of the concentration
parameter k are given in Fig. 7.

For �VP
e3;k

, the second-order orientation tensor is

hn˝2iVP
e3;k WD

Z

S2
�VP

e3;k.n/n
˝2 d� D 1

2k C 3

2

4
1 0 0

0 1 0

0 0 2k C 1

3

5 :

The corresponding fourth-order orientation tensor,

hn˝4iVP
e3;k WD

Z

S2
�VP

e3;k.n/n
˝4 d�;

Fig. 7 Plots of the transversely isotropic ODF (24) for k D 1, 2, 3 and 5
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has the 6D second-order tensor representation

1

.2kC 3/.2kC 5/

2

6
6
6
6
6
6
6
4

3 1 2kC 1 0 0 0

1 3 2kC 1 0 0 0

2kC 1 2kC 1 .2kC 1/.2kC 3/ 0 0 0

0 0 0 2.2k C 1/ 0 0

0 0 0 0 2.2k C 1/ 0

0 0 0 0 0 2

3

7
7
7
7
7
7
7
5

:

Using a change of variables we can deduce that the family of ODFs

�VP
e1;k.n/ D 2k C 1

4�
cos2k � sin2k �: (25)

is transversely isotropic along the e1-axis. Similarly, the family of ODFs

�VP
e2;k.n/ D 2k C 1

4�
sin2k � sin2k �: (26)

is transversely isotropic along the e2-axis.
The de la Vallée Poussin ODF (24) can be generalized as

�VPm
m;� .n/ D � C 1

4�
jn � mj�; (27)

where the concentration parameter is now a positive real number �. The correspond-
ing orientation tensors have the same expressions as the ones for the de la Vallée
Poussin ODF, we just need to replace 2k with �.

For all the axially symmetric ODFs discussed in Sect. 3, when the concentration
parameter � is equal to zero, the second- and fourth-order orientation tensors are
equal to the isotropic tensors (7) and (8), respectively. On the other hand, when �
goes to infinity, the second- and fourth-order orientation tensors are equal to the
totally aligned orientation tensors (11) and (12) with m D e3, respectively. For the
comparison, in Fig. 8 we present plots of the 11 and 33 components of the second-
order orientation tensors, and the 1111 and 3333 components of the fourth-order
orientation tensor as functions of the concentration parameter � and for the different
ODFs.
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Fig. 8 Plots of the components of the second- and fourth-order orientation tensors as functions of
� for the different ODFs: von Mises-Fisher (blue), Watson (red), singular kernel (magenta), and
de la Vallée Poussin (black). On the left the 11 (dashed) and 33 (solid) components of the second-
order tensor, and on the right the 1111 (dashed) and 3333 (solid) components of the fourth-order
tensor

4 Orthotropic ODFs

By adding two transversely isotropic ODFs with the same functional form but dif-
ferent modal vectors we obtain (after multiplication by 1

2
) an orthotropic orientation

distribution. For example, by adding %mC

and %m� , where m˙ D cos 1
2
 e1 ˙

sin 1
2
 e2, we obtain the orthotropic ODF

%orth.n/ D 1
2
.%mC

.n/C %m� .n// : (28)

Plots of (28) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular-kernel, and de la Vallée Poussin ODFs with various
values of the concentration parameter are given in Fig. 9.

The first- and second-order orientation tensors are given by

hniorth D 1
2

2

4
0

0

A cos 1
2
 

3

5

and

hn˝2iorth D 1
2

2

4
1 � B C .1 � 3B/ cos 0 0

0 1 � B � .1 � 3B/ cos 0

0 0 2B

3

5 ;

where A and B are given in (14) for the chosen ODF %m.
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Fig. 9 Plots of orthotropic
ODFs based on: antipodally
symmetric von Mises-Fisher
(first row), Watson (second
row), antipodally symmetric
singular kernel (third row),
and de la Vallée Poussin
(fourth row)

The third-order orientation tensor has the matrix representation

hn˝3iorth D 1
4

2

4
n11 n12 n13 0 0 0

0 0 0 0 0
p
2n12

0 0 0 0
p
2n13 0

3

5 ;

with

n11 D A.3 cos 1
2
 C cos 3

2
 / � C.3 cos 1

2
 � 5 cos 3

2
 /;

n12 D A.cos 1
2
 � cos 3

2
 / � C.cos 1

2
 � 5 cos 3

2
 /;

n13 D C cos 1
2
 ;

where C is given by (15) for the chosen ODF %m.
The fourth-order orientation tensor has the 6D tensor representation

.n˝4/orth D

2

6
6
6
6
6
6
6
4

N11 N12 N13 0 0 0

N12 N22 N23 0 0 0

N13 N23 N33 0 0 0

0 0 0 2N23 0 0

0 0 0 0 2N13 0

0 0 0 0 0 2N12

3

7
7
7
7
7
7
7
5

with

N11 D 1
4
.3D C E C 6F /� 1

2
.3D �E/ cos C 1

4
.3D CE � 6F / cos2  ;

N22 D 1
4
.3D C E C 6F /C 1

2
.3D � E/ cos C 1

4
.3D C E � 6F / cos2  ;

N33 D 3D;
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N12 D 1
2

�
3D C E � 2F � .3D C E � 6F / cos2  

�
;

N13 D 1
2
ŒD C F � .D � F / cos � ;

N23 D 1
2
ŒD C F C .D � F / cos � ;

whereD, E , and F are given in (16) for the chosen ODF %m.
Other orthotropic ODFs can be obtained by adding two different axially-

symmetric ODFs. For example, by adding two axially-symmetric ODFs with
orthogonal modal vectors, say e1 and e2,

%1;2.n/ D 1
2
.%1e1 .n/C %2e2 .n//:

The corresponding first-order orientation tensor is

hni%1;2 WD
Z

S2
%1;2.n/n d� D 1

2

2

4
A1

A2
0

3

5 ;

and the corresponding second-order orientation tensor is

hn˝2i%1;2 WD
Z

S2
%1;2.n/n˝2 d� D 1

2

2

4
1 � B1 C B2 0 0

0 1C B1 � B2 0

0 0 B1 CB2

3

5 ;

where Ai and Bi are given in (14) for the chosen ODFs %iei , i D 1; 2.
The corresponding third-order orientation tensor

hn˝3i%1;2 WD
Z

S2
%e3 .n/n

˝3 d�;

has the matrix representation

1
2

2

4
A1 � 2C1 C1 C1 0 0

p
2C2

C2 A2 � C2 C2 0 0
p
2C1

0 0 0
p
2C2

p
2C1 0

3

5 ;

and the corresponding fourth-order orientation tensor,

hn˝4i%1;2 WD
Z

S2
%1;2.n/n˝4 d�;
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has the 6D second-order tensor representation

1
2

2

6
6
6
6
6
6
6
4

E1 C 3D2 F1 C F2 F1 CD2 0 0 0

F1 C F2 3D1 C E2 D1 C F2 0 0 0

F1 CD2 D1 C F2 3.D1 CD2/ 0 0 0

0 0 0 2.D1 C F2/ 0 0

0 0 0 0 2.F1 CD2/ 0

0 0 0 0 0 2.F1 C F2/

3

7
7
7
7
7
7
7
5

;

whereCi Di ,Ei and Fi are given in (15) and (16) for the chosen ODFs %iei , i D 1; 2.

5 Cubic ODFs

By adding three transversely isotropic ODFs with the same functional form and
mutually orthogonal modal vectors we obtain (after multiplication by 1

3
) a cubic

orientation distribution. For example, by adding %e1 , %e2 and %e3 , we obtain the cubic
orientation distribution

%cub.n/ D 1
3
.%e1 .n/C %e2 .n/C %e3 .n// : (29)

Plots of (29) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular kernel, and de la Vallée Poussin ODFs with various
values of the concentration parameter are given in Fig. 10.

Fig. 10 Plots of cubic ODFs based on: antipodally symmetric von Mises-Fisher (first row),
Watson (second row), antipodally symmetric singular kernel (third row), and de la Vallée Poussin
(fourth row)



60 M. Moakher and P.J. Basser

The first-order orientation tensor is 1
3
A
�
1 1 1

�T
, where A is given in (14) for the

chosen ODF %m. The second-order orientation tensor is equal to 1
3
I and the third-

order orientation tensor hn˝3icub has the matrix representation

1

3

2

4
A � 2C C C 0

p
2C

p
2C

C A � 2C C
p
2C 0

p
2C

C C A � 2C
p
2C

p
2C 0

3

5 ;

where C is given in (15) for the chosen ODF %m.
The fourth-order orientation tensor hn˝4icub has the 6D tensor representation

1

3

2

6
6
6
6
6
6
6
4

6D CE D C 2F D C 2F 0 0 0

D C 2F 6D C E D C 2F 0 0 0

D C 2F D C 2F 6D C E 0 0 0

0 0 0 2.D C 2F / 0 0

0 0 0 0 2.D C 2F / 0

0 0 0 0 0 2.D C 2F /

3

7
7
7
7
7
7
7
5

;

whereD, E , and F are given in (16) for the chosen ODF %m.
Another cubic ODF can be obtained by adding four axially symmetric ODFs

(with the same functional form)

%thd.n/ D 1
4
.%a1 .n/C %a2 .n/C %a3 .n/C %a4 .n// ; (30)

where

a1 D 1p
3

2

4
1

1

1

3

5 ; a2 D 1p
3

2

4
1

�1
�1

3

5 ; a3 D 1p
3

2

4
�1
1

�1

3

5 ; a4 D 1p
3

2

4
�1
�1
1

3

5 :

Plots of (30) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular kernel, and de la Vallée Poussin distributions with
various values of the concentration parameter are given in Fig. 11. Plots of (30)
based on the von Mises-Fisher and singular kernel distributions with various values
of the concentration parameter are shown in Fig. 12.

The fact that this ODF has cubic symmetry is not a surprise. Indeed, the tips of the
unit vectors ai , i D 1; : : : ; 4 are vertices of a regular tetrahedron. This tetrahedron
can be embedded inside the unit cube centered at the origin. Each vertex of the
tetrahedron is a vertex of the cube, and each edge of the tetrahedron is a diagonal of
one of the cube’s faces.



Fiber Orientation Distribution Functions and Orientation Tensors 61

Fig. 11 Plots of tetrahedral
ODFs based on: antipodally
symmetric von Mises-Fisher
(first row), Watson (second
row), antipodally symmetric
singular kernel (third row),
and de la Vallée Poussin
(fourth row)

Fig. 12 Plots of tetrahedral
ODFs based on: the von
Mises-Fisher (first row) and
the singular kernel (second
row)

The first-order orientation tensor vanishes and the second-order orientation
tensor is equal to 1

3
I. The third-order orientation tensor has the matrix representation

p
3.A � 5C /

9

2

4
0 0 0

p
2 0 0

0 0 0 0
p
2 0

0 0 0 0 0
p
2

3

5 ;

while the fourth-order orientation tensor has the 6D tensor representation

1

9

2

6
6
6
6
6
6
6
4

12.DCF /CE 6DCE 6DCE 0 0 0

6DCE 12.DCF /CE 6DCE 0 0 0

6DCE 6DCE 12.DCF /CE 0 0 0

0 0 0 2.6DCE/ 0 0

0 0 0 0 2.6DCE/ 0

0 0 0 0 0 2.6DCE/

3

7
7
7
7
7
7
7
5

;

whereD, E , and F are given in (16) for the chosen ODF %m.
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6 Hexagonal ODFs

By adding three transversely isotropic ODFs (having the same functional form) with
planar modal vectors of mutual angles equal to 2

3
� we obtain (after multiplication

by 1
3
) a cubic orientation distribution. For example, by adding %e1 , %m1 and %m2 ,

where m1;2 D 1
2
.�e1 ˙ p

3e2/, we obtain the hexagonal orientation distribution

%hex.n/ D 1
3
.%e1 .n/C %m1 .n/C %m2 .n// : (31)

Plots of (31) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular kernel, and de la Vallée Poussin ODFs with various
values of the concentration parameter are given in Fig. 13. Plots of (31) based on the
von Mises-Fisher and singular-kernel ODFs with various values of the concentration
parameter are shown in Fig. 14.

The first-order orientation tensor is 2
3

�
A 0 0

�T
and the second-order orientation

tensor is

hn˝2ihex D 1

2

2

4
1 � B 0 0

0 1 � B 0

0 0 2B

3

5 ;

Fig. 13 Plots of hexagonal ODFs based on: antipodally symmetric von Mises-Fisher (first row),
Watson (second row), antipodally symmetric singular kernel (third row), and de la Vallée Poussin
(fourth row)

Fig. 14 Plots of hexagonal ODFs based on: the von Mises-Fisher (first row) and the singular kernel
(second row)
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where A and B are given in (14) for the chosen ODF %m.
The third-order orientation tensor hn˝3ihex has the matrix representation

1

12

2

4
5A� C 3A� 7C 8C 0 0 0

0 0 0 0 0
p
2.3A� 7C /

0 0 0 0 8
p
2C 0

3

5 ;

and the fourth-order orientation tensor hn˝4ihex has the 6D matrix representation

1

8

2

6
6
6
6
6
6
6
4

3.3DCEC 2F / 3DCEC 2F 4.DCF / 0 0 0

3DCEC 2F 3.3DCEC 2F / 4.DCF / 0 0 0

4.DCF / 4.DCF / 24D 0 0 0

0 0 0 8.DCF / 0 0

0 0 0 0 8.DCF / 0

0 0 0 0 0 2.3DCEC2F /

3

7
7
7
7
7
7
7
5

;

where C , D, E , and F are given in (15) and (16) for the chosen ODF %m.

7 Icosahedral ODFs

We have used (elementary) axially symmetric ODFs to construct new ODFs with
different material symmetry classes. The eight symmetry classes of fourth-order
tensors (isotropy, cubic, orthogonal, hexagonal, tetragonal, trigonal, monoclinic,
and triclinic) can thus be obtained. There are more elaborate symmetries that can
be detected only in higher order tensors. For example, the cubic symmetry is not
detected at the second-order level. Furthermore, the following example exhibits a
case where the second- and fourth-order orientation tensors are isotropic whereas
the ODF is obviously not. Let bi , i D 1; : : : ; 6 be the unit vectors pointing to the
opposite vertices of a regular icosahedron and given by

b1;2 D 1p
1C �2

2

4
0

1

˙�

3

5 ; b3;4 D 1p
1C �2

2

4
˙�
0

1

3

5 ; b5;6 D 1p
1C �2

2

4
1

˙�
0

3

5 ;

where � D .1Cp
5/=2. Let us consider the ODF obtained by adding the six axially

symmetric ODFs with modal vectors bi :

%ico.n/ D 1
6
.%b1 .n/C %b2 .n/C %b3 .n/C %b4 .n/C %b5 .n/C %b6 .n// : (32)
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Fig. 15 Plots of icosahedral
ODFs based on: antipodally
symmetric von Mises-Fisher
(first row), Watson (second
row), antipodally symmetric
singular kernel (third row),
and de la Vallée Poussin
(fourth row)

Fig. 16 Plots of icosahedral
ODFs based on: the von
Mises-Fisher (first row) and
the singular kernel (second
row)

Plots of (32) based on the antipodally symmetric von Mises-Fisher, Watson,
antipodally symmetric singular-kernel, and de la Vallée Poussin ODFs with various
values of the concentration parameter are given in Fig. 15. Plots of (32) based on the
von Mises-Fisher and singular kernel ODFs with various values of the concentration
parameter are shown in Fig. 16.

The first-order orientation tensor is equal to A=.3
p
1C �2/

�
1 1 1

�T
, where A

is given in (14) for the chosen ODF %m. The second- and fourth-order orientation
tensors are the isotropic tensors (7) and (8), respectively. The third-order orientation
tensor has the representation

p
5�

30
p
1C �2

2

4
u v w 0

p
2v

p
2w

w u v
p
2w 0

p
2v

v w u
p
2v

p
2w 0

3

5 ;

with

u D .3 � p
5/AC 2

p
5C; v D 2A� p

5.
p
5C 1/C; w D p

5.
p
5 � 1/C;

where C is given in (15) for the chosen ODF %m.
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8 General ODFs

As we have seen, in many cases it suffices to look at approximations (3) or (4) up
to the order four. However, certain ODFs cannot be approximated by only keeping
low-order terms and one has to consider higher-order approximations. Moreover,
empirically, we may wish to measure or estimate a fiber ODF or its moments, so a
convenient and general representation in terms of a complete and orthogonal set of
basis functions is sought.

We claim that any ODF can be approximated by a sum of axially symmetric
ODFs with different modal vectors and concentration parameters. For instance, one
can use the uni-modal de la Vallée Poussin ODF as its related tensors are easily
computed. In fact, the de la Vallée Poussin can be expressed in terms of the Cartesian
coordinates as

�VP
m;k.n/ D Rm;k.x; y; z/ WD .m1x Cm2y Cm3z/

2k D .m � n/2k;

where, of course, the coordinates x, y, and z of n are constrained to satisfy the
condition x2 C y2 C z2 D 1.

Therefore, any square-integrable function on S2 can be approximated by

f .n/ �
KX

kD0

LX

lD1
fklRml ;k.n/;

where ml are unit vectors. For the determination of this (simple) approximation one
can seek, for givenK and L, unit vectors ml and coefficients fk;l minimizers of the
functional

Z

S2

"

f .n/ �
KX

kD1

LX

lD1
fk;l .ml � n/2k

#2

d�:

If we take only one value of the concentration parameter (power) in the de la
Vallée Poussin kernel in the above approximation, i.e., we assume fk;l D 0 for
all k < K , then the above minimization problem reduces to finding unit vectors ml

and coefficients Qfl minimizers of the functional

Z

S2

"

f .n/ �
LX

lD1
Qfl.ml � n/2K

#2

d�:

This minimization problem is similar to the low-rank approximation approach of
Schultz and Seidel [27] for estimating crossing fibers from an ODF generated
by Q-ball imaging or spherical deconvolution. When the ODF is also estimated
from diffusion weighed imaging signals, Gur et al. [13] presented a nonlinear
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method for the joint estimation of the ODF, extracting the fiber directions using
low-rank approximations. We also mention that Ghosh et al. [11] and Megherbi
et al. [20] used similar techniques for extracting fiber directions without any prior
information about the number of fibers. These works employ the symmetric tensor
decomposition algorithm proposed in [4] which is based on the decomposition of
homogeneous polynomials as a sum of powers of linear forms.

Alternatively, if the coefficients of the expansion in spherical harmonics of the
ODF are given (estimated from experimental data or computed from a given ODF),
then one can compute the orientation tensors explicitly as shown below. Recall that
any ODF can be expanded in real spherical harmonics

�.n/ D
1X

lD0

lX

mD�l
cl;mSl;m.�; �/:

Here Sl;m.�; �/ are the (normalized) real spherical harmonics of degree l and order
m defined by

Sl;m.�; �/ D

8
ˆ̂
<

ˆ̂
:

.�1/mp
2
.Yl;m.�; �/C NYl;m.�; �// form > 0;

Yl;0.�; �/ form D 0;
.�1/m
i
p
2
.Yl;�m.�; �/� NYl;�m.�; �// form < 0;

where the complex spherical harmonics Yl;m.�; �/ (and its complex conjugate
NYm;l .�; �/) are related to the associated Legendre polynomials Pm

l .�/ by

Yl;m.�; �/ D .�1/m
s
2l C 1

4�

.m � l/Š

.mC l/Š
Pm
l .cos �/ exp.im�/:

For example, the non-vanishing spherical harmonic coefficients up to the order
four for the von Mises-Fisher ODF (17) are

c0;0 D 1

2
p
�
; c1;0 D

p
3 .� cosh � � sinh �/

2
p
�� sinh �

;

c2;0 D
p
5
�
.3C �2/ sinh � � 3� cosh �

�

2
p
��2 sinh �

;

c3;0 D
p
7
�
�.�2 C 15/ cosh � � 3.2�2 C 5/ sinh �

�

2
p
��3 sinh �

;

c4;0 D 3
�
.�4 C 45�2 C 105/ sinh� � 5�.2�2 C 21/ cosh �

�

2
p
��4 sinh �

:
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Similarly, the non-vanishing spherical harmonic coefficients up to order four for the
Watson ODF (20) are

c0;0 D 1

2
p
�
; c2;0 D

p
5
�
6�e�

2 � p
�.2�2 C 3/ erfi �

�

8��2 erfi �
;

c4;0 D
3
�
10�.2�2 � 21/e�2 C 3

p
�.4�4 C 20�2 C 35/ erfi �

�

64��4 erfi �
:

When the spherical harmonic coefficients cl;m, l D 0; : : : ; 4,m D �l; : : : l , of an
ODF � are given then we can compute the orientation tensors up to order four. The
first-order orientation tensor is

hni� D 2

r
�

3

1X

mD�1
c1;ms1;m; (33)

the second-order orientation tensor is

hn˝2i� D 2

r
�

3

 

c0;0S0;0 C
r
2

5

2X

mD�2
c2;mS2;m

!

; (34)

the third-order orientation tensor is

hn˝3i� D 2

r
�

5

 
1X

mD�1
c1;mS1;m C

r
2

7

3X

mD�3
c3;mS3;m

!

; (35)

and the fourth-order orientation tensor is

hn˝4i� D 2

r
�

3

 

c0;0S
0;0 C

r
2

5

2X

mD�2
c2;mS

2;m C 2p
105

4X

mD�4
c4;mS

4;m

!

:

(36)

The vectors sl;m, second-order tensors Sl;m, third-order tensors Sl;m and fourth-order
tensors Sl;m are given in the Appendix.

9 Discussion and Concluding Remarks

We have presented explicit expressions of the orientation tensors up to order four
for a hierarchy of ODFs with different material symmetries. We have given the
coefficients of these orientation tensors in a natural coordinate system. However,
we recognize that to use these ODF with experimental data, the mean direction
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vector may also need to be included in these distributions as a random variable
and estimated. We have seen that by combining axially symmetric ODFs with
different modal vectors and concentration parameters one can get an ODF with
more complex material symmetry. Inversely, we claim that a given ODF can be well
approximated by a convex combination of axially symmetric ones. However, finding
such an approximation can be complicated due to non-uniqueness. Alternatively,
we proposed using the approximation of this ODF by spherical harmonics up to
a specified order. For each order, the orientation tensors are given by a linear
combination of pre-computed tensors that form an orthonormal basis.

If from experimental data we can estimate the coefficients of the expansion in
spherical harmonics of the ODF, then by using this framework we can compute
the orientation tensors. From the orientation tensors we can infer the material
symmetries (or direction of the fibers) by the method developed in [5].

Appendix

We give here the expressions for the normalized orientation-like tensors that appear
in (33)–(36).

The vectors s1;m, m D �1; : : : ; 1, which are obtained from
R
S2
S1;m.�; �/n d�

by normalization, are given by

s1;�1 D
2

4
�1
0

0

3

5 ; s1;0 D
2

4
0

0

1

3

5 ; s1;1 D
2

4
0

�1
0

3

5 :

The second-order tensors Sl;m, l D 0; 2,m D �l; : : : ; l , which are obtained fromR
S2
Sl;m.�; �/n˝2 d� by normalization, are given by

S0;0 D 1p
3

2

4
1 0 0

0 1 0

0 0 1

3

5 ; S2;�2 D 1p
2

2

4
1 0 0

0 �1 0
0 0 0

3

5 ; S2;�1 D 1p
2

2

4
0 0 �1
0 0 0

�1 0 0

3

5 ;

S2;0 D 1p
6

2

4
�1 0 0

0 �1 0
0 0 2

3

5 ; S2;1 D 1p
2

2

4
0 0 0

0 0 �1
0 �1 0

3

5 ; S2;2 D 1p
2

2

4
0 1 0

1 0 0

0 0 0

3

5 :

Note that Sl;m are traceless except for S0;0 which has unit trace. Furthermore, the
set fSl;m; l D 0; 2; m D �l; : : : ; lg forms an orthonormal basis of the space of
symmetric second-order tensors.

The third-order tensors Sl;m, l D 1; 3, m D �l; : : : ; l , which are obtained fromR
S2
Sl;m.�; �/n˝3 d� by normalization, are given by

S1;�1 D 1p
15

2

4
�3 �1 �1 0 0 0

0 0 0 0 0 �p
2

0 0 0 0 �p
2 0

3

5 ; S1;0 D 1p
15

2

4
0 0 0 0

p
2 0

0 0 0
p
2 0 0

1 1 3 0 0 0

3

5 ; S1;1 D 1p
15

2

4
0 0 0 0 0 �p

2

�1 �3 �1 0 0 0

0 0 0 �p
2 0 0

3

5 ;
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S3;�3 D 1
2

2

6
4

�1 1 0 0 0 0

0 0 0 0 0
p
2

0 0 0 0 0 0

3

7
5 ; S3;�2 D 1

p

6

2

6
4

0 0 0 0
p
2 0

0 0 0 �p
2 0 0

1 �1 0 0 0 0

3

7
5 ; S3;�1 D 1

2
p

15

2

6
4

3 3 �4 0 0 0

0 0 0 0 0
p
2

0 0 0 0 �4p2 0

3

7
5 ;

S3;0 D 1p
10

2

4
0 0 0 0 �p

2 0

0 0 0 �p
2 0 0

�1 �1 2 0 0 0

3

5 ; S3;1 D 1

2
p
15

2

4
0 0 0 0 0

p
2

1 1 �4 0 0 0

0 0 0 �4p2 0 0

3

5 ; S3;2 D 1p
6

2

4
0 0 0

p
2 0 0

0 0 0 0
p
2 0

0 0 0 0 0
p
2

3

5 ;

S3;3 D 1
2

2

4
0 0 0 0 0 �p

2

�1 1 0 0 0 0

0 0 0 0 0 0

3

5 :

We remark that the set fSl;m; l D 1; 3; m D �l; : : : ; lg forms an orthonormal
basis of the space of totally symmetric third-order tensors.

The fourth-order tensors S
l;m, l D 0; 2; 4, m D �l; : : : ; l , which are obtained

from
R
S2
Sl;m.�; �/n˝4 d� by normalization, are given by

S
0;0 D 1

3
p
5

2

6
6
6
6
6
6
6
4

3 1 1 0 0 0

1 3 1 0 0 0

1 1 3 0 0 0

0 0 0 2 0 0
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7
5

; S
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p
21

2

6
6
6
6
6
6
6
4
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7
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7
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It should be noted that Sl;m are traceless except for S0;0 which has unit trace. The
set fSl;m; l D 0; 2; 4; m D �l; : : : ; lg forms an orthonormal basis of the space of
totally symmetric fourth-order tensors.
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