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Abstract Production of electricity and propulsion systems involve turbulent com-
bustion. Computational modeling of turbulent combustion can improve the effi-
ciency of these processes. However, large tensor datasets are the result of such
simulations; these datasets are difficult to visualize and analyze. In this work we
present an unsupervised statistical approach for the segmentation, visualization and
potentially the tracking of regions of interest in large tensor data. The approach
employs a machine learning clustering algorithm to locate and identify areas of
interest based on specified parameters such as strain tensor value. Evaluation on
two combustion datasets shows this approach can assist in the visual analysis of the
combustion tensor field.
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1 Introduction

U.S. energy consumption is dominated by the burning of fossil fuels such as coal,
natural gas and petroleum [1]. Production of electricity and propulsion systems
are two primary reasons for this energy use. Both processes, at their core, involve
turbulent combustion. Turbulent combustion modeling is an important area of
research driven by the effort to improve the efficiency of these processes, reduce
fuel consumption and reduce pollution.

In order of decreasing fidelity and costs, three computational approaches to tur-
bulence combustion are direct numerical simulation (DNS), large eddy simulation
(LES) and Reynolds-averaged Navier-Stokes (RANS). Specific tensor quantities
such as stress, strain, and turbulent stress play in these computational approaches, as
part of the computational modeling process; these quantities are discussed in detail
in our previous work [9]. DNS requires directly capturing the wide range of length-
and time-scales. This severely limits the approach to simulations of relatively
simple, canonical configurations. The complex nature of turbulent reacting flows can
be attributed to the non-linear convection terms and scalar transport terms appearing
in the coupled set of governing equations. In DNS these terms are accounted for
without modeling. However, as discussed in more detail in our previous work [9],
in both LES and RANS these terms create a closure problem and require modeling.
As such, an important aspect of turbulence modeling and model validation involves
comparison of the subgrid scale stress tensor (for LES) or the Reynolds stress tensor
(for RANS) with available DNS data.

A three-dimensional LES features millions of grid points. A DNS of the same
configuration would feature several orders of magnitude more grid points. The result
is that a given snapshot of the flow variables at a particular instance in time for the
entire domain would range on the order of gigabytes in the LES case to terabytes for
the DNS case. An entire simulation is composed of tens of thousands to hundreds of
thousands of time steps. Thus data is typically only retained at specified intervals.
Even in adopting this approach total datasets become cumbersome to work with.
Moreover, as LES models are validated, they are in turn used for much larger flow
geometries of industrial applications, resulting in snapshots that are tens or hundreds
of gigabytes in size.

Producing data at this scale implies a few prerequisite conditions: that a highly
scalable flow solver will be used for the simulation, and that the researcher has
access to a large supercomputing environment. This introduces new complexities
to the workflow. First, file I/O must be handled in parallel and is typically a
costly operation relative to the time required to calculate a given time step of
the simulation. Thus regularly outputting entire snapshots of simulation data will
adversely impact the progress of the calculation. Second, this data is produced at a
remote location. Ideally the researcher would transfer the data to a local machine for
data analysis and interactive visualization. For large datasets transferring files can
take a significant amount of time, adding a measurable bottleneck to the workflow.
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To explore the physical phenomena from a volumetric dataset, the ability of a
visualization tool to compute and track salient features is crucial. The large amount
of data may severely affect the availability of the data for visualization (i.e., the
simulation may not be paused to output the data for visualization), the data transfer
(bandwidth limitations), and the manipulation speed. These are major challenges to
the interactive visualization of tensor data. Furthermore, tensor datasets tend to be
very dense, leading to clutter and occlusion problems when visualizing such datasets
with existing tools.

In situ visualization aims to address some of these issues. Such approaches enable
the user to connect directly to a running simulation, examine the data, do numerical
queries and create graphical output while the simulation executes, bypassing the
need to write data to disk. The visualization and computation can be tightly coupled
(memory sharing), loosely-coupled (communication over a network), or hybrid (the
data is computationally reduced and then sent out for visualization).

The feature extraction approach is an emerging in situ hybrid method. This
approach extracts the meaningful and interesting regions from the datasets, showing
only those parts to the researchers. Typically, only a small percentage of datasets
are of interest, and the feature can be described very compactly. These abstractions
lead to a sharp reduction in the amount of data processed, making an effective
visualization of very large datasets possible. Another advantage of feature extraction
is that it helps the users highlight and focus on regions of particular characteristics
that they are interested in.

As opposed to filtering approaches, which may require expert knowledge about
the structure of the flow, in this work we present an unsupervised statistical approach
for the segmentation, visualization and potentially the tracking of regions of interest
in large tensor data. The approach employs a machine learning clustering algorithm
to locate and identify areas of interest based on specified parameters such as strain
tensor value.

2 Related Work

A great deal of research has been conducted in the problems of feature extraction
and tracking. While initially developed in the field of computer vision [11, 19],
feature extraction and tracking have also been adopted for flow visualization—see
Post et al. [15] for an extensive review. In this section we focus on the existing
related feature-tracking work in flow visualization.

Most feature extraction and tracking techniques fall into one of three basic
categories. The most widespread method is to extract features in each time step
separately and then to track them through time. The first to employ feature extraction
and tracking in flow visualization, Samtaney et al. [16] use feature attributes such
as mass, centroid, volume, or moment of inertia to establish a correspondence of
features across timesteps. Silver and Wang [17, 18] developed a volume tracking
schema that requires that there is a certain amount of overlap between features
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in adjacent timesteps for them to be associated. Caban et al. [2] introduce a
texture-based feature tracking technique that compares textural characteristics
across timesteps to find the best match. A second approach to feature extraction
and tracking is exemplified by the work of Muelder and Ma [12]. Instead of
extracting features in each timestep and then establishing a correspondence, they
use a prediction-correction method that makes a prediction about the location and
size of the region in the next step. The region is then adjusted by growing or
shrinking the border in order to extract the feature of interest. Ji et al. [5] developed
a third approach to feature extraction and tracking, which uses isosurfacing in
higher dimensions. Once again, as opposed to extracting isosurfaces in 3D for every
timestep, their method tracks features by performing an isosurfacing process in 4D.

Other approaches use various machine learning techniques to aid in feature
tracking. Tzeng and Ma [20] utilize neural networks to learn which transfer
functions are most appropriate in tracking the features of interest. Noticing that
tracking groups of features that exhibit similar behavior is more cost-effective than
tracking the features individually, Ozer et al. [13] use a clustering algorithm to group
features based on similarity measures. Our approach is similar to that of Ozer et al.
in that we also utilize clustering analysis. The difference is that, rather than use it to
group features, we use it to define regions of interest.

The visualization community has long been very concerned with the shock
location problem. A number of techniques and algorithms for characterizing the
regions of interest, detecting and visualizing shocks waves have been developed.
Lovely and Haimesy [7] designed an algorithm for extracting the shock surface that
uses the fact that the shock surface normal is typically aligned with the pressure
gradient vector. Thus, the algorithm computes the Mach number in the direction of
the pressure gradient and builds the shock surface from the points where the Mach
number equals one. Another widely-used algorithm utilizes the density gradient
and consists of three steps [14]. It first computes the first and second derivatives
of the density in the direction of the velocity. It then builds an isosurface where
the second derivative equals zero and, finally, it picks the first derivative maxima,
which correspond to the shock, and discards the minima. Ma et al. [8] make the
distinction between shock waves and expansion waves in the third step of the
previous algorithm by using the normal Mach number rather than the first derivative
of the density. Specifically, it picks regions where the Mach number is close to one.
The method we present herein is novel in that it integrates machine learning with
visualization for extracting and clustering regions of interest. It is thus a promising
approach to apply to very large flow datasets.

3 Methods

Given the size and interaction challenges of combustion datasets, automated
methods are particularly relevant to the problem of identifying regions of interest.
Such an approach would allow pushing the feature extraction process in situ, to the
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same computational side that also processes the combustion simulation. Only the
regions extracted would then be sent out to visualization, thus reducing both I/O
and bandwidth usage.

Automated methods for feature identification can be provided through Machine
Learning (ML), a branch of statistics and computer science which studies algorithms
and architectures that learn from observed facts. Unsupervised ML algorithms
are of particular interest for combustion tensor data: in an unsupervised setting,
the objective is to cluster or discover structures in the data. Example algorithms
and representations for unsupervised learning include K-means clustering, mixture
models, hierarchical clustering, and PCA (Principal Component Analysis).

Clustering analysis is used to group data points that are similar to one another.
There are various reasons for using clustering: one may wish to analyze points in
the dataset that are close to one another, to reduce a high-dimensional dataset by
replacing groups of dimensions with single labels, or to reduce the size of the dataset
by replacing groups of data points with single labels.

From the class of clustering methods, we focus on K-means, a powerful yet
computationally-effective approach. As in most Big Data applications, the ability
to trade semantic meaning for performance is important in this context: more
sophisticated methods like mixture models or hierarchical clustering are also
significantly slower than K-means.

3.1 K-Means Clustering

K-means clustering attempts to partition a set of N observations (the number of grid
points in a simulation) into K clusters; in the resulting partition each observation
belongs to the cluster with the nearest mean observation. The mean is referred to
as the centroid of the cluster. The cluster centroid can later be used to describe all
cluster members, thus attaining data reduction.

In our case, an observation is the computed value of a tensor at a given location.
A tensor is an extension of the concept of a scalar and a vector to higher orders.
Scalars and vectors are 0-th and 1-order tensors, respectively. In general, a k-th
order tensor can be represented by a k-dimensional array, e.g. a second order tensor
is a 2D array (a matrix). For example, while a stress vector is the force acting on
a given unit surface, a stress tensor is defined as the components of stress vectors
acting on each coordinate surface; thus stress can be described by a symmetric 2-nd
order tensor.

The velocity stress and strain tensor fields are manifested in the transport of
fluid momentum, which is a vector quantity governed by the following conservation
equation:
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; for i D 1; 2; 3 (1)



328 A. Maries et al.

where the Cartesian index notation is employed in which the index i D 1; 2; 3 rep-
resents spatial directions along the x; y, and z Cartesian coordinates, respectively;
and the repeated index j implies summation over the coordinates. t is time, � is the
fluid density, u � Œu1; u2; u3� is the Eulerian fluid velocity, p is the pressure, and �

is the stress tensor defined as:

�ij D 2�
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where � is the dynamic viscosity coefficient (a fluid-dependent parameter) and S is
the velocity strain tensor defined as:
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We perform clustering on the six distinct values of the strain tensor in the
combustion data, arranged in a six-dimensional vector x.i/, where i ranges over the
points in the dataset. Tensors used in turbulence modeling are rank 2 tensors, which
for our purposes are 3�3 matrices. Additionally, strain tensors are symmetric, sij D
sj i . This means that there are a total of six distinct tensor values for each point in
the grid. We compute mean values and distances using a simple, squared Euclidean
distance metric. We note that in our previous work [9] the alternative approach
of working in a dimensionally-reduced space—such as the space of eigenvalues
and eigenvectors—revealed that in turbulent combustion modeling these reduced
descriptors are small, fairly uniform and non-distinctive throughout the volume, and
thus of limited value for cluster analysis. Similar prior experiments [9] have shown
that reduced descriptors such as trace and determinant can act as valuable flow
filters; proposing and using such descriptors requires, however, expert knowledge
about the nature of a particular flow configuration.

The K-means method follows two alternative steps, one initialization step, and
one assignment step. In the first step, the cluster means are initialized (for example,
with K random observations x.i/ from the set). In the second step, each of the N

points is assigned to the cluster whose mean is most similar to the point. The cluster
means are repeatedly recomputed based on the points assigned to each cluster, and
the N points are reassigned, until convergence:

Tensor K-Means

• Randomly initialize K cluster centroids
�1; �2; ::�K 2 R6

• Repeat {

//cluster assignment step
For i = 1 to N

c.i/ WD index .from 1 to K/ of cluster centroid closest to x.i/
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//centroid move step
For k = 1 to K

�.k/ WD average .mean/ of points assigned to cluster k

}

• J.c.1/; c.2/; ::c.N /; �1; �2; ::�k/ D 1=N
P jjx.i/ � �c.i/jj2

Convergence is assessed using the clustering error function J , given by the mean
distance of all points to their assigned cluster centroid. The problem is NP-hard and
thus computationally challenging; but the iterative approach described above can
converge to local optima.

Unfortunately, ML clustering algorithms do not scale well. In our experiments,
we found that datasets larger than 450,000 points cannot be clustered using K-
means, and datasets larger than 250,000 points cannot be clustered using greedy
agglomerative clustering in less than 24 h (Intel duo CPU at 2.26 GHz and 4 GB
RAM). To reduce such run-times, it is necessary to preprocess the dataset.

A common approach for preprocessing large datasets is to use canopy clus-
tering [10] as a pre-clustering algorithm. This pre-clustering is followed by
a clustering algorithm such as K-means, hierarchical clustering or expectation
maximization. The preprocessing step produces initial estimates for the dataset
clusters, which are then used to speedup the clustering step. However, after a
series of clustering experiments, we concluded that canopy clustering was unable
to perform clustering in a reasonable amount of time. The problem was that in these
tensor datasets the number of clusters of interest is typically below ten. Given this
restriction and the fact that the majority of the data points in a cluster have to be
in the same canopy, the size of the canopies would have had to be no smaller than
800,000 (8M/10), even for the smaller datasets. Clustering such large collections of
data points is, however, unfeasible using K-means: in our further experiments we
found that even 450K datasets require more than 24 h runtime to converge (Quad
core Intel 5, 3.3 GHz, 16 GB RAM).

To circumvent this obstacle, we used instead a pre-clustering step in which K-
means clustering was run on a sub-sampled dataset to obtain good starting cluster
centers. The first dataset was sampled every 4 � 4 � 4 data points and the second
every 4 � 6 � 4 data points regularly throughout the grid. The sampling rate was
empirically selected (lower rate along larger dimensions) so that the pre-clustering
step could complete in minutes. The resulting starter centroids were then used in
K-means over the full datasets. Using this pre-computed cluster centroid setup, the
second clustering step converges in under 50 iterations for the mixing layer dataset
(8M points) and 20 iterations for the shock dataset (21M points); both datasets are
described in detail in the results section. The entire approach takes on average 15–
20 min to compute four clusters (8M point dataset).
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3.2 Cluster Analysis

As is the standard procedure in K-means, we repeat the clustering procedure for a
varying number K of clusters, from 2 to 6, and select the K value that leads to the
lowest clustering error J . In our experiments, the clustering run times for different
K values are fairly similar, with deviation of at most 1 h.

To more easily analyze the features of cluster centroids, we use a star-plot
representation of each centroid. The star-plot is a high-dimensional visualization
technique based on the parallel coordinate plot (PCP). In the PCP descriptor,
dimensions are represented by parallel axes and data points are mapped to the axes;
the data points are then connected by lines [4, 21]. The star-plot is a more compact
representation of the PCP, in which axes are radii of a circle [3, 6].

Figure 1 shows star-plot descriptors for the centroids for K D 5, K D 6, K D 7,
and K D 8; in each star-plot glyph the six centroid values are mapped to radial
spokes, allowing for easy comparison of the centroid traits. Note how increasing
K from 5 to 6 adds a distinctive cluster, while further increasing K to 7 and 8
introduces clusters which are fairly similar to clusters already identified. This type
of analysis can be used to automate the selection of K.

To ensure consistent clustering along the time dimension for the shock dataset,
the tensor centroids of the clusters can be tracked over time based on their similarity,
with visual assistance where necessary to account for splitting, recombining,
vanishing, and appearance phenomena.

4 Results

We evaluate this approach on two large datasets, a mixing layer dataset, and a shock
dataset. Mixing layer configurations are common in combustion simulations, where
two fluids flow over and against each other. Shock waves are important features in
compressible flow datasets that are characterized by abrupt, nearly discontinuous
changes in physical flow quantities such as density, pressure and velocity. Shock
waves are of interest to researchers since they can increase drag and cause structure-
failure in design problems in fluid dynamics.

4.1 Mixing-Layer Dataset

The first dataset is a temporal mixing layer and is a simple configuration where two
streams of fuel and oxidizer flow over and against each other. The flow speeds are
adjusted for a low Reynolds number yielding a narrow range of length scales, and
this configuration can be easily tackled with DNS and then used as a benchmark.
The data for the temporal mixing layer is at a snapshot in time and at the full DNS



Clustering Method for Turbulent Combustion 331

Fig. 1 Star-plot descriptors for the centroids for K D 5 (a), K D 6 (b), K D 7 (c), and K D 8

(d). Increasing K from 5 to 6 adds a distinctive cluster, while further increasing K to 7 and 8

introduces clusters which are fairly similar to clusters already identified
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resolution over a grid of size 193 grid points in two Cartesian directions and 194 in
the other (approx. 8M grid points).

The goal for the mixing layer dataset was to see if clustering can provide insight
into the structure of the flow. We provided a senior combustion researcher with a
3D volume rendering of the divergence of the tensor (sum of components on the
main diagonal, indicating fluid density changes), and a volume rendering of the 4-
group clustering (Fig. 2). We then asked the expert for an evaluation of the clustering
results. The researcher remarked that the clusters coincided with the interesting
regions of the flow: the “mushroom” pattern around the shear layer at the mid-zone
where the two fluids mix, in contrast with the less active outer zones. The domain
expert is currently investigating an interpretation of the clusters.

4.2 Shocklet Dataset

The second dataset has a similar mixing-layer configuration, with flow from one
direction in the top half and in the opposite direction in the bottom half. There are
a few differences as well; one being that the dataset is significantly larger. The size
of the grid in two of the three dimensions is 194 and along the third dimension it
is 577, which brings the total number of grid points close to 21M. This simulation
has been done up to time t D 600 in 12;900 time steps. By this time, the flow is
going through pairing and exhibits 3D effects. This is a supersonic flow, in which the
flow field exhibits shocklets. Thus, the flow field variables such as Mach number,
divergence of velocity and gradients of density, temperature and pressure change
sharply across the shocklet surface. Figure 3 shows the regions of the flow field with
Mach number close to one. The study of shock waves is critical in understanding of
high-speed flows. An efficient and reliable shock wave detection and visualization
method would significantly assist this task.

The goal for the second dataset was to see if the distinct tensor field regions
have a clear relationship with regions of the flow suitable for the location of a
shock surface. Suitable conditions involve the transition from Mach number greater
than 1 to Mach number less than 1, e.g. the isosurface depicted in Fig. 3. Figure 4
shows the star-plot glyphs corresponding to the cluster centroids for the four-cluster
segmentation, at timesteps 70, 75, and 80. Note that the different signatures of the
cluster centroids make possible the consistent labeling and thus tracking of clusters
over time.

Figure 5 compares strain tensor clustering with the magnitude of the Mach
number. The cluster analysis enabled the experts to identify the regions of the flow
potentially suitable for the location of a shock surface. More detailed analysis is
still required to detect shocks, such as the adherence to tabulated thermodynamic
properties across a shock wave. However, using the clustering results, the domain
experts were able to significantly limit this further analysis to only the regions of
interest identified through the clustering.
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Fig. 2 Mixing-Layer Dataset: volume rendering of divergence (top), which can be calculated via
the trace of the strain tensor, and 4-group strain tensor clustering (bottom), rendered by assigning
each cluster an individual value and setting the transfer function monochromatically to each. The
four clusters are color-encoded using a www.colorbrewer2.org qualitative scheme as shades of
orange, purple, green and black. The clusters correlate well with the mixing region of interest: the
“mushroom” pattern around the shear layer at the mid-zone where the two fluids mix (orange and
purple clusters), in contrast with the less active outer zones (green and black clusters)

www.colorbrewer2.org
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Fig. 3 Volume rendering of the region with Ma � 1. In this rendering, all points with Mach
number within the 0.05 threshold of one have been replaced with 1 and the rest with 0; the resulting
two-valued volume is volume-rendered in ParaView. From top to bottom; timesteps 70, 325, and
600
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Fig. 4 Star-plot glyphs corresponding to the cluster centroids for a four-cluster segmentation of
the shock datasets. From left to right: cluster centroids at timesteps (a) 70, (b) 75, and (c) 80. Note
that the different signatures of the cluster centroids make possible the consistent labeling and thus
tracking of clusters over time

5 Discussion and Conclusion

As previously discussed, the goal of this project was to examine the potential
of using cluster analysis on tensor field data generated by turbulent combustion
simulations. First, we were interested in finding out whether an unsupervised
approach can detect structures in the data, and whether these structures correlate
with the regions of interest. Second, we wanted to see whether tensor field clustering
and rendering could give researchers insights into the structure of the flow through
a volume. The answer to both questions is affirmative.

In summary, we found that a machine learning inspired approach, though com-
putationally intensive, can extract and track regions of interest in large, dense tensor
fields. Our K-means approach yielded interesting results: the clusters correlate
well with the regions of interest. Thus, as an in situ technique, the approach has
potential for compression. While the clustering itself may miss potential artifacts,
the clustering approach is also a foundation for automated anomaly detection, and
thus a base for further in situ benefits.

We found that the performance of machine learning algorithms is a major issue,
and note that such algorithms need to be first adapted for large scale data. In
our approach we adapted K-means for large data by using a pre-clustering step;
this pre-clustering step was performed via sub-sampling. In an in situ setting, the
pre-clustering could be coupled with the more intelligent data partitioning that is
mandatory when distributing the computational simulation load across multiple
processors. The run-time cost of the unsupervised machine learning approach
should also decrease when distributed across multiple processors.

In our implementation and preliminary experiments, the clustering technique
was run offline, not in an authentic in situ setting. We note however, that the
approach was designed as an in situ technique, and could be deployed as such in a
computational setting, with the added benefit of data partitioning for pre-clustering.
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Timestep 70: Mach number

Timestep 70: 6-group strain tensor clustering

Timestep 325: Mach number

Timestep 325: 6-group strain tensor clustering

a

b

c

d

Fig. 5 Two snapshots from the shocklet dataset, same YZ slice: renderings of Mach number (a
and c), and the corresponding 6-group strain tensor K-means results (b and d). The six clusters are
encoded with three shades of blue plus three shades of orange-red. The clustering captures regions
of interest for Mach number in both cases. The cluster analysis enables domain experts to identify
the regions of the flow potentially suitable for the location of a shock surface. Cluster centroid
similarity can be further used to ensure consistent cluster labeling across multiple timesteps
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The only current “manual” component of the approach is the selection of K, the
numbers of clusters. The K-selection step can be automated, however, as indicated
in the Fig. 1 shape analysis.

In our approach, we have used a simple feature vector representation for the
tensor field. Similarly, we have used a simple Euclidean distance metric to compute
distances and means over the tensor field. We obtained good correlation between
the cluster-based regions of interest and flow features. Nevertheless, defining more
meaningful feature vectors and distance metrics for tensor similarity that have
improved semantic meaning are important directions of future research.

Visualization of the tensor fields associated with turbulent combustion sim-
ulations is particularly challenging. Difficulties arise from the sheer scale and
density of the data, but also from the small range of values these tensors take. Our
previous attempts at visualizing these types of fields using glyphs or streamlets have
had partial success—these tensors have very small, very similar eigenvalues [9].
Furthermore, many existing tensor representations do not have an intuitive equiva-
lent in combustion turbulent flow; to combustion researchers, tensors do not have
direction or shape. As the domain experts put it, “the tensor itself is very useful
for computation, and pretty complete. . . but its individual components are not so
useful to understand what is going on.” This observation makes feature extraction
and tracking through an unsupervised clustering approach particularly useful.

In conclusion, we have introduced an approach for the segmentation, visualiza-
tion and potential tracking of regions of interest in large scale tensor field datasets
generated by computational turbulent combustion simulations. The approach is
novel in that it integrates machine learning with visualization—interactive volume
rendering and starplots—to extract, cluster, and track regions of interest in the tensor
field. Our evaluation on two rich combustion datasets shows this approach can assist
in the visual analysis of the combustion tensor field.
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0952720.
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