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Abstract In neuroimaging research, a wide variety of quantitative computational
methods enable inference of results regarding the brain’s structure and function. In
this chapter, we survey two broad families of approaches to quantitative analysis
of neuroimaging data: statistical testing and machine learning. We discuss how
methods developed for traditional scalar structural neuroimaging data have been
extended to diffusion magnetic resonance imaging data. Diffusion MRI data have
higher dimensionality and allow the study of the brain’s connection structure. The
intended audience of this chapter includes students or researchers in neuroimage
analysis who are interested in a high-level overview of methods for analyzing their
data.

1 Introduction

The study of the human brain was originally performed by expert dissection of
fixed brains. Now, with the advent of structural and functional neuroimaging, we
can apply quantitative computational analyses to study and model the brain in
vivo. Neuroimaging analyses have important scientific and clinical applications that
include the study or diagnosis of disease, the measurement of change, the detection
of neural activation, and the modeling of anatomy. In this chapter, we aim to provide
a general overview of analysis approaches for neuroimaging data, including some
specific examples of neuroimaging studies.

Much of the research in the neuroimage analysis field has focused on the analysis
of scalar data, such as structural magnetic resonance imaging (MRI) or computed
tomography (CT), where a single scalar value is present at each voxel. Another
large body of analysis research focuses on detection of neural activations using

L.J. O’Donnell (�)
Harvard Medical School, Boston, MA, USA
e-mail: odonnell@bwh.harvard.edu

T. Schultz
University of Bonn, Bonn, Germany
e-mail: schultz@cs.uni-bonn.de

© Springer International Publishing Switzerland 2015
I. Hotz, T. Schultz (eds.), Visualization and Processing of Higher Order
Descriptors for Multi-Valued Data, Mathematics and Visualization,
DOI 10.1007/978-3-319-15090-1_15

299

mailto:odonnell@bwh.harvard.edu
mailto:schultz@cs.uni-bonn.de


300 L.J. O’Donnell and T. Schultz

Fig. 1 Example diffusion MRI data, including fiber tract trajectories from tractography with
selected (randomly sampled) ellipsoids to visualize diffusion tensors along the tracts. At left, the
whole brain is shown in an inferior view. At right, zoomed images show fiber tract trajectories
(top) plus ellipsoids (bottom). The tracts and ellipsoids are colored by fractional anisotropy (FA),
a popular scalar measure for statistical analyses of diffusion MRI. Blue and purple are high FA,
green and yellow are intermediate values, and red is low FA

timecourse data: the blood-oxygen-level dependent (BOLD) signal of functional
magnetic resonance imaging (fMRI). Of particular interest in this chapter is the
analysis of diffusion MRI, the only non-invasive scan for measurement of the brain’s
connectional structure. The traditional representation of diffusion MRI data is not
scalar. Rather, it is a tensor (specifically, a 3�3 symmetric, positive-definite matrix)
at each voxel. Data employing the tensor representation are called diffusion tensor
MRI or DTI. In current diffusion MRI research, higher-order models (as well as
connectivity data) may also be reconstructed from the scan [58]. Figure 1 shows
both tensor and connectivity (fiber tract) data from a diffusion MRI scan of a healthy
human brain.

Because different types of neuroimaging data have different data dimension-
alities as well as vastly different interpretations in the context of the brain, and
because neuroimaging studies have many possible designs, the analyses developed
for neuroimaging data are manifold. Analyses have been developed for scalar
data, for timecourse data, for tensor-valued data, and for many other types of
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data representations such as measurements from regions of interest or along image
skeletons.

To organize this chapter, we categorize quantitative neuroimaging analyses into
two groups according to their overall philosophy: statistical testing or machine
learning. In statistical testing, the goal is to obtain a result that is statistically
significant: unlikely to have arisen by chance. Most often, these approaches are
applied to measure a result, such as a functional or structural difference, between
groups of subjects. Statistical testing methods are also in regular clinical use to
detect functional brain activations in individual patients. The supervised machine
learning methods that are treated in the second part of this chapter learn computa-
tional models that estimate or predict the values of unobserved variables. During
learning, they are given access to labeled training data, for which the value of
the variable of interest is known, such as images categorized into healthy control
and patient images, or annotated with subject age. In a second step, the respective
quantity—such as disease state or age—is estimated based on other brain scans for
which it is unknown. Statistical and machine learning methods for exploratory data
analysis, such as clustering or Principal Component Analysis (PCA), are outside of
our main focus, even though a use of PCA as part of a predictive model is discussed
in Sect. 3.4.

In the rest of this chapter, we survey examples from the scalar neuroimaging
field, and where possible we describe extensions or new methods developed for
the analysis of diffusion MRI data. The chapter is divided into two parts: first, the
more traditional statistical testing approaches, and second, the more recent machine
learning approaches.

2 Methods for Neuroimaging Analysis That Use Statistical
Tests

In neuroimaging research, statistical tests are used in many scenarios. Examples
include: to find regions of significant difference between two populations in a
clinical neuroimaging study, to find regions of neural activation in fMRI, or to
detect abnormal regions that differ from a model of the healthy brain. In the rest
of this section, we first describe basic concepts, then we give examples of popular
methods that employ statistical testing in neuroimaging data, and finally we describe
extensions of the statistical testing frameworks that have been proposed for analysis
of diffusion MRI data.
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2.1 Basic Concepts and Potential Problems

We begin this section with a simple example that motivates the vocabulary and the
basic concepts used in statistical hypothesis testing. Readers familiar with this may
wish to skip ahead to the overview of methods that have been developed for diffusion
MRI.

In the statistical hypothesis testing framework, there is generally a null hypothesis
H0, such as “There is no difference between the two study groups, thus their data
have the same mean.” A corresponding alternative hypothesis H1

a could be, in
this simple example, that the means of the data from the two groups are different.
(Another H2

a could be, for example, that the mean of one group is larger than the
other.)

To assess this possible difference, a test statistic is chosen. In our example, the
test statistic should be a quantity related to the difference in means, such as the
popular t-statistic [64]. The null distribution is a probability distribution that gives
the probability, under the null hypothesis, of observing values of the test statistic.
The null distribution can be known or estimated from the data. In our example,
armed with the null distribution and an observed test statistic, the researcher will
determine the conditional probability of observing the test statistic if both groups
have the same mean (the null hypothesis).

If the observed test statistic is found to have low probability under the null
hypothesis, the reasoning is that the observed test statistic is unlikely to have
occurred by chance. Thus there may be an experimental finding: it may be possible
to reject the null hypothesis in support of the alternative hypothesis. To decide
whether to reject the null hypothesis, the statistical significance of the observed
test statistic is determined by calculating a p-value, the probability of observing a
statistic at least as extreme as the observed statistic (under the null distribution).
Here, the word “extreme” refers to the tails of the null distribution, where the
probability of observing the test statistic values is low: For H1

a , the first alternative
hypothesis mentioned above, both tails would be considered to be extreme (“two-
tailed test”). For H2

a , only the tail corresponding to larger values would be taken into
account (“one-tailed test”). If the calculated p-value falls below a predetermined
threshold or alpha level, such as 0.05, the result may be considered significant.
Alternatively, for a given alpha level, the test statistic can be compared to a threshold
for which 5% of the area of the null distribution is located under the tail(s).

Potential problems in hypothesis testing have been widely discussed, for example
in the book “The Cult of Statistical Significance” [76]. Issues include incorrect
rejection of a true null hypothesis, called type I error, or false positive error. In
the context of neuroimaging, this type of error would lead to publication of a false
finding. Type I errors are typically controlled at an alpha level of 0.05, which means
that statistical tests commonly used in neuroimaging have a 5% chance of rejecting
a true null hypothesis due to chance. A second issue is type II error or false negative
error. This means that statistical significance of an effect, even though it is true,
cannot be shown based on the acquired data.
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It is clear that performing multiple tests (multiple comparisons) is dangerous:
eventually, one of the tests will produce a significant value. If this is not correctly
accounted for, the overall chance of a type I error can increase drastically. An
infamous illustration of this was given by an fMRI experiment in which activation
was found in the brain of a dead salmon [8]. Popular strategies for correcting this
potential source of error are mentioned in the next section.

2.2 Popular Neuroimaging Analyses

Here we give a brief overview of two main approaches to data analysis: voxel-based,
where data are measured and statistics are performed in a large number of
voxels throughout the brain, and region-based, where data measurement and
statistical analyses are restricted to neuroanatomical regions generated by image
segmentation. We note that neuroimage analysis methods may also be categorized
according to the number of subjects analyzed. Often, analyses employ a population,
or a neuroimaging dataset that includes data from multiple subjects. However,
some analyses are inherently single-subject, such as fMRI activation detection in
neurosurgical patients.

Voxel-Based Statistics

There is a large and sophisticated body of literature on voxel-based morphometry
(VBM) and statistical parametric mapping (SPM) in structural and functional
imaging [26]. These approaches use the general linear model (GLM) framework,
a linear regression model that incorporates covariates and any indicator variables
reflecting study design [28]. The overall idea is that parameters of interest are
calculated from the GLM, then a parametric statistical test is applied at each voxel,
such as the t-test or F-test. In VBM, traditionally the gray matter is segmented
and smoothed, giving a map of gray matter concentration that is compared across
groups [4]. In fMRI analysis, where the per-voxel information is a vector of time-
course data, traditionally the GLM approach uses regression to obtain a single scalar
parameter for univariate statistical testing [29]. The voxel-based approach assumes
that anatomy corresponds across subjects at the voxel level, and thus smoothing
and image registration play important roles. Statistical analyses called deformation-
based or tensor-based morphometry generally analyze the Jacobian determinants of
the vector-valued deformation fields generated by image registration [5].

In voxel-based analyses, multiple comparisons arise naturally because the tests
are performed at many anatomical locations within the brain. Several statistical
methods may be employed to correct for multiple comparisons, including the
stringent Bonferroni correction, where the threshold for statistical significance is
adjusted to account for the multiple tests. The Bonferroni correction assumes tests
are independent, which is not the case in spatially smooth image data, and leads
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to an overly conservative correction, reducing statistical power. Thus, the theory of
Gaussian random fields is employed in SPM to correct for multiple comparisons [4].
An alternative that controls the expected proportion of false positives within a
statistical map, rather than the probability that any part of the map includes a false
positive, is the false discovery rate (FDR) [7, 30]. However, simple application of
FDR does not take into account the fact that voxels are spatially contiguous and
represent continuous data [11]. In another approach, a summary or maximal test
statistic (such as maximum suprathreshold cluster size) may be used to summarize
information from multiple statistical tests across voxels, and the null distribution
may be estimated for this new, overall test statistic. This strategy may be used in
combination with permutation testing for computation of the null distribution [47].
Permutation tests are increasingly used because they are powerful, non-parametric,
and simple to perform by repeatedly randomizing the labels of the data. However,
they can be computationally intensive.

Region-Based Statistics

In the case where there is a hypothesis about the likely region of an effect (for
example, if the corpus callosum is hypothesized to differ between groups), a region
of interest (ROI) can be created for measurement. This may be done via a manual
or automated image segmentation procedure. Scalar measurements are made, such
as the ROI’s volume or the mean value of image voxels within the ROI. This
approach can avoid the multiple comparisons problem, if only one ROI is measured,
and only one type of information is measured from that ROI. More typically,
data from more than one ROI are measured, and Bonferroni or FDR correction
would be appropriate. Traditional t-tests and ANOVA are very commonly used
in the neuroimaging literature to identify possible differences between groups in
ROI-based studies, for example [62].

2.3 Extension of Analyses to Diffusion MRI

We give examples of analyses in the voxel-based and region-based frameworks, as
well as methods where statistical tests have been developed to deal with unique
types of data from diffusion MRI. We begin with voxel-based and region-based
methods that operate on scalar values derived from diffusion MRI, most commonly
the fractional anisotropy (FA). Next we describe statistical methods that have been
developed for diffusion MRI tracts, followed by methods for vector and tensor data
estimated from diffusion MRI. This is by no means an exhaustive list of references
from the field; rather, we intend to provide examples illustrating the main concepts.



Statistical and Machine Learning Methods for Neuroimaging 305

Voxel-Based Statistics Proposed for Diffusion MRI

At this point, standard VBM studies are not often performed on diffusion MRI data.
It has been shown that results are highly sensitive to the size of the smoothing
kernel [36] and that image registration often fails to match the high FA core of the
white matter tracts [63]. Furthermore, there are issues with non-normally distributed
residuals after fitting a GLM model [36].

The most popular voxel-based analysis of diffusion MRI data was designed to
address these issues. Though it is a voxel-based method, it is called Tract-Based
Spatial Statistics [63]. In this method, to ameliorate registration difficulties and
to restrict analyses to the presumed core of the tract, locally high FA values are
projected onto voxels of a group FA skeleton. After this procedure, the voxels of the
groupwise skeleton have been attributed with data from every subject in the study,
and standard GLM analyses may be used.

Methods have also been investigated for diagnostic analysis of diffusion MRI on
the single subject level. Diffusion MRI is of particular interest as a sensitive marker
for traumatic brain injury, where a quantitative marker is desired to help in diagnosis
and prognosis. Initially, standard VBM techniques were applied to investigate
brain changes by comparing an individual to controls [42]. Then alternative voxel-
based analyses were designed to detect abnormal regions within the single subject,
based on comparison to a model of normal diffusion that employs data from
multiple control subjects. An FA-based method that employs bootstrap methods
for estimating control population variance and corrects for covariates such as age
and gender has been developed to assess departure from the normal model using
z-scores [43].

Region-Based Statistics Proposed for Diffusion MRI

Existing image segmentation and measurement pipelines may be applied to any
scalar data derived from diffusion MRI. Additionally, many diffusion-MRI specific
methods exist for defining white matter tracts, including deterministic and prob-
abilistic tractography methods for estimation of white matter connections. For a
recent overview of tractography segmentation methods, see [49]. Many diffusion
MRI analysis pipelines use atlases derived from tractography, such as the Mori atlas
[69] to define regions of interest in individual subjects. Once tract ROIs have been
defined, they can be used for measurement of quantities such as the average FA
within the tract. This enables region-based statistical analyses.

After ROI definition, measurement and statistical analysis are the same as for
any imaging ROI study, except for the fact that there are many scalar parameters
that may be measured from one diffusion MRI scan. For a basic diffusion tensor
reconstruction, scalars can include FA, mean diffusivity (MD), and more. Thus the
multiple comparisons problem may be more severe in diffusion MRI studies.
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Tract-Based Statistics Proposed for Diffusion MRI

In more sophisticated data analyses than average measurement within an entire tract
region, fiber tracts have been used for structure-specific statistical mapping. Since
tracts can be considered to have a linear structure (connecting brain region A to
brain region B), one option is to analyze data along the tract. This style of analysis
measures data versus arc length along a tract [13]. Methods for measurement
and analysis have been proposed by many authors. Simple averaging of data at
points along the tract and use of permutation testing found significant differences
across hemispheres [48]. Authors have proposed more sophisticated machinery,
such as using an extension of multivariate statistics called functional regression
analysis [31, 75]. Fiber tractography in a DTI atlas was employed to define and
parameterize tracts in conjunction with the Hotelling T 2 statistic to analyze both
FA and tensor norm [31]. Analysis of data along tracts has been shown to have
advantages over simple averaging of the data, which may mask differences [12, 48].
Related approaches have proposed analysis over the entire tract surface, representing
it as a sheet, rather than attributing a single trajectory with data [74].

Eigenvector and Tensor Statistical Tests Proposed for Diffusion MRI

Some disagreement exists regarding an appropriate manifold for diffusion tensors. A
Riemannian metric between diffusion tensors was proposed [3, 6, 23, 24, 41] in order
to restrict analyses to the space of positive definite symmetric matrices. However,
others believe that a Euclidean metric is more appropriate for actual diffusion MRI
data [51]. Several groups have investigated geodesics for interpolation of diffusion
tensors [22, 38]. However, recent work on smoothing may indicate that the metric
between tensors has little practical effect for data analyses [67]. Each metric may be
useful for certain computational tasks: in registration, the log-Euclidean metric may
be used for reducing blurring when averaging, while the Euclidean metric performs
well for the objective function [37].

Limited work exists on statistical testing for group differences in principal
diffusion directions (major eigenvectors) and in entire diffusion tensors. A statistical
method based on the bipolar Watson distribution was proposed to test whether the
principal diffusion direction had the same mean in two groups of subjects [60].
This test was shown to detect differences that were invisible to a more standard
FA analysis [60]. Additional work by the same author investigated tensor statistics
[59] and gave further insight into FDR correction for the eigenvector testing [61].
Another group investigated the application of several multivariate statistical tests
directly to the components of the full diffusion tensor [73].
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3 Regression and Classification in Neuroimaging

Given samples from one or multiple populations, statistical hypothesis testing allow
us to infer statements about parameters describing those populations. In the context
of neuroimaging, frequent examples of populations in the statistical sense include
groups of subjects, voxels, or time steps.

Recently, methods from machine learning are increasingly being used to make
statements about individual samples, rather than populations. Example applications
include supporting the diagnosis of disease based on examples of both healthy and
diseased subjects [25], estimating a person’s brain maturity [21, 27], detecting which
class of object a person is currently looking at [14], whether or not he or she is telling
the truth [19], or predicting behavior [32].

Building a system that facilitates such predictions requires selecting a suitable
machine learning method, extracting mathematical descriptors (“features”) on
which further analysis can be based, and selecting features that are particularly
relevant to the task. Obtaining a reliable estimate of a method’s accuracy can pose
serious and surprising pitfalls. Finally, it is desirable, though unfortunately difficult,
to gain insight on how the machine learning method arrived at its final estimate.

In this section, we will elaborate on each of these steps. Since the field is
young, new methods are evolving rapidly, and no widely used standards have been
established so far. Therefore, we cannot hope to provide a final and exhaustive
overview, but rather focus on general principles and examples of solutions that
have been found to be effective on more than a single dataset and, ideally, by
different groups. We are particularly interested in examples involving diffusion
MRI and multimodal imaging, which have been excluded from an earlier, related
overview [52].

3.1 Methods for Classification

In the context of neuroimaging, classification is the assignment of a subject or a
cognitive state to a specific class, such as recognizing that a subject suffers from
a specific disease, or is currently looking at an example from a certain class of
objects. Mathematically, classification is performed by a function f .x/ that maps
an instance x 2 X , the subject or cognitive state, to a discrete output variable
(“label”) y, which encodes the different classes. In practice, x is usually represented
by an m-dimensional feature vector x 2 R

m.
Training a classifier amounts to learning the function f from a training dataset

f.xi ; yi /g, i D 1; : : : ; n so that f .xi / D yi for as many training examples as
possible. At the same time, f should be as “simple” as possible, in a sense that can
be made mathematically precise [57], to maximize the chance that it will produce
correct results also for novel inputs Qx which have not been part of the training data.
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In neuroimaging applications, it is common to have a high-dimensional feature
space, but relatively little training data (m � n). Support Vector Machines (SVM)
are widely used as a classifier, since they are known to be able to deal with this
situation relatively well [57]. They are based on finding a hypersurface in the feature
space that correctly separates as many of the training samples as possible, while also
maximizing the distance of the decision boundary to the samples that are correctly
classified.

SVMs can be generalized to nonlinear classification by implicitly mapping the
features into an abstract higher-dimensional space using the “kernel trick” [57].
While LaConte et al. [40], working with very high-dimensional feature vectors
to begin with, do not find a clear benefit from mapping them to an even higher-
dimensional space, Wee et al. [71] report a noticeable increase in accuracy when
using nonlinear kernels with moderately sized feature vectors, and Rasmussen et al.
[53] construct an example in which a nonlinear kernel aids classification even in
high-dimensional space. Ultimately, no single kernel is optimal for all applications,
and classification accuracy can often be increased by trying different alternatives.

Aside from support vector machines, the machine learning literature offers a
wide range of classifiers that are occasionally used in neuroimaging, including
Fisher Linear Discriminant Analysis (LDA) [25] and maximum uncertainty Linear
Discriminant Analysis (MLDA) [18], naive Bayesian classifiers [45], k Nearest
Neighbor classifiers [70], neural networks [2], and random forests [1]. For more
detailed explanations of these methods and further pointers to the machine learning
literature, we refer the reader to [9].

Sometimes, it is desirable to combine the results from multiple classifiers. For
example, in multimodal imaging, a separate classifier might be created for each
modality, and a single prediction y has to be derived from their outputs. In the
simplest case, it can be based on a majority vote [35]. A natural improvement of this
is to weight the impact of each classifier by its estimated accuracy [18]. In adaptive
boosting (AdaBoost), this idea is combined with an iterative training of classifiers
on re-weighted training samples, so that classifiers trained at later stages focus on
examples misclassified previously [44].

3.2 Methods for Regression

Regression differs from classification mainly in the fact that the output variable y

is continuous, such as age or brain maturity [21, 27], rather than discrete. Many
methods for classification have a closely related variant that can be used for
regression. An example is support vector regression [57] which, like support vector
classification, produces a function f that can be written in terms of a subset of the
training data, the so-called support vectors. Relevance vector regression, as it was
used in [27], generally provides an even sparser representation of a similar form
and at similar accuracy, at the cost of a more difficult and time consuming training
process.



Statistical and Machine Learning Methods for Neuroimaging 309

Many aspects of learning a function f .x/ that will be discussed in the remainder
of this section are common to classification and regression. In this case, we will
refer to methods that create such functions as “learning machines”.

3.3 Feature Extraction

Feature extraction is the process of producing a feature vector x from the image data.
It will subsequently represent a subject or cognitive state and contain information
relevant to the classification or regression task. Initially, the individual images often
undergo the same preprocessing that would be used for voxel-based statistical
analysis, as it was explained in section “Voxel-Based Statistics”. This includes
normalization to a standard space, so that each voxel position (approximately)
corresponds to the same anatomical structure, often followed by smoothing to
reduce image noise and to compensate for residual misalignment.

At this point, each voxel could in principle be turned into an entry of the feature
vector [40]. Often, a shorter feature vector is desired and is achieved by averaging
values over larger blocks of voxels [19] or over predefined functional regions [18,
21], whose selection may be informed by prior knowledge on the regions involved
in specific tasks or conditions [20].

In the context of diffusion MRI, feature extraction often makes use of the
pipeline developed for Tract-Based Spatial Statistics (TBSS), which was explained
in section “Voxel-Based Statistics Proposed for Diffusion MRI”. In this case, the
features are given by the values on the TBSS skeleton [33, 56], sometimes averaged
over predefined white matter regions [15].

A more complex way of deriving feature vectors from diffusion MRI involves
a brain connectivity graph constructed using tractography. To this end, Wee et al.
[71] first parcellate the brain into anatomical regions of interest and detect which of
them are connected by a deterministic full-brain tractography. The resulting graph
is represented as an adjacency matrix, where edges are alternatively weighted by
fiber count, Fractional Anisotropy, Mean Diffusivity, or any of the three diffusion
tensor eigenvalues, and the resulting six matrices are vectorized and concatenated
to form the final feature vector. In a follow-up work, these dMRI-based connectivity
matrices have been combined with ones constructed from correlations in resting-
state fMRI [72].

3.4 Feature Selection and Feature Weighting

Even though many learning machines are in principle able to operate on high-
dimensional feature spaces, their effectiveness can be reduced when feature vectors
include components whose variation does not carry any information about the
desired output y, especially when, in addition, little training data is available. This



310 L.J. O’Donnell and T. Schultz

is particularly relevant for some of the feature vectors described in the previous
subsection, which can be very high-dimensional (m � 106), and often include
information from all regions of the brain, even if only some small specialized area
may be affected by a disease or relevant to a task.

Initially, one often attempts to give similar influence to all features (“feature
normalization”), for example by subtracting the mean and dividing by the standard
deviation, or by linearly rescaling all features to some fixed interval [15]. Subse-
quently, a crucial step in most applications of machine learning in neuroimaging is
to reduce the impact of features which are less relevant to the task at hand.

Feature selection methods attempt to find a subset of features which is particu-
larly well suited for building a learning machine. In order to arrive at an optimal
solution, one would have to evaluate each possible combination of features, which
is infeasible in most cases. Therefore, a frequently used strategy is to first rank
features according to their expected utility, and to include the top k features in the
final feature vector.

In neuroimaging, the Fisher score (as it would be used in an F-test [15]), the
t score (as it would be used in Student’s t-test [71]), and, in case of regression, the
Pearson correlation coefficient [21], are particularly popular for ranking features,
possibly due to their ubiquitous use for statistical testing on the same type of data.
As an alternative to these straightforward methods, a family of heuristics known
as Relief, ReliefF, and RReliefF [54] is occasionally used [33, 50], and offers the
advantage of being able to detect nonlinear dependencies between features and
labels, as well as providing a higher rating of features that are only useful when
used in combination, whereas the simple methods rate each feature in isolation.

Once a ranking has been achieved, the number k of features that should be
included can be found by cross-validation [71], which will be explained in greater
detail in Sect. 3.5. As a computationally less demanding alternative, sometimes only
features are used whose difference between labels is statistically significant [18], or
the number of retained features is simply set to some constant value [21].

Traditional techniques for dimensionality reduction such as Principal Component
Analysis have also been used [27], but have occasionally been found to perform
worse than other feature selection schemes [71]. This might be explained by the fact
that, unlike all methods described above, they only consider the feature vectors xi

in isolation, and do not account for their relationship to the labels yi .
An alternative to feature selection is feature weighting, which assigns a greater

influence to some features than to others, rather than eliminating features com-
pletely. For example, Schmidt-Wilcke et al. [56] and Schlaffke et al. [55] scale all
features by their corresponding F score, which avoids the need to decide how many
features to retain.

Related to the idea of feature weighting are multiple-kernel SVMs, which are
based on a weighted sum of several distance measures (kernels) between the xi , each
of which might depend only on a certain subset of features. A natural application
of this concept is multimodal imaging, where each modality is represented by a
separate kernel [72].
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3.5 Validation and Parameter Tuning

Once a function f .x/ has been trained for classification or regression, its accuracy
can be estimated by applying it to a set of test data f.Qxi ; Qyi /g, and measuring the
difference between the predictions f .Qxi / and the true Qyi . In order to ensure that the
resulting estimate is unbiased (i.e., not overly optimistic), it is essential that the test
data may not overlap with the data that has been used for training.

When data is available from only relatively few subjects, as it is quite common in
neuroimaging, setting part of it aside for testing only allows us to evaluate accuracy
on very few examples, leading to estimates that may be unbiased (on average, we do
not overestimate accuracy), but have high variance (individual estimates of accuracy
are highly uncertain). This problem can be reduced by applying cross validation, in
which the learning machine is trained repeatedly on part of the data. In particular,
in n-fold cross validation, the data is distributed equally between n sets (“folds”).
Based on these, the learning machine is trained n times, each time using data from
n � 1 folds, and evaluating the result on the data from the remaining fold. The final
estimate of accuracy is obtained by averaging the results from all n iterations. A
special case of this is leave-one-out cross validation, in which the number of folds
coincides with the size of the available training dataset, so that, in each iteration,
only one sample .xi ; yi / is left out of the training set.

Most learning machines have parameters that need to be set, such as choosing a
kernel and setting a regularization parameter in support vector machines, or deciding
how many features to retain in feature selection. While some authors simply use
fixed default settings [21], results can often be improved greatly by evaluating
alternative settings using cross-validation, and using the one that led to the highest
estimated accuracy.

When cross-validation is used for parameter tuning, obtaining a reliable estimate
of the final accuracy requires nested cross-validation, so that an outer cross-
validation loop, which is responsible for estimating the overall accuracy, separates
the data into a training and a testing set, and the inner loop, which performs the
parameter tuning, may only access the training data set from the outer loop.

A subtle consequence of this, which is sometimes overlooked, is that in order
for cross-validation to be effective, only the training data may be used for feature
selection. A pragmatic safeguard against accidental double dipping is to attempt
classification of the same data with randomly permuted labels yi , to repeat this
a large number of times, and to observe the resulting distribution of accuracies.
Dosenbach et al. [21] perform this experiment as a part of validating their method;
Schmidt-Wilcke et al. [56] use it as a permutation-based test to assess significance
of their classification results.

Since a classifier cannot be expected to predict random labels with larger-than-
random accuracy, an unbiased estimate should, on average, result in the same
accuracy as a random guess. This is illustrated in Fig. 2: It is based on 100 iterations
in which random group labels have been assigned to 18 healthy subjects, and a
support vector machine with feature weighting has been trained to predict those



312 L.J. O’Donnell and T. Schultz

Fig. 2 On average, trying to predict 100 different sets of random labels cannot lead to better-than-
random accuracy (left). However, if feature weighting is performed outside of the cross validation
loop, the classifier is erroneously reported to achieve perfect results in each case (right)

random labels from MRI data. On the left, feature weighting is done correctly,
within the leave-one-out cross validation. As expected, on average, the classifier
does not achieve higher accuracy than a random guess. On the right, the same
classification is attempted using the same method; the only difference is that, similar
to [33, 50], feature weighting has now been performed as a pre-process on all data,
including the test data. This leads to the misleading estimate that random labels can
be predicted with perfect accuracy in all cases.

This surprising pitfall can be explained by the fact that we are given few data
points with a huge number of features, many of which take on random values. This
means that, given arbitrary class assignments, the feature vector includes features
that happen to separate the data into those classes by pure chance. Performing
feature selection on the whole dataset allows the classifier to operate on those
features, without having any independent data left to check whether or not they
actually contained legitimate information, or were correlated with the labels only
by chance. This is similar to the fact that, after selecting a region of interest (ROI)
based on correlations with another random variable, it is no longer meaningful to
perform a statistical test on those correlations within that same ROI [68].

In summary, Fig. 2 illustrates that performing feature selection or feature weight-
ing outside the cross validation loop can bias estimates so severely that they
lose all meaning. While many works have avoided this problem by a correct
setup [21, 27, 35, 71], some others merely acknowledge that performing feature
selection as a pre-process on all data might lead to results that are “too optimistic,
probably related to some degree of over-fitting” [33] or that “validation in an
independent sample will be essential to determine how robust the current approach
is when applied to a fully independent dataset” [50], which does not appreciate
the full severity of the problem. Importantly, one should never attempt to compare
accuracies from a correct setup with those reported after doing feature selection on
the full dataset.
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The fact that this section has illustrated one difficulty in correctly applying
machine learning to neuroimaging data should not be taken as an indication
that these techniques are fundamentally flawed: They rest on a solid statistical
foundation [66] and, when applied correctly, they have already led to results that
could be reproduced across different datasets [21, 35], and learning machines trained
on one scanner have been tested successfully on data from other scanners [27].

3.6 Interpretation and Visualization

Since a fundamental goal in most neuroimaging studies is to better understand how
the structure of the brain and its activity relate to specific functions, or to factors
such as gender, age, and disease, it is desirable to obtain not only a classification or
regression result from applying a learning machine to the data, but to gain at least
some level of understanding of how it arrives at its prediction, e.g., which regions
of the brain were most important for detecting a specific disease.

Most machine learning methods are designed to achieve the highest possible
accuracy, whereas interpretability by a human operator is usually not a primary
design goal. One common way to still glean some insight is to consider the results of
feature selection. For example, if each feature corresponds to the average over some
region of interest (ROI), the selected features indicate which regions were used to
achieve the classification. When cross validation is used, different features might
be selected in each iteration, and it is common to only report the features that are
selected most frequently [15, 71] or even in all cases [18, 21].

Closely related to this, some authors compare the accuracies that can be achieved
when making different parts of their data available to the classifier. For example,
in the context of diffusion tensor MRI, this may indicate whether Fractional
Anisotropy, Mean Diffusivity, or individual eigenvalues allow for more reliable
detection of a certain disease [71].

As part of their training, linear classifiers, such as linear support vector machines
or linear discriminant analysis, compute a weight with which each feature con-
tributes to the final result. If features were appropriately normalized, this makes
it natural to inspect the weight vectors as an indicator of feature importance. In
fact, when features correspond to individual voxels or small ROIs, weight vectors
can be visualized as spatial maps, similar to activation maps from mass-univariate
statistical analysis [40]. Support vector machines have recently been extended to
increase spatial regularity of the resulting maps, with the goal of making them more
interpretable [17].

However, an important caveat in the interpretation of weight vectors is that
classifiers may put significant weight on features that are unrelated to the given
task or disease, and that the largest weights do not necessarily correspond to the
features which are most strongly related to the label. In particular, Haufe et al. [34]
provide examples in which features are only included to cancel out artifacts that are
also present in truly informative features and might obtain an even greater weight.
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Even though weight vectors have been found to agree with prior knowledge about
abnormalities in Alzheimer’s disease [17, 39] and have indicated neuroanatomically
plausible regions in cases where mass univariate analysis failed to detect significant
differences [16], Haufe et al. [34] conclude that the only truly firm conclusion that
can be drawn from weight vectors of a successful classifier is that at least one of the
features with non-zero weight is associated with the given condition or task.

When support vector machines are used with a nonlinear kernel, the weight
vector is defined in an abstract higher-dimensional space, and generally cannot
be mapped back to the original feature vector [57]. However, sensitivity analysis
[40, 53] can still quantify how much impact each feature has on the classification.
In the linear case, sensitivities amount to the squared feature weights [53], so they
suffer from the same limitations with respect to their interpretability.

4 Main Challenges and Conclusions

As discussed in section “Voxel-Based Statistics”, spatially contiguous regions play
an important role in maintaining statistical power while correcting for multi-
ple comparisons in mass-univariate statistical testing. In contrast, most learning
machines act on abstract feature vectors, and are oblivious of the underlying spatial
structure. Even though attempts have recently been made to increase accuracy
and interpretability of classifiers by spatial regularization [17], it is still widely
unexplored how to best account for spatial and anatomical structures when training
learning machines, and how much is to be gained from it. Taken to the extreme,
Honorio et al. [35] have demonstrated that, on several datasets with a limited number
of subjects each, classification based on a single discriminative region of interest
outperformed some widely used multivariate methods that were found to make use
of a larger number of scattered voxels.

While there is hope that the multivariate analysis afforded by machine learning
techniques will lead to an understanding of interactions and dependencies that
would remain hidden to mass-univariate approaches, interpretation and visualization
of what allows a learning machine to perform successful classification or regression
remains a difficult task [34], and merits further work.

Applications of machine learning to diffusion MRI have so far mostly been based
on features derived from the second-order diffusion tensor model. However, it is
now common to acquire more complex diffusion MR data that requires higher-
order models, including High Angular Resolution Diffusion Imaging (HARDI),
Diffusion Spectrum Imaging (DSI), and multi-shell data. Only few initial works
exist on extracting features suitable for machine learning from such models, based
on spherical deconvolution [10], or a spherical harmonics expansion of apparent
diffusivities [46]. There is still a need to explore alternative features based on such
rich and complex data, and to evaluate their power and reliability in a range of
applications.
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Finally, training highly accurate learning machines and obtaining a realistic
impression of their performance requires more data than is typically acquired for
traditional statistical analysis. Currently, relatively few groups have the opportunity
to apply machine learning to sufficiently uniform datasets that include hundreds
of subjects [21, 27]. However, larger datasets, such as the ones from the Human
Connectome Project [65], are currently becoming available to the general research
community, and are about to open up new horizons for the development and
evaluation of machine learning on neuroimaging data.
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