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Abstract The Heat Kernel Signature (HKS) is a scalar quantity which is derived
from the heat kernel of a given shape. Due to its robustness, isometry invariance, and
multiscale nature, it has been successfully applied in many geometric applications.
From a more general point of view, the HKS can be considered as a descriptor of the
metric of a Riemannian manifold. Given a symmetric positive definite tensor field
we may interpret it as the metric of some Riemannian manifold and thereby apply
the HKS to visualize and analyze the given tensor data. In this paper, we propose a
generalization of this approach that enables the treatment of indefinite tensor fields,
like the stress tensor, by interpreting them as a generator of a positive definite tensor
field. To investigate the usefulness of this approach we consider the stress tensor
from the two-point-load model example and from a mechanical work piece.

1 Introduction

The Heat Kernel Signature (HKS) is a powerful shape signature and has been
introduced by Sun et al. in [11]. They have shown that the HKS is an isometric
invariant and contains almost all intrinsic information of a surface. Intuitively, the
HKS can be considered as the curvature of the surface. Since the HKS is derived
from the process of heat diffusion it is equipped with a time parameter which is a
measure for the size of the neighborhood that influences the value of the HKS at a
point. Common applications use the HKS to detect similarly shaped surfaces, see
[2, 4, 7, 8].
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Fig. 1 Commutative diagram illustrating the relation between the HKS of a surface and a positive
definite tensor field. Metric of the surface depicted as ellipses (top left), the parametrized surface
(top right), HKS on the surface (bottom right) and the HKS on U (bottom right)

Motivated by these useful properties, the HKS has recently been proposed to
visualize symmetric positive definite tensor fields [12]. The basic idea is to consider
the HKS as a signature of the metric of the surface. By abstracting completely from
the concept of an embedded surface, we can apply the HKS to tensor fields with
the characteristics of a Riemannian metric, i.e. symmetric positive definite tensor
fields.

The relation between the HKS of a two-dimensional surface M and a positive
definite tensor field (i.e. the metric tensor field of the surface) is illustrated in Fig. 1.
If g is the metric of the surface M and f W R2 � U 7! R

3 a parametrization of
M , i.e. f .U / D M , we can compute the pull back of the metric g on U by f ,
denoted by f �g. The metric f �g is a positive definite tensor field on U which is
well characterized by the HKS of the surface. We can thereby compute the HKS for
a positive definite tensor field defined on U � R

2, by interpreting the tensor field as
the metric of a surface.

Note that it is not necessary to compute an explicit embedding of the associated
surface into some Euclidean space to compute the HKS of a given tensor field. This
results in a significant difference for the computation of the HKS. While in case of
surfaces the embedding is utilized to compute the HKS, in the case of general tensor
fields all computations can be done using the tensor only. To do this efficiently, a
realization employing a finite element method is described in [12]. If you are only
interested in very short times scales there may be more accurate alternatives for the
computation, see e.g. [10].
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The concept described above has been successfully applied to positive define
tensor fields [12]. For other tensor fields, e.g. stress tensor fields, this method is
not directly applicable. In this paper, we propose to interpret such tensor fields as
a generator of a time dependent deformation via a positive monotonic mapping, to
obtain a field which describes a process close to a diffusion process [5]. This enables
us to analyze these fields using the HKS.

A short introduction to the HKS and its application to tensor fields is given in
Sect. 2.1. In Sect. 3 we motivate the use of the HKS to indefinite tensor fields and
explain its generalization. Experiments and results from applying the method are
shown in Sect. 4.

2 Fundamentals

In this section we recall the basic concepts and definitions of the heat kernel and its
signature. It follows the original paper [12] closely.

2.1 Heat Kernel Signature

The Heat Kernel Signature (HKS) has been introduced in the field of visualization
and computer graphics with the purpose of comparing surfaces. It is derived from
the heat equation and assigns each point of the surface a time dependent function,
which depends solely on the metric of the surface. The time parameter supports a
multiscale comparison. It is used to control the size of the neighborhood of a point
on the surface which is taken into account for the HKS. The definition of the HKS
is applicable for arbitrary Riemannian manifolds, and thus can be used to visualize
more general, positive definite tensor fields. A brief introduction to the HKS is given
in this section. For details on the HKS we refer the reader to [11], while a formal
treatment of the heat operator and the heat kernel can be found in [9].

Let .M; g/ be a compact, oriented Riemannian manifold and � the Laplace-
Beltrami operator on M which is a equivalent to the usual Laplacian in case of flat
spaces. Given an initial heat distribution h.x/ on M , the heat distribution h.t; x/
at time t is governed by the heat equation .@t � �/h.t; x/ D 0. The heat kernel
k.t; x; y/ is satisfying .@t � �x/k.t; x; y/ D 0 with limt!0

R
k.t; x; y/h.y/ dy D

h.x/ where �x denotes the Laplacian acting in the x variable. The heat kernel can
be computed based on the eigenvalues �i and eigenfunctions �i of � by

k.t; x; y/ D
X

i

e��i t�i .x/�i .y/ : (1)
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The heat kernel signature (HKS) is defined in [11] as the function HKS

HKS.t; x/ D k.t; x; x/ : (2)

Since the heat kernel is much more complex than the HKS, one might expect to
lose a lot of information when regarding the HKS instead of the heat kernel. But, as
shown in [11], the HKS of a surface contains almost all information of the metric
of the surface itself and is much more informative than usual scalar quantities like
the trace or the determinant. For small values of the time parameter t the HKS is
strongly related to the curvature of the manifold. Intuitively, the heat is ‘trapped’ in
regions with positive Gaussian curvature, while there is much ‘space to escape’ in
regions with negative Gaussian curvature.

2.2 HKS for Symmetric Positive Definite Tensor Fields

The HKS introduced above is defined for any compact, oriented Riemannian
manifold. Thus the HKS is not restricted to surfaces embedded in R

n. If we have a
metric tensor g, i.e. a symmetric positive definite tensor field, defined on a region
U � R

n, then .U; g/ forms a Riemannian manifold. Since there is a Riemannian
manifold associated with a positive definite tensor field in this way, we can compute
the HKS for any positive definite tensor field. The relation of the HKS for surfaces
and tensor fields is based on considering a parametrized surface and the pullback
of its metric. This means, given a parametrized surface we can compute the HKS
for the surface f .U / or the HKS can be directly computed on U using the metric
g even without knowing its embedding. This is equivalent to computing the HKS
on the surface f .U / and then pull it back to the parameter space U . This is nicely
illustrated in the commuting diagram in Fig. 1. More details are given in the paper
by Zobel et al. [12]

An example for the HKS for a symmetric positive definite tensor field is shown
in Fig. 2, a diffusion tensor data set of a brain. Instead of using the diffusion tensor
T itself we consider the metric g D T �1. Large eigenvalues of the diffusion tensor
correspond to high diffusivity in direction of the respective eigenvalue, whereas
small eigenvalues correspond to low diffusivity. Since a high diffusivity should
reflect small distances considering the inverse tensor is a natural way of assigning
a metric to a diffusion tensor. For a detailed discussion see [6]. We evaluate the
HKS for different time steps. Although the extraction of a single slice might discard
valuable information, the structure of the brain becomes obvious by the HKS. The
defined metric implies that blue regions (low values) reflect high diffusivity, whereas
red regions (high values) reflect low diffusivity. Moreover, the time parameter t
allows us to focus on small- as well as large-scale structures.
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t=50t=10t=1

Fig. 2 HKS of a brain data set (Data set courtesy of Gordon Kindlmann at the Scientific
Computing and Imaging Institute, University of Utah, and Andrew Alexander, W. M. Keck
Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-Madison.) for
different t . The inverse of the diffusion tensor is considered. The colormap ranges from the
minimum (blue) to the maximum (red) of each individual image

2.3 Numerical Realization

The computation of the HKS for symmetric positive definite tensor fields has been
described in [12] in detail. The method employs a finite element approach solving a
generalized eigenvalue equation of the Laplacian. For the more general application
of indefinite tensor fields this approach can be used without any changes. Also
the choice of appropriate boundary conditions is discussed in this paper. Usual
boundary conditions like Dirichlet or Neumann boundary conditions influence the
HKS significantly. Neumann boundary conditions represent a perfectly insulated
boundary. Dirichlet boundary conditions cause the HKS to have a fixed value at the
boundary. To reduce these boundary artifacts we reflect a part of the field at the
boundary such the heat at the boundary can diffuse outwards, see Fig. 3.

3 Using the HKS for Indefinite Stress Tensor Fields

While the relation of the heat diffusion process to other diffusion processes is
obvious this is not the case for general indefinite tensors. For some applications
however, there are indefinite tensors that can be considered as generator of a
deformation process, which is described by a positive definite tensor. One example
for such a tensor is the stress tensor, which is a central physical quantity for material
modeling in mechanical engineering. In this section we propose an extension of
the HKS method introduced by Zobel et al. [12] to a more general setting. The
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Fig. 3 The result of the two point load data set on the left is strongly influenced by the boundary.
This effect can be reduced significantly by reflecting a portion of the tensor field on the boundary
(middle) and cropping the result (right)

basic idea is to introduce a natural mapping of stress tensor fields to a positive
definite tensor field which serves as input for the HKS computation. To motivate the
mapping we will summarize some physical basics related to the stress tensor � in
the following. It should be noted, that this summary depicts a strongly simplified
view on the much more complex topic of deformation and stress theory. The
intention is mainly to justify the specific choices of mapping functions used for
the visualization. We restrict the discussion to two-dimensional tensors to keep it
simple. Our current implementation is also restricted to this case. For more details
we refer to mechanical engineering textbooks, e.g. [1, 3]. The task of material
modeling involves two essential tensor fields: the strain and the stress tensor field.

Considering the deformation of a continuous material, as a response to external
forces, the deformation is essentially described by the displacement vector field.
The deformation gradient tensor F measures all associated changes: stretches
(local volume and shape changes) and local orientation changes due to rotations.
Neglecting the rotational part, the stretch tensor is then derived from F employing
the polar decomposition. It is a symmetric, positive definite tensor of second order.
The physical quantity generally used for material modeling is strain, the relative
stretch. In one dimension the uniaxial strain � is defined as logarithm of the relative
changes in length L

� D
Z

dL

L
D ln

L

L0
: (3)

Similarly, the multi-axial strain is defined as the logarithm of the rotation free part
of the deformation tensor.

The stress tensor characterizes the local direction-dependent loads inside of a
material. The sign of its eigenvalues are related to compressive respective tensile
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forces. Stress � and strain � tensor are linked through the constitutive relationship,
which is close to linear for the large class of linear elastic materials (Hooke’s law)

� D C � ;

where C is a tensor of fourth order.
The naive intuition behind the mapping applied for the visualization of the stress

tensor corresponds to a ‘relaxation’ of the material with respect to internal stresses.
While the actual deformation process is much more complex, this mapping still
gives an idea of a small scale transformation inside the material. In accordance
to Eq. (3) the exponential mapping is the natural choice. For small scale changes
it can be approximated linearly using the first term of the Taylor expansion.
For visualization purposes we consider a larger variety of mappings with similar
characteristics. They will be introduced in the following. A similar idea has also be
used in [5] for the generation of texture visualizations.

Let T be a two-dimensional symmetric tensor field, �1 � �2 its eigenvalues and
U the orthogonal matrix, such that

T D UT

�
�1

�2

�

U :

We define  .T / for any positive, monotonic function  W R ! R by

 .T / D UT

�
 .�1/

 .�2/

�

U :

The tensor  .T / is now positive definite while its eigenvector fields remain
unchanged. The selection and parametrization of the mapping  influences the
HKS. Thus this choice has to be made carefully. We use the following mappings

• The exponential mapping .x/ D exp.˛x/, which is the most natural choice for
stress tensor fields.

• Linear mapping .x/ D cC˛x, where ˛ and c are constants such that we obtain
a positive definite field.

• Arc tangent mapping  .x/ D arctan.˛x/C �
2

. As for the exponential mapping,
the range of this function is limited to R

C. It further enhances changes for small
absolute values of stresses while it is asymptotic for stresses with large absolute
values.

Experiments using these mappings are shown in Sect. 4.
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4 Results

In this section, we discuss some results of first experiments with indefinite stress
tensor fields. We investigate the sensitivity of the HKS with respect to the three
different mapping functions described in the previous section and the involved
parameters. Therefore we consider two data sets which are both results from
numerical finite element simulations of material stressing. Both data sets are
originally three-dimensional, of which we have extracted two-dimensional slices.
The first data set simulates two forces acting on a solid block, one pulling, one
pushing the ‘two point load’. This is a simulation with a very low resolution
exhibiting some discretization artifacts, leading to a small scale structure. This data
set is well-studied and therefore appropriate to evaluate our method. Throughout
this section we use the colormap shown in Fig. 3, which ranges from the minimum
to the maximum for the respective data set and setting.

We start with the exponential mapping, which is the most natural choice with
respect to the physical interpretation. More precisely, we consider the tensor fields
exp.T / (Fig. 4 first row) and exp.0:01T / (Fig. 4 second row), i.e. we use two
different scalings of the original field. We can observe that the different scaling
has hardly any influence on the result using this color map (from min blue to max
red). Further, the HKS is evaluated for different time steps t . We see that for small
time scales all details of discretization artifacts of the simulation are visible. Moving
to larger times these details vanish and only the major features, the pushing and the
pulling force remain.

In Fig. 5 the arc tangent mapping is applied to the tensor field. This mapping
is symmetric with respect to positive and negative eigenvalues. It especially
emphasizes changes for eigenvalues with small absolute value while the mapping

t = 0.1 t = 1 t = 2 t = 5 t = 10

t = 0.1 t =1 t = 2 t = 5 t = 10

Fig. 4 HKS of a two point load data set (Data set courtesy of Boris Jeremić, University of
California Davis.) using the exponential mapping. First row exp.T /, second row exp.0:01T /
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t = 0.1 t = 1 t = 2 t = 5 t = 10

t = 0.1 t = 1 t = 2 t = 5 t = 10

Fig. 5 HKS of a two point load data set mapped by arctan, scaled with ˛ D 0:1 for the first row
and ˛ D 0:001 second row

t = 10;000 t = 20;000 t = 30;000 t = 40;000 t = 50;000

Fig. 6 HKS of a two point load data set using the linear mapping

is asymptotic for eigenvalues with large absolute value. In our example the tensor
field is scaled with 0.1 and 0.001 in the first and second row, respectively, and
shifted by �

2
to obtain a positive definite field, i.e. we consider arctan.0:1T /C �

2
and

arctan.0:001T / C �
2

. Using the arc tangent mapping, the scaling has more impact
than for the exponential mapping. While the scaling of 0.1 also emphasizes regions
with small eigenvalues of the tensor T , the scaling of 0.001 focuses on regions with
more extremal eigenvalues, i.e. the points where the load is applied.

The simplest approach to obtain a positive definite tensor field is to shift the
eigenvalues of T by a constant, such that the smallest eigenvalues occurring in
the field are just above zero. Such a linear mapping is used in Fig. 6. Since the
eigenvalues of our data set range from about �27;500 to 27,500, we add 27,500
to all eigenvalues. Therefore the area represented by the resulting metric is much
larger than for the preceding mappings. As a consequence much larger time values
have to be considered. However, the different time steps still show a very similar
behavior. Shifting the eigenvalues by a constant causes the metric to represent a
larger area at each point, thus the curvature decreases. Consequently there seem to
arise some peaks of the curvature at points where the eigenvalues are close to the
minimum, which dominate the behavior of the HKS for all time values. Thus, the
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Tensor trace on
surface

t = 0.5 t = 2 t = 2 t = 5 t = 10

Fig. 7 HKS of a two point load data set with exponential mapping, scaled with ˛ D 100. The
principal stress directions of the data set are given as context information in the background texture.
Data courtesy Markus Stommel, TU Dortmund, Germany

linear mapping is maybe not the proper choice to obtain a positive definite tensor
field, at least if there are strong negative peaks in the smallest eigenvalue field.

A second example represents the simulation of a mechanical work piece, see
Fig. 7. It consists of a boundary structure filled with a fictitious material with a
very low Young’s modulus. Within the interior of the filled region the stresses are
almost constant. The small scale HKS clearly emphasizes the discontinuities in the
material selection. For larger scales it can be seen which parts of the material are
more responsive to the applied forces.

5 Conclusion and Future Work

By applying a respective mapping to indefinite tensor fields it is possible to compute
the heat kernel signature for such fields. This provides a new visualization method
for stress tensors which differs strongly from common visualization methods. Due to
its sensitivity with respect to the derivative of the tensor field it conveys additional
information which is not visible in direct visualization. A special strength of the
method is its inherent level of detail property. Thus, it is possible to emphasize
smaller or larger structures. In contrast to basic Gaussian smoothing the scaling is
directly driven by the tensor data itself. On the other side the interpretation of the
results is not as easy and requires some effort. There are still many open questions
in this respect. For the future we plan on further investigating the significance of
the HKS for further applications. It might be of interest to compare the scaling
properties to ideas of anisotropic diffusion.

From a theoretical point of view the method can be easily generalized to 3D
tensor fields. With the exception of the formulas indicating the relation to Gaussian
curvature, all statements are also valid in higher dimensions. The main obstacle is
that the computation of the eigenvalues and eigenfunctions of the Laplacian is non-
trivial. The computation of the first 500 eigenvalues for a data set with 2562 points
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already takes a few minutes, thus the computation time for a data set with 2563

points is going to be infeasible using standard approaches.
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